1 | //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | //===----------------------------------------------------------------------===// |
7 | // |
8 | // This file implements semantic analysis for C++ templates. |
9 | //===----------------------------------------------------------------------===// |
10 | |
11 | #include "TreeTransform.h" |
12 | #include "clang/AST/ASTConsumer.h" |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/Decl.h" |
15 | #include "clang/AST/DeclFriend.h" |
16 | #include "clang/AST/DeclTemplate.h" |
17 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
18 | #include "clang/AST/Expr.h" |
19 | #include "clang/AST/ExprCXX.h" |
20 | #include "clang/AST/TemplateName.h" |
21 | #include "clang/AST/TypeVisitor.h" |
22 | #include "clang/Basic/Builtins.h" |
23 | #include "clang/Basic/DiagnosticSema.h" |
24 | #include "clang/Basic/LangOptions.h" |
25 | #include "clang/Basic/PartialDiagnostic.h" |
26 | #include "clang/Basic/SourceLocation.h" |
27 | #include "clang/Basic/TargetInfo.h" |
28 | #include "clang/Sema/DeclSpec.h" |
29 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
30 | #include "clang/Sema/Initialization.h" |
31 | #include "clang/Sema/Lookup.h" |
32 | #include "clang/Sema/Overload.h" |
33 | #include "clang/Sema/ParsedTemplate.h" |
34 | #include "clang/Sema/Scope.h" |
35 | #include "clang/Sema/SemaCUDA.h" |
36 | #include "clang/Sema/SemaInternal.h" |
37 | #include "clang/Sema/Template.h" |
38 | #include "clang/Sema/TemplateDeduction.h" |
39 | #include "llvm/ADT/SmallBitVector.h" |
40 | #include "llvm/ADT/StringExtras.h" |
41 | #include "llvm/Support/SaveAndRestore.h" |
42 | |
43 | #include <optional> |
44 | using namespace clang; |
45 | using namespace sema; |
46 | |
47 | // Exported for use by Parser. |
48 | SourceRange |
49 | clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, |
50 | unsigned N) { |
51 | if (!N) return SourceRange(); |
52 | return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); |
53 | } |
54 | |
55 | unsigned Sema::getTemplateDepth(Scope *S) const { |
56 | unsigned Depth = 0; |
57 | |
58 | // Each template parameter scope represents one level of template parameter |
59 | // depth. |
60 | for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; |
61 | TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { |
62 | ++Depth; |
63 | } |
64 | |
65 | // Note that there are template parameters with the given depth. |
66 | auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(a: Depth, b: D + 1); }; |
67 | |
68 | // Look for parameters of an enclosing generic lambda. We don't create a |
69 | // template parameter scope for these. |
70 | for (FunctionScopeInfo *FSI : getFunctionScopes()) { |
71 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: FSI)) { |
72 | if (!LSI->TemplateParams.empty()) { |
73 | ParamsAtDepth(LSI->AutoTemplateParameterDepth); |
74 | break; |
75 | } |
76 | if (LSI->GLTemplateParameterList) { |
77 | ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); |
78 | break; |
79 | } |
80 | } |
81 | } |
82 | |
83 | // Look for parameters of an enclosing terse function template. We don't |
84 | // create a template parameter scope for these either. |
85 | for (const InventedTemplateParameterInfo &Info : |
86 | getInventedParameterInfos()) { |
87 | if (!Info.TemplateParams.empty()) { |
88 | ParamsAtDepth(Info.AutoTemplateParameterDepth); |
89 | break; |
90 | } |
91 | } |
92 | |
93 | return Depth; |
94 | } |
95 | |
96 | /// \brief Determine whether the declaration found is acceptable as the name |
97 | /// of a template and, if so, return that template declaration. Otherwise, |
98 | /// returns null. |
99 | /// |
100 | /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent |
101 | /// is true. In all other cases it will return a TemplateDecl (or null). |
102 | NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, |
103 | bool AllowFunctionTemplates, |
104 | bool AllowDependent) { |
105 | D = D->getUnderlyingDecl(); |
106 | |
107 | if (isa<TemplateDecl>(Val: D)) { |
108 | if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(Val: D)) |
109 | return nullptr; |
110 | |
111 | return D; |
112 | } |
113 | |
114 | if (const auto *Record = dyn_cast<CXXRecordDecl>(Val: D)) { |
115 | // C++ [temp.local]p1: |
116 | // Like normal (non-template) classes, class templates have an |
117 | // injected-class-name (Clause 9). The injected-class-name |
118 | // can be used with or without a template-argument-list. When |
119 | // it is used without a template-argument-list, it is |
120 | // equivalent to the injected-class-name followed by the |
121 | // template-parameters of the class template enclosed in |
122 | // <>. When it is used with a template-argument-list, it |
123 | // refers to the specified class template specialization, |
124 | // which could be the current specialization or another |
125 | // specialization. |
126 | if (Record->isInjectedClassName()) { |
127 | Record = cast<CXXRecordDecl>(Record->getDeclContext()); |
128 | if (Record->getDescribedClassTemplate()) |
129 | return Record->getDescribedClassTemplate(); |
130 | |
131 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) |
132 | return Spec->getSpecializedTemplate(); |
133 | } |
134 | |
135 | return nullptr; |
136 | } |
137 | |
138 | // 'using Dependent::foo;' can resolve to a template name. |
139 | // 'using typename Dependent::foo;' cannot (not even if 'foo' is an |
140 | // injected-class-name). |
141 | if (AllowDependent && isa<UnresolvedUsingValueDecl>(Val: D)) |
142 | return D; |
143 | |
144 | return nullptr; |
145 | } |
146 | |
147 | void Sema::FilterAcceptableTemplateNames(LookupResult &R, |
148 | bool AllowFunctionTemplates, |
149 | bool AllowDependent) { |
150 | LookupResult::Filter filter = R.makeFilter(); |
151 | while (filter.hasNext()) { |
152 | NamedDecl *Orig = filter.next(); |
153 | if (!getAsTemplateNameDecl(D: Orig, AllowFunctionTemplates, AllowDependent)) |
154 | filter.erase(); |
155 | } |
156 | filter.done(); |
157 | } |
158 | |
159 | bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, |
160 | bool AllowFunctionTemplates, |
161 | bool AllowDependent, |
162 | bool AllowNonTemplateFunctions) { |
163 | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { |
164 | if (getAsTemplateNameDecl(D: *I, AllowFunctionTemplates, AllowDependent)) |
165 | return true; |
166 | if (AllowNonTemplateFunctions && |
167 | isa<FunctionDecl>(Val: (*I)->getUnderlyingDecl())) |
168 | return true; |
169 | } |
170 | |
171 | return false; |
172 | } |
173 | |
174 | TemplateNameKind Sema::isTemplateName(Scope *S, |
175 | CXXScopeSpec &SS, |
176 | bool hasTemplateKeyword, |
177 | const UnqualifiedId &Name, |
178 | ParsedType ObjectTypePtr, |
179 | bool EnteringContext, |
180 | TemplateTy &TemplateResult, |
181 | bool &MemberOfUnknownSpecialization, |
182 | bool Disambiguation) { |
183 | assert(getLangOpts().CPlusPlus && "No template names in C!"); |
184 | |
185 | DeclarationName TName; |
186 | MemberOfUnknownSpecialization = false; |
187 | |
188 | switch (Name.getKind()) { |
189 | case UnqualifiedIdKind::IK_Identifier: |
190 | TName = DeclarationName(Name.Identifier); |
191 | break; |
192 | |
193 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
194 | TName = Context.DeclarationNames.getCXXOperatorName( |
195 | Op: Name.OperatorFunctionId.Operator); |
196 | break; |
197 | |
198 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
199 | TName = Context.DeclarationNames.getCXXLiteralOperatorName(II: Name.Identifier); |
200 | break; |
201 | |
202 | default: |
203 | return TNK_Non_template; |
204 | } |
205 | |
206 | QualType ObjectType = ObjectTypePtr.get(); |
207 | |
208 | AssumedTemplateKind AssumedTemplate; |
209 | LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); |
210 | if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, |
211 | /*RequiredTemplate=*/SourceLocation(), |
212 | ATK: &AssumedTemplate, |
213 | /*AllowTypoCorrection=*/!Disambiguation)) |
214 | return TNK_Non_template; |
215 | MemberOfUnknownSpecialization = R.wasNotFoundInCurrentInstantiation(); |
216 | |
217 | if (AssumedTemplate != AssumedTemplateKind::None) { |
218 | TemplateResult = TemplateTy::make(P: Context.getAssumedTemplateName(Name: TName)); |
219 | // Let the parser know whether we found nothing or found functions; if we |
220 | // found nothing, we want to more carefully check whether this is actually |
221 | // a function template name versus some other kind of undeclared identifier. |
222 | return AssumedTemplate == AssumedTemplateKind::FoundNothing |
223 | ? TNK_Undeclared_template |
224 | : TNK_Function_template; |
225 | } |
226 | |
227 | if (R.empty()) |
228 | return TNK_Non_template; |
229 | |
230 | NamedDecl *D = nullptr; |
231 | UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: *R.begin()); |
232 | if (R.isAmbiguous()) { |
233 | // If we got an ambiguity involving a non-function template, treat this |
234 | // as a template name, and pick an arbitrary template for error recovery. |
235 | bool AnyFunctionTemplates = false; |
236 | for (NamedDecl *FoundD : R) { |
237 | if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(D: FoundD)) { |
238 | if (isa<FunctionTemplateDecl>(Val: FoundTemplate)) |
239 | AnyFunctionTemplates = true; |
240 | else { |
241 | D = FoundTemplate; |
242 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: FoundD); |
243 | break; |
244 | } |
245 | } |
246 | } |
247 | |
248 | // If we didn't find any templates at all, this isn't a template name. |
249 | // Leave the ambiguity for a later lookup to diagnose. |
250 | if (!D && !AnyFunctionTemplates) { |
251 | R.suppressDiagnostics(); |
252 | return TNK_Non_template; |
253 | } |
254 | |
255 | // If the only templates were function templates, filter out the rest. |
256 | // We'll diagnose the ambiguity later. |
257 | if (!D) |
258 | FilterAcceptableTemplateNames(R); |
259 | } |
260 | |
261 | // At this point, we have either picked a single template name declaration D |
262 | // or we have a non-empty set of results R containing either one template name |
263 | // declaration or a set of function templates. |
264 | |
265 | TemplateName Template; |
266 | TemplateNameKind TemplateKind; |
267 | |
268 | unsigned ResultCount = R.end() - R.begin(); |
269 | if (!D && ResultCount > 1) { |
270 | // We assume that we'll preserve the qualifier from a function |
271 | // template name in other ways. |
272 | Template = Context.getOverloadedTemplateName(Begin: R.begin(), End: R.end()); |
273 | TemplateKind = TNK_Function_template; |
274 | |
275 | // We'll do this lookup again later. |
276 | R.suppressDiagnostics(); |
277 | } else { |
278 | if (!D) { |
279 | D = getAsTemplateNameDecl(D: *R.begin()); |
280 | assert(D && "unambiguous result is not a template name"); |
281 | } |
282 | |
283 | if (isa<UnresolvedUsingValueDecl>(Val: D)) { |
284 | // We don't yet know whether this is a template-name or not. |
285 | MemberOfUnknownSpecialization = true; |
286 | return TNK_Non_template; |
287 | } |
288 | |
289 | TemplateDecl *TD = cast<TemplateDecl>(Val: D); |
290 | Template = |
291 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); |
292 | assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); |
293 | if (!SS.isInvalid()) { |
294 | NestedNameSpecifier *Qualifier = SS.getScopeRep(); |
295 | Template = Context.getQualifiedTemplateName(NNS: Qualifier, TemplateKeyword: hasTemplateKeyword, |
296 | Template); |
297 | } |
298 | |
299 | if (isa<FunctionTemplateDecl>(Val: TD)) { |
300 | TemplateKind = TNK_Function_template; |
301 | |
302 | // We'll do this lookup again later. |
303 | R.suppressDiagnostics(); |
304 | } else { |
305 | assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || |
306 | isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || |
307 | isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); |
308 | TemplateKind = |
309 | isa<VarTemplateDecl>(Val: TD) ? TNK_Var_template : |
310 | isa<ConceptDecl>(Val: TD) ? TNK_Concept_template : |
311 | TNK_Type_template; |
312 | } |
313 | } |
314 | |
315 | TemplateResult = TemplateTy::make(P: Template); |
316 | return TemplateKind; |
317 | } |
318 | |
319 | bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, |
320 | SourceLocation NameLoc, CXXScopeSpec &SS, |
321 | ParsedTemplateTy *Template /*=nullptr*/) { |
322 | // We could use redeclaration lookup here, but we don't need to: the |
323 | // syntactic form of a deduction guide is enough to identify it even |
324 | // if we can't look up the template name at all. |
325 | LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); |
326 | if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), |
327 | /*EnteringContext*/ false)) |
328 | return false; |
329 | |
330 | if (R.empty()) return false; |
331 | if (R.isAmbiguous()) { |
332 | // FIXME: Diagnose an ambiguity if we find at least one template. |
333 | R.suppressDiagnostics(); |
334 | return false; |
335 | } |
336 | |
337 | // We only treat template-names that name type templates as valid deduction |
338 | // guide names. |
339 | TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); |
340 | if (!TD || !getAsTypeTemplateDecl(TD)) |
341 | return false; |
342 | |
343 | if (Template) { |
344 | TemplateName Name = Context.getQualifiedTemplateName( |
345 | NNS: SS.getScopeRep(), /*TemplateKeyword=*/false, Template: TemplateName(TD)); |
346 | *Template = TemplateTy::make(P: Name); |
347 | } |
348 | return true; |
349 | } |
350 | |
351 | bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, |
352 | SourceLocation IILoc, |
353 | Scope *S, |
354 | const CXXScopeSpec *SS, |
355 | TemplateTy &SuggestedTemplate, |
356 | TemplateNameKind &SuggestedKind) { |
357 | // We can't recover unless there's a dependent scope specifier preceding the |
358 | // template name. |
359 | // FIXME: Typo correction? |
360 | if (!SS || !SS->isSet() || !isDependentScopeSpecifier(SS: *SS) || |
361 | computeDeclContext(SS: *SS)) |
362 | return false; |
363 | |
364 | // The code is missing a 'template' keyword prior to the dependent template |
365 | // name. |
366 | NestedNameSpecifier *Qualifier = (NestedNameSpecifier *)SS->getScopeRep(); |
367 | SuggestedTemplate = TemplateTy::make(P: Context.getDependentTemplateName( |
368 | Name: {Qualifier, &II, /*HasTemplateKeyword=*/false})); |
369 | Diag(IILoc, diag::err_template_kw_missing) |
370 | << SuggestedTemplate.get() |
371 | << FixItHint::CreateInsertion(IILoc, "template "); |
372 | SuggestedKind = TNK_Dependent_template_name; |
373 | return true; |
374 | } |
375 | |
376 | bool Sema::LookupTemplateName(LookupResult &Found, Scope *S, CXXScopeSpec &SS, |
377 | QualType ObjectType, bool EnteringContext, |
378 | RequiredTemplateKind RequiredTemplate, |
379 | AssumedTemplateKind *ATK, |
380 | bool AllowTypoCorrection) { |
381 | if (ATK) |
382 | *ATK = AssumedTemplateKind::None; |
383 | |
384 | if (SS.isInvalid()) |
385 | return true; |
386 | |
387 | Found.setTemplateNameLookup(true); |
388 | |
389 | // Determine where to perform name lookup |
390 | DeclContext *LookupCtx = nullptr; |
391 | bool IsDependent = false; |
392 | if (!ObjectType.isNull()) { |
393 | // This nested-name-specifier occurs in a member access expression, e.g., |
394 | // x->B::f, and we are looking into the type of the object. |
395 | assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist"); |
396 | LookupCtx = computeDeclContext(T: ObjectType); |
397 | IsDependent = !LookupCtx && ObjectType->isDependentType(); |
398 | assert((IsDependent || !ObjectType->isIncompleteType() || |
399 | !ObjectType->getAs<TagType>() || |
400 | ObjectType->castAs<TagType>()->isBeingDefined()) && |
401 | "Caller should have completed object type"); |
402 | |
403 | // Template names cannot appear inside an Objective-C class or object type |
404 | // or a vector type. |
405 | // |
406 | // FIXME: This is wrong. For example: |
407 | // |
408 | // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); |
409 | // Vec<int> vi; |
410 | // vi.Vec<int>::~Vec<int>(); |
411 | // |
412 | // ... should be accepted but we will not treat 'Vec' as a template name |
413 | // here. The right thing to do would be to check if the name is a valid |
414 | // vector component name, and look up a template name if not. And similarly |
415 | // for lookups into Objective-C class and object types, where the same |
416 | // problem can arise. |
417 | if (ObjectType->isObjCObjectOrInterfaceType() || |
418 | ObjectType->isVectorType()) { |
419 | Found.clear(); |
420 | return false; |
421 | } |
422 | } else if (SS.isNotEmpty()) { |
423 | // This nested-name-specifier occurs after another nested-name-specifier, |
424 | // so long into the context associated with the prior nested-name-specifier. |
425 | LookupCtx = computeDeclContext(SS, EnteringContext); |
426 | IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); |
427 | |
428 | // The declaration context must be complete. |
429 | if (LookupCtx && RequireCompleteDeclContext(SS, DC: LookupCtx)) |
430 | return true; |
431 | } |
432 | |
433 | bool ObjectTypeSearchedInScope = false; |
434 | bool AllowFunctionTemplatesInLookup = true; |
435 | if (LookupCtx) { |
436 | // Perform "qualified" name lookup into the declaration context we |
437 | // computed, which is either the type of the base of a member access |
438 | // expression or the declaration context associated with a prior |
439 | // nested-name-specifier. |
440 | LookupQualifiedName(R&: Found, LookupCtx); |
441 | |
442 | // FIXME: The C++ standard does not clearly specify what happens in the |
443 | // case where the object type is dependent, and implementations vary. In |
444 | // Clang, we treat a name after a . or -> as a template-name if lookup |
445 | // finds a non-dependent member or member of the current instantiation that |
446 | // is a type template, or finds no such members and lookup in the context |
447 | // of the postfix-expression finds a type template. In the latter case, the |
448 | // name is nonetheless dependent, and we may resolve it to a member of an |
449 | // unknown specialization when we come to instantiate the template. |
450 | IsDependent |= Found.wasNotFoundInCurrentInstantiation(); |
451 | } |
452 | |
453 | if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { |
454 | // C++ [basic.lookup.classref]p1: |
455 | // In a class member access expression (5.2.5), if the . or -> token is |
456 | // immediately followed by an identifier followed by a <, the |
457 | // identifier must be looked up to determine whether the < is the |
458 | // beginning of a template argument list (14.2) or a less-than operator. |
459 | // The identifier is first looked up in the class of the object |
460 | // expression. If the identifier is not found, it is then looked up in |
461 | // the context of the entire postfix-expression and shall name a class |
462 | // template. |
463 | if (S) |
464 | LookupName(R&: Found, S); |
465 | |
466 | if (!ObjectType.isNull()) { |
467 | // FIXME: We should filter out all non-type templates here, particularly |
468 | // variable templates and concepts. But the exclusion of alias templates |
469 | // and template template parameters is a wording defect. |
470 | AllowFunctionTemplatesInLookup = false; |
471 | ObjectTypeSearchedInScope = true; |
472 | } |
473 | |
474 | IsDependent |= Found.wasNotFoundInCurrentInstantiation(); |
475 | } |
476 | |
477 | if (Found.isAmbiguous()) |
478 | return false; |
479 | |
480 | if (ATK && SS.isEmpty() && ObjectType.isNull() && |
481 | !RequiredTemplate.hasTemplateKeyword()) { |
482 | // C++2a [temp.names]p2: |
483 | // A name is also considered to refer to a template if it is an |
484 | // unqualified-id followed by a < and name lookup finds either one or more |
485 | // functions or finds nothing. |
486 | // |
487 | // To keep our behavior consistent, we apply the "finds nothing" part in |
488 | // all language modes, and diagnose the empty lookup in ActOnCallExpr if we |
489 | // successfully form a call to an undeclared template-id. |
490 | bool AllFunctions = |
491 | getLangOpts().CPlusPlus20 && llvm::all_of(Range&: Found, P: [](NamedDecl *ND) { |
492 | return isa<FunctionDecl>(Val: ND->getUnderlyingDecl()); |
493 | }); |
494 | if (AllFunctions || (Found.empty() && !IsDependent)) { |
495 | // If lookup found any functions, or if this is a name that can only be |
496 | // used for a function, then strongly assume this is a function |
497 | // template-id. |
498 | *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) |
499 | ? AssumedTemplateKind::FoundNothing |
500 | : AssumedTemplateKind::FoundFunctions; |
501 | Found.clear(); |
502 | return false; |
503 | } |
504 | } |
505 | |
506 | if (Found.empty() && !IsDependent && AllowTypoCorrection) { |
507 | // If we did not find any names, and this is not a disambiguation, attempt |
508 | // to correct any typos. |
509 | DeclarationName Name = Found.getLookupName(); |
510 | Found.clear(); |
511 | // Simple filter callback that, for keywords, only accepts the C++ *_cast |
512 | DefaultFilterCCC FilterCCC{}; |
513 | FilterCCC.WantTypeSpecifiers = false; |
514 | FilterCCC.WantExpressionKeywords = false; |
515 | FilterCCC.WantRemainingKeywords = false; |
516 | FilterCCC.WantCXXNamedCasts = true; |
517 | if (TypoCorrection Corrected = CorrectTypo( |
518 | Typo: Found.getLookupNameInfo(), LookupKind: Found.getLookupKind(), S, SS: &SS, CCC&: FilterCCC, |
519 | Mode: CorrectTypoKind::ErrorRecovery, MemberContext: LookupCtx)) { |
520 | if (auto *ND = Corrected.getFoundDecl()) |
521 | Found.addDecl(D: ND); |
522 | FilterAcceptableTemplateNames(R&: Found); |
523 | if (Found.isAmbiguous()) { |
524 | Found.clear(); |
525 | } else if (!Found.empty()) { |
526 | // Do not erase the typo-corrected result to avoid duplicated |
527 | // diagnostics. |
528 | AllowFunctionTemplatesInLookup = true; |
529 | Found.setLookupName(Corrected.getCorrection()); |
530 | if (LookupCtx) { |
531 | std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts())); |
532 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
533 | Name.getAsString() == CorrectedStr; |
534 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) |
535 | << Name << LookupCtx << DroppedSpecifier |
536 | << SS.getRange()); |
537 | } else { |
538 | diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); |
539 | } |
540 | } |
541 | } |
542 | } |
543 | |
544 | NamedDecl *ExampleLookupResult = |
545 | Found.empty() ? nullptr : Found.getRepresentativeDecl(); |
546 | FilterAcceptableTemplateNames(R&: Found, AllowFunctionTemplates: AllowFunctionTemplatesInLookup); |
547 | if (Found.empty()) { |
548 | if (IsDependent) { |
549 | Found.setNotFoundInCurrentInstantiation(); |
550 | return false; |
551 | } |
552 | |
553 | // If a 'template' keyword was used, a lookup that finds only non-template |
554 | // names is an error. |
555 | if (ExampleLookupResult && RequiredTemplate) { |
556 | Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) |
557 | << Found.getLookupName() << SS.getRange() |
558 | << RequiredTemplate.hasTemplateKeyword() |
559 | << RequiredTemplate.getTemplateKeywordLoc(); |
560 | Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), |
561 | diag::note_template_kw_refers_to_non_template) |
562 | << Found.getLookupName(); |
563 | return true; |
564 | } |
565 | |
566 | return false; |
567 | } |
568 | |
569 | if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && |
570 | !getLangOpts().CPlusPlus11) { |
571 | // C++03 [basic.lookup.classref]p1: |
572 | // [...] If the lookup in the class of the object expression finds a |
573 | // template, the name is also looked up in the context of the entire |
574 | // postfix-expression and [...] |
575 | // |
576 | // Note: C++11 does not perform this second lookup. |
577 | LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), |
578 | LookupOrdinaryName); |
579 | FoundOuter.setTemplateNameLookup(true); |
580 | LookupName(R&: FoundOuter, S); |
581 | // FIXME: We silently accept an ambiguous lookup here, in violation of |
582 | // [basic.lookup]/1. |
583 | FilterAcceptableTemplateNames(R&: FoundOuter, /*AllowFunctionTemplates=*/false); |
584 | |
585 | NamedDecl *OuterTemplate; |
586 | if (FoundOuter.empty()) { |
587 | // - if the name is not found, the name found in the class of the |
588 | // object expression is used, otherwise |
589 | } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || |
590 | !(OuterTemplate = |
591 | getAsTemplateNameDecl(D: FoundOuter.getFoundDecl()))) { |
592 | // - if the name is found in the context of the entire |
593 | // postfix-expression and does not name a class template, the name |
594 | // found in the class of the object expression is used, otherwise |
595 | FoundOuter.clear(); |
596 | } else if (!Found.isSuppressingAmbiguousDiagnostics()) { |
597 | // - if the name found is a class template, it must refer to the same |
598 | // entity as the one found in the class of the object expression, |
599 | // otherwise the program is ill-formed. |
600 | if (!Found.isSingleResult() || |
601 | getAsTemplateNameDecl(D: Found.getFoundDecl())->getCanonicalDecl() != |
602 | OuterTemplate->getCanonicalDecl()) { |
603 | Diag(Found.getNameLoc(), |
604 | diag::ext_nested_name_member_ref_lookup_ambiguous) |
605 | << Found.getLookupName() |
606 | << ObjectType; |
607 | Diag(Found.getRepresentativeDecl()->getLocation(), |
608 | diag::note_ambig_member_ref_object_type) |
609 | << ObjectType; |
610 | Diag(FoundOuter.getFoundDecl()->getLocation(), |
611 | diag::note_ambig_member_ref_scope); |
612 | |
613 | // Recover by taking the template that we found in the object |
614 | // expression's type. |
615 | } |
616 | } |
617 | } |
618 | |
619 | return false; |
620 | } |
621 | |
622 | void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, |
623 | SourceLocation Less, |
624 | SourceLocation Greater) { |
625 | if (TemplateName.isInvalid()) |
626 | return; |
627 | |
628 | DeclarationNameInfo NameInfo; |
629 | CXXScopeSpec SS; |
630 | LookupNameKind LookupKind; |
631 | |
632 | DeclContext *LookupCtx = nullptr; |
633 | NamedDecl *Found = nullptr; |
634 | bool MissingTemplateKeyword = false; |
635 | |
636 | // Figure out what name we looked up. |
637 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: TemplateName.get())) { |
638 | NameInfo = DRE->getNameInfo(); |
639 | SS.Adopt(Other: DRE->getQualifierLoc()); |
640 | LookupKind = LookupOrdinaryName; |
641 | Found = DRE->getFoundDecl(); |
642 | } else if (auto *ME = dyn_cast<MemberExpr>(Val: TemplateName.get())) { |
643 | NameInfo = ME->getMemberNameInfo(); |
644 | SS.Adopt(Other: ME->getQualifierLoc()); |
645 | LookupKind = LookupMemberName; |
646 | LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); |
647 | Found = ME->getMemberDecl(); |
648 | } else if (auto *DSDRE = |
649 | dyn_cast<DependentScopeDeclRefExpr>(Val: TemplateName.get())) { |
650 | NameInfo = DSDRE->getNameInfo(); |
651 | SS.Adopt(Other: DSDRE->getQualifierLoc()); |
652 | MissingTemplateKeyword = true; |
653 | } else if (auto *DSME = |
654 | dyn_cast<CXXDependentScopeMemberExpr>(Val: TemplateName.get())) { |
655 | NameInfo = DSME->getMemberNameInfo(); |
656 | SS.Adopt(Other: DSME->getQualifierLoc()); |
657 | MissingTemplateKeyword = true; |
658 | } else { |
659 | llvm_unreachable("unexpected kind of potential template name"); |
660 | } |
661 | |
662 | // If this is a dependent-scope lookup, diagnose that the 'template' keyword |
663 | // was missing. |
664 | if (MissingTemplateKeyword) { |
665 | Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) |
666 | << NameInfo.getName() << SourceRange(Less, Greater); |
667 | return; |
668 | } |
669 | |
670 | // Try to correct the name by looking for templates and C++ named casts. |
671 | struct TemplateCandidateFilter : CorrectionCandidateCallback { |
672 | Sema &S; |
673 | TemplateCandidateFilter(Sema &S) : S(S) { |
674 | WantTypeSpecifiers = false; |
675 | WantExpressionKeywords = false; |
676 | WantRemainingKeywords = false; |
677 | WantCXXNamedCasts = true; |
678 | }; |
679 | bool ValidateCandidate(const TypoCorrection &Candidate) override { |
680 | if (auto *ND = Candidate.getCorrectionDecl()) |
681 | return S.getAsTemplateNameDecl(D: ND); |
682 | return Candidate.isKeyword(); |
683 | } |
684 | |
685 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
686 | return std::make_unique<TemplateCandidateFilter>(args&: *this); |
687 | } |
688 | }; |
689 | |
690 | DeclarationName Name = NameInfo.getName(); |
691 | TemplateCandidateFilter CCC(*this); |
692 | if (TypoCorrection Corrected = |
693 | CorrectTypo(Typo: NameInfo, LookupKind, S, SS: &SS, CCC, |
694 | Mode: CorrectTypoKind::ErrorRecovery, MemberContext: LookupCtx)) { |
695 | auto *ND = Corrected.getFoundDecl(); |
696 | if (ND) |
697 | ND = getAsTemplateNameDecl(D: ND); |
698 | if (ND || Corrected.isKeyword()) { |
699 | if (LookupCtx) { |
700 | std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts())); |
701 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
702 | Name.getAsString() == CorrectedStr; |
703 | diagnoseTypo(Corrected, |
704 | PDiag(diag::err_non_template_in_member_template_id_suggest) |
705 | << Name << LookupCtx << DroppedSpecifier |
706 | << SS.getRange(), false); |
707 | } else { |
708 | diagnoseTypo(Corrected, |
709 | PDiag(diag::err_non_template_in_template_id_suggest) |
710 | << Name, false); |
711 | } |
712 | if (Found) |
713 | Diag(Found->getLocation(), |
714 | diag::note_non_template_in_template_id_found); |
715 | return; |
716 | } |
717 | } |
718 | |
719 | Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) |
720 | << Name << SourceRange(Less, Greater); |
721 | if (Found) |
722 | Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); |
723 | } |
724 | |
725 | ExprResult |
726 | Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, |
727 | SourceLocation TemplateKWLoc, |
728 | const DeclarationNameInfo &NameInfo, |
729 | bool isAddressOfOperand, |
730 | const TemplateArgumentListInfo *TemplateArgs) { |
731 | if (SS.isEmpty()) { |
732 | // FIXME: This codepath is only used by dependent unqualified names |
733 | // (e.g. a dependent conversion-function-id, or operator= once we support |
734 | // it). It doesn't quite do the right thing, and it will silently fail if |
735 | // getCurrentThisType() returns null. |
736 | QualType ThisType = getCurrentThisType(); |
737 | if (ThisType.isNull()) |
738 | return ExprError(); |
739 | |
740 | return CXXDependentScopeMemberExpr::Create( |
741 | Ctx: Context, /*Base=*/nullptr, BaseType: ThisType, |
742 | /*IsArrow=*/!Context.getLangOpts().HLSL, |
743 | /*OperatorLoc=*/SourceLocation(), |
744 | /*QualifierLoc=*/NestedNameSpecifierLoc(), TemplateKWLoc, |
745 | /*FirstQualifierFoundInScope=*/nullptr, MemberNameInfo: NameInfo, TemplateArgs); |
746 | } |
747 | return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); |
748 | } |
749 | |
750 | ExprResult |
751 | Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, |
752 | SourceLocation TemplateKWLoc, |
753 | const DeclarationNameInfo &NameInfo, |
754 | const TemplateArgumentListInfo *TemplateArgs) { |
755 | // DependentScopeDeclRefExpr::Create requires a valid NestedNameSpecifierLoc |
756 | if (!SS.isValid()) |
757 | return CreateRecoveryExpr( |
758 | Begin: SS.getBeginLoc(), |
759 | End: TemplateArgs ? TemplateArgs->getRAngleLoc() : NameInfo.getEndLoc(), SubExprs: {}); |
760 | |
761 | return DependentScopeDeclRefExpr::Create( |
762 | Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
763 | TemplateArgs); |
764 | } |
765 | |
766 | bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, |
767 | NamedDecl *Instantiation, |
768 | bool InstantiatedFromMember, |
769 | const NamedDecl *Pattern, |
770 | const NamedDecl *PatternDef, |
771 | TemplateSpecializationKind TSK, |
772 | bool Complain, bool *Unreachable) { |
773 | assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || |
774 | isa<VarDecl>(Instantiation)); |
775 | |
776 | bool IsEntityBeingDefined = false; |
777 | if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(Val: PatternDef)) |
778 | IsEntityBeingDefined = TD->isBeingDefined(); |
779 | |
780 | if (PatternDef && !IsEntityBeingDefined) { |
781 | NamedDecl *SuggestedDef = nullptr; |
782 | if (!hasReachableDefinition(D: const_cast<NamedDecl *>(PatternDef), |
783 | Suggested: &SuggestedDef, |
784 | /*OnlyNeedComplete*/ false)) { |
785 | if (Unreachable) |
786 | *Unreachable = true; |
787 | // If we're allowed to diagnose this and recover, do so. |
788 | bool Recover = Complain && !isSFINAEContext(); |
789 | if (Complain) |
790 | diagnoseMissingImport(Loc: PointOfInstantiation, Decl: SuggestedDef, |
791 | MIK: Sema::MissingImportKind::Definition, Recover); |
792 | return !Recover; |
793 | } |
794 | return false; |
795 | } |
796 | |
797 | if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) |
798 | return true; |
799 | |
800 | QualType InstantiationTy; |
801 | if (TagDecl *TD = dyn_cast<TagDecl>(Val: Instantiation)) |
802 | InstantiationTy = Context.getTypeDeclType(TD); |
803 | if (PatternDef) { |
804 | Diag(PointOfInstantiation, |
805 | diag::err_template_instantiate_within_definition) |
806 | << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) |
807 | << InstantiationTy; |
808 | // Not much point in noting the template declaration here, since |
809 | // we're lexically inside it. |
810 | Instantiation->setInvalidDecl(); |
811 | } else if (InstantiatedFromMember) { |
812 | if (isa<FunctionDecl>(Val: Instantiation)) { |
813 | Diag(PointOfInstantiation, |
814 | diag::err_explicit_instantiation_undefined_member) |
815 | << /*member function*/ 1 << Instantiation->getDeclName() |
816 | << Instantiation->getDeclContext(); |
817 | Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); |
818 | } else { |
819 | assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!"); |
820 | Diag(PointOfInstantiation, |
821 | diag::err_implicit_instantiate_member_undefined) |
822 | << InstantiationTy; |
823 | Diag(Pattern->getLocation(), diag::note_member_declared_at); |
824 | } |
825 | } else { |
826 | if (isa<FunctionDecl>(Val: Instantiation)) { |
827 | Diag(PointOfInstantiation, |
828 | diag::err_explicit_instantiation_undefined_func_template) |
829 | << Pattern; |
830 | Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); |
831 | } else if (isa<TagDecl>(Val: Instantiation)) { |
832 | Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) |
833 | << (TSK != TSK_ImplicitInstantiation) |
834 | << InstantiationTy; |
835 | NoteTemplateLocation(Decl: *Pattern); |
836 | } else { |
837 | assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!"); |
838 | if (isa<VarTemplateSpecializationDecl>(Val: Instantiation)) { |
839 | Diag(PointOfInstantiation, |
840 | diag::err_explicit_instantiation_undefined_var_template) |
841 | << Instantiation; |
842 | Instantiation->setInvalidDecl(); |
843 | } else |
844 | Diag(PointOfInstantiation, |
845 | diag::err_explicit_instantiation_undefined_member) |
846 | << /*static data member*/ 2 << Instantiation->getDeclName() |
847 | << Instantiation->getDeclContext(); |
848 | Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); |
849 | } |
850 | } |
851 | |
852 | // In general, Instantiation isn't marked invalid to get more than one |
853 | // error for multiple undefined instantiations. But the code that does |
854 | // explicit declaration -> explicit definition conversion can't handle |
855 | // invalid declarations, so mark as invalid in that case. |
856 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
857 | Instantiation->setInvalidDecl(); |
858 | return true; |
859 | } |
860 | |
861 | void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl, |
862 | bool SupportedForCompatibility) { |
863 | assert(PrevDecl->isTemplateParameter() && "Not a template parameter"); |
864 | |
865 | // C++23 [temp.local]p6: |
866 | // The name of a template-parameter shall not be bound to any following. |
867 | // declaration whose locus is contained by the scope to which the |
868 | // template-parameter belongs. |
869 | // |
870 | // When MSVC compatibility is enabled, the diagnostic is always a warning |
871 | // by default. Otherwise, it an error unless SupportedForCompatibility is |
872 | // true, in which case it is a default-to-error warning. |
873 | unsigned DiagId = |
874 | getLangOpts().MSVCCompat |
875 | ? diag::ext_template_param_shadow |
876 | : (SupportedForCompatibility ? diag::ext_compat_template_param_shadow |
877 | : diag::err_template_param_shadow); |
878 | const auto *ND = cast<NamedDecl>(Val: PrevDecl); |
879 | Diag(Loc, DiagId) << ND->getDeclName(); |
880 | NoteTemplateParameterLocation(Decl: *ND); |
881 | } |
882 | |
883 | TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { |
884 | if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(Val: D)) { |
885 | D = Temp->getTemplatedDecl(); |
886 | return Temp; |
887 | } |
888 | return nullptr; |
889 | } |
890 | |
891 | ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( |
892 | SourceLocation EllipsisLoc) const { |
893 | assert(Kind == Template && |
894 | "Only template template arguments can be pack expansions here"); |
895 | assert(getAsTemplate().get().containsUnexpandedParameterPack() && |
896 | "Template template argument pack expansion without packs"); |
897 | ParsedTemplateArgument Result(*this); |
898 | Result.EllipsisLoc = EllipsisLoc; |
899 | return Result; |
900 | } |
901 | |
902 | static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, |
903 | const ParsedTemplateArgument &Arg) { |
904 | |
905 | switch (Arg.getKind()) { |
906 | case ParsedTemplateArgument::Type: { |
907 | TypeSourceInfo *DI; |
908 | QualType T = SemaRef.GetTypeFromParser(Ty: Arg.getAsType(), TInfo: &DI); |
909 | if (!DI) |
910 | DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Loc: Arg.getLocation()); |
911 | return TemplateArgumentLoc(TemplateArgument(T), DI); |
912 | } |
913 | |
914 | case ParsedTemplateArgument::NonType: { |
915 | Expr *E = static_cast<Expr *>(Arg.getAsExpr()); |
916 | return TemplateArgumentLoc(TemplateArgument(E, /*IsCanonical=*/false), E); |
917 | } |
918 | |
919 | case ParsedTemplateArgument::Template: { |
920 | TemplateName Template = Arg.getAsTemplate().get(); |
921 | TemplateArgument TArg; |
922 | if (Arg.getEllipsisLoc().isValid()) |
923 | TArg = TemplateArgument(Template, /*NumExpansions=*/std::nullopt); |
924 | else |
925 | TArg = Template; |
926 | return TemplateArgumentLoc( |
927 | SemaRef.Context, TArg, |
928 | Arg.getScopeSpec().getWithLocInContext(Context&: SemaRef.Context), |
929 | Arg.getLocation(), Arg.getEllipsisLoc()); |
930 | } |
931 | } |
932 | |
933 | llvm_unreachable("Unhandled parsed template argument"); |
934 | } |
935 | |
936 | void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, |
937 | TemplateArgumentListInfo &TemplateArgs) { |
938 | for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) |
939 | TemplateArgs.addArgument(Loc: translateTemplateArgument(SemaRef&: *this, |
940 | Arg: TemplateArgsIn[I])); |
941 | } |
942 | |
943 | static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, |
944 | SourceLocation Loc, |
945 | const IdentifierInfo *Name) { |
946 | NamedDecl *PrevDecl = |
947 | SemaRef.LookupSingleName(S, Name, Loc, NameKind: Sema::LookupOrdinaryName, |
948 | Redecl: RedeclarationKind::ForVisibleRedeclaration); |
949 | if (PrevDecl && PrevDecl->isTemplateParameter()) |
950 | SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); |
951 | } |
952 | |
953 | ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { |
954 | TypeSourceInfo *TInfo; |
955 | QualType T = GetTypeFromParser(Ty: ParsedType.get(), TInfo: &TInfo); |
956 | if (T.isNull()) |
957 | return ParsedTemplateArgument(); |
958 | assert(TInfo && "template argument with no location"); |
959 | |
960 | // If we might have formed a deduced template specialization type, convert |
961 | // it to a template template argument. |
962 | if (getLangOpts().CPlusPlus17) { |
963 | TypeLoc TL = TInfo->getTypeLoc(); |
964 | SourceLocation EllipsisLoc; |
965 | if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { |
966 | EllipsisLoc = PET.getEllipsisLoc(); |
967 | TL = PET.getPatternLoc(); |
968 | } |
969 | |
970 | CXXScopeSpec SS; |
971 | if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { |
972 | SS.Adopt(Other: ET.getQualifierLoc()); |
973 | TL = ET.getNamedTypeLoc(); |
974 | } |
975 | |
976 | if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { |
977 | TemplateName Name = DTST.getTypePtr()->getTemplateName(); |
978 | ParsedTemplateArgument Result(SS, TemplateTy::make(P: Name), |
979 | DTST.getTemplateNameLoc()); |
980 | if (EllipsisLoc.isValid()) |
981 | Result = Result.getTemplatePackExpansion(EllipsisLoc); |
982 | return Result; |
983 | } |
984 | } |
985 | |
986 | // This is a normal type template argument. Note, if the type template |
987 | // argument is an injected-class-name for a template, it has a dual nature |
988 | // and can be used as either a type or a template. We handle that in |
989 | // convertTypeTemplateArgumentToTemplate. |
990 | return ParsedTemplateArgument(ParsedTemplateArgument::Type, |
991 | ParsedType.get().getAsOpaquePtr(), |
992 | TInfo->getTypeLoc().getBeginLoc()); |
993 | } |
994 | |
995 | NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, |
996 | SourceLocation EllipsisLoc, |
997 | SourceLocation KeyLoc, |
998 | IdentifierInfo *ParamName, |
999 | SourceLocation ParamNameLoc, |
1000 | unsigned Depth, unsigned Position, |
1001 | SourceLocation EqualLoc, |
1002 | ParsedType DefaultArg, |
1003 | bool HasTypeConstraint) { |
1004 | assert(S->isTemplateParamScope() && |
1005 | "Template type parameter not in template parameter scope!"); |
1006 | |
1007 | bool IsParameterPack = EllipsisLoc.isValid(); |
1008 | TemplateTypeParmDecl *Param |
1009 | = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), |
1010 | KeyLoc, ParamNameLoc, Depth, Position, |
1011 | ParamName, Typename, IsParameterPack, |
1012 | HasTypeConstraint); |
1013 | Param->setAccess(AS_public); |
1014 | |
1015 | if (Param->isParameterPack()) |
1016 | if (auto *CSI = getEnclosingLambdaOrBlock()) |
1017 | CSI->LocalPacks.push_back(Param); |
1018 | |
1019 | if (ParamName) { |
1020 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: ParamNameLoc, Name: ParamName); |
1021 | |
1022 | // Add the template parameter into the current scope. |
1023 | S->AddDecl(Param); |
1024 | IdResolver.AddDecl(Param); |
1025 | } |
1026 | |
1027 | // C++0x [temp.param]p9: |
1028 | // A default template-argument may be specified for any kind of |
1029 | // template-parameter that is not a template parameter pack. |
1030 | if (DefaultArg && IsParameterPack) { |
1031 | Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
1032 | DefaultArg = nullptr; |
1033 | } |
1034 | |
1035 | // Handle the default argument, if provided. |
1036 | if (DefaultArg) { |
1037 | TypeSourceInfo *DefaultTInfo; |
1038 | GetTypeFromParser(Ty: DefaultArg, TInfo: &DefaultTInfo); |
1039 | |
1040 | assert(DefaultTInfo && "expected source information for type"); |
1041 | |
1042 | // Check for unexpanded parameter packs. |
1043 | if (DiagnoseUnexpandedParameterPack(Loc: ParamNameLoc, T: DefaultTInfo, |
1044 | UPPC: UPPC_DefaultArgument)) |
1045 | return Param; |
1046 | |
1047 | // Check the template argument itself. |
1048 | if (CheckTemplateArgument(Arg: DefaultTInfo)) { |
1049 | Param->setInvalidDecl(); |
1050 | return Param; |
1051 | } |
1052 | |
1053 | Param->setDefaultArgument( |
1054 | C: Context, DefArg: TemplateArgumentLoc(DefaultTInfo->getType(), DefaultTInfo)); |
1055 | } |
1056 | |
1057 | return Param; |
1058 | } |
1059 | |
1060 | /// Convert the parser's template argument list representation into our form. |
1061 | static TemplateArgumentListInfo |
1062 | makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { |
1063 | TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, |
1064 | TemplateId.RAngleLoc); |
1065 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), |
1066 | TemplateId.NumArgs); |
1067 | S.translateTemplateArguments(TemplateArgsIn: TemplateArgsPtr, TemplateArgs); |
1068 | return TemplateArgs; |
1069 | } |
1070 | |
1071 | bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) { |
1072 | |
1073 | TemplateName TN = TypeConstr->Template.get(); |
1074 | ConceptDecl *CD = cast<ConceptDecl>(Val: TN.getAsTemplateDecl()); |
1075 | |
1076 | // C++2a [temp.param]p4: |
1077 | // [...] The concept designated by a type-constraint shall be a type |
1078 | // concept ([temp.concept]). |
1079 | if (!CD->isTypeConcept()) { |
1080 | Diag(TypeConstr->TemplateNameLoc, |
1081 | diag::err_type_constraint_non_type_concept); |
1082 | return true; |
1083 | } |
1084 | |
1085 | if (CheckConceptUseInDefinition(Concept: CD, Loc: TypeConstr->TemplateNameLoc)) |
1086 | return true; |
1087 | |
1088 | bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); |
1089 | |
1090 | if (!WereArgsSpecified && |
1091 | CD->getTemplateParameters()->getMinRequiredArguments() > 1) { |
1092 | Diag(TypeConstr->TemplateNameLoc, |
1093 | diag::err_type_constraint_missing_arguments) |
1094 | << CD; |
1095 | return true; |
1096 | } |
1097 | return false; |
1098 | } |
1099 | |
1100 | bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, |
1101 | TemplateIdAnnotation *TypeConstr, |
1102 | TemplateTypeParmDecl *ConstrainedParameter, |
1103 | SourceLocation EllipsisLoc) { |
1104 | return BuildTypeConstraint(SS, TypeConstraint: TypeConstr, ConstrainedParameter, EllipsisLoc, |
1105 | AllowUnexpandedPack: false); |
1106 | } |
1107 | |
1108 | bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, |
1109 | TemplateIdAnnotation *TypeConstr, |
1110 | TemplateTypeParmDecl *ConstrainedParameter, |
1111 | SourceLocation EllipsisLoc, |
1112 | bool AllowUnexpandedPack) { |
1113 | |
1114 | if (CheckTypeConstraint(TypeConstr)) |
1115 | return true; |
1116 | |
1117 | TemplateName TN = TypeConstr->Template.get(); |
1118 | ConceptDecl *CD = cast<ConceptDecl>(Val: TN.getAsTemplateDecl()); |
1119 | UsingShadowDecl *USD = TN.getAsUsingShadowDecl(); |
1120 | |
1121 | DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), |
1122 | TypeConstr->TemplateNameLoc); |
1123 | |
1124 | TemplateArgumentListInfo TemplateArgs; |
1125 | if (TypeConstr->LAngleLoc.isValid()) { |
1126 | TemplateArgs = |
1127 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *TypeConstr); |
1128 | |
1129 | if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { |
1130 | for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { |
1131 | if (DiagnoseUnexpandedParameterPack(Arg, UPPC: UPPC_TypeConstraint)) |
1132 | return true; |
1133 | } |
1134 | } |
1135 | } |
1136 | return AttachTypeConstraint( |
1137 | SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), |
1138 | ConceptName, CD, /*FoundDecl=*/USD ? cast<NamedDecl>(Val: USD) : CD, |
1139 | TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, |
1140 | ConstrainedParameter, EllipsisLoc); |
1141 | } |
1142 | |
1143 | template <typename ArgumentLocAppender> |
1144 | static ExprResult formImmediatelyDeclaredConstraint( |
1145 | Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, |
1146 | ConceptDecl *NamedConcept, NamedDecl *FoundDecl, SourceLocation LAngleLoc, |
1147 | SourceLocation RAngleLoc, QualType ConstrainedType, |
1148 | SourceLocation ParamNameLoc, ArgumentLocAppender Appender, |
1149 | SourceLocation EllipsisLoc) { |
1150 | |
1151 | TemplateArgumentListInfo ConstraintArgs; |
1152 | ConstraintArgs.addArgument( |
1153 | Loc: S.getTrivialTemplateArgumentLoc(Arg: TemplateArgument(ConstrainedType), |
1154 | /*NTTPType=*/QualType(), Loc: ParamNameLoc)); |
1155 | |
1156 | ConstraintArgs.setRAngleLoc(RAngleLoc); |
1157 | ConstraintArgs.setLAngleLoc(LAngleLoc); |
1158 | Appender(ConstraintArgs); |
1159 | |
1160 | // C++2a [temp.param]p4: |
1161 | // [...] This constraint-expression E is called the immediately-declared |
1162 | // constraint of T. [...] |
1163 | CXXScopeSpec SS; |
1164 | SS.Adopt(Other: NS); |
1165 | ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( |
1166 | SS, /*TemplateKWLoc=*/SourceLocation(), ConceptNameInfo: NameInfo, |
1167 | /*FoundDecl=*/FoundDecl ? FoundDecl : NamedConcept, NamedConcept, |
1168 | TemplateArgs: &ConstraintArgs); |
1169 | if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) |
1170 | return ImmediatelyDeclaredConstraint; |
1171 | |
1172 | // C++2a [temp.param]p4: |
1173 | // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). |
1174 | // |
1175 | // We have the following case: |
1176 | // |
1177 | // template<typename T> concept C1 = true; |
1178 | // template<C1... T> struct s1; |
1179 | // |
1180 | // The constraint: (C1<T> && ...) |
1181 | // |
1182 | // Note that the type of C1<T> is known to be 'bool', so we don't need to do |
1183 | // any unqualified lookups for 'operator&&' here. |
1184 | return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/Callee: nullptr, |
1185 | /*LParenLoc=*/SourceLocation(), |
1186 | LHS: ImmediatelyDeclaredConstraint.get(), Operator: BO_LAnd, |
1187 | EllipsisLoc, /*RHS=*/nullptr, |
1188 | /*RParenLoc=*/SourceLocation(), |
1189 | /*NumExpansions=*/std::nullopt); |
1190 | } |
1191 | |
1192 | bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, |
1193 | DeclarationNameInfo NameInfo, |
1194 | ConceptDecl *NamedConcept, NamedDecl *FoundDecl, |
1195 | const TemplateArgumentListInfo *TemplateArgs, |
1196 | TemplateTypeParmDecl *ConstrainedParameter, |
1197 | SourceLocation EllipsisLoc) { |
1198 | // C++2a [temp.param]p4: |
1199 | // [...] If Q is of the form C<A1, ..., An>, then let E' be |
1200 | // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] |
1201 | const ASTTemplateArgumentListInfo *ArgsAsWritten = |
1202 | TemplateArgs ? ASTTemplateArgumentListInfo::Create(C: Context, |
1203 | List: *TemplateArgs) : nullptr; |
1204 | |
1205 | QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); |
1206 | |
1207 | ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( |
1208 | *this, NS, NameInfo, NamedConcept, FoundDecl, |
1209 | TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), |
1210 | TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), |
1211 | ParamAsArgument, ConstrainedParameter->getLocation(), |
1212 | [&](TemplateArgumentListInfo &ConstraintArgs) { |
1213 | if (TemplateArgs) |
1214 | for (const auto &ArgLoc : TemplateArgs->arguments()) |
1215 | ConstraintArgs.addArgument(Loc: ArgLoc); |
1216 | }, |
1217 | EllipsisLoc); |
1218 | if (ImmediatelyDeclaredConstraint.isInvalid()) |
1219 | return true; |
1220 | |
1221 | auto *CL = ConceptReference::Create(C: Context, /*NNS=*/NS, |
1222 | /*TemplateKWLoc=*/SourceLocation{}, |
1223 | /*ConceptNameInfo=*/NameInfo, |
1224 | /*FoundDecl=*/FoundDecl, |
1225 | /*NamedConcept=*/NamedConcept, |
1226 | /*ArgsWritten=*/ArgsAsWritten); |
1227 | ConstrainedParameter->setTypeConstraint( |
1228 | CR: CL, ImmediatelyDeclaredConstraint: ImmediatelyDeclaredConstraint.get(), ArgPackSubstIndex: std::nullopt); |
1229 | return false; |
1230 | } |
1231 | |
1232 | bool Sema::AttachTypeConstraint(AutoTypeLoc TL, |
1233 | NonTypeTemplateParmDecl *NewConstrainedParm, |
1234 | NonTypeTemplateParmDecl *OrigConstrainedParm, |
1235 | SourceLocation EllipsisLoc) { |
1236 | if (NewConstrainedParm->getType().getNonPackExpansionType() != TL.getType() || |
1237 | TL.getAutoKeyword() != AutoTypeKeyword::Auto) { |
1238 | Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), |
1239 | diag::err_unsupported_placeholder_constraint) |
1240 | << NewConstrainedParm->getTypeSourceInfo() |
1241 | ->getTypeLoc() |
1242 | .getSourceRange(); |
1243 | return true; |
1244 | } |
1245 | // FIXME: Concepts: This should be the type of the placeholder, but this is |
1246 | // unclear in the wording right now. |
1247 | DeclRefExpr *Ref = |
1248 | BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(), |
1249 | VK_PRValue, OrigConstrainedParm->getLocation()); |
1250 | if (!Ref) |
1251 | return true; |
1252 | ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( |
1253 | *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), |
1254 | TL.getNamedConcept(), /*FoundDecl=*/TL.getFoundDecl(), TL.getLAngleLoc(), |
1255 | TL.getRAngleLoc(), BuildDecltypeType(Ref), |
1256 | OrigConstrainedParm->getLocation(), |
1257 | [&](TemplateArgumentListInfo &ConstraintArgs) { |
1258 | for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) |
1259 | ConstraintArgs.addArgument(Loc: TL.getArgLoc(i: I)); |
1260 | }, |
1261 | EllipsisLoc); |
1262 | if (ImmediatelyDeclaredConstraint.isInvalid() || |
1263 | !ImmediatelyDeclaredConstraint.isUsable()) |
1264 | return true; |
1265 | |
1266 | NewConstrainedParm->setPlaceholderTypeConstraint( |
1267 | ImmediatelyDeclaredConstraint.get()); |
1268 | return false; |
1269 | } |
1270 | |
1271 | QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, |
1272 | SourceLocation Loc) { |
1273 | if (TSI->getType()->isUndeducedType()) { |
1274 | // C++17 [temp.dep.expr]p3: |
1275 | // An id-expression is type-dependent if it contains |
1276 | // - an identifier associated by name lookup with a non-type |
1277 | // template-parameter declared with a type that contains a |
1278 | // placeholder type (7.1.7.4), |
1279 | TSI = SubstAutoTypeSourceInfoDependent(TypeWithAuto: TSI); |
1280 | } |
1281 | |
1282 | return CheckNonTypeTemplateParameterType(T: TSI->getType(), Loc); |
1283 | } |
1284 | |
1285 | bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { |
1286 | if (T->isDependentType()) |
1287 | return false; |
1288 | |
1289 | if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) |
1290 | return true; |
1291 | |
1292 | if (T->isStructuralType()) |
1293 | return false; |
1294 | |
1295 | // Structural types are required to be object types or lvalue references. |
1296 | if (T->isRValueReferenceType()) { |
1297 | Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; |
1298 | return true; |
1299 | } |
1300 | |
1301 | // Don't mention structural types in our diagnostic prior to C++20. Also, |
1302 | // there's not much more we can say about non-scalar non-class types -- |
1303 | // because we can't see functions or arrays here, those can only be language |
1304 | // extensions. |
1305 | if (!getLangOpts().CPlusPlus20 || |
1306 | (!T->isScalarType() && !T->isRecordType())) { |
1307 | Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; |
1308 | return true; |
1309 | } |
1310 | |
1311 | // Structural types are required to be literal types. |
1312 | if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) |
1313 | return true; |
1314 | |
1315 | Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; |
1316 | |
1317 | // Drill down into the reason why the class is non-structural. |
1318 | while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { |
1319 | // All members are required to be public and non-mutable, and can't be of |
1320 | // rvalue reference type. Check these conditions first to prefer a "local" |
1321 | // reason over a more distant one. |
1322 | for (const FieldDecl *FD : RD->fields()) { |
1323 | if (FD->getAccess() != AS_public) { |
1324 | Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; |
1325 | return true; |
1326 | } |
1327 | if (FD->isMutable()) { |
1328 | Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; |
1329 | return true; |
1330 | } |
1331 | if (FD->getType()->isRValueReferenceType()) { |
1332 | Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) |
1333 | << T; |
1334 | return true; |
1335 | } |
1336 | } |
1337 | |
1338 | // All bases are required to be public. |
1339 | for (const auto &BaseSpec : RD->bases()) { |
1340 | if (BaseSpec.getAccessSpecifier() != AS_public) { |
1341 | Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) |
1342 | << T << 1; |
1343 | return true; |
1344 | } |
1345 | } |
1346 | |
1347 | // All subobjects are required to be of structural types. |
1348 | SourceLocation SubLoc; |
1349 | QualType SubType; |
1350 | int Kind = -1; |
1351 | |
1352 | for (const FieldDecl *FD : RD->fields()) { |
1353 | QualType T = Context.getBaseElementType(FD->getType()); |
1354 | if (!T->isStructuralType()) { |
1355 | SubLoc = FD->getLocation(); |
1356 | SubType = T; |
1357 | Kind = 0; |
1358 | break; |
1359 | } |
1360 | } |
1361 | |
1362 | if (Kind == -1) { |
1363 | for (const auto &BaseSpec : RD->bases()) { |
1364 | QualType T = BaseSpec.getType(); |
1365 | if (!T->isStructuralType()) { |
1366 | SubLoc = BaseSpec.getBaseTypeLoc(); |
1367 | SubType = T; |
1368 | Kind = 1; |
1369 | break; |
1370 | } |
1371 | } |
1372 | } |
1373 | |
1374 | assert(Kind != -1 && "couldn't find reason why type is not structural"); |
1375 | Diag(SubLoc, diag::note_not_structural_subobject) |
1376 | << T << Kind << SubType; |
1377 | T = SubType; |
1378 | RD = T->getAsCXXRecordDecl(); |
1379 | } |
1380 | |
1381 | return true; |
1382 | } |
1383 | |
1384 | QualType Sema::CheckNonTypeTemplateParameterType(QualType T, |
1385 | SourceLocation Loc) { |
1386 | // We don't allow variably-modified types as the type of non-type template |
1387 | // parameters. |
1388 | if (T->isVariablyModifiedType()) { |
1389 | Diag(Loc, diag::err_variably_modified_nontype_template_param) |
1390 | << T; |
1391 | return QualType(); |
1392 | } |
1393 | |
1394 | // C++ [temp.param]p4: |
1395 | // |
1396 | // A non-type template-parameter shall have one of the following |
1397 | // (optionally cv-qualified) types: |
1398 | // |
1399 | // -- integral or enumeration type, |
1400 | if (T->isIntegralOrEnumerationType() || |
1401 | // -- pointer to object or pointer to function, |
1402 | T->isPointerType() || |
1403 | // -- lvalue reference to object or lvalue reference to function, |
1404 | T->isLValueReferenceType() || |
1405 | // -- pointer to member, |
1406 | T->isMemberPointerType() || |
1407 | // -- std::nullptr_t, or |
1408 | T->isNullPtrType() || |
1409 | // -- a type that contains a placeholder type. |
1410 | T->isUndeducedType()) { |
1411 | // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter |
1412 | // are ignored when determining its type. |
1413 | return T.getUnqualifiedType(); |
1414 | } |
1415 | |
1416 | // C++ [temp.param]p8: |
1417 | // |
1418 | // A non-type template-parameter of type "array of T" or |
1419 | // "function returning T" is adjusted to be of type "pointer to |
1420 | // T" or "pointer to function returning T", respectively. |
1421 | if (T->isArrayType() || T->isFunctionType()) |
1422 | return Context.getDecayedType(T); |
1423 | |
1424 | // If T is a dependent type, we can't do the check now, so we |
1425 | // assume that it is well-formed. Note that stripping off the |
1426 | // qualifiers here is not really correct if T turns out to be |
1427 | // an array type, but we'll recompute the type everywhere it's |
1428 | // used during instantiation, so that should be OK. (Using the |
1429 | // qualified type is equally wrong.) |
1430 | if (T->isDependentType()) |
1431 | return T.getUnqualifiedType(); |
1432 | |
1433 | // C++20 [temp.param]p6: |
1434 | // -- a structural type |
1435 | if (RequireStructuralType(T, Loc)) |
1436 | return QualType(); |
1437 | |
1438 | if (!getLangOpts().CPlusPlus20) { |
1439 | // FIXME: Consider allowing structural types as an extension in C++17. (In |
1440 | // earlier language modes, the template argument evaluation rules are too |
1441 | // inflexible.) |
1442 | Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; |
1443 | return QualType(); |
1444 | } |
1445 | |
1446 | Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; |
1447 | return T.getUnqualifiedType(); |
1448 | } |
1449 | |
1450 | NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, |
1451 | unsigned Depth, |
1452 | unsigned Position, |
1453 | SourceLocation EqualLoc, |
1454 | Expr *Default) { |
1455 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
1456 | |
1457 | // Check that we have valid decl-specifiers specified. |
1458 | auto CheckValidDeclSpecifiers = [this, &D] { |
1459 | // C++ [temp.param] |
1460 | // p1 |
1461 | // template-parameter: |
1462 | // ... |
1463 | // parameter-declaration |
1464 | // p2 |
1465 | // ... A storage class shall not be specified in a template-parameter |
1466 | // declaration. |
1467 | // [dcl.typedef]p1: |
1468 | // The typedef specifier [...] shall not be used in the decl-specifier-seq |
1469 | // of a parameter-declaration |
1470 | const DeclSpec &DS = D.getDeclSpec(); |
1471 | auto EmitDiag = [this](SourceLocation Loc) { |
1472 | Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) |
1473 | << FixItHint::CreateRemoval(Loc); |
1474 | }; |
1475 | if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) |
1476 | EmitDiag(DS.getStorageClassSpecLoc()); |
1477 | |
1478 | if (DS.getThreadStorageClassSpec() != TSCS_unspecified) |
1479 | EmitDiag(DS.getThreadStorageClassSpecLoc()); |
1480 | |
1481 | // [dcl.inline]p1: |
1482 | // The inline specifier can be applied only to the declaration or |
1483 | // definition of a variable or function. |
1484 | |
1485 | if (DS.isInlineSpecified()) |
1486 | EmitDiag(DS.getInlineSpecLoc()); |
1487 | |
1488 | // [dcl.constexpr]p1: |
1489 | // The constexpr specifier shall be applied only to the definition of a |
1490 | // variable or variable template or the declaration of a function or |
1491 | // function template. |
1492 | |
1493 | if (DS.hasConstexprSpecifier()) |
1494 | EmitDiag(DS.getConstexprSpecLoc()); |
1495 | |
1496 | // [dcl.fct.spec]p1: |
1497 | // Function-specifiers can be used only in function declarations. |
1498 | |
1499 | if (DS.isVirtualSpecified()) |
1500 | EmitDiag(DS.getVirtualSpecLoc()); |
1501 | |
1502 | if (DS.hasExplicitSpecifier()) |
1503 | EmitDiag(DS.getExplicitSpecLoc()); |
1504 | |
1505 | if (DS.isNoreturnSpecified()) |
1506 | EmitDiag(DS.getNoreturnSpecLoc()); |
1507 | }; |
1508 | |
1509 | CheckValidDeclSpecifiers(); |
1510 | |
1511 | if (const auto *T = TInfo->getType()->getContainedDeducedType()) |
1512 | if (isa<AutoType>(T)) |
1513 | Diag(D.getIdentifierLoc(), |
1514 | diag::warn_cxx14_compat_template_nontype_parm_auto_type) |
1515 | << QualType(TInfo->getType()->getContainedAutoType(), 0); |
1516 | |
1517 | assert(S->isTemplateParamScope() && |
1518 | "Non-type template parameter not in template parameter scope!"); |
1519 | bool Invalid = false; |
1520 | |
1521 | QualType T = CheckNonTypeTemplateParameterType(TSI&: TInfo, Loc: D.getIdentifierLoc()); |
1522 | if (T.isNull()) { |
1523 | T = Context.IntTy; // Recover with an 'int' type. |
1524 | Invalid = true; |
1525 | } |
1526 | |
1527 | CheckFunctionOrTemplateParamDeclarator(S, D); |
1528 | |
1529 | const IdentifierInfo *ParamName = D.getIdentifier(); |
1530 | bool IsParameterPack = D.hasEllipsis(); |
1531 | NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( |
1532 | Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), |
1533 | D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, |
1534 | TInfo); |
1535 | Param->setAccess(AS_public); |
1536 | |
1537 | if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) |
1538 | if (TL.isConstrained()) { |
1539 | if (D.getEllipsisLoc().isInvalid() && |
1540 | T->containsUnexpandedParameterPack()) { |
1541 | assert(TL.getConceptReference()->getTemplateArgsAsWritten()); |
1542 | for (auto &Loc : |
1543 | TL.getConceptReference()->getTemplateArgsAsWritten()->arguments()) |
1544 | Invalid |= DiagnoseUnexpandedParameterPack( |
1545 | Loc, UnexpandedParameterPackContext::UPPC_TypeConstraint); |
1546 | } |
1547 | if (!Invalid && |
1548 | AttachTypeConstraint(TL, NewConstrainedParm: Param, OrigConstrainedParm: Param, EllipsisLoc: D.getEllipsisLoc())) |
1549 | Invalid = true; |
1550 | } |
1551 | |
1552 | if (Invalid) |
1553 | Param->setInvalidDecl(); |
1554 | |
1555 | if (Param->isParameterPack()) |
1556 | if (auto *CSI = getEnclosingLambdaOrBlock()) |
1557 | CSI->LocalPacks.push_back(Param); |
1558 | |
1559 | if (ParamName) { |
1560 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: D.getIdentifierLoc(), |
1561 | Name: ParamName); |
1562 | |
1563 | // Add the template parameter into the current scope. |
1564 | S->AddDecl(Param); |
1565 | IdResolver.AddDecl(Param); |
1566 | } |
1567 | |
1568 | // C++0x [temp.param]p9: |
1569 | // A default template-argument may be specified for any kind of |
1570 | // template-parameter that is not a template parameter pack. |
1571 | if (Default && IsParameterPack) { |
1572 | Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
1573 | Default = nullptr; |
1574 | } |
1575 | |
1576 | // Check the well-formedness of the default template argument, if provided. |
1577 | if (Default) { |
1578 | // Check for unexpanded parameter packs. |
1579 | if (DiagnoseUnexpandedParameterPack(E: Default, UPPC: UPPC_DefaultArgument)) |
1580 | return Param; |
1581 | |
1582 | Param->setDefaultArgument( |
1583 | C: Context, DefArg: getTrivialTemplateArgumentLoc( |
1584 | Arg: TemplateArgument(Default, /*IsCanonical=*/false), |
1585 | NTTPType: QualType(), Loc: SourceLocation())); |
1586 | } |
1587 | |
1588 | return Param; |
1589 | } |
1590 | |
1591 | NamedDecl *Sema::ActOnTemplateTemplateParameter( |
1592 | Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, |
1593 | bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *Name, |
1594 | SourceLocation NameLoc, unsigned Depth, unsigned Position, |
1595 | SourceLocation EqualLoc, ParsedTemplateArgument Default) { |
1596 | assert(S->isTemplateParamScope() && |
1597 | "Template template parameter not in template parameter scope!"); |
1598 | |
1599 | bool IsParameterPack = EllipsisLoc.isValid(); |
1600 | |
1601 | bool Invalid = false; |
1602 | if (CheckTemplateParameterList( |
1603 | NewParams: Params, |
1604 | /*OldParams=*/nullptr, |
1605 | TPC: IsParameterPack ? TPC_TemplateTemplateParameterPack : TPC_Other)) |
1606 | Invalid = true; |
1607 | |
1608 | // Construct the parameter object. |
1609 | TemplateTemplateParmDecl *Param = TemplateTemplateParmDecl::Create( |
1610 | Context, Context.getTranslationUnitDecl(), |
1611 | NameLoc.isInvalid() ? TmpLoc : NameLoc, Depth, Position, IsParameterPack, |
1612 | Name, Typename, Params); |
1613 | Param->setAccess(AS_public); |
1614 | |
1615 | if (Param->isParameterPack()) |
1616 | if (auto *LSI = getEnclosingLambdaOrBlock()) |
1617 | LSI->LocalPacks.push_back(Param); |
1618 | |
1619 | // If the template template parameter has a name, then link the identifier |
1620 | // into the scope and lookup mechanisms. |
1621 | if (Name) { |
1622 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: NameLoc, Name); |
1623 | |
1624 | S->AddDecl(Param); |
1625 | IdResolver.AddDecl(Param); |
1626 | } |
1627 | |
1628 | if (Params->size() == 0) { |
1629 | Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) |
1630 | << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); |
1631 | Invalid = true; |
1632 | } |
1633 | |
1634 | if (Invalid) |
1635 | Param->setInvalidDecl(); |
1636 | |
1637 | // C++0x [temp.param]p9: |
1638 | // A default template-argument may be specified for any kind of |
1639 | // template-parameter that is not a template parameter pack. |
1640 | if (IsParameterPack && !Default.isInvalid()) { |
1641 | Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
1642 | Default = ParsedTemplateArgument(); |
1643 | } |
1644 | |
1645 | if (!Default.isInvalid()) { |
1646 | // Check only that we have a template template argument. We don't want to |
1647 | // try to check well-formedness now, because our template template parameter |
1648 | // might have dependent types in its template parameters, which we wouldn't |
1649 | // be able to match now. |
1650 | // |
1651 | // If none of the template template parameter's template arguments mention |
1652 | // other template parameters, we could actually perform more checking here. |
1653 | // However, it isn't worth doing. |
1654 | TemplateArgumentLoc DefaultArg = translateTemplateArgument(SemaRef&: *this, Arg: Default); |
1655 | if (DefaultArg.getArgument().getAsTemplate().isNull()) { |
1656 | Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) |
1657 | << DefaultArg.getSourceRange(); |
1658 | return Param; |
1659 | } |
1660 | |
1661 | // Check for unexpanded parameter packs. |
1662 | if (DiagnoseUnexpandedParameterPack(Loc: DefaultArg.getLocation(), |
1663 | Template: DefaultArg.getArgument().getAsTemplate(), |
1664 | UPPC: UPPC_DefaultArgument)) |
1665 | return Param; |
1666 | |
1667 | Param->setDefaultArgument(C: Context, DefArg: DefaultArg); |
1668 | } |
1669 | |
1670 | return Param; |
1671 | } |
1672 | |
1673 | namespace { |
1674 | class ConstraintRefersToContainingTemplateChecker |
1675 | : public TreeTransform<ConstraintRefersToContainingTemplateChecker> { |
1676 | bool Result = false; |
1677 | const FunctionDecl *Friend = nullptr; |
1678 | unsigned TemplateDepth = 0; |
1679 | |
1680 | // Check a record-decl that we've seen to see if it is a lexical parent of the |
1681 | // Friend, likely because it was referred to without its template arguments. |
1682 | void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) { |
1683 | CheckingRD = CheckingRD->getMostRecentDecl(); |
1684 | if (!CheckingRD->isTemplated()) |
1685 | return; |
1686 | |
1687 | for (const DeclContext *DC = Friend->getLexicalDeclContext(); |
1688 | DC && !DC->isFileContext(); DC = DC->getParent()) |
1689 | if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) |
1690 | if (CheckingRD == RD->getMostRecentDecl()) |
1691 | Result = true; |
1692 | } |
1693 | |
1694 | void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { |
1695 | if (D->getDepth() < TemplateDepth) |
1696 | Result = true; |
1697 | |
1698 | // Necessary because the type of the NTTP might be what refers to the parent |
1699 | // constriant. |
1700 | TransformType(D->getType()); |
1701 | } |
1702 | |
1703 | public: |
1704 | using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>; |
1705 | |
1706 | ConstraintRefersToContainingTemplateChecker(Sema &SemaRef, |
1707 | const FunctionDecl *Friend, |
1708 | unsigned TemplateDepth) |
1709 | : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {} |
1710 | bool getResult() const { return Result; } |
1711 | |
1712 | // This should be the only template parm type that we have to deal with. |
1713 | // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and |
1714 | // FunctionParmPackExpr are all partially substituted, which cannot happen |
1715 | // with concepts at this point in translation. |
1716 | using inherited::TransformTemplateTypeParmType; |
1717 | QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, |
1718 | TemplateTypeParmTypeLoc TL, bool) { |
1719 | if (TL.getDecl()->getDepth() < TemplateDepth) |
1720 | Result = true; |
1721 | return inherited::TransformTemplateTypeParmType( |
1722 | TLB, TL, |
1723 | /*SuppressObjCLifetime=*/false); |
1724 | } |
1725 | |
1726 | Decl *TransformDecl(SourceLocation Loc, Decl *D) { |
1727 | if (!D) |
1728 | return D; |
1729 | // FIXME : This is possibly an incomplete list, but it is unclear what other |
1730 | // Decl kinds could be used to refer to the template parameters. This is a |
1731 | // best guess so far based on examples currently available, but the |
1732 | // unreachable should catch future instances/cases. |
1733 | if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
1734 | TransformType(TD->getUnderlyingType()); |
1735 | else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(Val: D)) |
1736 | CheckNonTypeTemplateParmDecl(D: NTTPD); |
1737 | else if (auto *VD = dyn_cast<ValueDecl>(Val: D)) |
1738 | TransformType(VD->getType()); |
1739 | else if (auto *TD = dyn_cast<TemplateDecl>(Val: D)) |
1740 | TransformTemplateParameterList(TD->getTemplateParameters()); |
1741 | else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) |
1742 | CheckIfContainingRecord(CheckingRD: RD); |
1743 | else if (isa<NamedDecl>(Val: D)) { |
1744 | // No direct types to visit here I believe. |
1745 | } else |
1746 | llvm_unreachable("Don't know how to handle this declaration type yet"); |
1747 | return D; |
1748 | } |
1749 | }; |
1750 | } // namespace |
1751 | |
1752 | bool Sema::ConstraintExpressionDependsOnEnclosingTemplate( |
1753 | const FunctionDecl *Friend, unsigned TemplateDepth, |
1754 | const Expr *Constraint) { |
1755 | assert(Friend->getFriendObjectKind() && "Only works on a friend"); |
1756 | ConstraintRefersToContainingTemplateChecker Checker(*this, Friend, |
1757 | TemplateDepth); |
1758 | Checker.TransformExpr(const_cast<Expr *>(Constraint)); |
1759 | return Checker.getResult(); |
1760 | } |
1761 | |
1762 | TemplateParameterList * |
1763 | Sema::ActOnTemplateParameterList(unsigned Depth, |
1764 | SourceLocation ExportLoc, |
1765 | SourceLocation TemplateLoc, |
1766 | SourceLocation LAngleLoc, |
1767 | ArrayRef<NamedDecl *> Params, |
1768 | SourceLocation RAngleLoc, |
1769 | Expr *RequiresClause) { |
1770 | if (ExportLoc.isValid()) |
1771 | Diag(ExportLoc, diag::warn_template_export_unsupported); |
1772 | |
1773 | for (NamedDecl *P : Params) |
1774 | warnOnReservedIdentifier(D: P); |
1775 | |
1776 | return TemplateParameterList::Create( |
1777 | C: Context, TemplateLoc, LAngleLoc, |
1778 | Params: llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause); |
1779 | } |
1780 | |
1781 | static void SetNestedNameSpecifier(Sema &S, TagDecl *T, |
1782 | const CXXScopeSpec &SS) { |
1783 | if (SS.isSet()) |
1784 | T->setQualifierInfo(SS.getWithLocInContext(Context&: S.Context)); |
1785 | } |
1786 | |
1787 | // Returns the template parameter list with all default template argument |
1788 | // information. |
1789 | TemplateParameterList *Sema::GetTemplateParameterList(TemplateDecl *TD) { |
1790 | // Make sure we get the template parameter list from the most |
1791 | // recent declaration, since that is the only one that is guaranteed to |
1792 | // have all the default template argument information. |
1793 | Decl *D = TD->getMostRecentDecl(); |
1794 | // C++11 N3337 [temp.param]p12: |
1795 | // A default template argument shall not be specified in a friend class |
1796 | // template declaration. |
1797 | // |
1798 | // Skip past friend *declarations* because they are not supposed to contain |
1799 | // default template arguments. Moreover, these declarations may introduce |
1800 | // template parameters living in different template depths than the |
1801 | // corresponding template parameters in TD, causing unmatched constraint |
1802 | // substitution. |
1803 | // |
1804 | // FIXME: Diagnose such cases within a class template: |
1805 | // template <class T> |
1806 | // struct S { |
1807 | // template <class = void> friend struct C; |
1808 | // }; |
1809 | // template struct S<int>; |
1810 | while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None && |
1811 | D->getPreviousDecl()) |
1812 | D = D->getPreviousDecl(); |
1813 | return cast<TemplateDecl>(Val: D)->getTemplateParameters(); |
1814 | } |
1815 | |
1816 | DeclResult Sema::CheckClassTemplate( |
1817 | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
1818 | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, |
1819 | const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, |
1820 | AccessSpecifier AS, SourceLocation ModulePrivateLoc, |
1821 | SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, |
1822 | TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { |
1823 | assert(TemplateParams && TemplateParams->size() > 0 && |
1824 | "No template parameters"); |
1825 | assert(TUK != TagUseKind::Reference && |
1826 | "Can only declare or define class templates"); |
1827 | bool Invalid = false; |
1828 | |
1829 | // Check that we can declare a template here. |
1830 | if (CheckTemplateDeclScope(S, TemplateParams)) |
1831 | return true; |
1832 | |
1833 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
1834 | assert(Kind != TagTypeKind::Enum && |
1835 | "can't build template of enumerated type"); |
1836 | |
1837 | // There is no such thing as an unnamed class template. |
1838 | if (!Name) { |
1839 | Diag(KWLoc, diag::err_template_unnamed_class); |
1840 | return true; |
1841 | } |
1842 | |
1843 | // Find any previous declaration with this name. For a friend with no |
1844 | // scope explicitly specified, we only look for tag declarations (per |
1845 | // C++11 [basic.lookup.elab]p2). |
1846 | DeclContext *SemanticContext; |
1847 | LookupResult Previous(*this, Name, NameLoc, |
1848 | (SS.isEmpty() && TUK == TagUseKind::Friend) |
1849 | ? LookupTagName |
1850 | : LookupOrdinaryName, |
1851 | forRedeclarationInCurContext()); |
1852 | if (SS.isNotEmpty() && !SS.isInvalid()) { |
1853 | SemanticContext = computeDeclContext(SS, EnteringContext: true); |
1854 | if (!SemanticContext) { |
1855 | // FIXME: Horrible, horrible hack! We can't currently represent this |
1856 | // in the AST, and historically we have just ignored such friend |
1857 | // class templates, so don't complain here. |
1858 | Diag(NameLoc, TUK == TagUseKind::Friend |
1859 | ? diag::warn_template_qualified_friend_ignored |
1860 | : diag::err_template_qualified_declarator_no_match) |
1861 | << SS.getScopeRep() << SS.getRange(); |
1862 | return TUK != TagUseKind::Friend; |
1863 | } |
1864 | |
1865 | if (RequireCompleteDeclContext(SS, DC: SemanticContext)) |
1866 | return true; |
1867 | |
1868 | // If we're adding a template to a dependent context, we may need to |
1869 | // rebuilding some of the types used within the template parameter list, |
1870 | // now that we know what the current instantiation is. |
1871 | if (SemanticContext->isDependentContext()) { |
1872 | ContextRAII SavedContext(*this, SemanticContext); |
1873 | if (RebuildTemplateParamsInCurrentInstantiation(Params: TemplateParams)) |
1874 | Invalid = true; |
1875 | } |
1876 | |
1877 | if (TUK != TagUseKind::Friend && TUK != TagUseKind::Reference) |
1878 | diagnoseQualifiedDeclaration(SS, DC: SemanticContext, Name, Loc: NameLoc, |
1879 | /*TemplateId-*/ TemplateId: nullptr, |
1880 | /*IsMemberSpecialization*/ false); |
1881 | |
1882 | LookupQualifiedName(R&: Previous, LookupCtx: SemanticContext); |
1883 | } else { |
1884 | SemanticContext = CurContext; |
1885 | |
1886 | // C++14 [class.mem]p14: |
1887 | // If T is the name of a class, then each of the following shall have a |
1888 | // name different from T: |
1889 | // -- every member template of class T |
1890 | if (TUK != TagUseKind::Friend && |
1891 | DiagnoseClassNameShadow(DC: SemanticContext, |
1892 | Info: DeclarationNameInfo(Name, NameLoc))) |
1893 | return true; |
1894 | |
1895 | LookupName(R&: Previous, S); |
1896 | } |
1897 | |
1898 | if (Previous.isAmbiguous()) |
1899 | return true; |
1900 | |
1901 | // Let the template parameter scope enter the lookup chain of the current |
1902 | // class template. For example, given |
1903 | // |
1904 | // namespace ns { |
1905 | // template <class> bool Param = false; |
1906 | // template <class T> struct N; |
1907 | // } |
1908 | // |
1909 | // template <class Param> struct ns::N { void foo(Param); }; |
1910 | // |
1911 | // When we reference Param inside the function parameter list, our name lookup |
1912 | // chain for it should be like: |
1913 | // FunctionScope foo |
1914 | // -> RecordScope N |
1915 | // -> TemplateParamScope (where we will find Param) |
1916 | // -> NamespaceScope ns |
1917 | // |
1918 | // See also CppLookupName(). |
1919 | if (S->isTemplateParamScope()) |
1920 | EnterTemplatedContext(S, DC: SemanticContext); |
1921 | |
1922 | NamedDecl *PrevDecl = nullptr; |
1923 | if (Previous.begin() != Previous.end()) |
1924 | PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
1925 | |
1926 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
1927 | // Maybe we will complain about the shadowed template parameter. |
1928 | DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); |
1929 | // Just pretend that we didn't see the previous declaration. |
1930 | PrevDecl = nullptr; |
1931 | } |
1932 | |
1933 | // If there is a previous declaration with the same name, check |
1934 | // whether this is a valid redeclaration. |
1935 | ClassTemplateDecl *PrevClassTemplate = |
1936 | dyn_cast_or_null<ClassTemplateDecl>(Val: PrevDecl); |
1937 | |
1938 | // We may have found the injected-class-name of a class template, |
1939 | // class template partial specialization, or class template specialization. |
1940 | // In these cases, grab the template that is being defined or specialized. |
1941 | if (!PrevClassTemplate && isa_and_nonnull<CXXRecordDecl>(Val: PrevDecl) && |
1942 | cast<CXXRecordDecl>(Val: PrevDecl)->isInjectedClassName()) { |
1943 | PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); |
1944 | PrevClassTemplate |
1945 | = cast<CXXRecordDecl>(Val: PrevDecl)->getDescribedClassTemplate(); |
1946 | if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(Val: PrevDecl)) { |
1947 | PrevClassTemplate |
1948 | = cast<ClassTemplateSpecializationDecl>(Val: PrevDecl) |
1949 | ->getSpecializedTemplate(); |
1950 | } |
1951 | } |
1952 | |
1953 | if (TUK == TagUseKind::Friend) { |
1954 | // C++ [namespace.memdef]p3: |
1955 | // [...] When looking for a prior declaration of a class or a function |
1956 | // declared as a friend, and when the name of the friend class or |
1957 | // function is neither a qualified name nor a template-id, scopes outside |
1958 | // the innermost enclosing namespace scope are not considered. |
1959 | if (!SS.isSet()) { |
1960 | DeclContext *OutermostContext = CurContext; |
1961 | while (!OutermostContext->isFileContext()) |
1962 | OutermostContext = OutermostContext->getLookupParent(); |
1963 | |
1964 | if (PrevDecl && |
1965 | (OutermostContext->Equals(DC: PrevDecl->getDeclContext()) || |
1966 | OutermostContext->Encloses(DC: PrevDecl->getDeclContext()))) { |
1967 | SemanticContext = PrevDecl->getDeclContext(); |
1968 | } else { |
1969 | // Declarations in outer scopes don't matter. However, the outermost |
1970 | // context we computed is the semantic context for our new |
1971 | // declaration. |
1972 | PrevDecl = PrevClassTemplate = nullptr; |
1973 | SemanticContext = OutermostContext; |
1974 | |
1975 | // Check that the chosen semantic context doesn't already contain a |
1976 | // declaration of this name as a non-tag type. |
1977 | Previous.clear(Kind: LookupOrdinaryName); |
1978 | DeclContext *LookupContext = SemanticContext; |
1979 | while (LookupContext->isTransparentContext()) |
1980 | LookupContext = LookupContext->getLookupParent(); |
1981 | LookupQualifiedName(R&: Previous, LookupCtx: LookupContext); |
1982 | |
1983 | if (Previous.isAmbiguous()) |
1984 | return true; |
1985 | |
1986 | if (Previous.begin() != Previous.end()) |
1987 | PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
1988 | } |
1989 | } |
1990 | } else if (PrevDecl && !isDeclInScope(D: Previous.getRepresentativeDecl(), |
1991 | Ctx: SemanticContext, S, AllowInlineNamespace: SS.isValid())) |
1992 | PrevDecl = PrevClassTemplate = nullptr; |
1993 | |
1994 | if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( |
1995 | Val: PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { |
1996 | if (SS.isEmpty() && |
1997 | !(PrevClassTemplate && |
1998 | PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( |
1999 | SemanticContext->getRedeclContext()))) { |
2000 | Diag(KWLoc, diag::err_using_decl_conflict_reverse); |
2001 | Diag(Shadow->getTargetDecl()->getLocation(), |
2002 | diag::note_using_decl_target); |
2003 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; |
2004 | // Recover by ignoring the old declaration. |
2005 | PrevDecl = PrevClassTemplate = nullptr; |
2006 | } |
2007 | } |
2008 | |
2009 | if (PrevClassTemplate) { |
2010 | // Ensure that the template parameter lists are compatible. Skip this check |
2011 | // for a friend in a dependent context: the template parameter list itself |
2012 | // could be dependent. |
2013 | if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) && |
2014 | !TemplateParameterListsAreEqual( |
2015 | TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext |
2016 | : CurContext, |
2017 | CurContext, KWLoc), |
2018 | TemplateParams, PrevClassTemplate, |
2019 | PrevClassTemplate->getTemplateParameters(), /*Complain=*/true, |
2020 | TPL_TemplateMatch)) |
2021 | return true; |
2022 | |
2023 | // C++ [temp.class]p4: |
2024 | // In a redeclaration, partial specialization, explicit |
2025 | // specialization or explicit instantiation of a class template, |
2026 | // the class-key shall agree in kind with the original class |
2027 | // template declaration (7.1.5.3). |
2028 | RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); |
2029 | if (!isAcceptableTagRedeclaration( |
2030 | PrevRecordDecl, Kind, TUK == TagUseKind::Definition, KWLoc, Name)) { |
2031 | Diag(KWLoc, diag::err_use_with_wrong_tag) |
2032 | << Name |
2033 | << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); |
2034 | Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); |
2035 | Kind = PrevRecordDecl->getTagKind(); |
2036 | } |
2037 | |
2038 | // Check for redefinition of this class template. |
2039 | if (TUK == TagUseKind::Definition) { |
2040 | if (TagDecl *Def = PrevRecordDecl->getDefinition()) { |
2041 | // If we have a prior definition that is not visible, treat this as |
2042 | // simply making that previous definition visible. |
2043 | NamedDecl *Hidden = nullptr; |
2044 | if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { |
2045 | SkipBody->ShouldSkip = true; |
2046 | SkipBody->Previous = Def; |
2047 | auto *Tmpl = cast<CXXRecordDecl>(Val: Hidden)->getDescribedClassTemplate(); |
2048 | assert(Tmpl && "original definition of a class template is not a " |
2049 | "class template?"); |
2050 | makeMergedDefinitionVisible(ND: Hidden); |
2051 | makeMergedDefinitionVisible(Tmpl); |
2052 | } else { |
2053 | Diag(NameLoc, diag::err_redefinition) << Name; |
2054 | Diag(Def->getLocation(), diag::note_previous_definition); |
2055 | // FIXME: Would it make sense to try to "forget" the previous |
2056 | // definition, as part of error recovery? |
2057 | return true; |
2058 | } |
2059 | } |
2060 | } |
2061 | } else if (PrevDecl) { |
2062 | // C++ [temp]p5: |
2063 | // A class template shall not have the same name as any other |
2064 | // template, class, function, object, enumeration, enumerator, |
2065 | // namespace, or type in the same scope (3.3), except as specified |
2066 | // in (14.5.4). |
2067 | Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
2068 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
2069 | return true; |
2070 | } |
2071 | |
2072 | // Check the template parameter list of this declaration, possibly |
2073 | // merging in the template parameter list from the previous class |
2074 | // template declaration. Skip this check for a friend in a dependent |
2075 | // context, because the template parameter list might be dependent. |
2076 | if (!(TUK == TagUseKind::Friend && CurContext->isDependentContext()) && |
2077 | CheckTemplateParameterList( |
2078 | NewParams: TemplateParams, |
2079 | OldParams: PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate) |
2080 | : nullptr, |
2081 | TPC: (SS.isSet() && SemanticContext && SemanticContext->isRecord() && |
2082 | SemanticContext->isDependentContext()) |
2083 | ? TPC_ClassTemplateMember |
2084 | : TUK == TagUseKind::Friend ? TPC_FriendClassTemplate |
2085 | : TPC_Other, |
2086 | SkipBody)) |
2087 | Invalid = true; |
2088 | |
2089 | if (SS.isSet()) { |
2090 | // If the name of the template was qualified, we must be defining the |
2091 | // template out-of-line. |
2092 | if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { |
2093 | Diag(NameLoc, TUK == TagUseKind::Friend |
2094 | ? diag::err_friend_decl_does_not_match |
2095 | : diag::err_member_decl_does_not_match) |
2096 | << Name << SemanticContext << /*IsDefinition*/ true << SS.getRange(); |
2097 | Invalid = true; |
2098 | } |
2099 | } |
2100 | |
2101 | // If this is a templated friend in a dependent context we should not put it |
2102 | // on the redecl chain. In some cases, the templated friend can be the most |
2103 | // recent declaration tricking the template instantiator to make substitutions |
2104 | // there. |
2105 | // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious |
2106 | bool ShouldAddRedecl = |
2107 | !(TUK == TagUseKind::Friend && CurContext->isDependentContext()); |
2108 | |
2109 | CXXRecordDecl *NewClass = |
2110 | CXXRecordDecl::Create(C: Context, TK: Kind, DC: SemanticContext, StartLoc: KWLoc, IdLoc: NameLoc, Id: Name, |
2111 | PrevDecl: PrevClassTemplate && ShouldAddRedecl ? |
2112 | PrevClassTemplate->getTemplatedDecl() : nullptr, |
2113 | /*DelayTypeCreation=*/true); |
2114 | SetNestedNameSpecifier(*this, NewClass, SS); |
2115 | if (NumOuterTemplateParamLists > 0) |
2116 | NewClass->setTemplateParameterListsInfo( |
2117 | Context, |
2118 | llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists)); |
2119 | |
2120 | // Add alignment attributes if necessary; these attributes are checked when |
2121 | // the ASTContext lays out the structure. |
2122 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
2123 | if (LangOpts.HLSL) |
2124 | NewClass->addAttr(PackedAttr::CreateImplicit(Context)); |
2125 | AddAlignmentAttributesForRecord(NewClass); |
2126 | AddMsStructLayoutForRecord(NewClass); |
2127 | } |
2128 | |
2129 | ClassTemplateDecl *NewTemplate |
2130 | = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, |
2131 | DeclarationName(Name), TemplateParams, |
2132 | NewClass); |
2133 | |
2134 | if (ShouldAddRedecl) |
2135 | NewTemplate->setPreviousDecl(PrevClassTemplate); |
2136 | |
2137 | NewClass->setDescribedClassTemplate(NewTemplate); |
2138 | |
2139 | if (ModulePrivateLoc.isValid()) |
2140 | NewTemplate->setModulePrivate(); |
2141 | |
2142 | // Build the type for the class template declaration now. |
2143 | QualType T = NewTemplate->getInjectedClassNameSpecialization(); |
2144 | T = Context.getInjectedClassNameType(Decl: NewClass, TST: T); |
2145 | assert(T->isDependentType() && "Class template type is not dependent?"); |
2146 | (void)T; |
2147 | |
2148 | // If we are providing an explicit specialization of a member that is a |
2149 | // class template, make a note of that. |
2150 | if (PrevClassTemplate && |
2151 | PrevClassTemplate->getInstantiatedFromMemberTemplate()) |
2152 | PrevClassTemplate->setMemberSpecialization(); |
2153 | |
2154 | // Set the access specifier. |
2155 | if (!Invalid && TUK != TagUseKind::Friend && |
2156 | NewTemplate->getDeclContext()->isRecord()) |
2157 | SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); |
2158 | |
2159 | // Set the lexical context of these templates |
2160 | NewClass->setLexicalDeclContext(CurContext); |
2161 | NewTemplate->setLexicalDeclContext(CurContext); |
2162 | |
2163 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) |
2164 | NewClass->startDefinition(); |
2165 | |
2166 | ProcessDeclAttributeList(S, NewClass, Attr); |
2167 | |
2168 | if (PrevClassTemplate) |
2169 | mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); |
2170 | |
2171 | AddPushedVisibilityAttribute(NewClass); |
2172 | inferGslOwnerPointerAttribute(Record: NewClass); |
2173 | inferNullableClassAttribute(CRD: NewClass); |
2174 | |
2175 | if (TUK != TagUseKind::Friend) { |
2176 | // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. |
2177 | Scope *Outer = S; |
2178 | while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) |
2179 | Outer = Outer->getParent(); |
2180 | PushOnScopeChains(NewTemplate, Outer); |
2181 | } else { |
2182 | if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { |
2183 | NewTemplate->setAccess(PrevClassTemplate->getAccess()); |
2184 | NewClass->setAccess(PrevClassTemplate->getAccess()); |
2185 | } |
2186 | |
2187 | NewTemplate->setObjectOfFriendDecl(); |
2188 | |
2189 | // Friend templates are visible in fairly strange ways. |
2190 | if (!CurContext->isDependentContext()) { |
2191 | DeclContext *DC = SemanticContext->getRedeclContext(); |
2192 | DC->makeDeclVisibleInContext(NewTemplate); |
2193 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
2194 | PushOnScopeChains(NewTemplate, EnclosingScope, |
2195 | /* AddToContext = */ false); |
2196 | } |
2197 | |
2198 | FriendDecl *Friend = FriendDecl::Create( |
2199 | C&: Context, DC: CurContext, L: NewClass->getLocation(), Friend_: NewTemplate, FriendL: FriendLoc); |
2200 | Friend->setAccess(AS_public); |
2201 | CurContext->addDecl(Friend); |
2202 | } |
2203 | |
2204 | if (PrevClassTemplate) |
2205 | CheckRedeclarationInModule(NewTemplate, PrevClassTemplate); |
2206 | |
2207 | if (Invalid) { |
2208 | NewTemplate->setInvalidDecl(); |
2209 | NewClass->setInvalidDecl(); |
2210 | } |
2211 | |
2212 | ActOnDocumentableDecl(NewTemplate); |
2213 | |
2214 | if (SkipBody && SkipBody->ShouldSkip) |
2215 | return SkipBody->Previous; |
2216 | |
2217 | return NewTemplate; |
2218 | } |
2219 | |
2220 | /// Diagnose the presence of a default template argument on a |
2221 | /// template parameter, which is ill-formed in certain contexts. |
2222 | /// |
2223 | /// \returns true if the default template argument should be dropped. |
2224 | static bool DiagnoseDefaultTemplateArgument(Sema &S, |
2225 | Sema::TemplateParamListContext TPC, |
2226 | SourceLocation ParamLoc, |
2227 | SourceRange DefArgRange) { |
2228 | switch (TPC) { |
2229 | case Sema::TPC_Other: |
2230 | case Sema::TPC_TemplateTemplateParameterPack: |
2231 | return false; |
2232 | |
2233 | case Sema::TPC_FunctionTemplate: |
2234 | case Sema::TPC_FriendFunctionTemplateDefinition: |
2235 | // C++ [temp.param]p9: |
2236 | // A default template-argument shall not be specified in a |
2237 | // function template declaration or a function template |
2238 | // definition [...] |
2239 | // If a friend function template declaration specifies a default |
2240 | // template-argument, that declaration shall be a definition and shall be |
2241 | // the only declaration of the function template in the translation unit. |
2242 | // (C++98/03 doesn't have this wording; see DR226). |
2243 | S.DiagCompat(ParamLoc, diag_compat::templ_default_in_function_templ) |
2244 | << DefArgRange; |
2245 | return false; |
2246 | |
2247 | case Sema::TPC_ClassTemplateMember: |
2248 | // C++0x [temp.param]p9: |
2249 | // A default template-argument shall not be specified in the |
2250 | // template-parameter-lists of the definition of a member of a |
2251 | // class template that appears outside of the member's class. |
2252 | S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) |
2253 | << DefArgRange; |
2254 | return true; |
2255 | |
2256 | case Sema::TPC_FriendClassTemplate: |
2257 | case Sema::TPC_FriendFunctionTemplate: |
2258 | // C++ [temp.param]p9: |
2259 | // A default template-argument shall not be specified in a |
2260 | // friend template declaration. |
2261 | S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) |
2262 | << DefArgRange; |
2263 | return true; |
2264 | |
2265 | // FIXME: C++0x [temp.param]p9 allows default template-arguments |
2266 | // for friend function templates if there is only a single |
2267 | // declaration (and it is a definition). Strange! |
2268 | } |
2269 | |
2270 | llvm_unreachable("Invalid TemplateParamListContext!"); |
2271 | } |
2272 | |
2273 | /// Check for unexpanded parameter packs within the template parameters |
2274 | /// of a template template parameter, recursively. |
2275 | static bool DiagnoseUnexpandedParameterPacks(Sema &S, |
2276 | TemplateTemplateParmDecl *TTP) { |
2277 | // A template template parameter which is a parameter pack is also a pack |
2278 | // expansion. |
2279 | if (TTP->isParameterPack()) |
2280 | return false; |
2281 | |
2282 | TemplateParameterList *Params = TTP->getTemplateParameters(); |
2283 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
2284 | NamedDecl *P = Params->getParam(Idx: I); |
2285 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: P)) { |
2286 | if (!TTP->isParameterPack()) |
2287 | if (const TypeConstraint *TC = TTP->getTypeConstraint()) |
2288 | if (TC->hasExplicitTemplateArgs()) |
2289 | for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) |
2290 | if (S.DiagnoseUnexpandedParameterPack(ArgLoc, |
2291 | Sema::UPPC_TypeConstraint)) |
2292 | return true; |
2293 | continue; |
2294 | } |
2295 | |
2296 | if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: P)) { |
2297 | if (!NTTP->isParameterPack() && |
2298 | S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), |
2299 | NTTP->getTypeSourceInfo(), |
2300 | Sema::UPPC_NonTypeTemplateParameterType)) |
2301 | return true; |
2302 | |
2303 | continue; |
2304 | } |
2305 | |
2306 | if (TemplateTemplateParmDecl *InnerTTP |
2307 | = dyn_cast<TemplateTemplateParmDecl>(Val: P)) |
2308 | if (DiagnoseUnexpandedParameterPacks(S, TTP: InnerTTP)) |
2309 | return true; |
2310 | } |
2311 | |
2312 | return false; |
2313 | } |
2314 | |
2315 | bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, |
2316 | TemplateParameterList *OldParams, |
2317 | TemplateParamListContext TPC, |
2318 | SkipBodyInfo *SkipBody) { |
2319 | bool Invalid = false; |
2320 | |
2321 | // C++ [temp.param]p10: |
2322 | // The set of default template-arguments available for use with a |
2323 | // template declaration or definition is obtained by merging the |
2324 | // default arguments from the definition (if in scope) and all |
2325 | // declarations in scope in the same way default function |
2326 | // arguments are (8.3.6). |
2327 | bool SawDefaultArgument = false; |
2328 | SourceLocation PreviousDefaultArgLoc; |
2329 | |
2330 | // Dummy initialization to avoid warnings. |
2331 | TemplateParameterList::iterator OldParam = NewParams->end(); |
2332 | if (OldParams) |
2333 | OldParam = OldParams->begin(); |
2334 | |
2335 | bool RemoveDefaultArguments = false; |
2336 | for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
2337 | NewParamEnd = NewParams->end(); |
2338 | NewParam != NewParamEnd; ++NewParam) { |
2339 | // Whether we've seen a duplicate default argument in the same translation |
2340 | // unit. |
2341 | bool RedundantDefaultArg = false; |
2342 | // Whether we've found inconsis inconsitent default arguments in different |
2343 | // translation unit. |
2344 | bool InconsistentDefaultArg = false; |
2345 | // The name of the module which contains the inconsistent default argument. |
2346 | std::string PrevModuleName; |
2347 | |
2348 | SourceLocation OldDefaultLoc; |
2349 | SourceLocation NewDefaultLoc; |
2350 | |
2351 | // Variable used to diagnose missing default arguments |
2352 | bool MissingDefaultArg = false; |
2353 | |
2354 | // Variable used to diagnose non-final parameter packs |
2355 | bool SawParameterPack = false; |
2356 | |
2357 | if (TemplateTypeParmDecl *NewTypeParm |
2358 | = dyn_cast<TemplateTypeParmDecl>(Val: *NewParam)) { |
2359 | // Check the presence of a default argument here. |
2360 | if (NewTypeParm->hasDefaultArgument() && |
2361 | DiagnoseDefaultTemplateArgument( |
2362 | *this, TPC, NewTypeParm->getLocation(), |
2363 | NewTypeParm->getDefaultArgument().getSourceRange())) |
2364 | NewTypeParm->removeDefaultArgument(); |
2365 | |
2366 | // Merge default arguments for template type parameters. |
2367 | TemplateTypeParmDecl *OldTypeParm |
2368 | = OldParams? cast<TemplateTypeParmDecl>(Val: *OldParam) : nullptr; |
2369 | if (NewTypeParm->isParameterPack()) { |
2370 | assert(!NewTypeParm->hasDefaultArgument() && |
2371 | "Parameter packs can't have a default argument!"); |
2372 | SawParameterPack = true; |
2373 | } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && |
2374 | NewTypeParm->hasDefaultArgument() && |
2375 | (!SkipBody || !SkipBody->ShouldSkip)) { |
2376 | OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); |
2377 | NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); |
2378 | SawDefaultArgument = true; |
2379 | |
2380 | if (!OldTypeParm->getOwningModule()) |
2381 | RedundantDefaultArg = true; |
2382 | else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm, |
2383 | NewTypeParm)) { |
2384 | InconsistentDefaultArg = true; |
2385 | PrevModuleName = |
2386 | OldTypeParm->getImportedOwningModule()->getFullModuleName(); |
2387 | } |
2388 | PreviousDefaultArgLoc = NewDefaultLoc; |
2389 | } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { |
2390 | // Merge the default argument from the old declaration to the |
2391 | // new declaration. |
2392 | NewTypeParm->setInheritedDefaultArgument(C: Context, Prev: OldTypeParm); |
2393 | PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); |
2394 | } else if (NewTypeParm->hasDefaultArgument()) { |
2395 | SawDefaultArgument = true; |
2396 | PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); |
2397 | } else if (SawDefaultArgument) |
2398 | MissingDefaultArg = true; |
2399 | } else if (NonTypeTemplateParmDecl *NewNonTypeParm |
2400 | = dyn_cast<NonTypeTemplateParmDecl>(Val: *NewParam)) { |
2401 | // Check for unexpanded parameter packs, except in a template template |
2402 | // parameter pack, as in those any unexpanded packs should be expanded |
2403 | // along with the parameter itself. |
2404 | if (TPC != TPC_TemplateTemplateParameterPack && |
2405 | !NewNonTypeParm->isParameterPack() && |
2406 | DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), |
2407 | NewNonTypeParm->getTypeSourceInfo(), |
2408 | UPPC_NonTypeTemplateParameterType)) { |
2409 | Invalid = true; |
2410 | continue; |
2411 | } |
2412 | |
2413 | // Check the presence of a default argument here. |
2414 | if (NewNonTypeParm->hasDefaultArgument() && |
2415 | DiagnoseDefaultTemplateArgument( |
2416 | *this, TPC, NewNonTypeParm->getLocation(), |
2417 | NewNonTypeParm->getDefaultArgument().getSourceRange())) { |
2418 | NewNonTypeParm->removeDefaultArgument(); |
2419 | } |
2420 | |
2421 | // Merge default arguments for non-type template parameters |
2422 | NonTypeTemplateParmDecl *OldNonTypeParm |
2423 | = OldParams? cast<NonTypeTemplateParmDecl>(Val: *OldParam) : nullptr; |
2424 | if (NewNonTypeParm->isParameterPack()) { |
2425 | assert(!NewNonTypeParm->hasDefaultArgument() && |
2426 | "Parameter packs can't have a default argument!"); |
2427 | if (!NewNonTypeParm->isPackExpansion()) |
2428 | SawParameterPack = true; |
2429 | } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && |
2430 | NewNonTypeParm->hasDefaultArgument() && |
2431 | (!SkipBody || !SkipBody->ShouldSkip)) { |
2432 | OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
2433 | NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
2434 | SawDefaultArgument = true; |
2435 | if (!OldNonTypeParm->getOwningModule()) |
2436 | RedundantDefaultArg = true; |
2437 | else if (!getASTContext().isSameDefaultTemplateArgument( |
2438 | OldNonTypeParm, NewNonTypeParm)) { |
2439 | InconsistentDefaultArg = true; |
2440 | PrevModuleName = |
2441 | OldNonTypeParm->getImportedOwningModule()->getFullModuleName(); |
2442 | } |
2443 | PreviousDefaultArgLoc = NewDefaultLoc; |
2444 | } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { |
2445 | // Merge the default argument from the old declaration to the |
2446 | // new declaration. |
2447 | NewNonTypeParm->setInheritedDefaultArgument(C: Context, Parm: OldNonTypeParm); |
2448 | PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
2449 | } else if (NewNonTypeParm->hasDefaultArgument()) { |
2450 | SawDefaultArgument = true; |
2451 | PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
2452 | } else if (SawDefaultArgument) |
2453 | MissingDefaultArg = true; |
2454 | } else { |
2455 | TemplateTemplateParmDecl *NewTemplateParm |
2456 | = cast<TemplateTemplateParmDecl>(Val: *NewParam); |
2457 | |
2458 | // Check for unexpanded parameter packs, recursively. |
2459 | if (::DiagnoseUnexpandedParameterPacks(S&: *this, TTP: NewTemplateParm)) { |
2460 | Invalid = true; |
2461 | continue; |
2462 | } |
2463 | |
2464 | // Check the presence of a default argument here. |
2465 | if (NewTemplateParm->hasDefaultArgument() && |
2466 | DiagnoseDefaultTemplateArgument(*this, TPC, |
2467 | NewTemplateParm->getLocation(), |
2468 | NewTemplateParm->getDefaultArgument().getSourceRange())) |
2469 | NewTemplateParm->removeDefaultArgument(); |
2470 | |
2471 | // Merge default arguments for template template parameters |
2472 | TemplateTemplateParmDecl *OldTemplateParm |
2473 | = OldParams? cast<TemplateTemplateParmDecl>(Val: *OldParam) : nullptr; |
2474 | if (NewTemplateParm->isParameterPack()) { |
2475 | assert(!NewTemplateParm->hasDefaultArgument() && |
2476 | "Parameter packs can't have a default argument!"); |
2477 | if (!NewTemplateParm->isPackExpansion()) |
2478 | SawParameterPack = true; |
2479 | } else if (OldTemplateParm && |
2480 | hasVisibleDefaultArgument(OldTemplateParm) && |
2481 | NewTemplateParm->hasDefaultArgument() && |
2482 | (!SkipBody || !SkipBody->ShouldSkip)) { |
2483 | OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); |
2484 | NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); |
2485 | SawDefaultArgument = true; |
2486 | if (!OldTemplateParm->getOwningModule()) |
2487 | RedundantDefaultArg = true; |
2488 | else if (!getASTContext().isSameDefaultTemplateArgument( |
2489 | OldTemplateParm, NewTemplateParm)) { |
2490 | InconsistentDefaultArg = true; |
2491 | PrevModuleName = |
2492 | OldTemplateParm->getImportedOwningModule()->getFullModuleName(); |
2493 | } |
2494 | PreviousDefaultArgLoc = NewDefaultLoc; |
2495 | } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { |
2496 | // Merge the default argument from the old declaration to the |
2497 | // new declaration. |
2498 | NewTemplateParm->setInheritedDefaultArgument(C: Context, Prev: OldTemplateParm); |
2499 | PreviousDefaultArgLoc |
2500 | = OldTemplateParm->getDefaultArgument().getLocation(); |
2501 | } else if (NewTemplateParm->hasDefaultArgument()) { |
2502 | SawDefaultArgument = true; |
2503 | PreviousDefaultArgLoc |
2504 | = NewTemplateParm->getDefaultArgument().getLocation(); |
2505 | } else if (SawDefaultArgument) |
2506 | MissingDefaultArg = true; |
2507 | } |
2508 | |
2509 | // C++11 [temp.param]p11: |
2510 | // If a template parameter of a primary class template or alias template |
2511 | // is a template parameter pack, it shall be the last template parameter. |
2512 | if (SawParameterPack && (NewParam + 1) != NewParamEnd && |
2513 | (TPC == TPC_Other || TPC == TPC_TemplateTemplateParameterPack)) { |
2514 | Diag((*NewParam)->getLocation(), |
2515 | diag::err_template_param_pack_must_be_last_template_parameter); |
2516 | Invalid = true; |
2517 | } |
2518 | |
2519 | // [basic.def.odr]/13: |
2520 | // There can be more than one definition of a |
2521 | // ... |
2522 | // default template argument |
2523 | // ... |
2524 | // in a program provided that each definition appears in a different |
2525 | // translation unit and the definitions satisfy the [same-meaning |
2526 | // criteria of the ODR]. |
2527 | // |
2528 | // Simply, the design of modules allows the definition of template default |
2529 | // argument to be repeated across translation unit. Note that the ODR is |
2530 | // checked elsewhere. But it is still not allowed to repeat template default |
2531 | // argument in the same translation unit. |
2532 | if (RedundantDefaultArg) { |
2533 | Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); |
2534 | Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); |
2535 | Invalid = true; |
2536 | } else if (InconsistentDefaultArg) { |
2537 | // We could only diagnose about the case that the OldParam is imported. |
2538 | // The case NewParam is imported should be handled in ASTReader. |
2539 | Diag(NewDefaultLoc, |
2540 | diag::err_template_param_default_arg_inconsistent_redefinition); |
2541 | Diag(OldDefaultLoc, |
2542 | diag::note_template_param_prev_default_arg_in_other_module) |
2543 | << PrevModuleName; |
2544 | Invalid = true; |
2545 | } else if (MissingDefaultArg && |
2546 | (TPC == TPC_Other || TPC == TPC_TemplateTemplateParameterPack || |
2547 | TPC == TPC_FriendClassTemplate)) { |
2548 | // C++ 23[temp.param]p14: |
2549 | // If a template-parameter of a class template, variable template, or |
2550 | // alias template has a default template argument, each subsequent |
2551 | // template-parameter shall either have a default template argument |
2552 | // supplied or be a template parameter pack. |
2553 | Diag((*NewParam)->getLocation(), |
2554 | diag::err_template_param_default_arg_missing); |
2555 | Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); |
2556 | Invalid = true; |
2557 | RemoveDefaultArguments = true; |
2558 | } |
2559 | |
2560 | // If we have an old template parameter list that we're merging |
2561 | // in, move on to the next parameter. |
2562 | if (OldParams) |
2563 | ++OldParam; |
2564 | } |
2565 | |
2566 | // We were missing some default arguments at the end of the list, so remove |
2567 | // all of the default arguments. |
2568 | if (RemoveDefaultArguments) { |
2569 | for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
2570 | NewParamEnd = NewParams->end(); |
2571 | NewParam != NewParamEnd; ++NewParam) { |
2572 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *NewParam)) |
2573 | TTP->removeDefaultArgument(); |
2574 | else if (NonTypeTemplateParmDecl *NTTP |
2575 | = dyn_cast<NonTypeTemplateParmDecl>(Val: *NewParam)) |
2576 | NTTP->removeDefaultArgument(); |
2577 | else |
2578 | cast<TemplateTemplateParmDecl>(Val: *NewParam)->removeDefaultArgument(); |
2579 | } |
2580 | } |
2581 | |
2582 | return Invalid; |
2583 | } |
2584 | |
2585 | namespace { |
2586 | |
2587 | /// A class which looks for a use of a certain level of template |
2588 | /// parameter. |
2589 | struct DependencyChecker : DynamicRecursiveASTVisitor { |
2590 | unsigned Depth; |
2591 | |
2592 | // Whether we're looking for a use of a template parameter that makes the |
2593 | // overall construct type-dependent / a dependent type. This is strictly |
2594 | // best-effort for now; we may fail to match at all for a dependent type |
2595 | // in some cases if this is set. |
2596 | bool IgnoreNonTypeDependent; |
2597 | |
2598 | bool Match; |
2599 | SourceLocation MatchLoc; |
2600 | |
2601 | DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) |
2602 | : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), |
2603 | Match(false) {} |
2604 | |
2605 | DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) |
2606 | : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { |
2607 | NamedDecl *ND = Params->getParam(Idx: 0); |
2608 | if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(Val: ND)) { |
2609 | Depth = PD->getDepth(); |
2610 | } else if (NonTypeTemplateParmDecl *PD = |
2611 | dyn_cast<NonTypeTemplateParmDecl>(Val: ND)) { |
2612 | Depth = PD->getDepth(); |
2613 | } else { |
2614 | Depth = cast<TemplateTemplateParmDecl>(Val: ND)->getDepth(); |
2615 | } |
2616 | } |
2617 | |
2618 | bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { |
2619 | if (ParmDepth >= Depth) { |
2620 | Match = true; |
2621 | MatchLoc = Loc; |
2622 | return true; |
2623 | } |
2624 | return false; |
2625 | } |
2626 | |
2627 | bool TraverseStmt(Stmt *S) override { |
2628 | // Prune out non-type-dependent expressions if requested. This can |
2629 | // sometimes result in us failing to find a template parameter reference |
2630 | // (if a value-dependent expression creates a dependent type), but this |
2631 | // mode is best-effort only. |
2632 | if (auto *E = dyn_cast_or_null<Expr>(Val: S)) |
2633 | if (IgnoreNonTypeDependent && !E->isTypeDependent()) |
2634 | return true; |
2635 | return DynamicRecursiveASTVisitor::TraverseStmt(S); |
2636 | } |
2637 | |
2638 | bool TraverseTypeLoc(TypeLoc TL) override { |
2639 | if (IgnoreNonTypeDependent && !TL.isNull() && |
2640 | !TL.getType()->isDependentType()) |
2641 | return true; |
2642 | return DynamicRecursiveASTVisitor::TraverseTypeLoc(TL); |
2643 | } |
2644 | |
2645 | bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) override { |
2646 | return !Matches(ParmDepth: TL.getTypePtr()->getDepth(), Loc: TL.getNameLoc()); |
2647 | } |
2648 | |
2649 | bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override { |
2650 | // For a best-effort search, keep looking until we find a location. |
2651 | return IgnoreNonTypeDependent || !Matches(ParmDepth: T->getDepth()); |
2652 | } |
2653 | |
2654 | bool TraverseTemplateName(TemplateName N) override { |
2655 | if (TemplateTemplateParmDecl *PD = |
2656 | dyn_cast_or_null<TemplateTemplateParmDecl>(Val: N.getAsTemplateDecl())) |
2657 | if (Matches(ParmDepth: PD->getDepth())) |
2658 | return false; |
2659 | return DynamicRecursiveASTVisitor::TraverseTemplateName(N); |
2660 | } |
2661 | |
2662 | bool VisitDeclRefExpr(DeclRefExpr *E) override { |
2663 | if (NonTypeTemplateParmDecl *PD = |
2664 | dyn_cast<NonTypeTemplateParmDecl>(Val: E->getDecl())) |
2665 | if (Matches(ParmDepth: PD->getDepth(), Loc: E->getExprLoc())) |
2666 | return false; |
2667 | return DynamicRecursiveASTVisitor::VisitDeclRefExpr(E); |
2668 | } |
2669 | |
2670 | bool VisitSubstTemplateTypeParmType(SubstTemplateTypeParmType *T) override { |
2671 | return TraverseType(T->getReplacementType()); |
2672 | } |
2673 | |
2674 | bool VisitSubstTemplateTypeParmPackType( |
2675 | SubstTemplateTypeParmPackType *T) override { |
2676 | return TraverseTemplateArgument(T->getArgumentPack()); |
2677 | } |
2678 | |
2679 | bool TraverseInjectedClassNameType(InjectedClassNameType *T) override { |
2680 | return TraverseType(T->getInjectedSpecializationType()); |
2681 | } |
2682 | }; |
2683 | } // end anonymous namespace |
2684 | |
2685 | /// Determines whether a given type depends on the given parameter |
2686 | /// list. |
2687 | static bool |
2688 | DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { |
2689 | if (!Params->size()) |
2690 | return false; |
2691 | |
2692 | DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); |
2693 | Checker.TraverseType(T); |
2694 | return Checker.Match; |
2695 | } |
2696 | |
2697 | // Find the source range corresponding to the named type in the given |
2698 | // nested-name-specifier, if any. |
2699 | static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, |
2700 | QualType T, |
2701 | const CXXScopeSpec &SS) { |
2702 | NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); |
2703 | while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { |
2704 | if (const Type *CurType = NNS->getAsType()) { |
2705 | if (Context.hasSameUnqualifiedType(T1: T, T2: QualType(CurType, 0))) |
2706 | return NNSLoc.getTypeLoc().getSourceRange(); |
2707 | } else |
2708 | break; |
2709 | |
2710 | NNSLoc = NNSLoc.getPrefix(); |
2711 | } |
2712 | |
2713 | return SourceRange(); |
2714 | } |
2715 | |
2716 | TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( |
2717 | SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, |
2718 | TemplateIdAnnotation *TemplateId, |
2719 | ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, |
2720 | bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { |
2721 | IsMemberSpecialization = false; |
2722 | Invalid = false; |
2723 | |
2724 | // The sequence of nested types to which we will match up the template |
2725 | // parameter lists. We first build this list by starting with the type named |
2726 | // by the nested-name-specifier and walking out until we run out of types. |
2727 | SmallVector<QualType, 4> NestedTypes; |
2728 | QualType T; |
2729 | if (SS.getScopeRep()) { |
2730 | if (CXXRecordDecl *Record |
2731 | = dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS, EnteringContext: true))) |
2732 | T = Context.getTypeDeclType(Record); |
2733 | else |
2734 | T = QualType(SS.getScopeRep()->getAsType(), 0); |
2735 | } |
2736 | |
2737 | // If we found an explicit specialization that prevents us from needing |
2738 | // 'template<>' headers, this will be set to the location of that |
2739 | // explicit specialization. |
2740 | SourceLocation ExplicitSpecLoc; |
2741 | |
2742 | while (!T.isNull()) { |
2743 | NestedTypes.push_back(Elt: T); |
2744 | |
2745 | // Retrieve the parent of a record type. |
2746 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { |
2747 | // If this type is an explicit specialization, we're done. |
2748 | if (ClassTemplateSpecializationDecl *Spec |
2749 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) { |
2750 | if (!isa<ClassTemplatePartialSpecializationDecl>(Val: Spec) && |
2751 | Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { |
2752 | ExplicitSpecLoc = Spec->getLocation(); |
2753 | break; |
2754 | } |
2755 | } else if (Record->getTemplateSpecializationKind() |
2756 | == TSK_ExplicitSpecialization) { |
2757 | ExplicitSpecLoc = Record->getLocation(); |
2758 | break; |
2759 | } |
2760 | |
2761 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) |
2762 | T = Context.getTypeDeclType(Decl: Parent); |
2763 | else |
2764 | T = QualType(); |
2765 | continue; |
2766 | } |
2767 | |
2768 | if (const TemplateSpecializationType *TST |
2769 | = T->getAs<TemplateSpecializationType>()) { |
2770 | if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { |
2771 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) |
2772 | T = Context.getTypeDeclType(Decl: Parent); |
2773 | else |
2774 | T = QualType(); |
2775 | continue; |
2776 | } |
2777 | } |
2778 | |
2779 | // Look one step prior in a dependent template specialization type. |
2780 | if (const DependentTemplateSpecializationType *DependentTST |
2781 | = T->getAs<DependentTemplateSpecializationType>()) { |
2782 | if (NestedNameSpecifier *NNS = |
2783 | DependentTST->getDependentTemplateName().getQualifier()) |
2784 | T = QualType(NNS->getAsType(), 0); |
2785 | else |
2786 | T = QualType(); |
2787 | continue; |
2788 | } |
2789 | |
2790 | // Look one step prior in a dependent name type. |
2791 | if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ |
2792 | if (NestedNameSpecifier *NNS = DependentName->getQualifier()) |
2793 | T = QualType(NNS->getAsType(), 0); |
2794 | else |
2795 | T = QualType(); |
2796 | continue; |
2797 | } |
2798 | |
2799 | // Retrieve the parent of an enumeration type. |
2800 | if (const EnumType *EnumT = T->getAs<EnumType>()) { |
2801 | // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization |
2802 | // check here. |
2803 | EnumDecl *Enum = EnumT->getDecl(); |
2804 | |
2805 | // Get to the parent type. |
2806 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) |
2807 | T = Context.getTypeDeclType(Decl: Parent); |
2808 | else |
2809 | T = QualType(); |
2810 | continue; |
2811 | } |
2812 | |
2813 | T = QualType(); |
2814 | } |
2815 | // Reverse the nested types list, since we want to traverse from the outermost |
2816 | // to the innermost while checking template-parameter-lists. |
2817 | std::reverse(first: NestedTypes.begin(), last: NestedTypes.end()); |
2818 | |
2819 | // C++0x [temp.expl.spec]p17: |
2820 | // A member or a member template may be nested within many |
2821 | // enclosing class templates. In an explicit specialization for |
2822 | // such a member, the member declaration shall be preceded by a |
2823 | // template<> for each enclosing class template that is |
2824 | // explicitly specialized. |
2825 | bool SawNonEmptyTemplateParameterList = false; |
2826 | |
2827 | auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { |
2828 | if (SawNonEmptyTemplateParameterList) { |
2829 | if (!SuppressDiagnostic) |
2830 | Diag(DeclLoc, diag::err_specialize_member_of_template) |
2831 | << !Recovery << Range; |
2832 | Invalid = true; |
2833 | IsMemberSpecialization = false; |
2834 | return true; |
2835 | } |
2836 | |
2837 | return false; |
2838 | }; |
2839 | |
2840 | auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { |
2841 | // Check that we can have an explicit specialization here. |
2842 | if (CheckExplicitSpecialization(Range, true)) |
2843 | return true; |
2844 | |
2845 | // We don't have a template header, but we should. |
2846 | SourceLocation ExpectedTemplateLoc; |
2847 | if (!ParamLists.empty()) |
2848 | ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); |
2849 | else |
2850 | ExpectedTemplateLoc = DeclStartLoc; |
2851 | |
2852 | if (!SuppressDiagnostic) |
2853 | Diag(DeclLoc, diag::err_template_spec_needs_header) |
2854 | << Range |
2855 | << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> "); |
2856 | return false; |
2857 | }; |
2858 | |
2859 | unsigned ParamIdx = 0; |
2860 | for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; |
2861 | ++TypeIdx) { |
2862 | T = NestedTypes[TypeIdx]; |
2863 | |
2864 | // Whether we expect a 'template<>' header. |
2865 | bool NeedEmptyTemplateHeader = false; |
2866 | |
2867 | // Whether we expect a template header with parameters. |
2868 | bool NeedNonemptyTemplateHeader = false; |
2869 | |
2870 | // For a dependent type, the set of template parameters that we |
2871 | // expect to see. |
2872 | TemplateParameterList *ExpectedTemplateParams = nullptr; |
2873 | |
2874 | // C++0x [temp.expl.spec]p15: |
2875 | // A member or a member template may be nested within many enclosing |
2876 | // class templates. In an explicit specialization for such a member, the |
2877 | // member declaration shall be preceded by a template<> for each |
2878 | // enclosing class template that is explicitly specialized. |
2879 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { |
2880 | if (ClassTemplatePartialSpecializationDecl *Partial |
2881 | = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Record)) { |
2882 | ExpectedTemplateParams = Partial->getTemplateParameters(); |
2883 | NeedNonemptyTemplateHeader = true; |
2884 | } else if (Record->isDependentType()) { |
2885 | if (Record->getDescribedClassTemplate()) { |
2886 | ExpectedTemplateParams = Record->getDescribedClassTemplate() |
2887 | ->getTemplateParameters(); |
2888 | NeedNonemptyTemplateHeader = true; |
2889 | } |
2890 | } else if (ClassTemplateSpecializationDecl *Spec |
2891 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) { |
2892 | // C++0x [temp.expl.spec]p4: |
2893 | // Members of an explicitly specialized class template are defined |
2894 | // in the same manner as members of normal classes, and not using |
2895 | // the template<> syntax. |
2896 | if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) |
2897 | NeedEmptyTemplateHeader = true; |
2898 | else |
2899 | continue; |
2900 | } else if (Record->getTemplateSpecializationKind()) { |
2901 | if (Record->getTemplateSpecializationKind() |
2902 | != TSK_ExplicitSpecialization && |
2903 | TypeIdx == NumTypes - 1) |
2904 | IsMemberSpecialization = true; |
2905 | |
2906 | continue; |
2907 | } |
2908 | } else if (const TemplateSpecializationType *TST |
2909 | = T->getAs<TemplateSpecializationType>()) { |
2910 | if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { |
2911 | ExpectedTemplateParams = Template->getTemplateParameters(); |
2912 | NeedNonemptyTemplateHeader = true; |
2913 | } |
2914 | } else if (T->getAs<DependentTemplateSpecializationType>()) { |
2915 | // FIXME: We actually could/should check the template arguments here |
2916 | // against the corresponding template parameter list. |
2917 | NeedNonemptyTemplateHeader = false; |
2918 | } |
2919 | |
2920 | // C++ [temp.expl.spec]p16: |
2921 | // In an explicit specialization declaration for a member of a class |
2922 | // template or a member template that appears in namespace scope, the |
2923 | // member template and some of its enclosing class templates may remain |
2924 | // unspecialized, except that the declaration shall not explicitly |
2925 | // specialize a class member template if its enclosing class templates |
2926 | // are not explicitly specialized as well. |
2927 | if (ParamIdx < ParamLists.size()) { |
2928 | if (ParamLists[ParamIdx]->size() == 0) { |
2929 | if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), |
2930 | false)) |
2931 | return nullptr; |
2932 | } else |
2933 | SawNonEmptyTemplateParameterList = true; |
2934 | } |
2935 | |
2936 | if (NeedEmptyTemplateHeader) { |
2937 | // If we're on the last of the types, and we need a 'template<>' header |
2938 | // here, then it's a member specialization. |
2939 | if (TypeIdx == NumTypes - 1) |
2940 | IsMemberSpecialization = true; |
2941 | |
2942 | if (ParamIdx < ParamLists.size()) { |
2943 | if (ParamLists[ParamIdx]->size() > 0) { |
2944 | // The header has template parameters when it shouldn't. Complain. |
2945 | if (!SuppressDiagnostic) |
2946 | Diag(ParamLists[ParamIdx]->getTemplateLoc(), |
2947 | diag::err_template_param_list_matches_nontemplate) |
2948 | << T |
2949 | << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), |
2950 | ParamLists[ParamIdx]->getRAngleLoc()) |
2951 | << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); |
2952 | Invalid = true; |
2953 | return nullptr; |
2954 | } |
2955 | |
2956 | // Consume this template header. |
2957 | ++ParamIdx; |
2958 | continue; |
2959 | } |
2960 | |
2961 | if (!IsFriend) |
2962 | if (DiagnoseMissingExplicitSpecialization( |
2963 | getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) |
2964 | return nullptr; |
2965 | |
2966 | continue; |
2967 | } |
2968 | |
2969 | if (NeedNonemptyTemplateHeader) { |
2970 | // In friend declarations we can have template-ids which don't |
2971 | // depend on the corresponding template parameter lists. But |
2972 | // assume that empty parameter lists are supposed to match this |
2973 | // template-id. |
2974 | if (IsFriend && T->isDependentType()) { |
2975 | if (ParamIdx < ParamLists.size() && |
2976 | DependsOnTemplateParameters(T, Params: ParamLists[ParamIdx])) |
2977 | ExpectedTemplateParams = nullptr; |
2978 | else |
2979 | continue; |
2980 | } |
2981 | |
2982 | if (ParamIdx < ParamLists.size()) { |
2983 | // Check the template parameter list, if we can. |
2984 | if (ExpectedTemplateParams && |
2985 | !TemplateParameterListsAreEqual(New: ParamLists[ParamIdx], |
2986 | Old: ExpectedTemplateParams, |
2987 | Complain: !SuppressDiagnostic, Kind: TPL_TemplateMatch)) |
2988 | Invalid = true; |
2989 | |
2990 | if (!Invalid && |
2991 | CheckTemplateParameterList(NewParams: ParamLists[ParamIdx], OldParams: nullptr, |
2992 | TPC: TPC_ClassTemplateMember)) |
2993 | Invalid = true; |
2994 | |
2995 | ++ParamIdx; |
2996 | continue; |
2997 | } |
2998 | |
2999 | if (!SuppressDiagnostic) |
3000 | Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) |
3001 | << T |
3002 | << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); |
3003 | Invalid = true; |
3004 | continue; |
3005 | } |
3006 | } |
3007 | |
3008 | // If there were at least as many template-ids as there were template |
3009 | // parameter lists, then there are no template parameter lists remaining for |
3010 | // the declaration itself. |
3011 | if (ParamIdx >= ParamLists.size()) { |
3012 | if (TemplateId && !IsFriend) { |
3013 | // We don't have a template header for the declaration itself, but we |
3014 | // should. |
3015 | DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, |
3016 | TemplateId->RAngleLoc)); |
3017 | |
3018 | // Fabricate an empty template parameter list for the invented header. |
3019 | return TemplateParameterList::Create(C: Context, TemplateLoc: SourceLocation(), |
3020 | LAngleLoc: SourceLocation(), Params: {}, |
3021 | RAngleLoc: SourceLocation(), RequiresClause: nullptr); |
3022 | } |
3023 | |
3024 | return nullptr; |
3025 | } |
3026 | |
3027 | // If there were too many template parameter lists, complain about that now. |
3028 | if (ParamIdx < ParamLists.size() - 1) { |
3029 | bool HasAnyExplicitSpecHeader = false; |
3030 | bool AllExplicitSpecHeaders = true; |
3031 | for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { |
3032 | if (ParamLists[I]->size() == 0) |
3033 | HasAnyExplicitSpecHeader = true; |
3034 | else |
3035 | AllExplicitSpecHeaders = false; |
3036 | } |
3037 | |
3038 | if (!SuppressDiagnostic) |
3039 | Diag(ParamLists[ParamIdx]->getTemplateLoc(), |
3040 | AllExplicitSpecHeaders ? diag::ext_template_spec_extra_headers |
3041 | : diag::err_template_spec_extra_headers) |
3042 | << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), |
3043 | ParamLists[ParamLists.size() - 2]->getRAngleLoc()); |
3044 | |
3045 | // If there was a specialization somewhere, such that 'template<>' is |
3046 | // not required, and there were any 'template<>' headers, note where the |
3047 | // specialization occurred. |
3048 | if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && |
3049 | !SuppressDiagnostic) |
3050 | Diag(ExplicitSpecLoc, |
3051 | diag::note_explicit_template_spec_does_not_need_header) |
3052 | << NestedTypes.back(); |
3053 | |
3054 | // We have a template parameter list with no corresponding scope, which |
3055 | // means that the resulting template declaration can't be instantiated |
3056 | // properly (we'll end up with dependent nodes when we shouldn't). |
3057 | if (!AllExplicitSpecHeaders) |
3058 | Invalid = true; |
3059 | } |
3060 | |
3061 | // C++ [temp.expl.spec]p16: |
3062 | // In an explicit specialization declaration for a member of a class |
3063 | // template or a member template that ap- pears in namespace scope, the |
3064 | // member template and some of its enclosing class templates may remain |
3065 | // unspecialized, except that the declaration shall not explicitly |
3066 | // specialize a class member template if its en- closing class templates |
3067 | // are not explicitly specialized as well. |
3068 | if (ParamLists.back()->size() == 0 && |
3069 | CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), |
3070 | false)) |
3071 | return nullptr; |
3072 | |
3073 | // Return the last template parameter list, which corresponds to the |
3074 | // entity being declared. |
3075 | return ParamLists.back(); |
3076 | } |
3077 | |
3078 | void Sema::NoteAllFoundTemplates(TemplateName Name) { |
3079 | if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
3080 | Diag(Template->getLocation(), diag::note_template_declared_here) |
3081 | << (isa<FunctionTemplateDecl>(Template) |
3082 | ? 0 |
3083 | : isa<ClassTemplateDecl>(Template) |
3084 | ? 1 |
3085 | : isa<VarTemplateDecl>(Template) |
3086 | ? 2 |
3087 | : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) |
3088 | << Template->getDeclName(); |
3089 | return; |
3090 | } |
3091 | |
3092 | if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { |
3093 | for (OverloadedTemplateStorage::iterator I = OST->begin(), |
3094 | IEnd = OST->end(); |
3095 | I != IEnd; ++I) |
3096 | Diag((*I)->getLocation(), diag::note_template_declared_here) |
3097 | << 0 << (*I)->getDeclName(); |
3098 | |
3099 | return; |
3100 | } |
3101 | } |
3102 | |
3103 | static QualType builtinCommonTypeImpl(Sema &S, TemplateName BaseTemplate, |
3104 | SourceLocation TemplateLoc, |
3105 | ArrayRef<TemplateArgument> Ts) { |
3106 | auto lookUpCommonType = [&](TemplateArgument T1, |
3107 | TemplateArgument T2) -> QualType { |
3108 | // Don't bother looking for other specializations if both types are |
3109 | // builtins - users aren't allowed to specialize for them |
3110 | if (T1.getAsType()->isBuiltinType() && T2.getAsType()->isBuiltinType()) |
3111 | return builtinCommonTypeImpl(S, BaseTemplate, TemplateLoc, Ts: {T1, T2}); |
3112 | |
3113 | TemplateArgumentListInfo Args; |
3114 | Args.addArgument(Loc: TemplateArgumentLoc( |
3115 | T1, S.Context.getTrivialTypeSourceInfo(T: T1.getAsType()))); |
3116 | Args.addArgument(Loc: TemplateArgumentLoc( |
3117 | T2, S.Context.getTrivialTypeSourceInfo(T: T2.getAsType()))); |
3118 | |
3119 | EnterExpressionEvaluationContext UnevaluatedContext( |
3120 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
3121 | Sema::SFINAETrap SFINAE(S, /*ForValidityCheck=*/true); |
3122 | Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); |
3123 | |
3124 | QualType BaseTemplateInst = |
3125 | S.CheckTemplateIdType(Template: BaseTemplate, TemplateLoc, TemplateArgs&: Args); |
3126 | |
3127 | if (SFINAE.hasErrorOccurred()) |
3128 | return QualType(); |
3129 | |
3130 | return BaseTemplateInst; |
3131 | }; |
3132 | |
3133 | // Note A: For the common_type trait applied to a template parameter pack T of |
3134 | // types, the member type shall be either defined or not present as follows: |
3135 | switch (Ts.size()) { |
3136 | |
3137 | // If sizeof...(T) is zero, there shall be no member type. |
3138 | case 0: |
3139 | return QualType(); |
3140 | |
3141 | // If sizeof...(T) is one, let T0 denote the sole type constituting the |
3142 | // pack T. The member typedef-name type shall denote the same type, if any, as |
3143 | // common_type_t<T0, T0>; otherwise there shall be no member type. |
3144 | case 1: |
3145 | return lookUpCommonType(Ts[0], Ts[0]); |
3146 | |
3147 | // If sizeof...(T) is two, let the first and second types constituting T be |
3148 | // denoted by T1 and T2, respectively, and let D1 and D2 denote the same types |
3149 | // as decay_t<T1> and decay_t<T2>, respectively. |
3150 | case 2: { |
3151 | QualType T1 = Ts[0].getAsType(); |
3152 | QualType T2 = Ts[1].getAsType(); |
3153 | QualType D1 = S.BuiltinDecay(BaseType: T1, Loc: {}); |
3154 | QualType D2 = S.BuiltinDecay(BaseType: T2, Loc: {}); |
3155 | |
3156 | // If is_same_v<T1, D1> is false or is_same_v<T2, D2> is false, let C denote |
3157 | // the same type, if any, as common_type_t<D1, D2>. |
3158 | if (!S.Context.hasSameType(T1, T2: D1) || !S.Context.hasSameType(T1: T2, T2: D2)) |
3159 | return lookUpCommonType(D1, D2); |
3160 | |
3161 | // Otherwise, if decay_t<decltype(false ? declval<D1>() : declval<D2>())> |
3162 | // denotes a valid type, let C denote that type. |
3163 | { |
3164 | auto CheckConditionalOperands = [&](bool ConstRefQual) -> QualType { |
3165 | EnterExpressionEvaluationContext UnevaluatedContext( |
3166 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
3167 | Sema::SFINAETrap SFINAE(S, /*ForValidityCheck=*/true); |
3168 | Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); |
3169 | |
3170 | // false |
3171 | OpaqueValueExpr CondExpr(SourceLocation(), S.Context.BoolTy, |
3172 | VK_PRValue); |
3173 | ExprResult Cond = &CondExpr; |
3174 | |
3175 | auto EVK = ConstRefQual ? VK_LValue : VK_PRValue; |
3176 | if (ConstRefQual) { |
3177 | D1.addConst(); |
3178 | D2.addConst(); |
3179 | } |
3180 | |
3181 | // declval<D1>() |
3182 | OpaqueValueExpr LHSExpr(TemplateLoc, D1, EVK); |
3183 | ExprResult LHS = &LHSExpr; |
3184 | |
3185 | // declval<D2>() |
3186 | OpaqueValueExpr RHSExpr(TemplateLoc, D2, EVK); |
3187 | ExprResult RHS = &RHSExpr; |
3188 | |
3189 | ExprValueKind VK = VK_PRValue; |
3190 | ExprObjectKind OK = OK_Ordinary; |
3191 | |
3192 | // decltype(false ? declval<D1>() : declval<D2>()) |
3193 | QualType Result = |
3194 | S.CheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc: TemplateLoc); |
3195 | |
3196 | if (Result.isNull() || SFINAE.hasErrorOccurred()) |
3197 | return QualType(); |
3198 | |
3199 | // decay_t<decltype(false ? declval<D1>() : declval<D2>())> |
3200 | return S.BuiltinDecay(BaseType: Result, Loc: TemplateLoc); |
3201 | }; |
3202 | |
3203 | if (auto Res = CheckConditionalOperands(false); !Res.isNull()) |
3204 | return Res; |
3205 | |
3206 | // Let: |
3207 | // CREF(A) be add_lvalue_reference_t<const remove_reference_t<A>>, |
3208 | // COND-RES(X, Y) be |
3209 | // decltype(false ? declval<X(&)()>()() : declval<Y(&)()>()()). |
3210 | |
3211 | // C++20 only |
3212 | // Otherwise, if COND-RES(CREF(D1), CREF(D2)) denotes a type, let C denote |
3213 | // the type decay_t<COND-RES(CREF(D1), CREF(D2))>. |
3214 | if (!S.Context.getLangOpts().CPlusPlus20) |
3215 | return QualType(); |
3216 | return CheckConditionalOperands(true); |
3217 | } |
3218 | } |
3219 | |
3220 | // If sizeof...(T) is greater than two, let T1, T2, and R, respectively, |
3221 | // denote the first, second, and (pack of) remaining types constituting T. Let |
3222 | // C denote the same type, if any, as common_type_t<T1, T2>. If there is such |
3223 | // a type C, the member typedef-name type shall denote the same type, if any, |
3224 | // as common_type_t<C, R...>. Otherwise, there shall be no member type. |
3225 | default: { |
3226 | QualType Result = Ts.front().getAsType(); |
3227 | for (auto T : llvm::drop_begin(RangeOrContainer&: Ts)) { |
3228 | Result = lookUpCommonType(Result, T.getAsType()); |
3229 | if (Result.isNull()) |
3230 | return QualType(); |
3231 | } |
3232 | return Result; |
3233 | } |
3234 | } |
3235 | } |
3236 | |
3237 | static bool isInVkNamespace(const RecordType *RT) { |
3238 | DeclContext *DC = RT->getDecl()->getDeclContext(); |
3239 | if (!DC) |
3240 | return false; |
3241 | |
3242 | NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Val: DC); |
3243 | if (!ND) |
3244 | return false; |
3245 | |
3246 | return ND->getQualifiedNameAsString() == "hlsl::vk"; |
3247 | } |
3248 | |
3249 | static SpirvOperand checkHLSLSpirvTypeOperand(Sema &SemaRef, |
3250 | QualType OperandArg, |
3251 | SourceLocation Loc) { |
3252 | if (auto *RT = OperandArg->getAs<RecordType>()) { |
3253 | bool Literal = false; |
3254 | SourceLocation LiteralLoc; |
3255 | if (isInVkNamespace(RT) && RT->getDecl()->getName() == "Literal") { |
3256 | auto SpecDecl = dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl()); |
3257 | assert(SpecDecl); |
3258 | |
3259 | const TemplateArgumentList &LiteralArgs = SpecDecl->getTemplateArgs(); |
3260 | QualType ConstantType = LiteralArgs[0].getAsType(); |
3261 | RT = ConstantType->getAs<RecordType>(); |
3262 | Literal = true; |
3263 | LiteralLoc = SpecDecl->getSourceRange().getBegin(); |
3264 | } |
3265 | |
3266 | if (RT && isInVkNamespace(RT) && |
3267 | RT->getDecl()->getName() == "integral_constant") { |
3268 | auto SpecDecl = dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl()); |
3269 | assert(SpecDecl); |
3270 | |
3271 | const TemplateArgumentList &ConstantArgs = SpecDecl->getTemplateArgs(); |
3272 | |
3273 | QualType ConstantType = ConstantArgs[0].getAsType(); |
3274 | llvm::APInt Value = ConstantArgs[1].getAsIntegral(); |
3275 | |
3276 | if (Literal) |
3277 | return SpirvOperand::createLiteral(Val: Value); |
3278 | return SpirvOperand::createConstant(ResultType: ConstantType, Val: Value); |
3279 | } else if (Literal) { |
3280 | SemaRef.Diag(LiteralLoc, diag::err_hlsl_vk_literal_must_contain_constant); |
3281 | return SpirvOperand(); |
3282 | } |
3283 | } |
3284 | if (SemaRef.RequireCompleteType(Loc, OperandArg, |
3285 | diag::err_call_incomplete_argument)) |
3286 | return SpirvOperand(); |
3287 | return SpirvOperand::createType(T: OperandArg); |
3288 | } |
3289 | |
3290 | static QualType |
3291 | checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, |
3292 | ArrayRef<TemplateArgument> Converted, |
3293 | SourceLocation TemplateLoc, |
3294 | TemplateArgumentListInfo &TemplateArgs) { |
3295 | ASTContext &Context = SemaRef.getASTContext(); |
3296 | |
3297 | switch (BTD->getBuiltinTemplateKind()) { |
3298 | case BTK__make_integer_seq: { |
3299 | // Specializations of __make_integer_seq<S, T, N> are treated like |
3300 | // S<T, 0, ..., N-1>. |
3301 | |
3302 | QualType OrigType = Converted[1].getAsType(); |
3303 | // C++14 [inteseq.intseq]p1: |
3304 | // T shall be an integer type. |
3305 | if (!OrigType->isDependentType() && !OrigType->isIntegralType(Ctx: Context)) { |
3306 | SemaRef.Diag(TemplateArgs[1].getLocation(), |
3307 | diag::err_integer_sequence_integral_element_type); |
3308 | return QualType(); |
3309 | } |
3310 | |
3311 | TemplateArgument NumArgsArg = Converted[2]; |
3312 | if (NumArgsArg.isDependent()) |
3313 | return QualType(); |
3314 | |
3315 | TemplateArgumentListInfo SyntheticTemplateArgs; |
3316 | // The type argument, wrapped in substitution sugar, gets reused as the |
3317 | // first template argument in the synthetic template argument list. |
3318 | SyntheticTemplateArgs.addArgument( |
3319 | Loc: TemplateArgumentLoc(TemplateArgument(OrigType), |
3320 | SemaRef.Context.getTrivialTypeSourceInfo( |
3321 | T: OrigType, Loc: TemplateArgs[1].getLocation()))); |
3322 | |
3323 | if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) { |
3324 | // Expand N into 0 ... N-1. |
3325 | for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); |
3326 | I < NumArgs; ++I) { |
3327 | TemplateArgument TA(Context, I, OrigType); |
3328 | SyntheticTemplateArgs.addArgument(Loc: SemaRef.getTrivialTemplateArgumentLoc( |
3329 | Arg: TA, NTTPType: OrigType, Loc: TemplateArgs[2].getLocation())); |
3330 | } |
3331 | } else { |
3332 | // C++14 [inteseq.make]p1: |
3333 | // If N is negative the program is ill-formed. |
3334 | SemaRef.Diag(TemplateArgs[2].getLocation(), |
3335 | diag::err_integer_sequence_negative_length); |
3336 | return QualType(); |
3337 | } |
3338 | |
3339 | // The first template argument will be reused as the template decl that |
3340 | // our synthetic template arguments will be applied to. |
3341 | return SemaRef.CheckTemplateIdType(Template: Converted[0].getAsTemplate(), |
3342 | TemplateLoc, TemplateArgs&: SyntheticTemplateArgs); |
3343 | } |
3344 | |
3345 | case BTK__type_pack_element: { |
3346 | // Specializations of |
3347 | // __type_pack_element<Index, T_1, ..., T_N> |
3348 | // are treated like T_Index. |
3349 | assert(Converted.size() == 2 && |
3350 | "__type_pack_element should be given an index and a parameter pack"); |
3351 | |
3352 | TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; |
3353 | if (IndexArg.isDependent() || Ts.isDependent()) |
3354 | return QualType(); |
3355 | |
3356 | llvm::APSInt Index = IndexArg.getAsIntegral(); |
3357 | assert(Index >= 0 && "the index used with __type_pack_element should be of " |
3358 | "type std::size_t, and hence be non-negative"); |
3359 | // If the Index is out of bounds, the program is ill-formed. |
3360 | if (Index >= Ts.pack_size()) { |
3361 | SemaRef.Diag(TemplateArgs[0].getLocation(), |
3362 | diag::err_type_pack_element_out_of_bounds); |
3363 | return QualType(); |
3364 | } |
3365 | |
3366 | // We simply return the type at index `Index`. |
3367 | int64_t N = Index.getExtValue(); |
3368 | return Ts.getPackAsArray()[N].getAsType(); |
3369 | } |
3370 | |
3371 | case BTK__builtin_common_type: { |
3372 | assert(Converted.size() == 4); |
3373 | if (llvm::any_of(Range&: Converted, P: [](auto &C) { return C.isDependent(); })) |
3374 | return QualType(); |
3375 | |
3376 | TemplateName BaseTemplate = Converted[0].getAsTemplate(); |
3377 | ArrayRef<TemplateArgument> Ts = Converted[3].getPackAsArray(); |
3378 | if (auto CT = builtinCommonTypeImpl(S&: SemaRef, BaseTemplate, TemplateLoc, Ts); |
3379 | !CT.isNull()) { |
3380 | TemplateArgumentListInfo TAs; |
3381 | TAs.addArgument(Loc: TemplateArgumentLoc( |
3382 | TemplateArgument(CT), SemaRef.Context.getTrivialTypeSourceInfo( |
3383 | T: CT, Loc: TemplateArgs[1].getLocation()))); |
3384 | TemplateName HasTypeMember = Converted[1].getAsTemplate(); |
3385 | return SemaRef.CheckTemplateIdType(Template: HasTypeMember, TemplateLoc, TemplateArgs&: TAs); |
3386 | } |
3387 | QualType HasNoTypeMember = Converted[2].getAsType(); |
3388 | return HasNoTypeMember; |
3389 | } |
3390 | |
3391 | case BTK__hlsl_spirv_type: { |
3392 | assert(Converted.size() == 4); |
3393 | |
3394 | if (!Context.getTargetInfo().getTriple().isSPIRV()) { |
3395 | SemaRef.Diag(TemplateLoc, diag::err_hlsl_spirv_only) << BTD; |
3396 | } |
3397 | |
3398 | if (llvm::any_of(Range&: Converted, P: [](auto &C) { return C.isDependent(); })) |
3399 | return QualType(); |
3400 | |
3401 | uint64_t Opcode = Converted[0].getAsIntegral().getZExtValue(); |
3402 | uint64_t Size = Converted[1].getAsIntegral().getZExtValue(); |
3403 | uint64_t Alignment = Converted[2].getAsIntegral().getZExtValue(); |
3404 | |
3405 | ArrayRef<TemplateArgument> OperandArgs = Converted[3].getPackAsArray(); |
3406 | |
3407 | llvm::SmallVector<SpirvOperand> Operands; |
3408 | |
3409 | for (auto &OperandTA : OperandArgs) { |
3410 | QualType OperandArg = OperandTA.getAsType(); |
3411 | auto Operand = checkHLSLSpirvTypeOperand(SemaRef, OperandArg, |
3412 | Loc: TemplateArgs[3].getLocation()); |
3413 | if (!Operand.isValid()) |
3414 | return QualType(); |
3415 | Operands.push_back(Elt: Operand); |
3416 | } |
3417 | |
3418 | return Context.getHLSLInlineSpirvType(Opcode, Size, Alignment, Operands); |
3419 | } |
3420 | } |
3421 | llvm_unreachable("unexpected BuiltinTemplateDecl!"); |
3422 | } |
3423 | |
3424 | /// Determine whether this alias template is "enable_if_t". |
3425 | /// libc++ >=14 uses "__enable_if_t" in C++11 mode. |
3426 | static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { |
3427 | return AliasTemplate->getName() == "enable_if_t"|| |
3428 | AliasTemplate->getName() == "__enable_if_t"; |
3429 | } |
3430 | |
3431 | /// Collect all of the separable terms in the given condition, which |
3432 | /// might be a conjunction. |
3433 | /// |
3434 | /// FIXME: The right answer is to convert the logical expression into |
3435 | /// disjunctive normal form, so we can find the first failed term |
3436 | /// within each possible clause. |
3437 | static void collectConjunctionTerms(Expr *Clause, |
3438 | SmallVectorImpl<Expr *> &Terms) { |
3439 | if (auto BinOp = dyn_cast<BinaryOperator>(Val: Clause->IgnoreParenImpCasts())) { |
3440 | if (BinOp->getOpcode() == BO_LAnd) { |
3441 | collectConjunctionTerms(Clause: BinOp->getLHS(), Terms); |
3442 | collectConjunctionTerms(Clause: BinOp->getRHS(), Terms); |
3443 | return; |
3444 | } |
3445 | } |
3446 | |
3447 | Terms.push_back(Elt: Clause); |
3448 | } |
3449 | |
3450 | // The ranges-v3 library uses an odd pattern of a top-level "||" with |
3451 | // a left-hand side that is value-dependent but never true. Identify |
3452 | // the idiom and ignore that term. |
3453 | static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { |
3454 | // Top-level '||'. |
3455 | auto *BinOp = dyn_cast<BinaryOperator>(Val: Cond->IgnoreParenImpCasts()); |
3456 | if (!BinOp) return Cond; |
3457 | |
3458 | if (BinOp->getOpcode() != BO_LOr) return Cond; |
3459 | |
3460 | // With an inner '==' that has a literal on the right-hand side. |
3461 | Expr *LHS = BinOp->getLHS(); |
3462 | auto *InnerBinOp = dyn_cast<BinaryOperator>(Val: LHS->IgnoreParenImpCasts()); |
3463 | if (!InnerBinOp) return Cond; |
3464 | |
3465 | if (InnerBinOp->getOpcode() != BO_EQ || |
3466 | !isa<IntegerLiteral>(Val: InnerBinOp->getRHS())) |
3467 | return Cond; |
3468 | |
3469 | // If the inner binary operation came from a macro expansion named |
3470 | // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side |
3471 | // of the '||', which is the real, user-provided condition. |
3472 | SourceLocation Loc = InnerBinOp->getExprLoc(); |
3473 | if (!Loc.isMacroID()) return Cond; |
3474 | |
3475 | StringRef MacroName = PP.getImmediateMacroName(Loc); |
3476 | if (MacroName == "CONCEPT_REQUIRES"|| MacroName == "CONCEPT_REQUIRES_") |
3477 | return BinOp->getRHS(); |
3478 | |
3479 | return Cond; |
3480 | } |
3481 | |
3482 | namespace { |
3483 | |
3484 | // A PrinterHelper that prints more helpful diagnostics for some sub-expressions |
3485 | // within failing boolean expression, such as substituting template parameters |
3486 | // for actual types. |
3487 | class FailedBooleanConditionPrinterHelper : public PrinterHelper { |
3488 | public: |
3489 | explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) |
3490 | : Policy(P) {} |
3491 | |
3492 | bool handledStmt(Stmt *E, raw_ostream &OS) override { |
3493 | const auto *DR = dyn_cast<DeclRefExpr>(Val: E); |
3494 | if (DR && DR->getQualifier()) { |
3495 | // If this is a qualified name, expand the template arguments in nested |
3496 | // qualifiers. |
3497 | DR->getQualifier()->print(OS, Policy, ResolveTemplateArguments: true); |
3498 | // Then print the decl itself. |
3499 | const ValueDecl *VD = DR->getDecl(); |
3500 | OS << VD->getName(); |
3501 | if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(Val: VD)) { |
3502 | // This is a template variable, print the expanded template arguments. |
3503 | printTemplateArgumentList( |
3504 | OS, IV->getTemplateArgs().asArray(), Policy, |
3505 | IV->getSpecializedTemplate()->getTemplateParameters()); |
3506 | } |
3507 | return true; |
3508 | } |
3509 | return false; |
3510 | } |
3511 | |
3512 | private: |
3513 | const PrintingPolicy Policy; |
3514 | }; |
3515 | |
3516 | } // end anonymous namespace |
3517 | |
3518 | std::pair<Expr *, std::string> |
3519 | Sema::findFailedBooleanCondition(Expr *Cond) { |
3520 | Cond = lookThroughRangesV3Condition(PP, Cond); |
3521 | |
3522 | // Separate out all of the terms in a conjunction. |
3523 | SmallVector<Expr *, 4> Terms; |
3524 | collectConjunctionTerms(Clause: Cond, Terms); |
3525 | |
3526 | // Determine which term failed. |
3527 | Expr *FailedCond = nullptr; |
3528 | for (Expr *Term : Terms) { |
3529 | Expr *TermAsWritten = Term->IgnoreParenImpCasts(); |
3530 | |
3531 | // Literals are uninteresting. |
3532 | if (isa<CXXBoolLiteralExpr>(Val: TermAsWritten) || |
3533 | isa<IntegerLiteral>(Val: TermAsWritten)) |
3534 | continue; |
3535 | |
3536 | // The initialization of the parameter from the argument is |
3537 | // a constant-evaluated context. |
3538 | EnterExpressionEvaluationContext ConstantEvaluated( |
3539 | *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
3540 | |
3541 | bool Succeeded; |
3542 | if (Term->EvaluateAsBooleanCondition(Result&: Succeeded, Ctx: Context) && |
3543 | !Succeeded) { |
3544 | FailedCond = TermAsWritten; |
3545 | break; |
3546 | } |
3547 | } |
3548 | if (!FailedCond) |
3549 | FailedCond = Cond->IgnoreParenImpCasts(); |
3550 | |
3551 | std::string Description; |
3552 | { |
3553 | llvm::raw_string_ostream Out(Description); |
3554 | PrintingPolicy Policy = getPrintingPolicy(); |
3555 | Policy.PrintAsCanonical = true; |
3556 | FailedBooleanConditionPrinterHelper Helper(Policy); |
3557 | FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr); |
3558 | } |
3559 | return { FailedCond, Description }; |
3560 | } |
3561 | |
3562 | QualType Sema::CheckTemplateIdType(TemplateName Name, |
3563 | SourceLocation TemplateLoc, |
3564 | TemplateArgumentListInfo &TemplateArgs) { |
3565 | // FIXME: 'getUnderlying' loses SubstTemplateTemplateParm nodes from alias |
3566 | // template substitutions. |
3567 | if (DependentTemplateName *DTN = |
3568 | Name.getUnderlying().getAsDependentTemplateName(); |
3569 | DTN && DTN->getName().getIdentifier()) |
3570 | // When building a template-id where the template-name is dependent, |
3571 | // assume the template is a type template. Either our assumption is |
3572 | // correct, or the code is ill-formed and will be diagnosed when the |
3573 | // dependent name is substituted. |
3574 | return Context.getDependentTemplateSpecializationType( |
3575 | Keyword: ElaboratedTypeKeyword::None, Name: *DTN, Args: TemplateArgs.arguments()); |
3576 | |
3577 | if (Name.getAsAssumedTemplateName() && |
3578 | resolveAssumedTemplateNameAsType(/*Scope=*/S: nullptr, Name, NameLoc: TemplateLoc)) |
3579 | return QualType(); |
3580 | |
3581 | TemplateDecl *Template; |
3582 | DefaultArguments DefaultArgs; |
3583 | if (const SubstTemplateTemplateParmPackStorage *S = |
3584 | Name.getAsSubstTemplateTemplateParmPack()) { |
3585 | Template = S->getParameterPack(); |
3586 | } else { |
3587 | std::tie(args&: Template, args&: DefaultArgs) = Name.getTemplateDeclAndDefaultArgs(); |
3588 | if (!Template || isa<FunctionTemplateDecl>(Val: Template) || |
3589 | isa<VarTemplateDecl>(Val: Template) || isa<ConceptDecl>(Val: Template)) { |
3590 | Diag(TemplateLoc, diag::err_template_id_not_a_type) << Name; |
3591 | NoteAllFoundTemplates(Name); |
3592 | return QualType(); |
3593 | } |
3594 | } |
3595 | |
3596 | // Check that the template argument list is well-formed for this |
3597 | // template. |
3598 | CheckTemplateArgumentInfo CTAI; |
3599 | if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, |
3600 | DefaultArgs, /*PartialTemplateArgs=*/false, |
3601 | CTAI, |
3602 | /*UpdateArgsWithConversions=*/true)) |
3603 | return QualType(); |
3604 | |
3605 | QualType CanonType; |
3606 | |
3607 | if (isa<TemplateTemplateParmDecl>(Val: Template)) { |
3608 | // We might have a substituted template template parameter pack. If so, |
3609 | // build a template specialization type for it. |
3610 | } else if (TypeAliasTemplateDecl *AliasTemplate = |
3611 | dyn_cast<TypeAliasTemplateDecl>(Val: Template)) { |
3612 | |
3613 | // Find the canonical type for this type alias template specialization. |
3614 | TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); |
3615 | if (Pattern->isInvalidDecl()) |
3616 | return QualType(); |
3617 | |
3618 | // Only substitute for the innermost template argument list. |
3619 | MultiLevelTemplateArgumentList TemplateArgLists; |
3620 | TemplateArgLists.addOuterTemplateArguments(Template, CTAI.SugaredConverted, |
3621 | /*Final=*/true); |
3622 | TemplateArgLists.addOuterRetainedLevels( |
3623 | Num: AliasTemplate->getTemplateParameters()->getDepth()); |
3624 | |
3625 | LocalInstantiationScope Scope(*this); |
3626 | InstantiatingTemplate Inst( |
3627 | *this, /*PointOfInstantiation=*/TemplateLoc, |
3628 | /*Entity=*/AliasTemplate, |
3629 | /*TemplateArgs=*/TemplateArgLists.getInnermost()); |
3630 | |
3631 | // Diagnose uses of this alias. |
3632 | (void)DiagnoseUseOfDecl(AliasTemplate, TemplateLoc); |
3633 | |
3634 | if (Inst.isInvalid()) |
3635 | return QualType(); |
3636 | |
3637 | std::optional<ContextRAII> SavedContext; |
3638 | if (!AliasTemplate->getDeclContext()->isFileContext()) |
3639 | SavedContext.emplace(*this, AliasTemplate->getDeclContext()); |
3640 | |
3641 | CanonType = |
3642 | SubstType(Pattern->getUnderlyingType(), TemplateArgLists, |
3643 | AliasTemplate->getLocation(), AliasTemplate->getDeclName()); |
3644 | if (CanonType.isNull()) { |
3645 | // If this was enable_if and we failed to find the nested type |
3646 | // within enable_if in a SFINAE context, dig out the specific |
3647 | // enable_if condition that failed and present that instead. |
3648 | if (isEnableIfAliasTemplate(AliasTemplate)) { |
3649 | if (auto DeductionInfo = isSFINAEContext()) { |
3650 | if (*DeductionInfo && |
3651 | (*DeductionInfo)->hasSFINAEDiagnostic() && |
3652 | (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == |
3653 | diag::err_typename_nested_not_found_enable_if && |
3654 | TemplateArgs[0].getArgument().getKind() |
3655 | == TemplateArgument::Expression) { |
3656 | Expr *FailedCond; |
3657 | std::string FailedDescription; |
3658 | std::tie(args&: FailedCond, args&: FailedDescription) = |
3659 | findFailedBooleanCondition(Cond: TemplateArgs[0].getSourceExpression()); |
3660 | |
3661 | // Remove the old SFINAE diagnostic. |
3662 | PartialDiagnosticAt OldDiag = |
3663 | {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; |
3664 | (*DeductionInfo)->takeSFINAEDiagnostic(PD&: OldDiag); |
3665 | |
3666 | // Add a new SFINAE diagnostic specifying which condition |
3667 | // failed. |
3668 | (*DeductionInfo)->addSFINAEDiagnostic( |
3669 | OldDiag.first, |
3670 | PDiag(diag::err_typename_nested_not_found_requirement) |
3671 | << FailedDescription |
3672 | << FailedCond->getSourceRange()); |
3673 | } |
3674 | } |
3675 | } |
3676 | |
3677 | return QualType(); |
3678 | } |
3679 | } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Val: Template)) { |
3680 | CanonType = checkBuiltinTemplateIdType(SemaRef&: *this, BTD, Converted: CTAI.SugaredConverted, |
3681 | TemplateLoc, TemplateArgs); |
3682 | } else if (Name.isDependent() || |
3683 | TemplateSpecializationType::anyDependentTemplateArguments( |
3684 | TemplateArgs, Converted: CTAI.CanonicalConverted)) { |
3685 | // This class template specialization is a dependent |
3686 | // type. Therefore, its canonical type is another class template |
3687 | // specialization type that contains all of the converted |
3688 | // arguments in canonical form. This ensures that, e.g., A<T> and |
3689 | // A<T, T> have identical types when A is declared as: |
3690 | // |
3691 | // template<typename T, typename U = T> struct A; |
3692 | CanonType = Context.getCanonicalTemplateSpecializationType( |
3693 | T: Context.getCanonicalTemplateName(Name, /*IgnoreDeduced=*/true), |
3694 | CanonicalArgs: CTAI.CanonicalConverted); |
3695 | assert(CanonType->isCanonicalUnqualified()); |
3696 | |
3697 | // This might work out to be a current instantiation, in which |
3698 | // case the canonical type needs to be the InjectedClassNameType. |
3699 | // |
3700 | // TODO: in theory this could be a simple hashtable lookup; most |
3701 | // changes to CurContext don't change the set of current |
3702 | // instantiations. |
3703 | if (isa<ClassTemplateDecl>(Val: Template)) { |
3704 | for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { |
3705 | // If we get out to a namespace, we're done. |
3706 | if (Ctx->isFileContext()) break; |
3707 | |
3708 | // If this isn't a record, keep looking. |
3709 | CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: Ctx); |
3710 | if (!Record) continue; |
3711 | |
3712 | // Look for one of the two cases with InjectedClassNameTypes |
3713 | // and check whether it's the same template. |
3714 | if (!isa<ClassTemplatePartialSpecializationDecl>(Val: Record) && |
3715 | !Record->getDescribedClassTemplate()) |
3716 | continue; |
3717 | |
3718 | // Fetch the injected class name type and check whether its |
3719 | // injected type is equal to the type we just built. |
3720 | QualType ICNT = Context.getTypeDeclType(Record); |
3721 | QualType Injected = cast<InjectedClassNameType>(Val&: ICNT) |
3722 | ->getInjectedSpecializationType(); |
3723 | |
3724 | if (CanonType != Injected->getCanonicalTypeInternal()) |
3725 | continue; |
3726 | |
3727 | // If so, the canonical type of this TST is the injected |
3728 | // class name type of the record we just found. |
3729 | assert(ICNT.isCanonical()); |
3730 | CanonType = ICNT; |
3731 | break; |
3732 | } |
3733 | } |
3734 | } else if (ClassTemplateDecl *ClassTemplate = |
3735 | dyn_cast<ClassTemplateDecl>(Val: Template)) { |
3736 | // Find the class template specialization declaration that |
3737 | // corresponds to these arguments. |
3738 | void *InsertPos = nullptr; |
3739 | ClassTemplateSpecializationDecl *Decl = |
3740 | ClassTemplate->findSpecialization(Args: CTAI.CanonicalConverted, InsertPos); |
3741 | if (!Decl) { |
3742 | // This is the first time we have referenced this class template |
3743 | // specialization. Create the canonical declaration and add it to |
3744 | // the set of specializations. |
3745 | Decl = ClassTemplateSpecializationDecl::Create( |
3746 | Context, TK: ClassTemplate->getTemplatedDecl()->getTagKind(), |
3747 | DC: ClassTemplate->getDeclContext(), |
3748 | StartLoc: ClassTemplate->getTemplatedDecl()->getBeginLoc(), |
3749 | IdLoc: ClassTemplate->getLocation(), SpecializedTemplate: ClassTemplate, Args: CTAI.CanonicalConverted, |
3750 | StrictPackMatch: CTAI.StrictPackMatch, PrevDecl: nullptr); |
3751 | ClassTemplate->AddSpecialization(D: Decl, InsertPos); |
3752 | if (ClassTemplate->isOutOfLine()) |
3753 | Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); |
3754 | } |
3755 | |
3756 | if (Decl->getSpecializationKind() == TSK_Undeclared && |
3757 | ClassTemplate->getTemplatedDecl()->hasAttrs()) { |
3758 | InstantiatingTemplate Inst(*this, TemplateLoc, Decl); |
3759 | if (!Inst.isInvalid()) { |
3760 | MultiLevelTemplateArgumentList TemplateArgLists(Template, |
3761 | CTAI.CanonicalConverted, |
3762 | /*Final=*/false); |
3763 | InstantiateAttrsForDecl(TemplateArgLists, |
3764 | ClassTemplate->getTemplatedDecl(), Decl); |
3765 | } |
3766 | } |
3767 | |
3768 | // Diagnose uses of this specialization. |
3769 | (void)DiagnoseUseOfDecl(Decl, TemplateLoc); |
3770 | |
3771 | CanonType = Context.getTypeDeclType(Decl); |
3772 | assert(isa<RecordType>(CanonType) && |
3773 | "type of non-dependent specialization is not a RecordType"); |
3774 | } else { |
3775 | llvm_unreachable("Unhandled template kind"); |
3776 | } |
3777 | |
3778 | // Build the fully-sugared type for this class template |
3779 | // specialization, which refers back to the class template |
3780 | // specialization we created or found. |
3781 | return Context.getTemplateSpecializationType( |
3782 | T: Name, SpecifiedArgs: TemplateArgs.arguments(), CanonicalArgs: CTAI.CanonicalConverted, Canon: CanonType); |
3783 | } |
3784 | |
3785 | void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, |
3786 | TemplateNameKind &TNK, |
3787 | SourceLocation NameLoc, |
3788 | IdentifierInfo *&II) { |
3789 | assert(TNK == TNK_Undeclared_template && "not an undeclared template name"); |
3790 | |
3791 | TemplateName Name = ParsedName.get(); |
3792 | auto *ATN = Name.getAsAssumedTemplateName(); |
3793 | assert(ATN && "not an assumed template name"); |
3794 | II = ATN->getDeclName().getAsIdentifierInfo(); |
3795 | |
3796 | if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { |
3797 | // Resolved to a type template name. |
3798 | ParsedName = TemplateTy::make(P: Name); |
3799 | TNK = TNK_Type_template; |
3800 | } |
3801 | } |
3802 | |
3803 | bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, |
3804 | SourceLocation NameLoc, |
3805 | bool Diagnose) { |
3806 | // We assumed this undeclared identifier to be an (ADL-only) function |
3807 | // template name, but it was used in a context where a type was required. |
3808 | // Try to typo-correct it now. |
3809 | AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); |
3810 | assert(ATN && "not an assumed template name"); |
3811 | |
3812 | LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); |
3813 | struct CandidateCallback : CorrectionCandidateCallback { |
3814 | bool ValidateCandidate(const TypoCorrection &TC) override { |
3815 | return TC.getCorrectionDecl() && |
3816 | getAsTypeTemplateDecl(TC.getCorrectionDecl()); |
3817 | } |
3818 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
3819 | return std::make_unique<CandidateCallback>(args&: *this); |
3820 | } |
3821 | } FilterCCC; |
3822 | |
3823 | TypoCorrection Corrected = |
3824 | CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: nullptr, |
3825 | CCC&: FilterCCC, Mode: CorrectTypoKind::ErrorRecovery); |
3826 | if (Corrected && Corrected.getFoundDecl()) { |
3827 | diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) |
3828 | << ATN->getDeclName()); |
3829 | Name = Context.getQualifiedTemplateName( |
3830 | /*NNS=*/nullptr, /*TemplateKeyword=*/false, |
3831 | Template: TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>())); |
3832 | return false; |
3833 | } |
3834 | |
3835 | if (Diagnose) |
3836 | Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); |
3837 | return true; |
3838 | } |
3839 | |
3840 | TypeResult Sema::ActOnTemplateIdType( |
3841 | Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
3842 | TemplateTy TemplateD, const IdentifierInfo *TemplateII, |
3843 | SourceLocation TemplateIILoc, SourceLocation LAngleLoc, |
3844 | ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, |
3845 | bool IsCtorOrDtorName, bool IsClassName, |
3846 | ImplicitTypenameContext AllowImplicitTypename) { |
3847 | if (SS.isInvalid()) |
3848 | return true; |
3849 | |
3850 | if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { |
3851 | DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); |
3852 | |
3853 | // C++ [temp.res]p3: |
3854 | // A qualified-id that refers to a type and in which the |
3855 | // nested-name-specifier depends on a template-parameter (14.6.2) |
3856 | // shall be prefixed by the keyword typename to indicate that the |
3857 | // qualified-id denotes a type, forming an |
3858 | // elaborated-type-specifier (7.1.5.3). |
3859 | if (!LookupCtx && isDependentScopeSpecifier(SS)) { |
3860 | // C++2a relaxes some of those restrictions in [temp.res]p5. |
3861 | NestedNameSpecifier *NNS = |
3862 | NestedNameSpecifier::Create(Context, Prefix: SS.getScopeRep(), II: TemplateII); |
3863 | if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { |
3864 | auto DB = DiagCompat(SS.getBeginLoc(), diag_compat::implicit_typename) |
3865 | << NNS; |
3866 | if (!getLangOpts().CPlusPlus20) |
3867 | DB << FixItHint::CreateInsertion(InsertionLoc: SS.getBeginLoc(), Code: "typename "); |
3868 | } else |
3869 | Diag(SS.getBeginLoc(), diag::err_typename_missing_template) << NNS; |
3870 | |
3871 | // FIXME: This is not quite correct recovery as we don't transform SS |
3872 | // into the corresponding dependent form (and we don't diagnose missing |
3873 | // 'template' keywords within SS as a result). |
3874 | return ActOnTypenameType(S: nullptr, TypenameLoc: SourceLocation(), SS, TemplateLoc: TemplateKWLoc, |
3875 | TemplateName: TemplateD, TemplateII, TemplateIILoc, LAngleLoc, |
3876 | TemplateArgs: TemplateArgsIn, RAngleLoc); |
3877 | } |
3878 | |
3879 | // Per C++ [class.qual]p2, if the template-id was an injected-class-name, |
3880 | // it's not actually allowed to be used as a type in most cases. Because |
3881 | // we annotate it before we know whether it's valid, we have to check for |
3882 | // this case here. |
3883 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx); |
3884 | if (LookupRD && LookupRD->getIdentifier() == TemplateII) { |
3885 | Diag(TemplateIILoc, |
3886 | TemplateKWLoc.isInvalid() |
3887 | ? diag::err_out_of_line_qualified_id_type_names_constructor |
3888 | : diag::ext_out_of_line_qualified_id_type_names_constructor) |
3889 | << TemplateII << 0 /*injected-class-name used as template name*/ |
3890 | << 1 /*if any keyword was present, it was 'template'*/; |
3891 | } |
3892 | } |
3893 | |
3894 | TemplateName Template = TemplateD.get(); |
3895 | if (Template.getAsAssumedTemplateName() && |
3896 | resolveAssumedTemplateNameAsType(S, Name&: Template, NameLoc: TemplateIILoc)) |
3897 | return true; |
3898 | |
3899 | // Translate the parser's template argument list in our AST format. |
3900 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
3901 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
3902 | |
3903 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
3904 | assert(SS.getScopeRep() == DTN->getQualifier()); |
3905 | QualType T = Context.getDependentTemplateSpecializationType( |
3906 | Keyword: ElaboratedTypeKeyword::None, Name: *DTN, Args: TemplateArgs.arguments()); |
3907 | // Build type-source information. |
3908 | TypeLocBuilder TLB; |
3909 | DependentTemplateSpecializationTypeLoc SpecTL |
3910 | = TLB.push<DependentTemplateSpecializationTypeLoc>(T); |
3911 | SpecTL.setElaboratedKeywordLoc(SourceLocation()); |
3912 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
3913 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
3914 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
3915 | SpecTL.setLAngleLoc(LAngleLoc); |
3916 | SpecTL.setRAngleLoc(RAngleLoc); |
3917 | for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) |
3918 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
3919 | return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T)); |
3920 | } |
3921 | |
3922 | QualType SpecTy = CheckTemplateIdType(Name: Template, TemplateLoc: TemplateIILoc, TemplateArgs); |
3923 | if (SpecTy.isNull()) |
3924 | return true; |
3925 | |
3926 | // Build type-source information. |
3927 | TypeLocBuilder TLB; |
3928 | TemplateSpecializationTypeLoc SpecTL = |
3929 | TLB.push<TemplateSpecializationTypeLoc>(T: SpecTy); |
3930 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
3931 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
3932 | SpecTL.setLAngleLoc(LAngleLoc); |
3933 | SpecTL.setRAngleLoc(RAngleLoc); |
3934 | for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) |
3935 | SpecTL.setArgLocInfo(i, AI: TemplateArgs[i].getLocInfo()); |
3936 | |
3937 | // Create an elaborated-type-specifier containing the nested-name-specifier. |
3938 | QualType ElTy = |
3939 | getElaboratedType(Keyword: ElaboratedTypeKeyword::None, |
3940 | SS: !IsCtorOrDtorName ? SS : CXXScopeSpec(), T: SpecTy); |
3941 | ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(T: ElTy); |
3942 | ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
3943 | if (!ElabTL.isEmpty()) |
3944 | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
3945 | return CreateParsedType(T: ElTy, TInfo: TLB.getTypeSourceInfo(Context, T: ElTy)); |
3946 | } |
3947 | |
3948 | TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, |
3949 | TypeSpecifierType TagSpec, |
3950 | SourceLocation TagLoc, |
3951 | CXXScopeSpec &SS, |
3952 | SourceLocation TemplateKWLoc, |
3953 | TemplateTy TemplateD, |
3954 | SourceLocation TemplateLoc, |
3955 | SourceLocation LAngleLoc, |
3956 | ASTTemplateArgsPtr TemplateArgsIn, |
3957 | SourceLocation RAngleLoc) { |
3958 | if (SS.isInvalid()) |
3959 | return TypeResult(true); |
3960 | |
3961 | TemplateName Template = TemplateD.get(); |
3962 | |
3963 | // Translate the parser's template argument list in our AST format. |
3964 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
3965 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
3966 | |
3967 | // Determine the tag kind |
3968 | TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
3969 | ElaboratedTypeKeyword Keyword |
3970 | = TypeWithKeyword::getKeywordForTagTypeKind(Tag: TagKind); |
3971 | |
3972 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
3973 | assert(SS.getScopeRep() == DTN->getQualifier()); |
3974 | QualType T = Context.getDependentTemplateSpecializationType( |
3975 | Keyword, Name: *DTN, Args: TemplateArgs.arguments()); |
3976 | |
3977 | // Build type-source information. |
3978 | TypeLocBuilder TLB; |
3979 | DependentTemplateSpecializationTypeLoc SpecTL |
3980 | = TLB.push<DependentTemplateSpecializationTypeLoc>(T); |
3981 | SpecTL.setElaboratedKeywordLoc(TagLoc); |
3982 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
3983 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
3984 | SpecTL.setTemplateNameLoc(TemplateLoc); |
3985 | SpecTL.setLAngleLoc(LAngleLoc); |
3986 | SpecTL.setRAngleLoc(RAngleLoc); |
3987 | for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) |
3988 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
3989 | return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T)); |
3990 | } |
3991 | |
3992 | if (TypeAliasTemplateDecl *TAT = |
3993 | dyn_cast_or_null<TypeAliasTemplateDecl>(Val: Template.getAsTemplateDecl())) { |
3994 | // C++0x [dcl.type.elab]p2: |
3995 | // If the identifier resolves to a typedef-name or the simple-template-id |
3996 | // resolves to an alias template specialization, the |
3997 | // elaborated-type-specifier is ill-formed. |
3998 | Diag(TemplateLoc, diag::err_tag_reference_non_tag) |
3999 | << TAT << NonTagKind::TypeAliasTemplate << TagKind; |
4000 | Diag(TAT->getLocation(), diag::note_declared_at); |
4001 | } |
4002 | |
4003 | QualType Result = CheckTemplateIdType(Name: Template, TemplateLoc, TemplateArgs); |
4004 | if (Result.isNull()) |
4005 | return TypeResult(true); |
4006 | |
4007 | // Check the tag kind |
4008 | if (const RecordType *RT = Result->getAs<RecordType>()) { |
4009 | RecordDecl *D = RT->getDecl(); |
4010 | |
4011 | IdentifierInfo *Id = D->getIdentifier(); |
4012 | assert(Id && "templated class must have an identifier"); |
4013 | |
4014 | if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TagUseKind::Definition, |
4015 | TagLoc, Id)) { |
4016 | Diag(TagLoc, diag::err_use_with_wrong_tag) |
4017 | << Result |
4018 | << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); |
4019 | Diag(D->getLocation(), diag::note_previous_use); |
4020 | } |
4021 | } |
4022 | |
4023 | // Provide source-location information for the template specialization. |
4024 | TypeLocBuilder TLB; |
4025 | TemplateSpecializationTypeLoc SpecTL |
4026 | = TLB.push<TemplateSpecializationTypeLoc>(T: Result); |
4027 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
4028 | SpecTL.setTemplateNameLoc(TemplateLoc); |
4029 | SpecTL.setLAngleLoc(LAngleLoc); |
4030 | SpecTL.setRAngleLoc(RAngleLoc); |
4031 | for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) |
4032 | SpecTL.setArgLocInfo(i, AI: TemplateArgs[i].getLocInfo()); |
4033 | |
4034 | // Construct an elaborated type containing the nested-name-specifier (if any) |
4035 | // and tag keyword. |
4036 | Result = Context.getElaboratedType(Keyword, NNS: SS.getScopeRep(), NamedType: Result); |
4037 | ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(T: Result); |
4038 | ElabTL.setElaboratedKeywordLoc(TagLoc); |
4039 | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4040 | return CreateParsedType(T: Result, TInfo: TLB.getTypeSourceInfo(Context, T: Result)); |
4041 | } |
4042 | |
4043 | static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, |
4044 | NamedDecl *PrevDecl, |
4045 | SourceLocation Loc, |
4046 | bool IsPartialSpecialization); |
4047 | |
4048 | static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); |
4049 | |
4050 | static bool isTemplateArgumentTemplateParameter( |
4051 | const TemplateArgument &Arg, unsigned Depth, unsigned Index) { |
4052 | switch (Arg.getKind()) { |
4053 | case TemplateArgument::Null: |
4054 | case TemplateArgument::NullPtr: |
4055 | case TemplateArgument::Integral: |
4056 | case TemplateArgument::Declaration: |
4057 | case TemplateArgument::StructuralValue: |
4058 | case TemplateArgument::Pack: |
4059 | case TemplateArgument::TemplateExpansion: |
4060 | return false; |
4061 | |
4062 | case TemplateArgument::Type: { |
4063 | QualType Type = Arg.getAsType(); |
4064 | const TemplateTypeParmType *TPT = |
4065 | Arg.getAsType()->getAs<TemplateTypeParmType>(); |
4066 | return TPT && !Type.hasQualifiers() && |
4067 | TPT->getDepth() == Depth && TPT->getIndex() == Index; |
4068 | } |
4069 | |
4070 | case TemplateArgument::Expression: { |
4071 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg.getAsExpr()); |
4072 | if (!DRE || !DRE->getDecl()) |
4073 | return false; |
4074 | const NonTypeTemplateParmDecl *NTTP = |
4075 | dyn_cast<NonTypeTemplateParmDecl>(Val: DRE->getDecl()); |
4076 | return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; |
4077 | } |
4078 | |
4079 | case TemplateArgument::Template: |
4080 | const TemplateTemplateParmDecl *TTP = |
4081 | dyn_cast_or_null<TemplateTemplateParmDecl>( |
4082 | Val: Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); |
4083 | return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; |
4084 | } |
4085 | llvm_unreachable("unexpected kind of template argument"); |
4086 | } |
4087 | |
4088 | static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, |
4089 | ArrayRef<TemplateArgument> Args) { |
4090 | if (Params->size() != Args.size()) |
4091 | return false; |
4092 | |
4093 | unsigned Depth = Params->getDepth(); |
4094 | |
4095 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
4096 | TemplateArgument Arg = Args[I]; |
4097 | |
4098 | // If the parameter is a pack expansion, the argument must be a pack |
4099 | // whose only element is a pack expansion. |
4100 | if (Params->getParam(Idx: I)->isParameterPack()) { |
4101 | if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || |
4102 | !Arg.pack_begin()->isPackExpansion()) |
4103 | return false; |
4104 | Arg = Arg.pack_begin()->getPackExpansionPattern(); |
4105 | } |
4106 | |
4107 | if (!isTemplateArgumentTemplateParameter(Arg, Depth, Index: I)) |
4108 | return false; |
4109 | } |
4110 | |
4111 | return true; |
4112 | } |
4113 | |
4114 | template<typename PartialSpecDecl> |
4115 | static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { |
4116 | if (Partial->getDeclContext()->isDependentContext()) |
4117 | return; |
4118 | |
4119 | // FIXME: Get the TDK from deduction in order to provide better diagnostics |
4120 | // for non-substitution-failure issues? |
4121 | TemplateDeductionInfo Info(Partial->getLocation()); |
4122 | if (S.isMoreSpecializedThanPrimary(Partial, Info)) |
4123 | return; |
4124 | |
4125 | auto *Template = Partial->getSpecializedTemplate(); |
4126 | S.Diag(Partial->getLocation(), |
4127 | diag::ext_partial_spec_not_more_specialized_than_primary) |
4128 | << isa<VarTemplateDecl>(Template); |
4129 | |
4130 | if (Info.hasSFINAEDiagnostic()) { |
4131 | PartialDiagnosticAt Diag = {SourceLocation(), |
4132 | PartialDiagnostic::NullDiagnostic()}; |
4133 | Info.takeSFINAEDiagnostic(PD&: Diag); |
4134 | SmallString<128> SFINAEArgString; |
4135 | Diag.second.EmitToString(Diags&: S.getDiagnostics(), Buf&: SFINAEArgString); |
4136 | S.Diag(Diag.first, |
4137 | diag::note_partial_spec_not_more_specialized_than_primary) |
4138 | << SFINAEArgString; |
4139 | } |
4140 | |
4141 | S.NoteTemplateLocation(Decl: *Template); |
4142 | SmallVector<AssociatedConstraint, 3> PartialAC, TemplateAC; |
4143 | Template->getAssociatedConstraints(TemplateAC); |
4144 | Partial->getAssociatedConstraints(PartialAC); |
4145 | S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(D1: Partial, AC1: PartialAC, D2: Template, |
4146 | AC2: TemplateAC); |
4147 | } |
4148 | |
4149 | static void |
4150 | noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, |
4151 | const llvm::SmallBitVector &DeducibleParams) { |
4152 | for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { |
4153 | if (!DeducibleParams[I]) { |
4154 | NamedDecl *Param = TemplateParams->getParam(Idx: I); |
4155 | if (Param->getDeclName()) |
4156 | S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) |
4157 | << Param->getDeclName(); |
4158 | else |
4159 | S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) |
4160 | << "(anonymous)"; |
4161 | } |
4162 | } |
4163 | } |
4164 | |
4165 | |
4166 | template<typename PartialSpecDecl> |
4167 | static void checkTemplatePartialSpecialization(Sema &S, |
4168 | PartialSpecDecl *Partial) { |
4169 | // C++1z [temp.class.spec]p8: (DR1495) |
4170 | // - The specialization shall be more specialized than the primary |
4171 | // template (14.5.5.2). |
4172 | checkMoreSpecializedThanPrimary(S, Partial); |
4173 | |
4174 | // C++ [temp.class.spec]p8: (DR1315) |
4175 | // - Each template-parameter shall appear at least once in the |
4176 | // template-id outside a non-deduced context. |
4177 | // C++1z [temp.class.spec.match]p3 (P0127R2) |
4178 | // If the template arguments of a partial specialization cannot be |
4179 | // deduced because of the structure of its template-parameter-list |
4180 | // and the template-id, the program is ill-formed. |
4181 | auto *TemplateParams = Partial->getTemplateParameters(); |
4182 | llvm::SmallBitVector DeducibleParams(TemplateParams->size()); |
4183 | S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, |
4184 | TemplateParams->getDepth(), DeducibleParams); |
4185 | |
4186 | if (!DeducibleParams.all()) { |
4187 | unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); |
4188 | S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) |
4189 | << isa<VarTemplatePartialSpecializationDecl>(Partial) |
4190 | << (NumNonDeducible > 1) |
4191 | << SourceRange(Partial->getLocation(), |
4192 | Partial->getTemplateArgsAsWritten()->RAngleLoc); |
4193 | noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); |
4194 | } |
4195 | } |
4196 | |
4197 | void Sema::CheckTemplatePartialSpecialization( |
4198 | ClassTemplatePartialSpecializationDecl *Partial) { |
4199 | checkTemplatePartialSpecialization(S&: *this, Partial); |
4200 | } |
4201 | |
4202 | void Sema::CheckTemplatePartialSpecialization( |
4203 | VarTemplatePartialSpecializationDecl *Partial) { |
4204 | checkTemplatePartialSpecialization(S&: *this, Partial); |
4205 | } |
4206 | |
4207 | void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { |
4208 | // C++1z [temp.param]p11: |
4209 | // A template parameter of a deduction guide template that does not have a |
4210 | // default-argument shall be deducible from the parameter-type-list of the |
4211 | // deduction guide template. |
4212 | auto *TemplateParams = TD->getTemplateParameters(); |
4213 | llvm::SmallBitVector DeducibleParams(TemplateParams->size()); |
4214 | MarkDeducedTemplateParameters(FunctionTemplate: TD, Deduced&: DeducibleParams); |
4215 | for (unsigned I = 0; I != TemplateParams->size(); ++I) { |
4216 | // A parameter pack is deducible (to an empty pack). |
4217 | auto *Param = TemplateParams->getParam(I); |
4218 | if (Param->isParameterPack() || hasVisibleDefaultArgument(D: Param)) |
4219 | DeducibleParams[I] = true; |
4220 | } |
4221 | |
4222 | if (!DeducibleParams.all()) { |
4223 | unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); |
4224 | Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) |
4225 | << (NumNonDeducible > 1); |
4226 | noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); |
4227 | } |
4228 | } |
4229 | |
4230 | DeclResult Sema::ActOnVarTemplateSpecialization( |
4231 | Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous, |
4232 | SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, |
4233 | StorageClass SC, bool IsPartialSpecialization) { |
4234 | // D must be variable template id. |
4235 | assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && |
4236 | "Variable template specialization is declared with a template id."); |
4237 | |
4238 | TemplateIdAnnotation *TemplateId = D.getName().TemplateId; |
4239 | TemplateArgumentListInfo TemplateArgs = |
4240 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *TemplateId); |
4241 | SourceLocation TemplateNameLoc = D.getIdentifierLoc(); |
4242 | SourceLocation LAngleLoc = TemplateId->LAngleLoc; |
4243 | SourceLocation RAngleLoc = TemplateId->RAngleLoc; |
4244 | |
4245 | TemplateName Name = TemplateId->Template.get(); |
4246 | |
4247 | // The template-id must name a variable template. |
4248 | VarTemplateDecl *VarTemplate = |
4249 | dyn_cast_or_null<VarTemplateDecl>(Val: Name.getAsTemplateDecl()); |
4250 | if (!VarTemplate) { |
4251 | NamedDecl *FnTemplate; |
4252 | if (auto *OTS = Name.getAsOverloadedTemplate()) |
4253 | FnTemplate = *OTS->begin(); |
4254 | else |
4255 | FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Val: Name.getAsTemplateDecl()); |
4256 | if (FnTemplate) |
4257 | return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) |
4258 | << FnTemplate->getDeclName(); |
4259 | return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) |
4260 | << IsPartialSpecialization; |
4261 | } |
4262 | |
4263 | if (const auto *DSA = VarTemplate->getAttr<NoSpecializationsAttr>()) { |
4264 | auto Message = DSA->getMessage(); |
4265 | Diag(TemplateNameLoc, diag::warn_invalid_specialization) |
4266 | << VarTemplate << !Message.empty() << Message; |
4267 | Diag(DSA->getLoc(), diag::note_marked_here) << DSA; |
4268 | } |
4269 | |
4270 | // Check for unexpanded parameter packs in any of the template arguments. |
4271 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
4272 | if (DiagnoseUnexpandedParameterPack(Arg: TemplateArgs[I], |
4273 | UPPC: IsPartialSpecialization |
4274 | ? UPPC_PartialSpecialization |
4275 | : UPPC_ExplicitSpecialization)) |
4276 | return true; |
4277 | |
4278 | // Check that the template argument list is well-formed for this |
4279 | // template. |
4280 | CheckTemplateArgumentInfo CTAI; |
4281 | if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, |
4282 | /*DefaultArgs=*/{}, |
4283 | /*PartialTemplateArgs=*/false, CTAI, |
4284 | /*UpdateArgsWithConversions=*/true)) |
4285 | return true; |
4286 | |
4287 | // Find the variable template (partial) specialization declaration that |
4288 | // corresponds to these arguments. |
4289 | if (IsPartialSpecialization) { |
4290 | if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, |
4291 | TemplateArgs.size(), |
4292 | CTAI.CanonicalConverted)) |
4293 | return true; |
4294 | |
4295 | // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so |
4296 | // we also do them during instantiation. |
4297 | if (!Name.isDependent() && |
4298 | !TemplateSpecializationType::anyDependentTemplateArguments( |
4299 | TemplateArgs, Converted: CTAI.CanonicalConverted)) { |
4300 | Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) |
4301 | << VarTemplate->getDeclName(); |
4302 | IsPartialSpecialization = false; |
4303 | } |
4304 | |
4305 | if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), |
4306 | CTAI.CanonicalConverted) && |
4307 | (!Context.getLangOpts().CPlusPlus20 || |
4308 | !TemplateParams->hasAssociatedConstraints())) { |
4309 | // C++ [temp.class.spec]p9b3: |
4310 | // |
4311 | // -- The argument list of the specialization shall not be identical |
4312 | // to the implicit argument list of the primary template. |
4313 | Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) |
4314 | << /*variable template*/ 1 |
4315 | << /*is definition*/ (SC != SC_Extern && !CurContext->isRecord()) |
4316 | << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); |
4317 | // FIXME: Recover from this by treating the declaration as a |
4318 | // redeclaration of the primary template. |
4319 | return true; |
4320 | } |
4321 | } |
4322 | |
4323 | void *InsertPos = nullptr; |
4324 | VarTemplateSpecializationDecl *PrevDecl = nullptr; |
4325 | |
4326 | if (IsPartialSpecialization) |
4327 | PrevDecl = VarTemplate->findPartialSpecialization( |
4328 | Args: CTAI.CanonicalConverted, TPL: TemplateParams, InsertPos); |
4329 | else |
4330 | PrevDecl = |
4331 | VarTemplate->findSpecialization(Args: CTAI.CanonicalConverted, InsertPos); |
4332 | |
4333 | VarTemplateSpecializationDecl *Specialization = nullptr; |
4334 | |
4335 | // Check whether we can declare a variable template specialization in |
4336 | // the current scope. |
4337 | if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, |
4338 | TemplateNameLoc, |
4339 | IsPartialSpecialization)) |
4340 | return true; |
4341 | |
4342 | if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { |
4343 | // Since the only prior variable template specialization with these |
4344 | // arguments was referenced but not declared, reuse that |
4345 | // declaration node as our own, updating its source location and |
4346 | // the list of outer template parameters to reflect our new declaration. |
4347 | Specialization = PrevDecl; |
4348 | Specialization->setLocation(TemplateNameLoc); |
4349 | PrevDecl = nullptr; |
4350 | } else if (IsPartialSpecialization) { |
4351 | // Create a new class template partial specialization declaration node. |
4352 | VarTemplatePartialSpecializationDecl *PrevPartial = |
4353 | cast_or_null<VarTemplatePartialSpecializationDecl>(Val: PrevDecl); |
4354 | VarTemplatePartialSpecializationDecl *Partial = |
4355 | VarTemplatePartialSpecializationDecl::Create( |
4356 | Context, DC: VarTemplate->getDeclContext(), StartLoc: TemplateKWLoc, |
4357 | IdLoc: TemplateNameLoc, Params: TemplateParams, SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: SC, |
4358 | Args: CTAI.CanonicalConverted); |
4359 | Partial->setTemplateArgsAsWritten(TemplateArgs); |
4360 | |
4361 | if (!PrevPartial) |
4362 | VarTemplate->AddPartialSpecialization(D: Partial, InsertPos); |
4363 | Specialization = Partial; |
4364 | |
4365 | // If we are providing an explicit specialization of a member variable |
4366 | // template specialization, make a note of that. |
4367 | if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
4368 | PrevPartial->setMemberSpecialization(); |
4369 | |
4370 | CheckTemplatePartialSpecialization(Partial); |
4371 | } else { |
4372 | // Create a new class template specialization declaration node for |
4373 | // this explicit specialization or friend declaration. |
4374 | Specialization = VarTemplateSpecializationDecl::Create( |
4375 | Context, DC: VarTemplate->getDeclContext(), StartLoc: TemplateKWLoc, IdLoc: TemplateNameLoc, |
4376 | SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: SC, Args: CTAI.CanonicalConverted); |
4377 | Specialization->setTemplateArgsAsWritten(TemplateArgs); |
4378 | |
4379 | if (!PrevDecl) |
4380 | VarTemplate->AddSpecialization(D: Specialization, InsertPos); |
4381 | } |
4382 | |
4383 | // C++ [temp.expl.spec]p6: |
4384 | // If a template, a member template or the member of a class template is |
4385 | // explicitly specialized then that specialization shall be declared |
4386 | // before the first use of that specialization that would cause an implicit |
4387 | // instantiation to take place, in every translation unit in which such a |
4388 | // use occurs; no diagnostic is required. |
4389 | if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
4390 | bool Okay = false; |
4391 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
4392 | // Is there any previous explicit specialization declaration? |
4393 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
4394 | Okay = true; |
4395 | break; |
4396 | } |
4397 | } |
4398 | |
4399 | if (!Okay) { |
4400 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
4401 | Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) |
4402 | << Name << Range; |
4403 | |
4404 | Diag(PrevDecl->getPointOfInstantiation(), |
4405 | diag::note_instantiation_required_here) |
4406 | << (PrevDecl->getTemplateSpecializationKind() != |
4407 | TSK_ImplicitInstantiation); |
4408 | return true; |
4409 | } |
4410 | } |
4411 | |
4412 | Specialization->setLexicalDeclContext(CurContext); |
4413 | |
4414 | // Add the specialization into its lexical context, so that it can |
4415 | // be seen when iterating through the list of declarations in that |
4416 | // context. However, specializations are not found by name lookup. |
4417 | CurContext->addDecl(Specialization); |
4418 | |
4419 | // Note that this is an explicit specialization. |
4420 | Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
4421 | |
4422 | Previous.clear(); |
4423 | if (PrevDecl) |
4424 | Previous.addDecl(PrevDecl); |
4425 | else if (Specialization->isStaticDataMember() && |
4426 | Specialization->isOutOfLine()) |
4427 | Specialization->setAccess(VarTemplate->getAccess()); |
4428 | |
4429 | return Specialization; |
4430 | } |
4431 | |
4432 | namespace { |
4433 | /// A partial specialization whose template arguments have matched |
4434 | /// a given template-id. |
4435 | struct PartialSpecMatchResult { |
4436 | VarTemplatePartialSpecializationDecl *Partial; |
4437 | TemplateArgumentList *Args; |
4438 | }; |
4439 | |
4440 | // HACK 2025-05-13: workaround std::format_kind since libstdc++ 15.1 (2025-04) |
4441 | // See GH139067 / https://gcc.gnu.org/bugzilla/show_bug.cgi?id=120190 |
4442 | static bool IsLibstdcxxStdFormatKind(Preprocessor &PP, VarDecl *Var) { |
4443 | if (Var->getName() != "format_kind"|| |
4444 | !Var->getDeclContext()->isStdNamespace()) |
4445 | return false; |
4446 | |
4447 | // Checking old versions of libstdc++ is not needed because 15.1 is the first |
4448 | // release in which users can access std::format_kind. |
4449 | // We can use 20250520 as the final date, see the following commits. |
4450 | // GCC releases/gcc-15 branch: |
4451 | // https://gcc.gnu.org/g:fedf81ef7b98e5c9ac899b8641bb670746c51205 |
4452 | // https://gcc.gnu.org/g:53680c1aa92d9f78e8255fbf696c0ed36f160650 |
4453 | // GCC master branch: |
4454 | // https://gcc.gnu.org/g:9361966d80f625c5accc25cbb439f0278dd8b278 |
4455 | // https://gcc.gnu.org/g:c65725eccbabf3b9b5965f27fff2d3b9f6c75930 |
4456 | return PP.NeedsStdLibCxxWorkaroundBefore(FixedVersion: 2025'05'20); |
4457 | } |
4458 | } // end anonymous namespace |
4459 | |
4460 | DeclResult |
4461 | Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, |
4462 | SourceLocation TemplateNameLoc, |
4463 | const TemplateArgumentListInfo &TemplateArgs) { |
4464 | assert(Template && "A variable template id without template?"); |
4465 | |
4466 | // Check that the template argument list is well-formed for this template. |
4467 | CheckTemplateArgumentInfo CTAI; |
4468 | if (CheckTemplateArgumentList( |
4469 | Template, TemplateNameLoc, |
4470 | const_cast<TemplateArgumentListInfo &>(TemplateArgs), |
4471 | /*DefaultArgs=*/{}, /*PartialTemplateArgs=*/false, CTAI, |
4472 | /*UpdateArgsWithConversions=*/true)) |
4473 | return true; |
4474 | |
4475 | // Produce a placeholder value if the specialization is dependent. |
4476 | if (Template->getDeclContext()->isDependentContext() || |
4477 | TemplateSpecializationType::anyDependentTemplateArguments( |
4478 | TemplateArgs, Converted: CTAI.CanonicalConverted)) { |
4479 | if (ParsingInitForAutoVars.empty()) |
4480 | return DeclResult(); |
4481 | |
4482 | auto IsSameTemplateArg = [&](const TemplateArgument &Arg1, |
4483 | const TemplateArgument &Arg2) { |
4484 | return Context.isSameTemplateArgument(Arg1, Arg2); |
4485 | }; |
4486 | |
4487 | if (VarDecl *Var = Template->getTemplatedDecl(); |
4488 | ParsingInitForAutoVars.count(Var) && |
4489 | // See comments on this function definition |
4490 | !IsLibstdcxxStdFormatKind(PP, Var) && |
4491 | llvm::equal( |
4492 | CTAI.CanonicalConverted, |
4493 | Template->getTemplateParameters()->getInjectedTemplateArgs(Context), |
4494 | IsSameTemplateArg)) { |
4495 | Diag(TemplateNameLoc, |
4496 | diag::err_auto_variable_cannot_appear_in_own_initializer) |
4497 | << diag::ParsingInitFor::VarTemplate << Var << Var->getType(); |
4498 | return true; |
4499 | } |
4500 | |
4501 | SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; |
4502 | Template->getPartialSpecializations(PS&: PartialSpecs); |
4503 | for (VarTemplatePartialSpecializationDecl *Partial : PartialSpecs) |
4504 | if (ParsingInitForAutoVars.count(Partial) && |
4505 | llvm::equal(CTAI.CanonicalConverted, |
4506 | Partial->getTemplateArgs().asArray(), |
4507 | IsSameTemplateArg)) { |
4508 | Diag(TemplateNameLoc, |
4509 | diag::err_auto_variable_cannot_appear_in_own_initializer) |
4510 | << diag::ParsingInitFor::VarTemplatePartialSpec << Partial |
4511 | << Partial->getType(); |
4512 | return true; |
4513 | } |
4514 | |
4515 | return DeclResult(); |
4516 | } |
4517 | |
4518 | // Find the variable template specialization declaration that |
4519 | // corresponds to these arguments. |
4520 | void *InsertPos = nullptr; |
4521 | if (VarTemplateSpecializationDecl *Spec = |
4522 | Template->findSpecialization(Args: CTAI.CanonicalConverted, InsertPos)) { |
4523 | checkSpecializationReachability(TemplateNameLoc, Spec); |
4524 | if (Spec->getType()->isUndeducedType()) { |
4525 | if (ParsingInitForAutoVars.count(Spec)) |
4526 | Diag(TemplateNameLoc, |
4527 | diag::err_auto_variable_cannot_appear_in_own_initializer) |
4528 | << diag::ParsingInitFor::VarTemplateExplicitSpec << Spec |
4529 | << Spec->getType(); |
4530 | else |
4531 | // We are substituting the initializer of this variable template |
4532 | // specialization. |
4533 | Diag(TemplateNameLoc, diag::err_var_template_spec_type_depends_on_self) |
4534 | << Spec << Spec->getType(); |
4535 | |
4536 | return true; |
4537 | } |
4538 | // If we already have a variable template specialization, return it. |
4539 | return Spec; |
4540 | } |
4541 | |
4542 | // This is the first time we have referenced this variable template |
4543 | // specialization. Create the canonical declaration and add it to |
4544 | // the set of specializations, based on the closest partial specialization |
4545 | // that it represents. That is, |
4546 | VarDecl *InstantiationPattern = Template->getTemplatedDecl(); |
4547 | const TemplateArgumentList *PartialSpecArgs = nullptr; |
4548 | bool AmbiguousPartialSpec = false; |
4549 | typedef PartialSpecMatchResult MatchResult; |
4550 | SmallVector<MatchResult, 4> Matched; |
4551 | SourceLocation PointOfInstantiation = TemplateNameLoc; |
4552 | TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, |
4553 | /*ForTakingAddress=*/false); |
4554 | |
4555 | // 1. Attempt to find the closest partial specialization that this |
4556 | // specializes, if any. |
4557 | // TODO: Unify with InstantiateClassTemplateSpecialization()? |
4558 | // Perhaps better after unification of DeduceTemplateArguments() and |
4559 | // getMoreSpecializedPartialSpecialization(). |
4560 | SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; |
4561 | Template->getPartialSpecializations(PS&: PartialSpecs); |
4562 | |
4563 | for (VarTemplatePartialSpecializationDecl *Partial : PartialSpecs) { |
4564 | // C++ [temp.spec.partial.member]p2: |
4565 | // If the primary member template is explicitly specialized for a given |
4566 | // (implicit) specialization of the enclosing class template, the partial |
4567 | // specializations of the member template are ignored for this |
4568 | // specialization of the enclosing class template. If a partial |
4569 | // specialization of the member template is explicitly specialized for a |
4570 | // given (implicit) specialization of the enclosing class template, the |
4571 | // primary member template and its other partial specializations are still |
4572 | // considered for this specialization of the enclosing class template. |
4573 | if (Template->getMostRecentDecl()->isMemberSpecialization() && |
4574 | !Partial->getMostRecentDecl()->isMemberSpecialization()) |
4575 | continue; |
4576 | |
4577 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
4578 | |
4579 | if (TemplateDeductionResult Result = |
4580 | DeduceTemplateArguments(Partial, TemplateArgs: CTAI.SugaredConverted, Info); |
4581 | Result != TemplateDeductionResult::Success) { |
4582 | // Store the failed-deduction information for use in diagnostics, later. |
4583 | // TODO: Actually use the failed-deduction info? |
4584 | FailedCandidates.addCandidate().set( |
4585 | Found: DeclAccessPair::make(Template, AS_public), Spec: Partial, |
4586 | Info: MakeDeductionFailureInfo(Context, TDK: Result, Info)); |
4587 | (void)Result; |
4588 | } else { |
4589 | Matched.push_back(Elt: PartialSpecMatchResult()); |
4590 | Matched.back().Partial = Partial; |
4591 | Matched.back().Args = Info.takeSugared(); |
4592 | } |
4593 | } |
4594 | |
4595 | if (Matched.size() >= 1) { |
4596 | SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); |
4597 | if (Matched.size() == 1) { |
4598 | // -- If exactly one matching specialization is found, the |
4599 | // instantiation is generated from that specialization. |
4600 | // We don't need to do anything for this. |
4601 | } else { |
4602 | // -- If more than one matching specialization is found, the |
4603 | // partial order rules (14.5.4.2) are used to determine |
4604 | // whether one of the specializations is more specialized |
4605 | // than the others. If none of the specializations is more |
4606 | // specialized than all of the other matching |
4607 | // specializations, then the use of the variable template is |
4608 | // ambiguous and the program is ill-formed. |
4609 | for (SmallVector<MatchResult, 4>::iterator P = Best + 1, |
4610 | PEnd = Matched.end(); |
4611 | P != PEnd; ++P) { |
4612 | if (getMoreSpecializedPartialSpecialization(PS1: P->Partial, PS2: Best->Partial, |
4613 | Loc: PointOfInstantiation) == |
4614 | P->Partial) |
4615 | Best = P; |
4616 | } |
4617 | |
4618 | // Determine if the best partial specialization is more specialized than |
4619 | // the others. |
4620 | for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), |
4621 | PEnd = Matched.end(); |
4622 | P != PEnd; ++P) { |
4623 | if (P != Best && getMoreSpecializedPartialSpecialization( |
4624 | PS1: P->Partial, PS2: Best->Partial, |
4625 | Loc: PointOfInstantiation) != Best->Partial) { |
4626 | AmbiguousPartialSpec = true; |
4627 | break; |
4628 | } |
4629 | } |
4630 | } |
4631 | |
4632 | // Instantiate using the best variable template partial specialization. |
4633 | InstantiationPattern = Best->Partial; |
4634 | PartialSpecArgs = Best->Args; |
4635 | } else { |
4636 | // -- If no match is found, the instantiation is generated |
4637 | // from the primary template. |
4638 | // InstantiationPattern = Template->getTemplatedDecl(); |
4639 | } |
4640 | |
4641 | // 2. Create the canonical declaration. |
4642 | // Note that we do not instantiate a definition until we see an odr-use |
4643 | // in DoMarkVarDeclReferenced(). |
4644 | // FIXME: LateAttrs et al.? |
4645 | VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( |
4646 | VarTemplate: Template, FromVar: InstantiationPattern, PartialSpecArgs, TemplateArgsInfo: TemplateArgs, |
4647 | Converted&: CTAI.CanonicalConverted, PointOfInstantiation: TemplateNameLoc /*, LateAttrs, StartingScope*/); |
4648 | if (!Decl) |
4649 | return true; |
4650 | |
4651 | if (AmbiguousPartialSpec) { |
4652 | // Partial ordering did not produce a clear winner. Complain. |
4653 | Decl->setInvalidDecl(); |
4654 | Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) |
4655 | << Decl; |
4656 | |
4657 | // Print the matching partial specializations. |
4658 | for (MatchResult P : Matched) |
4659 | Diag(P.Partial->getLocation(), diag::note_partial_spec_match) |
4660 | << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), |
4661 | *P.Args); |
4662 | return true; |
4663 | } |
4664 | |
4665 | if (VarTemplatePartialSpecializationDecl *D = |
4666 | dyn_cast<VarTemplatePartialSpecializationDecl>(Val: InstantiationPattern)) |
4667 | Decl->setInstantiationOf(PartialSpec: D, TemplateArgs: PartialSpecArgs); |
4668 | |
4669 | checkSpecializationReachability(TemplateNameLoc, Decl); |
4670 | |
4671 | assert(Decl && "No variable template specialization?"); |
4672 | return Decl; |
4673 | } |
4674 | |
4675 | ExprResult Sema::CheckVarTemplateId( |
4676 | const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, |
4677 | VarTemplateDecl *Template, NamedDecl *FoundD, SourceLocation TemplateLoc, |
4678 | const TemplateArgumentListInfo *TemplateArgs) { |
4679 | |
4680 | DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, TemplateNameLoc: NameInfo.getLoc(), |
4681 | TemplateArgs: *TemplateArgs); |
4682 | if (Decl.isInvalid()) |
4683 | return ExprError(); |
4684 | |
4685 | if (!Decl.get()) |
4686 | return ExprResult(); |
4687 | |
4688 | VarDecl *Var = cast<VarDecl>(Val: Decl.get()); |
4689 | if (!Var->getTemplateSpecializationKind()) |
4690 | Var->setTemplateSpecializationKind(TSK: TSK_ImplicitInstantiation, |
4691 | PointOfInstantiation: NameInfo.getLoc()); |
4692 | |
4693 | // Build an ordinary singleton decl ref. |
4694 | return BuildDeclarationNameExpr(SS, NameInfo, Var, FoundD, TemplateArgs); |
4695 | } |
4696 | |
4697 | void Sema::diagnoseMissingTemplateArguments(TemplateName Name, |
4698 | SourceLocation Loc) { |
4699 | Diag(Loc, diag::err_template_missing_args) |
4700 | << (int)getTemplateNameKindForDiagnostics(Name) << Name; |
4701 | if (TemplateDecl *TD = Name.getAsTemplateDecl()) { |
4702 | NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange()); |
4703 | } |
4704 | } |
4705 | |
4706 | void Sema::diagnoseMissingTemplateArguments(const CXXScopeSpec &SS, |
4707 | bool TemplateKeyword, |
4708 | TemplateDecl *TD, |
4709 | SourceLocation Loc) { |
4710 | TemplateName Name = Context.getQualifiedTemplateName( |
4711 | NNS: SS.getScopeRep(), TemplateKeyword, Template: TemplateName(TD)); |
4712 | diagnoseMissingTemplateArguments(Name, Loc); |
4713 | } |
4714 | |
4715 | ExprResult |
4716 | Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, |
4717 | SourceLocation TemplateKWLoc, |
4718 | const DeclarationNameInfo &ConceptNameInfo, |
4719 | NamedDecl *FoundDecl, |
4720 | ConceptDecl *NamedConcept, |
4721 | const TemplateArgumentListInfo *TemplateArgs) { |
4722 | assert(NamedConcept && "A concept template id without a template?"); |
4723 | |
4724 | if (NamedConcept->isInvalidDecl()) |
4725 | return ExprError(); |
4726 | |
4727 | CheckTemplateArgumentInfo CTAI; |
4728 | if (CheckTemplateArgumentList( |
4729 | NamedConcept, ConceptNameInfo.getLoc(), |
4730 | const_cast<TemplateArgumentListInfo &>(*TemplateArgs), |
4731 | /*DefaultArgs=*/{}, |
4732 | /*PartialTemplateArgs=*/false, CTAI, |
4733 | /*UpdateArgsWithConversions=*/false)) |
4734 | return ExprError(); |
4735 | |
4736 | DiagnoseUseOfDecl(NamedConcept, ConceptNameInfo.getLoc()); |
4737 | |
4738 | auto *CSD = ImplicitConceptSpecializationDecl::Create( |
4739 | C: Context, DC: NamedConcept->getDeclContext(), SL: NamedConcept->getLocation(), |
4740 | ConvertedArgs: CTAI.CanonicalConverted); |
4741 | ConstraintSatisfaction Satisfaction; |
4742 | bool AreArgsDependent = |
4743 | TemplateSpecializationType::anyDependentTemplateArguments( |
4744 | *TemplateArgs, Converted: CTAI.CanonicalConverted); |
4745 | MultiLevelTemplateArgumentList MLTAL(NamedConcept, CTAI.CanonicalConverted, |
4746 | /*Final=*/false); |
4747 | LocalInstantiationScope Scope(*this); |
4748 | |
4749 | EnterExpressionEvaluationContext EECtx{ |
4750 | *this, ExpressionEvaluationContext::Unevaluated, CSD}; |
4751 | |
4752 | ContextRAII CurContext(*this, CSD->getDeclContext(), |
4753 | /*NewThisContext=*/false); |
4754 | if (!AreArgsDependent && |
4755 | CheckConstraintSatisfaction( |
4756 | NamedConcept, AssociatedConstraint(NamedConcept->getConstraintExpr()), |
4757 | MLTAL, |
4758 | SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), |
4759 | TemplateArgs->getRAngleLoc()), |
4760 | Satisfaction)) |
4761 | return ExprError(); |
4762 | auto *CL = ConceptReference::Create( |
4763 | C: Context, |
4764 | NNS: SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, |
4765 | TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, |
4766 | ArgsAsWritten: ASTTemplateArgumentListInfo::Create(C: Context, List: *TemplateArgs)); |
4767 | return ConceptSpecializationExpr::Create( |
4768 | Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction); |
4769 | } |
4770 | |
4771 | ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, |
4772 | SourceLocation TemplateKWLoc, |
4773 | LookupResult &R, |
4774 | bool RequiresADL, |
4775 | const TemplateArgumentListInfo *TemplateArgs) { |
4776 | // FIXME: Can we do any checking at this point? I guess we could check the |
4777 | // template arguments that we have against the template name, if the template |
4778 | // name refers to a single template. That's not a terribly common case, |
4779 | // though. |
4780 | // foo<int> could identify a single function unambiguously |
4781 | // This approach does NOT work, since f<int>(1); |
4782 | // gets resolved prior to resorting to overload resolution |
4783 | // i.e., template<class T> void f(double); |
4784 | // vs template<class T, class U> void f(U); |
4785 | |
4786 | // These should be filtered out by our callers. |
4787 | assert(!R.isAmbiguous() && "ambiguous lookup when building templateid"); |
4788 | |
4789 | // Non-function templates require a template argument list. |
4790 | if (auto *TD = R.getAsSingle<TemplateDecl>()) { |
4791 | if (!TemplateArgs && !isa<FunctionTemplateDecl>(Val: TD)) { |
4792 | diagnoseMissingTemplateArguments( |
4793 | SS, /*TemplateKeyword=*/TemplateKWLoc.isValid(), TD, Loc: R.getNameLoc()); |
4794 | return ExprError(); |
4795 | } |
4796 | } |
4797 | bool KnownDependent = false; |
4798 | // In C++1y, check variable template ids. |
4799 | if (R.getAsSingle<VarTemplateDecl>()) { |
4800 | ExprResult Res = CheckVarTemplateId( |
4801 | SS, NameInfo: R.getLookupNameInfo(), Template: R.getAsSingle<VarTemplateDecl>(), |
4802 | FoundD: R.getRepresentativeDecl(), TemplateLoc: TemplateKWLoc, TemplateArgs); |
4803 | if (Res.isInvalid() || Res.isUsable()) |
4804 | return Res; |
4805 | // Result is dependent. Carry on to build an UnresolvedLookupExpr. |
4806 | KnownDependent = true; |
4807 | } |
4808 | |
4809 | if (R.getAsSingle<ConceptDecl>()) { |
4810 | return CheckConceptTemplateId(SS, TemplateKWLoc, ConceptNameInfo: R.getLookupNameInfo(), |
4811 | FoundDecl: R.getRepresentativeDecl(), |
4812 | NamedConcept: R.getAsSingle<ConceptDecl>(), TemplateArgs); |
4813 | } |
4814 | |
4815 | // We don't want lookup warnings at this point. |
4816 | R.suppressDiagnostics(); |
4817 | |
4818 | UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create( |
4819 | Context, NamingClass: R.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context), |
4820 | TemplateKWLoc, NameInfo: R.getLookupNameInfo(), RequiresADL, Args: TemplateArgs, |
4821 | Begin: R.begin(), End: R.end(), KnownDependent, |
4822 | /*KnownInstantiationDependent=*/false); |
4823 | |
4824 | // Model the templates with UnresolvedTemplateTy. The expression should then |
4825 | // either be transformed in an instantiation or be diagnosed in |
4826 | // CheckPlaceholderExpr. |
4827 | if (ULE->getType() == Context.OverloadTy && R.isSingleResult() && |
4828 | !R.getFoundDecl()->getAsFunction()) |
4829 | ULE->setType(Context.UnresolvedTemplateTy); |
4830 | |
4831 | return ULE; |
4832 | } |
4833 | |
4834 | ExprResult Sema::BuildQualifiedTemplateIdExpr( |
4835 | CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
4836 | const DeclarationNameInfo &NameInfo, |
4837 | const TemplateArgumentListInfo *TemplateArgs, bool IsAddressOfOperand) { |
4838 | assert(TemplateArgs || TemplateKWLoc.isValid()); |
4839 | |
4840 | LookupResult R(*this, NameInfo, LookupOrdinaryName); |
4841 | if (LookupTemplateName(Found&: R, /*S=*/nullptr, SS, /*ObjectType=*/QualType(), |
4842 | /*EnteringContext=*/false, RequiredTemplate: TemplateKWLoc)) |
4843 | return ExprError(); |
4844 | |
4845 | if (R.isAmbiguous()) |
4846 | return ExprError(); |
4847 | |
4848 | if (R.wasNotFoundInCurrentInstantiation() || SS.isInvalid()) |
4849 | return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); |
4850 | |
4851 | if (R.empty()) { |
4852 | DeclContext *DC = computeDeclContext(SS); |
4853 | Diag(NameInfo.getLoc(), diag::err_no_member) |
4854 | << NameInfo.getName() << DC << SS.getRange(); |
4855 | return ExprError(); |
4856 | } |
4857 | |
4858 | // If necessary, build an implicit class member access. |
4859 | if (isPotentialImplicitMemberAccess(SS, R, IsAddressOfOperand)) |
4860 | return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, |
4861 | /*S=*/nullptr); |
4862 | |
4863 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL=*/RequiresADL: false, TemplateArgs); |
4864 | } |
4865 | |
4866 | TemplateNameKind Sema::ActOnTemplateName(Scope *S, |
4867 | CXXScopeSpec &SS, |
4868 | SourceLocation TemplateKWLoc, |
4869 | const UnqualifiedId &Name, |
4870 | ParsedType ObjectType, |
4871 | bool EnteringContext, |
4872 | TemplateTy &Result, |
4873 | bool AllowInjectedClassName) { |
4874 | if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) |
4875 | Diag(TemplateKWLoc, |
4876 | getLangOpts().CPlusPlus11 ? |
4877 | diag::warn_cxx98_compat_template_outside_of_template : |
4878 | diag::ext_template_outside_of_template) |
4879 | << FixItHint::CreateRemoval(TemplateKWLoc); |
4880 | |
4881 | if (SS.isInvalid()) |
4882 | return TNK_Non_template; |
4883 | |
4884 | // Figure out where isTemplateName is going to look. |
4885 | DeclContext *LookupCtx = nullptr; |
4886 | if (SS.isNotEmpty()) |
4887 | LookupCtx = computeDeclContext(SS, EnteringContext); |
4888 | else if (ObjectType) |
4889 | LookupCtx = computeDeclContext(T: GetTypeFromParser(Ty: ObjectType)); |
4890 | |
4891 | // C++0x [temp.names]p5: |
4892 | // If a name prefixed by the keyword template is not the name of |
4893 | // a template, the program is ill-formed. [Note: the keyword |
4894 | // template may not be applied to non-template members of class |
4895 | // templates. -end note ] [ Note: as is the case with the |
4896 | // typename prefix, the template prefix is allowed in cases |
4897 | // where it is not strictly necessary; i.e., when the |
4898 | // nested-name-specifier or the expression on the left of the -> |
4899 | // or . is not dependent on a template-parameter, or the use |
4900 | // does not appear in the scope of a template. -end note] |
4901 | // |
4902 | // Note: C++03 was more strict here, because it banned the use of |
4903 | // the "template" keyword prior to a template-name that was not a |
4904 | // dependent name. C++ DR468 relaxed this requirement (the |
4905 | // "template" keyword is now permitted). We follow the C++0x |
4906 | // rules, even in C++03 mode with a warning, retroactively applying the DR. |
4907 | bool MemberOfUnknownSpecialization; |
4908 | TemplateNameKind TNK = isTemplateName(S, SS, hasTemplateKeyword: TemplateKWLoc.isValid(), Name, |
4909 | ObjectTypePtr: ObjectType, EnteringContext, TemplateResult&: Result, |
4910 | MemberOfUnknownSpecialization); |
4911 | if (TNK != TNK_Non_template) { |
4912 | // We resolved this to a (non-dependent) template name. Return it. |
4913 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx); |
4914 | if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && |
4915 | Name.getKind() == UnqualifiedIdKind::IK_Identifier && |
4916 | Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { |
4917 | // C++14 [class.qual]p2: |
4918 | // In a lookup in which function names are not ignored and the |
4919 | // nested-name-specifier nominates a class C, if the name specified |
4920 | // [...] is the injected-class-name of C, [...] the name is instead |
4921 | // considered to name the constructor |
4922 | // |
4923 | // We don't get here if naming the constructor would be valid, so we |
4924 | // just reject immediately and recover by treating the |
4925 | // injected-class-name as naming the template. |
4926 | Diag(Name.getBeginLoc(), |
4927 | diag::ext_out_of_line_qualified_id_type_names_constructor) |
4928 | << Name.Identifier |
4929 | << 0 /*injected-class-name used as template name*/ |
4930 | << TemplateKWLoc.isValid(); |
4931 | } |
4932 | return TNK; |
4933 | } |
4934 | |
4935 | if (!MemberOfUnknownSpecialization) { |
4936 | // Didn't find a template name, and the lookup wasn't dependent. |
4937 | // Do the lookup again to determine if this is a "nothing found" case or |
4938 | // a "not a template" case. FIXME: Refactor isTemplateName so we don't |
4939 | // need to do this. |
4940 | DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); |
4941 | LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), |
4942 | LookupOrdinaryName); |
4943 | // Tell LookupTemplateName that we require a template so that it diagnoses |
4944 | // cases where it finds a non-template. |
4945 | RequiredTemplateKind RTK = TemplateKWLoc.isValid() |
4946 | ? RequiredTemplateKind(TemplateKWLoc) |
4947 | : TemplateNameIsRequired; |
4948 | if (!LookupTemplateName(Found&: R, S, SS, ObjectType: ObjectType.get(), EnteringContext, RequiredTemplate: RTK, |
4949 | /*ATK=*/nullptr, /*AllowTypoCorrection=*/false) && |
4950 | !R.isAmbiguous()) { |
4951 | if (LookupCtx) |
4952 | Diag(Name.getBeginLoc(), diag::err_no_member) |
4953 | << DNI.getName() << LookupCtx << SS.getRange(); |
4954 | else |
4955 | Diag(Name.getBeginLoc(), diag::err_undeclared_use) |
4956 | << DNI.getName() << SS.getRange(); |
4957 | } |
4958 | return TNK_Non_template; |
4959 | } |
4960 | |
4961 | NestedNameSpecifier *Qualifier = SS.getScopeRep(); |
4962 | |
4963 | switch (Name.getKind()) { |
4964 | case UnqualifiedIdKind::IK_Identifier: |
4965 | Result = TemplateTy::make(P: Context.getDependentTemplateName( |
4966 | Name: {Qualifier, Name.Identifier, TemplateKWLoc.isValid()})); |
4967 | return TNK_Dependent_template_name; |
4968 | |
4969 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
4970 | Result = TemplateTy::make(P: Context.getDependentTemplateName( |
4971 | Name: {Qualifier, Name.OperatorFunctionId.Operator, |
4972 | TemplateKWLoc.isValid()})); |
4973 | return TNK_Function_template; |
4974 | |
4975 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
4976 | // This is a kind of template name, but can never occur in a dependent |
4977 | // scope (literal operators can only be declared at namespace scope). |
4978 | break; |
4979 | |
4980 | default: |
4981 | break; |
4982 | } |
4983 | |
4984 | // This name cannot possibly name a dependent template. Diagnose this now |
4985 | // rather than building a dependent template name that can never be valid. |
4986 | Diag(Name.getBeginLoc(), |
4987 | diag::err_template_kw_refers_to_dependent_non_template) |
4988 | << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() |
4989 | << TemplateKWLoc.isValid() << TemplateKWLoc; |
4990 | return TNK_Non_template; |
4991 | } |
4992 | |
4993 | bool Sema::CheckTemplateTypeArgument( |
4994 | TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL, |
4995 | SmallVectorImpl<TemplateArgument> &SugaredConverted, |
4996 | SmallVectorImpl<TemplateArgument> &CanonicalConverted) { |
4997 | const TemplateArgument &Arg = AL.getArgument(); |
4998 | QualType ArgType; |
4999 | TypeSourceInfo *TSI = nullptr; |
5000 | |
5001 | // Check template type parameter. |
5002 | switch(Arg.getKind()) { |
5003 | case TemplateArgument::Type: |
5004 | // C++ [temp.arg.type]p1: |
5005 | // A template-argument for a template-parameter which is a |
5006 | // type shall be a type-id. |
5007 | ArgType = Arg.getAsType(); |
5008 | TSI = AL.getTypeSourceInfo(); |
5009 | break; |
5010 | case TemplateArgument::Template: |
5011 | case TemplateArgument::TemplateExpansion: { |
5012 | // We have a template type parameter but the template argument |
5013 | // is a template without any arguments. |
5014 | SourceRange SR = AL.getSourceRange(); |
5015 | TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); |
5016 | diagnoseMissingTemplateArguments(Name, Loc: SR.getEnd()); |
5017 | return true; |
5018 | } |
5019 | case TemplateArgument::Expression: { |
5020 | // We have a template type parameter but the template argument is an |
5021 | // expression; see if maybe it is missing the "typename" keyword. |
5022 | CXXScopeSpec SS; |
5023 | DeclarationNameInfo NameInfo; |
5024 | |
5025 | if (DependentScopeDeclRefExpr *ArgExpr = |
5026 | dyn_cast<DependentScopeDeclRefExpr>(Val: Arg.getAsExpr())) { |
5027 | SS.Adopt(Other: ArgExpr->getQualifierLoc()); |
5028 | NameInfo = ArgExpr->getNameInfo(); |
5029 | } else if (CXXDependentScopeMemberExpr *ArgExpr = |
5030 | dyn_cast<CXXDependentScopeMemberExpr>(Val: Arg.getAsExpr())) { |
5031 | if (ArgExpr->isImplicitAccess()) { |
5032 | SS.Adopt(Other: ArgExpr->getQualifierLoc()); |
5033 | NameInfo = ArgExpr->getMemberNameInfo(); |
5034 | } |
5035 | } |
5036 | |
5037 | if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { |
5038 | LookupResult Result(*this, NameInfo, LookupOrdinaryName); |
5039 | LookupParsedName(R&: Result, S: CurScope, SS: &SS, /*ObjectType=*/QualType()); |
5040 | |
5041 | if (Result.getAsSingle<TypeDecl>() || |
5042 | Result.wasNotFoundInCurrentInstantiation()) { |
5043 | assert(SS.getScopeRep() && "dependent scope expr must has a scope!"); |
5044 | // Suggest that the user add 'typename' before the NNS. |
5045 | SourceLocation Loc = AL.getSourceRange().getBegin(); |
5046 | Diag(Loc, getLangOpts().MSVCCompat |
5047 | ? diag::ext_ms_template_type_arg_missing_typename |
5048 | : diag::err_template_arg_must_be_type_suggest) |
5049 | << FixItHint::CreateInsertion(Loc, "typename "); |
5050 | NoteTemplateParameterLocation(*Param); |
5051 | |
5052 | // Recover by synthesizing a type using the location information that we |
5053 | // already have. |
5054 | ArgType = Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::None, |
5055 | NNS: SS.getScopeRep(), Name: II); |
5056 | TypeLocBuilder TLB; |
5057 | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T: ArgType); |
5058 | TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); |
5059 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
5060 | TL.setNameLoc(NameInfo.getLoc()); |
5061 | TSI = TLB.getTypeSourceInfo(Context, T: ArgType); |
5062 | |
5063 | // Overwrite our input TemplateArgumentLoc so that we can recover |
5064 | // properly. |
5065 | AL = TemplateArgumentLoc(TemplateArgument(ArgType), |
5066 | TemplateArgumentLocInfo(TSI)); |
5067 | |
5068 | break; |
5069 | } |
5070 | } |
5071 | // fallthrough |
5072 | [[fallthrough]]; |
5073 | } |
5074 | default: { |
5075 | // We allow instantiating a template with template argument packs when |
5076 | // building deduction guides. |
5077 | if (Arg.getKind() == TemplateArgument::Pack && |
5078 | CodeSynthesisContexts.back().Kind == |
5079 | Sema::CodeSynthesisContext::BuildingDeductionGuides) { |
5080 | SugaredConverted.push_back(Elt: Arg); |
5081 | CanonicalConverted.push_back(Elt: Arg); |
5082 | return false; |
5083 | } |
5084 | // We have a template type parameter but the template argument |
5085 | // is not a type. |
5086 | SourceRange SR = AL.getSourceRange(); |
5087 | Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; |
5088 | NoteTemplateParameterLocation(*Param); |
5089 | |
5090 | return true; |
5091 | } |
5092 | } |
5093 | |
5094 | if (CheckTemplateArgument(Arg: TSI)) |
5095 | return true; |
5096 | |
5097 | // Objective-C ARC: |
5098 | // If an explicitly-specified template argument type is a lifetime type |
5099 | // with no lifetime qualifier, the __strong lifetime qualifier is inferred. |
5100 | if (getLangOpts().ObjCAutoRefCount && |
5101 | ArgType->isObjCLifetimeType() && |
5102 | !ArgType.getObjCLifetime()) { |
5103 | Qualifiers Qs; |
5104 | Qs.setObjCLifetime(Qualifiers::OCL_Strong); |
5105 | ArgType = Context.getQualifiedType(T: ArgType, Qs); |
5106 | } |
5107 | |
5108 | SugaredConverted.push_back(Elt: TemplateArgument(ArgType)); |
5109 | CanonicalConverted.push_back( |
5110 | Elt: TemplateArgument(Context.getCanonicalType(T: ArgType))); |
5111 | return false; |
5112 | } |
5113 | |
5114 | /// Substitute template arguments into the default template argument for |
5115 | /// the given template type parameter. |
5116 | /// |
5117 | /// \param SemaRef the semantic analysis object for which we are performing |
5118 | /// the substitution. |
5119 | /// |
5120 | /// \param Template the template that we are synthesizing template arguments |
5121 | /// for. |
5122 | /// |
5123 | /// \param TemplateLoc the location of the template name that started the |
5124 | /// template-id we are checking. |
5125 | /// |
5126 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
5127 | /// terminates the template-id. |
5128 | /// |
5129 | /// \param Param the template template parameter whose default we are |
5130 | /// substituting into. |
5131 | /// |
5132 | /// \param Converted the list of template arguments provided for template |
5133 | /// parameters that precede \p Param in the template parameter list. |
5134 | /// |
5135 | /// \param Output the resulting substituted template argument. |
5136 | /// |
5137 | /// \returns true if an error occurred. |
5138 | static bool SubstDefaultTemplateArgument( |
5139 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
5140 | SourceLocation RAngleLoc, TemplateTypeParmDecl *Param, |
5141 | ArrayRef<TemplateArgument> SugaredConverted, |
5142 | ArrayRef<TemplateArgument> CanonicalConverted, |
5143 | TemplateArgumentLoc &Output) { |
5144 | Output = Param->getDefaultArgument(); |
5145 | |
5146 | // If the argument type is dependent, instantiate it now based |
5147 | // on the previously-computed template arguments. |
5148 | if (Output.getArgument().isInstantiationDependent()) { |
5149 | Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, |
5150 | SugaredConverted, |
5151 | SourceRange(TemplateLoc, RAngleLoc)); |
5152 | if (Inst.isInvalid()) |
5153 | return true; |
5154 | |
5155 | // Only substitute for the innermost template argument list. |
5156 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
5157 | /*Final=*/true); |
5158 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
5159 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
5160 | |
5161 | bool ForLambdaCallOperator = false; |
5162 | if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext())) |
5163 | ForLambdaCallOperator = Rec->isLambda(); |
5164 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), |
5165 | !ForLambdaCallOperator); |
5166 | |
5167 | if (SemaRef.SubstTemplateArgument(Input: Output, TemplateArgs: TemplateArgLists, Output, |
5168 | Loc: Param->getDefaultArgumentLoc(), |
5169 | Entity: Param->getDeclName())) |
5170 | return true; |
5171 | } |
5172 | |
5173 | return false; |
5174 | } |
5175 | |
5176 | /// Substitute template arguments into the default template argument for |
5177 | /// the given non-type template parameter. |
5178 | /// |
5179 | /// \param SemaRef the semantic analysis object for which we are performing |
5180 | /// the substitution. |
5181 | /// |
5182 | /// \param Template the template that we are synthesizing template arguments |
5183 | /// for. |
5184 | /// |
5185 | /// \param TemplateLoc the location of the template name that started the |
5186 | /// template-id we are checking. |
5187 | /// |
5188 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
5189 | /// terminates the template-id. |
5190 | /// |
5191 | /// \param Param the non-type template parameter whose default we are |
5192 | /// substituting into. |
5193 | /// |
5194 | /// \param Converted the list of template arguments provided for template |
5195 | /// parameters that precede \p Param in the template parameter list. |
5196 | /// |
5197 | /// \returns the substituted template argument, or NULL if an error occurred. |
5198 | static bool SubstDefaultTemplateArgument( |
5199 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
5200 | SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param, |
5201 | ArrayRef<TemplateArgument> SugaredConverted, |
5202 | ArrayRef<TemplateArgument> CanonicalConverted, |
5203 | TemplateArgumentLoc &Output) { |
5204 | Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, |
5205 | SugaredConverted, |
5206 | SourceRange(TemplateLoc, RAngleLoc)); |
5207 | if (Inst.isInvalid()) |
5208 | return true; |
5209 | |
5210 | // Only substitute for the innermost template argument list. |
5211 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
5212 | /*Final=*/true); |
5213 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
5214 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
5215 | |
5216 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); |
5217 | EnterExpressionEvaluationContext ConstantEvaluated( |
5218 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
5219 | return SemaRef.SubstTemplateArgument(Input: Param->getDefaultArgument(), |
5220 | TemplateArgs: TemplateArgLists, Output); |
5221 | } |
5222 | |
5223 | /// Substitute template arguments into the default template argument for |
5224 | /// the given template template parameter. |
5225 | /// |
5226 | /// \param SemaRef the semantic analysis object for which we are performing |
5227 | /// the substitution. |
5228 | /// |
5229 | /// \param Template the template that we are synthesizing template arguments |
5230 | /// for. |
5231 | /// |
5232 | /// \param TemplateLoc the location of the template name that started the |
5233 | /// template-id we are checking. |
5234 | /// |
5235 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
5236 | /// terminates the template-id. |
5237 | /// |
5238 | /// \param Param the template template parameter whose default we are |
5239 | /// substituting into. |
5240 | /// |
5241 | /// \param Converted the list of template arguments provided for template |
5242 | /// parameters that precede \p Param in the template parameter list. |
5243 | /// |
5244 | /// \param QualifierLoc Will be set to the nested-name-specifier (with |
5245 | /// source-location information) that precedes the template name. |
5246 | /// |
5247 | /// \returns the substituted template argument, or NULL if an error occurred. |
5248 | static TemplateName SubstDefaultTemplateArgument( |
5249 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
5250 | SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param, |
5251 | ArrayRef<TemplateArgument> SugaredConverted, |
5252 | ArrayRef<TemplateArgument> CanonicalConverted, |
5253 | NestedNameSpecifierLoc &QualifierLoc) { |
5254 | Sema::InstantiatingTemplate Inst( |
5255 | SemaRef, TemplateLoc, TemplateParameter(Param), Template, |
5256 | SugaredConverted, SourceRange(TemplateLoc, RAngleLoc)); |
5257 | if (Inst.isInvalid()) |
5258 | return TemplateName(); |
5259 | |
5260 | // Only substitute for the innermost template argument list. |
5261 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
5262 | /*Final=*/true); |
5263 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
5264 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
5265 | |
5266 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); |
5267 | // Substitute into the nested-name-specifier first, |
5268 | QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); |
5269 | if (QualifierLoc) { |
5270 | QualifierLoc = |
5271 | SemaRef.SubstNestedNameSpecifierLoc(NNS: QualifierLoc, TemplateArgs: TemplateArgLists); |
5272 | if (!QualifierLoc) |
5273 | return TemplateName(); |
5274 | } |
5275 | |
5276 | return SemaRef.SubstTemplateName( |
5277 | QualifierLoc, |
5278 | Name: Param->getDefaultArgument().getArgument().getAsTemplate(), |
5279 | Loc: Param->getDefaultArgument().getTemplateNameLoc(), |
5280 | TemplateArgs: TemplateArgLists); |
5281 | } |
5282 | |
5283 | TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable( |
5284 | TemplateDecl *Template, SourceLocation TemplateLoc, |
5285 | SourceLocation RAngleLoc, Decl *Param, |
5286 | ArrayRef<TemplateArgument> SugaredConverted, |
5287 | ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) { |
5288 | HasDefaultArg = false; |
5289 | |
5290 | if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
5291 | if (!hasReachableDefaultArgument(TypeParm)) |
5292 | return TemplateArgumentLoc(); |
5293 | |
5294 | HasDefaultArg = true; |
5295 | TemplateArgumentLoc Output; |
5296 | if (SubstDefaultTemplateArgument(SemaRef&: *this, Template, TemplateLoc, RAngleLoc, |
5297 | Param: TypeParm, SugaredConverted, |
5298 | CanonicalConverted, Output)) |
5299 | return TemplateArgumentLoc(); |
5300 | return Output; |
5301 | } |
5302 | |
5303 | if (NonTypeTemplateParmDecl *NonTypeParm |
5304 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
5305 | if (!hasReachableDefaultArgument(NonTypeParm)) |
5306 | return TemplateArgumentLoc(); |
5307 | |
5308 | HasDefaultArg = true; |
5309 | TemplateArgumentLoc Output; |
5310 | if (SubstDefaultTemplateArgument(SemaRef&: *this, Template, TemplateLoc, RAngleLoc, |
5311 | Param: NonTypeParm, SugaredConverted, |
5312 | CanonicalConverted, Output)) |
5313 | return TemplateArgumentLoc(); |
5314 | return Output; |
5315 | } |
5316 | |
5317 | TemplateTemplateParmDecl *TempTempParm |
5318 | = cast<TemplateTemplateParmDecl>(Val: Param); |
5319 | if (!hasReachableDefaultArgument(TempTempParm)) |
5320 | return TemplateArgumentLoc(); |
5321 | |
5322 | HasDefaultArg = true; |
5323 | NestedNameSpecifierLoc QualifierLoc; |
5324 | TemplateName TName = SubstDefaultTemplateArgument( |
5325 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TempTempParm, SugaredConverted, |
5326 | CanonicalConverted, QualifierLoc); |
5327 | if (TName.isNull()) |
5328 | return TemplateArgumentLoc(); |
5329 | |
5330 | return TemplateArgumentLoc( |
5331 | Context, TemplateArgument(TName), |
5332 | TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), |
5333 | TempTempParm->getDefaultArgument().getTemplateNameLoc()); |
5334 | } |
5335 | |
5336 | /// Convert a template-argument that we parsed as a type into a template, if |
5337 | /// possible. C++ permits injected-class-names to perform dual service as |
5338 | /// template template arguments and as template type arguments. |
5339 | static TemplateArgumentLoc |
5340 | convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { |
5341 | // Extract and step over any surrounding nested-name-specifier. |
5342 | NestedNameSpecifierLoc QualLoc; |
5343 | if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { |
5344 | if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None) |
5345 | return TemplateArgumentLoc(); |
5346 | |
5347 | QualLoc = ETLoc.getQualifierLoc(); |
5348 | TLoc = ETLoc.getNamedTypeLoc(); |
5349 | } |
5350 | // If this type was written as an injected-class-name, it can be used as a |
5351 | // template template argument. |
5352 | if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) |
5353 | return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), |
5354 | QualLoc, InjLoc.getNameLoc()); |
5355 | |
5356 | // If this type was written as an injected-class-name, it may have been |
5357 | // converted to a RecordType during instantiation. If the RecordType is |
5358 | // *not* wrapped in a TemplateSpecializationType and denotes a class |
5359 | // template specialization, it must have come from an injected-class-name. |
5360 | if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) |
5361 | if (auto *CTSD = |
5362 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RecLoc.getDecl())) |
5363 | return TemplateArgumentLoc(Context, |
5364 | TemplateName(CTSD->getSpecializedTemplate()), |
5365 | QualLoc, RecLoc.getNameLoc()); |
5366 | |
5367 | return TemplateArgumentLoc(); |
5368 | } |
5369 | |
5370 | bool Sema::CheckTemplateArgument(NamedDecl *Param, TemplateArgumentLoc &ArgLoc, |
5371 | NamedDecl *Template, |
5372 | SourceLocation TemplateLoc, |
5373 | SourceLocation RAngleLoc, |
5374 | unsigned ArgumentPackIndex, |
5375 | CheckTemplateArgumentInfo &CTAI, |
5376 | CheckTemplateArgumentKind CTAK) { |
5377 | // Check template type parameters. |
5378 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) |
5379 | return CheckTemplateTypeArgument(Param: TTP, AL&: ArgLoc, SugaredConverted&: CTAI.SugaredConverted, |
5380 | CanonicalConverted&: CTAI.CanonicalConverted); |
5381 | |
5382 | const TemplateArgument &Arg = ArgLoc.getArgument(); |
5383 | // Check non-type template parameters. |
5384 | if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
5385 | // Do substitution on the type of the non-type template parameter |
5386 | // with the template arguments we've seen thus far. But if the |
5387 | // template has a dependent context then we cannot substitute yet. |
5388 | QualType NTTPType = NTTP->getType(); |
5389 | if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) |
5390 | NTTPType = NTTP->getExpansionType(I: ArgumentPackIndex); |
5391 | |
5392 | if (NTTPType->isInstantiationDependentType() && |
5393 | !isa<TemplateTemplateParmDecl>(Val: Template) && |
5394 | !Template->getDeclContext()->isDependentContext()) { |
5395 | // Do substitution on the type of the non-type template parameter. |
5396 | InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP, |
5397 | CTAI.SugaredConverted, |
5398 | SourceRange(TemplateLoc, RAngleLoc)); |
5399 | if (Inst.isInvalid()) |
5400 | return true; |
5401 | |
5402 | MultiLevelTemplateArgumentList MLTAL(Template, CTAI.SugaredConverted, |
5403 | /*Final=*/true); |
5404 | // If the parameter is a pack expansion, expand this slice of the pack. |
5405 | if (auto *PET = NTTPType->getAs<PackExpansionType>()) { |
5406 | Sema::ArgPackSubstIndexRAII SubstIndex(*this, ArgumentPackIndex); |
5407 | NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(), |
5408 | NTTP->getDeclName()); |
5409 | } else { |
5410 | NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(), |
5411 | NTTP->getDeclName()); |
5412 | } |
5413 | |
5414 | // If that worked, check the non-type template parameter type |
5415 | // for validity. |
5416 | if (!NTTPType.isNull()) |
5417 | NTTPType = CheckNonTypeTemplateParameterType(NTTPType, |
5418 | NTTP->getLocation()); |
5419 | if (NTTPType.isNull()) |
5420 | return true; |
5421 | } |
5422 | |
5423 | auto checkExpr = [&](Expr *E) -> Expr * { |
5424 | TemplateArgument SugaredResult, CanonicalResult; |
5425 | unsigned CurSFINAEErrors = NumSFINAEErrors; |
5426 | ExprResult Res = CheckTemplateArgument( |
5427 | Param: NTTP, InstantiatedParamType: NTTPType, Arg: E, SugaredConverted&: SugaredResult, CanonicalConverted&: CanonicalResult, |
5428 | /*StrictCheck=*/CTAI.MatchingTTP || CTAI.PartialOrdering, CTAK); |
5429 | // If the current template argument causes an error, give up now. |
5430 | if (Res.isInvalid() || CurSFINAEErrors < NumSFINAEErrors) |
5431 | return nullptr; |
5432 | CTAI.SugaredConverted.push_back(Elt: SugaredResult); |
5433 | CTAI.CanonicalConverted.push_back(Elt: CanonicalResult); |
5434 | return Res.get(); |
5435 | }; |
5436 | |
5437 | switch (Arg.getKind()) { |
5438 | case TemplateArgument::Null: |
5439 | llvm_unreachable("Should never see a NULL template argument here"); |
5440 | |
5441 | case TemplateArgument::Expression: { |
5442 | Expr *E = Arg.getAsExpr(); |
5443 | Expr *R = checkExpr(E); |
5444 | if (!R) |
5445 | return true; |
5446 | // If the resulting expression is new, then use it in place of the |
5447 | // old expression in the template argument. |
5448 | if (R != E) { |
5449 | TemplateArgument TA(R, /*IsCanonical=*/false); |
5450 | ArgLoc = TemplateArgumentLoc(TA, R); |
5451 | } |
5452 | break; |
5453 | } |
5454 | |
5455 | // As for the converted NTTP kinds, they still might need another |
5456 | // conversion, as the new corresponding parameter might be different. |
5457 | // Ideally, we would always perform substitution starting with sugared types |
5458 | // and never need these, as we would still have expressions. Since these are |
5459 | // needed so rarely, it's probably a better tradeoff to just convert them |
5460 | // back to expressions. |
5461 | case TemplateArgument::Integral: |
5462 | case TemplateArgument::Declaration: |
5463 | case TemplateArgument::NullPtr: |
5464 | case TemplateArgument::StructuralValue: { |
5465 | // FIXME: StructuralValue is untested here. |
5466 | ExprResult R = |
5467 | BuildExpressionFromNonTypeTemplateArgument(Arg, Loc: SourceLocation()); |
5468 | assert(R.isUsable()); |
5469 | if (!checkExpr(R.get())) |
5470 | return true; |
5471 | break; |
5472 | } |
5473 | |
5474 | case TemplateArgument::Template: |
5475 | case TemplateArgument::TemplateExpansion: |
5476 | // We were given a template template argument. It may not be ill-formed; |
5477 | // see below. |
5478 | if (DependentTemplateName *DTN = Arg.getAsTemplateOrTemplatePattern() |
5479 | .getAsDependentTemplateName()) { |
5480 | // We have a template argument such as \c T::template X, which we |
5481 | // parsed as a template template argument. However, since we now |
5482 | // know that we need a non-type template argument, convert this |
5483 | // template name into an expression. |
5484 | |
5485 | DeclarationNameInfo NameInfo(DTN->getName().getIdentifier(), |
5486 | ArgLoc.getTemplateNameLoc()); |
5487 | |
5488 | CXXScopeSpec SS; |
5489 | SS.Adopt(Other: ArgLoc.getTemplateQualifierLoc()); |
5490 | // FIXME: the template-template arg was a DependentTemplateName, |
5491 | // so it was provided with a template keyword. However, its source |
5492 | // location is not stored in the template argument structure. |
5493 | SourceLocation TemplateKWLoc; |
5494 | ExprResult E = DependentScopeDeclRefExpr::Create( |
5495 | Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
5496 | TemplateArgs: nullptr); |
5497 | |
5498 | // If we parsed the template argument as a pack expansion, create a |
5499 | // pack expansion expression. |
5500 | if (Arg.getKind() == TemplateArgument::TemplateExpansion) { |
5501 | E = ActOnPackExpansion(Pattern: E.get(), EllipsisLoc: ArgLoc.getTemplateEllipsisLoc()); |
5502 | if (E.isInvalid()) |
5503 | return true; |
5504 | } |
5505 | |
5506 | TemplateArgument SugaredResult, CanonicalResult; |
5507 | E = CheckTemplateArgument( |
5508 | Param: NTTP, InstantiatedParamType: NTTPType, Arg: E.get(), SugaredConverted&: SugaredResult, CanonicalConverted&: CanonicalResult, |
5509 | /*StrictCheck=*/CTAI.PartialOrdering, CTAK: CTAK_Specified); |
5510 | if (E.isInvalid()) |
5511 | return true; |
5512 | |
5513 | CTAI.SugaredConverted.push_back(Elt: SugaredResult); |
5514 | CTAI.CanonicalConverted.push_back(Elt: CanonicalResult); |
5515 | break; |
5516 | } |
5517 | |
5518 | // We have a template argument that actually does refer to a class |
5519 | // template, alias template, or template template parameter, and |
5520 | // therefore cannot be a non-type template argument. |
5521 | Diag(ArgLoc.getLocation(), diag::err_template_arg_must_be_expr) |
5522 | << ArgLoc.getSourceRange(); |
5523 | NoteTemplateParameterLocation(Decl: *Param); |
5524 | |
5525 | return true; |
5526 | |
5527 | case TemplateArgument::Type: { |
5528 | // We have a non-type template parameter but the template |
5529 | // argument is a type. |
5530 | |
5531 | // C++ [temp.arg]p2: |
5532 | // In a template-argument, an ambiguity between a type-id and |
5533 | // an expression is resolved to a type-id, regardless of the |
5534 | // form of the corresponding template-parameter. |
5535 | // |
5536 | // We warn specifically about this case, since it can be rather |
5537 | // confusing for users. |
5538 | QualType T = Arg.getAsType(); |
5539 | SourceRange SR = ArgLoc.getSourceRange(); |
5540 | if (T->isFunctionType()) |
5541 | Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; |
5542 | else |
5543 | Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; |
5544 | NoteTemplateParameterLocation(Decl: *Param); |
5545 | return true; |
5546 | } |
5547 | |
5548 | case TemplateArgument::Pack: |
5549 | llvm_unreachable("Caller must expand template argument packs"); |
5550 | } |
5551 | |
5552 | return false; |
5553 | } |
5554 | |
5555 | |
5556 | // Check template template parameters. |
5557 | TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Val: Param); |
5558 | |
5559 | TemplateParameterList *Params = TempParm->getTemplateParameters(); |
5560 | if (TempParm->isExpandedParameterPack()) |
5561 | Params = TempParm->getExpansionTemplateParameters(I: ArgumentPackIndex); |
5562 | |
5563 | // Substitute into the template parameter list of the template |
5564 | // template parameter, since previously-supplied template arguments |
5565 | // may appear within the template template parameter. |
5566 | // |
5567 | // FIXME: Skip this if the parameters aren't instantiation-dependent. |
5568 | { |
5569 | // Set up a template instantiation context. |
5570 | LocalInstantiationScope Scope(*this); |
5571 | InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm, |
5572 | CTAI.SugaredConverted, |
5573 | SourceRange(TemplateLoc, RAngleLoc)); |
5574 | if (Inst.isInvalid()) |
5575 | return true; |
5576 | |
5577 | Params = SubstTemplateParams( |
5578 | Params, Owner: CurContext, |
5579 | TemplateArgs: MultiLevelTemplateArgumentList(Template, CTAI.SugaredConverted, |
5580 | /*Final=*/true), |
5581 | /*EvaluateConstraints=*/false); |
5582 | if (!Params) |
5583 | return true; |
5584 | } |
5585 | |
5586 | // C++1z [temp.local]p1: (DR1004) |
5587 | // When [the injected-class-name] is used [...] as a template-argument for |
5588 | // a template template-parameter [...] it refers to the class template |
5589 | // itself. |
5590 | if (Arg.getKind() == TemplateArgument::Type) { |
5591 | TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( |
5592 | Context, TLoc: ArgLoc.getTypeSourceInfo()->getTypeLoc()); |
5593 | if (!ConvertedArg.getArgument().isNull()) |
5594 | ArgLoc = ConvertedArg; |
5595 | } |
5596 | |
5597 | switch (Arg.getKind()) { |
5598 | case TemplateArgument::Null: |
5599 | llvm_unreachable("Should never see a NULL template argument here"); |
5600 | |
5601 | case TemplateArgument::Template: |
5602 | case TemplateArgument::TemplateExpansion: |
5603 | if (CheckTemplateTemplateArgument(Param: TempParm, Params, Arg&: ArgLoc, |
5604 | PartialOrdering: CTAI.PartialOrdering, |
5605 | StrictPackMatch: &CTAI.StrictPackMatch)) |
5606 | return true; |
5607 | |
5608 | CTAI.SugaredConverted.push_back(Elt: Arg); |
5609 | CTAI.CanonicalConverted.push_back( |
5610 | Elt: Context.getCanonicalTemplateArgument(Arg)); |
5611 | break; |
5612 | |
5613 | case TemplateArgument::Expression: |
5614 | case TemplateArgument::Type: |
5615 | // We have a template template parameter but the template |
5616 | // argument does not refer to a template. |
5617 | Diag(ArgLoc.getLocation(), diag::err_template_arg_must_be_template) |
5618 | << getLangOpts().CPlusPlus11; |
5619 | return true; |
5620 | |
5621 | case TemplateArgument::Declaration: |
5622 | case TemplateArgument::Integral: |
5623 | case TemplateArgument::StructuralValue: |
5624 | case TemplateArgument::NullPtr: |
5625 | llvm_unreachable("non-type argument with template template parameter"); |
5626 | |
5627 | case TemplateArgument::Pack: |
5628 | llvm_unreachable("Caller must expand template argument packs"); |
5629 | } |
5630 | |
5631 | return false; |
5632 | } |
5633 | |
5634 | /// Diagnose a missing template argument. |
5635 | template<typename TemplateParmDecl> |
5636 | static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, |
5637 | TemplateDecl *TD, |
5638 | const TemplateParmDecl *D, |
5639 | TemplateArgumentListInfo &Args) { |
5640 | // Dig out the most recent declaration of the template parameter; there may be |
5641 | // declarations of the template that are more recent than TD. |
5642 | D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) |
5643 | ->getTemplateParameters() |
5644 | ->getParam(D->getIndex())); |
5645 | |
5646 | // If there's a default argument that's not reachable, diagnose that we're |
5647 | // missing a module import. |
5648 | llvm::SmallVector<Module*, 8> Modules; |
5649 | if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, Modules: &Modules)) { |
5650 | S.diagnoseMissingImport(Loc, cast<NamedDecl>(Val: TD), |
5651 | D->getDefaultArgumentLoc(), Modules, |
5652 | Sema::MissingImportKind::DefaultArgument, |
5653 | /*Recover*/true); |
5654 | return true; |
5655 | } |
5656 | |
5657 | // FIXME: If there's a more recent default argument that *is* visible, |
5658 | // diagnose that it was declared too late. |
5659 | |
5660 | TemplateParameterList *Params = TD->getTemplateParameters(); |
5661 | |
5662 | S.Diag(Loc, diag::err_template_arg_list_different_arity) |
5663 | << /*not enough args*/0 |
5664 | << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) |
5665 | << TD; |
5666 | S.NoteTemplateLocation(*TD, Params->getSourceRange()); |
5667 | return true; |
5668 | } |
5669 | |
5670 | /// Check that the given template argument list is well-formed |
5671 | /// for specializing the given template. |
5672 | bool Sema::CheckTemplateArgumentList( |
5673 | TemplateDecl *Template, SourceLocation TemplateLoc, |
5674 | TemplateArgumentListInfo &TemplateArgs, const DefaultArguments &DefaultArgs, |
5675 | bool PartialTemplateArgs, CheckTemplateArgumentInfo &CTAI, |
5676 | bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { |
5677 | |
5678 | if (ConstraintsNotSatisfied) |
5679 | *ConstraintsNotSatisfied = false; |
5680 | |
5681 | // Make a copy of the template arguments for processing. Only make the |
5682 | // changes at the end when successful in matching the arguments to the |
5683 | // template. |
5684 | TemplateArgumentListInfo NewArgs = TemplateArgs; |
5685 | |
5686 | TemplateParameterList *Params = GetTemplateParameterList(TD: Template); |
5687 | |
5688 | SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); |
5689 | |
5690 | // C++23 [temp.arg.general]p1: |
5691 | // [...] The type and form of each template-argument specified in |
5692 | // a template-id shall match the type and form specified for the |
5693 | // corresponding parameter declared by the template in its |
5694 | // template-parameter-list. |
5695 | bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Val: Template); |
5696 | SmallVector<TemplateArgument, 2> SugaredArgumentPack; |
5697 | SmallVector<TemplateArgument, 2> CanonicalArgumentPack; |
5698 | unsigned ArgIdx = 0, NumArgs = NewArgs.size(); |
5699 | LocalInstantiationScope InstScope(*this, true); |
5700 | for (TemplateParameterList::iterator ParamBegin = Params->begin(), |
5701 | ParamEnd = Params->end(), |
5702 | Param = ParamBegin; |
5703 | Param != ParamEnd; |
5704 | /* increment in loop */) { |
5705 | if (size_t ParamIdx = Param - ParamBegin; |
5706 | DefaultArgs && ParamIdx >= DefaultArgs.StartPos) { |
5707 | // All written arguments should have been consumed by this point. |
5708 | assert(ArgIdx == NumArgs && "bad default argument deduction"); |
5709 | if (ParamIdx == DefaultArgs.StartPos) { |
5710 | assert(Param + DefaultArgs.Args.size() <= ParamEnd); |
5711 | // Default arguments from a DeducedTemplateName are already converted. |
5712 | for (const TemplateArgument &DefArg : DefaultArgs.Args) { |
5713 | CTAI.SugaredConverted.push_back(Elt: DefArg); |
5714 | CTAI.CanonicalConverted.push_back( |
5715 | Elt: Context.getCanonicalTemplateArgument(Arg: DefArg)); |
5716 | ++Param; |
5717 | } |
5718 | continue; |
5719 | } |
5720 | } |
5721 | |
5722 | // If we have an expanded parameter pack, make sure we don't have too |
5723 | // many arguments. |
5724 | if (UnsignedOrNone Expansions = getExpandedPackSize(Param: *Param)) { |
5725 | if (*Expansions == SugaredArgumentPack.size()) { |
5726 | // We're done with this parameter pack. Pack up its arguments and add |
5727 | // them to the list. |
5728 | CTAI.SugaredConverted.push_back( |
5729 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
5730 | SugaredArgumentPack.clear(); |
5731 | |
5732 | CTAI.CanonicalConverted.push_back( |
5733 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
5734 | CanonicalArgumentPack.clear(); |
5735 | |
5736 | // This argument is assigned to the next parameter. |
5737 | ++Param; |
5738 | continue; |
5739 | } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { |
5740 | // Not enough arguments for this parameter pack. |
5741 | Diag(TemplateLoc, diag::err_template_arg_list_different_arity) |
5742 | << /*not enough args*/0 |
5743 | << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) |
5744 | << Template; |
5745 | NoteTemplateLocation(*Template, Params->getSourceRange()); |
5746 | return true; |
5747 | } |
5748 | } |
5749 | |
5750 | if (ArgIdx < NumArgs) { |
5751 | TemplateArgumentLoc &ArgLoc = NewArgs[ArgIdx]; |
5752 | bool NonPackParameter = |
5753 | !(*Param)->isTemplateParameterPack() || getExpandedPackSize(Param: *Param); |
5754 | bool ArgIsExpansion = ArgLoc.getArgument().isPackExpansion(); |
5755 | |
5756 | if (ArgIsExpansion && CTAI.MatchingTTP) { |
5757 | SmallVector<TemplateArgument, 4> Args(ParamEnd - Param); |
5758 | for (TemplateParameterList::iterator First = Param; Param != ParamEnd; |
5759 | ++Param) { |
5760 | TemplateArgument &Arg = Args[Param - First]; |
5761 | Arg = ArgLoc.getArgument(); |
5762 | if (!(*Param)->isTemplateParameterPack() || |
5763 | getExpandedPackSize(Param: *Param)) |
5764 | Arg = Arg.getPackExpansionPattern(); |
5765 | TemplateArgumentLoc NewArgLoc(Arg, ArgLoc.getLocInfo()); |
5766 | SaveAndRestore _1(CTAI.PartialOrdering, false); |
5767 | SaveAndRestore _2(CTAI.MatchingTTP, true); |
5768 | if (CheckTemplateArgument(*Param, NewArgLoc, Template, TemplateLoc, |
5769 | RAngleLoc, SugaredArgumentPack.size(), CTAI, |
5770 | CTAK_Specified)) |
5771 | return true; |
5772 | Arg = NewArgLoc.getArgument(); |
5773 | CTAI.CanonicalConverted.back().setIsDefaulted( |
5774 | clang::isSubstitutedDefaultArgument(Ctx&: Context, Arg, Param: *Param, |
5775 | Args: CTAI.CanonicalConverted, |
5776 | Depth: Params->getDepth())); |
5777 | } |
5778 | ArgLoc = |
5779 | TemplateArgumentLoc(TemplateArgument::CreatePackCopy(Context, Args), |
5780 | ArgLoc.getLocInfo()); |
5781 | } else { |
5782 | SaveAndRestore _1(CTAI.PartialOrdering, false); |
5783 | if (CheckTemplateArgument(*Param, ArgLoc, Template, TemplateLoc, |
5784 | RAngleLoc, SugaredArgumentPack.size(), CTAI, |
5785 | CTAK_Specified)) |
5786 | return true; |
5787 | CTAI.CanonicalConverted.back().setIsDefaulted( |
5788 | clang::isSubstitutedDefaultArgument(Ctx&: Context, Arg: ArgLoc.getArgument(), |
5789 | Param: *Param, Args: CTAI.CanonicalConverted, |
5790 | Depth: Params->getDepth())); |
5791 | if (ArgIsExpansion && NonPackParameter) { |
5792 | // CWG1430/CWG2686: we have a pack expansion as an argument to an |
5793 | // alias template or concept, and it's not part of a parameter pack. |
5794 | // This can't be canonicalized, so reject it now. |
5795 | if (isa<TypeAliasTemplateDecl, ConceptDecl>(Val: Template)) { |
5796 | Diag(ArgLoc.getLocation(), |
5797 | diag::err_template_expansion_into_fixed_list) |
5798 | << (isa<ConceptDecl>(Template) ? 1 : 0) |
5799 | << ArgLoc.getSourceRange(); |
5800 | NoteTemplateParameterLocation(Decl: **Param); |
5801 | return true; |
5802 | } |
5803 | } |
5804 | } |
5805 | |
5806 | // We're now done with this argument. |
5807 | ++ArgIdx; |
5808 | |
5809 | if (ArgIsExpansion && (CTAI.MatchingTTP || NonPackParameter)) { |
5810 | // Directly convert the remaining arguments, because we don't know what |
5811 | // parameters they'll match up with. |
5812 | |
5813 | if (!SugaredArgumentPack.empty()) { |
5814 | // If we were part way through filling in an expanded parameter pack, |
5815 | // fall back to just producing individual arguments. |
5816 | CTAI.SugaredConverted.insert(I: CTAI.SugaredConverted.end(), |
5817 | From: SugaredArgumentPack.begin(), |
5818 | To: SugaredArgumentPack.end()); |
5819 | SugaredArgumentPack.clear(); |
5820 | |
5821 | CTAI.CanonicalConverted.insert(I: CTAI.CanonicalConverted.end(), |
5822 | From: CanonicalArgumentPack.begin(), |
5823 | To: CanonicalArgumentPack.end()); |
5824 | CanonicalArgumentPack.clear(); |
5825 | } |
5826 | |
5827 | while (ArgIdx < NumArgs) { |
5828 | const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument(); |
5829 | CTAI.SugaredConverted.push_back(Elt: Arg); |
5830 | CTAI.CanonicalConverted.push_back( |
5831 | Elt: Context.getCanonicalTemplateArgument(Arg)); |
5832 | ++ArgIdx; |
5833 | } |
5834 | |
5835 | return false; |
5836 | } |
5837 | |
5838 | if ((*Param)->isTemplateParameterPack()) { |
5839 | // The template parameter was a template parameter pack, so take the |
5840 | // deduced argument and place it on the argument pack. Note that we |
5841 | // stay on the same template parameter so that we can deduce more |
5842 | // arguments. |
5843 | SugaredArgumentPack.push_back(Elt: CTAI.SugaredConverted.pop_back_val()); |
5844 | CanonicalArgumentPack.push_back(Elt: CTAI.CanonicalConverted.pop_back_val()); |
5845 | } else { |
5846 | // Move to the next template parameter. |
5847 | ++Param; |
5848 | } |
5849 | continue; |
5850 | } |
5851 | |
5852 | // If we're checking a partial template argument list, we're done. |
5853 | if (PartialTemplateArgs) { |
5854 | if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) { |
5855 | CTAI.SugaredConverted.push_back( |
5856 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
5857 | CTAI.CanonicalConverted.push_back( |
5858 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
5859 | } |
5860 | return false; |
5861 | } |
5862 | |
5863 | // If we have a template parameter pack with no more corresponding |
5864 | // arguments, just break out now and we'll fill in the argument pack below. |
5865 | if ((*Param)->isTemplateParameterPack()) { |
5866 | assert(!getExpandedPackSize(*Param) && |
5867 | "Should have dealt with this already"); |
5868 | |
5869 | // A non-expanded parameter pack before the end of the parameter list |
5870 | // only occurs for an ill-formed template parameter list, unless we've |
5871 | // got a partial argument list for a function template, so just bail out. |
5872 | if (Param + 1 != ParamEnd) { |
5873 | assert( |
5874 | (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) && |
5875 | "Concept templates must have parameter packs at the end."); |
5876 | return true; |
5877 | } |
5878 | |
5879 | CTAI.SugaredConverted.push_back( |
5880 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
5881 | SugaredArgumentPack.clear(); |
5882 | |
5883 | CTAI.CanonicalConverted.push_back( |
5884 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
5885 | CanonicalArgumentPack.clear(); |
5886 | |
5887 | ++Param; |
5888 | continue; |
5889 | } |
5890 | |
5891 | // Check whether we have a default argument. |
5892 | bool HasDefaultArg; |
5893 | |
5894 | // Retrieve the default template argument from the template |
5895 | // parameter. For each kind of template parameter, we substitute the |
5896 | // template arguments provided thus far and any "outer" template arguments |
5897 | // (when the template parameter was part of a nested template) into |
5898 | // the default argument. |
5899 | TemplateArgumentLoc Arg = SubstDefaultTemplateArgumentIfAvailable( |
5900 | Template, TemplateLoc, RAngleLoc, *Param, CTAI.SugaredConverted, |
5901 | CTAI.CanonicalConverted, HasDefaultArg); |
5902 | |
5903 | if (Arg.getArgument().isNull()) { |
5904 | if (!HasDefaultArg) { |
5905 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *Param)) |
5906 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: TTP, |
5907 | Args&: NewArgs); |
5908 | if (NonTypeTemplateParmDecl *NTTP = |
5909 | dyn_cast<NonTypeTemplateParmDecl>(Val: *Param)) |
5910 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: NTTP, |
5911 | Args&: NewArgs); |
5912 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, |
5913 | D: cast<TemplateTemplateParmDecl>(Val: *Param), |
5914 | Args&: NewArgs); |
5915 | } |
5916 | return true; |
5917 | } |
5918 | |
5919 | // Introduce an instantiation record that describes where we are using |
5920 | // the default template argument. We're not actually instantiating a |
5921 | // template here, we just create this object to put a note into the |
5922 | // context stack. |
5923 | InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, |
5924 | CTAI.SugaredConverted, |
5925 | SourceRange(TemplateLoc, RAngleLoc)); |
5926 | if (Inst.isInvalid()) |
5927 | return true; |
5928 | |
5929 | SaveAndRestore _1(CTAI.PartialOrdering, false); |
5930 | SaveAndRestore _2(CTAI.MatchingTTP, false); |
5931 | SaveAndRestore _3(CTAI.StrictPackMatch, {}); |
5932 | // Check the default template argument. |
5933 | if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0, |
5934 | CTAI, CTAK_Specified)) |
5935 | return true; |
5936 | |
5937 | CTAI.SugaredConverted.back().setIsDefaulted(true); |
5938 | CTAI.CanonicalConverted.back().setIsDefaulted(true); |
5939 | |
5940 | // Core issue 150 (assumed resolution): if this is a template template |
5941 | // parameter, keep track of the default template arguments from the |
5942 | // template definition. |
5943 | if (isTemplateTemplateParameter) |
5944 | NewArgs.addArgument(Loc: Arg); |
5945 | |
5946 | // Move to the next template parameter and argument. |
5947 | ++Param; |
5948 | ++ArgIdx; |
5949 | } |
5950 | |
5951 | // If we're performing a partial argument substitution, allow any trailing |
5952 | // pack expansions; they might be empty. This can happen even if |
5953 | // PartialTemplateArgs is false (the list of arguments is complete but |
5954 | // still dependent). |
5955 | if (CTAI.MatchingTTP || |
5956 | (CurrentInstantiationScope && |
5957 | CurrentInstantiationScope->getPartiallySubstitutedPack())) { |
5958 | while (ArgIdx < NumArgs && |
5959 | NewArgs[ArgIdx].getArgument().isPackExpansion()) { |
5960 | const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument(); |
5961 | CTAI.SugaredConverted.push_back(Elt: Arg); |
5962 | CTAI.CanonicalConverted.push_back( |
5963 | Elt: Context.getCanonicalTemplateArgument(Arg)); |
5964 | } |
5965 | } |
5966 | |
5967 | // If we have any leftover arguments, then there were too many arguments. |
5968 | // Complain and fail. |
5969 | if (ArgIdx < NumArgs) { |
5970 | Diag(TemplateLoc, diag::err_template_arg_list_different_arity) |
5971 | << /*too many args*/1 |
5972 | << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) |
5973 | << Template |
5974 | << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); |
5975 | NoteTemplateLocation(*Template, Params->getSourceRange()); |
5976 | return true; |
5977 | } |
5978 | |
5979 | // No problems found with the new argument list, propagate changes back |
5980 | // to caller. |
5981 | if (UpdateArgsWithConversions) |
5982 | TemplateArgs = std::move(NewArgs); |
5983 | |
5984 | if (!PartialTemplateArgs) { |
5985 | // Setup the context/ThisScope for the case where we are needing to |
5986 | // re-instantiate constraints outside of normal instantiation. |
5987 | DeclContext *NewContext = Template->getDeclContext(); |
5988 | |
5989 | // If this template is in a template, make sure we extract the templated |
5990 | // decl. |
5991 | if (auto *TD = dyn_cast<TemplateDecl>(NewContext)) |
5992 | NewContext = Decl::castToDeclContext(TD->getTemplatedDecl()); |
5993 | auto *RD = dyn_cast<CXXRecordDecl>(Val: NewContext); |
5994 | |
5995 | Qualifiers ThisQuals; |
5996 | if (const auto *Method = |
5997 | dyn_cast_or_null<CXXMethodDecl>(Val: Template->getTemplatedDecl())) |
5998 | ThisQuals = Method->getMethodQualifiers(); |
5999 | |
6000 | ContextRAII Context(*this, NewContext); |
6001 | CXXThisScopeRAII Scope(*this, RD, ThisQuals, RD != nullptr); |
6002 | |
6003 | MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs( |
6004 | Template, NewContext, /*Final=*/false, CTAI.CanonicalConverted, |
6005 | /*RelativeToPrimary=*/true, |
6006 | /*Pattern=*/nullptr, |
6007 | /*ForConceptInstantiation=*/true); |
6008 | if (EnsureTemplateArgumentListConstraints( |
6009 | Template, TemplateArgs: MLTAL, |
6010 | TemplateIDRange: SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) { |
6011 | if (ConstraintsNotSatisfied) |
6012 | *ConstraintsNotSatisfied = true; |
6013 | return true; |
6014 | } |
6015 | } |
6016 | |
6017 | return false; |
6018 | } |
6019 | |
6020 | namespace { |
6021 | class UnnamedLocalNoLinkageFinder |
6022 | : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> |
6023 | { |
6024 | Sema &S; |
6025 | SourceRange SR; |
6026 | |
6027 | typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; |
6028 | |
6029 | public: |
6030 | UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } |
6031 | |
6032 | bool Visit(QualType T) { |
6033 | return T.isNull() ? false : inherited::Visit(T: T.getTypePtr()); |
6034 | } |
6035 | |
6036 | #define TYPE(Class, Parent) \ |
6037 | bool Visit##Class##Type(const Class##Type *); |
6038 | #define ABSTRACT_TYPE(Class, Parent) \ |
6039 | bool Visit##Class##Type(const Class##Type *) { return false; } |
6040 | #define NON_CANONICAL_TYPE(Class, Parent) \ |
6041 | bool Visit##Class##Type(const Class##Type *) { return false; } |
6042 | #include "clang/AST/TypeNodes.inc" |
6043 | |
6044 | bool VisitTagDecl(const TagDecl *Tag); |
6045 | bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); |
6046 | }; |
6047 | } // end anonymous namespace |
6048 | |
6049 | bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { |
6050 | return false; |
6051 | } |
6052 | |
6053 | bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { |
6054 | return Visit(T: T->getElementType()); |
6055 | } |
6056 | |
6057 | bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { |
6058 | return Visit(T: T->getPointeeType()); |
6059 | } |
6060 | |
6061 | bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( |
6062 | const BlockPointerType* T) { |
6063 | return Visit(T: T->getPointeeType()); |
6064 | } |
6065 | |
6066 | bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( |
6067 | const LValueReferenceType* T) { |
6068 | return Visit(T: T->getPointeeType()); |
6069 | } |
6070 | |
6071 | bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( |
6072 | const RValueReferenceType* T) { |
6073 | return Visit(T: T->getPointeeType()); |
6074 | } |
6075 | |
6076 | bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( |
6077 | const MemberPointerType *T) { |
6078 | if (Visit(T: T->getPointeeType())) |
6079 | return true; |
6080 | if (auto *RD = T->getMostRecentCXXRecordDecl()) |
6081 | return VisitTagDecl(RD); |
6082 | return VisitNestedNameSpecifier(NNS: T->getQualifier()); |
6083 | } |
6084 | |
6085 | bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( |
6086 | const ConstantArrayType* T) { |
6087 | return Visit(T: T->getElementType()); |
6088 | } |
6089 | |
6090 | bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( |
6091 | const IncompleteArrayType* T) { |
6092 | return Visit(T: T->getElementType()); |
6093 | } |
6094 | |
6095 | bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( |
6096 | const VariableArrayType* T) { |
6097 | return Visit(T: T->getElementType()); |
6098 | } |
6099 | |
6100 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( |
6101 | const DependentSizedArrayType* T) { |
6102 | return Visit(T: T->getElementType()); |
6103 | } |
6104 | |
6105 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( |
6106 | const DependentSizedExtVectorType* T) { |
6107 | return Visit(T: T->getElementType()); |
6108 | } |
6109 | |
6110 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( |
6111 | const DependentSizedMatrixType *T) { |
6112 | return Visit(T: T->getElementType()); |
6113 | } |
6114 | |
6115 | bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( |
6116 | const DependentAddressSpaceType *T) { |
6117 | return Visit(T: T->getPointeeType()); |
6118 | } |
6119 | |
6120 | bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { |
6121 | return Visit(T: T->getElementType()); |
6122 | } |
6123 | |
6124 | bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( |
6125 | const DependentVectorType *T) { |
6126 | return Visit(T: T->getElementType()); |
6127 | } |
6128 | |
6129 | bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { |
6130 | return Visit(T: T->getElementType()); |
6131 | } |
6132 | |
6133 | bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( |
6134 | const ConstantMatrixType *T) { |
6135 | return Visit(T: T->getElementType()); |
6136 | } |
6137 | |
6138 | bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( |
6139 | const FunctionProtoType* T) { |
6140 | for (const auto &A : T->param_types()) { |
6141 | if (Visit(T: A)) |
6142 | return true; |
6143 | } |
6144 | |
6145 | return Visit(T: T->getReturnType()); |
6146 | } |
6147 | |
6148 | bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( |
6149 | const FunctionNoProtoType* T) { |
6150 | return Visit(T: T->getReturnType()); |
6151 | } |
6152 | |
6153 | bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( |
6154 | const UnresolvedUsingType*) { |
6155 | return false; |
6156 | } |
6157 | |
6158 | bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { |
6159 | return false; |
6160 | } |
6161 | |
6162 | bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { |
6163 | return Visit(T: T->getUnmodifiedType()); |
6164 | } |
6165 | |
6166 | bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { |
6167 | return false; |
6168 | } |
6169 | |
6170 | bool UnnamedLocalNoLinkageFinder::VisitPackIndexingType( |
6171 | const PackIndexingType *) { |
6172 | return false; |
6173 | } |
6174 | |
6175 | bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( |
6176 | const UnaryTransformType*) { |
6177 | return false; |
6178 | } |
6179 | |
6180 | bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { |
6181 | return Visit(T: T->getDeducedType()); |
6182 | } |
6183 | |
6184 | bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( |
6185 | const DeducedTemplateSpecializationType *T) { |
6186 | return Visit(T: T->getDeducedType()); |
6187 | } |
6188 | |
6189 | bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { |
6190 | return VisitTagDecl(T->getDecl()); |
6191 | } |
6192 | |
6193 | bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { |
6194 | return VisitTagDecl(T->getDecl()); |
6195 | } |
6196 | |
6197 | bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( |
6198 | const TemplateTypeParmType*) { |
6199 | return false; |
6200 | } |
6201 | |
6202 | bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( |
6203 | const SubstTemplateTypeParmPackType *) { |
6204 | return false; |
6205 | } |
6206 | |
6207 | bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( |
6208 | const TemplateSpecializationType*) { |
6209 | return false; |
6210 | } |
6211 | |
6212 | bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( |
6213 | const InjectedClassNameType* T) { |
6214 | return VisitTagDecl(T->getDecl()); |
6215 | } |
6216 | |
6217 | bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( |
6218 | const DependentNameType* T) { |
6219 | return VisitNestedNameSpecifier(NNS: T->getQualifier()); |
6220 | } |
6221 | |
6222 | bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( |
6223 | const DependentTemplateSpecializationType* T) { |
6224 | if (auto *Q = T->getDependentTemplateName().getQualifier()) |
6225 | return VisitNestedNameSpecifier(NNS: Q); |
6226 | |
6227 | return false; |
6228 | } |
6229 | |
6230 | bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( |
6231 | const PackExpansionType* T) { |
6232 | return Visit(T: T->getPattern()); |
6233 | } |
6234 | |
6235 | bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { |
6236 | return false; |
6237 | } |
6238 | |
6239 | bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( |
6240 | const ObjCInterfaceType *) { |
6241 | return false; |
6242 | } |
6243 | |
6244 | bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( |
6245 | const ObjCObjectPointerType *) { |
6246 | return false; |
6247 | } |
6248 | |
6249 | bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { |
6250 | return Visit(T: T->getValueType()); |
6251 | } |
6252 | |
6253 | bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { |
6254 | return false; |
6255 | } |
6256 | |
6257 | bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { |
6258 | return false; |
6259 | } |
6260 | |
6261 | bool UnnamedLocalNoLinkageFinder::VisitArrayParameterType( |
6262 | const ArrayParameterType *T) { |
6263 | return VisitConstantArrayType(T); |
6264 | } |
6265 | |
6266 | bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( |
6267 | const DependentBitIntType *T) { |
6268 | return false; |
6269 | } |
6270 | |
6271 | bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { |
6272 | if (Tag->getDeclContext()->isFunctionOrMethod()) { |
6273 | S.Diag(SR.getBegin(), |
6274 | S.getLangOpts().CPlusPlus11 ? |
6275 | diag::warn_cxx98_compat_template_arg_local_type : |
6276 | diag::ext_template_arg_local_type) |
6277 | << S.Context.getTypeDeclType(Tag) << SR; |
6278 | return true; |
6279 | } |
6280 | |
6281 | if (!Tag->hasNameForLinkage()) { |
6282 | S.Diag(SR.getBegin(), |
6283 | S.getLangOpts().CPlusPlus11 ? |
6284 | diag::warn_cxx98_compat_template_arg_unnamed_type : |
6285 | diag::ext_template_arg_unnamed_type) << SR; |
6286 | S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); |
6287 | return true; |
6288 | } |
6289 | |
6290 | return false; |
6291 | } |
6292 | |
6293 | bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( |
6294 | NestedNameSpecifier *NNS) { |
6295 | assert(NNS); |
6296 | if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS: NNS->getPrefix())) |
6297 | return true; |
6298 | |
6299 | switch (NNS->getKind()) { |
6300 | case NestedNameSpecifier::Identifier: |
6301 | case NestedNameSpecifier::Namespace: |
6302 | case NestedNameSpecifier::NamespaceAlias: |
6303 | case NestedNameSpecifier::Global: |
6304 | case NestedNameSpecifier::Super: |
6305 | return false; |
6306 | |
6307 | case NestedNameSpecifier::TypeSpec: |
6308 | return Visit(T: QualType(NNS->getAsType(), 0)); |
6309 | } |
6310 | llvm_unreachable("Invalid NestedNameSpecifier::Kind!"); |
6311 | } |
6312 | |
6313 | bool UnnamedLocalNoLinkageFinder::VisitHLSLAttributedResourceType( |
6314 | const HLSLAttributedResourceType *T) { |
6315 | if (T->hasContainedType() && Visit(T: T->getContainedType())) |
6316 | return true; |
6317 | return Visit(T: T->getWrappedType()); |
6318 | } |
6319 | |
6320 | bool UnnamedLocalNoLinkageFinder::VisitHLSLInlineSpirvType( |
6321 | const HLSLInlineSpirvType *T) { |
6322 | for (auto &Operand : T->getOperands()) |
6323 | if (Operand.isConstant() && Operand.isLiteral()) |
6324 | if (Visit(T: Operand.getResultType())) |
6325 | return true; |
6326 | return false; |
6327 | } |
6328 | |
6329 | bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { |
6330 | assert(ArgInfo && "invalid TypeSourceInfo"); |
6331 | QualType Arg = ArgInfo->getType(); |
6332 | SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); |
6333 | QualType CanonArg = Context.getCanonicalType(T: Arg); |
6334 | |
6335 | if (CanonArg->isVariablyModifiedType()) { |
6336 | return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; |
6337 | } else if (Context.hasSameUnqualifiedType(T1: Arg, T2: Context.OverloadTy)) { |
6338 | return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; |
6339 | } |
6340 | |
6341 | // C++03 [temp.arg.type]p2: |
6342 | // A local type, a type with no linkage, an unnamed type or a type |
6343 | // compounded from any of these types shall not be used as a |
6344 | // template-argument for a template type-parameter. |
6345 | // |
6346 | // C++11 allows these, and even in C++03 we allow them as an extension with |
6347 | // a warning. |
6348 | if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) { |
6349 | UnnamedLocalNoLinkageFinder Finder(*this, SR); |
6350 | (void)Finder.Visit(T: CanonArg); |
6351 | } |
6352 | |
6353 | return false; |
6354 | } |
6355 | |
6356 | enum NullPointerValueKind { |
6357 | NPV_NotNullPointer, |
6358 | NPV_NullPointer, |
6359 | NPV_Error |
6360 | }; |
6361 | |
6362 | /// Determine whether the given template argument is a null pointer |
6363 | /// value of the appropriate type. |
6364 | static NullPointerValueKind |
6365 | isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, |
6366 | QualType ParamType, Expr *Arg, |
6367 | Decl *Entity = nullptr) { |
6368 | if (Arg->isValueDependent() || Arg->isTypeDependent()) |
6369 | return NPV_NotNullPointer; |
6370 | |
6371 | // dllimport'd entities aren't constant but are available inside of template |
6372 | // arguments. |
6373 | if (Entity && Entity->hasAttr<DLLImportAttr>()) |
6374 | return NPV_NotNullPointer; |
6375 | |
6376 | if (!S.isCompleteType(Loc: Arg->getExprLoc(), T: ParamType)) |
6377 | llvm_unreachable( |
6378 | "Incomplete parameter type in isNullPointerValueTemplateArgument!"); |
6379 | |
6380 | if (!S.getLangOpts().CPlusPlus11) |
6381 | return NPV_NotNullPointer; |
6382 | |
6383 | // Determine whether we have a constant expression. |
6384 | ExprResult ArgRV = S.DefaultFunctionArrayConversion(E: Arg); |
6385 | if (ArgRV.isInvalid()) |
6386 | return NPV_Error; |
6387 | Arg = ArgRV.get(); |
6388 | |
6389 | Expr::EvalResult EvalResult; |
6390 | SmallVector<PartialDiagnosticAt, 8> Notes; |
6391 | EvalResult.Diag = &Notes; |
6392 | if (!Arg->EvaluateAsRValue(Result&: EvalResult, Ctx: S.Context) || |
6393 | EvalResult.HasSideEffects) { |
6394 | SourceLocation DiagLoc = Arg->getExprLoc(); |
6395 | |
6396 | // If our only note is the usual "invalid subexpression" note, just point |
6397 | // the caret at its location rather than producing an essentially |
6398 | // redundant note. |
6399 | if (Notes.size() == 1 && Notes[0].second.getDiagID() == |
6400 | diag::note_invalid_subexpr_in_const_expr) { |
6401 | DiagLoc = Notes[0].first; |
6402 | Notes.clear(); |
6403 | } |
6404 | |
6405 | S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) |
6406 | << Arg->getType() << Arg->getSourceRange(); |
6407 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
6408 | S.Diag(Notes[I].first, Notes[I].second); |
6409 | |
6410 | S.NoteTemplateParameterLocation(*Param); |
6411 | return NPV_Error; |
6412 | } |
6413 | |
6414 | // C++11 [temp.arg.nontype]p1: |
6415 | // - an address constant expression of type std::nullptr_t |
6416 | if (Arg->getType()->isNullPtrType()) |
6417 | return NPV_NullPointer; |
6418 | |
6419 | // - a constant expression that evaluates to a null pointer value (4.10); or |
6420 | // - a constant expression that evaluates to a null member pointer value |
6421 | // (4.11); or |
6422 | if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) || |
6423 | (EvalResult.Val.isMemberPointer() && |
6424 | !EvalResult.Val.getMemberPointerDecl())) { |
6425 | // If our expression has an appropriate type, we've succeeded. |
6426 | bool ObjCLifetimeConversion; |
6427 | if (S.Context.hasSameUnqualifiedType(T1: Arg->getType(), T2: ParamType) || |
6428 | S.IsQualificationConversion(FromType: Arg->getType(), ToType: ParamType, CStyle: false, |
6429 | ObjCLifetimeConversion)) |
6430 | return NPV_NullPointer; |
6431 | |
6432 | // The types didn't match, but we know we got a null pointer; complain, |
6433 | // then recover as if the types were correct. |
6434 | S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) |
6435 | << Arg->getType() << ParamType << Arg->getSourceRange(); |
6436 | S.NoteTemplateParameterLocation(*Param); |
6437 | return NPV_NullPointer; |
6438 | } |
6439 | |
6440 | if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) { |
6441 | // We found a pointer that isn't null, but doesn't refer to an object. |
6442 | // We could just return NPV_NotNullPointer, but we can print a better |
6443 | // message with the information we have here. |
6444 | S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid) |
6445 | << EvalResult.Val.getAsString(S.Context, ParamType); |
6446 | S.NoteTemplateParameterLocation(*Param); |
6447 | return NPV_Error; |
6448 | } |
6449 | |
6450 | // If we don't have a null pointer value, but we do have a NULL pointer |
6451 | // constant, suggest a cast to the appropriate type. |
6452 | if (Arg->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_NeverValueDependent)) { |
6453 | std::string Code = "static_cast<"+ ParamType.getAsString() + ">("; |
6454 | S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) |
6455 | << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) |
6456 | << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), |
6457 | ")"); |
6458 | S.NoteTemplateParameterLocation(*Param); |
6459 | return NPV_NullPointer; |
6460 | } |
6461 | |
6462 | // FIXME: If we ever want to support general, address-constant expressions |
6463 | // as non-type template arguments, we should return the ExprResult here to |
6464 | // be interpreted by the caller. |
6465 | return NPV_NotNullPointer; |
6466 | } |
6467 | |
6468 | /// Checks whether the given template argument is compatible with its |
6469 | /// template parameter. |
6470 | static bool CheckTemplateArgumentIsCompatibleWithParameter( |
6471 | Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, |
6472 | Expr *Arg, QualType ArgType) { |
6473 | bool ObjCLifetimeConversion; |
6474 | if (ParamType->isPointerType() && |
6475 | !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && |
6476 | S.IsQualificationConversion(FromType: ArgType, ToType: ParamType, CStyle: false, |
6477 | ObjCLifetimeConversion)) { |
6478 | // For pointer-to-object types, qualification conversions are |
6479 | // permitted. |
6480 | } else { |
6481 | if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { |
6482 | if (!ParamRef->getPointeeType()->isFunctionType()) { |
6483 | // C++ [temp.arg.nontype]p5b3: |
6484 | // For a non-type template-parameter of type reference to |
6485 | // object, no conversions apply. The type referred to by the |
6486 | // reference may be more cv-qualified than the (otherwise |
6487 | // identical) type of the template- argument. The |
6488 | // template-parameter is bound directly to the |
6489 | // template-argument, which shall be an lvalue. |
6490 | |
6491 | // FIXME: Other qualifiers? |
6492 | unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); |
6493 | unsigned ArgQuals = ArgType.getCVRQualifiers(); |
6494 | |
6495 | if ((ParamQuals | ArgQuals) != ParamQuals) { |
6496 | S.Diag(Arg->getBeginLoc(), |
6497 | diag::err_template_arg_ref_bind_ignores_quals) |
6498 | << ParamType << Arg->getType() << Arg->getSourceRange(); |
6499 | S.NoteTemplateParameterLocation(*Param); |
6500 | return true; |
6501 | } |
6502 | } |
6503 | } |
6504 | |
6505 | // At this point, the template argument refers to an object or |
6506 | // function with external linkage. We now need to check whether the |
6507 | // argument and parameter types are compatible. |
6508 | if (!S.Context.hasSameUnqualifiedType(T1: ArgType, |
6509 | T2: ParamType.getNonReferenceType())) { |
6510 | // We can't perform this conversion or binding. |
6511 | if (ParamType->isReferenceType()) |
6512 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) |
6513 | << ParamType << ArgIn->getType() << Arg->getSourceRange(); |
6514 | else |
6515 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) |
6516 | << ArgIn->getType() << ParamType << Arg->getSourceRange(); |
6517 | S.NoteTemplateParameterLocation(*Param); |
6518 | return true; |
6519 | } |
6520 | } |
6521 | |
6522 | return false; |
6523 | } |
6524 | |
6525 | /// Checks whether the given template argument is the address |
6526 | /// of an object or function according to C++ [temp.arg.nontype]p1. |
6527 | static bool CheckTemplateArgumentAddressOfObjectOrFunction( |
6528 | Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, |
6529 | TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) { |
6530 | bool Invalid = false; |
6531 | Expr *Arg = ArgIn; |
6532 | QualType ArgType = Arg->getType(); |
6533 | |
6534 | bool AddressTaken = false; |
6535 | SourceLocation AddrOpLoc; |
6536 | if (S.getLangOpts().MicrosoftExt) { |
6537 | // Microsoft Visual C++ strips all casts, allows an arbitrary number of |
6538 | // dereference and address-of operators. |
6539 | Arg = Arg->IgnoreParenCasts(); |
6540 | |
6541 | bool ExtWarnMSTemplateArg = false; |
6542 | UnaryOperatorKind FirstOpKind; |
6543 | SourceLocation FirstOpLoc; |
6544 | while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
6545 | UnaryOperatorKind UnOpKind = UnOp->getOpcode(); |
6546 | if (UnOpKind == UO_Deref) |
6547 | ExtWarnMSTemplateArg = true; |
6548 | if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { |
6549 | Arg = UnOp->getSubExpr()->IgnoreParenCasts(); |
6550 | if (!AddrOpLoc.isValid()) { |
6551 | FirstOpKind = UnOpKind; |
6552 | FirstOpLoc = UnOp->getOperatorLoc(); |
6553 | } |
6554 | } else |
6555 | break; |
6556 | } |
6557 | if (FirstOpLoc.isValid()) { |
6558 | if (ExtWarnMSTemplateArg) |
6559 | S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) |
6560 | << ArgIn->getSourceRange(); |
6561 | |
6562 | if (FirstOpKind == UO_AddrOf) |
6563 | AddressTaken = true; |
6564 | else if (Arg->getType()->isPointerType()) { |
6565 | // We cannot let pointers get dereferenced here, that is obviously not a |
6566 | // constant expression. |
6567 | assert(FirstOpKind == UO_Deref); |
6568 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) |
6569 | << Arg->getSourceRange(); |
6570 | } |
6571 | } |
6572 | } else { |
6573 | // See through any implicit casts we added to fix the type. |
6574 | Arg = Arg->IgnoreImpCasts(); |
6575 | |
6576 | // C++ [temp.arg.nontype]p1: |
6577 | // |
6578 | // A template-argument for a non-type, non-template |
6579 | // template-parameter shall be one of: [...] |
6580 | // |
6581 | // -- the address of an object or function with external |
6582 | // linkage, including function templates and function |
6583 | // template-ids but excluding non-static class members, |
6584 | // expressed as & id-expression where the & is optional if |
6585 | // the name refers to a function or array, or if the |
6586 | // corresponding template-parameter is a reference; or |
6587 | |
6588 | // In C++98/03 mode, give an extension warning on any extra parentheses. |
6589 | // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 |
6590 | bool ExtraParens = false; |
6591 | while (ParenExpr *Parens = dyn_cast<ParenExpr>(Val: Arg)) { |
6592 | if (!Invalid && !ExtraParens) { |
6593 | S.DiagCompat(Arg->getBeginLoc(), diag_compat::template_arg_extra_parens) |
6594 | << Arg->getSourceRange(); |
6595 | ExtraParens = true; |
6596 | } |
6597 | |
6598 | Arg = Parens->getSubExpr(); |
6599 | } |
6600 | |
6601 | while (SubstNonTypeTemplateParmExpr *subst = |
6602 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
6603 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
6604 | |
6605 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
6606 | if (UnOp->getOpcode() == UO_AddrOf) { |
6607 | Arg = UnOp->getSubExpr(); |
6608 | AddressTaken = true; |
6609 | AddrOpLoc = UnOp->getOperatorLoc(); |
6610 | } |
6611 | } |
6612 | |
6613 | while (SubstNonTypeTemplateParmExpr *subst = |
6614 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
6615 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
6616 | } |
6617 | |
6618 | ValueDecl *Entity = nullptr; |
6619 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg)) |
6620 | Entity = DRE->getDecl(); |
6621 | else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Val: Arg)) |
6622 | Entity = CUE->getGuidDecl(); |
6623 | |
6624 | // If our parameter has pointer type, check for a null template value. |
6625 | if (ParamType->isPointerType() || ParamType->isNullPtrType()) { |
6626 | switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, |
6627 | Entity)) { |
6628 | case NPV_NullPointer: |
6629 | S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
6630 | SugaredConverted = TemplateArgument(ParamType, |
6631 | /*isNullPtr=*/true); |
6632 | CanonicalConverted = |
6633 | TemplateArgument(S.Context.getCanonicalType(T: ParamType), |
6634 | /*isNullPtr=*/true); |
6635 | return false; |
6636 | |
6637 | case NPV_Error: |
6638 | return true; |
6639 | |
6640 | case NPV_NotNullPointer: |
6641 | break; |
6642 | } |
6643 | } |
6644 | |
6645 | // Stop checking the precise nature of the argument if it is value dependent, |
6646 | // it should be checked when instantiated. |
6647 | if (Arg->isValueDependent()) { |
6648 | SugaredConverted = TemplateArgument(ArgIn, /*IsCanonical=*/false); |
6649 | CanonicalConverted = |
6650 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6651 | return false; |
6652 | } |
6653 | |
6654 | if (!Entity) { |
6655 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) |
6656 | << Arg->getSourceRange(); |
6657 | S.NoteTemplateParameterLocation(*Param); |
6658 | return true; |
6659 | } |
6660 | |
6661 | // Cannot refer to non-static data members |
6662 | if (isa<FieldDecl>(Val: Entity) || isa<IndirectFieldDecl>(Val: Entity)) { |
6663 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) |
6664 | << Entity << Arg->getSourceRange(); |
6665 | S.NoteTemplateParameterLocation(*Param); |
6666 | return true; |
6667 | } |
6668 | |
6669 | // Cannot refer to non-static member functions |
6670 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Entity)) { |
6671 | if (!Method->isStatic()) { |
6672 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) |
6673 | << Method << Arg->getSourceRange(); |
6674 | S.NoteTemplateParameterLocation(*Param); |
6675 | return true; |
6676 | } |
6677 | } |
6678 | |
6679 | FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: Entity); |
6680 | VarDecl *Var = dyn_cast<VarDecl>(Val: Entity); |
6681 | MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Val: Entity); |
6682 | |
6683 | // A non-type template argument must refer to an object or function. |
6684 | if (!Func && !Var && !Guid) { |
6685 | // We found something, but we don't know specifically what it is. |
6686 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) |
6687 | << Arg->getSourceRange(); |
6688 | S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); |
6689 | return true; |
6690 | } |
6691 | |
6692 | // Address / reference template args must have external linkage in C++98. |
6693 | if (Entity->getFormalLinkage() == Linkage::Internal) { |
6694 | S.Diag(Arg->getBeginLoc(), |
6695 | S.getLangOpts().CPlusPlus11 |
6696 | ? diag::warn_cxx98_compat_template_arg_object_internal |
6697 | : diag::ext_template_arg_object_internal) |
6698 | << !Func << Entity << Arg->getSourceRange(); |
6699 | S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) |
6700 | << !Func; |
6701 | } else if (!Entity->hasLinkage()) { |
6702 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) |
6703 | << !Func << Entity << Arg->getSourceRange(); |
6704 | S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) |
6705 | << !Func; |
6706 | return true; |
6707 | } |
6708 | |
6709 | if (Var) { |
6710 | // A value of reference type is not an object. |
6711 | if (Var->getType()->isReferenceType()) { |
6712 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) |
6713 | << Var->getType() << Arg->getSourceRange(); |
6714 | S.NoteTemplateParameterLocation(*Param); |
6715 | return true; |
6716 | } |
6717 | |
6718 | // A template argument must have static storage duration. |
6719 | if (Var->getTLSKind()) { |
6720 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) |
6721 | << Arg->getSourceRange(); |
6722 | S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); |
6723 | return true; |
6724 | } |
6725 | } |
6726 | |
6727 | if (AddressTaken && ParamType->isReferenceType()) { |
6728 | // If we originally had an address-of operator, but the |
6729 | // parameter has reference type, complain and (if things look |
6730 | // like they will work) drop the address-of operator. |
6731 | if (!S.Context.hasSameUnqualifiedType(T1: Entity->getType(), |
6732 | T2: ParamType.getNonReferenceType())) { |
6733 | S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) |
6734 | << ParamType; |
6735 | S.NoteTemplateParameterLocation(*Param); |
6736 | return true; |
6737 | } |
6738 | |
6739 | S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) |
6740 | << ParamType |
6741 | << FixItHint::CreateRemoval(AddrOpLoc); |
6742 | S.NoteTemplateParameterLocation(*Param); |
6743 | |
6744 | ArgType = Entity->getType(); |
6745 | } |
6746 | |
6747 | // If the template parameter has pointer type, either we must have taken the |
6748 | // address or the argument must decay to a pointer. |
6749 | if (!AddressTaken && ParamType->isPointerType()) { |
6750 | if (Func) { |
6751 | // Function-to-pointer decay. |
6752 | ArgType = S.Context.getPointerType(Func->getType()); |
6753 | } else if (Entity->getType()->isArrayType()) { |
6754 | // Array-to-pointer decay. |
6755 | ArgType = S.Context.getArrayDecayedType(T: Entity->getType()); |
6756 | } else { |
6757 | // If the template parameter has pointer type but the address of |
6758 | // this object was not taken, complain and (possibly) recover by |
6759 | // taking the address of the entity. |
6760 | ArgType = S.Context.getPointerType(T: Entity->getType()); |
6761 | if (!S.Context.hasSameUnqualifiedType(T1: ArgType, T2: ParamType)) { |
6762 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) |
6763 | << ParamType; |
6764 | S.NoteTemplateParameterLocation(*Param); |
6765 | return true; |
6766 | } |
6767 | |
6768 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) |
6769 | << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&"); |
6770 | |
6771 | S.NoteTemplateParameterLocation(*Param); |
6772 | } |
6773 | } |
6774 | |
6775 | if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, |
6776 | Arg, ArgType)) |
6777 | return true; |
6778 | |
6779 | // Create the template argument. |
6780 | SugaredConverted = TemplateArgument(Entity, ParamType); |
6781 | CanonicalConverted = |
6782 | TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), |
6783 | S.Context.getCanonicalType(T: ParamType)); |
6784 | S.MarkAnyDeclReferenced(Loc: Arg->getBeginLoc(), D: Entity, MightBeOdrUse: false); |
6785 | return false; |
6786 | } |
6787 | |
6788 | /// Checks whether the given template argument is a pointer to |
6789 | /// member constant according to C++ [temp.arg.nontype]p1. |
6790 | static bool |
6791 | CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param, |
6792 | QualType ParamType, Expr *&ResultArg, |
6793 | TemplateArgument &SugaredConverted, |
6794 | TemplateArgument &CanonicalConverted) { |
6795 | bool Invalid = false; |
6796 | |
6797 | Expr *Arg = ResultArg; |
6798 | bool ObjCLifetimeConversion; |
6799 | |
6800 | // C++ [temp.arg.nontype]p1: |
6801 | // |
6802 | // A template-argument for a non-type, non-template |
6803 | // template-parameter shall be one of: [...] |
6804 | // |
6805 | // -- a pointer to member expressed as described in 5.3.1. |
6806 | DeclRefExpr *DRE = nullptr; |
6807 | |
6808 | // In C++98/03 mode, give an extension warning on any extra parentheses. |
6809 | // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 |
6810 | bool ExtraParens = false; |
6811 | while (ParenExpr *Parens = dyn_cast<ParenExpr>(Val: Arg)) { |
6812 | if (!Invalid && !ExtraParens) { |
6813 | S.DiagCompat(Arg->getBeginLoc(), diag_compat::template_arg_extra_parens) |
6814 | << Arg->getSourceRange(); |
6815 | ExtraParens = true; |
6816 | } |
6817 | |
6818 | Arg = Parens->getSubExpr(); |
6819 | } |
6820 | |
6821 | while (SubstNonTypeTemplateParmExpr *subst = |
6822 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
6823 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
6824 | |
6825 | // A pointer-to-member constant written &Class::member. |
6826 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
6827 | if (UnOp->getOpcode() == UO_AddrOf) { |
6828 | DRE = dyn_cast<DeclRefExpr>(Val: UnOp->getSubExpr()); |
6829 | if (DRE && !DRE->getQualifier()) |
6830 | DRE = nullptr; |
6831 | } |
6832 | } |
6833 | // A constant of pointer-to-member type. |
6834 | else if ((DRE = dyn_cast<DeclRefExpr>(Val: Arg))) { |
6835 | ValueDecl *VD = DRE->getDecl(); |
6836 | if (VD->getType()->isMemberPointerType()) { |
6837 | if (isa<NonTypeTemplateParmDecl>(Val: VD)) { |
6838 | if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
6839 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
6840 | CanonicalConverted = |
6841 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6842 | } else { |
6843 | SugaredConverted = TemplateArgument(VD, ParamType); |
6844 | CanonicalConverted = |
6845 | TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), |
6846 | S.Context.getCanonicalType(T: ParamType)); |
6847 | } |
6848 | return Invalid; |
6849 | } |
6850 | } |
6851 | |
6852 | DRE = nullptr; |
6853 | } |
6854 | |
6855 | ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; |
6856 | |
6857 | // Check for a null pointer value. |
6858 | switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, |
6859 | Entity)) { |
6860 | case NPV_Error: |
6861 | return true; |
6862 | case NPV_NullPointer: |
6863 | S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
6864 | SugaredConverted = TemplateArgument(ParamType, |
6865 | /*isNullPtr*/ true); |
6866 | CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(T: ParamType), |
6867 | /*isNullPtr*/ true); |
6868 | return false; |
6869 | case NPV_NotNullPointer: |
6870 | break; |
6871 | } |
6872 | |
6873 | if (S.IsQualificationConversion(FromType: ResultArg->getType(), |
6874 | ToType: ParamType.getNonReferenceType(), CStyle: false, |
6875 | ObjCLifetimeConversion)) { |
6876 | ResultArg = S.ImpCastExprToType(E: ResultArg, Type: ParamType, CK: CK_NoOp, |
6877 | VK: ResultArg->getValueKind()) |
6878 | .get(); |
6879 | } else if (!S.Context.hasSameUnqualifiedType( |
6880 | T1: ResultArg->getType(), T2: ParamType.getNonReferenceType())) { |
6881 | // We can't perform this conversion. |
6882 | S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) |
6883 | << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); |
6884 | S.NoteTemplateParameterLocation(*Param); |
6885 | return true; |
6886 | } |
6887 | |
6888 | if (!DRE) |
6889 | return S.Diag(Arg->getBeginLoc(), |
6890 | diag::err_template_arg_not_pointer_to_member_form) |
6891 | << Arg->getSourceRange(); |
6892 | |
6893 | if (isa<FieldDecl>(Val: DRE->getDecl()) || |
6894 | isa<IndirectFieldDecl>(Val: DRE->getDecl()) || |
6895 | isa<CXXMethodDecl>(Val: DRE->getDecl())) { |
6896 | assert((isa<FieldDecl>(DRE->getDecl()) || |
6897 | isa<IndirectFieldDecl>(DRE->getDecl()) || |
6898 | cast<CXXMethodDecl>(DRE->getDecl()) |
6899 | ->isImplicitObjectMemberFunction()) && |
6900 | "Only non-static member pointers can make it here"); |
6901 | |
6902 | // Okay: this is the address of a non-static member, and therefore |
6903 | // a member pointer constant. |
6904 | if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
6905 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
6906 | CanonicalConverted = |
6907 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
6908 | } else { |
6909 | ValueDecl *D = DRE->getDecl(); |
6910 | SugaredConverted = TemplateArgument(D, ParamType); |
6911 | CanonicalConverted = |
6912 | TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()), |
6913 | S.Context.getCanonicalType(T: ParamType)); |
6914 | } |
6915 | return Invalid; |
6916 | } |
6917 | |
6918 | // We found something else, but we don't know specifically what it is. |
6919 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) |
6920 | << Arg->getSourceRange(); |
6921 | S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); |
6922 | return true; |
6923 | } |
6924 | |
6925 | ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, |
6926 | QualType ParamType, Expr *Arg, |
6927 | TemplateArgument &SugaredConverted, |
6928 | TemplateArgument &CanonicalConverted, |
6929 | bool StrictCheck, |
6930 | CheckTemplateArgumentKind CTAK) { |
6931 | SourceLocation StartLoc = Arg->getBeginLoc(); |
6932 | auto *ArgPE = dyn_cast<PackExpansionExpr>(Val: Arg); |
6933 | Expr *DeductionArg = ArgPE ? ArgPE->getPattern() : Arg; |
6934 | auto setDeductionArg = [&](Expr *NewDeductionArg) { |
6935 | DeductionArg = NewDeductionArg; |
6936 | if (ArgPE) { |
6937 | // Recreate a pack expansion if we unwrapped one. |
6938 | Arg = new (Context) PackExpansionExpr( |
6939 | DeductionArg, ArgPE->getEllipsisLoc(), ArgPE->getNumExpansions()); |
6940 | } else { |
6941 | Arg = DeductionArg; |
6942 | } |
6943 | }; |
6944 | |
6945 | // If the parameter type somehow involves auto, deduce the type now. |
6946 | DeducedType *DeducedT = ParamType->getContainedDeducedType(); |
6947 | if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { |
6948 | // During template argument deduction, we allow 'decltype(auto)' to |
6949 | // match an arbitrary dependent argument. |
6950 | // FIXME: The language rules don't say what happens in this case. |
6951 | // FIXME: We get an opaque dependent type out of decltype(auto) if the |
6952 | // expression is merely instantiation-dependent; is this enough? |
6953 | if (DeductionArg->isTypeDependent()) { |
6954 | auto *AT = dyn_cast<AutoType>(Val: DeducedT); |
6955 | if (AT && AT->isDecltypeAuto()) { |
6956 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
6957 | CanonicalConverted = TemplateArgument( |
6958 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
6959 | return Arg; |
6960 | } |
6961 | } |
6962 | |
6963 | // When checking a deduced template argument, deduce from its type even if |
6964 | // the type is dependent, in order to check the types of non-type template |
6965 | // arguments line up properly in partial ordering. |
6966 | TypeSourceInfo *TSI = |
6967 | Context.getTrivialTypeSourceInfo(T: ParamType, Loc: Param->getLocation()); |
6968 | if (isa<DeducedTemplateSpecializationType>(Val: DeducedT)) { |
6969 | InitializedEntity Entity = |
6970 | InitializedEntity::InitializeTemplateParameter(T: ParamType, Param); |
6971 | InitializationKind Kind = InitializationKind::CreateForInit( |
6972 | Loc: DeductionArg->getBeginLoc(), /*DirectInit*/false, Init: DeductionArg); |
6973 | Expr *Inits[1] = {DeductionArg}; |
6974 | ParamType = |
6975 | DeduceTemplateSpecializationFromInitializer(TInfo: TSI, Entity, Kind, Init: Inits); |
6976 | if (ParamType.isNull()) |
6977 | return ExprError(); |
6978 | } else { |
6979 | TemplateDeductionInfo Info(DeductionArg->getExprLoc(), |
6980 | Param->getDepth() + 1); |
6981 | ParamType = QualType(); |
6982 | TemplateDeductionResult Result = |
6983 | DeduceAutoType(AutoTypeLoc: TSI->getTypeLoc(), Initializer: DeductionArg, Result&: ParamType, Info, |
6984 | /*DependentDeduction=*/true, |
6985 | // We do not check constraints right now because the |
6986 | // immediately-declared constraint of the auto type is |
6987 | // also an associated constraint, and will be checked |
6988 | // along with the other associated constraints after |
6989 | // checking the template argument list. |
6990 | /*IgnoreConstraints=*/true); |
6991 | if (Result == TemplateDeductionResult::AlreadyDiagnosed) { |
6992 | if (ParamType.isNull()) |
6993 | return ExprError(); |
6994 | } else if (Result != TemplateDeductionResult::Success) { |
6995 | Diag(Arg->getExprLoc(), |
6996 | diag::err_non_type_template_parm_type_deduction_failure) |
6997 | << Param->getDeclName() << Param->getType() << Arg->getType() |
6998 | << Arg->getSourceRange(); |
6999 | NoteTemplateParameterLocation(*Param); |
7000 | return ExprError(); |
7001 | } |
7002 | } |
7003 | // CheckNonTypeTemplateParameterType will produce a diagnostic if there's |
7004 | // an error. The error message normally references the parameter |
7005 | // declaration, but here we'll pass the argument location because that's |
7006 | // where the parameter type is deduced. |
7007 | ParamType = CheckNonTypeTemplateParameterType(T: ParamType, Loc: Arg->getExprLoc()); |
7008 | if (ParamType.isNull()) { |
7009 | NoteTemplateParameterLocation(*Param); |
7010 | return ExprError(); |
7011 | } |
7012 | } |
7013 | |
7014 | // We should have already dropped all cv-qualifiers by now. |
7015 | assert(!ParamType.hasQualifiers() && |
7016 | "non-type template parameter type cannot be qualified"); |
7017 | |
7018 | // If either the parameter has a dependent type or the argument is |
7019 | // type-dependent, there's nothing we can check now. |
7020 | if (ParamType->isDependentType() || DeductionArg->isTypeDependent()) { |
7021 | // Force the argument to the type of the parameter to maintain invariants. |
7022 | ExprResult E = ImpCastExprToType( |
7023 | E: DeductionArg, Type: ParamType.getNonLValueExprType(Context), CK: CK_Dependent, |
7024 | VK: ParamType->isLValueReferenceType() ? VK_LValue |
7025 | : ParamType->isRValueReferenceType() ? VK_XValue |
7026 | : VK_PRValue); |
7027 | if (E.isInvalid()) |
7028 | return ExprError(); |
7029 | setDeductionArg(E.get()); |
7030 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7031 | CanonicalConverted = TemplateArgument( |
7032 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
7033 | return Arg; |
7034 | } |
7035 | |
7036 | // FIXME: When Param is a reference, should we check that Arg is an lvalue? |
7037 | if (CTAK == CTAK_Deduced && !StrictCheck && |
7038 | (ParamType->isReferenceType() |
7039 | ? !Context.hasSameType(T1: ParamType.getNonReferenceType(), |
7040 | T2: DeductionArg->getType()) |
7041 | : !Context.hasSameUnqualifiedType(T1: ParamType, |
7042 | T2: DeductionArg->getType()))) { |
7043 | // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, |
7044 | // we should actually be checking the type of the template argument in P, |
7045 | // not the type of the template argument deduced from A, against the |
7046 | // template parameter type. |
7047 | Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) |
7048 | << Arg->getType() << ParamType.getUnqualifiedType(); |
7049 | NoteTemplateParameterLocation(*Param); |
7050 | return ExprError(); |
7051 | } |
7052 | |
7053 | // If the argument is a pack expansion, we don't know how many times it would |
7054 | // expand. If we continue checking the argument, this will make the template |
7055 | // definition ill-formed if it would be ill-formed for any number of |
7056 | // expansions during instantiation time. When partial ordering or matching |
7057 | // template template parameters, this is exactly what we want. Otherwise, the |
7058 | // normal template rules apply: we accept the template if it would be valid |
7059 | // for any number of expansions (i.e. none). |
7060 | if (ArgPE && !StrictCheck) { |
7061 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7062 | CanonicalConverted = TemplateArgument( |
7063 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
7064 | return Arg; |
7065 | } |
7066 | |
7067 | // Avoid making a copy when initializing a template parameter of class type |
7068 | // from a template parameter object of the same type. This is going beyond |
7069 | // the standard, but is required for soundness: in |
7070 | // template<A a> struct X { X *p; X<a> *q; }; |
7071 | // ... we need p and q to have the same type. |
7072 | // |
7073 | // Similarly, don't inject a call to a copy constructor when initializing |
7074 | // from a template parameter of the same type. |
7075 | Expr *InnerArg = DeductionArg->IgnoreParenImpCasts(); |
7076 | if (ParamType->isRecordType() && isa<DeclRefExpr>(Val: InnerArg) && |
7077 | Context.hasSameUnqualifiedType(T1: ParamType, T2: InnerArg->getType())) { |
7078 | NamedDecl *ND = cast<DeclRefExpr>(Val: InnerArg)->getDecl(); |
7079 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { |
7080 | |
7081 | SugaredConverted = TemplateArgument(TPO, ParamType); |
7082 | CanonicalConverted = TemplateArgument(TPO->getCanonicalDecl(), |
7083 | ParamType.getCanonicalType()); |
7084 | return Arg; |
7085 | } |
7086 | if (isa<NonTypeTemplateParmDecl>(Val: ND)) { |
7087 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7088 | CanonicalConverted = |
7089 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7090 | return Arg; |
7091 | } |
7092 | } |
7093 | |
7094 | // The initialization of the parameter from the argument is |
7095 | // a constant-evaluated context. |
7096 | EnterExpressionEvaluationContext ConstantEvaluated( |
7097 | *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
7098 | |
7099 | bool IsConvertedConstantExpression = true; |
7100 | if (isa<InitListExpr>(Val: DeductionArg) || ParamType->isRecordType()) { |
7101 | InitializationKind Kind = InitializationKind::CreateForInit( |
7102 | Loc: StartLoc, /*DirectInit=*/false, Init: DeductionArg); |
7103 | Expr *Inits[1] = {DeductionArg}; |
7104 | InitializedEntity Entity = |
7105 | InitializedEntity::InitializeTemplateParameter(T: ParamType, Param); |
7106 | InitializationSequence InitSeq(*this, Entity, Kind, Inits); |
7107 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Inits); |
7108 | if (Result.isInvalid() || !Result.get()) |
7109 | return ExprError(); |
7110 | Result = ActOnConstantExpression(Res: Result.get()); |
7111 | if (Result.isInvalid() || !Result.get()) |
7112 | return ExprError(); |
7113 | setDeductionArg(ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(), |
7114 | /*DiscardedValue=*/false, |
7115 | /*IsConstexpr=*/true, |
7116 | /*IsTemplateArgument=*/true) |
7117 | .get()); |
7118 | IsConvertedConstantExpression = false; |
7119 | } |
7120 | |
7121 | if (getLangOpts().CPlusPlus17 || StrictCheck) { |
7122 | // C++17 [temp.arg.nontype]p1: |
7123 | // A template-argument for a non-type template parameter shall be |
7124 | // a converted constant expression of the type of the template-parameter. |
7125 | APValue Value; |
7126 | ExprResult ArgResult; |
7127 | if (IsConvertedConstantExpression) { |
7128 | ArgResult = BuildConvertedConstantExpression( |
7129 | DeductionArg, ParamType, |
7130 | StrictCheck ? CCEKind::TempArgStrict : CCEKind::TemplateArg, Param); |
7131 | assert(!ArgResult.isUnset()); |
7132 | if (ArgResult.isInvalid()) { |
7133 | NoteTemplateParameterLocation(*Param); |
7134 | return ExprError(); |
7135 | } |
7136 | } else { |
7137 | ArgResult = DeductionArg; |
7138 | } |
7139 | |
7140 | // For a value-dependent argument, CheckConvertedConstantExpression is |
7141 | // permitted (and expected) to be unable to determine a value. |
7142 | if (ArgResult.get()->isValueDependent()) { |
7143 | setDeductionArg(ArgResult.get()); |
7144 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7145 | CanonicalConverted = |
7146 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7147 | return Arg; |
7148 | } |
7149 | |
7150 | APValue PreNarrowingValue; |
7151 | ArgResult = EvaluateConvertedConstantExpression( |
7152 | E: ArgResult.get(), T: ParamType, Value, CCE: CCEKind::TemplateArg, /*RequireInt=*/ |
7153 | false, PreNarrowingValue); |
7154 | if (ArgResult.isInvalid()) |
7155 | return ExprError(); |
7156 | setDeductionArg(ArgResult.get()); |
7157 | |
7158 | if (Value.isLValue()) { |
7159 | APValue::LValueBase Base = Value.getLValueBase(); |
7160 | auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); |
7161 | // For a non-type template-parameter of pointer or reference type, |
7162 | // the value of the constant expression shall not refer to |
7163 | assert(ParamType->isPointerOrReferenceType() || |
7164 | ParamType->isNullPtrType()); |
7165 | // -- a temporary object |
7166 | // -- a string literal |
7167 | // -- the result of a typeid expression, or |
7168 | // -- a predefined __func__ variable |
7169 | if (Base && |
7170 | (!VD || |
7171 | isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(Val: VD))) { |
7172 | Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) |
7173 | << Arg->getSourceRange(); |
7174 | return ExprError(); |
7175 | } |
7176 | |
7177 | if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD && |
7178 | VD->getType()->isArrayType() && |
7179 | Value.getLValuePath()[0].getAsArrayIndex() == 0 && |
7180 | !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { |
7181 | if (ArgPE) { |
7182 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7183 | CanonicalConverted = |
7184 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7185 | } else { |
7186 | SugaredConverted = TemplateArgument(VD, ParamType); |
7187 | CanonicalConverted = |
7188 | TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), |
7189 | ParamType.getCanonicalType()); |
7190 | } |
7191 | return Arg; |
7192 | } |
7193 | |
7194 | // -- a subobject [until C++20] |
7195 | if (!getLangOpts().CPlusPlus20) { |
7196 | if (!Value.hasLValuePath() || Value.getLValuePath().size() || |
7197 | Value.isLValueOnePastTheEnd()) { |
7198 | Diag(StartLoc, diag::err_non_type_template_arg_subobject) |
7199 | << Value.getAsString(Context, ParamType); |
7200 | return ExprError(); |
7201 | } |
7202 | assert((VD || !ParamType->isReferenceType()) && |
7203 | "null reference should not be a constant expression"); |
7204 | assert((!VD || !ParamType->isNullPtrType()) && |
7205 | "non-null value of type nullptr_t?"); |
7206 | } |
7207 | } |
7208 | |
7209 | if (Value.isAddrLabelDiff()) |
7210 | return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); |
7211 | |
7212 | if (ArgPE) { |
7213 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7214 | CanonicalConverted = |
7215 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7216 | } else { |
7217 | SugaredConverted = TemplateArgument(Context, ParamType, Value); |
7218 | CanonicalConverted = |
7219 | TemplateArgument(Context, ParamType.getCanonicalType(), Value); |
7220 | } |
7221 | return Arg; |
7222 | } |
7223 | |
7224 | // C++ [temp.arg.nontype]p5: |
7225 | // The following conversions are performed on each expression used |
7226 | // as a non-type template-argument. If a non-type |
7227 | // template-argument cannot be converted to the type of the |
7228 | // corresponding template-parameter then the program is |
7229 | // ill-formed. |
7230 | if (ParamType->isIntegralOrEnumerationType()) { |
7231 | // C++11: |
7232 | // -- for a non-type template-parameter of integral or |
7233 | // enumeration type, conversions permitted in a converted |
7234 | // constant expression are applied. |
7235 | // |
7236 | // C++98: |
7237 | // -- for a non-type template-parameter of integral or |
7238 | // enumeration type, integral promotions (4.5) and integral |
7239 | // conversions (4.7) are applied. |
7240 | |
7241 | if (getLangOpts().CPlusPlus11) { |
7242 | // C++ [temp.arg.nontype]p1: |
7243 | // A template-argument for a non-type, non-template template-parameter |
7244 | // shall be one of: |
7245 | // |
7246 | // -- for a non-type template-parameter of integral or enumeration |
7247 | // type, a converted constant expression of the type of the |
7248 | // template-parameter; or |
7249 | llvm::APSInt Value; |
7250 | ExprResult ArgResult = CheckConvertedConstantExpression( |
7251 | From: DeductionArg, T: ParamType, Value, CCE: CCEKind::TemplateArg); |
7252 | if (ArgResult.isInvalid()) |
7253 | return ExprError(); |
7254 | setDeductionArg(ArgResult.get()); |
7255 | |
7256 | // We can't check arbitrary value-dependent arguments. |
7257 | if (DeductionArg->isValueDependent()) { |
7258 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7259 | CanonicalConverted = |
7260 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7261 | return Arg; |
7262 | } |
7263 | |
7264 | // Widen the argument value to sizeof(parameter type). This is almost |
7265 | // always a no-op, except when the parameter type is bool. In |
7266 | // that case, this may extend the argument from 1 bit to 8 bits. |
7267 | QualType IntegerType = ParamType; |
7268 | if (const EnumType *Enum = IntegerType->getAs<EnumType>()) |
7269 | IntegerType = Enum->getDecl()->getIntegerType(); |
7270 | Value = Value.extOrTrunc(width: IntegerType->isBitIntType() |
7271 | ? Context.getIntWidth(T: IntegerType) |
7272 | : Context.getTypeSize(T: IntegerType)); |
7273 | |
7274 | if (ArgPE) { |
7275 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7276 | CanonicalConverted = |
7277 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7278 | } else { |
7279 | SugaredConverted = TemplateArgument(Context, Value, ParamType); |
7280 | CanonicalConverted = TemplateArgument( |
7281 | Context, Value, Context.getCanonicalType(T: ParamType)); |
7282 | } |
7283 | return Arg; |
7284 | } |
7285 | |
7286 | ExprResult ArgResult = DefaultLvalueConversion(E: Arg); |
7287 | if (ArgResult.isInvalid()) |
7288 | return ExprError(); |
7289 | DeductionArg = ArgResult.get(); |
7290 | |
7291 | QualType ArgType = DeductionArg->getType(); |
7292 | |
7293 | // C++ [temp.arg.nontype]p1: |
7294 | // A template-argument for a non-type, non-template |
7295 | // template-parameter shall be one of: |
7296 | // |
7297 | // -- an integral constant-expression of integral or enumeration |
7298 | // type; or |
7299 | // -- the name of a non-type template-parameter; or |
7300 | llvm::APSInt Value; |
7301 | if (!ArgType->isIntegralOrEnumerationType()) { |
7302 | Diag(StartLoc, diag::err_template_arg_not_integral_or_enumeral) |
7303 | << ArgType << DeductionArg->getSourceRange(); |
7304 | NoteTemplateParameterLocation(*Param); |
7305 | return ExprError(); |
7306 | } else if (!DeductionArg->isValueDependent()) { |
7307 | class TmplArgICEDiagnoser : public VerifyICEDiagnoser { |
7308 | QualType T; |
7309 | |
7310 | public: |
7311 | TmplArgICEDiagnoser(QualType T) : T(T) { } |
7312 | |
7313 | SemaDiagnosticBuilder diagnoseNotICE(Sema &S, |
7314 | SourceLocation Loc) override { |
7315 | return S.Diag(Loc, diag::err_template_arg_not_ice) << T; |
7316 | } |
7317 | } Diagnoser(ArgType); |
7318 | |
7319 | DeductionArg = |
7320 | VerifyIntegerConstantExpression(DeductionArg, &Value, Diagnoser) |
7321 | .get(); |
7322 | if (!DeductionArg) |
7323 | return ExprError(); |
7324 | } |
7325 | |
7326 | // From here on out, all we care about is the unqualified form |
7327 | // of the argument type. |
7328 | ArgType = ArgType.getUnqualifiedType(); |
7329 | |
7330 | // Try to convert the argument to the parameter's type. |
7331 | if (Context.hasSameType(T1: ParamType, T2: ArgType)) { |
7332 | // Okay: no conversion necessary |
7333 | } else if (ParamType->isBooleanType()) { |
7334 | // This is an integral-to-boolean conversion. |
7335 | DeductionArg = |
7336 | ImpCastExprToType(E: DeductionArg, Type: ParamType, CK: CK_IntegralToBoolean) |
7337 | .get(); |
7338 | } else if (IsIntegralPromotion(From: Arg, FromType: ArgType, ToType: ParamType) || |
7339 | !ParamType->isEnumeralType()) { |
7340 | // This is an integral promotion or conversion. |
7341 | DeductionArg = |
7342 | ImpCastExprToType(E: DeductionArg, Type: ParamType, CK: CK_IntegralCast).get(); |
7343 | } else { |
7344 | // We can't perform this conversion. |
7345 | Diag(StartLoc, diag::err_template_arg_not_convertible) |
7346 | << DeductionArg->getType() << ParamType |
7347 | << DeductionArg->getSourceRange(); |
7348 | NoteTemplateParameterLocation(*Param); |
7349 | return ExprError(); |
7350 | } |
7351 | setDeductionArg(DeductionArg); |
7352 | |
7353 | // Add the value of this argument to the list of converted |
7354 | // arguments. We use the bitwidth and signedness of the template |
7355 | // parameter. |
7356 | if (DeductionArg->isValueDependent()) { |
7357 | // The argument is value-dependent. Create a new |
7358 | // TemplateArgument with the converted expression. |
7359 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7360 | CanonicalConverted = |
7361 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7362 | return Arg; |
7363 | } |
7364 | |
7365 | QualType IntegerType = ParamType; |
7366 | if (const EnumType *Enum = IntegerType->getAs<EnumType>()) { |
7367 | IntegerType = Enum->getDecl()->getIntegerType(); |
7368 | } |
7369 | |
7370 | if (ParamType->isBooleanType()) { |
7371 | // Value must be zero or one. |
7372 | Value = Value != 0; |
7373 | unsigned AllowedBits = Context.getTypeSize(T: IntegerType); |
7374 | if (Value.getBitWidth() != AllowedBits) |
7375 | Value = Value.extOrTrunc(width: AllowedBits); |
7376 | Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); |
7377 | } else { |
7378 | llvm::APSInt OldValue = Value; |
7379 | |
7380 | // Coerce the template argument's value to the value it will have |
7381 | // based on the template parameter's type. |
7382 | unsigned AllowedBits = IntegerType->isBitIntType() |
7383 | ? Context.getIntWidth(T: IntegerType) |
7384 | : Context.getTypeSize(T: IntegerType); |
7385 | if (Value.getBitWidth() != AllowedBits) |
7386 | Value = Value.extOrTrunc(width: AllowedBits); |
7387 | Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); |
7388 | |
7389 | // Complain if an unsigned parameter received a negative value. |
7390 | if (IntegerType->isUnsignedIntegerOrEnumerationType() && |
7391 | (OldValue.isSigned() && OldValue.isNegative())) { |
7392 | Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) |
7393 | << toString(OldValue, 10) << toString(Value, 10) << Param->getType() |
7394 | << Arg->getSourceRange(); |
7395 | NoteTemplateParameterLocation(*Param); |
7396 | } |
7397 | |
7398 | // Complain if we overflowed the template parameter's type. |
7399 | unsigned RequiredBits; |
7400 | if (IntegerType->isUnsignedIntegerOrEnumerationType()) |
7401 | RequiredBits = OldValue.getActiveBits(); |
7402 | else if (OldValue.isUnsigned()) |
7403 | RequiredBits = OldValue.getActiveBits() + 1; |
7404 | else |
7405 | RequiredBits = OldValue.getSignificantBits(); |
7406 | if (RequiredBits > AllowedBits) { |
7407 | Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) |
7408 | << toString(OldValue, 10) << toString(Value, 10) << Param->getType() |
7409 | << Arg->getSourceRange(); |
7410 | NoteTemplateParameterLocation(*Param); |
7411 | } |
7412 | } |
7413 | |
7414 | if (ArgPE) { |
7415 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7416 | CanonicalConverted = |
7417 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7418 | } else { |
7419 | QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType; |
7420 | SugaredConverted = TemplateArgument(Context, Value, T); |
7421 | CanonicalConverted = |
7422 | TemplateArgument(Context, Value, Context.getCanonicalType(T)); |
7423 | } |
7424 | return Arg; |
7425 | } |
7426 | |
7427 | QualType ArgType = DeductionArg->getType(); |
7428 | DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction |
7429 | |
7430 | // Handle pointer-to-function, reference-to-function, and |
7431 | // pointer-to-member-function all in (roughly) the same way. |
7432 | if (// -- For a non-type template-parameter of type pointer to |
7433 | // function, only the function-to-pointer conversion (4.3) is |
7434 | // applied. If the template-argument represents a set of |
7435 | // overloaded functions (or a pointer to such), the matching |
7436 | // function is selected from the set (13.4). |
7437 | (ParamType->isPointerType() && |
7438 | ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || |
7439 | // -- For a non-type template-parameter of type reference to |
7440 | // function, no conversions apply. If the template-argument |
7441 | // represents a set of overloaded functions, the matching |
7442 | // function is selected from the set (13.4). |
7443 | (ParamType->isReferenceType() && |
7444 | ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || |
7445 | // -- For a non-type template-parameter of type pointer to |
7446 | // member function, no conversions apply. If the |
7447 | // template-argument represents a set of overloaded member |
7448 | // functions, the matching member function is selected from |
7449 | // the set (13.4). |
7450 | (ParamType->isMemberPointerType() && |
7451 | ParamType->castAs<MemberPointerType>()->getPointeeType() |
7452 | ->isFunctionType())) { |
7453 | |
7454 | if (DeductionArg->getType() == Context.OverloadTy) { |
7455 | if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: Arg, TargetType: ParamType, |
7456 | Complain: true, |
7457 | Found&: FoundResult)) { |
7458 | if (DiagnoseUseOfDecl(D: Fn, Locs: Arg->getBeginLoc())) |
7459 | return ExprError(); |
7460 | |
7461 | ExprResult Res = FixOverloadedFunctionReference(E: Arg, FoundDecl: FoundResult, Fn); |
7462 | if (Res.isInvalid()) |
7463 | return ExprError(); |
7464 | DeductionArg = Res.get(); |
7465 | ArgType = Arg->getType(); |
7466 | } else |
7467 | return ExprError(); |
7468 | } |
7469 | setDeductionArg(DeductionArg); |
7470 | |
7471 | if (!ParamType->isMemberPointerType()) { |
7472 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
7473 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, |
7474 | CanonicalConverted)) |
7475 | return ExprError(); |
7476 | return Arg; |
7477 | } |
7478 | |
7479 | if (CheckTemplateArgumentPointerToMember( |
7480 | S&: *this, Param, ParamType, ResultArg&: Arg, SugaredConverted, CanonicalConverted)) |
7481 | return ExprError(); |
7482 | return Arg; |
7483 | } |
7484 | |
7485 | setDeductionArg(DeductionArg); |
7486 | |
7487 | if (ParamType->isPointerType()) { |
7488 | // -- for a non-type template-parameter of type pointer to |
7489 | // object, qualification conversions (4.4) and the |
7490 | // array-to-pointer conversion (4.2) are applied. |
7491 | // C++0x also allows a value of std::nullptr_t. |
7492 | assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && |
7493 | "Only object pointers allowed here"); |
7494 | |
7495 | // FIXME: Deal with pack expansions here. |
7496 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
7497 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, CanonicalConverted)) |
7498 | return ExprError(); |
7499 | return Arg; |
7500 | } |
7501 | |
7502 | if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { |
7503 | // -- For a non-type template-parameter of type reference to |
7504 | // object, no conversions apply. The type referred to by the |
7505 | // reference may be more cv-qualified than the (otherwise |
7506 | // identical) type of the template-argument. The |
7507 | // template-parameter is bound directly to the |
7508 | // template-argument, which must be an lvalue. |
7509 | assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && |
7510 | "Only object references allowed here"); |
7511 | |
7512 | // FIXME: Deal with pack expansions here. |
7513 | if (Arg->getType() == Context.OverloadTy) { |
7514 | if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: Arg, |
7515 | TargetType: ParamRefType->getPointeeType(), |
7516 | Complain: true, |
7517 | Found&: FoundResult)) { |
7518 | if (DiagnoseUseOfDecl(D: Fn, Locs: Arg->getBeginLoc())) |
7519 | return ExprError(); |
7520 | ExprResult Res = FixOverloadedFunctionReference(E: Arg, FoundDecl: FoundResult, Fn); |
7521 | if (Res.isInvalid()) |
7522 | return ExprError(); |
7523 | Arg = Res.get(); |
7524 | ArgType = Arg->getType(); |
7525 | } else |
7526 | return ExprError(); |
7527 | } |
7528 | |
7529 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
7530 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, CanonicalConverted)) |
7531 | return ExprError(); |
7532 | return Arg; |
7533 | } |
7534 | |
7535 | // Deal with parameters of type std::nullptr_t. |
7536 | if (ParamType->isNullPtrType()) { |
7537 | if (DeductionArg->isTypeDependent() || DeductionArg->isValueDependent()) { |
7538 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7539 | CanonicalConverted = |
7540 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7541 | return Arg; |
7542 | } |
7543 | |
7544 | switch (isNullPointerValueTemplateArgument(S&: *this, Param, ParamType, |
7545 | Arg: DeductionArg)) { |
7546 | case NPV_NotNullPointer: |
7547 | Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) |
7548 | << DeductionArg->getType() << ParamType; |
7549 | NoteTemplateParameterLocation(*Param); |
7550 | return ExprError(); |
7551 | |
7552 | case NPV_Error: |
7553 | return ExprError(); |
7554 | |
7555 | case NPV_NullPointer: |
7556 | Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
7557 | if (ArgPE) { |
7558 | SugaredConverted = TemplateArgument(Arg, /*IsCanonical=*/false); |
7559 | CanonicalConverted = |
7560 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7561 | } else { |
7562 | SugaredConverted = TemplateArgument(ParamType, |
7563 | /*isNullPtr=*/true); |
7564 | CanonicalConverted = |
7565 | TemplateArgument(Context.getCanonicalType(T: ParamType), |
7566 | /*isNullPtr=*/true); |
7567 | } |
7568 | return Arg; |
7569 | } |
7570 | } |
7571 | |
7572 | // -- For a non-type template-parameter of type pointer to data |
7573 | // member, qualification conversions (4.4) are applied. |
7574 | assert(ParamType->isMemberPointerType() && "Only pointers to members remain"); |
7575 | |
7576 | // FIXME: Deal with pack expansions here. |
7577 | if (CheckTemplateArgumentPointerToMember( |
7578 | S&: *this, Param, ParamType, ResultArg&: Arg, SugaredConverted, CanonicalConverted)) |
7579 | return ExprError(); |
7580 | return Arg; |
7581 | } |
7582 | |
7583 | static void DiagnoseTemplateParameterListArityMismatch( |
7584 | Sema &S, TemplateParameterList *New, TemplateParameterList *Old, |
7585 | Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); |
7586 | |
7587 | bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, |
7588 | TemplateParameterList *Params, |
7589 | TemplateArgumentLoc &Arg, |
7590 | bool PartialOrdering, |
7591 | bool *StrictPackMatch) { |
7592 | TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); |
7593 | auto [Template, DefaultArgs] = Name.getTemplateDeclAndDefaultArgs(); |
7594 | if (!Template) { |
7595 | // Any dependent template name is fine. |
7596 | assert(Name.isDependent() && "Non-dependent template isn't a declaration?"); |
7597 | return false; |
7598 | } |
7599 | |
7600 | if (Template->isInvalidDecl()) |
7601 | return true; |
7602 | |
7603 | // C++0x [temp.arg.template]p1: |
7604 | // A template-argument for a template template-parameter shall be |
7605 | // the name of a class template or an alias template, expressed as an |
7606 | // id-expression. When the template-argument names a class template, only |
7607 | // primary class templates are considered when matching the |
7608 | // template template argument with the corresponding parameter; |
7609 | // partial specializations are not considered even if their |
7610 | // parameter lists match that of the template template parameter. |
7611 | // |
7612 | // Note that we also allow template template parameters here, which |
7613 | // will happen when we are dealing with, e.g., class template |
7614 | // partial specializations. |
7615 | if (!isa<ClassTemplateDecl>(Val: Template) && |
7616 | !isa<TemplateTemplateParmDecl>(Val: Template) && |
7617 | !isa<TypeAliasTemplateDecl>(Val: Template) && |
7618 | !isa<BuiltinTemplateDecl>(Val: Template)) { |
7619 | assert(isa<FunctionTemplateDecl>(Template) && |
7620 | "Only function templates are possible here"); |
7621 | Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); |
7622 | Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) |
7623 | << Template; |
7624 | } |
7625 | |
7626 | // C++1z [temp.arg.template]p3: (DR 150) |
7627 | // A template-argument matches a template template-parameter P when P |
7628 | // is at least as specialized as the template-argument A. |
7629 | if (!isTemplateTemplateParameterAtLeastAsSpecializedAs( |
7630 | Params, Param, Template, DefaultArgs, Arg.getLocation(), |
7631 | PartialOrdering, StrictPackMatch)) |
7632 | return true; |
7633 | // P2113 |
7634 | // C++20[temp.func.order]p2 |
7635 | // [...] If both deductions succeed, the partial ordering selects the |
7636 | // more constrained template (if one exists) as determined below. |
7637 | SmallVector<AssociatedConstraint, 3> ParamsAC, TemplateAC; |
7638 | Params->getAssociatedConstraints(AC&: ParamsAC); |
7639 | // C++20[temp.arg.template]p3 |
7640 | // [...] In this comparison, if P is unconstrained, the constraints on A |
7641 | // are not considered. |
7642 | if (ParamsAC.empty()) |
7643 | return false; |
7644 | |
7645 | Template->getAssociatedConstraints(AC&: TemplateAC); |
7646 | |
7647 | bool IsParamAtLeastAsConstrained; |
7648 | if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, |
7649 | IsParamAtLeastAsConstrained)) |
7650 | return true; |
7651 | if (!IsParamAtLeastAsConstrained) { |
7652 | Diag(Arg.getLocation(), |
7653 | diag::err_template_template_parameter_not_at_least_as_constrained) |
7654 | << Template << Param << Arg.getSourceRange(); |
7655 | Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; |
7656 | Diag(Template->getLocation(), diag::note_entity_declared_at) << Template; |
7657 | MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, |
7658 | TemplateAC); |
7659 | return true; |
7660 | } |
7661 | return false; |
7662 | } |
7663 | |
7664 | static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl, |
7665 | unsigned HereDiagID, |
7666 | unsigned ExternalDiagID) { |
7667 | if (Decl.getLocation().isValid()) |
7668 | return S.Diag(Decl.getLocation(), HereDiagID); |
7669 | |
7670 | SmallString<128> Str; |
7671 | llvm::raw_svector_ostream Out(Str); |
7672 | PrintingPolicy PP = S.getPrintingPolicy(); |
7673 | PP.TerseOutput = 1; |
7674 | Decl.print(Out, PP); |
7675 | return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str(); |
7676 | } |
7677 | |
7678 | void Sema::NoteTemplateLocation(const NamedDecl &Decl, |
7679 | std::optional<SourceRange> ParamRange) { |
7680 | SemaDiagnosticBuilder DB = |
7681 | noteLocation(*this, Decl, diag::note_template_decl_here, |
7682 | diag::note_template_decl_external); |
7683 | if (ParamRange && ParamRange->isValid()) { |
7684 | assert(Decl.getLocation().isValid() && |
7685 | "Parameter range has location when Decl does not"); |
7686 | DB << *ParamRange; |
7687 | } |
7688 | } |
7689 | |
7690 | void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) { |
7691 | noteLocation(*this, Decl, diag::note_template_param_here, |
7692 | diag::note_template_param_external); |
7693 | } |
7694 | |
7695 | ExprResult Sema::BuildExpressionFromDeclTemplateArgument( |
7696 | const TemplateArgument &Arg, QualType ParamType, SourceLocation Loc, |
7697 | NamedDecl *TemplateParam) { |
7698 | // C++ [temp.param]p8: |
7699 | // |
7700 | // A non-type template-parameter of type "array of T" or |
7701 | // "function returning T" is adjusted to be of type "pointer to |
7702 | // T" or "pointer to function returning T", respectively. |
7703 | if (ParamType->isArrayType()) |
7704 | ParamType = Context.getArrayDecayedType(T: ParamType); |
7705 | else if (ParamType->isFunctionType()) |
7706 | ParamType = Context.getPointerType(T: ParamType); |
7707 | |
7708 | // For a NULL non-type template argument, return nullptr casted to the |
7709 | // parameter's type. |
7710 | if (Arg.getKind() == TemplateArgument::NullPtr) { |
7711 | return ImpCastExprToType( |
7712 | new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), |
7713 | ParamType, |
7714 | ParamType->getAs<MemberPointerType>() |
7715 | ? CK_NullToMemberPointer |
7716 | : CK_NullToPointer); |
7717 | } |
7718 | assert(Arg.getKind() == TemplateArgument::Declaration && |
7719 | "Only declaration template arguments permitted here"); |
7720 | |
7721 | ValueDecl *VD = Arg.getAsDecl(); |
7722 | |
7723 | CXXScopeSpec SS; |
7724 | if (ParamType->isMemberPointerType()) { |
7725 | // If this is a pointer to member, we need to use a qualified name to |
7726 | // form a suitable pointer-to-member constant. |
7727 | assert(VD->getDeclContext()->isRecord() && |
7728 | (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || |
7729 | isa<IndirectFieldDecl>(VD))); |
7730 | QualType ClassType |
7731 | = Context.getTypeDeclType(Decl: cast<RecordDecl>(VD->getDeclContext())); |
7732 | NestedNameSpecifier *Qualifier = |
7733 | NestedNameSpecifier::Create(Context, Prefix: nullptr, T: ClassType.getTypePtr()); |
7734 | SS.MakeTrivial(Context, Qualifier, R: Loc); |
7735 | } |
7736 | |
7737 | ExprResult RefExpr = BuildDeclarationNameExpr( |
7738 | SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); |
7739 | if (RefExpr.isInvalid()) |
7740 | return ExprError(); |
7741 | |
7742 | // For a pointer, the argument declaration is the pointee. Take its address. |
7743 | QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); |
7744 | if (ParamType->isPointerType() && !ElemT.isNull() && |
7745 | Context.hasSimilarType(T1: ElemT, T2: ParamType->getPointeeType())) { |
7746 | // Decay an array argument if we want a pointer to its first element. |
7747 | RefExpr = DefaultFunctionArrayConversion(E: RefExpr.get()); |
7748 | if (RefExpr.isInvalid()) |
7749 | return ExprError(); |
7750 | } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { |
7751 | // For any other pointer, take the address (or form a pointer-to-member). |
7752 | RefExpr = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_AddrOf, InputExpr: RefExpr.get()); |
7753 | if (RefExpr.isInvalid()) |
7754 | return ExprError(); |
7755 | } else if (ParamType->isRecordType()) { |
7756 | assert(isa<TemplateParamObjectDecl>(VD) && |
7757 | "arg for class template param not a template parameter object"); |
7758 | // No conversions apply in this case. |
7759 | return RefExpr; |
7760 | } else { |
7761 | assert(ParamType->isReferenceType() && |
7762 | "unexpected type for decl template argument"); |
7763 | if (NonTypeTemplateParmDecl *NTTP = |
7764 | dyn_cast_if_present<NonTypeTemplateParmDecl>(Val: TemplateParam)) { |
7765 | QualType TemplateParamType = NTTP->getType(); |
7766 | const AutoType *AT = TemplateParamType->getAs<AutoType>(); |
7767 | if (AT && AT->isDecltypeAuto()) { |
7768 | RefExpr = new (getASTContext()) SubstNonTypeTemplateParmExpr( |
7769 | ParamType->getPointeeType(), RefExpr.get()->getValueKind(), |
7770 | RefExpr.get()->getExprLoc(), RefExpr.get(), VD, NTTP->getIndex(), |
7771 | /*PackIndex=*/std::nullopt, |
7772 | /*RefParam=*/true, /*Final=*/true); |
7773 | } |
7774 | } |
7775 | } |
7776 | |
7777 | // At this point we should have the right value category. |
7778 | assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && |
7779 | "value kind mismatch for non-type template argument"); |
7780 | |
7781 | // The type of the template parameter can differ from the type of the |
7782 | // argument in various ways; convert it now if necessary. |
7783 | QualType DestExprType = ParamType.getNonLValueExprType(Context); |
7784 | if (!Context.hasSameType(T1: RefExpr.get()->getType(), T2: DestExprType)) { |
7785 | CastKind CK; |
7786 | if (Context.hasSimilarType(T1: RefExpr.get()->getType(), T2: DestExprType) || |
7787 | IsFunctionConversion(FromType: RefExpr.get()->getType(), ToType: DestExprType)) { |
7788 | CK = CK_NoOp; |
7789 | } else if (ParamType->isVoidPointerType() && |
7790 | RefExpr.get()->getType()->isPointerType()) { |
7791 | CK = CK_BitCast; |
7792 | } else { |
7793 | // FIXME: Pointers to members can need conversion derived-to-base or |
7794 | // base-to-derived conversions. We currently don't retain enough |
7795 | // information to convert properly (we need to track a cast path or |
7796 | // subobject number in the template argument). |
7797 | llvm_unreachable( |
7798 | "unexpected conversion required for non-type template argument"); |
7799 | } |
7800 | RefExpr = ImpCastExprToType(E: RefExpr.get(), Type: DestExprType, CK, |
7801 | VK: RefExpr.get()->getValueKind()); |
7802 | } |
7803 | |
7804 | return RefExpr; |
7805 | } |
7806 | |
7807 | /// Construct a new expression that refers to the given |
7808 | /// integral template argument with the given source-location |
7809 | /// information. |
7810 | /// |
7811 | /// This routine takes care of the mapping from an integral template |
7812 | /// argument (which may have any integral type) to the appropriate |
7813 | /// literal value. |
7814 | static Expr *BuildExpressionFromIntegralTemplateArgumentValue( |
7815 | Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) { |
7816 | assert(OrigT->isIntegralOrEnumerationType()); |
7817 | |
7818 | // If this is an enum type that we're instantiating, we need to use an integer |
7819 | // type the same size as the enumerator. We don't want to build an |
7820 | // IntegerLiteral with enum type. The integer type of an enum type can be of |
7821 | // any integral type with C++11 enum classes, make sure we create the right |
7822 | // type of literal for it. |
7823 | QualType T = OrigT; |
7824 | if (const EnumType *ET = OrigT->getAs<EnumType>()) |
7825 | T = ET->getDecl()->getIntegerType(); |
7826 | |
7827 | Expr *E; |
7828 | if (T->isAnyCharacterType()) { |
7829 | CharacterLiteralKind Kind; |
7830 | if (T->isWideCharType()) |
7831 | Kind = CharacterLiteralKind::Wide; |
7832 | else if (T->isChar8Type() && S.getLangOpts().Char8) |
7833 | Kind = CharacterLiteralKind::UTF8; |
7834 | else if (T->isChar16Type()) |
7835 | Kind = CharacterLiteralKind::UTF16; |
7836 | else if (T->isChar32Type()) |
7837 | Kind = CharacterLiteralKind::UTF32; |
7838 | else |
7839 | Kind = CharacterLiteralKind::Ascii; |
7840 | |
7841 | E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc); |
7842 | } else if (T->isBooleanType()) { |
7843 | E = CXXBoolLiteralExpr::Create(C: S.Context, Val: Int.getBoolValue(), Ty: T, Loc); |
7844 | } else { |
7845 | E = IntegerLiteral::Create(C: S.Context, V: Int, type: T, l: Loc); |
7846 | } |
7847 | |
7848 | if (OrigT->isEnumeralType()) { |
7849 | // FIXME: This is a hack. We need a better way to handle substituted |
7850 | // non-type template parameters. |
7851 | E = CStyleCastExpr::Create(Context: S.Context, T: OrigT, VK: VK_PRValue, K: CK_IntegralCast, Op: E, |
7852 | BasePath: nullptr, FPO: S.CurFPFeatureOverrides(), |
7853 | WrittenTy: S.Context.getTrivialTypeSourceInfo(T: OrigT, Loc), |
7854 | L: Loc, R: Loc); |
7855 | } |
7856 | |
7857 | return E; |
7858 | } |
7859 | |
7860 | static Expr *BuildExpressionFromNonTypeTemplateArgumentValue( |
7861 | Sema &S, QualType T, const APValue &Val, SourceLocation Loc) { |
7862 | auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * { |
7863 | auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc); |
7864 | ILE->setType(T); |
7865 | return ILE; |
7866 | }; |
7867 | |
7868 | switch (Val.getKind()) { |
7869 | case APValue::AddrLabelDiff: |
7870 | // This cannot occur in a template argument at all. |
7871 | case APValue::Array: |
7872 | case APValue::Struct: |
7873 | case APValue::Union: |
7874 | // These can only occur within a template parameter object, which is |
7875 | // represented as a TemplateArgument::Declaration. |
7876 | llvm_unreachable("unexpected template argument value"); |
7877 | |
7878 | case APValue::Int: |
7879 | return BuildExpressionFromIntegralTemplateArgumentValue(S, OrigT: T, Int: Val.getInt(), |
7880 | Loc); |
7881 | |
7882 | case APValue::Float: |
7883 | return FloatingLiteral::Create(C: S.Context, V: Val.getFloat(), /*IsExact=*/isexact: true, |
7884 | Type: T, L: Loc); |
7885 | |
7886 | case APValue::FixedPoint: |
7887 | return FixedPointLiteral::CreateFromRawInt( |
7888 | C: S.Context, V: Val.getFixedPoint().getValue(), type: T, l: Loc, |
7889 | Scale: Val.getFixedPoint().getScale()); |
7890 | |
7891 | case APValue::ComplexInt: { |
7892 | QualType ElemT = T->castAs<ComplexType>()->getElementType(); |
7893 | return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue( |
7894 | S, OrigT: ElemT, Int: Val.getComplexIntReal(), Loc), |
7895 | BuildExpressionFromIntegralTemplateArgumentValue( |
7896 | S, OrigT: ElemT, Int: Val.getComplexIntImag(), Loc)}); |
7897 | } |
7898 | |
7899 | case APValue::ComplexFloat: { |
7900 | QualType ElemT = T->castAs<ComplexType>()->getElementType(); |
7901 | return MakeInitList( |
7902 | {FloatingLiteral::Create(C: S.Context, V: Val.getComplexFloatReal(), isexact: true, |
7903 | Type: ElemT, L: Loc), |
7904 | FloatingLiteral::Create(C: S.Context, V: Val.getComplexFloatImag(), isexact: true, |
7905 | Type: ElemT, L: Loc)}); |
7906 | } |
7907 | |
7908 | case APValue::Vector: { |
7909 | QualType ElemT = T->castAs<VectorType>()->getElementType(); |
7910 | llvm::SmallVector<Expr *, 8> Elts; |
7911 | for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I) |
7912 | Elts.push_back(Elt: BuildExpressionFromNonTypeTemplateArgumentValue( |
7913 | S, T: ElemT, Val: Val.getVectorElt(I), Loc)); |
7914 | return MakeInitList(Elts); |
7915 | } |
7916 | |
7917 | case APValue::None: |
7918 | case APValue::Indeterminate: |
7919 | llvm_unreachable("Unexpected APValue kind."); |
7920 | case APValue::LValue: |
7921 | case APValue::MemberPointer: |
7922 | // There isn't necessarily a valid equivalent source-level syntax for |
7923 | // these; in particular, a naive lowering might violate access control. |
7924 | // So for now we lower to a ConstantExpr holding the value, wrapped around |
7925 | // an OpaqueValueExpr. |
7926 | // FIXME: We should have a better representation for this. |
7927 | ExprValueKind VK = VK_PRValue; |
7928 | if (T->isReferenceType()) { |
7929 | T = T->getPointeeType(); |
7930 | VK = VK_LValue; |
7931 | } |
7932 | auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK); |
7933 | return ConstantExpr::Create(S.Context, OVE, Val); |
7934 | } |
7935 | llvm_unreachable("Unhandled APValue::ValueKind enum"); |
7936 | } |
7937 | |
7938 | ExprResult |
7939 | Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg, |
7940 | SourceLocation Loc) { |
7941 | switch (Arg.getKind()) { |
7942 | case TemplateArgument::Null: |
7943 | case TemplateArgument::Type: |
7944 | case TemplateArgument::Template: |
7945 | case TemplateArgument::TemplateExpansion: |
7946 | case TemplateArgument::Pack: |
7947 | llvm_unreachable("not a non-type template argument"); |
7948 | |
7949 | case TemplateArgument::Expression: |
7950 | return Arg.getAsExpr(); |
7951 | |
7952 | case TemplateArgument::NullPtr: |
7953 | case TemplateArgument::Declaration: |
7954 | return BuildExpressionFromDeclTemplateArgument( |
7955 | Arg, ParamType: Arg.getNonTypeTemplateArgumentType(), Loc); |
7956 | |
7957 | case TemplateArgument::Integral: |
7958 | return BuildExpressionFromIntegralTemplateArgumentValue( |
7959 | S&: *this, OrigT: Arg.getIntegralType(), Int: Arg.getAsIntegral(), Loc); |
7960 | |
7961 | case TemplateArgument::StructuralValue: |
7962 | return BuildExpressionFromNonTypeTemplateArgumentValue( |
7963 | S&: *this, T: Arg.getStructuralValueType(), Val: Arg.getAsStructuralValue(), Loc); |
7964 | } |
7965 | llvm_unreachable("Unhandled TemplateArgument::ArgKind enum"); |
7966 | } |
7967 | |
7968 | /// Match two template parameters within template parameter lists. |
7969 | static bool MatchTemplateParameterKind( |
7970 | Sema &S, NamedDecl *New, |
7971 | const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old, |
7972 | const NamedDecl *OldInstFrom, bool Complain, |
7973 | Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { |
7974 | // Check the actual kind (type, non-type, template). |
7975 | if (Old->getKind() != New->getKind()) { |
7976 | if (Complain) { |
7977 | unsigned NextDiag = diag::err_template_param_different_kind; |
7978 | if (TemplateArgLoc.isValid()) { |
7979 | S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); |
7980 | NextDiag = diag::note_template_param_different_kind; |
7981 | } |
7982 | S.Diag(New->getLocation(), NextDiag) |
7983 | << (Kind != Sema::TPL_TemplateMatch); |
7984 | S.Diag(Old->getLocation(), diag::note_template_prev_declaration) |
7985 | << (Kind != Sema::TPL_TemplateMatch); |
7986 | } |
7987 | |
7988 | return false; |
7989 | } |
7990 | |
7991 | // Check that both are parameter packs or neither are parameter packs. |
7992 | // However, if we are matching a template template argument to a |
7993 | // template template parameter, the template template parameter can have |
7994 | // a parameter pack where the template template argument does not. |
7995 | if (Old->isTemplateParameterPack() != New->isTemplateParameterPack()) { |
7996 | if (Complain) { |
7997 | unsigned NextDiag = diag::err_template_parameter_pack_non_pack; |
7998 | if (TemplateArgLoc.isValid()) { |
7999 | S.Diag(TemplateArgLoc, |
8000 | diag::err_template_arg_template_params_mismatch); |
8001 | NextDiag = diag::note_template_parameter_pack_non_pack; |
8002 | } |
8003 | |
8004 | unsigned ParamKind = isa<TemplateTypeParmDecl>(Val: New)? 0 |
8005 | : isa<NonTypeTemplateParmDecl>(Val: New)? 1 |
8006 | : 2; |
8007 | S.Diag(New->getLocation(), NextDiag) |
8008 | << ParamKind << New->isParameterPack(); |
8009 | S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) |
8010 | << ParamKind << Old->isParameterPack(); |
8011 | } |
8012 | |
8013 | return false; |
8014 | } |
8015 | |
8016 | // For non-type template parameters, check the type of the parameter. |
8017 | if (NonTypeTemplateParmDecl *OldNTTP |
8018 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Old)) { |
8019 | NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(Val: New); |
8020 | |
8021 | // C++20 [temp.over.link]p6: |
8022 | // Two [non-type] template-parameters are equivalent [if] they have |
8023 | // equivalent types ignoring the use of type-constraints for |
8024 | // placeholder types |
8025 | QualType OldType = S.Context.getUnconstrainedType(T: OldNTTP->getType()); |
8026 | QualType NewType = S.Context.getUnconstrainedType(T: NewNTTP->getType()); |
8027 | if (!S.Context.hasSameType(T1: OldType, T2: NewType)) { |
8028 | if (Complain) { |
8029 | unsigned NextDiag = diag::err_template_nontype_parm_different_type; |
8030 | if (TemplateArgLoc.isValid()) { |
8031 | S.Diag(TemplateArgLoc, |
8032 | diag::err_template_arg_template_params_mismatch); |
8033 | NextDiag = diag::note_template_nontype_parm_different_type; |
8034 | } |
8035 | S.Diag(NewNTTP->getLocation(), NextDiag) |
8036 | << NewNTTP->getType() << (Kind != Sema::TPL_TemplateMatch); |
8037 | S.Diag(OldNTTP->getLocation(), |
8038 | diag::note_template_nontype_parm_prev_declaration) |
8039 | << OldNTTP->getType(); |
8040 | } |
8041 | |
8042 | return false; |
8043 | } |
8044 | } |
8045 | // For template template parameters, check the template parameter types. |
8046 | // The template parameter lists of template template |
8047 | // parameters must agree. |
8048 | else if (TemplateTemplateParmDecl *OldTTP = |
8049 | dyn_cast<TemplateTemplateParmDecl>(Val: Old)) { |
8050 | TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(Val: New); |
8051 | if (!S.TemplateParameterListsAreEqual( |
8052 | NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom, |
8053 | OldTTP->getTemplateParameters(), Complain, |
8054 | (Kind == Sema::TPL_TemplateMatch |
8055 | ? Sema::TPL_TemplateTemplateParmMatch |
8056 | : Kind), |
8057 | TemplateArgLoc)) |
8058 | return false; |
8059 | } |
8060 | |
8061 | if (Kind != Sema::TPL_TemplateParamsEquivalent && |
8062 | !isa<TemplateTemplateParmDecl>(Val: Old)) { |
8063 | const Expr *NewC = nullptr, *OldC = nullptr; |
8064 | |
8065 | if (isa<TemplateTypeParmDecl>(Val: New)) { |
8066 | if (const auto *TC = cast<TemplateTypeParmDecl>(Val: New)->getTypeConstraint()) |
8067 | NewC = TC->getImmediatelyDeclaredConstraint(); |
8068 | if (const auto *TC = cast<TemplateTypeParmDecl>(Val: Old)->getTypeConstraint()) |
8069 | OldC = TC->getImmediatelyDeclaredConstraint(); |
8070 | } else if (isa<NonTypeTemplateParmDecl>(Val: New)) { |
8071 | if (const Expr *E = cast<NonTypeTemplateParmDecl>(Val: New) |
8072 | ->getPlaceholderTypeConstraint()) |
8073 | NewC = E; |
8074 | if (const Expr *E = cast<NonTypeTemplateParmDecl>(Val: Old) |
8075 | ->getPlaceholderTypeConstraint()) |
8076 | OldC = E; |
8077 | } else |
8078 | llvm_unreachable("unexpected template parameter type"); |
8079 | |
8080 | auto Diagnose = [&] { |
8081 | S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), |
8082 | diag::err_template_different_type_constraint); |
8083 | S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), |
8084 | diag::note_template_prev_declaration) << /*declaration*/0; |
8085 | }; |
8086 | |
8087 | if (!NewC != !OldC) { |
8088 | if (Complain) |
8089 | Diagnose(); |
8090 | return false; |
8091 | } |
8092 | |
8093 | if (NewC) { |
8094 | if (!S.AreConstraintExpressionsEqual(Old: OldInstFrom, OldConstr: OldC, New: NewInstFrom, |
8095 | NewConstr: NewC)) { |
8096 | if (Complain) |
8097 | Diagnose(); |
8098 | return false; |
8099 | } |
8100 | } |
8101 | } |
8102 | |
8103 | return true; |
8104 | } |
8105 | |
8106 | /// Diagnose a known arity mismatch when comparing template argument |
8107 | /// lists. |
8108 | static |
8109 | void DiagnoseTemplateParameterListArityMismatch(Sema &S, |
8110 | TemplateParameterList *New, |
8111 | TemplateParameterList *Old, |
8112 | Sema::TemplateParameterListEqualKind Kind, |
8113 | SourceLocation TemplateArgLoc) { |
8114 | unsigned NextDiag = diag::err_template_param_list_different_arity; |
8115 | if (TemplateArgLoc.isValid()) { |
8116 | S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); |
8117 | NextDiag = diag::note_template_param_list_different_arity; |
8118 | } |
8119 | S.Diag(New->getTemplateLoc(), NextDiag) |
8120 | << (New->size() > Old->size()) |
8121 | << (Kind != Sema::TPL_TemplateMatch) |
8122 | << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); |
8123 | S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) |
8124 | << (Kind != Sema::TPL_TemplateMatch) |
8125 | << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); |
8126 | } |
8127 | |
8128 | bool Sema::TemplateParameterListsAreEqual( |
8129 | const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New, |
8130 | const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, |
8131 | TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { |
8132 | if (Old->size() != New->size()) { |
8133 | if (Complain) |
8134 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
8135 | TemplateArgLoc); |
8136 | |
8137 | return false; |
8138 | } |
8139 | |
8140 | // C++0x [temp.arg.template]p3: |
8141 | // A template-argument matches a template template-parameter (call it P) |
8142 | // when each of the template parameters in the template-parameter-list of |
8143 | // the template-argument's corresponding class template or alias template |
8144 | // (call it A) matches the corresponding template parameter in the |
8145 | // template-parameter-list of P. [...] |
8146 | TemplateParameterList::iterator NewParm = New->begin(); |
8147 | TemplateParameterList::iterator NewParmEnd = New->end(); |
8148 | for (TemplateParameterList::iterator OldParm = Old->begin(), |
8149 | OldParmEnd = Old->end(); |
8150 | OldParm != OldParmEnd; ++OldParm, ++NewParm) { |
8151 | if (NewParm == NewParmEnd) { |
8152 | if (Complain) |
8153 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
8154 | TemplateArgLoc); |
8155 | return false; |
8156 | } |
8157 | if (!MatchTemplateParameterKind(S&: *this, New: *NewParm, NewInstFrom, Old: *OldParm, |
8158 | OldInstFrom, Complain, Kind, |
8159 | TemplateArgLoc)) |
8160 | return false; |
8161 | } |
8162 | |
8163 | // Make sure we exhausted all of the arguments. |
8164 | if (NewParm != NewParmEnd) { |
8165 | if (Complain) |
8166 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
8167 | TemplateArgLoc); |
8168 | |
8169 | return false; |
8170 | } |
8171 | |
8172 | if (Kind != TPL_TemplateParamsEquivalent) { |
8173 | const Expr *NewRC = New->getRequiresClause(); |
8174 | const Expr *OldRC = Old->getRequiresClause(); |
8175 | |
8176 | auto Diagnose = [&] { |
8177 | Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), |
8178 | diag::err_template_different_requires_clause); |
8179 | Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), |
8180 | diag::note_template_prev_declaration) << /*declaration*/0; |
8181 | }; |
8182 | |
8183 | if (!NewRC != !OldRC) { |
8184 | if (Complain) |
8185 | Diagnose(); |
8186 | return false; |
8187 | } |
8188 | |
8189 | if (NewRC) { |
8190 | if (!AreConstraintExpressionsEqual(Old: OldInstFrom, OldConstr: OldRC, New: NewInstFrom, |
8191 | NewConstr: NewRC)) { |
8192 | if (Complain) |
8193 | Diagnose(); |
8194 | return false; |
8195 | } |
8196 | } |
8197 | } |
8198 | |
8199 | return true; |
8200 | } |
8201 | |
8202 | bool |
8203 | Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { |
8204 | if (!S) |
8205 | return false; |
8206 | |
8207 | // Find the nearest enclosing declaration scope. |
8208 | S = S->getDeclParent(); |
8209 | |
8210 | // C++ [temp.pre]p6: [P2096] |
8211 | // A template, explicit specialization, or partial specialization shall not |
8212 | // have C linkage. |
8213 | DeclContext *Ctx = S->getEntity(); |
8214 | if (Ctx && Ctx->isExternCContext()) { |
8215 | SourceRange Range = |
8216 | TemplateParams->getTemplateLoc().isInvalid() && TemplateParams->size() |
8217 | ? TemplateParams->getParam(Idx: 0)->getSourceRange() |
8218 | : TemplateParams->getSourceRange(); |
8219 | Diag(Range.getBegin(), diag::err_template_linkage) << Range; |
8220 | if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) |
8221 | Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); |
8222 | return true; |
8223 | } |
8224 | Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; |
8225 | |
8226 | // C++ [temp]p2: |
8227 | // A template-declaration can appear only as a namespace scope or |
8228 | // class scope declaration. |
8229 | // C++ [temp.expl.spec]p3: |
8230 | // An explicit specialization may be declared in any scope in which the |
8231 | // corresponding primary template may be defined. |
8232 | // C++ [temp.class.spec]p6: [P2096] |
8233 | // A partial specialization may be declared in any scope in which the |
8234 | // corresponding primary template may be defined. |
8235 | if (Ctx) { |
8236 | if (Ctx->isFileContext()) |
8237 | return false; |
8238 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: Ctx)) { |
8239 | // C++ [temp.mem]p2: |
8240 | // A local class shall not have member templates. |
8241 | if (RD->isLocalClass()) |
8242 | return Diag(TemplateParams->getTemplateLoc(), |
8243 | diag::err_template_inside_local_class) |
8244 | << TemplateParams->getSourceRange(); |
8245 | else |
8246 | return false; |
8247 | } |
8248 | } |
8249 | |
8250 | return Diag(TemplateParams->getTemplateLoc(), |
8251 | diag::err_template_outside_namespace_or_class_scope) |
8252 | << TemplateParams->getSourceRange(); |
8253 | } |
8254 | |
8255 | /// Determine what kind of template specialization the given declaration |
8256 | /// is. |
8257 | static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { |
8258 | if (!D) |
8259 | return TSK_Undeclared; |
8260 | |
8261 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: D)) |
8262 | return Record->getTemplateSpecializationKind(); |
8263 | if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: D)) |
8264 | return Function->getTemplateSpecializationKind(); |
8265 | if (VarDecl *Var = dyn_cast<VarDecl>(Val: D)) |
8266 | return Var->getTemplateSpecializationKind(); |
8267 | |
8268 | return TSK_Undeclared; |
8269 | } |
8270 | |
8271 | /// Check whether a specialization is well-formed in the current |
8272 | /// context. |
8273 | /// |
8274 | /// This routine determines whether a template specialization can be declared |
8275 | /// in the current context (C++ [temp.expl.spec]p2). |
8276 | /// |
8277 | /// \param S the semantic analysis object for which this check is being |
8278 | /// performed. |
8279 | /// |
8280 | /// \param Specialized the entity being specialized or instantiated, which |
8281 | /// may be a kind of template (class template, function template, etc.) or |
8282 | /// a member of a class template (member function, static data member, |
8283 | /// member class). |
8284 | /// |
8285 | /// \param PrevDecl the previous declaration of this entity, if any. |
8286 | /// |
8287 | /// \param Loc the location of the explicit specialization or instantiation of |
8288 | /// this entity. |
8289 | /// |
8290 | /// \param IsPartialSpecialization whether this is a partial specialization of |
8291 | /// a class template. |
8292 | /// |
8293 | /// \returns true if there was an error that we cannot recover from, false |
8294 | /// otherwise. |
8295 | static bool CheckTemplateSpecializationScope(Sema &S, |
8296 | NamedDecl *Specialized, |
8297 | NamedDecl *PrevDecl, |
8298 | SourceLocation Loc, |
8299 | bool IsPartialSpecialization) { |
8300 | // Keep these "kind" numbers in sync with the %select statements in the |
8301 | // various diagnostics emitted by this routine. |
8302 | int EntityKind = 0; |
8303 | if (isa<ClassTemplateDecl>(Val: Specialized)) |
8304 | EntityKind = IsPartialSpecialization? 1 : 0; |
8305 | else if (isa<VarTemplateDecl>(Val: Specialized)) |
8306 | EntityKind = IsPartialSpecialization ? 3 : 2; |
8307 | else if (isa<FunctionTemplateDecl>(Val: Specialized)) |
8308 | EntityKind = 4; |
8309 | else if (isa<CXXMethodDecl>(Val: Specialized)) |
8310 | EntityKind = 5; |
8311 | else if (isa<VarDecl>(Val: Specialized)) |
8312 | EntityKind = 6; |
8313 | else if (isa<RecordDecl>(Val: Specialized)) |
8314 | EntityKind = 7; |
8315 | else if (isa<EnumDecl>(Val: Specialized) && S.getLangOpts().CPlusPlus11) |
8316 | EntityKind = 8; |
8317 | else { |
8318 | S.Diag(Loc, diag::err_template_spec_unknown_kind) |
8319 | << S.getLangOpts().CPlusPlus11; |
8320 | S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
8321 | return true; |
8322 | } |
8323 | |
8324 | // C++ [temp.expl.spec]p2: |
8325 | // An explicit specialization may be declared in any scope in which |
8326 | // the corresponding primary template may be defined. |
8327 | if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { |
8328 | S.Diag(Loc, diag::err_template_spec_decl_function_scope) |
8329 | << Specialized; |
8330 | return true; |
8331 | } |
8332 | |
8333 | // C++ [temp.class.spec]p6: |
8334 | // A class template partial specialization may be declared in any |
8335 | // scope in which the primary template may be defined. |
8336 | DeclContext *SpecializedContext = |
8337 | Specialized->getDeclContext()->getRedeclContext(); |
8338 | DeclContext *DC = S.CurContext->getRedeclContext(); |
8339 | |
8340 | // Make sure that this redeclaration (or definition) occurs in the same |
8341 | // scope or an enclosing namespace. |
8342 | if (!(DC->isFileContext() ? DC->Encloses(DC: SpecializedContext) |
8343 | : DC->Equals(DC: SpecializedContext))) { |
8344 | if (isa<TranslationUnitDecl>(Val: SpecializedContext)) |
8345 | S.Diag(Loc, diag::err_template_spec_redecl_global_scope) |
8346 | << EntityKind << Specialized; |
8347 | else { |
8348 | auto *ND = cast<NamedDecl>(Val: SpecializedContext); |
8349 | int Diag = diag::err_template_spec_redecl_out_of_scope; |
8350 | if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) |
8351 | Diag = diag::ext_ms_template_spec_redecl_out_of_scope; |
8352 | S.Diag(Loc, Diag) << EntityKind << Specialized |
8353 | << ND << isa<CXXRecordDecl>(ND); |
8354 | } |
8355 | |
8356 | S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
8357 | |
8358 | // Don't allow specializing in the wrong class during error recovery. |
8359 | // Otherwise, things can go horribly wrong. |
8360 | if (DC->isRecord()) |
8361 | return true; |
8362 | } |
8363 | |
8364 | return false; |
8365 | } |
8366 | |
8367 | static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { |
8368 | if (!E->isTypeDependent()) |
8369 | return SourceLocation(); |
8370 | DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); |
8371 | Checker.TraverseStmt(E); |
8372 | if (Checker.MatchLoc.isInvalid()) |
8373 | return E->getSourceRange(); |
8374 | return Checker.MatchLoc; |
8375 | } |
8376 | |
8377 | static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { |
8378 | if (!TL.getType()->isDependentType()) |
8379 | return SourceLocation(); |
8380 | DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); |
8381 | Checker.TraverseTypeLoc(TL); |
8382 | if (Checker.MatchLoc.isInvalid()) |
8383 | return TL.getSourceRange(); |
8384 | return Checker.MatchLoc; |
8385 | } |
8386 | |
8387 | /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs |
8388 | /// that checks non-type template partial specialization arguments. |
8389 | static bool CheckNonTypeTemplatePartialSpecializationArgs( |
8390 | Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, |
8391 | const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { |
8392 | for (unsigned I = 0; I != NumArgs; ++I) { |
8393 | if (Args[I].getKind() == TemplateArgument::Pack) { |
8394 | if (CheckNonTypeTemplatePartialSpecializationArgs( |
8395 | S, TemplateNameLoc, Param, Args: Args[I].pack_begin(), |
8396 | NumArgs: Args[I].pack_size(), IsDefaultArgument)) |
8397 | return true; |
8398 | |
8399 | continue; |
8400 | } |
8401 | |
8402 | if (Args[I].getKind() != TemplateArgument::Expression) |
8403 | continue; |
8404 | |
8405 | Expr *ArgExpr = Args[I].getAsExpr(); |
8406 | |
8407 | // We can have a pack expansion of any of the bullets below. |
8408 | if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Val: ArgExpr)) |
8409 | ArgExpr = Expansion->getPattern(); |
8410 | |
8411 | // Strip off any implicit casts we added as part of type checking. |
8412 | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgExpr)) |
8413 | ArgExpr = ICE->getSubExpr(); |
8414 | |
8415 | // C++ [temp.class.spec]p8: |
8416 | // A non-type argument is non-specialized if it is the name of a |
8417 | // non-type parameter. All other non-type arguments are |
8418 | // specialized. |
8419 | // |
8420 | // Below, we check the two conditions that only apply to |
8421 | // specialized non-type arguments, so skip any non-specialized |
8422 | // arguments. |
8423 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: ArgExpr)) |
8424 | if (isa<NonTypeTemplateParmDecl>(Val: DRE->getDecl())) |
8425 | continue; |
8426 | |
8427 | // C++ [temp.class.spec]p9: |
8428 | // Within the argument list of a class template partial |
8429 | // specialization, the following restrictions apply: |
8430 | // -- A partially specialized non-type argument expression |
8431 | // shall not involve a template parameter of the partial |
8432 | // specialization except when the argument expression is a |
8433 | // simple identifier. |
8434 | // -- The type of a template parameter corresponding to a |
8435 | // specialized non-type argument shall not be dependent on a |
8436 | // parameter of the specialization. |
8437 | // DR1315 removes the first bullet, leaving an incoherent set of rules. |
8438 | // We implement a compromise between the original rules and DR1315: |
8439 | // -- A specialized non-type template argument shall not be |
8440 | // type-dependent and the corresponding template parameter |
8441 | // shall have a non-dependent type. |
8442 | SourceRange ParamUseRange = |
8443 | findTemplateParameterInType(Param->getDepth(), ArgExpr); |
8444 | if (ParamUseRange.isValid()) { |
8445 | if (IsDefaultArgument) { |
8446 | S.Diag(TemplateNameLoc, |
8447 | diag::err_dependent_non_type_arg_in_partial_spec); |
8448 | S.Diag(ParamUseRange.getBegin(), |
8449 | diag::note_dependent_non_type_default_arg_in_partial_spec) |
8450 | << ParamUseRange; |
8451 | } else { |
8452 | S.Diag(ParamUseRange.getBegin(), |
8453 | diag::err_dependent_non_type_arg_in_partial_spec) |
8454 | << ParamUseRange; |
8455 | } |
8456 | return true; |
8457 | } |
8458 | |
8459 | ParamUseRange = findTemplateParameter( |
8460 | Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); |
8461 | if (ParamUseRange.isValid()) { |
8462 | S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), |
8463 | diag::err_dependent_typed_non_type_arg_in_partial_spec) |
8464 | << Param->getType(); |
8465 | S.NoteTemplateParameterLocation(*Param); |
8466 | return true; |
8467 | } |
8468 | } |
8469 | |
8470 | return false; |
8471 | } |
8472 | |
8473 | bool Sema::CheckTemplatePartialSpecializationArgs( |
8474 | SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, |
8475 | unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { |
8476 | // We have to be conservative when checking a template in a dependent |
8477 | // context. |
8478 | if (PrimaryTemplate->getDeclContext()->isDependentContext()) |
8479 | return false; |
8480 | |
8481 | TemplateParameterList *TemplateParams = |
8482 | PrimaryTemplate->getTemplateParameters(); |
8483 | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
8484 | NonTypeTemplateParmDecl *Param |
8485 | = dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: I)); |
8486 | if (!Param) |
8487 | continue; |
8488 | |
8489 | if (CheckNonTypeTemplatePartialSpecializationArgs(S&: *this, TemplateNameLoc, |
8490 | Param, Args: &TemplateArgs[I], |
8491 | NumArgs: 1, IsDefaultArgument: I >= NumExplicit)) |
8492 | return true; |
8493 | } |
8494 | |
8495 | return false; |
8496 | } |
8497 | |
8498 | DeclResult Sema::ActOnClassTemplateSpecialization( |
8499 | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
8500 | SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, |
8501 | TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, |
8502 | MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { |
8503 | assert(TUK != TagUseKind::Reference && "References are not specializations"); |
8504 | |
8505 | SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; |
8506 | SourceLocation LAngleLoc = TemplateId.LAngleLoc; |
8507 | SourceLocation RAngleLoc = TemplateId.RAngleLoc; |
8508 | |
8509 | // Find the class template we're specializing |
8510 | TemplateName Name = TemplateId.Template.get(); |
8511 | ClassTemplateDecl *ClassTemplate |
8512 | = dyn_cast_or_null<ClassTemplateDecl>(Val: Name.getAsTemplateDecl()); |
8513 | |
8514 | if (!ClassTemplate) { |
8515 | Diag(TemplateNameLoc, diag::err_not_class_template_specialization) |
8516 | << (Name.getAsTemplateDecl() && |
8517 | isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); |
8518 | return true; |
8519 | } |
8520 | |
8521 | if (const auto *DSA = ClassTemplate->getAttr<NoSpecializationsAttr>()) { |
8522 | auto Message = DSA->getMessage(); |
8523 | Diag(TemplateNameLoc, diag::warn_invalid_specialization) |
8524 | << ClassTemplate << !Message.empty() << Message; |
8525 | Diag(DSA->getLoc(), diag::note_marked_here) << DSA; |
8526 | } |
8527 | |
8528 | if (S->isTemplateParamScope()) |
8529 | EnterTemplatedContext(S, ClassTemplate->getTemplatedDecl()); |
8530 | |
8531 | DeclContext *DC = ClassTemplate->getDeclContext(); |
8532 | |
8533 | bool isMemberSpecialization = false; |
8534 | bool isPartialSpecialization = false; |
8535 | |
8536 | if (SS.isSet()) { |
8537 | if (TUK != TagUseKind::Reference && TUK != TagUseKind::Friend && |
8538 | diagnoseQualifiedDeclaration(SS, DC, Name: ClassTemplate->getDeclName(), |
8539 | Loc: TemplateNameLoc, TemplateId: &TemplateId, |
8540 | /*IsMemberSpecialization=*/false)) |
8541 | return true; |
8542 | } |
8543 | |
8544 | // Check the validity of the template headers that introduce this |
8545 | // template. |
8546 | // FIXME: We probably shouldn't complain about these headers for |
8547 | // friend declarations. |
8548 | bool Invalid = false; |
8549 | TemplateParameterList *TemplateParams = |
8550 | MatchTemplateParametersToScopeSpecifier( |
8551 | DeclStartLoc: KWLoc, DeclLoc: TemplateNameLoc, SS, TemplateId: &TemplateId, ParamLists: TemplateParameterLists, |
8552 | IsFriend: TUK == TagUseKind::Friend, IsMemberSpecialization&: isMemberSpecialization, Invalid); |
8553 | if (Invalid) |
8554 | return true; |
8555 | |
8556 | // Check that we can declare a template specialization here. |
8557 | if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) |
8558 | return true; |
8559 | |
8560 | if (TemplateParams && DC->isDependentContext()) { |
8561 | ContextRAII SavedContext(*this, DC); |
8562 | if (RebuildTemplateParamsInCurrentInstantiation(Params: TemplateParams)) |
8563 | return true; |
8564 | } |
8565 | |
8566 | if (TemplateParams && TemplateParams->size() > 0) { |
8567 | isPartialSpecialization = true; |
8568 | |
8569 | if (TUK == TagUseKind::Friend) { |
8570 | Diag(KWLoc, diag::err_partial_specialization_friend) |
8571 | << SourceRange(LAngleLoc, RAngleLoc); |
8572 | return true; |
8573 | } |
8574 | |
8575 | // C++ [temp.class.spec]p10: |
8576 | // The template parameter list of a specialization shall not |
8577 | // contain default template argument values. |
8578 | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
8579 | Decl *Param = TemplateParams->getParam(Idx: I); |
8580 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
8581 | if (TTP->hasDefaultArgument()) { |
8582 | Diag(TTP->getDefaultArgumentLoc(), |
8583 | diag::err_default_arg_in_partial_spec); |
8584 | TTP->removeDefaultArgument(); |
8585 | } |
8586 | } else if (NonTypeTemplateParmDecl *NTTP |
8587 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
8588 | if (NTTP->hasDefaultArgument()) { |
8589 | Diag(NTTP->getDefaultArgumentLoc(), |
8590 | diag::err_default_arg_in_partial_spec) |
8591 | << NTTP->getDefaultArgument().getSourceRange(); |
8592 | NTTP->removeDefaultArgument(); |
8593 | } |
8594 | } else { |
8595 | TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
8596 | if (TTP->hasDefaultArgument()) { |
8597 | Diag(TTP->getDefaultArgument().getLocation(), |
8598 | diag::err_default_arg_in_partial_spec) |
8599 | << TTP->getDefaultArgument().getSourceRange(); |
8600 | TTP->removeDefaultArgument(); |
8601 | } |
8602 | } |
8603 | } |
8604 | } else if (TemplateParams) { |
8605 | if (TUK == TagUseKind::Friend) |
8606 | Diag(KWLoc, diag::err_template_spec_friend) |
8607 | << FixItHint::CreateRemoval( |
8608 | SourceRange(TemplateParams->getTemplateLoc(), |
8609 | TemplateParams->getRAngleLoc())) |
8610 | << SourceRange(LAngleLoc, RAngleLoc); |
8611 | } else { |
8612 | assert(TUK == TagUseKind::Friend && |
8613 | "should have a 'template<>' for this decl"); |
8614 | } |
8615 | |
8616 | // Check that the specialization uses the same tag kind as the |
8617 | // original template. |
8618 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
8619 | assert(Kind != TagTypeKind::Enum && |
8620 | "Invalid enum tag in class template spec!"); |
8621 | if (!isAcceptableTagRedeclaration(Previous: ClassTemplate->getTemplatedDecl(), NewTag: Kind, |
8622 | isDefinition: TUK == TagUseKind::Definition, NewTagLoc: KWLoc, |
8623 | Name: ClassTemplate->getIdentifier())) { |
8624 | Diag(KWLoc, diag::err_use_with_wrong_tag) |
8625 | << ClassTemplate |
8626 | << FixItHint::CreateReplacement(KWLoc, |
8627 | ClassTemplate->getTemplatedDecl()->getKindName()); |
8628 | Diag(ClassTemplate->getTemplatedDecl()->getLocation(), |
8629 | diag::note_previous_use); |
8630 | Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
8631 | } |
8632 | |
8633 | // Translate the parser's template argument list in our AST format. |
8634 | TemplateArgumentListInfo TemplateArgs = |
8635 | makeTemplateArgumentListInfo(S&: *this, TemplateId); |
8636 | |
8637 | // Check for unexpanded parameter packs in any of the template arguments. |
8638 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
8639 | if (DiagnoseUnexpandedParameterPack(Arg: TemplateArgs[I], |
8640 | UPPC: isPartialSpecialization |
8641 | ? UPPC_PartialSpecialization |
8642 | : UPPC_ExplicitSpecialization)) |
8643 | return true; |
8644 | |
8645 | // Check that the template argument list is well-formed for this |
8646 | // template. |
8647 | CheckTemplateArgumentInfo CTAI; |
8648 | if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, |
8649 | /*DefaultArgs=*/{}, |
8650 | /*PartialTemplateArgs=*/false, CTAI, |
8651 | /*UpdateArgsWithConversions=*/true)) |
8652 | return true; |
8653 | |
8654 | // Find the class template (partial) specialization declaration that |
8655 | // corresponds to these arguments. |
8656 | if (isPartialSpecialization) { |
8657 | if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, |
8658 | TemplateArgs.size(), |
8659 | CTAI.CanonicalConverted)) |
8660 | return true; |
8661 | |
8662 | // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we |
8663 | // also do it during instantiation. |
8664 | if (!Name.isDependent() && |
8665 | !TemplateSpecializationType::anyDependentTemplateArguments( |
8666 | TemplateArgs, Converted: CTAI.CanonicalConverted)) { |
8667 | Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) |
8668 | << ClassTemplate->getDeclName(); |
8669 | isPartialSpecialization = false; |
8670 | Invalid = true; |
8671 | } |
8672 | } |
8673 | |
8674 | void *InsertPos = nullptr; |
8675 | ClassTemplateSpecializationDecl *PrevDecl = nullptr; |
8676 | |
8677 | if (isPartialSpecialization) |
8678 | PrevDecl = ClassTemplate->findPartialSpecialization( |
8679 | Args: CTAI.CanonicalConverted, TPL: TemplateParams, InsertPos); |
8680 | else |
8681 | PrevDecl = |
8682 | ClassTemplate->findSpecialization(Args: CTAI.CanonicalConverted, InsertPos); |
8683 | |
8684 | ClassTemplateSpecializationDecl *Specialization = nullptr; |
8685 | |
8686 | // Check whether we can declare a class template specialization in |
8687 | // the current scope. |
8688 | if (TUK != TagUseKind::Friend && |
8689 | CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, |
8690 | TemplateNameLoc, |
8691 | isPartialSpecialization)) |
8692 | return true; |
8693 | |
8694 | QualType CanonType; |
8695 | if (!isPartialSpecialization) { |
8696 | // Create a new class template specialization declaration node for |
8697 | // this explicit specialization or friend declaration. |
8698 | Specialization = ClassTemplateSpecializationDecl::Create( |
8699 | Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, IdLoc: TemplateNameLoc, |
8700 | SpecializedTemplate: ClassTemplate, Args: CTAI.CanonicalConverted, StrictPackMatch: CTAI.StrictPackMatch, PrevDecl); |
8701 | Specialization->setTemplateArgsAsWritten(TemplateArgs); |
8702 | SetNestedNameSpecifier(*this, Specialization, SS); |
8703 | if (TemplateParameterLists.size() > 0) { |
8704 | Specialization->setTemplateParameterListsInfo(Context, |
8705 | TemplateParameterLists); |
8706 | } |
8707 | |
8708 | if (!PrevDecl) |
8709 | ClassTemplate->AddSpecialization(D: Specialization, InsertPos); |
8710 | |
8711 | if (!CurContext->isDependentContext()) |
8712 | CanonType = Context.getTypeDeclType(Specialization); |
8713 | } |
8714 | |
8715 | TypeSourceInfo *WrittenTy = Context.getTemplateSpecializationTypeInfo( |
8716 | T: Name, TLoc: TemplateNameLoc, SpecifiedArgs: TemplateArgs, CanonicalArgs: CTAI.CanonicalConverted, Canon: CanonType); |
8717 | |
8718 | if (isPartialSpecialization) { |
8719 | if (Context.hasSameType( |
8720 | T1: WrittenTy->getType(), |
8721 | T2: ClassTemplate->getInjectedClassNameSpecialization()) && |
8722 | (!Context.getLangOpts().CPlusPlus20 || |
8723 | !TemplateParams->hasAssociatedConstraints())) { |
8724 | // C++ [temp.class.spec]p9b3: |
8725 | // |
8726 | // -- The argument list of the specialization shall not be identical |
8727 | // to the implicit argument list of the primary template. |
8728 | // |
8729 | // This rule has since been removed, because it's redundant given DR1495, |
8730 | // but we keep it because it produces better diagnostics and recovery. |
8731 | Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) |
8732 | << /*class template*/ 0 << (TUK == TagUseKind::Definition) |
8733 | << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); |
8734 | return CheckClassTemplate( |
8735 | S, TagSpec, TUK, KWLoc, SS, Name: ClassTemplate->getIdentifier(), |
8736 | NameLoc: TemplateNameLoc, Attr, TemplateParams, AS: AS_none, |
8737 | /*ModulePrivateLoc=*/SourceLocation(), |
8738 | /*FriendLoc*/ SourceLocation(), NumOuterTemplateParamLists: TemplateParameterLists.size() - 1, |
8739 | OuterTemplateParamLists: TemplateParameterLists.data()); |
8740 | } |
8741 | |
8742 | // Create a new class template partial specialization declaration node. |
8743 | ClassTemplatePartialSpecializationDecl *PrevPartial |
8744 | = cast_or_null<ClassTemplatePartialSpecializationDecl>(Val: PrevDecl); |
8745 | ClassTemplatePartialSpecializationDecl *Partial = |
8746 | ClassTemplatePartialSpecializationDecl::Create( |
8747 | Context, TK: Kind, DC, StartLoc: KWLoc, IdLoc: TemplateNameLoc, Params: TemplateParams, |
8748 | SpecializedTemplate: ClassTemplate, Args: CTAI.CanonicalConverted, CanonInjectedType: WrittenTy->getType(), |
8749 | PrevDecl: PrevPartial); |
8750 | Partial->setTemplateArgsAsWritten(TemplateArgs); |
8751 | SetNestedNameSpecifier(*this, Partial, SS); |
8752 | if (TemplateParameterLists.size() > 1 && SS.isSet()) { |
8753 | Partial->setTemplateParameterListsInfo( |
8754 | Context, TemplateParameterLists.drop_back(N: 1)); |
8755 | } |
8756 | |
8757 | if (!PrevPartial) |
8758 | ClassTemplate->AddPartialSpecialization(D: Partial, InsertPos); |
8759 | Specialization = Partial; |
8760 | |
8761 | // If we are providing an explicit specialization of a member class |
8762 | // template specialization, make a note of that. |
8763 | if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
8764 | PrevPartial->setMemberSpecialization(); |
8765 | |
8766 | CheckTemplatePartialSpecialization(Partial); |
8767 | } |
8768 | |
8769 | // C++ [temp.expl.spec]p6: |
8770 | // If a template, a member template or the member of a class template is |
8771 | // explicitly specialized then that specialization shall be declared |
8772 | // before the first use of that specialization that would cause an implicit |
8773 | // instantiation to take place, in every translation unit in which such a |
8774 | // use occurs; no diagnostic is required. |
8775 | if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
8776 | bool Okay = false; |
8777 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
8778 | // Is there any previous explicit specialization declaration? |
8779 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
8780 | Okay = true; |
8781 | break; |
8782 | } |
8783 | } |
8784 | |
8785 | if (!Okay) { |
8786 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
8787 | Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) |
8788 | << Context.getTypeDeclType(Specialization) << Range; |
8789 | |
8790 | Diag(PrevDecl->getPointOfInstantiation(), |
8791 | diag::note_instantiation_required_here) |
8792 | << (PrevDecl->getTemplateSpecializationKind() |
8793 | != TSK_ImplicitInstantiation); |
8794 | return true; |
8795 | } |
8796 | } |
8797 | |
8798 | // If this is not a friend, note that this is an explicit specialization. |
8799 | if (TUK != TagUseKind::Friend) |
8800 | Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
8801 | |
8802 | // Check that this isn't a redefinition of this specialization. |
8803 | if (TUK == TagUseKind::Definition) { |
8804 | RecordDecl *Def = Specialization->getDefinition(); |
8805 | NamedDecl *Hidden = nullptr; |
8806 | if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { |
8807 | SkipBody->ShouldSkip = true; |
8808 | SkipBody->Previous = Def; |
8809 | makeMergedDefinitionVisible(ND: Hidden); |
8810 | } else if (Def) { |
8811 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
8812 | Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; |
8813 | Diag(Def->getLocation(), diag::note_previous_definition); |
8814 | Specialization->setInvalidDecl(); |
8815 | return true; |
8816 | } |
8817 | } |
8818 | |
8819 | ProcessDeclAttributeList(S, Specialization, Attr); |
8820 | ProcessAPINotes(Specialization); |
8821 | |
8822 | // Add alignment attributes if necessary; these attributes are checked when |
8823 | // the ASTContext lays out the structure. |
8824 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
8825 | if (LangOpts.HLSL) |
8826 | Specialization->addAttr(PackedAttr::CreateImplicit(Context)); |
8827 | AddAlignmentAttributesForRecord(Specialization); |
8828 | AddMsStructLayoutForRecord(Specialization); |
8829 | } |
8830 | |
8831 | if (ModulePrivateLoc.isValid()) |
8832 | Diag(Specialization->getLocation(), diag::err_module_private_specialization) |
8833 | << (isPartialSpecialization? 1 : 0) |
8834 | << FixItHint::CreateRemoval(ModulePrivateLoc); |
8835 | |
8836 | // C++ [temp.expl.spec]p9: |
8837 | // A template explicit specialization is in the scope of the |
8838 | // namespace in which the template was defined. |
8839 | // |
8840 | // We actually implement this paragraph where we set the semantic |
8841 | // context (in the creation of the ClassTemplateSpecializationDecl), |
8842 | // but we also maintain the lexical context where the actual |
8843 | // definition occurs. |
8844 | Specialization->setLexicalDeclContext(CurContext); |
8845 | |
8846 | // We may be starting the definition of this specialization. |
8847 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) |
8848 | Specialization->startDefinition(); |
8849 | |
8850 | if (TUK == TagUseKind::Friend) { |
8851 | // Build the fully-sugared type for this class template |
8852 | // specialization as the user wrote in the specialization |
8853 | // itself. This means that we'll pretty-print the type retrieved |
8854 | // from the specialization's declaration the way that the user |
8855 | // actually wrote the specialization, rather than formatting the |
8856 | // name based on the "canonical" representation used to store the |
8857 | // template arguments in the specialization. |
8858 | FriendDecl *Friend = FriendDecl::Create(C&: Context, DC: CurContext, |
8859 | L: TemplateNameLoc, |
8860 | Friend_: WrittenTy, |
8861 | /*FIXME:*/FriendL: KWLoc); |
8862 | Friend->setAccess(AS_public); |
8863 | CurContext->addDecl(Friend); |
8864 | } else { |
8865 | // Add the specialization into its lexical context, so that it can |
8866 | // be seen when iterating through the list of declarations in that |
8867 | // context. However, specializations are not found by name lookup. |
8868 | CurContext->addDecl(Specialization); |
8869 | } |
8870 | |
8871 | if (SkipBody && SkipBody->ShouldSkip) |
8872 | return SkipBody->Previous; |
8873 | |
8874 | Specialization->setInvalidDecl(Invalid); |
8875 | inferGslOwnerPointerAttribute(Specialization); |
8876 | return Specialization; |
8877 | } |
8878 | |
8879 | Decl *Sema::ActOnTemplateDeclarator(Scope *S, |
8880 | MultiTemplateParamsArg TemplateParameterLists, |
8881 | Declarator &D) { |
8882 | Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); |
8883 | ActOnDocumentableDecl(D: NewDecl); |
8884 | return NewDecl; |
8885 | } |
8886 | |
8887 | ConceptDecl *Sema::ActOnStartConceptDefinition( |
8888 | Scope *S, MultiTemplateParamsArg TemplateParameterLists, |
8889 | const IdentifierInfo *Name, SourceLocation NameLoc) { |
8890 | DeclContext *DC = CurContext; |
8891 | |
8892 | if (!DC->getRedeclContext()->isFileContext()) { |
8893 | Diag(NameLoc, |
8894 | diag::err_concept_decls_may_only_appear_in_global_namespace_scope); |
8895 | return nullptr; |
8896 | } |
8897 | |
8898 | if (TemplateParameterLists.size() > 1) { |
8899 | Diag(NameLoc, diag::err_concept_extra_headers); |
8900 | return nullptr; |
8901 | } |
8902 | |
8903 | TemplateParameterList *Params = TemplateParameterLists.front(); |
8904 | |
8905 | if (Params->size() == 0) { |
8906 | Diag(NameLoc, diag::err_concept_no_parameters); |
8907 | return nullptr; |
8908 | } |
8909 | |
8910 | // Ensure that the parameter pack, if present, is the last parameter in the |
8911 | // template. |
8912 | for (TemplateParameterList::const_iterator ParamIt = Params->begin(), |
8913 | ParamEnd = Params->end(); |
8914 | ParamIt != ParamEnd; ++ParamIt) { |
8915 | Decl const *Param = *ParamIt; |
8916 | if (Param->isParameterPack()) { |
8917 | if (++ParamIt == ParamEnd) |
8918 | break; |
8919 | Diag(Param->getLocation(), |
8920 | diag::err_template_param_pack_must_be_last_template_parameter); |
8921 | return nullptr; |
8922 | } |
8923 | } |
8924 | |
8925 | ConceptDecl *NewDecl = |
8926 | ConceptDecl::Create(C&: Context, DC, L: NameLoc, Name, Params); |
8927 | |
8928 | if (NewDecl->hasAssociatedConstraints()) { |
8929 | // C++2a [temp.concept]p4: |
8930 | // A concept shall not have associated constraints. |
8931 | Diag(NameLoc, diag::err_concept_no_associated_constraints); |
8932 | NewDecl->setInvalidDecl(); |
8933 | } |
8934 | |
8935 | DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NewDecl->getBeginLoc()); |
8936 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
8937 | forRedeclarationInCurContext()); |
8938 | LookupName(R&: Previous, S); |
8939 | FilterLookupForScope(R&: Previous, Ctx: CurContext, S, /*ConsiderLinkage=*/false, |
8940 | /*AllowInlineNamespace*/ false); |
8941 | |
8942 | // We cannot properly handle redeclarations until we parse the constraint |
8943 | // expression, so only inject the name if we are sure we are not redeclaring a |
8944 | // symbol |
8945 | if (Previous.empty()) |
8946 | PushOnScopeChains(NewDecl, S, true); |
8947 | |
8948 | return NewDecl; |
8949 | } |
8950 | |
8951 | static bool RemoveLookupResult(LookupResult &R, NamedDecl *C) { |
8952 | bool Found = false; |
8953 | LookupResult::Filter F = R.makeFilter(); |
8954 | while (F.hasNext()) { |
8955 | NamedDecl *D = F.next(); |
8956 | if (D == C) { |
8957 | F.erase(); |
8958 | Found = true; |
8959 | break; |
8960 | } |
8961 | } |
8962 | F.done(); |
8963 | return Found; |
8964 | } |
8965 | |
8966 | ConceptDecl * |
8967 | Sema::ActOnFinishConceptDefinition(Scope *S, ConceptDecl *C, |
8968 | Expr *ConstraintExpr, |
8969 | const ParsedAttributesView &Attrs) { |
8970 | assert(!C->hasDefinition() && "Concept already defined"); |
8971 | if (DiagnoseUnexpandedParameterPack(E: ConstraintExpr)) |
8972 | return nullptr; |
8973 | C->setDefinition(ConstraintExpr); |
8974 | ProcessDeclAttributeList(S, C, Attrs); |
8975 | |
8976 | // Check for conflicting previous declaration. |
8977 | DeclarationNameInfo NameInfo(C->getDeclName(), C->getBeginLoc()); |
8978 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
8979 | forRedeclarationInCurContext()); |
8980 | LookupName(R&: Previous, S); |
8981 | FilterLookupForScope(R&: Previous, Ctx: CurContext, S, /*ConsiderLinkage=*/false, |
8982 | /*AllowInlineNamespace*/ false); |
8983 | bool WasAlreadyAdded = RemoveLookupResult(Previous, C); |
8984 | bool AddToScope = true; |
8985 | CheckConceptRedefinition(NewDecl: C, Previous, AddToScope); |
8986 | |
8987 | ActOnDocumentableDecl(C); |
8988 | if (!WasAlreadyAdded && AddToScope) |
8989 | PushOnScopeChains(C, S); |
8990 | |
8991 | return C; |
8992 | } |
8993 | |
8994 | void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl, |
8995 | LookupResult &Previous, bool &AddToScope) { |
8996 | AddToScope = true; |
8997 | |
8998 | if (Previous.empty()) |
8999 | return; |
9000 | |
9001 | auto *OldConcept = dyn_cast<ConceptDecl>(Val: Previous.getRepresentativeDecl()->getUnderlyingDecl()); |
9002 | if (!OldConcept) { |
9003 | auto *Old = Previous.getRepresentativeDecl(); |
9004 | Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind) |
9005 | << NewDecl->getDeclName(); |
9006 | notePreviousDefinition(Old, New: NewDecl->getLocation()); |
9007 | AddToScope = false; |
9008 | return; |
9009 | } |
9010 | // Check if we can merge with a concept declaration. |
9011 | bool IsSame = Context.isSameEntity(NewDecl, OldConcept); |
9012 | if (!IsSame) { |
9013 | Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept) |
9014 | << NewDecl->getDeclName(); |
9015 | notePreviousDefinition(Old: OldConcept, New: NewDecl->getLocation()); |
9016 | AddToScope = false; |
9017 | return; |
9018 | } |
9019 | if (hasReachableDefinition(OldConcept) && |
9020 | IsRedefinitionInModule(NewDecl, OldConcept)) { |
9021 | Diag(NewDecl->getLocation(), diag::err_redefinition) |
9022 | << NewDecl->getDeclName(); |
9023 | notePreviousDefinition(Old: OldConcept, New: NewDecl->getLocation()); |
9024 | AddToScope = false; |
9025 | return; |
9026 | } |
9027 | if (!Previous.isSingleResult()) { |
9028 | // FIXME: we should produce an error in case of ambig and failed lookups. |
9029 | // Other decls (e.g. namespaces) also have this shortcoming. |
9030 | return; |
9031 | } |
9032 | // We unwrap canonical decl late to check for module visibility. |
9033 | Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl()); |
9034 | } |
9035 | |
9036 | bool Sema::CheckConceptUseInDefinition(ConceptDecl *Concept, |
9037 | SourceLocation Loc) { |
9038 | if (!Concept->isInvalidDecl() && !Concept->hasDefinition()) { |
9039 | Diag(Loc, diag::err_recursive_concept) << Concept; |
9040 | Diag(Concept->getLocation(), diag::note_declared_at); |
9041 | return true; |
9042 | } |
9043 | return false; |
9044 | } |
9045 | |
9046 | /// \brief Strips various properties off an implicit instantiation |
9047 | /// that has just been explicitly specialized. |
9048 | static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) { |
9049 | if (MinGW || (isa<FunctionDecl>(D) && |
9050 | cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) |
9051 | D->dropAttrs<DLLImportAttr, DLLExportAttr>(); |
9052 | |
9053 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) |
9054 | FD->setInlineSpecified(false); |
9055 | } |
9056 | |
9057 | /// Compute the diagnostic location for an explicit instantiation |
9058 | // declaration or definition. |
9059 | static SourceLocation DiagLocForExplicitInstantiation( |
9060 | NamedDecl* D, SourceLocation PointOfInstantiation) { |
9061 | // Explicit instantiations following a specialization have no effect and |
9062 | // hence no PointOfInstantiation. In that case, walk decl backwards |
9063 | // until a valid name loc is found. |
9064 | SourceLocation PrevDiagLoc = PointOfInstantiation; |
9065 | for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); |
9066 | Prev = Prev->getPreviousDecl()) { |
9067 | PrevDiagLoc = Prev->getLocation(); |
9068 | } |
9069 | assert(PrevDiagLoc.isValid() && |
9070 | "Explicit instantiation without point of instantiation?"); |
9071 | return PrevDiagLoc; |
9072 | } |
9073 | |
9074 | bool |
9075 | Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, |
9076 | TemplateSpecializationKind NewTSK, |
9077 | NamedDecl *PrevDecl, |
9078 | TemplateSpecializationKind PrevTSK, |
9079 | SourceLocation PrevPointOfInstantiation, |
9080 | bool &HasNoEffect) { |
9081 | HasNoEffect = false; |
9082 | |
9083 | switch (NewTSK) { |
9084 | case TSK_Undeclared: |
9085 | case TSK_ImplicitInstantiation: |
9086 | assert( |
9087 | (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && |
9088 | "previous declaration must be implicit!"); |
9089 | return false; |
9090 | |
9091 | case TSK_ExplicitSpecialization: |
9092 | switch (PrevTSK) { |
9093 | case TSK_Undeclared: |
9094 | case TSK_ExplicitSpecialization: |
9095 | // Okay, we're just specializing something that is either already |
9096 | // explicitly specialized or has merely been mentioned without any |
9097 | // instantiation. |
9098 | return false; |
9099 | |
9100 | case TSK_ImplicitInstantiation: |
9101 | if (PrevPointOfInstantiation.isInvalid()) { |
9102 | // The declaration itself has not actually been instantiated, so it is |
9103 | // still okay to specialize it. |
9104 | StripImplicitInstantiation( |
9105 | D: PrevDecl, MinGW: Context.getTargetInfo().getTriple().isOSCygMing()); |
9106 | return false; |
9107 | } |
9108 | // Fall through |
9109 | [[fallthrough]]; |
9110 | |
9111 | case TSK_ExplicitInstantiationDeclaration: |
9112 | case TSK_ExplicitInstantiationDefinition: |
9113 | assert((PrevTSK == TSK_ImplicitInstantiation || |
9114 | PrevPointOfInstantiation.isValid()) && |
9115 | "Explicit instantiation without point of instantiation?"); |
9116 | |
9117 | // C++ [temp.expl.spec]p6: |
9118 | // If a template, a member template or the member of a class template |
9119 | // is explicitly specialized then that specialization shall be declared |
9120 | // before the first use of that specialization that would cause an |
9121 | // implicit instantiation to take place, in every translation unit in |
9122 | // which such a use occurs; no diagnostic is required. |
9123 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
9124 | // Is there any previous explicit specialization declaration? |
9125 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) |
9126 | return false; |
9127 | } |
9128 | |
9129 | Diag(NewLoc, diag::err_specialization_after_instantiation) |
9130 | << PrevDecl; |
9131 | Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) |
9132 | << (PrevTSK != TSK_ImplicitInstantiation); |
9133 | |
9134 | return true; |
9135 | } |
9136 | llvm_unreachable("The switch over PrevTSK must be exhaustive."); |
9137 | |
9138 | case TSK_ExplicitInstantiationDeclaration: |
9139 | switch (PrevTSK) { |
9140 | case TSK_ExplicitInstantiationDeclaration: |
9141 | // This explicit instantiation declaration is redundant (that's okay). |
9142 | HasNoEffect = true; |
9143 | return false; |
9144 | |
9145 | case TSK_Undeclared: |
9146 | case TSK_ImplicitInstantiation: |
9147 | // We're explicitly instantiating something that may have already been |
9148 | // implicitly instantiated; that's fine. |
9149 | return false; |
9150 | |
9151 | case TSK_ExplicitSpecialization: |
9152 | // C++0x [temp.explicit]p4: |
9153 | // For a given set of template parameters, if an explicit instantiation |
9154 | // of a template appears after a declaration of an explicit |
9155 | // specialization for that template, the explicit instantiation has no |
9156 | // effect. |
9157 | HasNoEffect = true; |
9158 | return false; |
9159 | |
9160 | case TSK_ExplicitInstantiationDefinition: |
9161 | // C++0x [temp.explicit]p10: |
9162 | // If an entity is the subject of both an explicit instantiation |
9163 | // declaration and an explicit instantiation definition in the same |
9164 | // translation unit, the definition shall follow the declaration. |
9165 | Diag(NewLoc, |
9166 | diag::err_explicit_instantiation_declaration_after_definition); |
9167 | |
9168 | // Explicit instantiations following a specialization have no effect and |
9169 | // hence no PrevPointOfInstantiation. In that case, walk decl backwards |
9170 | // until a valid name loc is found. |
9171 | Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), |
9172 | diag::note_explicit_instantiation_definition_here); |
9173 | HasNoEffect = true; |
9174 | return false; |
9175 | } |
9176 | llvm_unreachable("Unexpected TemplateSpecializationKind!"); |
9177 | |
9178 | case TSK_ExplicitInstantiationDefinition: |
9179 | switch (PrevTSK) { |
9180 | case TSK_Undeclared: |
9181 | case TSK_ImplicitInstantiation: |
9182 | // We're explicitly instantiating something that may have already been |
9183 | // implicitly instantiated; that's fine. |
9184 | return false; |
9185 | |
9186 | case TSK_ExplicitSpecialization: |
9187 | // C++ DR 259, C++0x [temp.explicit]p4: |
9188 | // For a given set of template parameters, if an explicit |
9189 | // instantiation of a template appears after a declaration of |
9190 | // an explicit specialization for that template, the explicit |
9191 | // instantiation has no effect. |
9192 | Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) |
9193 | << PrevDecl; |
9194 | Diag(PrevDecl->getLocation(), |
9195 | diag::note_previous_template_specialization); |
9196 | HasNoEffect = true; |
9197 | return false; |
9198 | |
9199 | case TSK_ExplicitInstantiationDeclaration: |
9200 | // We're explicitly instantiating a definition for something for which we |
9201 | // were previously asked to suppress instantiations. That's fine. |
9202 | |
9203 | // C++0x [temp.explicit]p4: |
9204 | // For a given set of template parameters, if an explicit instantiation |
9205 | // of a template appears after a declaration of an explicit |
9206 | // specialization for that template, the explicit instantiation has no |
9207 | // effect. |
9208 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
9209 | // Is there any previous explicit specialization declaration? |
9210 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
9211 | HasNoEffect = true; |
9212 | break; |
9213 | } |
9214 | } |
9215 | |
9216 | return false; |
9217 | |
9218 | case TSK_ExplicitInstantiationDefinition: |
9219 | // C++0x [temp.spec]p5: |
9220 | // For a given template and a given set of template-arguments, |
9221 | // - an explicit instantiation definition shall appear at most once |
9222 | // in a program, |
9223 | |
9224 | // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. |
9225 | Diag(NewLoc, (getLangOpts().MSVCCompat) |
9226 | ? diag::ext_explicit_instantiation_duplicate |
9227 | : diag::err_explicit_instantiation_duplicate) |
9228 | << PrevDecl; |
9229 | Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), |
9230 | diag::note_previous_explicit_instantiation); |
9231 | HasNoEffect = true; |
9232 | return false; |
9233 | } |
9234 | } |
9235 | |
9236 | llvm_unreachable("Missing specialization/instantiation case?"); |
9237 | } |
9238 | |
9239 | bool Sema::CheckDependentFunctionTemplateSpecialization( |
9240 | FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs, |
9241 | LookupResult &Previous) { |
9242 | // Remove anything from Previous that isn't a function template in |
9243 | // the correct context. |
9244 | DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); |
9245 | LookupResult::Filter F = Previous.makeFilter(); |
9246 | enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; |
9247 | SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; |
9248 | while (F.hasNext()) { |
9249 | NamedDecl *D = F.next()->getUnderlyingDecl(); |
9250 | if (!isa<FunctionTemplateDecl>(Val: D)) { |
9251 | F.erase(); |
9252 | DiscardedCandidates.push_back(std::make_pair(x: NotAFunctionTemplate, y&: D)); |
9253 | continue; |
9254 | } |
9255 | |
9256 | if (!FDLookupContext->InEnclosingNamespaceSetOf( |
9257 | NS: D->getDeclContext()->getRedeclContext())) { |
9258 | F.erase(); |
9259 | DiscardedCandidates.push_back(std::make_pair(x: NotAMemberOfEnclosing, y&: D)); |
9260 | continue; |
9261 | } |
9262 | } |
9263 | F.done(); |
9264 | |
9265 | bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None; |
9266 | if (Previous.empty()) { |
9267 | Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match) |
9268 | << IsFriend; |
9269 | for (auto &P : DiscardedCandidates) |
9270 | Diag(P.second->getLocation(), |
9271 | diag::note_dependent_function_template_spec_discard_reason) |
9272 | << P.first << IsFriend; |
9273 | return true; |
9274 | } |
9275 | |
9276 | FD->setDependentTemplateSpecialization(Context, Templates: Previous.asUnresolvedSet(), |
9277 | TemplateArgs: ExplicitTemplateArgs); |
9278 | return false; |
9279 | } |
9280 | |
9281 | bool Sema::CheckFunctionTemplateSpecialization( |
9282 | FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, |
9283 | LookupResult &Previous, bool QualifiedFriend) { |
9284 | // The set of function template specializations that could match this |
9285 | // explicit function template specialization. |
9286 | UnresolvedSet<8> Candidates; |
9287 | TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), |
9288 | /*ForTakingAddress=*/false); |
9289 | |
9290 | llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> |
9291 | ConvertedTemplateArgs; |
9292 | |
9293 | DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); |
9294 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
9295 | I != E; ++I) { |
9296 | NamedDecl *Ovl = (*I)->getUnderlyingDecl(); |
9297 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Ovl)) { |
9298 | // Only consider templates found within the same semantic lookup scope as |
9299 | // FD. |
9300 | if (!FDLookupContext->InEnclosingNamespaceSetOf( |
9301 | NS: Ovl->getDeclContext()->getRedeclContext())) |
9302 | continue; |
9303 | |
9304 | QualType FT = FD->getType(); |
9305 | // C++11 [dcl.constexpr]p8: |
9306 | // A constexpr specifier for a non-static member function that is not |
9307 | // a constructor declares that member function to be const. |
9308 | // |
9309 | // When matching a constexpr member function template specialization |
9310 | // against the primary template, we don't yet know whether the |
9311 | // specialization has an implicit 'const' (because we don't know whether |
9312 | // it will be a static member function until we know which template it |
9313 | // specializes). This rule was removed in C++14. |
9314 | if (auto *NewMD = dyn_cast<CXXMethodDecl>(Val: FD); |
9315 | !getLangOpts().CPlusPlus14 && NewMD && NewMD->isConstexpr() && |
9316 | !isa<CXXConstructorDecl, CXXDestructorDecl>(Val: NewMD)) { |
9317 | auto *OldMD = dyn_cast<CXXMethodDecl>(Val: FunTmpl->getTemplatedDecl()); |
9318 | if (OldMD && OldMD->isConst()) { |
9319 | const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); |
9320 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
9321 | EPI.TypeQuals.addConst(); |
9322 | FT = Context.getFunctionType(ResultTy: FPT->getReturnType(), |
9323 | Args: FPT->getParamTypes(), EPI); |
9324 | } |
9325 | } |
9326 | |
9327 | TemplateArgumentListInfo Args; |
9328 | if (ExplicitTemplateArgs) |
9329 | Args = *ExplicitTemplateArgs; |
9330 | |
9331 | // C++ [temp.expl.spec]p11: |
9332 | // A trailing template-argument can be left unspecified in the |
9333 | // template-id naming an explicit function template specialization |
9334 | // provided it can be deduced from the function argument type. |
9335 | // Perform template argument deduction to determine whether we may be |
9336 | // specializing this template. |
9337 | // FIXME: It is somewhat wasteful to build |
9338 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
9339 | FunctionDecl *Specialization = nullptr; |
9340 | if (TemplateDeductionResult TDK = DeduceTemplateArguments( |
9341 | cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), |
9342 | ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info); |
9343 | TDK != TemplateDeductionResult::Success) { |
9344 | // Template argument deduction failed; record why it failed, so |
9345 | // that we can provide nifty diagnostics. |
9346 | FailedCandidates.addCandidate().set( |
9347 | I.getPair(), FunTmpl->getTemplatedDecl(), |
9348 | MakeDeductionFailureInfo(Context, TDK, Info)); |
9349 | (void)TDK; |
9350 | continue; |
9351 | } |
9352 | |
9353 | // Target attributes are part of the cuda function signature, so |
9354 | // the deduced template's cuda target must match that of the |
9355 | // specialization. Given that C++ template deduction does not |
9356 | // take target attributes into account, we reject candidates |
9357 | // here that have a different target. |
9358 | if (LangOpts.CUDA && |
9359 | CUDA().IdentifyTarget(D: Specialization, |
9360 | /* IgnoreImplicitHDAttr = */ true) != |
9361 | CUDA().IdentifyTarget(D: FD, /* IgnoreImplicitHDAttr = */ true)) { |
9362 | FailedCandidates.addCandidate().set( |
9363 | I.getPair(), FunTmpl->getTemplatedDecl(), |
9364 | MakeDeductionFailureInfo( |
9365 | Context, TDK: TemplateDeductionResult::CUDATargetMismatch, Info)); |
9366 | continue; |
9367 | } |
9368 | |
9369 | // Record this candidate. |
9370 | if (ExplicitTemplateArgs) |
9371 | ConvertedTemplateArgs[Specialization] = std::move(Args); |
9372 | Candidates.addDecl(Specialization, I.getAccess()); |
9373 | } |
9374 | } |
9375 | |
9376 | // For a qualified friend declaration (with no explicit marker to indicate |
9377 | // that a template specialization was intended), note all (template and |
9378 | // non-template) candidates. |
9379 | if (QualifiedFriend && Candidates.empty()) { |
9380 | Diag(FD->getLocation(), diag::err_qualified_friend_no_match) |
9381 | << FD->getDeclName() << FDLookupContext; |
9382 | // FIXME: We should form a single candidate list and diagnose all |
9383 | // candidates at once, to get proper sorting and limiting. |
9384 | for (auto *OldND : Previous) { |
9385 | if (auto *OldFD = dyn_cast<FunctionDecl>(Val: OldND->getUnderlyingDecl())) |
9386 | NoteOverloadCandidate(Found: OldND, Fn: OldFD, RewriteKind: CRK_None, DestType: FD->getType(), TakingAddress: false); |
9387 | } |
9388 | FailedCandidates.NoteCandidates(*this, FD->getLocation()); |
9389 | return true; |
9390 | } |
9391 | |
9392 | // Find the most specialized function template. |
9393 | UnresolvedSetIterator Result = getMostSpecialized( |
9394 | Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), |
9395 | PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), |
9396 | PDiag(diag::err_function_template_spec_ambiguous) |
9397 | << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), |
9398 | PDiag(diag::note_function_template_spec_matched)); |
9399 | |
9400 | if (Result == Candidates.end()) |
9401 | return true; |
9402 | |
9403 | // Ignore access information; it doesn't figure into redeclaration checking. |
9404 | FunctionDecl *Specialization = cast<FunctionDecl>(Val: *Result); |
9405 | |
9406 | if (const auto *PT = Specialization->getPrimaryTemplate(); |
9407 | const auto *DSA = PT->getAttr<NoSpecializationsAttr>()) { |
9408 | auto Message = DSA->getMessage(); |
9409 | Diag(FD->getLocation(), diag::warn_invalid_specialization) |
9410 | << PT << !Message.empty() << Message; |
9411 | Diag(DSA->getLoc(), diag::note_marked_here) << DSA; |
9412 | } |
9413 | |
9414 | // C++23 [except.spec]p13: |
9415 | // An exception specification is considered to be needed when: |
9416 | // - [...] |
9417 | // - the exception specification is compared to that of another declaration |
9418 | // (e.g., an explicit specialization or an overriding virtual function); |
9419 | // - [...] |
9420 | // |
9421 | // The exception specification of a defaulted function is evaluated as |
9422 | // described above only when needed; similarly, the noexcept-specifier of a |
9423 | // specialization of a function template or member function of a class |
9424 | // template is instantiated only when needed. |
9425 | // |
9426 | // The standard doesn't specify what the "comparison with another declaration" |
9427 | // entails, nor the exact circumstances in which it occurs. Moreover, it does |
9428 | // not state which properties of an explicit specialization must match the |
9429 | // primary template. |
9430 | // |
9431 | // We assume that an explicit specialization must correspond with (per |
9432 | // [basic.scope.scope]p4) and declare the same entity as (per [basic.link]p8) |
9433 | // the declaration produced by substitution into the function template. |
9434 | // |
9435 | // Since the determination whether two function declarations correspond does |
9436 | // not consider exception specification, we only need to instantiate it once |
9437 | // we determine the primary template when comparing types per |
9438 | // [basic.link]p11.1. |
9439 | auto *SpecializationFPT = |
9440 | Specialization->getType()->castAs<FunctionProtoType>(); |
9441 | // If the function has a dependent exception specification, resolve it after |
9442 | // we have selected the primary template so we can check whether it matches. |
9443 | if (getLangOpts().CPlusPlus17 && |
9444 | isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && |
9445 | !ResolveExceptionSpec(Loc: FD->getLocation(), FPT: SpecializationFPT)) |
9446 | return true; |
9447 | |
9448 | FunctionTemplateSpecializationInfo *SpecInfo |
9449 | = Specialization->getTemplateSpecializationInfo(); |
9450 | assert(SpecInfo && "Function template specialization info missing?"); |
9451 | |
9452 | // Note: do not overwrite location info if previous template |
9453 | // specialization kind was explicit. |
9454 | TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); |
9455 | if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { |
9456 | Specialization->setLocation(FD->getLocation()); |
9457 | Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); |
9458 | // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr |
9459 | // function can differ from the template declaration with respect to |
9460 | // the constexpr specifier. |
9461 | // FIXME: We need an update record for this AST mutation. |
9462 | // FIXME: What if there are multiple such prior declarations (for instance, |
9463 | // from different modules)? |
9464 | Specialization->setConstexprKind(FD->getConstexprKind()); |
9465 | } |
9466 | |
9467 | // FIXME: Check if the prior specialization has a point of instantiation. |
9468 | // If so, we have run afoul of . |
9469 | |
9470 | // If this is a friend declaration, then we're not really declaring |
9471 | // an explicit specialization. |
9472 | bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); |
9473 | |
9474 | // Check the scope of this explicit specialization. |
9475 | if (!isFriend && |
9476 | CheckTemplateSpecializationScope(*this, |
9477 | Specialization->getPrimaryTemplate(), |
9478 | Specialization, FD->getLocation(), |
9479 | false)) |
9480 | return true; |
9481 | |
9482 | // C++ [temp.expl.spec]p6: |
9483 | // If a template, a member template or the member of a class template is |
9484 | // explicitly specialized then that specialization shall be declared |
9485 | // before the first use of that specialization that would cause an implicit |
9486 | // instantiation to take place, in every translation unit in which such a |
9487 | // use occurs; no diagnostic is required. |
9488 | bool HasNoEffect = false; |
9489 | if (!isFriend && |
9490 | CheckSpecializationInstantiationRedecl(NewLoc: FD->getLocation(), |
9491 | NewTSK: TSK_ExplicitSpecialization, |
9492 | PrevDecl: Specialization, |
9493 | PrevTSK: SpecInfo->getTemplateSpecializationKind(), |
9494 | PrevPointOfInstantiation: SpecInfo->getPointOfInstantiation(), |
9495 | HasNoEffect)) |
9496 | return true; |
9497 | |
9498 | // Mark the prior declaration as an explicit specialization, so that later |
9499 | // clients know that this is an explicit specialization. |
9500 | // A dependent friend specialization which has a definition should be treated |
9501 | // as explicit specialization, despite being invalid. |
9502 | if (FunctionDecl *InstFrom = FD->getInstantiatedFromMemberFunction(); |
9503 | !isFriend || (InstFrom && InstFrom->getDependentSpecializationInfo())) { |
9504 | // Since explicit specializations do not inherit '=delete' from their |
9505 | // primary function template - check if the 'specialization' that was |
9506 | // implicitly generated (during template argument deduction for partial |
9507 | // ordering) from the most specialized of all the function templates that |
9508 | // 'FD' could have been specializing, has a 'deleted' definition. If so, |
9509 | // first check that it was implicitly generated during template argument |
9510 | // deduction by making sure it wasn't referenced, and then reset the deleted |
9511 | // flag to not-deleted, so that we can inherit that information from 'FD'. |
9512 | if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && |
9513 | !Specialization->getCanonicalDecl()->isReferenced()) { |
9514 | // FIXME: This assert will not hold in the presence of modules. |
9515 | assert( |
9516 | Specialization->getCanonicalDecl() == Specialization && |
9517 | "This must be the only existing declaration of this specialization"); |
9518 | // FIXME: We need an update record for this AST mutation. |
9519 | Specialization->setDeletedAsWritten(D: false); |
9520 | } |
9521 | // FIXME: We need an update record for this AST mutation. |
9522 | SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
9523 | MarkUnusedFileScopedDecl(Specialization); |
9524 | } |
9525 | |
9526 | // Turn the given function declaration into a function template |
9527 | // specialization, with the template arguments from the previous |
9528 | // specialization. |
9529 | // Take copies of (semantic and syntactic) template argument lists. |
9530 | TemplateArgumentList *TemplArgs = TemplateArgumentList::CreateCopy( |
9531 | Context, Args: Specialization->getTemplateSpecializationArgs()->asArray()); |
9532 | FD->setFunctionTemplateSpecialization( |
9533 | Template: Specialization->getPrimaryTemplate(), TemplateArgs: TemplArgs, /*InsertPos=*/nullptr, |
9534 | TSK: SpecInfo->getTemplateSpecializationKind(), |
9535 | TemplateArgsAsWritten: ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); |
9536 | |
9537 | // A function template specialization inherits the target attributes |
9538 | // of its template. (We require the attributes explicitly in the |
9539 | // code to match, but a template may have implicit attributes by |
9540 | // virtue e.g. of being constexpr, and it passes these implicit |
9541 | // attributes on to its specializations.) |
9542 | if (LangOpts.CUDA) |
9543 | CUDA().inheritTargetAttrs(FD, TD: *Specialization->getPrimaryTemplate()); |
9544 | |
9545 | // The "previous declaration" for this function template specialization is |
9546 | // the prior function template specialization. |
9547 | Previous.clear(); |
9548 | Previous.addDecl(Specialization); |
9549 | return false; |
9550 | } |
9551 | |
9552 | bool |
9553 | Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { |
9554 | assert(!Member->isTemplateDecl() && !Member->getDescribedTemplate() && |
9555 | "Only for non-template members"); |
9556 | |
9557 | // Try to find the member we are instantiating. |
9558 | NamedDecl *FoundInstantiation = nullptr; |
9559 | NamedDecl *Instantiation = nullptr; |
9560 | NamedDecl *InstantiatedFrom = nullptr; |
9561 | MemberSpecializationInfo *MSInfo = nullptr; |
9562 | |
9563 | if (Previous.empty()) { |
9564 | // Nowhere to look anyway. |
9565 | } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: Member)) { |
9566 | UnresolvedSet<8> Candidates; |
9567 | for (NamedDecl *Candidate : Previous) { |
9568 | auto *Method = dyn_cast<CXXMethodDecl>(Val: Candidate->getUnderlyingDecl()); |
9569 | // Ignore any candidates that aren't member functions. |
9570 | if (!Method) |
9571 | continue; |
9572 | |
9573 | QualType Adjusted = Function->getType(); |
9574 | if (!hasExplicitCallingConv(T: Adjusted)) |
9575 | Adjusted = adjustCCAndNoReturn(ArgFunctionType: Adjusted, FunctionType: Method->getType()); |
9576 | // Ignore any candidates with the wrong type. |
9577 | // This doesn't handle deduced return types, but both function |
9578 | // declarations should be undeduced at this point. |
9579 | // FIXME: The exception specification should probably be ignored when |
9580 | // comparing the types. |
9581 | if (!Context.hasSameType(Adjusted, Method->getType())) |
9582 | continue; |
9583 | |
9584 | // Ignore any candidates with unsatisfied constraints. |
9585 | if (ConstraintSatisfaction Satisfaction; |
9586 | Method->getTrailingRequiresClause() && |
9587 | (CheckFunctionConstraints(FD: Method, Satisfaction, |
9588 | /*UsageLoc=*/Member->getLocation(), |
9589 | /*ForOverloadResolution=*/true) || |
9590 | !Satisfaction.IsSatisfied)) |
9591 | continue; |
9592 | |
9593 | Candidates.addDecl(D: Candidate); |
9594 | } |
9595 | |
9596 | // If we have no viable candidates left after filtering, we are done. |
9597 | if (Candidates.empty()) |
9598 | return false; |
9599 | |
9600 | // Find the function that is more constrained than every other function it |
9601 | // has been compared to. |
9602 | UnresolvedSetIterator Best = Candidates.begin(); |
9603 | CXXMethodDecl *BestMethod = nullptr; |
9604 | for (UnresolvedSetIterator I = Candidates.begin(), E = Candidates.end(); |
9605 | I != E; ++I) { |
9606 | auto *Method = cast<CXXMethodDecl>(Val: I->getUnderlyingDecl()); |
9607 | if (I == Best || |
9608 | getMoreConstrainedFunction(Method, BestMethod) == Method) { |
9609 | Best = I; |
9610 | BestMethod = Method; |
9611 | } |
9612 | } |
9613 | |
9614 | FoundInstantiation = *Best; |
9615 | Instantiation = BestMethod; |
9616 | InstantiatedFrom = BestMethod->getInstantiatedFromMemberFunction(); |
9617 | MSInfo = BestMethod->getMemberSpecializationInfo(); |
9618 | |
9619 | // Make sure the best candidate is more constrained than all of the others. |
9620 | bool Ambiguous = false; |
9621 | for (UnresolvedSetIterator I = Candidates.begin(), E = Candidates.end(); |
9622 | I != E; ++I) { |
9623 | auto *Method = cast<CXXMethodDecl>(Val: I->getUnderlyingDecl()); |
9624 | if (I != Best && |
9625 | getMoreConstrainedFunction(Method, BestMethod) != BestMethod) { |
9626 | Ambiguous = true; |
9627 | break; |
9628 | } |
9629 | } |
9630 | |
9631 | if (Ambiguous) { |
9632 | Diag(Member->getLocation(), diag::err_function_member_spec_ambiguous) |
9633 | << Member << (InstantiatedFrom ? InstantiatedFrom : Instantiation); |
9634 | for (NamedDecl *Candidate : Candidates) { |
9635 | Candidate = Candidate->getUnderlyingDecl(); |
9636 | Diag(Candidate->getLocation(), diag::note_function_member_spec_matched) |
9637 | << Candidate; |
9638 | } |
9639 | return true; |
9640 | } |
9641 | } else if (isa<VarDecl>(Val: Member)) { |
9642 | VarDecl *PrevVar; |
9643 | if (Previous.isSingleResult() && |
9644 | (PrevVar = dyn_cast<VarDecl>(Val: Previous.getFoundDecl()))) |
9645 | if (PrevVar->isStaticDataMember()) { |
9646 | FoundInstantiation = Previous.getRepresentativeDecl(); |
9647 | Instantiation = PrevVar; |
9648 | InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); |
9649 | MSInfo = PrevVar->getMemberSpecializationInfo(); |
9650 | } |
9651 | } else if (isa<RecordDecl>(Val: Member)) { |
9652 | CXXRecordDecl *PrevRecord; |
9653 | if (Previous.isSingleResult() && |
9654 | (PrevRecord = dyn_cast<CXXRecordDecl>(Val: Previous.getFoundDecl()))) { |
9655 | FoundInstantiation = Previous.getRepresentativeDecl(); |
9656 | Instantiation = PrevRecord; |
9657 | InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); |
9658 | MSInfo = PrevRecord->getMemberSpecializationInfo(); |
9659 | } |
9660 | } else if (isa<EnumDecl>(Val: Member)) { |
9661 | EnumDecl *PrevEnum; |
9662 | if (Previous.isSingleResult() && |
9663 | (PrevEnum = dyn_cast<EnumDecl>(Val: Previous.getFoundDecl()))) { |
9664 | FoundInstantiation = Previous.getRepresentativeDecl(); |
9665 | Instantiation = PrevEnum; |
9666 | InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); |
9667 | MSInfo = PrevEnum->getMemberSpecializationInfo(); |
9668 | } |
9669 | } |
9670 | |
9671 | if (!Instantiation) { |
9672 | // There is no previous declaration that matches. Since member |
9673 | // specializations are always out-of-line, the caller will complain about |
9674 | // this mismatch later. |
9675 | return false; |
9676 | } |
9677 | |
9678 | // A member specialization in a friend declaration isn't really declaring |
9679 | // an explicit specialization, just identifying a specific (possibly implicit) |
9680 | // specialization. Don't change the template specialization kind. |
9681 | // |
9682 | // FIXME: Is this really valid? Other compilers reject. |
9683 | if (Member->getFriendObjectKind() != Decl::FOK_None) { |
9684 | // Preserve instantiation information. |
9685 | if (InstantiatedFrom && isa<CXXMethodDecl>(Val: Member)) { |
9686 | cast<CXXMethodDecl>(Val: Member)->setInstantiationOfMemberFunction( |
9687 | cast<CXXMethodDecl>(Val: InstantiatedFrom), |
9688 | cast<CXXMethodDecl>(Val: Instantiation)->getTemplateSpecializationKind()); |
9689 | } else if (InstantiatedFrom && isa<CXXRecordDecl>(Val: Member)) { |
9690 | cast<CXXRecordDecl>(Val: Member)->setInstantiationOfMemberClass( |
9691 | RD: cast<CXXRecordDecl>(Val: InstantiatedFrom), |
9692 | TSK: cast<CXXRecordDecl>(Val: Instantiation)->getTemplateSpecializationKind()); |
9693 | } |
9694 | |
9695 | Previous.clear(); |
9696 | Previous.addDecl(D: FoundInstantiation); |
9697 | return false; |
9698 | } |
9699 | |
9700 | // Make sure that this is a specialization of a member. |
9701 | if (!InstantiatedFrom) { |
9702 | Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) |
9703 | << Member; |
9704 | Diag(Instantiation->getLocation(), diag::note_specialized_decl); |
9705 | return true; |
9706 | } |
9707 | |
9708 | // C++ [temp.expl.spec]p6: |
9709 | // If a template, a member template or the member of a class template is |
9710 | // explicitly specialized then that specialization shall be declared |
9711 | // before the first use of that specialization that would cause an implicit |
9712 | // instantiation to take place, in every translation unit in which such a |
9713 | // use occurs; no diagnostic is required. |
9714 | assert(MSInfo && "Member specialization info missing?"); |
9715 | |
9716 | bool HasNoEffect = false; |
9717 | if (CheckSpecializationInstantiationRedecl(NewLoc: Member->getLocation(), |
9718 | NewTSK: TSK_ExplicitSpecialization, |
9719 | PrevDecl: Instantiation, |
9720 | PrevTSK: MSInfo->getTemplateSpecializationKind(), |
9721 | PrevPointOfInstantiation: MSInfo->getPointOfInstantiation(), |
9722 | HasNoEffect)) |
9723 | return true; |
9724 | |
9725 | // Check the scope of this explicit specialization. |
9726 | if (CheckTemplateSpecializationScope(*this, |
9727 | InstantiatedFrom, |
9728 | Instantiation, Member->getLocation(), |
9729 | false)) |
9730 | return true; |
9731 | |
9732 | // Note that this member specialization is an "instantiation of" the |
9733 | // corresponding member of the original template. |
9734 | if (auto *MemberFunction = dyn_cast<FunctionDecl>(Val: Member)) { |
9735 | FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Val: Instantiation); |
9736 | if (InstantiationFunction->getTemplateSpecializationKind() == |
9737 | TSK_ImplicitInstantiation) { |
9738 | // Explicit specializations of member functions of class templates do not |
9739 | // inherit '=delete' from the member function they are specializing. |
9740 | if (InstantiationFunction->isDeleted()) { |
9741 | // FIXME: This assert will not hold in the presence of modules. |
9742 | assert(InstantiationFunction->getCanonicalDecl() == |
9743 | InstantiationFunction); |
9744 | // FIXME: We need an update record for this AST mutation. |
9745 | InstantiationFunction->setDeletedAsWritten(D: false); |
9746 | } |
9747 | } |
9748 | |
9749 | MemberFunction->setInstantiationOfMemberFunction( |
9750 | cast<CXXMethodDecl>(Val: InstantiatedFrom), TSK_ExplicitSpecialization); |
9751 | } else if (auto *MemberVar = dyn_cast<VarDecl>(Val: Member)) { |
9752 | MemberVar->setInstantiationOfStaticDataMember( |
9753 | VD: cast<VarDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
9754 | } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Val: Member)) { |
9755 | MemberClass->setInstantiationOfMemberClass( |
9756 | RD: cast<CXXRecordDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
9757 | } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Val: Member)) { |
9758 | MemberEnum->setInstantiationOfMemberEnum( |
9759 | ED: cast<EnumDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
9760 | } else { |
9761 | llvm_unreachable("unknown member specialization kind"); |
9762 | } |
9763 | |
9764 | // Save the caller the trouble of having to figure out which declaration |
9765 | // this specialization matches. |
9766 | Previous.clear(); |
9767 | Previous.addDecl(D: FoundInstantiation); |
9768 | return false; |
9769 | } |
9770 | |
9771 | /// Complete the explicit specialization of a member of a class template by |
9772 | /// updating the instantiated member to be marked as an explicit specialization. |
9773 | /// |
9774 | /// \param OrigD The member declaration instantiated from the template. |
9775 | /// \param Loc The location of the explicit specialization of the member. |
9776 | template<typename DeclT> |
9777 | static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, |
9778 | SourceLocation Loc) { |
9779 | if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
9780 | return; |
9781 | |
9782 | // FIXME: Inform AST mutation listeners of this AST mutation. |
9783 | // FIXME: If there are multiple in-class declarations of the member (from |
9784 | // multiple modules, or a declaration and later definition of a member type), |
9785 | // should we update all of them? |
9786 | OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
9787 | OrigD->setLocation(Loc); |
9788 | } |
9789 | |
9790 | void Sema::CompleteMemberSpecialization(NamedDecl *Member, |
9791 | LookupResult &Previous) { |
9792 | NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); |
9793 | if (Instantiation == Member) |
9794 | return; |
9795 | |
9796 | if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) |
9797 | completeMemberSpecializationImpl(*this, Function, Member->getLocation()); |
9798 | else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) |
9799 | completeMemberSpecializationImpl(*this, Var, Member->getLocation()); |
9800 | else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) |
9801 | completeMemberSpecializationImpl(*this, Record, Member->getLocation()); |
9802 | else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) |
9803 | completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); |
9804 | else |
9805 | llvm_unreachable("unknown member specialization kind"); |
9806 | } |
9807 | |
9808 | /// Check the scope of an explicit instantiation. |
9809 | /// |
9810 | /// \returns true if a serious error occurs, false otherwise. |
9811 | static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, |
9812 | SourceLocation InstLoc, |
9813 | bool WasQualifiedName) { |
9814 | DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); |
9815 | DeclContext *CurContext = S.CurContext->getRedeclContext(); |
9816 | |
9817 | if (CurContext->isRecord()) { |
9818 | S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) |
9819 | << D; |
9820 | return true; |
9821 | } |
9822 | |
9823 | // C++11 [temp.explicit]p3: |
9824 | // An explicit instantiation shall appear in an enclosing namespace of its |
9825 | // template. If the name declared in the explicit instantiation is an |
9826 | // unqualified name, the explicit instantiation shall appear in the |
9827 | // namespace where its template is declared or, if that namespace is inline |
9828 | // (7.3.1), any namespace from its enclosing namespace set. |
9829 | // |
9830 | // This is DR275, which we do not retroactively apply to C++98/03. |
9831 | if (WasQualifiedName) { |
9832 | if (CurContext->Encloses(DC: OrigContext)) |
9833 | return false; |
9834 | } else { |
9835 | if (CurContext->InEnclosingNamespaceSetOf(NS: OrigContext)) |
9836 | return false; |
9837 | } |
9838 | |
9839 | if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: OrigContext)) { |
9840 | if (WasQualifiedName) |
9841 | S.Diag(InstLoc, |
9842 | S.getLangOpts().CPlusPlus11? |
9843 | diag::err_explicit_instantiation_out_of_scope : |
9844 | diag::warn_explicit_instantiation_out_of_scope_0x) |
9845 | << D << NS; |
9846 | else |
9847 | S.Diag(InstLoc, |
9848 | S.getLangOpts().CPlusPlus11? |
9849 | diag::err_explicit_instantiation_unqualified_wrong_namespace : |
9850 | diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) |
9851 | << D << NS; |
9852 | } else |
9853 | S.Diag(InstLoc, |
9854 | S.getLangOpts().CPlusPlus11? |
9855 | diag::err_explicit_instantiation_must_be_global : |
9856 | diag::warn_explicit_instantiation_must_be_global_0x) |
9857 | << D; |
9858 | S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); |
9859 | return false; |
9860 | } |
9861 | |
9862 | /// Common checks for whether an explicit instantiation of \p D is valid. |
9863 | static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, |
9864 | SourceLocation InstLoc, |
9865 | bool WasQualifiedName, |
9866 | TemplateSpecializationKind TSK) { |
9867 | // C++ [temp.explicit]p13: |
9868 | // An explicit instantiation declaration shall not name a specialization of |
9869 | // a template with internal linkage. |
9870 | if (TSK == TSK_ExplicitInstantiationDeclaration && |
9871 | D->getFormalLinkage() == Linkage::Internal) { |
9872 | S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; |
9873 | return true; |
9874 | } |
9875 | |
9876 | // C++11 [temp.explicit]p3: [DR 275] |
9877 | // An explicit instantiation shall appear in an enclosing namespace of its |
9878 | // template. |
9879 | if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) |
9880 | return true; |
9881 | |
9882 | return false; |
9883 | } |
9884 | |
9885 | /// Determine whether the given scope specifier has a template-id in it. |
9886 | static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { |
9887 | if (!SS.isSet()) |
9888 | return false; |
9889 | |
9890 | // C++11 [temp.explicit]p3: |
9891 | // If the explicit instantiation is for a member function, a member class |
9892 | // or a static data member of a class template specialization, the name of |
9893 | // the class template specialization in the qualified-id for the member |
9894 | // name shall be a simple-template-id. |
9895 | // |
9896 | // C++98 has the same restriction, just worded differently. |
9897 | for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; |
9898 | NNS = NNS->getPrefix()) |
9899 | if (const Type *T = NNS->getAsType()) |
9900 | if (isa<TemplateSpecializationType>(Val: T)) |
9901 | return true; |
9902 | |
9903 | return false; |
9904 | } |
9905 | |
9906 | /// Make a dllexport or dllimport attr on a class template specialization take |
9907 | /// effect. |
9908 | static void dllExportImportClassTemplateSpecialization( |
9909 | Sema &S, ClassTemplateSpecializationDecl *Def) { |
9910 | auto *A = cast_or_null<InheritableAttr>(Val: getDLLAttr(Def)); |
9911 | assert(A && "dllExportImportClassTemplateSpecialization called " |
9912 | "on Def without dllexport or dllimport"); |
9913 | |
9914 | // We reject explicit instantiations in class scope, so there should |
9915 | // never be any delayed exported classes to worry about. |
9916 | assert(S.DelayedDllExportClasses.empty() && |
9917 | "delayed exports present at explicit instantiation"); |
9918 | S.checkClassLevelDLLAttribute(Def); |
9919 | |
9920 | // Propagate attribute to base class templates. |
9921 | for (auto &B : Def->bases()) { |
9922 | if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( |
9923 | B.getType()->getAsCXXRecordDecl())) |
9924 | S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); |
9925 | } |
9926 | |
9927 | S.referenceDLLExportedClassMethods(); |
9928 | } |
9929 | |
9930 | DeclResult Sema::ActOnExplicitInstantiation( |
9931 | Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, |
9932 | unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, |
9933 | TemplateTy TemplateD, SourceLocation TemplateNameLoc, |
9934 | SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, |
9935 | SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { |
9936 | // Find the class template we're specializing |
9937 | TemplateName Name = TemplateD.get(); |
9938 | TemplateDecl *TD = Name.getAsTemplateDecl(); |
9939 | // Check that the specialization uses the same tag kind as the |
9940 | // original template. |
9941 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
9942 | assert(Kind != TagTypeKind::Enum && |
9943 | "Invalid enum tag in class template explicit instantiation!"); |
9944 | |
9945 | ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(Val: TD); |
9946 | |
9947 | if (!ClassTemplate) { |
9948 | NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); |
9949 | Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << TD << NTK << Kind; |
9950 | Diag(TD->getLocation(), diag::note_previous_use); |
9951 | return true; |
9952 | } |
9953 | |
9954 | if (!isAcceptableTagRedeclaration(Previous: ClassTemplate->getTemplatedDecl(), |
9955 | NewTag: Kind, /*isDefinition*/false, NewTagLoc: KWLoc, |
9956 | Name: ClassTemplate->getIdentifier())) { |
9957 | Diag(KWLoc, diag::err_use_with_wrong_tag) |
9958 | << ClassTemplate |
9959 | << FixItHint::CreateReplacement(KWLoc, |
9960 | ClassTemplate->getTemplatedDecl()->getKindName()); |
9961 | Diag(ClassTemplate->getTemplatedDecl()->getLocation(), |
9962 | diag::note_previous_use); |
9963 | Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
9964 | } |
9965 | |
9966 | // C++0x [temp.explicit]p2: |
9967 | // There are two forms of explicit instantiation: an explicit instantiation |
9968 | // definition and an explicit instantiation declaration. An explicit |
9969 | // instantiation declaration begins with the extern keyword. [...] |
9970 | TemplateSpecializationKind TSK = ExternLoc.isInvalid() |
9971 | ? TSK_ExplicitInstantiationDefinition |
9972 | : TSK_ExplicitInstantiationDeclaration; |
9973 | |
9974 | if (TSK == TSK_ExplicitInstantiationDeclaration && |
9975 | !Context.getTargetInfo().getTriple().isOSCygMing()) { |
9976 | // Check for dllexport class template instantiation declarations, |
9977 | // except for MinGW mode. |
9978 | for (const ParsedAttr &AL : Attr) { |
9979 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
9980 | Diag(ExternLoc, |
9981 | diag::warn_attribute_dllexport_explicit_instantiation_decl); |
9982 | Diag(AL.getLoc(), diag::note_attribute); |
9983 | break; |
9984 | } |
9985 | } |
9986 | |
9987 | if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { |
9988 | Diag(ExternLoc, |
9989 | diag::warn_attribute_dllexport_explicit_instantiation_decl); |
9990 | Diag(A->getLocation(), diag::note_attribute); |
9991 | } |
9992 | } |
9993 | |
9994 | // In MSVC mode, dllimported explicit instantiation definitions are treated as |
9995 | // instantiation declarations for most purposes. |
9996 | bool DLLImportExplicitInstantiationDef = false; |
9997 | if (TSK == TSK_ExplicitInstantiationDefinition && |
9998 | Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
9999 | // Check for dllimport class template instantiation definitions. |
10000 | bool DLLImport = |
10001 | ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); |
10002 | for (const ParsedAttr &AL : Attr) { |
10003 | if (AL.getKind() == ParsedAttr::AT_DLLImport) |
10004 | DLLImport = true; |
10005 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
10006 | // dllexport trumps dllimport here. |
10007 | DLLImport = false; |
10008 | break; |
10009 | } |
10010 | } |
10011 | if (DLLImport) { |
10012 | TSK = TSK_ExplicitInstantiationDeclaration; |
10013 | DLLImportExplicitInstantiationDef = true; |
10014 | } |
10015 | } |
10016 | |
10017 | // Translate the parser's template argument list in our AST format. |
10018 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
10019 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
10020 | |
10021 | // Check that the template argument list is well-formed for this |
10022 | // template. |
10023 | CheckTemplateArgumentInfo CTAI; |
10024 | if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, |
10025 | /*DefaultArgs=*/{}, false, CTAI, |
10026 | /*UpdateArgsWithConversions=*/true, |
10027 | /*ConstraintsNotSatisfied=*/nullptr)) |
10028 | return true; |
10029 | |
10030 | // Find the class template specialization declaration that |
10031 | // corresponds to these arguments. |
10032 | void *InsertPos = nullptr; |
10033 | ClassTemplateSpecializationDecl *PrevDecl = |
10034 | ClassTemplate->findSpecialization(Args: CTAI.CanonicalConverted, InsertPos); |
10035 | |
10036 | TemplateSpecializationKind PrevDecl_TSK |
10037 | = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; |
10038 | |
10039 | if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && |
10040 | Context.getTargetInfo().getTriple().isOSCygMing()) { |
10041 | // Check for dllexport class template instantiation definitions in MinGW |
10042 | // mode, if a previous declaration of the instantiation was seen. |
10043 | for (const ParsedAttr &AL : Attr) { |
10044 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
10045 | Diag(AL.getLoc(), |
10046 | diag::warn_attribute_dllexport_explicit_instantiation_def); |
10047 | break; |
10048 | } |
10049 | } |
10050 | } |
10051 | |
10052 | if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, |
10053 | SS.isSet(), TSK)) |
10054 | return true; |
10055 | |
10056 | ClassTemplateSpecializationDecl *Specialization = nullptr; |
10057 | |
10058 | bool HasNoEffect = false; |
10059 | if (PrevDecl) { |
10060 | if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, |
10061 | PrevDecl, PrevDecl_TSK, |
10062 | PrevDecl->getPointOfInstantiation(), |
10063 | HasNoEffect)) |
10064 | return PrevDecl; |
10065 | |
10066 | // Even though HasNoEffect == true means that this explicit instantiation |
10067 | // has no effect on semantics, we go on to put its syntax in the AST. |
10068 | |
10069 | if (PrevDecl_TSK == TSK_ImplicitInstantiation || |
10070 | PrevDecl_TSK == TSK_Undeclared) { |
10071 | // Since the only prior class template specialization with these |
10072 | // arguments was referenced but not declared, reuse that |
10073 | // declaration node as our own, updating the source location |
10074 | // for the template name to reflect our new declaration. |
10075 | // (Other source locations will be updated later.) |
10076 | Specialization = PrevDecl; |
10077 | Specialization->setLocation(TemplateNameLoc); |
10078 | PrevDecl = nullptr; |
10079 | } |
10080 | |
10081 | if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && |
10082 | DLLImportExplicitInstantiationDef) { |
10083 | // The new specialization might add a dllimport attribute. |
10084 | HasNoEffect = false; |
10085 | } |
10086 | } |
10087 | |
10088 | if (!Specialization) { |
10089 | // Create a new class template specialization declaration node for |
10090 | // this explicit specialization. |
10091 | Specialization = ClassTemplateSpecializationDecl::Create( |
10092 | Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, IdLoc: TemplateNameLoc, |
10093 | SpecializedTemplate: ClassTemplate, Args: CTAI.CanonicalConverted, StrictPackMatch: CTAI.StrictPackMatch, PrevDecl); |
10094 | SetNestedNameSpecifier(*this, Specialization, SS); |
10095 | |
10096 | // A MSInheritanceAttr attached to the previous declaration must be |
10097 | // propagated to the new node prior to instantiation. |
10098 | if (PrevDecl) { |
10099 | if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) { |
10100 | auto *Clone = A->clone(getASTContext()); |
10101 | Clone->setInherited(true); |
10102 | Specialization->addAttr(A: Clone); |
10103 | Consumer.AssignInheritanceModel(Specialization); |
10104 | } |
10105 | } |
10106 | |
10107 | if (!HasNoEffect && !PrevDecl) { |
10108 | // Insert the new specialization. |
10109 | ClassTemplate->AddSpecialization(D: Specialization, InsertPos); |
10110 | } |
10111 | } |
10112 | |
10113 | Specialization->setTemplateArgsAsWritten(TemplateArgs); |
10114 | |
10115 | // Set source locations for keywords. |
10116 | Specialization->setExternKeywordLoc(ExternLoc); |
10117 | Specialization->setTemplateKeywordLoc(TemplateLoc); |
10118 | Specialization->setBraceRange(SourceRange()); |
10119 | |
10120 | bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); |
10121 | ProcessDeclAttributeList(S, Specialization, Attr); |
10122 | ProcessAPINotes(Specialization); |
10123 | |
10124 | // Add the explicit instantiation into its lexical context. However, |
10125 | // since explicit instantiations are never found by name lookup, we |
10126 | // just put it into the declaration context directly. |
10127 | Specialization->setLexicalDeclContext(CurContext); |
10128 | CurContext->addDecl(Specialization); |
10129 | |
10130 | // Syntax is now OK, so return if it has no other effect on semantics. |
10131 | if (HasNoEffect) { |
10132 | // Set the template specialization kind. |
10133 | Specialization->setTemplateSpecializationKind(TSK); |
10134 | return Specialization; |
10135 | } |
10136 | |
10137 | // C++ [temp.explicit]p3: |
10138 | // A definition of a class template or class member template |
10139 | // shall be in scope at the point of the explicit instantiation of |
10140 | // the class template or class member template. |
10141 | // |
10142 | // This check comes when we actually try to perform the |
10143 | // instantiation. |
10144 | ClassTemplateSpecializationDecl *Def |
10145 | = cast_or_null<ClassTemplateSpecializationDecl>( |
10146 | Specialization->getDefinition()); |
10147 | if (!Def) |
10148 | InstantiateClassTemplateSpecialization(PointOfInstantiation: TemplateNameLoc, ClassTemplateSpec: Specialization, TSK, |
10149 | /*Complain=*/true, |
10150 | PrimaryStrictPackMatch: CTAI.StrictPackMatch); |
10151 | else if (TSK == TSK_ExplicitInstantiationDefinition) { |
10152 | MarkVTableUsed(TemplateNameLoc, Specialization, true); |
10153 | Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); |
10154 | } |
10155 | |
10156 | // Instantiate the members of this class template specialization. |
10157 | Def = cast_or_null<ClassTemplateSpecializationDecl>( |
10158 | Specialization->getDefinition()); |
10159 | if (Def) { |
10160 | TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); |
10161 | // Fix a TSK_ExplicitInstantiationDeclaration followed by a |
10162 | // TSK_ExplicitInstantiationDefinition |
10163 | if (Old_TSK == TSK_ExplicitInstantiationDeclaration && |
10164 | (TSK == TSK_ExplicitInstantiationDefinition || |
10165 | DLLImportExplicitInstantiationDef)) { |
10166 | // FIXME: Need to notify the ASTMutationListener that we did this. |
10167 | Def->setTemplateSpecializationKind(TSK); |
10168 | |
10169 | if (!getDLLAttr(Def) && getDLLAttr(Specialization) && |
10170 | Context.getTargetInfo().shouldDLLImportComdatSymbols()) { |
10171 | // An explicit instantiation definition can add a dll attribute to a |
10172 | // template with a previous instantiation declaration. MinGW doesn't |
10173 | // allow this. |
10174 | auto *A = cast<InheritableAttr>( |
10175 | Val: getDLLAttr(Specialization)->clone(C&: getASTContext())); |
10176 | A->setInherited(true); |
10177 | Def->addAttr(A: A); |
10178 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
10179 | } |
10180 | } |
10181 | |
10182 | // Fix a TSK_ImplicitInstantiation followed by a |
10183 | // TSK_ExplicitInstantiationDefinition |
10184 | bool NewlyDLLExported = |
10185 | !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); |
10186 | if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && |
10187 | Context.getTargetInfo().shouldDLLImportComdatSymbols()) { |
10188 | // An explicit instantiation definition can add a dll attribute to a |
10189 | // template with a previous implicit instantiation. MinGW doesn't allow |
10190 | // this. We limit clang to only adding dllexport, to avoid potentially |
10191 | // strange codegen behavior. For example, if we extend this conditional |
10192 | // to dllimport, and we have a source file calling a method on an |
10193 | // implicitly instantiated template class instance and then declaring a |
10194 | // dllimport explicit instantiation definition for the same template |
10195 | // class, the codegen for the method call will not respect the dllimport, |
10196 | // while it will with cl. The Def will already have the DLL attribute, |
10197 | // since the Def and Specialization will be the same in the case of |
10198 | // Old_TSK == TSK_ImplicitInstantiation, and we already added the |
10199 | // attribute to the Specialization; we just need to make it take effect. |
10200 | assert(Def == Specialization && |
10201 | "Def and Specialization should match for implicit instantiation"); |
10202 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
10203 | } |
10204 | |
10205 | // In MinGW mode, export the template instantiation if the declaration |
10206 | // was marked dllexport. |
10207 | if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && |
10208 | Context.getTargetInfo().getTriple().isOSCygMing() && |
10209 | PrevDecl->hasAttr<DLLExportAttr>()) { |
10210 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
10211 | } |
10212 | |
10213 | // Set the template specialization kind. Make sure it is set before |
10214 | // instantiating the members which will trigger ASTConsumer callbacks. |
10215 | Specialization->setTemplateSpecializationKind(TSK); |
10216 | InstantiateClassTemplateSpecializationMembers(PointOfInstantiation: TemplateNameLoc, ClassTemplateSpec: Def, TSK); |
10217 | } else { |
10218 | |
10219 | // Set the template specialization kind. |
10220 | Specialization->setTemplateSpecializationKind(TSK); |
10221 | } |
10222 | |
10223 | return Specialization; |
10224 | } |
10225 | |
10226 | DeclResult |
10227 | Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, |
10228 | SourceLocation TemplateLoc, unsigned TagSpec, |
10229 | SourceLocation KWLoc, CXXScopeSpec &SS, |
10230 | IdentifierInfo *Name, SourceLocation NameLoc, |
10231 | const ParsedAttributesView &Attr) { |
10232 | |
10233 | bool Owned = false; |
10234 | bool IsDependent = false; |
10235 | Decl *TagD = |
10236 | ActOnTag(S, TagSpec, TUK: TagUseKind::Reference, KWLoc, SS, Name, NameLoc, |
10237 | Attr, AS: AS_none, /*ModulePrivateLoc=*/SourceLocation(), |
10238 | TemplateParameterLists: MultiTemplateParamsArg(), OwnedDecl&: Owned, IsDependent, ScopedEnumKWLoc: SourceLocation(), |
10239 | ScopedEnumUsesClassTag: false, UnderlyingType: TypeResult(), /*IsTypeSpecifier*/ false, |
10240 | /*IsTemplateParamOrArg*/ false, /*OOK=*/OffsetOfKind::Outside) |
10241 | .get(); |
10242 | assert(!IsDependent && "explicit instantiation of dependent name not yet handled"); |
10243 | |
10244 | if (!TagD) |
10245 | return true; |
10246 | |
10247 | TagDecl *Tag = cast<TagDecl>(Val: TagD); |
10248 | assert(!Tag->isEnum() && "shouldn't see enumerations here"); |
10249 | |
10250 | if (Tag->isInvalidDecl()) |
10251 | return true; |
10252 | |
10253 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: Tag); |
10254 | CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); |
10255 | if (!Pattern) { |
10256 | Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) |
10257 | << Context.getTypeDeclType(Record); |
10258 | Diag(Record->getLocation(), diag::note_nontemplate_decl_here); |
10259 | return true; |
10260 | } |
10261 | |
10262 | // C++0x [temp.explicit]p2: |
10263 | // If the explicit instantiation is for a class or member class, the |
10264 | // elaborated-type-specifier in the declaration shall include a |
10265 | // simple-template-id. |
10266 | // |
10267 | // C++98 has the same restriction, just worded differently. |
10268 | if (!ScopeSpecifierHasTemplateId(SS)) |
10269 | Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) |
10270 | << Record << SS.getRange(); |
10271 | |
10272 | // C++0x [temp.explicit]p2: |
10273 | // There are two forms of explicit instantiation: an explicit instantiation |
10274 | // definition and an explicit instantiation declaration. An explicit |
10275 | // instantiation declaration begins with the extern keyword. [...] |
10276 | TemplateSpecializationKind TSK |
10277 | = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
10278 | : TSK_ExplicitInstantiationDeclaration; |
10279 | |
10280 | CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); |
10281 | |
10282 | // Verify that it is okay to explicitly instantiate here. |
10283 | CXXRecordDecl *PrevDecl |
10284 | = cast_or_null<CXXRecordDecl>(Val: Record->getPreviousDecl()); |
10285 | if (!PrevDecl && Record->getDefinition()) |
10286 | PrevDecl = Record; |
10287 | if (PrevDecl) { |
10288 | MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); |
10289 | bool HasNoEffect = false; |
10290 | assert(MSInfo && "No member specialization information?"); |
10291 | if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, |
10292 | PrevDecl, |
10293 | MSInfo->getTemplateSpecializationKind(), |
10294 | MSInfo->getPointOfInstantiation(), |
10295 | HasNoEffect)) |
10296 | return true; |
10297 | if (HasNoEffect) |
10298 | return TagD; |
10299 | } |
10300 | |
10301 | CXXRecordDecl *RecordDef |
10302 | = cast_or_null<CXXRecordDecl>(Val: Record->getDefinition()); |
10303 | if (!RecordDef) { |
10304 | // C++ [temp.explicit]p3: |
10305 | // A definition of a member class of a class template shall be in scope |
10306 | // at the point of an explicit instantiation of the member class. |
10307 | CXXRecordDecl *Def |
10308 | = cast_or_null<CXXRecordDecl>(Val: Pattern->getDefinition()); |
10309 | if (!Def) { |
10310 | Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) |
10311 | << 0 << Record->getDeclName() << Record->getDeclContext(); |
10312 | Diag(Pattern->getLocation(), diag::note_forward_declaration) |
10313 | << Pattern; |
10314 | return true; |
10315 | } else { |
10316 | if (InstantiateClass(PointOfInstantiation: NameLoc, Instantiation: Record, Pattern: Def, |
10317 | TemplateArgs: getTemplateInstantiationArgs(Record), |
10318 | TSK)) |
10319 | return true; |
10320 | |
10321 | RecordDef = cast_or_null<CXXRecordDecl>(Val: Record->getDefinition()); |
10322 | if (!RecordDef) |
10323 | return true; |
10324 | } |
10325 | } |
10326 | |
10327 | // Instantiate all of the members of the class. |
10328 | InstantiateClassMembers(PointOfInstantiation: NameLoc, Instantiation: RecordDef, |
10329 | TemplateArgs: getTemplateInstantiationArgs(Record), TSK); |
10330 | |
10331 | if (TSK == TSK_ExplicitInstantiationDefinition) |
10332 | MarkVTableUsed(Loc: NameLoc, Class: RecordDef, DefinitionRequired: true); |
10333 | |
10334 | // FIXME: We don't have any representation for explicit instantiations of |
10335 | // member classes. Such a representation is not needed for compilation, but it |
10336 | // should be available for clients that want to see all of the declarations in |
10337 | // the source code. |
10338 | return TagD; |
10339 | } |
10340 | |
10341 | DeclResult Sema::ActOnExplicitInstantiation(Scope *S, |
10342 | SourceLocation ExternLoc, |
10343 | SourceLocation TemplateLoc, |
10344 | Declarator &D) { |
10345 | // Explicit instantiations always require a name. |
10346 | // TODO: check if/when DNInfo should replace Name. |
10347 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
10348 | DeclarationName Name = NameInfo.getName(); |
10349 | if (!Name) { |
10350 | if (!D.isInvalidType()) |
10351 | Diag(D.getDeclSpec().getBeginLoc(), |
10352 | diag::err_explicit_instantiation_requires_name) |
10353 | << D.getDeclSpec().getSourceRange() << D.getSourceRange(); |
10354 | |
10355 | return true; |
10356 | } |
10357 | |
10358 | // Get the innermost enclosing declaration scope. |
10359 | S = S->getDeclParent(); |
10360 | |
10361 | // Determine the type of the declaration. |
10362 | TypeSourceInfo *T = GetTypeForDeclarator(D); |
10363 | QualType R = T->getType(); |
10364 | if (R.isNull()) |
10365 | return true; |
10366 | |
10367 | // C++ [dcl.stc]p1: |
10368 | // A storage-class-specifier shall not be specified in [...] an explicit |
10369 | // instantiation (14.7.2) directive. |
10370 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
10371 | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) |
10372 | << Name; |
10373 | return true; |
10374 | } else if (D.getDeclSpec().getStorageClassSpec() |
10375 | != DeclSpec::SCS_unspecified) { |
10376 | // Complain about then remove the storage class specifier. |
10377 | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) |
10378 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
10379 | |
10380 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
10381 | } |
10382 | |
10383 | // C++0x [temp.explicit]p1: |
10384 | // [...] An explicit instantiation of a function template shall not use the |
10385 | // inline or constexpr specifiers. |
10386 | // Presumably, this also applies to member functions of class templates as |
10387 | // well. |
10388 | if (D.getDeclSpec().isInlineSpecified()) |
10389 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
10390 | getLangOpts().CPlusPlus11 ? |
10391 | diag::err_explicit_instantiation_inline : |
10392 | diag::warn_explicit_instantiation_inline_0x) |
10393 | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
10394 | if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) |
10395 | // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is |
10396 | // not already specified. |
10397 | Diag(D.getDeclSpec().getConstexprSpecLoc(), |
10398 | diag::err_explicit_instantiation_constexpr); |
10399 | |
10400 | // A deduction guide is not on the list of entities that can be explicitly |
10401 | // instantiated. |
10402 | if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { |
10403 | Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) |
10404 | << /*explicit instantiation*/ 0; |
10405 | return true; |
10406 | } |
10407 | |
10408 | // C++0x [temp.explicit]p2: |
10409 | // There are two forms of explicit instantiation: an explicit instantiation |
10410 | // definition and an explicit instantiation declaration. An explicit |
10411 | // instantiation declaration begins with the extern keyword. [...] |
10412 | TemplateSpecializationKind TSK |
10413 | = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
10414 | : TSK_ExplicitInstantiationDeclaration; |
10415 | |
10416 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName); |
10417 | LookupParsedName(R&: Previous, S, SS: &D.getCXXScopeSpec(), |
10418 | /*ObjectType=*/QualType()); |
10419 | |
10420 | if (!R->isFunctionType()) { |
10421 | // C++ [temp.explicit]p1: |
10422 | // A [...] static data member of a class template can be explicitly |
10423 | // instantiated from the member definition associated with its class |
10424 | // template. |
10425 | // C++1y [temp.explicit]p1: |
10426 | // A [...] variable [...] template specialization can be explicitly |
10427 | // instantiated from its template. |
10428 | if (Previous.isAmbiguous()) |
10429 | return true; |
10430 | |
10431 | VarDecl *Prev = Previous.getAsSingle<VarDecl>(); |
10432 | VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); |
10433 | |
10434 | if (!PrevTemplate) { |
10435 | if (!Prev || !Prev->isStaticDataMember()) { |
10436 | // We expect to see a static data member here. |
10437 | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) |
10438 | << Name; |
10439 | for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
10440 | P != PEnd; ++P) |
10441 | Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); |
10442 | return true; |
10443 | } |
10444 | |
10445 | if (!Prev->getInstantiatedFromStaticDataMember()) { |
10446 | // FIXME: Check for explicit specialization? |
10447 | Diag(D.getIdentifierLoc(), |
10448 | diag::err_explicit_instantiation_data_member_not_instantiated) |
10449 | << Prev; |
10450 | Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); |
10451 | // FIXME: Can we provide a note showing where this was declared? |
10452 | return true; |
10453 | } |
10454 | } else { |
10455 | // Explicitly instantiate a variable template. |
10456 | |
10457 | // C++1y [dcl.spec.auto]p6: |
10458 | // ... A program that uses auto or decltype(auto) in a context not |
10459 | // explicitly allowed in this section is ill-formed. |
10460 | // |
10461 | // This includes auto-typed variable template instantiations. |
10462 | if (R->isUndeducedType()) { |
10463 | Diag(T->getTypeLoc().getBeginLoc(), |
10464 | diag::err_auto_not_allowed_var_inst); |
10465 | return true; |
10466 | } |
10467 | |
10468 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
10469 | // C++1y [temp.explicit]p3: |
10470 | // If the explicit instantiation is for a variable, the unqualified-id |
10471 | // in the declaration shall be a template-id. |
10472 | Diag(D.getIdentifierLoc(), |
10473 | diag::err_explicit_instantiation_without_template_id) |
10474 | << PrevTemplate; |
10475 | Diag(PrevTemplate->getLocation(), |
10476 | diag::note_explicit_instantiation_here); |
10477 | return true; |
10478 | } |
10479 | |
10480 | // Translate the parser's template argument list into our AST format. |
10481 | TemplateArgumentListInfo TemplateArgs = |
10482 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *D.getName().TemplateId); |
10483 | |
10484 | DeclResult Res = CheckVarTemplateId(Template: PrevTemplate, TemplateLoc, |
10485 | TemplateNameLoc: D.getIdentifierLoc(), TemplateArgs); |
10486 | if (Res.isInvalid()) |
10487 | return true; |
10488 | |
10489 | if (!Res.isUsable()) { |
10490 | // We somehow specified dependent template arguments in an explicit |
10491 | // instantiation. This should probably only happen during error |
10492 | // recovery. |
10493 | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); |
10494 | return true; |
10495 | } |
10496 | |
10497 | // Ignore access control bits, we don't need them for redeclaration |
10498 | // checking. |
10499 | Prev = cast<VarDecl>(Val: Res.get()); |
10500 | } |
10501 | |
10502 | // C++0x [temp.explicit]p2: |
10503 | // If the explicit instantiation is for a member function, a member class |
10504 | // or a static data member of a class template specialization, the name of |
10505 | // the class template specialization in the qualified-id for the member |
10506 | // name shall be a simple-template-id. |
10507 | // |
10508 | // C++98 has the same restriction, just worded differently. |
10509 | // |
10510 | // This does not apply to variable template specializations, where the |
10511 | // template-id is in the unqualified-id instead. |
10512 | if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) |
10513 | Diag(D.getIdentifierLoc(), |
10514 | diag::ext_explicit_instantiation_without_qualified_id) |
10515 | << Prev << D.getCXXScopeSpec().getRange(); |
10516 | |
10517 | CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); |
10518 | |
10519 | // Verify that it is okay to explicitly instantiate here. |
10520 | TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); |
10521 | SourceLocation POI = Prev->getPointOfInstantiation(); |
10522 | bool HasNoEffect = false; |
10523 | if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, |
10524 | PrevTSK, POI, HasNoEffect)) |
10525 | return true; |
10526 | |
10527 | if (!HasNoEffect) { |
10528 | // Instantiate static data member or variable template. |
10529 | Prev->setTemplateSpecializationKind(TSK, PointOfInstantiation: D.getIdentifierLoc()); |
10530 | if (auto *VTSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Val: Prev)) { |
10531 | VTSD->setExternKeywordLoc(ExternLoc); |
10532 | VTSD->setTemplateKeywordLoc(TemplateLoc); |
10533 | } |
10534 | |
10535 | // Merge attributes. |
10536 | ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); |
10537 | if (PrevTemplate) |
10538 | ProcessAPINotes(Prev); |
10539 | |
10540 | if (TSK == TSK_ExplicitInstantiationDefinition) |
10541 | InstantiateVariableDefinition(PointOfInstantiation: D.getIdentifierLoc(), Var: Prev); |
10542 | } |
10543 | |
10544 | // Check the new variable specialization against the parsed input. |
10545 | if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) { |
10546 | Diag(T->getTypeLoc().getBeginLoc(), |
10547 | diag::err_invalid_var_template_spec_type) |
10548 | << 0 << PrevTemplate << R << Prev->getType(); |
10549 | Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) |
10550 | << 2 << PrevTemplate->getDeclName(); |
10551 | return true; |
10552 | } |
10553 | |
10554 | // FIXME: Create an ExplicitInstantiation node? |
10555 | return (Decl*) nullptr; |
10556 | } |
10557 | |
10558 | // If the declarator is a template-id, translate the parser's template |
10559 | // argument list into our AST format. |
10560 | bool HasExplicitTemplateArgs = false; |
10561 | TemplateArgumentListInfo TemplateArgs; |
10562 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
10563 | TemplateArgs = makeTemplateArgumentListInfo(S&: *this, TemplateId&: *D.getName().TemplateId); |
10564 | HasExplicitTemplateArgs = true; |
10565 | } |
10566 | |
10567 | // C++ [temp.explicit]p1: |
10568 | // A [...] function [...] can be explicitly instantiated from its template. |
10569 | // A member function [...] of a class template can be explicitly |
10570 | // instantiated from the member definition associated with its class |
10571 | // template. |
10572 | UnresolvedSet<8> TemplateMatches; |
10573 | OverloadCandidateSet NonTemplateMatches(D.getBeginLoc(), |
10574 | OverloadCandidateSet::CSK_Normal); |
10575 | TemplateSpecCandidateSet FailedTemplateCandidates(D.getIdentifierLoc()); |
10576 | for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
10577 | P != PEnd; ++P) { |
10578 | NamedDecl *Prev = *P; |
10579 | if (!HasExplicitTemplateArgs) { |
10580 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Prev)) { |
10581 | QualType Adjusted = adjustCCAndNoReturn(ArgFunctionType: R, FunctionType: Method->getType(), |
10582 | /*AdjustExceptionSpec*/true); |
10583 | if (Context.hasSameUnqualifiedType(T1: Method->getType(), T2: Adjusted)) { |
10584 | if (Method->getPrimaryTemplate()) { |
10585 | TemplateMatches.addDecl(Method, P.getAccess()); |
10586 | } else { |
10587 | OverloadCandidate &C = NonTemplateMatches.addCandidate(); |
10588 | C.FoundDecl = P.getPair(); |
10589 | C.Function = Method; |
10590 | C.Viable = true; |
10591 | ConstraintSatisfaction S; |
10592 | if (Method->getTrailingRequiresClause() && |
10593 | (CheckFunctionConstraints(Method, S, D.getIdentifierLoc(), |
10594 | /*ForOverloadResolution=*/true) || |
10595 | !S.IsSatisfied)) { |
10596 | C.Viable = false; |
10597 | C.FailureKind = ovl_fail_constraints_not_satisfied; |
10598 | } |
10599 | } |
10600 | } |
10601 | } |
10602 | } |
10603 | |
10604 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Prev); |
10605 | if (!FunTmpl) |
10606 | continue; |
10607 | |
10608 | TemplateDeductionInfo Info(FailedTemplateCandidates.getLocation()); |
10609 | FunctionDecl *Specialization = nullptr; |
10610 | if (TemplateDeductionResult TDK = DeduceTemplateArguments( |
10611 | FunctionTemplate: FunTmpl, ExplicitTemplateArgs: (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), ArgFunctionType: R, |
10612 | Specialization, Info); |
10613 | TDK != TemplateDeductionResult::Success) { |
10614 | // Keep track of almost-matches. |
10615 | FailedTemplateCandidates.addCandidate().set( |
10616 | P.getPair(), FunTmpl->getTemplatedDecl(), |
10617 | MakeDeductionFailureInfo(Context, TDK, Info)); |
10618 | (void)TDK; |
10619 | continue; |
10620 | } |
10621 | |
10622 | // Target attributes are part of the cuda function signature, so |
10623 | // the cuda target of the instantiated function must match that of its |
10624 | // template. Given that C++ template deduction does not take |
10625 | // target attributes into account, we reject candidates here that |
10626 | // have a different target. |
10627 | if (LangOpts.CUDA && |
10628 | CUDA().IdentifyTarget(D: Specialization, |
10629 | /* IgnoreImplicitHDAttr = */ true) != |
10630 | CUDA().IdentifyTarget(Attrs: D.getDeclSpec().getAttributes())) { |
10631 | FailedTemplateCandidates.addCandidate().set( |
10632 | P.getPair(), FunTmpl->getTemplatedDecl(), |
10633 | MakeDeductionFailureInfo( |
10634 | Context, TDK: TemplateDeductionResult::CUDATargetMismatch, Info)); |
10635 | continue; |
10636 | } |
10637 | |
10638 | TemplateMatches.addDecl(Specialization, P.getAccess()); |
10639 | } |
10640 | |
10641 | FunctionDecl *Specialization = nullptr; |
10642 | if (!NonTemplateMatches.empty()) { |
10643 | unsigned Msg = 0; |
10644 | OverloadCandidateDisplayKind DisplayKind; |
10645 | OverloadCandidateSet::iterator Best; |
10646 | switch (NonTemplateMatches.BestViableFunction(S&: *this, Loc: D.getIdentifierLoc(), |
10647 | Best)) { |
10648 | case OR_Success: |
10649 | case OR_Deleted: |
10650 | Specialization = cast<FunctionDecl>(Val: Best->Function); |
10651 | break; |
10652 | case OR_Ambiguous: |
10653 | Msg = diag::err_explicit_instantiation_ambiguous; |
10654 | DisplayKind = OCD_AmbiguousCandidates; |
10655 | break; |
10656 | case OR_No_Viable_Function: |
10657 | Msg = diag::err_explicit_instantiation_no_candidate; |
10658 | DisplayKind = OCD_AllCandidates; |
10659 | break; |
10660 | } |
10661 | if (Msg) { |
10662 | PartialDiagnostic Diag = PDiag(Msg) << Name; |
10663 | NonTemplateMatches.NoteCandidates( |
10664 | PA: PartialDiagnosticAt(D.getIdentifierLoc(), Diag), S&: *this, OCD: DisplayKind, |
10665 | Args: {}); |
10666 | return true; |
10667 | } |
10668 | } |
10669 | |
10670 | if (!Specialization) { |
10671 | // Find the most specialized function template specialization. |
10672 | UnresolvedSetIterator Result = getMostSpecialized( |
10673 | TemplateMatches.begin(), TemplateMatches.end(), |
10674 | FailedTemplateCandidates, D.getIdentifierLoc(), |
10675 | PDiag(diag::err_explicit_instantiation_not_known) << Name, |
10676 | PDiag(diag::err_explicit_instantiation_ambiguous) << Name, |
10677 | PDiag(diag::note_explicit_instantiation_candidate)); |
10678 | |
10679 | if (Result == TemplateMatches.end()) |
10680 | return true; |
10681 | |
10682 | // Ignore access control bits, we don't need them for redeclaration checking. |
10683 | Specialization = cast<FunctionDecl>(Val: *Result); |
10684 | } |
10685 | |
10686 | // C++11 [except.spec]p4 |
10687 | // In an explicit instantiation an exception-specification may be specified, |
10688 | // but is not required. |
10689 | // If an exception-specification is specified in an explicit instantiation |
10690 | // directive, it shall be compatible with the exception-specifications of |
10691 | // other declarations of that function. |
10692 | if (auto *FPT = R->getAs<FunctionProtoType>()) |
10693 | if (FPT->hasExceptionSpec()) { |
10694 | unsigned DiagID = |
10695 | diag::err_mismatched_exception_spec_explicit_instantiation; |
10696 | if (getLangOpts().MicrosoftExt) |
10697 | DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; |
10698 | bool Result = CheckEquivalentExceptionSpec( |
10699 | PDiag(DiagID) << Specialization->getType(), |
10700 | PDiag(diag::note_explicit_instantiation_here), |
10701 | Specialization->getType()->getAs<FunctionProtoType>(), |
10702 | Specialization->getLocation(), FPT, D.getBeginLoc()); |
10703 | // In Microsoft mode, mismatching exception specifications just cause a |
10704 | // warning. |
10705 | if (!getLangOpts().MicrosoftExt && Result) |
10706 | return true; |
10707 | } |
10708 | |
10709 | if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { |
10710 | Diag(D.getIdentifierLoc(), |
10711 | diag::err_explicit_instantiation_member_function_not_instantiated) |
10712 | << Specialization |
10713 | << (Specialization->getTemplateSpecializationKind() == |
10714 | TSK_ExplicitSpecialization); |
10715 | Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); |
10716 | return true; |
10717 | } |
10718 | |
10719 | FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); |
10720 | if (!PrevDecl && Specialization->isThisDeclarationADefinition()) |
10721 | PrevDecl = Specialization; |
10722 | |
10723 | if (PrevDecl) { |
10724 | bool HasNoEffect = false; |
10725 | if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, |
10726 | PrevDecl, |
10727 | PrevDecl->getTemplateSpecializationKind(), |
10728 | PrevDecl->getPointOfInstantiation(), |
10729 | HasNoEffect)) |
10730 | return true; |
10731 | |
10732 | // FIXME: We may still want to build some representation of this |
10733 | // explicit specialization. |
10734 | if (HasNoEffect) |
10735 | return (Decl*) nullptr; |
10736 | } |
10737 | |
10738 | // HACK: libc++ has a bug where it attempts to explicitly instantiate the |
10739 | // functions |
10740 | // valarray<size_t>::valarray(size_t) and |
10741 | // valarray<size_t>::~valarray() |
10742 | // that it declared to have internal linkage with the internal_linkage |
10743 | // attribute. Ignore the explicit instantiation declaration in this case. |
10744 | if (Specialization->hasAttr<InternalLinkageAttr>() && |
10745 | TSK == TSK_ExplicitInstantiationDeclaration) { |
10746 | if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) |
10747 | if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") && |
10748 | RD->isInStdNamespace()) |
10749 | return (Decl*) nullptr; |
10750 | } |
10751 | |
10752 | ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); |
10753 | ProcessAPINotes(Specialization); |
10754 | |
10755 | // In MSVC mode, dllimported explicit instantiation definitions are treated as |
10756 | // instantiation declarations. |
10757 | if (TSK == TSK_ExplicitInstantiationDefinition && |
10758 | Specialization->hasAttr<DLLImportAttr>() && |
10759 | Context.getTargetInfo().getCXXABI().isMicrosoft()) |
10760 | TSK = TSK_ExplicitInstantiationDeclaration; |
10761 | |
10762 | Specialization->setTemplateSpecializationKind(TSK, PointOfInstantiation: D.getIdentifierLoc()); |
10763 | |
10764 | if (Specialization->isDefined()) { |
10765 | // Let the ASTConsumer know that this function has been explicitly |
10766 | // instantiated now, and its linkage might have changed. |
10767 | Consumer.HandleTopLevelDecl(D: DeclGroupRef(Specialization)); |
10768 | } else if (TSK == TSK_ExplicitInstantiationDefinition) |
10769 | InstantiateFunctionDefinition(PointOfInstantiation: D.getIdentifierLoc(), Function: Specialization); |
10770 | |
10771 | // C++0x [temp.explicit]p2: |
10772 | // If the explicit instantiation is for a member function, a member class |
10773 | // or a static data member of a class template specialization, the name of |
10774 | // the class template specialization in the qualified-id for the member |
10775 | // name shall be a simple-template-id. |
10776 | // |
10777 | // C++98 has the same restriction, just worded differently. |
10778 | FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); |
10779 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && |
10780 | D.getCXXScopeSpec().isSet() && |
10781 | !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) |
10782 | Diag(D.getIdentifierLoc(), |
10783 | diag::ext_explicit_instantiation_without_qualified_id) |
10784 | << Specialization << D.getCXXScopeSpec().getRange(); |
10785 | |
10786 | CheckExplicitInstantiation( |
10787 | *this, |
10788 | FunTmpl ? (NamedDecl *)FunTmpl |
10789 | : Specialization->getInstantiatedFromMemberFunction(), |
10790 | D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); |
10791 | |
10792 | // FIXME: Create some kind of ExplicitInstantiationDecl here. |
10793 | return (Decl*) nullptr; |
10794 | } |
10795 | |
10796 | TypeResult Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, |
10797 | const CXXScopeSpec &SS, |
10798 | const IdentifierInfo *Name, |
10799 | SourceLocation TagLoc, |
10800 | SourceLocation NameLoc) { |
10801 | // This has to hold, because SS is expected to be defined. |
10802 | assert(Name && "Expected a name in a dependent tag"); |
10803 | |
10804 | NestedNameSpecifier *NNS = SS.getScopeRep(); |
10805 | if (!NNS) |
10806 | return true; |
10807 | |
10808 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
10809 | |
10810 | if (TUK == TagUseKind::Declaration || TUK == TagUseKind::Definition) { |
10811 | Diag(NameLoc, diag::err_dependent_tag_decl) |
10812 | << (TUK == TagUseKind::Definition) << Kind << SS.getRange(); |
10813 | return true; |
10814 | } |
10815 | |
10816 | // Create the resulting type. |
10817 | ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind); |
10818 | QualType Result = Context.getDependentNameType(Keyword: Kwd, NNS, Name); |
10819 | |
10820 | // Create type-source location information for this type. |
10821 | TypeLocBuilder TLB; |
10822 | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T: Result); |
10823 | TL.setElaboratedKeywordLoc(TagLoc); |
10824 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
10825 | TL.setNameLoc(NameLoc); |
10826 | return CreateParsedType(T: Result, TInfo: TLB.getTypeSourceInfo(Context, T: Result)); |
10827 | } |
10828 | |
10829 | TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, |
10830 | const CXXScopeSpec &SS, |
10831 | const IdentifierInfo &II, |
10832 | SourceLocation IdLoc, |
10833 | ImplicitTypenameContext IsImplicitTypename) { |
10834 | if (SS.isInvalid()) |
10835 | return true; |
10836 | |
10837 | if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) |
10838 | DiagCompat(TypenameLoc, diag_compat::typename_outside_of_template) |
10839 | << FixItHint::CreateRemoval(TypenameLoc); |
10840 | |
10841 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
10842 | TypeSourceInfo *TSI = nullptr; |
10843 | QualType T = |
10844 | CheckTypenameType(Keyword: TypenameLoc.isValid() ? ElaboratedTypeKeyword::Typename |
10845 | : ElaboratedTypeKeyword::None, |
10846 | KeywordLoc: TypenameLoc, QualifierLoc, II, IILoc: IdLoc, TSI: &TSI, |
10847 | /*DeducedTSTContext=*/true); |
10848 | if (T.isNull()) |
10849 | return true; |
10850 | return CreateParsedType(T, TInfo: TSI); |
10851 | } |
10852 | |
10853 | TypeResult |
10854 | Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, |
10855 | const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
10856 | TemplateTy TemplateIn, const IdentifierInfo *TemplateII, |
10857 | SourceLocation TemplateIILoc, SourceLocation LAngleLoc, |
10858 | ASTTemplateArgsPtr TemplateArgsIn, |
10859 | SourceLocation RAngleLoc) { |
10860 | if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) |
10861 | Diag(TypenameLoc, getLangOpts().CPlusPlus11 |
10862 | ? diag::compat_cxx11_typename_outside_of_template |
10863 | : diag::compat_pre_cxx11_typename_outside_of_template) |
10864 | << FixItHint::CreateRemoval(TypenameLoc); |
10865 | |
10866 | // Strangely, non-type results are not ignored by this lookup, so the |
10867 | // program is ill-formed if it finds an injected-class-name. |
10868 | if (TypenameLoc.isValid()) { |
10869 | auto *LookupRD = |
10870 | dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS, EnteringContext: false)); |
10871 | if (LookupRD && LookupRD->getIdentifier() == TemplateII) { |
10872 | Diag(TemplateIILoc, |
10873 | diag::ext_out_of_line_qualified_id_type_names_constructor) |
10874 | << TemplateII << 0 /*injected-class-name used as template name*/ |
10875 | << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); |
10876 | } |
10877 | } |
10878 | |
10879 | // Translate the parser's template argument list in our AST format. |
10880 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
10881 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
10882 | |
10883 | auto Keyword = TypenameLoc.isValid() ? ElaboratedTypeKeyword::Typename |
10884 | : ElaboratedTypeKeyword::None; |
10885 | |
10886 | TemplateName Template = TemplateIn.get(); |
10887 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
10888 | // Construct a dependent template specialization type. |
10889 | assert(DTN && "dependent template has non-dependent name?"); |
10890 | assert(DTN->getQualifier() == SS.getScopeRep()); |
10891 | |
10892 | if (!DTN->getName().getIdentifier()) { |
10893 | Diag(TemplateIILoc, diag::err_template_id_not_a_type) << Template; |
10894 | NoteAllFoundTemplates(Name: Template); |
10895 | return true; |
10896 | } |
10897 | |
10898 | QualType T = Context.getDependentTemplateSpecializationType( |
10899 | Keyword, Name: *DTN, Args: TemplateArgs.arguments()); |
10900 | |
10901 | // Create source-location information for this type. |
10902 | TypeLocBuilder Builder; |
10903 | DependentTemplateSpecializationTypeLoc SpecTL |
10904 | = Builder.push<DependentTemplateSpecializationTypeLoc>(T); |
10905 | SpecTL.setElaboratedKeywordLoc(TypenameLoc); |
10906 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
10907 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
10908 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
10909 | SpecTL.setLAngleLoc(LAngleLoc); |
10910 | SpecTL.setRAngleLoc(RAngleLoc); |
10911 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
10912 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
10913 | return CreateParsedType(T, TInfo: Builder.getTypeSourceInfo(Context, T)); |
10914 | } |
10915 | |
10916 | QualType T = CheckTemplateIdType(Name: Template, TemplateLoc: TemplateIILoc, TemplateArgs); |
10917 | if (T.isNull()) |
10918 | return true; |
10919 | |
10920 | // Provide source-location information for the template specialization type. |
10921 | TypeLocBuilder Builder; |
10922 | TemplateSpecializationTypeLoc SpecTL |
10923 | = Builder.push<TemplateSpecializationTypeLoc>(T); |
10924 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
10925 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
10926 | SpecTL.setLAngleLoc(LAngleLoc); |
10927 | SpecTL.setRAngleLoc(RAngleLoc); |
10928 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
10929 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
10930 | |
10931 | T = Context.getElaboratedType(Keyword, NNS: SS.getScopeRep(), NamedType: T); |
10932 | ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); |
10933 | TL.setElaboratedKeywordLoc(TypenameLoc); |
10934 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
10935 | |
10936 | TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); |
10937 | return CreateParsedType(T, TInfo: TSI); |
10938 | } |
10939 | |
10940 | /// Determine whether this failed name lookup should be treated as being |
10941 | /// disabled by a usage of std::enable_if. |
10942 | static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, |
10943 | SourceRange &CondRange, Expr *&Cond) { |
10944 | // We must be looking for a ::type... |
10945 | if (!II.isStr(Str: "type")) |
10946 | return false; |
10947 | |
10948 | // ... within an explicitly-written template specialization... |
10949 | if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) |
10950 | return false; |
10951 | TypeLoc EnableIfTy = NNS.getTypeLoc(); |
10952 | TemplateSpecializationTypeLoc EnableIfTSTLoc = |
10953 | EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); |
10954 | if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) |
10955 | return false; |
10956 | const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); |
10957 | |
10958 | // ... which names a complete class template declaration... |
10959 | const TemplateDecl *EnableIfDecl = |
10960 | EnableIfTST->getTemplateName().getAsTemplateDecl(); |
10961 | if (!EnableIfDecl || EnableIfTST->isIncompleteType()) |
10962 | return false; |
10963 | |
10964 | // ... called "enable_if". |
10965 | const IdentifierInfo *EnableIfII = |
10966 | EnableIfDecl->getDeclName().getAsIdentifierInfo(); |
10967 | if (!EnableIfII || !EnableIfII->isStr(Str: "enable_if")) |
10968 | return false; |
10969 | |
10970 | // Assume the first template argument is the condition. |
10971 | CondRange = EnableIfTSTLoc.getArgLoc(i: 0).getSourceRange(); |
10972 | |
10973 | // Dig out the condition. |
10974 | Cond = nullptr; |
10975 | if (EnableIfTSTLoc.getArgLoc(i: 0).getArgument().getKind() |
10976 | != TemplateArgument::Expression) |
10977 | return true; |
10978 | |
10979 | Cond = EnableIfTSTLoc.getArgLoc(i: 0).getSourceExpression(); |
10980 | |
10981 | // Ignore Boolean literals; they add no value. |
10982 | if (isa<CXXBoolLiteralExpr>(Val: Cond->IgnoreParenCasts())) |
10983 | Cond = nullptr; |
10984 | |
10985 | return true; |
10986 | } |
10987 | |
10988 | QualType |
10989 | Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, |
10990 | SourceLocation KeywordLoc, |
10991 | NestedNameSpecifierLoc QualifierLoc, |
10992 | const IdentifierInfo &II, |
10993 | SourceLocation IILoc, |
10994 | TypeSourceInfo **TSI, |
10995 | bool DeducedTSTContext) { |
10996 | QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, |
10997 | DeducedTSTContext); |
10998 | if (T.isNull()) |
10999 | return QualType(); |
11000 | |
11001 | *TSI = Context.CreateTypeSourceInfo(T); |
11002 | if (isa<DependentNameType>(Val: T)) { |
11003 | DependentNameTypeLoc TL = |
11004 | (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); |
11005 | TL.setElaboratedKeywordLoc(KeywordLoc); |
11006 | TL.setQualifierLoc(QualifierLoc); |
11007 | TL.setNameLoc(IILoc); |
11008 | } else { |
11009 | ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
11010 | TL.setElaboratedKeywordLoc(KeywordLoc); |
11011 | TL.setQualifierLoc(QualifierLoc); |
11012 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); |
11013 | } |
11014 | return T; |
11015 | } |
11016 | |
11017 | /// Build the type that describes a C++ typename specifier, |
11018 | /// e.g., "typename T::type". |
11019 | QualType |
11020 | Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, |
11021 | SourceLocation KeywordLoc, |
11022 | NestedNameSpecifierLoc QualifierLoc, |
11023 | const IdentifierInfo &II, |
11024 | SourceLocation IILoc, bool DeducedTSTContext) { |
11025 | assert((Keyword != ElaboratedTypeKeyword::None) == KeywordLoc.isValid()); |
11026 | |
11027 | CXXScopeSpec SS; |
11028 | SS.Adopt(Other: QualifierLoc); |
11029 | |
11030 | DeclContext *Ctx = nullptr; |
11031 | if (QualifierLoc) { |
11032 | Ctx = computeDeclContext(SS); |
11033 | if (!Ctx) { |
11034 | // If the nested-name-specifier is dependent and couldn't be |
11035 | // resolved to a type, build a typename type. |
11036 | assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); |
11037 | return Context.getDependentNameType(Keyword, |
11038 | NNS: QualifierLoc.getNestedNameSpecifier(), |
11039 | Name: &II); |
11040 | } |
11041 | |
11042 | // If the nested-name-specifier refers to the current instantiation, |
11043 | // the "typename" keyword itself is superfluous. In C++03, the |
11044 | // program is actually ill-formed. However, DR 382 (in C++0x CD1) |
11045 | // allows such extraneous "typename" keywords, and we retroactively |
11046 | // apply this DR to C++03 code with only a warning. In any case we continue. |
11047 | |
11048 | if (RequireCompleteDeclContext(SS, DC: Ctx)) |
11049 | return QualType(); |
11050 | } |
11051 | |
11052 | DeclarationName Name(&II); |
11053 | LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); |
11054 | if (Ctx) |
11055 | LookupQualifiedName(R&: Result, LookupCtx: Ctx, SS); |
11056 | else |
11057 | LookupName(R&: Result, S: CurScope); |
11058 | unsigned DiagID = 0; |
11059 | Decl *Referenced = nullptr; |
11060 | switch (Result.getResultKind()) { |
11061 | case LookupResultKind::NotFound: { |
11062 | // If we're looking up 'type' within a template named 'enable_if', produce |
11063 | // a more specific diagnostic. |
11064 | SourceRange CondRange; |
11065 | Expr *Cond = nullptr; |
11066 | if (Ctx && isEnableIf(NNS: QualifierLoc, II, CondRange, Cond)) { |
11067 | // If we have a condition, narrow it down to the specific failed |
11068 | // condition. |
11069 | if (Cond) { |
11070 | Expr *FailedCond; |
11071 | std::string FailedDescription; |
11072 | std::tie(args&: FailedCond, args&: FailedDescription) = |
11073 | findFailedBooleanCondition(Cond); |
11074 | |
11075 | Diag(FailedCond->getExprLoc(), |
11076 | diag::err_typename_nested_not_found_requirement) |
11077 | << FailedDescription |
11078 | << FailedCond->getSourceRange(); |
11079 | return QualType(); |
11080 | } |
11081 | |
11082 | Diag(CondRange.getBegin(), |
11083 | diag::err_typename_nested_not_found_enable_if) |
11084 | << Ctx << CondRange; |
11085 | return QualType(); |
11086 | } |
11087 | |
11088 | DiagID = Ctx ? diag::err_typename_nested_not_found |
11089 | : diag::err_unknown_typename; |
11090 | break; |
11091 | } |
11092 | |
11093 | case LookupResultKind::FoundUnresolvedValue: { |
11094 | // We found a using declaration that is a value. Most likely, the using |
11095 | // declaration itself is meant to have the 'typename' keyword. |
11096 | SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), |
11097 | IILoc); |
11098 | Diag(IILoc, diag::err_typename_refers_to_using_value_decl) |
11099 | << Name << Ctx << FullRange; |
11100 | if (UnresolvedUsingValueDecl *Using |
11101 | = dyn_cast<UnresolvedUsingValueDecl>(Val: Result.getRepresentativeDecl())){ |
11102 | SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); |
11103 | Diag(Loc, diag::note_using_value_decl_missing_typename) |
11104 | << FixItHint::CreateInsertion(Loc, "typename "); |
11105 | } |
11106 | } |
11107 | // Fall through to create a dependent typename type, from which we can |
11108 | // recover better. |
11109 | [[fallthrough]]; |
11110 | |
11111 | case LookupResultKind::NotFoundInCurrentInstantiation: |
11112 | // Okay, it's a member of an unknown instantiation. |
11113 | return Context.getDependentNameType(Keyword, |
11114 | NNS: QualifierLoc.getNestedNameSpecifier(), |
11115 | Name: &II); |
11116 | |
11117 | case LookupResultKind::Found: |
11118 | if (TypeDecl *Type = dyn_cast<TypeDecl>(Val: Result.getFoundDecl())) { |
11119 | // C++ [class.qual]p2: |
11120 | // In a lookup in which function names are not ignored and the |
11121 | // nested-name-specifier nominates a class C, if the name specified |
11122 | // after the nested-name-specifier, when looked up in C, is the |
11123 | // injected-class-name of C [...] then the name is instead considered |
11124 | // to name the constructor of class C. |
11125 | // |
11126 | // Unlike in an elaborated-type-specifier, function names are not ignored |
11127 | // in typename-specifier lookup. However, they are ignored in all the |
11128 | // contexts where we form a typename type with no keyword (that is, in |
11129 | // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). |
11130 | // |
11131 | // FIXME: That's not strictly true: mem-initializer-id lookup does not |
11132 | // ignore functions, but that appears to be an oversight. |
11133 | QualType T = getTypeDeclType(LookupCtx: Ctx, |
11134 | DCK: Keyword == ElaboratedTypeKeyword::Typename |
11135 | ? DiagCtorKind::Typename |
11136 | : DiagCtorKind::None, |
11137 | TD: Type, NameLoc: IILoc); |
11138 | // We found a type. Build an ElaboratedType, since the |
11139 | // typename-specifier was just sugar. |
11140 | return Context.getElaboratedType( |
11141 | Keyword, NNS: QualifierLoc.getNestedNameSpecifier(), NamedType: T); |
11142 | } |
11143 | |
11144 | // C++ [dcl.type.simple]p2: |
11145 | // A type-specifier of the form |
11146 | // typename[opt] nested-name-specifier[opt] template-name |
11147 | // is a placeholder for a deduced class type [...]. |
11148 | if (getLangOpts().CPlusPlus17) { |
11149 | if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { |
11150 | if (!DeducedTSTContext) { |
11151 | QualType T(QualifierLoc |
11152 | ? QualifierLoc.getNestedNameSpecifier()->getAsType() |
11153 | : nullptr, 0); |
11154 | if (!T.isNull()) |
11155 | Diag(IILoc, diag::err_dependent_deduced_tst) |
11156 | << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; |
11157 | else |
11158 | Diag(IILoc, diag::err_deduced_tst) |
11159 | << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); |
11160 | NoteTemplateLocation(Decl: *TD); |
11161 | return QualType(); |
11162 | } |
11163 | return Context.getElaboratedType( |
11164 | Keyword, NNS: QualifierLoc.getNestedNameSpecifier(), |
11165 | NamedType: Context.getDeducedTemplateSpecializationType(Template: TemplateName(TD), |
11166 | DeducedType: QualType(), IsDependent: false)); |
11167 | } |
11168 | } |
11169 | |
11170 | DiagID = Ctx ? diag::err_typename_nested_not_type |
11171 | : diag::err_typename_not_type; |
11172 | Referenced = Result.getFoundDecl(); |
11173 | break; |
11174 | |
11175 | case LookupResultKind::FoundOverloaded: |
11176 | DiagID = Ctx ? diag::err_typename_nested_not_type |
11177 | : diag::err_typename_not_type; |
11178 | Referenced = *Result.begin(); |
11179 | break; |
11180 | |
11181 | case LookupResultKind::Ambiguous: |
11182 | return QualType(); |
11183 | } |
11184 | |
11185 | // If we get here, it's because name lookup did not find a |
11186 | // type. Emit an appropriate diagnostic and return an error. |
11187 | SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), |
11188 | IILoc); |
11189 | if (Ctx) |
11190 | Diag(IILoc, DiagID) << FullRange << Name << Ctx; |
11191 | else |
11192 | Diag(IILoc, DiagID) << FullRange << Name; |
11193 | if (Referenced) |
11194 | Diag(Referenced->getLocation(), |
11195 | Ctx ? diag::note_typename_member_refers_here |
11196 | : diag::note_typename_refers_here) |
11197 | << Name; |
11198 | return QualType(); |
11199 | } |
11200 | |
11201 | namespace { |
11202 | // See Sema::RebuildTypeInCurrentInstantiation |
11203 | class CurrentInstantiationRebuilder |
11204 | : public TreeTransform<CurrentInstantiationRebuilder> { |
11205 | SourceLocation Loc; |
11206 | DeclarationName Entity; |
11207 | |
11208 | public: |
11209 | typedef TreeTransform<CurrentInstantiationRebuilder> inherited; |
11210 | |
11211 | CurrentInstantiationRebuilder(Sema &SemaRef, |
11212 | SourceLocation Loc, |
11213 | DeclarationName Entity) |
11214 | : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), |
11215 | Loc(Loc), Entity(Entity) { } |
11216 | |
11217 | /// Determine whether the given type \p T has already been |
11218 | /// transformed. |
11219 | /// |
11220 | /// For the purposes of type reconstruction, a type has already been |
11221 | /// transformed if it is NULL or if it is not dependent. |
11222 | bool AlreadyTransformed(QualType T) { |
11223 | return T.isNull() || !T->isInstantiationDependentType(); |
11224 | } |
11225 | |
11226 | /// Returns the location of the entity whose type is being |
11227 | /// rebuilt. |
11228 | SourceLocation getBaseLocation() { return Loc; } |
11229 | |
11230 | /// Returns the name of the entity whose type is being rebuilt. |
11231 | DeclarationName getBaseEntity() { return Entity; } |
11232 | |
11233 | /// Sets the "base" location and entity when that |
11234 | /// information is known based on another transformation. |
11235 | void setBase(SourceLocation Loc, DeclarationName Entity) { |
11236 | this->Loc = Loc; |
11237 | this->Entity = Entity; |
11238 | } |
11239 | |
11240 | ExprResult TransformLambdaExpr(LambdaExpr *E) { |
11241 | // Lambdas never need to be transformed. |
11242 | return E; |
11243 | } |
11244 | }; |
11245 | } // end anonymous namespace |
11246 | |
11247 | TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, |
11248 | SourceLocation Loc, |
11249 | DeclarationName Name) { |
11250 | if (!T || !T->getType()->isInstantiationDependentType()) |
11251 | return T; |
11252 | |
11253 | CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); |
11254 | return Rebuilder.TransformType(T); |
11255 | } |
11256 | |
11257 | ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { |
11258 | CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), |
11259 | DeclarationName()); |
11260 | return Rebuilder.TransformExpr(E); |
11261 | } |
11262 | |
11263 | bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { |
11264 | if (SS.isInvalid()) |
11265 | return true; |
11266 | |
11267 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
11268 | CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), |
11269 | DeclarationName()); |
11270 | NestedNameSpecifierLoc Rebuilt |
11271 | = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); |
11272 | if (!Rebuilt) |
11273 | return true; |
11274 | |
11275 | SS.Adopt(Other: Rebuilt); |
11276 | return false; |
11277 | } |
11278 | |
11279 | bool Sema::RebuildTemplateParamsInCurrentInstantiation( |
11280 | TemplateParameterList *Params) { |
11281 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
11282 | Decl *Param = Params->getParam(Idx: I); |
11283 | |
11284 | // There is nothing to rebuild in a type parameter. |
11285 | if (isa<TemplateTypeParmDecl>(Val: Param)) |
11286 | continue; |
11287 | |
11288 | // Rebuild the template parameter list of a template template parameter. |
11289 | if (TemplateTemplateParmDecl *TTP |
11290 | = dyn_cast<TemplateTemplateParmDecl>(Val: Param)) { |
11291 | if (RebuildTemplateParamsInCurrentInstantiation( |
11292 | Params: TTP->getTemplateParameters())) |
11293 | return true; |
11294 | |
11295 | continue; |
11296 | } |
11297 | |
11298 | // Rebuild the type of a non-type template parameter. |
11299 | NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Val: Param); |
11300 | TypeSourceInfo *NewTSI |
11301 | = RebuildTypeInCurrentInstantiation(T: NTTP->getTypeSourceInfo(), |
11302 | Loc: NTTP->getLocation(), |
11303 | Name: NTTP->getDeclName()); |
11304 | if (!NewTSI) |
11305 | return true; |
11306 | |
11307 | if (NewTSI->getType()->isUndeducedType()) { |
11308 | // C++17 [temp.dep.expr]p3: |
11309 | // An id-expression is type-dependent if it contains |
11310 | // - an identifier associated by name lookup with a non-type |
11311 | // template-parameter declared with a type that contains a |
11312 | // placeholder type (7.1.7.4), |
11313 | NewTSI = SubstAutoTypeSourceInfoDependent(TypeWithAuto: NewTSI); |
11314 | } |
11315 | |
11316 | if (NewTSI != NTTP->getTypeSourceInfo()) { |
11317 | NTTP->setTypeSourceInfo(NewTSI); |
11318 | NTTP->setType(NewTSI->getType()); |
11319 | } |
11320 | } |
11321 | |
11322 | return false; |
11323 | } |
11324 | |
11325 | std::string |
11326 | Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
11327 | const TemplateArgumentList &Args) { |
11328 | return getTemplateArgumentBindingsText(Params, Args: Args.data(), NumArgs: Args.size()); |
11329 | } |
11330 | |
11331 | std::string |
11332 | Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
11333 | const TemplateArgument *Args, |
11334 | unsigned NumArgs) { |
11335 | SmallString<128> Str; |
11336 | llvm::raw_svector_ostream Out(Str); |
11337 | |
11338 | if (!Params || Params->size() == 0 || NumArgs == 0) |
11339 | return std::string(); |
11340 | |
11341 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
11342 | if (I >= NumArgs) |
11343 | break; |
11344 | |
11345 | if (I == 0) |
11346 | Out << "[with "; |
11347 | else |
11348 | Out << ", "; |
11349 | |
11350 | if (const IdentifierInfo *Id = Params->getParam(Idx: I)->getIdentifier()) { |
11351 | Out << Id->getName(); |
11352 | } else { |
11353 | Out << '$' << I; |
11354 | } |
11355 | |
11356 | Out << " = "; |
11357 | Args[I].print(Policy: getPrintingPolicy(), Out, |
11358 | IncludeType: TemplateParameterList::shouldIncludeTypeForArgument( |
11359 | Policy: getPrintingPolicy(), TPL: Params, Idx: I)); |
11360 | } |
11361 | |
11362 | Out << ']'; |
11363 | return std::string(Out.str()); |
11364 | } |
11365 | |
11366 | void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, |
11367 | CachedTokens &Toks) { |
11368 | if (!FD) |
11369 | return; |
11370 | |
11371 | auto LPT = std::make_unique<LateParsedTemplate>(); |
11372 | |
11373 | // Take tokens to avoid allocations |
11374 | LPT->Toks.swap(RHS&: Toks); |
11375 | LPT->D = FnD; |
11376 | LPT->FPO = getCurFPFeatures(); |
11377 | LateParsedTemplateMap.insert(KV: std::make_pair(x&: FD, y: std::move(LPT))); |
11378 | |
11379 | FD->setLateTemplateParsed(true); |
11380 | } |
11381 | |
11382 | void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { |
11383 | if (!FD) |
11384 | return; |
11385 | FD->setLateTemplateParsed(false); |
11386 | } |
11387 | |
11388 | bool Sema::IsInsideALocalClassWithinATemplateFunction() { |
11389 | DeclContext *DC = CurContext; |
11390 | |
11391 | while (DC) { |
11392 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: CurContext)) { |
11393 | const FunctionDecl *FD = RD->isLocalClass(); |
11394 | return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); |
11395 | } else if (DC->isTranslationUnit() || DC->isNamespace()) |
11396 | return false; |
11397 | |
11398 | DC = DC->getParent(); |
11399 | } |
11400 | return false; |
11401 | } |
11402 | |
11403 | namespace { |
11404 | /// Walk the path from which a declaration was instantiated, and check |
11405 | /// that every explicit specialization along that path is visible. This enforces |
11406 | /// C++ [temp.expl.spec]/6: |
11407 | /// |
11408 | /// If a template, a member template or a member of a class template is |
11409 | /// explicitly specialized then that specialization shall be declared before |
11410 | /// the first use of that specialization that would cause an implicit |
11411 | /// instantiation to take place, in every translation unit in which such a |
11412 | /// use occurs; no diagnostic is required. |
11413 | /// |
11414 | /// and also C++ [temp.class.spec]/1: |
11415 | /// |
11416 | /// A partial specialization shall be declared before the first use of a |
11417 | /// class template specialization that would make use of the partial |
11418 | /// specialization as the result of an implicit or explicit instantiation |
11419 | /// in every translation unit in which such a use occurs; no diagnostic is |
11420 | /// required. |
11421 | class ExplicitSpecializationVisibilityChecker { |
11422 | Sema &S; |
11423 | SourceLocation Loc; |
11424 | llvm::SmallVector<Module *, 8> Modules; |
11425 | Sema::AcceptableKind Kind; |
11426 | |
11427 | public: |
11428 | ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc, |
11429 | Sema::AcceptableKind Kind) |
11430 | : S(S), Loc(Loc), Kind(Kind) {} |
11431 | |
11432 | void check(NamedDecl *ND) { |
11433 | if (auto *FD = dyn_cast<FunctionDecl>(Val: ND)) |
11434 | return checkImpl(Spec: FD); |
11435 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
11436 | return checkImpl(Spec: RD); |
11437 | if (auto *VD = dyn_cast<VarDecl>(Val: ND)) |
11438 | return checkImpl(Spec: VD); |
11439 | if (auto *ED = dyn_cast<EnumDecl>(Val: ND)) |
11440 | return checkImpl(Spec: ED); |
11441 | } |
11442 | |
11443 | private: |
11444 | void diagnose(NamedDecl *D, bool IsPartialSpec) { |
11445 | auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization |
11446 | : Sema::MissingImportKind::ExplicitSpecialization; |
11447 | const bool Recover = true; |
11448 | |
11449 | // If we got a custom set of modules (because only a subset of the |
11450 | // declarations are interesting), use them, otherwise let |
11451 | // diagnoseMissingImport intelligently pick some. |
11452 | if (Modules.empty()) |
11453 | S.diagnoseMissingImport(Loc, Decl: D, MIK: Kind, Recover); |
11454 | else |
11455 | S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); |
11456 | } |
11457 | |
11458 | bool CheckMemberSpecialization(const NamedDecl *D) { |
11459 | return Kind == Sema::AcceptableKind::Visible |
11460 | ? S.hasVisibleMemberSpecialization(D) |
11461 | : S.hasReachableMemberSpecialization(D); |
11462 | } |
11463 | |
11464 | bool CheckExplicitSpecialization(const NamedDecl *D) { |
11465 | return Kind == Sema::AcceptableKind::Visible |
11466 | ? S.hasVisibleExplicitSpecialization(D) |
11467 | : S.hasReachableExplicitSpecialization(D); |
11468 | } |
11469 | |
11470 | bool CheckDeclaration(const NamedDecl *D) { |
11471 | return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D) |
11472 | : S.hasReachableDeclaration(D); |
11473 | } |
11474 | |
11475 | // Check a specific declaration. There are three problematic cases: |
11476 | // |
11477 | // 1) The declaration is an explicit specialization of a template |
11478 | // specialization. |
11479 | // 2) The declaration is an explicit specialization of a member of an |
11480 | // templated class. |
11481 | // 3) The declaration is an instantiation of a template, and that template |
11482 | // is an explicit specialization of a member of a templated class. |
11483 | // |
11484 | // We don't need to go any deeper than that, as the instantiation of the |
11485 | // surrounding class / etc is not triggered by whatever triggered this |
11486 | // instantiation, and thus should be checked elsewhere. |
11487 | template<typename SpecDecl> |
11488 | void checkImpl(SpecDecl *Spec) { |
11489 | bool IsHiddenExplicitSpecialization = false; |
11490 | TemplateSpecializationKind SpecKind = Spec->getTemplateSpecializationKind(); |
11491 | // Some invalid friend declarations are written as specializations but are |
11492 | // instantiated implicitly. |
11493 | if constexpr (std::is_same_v<SpecDecl, FunctionDecl>) |
11494 | SpecKind = Spec->getTemplateSpecializationKindForInstantiation(); |
11495 | if (SpecKind == TSK_ExplicitSpecialization) { |
11496 | IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo() |
11497 | ? !CheckMemberSpecialization(D: Spec) |
11498 | : !CheckExplicitSpecialization(D: Spec); |
11499 | } else { |
11500 | checkInstantiated(Spec); |
11501 | } |
11502 | |
11503 | if (IsHiddenExplicitSpecialization) |
11504 | diagnose(D: Spec->getMostRecentDecl(), IsPartialSpec: false); |
11505 | } |
11506 | |
11507 | void checkInstantiated(FunctionDecl *FD) { |
11508 | if (auto *TD = FD->getPrimaryTemplate()) |
11509 | checkTemplate(TD); |
11510 | } |
11511 | |
11512 | void checkInstantiated(CXXRecordDecl *RD) { |
11513 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: RD); |
11514 | if (!SD) |
11515 | return; |
11516 | |
11517 | auto From = SD->getSpecializedTemplateOrPartial(); |
11518 | if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) |
11519 | checkTemplate(TD); |
11520 | else if (auto *TD = |
11521 | From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { |
11522 | if (!CheckDeclaration(TD)) |
11523 | diagnose(TD, true); |
11524 | checkTemplate(TD); |
11525 | } |
11526 | } |
11527 | |
11528 | void checkInstantiated(VarDecl *RD) { |
11529 | auto *SD = dyn_cast<VarTemplateSpecializationDecl>(Val: RD); |
11530 | if (!SD) |
11531 | return; |
11532 | |
11533 | auto From = SD->getSpecializedTemplateOrPartial(); |
11534 | if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) |
11535 | checkTemplate(TD); |
11536 | else if (auto *TD = |
11537 | From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { |
11538 | if (!CheckDeclaration(TD)) |
11539 | diagnose(TD, true); |
11540 | checkTemplate(TD); |
11541 | } |
11542 | } |
11543 | |
11544 | void checkInstantiated(EnumDecl *FD) {} |
11545 | |
11546 | template<typename TemplDecl> |
11547 | void checkTemplate(TemplDecl *TD) { |
11548 | if (TD->isMemberSpecialization()) { |
11549 | if (!CheckMemberSpecialization(D: TD)) |
11550 | diagnose(D: TD->getMostRecentDecl(), IsPartialSpec: false); |
11551 | } |
11552 | } |
11553 | }; |
11554 | } // end anonymous namespace |
11555 | |
11556 | void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { |
11557 | if (!getLangOpts().Modules) |
11558 | return; |
11559 | |
11560 | ExplicitSpecializationVisibilityChecker(*this, Loc, |
11561 | Sema::AcceptableKind::Visible) |
11562 | .check(ND: Spec); |
11563 | } |
11564 | |
11565 | void Sema::checkSpecializationReachability(SourceLocation Loc, |
11566 | NamedDecl *Spec) { |
11567 | if (!getLangOpts().CPlusPlusModules) |
11568 | return checkSpecializationVisibility(Loc, Spec); |
11569 | |
11570 | ExplicitSpecializationVisibilityChecker(*this, Loc, |
11571 | Sema::AcceptableKind::Reachable) |
11572 | .check(ND: Spec); |
11573 | } |
11574 | |
11575 | SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const { |
11576 | if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty()) |
11577 | return N->getLocation(); |
11578 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: N)) { |
11579 | if (!FD->isFunctionTemplateSpecialization()) |
11580 | return FD->getLocation(); |
11581 | } else if (!isa<ClassTemplateSpecializationDecl, |
11582 | VarTemplateSpecializationDecl>(Val: N)) { |
11583 | return N->getLocation(); |
11584 | } |
11585 | for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) { |
11586 | if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid()) |
11587 | continue; |
11588 | return CSC.PointOfInstantiation; |
11589 | } |
11590 | return N->getLocation(); |
11591 | } |
11592 |
Definitions
- getTemplateParamsRange
- getTemplateDepth
- getAsTemplateNameDecl
- FilterAcceptableTemplateNames
- hasAnyAcceptableTemplateNames
- isTemplateName
- isDeductionGuideName
- DiagnoseUnknownTemplateName
- LookupTemplateName
- diagnoseExprIntendedAsTemplateName
- ActOnDependentIdExpression
- BuildDependentDeclRefExpr
- DiagnoseUninstantiableTemplate
- DiagnoseTemplateParameterShadow
- AdjustDeclIfTemplate
- getTemplatePackExpansion
- translateTemplateArgument
- translateTemplateArguments
- maybeDiagnoseTemplateParameterShadow
- ActOnTemplateTypeArgument
- ActOnTypeParameter
- makeTemplateArgumentListInfo
- CheckTypeConstraint
- ActOnTypeConstraint
- BuildTypeConstraint
- formImmediatelyDeclaredConstraint
- AttachTypeConstraint
- AttachTypeConstraint
- CheckNonTypeTemplateParameterType
- RequireStructuralType
- CheckNonTypeTemplateParameterType
- ActOnNonTypeTemplateParameter
- ActOnTemplateTemplateParameter
- ConstraintRefersToContainingTemplateChecker
- CheckIfContainingRecord
- CheckNonTypeTemplateParmDecl
- ConstraintRefersToContainingTemplateChecker
- getResult
- TransformTemplateTypeParmType
- TransformDecl
- ConstraintExpressionDependsOnEnclosingTemplate
- ActOnTemplateParameterList
- SetNestedNameSpecifier
- GetTemplateParameterList
- CheckClassTemplate
- DiagnoseDefaultTemplateArgument
- DiagnoseUnexpandedParameterPacks
- CheckTemplateParameterList
- DependencyChecker
- DependencyChecker
- DependencyChecker
- Matches
- TraverseStmt
- TraverseTypeLoc
- VisitTemplateTypeParmTypeLoc
- VisitTemplateTypeParmType
- TraverseTemplateName
- VisitDeclRefExpr
- VisitSubstTemplateTypeParmType
- VisitSubstTemplateTypeParmPackType
- TraverseInjectedClassNameType
- DependsOnTemplateParameters
- getRangeOfTypeInNestedNameSpecifier
- MatchTemplateParametersToScopeSpecifier
- NoteAllFoundTemplates
- builtinCommonTypeImpl
- isInVkNamespace
- checkHLSLSpirvTypeOperand
- checkBuiltinTemplateIdType
- isEnableIfAliasTemplate
- collectConjunctionTerms
- lookThroughRangesV3Condition
- FailedBooleanConditionPrinterHelper
- FailedBooleanConditionPrinterHelper
- handledStmt
- findFailedBooleanCondition
- CheckTemplateIdType
- ActOnUndeclaredTypeTemplateName
- resolveAssumedTemplateNameAsType
- ActOnTemplateIdType
- ActOnTagTemplateIdType
- isTemplateArgumentTemplateParameter
- isSameAsPrimaryTemplate
- checkMoreSpecializedThanPrimary
- noteNonDeducibleParameters
- checkTemplatePartialSpecialization
- CheckTemplatePartialSpecialization
- CheckTemplatePartialSpecialization
- CheckDeductionGuideTemplate
- ActOnVarTemplateSpecialization
- PartialSpecMatchResult
- IsLibstdcxxStdFormatKind
- CheckVarTemplateId
- CheckVarTemplateId
- diagnoseMissingTemplateArguments
- diagnoseMissingTemplateArguments
- CheckConceptTemplateId
- BuildTemplateIdExpr
- BuildQualifiedTemplateIdExpr
- ActOnTemplateName
- CheckTemplateTypeArgument
- SubstDefaultTemplateArgument
- SubstDefaultTemplateArgument
- SubstDefaultTemplateArgument
- SubstDefaultTemplateArgumentIfAvailable
- convertTypeTemplateArgumentToTemplate
- CheckTemplateArgument
- diagnoseMissingArgument
- CheckTemplateArgumentList
- UnnamedLocalNoLinkageFinder
- UnnamedLocalNoLinkageFinder
- Visit
- VisitBuiltinType
- VisitComplexType
- VisitPointerType
- VisitBlockPointerType
- VisitLValueReferenceType
- VisitRValueReferenceType
- VisitMemberPointerType
- VisitConstantArrayType
- VisitIncompleteArrayType
- VisitVariableArrayType
- VisitDependentSizedArrayType
- VisitDependentSizedExtVectorType
- VisitDependentSizedMatrixType
- VisitDependentAddressSpaceType
- VisitVectorType
- VisitDependentVectorType
- VisitExtVectorType
- VisitConstantMatrixType
- VisitFunctionProtoType
- VisitFunctionNoProtoType
- VisitUnresolvedUsingType
- VisitTypeOfExprType
- VisitTypeOfType
- VisitDecltypeType
- VisitPackIndexingType
- VisitUnaryTransformType
- VisitAutoType
- VisitDeducedTemplateSpecializationType
- VisitRecordType
- VisitEnumType
- VisitTemplateTypeParmType
- VisitSubstTemplateTypeParmPackType
- VisitTemplateSpecializationType
- VisitInjectedClassNameType
- VisitDependentNameType
- VisitDependentTemplateSpecializationType
- VisitPackExpansionType
- VisitObjCObjectType
- VisitObjCInterfaceType
- VisitObjCObjectPointerType
- VisitAtomicType
- VisitPipeType
- VisitBitIntType
- VisitArrayParameterType
- VisitDependentBitIntType
- VisitTagDecl
- VisitNestedNameSpecifier
- VisitHLSLAttributedResourceType
- VisitHLSLInlineSpirvType
- CheckTemplateArgument
- NullPointerValueKind
- isNullPointerValueTemplateArgument
- CheckTemplateArgumentIsCompatibleWithParameter
- CheckTemplateArgumentAddressOfObjectOrFunction
- CheckTemplateArgumentPointerToMember
- CheckTemplateArgument
- CheckTemplateTemplateArgument
- noteLocation
- NoteTemplateLocation
- NoteTemplateParameterLocation
- BuildExpressionFromDeclTemplateArgument
- BuildExpressionFromIntegralTemplateArgumentValue
- BuildExpressionFromNonTypeTemplateArgumentValue
- BuildExpressionFromNonTypeTemplateArgument
- MatchTemplateParameterKind
- DiagnoseTemplateParameterListArityMismatch
- TemplateParameterListsAreEqual
- CheckTemplateDeclScope
- getTemplateSpecializationKind
- CheckTemplateSpecializationScope
- findTemplateParameterInType
- findTemplateParameter
- CheckNonTypeTemplatePartialSpecializationArgs
- CheckTemplatePartialSpecializationArgs
- ActOnClassTemplateSpecialization
- ActOnTemplateDeclarator
- ActOnStartConceptDefinition
- RemoveLookupResult
- ActOnFinishConceptDefinition
- CheckConceptRedefinition
- CheckConceptUseInDefinition
- StripImplicitInstantiation
- DiagLocForExplicitInstantiation
- CheckSpecializationInstantiationRedecl
- CheckDependentFunctionTemplateSpecialization
- CheckFunctionTemplateSpecialization
- CheckMemberSpecialization
- completeMemberSpecializationImpl
- CompleteMemberSpecialization
- CheckExplicitInstantiationScope
- CheckExplicitInstantiation
- ScopeSpecifierHasTemplateId
- dllExportImportClassTemplateSpecialization
- ActOnExplicitInstantiation
- ActOnExplicitInstantiation
- ActOnExplicitInstantiation
- ActOnDependentTag
- ActOnTypenameType
- ActOnTypenameType
- isEnableIf
- CheckTypenameType
- CheckTypenameType
- CurrentInstantiationRebuilder
- CurrentInstantiationRebuilder
- AlreadyTransformed
- getBaseLocation
- getBaseEntity
- setBase
- TransformLambdaExpr
- RebuildTypeInCurrentInstantiation
- RebuildExprInCurrentInstantiation
- RebuildNestedNameSpecifierInCurrentInstantiation
- RebuildTemplateParamsInCurrentInstantiation
- getTemplateArgumentBindingsText
- getTemplateArgumentBindingsText
- MarkAsLateParsedTemplate
- UnmarkAsLateParsedTemplate
- IsInsideALocalClassWithinATemplateFunction
- ExplicitSpecializationVisibilityChecker
- ExplicitSpecializationVisibilityChecker
- check
- diagnose
- CheckMemberSpecialization
- CheckExplicitSpecialization
- CheckDeclaration
- checkImpl
- checkInstantiated
- checkInstantiated
- checkInstantiated
- checkInstantiated
- checkTemplate
- checkSpecializationVisibility
- checkSpecializationReachability
Improve your Profiling and Debugging skills
Find out more