1//===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7//
8// This file implements semantic analysis for C++ templates.
9//===----------------------------------------------------------------------===//
10
11#include "TreeTransform.h"
12#include "clang/AST/ASTConsumer.h"
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/Decl.h"
15#include "clang/AST/DeclFriend.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/Expr.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/RecursiveASTVisitor.h"
20#include "clang/AST/TemplateName.h"
21#include "clang/AST/TypeVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/DiagnosticSema.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/SourceLocation.h"
27#include "clang/Basic/Stack.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/EnterExpressionEvaluationContext.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/Overload.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/SemaInternal.h"
37#include "clang/Sema/Template.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/SmallBitVector.h"
40#include "llvm/ADT/SmallString.h"
41#include "llvm/ADT/StringExtras.h"
42
43#include <iterator>
44#include <optional>
45using namespace clang;
46using namespace sema;
47
48// Exported for use by Parser.
49SourceRange
50clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
51 unsigned N) {
52 if (!N) return SourceRange();
53 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
54}
55
56unsigned Sema::getTemplateDepth(Scope *S) const {
57 unsigned Depth = 0;
58
59 // Each template parameter scope represents one level of template parameter
60 // depth.
61 for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope;
62 TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) {
63 ++Depth;
64 }
65
66 // Note that there are template parameters with the given depth.
67 auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(a: Depth, b: D + 1); };
68
69 // Look for parameters of an enclosing generic lambda. We don't create a
70 // template parameter scope for these.
71 for (FunctionScopeInfo *FSI : getFunctionScopes()) {
72 if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: FSI)) {
73 if (!LSI->TemplateParams.empty()) {
74 ParamsAtDepth(LSI->AutoTemplateParameterDepth);
75 break;
76 }
77 if (LSI->GLTemplateParameterList) {
78 ParamsAtDepth(LSI->GLTemplateParameterList->getDepth());
79 break;
80 }
81 }
82 }
83
84 // Look for parameters of an enclosing terse function template. We don't
85 // create a template parameter scope for these either.
86 for (const InventedTemplateParameterInfo &Info :
87 getInventedParameterInfos()) {
88 if (!Info.TemplateParams.empty()) {
89 ParamsAtDepth(Info.AutoTemplateParameterDepth);
90 break;
91 }
92 }
93
94 return Depth;
95}
96
97/// \brief Determine whether the declaration found is acceptable as the name
98/// of a template and, if so, return that template declaration. Otherwise,
99/// returns null.
100///
101/// Note that this may return an UnresolvedUsingValueDecl if AllowDependent
102/// is true. In all other cases it will return a TemplateDecl (or null).
103NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D,
104 bool AllowFunctionTemplates,
105 bool AllowDependent) {
106 D = D->getUnderlyingDecl();
107
108 if (isa<TemplateDecl>(Val: D)) {
109 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(Val: D))
110 return nullptr;
111
112 return D;
113 }
114
115 if (const auto *Record = dyn_cast<CXXRecordDecl>(Val: D)) {
116 // C++ [temp.local]p1:
117 // Like normal (non-template) classes, class templates have an
118 // injected-class-name (Clause 9). The injected-class-name
119 // can be used with or without a template-argument-list. When
120 // it is used without a template-argument-list, it is
121 // equivalent to the injected-class-name followed by the
122 // template-parameters of the class template enclosed in
123 // <>. When it is used with a template-argument-list, it
124 // refers to the specified class template specialization,
125 // which could be the current specialization or another
126 // specialization.
127 if (Record->isInjectedClassName()) {
128 Record = cast<CXXRecordDecl>(Record->getDeclContext());
129 if (Record->getDescribedClassTemplate())
130 return Record->getDescribedClassTemplate();
131
132 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record))
133 return Spec->getSpecializedTemplate();
134 }
135
136 return nullptr;
137 }
138
139 // 'using Dependent::foo;' can resolve to a template name.
140 // 'using typename Dependent::foo;' cannot (not even if 'foo' is an
141 // injected-class-name).
142 if (AllowDependent && isa<UnresolvedUsingValueDecl>(Val: D))
143 return D;
144
145 return nullptr;
146}
147
148void Sema::FilterAcceptableTemplateNames(LookupResult &R,
149 bool AllowFunctionTemplates,
150 bool AllowDependent) {
151 LookupResult::Filter filter = R.makeFilter();
152 while (filter.hasNext()) {
153 NamedDecl *Orig = filter.next();
154 if (!getAsTemplateNameDecl(D: Orig, AllowFunctionTemplates, AllowDependent))
155 filter.erase();
156 }
157 filter.done();
158}
159
160bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
161 bool AllowFunctionTemplates,
162 bool AllowDependent,
163 bool AllowNonTemplateFunctions) {
164 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
165 if (getAsTemplateNameDecl(D: *I, AllowFunctionTemplates, AllowDependent))
166 return true;
167 if (AllowNonTemplateFunctions &&
168 isa<FunctionDecl>(Val: (*I)->getUnderlyingDecl()))
169 return true;
170 }
171
172 return false;
173}
174
175TemplateNameKind Sema::isTemplateName(Scope *S,
176 CXXScopeSpec &SS,
177 bool hasTemplateKeyword,
178 const UnqualifiedId &Name,
179 ParsedType ObjectTypePtr,
180 bool EnteringContext,
181 TemplateTy &TemplateResult,
182 bool &MemberOfUnknownSpecialization,
183 bool Disambiguation) {
184 assert(getLangOpts().CPlusPlus && "No template names in C!");
185
186 DeclarationName TName;
187 MemberOfUnknownSpecialization = false;
188
189 switch (Name.getKind()) {
190 case UnqualifiedIdKind::IK_Identifier:
191 TName = DeclarationName(Name.Identifier);
192 break;
193
194 case UnqualifiedIdKind::IK_OperatorFunctionId:
195 TName = Context.DeclarationNames.getCXXOperatorName(
196 Op: Name.OperatorFunctionId.Operator);
197 break;
198
199 case UnqualifiedIdKind::IK_LiteralOperatorId:
200 TName = Context.DeclarationNames.getCXXLiteralOperatorName(II: Name.Identifier);
201 break;
202
203 default:
204 return TNK_Non_template;
205 }
206
207 QualType ObjectType = ObjectTypePtr.get();
208
209 AssumedTemplateKind AssumedTemplate;
210 LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName);
211 if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
212 MemberOfUnknownSpecialization, RequiredTemplate: SourceLocation(),
213 ATK: &AssumedTemplate,
214 /*AllowTypoCorrection=*/!Disambiguation))
215 return TNK_Non_template;
216
217 if (AssumedTemplate != AssumedTemplateKind::None) {
218 TemplateResult = TemplateTy::make(P: Context.getAssumedTemplateName(Name: TName));
219 // Let the parser know whether we found nothing or found functions; if we
220 // found nothing, we want to more carefully check whether this is actually
221 // a function template name versus some other kind of undeclared identifier.
222 return AssumedTemplate == AssumedTemplateKind::FoundNothing
223 ? TNK_Undeclared_template
224 : TNK_Function_template;
225 }
226
227 if (R.empty())
228 return TNK_Non_template;
229
230 NamedDecl *D = nullptr;
231 UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: *R.begin());
232 if (R.isAmbiguous()) {
233 // If we got an ambiguity involving a non-function template, treat this
234 // as a template name, and pick an arbitrary template for error recovery.
235 bool AnyFunctionTemplates = false;
236 for (NamedDecl *FoundD : R) {
237 if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(D: FoundD)) {
238 if (isa<FunctionTemplateDecl>(Val: FoundTemplate))
239 AnyFunctionTemplates = true;
240 else {
241 D = FoundTemplate;
242 FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: FoundD);
243 break;
244 }
245 }
246 }
247
248 // If we didn't find any templates at all, this isn't a template name.
249 // Leave the ambiguity for a later lookup to diagnose.
250 if (!D && !AnyFunctionTemplates) {
251 R.suppressDiagnostics();
252 return TNK_Non_template;
253 }
254
255 // If the only templates were function templates, filter out the rest.
256 // We'll diagnose the ambiguity later.
257 if (!D)
258 FilterAcceptableTemplateNames(R);
259 }
260
261 // At this point, we have either picked a single template name declaration D
262 // or we have a non-empty set of results R containing either one template name
263 // declaration or a set of function templates.
264
265 TemplateName Template;
266 TemplateNameKind TemplateKind;
267
268 unsigned ResultCount = R.end() - R.begin();
269 if (!D && ResultCount > 1) {
270 // We assume that we'll preserve the qualifier from a function
271 // template name in other ways.
272 Template = Context.getOverloadedTemplateName(Begin: R.begin(), End: R.end());
273 TemplateKind = TNK_Function_template;
274
275 // We'll do this lookup again later.
276 R.suppressDiagnostics();
277 } else {
278 if (!D) {
279 D = getAsTemplateNameDecl(D: *R.begin());
280 assert(D && "unambiguous result is not a template name");
281 }
282
283 if (isa<UnresolvedUsingValueDecl>(Val: D)) {
284 // We don't yet know whether this is a template-name or not.
285 MemberOfUnknownSpecialization = true;
286 return TNK_Non_template;
287 }
288
289 TemplateDecl *TD = cast<TemplateDecl>(Val: D);
290 Template =
291 FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD);
292 assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD);
293 if (SS.isSet() && !SS.isInvalid()) {
294 NestedNameSpecifier *Qualifier = SS.getScopeRep();
295 Template = Context.getQualifiedTemplateName(NNS: Qualifier, TemplateKeyword: hasTemplateKeyword,
296 Template);
297 }
298
299 if (isa<FunctionTemplateDecl>(Val: TD)) {
300 TemplateKind = TNK_Function_template;
301
302 // We'll do this lookup again later.
303 R.suppressDiagnostics();
304 } else {
305 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
306 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
307 isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD));
308 TemplateKind =
309 isa<VarTemplateDecl>(Val: TD) ? TNK_Var_template :
310 isa<ConceptDecl>(Val: TD) ? TNK_Concept_template :
311 TNK_Type_template;
312 }
313 }
314
315 TemplateResult = TemplateTy::make(P: Template);
316 return TemplateKind;
317}
318
319bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name,
320 SourceLocation NameLoc, CXXScopeSpec &SS,
321 ParsedTemplateTy *Template /*=nullptr*/) {
322 bool MemberOfUnknownSpecialization = false;
323
324 // We could use redeclaration lookup here, but we don't need to: the
325 // syntactic form of a deduction guide is enough to identify it even
326 // if we can't look up the template name at all.
327 LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName);
328 if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(),
329 /*EnteringContext*/ false,
330 MemberOfUnknownSpecialization))
331 return false;
332
333 if (R.empty()) return false;
334 if (R.isAmbiguous()) {
335 // FIXME: Diagnose an ambiguity if we find at least one template.
336 R.suppressDiagnostics();
337 return false;
338 }
339
340 // We only treat template-names that name type templates as valid deduction
341 // guide names.
342 TemplateDecl *TD = R.getAsSingle<TemplateDecl>();
343 if (!TD || !getAsTypeTemplateDecl(TD))
344 return false;
345
346 if (Template)
347 *Template = TemplateTy::make(P: TemplateName(TD));
348 return true;
349}
350
351bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
352 SourceLocation IILoc,
353 Scope *S,
354 const CXXScopeSpec *SS,
355 TemplateTy &SuggestedTemplate,
356 TemplateNameKind &SuggestedKind) {
357 // We can't recover unless there's a dependent scope specifier preceding the
358 // template name.
359 // FIXME: Typo correction?
360 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(SS: *SS) ||
361 computeDeclContext(SS: *SS))
362 return false;
363
364 // The code is missing a 'template' keyword prior to the dependent template
365 // name.
366 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
367 Diag(IILoc, diag::err_template_kw_missing)
368 << Qualifier << II.getName()
369 << FixItHint::CreateInsertion(IILoc, "template ");
370 SuggestedTemplate
371 = TemplateTy::make(P: Context.getDependentTemplateName(NNS: Qualifier, Name: &II));
372 SuggestedKind = TNK_Dependent_template_name;
373 return true;
374}
375
376bool Sema::LookupTemplateName(LookupResult &Found,
377 Scope *S, CXXScopeSpec &SS,
378 QualType ObjectType,
379 bool EnteringContext,
380 bool &MemberOfUnknownSpecialization,
381 RequiredTemplateKind RequiredTemplate,
382 AssumedTemplateKind *ATK,
383 bool AllowTypoCorrection) {
384 if (ATK)
385 *ATK = AssumedTemplateKind::None;
386
387 if (SS.isInvalid())
388 return true;
389
390 Found.setTemplateNameLookup(true);
391
392 // Determine where to perform name lookup
393 MemberOfUnknownSpecialization = false;
394 DeclContext *LookupCtx = nullptr;
395 bool IsDependent = false;
396 if (!ObjectType.isNull()) {
397 // This nested-name-specifier occurs in a member access expression, e.g.,
398 // x->B::f, and we are looking into the type of the object.
399 assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist");
400 LookupCtx = computeDeclContext(T: ObjectType);
401 IsDependent = !LookupCtx && ObjectType->isDependentType();
402 assert((IsDependent || !ObjectType->isIncompleteType() ||
403 !ObjectType->getAs<TagType>() ||
404 ObjectType->castAs<TagType>()->isBeingDefined()) &&
405 "Caller should have completed object type");
406
407 // Template names cannot appear inside an Objective-C class or object type
408 // or a vector type.
409 //
410 // FIXME: This is wrong. For example:
411 //
412 // template<typename T> using Vec = T __attribute__((ext_vector_type(4)));
413 // Vec<int> vi;
414 // vi.Vec<int>::~Vec<int>();
415 //
416 // ... should be accepted but we will not treat 'Vec' as a template name
417 // here. The right thing to do would be to check if the name is a valid
418 // vector component name, and look up a template name if not. And similarly
419 // for lookups into Objective-C class and object types, where the same
420 // problem can arise.
421 if (ObjectType->isObjCObjectOrInterfaceType() ||
422 ObjectType->isVectorType()) {
423 Found.clear();
424 return false;
425 }
426 } else if (SS.isNotEmpty()) {
427 // This nested-name-specifier occurs after another nested-name-specifier,
428 // so long into the context associated with the prior nested-name-specifier.
429 LookupCtx = computeDeclContext(SS, EnteringContext);
430 IsDependent = !LookupCtx && isDependentScopeSpecifier(SS);
431
432 // The declaration context must be complete.
433 if (LookupCtx && RequireCompleteDeclContext(SS, DC: LookupCtx))
434 return true;
435 }
436
437 bool ObjectTypeSearchedInScope = false;
438 bool AllowFunctionTemplatesInLookup = true;
439 if (LookupCtx) {
440 // Perform "qualified" name lookup into the declaration context we
441 // computed, which is either the type of the base of a member access
442 // expression or the declaration context associated with a prior
443 // nested-name-specifier.
444 LookupQualifiedName(R&: Found, LookupCtx);
445
446 // FIXME: The C++ standard does not clearly specify what happens in the
447 // case where the object type is dependent, and implementations vary. In
448 // Clang, we treat a name after a . or -> as a template-name if lookup
449 // finds a non-dependent member or member of the current instantiation that
450 // is a type template, or finds no such members and lookup in the context
451 // of the postfix-expression finds a type template. In the latter case, the
452 // name is nonetheless dependent, and we may resolve it to a member of an
453 // unknown specialization when we come to instantiate the template.
454 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
455 }
456
457 if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) {
458 // C++ [basic.lookup.classref]p1:
459 // In a class member access expression (5.2.5), if the . or -> token is
460 // immediately followed by an identifier followed by a <, the
461 // identifier must be looked up to determine whether the < is the
462 // beginning of a template argument list (14.2) or a less-than operator.
463 // The identifier is first looked up in the class of the object
464 // expression. If the identifier is not found, it is then looked up in
465 // the context of the entire postfix-expression and shall name a class
466 // template.
467 if (S)
468 LookupName(R&: Found, S);
469
470 if (!ObjectType.isNull()) {
471 // FIXME: We should filter out all non-type templates here, particularly
472 // variable templates and concepts. But the exclusion of alias templates
473 // and template template parameters is a wording defect.
474 AllowFunctionTemplatesInLookup = false;
475 ObjectTypeSearchedInScope = true;
476 }
477
478 IsDependent |= Found.wasNotFoundInCurrentInstantiation();
479 }
480
481 if (Found.isAmbiguous())
482 return false;
483
484 if (ATK && SS.isEmpty() && ObjectType.isNull() &&
485 !RequiredTemplate.hasTemplateKeyword()) {
486 // C++2a [temp.names]p2:
487 // A name is also considered to refer to a template if it is an
488 // unqualified-id followed by a < and name lookup finds either one or more
489 // functions or finds nothing.
490 //
491 // To keep our behavior consistent, we apply the "finds nothing" part in
492 // all language modes, and diagnose the empty lookup in ActOnCallExpr if we
493 // successfully form a call to an undeclared template-id.
494 bool AllFunctions =
495 getLangOpts().CPlusPlus20 && llvm::all_of(Range&: Found, P: [](NamedDecl *ND) {
496 return isa<FunctionDecl>(Val: ND->getUnderlyingDecl());
497 });
498 if (AllFunctions || (Found.empty() && !IsDependent)) {
499 // If lookup found any functions, or if this is a name that can only be
500 // used for a function, then strongly assume this is a function
501 // template-id.
502 *ATK = (Found.empty() && Found.getLookupName().isIdentifier())
503 ? AssumedTemplateKind::FoundNothing
504 : AssumedTemplateKind::FoundFunctions;
505 Found.clear();
506 return false;
507 }
508 }
509
510 if (Found.empty() && !IsDependent && AllowTypoCorrection) {
511 // If we did not find any names, and this is not a disambiguation, attempt
512 // to correct any typos.
513 DeclarationName Name = Found.getLookupName();
514 Found.clear();
515 // Simple filter callback that, for keywords, only accepts the C++ *_cast
516 DefaultFilterCCC FilterCCC{};
517 FilterCCC.WantTypeSpecifiers = false;
518 FilterCCC.WantExpressionKeywords = false;
519 FilterCCC.WantRemainingKeywords = false;
520 FilterCCC.WantCXXNamedCasts = true;
521 if (TypoCorrection Corrected =
522 CorrectTypo(Typo: Found.getLookupNameInfo(), LookupKind: Found.getLookupKind(), S,
523 SS: &SS, CCC&: FilterCCC, Mode: CTK_ErrorRecovery, MemberContext: LookupCtx)) {
524 if (auto *ND = Corrected.getFoundDecl())
525 Found.addDecl(D: ND);
526 FilterAcceptableTemplateNames(R&: Found);
527 if (Found.isAmbiguous()) {
528 Found.clear();
529 } else if (!Found.empty()) {
530 Found.setLookupName(Corrected.getCorrection());
531 if (LookupCtx) {
532 std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts()));
533 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
534 Name.getAsString() == CorrectedStr;
535 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
536 << Name << LookupCtx << DroppedSpecifier
537 << SS.getRange());
538 } else {
539 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
540 }
541 }
542 }
543 }
544
545 NamedDecl *ExampleLookupResult =
546 Found.empty() ? nullptr : Found.getRepresentativeDecl();
547 FilterAcceptableTemplateNames(R&: Found, AllowFunctionTemplates: AllowFunctionTemplatesInLookup);
548 if (Found.empty()) {
549 if (IsDependent) {
550 MemberOfUnknownSpecialization = true;
551 return false;
552 }
553
554 // If a 'template' keyword was used, a lookup that finds only non-template
555 // names is an error.
556 if (ExampleLookupResult && RequiredTemplate) {
557 Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template)
558 << Found.getLookupName() << SS.getRange()
559 << RequiredTemplate.hasTemplateKeyword()
560 << RequiredTemplate.getTemplateKeywordLoc();
561 Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(),
562 diag::note_template_kw_refers_to_non_template)
563 << Found.getLookupName();
564 return true;
565 }
566
567 return false;
568 }
569
570 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
571 !getLangOpts().CPlusPlus11) {
572 // C++03 [basic.lookup.classref]p1:
573 // [...] If the lookup in the class of the object expression finds a
574 // template, the name is also looked up in the context of the entire
575 // postfix-expression and [...]
576 //
577 // Note: C++11 does not perform this second lookup.
578 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
579 LookupOrdinaryName);
580 FoundOuter.setTemplateNameLookup(true);
581 LookupName(R&: FoundOuter, S);
582 // FIXME: We silently accept an ambiguous lookup here, in violation of
583 // [basic.lookup]/1.
584 FilterAcceptableTemplateNames(R&: FoundOuter, /*AllowFunctionTemplates=*/false);
585
586 NamedDecl *OuterTemplate;
587 if (FoundOuter.empty()) {
588 // - if the name is not found, the name found in the class of the
589 // object expression is used, otherwise
590 } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() ||
591 !(OuterTemplate =
592 getAsTemplateNameDecl(D: FoundOuter.getFoundDecl()))) {
593 // - if the name is found in the context of the entire
594 // postfix-expression and does not name a class template, the name
595 // found in the class of the object expression is used, otherwise
596 FoundOuter.clear();
597 } else if (!Found.isSuppressingAmbiguousDiagnostics()) {
598 // - if the name found is a class template, it must refer to the same
599 // entity as the one found in the class of the object expression,
600 // otherwise the program is ill-formed.
601 if (!Found.isSingleResult() ||
602 getAsTemplateNameDecl(D: Found.getFoundDecl())->getCanonicalDecl() !=
603 OuterTemplate->getCanonicalDecl()) {
604 Diag(Found.getNameLoc(),
605 diag::ext_nested_name_member_ref_lookup_ambiguous)
606 << Found.getLookupName()
607 << ObjectType;
608 Diag(Found.getRepresentativeDecl()->getLocation(),
609 diag::note_ambig_member_ref_object_type)
610 << ObjectType;
611 Diag(FoundOuter.getFoundDecl()->getLocation(),
612 diag::note_ambig_member_ref_scope);
613
614 // Recover by taking the template that we found in the object
615 // expression's type.
616 }
617 }
618 }
619
620 return false;
621}
622
623void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName,
624 SourceLocation Less,
625 SourceLocation Greater) {
626 if (TemplateName.isInvalid())
627 return;
628
629 DeclarationNameInfo NameInfo;
630 CXXScopeSpec SS;
631 LookupNameKind LookupKind;
632
633 DeclContext *LookupCtx = nullptr;
634 NamedDecl *Found = nullptr;
635 bool MissingTemplateKeyword = false;
636
637 // Figure out what name we looked up.
638 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: TemplateName.get())) {
639 NameInfo = DRE->getNameInfo();
640 SS.Adopt(Other: DRE->getQualifierLoc());
641 LookupKind = LookupOrdinaryName;
642 Found = DRE->getFoundDecl();
643 } else if (auto *ME = dyn_cast<MemberExpr>(Val: TemplateName.get())) {
644 NameInfo = ME->getMemberNameInfo();
645 SS.Adopt(Other: ME->getQualifierLoc());
646 LookupKind = LookupMemberName;
647 LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl();
648 Found = ME->getMemberDecl();
649 } else if (auto *DSDRE =
650 dyn_cast<DependentScopeDeclRefExpr>(Val: TemplateName.get())) {
651 NameInfo = DSDRE->getNameInfo();
652 SS.Adopt(Other: DSDRE->getQualifierLoc());
653 MissingTemplateKeyword = true;
654 } else if (auto *DSME =
655 dyn_cast<CXXDependentScopeMemberExpr>(Val: TemplateName.get())) {
656 NameInfo = DSME->getMemberNameInfo();
657 SS.Adopt(Other: DSME->getQualifierLoc());
658 MissingTemplateKeyword = true;
659 } else {
660 llvm_unreachable("unexpected kind of potential template name");
661 }
662
663 // If this is a dependent-scope lookup, diagnose that the 'template' keyword
664 // was missing.
665 if (MissingTemplateKeyword) {
666 Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing)
667 << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater);
668 return;
669 }
670
671 // Try to correct the name by looking for templates and C++ named casts.
672 struct TemplateCandidateFilter : CorrectionCandidateCallback {
673 Sema &S;
674 TemplateCandidateFilter(Sema &S) : S(S) {
675 WantTypeSpecifiers = false;
676 WantExpressionKeywords = false;
677 WantRemainingKeywords = false;
678 WantCXXNamedCasts = true;
679 };
680 bool ValidateCandidate(const TypoCorrection &Candidate) override {
681 if (auto *ND = Candidate.getCorrectionDecl())
682 return S.getAsTemplateNameDecl(D: ND);
683 return Candidate.isKeyword();
684 }
685
686 std::unique_ptr<CorrectionCandidateCallback> clone() override {
687 return std::make_unique<TemplateCandidateFilter>(args&: *this);
688 }
689 };
690
691 DeclarationName Name = NameInfo.getName();
692 TemplateCandidateFilter CCC(*this);
693 if (TypoCorrection Corrected = CorrectTypo(Typo: NameInfo, LookupKind, S, SS: &SS, CCC,
694 Mode: CTK_ErrorRecovery, MemberContext: LookupCtx)) {
695 auto *ND = Corrected.getFoundDecl();
696 if (ND)
697 ND = getAsTemplateNameDecl(D: ND);
698 if (ND || Corrected.isKeyword()) {
699 if (LookupCtx) {
700 std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts()));
701 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
702 Name.getAsString() == CorrectedStr;
703 diagnoseTypo(Corrected,
704 PDiag(diag::err_non_template_in_member_template_id_suggest)
705 << Name << LookupCtx << DroppedSpecifier
706 << SS.getRange(), false);
707 } else {
708 diagnoseTypo(Corrected,
709 PDiag(diag::err_non_template_in_template_id_suggest)
710 << Name, false);
711 }
712 if (Found)
713 Diag(Found->getLocation(),
714 diag::note_non_template_in_template_id_found);
715 return;
716 }
717 }
718
719 Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id)
720 << Name << SourceRange(Less, Greater);
721 if (Found)
722 Diag(Found->getLocation(), diag::note_non_template_in_template_id_found);
723}
724
725/// ActOnDependentIdExpression - Handle a dependent id-expression that
726/// was just parsed. This is only possible with an explicit scope
727/// specifier naming a dependent type.
728ExprResult
729Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
730 SourceLocation TemplateKWLoc,
731 const DeclarationNameInfo &NameInfo,
732 bool isAddressOfOperand,
733 const TemplateArgumentListInfo *TemplateArgs) {
734 DeclContext *DC = getFunctionLevelDeclContext();
735
736 // C++11 [expr.prim.general]p12:
737 // An id-expression that denotes a non-static data member or non-static
738 // member function of a class can only be used:
739 // (...)
740 // - if that id-expression denotes a non-static data member and it
741 // appears in an unevaluated operand.
742 //
743 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
744 // CXXDependentScopeMemberExpr. The former can instantiate to either
745 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
746 // always a MemberExpr.
747 bool MightBeCxx11UnevalField =
748 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
749
750 // Check if the nested name specifier is an enum type.
751 bool IsEnum = false;
752 if (NestedNameSpecifier *NNS = SS.getScopeRep())
753 IsEnum = isa_and_nonnull<EnumType>(Val: NNS->getAsType());
754
755 if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum &&
756 isa<CXXMethodDecl>(Val: DC) &&
757 cast<CXXMethodDecl>(Val: DC)->isImplicitObjectMemberFunction()) {
758 QualType ThisType = cast<CXXMethodDecl>(Val: DC)->getThisType().getNonReferenceType();
759
760 // Since the 'this' expression is synthesized, we don't need to
761 // perform the double-lookup check.
762 NamedDecl *FirstQualifierInScope = nullptr;
763
764 return CXXDependentScopeMemberExpr::Create(
765 Ctx: Context, /*This=*/Base: nullptr, BaseType: ThisType,
766 /*IsArrow=*/!Context.getLangOpts().HLSL,
767 /*Op=*/OperatorLoc: SourceLocation(), QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc,
768 FirstQualifierFoundInScope: FirstQualifierInScope, MemberNameInfo: NameInfo, TemplateArgs);
769 }
770
771 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
772}
773
774ExprResult
775Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
776 SourceLocation TemplateKWLoc,
777 const DeclarationNameInfo &NameInfo,
778 const TemplateArgumentListInfo *TemplateArgs) {
779 // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc
780 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
781 if (!QualifierLoc)
782 return ExprError();
783
784 return DependentScopeDeclRefExpr::Create(
785 Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs);
786}
787
788
789/// Determine whether we would be unable to instantiate this template (because
790/// it either has no definition, or is in the process of being instantiated).
791bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation,
792 NamedDecl *Instantiation,
793 bool InstantiatedFromMember,
794 const NamedDecl *Pattern,
795 const NamedDecl *PatternDef,
796 TemplateSpecializationKind TSK,
797 bool Complain /*= true*/) {
798 assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) ||
799 isa<VarDecl>(Instantiation));
800
801 bool IsEntityBeingDefined = false;
802 if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(Val: PatternDef))
803 IsEntityBeingDefined = TD->isBeingDefined();
804
805 if (PatternDef && !IsEntityBeingDefined) {
806 NamedDecl *SuggestedDef = nullptr;
807 if (!hasReachableDefinition(D: const_cast<NamedDecl *>(PatternDef),
808 Suggested: &SuggestedDef,
809 /*OnlyNeedComplete*/ false)) {
810 // If we're allowed to diagnose this and recover, do so.
811 bool Recover = Complain && !isSFINAEContext();
812 if (Complain)
813 diagnoseMissingImport(Loc: PointOfInstantiation, Decl: SuggestedDef,
814 MIK: Sema::MissingImportKind::Definition, Recover);
815 return !Recover;
816 }
817 return false;
818 }
819
820 if (!Complain || (PatternDef && PatternDef->isInvalidDecl()))
821 return true;
822
823 QualType InstantiationTy;
824 if (TagDecl *TD = dyn_cast<TagDecl>(Val: Instantiation))
825 InstantiationTy = Context.getTypeDeclType(TD);
826 if (PatternDef) {
827 Diag(PointOfInstantiation,
828 diag::err_template_instantiate_within_definition)
829 << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation)
830 << InstantiationTy;
831 // Not much point in noting the template declaration here, since
832 // we're lexically inside it.
833 Instantiation->setInvalidDecl();
834 } else if (InstantiatedFromMember) {
835 if (isa<FunctionDecl>(Val: Instantiation)) {
836 Diag(PointOfInstantiation,
837 diag::err_explicit_instantiation_undefined_member)
838 << /*member function*/ 1 << Instantiation->getDeclName()
839 << Instantiation->getDeclContext();
840 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
841 } else {
842 assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!");
843 Diag(PointOfInstantiation,
844 diag::err_implicit_instantiate_member_undefined)
845 << InstantiationTy;
846 Diag(Pattern->getLocation(), diag::note_member_declared_at);
847 }
848 } else {
849 if (isa<FunctionDecl>(Val: Instantiation)) {
850 Diag(PointOfInstantiation,
851 diag::err_explicit_instantiation_undefined_func_template)
852 << Pattern;
853 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
854 } else if (isa<TagDecl>(Val: Instantiation)) {
855 Diag(PointOfInstantiation, diag::err_template_instantiate_undefined)
856 << (TSK != TSK_ImplicitInstantiation)
857 << InstantiationTy;
858 NoteTemplateLocation(Decl: *Pattern);
859 } else {
860 assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!");
861 if (isa<VarTemplateSpecializationDecl>(Val: Instantiation)) {
862 Diag(PointOfInstantiation,
863 diag::err_explicit_instantiation_undefined_var_template)
864 << Instantiation;
865 Instantiation->setInvalidDecl();
866 } else
867 Diag(PointOfInstantiation,
868 diag::err_explicit_instantiation_undefined_member)
869 << /*static data member*/ 2 << Instantiation->getDeclName()
870 << Instantiation->getDeclContext();
871 Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here);
872 }
873 }
874
875 // In general, Instantiation isn't marked invalid to get more than one
876 // error for multiple undefined instantiations. But the code that does
877 // explicit declaration -> explicit definition conversion can't handle
878 // invalid declarations, so mark as invalid in that case.
879 if (TSK == TSK_ExplicitInstantiationDeclaration)
880 Instantiation->setInvalidDecl();
881 return true;
882}
883
884/// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
885/// that the template parameter 'PrevDecl' is being shadowed by a new
886/// declaration at location Loc. Returns true to indicate that this is
887/// an error, and false otherwise.
888void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
889 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
890
891 // C++ [temp.local]p4:
892 // A template-parameter shall not be redeclared within its
893 // scope (including nested scopes).
894 //
895 // Make this a warning when MSVC compatibility is requested.
896 unsigned DiagId = getLangOpts().MSVCCompat ? diag::ext_template_param_shadow
897 : diag::err_template_param_shadow;
898 const auto *ND = cast<NamedDecl>(Val: PrevDecl);
899 Diag(Loc, DiagID: DiagId) << ND->getDeclName();
900 NoteTemplateParameterLocation(Decl: *ND);
901}
902
903/// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
904/// the parameter D to reference the templated declaration and return a pointer
905/// to the template declaration. Otherwise, do nothing to D and return null.
906TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
907 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(Val: D)) {
908 D = Temp->getTemplatedDecl();
909 return Temp;
910 }
911 return nullptr;
912}
913
914ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
915 SourceLocation EllipsisLoc) const {
916 assert(Kind == Template &&
917 "Only template template arguments can be pack expansions here");
918 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
919 "Template template argument pack expansion without packs");
920 ParsedTemplateArgument Result(*this);
921 Result.EllipsisLoc = EllipsisLoc;
922 return Result;
923}
924
925static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
926 const ParsedTemplateArgument &Arg) {
927
928 switch (Arg.getKind()) {
929 case ParsedTemplateArgument::Type: {
930 TypeSourceInfo *DI;
931 QualType T = SemaRef.GetTypeFromParser(Ty: Arg.getAsType(), TInfo: &DI);
932 if (!DI)
933 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Loc: Arg.getLocation());
934 return TemplateArgumentLoc(TemplateArgument(T), DI);
935 }
936
937 case ParsedTemplateArgument::NonType: {
938 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
939 return TemplateArgumentLoc(TemplateArgument(E), E);
940 }
941
942 case ParsedTemplateArgument::Template: {
943 TemplateName Template = Arg.getAsTemplate().get();
944 TemplateArgument TArg;
945 if (Arg.getEllipsisLoc().isValid())
946 TArg = TemplateArgument(Template, std::optional<unsigned int>());
947 else
948 TArg = Template;
949 return TemplateArgumentLoc(
950 SemaRef.Context, TArg,
951 Arg.getScopeSpec().getWithLocInContext(Context&: SemaRef.Context),
952 Arg.getLocation(), Arg.getEllipsisLoc());
953 }
954 }
955
956 llvm_unreachable("Unhandled parsed template argument");
957}
958
959/// Translates template arguments as provided by the parser
960/// into template arguments used by semantic analysis.
961void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
962 TemplateArgumentListInfo &TemplateArgs) {
963 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
964 TemplateArgs.addArgument(Loc: translateTemplateArgument(SemaRef&: *this,
965 Arg: TemplateArgsIn[I]));
966}
967
968static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
969 SourceLocation Loc,
970 IdentifierInfo *Name) {
971 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
972 S, Name, Loc, NameKind: Sema::LookupOrdinaryName, Redecl: Sema::ForVisibleRedeclaration);
973 if (PrevDecl && PrevDecl->isTemplateParameter())
974 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
975}
976
977/// Convert a parsed type into a parsed template argument. This is mostly
978/// trivial, except that we may have parsed a C++17 deduced class template
979/// specialization type, in which case we should form a template template
980/// argument instead of a type template argument.
981ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) {
982 TypeSourceInfo *TInfo;
983 QualType T = GetTypeFromParser(Ty: ParsedType.get(), TInfo: &TInfo);
984 if (T.isNull())
985 return ParsedTemplateArgument();
986 assert(TInfo && "template argument with no location");
987
988 // If we might have formed a deduced template specialization type, convert
989 // it to a template template argument.
990 if (getLangOpts().CPlusPlus17) {
991 TypeLoc TL = TInfo->getTypeLoc();
992 SourceLocation EllipsisLoc;
993 if (auto PET = TL.getAs<PackExpansionTypeLoc>()) {
994 EllipsisLoc = PET.getEllipsisLoc();
995 TL = PET.getPatternLoc();
996 }
997
998 CXXScopeSpec SS;
999 if (auto ET = TL.getAs<ElaboratedTypeLoc>()) {
1000 SS.Adopt(Other: ET.getQualifierLoc());
1001 TL = ET.getNamedTypeLoc();
1002 }
1003
1004 if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) {
1005 TemplateName Name = DTST.getTypePtr()->getTemplateName();
1006 if (SS.isSet())
1007 Name = Context.getQualifiedTemplateName(NNS: SS.getScopeRep(),
1008 /*HasTemplateKeyword=*/TemplateKeyword: false,
1009 Template: Name);
1010 ParsedTemplateArgument Result(SS, TemplateTy::make(P: Name),
1011 DTST.getTemplateNameLoc());
1012 if (EllipsisLoc.isValid())
1013 Result = Result.getTemplatePackExpansion(EllipsisLoc);
1014 return Result;
1015 }
1016 }
1017
1018 // This is a normal type template argument. Note, if the type template
1019 // argument is an injected-class-name for a template, it has a dual nature
1020 // and can be used as either a type or a template. We handle that in
1021 // convertTypeTemplateArgumentToTemplate.
1022 return ParsedTemplateArgument(ParsedTemplateArgument::Type,
1023 ParsedType.get().getAsOpaquePtr(),
1024 TInfo->getTypeLoc().getBeginLoc());
1025}
1026
1027/// ActOnTypeParameter - Called when a C++ template type parameter
1028/// (e.g., "typename T") has been parsed. Typename specifies whether
1029/// the keyword "typename" was used to declare the type parameter
1030/// (otherwise, "class" was used), and KeyLoc is the location of the
1031/// "class" or "typename" keyword. ParamName is the name of the
1032/// parameter (NULL indicates an unnamed template parameter) and
1033/// ParamNameLoc is the location of the parameter name (if any).
1034/// If the type parameter has a default argument, it will be added
1035/// later via ActOnTypeParameterDefault.
1036NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
1037 SourceLocation EllipsisLoc,
1038 SourceLocation KeyLoc,
1039 IdentifierInfo *ParamName,
1040 SourceLocation ParamNameLoc,
1041 unsigned Depth, unsigned Position,
1042 SourceLocation EqualLoc,
1043 ParsedType DefaultArg,
1044 bool HasTypeConstraint) {
1045 assert(S->isTemplateParamScope() &&
1046 "Template type parameter not in template parameter scope!");
1047
1048 bool IsParameterPack = EllipsisLoc.isValid();
1049 TemplateTypeParmDecl *Param
1050 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1051 KeyLoc, ParamNameLoc, Depth, Position,
1052 ParamName, Typename, IsParameterPack,
1053 HasTypeConstraint);
1054 Param->setAccess(AS_public);
1055
1056 if (Param->isParameterPack())
1057 if (auto *LSI = getEnclosingLambda())
1058 LSI->LocalPacks.push_back(Param);
1059
1060 if (ParamName) {
1061 maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: ParamNameLoc, Name: ParamName);
1062
1063 // Add the template parameter into the current scope.
1064 S->AddDecl(Param);
1065 IdResolver.AddDecl(Param);
1066 }
1067
1068 // C++0x [temp.param]p9:
1069 // A default template-argument may be specified for any kind of
1070 // template-parameter that is not a template parameter pack.
1071 if (DefaultArg && IsParameterPack) {
1072 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1073 DefaultArg = nullptr;
1074 }
1075
1076 // Handle the default argument, if provided.
1077 if (DefaultArg) {
1078 TypeSourceInfo *DefaultTInfo;
1079 GetTypeFromParser(Ty: DefaultArg, TInfo: &DefaultTInfo);
1080
1081 assert(DefaultTInfo && "expected source information for type");
1082
1083 // Check for unexpanded parameter packs.
1084 if (DiagnoseUnexpandedParameterPack(Loc: ParamNameLoc, T: DefaultTInfo,
1085 UPPC: UPPC_DefaultArgument))
1086 return Param;
1087
1088 // Check the template argument itself.
1089 if (CheckTemplateArgument(Arg: DefaultTInfo)) {
1090 Param->setInvalidDecl();
1091 return Param;
1092 }
1093
1094 Param->setDefaultArgument(DefaultTInfo);
1095 }
1096
1097 return Param;
1098}
1099
1100/// Convert the parser's template argument list representation into our form.
1101static TemplateArgumentListInfo
1102makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
1103 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
1104 TemplateId.RAngleLoc);
1105 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
1106 TemplateId.NumArgs);
1107 S.translateTemplateArguments(TemplateArgsIn: TemplateArgsPtr, TemplateArgs);
1108 return TemplateArgs;
1109}
1110
1111bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) {
1112
1113 TemplateName TN = TypeConstr->Template.get();
1114 ConceptDecl *CD = cast<ConceptDecl>(Val: TN.getAsTemplateDecl());
1115
1116 // C++2a [temp.param]p4:
1117 // [...] The concept designated by a type-constraint shall be a type
1118 // concept ([temp.concept]).
1119 if (!CD->isTypeConcept()) {
1120 Diag(TypeConstr->TemplateNameLoc,
1121 diag::err_type_constraint_non_type_concept);
1122 return true;
1123 }
1124
1125 bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid();
1126
1127 if (!WereArgsSpecified &&
1128 CD->getTemplateParameters()->getMinRequiredArguments() > 1) {
1129 Diag(TypeConstr->TemplateNameLoc,
1130 diag::err_type_constraint_missing_arguments)
1131 << CD;
1132 return true;
1133 }
1134 return false;
1135}
1136
1137bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS,
1138 TemplateIdAnnotation *TypeConstr,
1139 TemplateTypeParmDecl *ConstrainedParameter,
1140 SourceLocation EllipsisLoc) {
1141 return BuildTypeConstraint(SS, TypeConstraint: TypeConstr, ConstrainedParameter, EllipsisLoc,
1142 AllowUnexpandedPack: false);
1143}
1144
1145bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS,
1146 TemplateIdAnnotation *TypeConstr,
1147 TemplateTypeParmDecl *ConstrainedParameter,
1148 SourceLocation EllipsisLoc,
1149 bool AllowUnexpandedPack) {
1150
1151 if (CheckTypeConstraint(TypeConstr))
1152 return true;
1153
1154 TemplateName TN = TypeConstr->Template.get();
1155 ConceptDecl *CD = cast<ConceptDecl>(Val: TN.getAsTemplateDecl());
1156
1157 DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name),
1158 TypeConstr->TemplateNameLoc);
1159
1160 TemplateArgumentListInfo TemplateArgs;
1161 if (TypeConstr->LAngleLoc.isValid()) {
1162 TemplateArgs =
1163 makeTemplateArgumentListInfo(S&: *this, TemplateId&: *TypeConstr);
1164
1165 if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) {
1166 for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) {
1167 if (DiagnoseUnexpandedParameterPack(Arg, UPPC: UPPC_TypeConstraint))
1168 return true;
1169 }
1170 }
1171 }
1172 return AttachTypeConstraint(
1173 NS: SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(),
1174 NameInfo: ConceptName, NamedConcept: CD,
1175 TemplateArgs: TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr,
1176 ConstrainedParameter, EllipsisLoc);
1177}
1178
1179template<typename ArgumentLocAppender>
1180static ExprResult formImmediatelyDeclaredConstraint(
1181 Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo,
1182 ConceptDecl *NamedConcept, SourceLocation LAngleLoc,
1183 SourceLocation RAngleLoc, QualType ConstrainedType,
1184 SourceLocation ParamNameLoc, ArgumentLocAppender Appender,
1185 SourceLocation EllipsisLoc) {
1186
1187 TemplateArgumentListInfo ConstraintArgs;
1188 ConstraintArgs.addArgument(
1189 Loc: S.getTrivialTemplateArgumentLoc(Arg: TemplateArgument(ConstrainedType),
1190 /*NTTPType=*/QualType(), Loc: ParamNameLoc));
1191
1192 ConstraintArgs.setRAngleLoc(RAngleLoc);
1193 ConstraintArgs.setLAngleLoc(LAngleLoc);
1194 Appender(ConstraintArgs);
1195
1196 // C++2a [temp.param]p4:
1197 // [...] This constraint-expression E is called the immediately-declared
1198 // constraint of T. [...]
1199 CXXScopeSpec SS;
1200 SS.Adopt(Other: NS);
1201 ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId(
1202 SS, /*TemplateKWLoc=*/SourceLocation(), NameInfo,
1203 /*FoundDecl=*/NamedConcept, NamedConcept, &ConstraintArgs);
1204 if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid())
1205 return ImmediatelyDeclaredConstraint;
1206
1207 // C++2a [temp.param]p4:
1208 // [...] If T is not a pack, then E is E', otherwise E is (E' && ...).
1209 //
1210 // We have the following case:
1211 //
1212 // template<typename T> concept C1 = true;
1213 // template<C1... T> struct s1;
1214 //
1215 // The constraint: (C1<T> && ...)
1216 //
1217 // Note that the type of C1<T> is known to be 'bool', so we don't need to do
1218 // any unqualified lookups for 'operator&&' here.
1219 return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/Callee: nullptr,
1220 /*LParenLoc=*/SourceLocation(),
1221 LHS: ImmediatelyDeclaredConstraint.get(), Operator: BO_LAnd,
1222 EllipsisLoc, /*RHS=*/nullptr,
1223 /*RParenLoc=*/SourceLocation(),
1224 /*NumExpansions=*/std::nullopt);
1225}
1226
1227/// Attach a type-constraint to a template parameter.
1228/// \returns true if an error occurred. This can happen if the
1229/// immediately-declared constraint could not be formed (e.g. incorrect number
1230/// of arguments for the named concept).
1231bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS,
1232 DeclarationNameInfo NameInfo,
1233 ConceptDecl *NamedConcept,
1234 const TemplateArgumentListInfo *TemplateArgs,
1235 TemplateTypeParmDecl *ConstrainedParameter,
1236 SourceLocation EllipsisLoc) {
1237 // C++2a [temp.param]p4:
1238 // [...] If Q is of the form C<A1, ..., An>, then let E' be
1239 // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...]
1240 const ASTTemplateArgumentListInfo *ArgsAsWritten =
1241 TemplateArgs ? ASTTemplateArgumentListInfo::Create(C: Context,
1242 List: *TemplateArgs) : nullptr;
1243
1244 QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0);
1245
1246 ExprResult ImmediatelyDeclaredConstraint =
1247 formImmediatelyDeclaredConstraint(
1248 *this, NS, NameInfo, NamedConcept,
1249 TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(),
1250 TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(),
1251 ParamAsArgument, ConstrainedParameter->getLocation(),
1252 [&] (TemplateArgumentListInfo &ConstraintArgs) {
1253 if (TemplateArgs)
1254 for (const auto &ArgLoc : TemplateArgs->arguments())
1255 ConstraintArgs.addArgument(Loc: ArgLoc);
1256 }, EllipsisLoc);
1257 if (ImmediatelyDeclaredConstraint.isInvalid())
1258 return true;
1259
1260 auto *CL = ConceptReference::Create(Context, /*NNS=*/NS,
1261 /*TemplateKWLoc=*/SourceLocation{},
1262 /*ConceptNameInfo=*/NameInfo,
1263 /*FoundDecl=*/NamedConcept,
1264 /*NamedConcept=*/NamedConcept,
1265 /*ArgsWritten=*/ArgsAsWritten);
1266 ConstrainedParameter->setTypeConstraint(CR: CL,
1267 ImmediatelyDeclaredConstraint: ImmediatelyDeclaredConstraint.get());
1268 return false;
1269}
1270
1271bool Sema::AttachTypeConstraint(AutoTypeLoc TL,
1272 NonTypeTemplateParmDecl *NewConstrainedParm,
1273 NonTypeTemplateParmDecl *OrigConstrainedParm,
1274 SourceLocation EllipsisLoc) {
1275 if (NewConstrainedParm->getType() != TL.getType() ||
1276 TL.getAutoKeyword() != AutoTypeKeyword::Auto) {
1277 Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1278 diag::err_unsupported_placeholder_constraint)
1279 << NewConstrainedParm->getTypeSourceInfo()
1280 ->getTypeLoc()
1281 .getSourceRange();
1282 return true;
1283 }
1284 // FIXME: Concepts: This should be the type of the placeholder, but this is
1285 // unclear in the wording right now.
1286 DeclRefExpr *Ref =
1287 BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(),
1288 VK_PRValue, OrigConstrainedParm->getLocation());
1289 if (!Ref)
1290 return true;
1291 ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint(
1292 *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(),
1293 TL.getNamedConcept(), TL.getLAngleLoc(), TL.getRAngleLoc(),
1294 BuildDecltypeType(Ref), OrigConstrainedParm->getLocation(),
1295 [&](TemplateArgumentListInfo &ConstraintArgs) {
1296 for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I)
1297 ConstraintArgs.addArgument(Loc: TL.getArgLoc(i: I));
1298 },
1299 EllipsisLoc);
1300 if (ImmediatelyDeclaredConstraint.isInvalid() ||
1301 !ImmediatelyDeclaredConstraint.isUsable())
1302 return true;
1303
1304 NewConstrainedParm->setPlaceholderTypeConstraint(
1305 ImmediatelyDeclaredConstraint.get());
1306 return false;
1307}
1308
1309/// Check that the type of a non-type template parameter is
1310/// well-formed.
1311///
1312/// \returns the (possibly-promoted) parameter type if valid;
1313/// otherwise, produces a diagnostic and returns a NULL type.
1314QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI,
1315 SourceLocation Loc) {
1316 if (TSI->getType()->isUndeducedType()) {
1317 // C++17 [temp.dep.expr]p3:
1318 // An id-expression is type-dependent if it contains
1319 // - an identifier associated by name lookup with a non-type
1320 // template-parameter declared with a type that contains a
1321 // placeholder type (7.1.7.4),
1322 TSI = SubstAutoTypeSourceInfoDependent(TypeWithAuto: TSI);
1323 }
1324
1325 return CheckNonTypeTemplateParameterType(T: TSI->getType(), Loc);
1326}
1327
1328/// Require the given type to be a structural type, and diagnose if it is not.
1329///
1330/// \return \c true if an error was produced.
1331bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) {
1332 if (T->isDependentType())
1333 return false;
1334
1335 if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete))
1336 return true;
1337
1338 if (T->isStructuralType())
1339 return false;
1340
1341 // Structural types are required to be object types or lvalue references.
1342 if (T->isRValueReferenceType()) {
1343 Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T;
1344 return true;
1345 }
1346
1347 // Don't mention structural types in our diagnostic prior to C++20. Also,
1348 // there's not much more we can say about non-scalar non-class types --
1349 // because we can't see functions or arrays here, those can only be language
1350 // extensions.
1351 if (!getLangOpts().CPlusPlus20 ||
1352 (!T->isScalarType() && !T->isRecordType())) {
1353 Diag(Loc, diag::err_template_nontype_parm_bad_type) << T;
1354 return true;
1355 }
1356
1357 // Structural types are required to be literal types.
1358 if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal))
1359 return true;
1360
1361 Diag(Loc, diag::err_template_nontype_parm_not_structural) << T;
1362
1363 // Drill down into the reason why the class is non-structural.
1364 while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
1365 // All members are required to be public and non-mutable, and can't be of
1366 // rvalue reference type. Check these conditions first to prefer a "local"
1367 // reason over a more distant one.
1368 for (const FieldDecl *FD : RD->fields()) {
1369 if (FD->getAccess() != AS_public) {
1370 Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0;
1371 return true;
1372 }
1373 if (FD->isMutable()) {
1374 Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T;
1375 return true;
1376 }
1377 if (FD->getType()->isRValueReferenceType()) {
1378 Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field)
1379 << T;
1380 return true;
1381 }
1382 }
1383
1384 // All bases are required to be public.
1385 for (const auto &BaseSpec : RD->bases()) {
1386 if (BaseSpec.getAccessSpecifier() != AS_public) {
1387 Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public)
1388 << T << 1;
1389 return true;
1390 }
1391 }
1392
1393 // All subobjects are required to be of structural types.
1394 SourceLocation SubLoc;
1395 QualType SubType;
1396 int Kind = -1;
1397
1398 for (const FieldDecl *FD : RD->fields()) {
1399 QualType T = Context.getBaseElementType(FD->getType());
1400 if (!T->isStructuralType()) {
1401 SubLoc = FD->getLocation();
1402 SubType = T;
1403 Kind = 0;
1404 break;
1405 }
1406 }
1407
1408 if (Kind == -1) {
1409 for (const auto &BaseSpec : RD->bases()) {
1410 QualType T = BaseSpec.getType();
1411 if (!T->isStructuralType()) {
1412 SubLoc = BaseSpec.getBaseTypeLoc();
1413 SubType = T;
1414 Kind = 1;
1415 break;
1416 }
1417 }
1418 }
1419
1420 assert(Kind != -1 && "couldn't find reason why type is not structural");
1421 Diag(SubLoc, diag::note_not_structural_subobject)
1422 << T << Kind << SubType;
1423 T = SubType;
1424 RD = T->getAsCXXRecordDecl();
1425 }
1426
1427 return true;
1428}
1429
1430QualType Sema::CheckNonTypeTemplateParameterType(QualType T,
1431 SourceLocation Loc) {
1432 // We don't allow variably-modified types as the type of non-type template
1433 // parameters.
1434 if (T->isVariablyModifiedType()) {
1435 Diag(Loc, diag::err_variably_modified_nontype_template_param)
1436 << T;
1437 return QualType();
1438 }
1439
1440 // C++ [temp.param]p4:
1441 //
1442 // A non-type template-parameter shall have one of the following
1443 // (optionally cv-qualified) types:
1444 //
1445 // -- integral or enumeration type,
1446 if (T->isIntegralOrEnumerationType() ||
1447 // -- pointer to object or pointer to function,
1448 T->isPointerType() ||
1449 // -- lvalue reference to object or lvalue reference to function,
1450 T->isLValueReferenceType() ||
1451 // -- pointer to member,
1452 T->isMemberPointerType() ||
1453 // -- std::nullptr_t, or
1454 T->isNullPtrType() ||
1455 // -- a type that contains a placeholder type.
1456 T->isUndeducedType()) {
1457 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
1458 // are ignored when determining its type.
1459 return T.getUnqualifiedType();
1460 }
1461
1462 // C++ [temp.param]p8:
1463 //
1464 // A non-type template-parameter of type "array of T" or
1465 // "function returning T" is adjusted to be of type "pointer to
1466 // T" or "pointer to function returning T", respectively.
1467 if (T->isArrayType() || T->isFunctionType())
1468 return Context.getDecayedType(T);
1469
1470 // If T is a dependent type, we can't do the check now, so we
1471 // assume that it is well-formed. Note that stripping off the
1472 // qualifiers here is not really correct if T turns out to be
1473 // an array type, but we'll recompute the type everywhere it's
1474 // used during instantiation, so that should be OK. (Using the
1475 // qualified type is equally wrong.)
1476 if (T->isDependentType())
1477 return T.getUnqualifiedType();
1478
1479 // C++20 [temp.param]p6:
1480 // -- a structural type
1481 if (RequireStructuralType(T, Loc))
1482 return QualType();
1483
1484 if (!getLangOpts().CPlusPlus20) {
1485 // FIXME: Consider allowing structural types as an extension in C++17. (In
1486 // earlier language modes, the template argument evaluation rules are too
1487 // inflexible.)
1488 Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T;
1489 return QualType();
1490 }
1491
1492 Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T;
1493 return T.getUnqualifiedType();
1494}
1495
1496NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
1497 unsigned Depth,
1498 unsigned Position,
1499 SourceLocation EqualLoc,
1500 Expr *Default) {
1501 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
1502
1503 // Check that we have valid decl-specifiers specified.
1504 auto CheckValidDeclSpecifiers = [this, &D] {
1505 // C++ [temp.param]
1506 // p1
1507 // template-parameter:
1508 // ...
1509 // parameter-declaration
1510 // p2
1511 // ... A storage class shall not be specified in a template-parameter
1512 // declaration.
1513 // [dcl.typedef]p1:
1514 // The typedef specifier [...] shall not be used in the decl-specifier-seq
1515 // of a parameter-declaration
1516 const DeclSpec &DS = D.getDeclSpec();
1517 auto EmitDiag = [this](SourceLocation Loc) {
1518 Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm)
1519 << FixItHint::CreateRemoval(Loc);
1520 };
1521 if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified)
1522 EmitDiag(DS.getStorageClassSpecLoc());
1523
1524 if (DS.getThreadStorageClassSpec() != TSCS_unspecified)
1525 EmitDiag(DS.getThreadStorageClassSpecLoc());
1526
1527 // [dcl.inline]p1:
1528 // The inline specifier can be applied only to the declaration or
1529 // definition of a variable or function.
1530
1531 if (DS.isInlineSpecified())
1532 EmitDiag(DS.getInlineSpecLoc());
1533
1534 // [dcl.constexpr]p1:
1535 // The constexpr specifier shall be applied only to the definition of a
1536 // variable or variable template or the declaration of a function or
1537 // function template.
1538
1539 if (DS.hasConstexprSpecifier())
1540 EmitDiag(DS.getConstexprSpecLoc());
1541
1542 // [dcl.fct.spec]p1:
1543 // Function-specifiers can be used only in function declarations.
1544
1545 if (DS.isVirtualSpecified())
1546 EmitDiag(DS.getVirtualSpecLoc());
1547
1548 if (DS.hasExplicitSpecifier())
1549 EmitDiag(DS.getExplicitSpecLoc());
1550
1551 if (DS.isNoreturnSpecified())
1552 EmitDiag(DS.getNoreturnSpecLoc());
1553 };
1554
1555 CheckValidDeclSpecifiers();
1556
1557 if (const auto *T = TInfo->getType()->getContainedDeducedType())
1558 if (isa<AutoType>(T))
1559 Diag(D.getIdentifierLoc(),
1560 diag::warn_cxx14_compat_template_nontype_parm_auto_type)
1561 << QualType(TInfo->getType()->getContainedAutoType(), 0);
1562
1563 assert(S->isTemplateParamScope() &&
1564 "Non-type template parameter not in template parameter scope!");
1565 bool Invalid = false;
1566
1567 QualType T = CheckNonTypeTemplateParameterType(TSI&: TInfo, Loc: D.getIdentifierLoc());
1568 if (T.isNull()) {
1569 T = Context.IntTy; // Recover with an 'int' type.
1570 Invalid = true;
1571 }
1572
1573 CheckFunctionOrTemplateParamDeclarator(S, D);
1574
1575 IdentifierInfo *ParamName = D.getIdentifier();
1576 bool IsParameterPack = D.hasEllipsis();
1577 NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create(
1578 Context, Context.getTranslationUnitDecl(), D.getBeginLoc(),
1579 D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack,
1580 TInfo);
1581 Param->setAccess(AS_public);
1582
1583 if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc())
1584 if (TL.isConstrained())
1585 if (AttachTypeConstraint(TL, NewConstrainedParm: Param, OrigConstrainedParm: Param, EllipsisLoc: D.getEllipsisLoc()))
1586 Invalid = true;
1587
1588 if (Invalid)
1589 Param->setInvalidDecl();
1590
1591 if (Param->isParameterPack())
1592 if (auto *LSI = getEnclosingLambda())
1593 LSI->LocalPacks.push_back(Param);
1594
1595 if (ParamName) {
1596 maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: D.getIdentifierLoc(),
1597 Name: ParamName);
1598
1599 // Add the template parameter into the current scope.
1600 S->AddDecl(Param);
1601 IdResolver.AddDecl(Param);
1602 }
1603
1604 // C++0x [temp.param]p9:
1605 // A default template-argument may be specified for any kind of
1606 // template-parameter that is not a template parameter pack.
1607 if (Default && IsParameterPack) {
1608 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1609 Default = nullptr;
1610 }
1611
1612 // Check the well-formedness of the default template argument, if provided.
1613 if (Default) {
1614 // Check for unexpanded parameter packs.
1615 if (DiagnoseUnexpandedParameterPack(E: Default, UPPC: UPPC_DefaultArgument))
1616 return Param;
1617
1618 Param->setDefaultArgument(Default);
1619 }
1620
1621 return Param;
1622}
1623
1624/// ActOnTemplateTemplateParameter - Called when a C++ template template
1625/// parameter (e.g. T in template <template \<typename> class T> class array)
1626/// has been parsed. S is the current scope.
1627NamedDecl *Sema::ActOnTemplateTemplateParameter(Scope* S,
1628 SourceLocation TmpLoc,
1629 TemplateParameterList *Params,
1630 SourceLocation EllipsisLoc,
1631 IdentifierInfo *Name,
1632 SourceLocation NameLoc,
1633 unsigned Depth,
1634 unsigned Position,
1635 SourceLocation EqualLoc,
1636 ParsedTemplateArgument Default) {
1637 assert(S->isTemplateParamScope() &&
1638 "Template template parameter not in template parameter scope!");
1639
1640 // Construct the parameter object.
1641 bool IsParameterPack = EllipsisLoc.isValid();
1642 TemplateTemplateParmDecl *Param =
1643 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
1644 NameLoc.isInvalid()? TmpLoc : NameLoc,
1645 Depth, Position, IsParameterPack,
1646 Name, Params);
1647 Param->setAccess(AS_public);
1648
1649 if (Param->isParameterPack())
1650 if (auto *LSI = getEnclosingLambda())
1651 LSI->LocalPacks.push_back(Param);
1652
1653 // If the template template parameter has a name, then link the identifier
1654 // into the scope and lookup mechanisms.
1655 if (Name) {
1656 maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: NameLoc, Name);
1657
1658 S->AddDecl(Param);
1659 IdResolver.AddDecl(Param);
1660 }
1661
1662 if (Params->size() == 0) {
1663 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
1664 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
1665 Param->setInvalidDecl();
1666 }
1667
1668 // C++0x [temp.param]p9:
1669 // A default template-argument may be specified for any kind of
1670 // template-parameter that is not a template parameter pack.
1671 if (IsParameterPack && !Default.isInvalid()) {
1672 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
1673 Default = ParsedTemplateArgument();
1674 }
1675
1676 if (!Default.isInvalid()) {
1677 // Check only that we have a template template argument. We don't want to
1678 // try to check well-formedness now, because our template template parameter
1679 // might have dependent types in its template parameters, which we wouldn't
1680 // be able to match now.
1681 //
1682 // If none of the template template parameter's template arguments mention
1683 // other template parameters, we could actually perform more checking here.
1684 // However, it isn't worth doing.
1685 TemplateArgumentLoc DefaultArg = translateTemplateArgument(SemaRef&: *this, Arg: Default);
1686 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
1687 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
1688 << DefaultArg.getSourceRange();
1689 return Param;
1690 }
1691
1692 // Check for unexpanded parameter packs.
1693 if (DiagnoseUnexpandedParameterPack(Loc: DefaultArg.getLocation(),
1694 Template: DefaultArg.getArgument().getAsTemplate(),
1695 UPPC: UPPC_DefaultArgument))
1696 return Param;
1697
1698 Param->setDefaultArgument(C: Context, DefArg: DefaultArg);
1699 }
1700
1701 return Param;
1702}
1703
1704namespace {
1705class ConstraintRefersToContainingTemplateChecker
1706 : public TreeTransform<ConstraintRefersToContainingTemplateChecker> {
1707 bool Result = false;
1708 const FunctionDecl *Friend = nullptr;
1709 unsigned TemplateDepth = 0;
1710
1711 // Check a record-decl that we've seen to see if it is a lexical parent of the
1712 // Friend, likely because it was referred to without its template arguments.
1713 void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) {
1714 CheckingRD = CheckingRD->getMostRecentDecl();
1715 if (!CheckingRD->isTemplated())
1716 return;
1717
1718 for (const DeclContext *DC = Friend->getLexicalDeclContext();
1719 DC && !DC->isFileContext(); DC = DC->getParent())
1720 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
1721 if (CheckingRD == RD->getMostRecentDecl())
1722 Result = true;
1723 }
1724
1725 void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) {
1726 assert(D->getDepth() <= TemplateDepth &&
1727 "Nothing should reference a value below the actual template depth, "
1728 "depth is likely wrong");
1729 if (D->getDepth() != TemplateDepth)
1730 Result = true;
1731
1732 // Necessary because the type of the NTTP might be what refers to the parent
1733 // constriant.
1734 TransformType(D->getType());
1735 }
1736
1737public:
1738 using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>;
1739
1740 ConstraintRefersToContainingTemplateChecker(Sema &SemaRef,
1741 const FunctionDecl *Friend,
1742 unsigned TemplateDepth)
1743 : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {}
1744 bool getResult() const { return Result; }
1745
1746 // This should be the only template parm type that we have to deal with.
1747 // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and
1748 // FunctionParmPackExpr are all partially substituted, which cannot happen
1749 // with concepts at this point in translation.
1750 using inherited::TransformTemplateTypeParmType;
1751 QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB,
1752 TemplateTypeParmTypeLoc TL, bool) {
1753 assert(TL.getDecl()->getDepth() <= TemplateDepth &&
1754 "Nothing should reference a value below the actual template depth, "
1755 "depth is likely wrong");
1756 if (TL.getDecl()->getDepth() != TemplateDepth)
1757 Result = true;
1758 return inherited::TransformTemplateTypeParmType(
1759 TLB, TL,
1760 /*SuppressObjCLifetime=*/false);
1761 }
1762
1763 Decl *TransformDecl(SourceLocation Loc, Decl *D) {
1764 if (!D)
1765 return D;
1766 // FIXME : This is possibly an incomplete list, but it is unclear what other
1767 // Decl kinds could be used to refer to the template parameters. This is a
1768 // best guess so far based on examples currently available, but the
1769 // unreachable should catch future instances/cases.
1770 if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D))
1771 TransformType(TD->getUnderlyingType());
1772 else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(Val: D))
1773 CheckNonTypeTemplateParmDecl(D: NTTPD);
1774 else if (auto *VD = dyn_cast<ValueDecl>(Val: D))
1775 TransformType(VD->getType());
1776 else if (auto *TD = dyn_cast<TemplateDecl>(Val: D))
1777 TransformTemplateParameterList(TD->getTemplateParameters());
1778 else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D))
1779 CheckIfContainingRecord(CheckingRD: RD);
1780 else if (isa<NamedDecl>(Val: D)) {
1781 // No direct types to visit here I believe.
1782 } else
1783 llvm_unreachable("Don't know how to handle this declaration type yet");
1784 return D;
1785 }
1786};
1787} // namespace
1788
1789bool Sema::ConstraintExpressionDependsOnEnclosingTemplate(
1790 const FunctionDecl *Friend, unsigned TemplateDepth,
1791 const Expr *Constraint) {
1792 assert(Friend->getFriendObjectKind() && "Only works on a friend");
1793 ConstraintRefersToContainingTemplateChecker Checker(*this, Friend,
1794 TemplateDepth);
1795 Checker.TransformExpr(const_cast<Expr *>(Constraint));
1796 return Checker.getResult();
1797}
1798
1799/// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
1800/// constrained by RequiresClause, that contains the template parameters in
1801/// Params.
1802TemplateParameterList *
1803Sema::ActOnTemplateParameterList(unsigned Depth,
1804 SourceLocation ExportLoc,
1805 SourceLocation TemplateLoc,
1806 SourceLocation LAngleLoc,
1807 ArrayRef<NamedDecl *> Params,
1808 SourceLocation RAngleLoc,
1809 Expr *RequiresClause) {
1810 if (ExportLoc.isValid())
1811 Diag(ExportLoc, diag::warn_template_export_unsupported);
1812
1813 for (NamedDecl *P : Params)
1814 warnOnReservedIdentifier(D: P);
1815
1816 return TemplateParameterList::Create(
1817 C: Context, TemplateLoc, LAngleLoc,
1818 Params: llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause);
1819}
1820
1821static void SetNestedNameSpecifier(Sema &S, TagDecl *T,
1822 const CXXScopeSpec &SS) {
1823 if (SS.isSet())
1824 T->setQualifierInfo(SS.getWithLocInContext(Context&: S.Context));
1825}
1826
1827// Returns the template parameter list with all default template argument
1828// information.
1829static TemplateParameterList *GetTemplateParameterList(TemplateDecl *TD) {
1830 // Make sure we get the template parameter list from the most
1831 // recent declaration, since that is the only one that is guaranteed to
1832 // have all the default template argument information.
1833 return cast<TemplateDecl>(TD->getMostRecentDecl())->getTemplateParameters();
1834}
1835
1836DeclResult Sema::CheckClassTemplate(
1837 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
1838 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
1839 const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams,
1840 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
1841 SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists,
1842 TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) {
1843 assert(TemplateParams && TemplateParams->size() > 0 &&
1844 "No template parameters");
1845 assert(TUK != TUK_Reference && "Can only declare or define class templates");
1846 bool Invalid = false;
1847
1848 // Check that we can declare a template here.
1849 if (CheckTemplateDeclScope(S, TemplateParams))
1850 return true;
1851
1852 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec);
1853 assert(Kind != TagTypeKind::Enum &&
1854 "can't build template of enumerated type");
1855
1856 // There is no such thing as an unnamed class template.
1857 if (!Name) {
1858 Diag(KWLoc, diag::err_template_unnamed_class);
1859 return true;
1860 }
1861
1862 // Find any previous declaration with this name. For a friend with no
1863 // scope explicitly specified, we only look for tag declarations (per
1864 // C++11 [basic.lookup.elab]p2).
1865 DeclContext *SemanticContext;
1866 LookupResult Previous(*this, Name, NameLoc,
1867 (SS.isEmpty() && TUK == TUK_Friend)
1868 ? LookupTagName : LookupOrdinaryName,
1869 forRedeclarationInCurContext());
1870 if (SS.isNotEmpty() && !SS.isInvalid()) {
1871 SemanticContext = computeDeclContext(SS, EnteringContext: true);
1872 if (!SemanticContext) {
1873 // FIXME: Horrible, horrible hack! We can't currently represent this
1874 // in the AST, and historically we have just ignored such friend
1875 // class templates, so don't complain here.
1876 Diag(NameLoc, TUK == TUK_Friend
1877 ? diag::warn_template_qualified_friend_ignored
1878 : diag::err_template_qualified_declarator_no_match)
1879 << SS.getScopeRep() << SS.getRange();
1880 return TUK != TUK_Friend;
1881 }
1882
1883 if (RequireCompleteDeclContext(SS, DC: SemanticContext))
1884 return true;
1885
1886 // If we're adding a template to a dependent context, we may need to
1887 // rebuilding some of the types used within the template parameter list,
1888 // now that we know what the current instantiation is.
1889 if (SemanticContext->isDependentContext()) {
1890 ContextRAII SavedContext(*this, SemanticContext);
1891 if (RebuildTemplateParamsInCurrentInstantiation(Params: TemplateParams))
1892 Invalid = true;
1893 }
1894
1895 if (TUK != TUK_Friend && TUK != TUK_Reference)
1896 diagnoseQualifiedDeclaration(SS, DC: SemanticContext, Name, Loc: NameLoc,
1897 /*TemplateId-*/ TemplateId: nullptr,
1898 /*IsMemberSpecialization*/ false);
1899
1900 LookupQualifiedName(R&: Previous, LookupCtx: SemanticContext);
1901 } else {
1902 SemanticContext = CurContext;
1903
1904 // C++14 [class.mem]p14:
1905 // If T is the name of a class, then each of the following shall have a
1906 // name different from T:
1907 // -- every member template of class T
1908 if (TUK != TUK_Friend &&
1909 DiagnoseClassNameShadow(DC: SemanticContext,
1910 Info: DeclarationNameInfo(Name, NameLoc)))
1911 return true;
1912
1913 LookupName(R&: Previous, S);
1914 }
1915
1916 if (Previous.isAmbiguous())
1917 return true;
1918
1919 NamedDecl *PrevDecl = nullptr;
1920 if (Previous.begin() != Previous.end())
1921 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1922
1923 if (PrevDecl && PrevDecl->isTemplateParameter()) {
1924 // Maybe we will complain about the shadowed template parameter.
1925 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
1926 // Just pretend that we didn't see the previous declaration.
1927 PrevDecl = nullptr;
1928 }
1929
1930 // If there is a previous declaration with the same name, check
1931 // whether this is a valid redeclaration.
1932 ClassTemplateDecl *PrevClassTemplate =
1933 dyn_cast_or_null<ClassTemplateDecl>(Val: PrevDecl);
1934
1935 // We may have found the injected-class-name of a class template,
1936 // class template partial specialization, or class template specialization.
1937 // In these cases, grab the template that is being defined or specialized.
1938 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(Val: PrevDecl) &&
1939 cast<CXXRecordDecl>(Val: PrevDecl)->isInjectedClassName()) {
1940 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
1941 PrevClassTemplate
1942 = cast<CXXRecordDecl>(Val: PrevDecl)->getDescribedClassTemplate();
1943 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(Val: PrevDecl)) {
1944 PrevClassTemplate
1945 = cast<ClassTemplateSpecializationDecl>(Val: PrevDecl)
1946 ->getSpecializedTemplate();
1947 }
1948 }
1949
1950 if (TUK == TUK_Friend) {
1951 // C++ [namespace.memdef]p3:
1952 // [...] When looking for a prior declaration of a class or a function
1953 // declared as a friend, and when the name of the friend class or
1954 // function is neither a qualified name nor a template-id, scopes outside
1955 // the innermost enclosing namespace scope are not considered.
1956 if (!SS.isSet()) {
1957 DeclContext *OutermostContext = CurContext;
1958 while (!OutermostContext->isFileContext())
1959 OutermostContext = OutermostContext->getLookupParent();
1960
1961 if (PrevDecl &&
1962 (OutermostContext->Equals(DC: PrevDecl->getDeclContext()) ||
1963 OutermostContext->Encloses(DC: PrevDecl->getDeclContext()))) {
1964 SemanticContext = PrevDecl->getDeclContext();
1965 } else {
1966 // Declarations in outer scopes don't matter. However, the outermost
1967 // context we computed is the semantic context for our new
1968 // declaration.
1969 PrevDecl = PrevClassTemplate = nullptr;
1970 SemanticContext = OutermostContext;
1971
1972 // Check that the chosen semantic context doesn't already contain a
1973 // declaration of this name as a non-tag type.
1974 Previous.clear(Kind: LookupOrdinaryName);
1975 DeclContext *LookupContext = SemanticContext;
1976 while (LookupContext->isTransparentContext())
1977 LookupContext = LookupContext->getLookupParent();
1978 LookupQualifiedName(R&: Previous, LookupCtx: LookupContext);
1979
1980 if (Previous.isAmbiguous())
1981 return true;
1982
1983 if (Previous.begin() != Previous.end())
1984 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
1985 }
1986 }
1987 } else if (PrevDecl &&
1988 !isDeclInScope(D: Previous.getRepresentativeDecl(), Ctx: SemanticContext,
1989 S, AllowInlineNamespace: SS.isValid()))
1990 PrevDecl = PrevClassTemplate = nullptr;
1991
1992 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1993 Val: PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1994 if (SS.isEmpty() &&
1995 !(PrevClassTemplate &&
1996 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1997 SemanticContext->getRedeclContext()))) {
1998 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1999 Diag(Shadow->getTargetDecl()->getLocation(),
2000 diag::note_using_decl_target);
2001 Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0;
2002 // Recover by ignoring the old declaration.
2003 PrevDecl = PrevClassTemplate = nullptr;
2004 }
2005 }
2006
2007 if (PrevClassTemplate) {
2008 // Ensure that the template parameter lists are compatible. Skip this check
2009 // for a friend in a dependent context: the template parameter list itself
2010 // could be dependent.
2011 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2012 !TemplateParameterListsAreEqual(
2013 TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext
2014 : CurContext,
2015 CurContext, KWLoc),
2016 TemplateParams, PrevClassTemplate,
2017 PrevClassTemplate->getTemplateParameters(), /*Complain=*/true,
2018 TPL_TemplateMatch))
2019 return true;
2020
2021 // C++ [temp.class]p4:
2022 // In a redeclaration, partial specialization, explicit
2023 // specialization or explicit instantiation of a class template,
2024 // the class-key shall agree in kind with the original class
2025 // template declaration (7.1.5.3).
2026 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
2027 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
2028 TUK == TUK_Definition, KWLoc, Name)) {
2029 Diag(KWLoc, diag::err_use_with_wrong_tag)
2030 << Name
2031 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
2032 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
2033 Kind = PrevRecordDecl->getTagKind();
2034 }
2035
2036 // Check for redefinition of this class template.
2037 if (TUK == TUK_Definition) {
2038 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
2039 // If we have a prior definition that is not visible, treat this as
2040 // simply making that previous definition visible.
2041 NamedDecl *Hidden = nullptr;
2042 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
2043 SkipBody->ShouldSkip = true;
2044 SkipBody->Previous = Def;
2045 auto *Tmpl = cast<CXXRecordDecl>(Val: Hidden)->getDescribedClassTemplate();
2046 assert(Tmpl && "original definition of a class template is not a "
2047 "class template?");
2048 makeMergedDefinitionVisible(ND: Hidden);
2049 makeMergedDefinitionVisible(Tmpl);
2050 } else {
2051 Diag(NameLoc, diag::err_redefinition) << Name;
2052 Diag(Def->getLocation(), diag::note_previous_definition);
2053 // FIXME: Would it make sense to try to "forget" the previous
2054 // definition, as part of error recovery?
2055 return true;
2056 }
2057 }
2058 }
2059 } else if (PrevDecl) {
2060 // C++ [temp]p5:
2061 // A class template shall not have the same name as any other
2062 // template, class, function, object, enumeration, enumerator,
2063 // namespace, or type in the same scope (3.3), except as specified
2064 // in (14.5.4).
2065 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2066 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2067 return true;
2068 }
2069
2070 // Check the template parameter list of this declaration, possibly
2071 // merging in the template parameter list from the previous class
2072 // template declaration. Skip this check for a friend in a dependent
2073 // context, because the template parameter list might be dependent.
2074 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
2075 CheckTemplateParameterList(
2076 NewParams: TemplateParams,
2077 OldParams: PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate)
2078 : nullptr,
2079 TPC: (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
2080 SemanticContext->isDependentContext())
2081 ? TPC_ClassTemplateMember
2082 : TUK == TUK_Friend ? TPC_FriendClassTemplate
2083 : TPC_ClassTemplate,
2084 SkipBody))
2085 Invalid = true;
2086
2087 if (SS.isSet()) {
2088 // If the name of the template was qualified, we must be defining the
2089 // template out-of-line.
2090 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
2091 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
2092 : diag::err_member_decl_does_not_match)
2093 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
2094 Invalid = true;
2095 }
2096 }
2097
2098 // If this is a templated friend in a dependent context we should not put it
2099 // on the redecl chain. In some cases, the templated friend can be the most
2100 // recent declaration tricking the template instantiator to make substitutions
2101 // there.
2102 // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious
2103 bool ShouldAddRedecl
2104 = !(TUK == TUK_Friend && CurContext->isDependentContext());
2105
2106 CXXRecordDecl *NewClass =
2107 CXXRecordDecl::Create(C: Context, TK: Kind, DC: SemanticContext, StartLoc: KWLoc, IdLoc: NameLoc, Id: Name,
2108 PrevDecl: PrevClassTemplate && ShouldAddRedecl ?
2109 PrevClassTemplate->getTemplatedDecl() : nullptr,
2110 /*DelayTypeCreation=*/true);
2111 SetNestedNameSpecifier(*this, NewClass, SS);
2112 if (NumOuterTemplateParamLists > 0)
2113 NewClass->setTemplateParameterListsInfo(
2114 Context,
2115 llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists));
2116
2117 // Add alignment attributes if necessary; these attributes are checked when
2118 // the ASTContext lays out the structure.
2119 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
2120 AddAlignmentAttributesForRecord(NewClass);
2121 AddMsStructLayoutForRecord(NewClass);
2122 }
2123
2124 ClassTemplateDecl *NewTemplate
2125 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
2126 DeclarationName(Name), TemplateParams,
2127 NewClass);
2128
2129 if (ShouldAddRedecl)
2130 NewTemplate->setPreviousDecl(PrevClassTemplate);
2131
2132 NewClass->setDescribedClassTemplate(NewTemplate);
2133
2134 if (ModulePrivateLoc.isValid())
2135 NewTemplate->setModulePrivate();
2136
2137 // Build the type for the class template declaration now.
2138 QualType T = NewTemplate->getInjectedClassNameSpecialization();
2139 T = Context.getInjectedClassNameType(Decl: NewClass, TST: T);
2140 assert(T->isDependentType() && "Class template type is not dependent?");
2141 (void)T;
2142
2143 // If we are providing an explicit specialization of a member that is a
2144 // class template, make a note of that.
2145 if (PrevClassTemplate &&
2146 PrevClassTemplate->getInstantiatedFromMemberTemplate())
2147 PrevClassTemplate->setMemberSpecialization();
2148
2149 // Set the access specifier.
2150 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
2151 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
2152
2153 // Set the lexical context of these templates
2154 NewClass->setLexicalDeclContext(CurContext);
2155 NewTemplate->setLexicalDeclContext(CurContext);
2156
2157 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
2158 NewClass->startDefinition();
2159
2160 ProcessDeclAttributeList(S, NewClass, Attr);
2161
2162 if (PrevClassTemplate)
2163 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
2164
2165 AddPushedVisibilityAttribute(NewClass);
2166 inferGslOwnerPointerAttribute(Record: NewClass);
2167
2168 if (TUK != TUK_Friend) {
2169 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
2170 Scope *Outer = S;
2171 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
2172 Outer = Outer->getParent();
2173 PushOnScopeChains(NewTemplate, Outer);
2174 } else {
2175 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
2176 NewTemplate->setAccess(PrevClassTemplate->getAccess());
2177 NewClass->setAccess(PrevClassTemplate->getAccess());
2178 }
2179
2180 NewTemplate->setObjectOfFriendDecl();
2181
2182 // Friend templates are visible in fairly strange ways.
2183 if (!CurContext->isDependentContext()) {
2184 DeclContext *DC = SemanticContext->getRedeclContext();
2185 DC->makeDeclVisibleInContext(NewTemplate);
2186 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
2187 PushOnScopeChains(NewTemplate, EnclosingScope,
2188 /* AddToContext = */ false);
2189 }
2190
2191 FriendDecl *Friend = FriendDecl::Create(
2192 C&: Context, DC: CurContext, L: NewClass->getLocation(), Friend_: NewTemplate, FriendL: FriendLoc);
2193 Friend->setAccess(AS_public);
2194 CurContext->addDecl(Friend);
2195 }
2196
2197 if (PrevClassTemplate)
2198 CheckRedeclarationInModule(NewTemplate, PrevClassTemplate);
2199
2200 if (Invalid) {
2201 NewTemplate->setInvalidDecl();
2202 NewClass->setInvalidDecl();
2203 }
2204
2205 ActOnDocumentableDecl(NewTemplate);
2206
2207 if (SkipBody && SkipBody->ShouldSkip)
2208 return SkipBody->Previous;
2209
2210 return NewTemplate;
2211}
2212
2213namespace {
2214/// Tree transform to "extract" a transformed type from a class template's
2215/// constructor to a deduction guide.
2216class ExtractTypeForDeductionGuide
2217 : public TreeTransform<ExtractTypeForDeductionGuide> {
2218 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs;
2219
2220public:
2221 typedef TreeTransform<ExtractTypeForDeductionGuide> Base;
2222 ExtractTypeForDeductionGuide(
2223 Sema &SemaRef,
2224 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs)
2225 : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {}
2226
2227 TypeSourceInfo *transform(TypeSourceInfo *TSI) { return TransformType(TSI); }
2228
2229 QualType TransformTypedefType(TypeLocBuilder &TLB, TypedefTypeLoc TL) {
2230 ASTContext &Context = SemaRef.getASTContext();
2231 TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl();
2232 TypedefNameDecl *Decl = OrigDecl;
2233 // Transform the underlying type of the typedef and clone the Decl only if
2234 // the typedef has a dependent context.
2235 if (OrigDecl->getDeclContext()->isDependentContext()) {
2236 TypeLocBuilder InnerTLB;
2237 QualType Transformed =
2238 TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc());
2239 TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, T: Transformed);
2240 if (isa<TypeAliasDecl>(Val: OrigDecl))
2241 Decl = TypeAliasDecl::Create(
2242 C&: Context, DC: Context.getTranslationUnitDecl(), StartLoc: OrigDecl->getBeginLoc(),
2243 IdLoc: OrigDecl->getLocation(), Id: OrigDecl->getIdentifier(), TInfo: TSI);
2244 else {
2245 assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef");
2246 Decl = TypedefDecl::Create(
2247 C&: Context, DC: Context.getTranslationUnitDecl(), StartLoc: OrigDecl->getBeginLoc(),
2248 IdLoc: OrigDecl->getLocation(), Id: OrigDecl->getIdentifier(), TInfo: TSI);
2249 }
2250 MaterializedTypedefs.push_back(Elt: Decl);
2251 }
2252
2253 QualType TDTy = Context.getTypedefType(Decl);
2254 TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T: TDTy);
2255 TypedefTL.setNameLoc(TL.getNameLoc());
2256
2257 return TDTy;
2258 }
2259};
2260
2261/// Transform to convert portions of a constructor declaration into the
2262/// corresponding deduction guide, per C++1z [over.match.class.deduct]p1.
2263struct ConvertConstructorToDeductionGuideTransform {
2264 ConvertConstructorToDeductionGuideTransform(Sema &S,
2265 ClassTemplateDecl *Template)
2266 : SemaRef(S), Template(Template) {
2267 // If the template is nested, then we need to use the original
2268 // pattern to iterate over the constructors.
2269 ClassTemplateDecl *Pattern = Template;
2270 while (Pattern->getInstantiatedFromMemberTemplate()) {
2271 if (Pattern->isMemberSpecialization())
2272 break;
2273 Pattern = Pattern->getInstantiatedFromMemberTemplate();
2274 NestedPattern = Pattern;
2275 }
2276
2277 if (NestedPattern)
2278 OuterInstantiationArgs = SemaRef.getTemplateInstantiationArgs(Template);
2279 }
2280
2281 Sema &SemaRef;
2282 ClassTemplateDecl *Template;
2283 ClassTemplateDecl *NestedPattern = nullptr;
2284
2285 DeclContext *DC = Template->getDeclContext();
2286 CXXRecordDecl *Primary = Template->getTemplatedDecl();
2287 DeclarationName DeductionGuideName =
2288 SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template);
2289
2290 QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary);
2291
2292 // Index adjustment to apply to convert depth-1 template parameters into
2293 // depth-0 template parameters.
2294 unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size();
2295
2296 // Instantiation arguments for the outermost depth-1 templates
2297 // when the template is nested
2298 MultiLevelTemplateArgumentList OuterInstantiationArgs;
2299
2300 /// Transform a constructor declaration into a deduction guide.
2301 NamedDecl *transformConstructor(FunctionTemplateDecl *FTD,
2302 CXXConstructorDecl *CD) {
2303 SmallVector<TemplateArgument, 16> SubstArgs;
2304
2305 LocalInstantiationScope Scope(SemaRef);
2306
2307 // C++ [over.match.class.deduct]p1:
2308 // -- For each constructor of the class template designated by the
2309 // template-name, a function template with the following properties:
2310
2311 // -- The template parameters are the template parameters of the class
2312 // template followed by the template parameters (including default
2313 // template arguments) of the constructor, if any.
2314 TemplateParameterList *TemplateParams = GetTemplateParameterList(Template);
2315 if (FTD) {
2316 TemplateParameterList *InnerParams = FTD->getTemplateParameters();
2317 SmallVector<NamedDecl *, 16> AllParams;
2318 SmallVector<TemplateArgument, 16> Depth1Args;
2319 AllParams.reserve(N: TemplateParams->size() + InnerParams->size());
2320 AllParams.insert(I: AllParams.begin(),
2321 From: TemplateParams->begin(), To: TemplateParams->end());
2322 SubstArgs.reserve(N: InnerParams->size());
2323 Depth1Args.reserve(N: InnerParams->size());
2324
2325 // Later template parameters could refer to earlier ones, so build up
2326 // a list of substituted template arguments as we go.
2327 for (NamedDecl *Param : *InnerParams) {
2328 MultiLevelTemplateArgumentList Args;
2329 Args.setKind(TemplateSubstitutionKind::Rewrite);
2330 Args.addOuterTemplateArguments(Depth1Args);
2331 Args.addOuterRetainedLevel();
2332 if (NestedPattern)
2333 Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth());
2334 NamedDecl *NewParam = transformTemplateParameter(Param, Args);
2335 if (!NewParam)
2336 return nullptr;
2337
2338 // Constraints require that we substitute depth-1 arguments
2339 // to match depths when substituted for evaluation later
2340 Depth1Args.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2341 SemaRef.Context.getInjectedTemplateArg(NewParam)));
2342
2343 if (NestedPattern) {
2344 TemplateDeclInstantiator Instantiator(SemaRef, DC,
2345 OuterInstantiationArgs);
2346 Instantiator.setEvaluateConstraints(false);
2347 SemaRef.runWithSufficientStackSpace(NewParam->getLocation(), [&] {
2348 NewParam = cast<NamedDecl>(Instantiator.Visit(NewParam));
2349 });
2350 }
2351
2352 assert(NewParam->getTemplateDepth() == 0 &&
2353 "Unexpected template parameter depth");
2354
2355 AllParams.push_back(NewParam);
2356 SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument(
2357 SemaRef.Context.getInjectedTemplateArg(NewParam)));
2358 }
2359
2360 // Substitute new template parameters into requires-clause if present.
2361 Expr *RequiresClause = nullptr;
2362 if (Expr *InnerRC = InnerParams->getRequiresClause()) {
2363 MultiLevelTemplateArgumentList Args;
2364 Args.setKind(TemplateSubstitutionKind::Rewrite);
2365 Args.addOuterTemplateArguments(Args: Depth1Args);
2366 Args.addOuterRetainedLevel();
2367 if (NestedPattern)
2368 Args.addOuterRetainedLevels(Num: NestedPattern->getTemplateDepth());
2369 ExprResult E = SemaRef.SubstExpr(E: InnerRC, TemplateArgs: Args);
2370 if (E.isInvalid())
2371 return nullptr;
2372 RequiresClause = E.getAs<Expr>();
2373 }
2374
2375 TemplateParams = TemplateParameterList::Create(
2376 C: SemaRef.Context, TemplateLoc: InnerParams->getTemplateLoc(),
2377 LAngleLoc: InnerParams->getLAngleLoc(), Params: AllParams, RAngleLoc: InnerParams->getRAngleLoc(),
2378 RequiresClause);
2379 }
2380
2381 // If we built a new template-parameter-list, track that we need to
2382 // substitute references to the old parameters into references to the
2383 // new ones.
2384 MultiLevelTemplateArgumentList Args;
2385 Args.setKind(TemplateSubstitutionKind::Rewrite);
2386 if (FTD) {
2387 Args.addOuterTemplateArguments(Args: SubstArgs);
2388 Args.addOuterRetainedLevel();
2389 }
2390
2391 if (NestedPattern)
2392 Args.addOuterRetainedLevels(Num: NestedPattern->getTemplateDepth());
2393
2394 FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc()
2395 .getAsAdjusted<FunctionProtoTypeLoc>();
2396 assert(FPTL && "no prototype for constructor declaration");
2397
2398 // Transform the type of the function, adjusting the return type and
2399 // replacing references to the old parameters with references to the
2400 // new ones.
2401 TypeLocBuilder TLB;
2402 SmallVector<ParmVarDecl*, 8> Params;
2403 SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs;
2404 QualType NewType = transformFunctionProtoType(TLB, TL: FPTL, Params, Args,
2405 MaterializedTypedefs);
2406 if (NewType.isNull())
2407 return nullptr;
2408 TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(Context&: SemaRef.Context, T: NewType);
2409
2410 return buildDeductionGuide(TemplateParams, Ctor: CD, ES: CD->getExplicitSpecifier(),
2411 TInfo: NewTInfo, LocStart: CD->getBeginLoc(), Loc: CD->getLocation(),
2412 LocEnd: CD->getEndLoc(), MaterializedTypedefs);
2413 }
2414
2415 /// Build a deduction guide with the specified parameter types.
2416 NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) {
2417 SourceLocation Loc = Template->getLocation();
2418
2419 // Build the requested type.
2420 FunctionProtoType::ExtProtoInfo EPI;
2421 EPI.HasTrailingReturn = true;
2422 QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc,
2423 DeductionGuideName, EPI);
2424 TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(T: Result, Loc);
2425 if (NestedPattern)
2426 TSI = SemaRef.SubstType(T: TSI, TemplateArgs: OuterInstantiationArgs, Loc,
2427 Entity: DeductionGuideName);
2428
2429 FunctionProtoTypeLoc FPTL =
2430 TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>();
2431
2432 // Build the parameters, needed during deduction / substitution.
2433 SmallVector<ParmVarDecl*, 4> Params;
2434 for (auto T : ParamTypes) {
2435 auto *TSI = SemaRef.Context.getTrivialTypeSourceInfo(T, Loc);
2436 if (NestedPattern)
2437 TSI = SemaRef.SubstType(TSI, OuterInstantiationArgs, Loc,
2438 DeclarationName());
2439 ParmVarDecl *NewParam =
2440 ParmVarDecl::Create(C&: SemaRef.Context, DC, StartLoc: Loc, IdLoc: Loc, Id: nullptr,
2441 T: TSI->getType(), TInfo: TSI, S: SC_None, DefArg: nullptr);
2442 NewParam->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size());
2443 FPTL.setParam(Params.size(), NewParam);
2444 Params.push_back(Elt: NewParam);
2445 }
2446
2447 return buildDeductionGuide(TemplateParams: GetTemplateParameterList(Template), Ctor: nullptr,
2448 ES: ExplicitSpecifier(), TInfo: TSI, LocStart: Loc, Loc, LocEnd: Loc);
2449 }
2450
2451private:
2452 /// Transform a constructor template parameter into a deduction guide template
2453 /// parameter, rebuilding any internal references to earlier parameters and
2454 /// renumbering as we go.
2455 NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam,
2456 MultiLevelTemplateArgumentList &Args) {
2457 if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: TemplateParam)) {
2458 // TemplateTypeParmDecl's index cannot be changed after creation, so
2459 // substitute it directly.
2460 auto *NewTTP = TemplateTypeParmDecl::Create(
2461 C: SemaRef.Context, DC, KeyLoc: TTP->getBeginLoc(), NameLoc: TTP->getLocation(),
2462 D: TTP->getDepth() - 1, P: Depth1IndexAdjustment + TTP->getIndex(),
2463 Id: TTP->getIdentifier(), Typename: TTP->wasDeclaredWithTypename(),
2464 ParameterPack: TTP->isParameterPack(), HasTypeConstraint: TTP->hasTypeConstraint(),
2465 NumExpanded: TTP->isExpandedParameterPack()
2466 ? std::optional<unsigned>(TTP->getNumExpansionParameters())
2467 : std::nullopt);
2468 if (const auto *TC = TTP->getTypeConstraint())
2469 SemaRef.SubstTypeConstraint(Inst: NewTTP, TC, TemplateArgs: Args,
2470 /*EvaluateConstraint*/ true);
2471 if (TTP->hasDefaultArgument()) {
2472 TypeSourceInfo *InstantiatedDefaultArg =
2473 SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args,
2474 TTP->getDefaultArgumentLoc(), TTP->getDeclName());
2475 if (InstantiatedDefaultArg)
2476 NewTTP->setDefaultArgument(InstantiatedDefaultArg);
2477 }
2478 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D: TemplateParam,
2479 Inst: NewTTP);
2480 return NewTTP;
2481 }
2482
2483 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: TemplateParam))
2484 return transformTemplateParameterImpl(OldParam: TTP, Args);
2485
2486 return transformTemplateParameterImpl(
2487 OldParam: cast<NonTypeTemplateParmDecl>(Val: TemplateParam), Args);
2488 }
2489 template<typename TemplateParmDecl>
2490 TemplateParmDecl *
2491 transformTemplateParameterImpl(TemplateParmDecl *OldParam,
2492 MultiLevelTemplateArgumentList &Args) {
2493 // Ask the template instantiator to do the heavy lifting for us, then adjust
2494 // the index of the parameter once it's done.
2495 auto *NewParam =
2496 cast<TemplateParmDecl>(SemaRef.SubstDecl(D: OldParam, Owner: DC, TemplateArgs: Args));
2497 assert(NewParam->getDepth() == OldParam->getDepth() - 1 &&
2498 "unexpected template param depth");
2499 NewParam->setPosition(NewParam->getPosition() + Depth1IndexAdjustment);
2500 return NewParam;
2501 }
2502
2503 QualType transformFunctionProtoType(
2504 TypeLocBuilder &TLB, FunctionProtoTypeLoc TL,
2505 SmallVectorImpl<ParmVarDecl *> &Params,
2506 MultiLevelTemplateArgumentList &Args,
2507 SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2508 SmallVector<QualType, 4> ParamTypes;
2509 const FunctionProtoType *T = TL.getTypePtr();
2510
2511 // -- The types of the function parameters are those of the constructor.
2512 for (auto *OldParam : TL.getParams()) {
2513 ParmVarDecl *NewParam =
2514 transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs);
2515 if (NestedPattern && NewParam)
2516 NewParam = transformFunctionTypeParam(NewParam, OuterInstantiationArgs,
2517 MaterializedTypedefs);
2518 if (!NewParam)
2519 return QualType();
2520 ParamTypes.push_back(NewParam->getType());
2521 Params.push_back(NewParam);
2522 }
2523
2524 // -- The return type is the class template specialization designated by
2525 // the template-name and template arguments corresponding to the
2526 // template parameters obtained from the class template.
2527 //
2528 // We use the injected-class-name type of the primary template instead.
2529 // This has the convenient property that it is different from any type that
2530 // the user can write in a deduction-guide (because they cannot enter the
2531 // context of the template), so implicit deduction guides can never collide
2532 // with explicit ones.
2533 QualType ReturnType = DeducedType;
2534 TLB.pushTypeSpec(T: ReturnType).setNameLoc(Primary->getLocation());
2535
2536 // Resolving a wording defect, we also inherit the variadicness of the
2537 // constructor.
2538 FunctionProtoType::ExtProtoInfo EPI;
2539 EPI.Variadic = T->isVariadic();
2540 EPI.HasTrailingReturn = true;
2541
2542 QualType Result = SemaRef.BuildFunctionType(
2543 T: ReturnType, ParamTypes, Loc: TL.getBeginLoc(), Entity: DeductionGuideName, EPI);
2544 if (Result.isNull())
2545 return QualType();
2546
2547 FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(T: Result);
2548 NewTL.setLocalRangeBegin(TL.getLocalRangeBegin());
2549 NewTL.setLParenLoc(TL.getLParenLoc());
2550 NewTL.setRParenLoc(TL.getRParenLoc());
2551 NewTL.setExceptionSpecRange(SourceRange());
2552 NewTL.setLocalRangeEnd(TL.getLocalRangeEnd());
2553 for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I)
2554 NewTL.setParam(I, Params[I]);
2555
2556 return Result;
2557 }
2558
2559 ParmVarDecl *transformFunctionTypeParam(
2560 ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args,
2561 llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) {
2562 TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo();
2563 TypeSourceInfo *NewDI;
2564 if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) {
2565 // Expand out the one and only element in each inner pack.
2566 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0);
2567 NewDI =
2568 SemaRef.SubstType(PackTL.getPatternLoc(), Args,
2569 OldParam->getLocation(), OldParam->getDeclName());
2570 if (!NewDI) return nullptr;
2571 NewDI =
2572 SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(),
2573 PackTL.getTypePtr()->getNumExpansions());
2574 } else
2575 NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(),
2576 OldParam->getDeclName());
2577 if (!NewDI)
2578 return nullptr;
2579
2580 // Extract the type. This (for instance) replaces references to typedef
2581 // members of the current instantiations with the definitions of those
2582 // typedefs, avoiding triggering instantiation of the deduced type during
2583 // deduction.
2584 NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs)
2585 .transform(TSI: NewDI);
2586
2587 // Resolving a wording defect, we also inherit default arguments from the
2588 // constructor.
2589 ExprResult NewDefArg;
2590 if (OldParam->hasDefaultArg()) {
2591 // We don't care what the value is (we won't use it); just create a
2592 // placeholder to indicate there is a default argument.
2593 QualType ParamTy = NewDI->getType();
2594 NewDefArg = new (SemaRef.Context)
2595 OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(),
2596 ParamTy.getNonLValueExprType(Context: SemaRef.Context),
2597 ParamTy->isLValueReferenceType() ? VK_LValue
2598 : ParamTy->isRValueReferenceType() ? VK_XValue
2599 : VK_PRValue);
2600 }
2601 // Handle arrays and functions decay.
2602 auto NewType = NewDI->getType();
2603 if (NewType->isArrayType() || NewType->isFunctionType())
2604 NewType = SemaRef.Context.getDecayedType(T: NewType);
2605
2606 ParmVarDecl *NewParam = ParmVarDecl::Create(
2607 C&: SemaRef.Context, DC, StartLoc: OldParam->getInnerLocStart(),
2608 IdLoc: OldParam->getLocation(), Id: OldParam->getIdentifier(), T: NewType, TInfo: NewDI,
2609 S: OldParam->getStorageClass(), DefArg: NewDefArg.get());
2610 NewParam->setScopeInfo(scopeDepth: OldParam->getFunctionScopeDepth(),
2611 parameterIndex: OldParam->getFunctionScopeIndex());
2612 SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam);
2613 return NewParam;
2614 }
2615
2616 FunctionTemplateDecl *buildDeductionGuide(
2617 TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor,
2618 ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart,
2619 SourceLocation Loc, SourceLocation LocEnd,
2620 llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) {
2621 DeclarationNameInfo Name(DeductionGuideName, Loc);
2622 ArrayRef<ParmVarDecl *> Params =
2623 TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams();
2624
2625 // Build the implicit deduction guide template.
2626 auto *Guide =
2627 CXXDeductionGuideDecl::Create(C&: SemaRef.Context, DC, StartLoc: LocStart, ES, NameInfo: Name,
2628 T: TInfo->getType(), TInfo, EndLocation: LocEnd, Ctor);
2629 Guide->setImplicit();
2630 Guide->setParams(Params);
2631
2632 for (auto *Param : Params)
2633 Param->setDeclContext(Guide);
2634 for (auto *TD : MaterializedTypedefs)
2635 TD->setDeclContext(Guide);
2636
2637 auto *GuideTemplate = FunctionTemplateDecl::Create(
2638 SemaRef.Context, DC, Loc, DeductionGuideName, TemplateParams, Guide);
2639 GuideTemplate->setImplicit();
2640 Guide->setDescribedFunctionTemplate(GuideTemplate);
2641
2642 if (isa<CXXRecordDecl>(Val: DC)) {
2643 Guide->setAccess(AS_public);
2644 GuideTemplate->setAccess(AS_public);
2645 }
2646
2647 DC->addDecl(D: GuideTemplate);
2648 return GuideTemplate;
2649 }
2650};
2651}
2652
2653FunctionTemplateDecl *Sema::DeclareImplicitDeductionGuideFromInitList(
2654 TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes,
2655 SourceLocation Loc) {
2656 if (CXXRecordDecl *DefRecord =
2657 cast<CXXRecordDecl>(Val: Template->getTemplatedDecl())->getDefinition()) {
2658 if (TemplateDecl *DescribedTemplate =
2659 DefRecord->getDescribedClassTemplate())
2660 Template = DescribedTemplate;
2661 }
2662
2663 DeclContext *DC = Template->getDeclContext();
2664 if (DC->isDependentContext())
2665 return nullptr;
2666
2667 ConvertConstructorToDeductionGuideTransform Transform(
2668 *this, cast<ClassTemplateDecl>(Val: Template));
2669 if (!isCompleteType(Loc, T: Transform.DeducedType))
2670 return nullptr;
2671
2672 // In case we were expanding a pack when we attempted to declare deduction
2673 // guides, turn off pack expansion for everything we're about to do.
2674 ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
2675 /*NewSubstitutionIndex=*/-1);
2676 // Create a template instantiation record to track the "instantiation" of
2677 // constructors into deduction guides.
2678 InstantiatingTemplate BuildingDeductionGuides(
2679 *this, Loc, Template,
2680 Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2681 if (BuildingDeductionGuides.isInvalid())
2682 return nullptr;
2683
2684 ClassTemplateDecl *Pattern =
2685 Transform.NestedPattern ? Transform.NestedPattern : Transform.Template;
2686 ContextRAII SavedContext(*this, Pattern->getTemplatedDecl());
2687
2688 auto *DG = cast<FunctionTemplateDecl>(
2689 Val: Transform.buildSimpleDeductionGuide(ParamTypes));
2690 SavedContext.pop();
2691 return DG;
2692}
2693
2694void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template,
2695 SourceLocation Loc) {
2696 if (CXXRecordDecl *DefRecord =
2697 cast<CXXRecordDecl>(Val: Template->getTemplatedDecl())->getDefinition()) {
2698 if (TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate())
2699 Template = DescribedTemplate;
2700 }
2701
2702 DeclContext *DC = Template->getDeclContext();
2703 if (DC->isDependentContext())
2704 return;
2705
2706 ConvertConstructorToDeductionGuideTransform Transform(
2707 *this, cast<ClassTemplateDecl>(Val: Template));
2708 if (!isCompleteType(Loc, T: Transform.DeducedType))
2709 return;
2710
2711 // Check whether we've already declared deduction guides for this template.
2712 // FIXME: Consider storing a flag on the template to indicate this.
2713 auto Existing = DC->lookup(Name: Transform.DeductionGuideName);
2714 for (auto *D : Existing)
2715 if (D->isImplicit())
2716 return;
2717
2718 // In case we were expanding a pack when we attempted to declare deduction
2719 // guides, turn off pack expansion for everything we're about to do.
2720 ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1);
2721 // Create a template instantiation record to track the "instantiation" of
2722 // constructors into deduction guides.
2723 InstantiatingTemplate BuildingDeductionGuides(
2724 *this, Loc, Template,
2725 Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{});
2726 if (BuildingDeductionGuides.isInvalid())
2727 return;
2728
2729 // Convert declared constructors into deduction guide templates.
2730 // FIXME: Skip constructors for which deduction must necessarily fail (those
2731 // for which some class template parameter without a default argument never
2732 // appears in a deduced context).
2733 ClassTemplateDecl *Pattern =
2734 Transform.NestedPattern ? Transform.NestedPattern : Transform.Template;
2735 ContextRAII SavedContext(*this, Pattern->getTemplatedDecl());
2736 llvm::SmallPtrSet<NamedDecl *, 8> ProcessedCtors;
2737 bool AddedAny = false;
2738 for (NamedDecl *D : LookupConstructors(Class: Pattern->getTemplatedDecl())) {
2739 D = D->getUnderlyingDecl();
2740 if (D->isInvalidDecl() || D->isImplicit())
2741 continue;
2742
2743 D = cast<NamedDecl>(D->getCanonicalDecl());
2744
2745 // Within C++20 modules, we may have multiple same constructors in
2746 // multiple same RecordDecls. And it doesn't make sense to create
2747 // duplicated deduction guides for the duplicated constructors.
2748 if (ProcessedCtors.count(Ptr: D))
2749 continue;
2750
2751 auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: D);
2752 auto *CD =
2753 dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D);
2754 // Class-scope explicit specializations (MS extension) do not result in
2755 // deduction guides.
2756 if (!CD || (!FTD && CD->isFunctionTemplateSpecialization()))
2757 continue;
2758
2759 // Cannot make a deduction guide when unparsed arguments are present.
2760 if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) {
2761 return !P || P->hasUnparsedDefaultArg();
2762 }))
2763 continue;
2764
2765 ProcessedCtors.insert(Ptr: D);
2766 Transform.transformConstructor(FTD, CD: CD);
2767 AddedAny = true;
2768 }
2769
2770 // C++17 [over.match.class.deduct]
2771 // -- If C is not defined or does not declare any constructors, an
2772 // additional function template derived as above from a hypothetical
2773 // constructor C().
2774 if (!AddedAny)
2775 Transform.buildSimpleDeductionGuide(ParamTypes: std::nullopt);
2776
2777 // -- An additional function template derived as above from a hypothetical
2778 // constructor C(C), called the copy deduction candidate.
2779 cast<CXXDeductionGuideDecl>(
2780 cast<FunctionTemplateDecl>(
2781 Transform.buildSimpleDeductionGuide(ParamTypes: Transform.DeducedType))
2782 ->getTemplatedDecl())
2783 ->setDeductionCandidateKind(DeductionCandidate::Copy);
2784
2785 SavedContext.pop();
2786}
2787
2788/// Diagnose the presence of a default template argument on a
2789/// template parameter, which is ill-formed in certain contexts.
2790///
2791/// \returns true if the default template argument should be dropped.
2792static bool DiagnoseDefaultTemplateArgument(Sema &S,
2793 Sema::TemplateParamListContext TPC,
2794 SourceLocation ParamLoc,
2795 SourceRange DefArgRange) {
2796 switch (TPC) {
2797 case Sema::TPC_ClassTemplate:
2798 case Sema::TPC_VarTemplate:
2799 case Sema::TPC_TypeAliasTemplate:
2800 return false;
2801
2802 case Sema::TPC_FunctionTemplate:
2803 case Sema::TPC_FriendFunctionTemplateDefinition:
2804 // C++ [temp.param]p9:
2805 // A default template-argument shall not be specified in a
2806 // function template declaration or a function template
2807 // definition [...]
2808 // If a friend function template declaration specifies a default
2809 // template-argument, that declaration shall be a definition and shall be
2810 // the only declaration of the function template in the translation unit.
2811 // (C++98/03 doesn't have this wording; see DR226).
2812 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
2813 diag::warn_cxx98_compat_template_parameter_default_in_function_template
2814 : diag::ext_template_parameter_default_in_function_template)
2815 << DefArgRange;
2816 return false;
2817
2818 case Sema::TPC_ClassTemplateMember:
2819 // C++0x [temp.param]p9:
2820 // A default template-argument shall not be specified in the
2821 // template-parameter-lists of the definition of a member of a
2822 // class template that appears outside of the member's class.
2823 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
2824 << DefArgRange;
2825 return true;
2826
2827 case Sema::TPC_FriendClassTemplate:
2828 case Sema::TPC_FriendFunctionTemplate:
2829 // C++ [temp.param]p9:
2830 // A default template-argument shall not be specified in a
2831 // friend template declaration.
2832 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
2833 << DefArgRange;
2834 return true;
2835
2836 // FIXME: C++0x [temp.param]p9 allows default template-arguments
2837 // for friend function templates if there is only a single
2838 // declaration (and it is a definition). Strange!
2839 }
2840
2841 llvm_unreachable("Invalid TemplateParamListContext!");
2842}
2843
2844/// Check for unexpanded parameter packs within the template parameters
2845/// of a template template parameter, recursively.
2846static bool DiagnoseUnexpandedParameterPacks(Sema &S,
2847 TemplateTemplateParmDecl *TTP) {
2848 // A template template parameter which is a parameter pack is also a pack
2849 // expansion.
2850 if (TTP->isParameterPack())
2851 return false;
2852
2853 TemplateParameterList *Params = TTP->getTemplateParameters();
2854 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
2855 NamedDecl *P = Params->getParam(Idx: I);
2856 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: P)) {
2857 if (!TTP->isParameterPack())
2858 if (const TypeConstraint *TC = TTP->getTypeConstraint())
2859 if (TC->hasExplicitTemplateArgs())
2860 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2861 if (S.DiagnoseUnexpandedParameterPack(ArgLoc,
2862 Sema::UPPC_TypeConstraint))
2863 return true;
2864 continue;
2865 }
2866
2867 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: P)) {
2868 if (!NTTP->isParameterPack() &&
2869 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
2870 NTTP->getTypeSourceInfo(),
2871 Sema::UPPC_NonTypeTemplateParameterType))
2872 return true;
2873
2874 continue;
2875 }
2876
2877 if (TemplateTemplateParmDecl *InnerTTP
2878 = dyn_cast<TemplateTemplateParmDecl>(Val: P))
2879 if (DiagnoseUnexpandedParameterPacks(S, TTP: InnerTTP))
2880 return true;
2881 }
2882
2883 return false;
2884}
2885
2886/// Checks the validity of a template parameter list, possibly
2887/// considering the template parameter list from a previous
2888/// declaration.
2889///
2890/// If an "old" template parameter list is provided, it must be
2891/// equivalent (per TemplateParameterListsAreEqual) to the "new"
2892/// template parameter list.
2893///
2894/// \param NewParams Template parameter list for a new template
2895/// declaration. This template parameter list will be updated with any
2896/// default arguments that are carried through from the previous
2897/// template parameter list.
2898///
2899/// \param OldParams If provided, template parameter list from a
2900/// previous declaration of the same template. Default template
2901/// arguments will be merged from the old template parameter list to
2902/// the new template parameter list.
2903///
2904/// \param TPC Describes the context in which we are checking the given
2905/// template parameter list.
2906///
2907/// \param SkipBody If we might have already made a prior merged definition
2908/// of this template visible, the corresponding body-skipping information.
2909/// Default argument redefinition is not an error when skipping such a body,
2910/// because (under the ODR) we can assume the default arguments are the same
2911/// as the prior merged definition.
2912///
2913/// \returns true if an error occurred, false otherwise.
2914bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
2915 TemplateParameterList *OldParams,
2916 TemplateParamListContext TPC,
2917 SkipBodyInfo *SkipBody) {
2918 bool Invalid = false;
2919
2920 // C++ [temp.param]p10:
2921 // The set of default template-arguments available for use with a
2922 // template declaration or definition is obtained by merging the
2923 // default arguments from the definition (if in scope) and all
2924 // declarations in scope in the same way default function
2925 // arguments are (8.3.6).
2926 bool SawDefaultArgument = false;
2927 SourceLocation PreviousDefaultArgLoc;
2928
2929 // Dummy initialization to avoid warnings.
2930 TemplateParameterList::iterator OldParam = NewParams->end();
2931 if (OldParams)
2932 OldParam = OldParams->begin();
2933
2934 bool RemoveDefaultArguments = false;
2935 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
2936 NewParamEnd = NewParams->end();
2937 NewParam != NewParamEnd; ++NewParam) {
2938 // Whether we've seen a duplicate default argument in the same translation
2939 // unit.
2940 bool RedundantDefaultArg = false;
2941 // Whether we've found inconsis inconsitent default arguments in different
2942 // translation unit.
2943 bool InconsistentDefaultArg = false;
2944 // The name of the module which contains the inconsistent default argument.
2945 std::string PrevModuleName;
2946
2947 SourceLocation OldDefaultLoc;
2948 SourceLocation NewDefaultLoc;
2949
2950 // Variable used to diagnose missing default arguments
2951 bool MissingDefaultArg = false;
2952
2953 // Variable used to diagnose non-final parameter packs
2954 bool SawParameterPack = false;
2955
2956 if (TemplateTypeParmDecl *NewTypeParm
2957 = dyn_cast<TemplateTypeParmDecl>(Val: *NewParam)) {
2958 // Check the presence of a default argument here.
2959 if (NewTypeParm->hasDefaultArgument() &&
2960 DiagnoseDefaultTemplateArgument(*this, TPC,
2961 NewTypeParm->getLocation(),
2962 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
2963 .getSourceRange()))
2964 NewTypeParm->removeDefaultArgument();
2965
2966 // Merge default arguments for template type parameters.
2967 TemplateTypeParmDecl *OldTypeParm
2968 = OldParams? cast<TemplateTypeParmDecl>(Val: *OldParam) : nullptr;
2969 if (NewTypeParm->isParameterPack()) {
2970 assert(!NewTypeParm->hasDefaultArgument() &&
2971 "Parameter packs can't have a default argument!");
2972 SawParameterPack = true;
2973 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
2974 NewTypeParm->hasDefaultArgument() &&
2975 (!SkipBody || !SkipBody->ShouldSkip)) {
2976 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
2977 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
2978 SawDefaultArgument = true;
2979
2980 if (!OldTypeParm->getOwningModule())
2981 RedundantDefaultArg = true;
2982 else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm,
2983 NewTypeParm)) {
2984 InconsistentDefaultArg = true;
2985 PrevModuleName =
2986 OldTypeParm->getImportedOwningModule()->getFullModuleName();
2987 }
2988 PreviousDefaultArgLoc = NewDefaultLoc;
2989 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
2990 // Merge the default argument from the old declaration to the
2991 // new declaration.
2992 NewTypeParm->setInheritedDefaultArgument(C: Context, Prev: OldTypeParm);
2993 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
2994 } else if (NewTypeParm->hasDefaultArgument()) {
2995 SawDefaultArgument = true;
2996 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
2997 } else if (SawDefaultArgument)
2998 MissingDefaultArg = true;
2999 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
3000 = dyn_cast<NonTypeTemplateParmDecl>(Val: *NewParam)) {
3001 // Check for unexpanded parameter packs.
3002 if (!NewNonTypeParm->isParameterPack() &&
3003 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
3004 NewNonTypeParm->getTypeSourceInfo(),
3005 UPPC_NonTypeTemplateParameterType)) {
3006 Invalid = true;
3007 continue;
3008 }
3009
3010 // Check the presence of a default argument here.
3011 if (NewNonTypeParm->hasDefaultArgument() &&
3012 DiagnoseDefaultTemplateArgument(*this, TPC,
3013 NewNonTypeParm->getLocation(),
3014 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
3015 NewNonTypeParm->removeDefaultArgument();
3016 }
3017
3018 // Merge default arguments for non-type template parameters
3019 NonTypeTemplateParmDecl *OldNonTypeParm
3020 = OldParams? cast<NonTypeTemplateParmDecl>(Val: *OldParam) : nullptr;
3021 if (NewNonTypeParm->isParameterPack()) {
3022 assert(!NewNonTypeParm->hasDefaultArgument() &&
3023 "Parameter packs can't have a default argument!");
3024 if (!NewNonTypeParm->isPackExpansion())
3025 SawParameterPack = true;
3026 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
3027 NewNonTypeParm->hasDefaultArgument() &&
3028 (!SkipBody || !SkipBody->ShouldSkip)) {
3029 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
3030 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
3031 SawDefaultArgument = true;
3032 if (!OldNonTypeParm->getOwningModule())
3033 RedundantDefaultArg = true;
3034 else if (!getASTContext().isSameDefaultTemplateArgument(
3035 OldNonTypeParm, NewNonTypeParm)) {
3036 InconsistentDefaultArg = true;
3037 PrevModuleName =
3038 OldNonTypeParm->getImportedOwningModule()->getFullModuleName();
3039 }
3040 PreviousDefaultArgLoc = NewDefaultLoc;
3041 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
3042 // Merge the default argument from the old declaration to the
3043 // new declaration.
3044 NewNonTypeParm->setInheritedDefaultArgument(C: Context, Parm: OldNonTypeParm);
3045 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
3046 } else if (NewNonTypeParm->hasDefaultArgument()) {
3047 SawDefaultArgument = true;
3048 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
3049 } else if (SawDefaultArgument)
3050 MissingDefaultArg = true;
3051 } else {
3052 TemplateTemplateParmDecl *NewTemplateParm
3053 = cast<TemplateTemplateParmDecl>(Val: *NewParam);
3054
3055 // Check for unexpanded parameter packs, recursively.
3056 if (::DiagnoseUnexpandedParameterPacks(S&: *this, TTP: NewTemplateParm)) {
3057 Invalid = true;
3058 continue;
3059 }
3060
3061 // Check the presence of a default argument here.
3062 if (NewTemplateParm->hasDefaultArgument() &&
3063 DiagnoseDefaultTemplateArgument(*this, TPC,
3064 NewTemplateParm->getLocation(),
3065 NewTemplateParm->getDefaultArgument().getSourceRange()))
3066 NewTemplateParm->removeDefaultArgument();
3067
3068 // Merge default arguments for template template parameters
3069 TemplateTemplateParmDecl *OldTemplateParm
3070 = OldParams? cast<TemplateTemplateParmDecl>(Val: *OldParam) : nullptr;
3071 if (NewTemplateParm->isParameterPack()) {
3072 assert(!NewTemplateParm->hasDefaultArgument() &&
3073 "Parameter packs can't have a default argument!");
3074 if (!NewTemplateParm->isPackExpansion())
3075 SawParameterPack = true;
3076 } else if (OldTemplateParm &&
3077 hasVisibleDefaultArgument(OldTemplateParm) &&
3078 NewTemplateParm->hasDefaultArgument() &&
3079 (!SkipBody || !SkipBody->ShouldSkip)) {
3080 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
3081 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
3082 SawDefaultArgument = true;
3083 if (!OldTemplateParm->getOwningModule())
3084 RedundantDefaultArg = true;
3085 else if (!getASTContext().isSameDefaultTemplateArgument(
3086 OldTemplateParm, NewTemplateParm)) {
3087 InconsistentDefaultArg = true;
3088 PrevModuleName =
3089 OldTemplateParm->getImportedOwningModule()->getFullModuleName();
3090 }
3091 PreviousDefaultArgLoc = NewDefaultLoc;
3092 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
3093 // Merge the default argument from the old declaration to the
3094 // new declaration.
3095 NewTemplateParm->setInheritedDefaultArgument(C: Context, Prev: OldTemplateParm);
3096 PreviousDefaultArgLoc
3097 = OldTemplateParm->getDefaultArgument().getLocation();
3098 } else if (NewTemplateParm->hasDefaultArgument()) {
3099 SawDefaultArgument = true;
3100 PreviousDefaultArgLoc
3101 = NewTemplateParm->getDefaultArgument().getLocation();
3102 } else if (SawDefaultArgument)
3103 MissingDefaultArg = true;
3104 }
3105
3106 // C++11 [temp.param]p11:
3107 // If a template parameter of a primary class template or alias template
3108 // is a template parameter pack, it shall be the last template parameter.
3109 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
3110 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
3111 TPC == TPC_TypeAliasTemplate)) {
3112 Diag((*NewParam)->getLocation(),
3113 diag::err_template_param_pack_must_be_last_template_parameter);
3114 Invalid = true;
3115 }
3116
3117 // [basic.def.odr]/13:
3118 // There can be more than one definition of a
3119 // ...
3120 // default template argument
3121 // ...
3122 // in a program provided that each definition appears in a different
3123 // translation unit and the definitions satisfy the [same-meaning
3124 // criteria of the ODR].
3125 //
3126 // Simply, the design of modules allows the definition of template default
3127 // argument to be repeated across translation unit. Note that the ODR is
3128 // checked elsewhere. But it is still not allowed to repeat template default
3129 // argument in the same translation unit.
3130 if (RedundantDefaultArg) {
3131 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
3132 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
3133 Invalid = true;
3134 } else if (InconsistentDefaultArg) {
3135 // We could only diagnose about the case that the OldParam is imported.
3136 // The case NewParam is imported should be handled in ASTReader.
3137 Diag(NewDefaultLoc,
3138 diag::err_template_param_default_arg_inconsistent_redefinition);
3139 Diag(OldDefaultLoc,
3140 diag::note_template_param_prev_default_arg_in_other_module)
3141 << PrevModuleName;
3142 Invalid = true;
3143 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
3144 // C++ [temp.param]p11:
3145 // If a template-parameter of a class template has a default
3146 // template-argument, each subsequent template-parameter shall either
3147 // have a default template-argument supplied or be a template parameter
3148 // pack.
3149 Diag((*NewParam)->getLocation(),
3150 diag::err_template_param_default_arg_missing);
3151 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
3152 Invalid = true;
3153 RemoveDefaultArguments = true;
3154 }
3155
3156 // If we have an old template parameter list that we're merging
3157 // in, move on to the next parameter.
3158 if (OldParams)
3159 ++OldParam;
3160 }
3161
3162 // We were missing some default arguments at the end of the list, so remove
3163 // all of the default arguments.
3164 if (RemoveDefaultArguments) {
3165 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
3166 NewParamEnd = NewParams->end();
3167 NewParam != NewParamEnd; ++NewParam) {
3168 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *NewParam))
3169 TTP->removeDefaultArgument();
3170 else if (NonTypeTemplateParmDecl *NTTP
3171 = dyn_cast<NonTypeTemplateParmDecl>(Val: *NewParam))
3172 NTTP->removeDefaultArgument();
3173 else
3174 cast<TemplateTemplateParmDecl>(Val: *NewParam)->removeDefaultArgument();
3175 }
3176 }
3177
3178 return Invalid;
3179}
3180
3181namespace {
3182
3183/// A class which looks for a use of a certain level of template
3184/// parameter.
3185struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
3186 typedef RecursiveASTVisitor<DependencyChecker> super;
3187
3188 unsigned Depth;
3189
3190 // Whether we're looking for a use of a template parameter that makes the
3191 // overall construct type-dependent / a dependent type. This is strictly
3192 // best-effort for now; we may fail to match at all for a dependent type
3193 // in some cases if this is set.
3194 bool IgnoreNonTypeDependent;
3195
3196 bool Match;
3197 SourceLocation MatchLoc;
3198
3199 DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent)
3200 : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent),
3201 Match(false) {}
3202
3203 DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent)
3204 : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) {
3205 NamedDecl *ND = Params->getParam(Idx: 0);
3206 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(Val: ND)) {
3207 Depth = PD->getDepth();
3208 } else if (NonTypeTemplateParmDecl *PD =
3209 dyn_cast<NonTypeTemplateParmDecl>(Val: ND)) {
3210 Depth = PD->getDepth();
3211 } else {
3212 Depth = cast<TemplateTemplateParmDecl>(Val: ND)->getDepth();
3213 }
3214 }
3215
3216 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
3217 if (ParmDepth >= Depth) {
3218 Match = true;
3219 MatchLoc = Loc;
3220 return true;
3221 }
3222 return false;
3223 }
3224
3225 bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) {
3226 // Prune out non-type-dependent expressions if requested. This can
3227 // sometimes result in us failing to find a template parameter reference
3228 // (if a value-dependent expression creates a dependent type), but this
3229 // mode is best-effort only.
3230 if (auto *E = dyn_cast_or_null<Expr>(Val: S))
3231 if (IgnoreNonTypeDependent && !E->isTypeDependent())
3232 return true;
3233 return super::TraverseStmt(S, Queue: Q);
3234 }
3235
3236 bool TraverseTypeLoc(TypeLoc TL) {
3237 if (IgnoreNonTypeDependent && !TL.isNull() &&
3238 !TL.getType()->isDependentType())
3239 return true;
3240 return super::TraverseTypeLoc(TL);
3241 }
3242
3243 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
3244 return !Matches(ParmDepth: TL.getTypePtr()->getDepth(), Loc: TL.getNameLoc());
3245 }
3246
3247 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
3248 // For a best-effort search, keep looking until we find a location.
3249 return IgnoreNonTypeDependent || !Matches(ParmDepth: T->getDepth());
3250 }
3251
3252 bool TraverseTemplateName(TemplateName N) {
3253 if (TemplateTemplateParmDecl *PD =
3254 dyn_cast_or_null<TemplateTemplateParmDecl>(Val: N.getAsTemplateDecl()))
3255 if (Matches(ParmDepth: PD->getDepth()))
3256 return false;
3257 return super::TraverseTemplateName(Template: N);
3258 }
3259
3260 bool VisitDeclRefExpr(DeclRefExpr *E) {
3261 if (NonTypeTemplateParmDecl *PD =
3262 dyn_cast<NonTypeTemplateParmDecl>(Val: E->getDecl()))
3263 if (Matches(ParmDepth: PD->getDepth(), Loc: E->getExprLoc()))
3264 return false;
3265 return super::VisitDeclRefExpr(E);
3266 }
3267
3268 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
3269 return TraverseType(T: T->getReplacementType());
3270 }
3271
3272 bool
3273 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
3274 return TraverseTemplateArgument(Arg: T->getArgumentPack());
3275 }
3276
3277 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
3278 return TraverseType(T: T->getInjectedSpecializationType());
3279 }
3280};
3281} // end anonymous namespace
3282
3283/// Determines whether a given type depends on the given parameter
3284/// list.
3285static bool
3286DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
3287 if (!Params->size())
3288 return false;
3289
3290 DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false);
3291 Checker.TraverseType(T);
3292 return Checker.Match;
3293}
3294
3295// Find the source range corresponding to the named type in the given
3296// nested-name-specifier, if any.
3297static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
3298 QualType T,
3299 const CXXScopeSpec &SS) {
3300 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
3301 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
3302 if (const Type *CurType = NNS->getAsType()) {
3303 if (Context.hasSameUnqualifiedType(T1: T, T2: QualType(CurType, 0)))
3304 return NNSLoc.getTypeLoc().getSourceRange();
3305 } else
3306 break;
3307
3308 NNSLoc = NNSLoc.getPrefix();
3309 }
3310
3311 return SourceRange();
3312}
3313
3314/// Match the given template parameter lists to the given scope
3315/// specifier, returning the template parameter list that applies to the
3316/// name.
3317///
3318/// \param DeclStartLoc the start of the declaration that has a scope
3319/// specifier or a template parameter list.
3320///
3321/// \param DeclLoc The location of the declaration itself.
3322///
3323/// \param SS the scope specifier that will be matched to the given template
3324/// parameter lists. This scope specifier precedes a qualified name that is
3325/// being declared.
3326///
3327/// \param TemplateId The template-id following the scope specifier, if there
3328/// is one. Used to check for a missing 'template<>'.
3329///
3330/// \param ParamLists the template parameter lists, from the outermost to the
3331/// innermost template parameter lists.
3332///
3333/// \param IsFriend Whether to apply the slightly different rules for
3334/// matching template parameters to scope specifiers in friend
3335/// declarations.
3336///
3337/// \param IsMemberSpecialization will be set true if the scope specifier
3338/// denotes a fully-specialized type, and therefore this is a declaration of
3339/// a member specialization.
3340///
3341/// \returns the template parameter list, if any, that corresponds to the
3342/// name that is preceded by the scope specifier @p SS. This template
3343/// parameter list may have template parameters (if we're declaring a
3344/// template) or may have no template parameters (if we're declaring a
3345/// template specialization), or may be NULL (if what we're declaring isn't
3346/// itself a template).
3347TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
3348 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
3349 TemplateIdAnnotation *TemplateId,
3350 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
3351 bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) {
3352 IsMemberSpecialization = false;
3353 Invalid = false;
3354
3355 // The sequence of nested types to which we will match up the template
3356 // parameter lists. We first build this list by starting with the type named
3357 // by the nested-name-specifier and walking out until we run out of types.
3358 SmallVector<QualType, 4> NestedTypes;
3359 QualType T;
3360 if (SS.getScopeRep()) {
3361 if (CXXRecordDecl *Record
3362 = dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS, EnteringContext: true)))
3363 T = Context.getTypeDeclType(Record);
3364 else
3365 T = QualType(SS.getScopeRep()->getAsType(), 0);
3366 }
3367
3368 // If we found an explicit specialization that prevents us from needing
3369 // 'template<>' headers, this will be set to the location of that
3370 // explicit specialization.
3371 SourceLocation ExplicitSpecLoc;
3372
3373 while (!T.isNull()) {
3374 NestedTypes.push_back(Elt: T);
3375
3376 // Retrieve the parent of a record type.
3377 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3378 // If this type is an explicit specialization, we're done.
3379 if (ClassTemplateSpecializationDecl *Spec
3380 = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) {
3381 if (!isa<ClassTemplatePartialSpecializationDecl>(Val: Spec) &&
3382 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
3383 ExplicitSpecLoc = Spec->getLocation();
3384 break;
3385 }
3386 } else if (Record->getTemplateSpecializationKind()
3387 == TSK_ExplicitSpecialization) {
3388 ExplicitSpecLoc = Record->getLocation();
3389 break;
3390 }
3391
3392 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
3393 T = Context.getTypeDeclType(Decl: Parent);
3394 else
3395 T = QualType();
3396 continue;
3397 }
3398
3399 if (const TemplateSpecializationType *TST
3400 = T->getAs<TemplateSpecializationType>()) {
3401 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3402 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
3403 T = Context.getTypeDeclType(Decl: Parent);
3404 else
3405 T = QualType();
3406 continue;
3407 }
3408 }
3409
3410 // Look one step prior in a dependent template specialization type.
3411 if (const DependentTemplateSpecializationType *DependentTST
3412 = T->getAs<DependentTemplateSpecializationType>()) {
3413 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
3414 T = QualType(NNS->getAsType(), 0);
3415 else
3416 T = QualType();
3417 continue;
3418 }
3419
3420 // Look one step prior in a dependent name type.
3421 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
3422 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
3423 T = QualType(NNS->getAsType(), 0);
3424 else
3425 T = QualType();
3426 continue;
3427 }
3428
3429 // Retrieve the parent of an enumeration type.
3430 if (const EnumType *EnumT = T->getAs<EnumType>()) {
3431 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
3432 // check here.
3433 EnumDecl *Enum = EnumT->getDecl();
3434
3435 // Get to the parent type.
3436 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
3437 T = Context.getTypeDeclType(Decl: Parent);
3438 else
3439 T = QualType();
3440 continue;
3441 }
3442
3443 T = QualType();
3444 }
3445 // Reverse the nested types list, since we want to traverse from the outermost
3446 // to the innermost while checking template-parameter-lists.
3447 std::reverse(first: NestedTypes.begin(), last: NestedTypes.end());
3448
3449 // C++0x [temp.expl.spec]p17:
3450 // A member or a member template may be nested within many
3451 // enclosing class templates. In an explicit specialization for
3452 // such a member, the member declaration shall be preceded by a
3453 // template<> for each enclosing class template that is
3454 // explicitly specialized.
3455 bool SawNonEmptyTemplateParameterList = false;
3456
3457 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
3458 if (SawNonEmptyTemplateParameterList) {
3459 if (!SuppressDiagnostic)
3460 Diag(DeclLoc, diag::err_specialize_member_of_template)
3461 << !Recovery << Range;
3462 Invalid = true;
3463 IsMemberSpecialization = false;
3464 return true;
3465 }
3466
3467 return false;
3468 };
3469
3470 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
3471 // Check that we can have an explicit specialization here.
3472 if (CheckExplicitSpecialization(Range, true))
3473 return true;
3474
3475 // We don't have a template header, but we should.
3476 SourceLocation ExpectedTemplateLoc;
3477 if (!ParamLists.empty())
3478 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
3479 else
3480 ExpectedTemplateLoc = DeclStartLoc;
3481
3482 if (!SuppressDiagnostic)
3483 Diag(DeclLoc, diag::err_template_spec_needs_header)
3484 << Range
3485 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
3486 return false;
3487 };
3488
3489 unsigned ParamIdx = 0;
3490 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
3491 ++TypeIdx) {
3492 T = NestedTypes[TypeIdx];
3493
3494 // Whether we expect a 'template<>' header.
3495 bool NeedEmptyTemplateHeader = false;
3496
3497 // Whether we expect a template header with parameters.
3498 bool NeedNonemptyTemplateHeader = false;
3499
3500 // For a dependent type, the set of template parameters that we
3501 // expect to see.
3502 TemplateParameterList *ExpectedTemplateParams = nullptr;
3503
3504 // C++0x [temp.expl.spec]p15:
3505 // A member or a member template may be nested within many enclosing
3506 // class templates. In an explicit specialization for such a member, the
3507 // member declaration shall be preceded by a template<> for each
3508 // enclosing class template that is explicitly specialized.
3509 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
3510 if (ClassTemplatePartialSpecializationDecl *Partial
3511 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Record)) {
3512 ExpectedTemplateParams = Partial->getTemplateParameters();
3513 NeedNonemptyTemplateHeader = true;
3514 } else if (Record->isDependentType()) {
3515 if (Record->getDescribedClassTemplate()) {
3516 ExpectedTemplateParams = Record->getDescribedClassTemplate()
3517 ->getTemplateParameters();
3518 NeedNonemptyTemplateHeader = true;
3519 }
3520 } else if (ClassTemplateSpecializationDecl *Spec
3521 = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) {
3522 // C++0x [temp.expl.spec]p4:
3523 // Members of an explicitly specialized class template are defined
3524 // in the same manner as members of normal classes, and not using
3525 // the template<> syntax.
3526 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
3527 NeedEmptyTemplateHeader = true;
3528 else
3529 continue;
3530 } else if (Record->getTemplateSpecializationKind()) {
3531 if (Record->getTemplateSpecializationKind()
3532 != TSK_ExplicitSpecialization &&
3533 TypeIdx == NumTypes - 1)
3534 IsMemberSpecialization = true;
3535
3536 continue;
3537 }
3538 } else if (const TemplateSpecializationType *TST
3539 = T->getAs<TemplateSpecializationType>()) {
3540 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
3541 ExpectedTemplateParams = Template->getTemplateParameters();
3542 NeedNonemptyTemplateHeader = true;
3543 }
3544 } else if (T->getAs<DependentTemplateSpecializationType>()) {
3545 // FIXME: We actually could/should check the template arguments here
3546 // against the corresponding template parameter list.
3547 NeedNonemptyTemplateHeader = false;
3548 }
3549
3550 // C++ [temp.expl.spec]p16:
3551 // In an explicit specialization declaration for a member of a class
3552 // template or a member template that ap- pears in namespace scope, the
3553 // member template and some of its enclosing class templates may remain
3554 // unspecialized, except that the declaration shall not explicitly
3555 // specialize a class member template if its en- closing class templates
3556 // are not explicitly specialized as well.
3557 if (ParamIdx < ParamLists.size()) {
3558 if (ParamLists[ParamIdx]->size() == 0) {
3559 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3560 false))
3561 return nullptr;
3562 } else
3563 SawNonEmptyTemplateParameterList = true;
3564 }
3565
3566 if (NeedEmptyTemplateHeader) {
3567 // If we're on the last of the types, and we need a 'template<>' header
3568 // here, then it's a member specialization.
3569 if (TypeIdx == NumTypes - 1)
3570 IsMemberSpecialization = true;
3571
3572 if (ParamIdx < ParamLists.size()) {
3573 if (ParamLists[ParamIdx]->size() > 0) {
3574 // The header has template parameters when it shouldn't. Complain.
3575 if (!SuppressDiagnostic)
3576 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3577 diag::err_template_param_list_matches_nontemplate)
3578 << T
3579 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
3580 ParamLists[ParamIdx]->getRAngleLoc())
3581 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3582 Invalid = true;
3583 return nullptr;
3584 }
3585
3586 // Consume this template header.
3587 ++ParamIdx;
3588 continue;
3589 }
3590
3591 if (!IsFriend)
3592 if (DiagnoseMissingExplicitSpecialization(
3593 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
3594 return nullptr;
3595
3596 continue;
3597 }
3598
3599 if (NeedNonemptyTemplateHeader) {
3600 // In friend declarations we can have template-ids which don't
3601 // depend on the corresponding template parameter lists. But
3602 // assume that empty parameter lists are supposed to match this
3603 // template-id.
3604 if (IsFriend && T->isDependentType()) {
3605 if (ParamIdx < ParamLists.size() &&
3606 DependsOnTemplateParameters(T, Params: ParamLists[ParamIdx]))
3607 ExpectedTemplateParams = nullptr;
3608 else
3609 continue;
3610 }
3611
3612 if (ParamIdx < ParamLists.size()) {
3613 // Check the template parameter list, if we can.
3614 if (ExpectedTemplateParams &&
3615 !TemplateParameterListsAreEqual(New: ParamLists[ParamIdx],
3616 Old: ExpectedTemplateParams,
3617 Complain: !SuppressDiagnostic, Kind: TPL_TemplateMatch))
3618 Invalid = true;
3619
3620 if (!Invalid &&
3621 CheckTemplateParameterList(NewParams: ParamLists[ParamIdx], OldParams: nullptr,
3622 TPC: TPC_ClassTemplateMember))
3623 Invalid = true;
3624
3625 ++ParamIdx;
3626 continue;
3627 }
3628
3629 if (!SuppressDiagnostic)
3630 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
3631 << T
3632 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
3633 Invalid = true;
3634 continue;
3635 }
3636 }
3637
3638 // If there were at least as many template-ids as there were template
3639 // parameter lists, then there are no template parameter lists remaining for
3640 // the declaration itself.
3641 if (ParamIdx >= ParamLists.size()) {
3642 if (TemplateId && !IsFriend) {
3643 // We don't have a template header for the declaration itself, but we
3644 // should.
3645 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
3646 TemplateId->RAngleLoc));
3647
3648 // Fabricate an empty template parameter list for the invented header.
3649 return TemplateParameterList::Create(C: Context, TemplateLoc: SourceLocation(),
3650 LAngleLoc: SourceLocation(), Params: std::nullopt,
3651 RAngleLoc: SourceLocation(), RequiresClause: nullptr);
3652 }
3653
3654 return nullptr;
3655 }
3656
3657 // If there were too many template parameter lists, complain about that now.
3658 if (ParamIdx < ParamLists.size() - 1) {
3659 bool HasAnyExplicitSpecHeader = false;
3660 bool AllExplicitSpecHeaders = true;
3661 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
3662 if (ParamLists[I]->size() == 0)
3663 HasAnyExplicitSpecHeader = true;
3664 else
3665 AllExplicitSpecHeaders = false;
3666 }
3667
3668 if (!SuppressDiagnostic)
3669 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
3670 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
3671 : diag::err_template_spec_extra_headers)
3672 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
3673 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
3674
3675 // If there was a specialization somewhere, such that 'template<>' is
3676 // not required, and there were any 'template<>' headers, note where the
3677 // specialization occurred.
3678 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader &&
3679 !SuppressDiagnostic)
3680 Diag(ExplicitSpecLoc,
3681 diag::note_explicit_template_spec_does_not_need_header)
3682 << NestedTypes.back();
3683
3684 // We have a template parameter list with no corresponding scope, which
3685 // means that the resulting template declaration can't be instantiated
3686 // properly (we'll end up with dependent nodes when we shouldn't).
3687 if (!AllExplicitSpecHeaders)
3688 Invalid = true;
3689 }
3690
3691 // C++ [temp.expl.spec]p16:
3692 // In an explicit specialization declaration for a member of a class
3693 // template or a member template that ap- pears in namespace scope, the
3694 // member template and some of its enclosing class templates may remain
3695 // unspecialized, except that the declaration shall not explicitly
3696 // specialize a class member template if its en- closing class templates
3697 // are not explicitly specialized as well.
3698 if (ParamLists.back()->size() == 0 &&
3699 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
3700 false))
3701 return nullptr;
3702
3703 // Return the last template parameter list, which corresponds to the
3704 // entity being declared.
3705 return ParamLists.back();
3706}
3707
3708void Sema::NoteAllFoundTemplates(TemplateName Name) {
3709 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
3710 Diag(Template->getLocation(), diag::note_template_declared_here)
3711 << (isa<FunctionTemplateDecl>(Template)
3712 ? 0
3713 : isa<ClassTemplateDecl>(Template)
3714 ? 1
3715 : isa<VarTemplateDecl>(Template)
3716 ? 2
3717 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
3718 << Template->getDeclName();
3719 return;
3720 }
3721
3722 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
3723 for (OverloadedTemplateStorage::iterator I = OST->begin(),
3724 IEnd = OST->end();
3725 I != IEnd; ++I)
3726 Diag((*I)->getLocation(), diag::note_template_declared_here)
3727 << 0 << (*I)->getDeclName();
3728
3729 return;
3730 }
3731}
3732
3733static QualType
3734checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
3735 ArrayRef<TemplateArgument> Converted,
3736 SourceLocation TemplateLoc,
3737 TemplateArgumentListInfo &TemplateArgs) {
3738 ASTContext &Context = SemaRef.getASTContext();
3739
3740 switch (BTD->getBuiltinTemplateKind()) {
3741 case BTK__make_integer_seq: {
3742 // Specializations of __make_integer_seq<S, T, N> are treated like
3743 // S<T, 0, ..., N-1>.
3744
3745 QualType OrigType = Converted[1].getAsType();
3746 // C++14 [inteseq.intseq]p1:
3747 // T shall be an integer type.
3748 if (!OrigType->isDependentType() && !OrigType->isIntegralType(Ctx: Context)) {
3749 SemaRef.Diag(TemplateArgs[1].getLocation(),
3750 diag::err_integer_sequence_integral_element_type);
3751 return QualType();
3752 }
3753
3754 TemplateArgument NumArgsArg = Converted[2];
3755 if (NumArgsArg.isDependent())
3756 return Context.getCanonicalTemplateSpecializationType(T: TemplateName(BTD),
3757 Args: Converted);
3758
3759 TemplateArgumentListInfo SyntheticTemplateArgs;
3760 // The type argument, wrapped in substitution sugar, gets reused as the
3761 // first template argument in the synthetic template argument list.
3762 SyntheticTemplateArgs.addArgument(
3763 Loc: TemplateArgumentLoc(TemplateArgument(OrigType),
3764 SemaRef.Context.getTrivialTypeSourceInfo(
3765 T: OrigType, Loc: TemplateArgs[1].getLocation())));
3766
3767 if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) {
3768 // Expand N into 0 ... N-1.
3769 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
3770 I < NumArgs; ++I) {
3771 TemplateArgument TA(Context, I, OrigType);
3772 SyntheticTemplateArgs.addArgument(Loc: SemaRef.getTrivialTemplateArgumentLoc(
3773 Arg: TA, NTTPType: OrigType, Loc: TemplateArgs[2].getLocation()));
3774 }
3775 } else {
3776 // C++14 [inteseq.make]p1:
3777 // If N is negative the program is ill-formed.
3778 SemaRef.Diag(TemplateArgs[2].getLocation(),
3779 diag::err_integer_sequence_negative_length);
3780 return QualType();
3781 }
3782
3783 // The first template argument will be reused as the template decl that
3784 // our synthetic template arguments will be applied to.
3785 return SemaRef.CheckTemplateIdType(Template: Converted[0].getAsTemplate(),
3786 TemplateLoc, TemplateArgs&: SyntheticTemplateArgs);
3787 }
3788
3789 case BTK__type_pack_element:
3790 // Specializations of
3791 // __type_pack_element<Index, T_1, ..., T_N>
3792 // are treated like T_Index.
3793 assert(Converted.size() == 2 &&
3794 "__type_pack_element should be given an index and a parameter pack");
3795
3796 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
3797 if (IndexArg.isDependent() || Ts.isDependent())
3798 return Context.getCanonicalTemplateSpecializationType(T: TemplateName(BTD),
3799 Args: Converted);
3800
3801 llvm::APSInt Index = IndexArg.getAsIntegral();
3802 assert(Index >= 0 && "the index used with __type_pack_element should be of "
3803 "type std::size_t, and hence be non-negative");
3804 // If the Index is out of bounds, the program is ill-formed.
3805 if (Index >= Ts.pack_size()) {
3806 SemaRef.Diag(TemplateArgs[0].getLocation(),
3807 diag::err_type_pack_element_out_of_bounds);
3808 return QualType();
3809 }
3810
3811 // We simply return the type at index `Index`.
3812 int64_t N = Index.getExtValue();
3813 return Ts.getPackAsArray()[N].getAsType();
3814 }
3815 llvm_unreachable("unexpected BuiltinTemplateDecl!");
3816}
3817
3818/// Determine whether this alias template is "enable_if_t".
3819/// libc++ >=14 uses "__enable_if_t" in C++11 mode.
3820static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) {
3821 return AliasTemplate->getName().equals("enable_if_t") ||
3822 AliasTemplate->getName().equals("__enable_if_t");
3823}
3824
3825/// Collect all of the separable terms in the given condition, which
3826/// might be a conjunction.
3827///
3828/// FIXME: The right answer is to convert the logical expression into
3829/// disjunctive normal form, so we can find the first failed term
3830/// within each possible clause.
3831static void collectConjunctionTerms(Expr *Clause,
3832 SmallVectorImpl<Expr *> &Terms) {
3833 if (auto BinOp = dyn_cast<BinaryOperator>(Val: Clause->IgnoreParenImpCasts())) {
3834 if (BinOp->getOpcode() == BO_LAnd) {
3835 collectConjunctionTerms(Clause: BinOp->getLHS(), Terms);
3836 collectConjunctionTerms(Clause: BinOp->getRHS(), Terms);
3837 return;
3838 }
3839 }
3840
3841 Terms.push_back(Elt: Clause);
3842}
3843
3844// The ranges-v3 library uses an odd pattern of a top-level "||" with
3845// a left-hand side that is value-dependent but never true. Identify
3846// the idiom and ignore that term.
3847static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) {
3848 // Top-level '||'.
3849 auto *BinOp = dyn_cast<BinaryOperator>(Val: Cond->IgnoreParenImpCasts());
3850 if (!BinOp) return Cond;
3851
3852 if (BinOp->getOpcode() != BO_LOr) return Cond;
3853
3854 // With an inner '==' that has a literal on the right-hand side.
3855 Expr *LHS = BinOp->getLHS();
3856 auto *InnerBinOp = dyn_cast<BinaryOperator>(Val: LHS->IgnoreParenImpCasts());
3857 if (!InnerBinOp) return Cond;
3858
3859 if (InnerBinOp->getOpcode() != BO_EQ ||
3860 !isa<IntegerLiteral>(Val: InnerBinOp->getRHS()))
3861 return Cond;
3862
3863 // If the inner binary operation came from a macro expansion named
3864 // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side
3865 // of the '||', which is the real, user-provided condition.
3866 SourceLocation Loc = InnerBinOp->getExprLoc();
3867 if (!Loc.isMacroID()) return Cond;
3868
3869 StringRef MacroName = PP.getImmediateMacroName(Loc);
3870 if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_")
3871 return BinOp->getRHS();
3872
3873 return Cond;
3874}
3875
3876namespace {
3877
3878// A PrinterHelper that prints more helpful diagnostics for some sub-expressions
3879// within failing boolean expression, such as substituting template parameters
3880// for actual types.
3881class FailedBooleanConditionPrinterHelper : public PrinterHelper {
3882public:
3883 explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P)
3884 : Policy(P) {}
3885
3886 bool handledStmt(Stmt *E, raw_ostream &OS) override {
3887 const auto *DR = dyn_cast<DeclRefExpr>(Val: E);
3888 if (DR && DR->getQualifier()) {
3889 // If this is a qualified name, expand the template arguments in nested
3890 // qualifiers.
3891 DR->getQualifier()->print(OS, Policy, ResolveTemplateArguments: true);
3892 // Then print the decl itself.
3893 const ValueDecl *VD = DR->getDecl();
3894 OS << VD->getName();
3895 if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(Val: VD)) {
3896 // This is a template variable, print the expanded template arguments.
3897 printTemplateArgumentList(
3898 OS, IV->getTemplateArgs().asArray(), Policy,
3899 IV->getSpecializedTemplate()->getTemplateParameters());
3900 }
3901 return true;
3902 }
3903 return false;
3904 }
3905
3906private:
3907 const PrintingPolicy Policy;
3908};
3909
3910} // end anonymous namespace
3911
3912std::pair<Expr *, std::string>
3913Sema::findFailedBooleanCondition(Expr *Cond) {
3914 Cond = lookThroughRangesV3Condition(PP, Cond);
3915
3916 // Separate out all of the terms in a conjunction.
3917 SmallVector<Expr *, 4> Terms;
3918 collectConjunctionTerms(Clause: Cond, Terms);
3919
3920 // Determine which term failed.
3921 Expr *FailedCond = nullptr;
3922 for (Expr *Term : Terms) {
3923 Expr *TermAsWritten = Term->IgnoreParenImpCasts();
3924
3925 // Literals are uninteresting.
3926 if (isa<CXXBoolLiteralExpr>(Val: TermAsWritten) ||
3927 isa<IntegerLiteral>(Val: TermAsWritten))
3928 continue;
3929
3930 // The initialization of the parameter from the argument is
3931 // a constant-evaluated context.
3932 EnterExpressionEvaluationContext ConstantEvaluated(
3933 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3934
3935 bool Succeeded;
3936 if (Term->EvaluateAsBooleanCondition(Result&: Succeeded, Ctx: Context) &&
3937 !Succeeded) {
3938 FailedCond = TermAsWritten;
3939 break;
3940 }
3941 }
3942 if (!FailedCond)
3943 FailedCond = Cond->IgnoreParenImpCasts();
3944
3945 std::string Description;
3946 {
3947 llvm::raw_string_ostream Out(Description);
3948 PrintingPolicy Policy = getPrintingPolicy();
3949 Policy.PrintCanonicalTypes = true;
3950 FailedBooleanConditionPrinterHelper Helper(Policy);
3951 FailedCond->printPretty(Out, &Helper, Policy, 0, "\n", nullptr);
3952 }
3953 return { FailedCond, Description };
3954}
3955
3956QualType Sema::CheckTemplateIdType(TemplateName Name,
3957 SourceLocation TemplateLoc,
3958 TemplateArgumentListInfo &TemplateArgs) {
3959 DependentTemplateName *DTN
3960 = Name.getUnderlying().getAsDependentTemplateName();
3961 if (DTN && DTN->isIdentifier())
3962 // When building a template-id where the template-name is dependent,
3963 // assume the template is a type template. Either our assumption is
3964 // correct, or the code is ill-formed and will be diagnosed when the
3965 // dependent name is substituted.
3966 return Context.getDependentTemplateSpecializationType(
3967 Keyword: ElaboratedTypeKeyword::None, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(),
3968 Args: TemplateArgs.arguments());
3969
3970 if (Name.getAsAssumedTemplateName() &&
3971 resolveAssumedTemplateNameAsType(/*Scope*/S: nullptr, Name, NameLoc: TemplateLoc))
3972 return QualType();
3973
3974 TemplateDecl *Template = Name.getAsTemplateDecl();
3975 if (!Template || isa<FunctionTemplateDecl>(Val: Template) ||
3976 isa<VarTemplateDecl>(Val: Template) || isa<ConceptDecl>(Val: Template)) {
3977 // We might have a substituted template template parameter pack. If so,
3978 // build a template specialization type for it.
3979 if (Name.getAsSubstTemplateTemplateParmPack())
3980 return Context.getTemplateSpecializationType(T: Name,
3981 Args: TemplateArgs.arguments());
3982
3983 Diag(TemplateLoc, diag::err_template_id_not_a_type)
3984 << Name;
3985 NoteAllFoundTemplates(Name);
3986 return QualType();
3987 }
3988
3989 // Check that the template argument list is well-formed for this
3990 // template.
3991 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3992 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, PartialTemplateArgs: false,
3993 SugaredConverted, CanonicalConverted,
3994 /*UpdateArgsWithConversions=*/true))
3995 return QualType();
3996
3997 QualType CanonType;
3998
3999 if (TypeAliasTemplateDecl *AliasTemplate =
4000 dyn_cast<TypeAliasTemplateDecl>(Val: Template)) {
4001
4002 // Find the canonical type for this type alias template specialization.
4003 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
4004 if (Pattern->isInvalidDecl())
4005 return QualType();
4006
4007 // Only substitute for the innermost template argument list.
4008 MultiLevelTemplateArgumentList TemplateArgLists;
4009 TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted,
4010 /*Final=*/false);
4011 TemplateArgLists.addOuterRetainedLevels(
4012 Num: AliasTemplate->getTemplateParameters()->getDepth());
4013
4014 LocalInstantiationScope Scope(*this);
4015 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
4016 if (Inst.isInvalid())
4017 return QualType();
4018
4019 CanonType = SubstType(Pattern->getUnderlyingType(),
4020 TemplateArgLists, AliasTemplate->getLocation(),
4021 AliasTemplate->getDeclName());
4022 if (CanonType.isNull()) {
4023 // If this was enable_if and we failed to find the nested type
4024 // within enable_if in a SFINAE context, dig out the specific
4025 // enable_if condition that failed and present that instead.
4026 if (isEnableIfAliasTemplate(AliasTemplate)) {
4027 if (auto DeductionInfo = isSFINAEContext()) {
4028 if (*DeductionInfo &&
4029 (*DeductionInfo)->hasSFINAEDiagnostic() &&
4030 (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() ==
4031 diag::err_typename_nested_not_found_enable_if &&
4032 TemplateArgs[0].getArgument().getKind()
4033 == TemplateArgument::Expression) {
4034 Expr *FailedCond;
4035 std::string FailedDescription;
4036 std::tie(args&: FailedCond, args&: FailedDescription) =
4037 findFailedBooleanCondition(Cond: TemplateArgs[0].getSourceExpression());
4038
4039 // Remove the old SFINAE diagnostic.
4040 PartialDiagnosticAt OldDiag =
4041 {SourceLocation(), PartialDiagnostic::NullDiagnostic()};
4042 (*DeductionInfo)->takeSFINAEDiagnostic(PD&: OldDiag);
4043
4044 // Add a new SFINAE diagnostic specifying which condition
4045 // failed.
4046 (*DeductionInfo)->addSFINAEDiagnostic(
4047 OldDiag.first,
4048 PDiag(diag::err_typename_nested_not_found_requirement)
4049 << FailedDescription
4050 << FailedCond->getSourceRange());
4051 }
4052 }
4053 }
4054
4055 return QualType();
4056 }
4057 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Val: Template)) {
4058 CanonType = checkBuiltinTemplateIdType(SemaRef&: *this, BTD, Converted: SugaredConverted,
4059 TemplateLoc, TemplateArgs);
4060 } else if (Name.isDependent() ||
4061 TemplateSpecializationType::anyDependentTemplateArguments(
4062 TemplateArgs, Converted: CanonicalConverted)) {
4063 // This class template specialization is a dependent
4064 // type. Therefore, its canonical type is another class template
4065 // specialization type that contains all of the converted
4066 // arguments in canonical form. This ensures that, e.g., A<T> and
4067 // A<T, T> have identical types when A is declared as:
4068 //
4069 // template<typename T, typename U = T> struct A;
4070 CanonType = Context.getCanonicalTemplateSpecializationType(
4071 T: Name, Args: CanonicalConverted);
4072
4073 // This might work out to be a current instantiation, in which
4074 // case the canonical type needs to be the InjectedClassNameType.
4075 //
4076 // TODO: in theory this could be a simple hashtable lookup; most
4077 // changes to CurContext don't change the set of current
4078 // instantiations.
4079 if (isa<ClassTemplateDecl>(Val: Template)) {
4080 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
4081 // If we get out to a namespace, we're done.
4082 if (Ctx->isFileContext()) break;
4083
4084 // If this isn't a record, keep looking.
4085 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: Ctx);
4086 if (!Record) continue;
4087
4088 // Look for one of the two cases with InjectedClassNameTypes
4089 // and check whether it's the same template.
4090 if (!isa<ClassTemplatePartialSpecializationDecl>(Val: Record) &&
4091 !Record->getDescribedClassTemplate())
4092 continue;
4093
4094 // Fetch the injected class name type and check whether its
4095 // injected type is equal to the type we just built.
4096 QualType ICNT = Context.getTypeDeclType(Record);
4097 QualType Injected = cast<InjectedClassNameType>(Val&: ICNT)
4098 ->getInjectedSpecializationType();
4099
4100 if (CanonType != Injected->getCanonicalTypeInternal())
4101 continue;
4102
4103 // If so, the canonical type of this TST is the injected
4104 // class name type of the record we just found.
4105 assert(ICNT.isCanonical());
4106 CanonType = ICNT;
4107 break;
4108 }
4109 }
4110 } else if (ClassTemplateDecl *ClassTemplate =
4111 dyn_cast<ClassTemplateDecl>(Val: Template)) {
4112 // Find the class template specialization declaration that
4113 // corresponds to these arguments.
4114 void *InsertPos = nullptr;
4115 ClassTemplateSpecializationDecl *Decl =
4116 ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos);
4117 if (!Decl) {
4118 // This is the first time we have referenced this class template
4119 // specialization. Create the canonical declaration and add it to
4120 // the set of specializations.
4121 Decl = ClassTemplateSpecializationDecl::Create(
4122 Context, TK: ClassTemplate->getTemplatedDecl()->getTagKind(),
4123 DC: ClassTemplate->getDeclContext(),
4124 StartLoc: ClassTemplate->getTemplatedDecl()->getBeginLoc(),
4125 IdLoc: ClassTemplate->getLocation(), SpecializedTemplate: ClassTemplate, Args: CanonicalConverted,
4126 PrevDecl: nullptr);
4127 ClassTemplate->AddSpecialization(D: Decl, InsertPos);
4128 if (ClassTemplate->isOutOfLine())
4129 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
4130 }
4131
4132 if (Decl->getSpecializationKind() == TSK_Undeclared &&
4133 ClassTemplate->getTemplatedDecl()->hasAttrs()) {
4134 InstantiatingTemplate Inst(*this, TemplateLoc, Decl);
4135 if (!Inst.isInvalid()) {
4136 MultiLevelTemplateArgumentList TemplateArgLists(Template,
4137 CanonicalConverted,
4138 /*Final=*/false);
4139 InstantiateAttrsForDecl(TemplateArgLists,
4140 ClassTemplate->getTemplatedDecl(), Decl);
4141 }
4142 }
4143
4144 // Diagnose uses of this specialization.
4145 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
4146
4147 CanonType = Context.getTypeDeclType(Decl);
4148 assert(isa<RecordType>(CanonType) &&
4149 "type of non-dependent specialization is not a RecordType");
4150 } else {
4151 llvm_unreachable("Unhandled template kind");
4152 }
4153
4154 // Build the fully-sugared type for this class template
4155 // specialization, which refers back to the class template
4156 // specialization we created or found.
4157 return Context.getTemplateSpecializationType(T: Name, Args: TemplateArgs.arguments(),
4158 Canon: CanonType);
4159}
4160
4161void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName,
4162 TemplateNameKind &TNK,
4163 SourceLocation NameLoc,
4164 IdentifierInfo *&II) {
4165 assert(TNK == TNK_Undeclared_template && "not an undeclared template name");
4166
4167 TemplateName Name = ParsedName.get();
4168 auto *ATN = Name.getAsAssumedTemplateName();
4169 assert(ATN && "not an assumed template name");
4170 II = ATN->getDeclName().getAsIdentifierInfo();
4171
4172 if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) {
4173 // Resolved to a type template name.
4174 ParsedName = TemplateTy::make(P: Name);
4175 TNK = TNK_Type_template;
4176 }
4177}
4178
4179bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name,
4180 SourceLocation NameLoc,
4181 bool Diagnose) {
4182 // We assumed this undeclared identifier to be an (ADL-only) function
4183 // template name, but it was used in a context where a type was required.
4184 // Try to typo-correct it now.
4185 AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName();
4186 assert(ATN && "not an assumed template name");
4187
4188 LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName);
4189 struct CandidateCallback : CorrectionCandidateCallback {
4190 bool ValidateCandidate(const TypoCorrection &TC) override {
4191 return TC.getCorrectionDecl() &&
4192 getAsTypeTemplateDecl(TC.getCorrectionDecl());
4193 }
4194 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4195 return std::make_unique<CandidateCallback>(args&: *this);
4196 }
4197 } FilterCCC;
4198
4199 TypoCorrection Corrected =
4200 CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: nullptr,
4201 CCC&: FilterCCC, Mode: CTK_ErrorRecovery);
4202 if (Corrected && Corrected.getFoundDecl()) {
4203 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest)
4204 << ATN->getDeclName());
4205 Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>());
4206 return false;
4207 }
4208
4209 if (Diagnose)
4210 Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName();
4211 return true;
4212}
4213
4214TypeResult Sema::ActOnTemplateIdType(
4215 Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
4216 TemplateTy TemplateD, IdentifierInfo *TemplateII,
4217 SourceLocation TemplateIILoc, SourceLocation LAngleLoc,
4218 ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc,
4219 bool IsCtorOrDtorName, bool IsClassName,
4220 ImplicitTypenameContext AllowImplicitTypename) {
4221 if (SS.isInvalid())
4222 return true;
4223
4224 if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) {
4225 DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false);
4226
4227 // C++ [temp.res]p3:
4228 // A qualified-id that refers to a type and in which the
4229 // nested-name-specifier depends on a template-parameter (14.6.2)
4230 // shall be prefixed by the keyword typename to indicate that the
4231 // qualified-id denotes a type, forming an
4232 // elaborated-type-specifier (7.1.5.3).
4233 if (!LookupCtx && isDependentScopeSpecifier(SS)) {
4234 // C++2a relaxes some of those restrictions in [temp.res]p5.
4235 if (AllowImplicitTypename == ImplicitTypenameContext::Yes) {
4236 if (getLangOpts().CPlusPlus20)
4237 Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename);
4238 else
4239 Diag(SS.getBeginLoc(), diag::ext_implicit_typename)
4240 << SS.getScopeRep() << TemplateII->getName()
4241 << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename ");
4242 } else
4243 Diag(SS.getBeginLoc(), diag::err_typename_missing_template)
4244 << SS.getScopeRep() << TemplateII->getName();
4245
4246 // FIXME: This is not quite correct recovery as we don't transform SS
4247 // into the corresponding dependent form (and we don't diagnose missing
4248 // 'template' keywords within SS as a result).
4249 return ActOnTypenameType(S: nullptr, TypenameLoc: SourceLocation(), SS, TemplateLoc: TemplateKWLoc,
4250 TemplateName: TemplateD, TemplateII, TemplateIILoc, LAngleLoc,
4251 TemplateArgs: TemplateArgsIn, RAngleLoc);
4252 }
4253
4254 // Per C++ [class.qual]p2, if the template-id was an injected-class-name,
4255 // it's not actually allowed to be used as a type in most cases. Because
4256 // we annotate it before we know whether it's valid, we have to check for
4257 // this case here.
4258 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx);
4259 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
4260 Diag(TemplateIILoc,
4261 TemplateKWLoc.isInvalid()
4262 ? diag::err_out_of_line_qualified_id_type_names_constructor
4263 : diag::ext_out_of_line_qualified_id_type_names_constructor)
4264 << TemplateII << 0 /*injected-class-name used as template name*/
4265 << 1 /*if any keyword was present, it was 'template'*/;
4266 }
4267 }
4268
4269 TemplateName Template = TemplateD.get();
4270 if (Template.getAsAssumedTemplateName() &&
4271 resolveAssumedTemplateNameAsType(S, Name&: Template, NameLoc: TemplateIILoc))
4272 return true;
4273
4274 // Translate the parser's template argument list in our AST format.
4275 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4276 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4277
4278 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4279 assert(SS.getScopeRep() == DTN->getQualifier());
4280 QualType T = Context.getDependentTemplateSpecializationType(
4281 Keyword: ElaboratedTypeKeyword::None, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(),
4282 Args: TemplateArgs.arguments());
4283 // Build type-source information.
4284 TypeLocBuilder TLB;
4285 DependentTemplateSpecializationTypeLoc SpecTL
4286 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4287 SpecTL.setElaboratedKeywordLoc(SourceLocation());
4288 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4289 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4290 SpecTL.setTemplateNameLoc(TemplateIILoc);
4291 SpecTL.setLAngleLoc(LAngleLoc);
4292 SpecTL.setRAngleLoc(RAngleLoc);
4293 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4294 SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo());
4295 return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T));
4296 }
4297
4298 QualType SpecTy = CheckTemplateIdType(Name: Template, TemplateLoc: TemplateIILoc, TemplateArgs);
4299 if (SpecTy.isNull())
4300 return true;
4301
4302 // Build type-source information.
4303 TypeLocBuilder TLB;
4304 TemplateSpecializationTypeLoc SpecTL =
4305 TLB.push<TemplateSpecializationTypeLoc>(T: SpecTy);
4306 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4307 SpecTL.setTemplateNameLoc(TemplateIILoc);
4308 SpecTL.setLAngleLoc(LAngleLoc);
4309 SpecTL.setRAngleLoc(RAngleLoc);
4310 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4311 SpecTL.setArgLocInfo(i, AI: TemplateArgs[i].getLocInfo());
4312
4313 // Create an elaborated-type-specifier containing the nested-name-specifier.
4314 QualType ElTy =
4315 getElaboratedType(Keyword: ElaboratedTypeKeyword::None,
4316 SS: !IsCtorOrDtorName ? SS : CXXScopeSpec(), T: SpecTy);
4317 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(T: ElTy);
4318 ElabTL.setElaboratedKeywordLoc(SourceLocation());
4319 if (!ElabTL.isEmpty())
4320 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4321 return CreateParsedType(T: ElTy, TInfo: TLB.getTypeSourceInfo(Context, T: ElTy));
4322}
4323
4324TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
4325 TypeSpecifierType TagSpec,
4326 SourceLocation TagLoc,
4327 CXXScopeSpec &SS,
4328 SourceLocation TemplateKWLoc,
4329 TemplateTy TemplateD,
4330 SourceLocation TemplateLoc,
4331 SourceLocation LAngleLoc,
4332 ASTTemplateArgsPtr TemplateArgsIn,
4333 SourceLocation RAngleLoc) {
4334 if (SS.isInvalid())
4335 return TypeResult(true);
4336
4337 TemplateName Template = TemplateD.get();
4338
4339 // Translate the parser's template argument list in our AST format.
4340 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
4341 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
4342
4343 // Determine the tag kind
4344 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec);
4345 ElaboratedTypeKeyword Keyword
4346 = TypeWithKeyword::getKeywordForTagTypeKind(Tag: TagKind);
4347
4348 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
4349 assert(SS.getScopeRep() == DTN->getQualifier());
4350 QualType T = Context.getDependentTemplateSpecializationType(
4351 Keyword, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(),
4352 Args: TemplateArgs.arguments());
4353
4354 // Build type-source information.
4355 TypeLocBuilder TLB;
4356 DependentTemplateSpecializationTypeLoc SpecTL
4357 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
4358 SpecTL.setElaboratedKeywordLoc(TagLoc);
4359 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
4360 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4361 SpecTL.setTemplateNameLoc(TemplateLoc);
4362 SpecTL.setLAngleLoc(LAngleLoc);
4363 SpecTL.setRAngleLoc(RAngleLoc);
4364 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
4365 SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo());
4366 return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T));
4367 }
4368
4369 if (TypeAliasTemplateDecl *TAT =
4370 dyn_cast_or_null<TypeAliasTemplateDecl>(Val: Template.getAsTemplateDecl())) {
4371 // C++0x [dcl.type.elab]p2:
4372 // If the identifier resolves to a typedef-name or the simple-template-id
4373 // resolves to an alias template specialization, the
4374 // elaborated-type-specifier is ill-formed.
4375 Diag(TemplateLoc, diag::err_tag_reference_non_tag)
4376 << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind);
4377 Diag(TAT->getLocation(), diag::note_declared_at);
4378 }
4379
4380 QualType Result = CheckTemplateIdType(Name: Template, TemplateLoc, TemplateArgs);
4381 if (Result.isNull())
4382 return TypeResult(true);
4383
4384 // Check the tag kind
4385 if (const RecordType *RT = Result->getAs<RecordType>()) {
4386 RecordDecl *D = RT->getDecl();
4387
4388 IdentifierInfo *Id = D->getIdentifier();
4389 assert(Id && "templated class must have an identifier");
4390
4391 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
4392 TagLoc, Id)) {
4393 Diag(TagLoc, diag::err_use_with_wrong_tag)
4394 << Result
4395 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
4396 Diag(D->getLocation(), diag::note_previous_use);
4397 }
4398 }
4399
4400 // Provide source-location information for the template specialization.
4401 TypeLocBuilder TLB;
4402 TemplateSpecializationTypeLoc SpecTL
4403 = TLB.push<TemplateSpecializationTypeLoc>(T: Result);
4404 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
4405 SpecTL.setTemplateNameLoc(TemplateLoc);
4406 SpecTL.setLAngleLoc(LAngleLoc);
4407 SpecTL.setRAngleLoc(RAngleLoc);
4408 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
4409 SpecTL.setArgLocInfo(i, AI: TemplateArgs[i].getLocInfo());
4410
4411 // Construct an elaborated type containing the nested-name-specifier (if any)
4412 // and tag keyword.
4413 Result = Context.getElaboratedType(Keyword, NNS: SS.getScopeRep(), NamedType: Result);
4414 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(T: Result);
4415 ElabTL.setElaboratedKeywordLoc(TagLoc);
4416 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
4417 return CreateParsedType(T: Result, TInfo: TLB.getTypeSourceInfo(Context, T: Result));
4418}
4419
4420static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
4421 NamedDecl *PrevDecl,
4422 SourceLocation Loc,
4423 bool IsPartialSpecialization);
4424
4425static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
4426
4427static bool isTemplateArgumentTemplateParameter(
4428 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
4429 switch (Arg.getKind()) {
4430 case TemplateArgument::Null:
4431 case TemplateArgument::NullPtr:
4432 case TemplateArgument::Integral:
4433 case TemplateArgument::Declaration:
4434 case TemplateArgument::StructuralValue:
4435 case TemplateArgument::Pack:
4436 case TemplateArgument::TemplateExpansion:
4437 return false;
4438
4439 case TemplateArgument::Type: {
4440 QualType Type = Arg.getAsType();
4441 const TemplateTypeParmType *TPT =
4442 Arg.getAsType()->getAs<TemplateTypeParmType>();
4443 return TPT && !Type.hasQualifiers() &&
4444 TPT->getDepth() == Depth && TPT->getIndex() == Index;
4445 }
4446
4447 case TemplateArgument::Expression: {
4448 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg.getAsExpr());
4449 if (!DRE || !DRE->getDecl())
4450 return false;
4451 const NonTypeTemplateParmDecl *NTTP =
4452 dyn_cast<NonTypeTemplateParmDecl>(Val: DRE->getDecl());
4453 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
4454 }
4455
4456 case TemplateArgument::Template:
4457 const TemplateTemplateParmDecl *TTP =
4458 dyn_cast_or_null<TemplateTemplateParmDecl>(
4459 Val: Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
4460 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
4461 }
4462 llvm_unreachable("unexpected kind of template argument");
4463}
4464
4465static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
4466 ArrayRef<TemplateArgument> Args) {
4467 if (Params->size() != Args.size())
4468 return false;
4469
4470 unsigned Depth = Params->getDepth();
4471
4472 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4473 TemplateArgument Arg = Args[I];
4474
4475 // If the parameter is a pack expansion, the argument must be a pack
4476 // whose only element is a pack expansion.
4477 if (Params->getParam(Idx: I)->isParameterPack()) {
4478 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
4479 !Arg.pack_begin()->isPackExpansion())
4480 return false;
4481 Arg = Arg.pack_begin()->getPackExpansionPattern();
4482 }
4483
4484 if (!isTemplateArgumentTemplateParameter(Arg, Depth, Index: I))
4485 return false;
4486 }
4487
4488 return true;
4489}
4490
4491template<typename PartialSpecDecl>
4492static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) {
4493 if (Partial->getDeclContext()->isDependentContext())
4494 return;
4495
4496 // FIXME: Get the TDK from deduction in order to provide better diagnostics
4497 // for non-substitution-failure issues?
4498 TemplateDeductionInfo Info(Partial->getLocation());
4499 if (S.isMoreSpecializedThanPrimary(Partial, Info))
4500 return;
4501
4502 auto *Template = Partial->getSpecializedTemplate();
4503 S.Diag(Partial->getLocation(),
4504 diag::ext_partial_spec_not_more_specialized_than_primary)
4505 << isa<VarTemplateDecl>(Template);
4506
4507 if (Info.hasSFINAEDiagnostic()) {
4508 PartialDiagnosticAt Diag = {SourceLocation(),
4509 PartialDiagnostic::NullDiagnostic()};
4510 Info.takeSFINAEDiagnostic(PD&: Diag);
4511 SmallString<128> SFINAEArgString;
4512 Diag.second.EmitToString(Diags&: S.getDiagnostics(), Buf&: SFINAEArgString);
4513 S.Diag(Diag.first,
4514 diag::note_partial_spec_not_more_specialized_than_primary)
4515 << SFINAEArgString;
4516 }
4517
4518 S.NoteTemplateLocation(Decl: *Template);
4519 SmallVector<const Expr *, 3> PartialAC, TemplateAC;
4520 Template->getAssociatedConstraints(TemplateAC);
4521 Partial->getAssociatedConstraints(PartialAC);
4522 S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(D1: Partial, AC1: PartialAC, D2: Template,
4523 AC2: TemplateAC);
4524}
4525
4526static void
4527noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams,
4528 const llvm::SmallBitVector &DeducibleParams) {
4529 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
4530 if (!DeducibleParams[I]) {
4531 NamedDecl *Param = TemplateParams->getParam(Idx: I);
4532 if (Param->getDeclName())
4533 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4534 << Param->getDeclName();
4535 else
4536 S.Diag(Param->getLocation(), diag::note_non_deducible_parameter)
4537 << "(anonymous)";
4538 }
4539 }
4540}
4541
4542
4543template<typename PartialSpecDecl>
4544static void checkTemplatePartialSpecialization(Sema &S,
4545 PartialSpecDecl *Partial) {
4546 // C++1z [temp.class.spec]p8: (DR1495)
4547 // - The specialization shall be more specialized than the primary
4548 // template (14.5.5.2).
4549 checkMoreSpecializedThanPrimary(S, Partial);
4550
4551 // C++ [temp.class.spec]p8: (DR1315)
4552 // - Each template-parameter shall appear at least once in the
4553 // template-id outside a non-deduced context.
4554 // C++1z [temp.class.spec.match]p3 (P0127R2)
4555 // If the template arguments of a partial specialization cannot be
4556 // deduced because of the structure of its template-parameter-list
4557 // and the template-id, the program is ill-formed.
4558 auto *TemplateParams = Partial->getTemplateParameters();
4559 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4560 S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
4561 TemplateParams->getDepth(), DeducibleParams);
4562
4563 if (!DeducibleParams.all()) {
4564 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4565 S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible)
4566 << isa<VarTemplatePartialSpecializationDecl>(Partial)
4567 << (NumNonDeducible > 1)
4568 << SourceRange(Partial->getLocation(),
4569 Partial->getTemplateArgsAsWritten()->RAngleLoc);
4570 noteNonDeducibleParameters(S, TemplateParams, DeducibleParams);
4571 }
4572}
4573
4574void Sema::CheckTemplatePartialSpecialization(
4575 ClassTemplatePartialSpecializationDecl *Partial) {
4576 checkTemplatePartialSpecialization(S&: *this, Partial);
4577}
4578
4579void Sema::CheckTemplatePartialSpecialization(
4580 VarTemplatePartialSpecializationDecl *Partial) {
4581 checkTemplatePartialSpecialization(S&: *this, Partial);
4582}
4583
4584void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) {
4585 // C++1z [temp.param]p11:
4586 // A template parameter of a deduction guide template that does not have a
4587 // default-argument shall be deducible from the parameter-type-list of the
4588 // deduction guide template.
4589 auto *TemplateParams = TD->getTemplateParameters();
4590 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
4591 MarkDeducedTemplateParameters(FunctionTemplate: TD, Deduced&: DeducibleParams);
4592 for (unsigned I = 0; I != TemplateParams->size(); ++I) {
4593 // A parameter pack is deducible (to an empty pack).
4594 auto *Param = TemplateParams->getParam(I);
4595 if (Param->isParameterPack() || hasVisibleDefaultArgument(D: Param))
4596 DeducibleParams[I] = true;
4597 }
4598
4599 if (!DeducibleParams.all()) {
4600 unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count();
4601 Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible)
4602 << (NumNonDeducible > 1);
4603 noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams);
4604 }
4605}
4606
4607DeclResult Sema::ActOnVarTemplateSpecialization(
4608 Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous,
4609 SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams,
4610 StorageClass SC, bool IsPartialSpecialization) {
4611 // D must be variable template id.
4612 assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId &&
4613 "Variable template specialization is declared with a template id.");
4614
4615 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4616 TemplateArgumentListInfo TemplateArgs =
4617 makeTemplateArgumentListInfo(S&: *this, TemplateId&: *TemplateId);
4618 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
4619 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
4620 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
4621
4622 TemplateName Name = TemplateId->Template.get();
4623
4624 // The template-id must name a variable template.
4625 VarTemplateDecl *VarTemplate =
4626 dyn_cast_or_null<VarTemplateDecl>(Val: Name.getAsTemplateDecl());
4627 if (!VarTemplate) {
4628 NamedDecl *FnTemplate;
4629 if (auto *OTS = Name.getAsOverloadedTemplate())
4630 FnTemplate = *OTS->begin();
4631 else
4632 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Val: Name.getAsTemplateDecl());
4633 if (FnTemplate)
4634 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
4635 << FnTemplate->getDeclName();
4636 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
4637 << IsPartialSpecialization;
4638 }
4639
4640 // Check for unexpanded parameter packs in any of the template arguments.
4641 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
4642 if (DiagnoseUnexpandedParameterPack(Arg: TemplateArgs[I],
4643 UPPC: IsPartialSpecialization
4644 ? UPPC_PartialSpecialization
4645 : UPPC_ExplicitSpecialization))
4646 return true;
4647
4648 // Check that the template argument list is well-formed for this
4649 // template.
4650 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4651 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
4652 false, SugaredConverted, CanonicalConverted,
4653 /*UpdateArgsWithConversions=*/true))
4654 return true;
4655
4656 // Find the variable template (partial) specialization declaration that
4657 // corresponds to these arguments.
4658 if (IsPartialSpecialization) {
4659 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate,
4660 TemplateArgs.size(),
4661 CanonicalConverted))
4662 return true;
4663
4664 // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we
4665 // also do them during instantiation.
4666 if (!Name.isDependent() &&
4667 !TemplateSpecializationType::anyDependentTemplateArguments(
4668 TemplateArgs, Converted: CanonicalConverted)) {
4669 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
4670 << VarTemplate->getDeclName();
4671 IsPartialSpecialization = false;
4672 }
4673
4674 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
4675 CanonicalConverted) &&
4676 (!Context.getLangOpts().CPlusPlus20 ||
4677 !TemplateParams->hasAssociatedConstraints())) {
4678 // C++ [temp.class.spec]p9b3:
4679 //
4680 // -- The argument list of the specialization shall not be identical
4681 // to the implicit argument list of the primary template.
4682 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
4683 << /*variable template*/ 1
4684 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
4685 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
4686 // FIXME: Recover from this by treating the declaration as a redeclaration
4687 // of the primary template.
4688 return true;
4689 }
4690 }
4691
4692 void *InsertPos = nullptr;
4693 VarTemplateSpecializationDecl *PrevDecl = nullptr;
4694
4695 if (IsPartialSpecialization)
4696 PrevDecl = VarTemplate->findPartialSpecialization(
4697 Args: CanonicalConverted, TPL: TemplateParams, InsertPos);
4698 else
4699 PrevDecl = VarTemplate->findSpecialization(Args: CanonicalConverted, InsertPos);
4700
4701 VarTemplateSpecializationDecl *Specialization = nullptr;
4702
4703 // Check whether we can declare a variable template specialization in
4704 // the current scope.
4705 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
4706 TemplateNameLoc,
4707 IsPartialSpecialization))
4708 return true;
4709
4710 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
4711 // Since the only prior variable template specialization with these
4712 // arguments was referenced but not declared, reuse that
4713 // declaration node as our own, updating its source location and
4714 // the list of outer template parameters to reflect our new declaration.
4715 Specialization = PrevDecl;
4716 Specialization->setLocation(TemplateNameLoc);
4717 PrevDecl = nullptr;
4718 } else if (IsPartialSpecialization) {
4719 // Create a new class template partial specialization declaration node.
4720 VarTemplatePartialSpecializationDecl *PrevPartial =
4721 cast_or_null<VarTemplatePartialSpecializationDecl>(Val: PrevDecl);
4722 VarTemplatePartialSpecializationDecl *Partial =
4723 VarTemplatePartialSpecializationDecl::Create(
4724 Context, DC: VarTemplate->getDeclContext(), StartLoc: TemplateKWLoc,
4725 IdLoc: TemplateNameLoc, Params: TemplateParams, SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: SC,
4726 Args: CanonicalConverted, ArgInfos: TemplateArgs);
4727
4728 if (!PrevPartial)
4729 VarTemplate->AddPartialSpecialization(D: Partial, InsertPos);
4730 Specialization = Partial;
4731
4732 // If we are providing an explicit specialization of a member variable
4733 // template specialization, make a note of that.
4734 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
4735 PrevPartial->setMemberSpecialization();
4736
4737 CheckTemplatePartialSpecialization(Partial);
4738 } else {
4739 // Create a new class template specialization declaration node for
4740 // this explicit specialization or friend declaration.
4741 Specialization = VarTemplateSpecializationDecl::Create(
4742 Context, DC: VarTemplate->getDeclContext(), StartLoc: TemplateKWLoc, IdLoc: TemplateNameLoc,
4743 SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: SC, Args: CanonicalConverted);
4744 Specialization->setTemplateArgsInfo(TemplateArgs);
4745
4746 if (!PrevDecl)
4747 VarTemplate->AddSpecialization(D: Specialization, InsertPos);
4748 }
4749
4750 // C++ [temp.expl.spec]p6:
4751 // If a template, a member template or the member of a class template is
4752 // explicitly specialized then that specialization shall be declared
4753 // before the first use of that specialization that would cause an implicit
4754 // instantiation to take place, in every translation unit in which such a
4755 // use occurs; no diagnostic is required.
4756 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
4757 bool Okay = false;
4758 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
4759 // Is there any previous explicit specialization declaration?
4760 if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) {
4761 Okay = true;
4762 break;
4763 }
4764 }
4765
4766 if (!Okay) {
4767 SourceRange Range(TemplateNameLoc, RAngleLoc);
4768 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
4769 << Name << Range;
4770
4771 Diag(PrevDecl->getPointOfInstantiation(),
4772 diag::note_instantiation_required_here)
4773 << (PrevDecl->getTemplateSpecializationKind() !=
4774 TSK_ImplicitInstantiation);
4775 return true;
4776 }
4777 }
4778
4779 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
4780 Specialization->setLexicalDeclContext(CurContext);
4781
4782 // Add the specialization into its lexical context, so that it can
4783 // be seen when iterating through the list of declarations in that
4784 // context. However, specializations are not found by name lookup.
4785 CurContext->addDecl(Specialization);
4786
4787 // Note that this is an explicit specialization.
4788 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
4789
4790 Previous.clear();
4791 if (PrevDecl)
4792 Previous.addDecl(PrevDecl);
4793 else if (Specialization->isStaticDataMember() &&
4794 Specialization->isOutOfLine())
4795 Specialization->setAccess(VarTemplate->getAccess());
4796
4797 return Specialization;
4798}
4799
4800namespace {
4801/// A partial specialization whose template arguments have matched
4802/// a given template-id.
4803struct PartialSpecMatchResult {
4804 VarTemplatePartialSpecializationDecl *Partial;
4805 TemplateArgumentList *Args;
4806};
4807} // end anonymous namespace
4808
4809DeclResult
4810Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
4811 SourceLocation TemplateNameLoc,
4812 const TemplateArgumentListInfo &TemplateArgs) {
4813 assert(Template && "A variable template id without template?");
4814
4815 // Check that the template argument list is well-formed for this template.
4816 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4817 if (CheckTemplateArgumentList(
4818 Template, TemplateNameLoc,
4819 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
4820 SugaredConverted, CanonicalConverted,
4821 /*UpdateArgsWithConversions=*/true))
4822 return true;
4823
4824 // Produce a placeholder value if the specialization is dependent.
4825 if (Template->getDeclContext()->isDependentContext() ||
4826 TemplateSpecializationType::anyDependentTemplateArguments(
4827 TemplateArgs, Converted: CanonicalConverted))
4828 return DeclResult();
4829
4830 // Find the variable template specialization declaration that
4831 // corresponds to these arguments.
4832 void *InsertPos = nullptr;
4833 if (VarTemplateSpecializationDecl *Spec =
4834 Template->findSpecialization(Args: CanonicalConverted, InsertPos)) {
4835 checkSpecializationReachability(TemplateNameLoc, Spec);
4836 // If we already have a variable template specialization, return it.
4837 return Spec;
4838 }
4839
4840 // This is the first time we have referenced this variable template
4841 // specialization. Create the canonical declaration and add it to
4842 // the set of specializations, based on the closest partial specialization
4843 // that it represents. That is,
4844 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
4845 const TemplateArgumentList *PartialSpecArgs = nullptr;
4846 bool AmbiguousPartialSpec = false;
4847 typedef PartialSpecMatchResult MatchResult;
4848 SmallVector<MatchResult, 4> Matched;
4849 SourceLocation PointOfInstantiation = TemplateNameLoc;
4850 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
4851 /*ForTakingAddress=*/false);
4852
4853 // 1. Attempt to find the closest partial specialization that this
4854 // specializes, if any.
4855 // TODO: Unify with InstantiateClassTemplateSpecialization()?
4856 // Perhaps better after unification of DeduceTemplateArguments() and
4857 // getMoreSpecializedPartialSpecialization().
4858 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
4859 Template->getPartialSpecializations(PS&: PartialSpecs);
4860
4861 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
4862 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
4863 TemplateDeductionInfo Info(FailedCandidates.getLocation());
4864
4865 if (TemplateDeductionResult Result =
4866 DeduceTemplateArguments(Partial, TemplateArgs: CanonicalConverted, Info);
4867 Result != TemplateDeductionResult::Success) {
4868 // Store the failed-deduction information for use in diagnostics, later.
4869 // TODO: Actually use the failed-deduction info?
4870 FailedCandidates.addCandidate().set(
4871 Found: DeclAccessPair::make(Template, AS_public), Spec: Partial,
4872 Info: MakeDeductionFailureInfo(Context, TDK: Result, Info));
4873 (void)Result;
4874 } else {
4875 Matched.push_back(Elt: PartialSpecMatchResult());
4876 Matched.back().Partial = Partial;
4877 Matched.back().Args = Info.takeCanonical();
4878 }
4879 }
4880
4881 if (Matched.size() >= 1) {
4882 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
4883 if (Matched.size() == 1) {
4884 // -- If exactly one matching specialization is found, the
4885 // instantiation is generated from that specialization.
4886 // We don't need to do anything for this.
4887 } else {
4888 // -- If more than one matching specialization is found, the
4889 // partial order rules (14.5.4.2) are used to determine
4890 // whether one of the specializations is more specialized
4891 // than the others. If none of the specializations is more
4892 // specialized than all of the other matching
4893 // specializations, then the use of the variable template is
4894 // ambiguous and the program is ill-formed.
4895 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
4896 PEnd = Matched.end();
4897 P != PEnd; ++P) {
4898 if (getMoreSpecializedPartialSpecialization(PS1: P->Partial, PS2: Best->Partial,
4899 Loc: PointOfInstantiation) ==
4900 P->Partial)
4901 Best = P;
4902 }
4903
4904 // Determine if the best partial specialization is more specialized than
4905 // the others.
4906 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
4907 PEnd = Matched.end();
4908 P != PEnd; ++P) {
4909 if (P != Best && getMoreSpecializedPartialSpecialization(
4910 PS1: P->Partial, PS2: Best->Partial,
4911 Loc: PointOfInstantiation) != Best->Partial) {
4912 AmbiguousPartialSpec = true;
4913 break;
4914 }
4915 }
4916 }
4917
4918 // Instantiate using the best variable template partial specialization.
4919 InstantiationPattern = Best->Partial;
4920 PartialSpecArgs = Best->Args;
4921 } else {
4922 // -- If no match is found, the instantiation is generated
4923 // from the primary template.
4924 // InstantiationPattern = Template->getTemplatedDecl();
4925 }
4926
4927 // 2. Create the canonical declaration.
4928 // Note that we do not instantiate a definition until we see an odr-use
4929 // in DoMarkVarDeclReferenced().
4930 // FIXME: LateAttrs et al.?
4931 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
4932 VarTemplate: Template, FromVar: InstantiationPattern, PartialSpecArgs, TemplateArgsInfo: TemplateArgs,
4933 Converted&: CanonicalConverted, PointOfInstantiation: TemplateNameLoc /*, LateAttrs, StartingScope*/);
4934 if (!Decl)
4935 return true;
4936
4937 if (AmbiguousPartialSpec) {
4938 // Partial ordering did not produce a clear winner. Complain.
4939 Decl->setInvalidDecl();
4940 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
4941 << Decl;
4942
4943 // Print the matching partial specializations.
4944 for (MatchResult P : Matched)
4945 Diag(P.Partial->getLocation(), diag::note_partial_spec_match)
4946 << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(),
4947 *P.Args);
4948 return true;
4949 }
4950
4951 if (VarTemplatePartialSpecializationDecl *D =
4952 dyn_cast<VarTemplatePartialSpecializationDecl>(Val: InstantiationPattern))
4953 Decl->setInstantiationOf(PartialSpec: D, TemplateArgs: PartialSpecArgs);
4954
4955 checkSpecializationReachability(TemplateNameLoc, Decl);
4956
4957 assert(Decl && "No variable template specialization?");
4958 return Decl;
4959}
4960
4961ExprResult
4962Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
4963 const DeclarationNameInfo &NameInfo,
4964 VarTemplateDecl *Template, SourceLocation TemplateLoc,
4965 const TemplateArgumentListInfo *TemplateArgs) {
4966
4967 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, TemplateNameLoc: NameInfo.getLoc(),
4968 TemplateArgs: *TemplateArgs);
4969 if (Decl.isInvalid())
4970 return ExprError();
4971
4972 if (!Decl.get())
4973 return ExprResult();
4974
4975 VarDecl *Var = cast<VarDecl>(Val: Decl.get());
4976 if (!Var->getTemplateSpecializationKind())
4977 Var->setTemplateSpecializationKind(TSK: TSK_ImplicitInstantiation,
4978 PointOfInstantiation: NameInfo.getLoc());
4979
4980 // Build an ordinary singleton decl ref.
4981 return BuildDeclarationNameExpr(SS, NameInfo, Var,
4982 /*FoundD=*/nullptr, TemplateArgs);
4983}
4984
4985void Sema::diagnoseMissingTemplateArguments(TemplateName Name,
4986 SourceLocation Loc) {
4987 Diag(Loc, diag::err_template_missing_args)
4988 << (int)getTemplateNameKindForDiagnostics(Name) << Name;
4989 if (TemplateDecl *TD = Name.getAsTemplateDecl()) {
4990 NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange());
4991 }
4992}
4993
4994ExprResult
4995Sema::CheckConceptTemplateId(const CXXScopeSpec &SS,
4996 SourceLocation TemplateKWLoc,
4997 const DeclarationNameInfo &ConceptNameInfo,
4998 NamedDecl *FoundDecl,
4999 ConceptDecl *NamedConcept,
5000 const TemplateArgumentListInfo *TemplateArgs) {
5001 assert(NamedConcept && "A concept template id without a template?");
5002
5003 llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
5004 if (CheckTemplateArgumentList(
5005 NamedConcept, ConceptNameInfo.getLoc(),
5006 const_cast<TemplateArgumentListInfo &>(*TemplateArgs),
5007 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted,
5008 /*UpdateArgsWithConversions=*/false))
5009 return ExprError();
5010
5011 auto *CSD = ImplicitConceptSpecializationDecl::Create(
5012 C: Context, DC: NamedConcept->getDeclContext(), SL: NamedConcept->getLocation(),
5013 ConvertedArgs: CanonicalConverted);
5014 ConstraintSatisfaction Satisfaction;
5015 bool AreArgsDependent =
5016 TemplateSpecializationType::anyDependentTemplateArguments(
5017 *TemplateArgs, Converted: CanonicalConverted);
5018 MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted,
5019 /*Final=*/false);
5020 LocalInstantiationScope Scope(*this);
5021
5022 EnterExpressionEvaluationContext EECtx{
5023 *this, ExpressionEvaluationContext::ConstantEvaluated, CSD};
5024
5025 if (!AreArgsDependent &&
5026 CheckConstraintSatisfaction(
5027 NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL,
5028 SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(),
5029 TemplateArgs->getRAngleLoc()),
5030 Satisfaction))
5031 return ExprError();
5032 auto *CL = ConceptReference::Create(
5033 C: Context,
5034 NNS: SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{},
5035 TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept,
5036 ArgsAsWritten: ASTTemplateArgumentListInfo::Create(C: Context, List: *TemplateArgs));
5037 return ConceptSpecializationExpr::Create(
5038 Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction);
5039}
5040
5041ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
5042 SourceLocation TemplateKWLoc,
5043 LookupResult &R,
5044 bool RequiresADL,
5045 const TemplateArgumentListInfo *TemplateArgs) {
5046 // FIXME: Can we do any checking at this point? I guess we could check the
5047 // template arguments that we have against the template name, if the template
5048 // name refers to a single template. That's not a terribly common case,
5049 // though.
5050 // foo<int> could identify a single function unambiguously
5051 // This approach does NOT work, since f<int>(1);
5052 // gets resolved prior to resorting to overload resolution
5053 // i.e., template<class T> void f(double);
5054 // vs template<class T, class U> void f(U);
5055
5056 // These should be filtered out by our callers.
5057 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
5058
5059 // Non-function templates require a template argument list.
5060 if (auto *TD = R.getAsSingle<TemplateDecl>()) {
5061 if (!TemplateArgs && !isa<FunctionTemplateDecl>(Val: TD)) {
5062 diagnoseMissingTemplateArguments(Name: TemplateName(TD), Loc: R.getNameLoc());
5063 return ExprError();
5064 }
5065 }
5066 bool KnownDependent = false;
5067 // In C++1y, check variable template ids.
5068 if (R.getAsSingle<VarTemplateDecl>()) {
5069 ExprResult Res = CheckVarTemplateId(SS, NameInfo: R.getLookupNameInfo(),
5070 Template: R.getAsSingle<VarTemplateDecl>(),
5071 TemplateLoc: TemplateKWLoc, TemplateArgs);
5072 if (Res.isInvalid() || Res.isUsable())
5073 return Res;
5074 // Result is dependent. Carry on to build an UnresolvedLookupEpxr.
5075 KnownDependent = true;
5076 }
5077
5078 if (R.getAsSingle<ConceptDecl>()) {
5079 return CheckConceptTemplateId(SS, TemplateKWLoc, ConceptNameInfo: R.getLookupNameInfo(),
5080 FoundDecl: R.getFoundDecl(),
5081 NamedConcept: R.getAsSingle<ConceptDecl>(), TemplateArgs);
5082 }
5083
5084 // We don't want lookup warnings at this point.
5085 R.suppressDiagnostics();
5086
5087 UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create(
5088 Context, NamingClass: R.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context),
5089 TemplateKWLoc, NameInfo: R.getLookupNameInfo(), RequiresADL, Args: TemplateArgs,
5090 Begin: R.begin(), End: R.end(), KnownDependent);
5091
5092 return ULE;
5093}
5094
5095// We actually only call this from template instantiation.
5096ExprResult
5097Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
5098 SourceLocation TemplateKWLoc,
5099 const DeclarationNameInfo &NameInfo,
5100 const TemplateArgumentListInfo *TemplateArgs) {
5101
5102 assert(TemplateArgs || TemplateKWLoc.isValid());
5103 DeclContext *DC;
5104 if (!(DC = computeDeclContext(SS, EnteringContext: false)) ||
5105 DC->isDependentContext() ||
5106 RequireCompleteDeclContext(SS, DC))
5107 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
5108
5109 bool MemberOfUnknownSpecialization;
5110 LookupResult R(*this, NameInfo, LookupOrdinaryName);
5111 if (LookupTemplateName(Found&: R, S: (Scope *)nullptr, SS, ObjectType: QualType(),
5112 /*Entering*/EnteringContext: false, MemberOfUnknownSpecialization,
5113 RequiredTemplate: TemplateKWLoc))
5114 return ExprError();
5115
5116 if (R.isAmbiguous())
5117 return ExprError();
5118
5119 if (R.empty()) {
5120 Diag(NameInfo.getLoc(), diag::err_no_member)
5121 << NameInfo.getName() << DC << SS.getRange();
5122 return ExprError();
5123 }
5124
5125 auto DiagnoseTypeTemplateDecl = [&](TemplateDecl *Temp,
5126 bool isTypeAliasTemplateDecl) {
5127 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template)
5128 << SS.getScopeRep() << NameInfo.getName().getAsString() << SS.getRange()
5129 << isTypeAliasTemplateDecl;
5130 Diag(Temp->getLocation(), diag::note_referenced_type_template) << 0;
5131 return ExprError();
5132 };
5133
5134 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>())
5135 return DiagnoseTypeTemplateDecl(Temp, false);
5136
5137 if (TypeAliasTemplateDecl *Temp = R.getAsSingle<TypeAliasTemplateDecl>())
5138 return DiagnoseTypeTemplateDecl(Temp, true);
5139
5140 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ RequiresADL: false, TemplateArgs);
5141}
5142
5143/// Form a template name from a name that is syntactically required to name a
5144/// template, either due to use of the 'template' keyword or because a name in
5145/// this syntactic context is assumed to name a template (C++ [temp.names]p2-4).
5146///
5147/// This action forms a template name given the name of the template and its
5148/// optional scope specifier. This is used when the 'template' keyword is used
5149/// or when the parsing context unambiguously treats a following '<' as
5150/// introducing a template argument list. Note that this may produce a
5151/// non-dependent template name if we can perform the lookup now and identify
5152/// the named template.
5153///
5154/// For example, given "x.MetaFun::template apply", the scope specifier
5155/// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location
5156/// of the "template" keyword, and "apply" is the \p Name.
5157TemplateNameKind Sema::ActOnTemplateName(Scope *S,
5158 CXXScopeSpec &SS,
5159 SourceLocation TemplateKWLoc,
5160 const UnqualifiedId &Name,
5161 ParsedType ObjectType,
5162 bool EnteringContext,
5163 TemplateTy &Result,
5164 bool AllowInjectedClassName) {
5165 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
5166 Diag(TemplateKWLoc,
5167 getLangOpts().CPlusPlus11 ?
5168 diag::warn_cxx98_compat_template_outside_of_template :
5169 diag::ext_template_outside_of_template)
5170 << FixItHint::CreateRemoval(TemplateKWLoc);
5171
5172 if (SS.isInvalid())
5173 return TNK_Non_template;
5174
5175 // Figure out where isTemplateName is going to look.
5176 DeclContext *LookupCtx = nullptr;
5177 if (SS.isNotEmpty())
5178 LookupCtx = computeDeclContext(SS, EnteringContext);
5179 else if (ObjectType)
5180 LookupCtx = computeDeclContext(T: GetTypeFromParser(Ty: ObjectType));
5181
5182 // C++0x [temp.names]p5:
5183 // If a name prefixed by the keyword template is not the name of
5184 // a template, the program is ill-formed. [Note: the keyword
5185 // template may not be applied to non-template members of class
5186 // templates. -end note ] [ Note: as is the case with the
5187 // typename prefix, the template prefix is allowed in cases
5188 // where it is not strictly necessary; i.e., when the
5189 // nested-name-specifier or the expression on the left of the ->
5190 // or . is not dependent on a template-parameter, or the use
5191 // does not appear in the scope of a template. -end note]
5192 //
5193 // Note: C++03 was more strict here, because it banned the use of
5194 // the "template" keyword prior to a template-name that was not a
5195 // dependent name. C++ DR468 relaxed this requirement (the
5196 // "template" keyword is now permitted). We follow the C++0x
5197 // rules, even in C++03 mode with a warning, retroactively applying the DR.
5198 bool MemberOfUnknownSpecialization;
5199 TemplateNameKind TNK = isTemplateName(S, SS, hasTemplateKeyword: TemplateKWLoc.isValid(), Name,
5200 ObjectTypePtr: ObjectType, EnteringContext, TemplateResult&: Result,
5201 MemberOfUnknownSpecialization);
5202 if (TNK != TNK_Non_template) {
5203 // We resolved this to a (non-dependent) template name. Return it.
5204 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx);
5205 if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD &&
5206 Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
5207 Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) {
5208 // C++14 [class.qual]p2:
5209 // In a lookup in which function names are not ignored and the
5210 // nested-name-specifier nominates a class C, if the name specified
5211 // [...] is the injected-class-name of C, [...] the name is instead
5212 // considered to name the constructor
5213 //
5214 // We don't get here if naming the constructor would be valid, so we
5215 // just reject immediately and recover by treating the
5216 // injected-class-name as naming the template.
5217 Diag(Name.getBeginLoc(),
5218 diag::ext_out_of_line_qualified_id_type_names_constructor)
5219 << Name.Identifier
5220 << 0 /*injected-class-name used as template name*/
5221 << TemplateKWLoc.isValid();
5222 }
5223 return TNK;
5224 }
5225
5226 if (!MemberOfUnknownSpecialization) {
5227 // Didn't find a template name, and the lookup wasn't dependent.
5228 // Do the lookup again to determine if this is a "nothing found" case or
5229 // a "not a template" case. FIXME: Refactor isTemplateName so we don't
5230 // need to do this.
5231 DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name);
5232 LookupResult R(*this, DNI.getName(), Name.getBeginLoc(),
5233 LookupOrdinaryName);
5234 bool MOUS;
5235 // Tell LookupTemplateName that we require a template so that it diagnoses
5236 // cases where it finds a non-template.
5237 RequiredTemplateKind RTK = TemplateKWLoc.isValid()
5238 ? RequiredTemplateKind(TemplateKWLoc)
5239 : TemplateNameIsRequired;
5240 if (!LookupTemplateName(Found&: R, S, SS, ObjectType: ObjectType.get(), EnteringContext, MemberOfUnknownSpecialization&: MOUS,
5241 RequiredTemplate: RTK, ATK: nullptr, /*AllowTypoCorrection=*/false) &&
5242 !R.isAmbiguous()) {
5243 if (LookupCtx)
5244 Diag(Name.getBeginLoc(), diag::err_no_member)
5245 << DNI.getName() << LookupCtx << SS.getRange();
5246 else
5247 Diag(Name.getBeginLoc(), diag::err_undeclared_use)
5248 << DNI.getName() << SS.getRange();
5249 }
5250 return TNK_Non_template;
5251 }
5252
5253 NestedNameSpecifier *Qualifier = SS.getScopeRep();
5254
5255 switch (Name.getKind()) {
5256 case UnqualifiedIdKind::IK_Identifier:
5257 Result = TemplateTy::make(
5258 P: Context.getDependentTemplateName(NNS: Qualifier, Name: Name.Identifier));
5259 return TNK_Dependent_template_name;
5260
5261 case UnqualifiedIdKind::IK_OperatorFunctionId:
5262 Result = TemplateTy::make(P: Context.getDependentTemplateName(
5263 NNS: Qualifier, Operator: Name.OperatorFunctionId.Operator));
5264 return TNK_Function_template;
5265
5266 case UnqualifiedIdKind::IK_LiteralOperatorId:
5267 // This is a kind of template name, but can never occur in a dependent
5268 // scope (literal operators can only be declared at namespace scope).
5269 break;
5270
5271 default:
5272 break;
5273 }
5274
5275 // This name cannot possibly name a dependent template. Diagnose this now
5276 // rather than building a dependent template name that can never be valid.
5277 Diag(Name.getBeginLoc(),
5278 diag::err_template_kw_refers_to_dependent_non_template)
5279 << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange()
5280 << TemplateKWLoc.isValid() << TemplateKWLoc;
5281 return TNK_Non_template;
5282}
5283
5284bool Sema::CheckTemplateTypeArgument(
5285 TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL,
5286 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5287 SmallVectorImpl<TemplateArgument> &CanonicalConverted) {
5288 const TemplateArgument &Arg = AL.getArgument();
5289 QualType ArgType;
5290 TypeSourceInfo *TSI = nullptr;
5291
5292 // Check template type parameter.
5293 switch(Arg.getKind()) {
5294 case TemplateArgument::Type:
5295 // C++ [temp.arg.type]p1:
5296 // A template-argument for a template-parameter which is a
5297 // type shall be a type-id.
5298 ArgType = Arg.getAsType();
5299 TSI = AL.getTypeSourceInfo();
5300 break;
5301 case TemplateArgument::Template:
5302 case TemplateArgument::TemplateExpansion: {
5303 // We have a template type parameter but the template argument
5304 // is a template without any arguments.
5305 SourceRange SR = AL.getSourceRange();
5306 TemplateName Name = Arg.getAsTemplateOrTemplatePattern();
5307 diagnoseMissingTemplateArguments(Name, Loc: SR.getEnd());
5308 return true;
5309 }
5310 case TemplateArgument::Expression: {
5311 // We have a template type parameter but the template argument is an
5312 // expression; see if maybe it is missing the "typename" keyword.
5313 CXXScopeSpec SS;
5314 DeclarationNameInfo NameInfo;
5315
5316 if (DependentScopeDeclRefExpr *ArgExpr =
5317 dyn_cast<DependentScopeDeclRefExpr>(Val: Arg.getAsExpr())) {
5318 SS.Adopt(Other: ArgExpr->getQualifierLoc());
5319 NameInfo = ArgExpr->getNameInfo();
5320 } else if (CXXDependentScopeMemberExpr *ArgExpr =
5321 dyn_cast<CXXDependentScopeMemberExpr>(Val: Arg.getAsExpr())) {
5322 if (ArgExpr->isImplicitAccess()) {
5323 SS.Adopt(Other: ArgExpr->getQualifierLoc());
5324 NameInfo = ArgExpr->getMemberNameInfo();
5325 }
5326 }
5327
5328 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
5329 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
5330 LookupParsedName(R&: Result, S: CurScope, SS: &SS);
5331
5332 if (Result.getAsSingle<TypeDecl>() ||
5333 Result.getResultKind() ==
5334 LookupResult::NotFoundInCurrentInstantiation) {
5335 assert(SS.getScopeRep() && "dependent scope expr must has a scope!");
5336 // Suggest that the user add 'typename' before the NNS.
5337 SourceLocation Loc = AL.getSourceRange().getBegin();
5338 Diag(Loc, getLangOpts().MSVCCompat
5339 ? diag::ext_ms_template_type_arg_missing_typename
5340 : diag::err_template_arg_must_be_type_suggest)
5341 << FixItHint::CreateInsertion(Loc, "typename ");
5342 NoteTemplateParameterLocation(*Param);
5343
5344 // Recover by synthesizing a type using the location information that we
5345 // already have.
5346 ArgType = Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::Typename,
5347 NNS: SS.getScopeRep(), Name: II);
5348 TypeLocBuilder TLB;
5349 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T: ArgType);
5350 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
5351 TL.setQualifierLoc(SS.getWithLocInContext(Context));
5352 TL.setNameLoc(NameInfo.getLoc());
5353 TSI = TLB.getTypeSourceInfo(Context, T: ArgType);
5354
5355 // Overwrite our input TemplateArgumentLoc so that we can recover
5356 // properly.
5357 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
5358 TemplateArgumentLocInfo(TSI));
5359
5360 break;
5361 }
5362 }
5363 // fallthrough
5364 [[fallthrough]];
5365 }
5366 default: {
5367 // We have a template type parameter but the template argument
5368 // is not a type.
5369 SourceRange SR = AL.getSourceRange();
5370 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
5371 NoteTemplateParameterLocation(*Param);
5372
5373 return true;
5374 }
5375 }
5376
5377 if (CheckTemplateArgument(Arg: TSI))
5378 return true;
5379
5380 // Objective-C ARC:
5381 // If an explicitly-specified template argument type is a lifetime type
5382 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
5383 if (getLangOpts().ObjCAutoRefCount &&
5384 ArgType->isObjCLifetimeType() &&
5385 !ArgType.getObjCLifetime()) {
5386 Qualifiers Qs;
5387 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
5388 ArgType = Context.getQualifiedType(T: ArgType, Qs);
5389 }
5390
5391 SugaredConverted.push_back(Elt: TemplateArgument(ArgType));
5392 CanonicalConverted.push_back(
5393 Elt: TemplateArgument(Context.getCanonicalType(T: ArgType)));
5394 return false;
5395}
5396
5397/// Substitute template arguments into the default template argument for
5398/// the given template type parameter.
5399///
5400/// \param SemaRef the semantic analysis object for which we are performing
5401/// the substitution.
5402///
5403/// \param Template the template that we are synthesizing template arguments
5404/// for.
5405///
5406/// \param TemplateLoc the location of the template name that started the
5407/// template-id we are checking.
5408///
5409/// \param RAngleLoc the location of the right angle bracket ('>') that
5410/// terminates the template-id.
5411///
5412/// \param Param the template template parameter whose default we are
5413/// substituting into.
5414///
5415/// \param Converted the list of template arguments provided for template
5416/// parameters that precede \p Param in the template parameter list.
5417/// \returns the substituted template argument, or NULL if an error occurred.
5418static TypeSourceInfo *SubstDefaultTemplateArgument(
5419 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5420 SourceLocation RAngleLoc, TemplateTypeParmDecl *Param,
5421 ArrayRef<TemplateArgument> SugaredConverted,
5422 ArrayRef<TemplateArgument> CanonicalConverted) {
5423 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
5424
5425 // If the argument type is dependent, instantiate it now based
5426 // on the previously-computed template arguments.
5427 if (ArgType->getType()->isInstantiationDependentType()) {
5428 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5429 SugaredConverted,
5430 SourceRange(TemplateLoc, RAngleLoc));
5431 if (Inst.isInvalid())
5432 return nullptr;
5433
5434 // Only substitute for the innermost template argument list.
5435 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5436 /*Final=*/true);
5437 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5438 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5439
5440 bool ForLambdaCallOperator = false;
5441 if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext()))
5442 ForLambdaCallOperator = Rec->isLambda();
5443 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(),
5444 !ForLambdaCallOperator);
5445 ArgType =
5446 SemaRef.SubstType(ArgType, TemplateArgLists,
5447 Param->getDefaultArgumentLoc(), Param->getDeclName());
5448 }
5449
5450 return ArgType;
5451}
5452
5453/// Substitute template arguments into the default template argument for
5454/// the given non-type template parameter.
5455///
5456/// \param SemaRef the semantic analysis object for which we are performing
5457/// the substitution.
5458///
5459/// \param Template the template that we are synthesizing template arguments
5460/// for.
5461///
5462/// \param TemplateLoc the location of the template name that started the
5463/// template-id we are checking.
5464///
5465/// \param RAngleLoc the location of the right angle bracket ('>') that
5466/// terminates the template-id.
5467///
5468/// \param Param the non-type template parameter whose default we are
5469/// substituting into.
5470///
5471/// \param Converted the list of template arguments provided for template
5472/// parameters that precede \p Param in the template parameter list.
5473///
5474/// \returns the substituted template argument, or NULL if an error occurred.
5475static ExprResult SubstDefaultTemplateArgument(
5476 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5477 SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param,
5478 ArrayRef<TemplateArgument> SugaredConverted,
5479 ArrayRef<TemplateArgument> CanonicalConverted) {
5480 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template,
5481 SugaredConverted,
5482 SourceRange(TemplateLoc, RAngleLoc));
5483 if (Inst.isInvalid())
5484 return ExprError();
5485
5486 // Only substitute for the innermost template argument list.
5487 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5488 /*Final=*/true);
5489 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5490 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5491
5492 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5493 EnterExpressionEvaluationContext ConstantEvaluated(
5494 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5495 return SemaRef.SubstExpr(E: Param->getDefaultArgument(), TemplateArgs: TemplateArgLists);
5496}
5497
5498/// Substitute template arguments into the default template argument for
5499/// the given template template parameter.
5500///
5501/// \param SemaRef the semantic analysis object for which we are performing
5502/// the substitution.
5503///
5504/// \param Template the template that we are synthesizing template arguments
5505/// for.
5506///
5507/// \param TemplateLoc the location of the template name that started the
5508/// template-id we are checking.
5509///
5510/// \param RAngleLoc the location of the right angle bracket ('>') that
5511/// terminates the template-id.
5512///
5513/// \param Param the template template parameter whose default we are
5514/// substituting into.
5515///
5516/// \param Converted the list of template arguments provided for template
5517/// parameters that precede \p Param in the template parameter list.
5518///
5519/// \param QualifierLoc Will be set to the nested-name-specifier (with
5520/// source-location information) that precedes the template name.
5521///
5522/// \returns the substituted template argument, or NULL if an error occurred.
5523static TemplateName SubstDefaultTemplateArgument(
5524 Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc,
5525 SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param,
5526 ArrayRef<TemplateArgument> SugaredConverted,
5527 ArrayRef<TemplateArgument> CanonicalConverted,
5528 NestedNameSpecifierLoc &QualifierLoc) {
5529 Sema::InstantiatingTemplate Inst(
5530 SemaRef, TemplateLoc, TemplateParameter(Param), Template,
5531 SugaredConverted, SourceRange(TemplateLoc, RAngleLoc));
5532 if (Inst.isInvalid())
5533 return TemplateName();
5534
5535 // Only substitute for the innermost template argument list.
5536 MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted,
5537 /*Final=*/true);
5538 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
5539 TemplateArgLists.addOuterTemplateArguments(std::nullopt);
5540
5541 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
5542 // Substitute into the nested-name-specifier first,
5543 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
5544 if (QualifierLoc) {
5545 QualifierLoc =
5546 SemaRef.SubstNestedNameSpecifierLoc(NNS: QualifierLoc, TemplateArgs: TemplateArgLists);
5547 if (!QualifierLoc)
5548 return TemplateName();
5549 }
5550
5551 return SemaRef.SubstTemplateName(
5552 QualifierLoc,
5553 Name: Param->getDefaultArgument().getArgument().getAsTemplate(),
5554 Loc: Param->getDefaultArgument().getTemplateNameLoc(),
5555 TemplateArgs: TemplateArgLists);
5556}
5557
5558/// If the given template parameter has a default template
5559/// argument, substitute into that default template argument and
5560/// return the corresponding template argument.
5561TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable(
5562 TemplateDecl *Template, SourceLocation TemplateLoc,
5563 SourceLocation RAngleLoc, Decl *Param,
5564 ArrayRef<TemplateArgument> SugaredConverted,
5565 ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) {
5566 HasDefaultArg = false;
5567
5568 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Val: Param)) {
5569 if (!hasReachableDefaultArgument(TypeParm))
5570 return TemplateArgumentLoc();
5571
5572 HasDefaultArg = true;
5573 TypeSourceInfo *DI = SubstDefaultTemplateArgument(
5574 SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TypeParm, SugaredConverted,
5575 CanonicalConverted);
5576 if (DI)
5577 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
5578
5579 return TemplateArgumentLoc();
5580 }
5581
5582 if (NonTypeTemplateParmDecl *NonTypeParm
5583 = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) {
5584 if (!hasReachableDefaultArgument(NonTypeParm))
5585 return TemplateArgumentLoc();
5586
5587 HasDefaultArg = true;
5588 ExprResult Arg = SubstDefaultTemplateArgument(
5589 SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: NonTypeParm, SugaredConverted,
5590 CanonicalConverted);
5591 if (Arg.isInvalid())
5592 return TemplateArgumentLoc();
5593
5594 Expr *ArgE = Arg.getAs<Expr>();
5595 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
5596 }
5597
5598 TemplateTemplateParmDecl *TempTempParm
5599 = cast<TemplateTemplateParmDecl>(Val: Param);
5600 if (!hasReachableDefaultArgument(TempTempParm))
5601 return TemplateArgumentLoc();
5602
5603 HasDefaultArg = true;
5604 NestedNameSpecifierLoc QualifierLoc;
5605 TemplateName TName = SubstDefaultTemplateArgument(
5606 SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TempTempParm, SugaredConverted,
5607 CanonicalConverted, QualifierLoc);
5608 if (TName.isNull())
5609 return TemplateArgumentLoc();
5610
5611 return TemplateArgumentLoc(
5612 Context, TemplateArgument(TName),
5613 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
5614 TempTempParm->getDefaultArgument().getTemplateNameLoc());
5615}
5616
5617/// Convert a template-argument that we parsed as a type into a template, if
5618/// possible. C++ permits injected-class-names to perform dual service as
5619/// template template arguments and as template type arguments.
5620static TemplateArgumentLoc
5621convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) {
5622 // Extract and step over any surrounding nested-name-specifier.
5623 NestedNameSpecifierLoc QualLoc;
5624 if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) {
5625 if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None)
5626 return TemplateArgumentLoc();
5627
5628 QualLoc = ETLoc.getQualifierLoc();
5629 TLoc = ETLoc.getNamedTypeLoc();
5630 }
5631 // If this type was written as an injected-class-name, it can be used as a
5632 // template template argument.
5633 if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>())
5634 return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(),
5635 QualLoc, InjLoc.getNameLoc());
5636
5637 // If this type was written as an injected-class-name, it may have been
5638 // converted to a RecordType during instantiation. If the RecordType is
5639 // *not* wrapped in a TemplateSpecializationType and denotes a class
5640 // template specialization, it must have come from an injected-class-name.
5641 if (auto RecLoc = TLoc.getAs<RecordTypeLoc>())
5642 if (auto *CTSD =
5643 dyn_cast<ClassTemplateSpecializationDecl>(Val: RecLoc.getDecl()))
5644 return TemplateArgumentLoc(Context,
5645 TemplateName(CTSD->getSpecializedTemplate()),
5646 QualLoc, RecLoc.getNameLoc());
5647
5648 return TemplateArgumentLoc();
5649}
5650
5651/// Check that the given template argument corresponds to the given
5652/// template parameter.
5653///
5654/// \param Param The template parameter against which the argument will be
5655/// checked.
5656///
5657/// \param Arg The template argument, which may be updated due to conversions.
5658///
5659/// \param Template The template in which the template argument resides.
5660///
5661/// \param TemplateLoc The location of the template name for the template
5662/// whose argument list we're matching.
5663///
5664/// \param RAngleLoc The location of the right angle bracket ('>') that closes
5665/// the template argument list.
5666///
5667/// \param ArgumentPackIndex The index into the argument pack where this
5668/// argument will be placed. Only valid if the parameter is a parameter pack.
5669///
5670/// \param Converted The checked, converted argument will be added to the
5671/// end of this small vector.
5672///
5673/// \param CTAK Describes how we arrived at this particular template argument:
5674/// explicitly written, deduced, etc.
5675///
5676/// \returns true on error, false otherwise.
5677bool Sema::CheckTemplateArgument(
5678 NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template,
5679 SourceLocation TemplateLoc, SourceLocation RAngleLoc,
5680 unsigned ArgumentPackIndex,
5681 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5682 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5683 CheckTemplateArgumentKind CTAK) {
5684 // Check template type parameters.
5685 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param))
5686 return CheckTemplateTypeArgument(Param: TTP, AL&: Arg, SugaredConverted,
5687 CanonicalConverted);
5688
5689 // Check non-type template parameters.
5690 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) {
5691 // Do substitution on the type of the non-type template parameter
5692 // with the template arguments we've seen thus far. But if the
5693 // template has a dependent context then we cannot substitute yet.
5694 QualType NTTPType = NTTP->getType();
5695 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
5696 NTTPType = NTTP->getExpansionType(I: ArgumentPackIndex);
5697
5698 if (NTTPType->isInstantiationDependentType() &&
5699 !isa<TemplateTemplateParmDecl>(Val: Template) &&
5700 !Template->getDeclContext()->isDependentContext()) {
5701 // Do substitution on the type of the non-type template parameter.
5702 InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP,
5703 SugaredConverted,
5704 SourceRange(TemplateLoc, RAngleLoc));
5705 if (Inst.isInvalid())
5706 return true;
5707
5708 MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted,
5709 /*Final=*/true);
5710 // If the parameter is a pack expansion, expand this slice of the pack.
5711 if (auto *PET = NTTPType->getAs<PackExpansionType>()) {
5712 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this,
5713 ArgumentPackIndex);
5714 NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(),
5715 NTTP->getDeclName());
5716 } else {
5717 NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(),
5718 NTTP->getDeclName());
5719 }
5720
5721 // If that worked, check the non-type template parameter type
5722 // for validity.
5723 if (!NTTPType.isNull())
5724 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
5725 NTTP->getLocation());
5726 if (NTTPType.isNull())
5727 return true;
5728 }
5729
5730 switch (Arg.getArgument().getKind()) {
5731 case TemplateArgument::Null:
5732 llvm_unreachable("Should never see a NULL template argument here");
5733
5734 case TemplateArgument::Expression: {
5735 Expr *E = Arg.getArgument().getAsExpr();
5736 TemplateArgument SugaredResult, CanonicalResult;
5737 unsigned CurSFINAEErrors = NumSFINAEErrors;
5738 ExprResult Res = CheckTemplateArgument(Param: NTTP, InstantiatedParamType: NTTPType, Arg: E, SugaredConverted&: SugaredResult,
5739 CanonicalConverted&: CanonicalResult, CTAK);
5740 if (Res.isInvalid())
5741 return true;
5742 // If the current template argument causes an error, give up now.
5743 if (CurSFINAEErrors < NumSFINAEErrors)
5744 return true;
5745
5746 // If the resulting expression is new, then use it in place of the
5747 // old expression in the template argument.
5748 if (Res.get() != E) {
5749 TemplateArgument TA(Res.get());
5750 Arg = TemplateArgumentLoc(TA, Res.get());
5751 }
5752
5753 SugaredConverted.push_back(Elt: SugaredResult);
5754 CanonicalConverted.push_back(Elt: CanonicalResult);
5755 break;
5756 }
5757
5758 case TemplateArgument::Declaration:
5759 case TemplateArgument::Integral:
5760 case TemplateArgument::StructuralValue:
5761 case TemplateArgument::NullPtr:
5762 // We've already checked this template argument, so just copy
5763 // it to the list of converted arguments.
5764 SugaredConverted.push_back(Elt: Arg.getArgument());
5765 CanonicalConverted.push_back(
5766 Elt: Context.getCanonicalTemplateArgument(Arg: Arg.getArgument()));
5767 break;
5768
5769 case TemplateArgument::Template:
5770 case TemplateArgument::TemplateExpansion:
5771 // We were given a template template argument. It may not be ill-formed;
5772 // see below.
5773 if (DependentTemplateName *DTN
5774 = Arg.getArgument().getAsTemplateOrTemplatePattern()
5775 .getAsDependentTemplateName()) {
5776 // We have a template argument such as \c T::template X, which we
5777 // parsed as a template template argument. However, since we now
5778 // know that we need a non-type template argument, convert this
5779 // template name into an expression.
5780
5781 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
5782 Arg.getTemplateNameLoc());
5783
5784 CXXScopeSpec SS;
5785 SS.Adopt(Other: Arg.getTemplateQualifierLoc());
5786 // FIXME: the template-template arg was a DependentTemplateName,
5787 // so it was provided with a template keyword. However, its source
5788 // location is not stored in the template argument structure.
5789 SourceLocation TemplateKWLoc;
5790 ExprResult E = DependentScopeDeclRefExpr::Create(
5791 Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
5792 TemplateArgs: nullptr);
5793
5794 // If we parsed the template argument as a pack expansion, create a
5795 // pack expansion expression.
5796 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
5797 E = ActOnPackExpansion(Pattern: E.get(), EllipsisLoc: Arg.getTemplateEllipsisLoc());
5798 if (E.isInvalid())
5799 return true;
5800 }
5801
5802 TemplateArgument SugaredResult, CanonicalResult;
5803 E = CheckTemplateArgument(Param: NTTP, InstantiatedParamType: NTTPType, Arg: E.get(), SugaredConverted&: SugaredResult,
5804 CanonicalConverted&: CanonicalResult, CTAK: CTAK_Specified);
5805 if (E.isInvalid())
5806 return true;
5807
5808 SugaredConverted.push_back(Elt: SugaredResult);
5809 CanonicalConverted.push_back(Elt: CanonicalResult);
5810 break;
5811 }
5812
5813 // We have a template argument that actually does refer to a class
5814 // template, alias template, or template template parameter, and
5815 // therefore cannot be a non-type template argument.
5816 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
5817 << Arg.getSourceRange();
5818 NoteTemplateParameterLocation(Decl: *Param);
5819
5820 return true;
5821
5822 case TemplateArgument::Type: {
5823 // We have a non-type template parameter but the template
5824 // argument is a type.
5825
5826 // C++ [temp.arg]p2:
5827 // In a template-argument, an ambiguity between a type-id and
5828 // an expression is resolved to a type-id, regardless of the
5829 // form of the corresponding template-parameter.
5830 //
5831 // We warn specifically about this case, since it can be rather
5832 // confusing for users.
5833 QualType T = Arg.getArgument().getAsType();
5834 SourceRange SR = Arg.getSourceRange();
5835 if (T->isFunctionType())
5836 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
5837 else
5838 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
5839 NoteTemplateParameterLocation(Decl: *Param);
5840 return true;
5841 }
5842
5843 case TemplateArgument::Pack:
5844 llvm_unreachable("Caller must expand template argument packs");
5845 }
5846
5847 return false;
5848 }
5849
5850
5851 // Check template template parameters.
5852 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Val: Param);
5853
5854 TemplateParameterList *Params = TempParm->getTemplateParameters();
5855 if (TempParm->isExpandedParameterPack())
5856 Params = TempParm->getExpansionTemplateParameters(I: ArgumentPackIndex);
5857
5858 // Substitute into the template parameter list of the template
5859 // template parameter, since previously-supplied template arguments
5860 // may appear within the template template parameter.
5861 //
5862 // FIXME: Skip this if the parameters aren't instantiation-dependent.
5863 {
5864 // Set up a template instantiation context.
5865 LocalInstantiationScope Scope(*this);
5866 InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm,
5867 SugaredConverted,
5868 SourceRange(TemplateLoc, RAngleLoc));
5869 if (Inst.isInvalid())
5870 return true;
5871
5872 Params =
5873 SubstTemplateParams(Params, Owner: CurContext,
5874 TemplateArgs: MultiLevelTemplateArgumentList(
5875 Template, SugaredConverted, /*Final=*/true),
5876 /*EvaluateConstraints=*/false);
5877 if (!Params)
5878 return true;
5879 }
5880
5881 // C++1z [temp.local]p1: (DR1004)
5882 // When [the injected-class-name] is used [...] as a template-argument for
5883 // a template template-parameter [...] it refers to the class template
5884 // itself.
5885 if (Arg.getArgument().getKind() == TemplateArgument::Type) {
5886 TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate(
5887 Context, TLoc: Arg.getTypeSourceInfo()->getTypeLoc());
5888 if (!ConvertedArg.getArgument().isNull())
5889 Arg = ConvertedArg;
5890 }
5891
5892 switch (Arg.getArgument().getKind()) {
5893 case TemplateArgument::Null:
5894 llvm_unreachable("Should never see a NULL template argument here");
5895
5896 case TemplateArgument::Template:
5897 case TemplateArgument::TemplateExpansion:
5898 if (CheckTemplateTemplateArgument(Param: TempParm, Params, Arg))
5899 return true;
5900
5901 SugaredConverted.push_back(Elt: Arg.getArgument());
5902 CanonicalConverted.push_back(
5903 Elt: Context.getCanonicalTemplateArgument(Arg: Arg.getArgument()));
5904 break;
5905
5906 case TemplateArgument::Expression:
5907 case TemplateArgument::Type:
5908 // We have a template template parameter but the template
5909 // argument does not refer to a template.
5910 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
5911 << getLangOpts().CPlusPlus11;
5912 return true;
5913
5914 case TemplateArgument::Declaration:
5915 case TemplateArgument::Integral:
5916 case TemplateArgument::StructuralValue:
5917 case TemplateArgument::NullPtr:
5918 llvm_unreachable("non-type argument with template template parameter");
5919
5920 case TemplateArgument::Pack:
5921 llvm_unreachable("Caller must expand template argument packs");
5922 }
5923
5924 return false;
5925}
5926
5927/// Diagnose a missing template argument.
5928template<typename TemplateParmDecl>
5929static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
5930 TemplateDecl *TD,
5931 const TemplateParmDecl *D,
5932 TemplateArgumentListInfo &Args) {
5933 // Dig out the most recent declaration of the template parameter; there may be
5934 // declarations of the template that are more recent than TD.
5935 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
5936 ->getTemplateParameters()
5937 ->getParam(D->getIndex()));
5938
5939 // If there's a default argument that's not reachable, diagnose that we're
5940 // missing a module import.
5941 llvm::SmallVector<Module*, 8> Modules;
5942 if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, Modules: &Modules)) {
5943 S.diagnoseMissingImport(Loc, cast<NamedDecl>(Val: TD),
5944 D->getDefaultArgumentLoc(), Modules,
5945 Sema::MissingImportKind::DefaultArgument,
5946 /*Recover*/true);
5947 return true;
5948 }
5949
5950 // FIXME: If there's a more recent default argument that *is* visible,
5951 // diagnose that it was declared too late.
5952
5953 TemplateParameterList *Params = TD->getTemplateParameters();
5954
5955 S.Diag(Loc, diag::err_template_arg_list_different_arity)
5956 << /*not enough args*/0
5957 << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD))
5958 << TD;
5959 S.NoteTemplateLocation(*TD, Params->getSourceRange());
5960 return true;
5961}
5962
5963/// Check that the given template argument list is well-formed
5964/// for specializing the given template.
5965bool Sema::CheckTemplateArgumentList(
5966 TemplateDecl *Template, SourceLocation TemplateLoc,
5967 TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs,
5968 SmallVectorImpl<TemplateArgument> &SugaredConverted,
5969 SmallVectorImpl<TemplateArgument> &CanonicalConverted,
5970 bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) {
5971
5972 if (ConstraintsNotSatisfied)
5973 *ConstraintsNotSatisfied = false;
5974
5975 // Make a copy of the template arguments for processing. Only make the
5976 // changes at the end when successful in matching the arguments to the
5977 // template.
5978 TemplateArgumentListInfo NewArgs = TemplateArgs;
5979
5980 TemplateParameterList *Params = GetTemplateParameterList(TD: Template);
5981
5982 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
5983
5984 // C++ [temp.arg]p1:
5985 // [...] The type and form of each template-argument specified in
5986 // a template-id shall match the type and form specified for the
5987 // corresponding parameter declared by the template in its
5988 // template-parameter-list.
5989 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Val: Template);
5990 SmallVector<TemplateArgument, 2> SugaredArgumentPack;
5991 SmallVector<TemplateArgument, 2> CanonicalArgumentPack;
5992 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
5993 LocalInstantiationScope InstScope(*this, true);
5994 for (TemplateParameterList::iterator Param = Params->begin(),
5995 ParamEnd = Params->end();
5996 Param != ParamEnd; /* increment in loop */) {
5997 // If we have an expanded parameter pack, make sure we don't have too
5998 // many arguments.
5999 if (std::optional<unsigned> Expansions = getExpandedPackSize(Param: *Param)) {
6000 if (*Expansions == SugaredArgumentPack.size()) {
6001 // We're done with this parameter pack. Pack up its arguments and add
6002 // them to the list.
6003 SugaredConverted.push_back(
6004 Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack));
6005 SugaredArgumentPack.clear();
6006
6007 CanonicalConverted.push_back(
6008 Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack));
6009 CanonicalArgumentPack.clear();
6010
6011 // This argument is assigned to the next parameter.
6012 ++Param;
6013 continue;
6014 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
6015 // Not enough arguments for this parameter pack.
6016 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6017 << /*not enough args*/0
6018 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6019 << Template;
6020 NoteTemplateLocation(*Template, Params->getSourceRange());
6021 return true;
6022 }
6023 }
6024
6025 if (ArgIdx < NumArgs) {
6026 // Check the template argument we were given.
6027 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc,
6028 RAngleLoc, SugaredArgumentPack.size(),
6029 SugaredConverted, CanonicalConverted,
6030 CTAK_Specified))
6031 return true;
6032
6033 CanonicalConverted.back().setIsDefaulted(
6034 clang::isSubstitutedDefaultArgument(
6035 Ctx&: Context, Arg: NewArgs[ArgIdx].getArgument(), Param: *Param,
6036 Args: CanonicalConverted, Depth: Params->getDepth()));
6037
6038 bool PackExpansionIntoNonPack =
6039 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
6040 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(Param: *Param));
6041 if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Val: Template) ||
6042 isa<ConceptDecl>(Val: Template))) {
6043 // Core issue 1430: we have a pack expansion as an argument to an
6044 // alias template, and it's not part of a parameter pack. This
6045 // can't be canonicalized, so reject it now.
6046 // As for concepts - we cannot normalize constraints where this
6047 // situation exists.
6048 Diag(NewArgs[ArgIdx].getLocation(),
6049 diag::err_template_expansion_into_fixed_list)
6050 << (isa<ConceptDecl>(Template) ? 1 : 0)
6051 << NewArgs[ArgIdx].getSourceRange();
6052 NoteTemplateParameterLocation(Decl: **Param);
6053 return true;
6054 }
6055
6056 // We're now done with this argument.
6057 ++ArgIdx;
6058
6059 if ((*Param)->isTemplateParameterPack()) {
6060 // The template parameter was a template parameter pack, so take the
6061 // deduced argument and place it on the argument pack. Note that we
6062 // stay on the same template parameter so that we can deduce more
6063 // arguments.
6064 SugaredArgumentPack.push_back(Elt: SugaredConverted.pop_back_val());
6065 CanonicalArgumentPack.push_back(Elt: CanonicalConverted.pop_back_val());
6066 } else {
6067 // Move to the next template parameter.
6068 ++Param;
6069 }
6070
6071 // If we just saw a pack expansion into a non-pack, then directly convert
6072 // the remaining arguments, because we don't know what parameters they'll
6073 // match up with.
6074 if (PackExpansionIntoNonPack) {
6075 if (!SugaredArgumentPack.empty()) {
6076 // If we were part way through filling in an expanded parameter pack,
6077 // fall back to just producing individual arguments.
6078 SugaredConverted.insert(I: SugaredConverted.end(),
6079 From: SugaredArgumentPack.begin(),
6080 To: SugaredArgumentPack.end());
6081 SugaredArgumentPack.clear();
6082
6083 CanonicalConverted.insert(I: CanonicalConverted.end(),
6084 From: CanonicalArgumentPack.begin(),
6085 To: CanonicalArgumentPack.end());
6086 CanonicalArgumentPack.clear();
6087 }
6088
6089 while (ArgIdx < NumArgs) {
6090 const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument();
6091 SugaredConverted.push_back(Elt: Arg);
6092 CanonicalConverted.push_back(
6093 Elt: Context.getCanonicalTemplateArgument(Arg));
6094 ++ArgIdx;
6095 }
6096
6097 return false;
6098 }
6099
6100 continue;
6101 }
6102
6103 // If we're checking a partial template argument list, we're done.
6104 if (PartialTemplateArgs) {
6105 if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) {
6106 SugaredConverted.push_back(
6107 Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack));
6108 CanonicalConverted.push_back(
6109 Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack));
6110 }
6111 return false;
6112 }
6113
6114 // If we have a template parameter pack with no more corresponding
6115 // arguments, just break out now and we'll fill in the argument pack below.
6116 if ((*Param)->isTemplateParameterPack()) {
6117 assert(!getExpandedPackSize(*Param) &&
6118 "Should have dealt with this already");
6119
6120 // A non-expanded parameter pack before the end of the parameter list
6121 // only occurs for an ill-formed template parameter list, unless we've
6122 // got a partial argument list for a function template, so just bail out.
6123 if (Param + 1 != ParamEnd) {
6124 assert(
6125 (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) &&
6126 "Concept templates must have parameter packs at the end.");
6127 return true;
6128 }
6129
6130 SugaredConverted.push_back(
6131 Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack));
6132 SugaredArgumentPack.clear();
6133
6134 CanonicalConverted.push_back(
6135 Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack));
6136 CanonicalArgumentPack.clear();
6137
6138 ++Param;
6139 continue;
6140 }
6141
6142 // Check whether we have a default argument.
6143 TemplateArgumentLoc Arg;
6144
6145 // Retrieve the default template argument from the template
6146 // parameter. For each kind of template parameter, we substitute the
6147 // template arguments provided thus far and any "outer" template arguments
6148 // (when the template parameter was part of a nested template) into
6149 // the default argument.
6150 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *Param)) {
6151 if (!hasReachableDefaultArgument(TTP))
6152 return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: TTP,
6153 Args&: NewArgs);
6154
6155 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(
6156 SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TTP, SugaredConverted,
6157 CanonicalConverted);
6158 if (!ArgType)
6159 return true;
6160
6161 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
6162 ArgType);
6163 } else if (NonTypeTemplateParmDecl *NTTP
6164 = dyn_cast<NonTypeTemplateParmDecl>(Val: *Param)) {
6165 if (!hasReachableDefaultArgument(NTTP))
6166 return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: NTTP,
6167 Args&: NewArgs);
6168
6169 ExprResult E = SubstDefaultTemplateArgument(
6170 SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: NTTP, SugaredConverted,
6171 CanonicalConverted);
6172 if (E.isInvalid())
6173 return true;
6174
6175 Expr *Ex = E.getAs<Expr>();
6176 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
6177 } else {
6178 TemplateTemplateParmDecl *TempParm
6179 = cast<TemplateTemplateParmDecl>(Val: *Param);
6180
6181 if (!hasReachableDefaultArgument(TempParm))
6182 return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: TempParm,
6183 Args&: NewArgs);
6184
6185 NestedNameSpecifierLoc QualifierLoc;
6186 TemplateName Name = SubstDefaultTemplateArgument(
6187 SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TempParm, SugaredConverted,
6188 CanonicalConverted, QualifierLoc);
6189 if (Name.isNull())
6190 return true;
6191
6192 Arg = TemplateArgumentLoc(
6193 Context, TemplateArgument(Name), QualifierLoc,
6194 TempParm->getDefaultArgument().getTemplateNameLoc());
6195 }
6196
6197 // Introduce an instantiation record that describes where we are using
6198 // the default template argument. We're not actually instantiating a
6199 // template here, we just create this object to put a note into the
6200 // context stack.
6201 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param,
6202 SugaredConverted,
6203 SourceRange(TemplateLoc, RAngleLoc));
6204 if (Inst.isInvalid())
6205 return true;
6206
6207 // Check the default template argument.
6208 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0,
6209 SugaredConverted, CanonicalConverted,
6210 CTAK_Specified))
6211 return true;
6212
6213 CanonicalConverted.back().setIsDefaulted(true);
6214
6215 // Core issue 150 (assumed resolution): if this is a template template
6216 // parameter, keep track of the default template arguments from the
6217 // template definition.
6218 if (isTemplateTemplateParameter)
6219 NewArgs.addArgument(Loc: Arg);
6220
6221 // Move to the next template parameter and argument.
6222 ++Param;
6223 ++ArgIdx;
6224 }
6225
6226 // If we're performing a partial argument substitution, allow any trailing
6227 // pack expansions; they might be empty. This can happen even if
6228 // PartialTemplateArgs is false (the list of arguments is complete but
6229 // still dependent).
6230 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
6231 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
6232 while (ArgIdx < NumArgs &&
6233 NewArgs[ArgIdx].getArgument().isPackExpansion()) {
6234 const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument();
6235 SugaredConverted.push_back(Elt: Arg);
6236 CanonicalConverted.push_back(Elt: Context.getCanonicalTemplateArgument(Arg));
6237 }
6238 }
6239
6240 // If we have any leftover arguments, then there were too many arguments.
6241 // Complain and fail.
6242 if (ArgIdx < NumArgs) {
6243 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
6244 << /*too many args*/1
6245 << (int)getTemplateNameKindForDiagnostics(TemplateName(Template))
6246 << Template
6247 << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc());
6248 NoteTemplateLocation(*Template, Params->getSourceRange());
6249 return true;
6250 }
6251
6252 // No problems found with the new argument list, propagate changes back
6253 // to caller.
6254 if (UpdateArgsWithConversions)
6255 TemplateArgs = std::move(NewArgs);
6256
6257 if (!PartialTemplateArgs) {
6258 // Setup the context/ThisScope for the case where we are needing to
6259 // re-instantiate constraints outside of normal instantiation.
6260 DeclContext *NewContext = Template->getDeclContext();
6261
6262 // If this template is in a template, make sure we extract the templated
6263 // decl.
6264 if (auto *TD = dyn_cast<TemplateDecl>(NewContext))
6265 NewContext = Decl::castToDeclContext(TD->getTemplatedDecl());
6266 auto *RD = dyn_cast<CXXRecordDecl>(Val: NewContext);
6267
6268 Qualifiers ThisQuals;
6269 if (const auto *Method =
6270 dyn_cast_or_null<CXXMethodDecl>(Val: Template->getTemplatedDecl()))
6271 ThisQuals = Method->getMethodQualifiers();
6272
6273 ContextRAII Context(*this, NewContext);
6274 CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr);
6275
6276 MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs(
6277 Template, NewContext, /*Final=*/false, CanonicalConverted,
6278 /*RelativeToPrimary=*/true,
6279 /*Pattern=*/nullptr,
6280 /*ForConceptInstantiation=*/true);
6281 if (EnsureTemplateArgumentListConstraints(
6282 Template, TemplateArgs: MLTAL,
6283 TemplateIDRange: SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) {
6284 if (ConstraintsNotSatisfied)
6285 *ConstraintsNotSatisfied = true;
6286 return true;
6287 }
6288 }
6289
6290 return false;
6291}
6292
6293namespace {
6294 class UnnamedLocalNoLinkageFinder
6295 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
6296 {
6297 Sema &S;
6298 SourceRange SR;
6299
6300 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
6301
6302 public:
6303 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
6304
6305 bool Visit(QualType T) {
6306 return T.isNull() ? false : inherited::Visit(T: T.getTypePtr());
6307 }
6308
6309#define TYPE(Class, Parent) \
6310 bool Visit##Class##Type(const Class##Type *);
6311#define ABSTRACT_TYPE(Class, Parent) \
6312 bool Visit##Class##Type(const Class##Type *) { return false; }
6313#define NON_CANONICAL_TYPE(Class, Parent) \
6314 bool Visit##Class##Type(const Class##Type *) { return false; }
6315#include "clang/AST/TypeNodes.inc"
6316
6317 bool VisitTagDecl(const TagDecl *Tag);
6318 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
6319 };
6320} // end anonymous namespace
6321
6322bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
6323 return false;
6324}
6325
6326bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
6327 return Visit(T: T->getElementType());
6328}
6329
6330bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
6331 return Visit(T: T->getPointeeType());
6332}
6333
6334bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
6335 const BlockPointerType* T) {
6336 return Visit(T: T->getPointeeType());
6337}
6338
6339bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
6340 const LValueReferenceType* T) {
6341 return Visit(T: T->getPointeeType());
6342}
6343
6344bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
6345 const RValueReferenceType* T) {
6346 return Visit(T: T->getPointeeType());
6347}
6348
6349bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
6350 const MemberPointerType* T) {
6351 return Visit(T: T->getPointeeType()) || Visit(T: QualType(T->getClass(), 0));
6352}
6353
6354bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
6355 const ConstantArrayType* T) {
6356 return Visit(T: T->getElementType());
6357}
6358
6359bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
6360 const IncompleteArrayType* T) {
6361 return Visit(T: T->getElementType());
6362}
6363
6364bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
6365 const VariableArrayType* T) {
6366 return Visit(T: T->getElementType());
6367}
6368
6369bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
6370 const DependentSizedArrayType* T) {
6371 return Visit(T: T->getElementType());
6372}
6373
6374bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
6375 const DependentSizedExtVectorType* T) {
6376 return Visit(T: T->getElementType());
6377}
6378
6379bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType(
6380 const DependentSizedMatrixType *T) {
6381 return Visit(T: T->getElementType());
6382}
6383
6384bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType(
6385 const DependentAddressSpaceType *T) {
6386 return Visit(T: T->getPointeeType());
6387}
6388
6389bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
6390 return Visit(T: T->getElementType());
6391}
6392
6393bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType(
6394 const DependentVectorType *T) {
6395 return Visit(T: T->getElementType());
6396}
6397
6398bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
6399 return Visit(T: T->getElementType());
6400}
6401
6402bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType(
6403 const ConstantMatrixType *T) {
6404 return Visit(T: T->getElementType());
6405}
6406
6407bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
6408 const FunctionProtoType* T) {
6409 for (const auto &A : T->param_types()) {
6410 if (Visit(T: A))
6411 return true;
6412 }
6413
6414 return Visit(T: T->getReturnType());
6415}
6416
6417bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
6418 const FunctionNoProtoType* T) {
6419 return Visit(T: T->getReturnType());
6420}
6421
6422bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
6423 const UnresolvedUsingType*) {
6424 return false;
6425}
6426
6427bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
6428 return false;
6429}
6430
6431bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
6432 return Visit(T: T->getUnmodifiedType());
6433}
6434
6435bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
6436 return false;
6437}
6438
6439bool UnnamedLocalNoLinkageFinder::VisitPackIndexingType(
6440 const PackIndexingType *) {
6441 return false;
6442}
6443
6444bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
6445 const UnaryTransformType*) {
6446 return false;
6447}
6448
6449bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
6450 return Visit(T: T->getDeducedType());
6451}
6452
6453bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType(
6454 const DeducedTemplateSpecializationType *T) {
6455 return Visit(T: T->getDeducedType());
6456}
6457
6458bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
6459 return VisitTagDecl(T->getDecl());
6460}
6461
6462bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
6463 return VisitTagDecl(T->getDecl());
6464}
6465
6466bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
6467 const TemplateTypeParmType*) {
6468 return false;
6469}
6470
6471bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
6472 const SubstTemplateTypeParmPackType *) {
6473 return false;
6474}
6475
6476bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
6477 const TemplateSpecializationType*) {
6478 return false;
6479}
6480
6481bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
6482 const InjectedClassNameType* T) {
6483 return VisitTagDecl(T->getDecl());
6484}
6485
6486bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
6487 const DependentNameType* T) {
6488 return VisitNestedNameSpecifier(NNS: T->getQualifier());
6489}
6490
6491bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
6492 const DependentTemplateSpecializationType* T) {
6493 if (auto *Q = T->getQualifier())
6494 return VisitNestedNameSpecifier(NNS: Q);
6495 return false;
6496}
6497
6498bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
6499 const PackExpansionType* T) {
6500 return Visit(T: T->getPattern());
6501}
6502
6503bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
6504 return false;
6505}
6506
6507bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
6508 const ObjCInterfaceType *) {
6509 return false;
6510}
6511
6512bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
6513 const ObjCObjectPointerType *) {
6514 return false;
6515}
6516
6517bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
6518 return Visit(T: T->getValueType());
6519}
6520
6521bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
6522 return false;
6523}
6524
6525bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) {
6526 return false;
6527}
6528
6529bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType(
6530 const DependentBitIntType *T) {
6531 return false;
6532}
6533
6534bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
6535 if (Tag->getDeclContext()->isFunctionOrMethod()) {
6536 S.Diag(SR.getBegin(),
6537 S.getLangOpts().CPlusPlus11 ?
6538 diag::warn_cxx98_compat_template_arg_local_type :
6539 diag::ext_template_arg_local_type)
6540 << S.Context.getTypeDeclType(Tag) << SR;
6541 return true;
6542 }
6543
6544 if (!Tag->hasNameForLinkage()) {
6545 S.Diag(SR.getBegin(),
6546 S.getLangOpts().CPlusPlus11 ?
6547 diag::warn_cxx98_compat_template_arg_unnamed_type :
6548 diag::ext_template_arg_unnamed_type) << SR;
6549 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
6550 return true;
6551 }
6552
6553 return false;
6554}
6555
6556bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
6557 NestedNameSpecifier *NNS) {
6558 assert(NNS);
6559 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS: NNS->getPrefix()))
6560 return true;
6561
6562 switch (NNS->getKind()) {
6563 case NestedNameSpecifier::Identifier:
6564 case NestedNameSpecifier::Namespace:
6565 case NestedNameSpecifier::NamespaceAlias:
6566 case NestedNameSpecifier::Global:
6567 case NestedNameSpecifier::Super:
6568 return false;
6569
6570 case NestedNameSpecifier::TypeSpec:
6571 case NestedNameSpecifier::TypeSpecWithTemplate:
6572 return Visit(T: QualType(NNS->getAsType(), 0));
6573 }
6574 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
6575}
6576
6577/// Check a template argument against its corresponding
6578/// template type parameter.
6579///
6580/// This routine implements the semantics of C++ [temp.arg.type]. It
6581/// returns true if an error occurred, and false otherwise.
6582bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) {
6583 assert(ArgInfo && "invalid TypeSourceInfo");
6584 QualType Arg = ArgInfo->getType();
6585 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
6586 QualType CanonArg = Context.getCanonicalType(T: Arg);
6587
6588 if (CanonArg->isVariablyModifiedType()) {
6589 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
6590 } else if (Context.hasSameUnqualifiedType(T1: Arg, T2: Context.OverloadTy)) {
6591 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
6592 }
6593
6594 // C++03 [temp.arg.type]p2:
6595 // A local type, a type with no linkage, an unnamed type or a type
6596 // compounded from any of these types shall not be used as a
6597 // template-argument for a template type-parameter.
6598 //
6599 // C++11 allows these, and even in C++03 we allow them as an extension with
6600 // a warning.
6601 if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) {
6602 UnnamedLocalNoLinkageFinder Finder(*this, SR);
6603 (void)Finder.Visit(T: CanonArg);
6604 }
6605
6606 return false;
6607}
6608
6609enum NullPointerValueKind {
6610 NPV_NotNullPointer,
6611 NPV_NullPointer,
6612 NPV_Error
6613};
6614
6615/// Determine whether the given template argument is a null pointer
6616/// value of the appropriate type.
6617static NullPointerValueKind
6618isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
6619 QualType ParamType, Expr *Arg,
6620 Decl *Entity = nullptr) {
6621 if (Arg->isValueDependent() || Arg->isTypeDependent())
6622 return NPV_NotNullPointer;
6623
6624 // dllimport'd entities aren't constant but are available inside of template
6625 // arguments.
6626 if (Entity && Entity->hasAttr<DLLImportAttr>())
6627 return NPV_NotNullPointer;
6628
6629 if (!S.isCompleteType(Loc: Arg->getExprLoc(), T: ParamType))
6630 llvm_unreachable(
6631 "Incomplete parameter type in isNullPointerValueTemplateArgument!");
6632
6633 if (!S.getLangOpts().CPlusPlus11)
6634 return NPV_NotNullPointer;
6635
6636 // Determine whether we have a constant expression.
6637 ExprResult ArgRV = S.DefaultFunctionArrayConversion(E: Arg);
6638 if (ArgRV.isInvalid())
6639 return NPV_Error;
6640 Arg = ArgRV.get();
6641
6642 Expr::EvalResult EvalResult;
6643 SmallVector<PartialDiagnosticAt, 8> Notes;
6644 EvalResult.Diag = &Notes;
6645 if (!Arg->EvaluateAsRValue(Result&: EvalResult, Ctx: S.Context) ||
6646 EvalResult.HasSideEffects) {
6647 SourceLocation DiagLoc = Arg->getExprLoc();
6648
6649 // If our only note is the usual "invalid subexpression" note, just point
6650 // the caret at its location rather than producing an essentially
6651 // redundant note.
6652 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6653 diag::note_invalid_subexpr_in_const_expr) {
6654 DiagLoc = Notes[0].first;
6655 Notes.clear();
6656 }
6657
6658 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
6659 << Arg->getType() << Arg->getSourceRange();
6660 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6661 S.Diag(Loc: Notes[I].first, PD: Notes[I].second);
6662
6663 S.NoteTemplateParameterLocation(*Param);
6664 return NPV_Error;
6665 }
6666
6667 // C++11 [temp.arg.nontype]p1:
6668 // - an address constant expression of type std::nullptr_t
6669 if (Arg->getType()->isNullPtrType())
6670 return NPV_NullPointer;
6671
6672 // - a constant expression that evaluates to a null pointer value (4.10); or
6673 // - a constant expression that evaluates to a null member pointer value
6674 // (4.11); or
6675 if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) ||
6676 (EvalResult.Val.isMemberPointer() &&
6677 !EvalResult.Val.getMemberPointerDecl())) {
6678 // If our expression has an appropriate type, we've succeeded.
6679 bool ObjCLifetimeConversion;
6680 if (S.Context.hasSameUnqualifiedType(T1: Arg->getType(), T2: ParamType) ||
6681 S.IsQualificationConversion(FromType: Arg->getType(), ToType: ParamType, CStyle: false,
6682 ObjCLifetimeConversion))
6683 return NPV_NullPointer;
6684
6685 // The types didn't match, but we know we got a null pointer; complain,
6686 // then recover as if the types were correct.
6687 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
6688 << Arg->getType() << ParamType << Arg->getSourceRange();
6689 S.NoteTemplateParameterLocation(*Param);
6690 return NPV_NullPointer;
6691 }
6692
6693 if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) {
6694 // We found a pointer that isn't null, but doesn't refer to an object.
6695 // We could just return NPV_NotNullPointer, but we can print a better
6696 // message with the information we have here.
6697 S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid)
6698 << EvalResult.Val.getAsString(S.Context, ParamType);
6699 S.NoteTemplateParameterLocation(*Param);
6700 return NPV_Error;
6701 }
6702
6703 // If we don't have a null pointer value, but we do have a NULL pointer
6704 // constant, suggest a cast to the appropriate type.
6705 if (Arg->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_NeverValueDependent)) {
6706 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
6707 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
6708 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code)
6709 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()),
6710 ")");
6711 S.NoteTemplateParameterLocation(*Param);
6712 return NPV_NullPointer;
6713 }
6714
6715 // FIXME: If we ever want to support general, address-constant expressions
6716 // as non-type template arguments, we should return the ExprResult here to
6717 // be interpreted by the caller.
6718 return NPV_NotNullPointer;
6719}
6720
6721/// Checks whether the given template argument is compatible with its
6722/// template parameter.
6723static bool CheckTemplateArgumentIsCompatibleWithParameter(
6724 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6725 Expr *Arg, QualType ArgType) {
6726 bool ObjCLifetimeConversion;
6727 if (ParamType->isPointerType() &&
6728 !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() &&
6729 S.IsQualificationConversion(FromType: ArgType, ToType: ParamType, CStyle: false,
6730 ObjCLifetimeConversion)) {
6731 // For pointer-to-object types, qualification conversions are
6732 // permitted.
6733 } else {
6734 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
6735 if (!ParamRef->getPointeeType()->isFunctionType()) {
6736 // C++ [temp.arg.nontype]p5b3:
6737 // For a non-type template-parameter of type reference to
6738 // object, no conversions apply. The type referred to by the
6739 // reference may be more cv-qualified than the (otherwise
6740 // identical) type of the template- argument. The
6741 // template-parameter is bound directly to the
6742 // template-argument, which shall be an lvalue.
6743
6744 // FIXME: Other qualifiers?
6745 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
6746 unsigned ArgQuals = ArgType.getCVRQualifiers();
6747
6748 if ((ParamQuals | ArgQuals) != ParamQuals) {
6749 S.Diag(Arg->getBeginLoc(),
6750 diag::err_template_arg_ref_bind_ignores_quals)
6751 << ParamType << Arg->getType() << Arg->getSourceRange();
6752 S.NoteTemplateParameterLocation(*Param);
6753 return true;
6754 }
6755 }
6756 }
6757
6758 // At this point, the template argument refers to an object or
6759 // function with external linkage. We now need to check whether the
6760 // argument and parameter types are compatible.
6761 if (!S.Context.hasSameUnqualifiedType(T1: ArgType,
6762 T2: ParamType.getNonReferenceType())) {
6763 // We can't perform this conversion or binding.
6764 if (ParamType->isReferenceType())
6765 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind)
6766 << ParamType << ArgIn->getType() << Arg->getSourceRange();
6767 else
6768 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
6769 << ArgIn->getType() << ParamType << Arg->getSourceRange();
6770 S.NoteTemplateParameterLocation(*Param);
6771 return true;
6772 }
6773 }
6774
6775 return false;
6776}
6777
6778/// Checks whether the given template argument is the address
6779/// of an object or function according to C++ [temp.arg.nontype]p1.
6780static bool CheckTemplateArgumentAddressOfObjectOrFunction(
6781 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
6782 TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) {
6783 bool Invalid = false;
6784 Expr *Arg = ArgIn;
6785 QualType ArgType = Arg->getType();
6786
6787 bool AddressTaken = false;
6788 SourceLocation AddrOpLoc;
6789 if (S.getLangOpts().MicrosoftExt) {
6790 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
6791 // dereference and address-of operators.
6792 Arg = Arg->IgnoreParenCasts();
6793
6794 bool ExtWarnMSTemplateArg = false;
6795 UnaryOperatorKind FirstOpKind;
6796 SourceLocation FirstOpLoc;
6797 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) {
6798 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
6799 if (UnOpKind == UO_Deref)
6800 ExtWarnMSTemplateArg = true;
6801 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
6802 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
6803 if (!AddrOpLoc.isValid()) {
6804 FirstOpKind = UnOpKind;
6805 FirstOpLoc = UnOp->getOperatorLoc();
6806 }
6807 } else
6808 break;
6809 }
6810 if (FirstOpLoc.isValid()) {
6811 if (ExtWarnMSTemplateArg)
6812 S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument)
6813 << ArgIn->getSourceRange();
6814
6815 if (FirstOpKind == UO_AddrOf)
6816 AddressTaken = true;
6817 else if (Arg->getType()->isPointerType()) {
6818 // We cannot let pointers get dereferenced here, that is obviously not a
6819 // constant expression.
6820 assert(FirstOpKind == UO_Deref);
6821 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6822 << Arg->getSourceRange();
6823 }
6824 }
6825 } else {
6826 // See through any implicit casts we added to fix the type.
6827 Arg = Arg->IgnoreImpCasts();
6828
6829 // C++ [temp.arg.nontype]p1:
6830 //
6831 // A template-argument for a non-type, non-template
6832 // template-parameter shall be one of: [...]
6833 //
6834 // -- the address of an object or function with external
6835 // linkage, including function templates and function
6836 // template-ids but excluding non-static class members,
6837 // expressed as & id-expression where the & is optional if
6838 // the name refers to a function or array, or if the
6839 // corresponding template-parameter is a reference; or
6840
6841 // In C++98/03 mode, give an extension warning on any extra parentheses.
6842 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
6843 bool ExtraParens = false;
6844 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Val: Arg)) {
6845 if (!Invalid && !ExtraParens) {
6846 S.Diag(Arg->getBeginLoc(),
6847 S.getLangOpts().CPlusPlus11
6848 ? diag::warn_cxx98_compat_template_arg_extra_parens
6849 : diag::ext_template_arg_extra_parens)
6850 << Arg->getSourceRange();
6851 ExtraParens = true;
6852 }
6853
6854 Arg = Parens->getSubExpr();
6855 }
6856
6857 while (SubstNonTypeTemplateParmExpr *subst =
6858 dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg))
6859 Arg = subst->getReplacement()->IgnoreImpCasts();
6860
6861 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) {
6862 if (UnOp->getOpcode() == UO_AddrOf) {
6863 Arg = UnOp->getSubExpr();
6864 AddressTaken = true;
6865 AddrOpLoc = UnOp->getOperatorLoc();
6866 }
6867 }
6868
6869 while (SubstNonTypeTemplateParmExpr *subst =
6870 dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg))
6871 Arg = subst->getReplacement()->IgnoreImpCasts();
6872 }
6873
6874 ValueDecl *Entity = nullptr;
6875 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg))
6876 Entity = DRE->getDecl();
6877 else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Val: Arg))
6878 Entity = CUE->getGuidDecl();
6879
6880 // If our parameter has pointer type, check for a null template value.
6881 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
6882 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn,
6883 Entity)) {
6884 case NPV_NullPointer:
6885 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
6886 SugaredConverted = TemplateArgument(ParamType,
6887 /*isNullPtr=*/true);
6888 CanonicalConverted =
6889 TemplateArgument(S.Context.getCanonicalType(T: ParamType),
6890 /*isNullPtr=*/true);
6891 return false;
6892
6893 case NPV_Error:
6894 return true;
6895
6896 case NPV_NotNullPointer:
6897 break;
6898 }
6899 }
6900
6901 // Stop checking the precise nature of the argument if it is value dependent,
6902 // it should be checked when instantiated.
6903 if (Arg->isValueDependent()) {
6904 SugaredConverted = TemplateArgument(ArgIn);
6905 CanonicalConverted =
6906 S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted);
6907 return false;
6908 }
6909
6910 if (!Entity) {
6911 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
6912 << Arg->getSourceRange();
6913 S.NoteTemplateParameterLocation(*Param);
6914 return true;
6915 }
6916
6917 // Cannot refer to non-static data members
6918 if (isa<FieldDecl>(Val: Entity) || isa<IndirectFieldDecl>(Val: Entity)) {
6919 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field)
6920 << Entity << Arg->getSourceRange();
6921 S.NoteTemplateParameterLocation(*Param);
6922 return true;
6923 }
6924
6925 // Cannot refer to non-static member functions
6926 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Entity)) {
6927 if (!Method->isStatic()) {
6928 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method)
6929 << Method << Arg->getSourceRange();
6930 S.NoteTemplateParameterLocation(*Param);
6931 return true;
6932 }
6933 }
6934
6935 FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: Entity);
6936 VarDecl *Var = dyn_cast<VarDecl>(Val: Entity);
6937 MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Val: Entity);
6938
6939 // A non-type template argument must refer to an object or function.
6940 if (!Func && !Var && !Guid) {
6941 // We found something, but we don't know specifically what it is.
6942 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func)
6943 << Arg->getSourceRange();
6944 S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here);
6945 return true;
6946 }
6947
6948 // Address / reference template args must have external linkage in C++98.
6949 if (Entity->getFormalLinkage() == Linkage::Internal) {
6950 S.Diag(Arg->getBeginLoc(),
6951 S.getLangOpts().CPlusPlus11
6952 ? diag::warn_cxx98_compat_template_arg_object_internal
6953 : diag::ext_template_arg_object_internal)
6954 << !Func << Entity << Arg->getSourceRange();
6955 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6956 << !Func;
6957 } else if (!Entity->hasLinkage()) {
6958 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage)
6959 << !Func << Entity << Arg->getSourceRange();
6960 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
6961 << !Func;
6962 return true;
6963 }
6964
6965 if (Var) {
6966 // A value of reference type is not an object.
6967 if (Var->getType()->isReferenceType()) {
6968 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var)
6969 << Var->getType() << Arg->getSourceRange();
6970 S.NoteTemplateParameterLocation(*Param);
6971 return true;
6972 }
6973
6974 // A template argument must have static storage duration.
6975 if (Var->getTLSKind()) {
6976 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local)
6977 << Arg->getSourceRange();
6978 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
6979 return true;
6980 }
6981 }
6982
6983 if (AddressTaken && ParamType->isReferenceType()) {
6984 // If we originally had an address-of operator, but the
6985 // parameter has reference type, complain and (if things look
6986 // like they will work) drop the address-of operator.
6987 if (!S.Context.hasSameUnqualifiedType(T1: Entity->getType(),
6988 T2: ParamType.getNonReferenceType())) {
6989 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6990 << ParamType;
6991 S.NoteTemplateParameterLocation(*Param);
6992 return true;
6993 }
6994
6995 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
6996 << ParamType
6997 << FixItHint::CreateRemoval(AddrOpLoc);
6998 S.NoteTemplateParameterLocation(*Param);
6999
7000 ArgType = Entity->getType();
7001 }
7002
7003 // If the template parameter has pointer type, either we must have taken the
7004 // address or the argument must decay to a pointer.
7005 if (!AddressTaken && ParamType->isPointerType()) {
7006 if (Func) {
7007 // Function-to-pointer decay.
7008 ArgType = S.Context.getPointerType(Func->getType());
7009 } else if (Entity->getType()->isArrayType()) {
7010 // Array-to-pointer decay.
7011 ArgType = S.Context.getArrayDecayedType(T: Entity->getType());
7012 } else {
7013 // If the template parameter has pointer type but the address of
7014 // this object was not taken, complain and (possibly) recover by
7015 // taking the address of the entity.
7016 ArgType = S.Context.getPointerType(T: Entity->getType());
7017 if (!S.Context.hasSameUnqualifiedType(T1: ArgType, T2: ParamType)) {
7018 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
7019 << ParamType;
7020 S.NoteTemplateParameterLocation(*Param);
7021 return true;
7022 }
7023
7024 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of)
7025 << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&");
7026
7027 S.NoteTemplateParameterLocation(*Param);
7028 }
7029 }
7030
7031 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
7032 Arg, ArgType))
7033 return true;
7034
7035 // Create the template argument.
7036 SugaredConverted = TemplateArgument(Entity, ParamType);
7037 CanonicalConverted =
7038 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()),
7039 S.Context.getCanonicalType(T: ParamType));
7040 S.MarkAnyDeclReferenced(Loc: Arg->getBeginLoc(), D: Entity, MightBeOdrUse: false);
7041 return false;
7042}
7043
7044/// Checks whether the given template argument is a pointer to
7045/// member constant according to C++ [temp.arg.nontype]p1.
7046static bool
7047CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param,
7048 QualType ParamType, Expr *&ResultArg,
7049 TemplateArgument &SugaredConverted,
7050 TemplateArgument &CanonicalConverted) {
7051 bool Invalid = false;
7052
7053 Expr *Arg = ResultArg;
7054 bool ObjCLifetimeConversion;
7055
7056 // C++ [temp.arg.nontype]p1:
7057 //
7058 // A template-argument for a non-type, non-template
7059 // template-parameter shall be one of: [...]
7060 //
7061 // -- a pointer to member expressed as described in 5.3.1.
7062 DeclRefExpr *DRE = nullptr;
7063
7064 // In C++98/03 mode, give an extension warning on any extra parentheses.
7065 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
7066 bool ExtraParens = false;
7067 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Val: Arg)) {
7068 if (!Invalid && !ExtraParens) {
7069 S.Diag(Arg->getBeginLoc(),
7070 S.getLangOpts().CPlusPlus11
7071 ? diag::warn_cxx98_compat_template_arg_extra_parens
7072 : diag::ext_template_arg_extra_parens)
7073 << Arg->getSourceRange();
7074 ExtraParens = true;
7075 }
7076
7077 Arg = Parens->getSubExpr();
7078 }
7079
7080 while (SubstNonTypeTemplateParmExpr *subst =
7081 dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg))
7082 Arg = subst->getReplacement()->IgnoreImpCasts();
7083
7084 // A pointer-to-member constant written &Class::member.
7085 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) {
7086 if (UnOp->getOpcode() == UO_AddrOf) {
7087 DRE = dyn_cast<DeclRefExpr>(Val: UnOp->getSubExpr());
7088 if (DRE && !DRE->getQualifier())
7089 DRE = nullptr;
7090 }
7091 }
7092 // A constant of pointer-to-member type.
7093 else if ((DRE = dyn_cast<DeclRefExpr>(Val: Arg))) {
7094 ValueDecl *VD = DRE->getDecl();
7095 if (VD->getType()->isMemberPointerType()) {
7096 if (isa<NonTypeTemplateParmDecl>(Val: VD)) {
7097 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7098 SugaredConverted = TemplateArgument(Arg);
7099 CanonicalConverted =
7100 S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted);
7101 } else {
7102 SugaredConverted = TemplateArgument(VD, ParamType);
7103 CanonicalConverted =
7104 TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()),
7105 S.Context.getCanonicalType(T: ParamType));
7106 }
7107 return Invalid;
7108 }
7109 }
7110
7111 DRE = nullptr;
7112 }
7113
7114 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
7115
7116 // Check for a null pointer value.
7117 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg,
7118 Entity)) {
7119 case NPV_Error:
7120 return true;
7121 case NPV_NullPointer:
7122 S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7123 SugaredConverted = TemplateArgument(ParamType,
7124 /*isNullPtr*/ true);
7125 CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(T: ParamType),
7126 /*isNullPtr*/ true);
7127 return false;
7128 case NPV_NotNullPointer:
7129 break;
7130 }
7131
7132 if (S.IsQualificationConversion(FromType: ResultArg->getType(),
7133 ToType: ParamType.getNonReferenceType(), CStyle: false,
7134 ObjCLifetimeConversion)) {
7135 ResultArg = S.ImpCastExprToType(E: ResultArg, Type: ParamType, CK: CK_NoOp,
7136 VK: ResultArg->getValueKind())
7137 .get();
7138 } else if (!S.Context.hasSameUnqualifiedType(
7139 T1: ResultArg->getType(), T2: ParamType.getNonReferenceType())) {
7140 // We can't perform this conversion.
7141 S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible)
7142 << ResultArg->getType() << ParamType << ResultArg->getSourceRange();
7143 S.NoteTemplateParameterLocation(*Param);
7144 return true;
7145 }
7146
7147 if (!DRE)
7148 return S.Diag(Arg->getBeginLoc(),
7149 diag::err_template_arg_not_pointer_to_member_form)
7150 << Arg->getSourceRange();
7151
7152 if (isa<FieldDecl>(Val: DRE->getDecl()) ||
7153 isa<IndirectFieldDecl>(Val: DRE->getDecl()) ||
7154 isa<CXXMethodDecl>(Val: DRE->getDecl())) {
7155 assert((isa<FieldDecl>(DRE->getDecl()) ||
7156 isa<IndirectFieldDecl>(DRE->getDecl()) ||
7157 cast<CXXMethodDecl>(DRE->getDecl())
7158 ->isImplicitObjectMemberFunction()) &&
7159 "Only non-static member pointers can make it here");
7160
7161 // Okay: this is the address of a non-static member, and therefore
7162 // a member pointer constant.
7163 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7164 SugaredConverted = TemplateArgument(Arg);
7165 CanonicalConverted =
7166 S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted);
7167 } else {
7168 ValueDecl *D = DRE->getDecl();
7169 SugaredConverted = TemplateArgument(D, ParamType);
7170 CanonicalConverted =
7171 TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()),
7172 S.Context.getCanonicalType(T: ParamType));
7173 }
7174 return Invalid;
7175 }
7176
7177 // We found something else, but we don't know specifically what it is.
7178 S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form)
7179 << Arg->getSourceRange();
7180 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
7181 return true;
7182}
7183
7184/// Check a template argument against its corresponding
7185/// non-type template parameter.
7186///
7187/// This routine implements the semantics of C++ [temp.arg.nontype].
7188/// If an error occurred, it returns ExprError(); otherwise, it
7189/// returns the converted template argument. \p ParamType is the
7190/// type of the non-type template parameter after it has been instantiated.
7191ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
7192 QualType ParamType, Expr *Arg,
7193 TemplateArgument &SugaredConverted,
7194 TemplateArgument &CanonicalConverted,
7195 CheckTemplateArgumentKind CTAK) {
7196 SourceLocation StartLoc = Arg->getBeginLoc();
7197
7198 // If the parameter type somehow involves auto, deduce the type now.
7199 DeducedType *DeducedT = ParamType->getContainedDeducedType();
7200 if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) {
7201 // During template argument deduction, we allow 'decltype(auto)' to
7202 // match an arbitrary dependent argument.
7203 // FIXME: The language rules don't say what happens in this case.
7204 // FIXME: We get an opaque dependent type out of decltype(auto) if the
7205 // expression is merely instantiation-dependent; is this enough?
7206 if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) {
7207 auto *AT = dyn_cast<AutoType>(Val: DeducedT);
7208 if (AT && AT->isDecltypeAuto()) {
7209 SugaredConverted = TemplateArgument(Arg);
7210 CanonicalConverted = TemplateArgument(
7211 Context.getCanonicalTemplateArgument(Arg: SugaredConverted));
7212 return Arg;
7213 }
7214 }
7215
7216 // When checking a deduced template argument, deduce from its type even if
7217 // the type is dependent, in order to check the types of non-type template
7218 // arguments line up properly in partial ordering.
7219 Expr *DeductionArg = Arg;
7220 if (auto *PE = dyn_cast<PackExpansionExpr>(Val: DeductionArg))
7221 DeductionArg = PE->getPattern();
7222 TypeSourceInfo *TSI =
7223 Context.getTrivialTypeSourceInfo(T: ParamType, Loc: Param->getLocation());
7224 if (isa<DeducedTemplateSpecializationType>(Val: DeducedT)) {
7225 InitializedEntity Entity =
7226 InitializedEntity::InitializeTemplateParameter(T: ParamType, Param);
7227 InitializationKind Kind = InitializationKind::CreateForInit(
7228 Loc: DeductionArg->getBeginLoc(), /*DirectInit*/false, Init: DeductionArg);
7229 Expr *Inits[1] = {DeductionArg};
7230 ParamType =
7231 DeduceTemplateSpecializationFromInitializer(TInfo: TSI, Entity, Kind, Init: Inits);
7232 if (ParamType.isNull())
7233 return ExprError();
7234 } else {
7235 TemplateDeductionInfo Info(DeductionArg->getExprLoc(),
7236 Param->getDepth() + 1);
7237 ParamType = QualType();
7238 TemplateDeductionResult Result =
7239 DeduceAutoType(AutoTypeLoc: TSI->getTypeLoc(), Initializer: DeductionArg, Result&: ParamType, Info,
7240 /*DependentDeduction=*/true,
7241 // We do not check constraints right now because the
7242 // immediately-declared constraint of the auto type is
7243 // also an associated constraint, and will be checked
7244 // along with the other associated constraints after
7245 // checking the template argument list.
7246 /*IgnoreConstraints=*/true);
7247 if (Result == TemplateDeductionResult::AlreadyDiagnosed) {
7248 if (ParamType.isNull())
7249 return ExprError();
7250 } else if (Result != TemplateDeductionResult::Success) {
7251 Diag(Arg->getExprLoc(),
7252 diag::err_non_type_template_parm_type_deduction_failure)
7253 << Param->getDeclName() << Param->getType() << Arg->getType()
7254 << Arg->getSourceRange();
7255 NoteTemplateParameterLocation(*Param);
7256 return ExprError();
7257 }
7258 }
7259 // CheckNonTypeTemplateParameterType will produce a diagnostic if there's
7260 // an error. The error message normally references the parameter
7261 // declaration, but here we'll pass the argument location because that's
7262 // where the parameter type is deduced.
7263 ParamType = CheckNonTypeTemplateParameterType(T: ParamType, Loc: Arg->getExprLoc());
7264 if (ParamType.isNull()) {
7265 NoteTemplateParameterLocation(*Param);
7266 return ExprError();
7267 }
7268 }
7269
7270 // We should have already dropped all cv-qualifiers by now.
7271 assert(!ParamType.hasQualifiers() &&
7272 "non-type template parameter type cannot be qualified");
7273
7274 // FIXME: When Param is a reference, should we check that Arg is an lvalue?
7275 if (CTAK == CTAK_Deduced &&
7276 (ParamType->isReferenceType()
7277 ? !Context.hasSameType(T1: ParamType.getNonReferenceType(),
7278 T2: Arg->getType())
7279 : !Context.hasSameUnqualifiedType(T1: ParamType, T2: Arg->getType()))) {
7280 // FIXME: If either type is dependent, we skip the check. This isn't
7281 // correct, since during deduction we're supposed to have replaced each
7282 // template parameter with some unique (non-dependent) placeholder.
7283 // FIXME: If the argument type contains 'auto', we carry on and fail the
7284 // type check in order to force specific types to be more specialized than
7285 // 'auto'. It's not clear how partial ordering with 'auto' is supposed to
7286 // work. Similarly for CTAD, when comparing 'A<x>' against 'A'.
7287 if ((ParamType->isDependentType() || Arg->isTypeDependent()) &&
7288 !Arg->getType()->getContainedDeducedType()) {
7289 SugaredConverted = TemplateArgument(Arg);
7290 CanonicalConverted = TemplateArgument(
7291 Context.getCanonicalTemplateArgument(Arg: SugaredConverted));
7292 return Arg;
7293 }
7294 // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770,
7295 // we should actually be checking the type of the template argument in P,
7296 // not the type of the template argument deduced from A, against the
7297 // template parameter type.
7298 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
7299 << Arg->getType()
7300 << ParamType.getUnqualifiedType();
7301 NoteTemplateParameterLocation(*Param);
7302 return ExprError();
7303 }
7304
7305 // If either the parameter has a dependent type or the argument is
7306 // type-dependent, there's nothing we can check now.
7307 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
7308 // Force the argument to the type of the parameter to maintain invariants.
7309 auto *PE = dyn_cast<PackExpansionExpr>(Val: Arg);
7310 if (PE)
7311 Arg = PE->getPattern();
7312 ExprResult E = ImpCastExprToType(
7313 E: Arg, Type: ParamType.getNonLValueExprType(Context), CK: CK_Dependent,
7314 VK: ParamType->isLValueReferenceType() ? VK_LValue
7315 : ParamType->isRValueReferenceType() ? VK_XValue
7316 : VK_PRValue);
7317 if (E.isInvalid())
7318 return ExprError();
7319 if (PE) {
7320 // Recreate a pack expansion if we unwrapped one.
7321 E = new (Context)
7322 PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(),
7323 PE->getNumExpansions());
7324 }
7325 SugaredConverted = TemplateArgument(E.get());
7326 CanonicalConverted = TemplateArgument(
7327 Context.getCanonicalTemplateArgument(Arg: SugaredConverted));
7328 return E;
7329 }
7330
7331 QualType CanonParamType = Context.getCanonicalType(T: ParamType);
7332 // Avoid making a copy when initializing a template parameter of class type
7333 // from a template parameter object of the same type. This is going beyond
7334 // the standard, but is required for soundness: in
7335 // template<A a> struct X { X *p; X<a> *q; };
7336 // ... we need p and q to have the same type.
7337 //
7338 // Similarly, don't inject a call to a copy constructor when initializing
7339 // from a template parameter of the same type.
7340 Expr *InnerArg = Arg->IgnoreParenImpCasts();
7341 if (ParamType->isRecordType() && isa<DeclRefExpr>(Val: InnerArg) &&
7342 Context.hasSameUnqualifiedType(T1: ParamType, T2: InnerArg->getType())) {
7343 NamedDecl *ND = cast<DeclRefExpr>(Val: InnerArg)->getDecl();
7344 if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
7345
7346 SugaredConverted = TemplateArgument(TPO, ParamType);
7347 CanonicalConverted =
7348 TemplateArgument(TPO->getCanonicalDecl(), CanonParamType);
7349 return Arg;
7350 }
7351 if (isa<NonTypeTemplateParmDecl>(Val: ND)) {
7352 SugaredConverted = TemplateArgument(Arg);
7353 CanonicalConverted =
7354 Context.getCanonicalTemplateArgument(Arg: SugaredConverted);
7355 return Arg;
7356 }
7357 }
7358
7359 // The initialization of the parameter from the argument is
7360 // a constant-evaluated context.
7361 EnterExpressionEvaluationContext ConstantEvaluated(
7362 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7363
7364 bool IsConvertedConstantExpression = true;
7365 if (isa<InitListExpr>(Val: Arg) || ParamType->isRecordType()) {
7366 InitializationKind Kind = InitializationKind::CreateForInit(
7367 Loc: Arg->getBeginLoc(), /*DirectInit=*/false, Init: Arg);
7368 Expr *Inits[1] = {Arg};
7369 InitializedEntity Entity =
7370 InitializedEntity::InitializeTemplateParameter(T: ParamType, Param);
7371 InitializationSequence InitSeq(*this, Entity, Kind, Inits);
7372 ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Inits);
7373 if (Result.isInvalid() || !Result.get())
7374 return ExprError();
7375 Result = ActOnConstantExpression(Res: Result.get());
7376 if (Result.isInvalid() || !Result.get())
7377 return ExprError();
7378 Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(),
7379 /*DiscardedValue=*/false,
7380 /*IsConstexpr=*/true, /*IsTemplateArgument=*/true)
7381 .get();
7382 IsConvertedConstantExpression = false;
7383 }
7384
7385 if (getLangOpts().CPlusPlus17) {
7386 // C++17 [temp.arg.nontype]p1:
7387 // A template-argument for a non-type template parameter shall be
7388 // a converted constant expression of the type of the template-parameter.
7389 APValue Value;
7390 ExprResult ArgResult;
7391 if (IsConvertedConstantExpression) {
7392 ArgResult = BuildConvertedConstantExpression(Arg, ParamType,
7393 CCEK_TemplateArg, Param);
7394 if (ArgResult.isInvalid())
7395 return ExprError();
7396 } else {
7397 ArgResult = Arg;
7398 }
7399
7400 // For a value-dependent argument, CheckConvertedConstantExpression is
7401 // permitted (and expected) to be unable to determine a value.
7402 if (ArgResult.get()->isValueDependent()) {
7403 SugaredConverted = TemplateArgument(ArgResult.get());
7404 CanonicalConverted =
7405 Context.getCanonicalTemplateArgument(Arg: SugaredConverted);
7406 return ArgResult;
7407 }
7408
7409 APValue PreNarrowingValue;
7410 ArgResult = EvaluateConvertedConstantExpression(
7411 E: ArgResult.get(), T: ParamType, Value, CCE: CCEK_TemplateArg, /*RequireInt=*/
7412 false, PreNarrowingValue);
7413 if (ArgResult.isInvalid())
7414 return ExprError();
7415
7416 if (Value.isLValue()) {
7417 APValue::LValueBase Base = Value.getLValueBase();
7418 auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>());
7419 // For a non-type template-parameter of pointer or reference type,
7420 // the value of the constant expression shall not refer to
7421 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
7422 ParamType->isNullPtrType());
7423 // -- a temporary object
7424 // -- a string literal
7425 // -- the result of a typeid expression, or
7426 // -- a predefined __func__ variable
7427 if (Base &&
7428 (!VD ||
7429 isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(Val: VD))) {
7430 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref)
7431 << Arg->getSourceRange();
7432 return ExprError();
7433 }
7434
7435 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD &&
7436 VD->getType()->isArrayType() &&
7437 Value.getLValuePath()[0].getAsArrayIndex() == 0 &&
7438 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
7439 SugaredConverted = TemplateArgument(VD, ParamType);
7440 CanonicalConverted = TemplateArgument(
7441 cast<ValueDecl>(VD->getCanonicalDecl()), CanonParamType);
7442 return ArgResult.get();
7443 }
7444
7445 // -- a subobject [until C++20]
7446 if (!getLangOpts().CPlusPlus20) {
7447 if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
7448 Value.isLValueOnePastTheEnd()) {
7449 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
7450 << Value.getAsString(Context, ParamType);
7451 return ExprError();
7452 }
7453 assert((VD || !ParamType->isReferenceType()) &&
7454 "null reference should not be a constant expression");
7455 assert((!VD || !ParamType->isNullPtrType()) &&
7456 "non-null value of type nullptr_t?");
7457 }
7458 }
7459
7460 if (Value.isAddrLabelDiff())
7461 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
7462
7463 SugaredConverted = TemplateArgument(Context, ParamType, Value);
7464 CanonicalConverted = TemplateArgument(Context, CanonParamType, Value);
7465 return ArgResult.get();
7466 }
7467
7468 // C++ [temp.arg.nontype]p5:
7469 // The following conversions are performed on each expression used
7470 // as a non-type template-argument. If a non-type
7471 // template-argument cannot be converted to the type of the
7472 // corresponding template-parameter then the program is
7473 // ill-formed.
7474 if (ParamType->isIntegralOrEnumerationType()) {
7475 // C++11:
7476 // -- for a non-type template-parameter of integral or
7477 // enumeration type, conversions permitted in a converted
7478 // constant expression are applied.
7479 //
7480 // C++98:
7481 // -- for a non-type template-parameter of integral or
7482 // enumeration type, integral promotions (4.5) and integral
7483 // conversions (4.7) are applied.
7484
7485 if (getLangOpts().CPlusPlus11) {
7486 // C++ [temp.arg.nontype]p1:
7487 // A template-argument for a non-type, non-template template-parameter
7488 // shall be one of:
7489 //
7490 // -- for a non-type template-parameter of integral or enumeration
7491 // type, a converted constant expression of the type of the
7492 // template-parameter; or
7493 llvm::APSInt Value;
7494 ExprResult ArgResult =
7495 CheckConvertedConstantExpression(From: Arg, T: ParamType, Value,
7496 CCE: CCEK_TemplateArg);
7497 if (ArgResult.isInvalid())
7498 return ExprError();
7499
7500 // We can't check arbitrary value-dependent arguments.
7501 if (ArgResult.get()->isValueDependent()) {
7502 SugaredConverted = TemplateArgument(ArgResult.get());
7503 CanonicalConverted =
7504 Context.getCanonicalTemplateArgument(Arg: SugaredConverted);
7505 return ArgResult;
7506 }
7507
7508 // Widen the argument value to sizeof(parameter type). This is almost
7509 // always a no-op, except when the parameter type is bool. In
7510 // that case, this may extend the argument from 1 bit to 8 bits.
7511 QualType IntegerType = ParamType;
7512 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
7513 IntegerType = Enum->getDecl()->getIntegerType();
7514 Value = Value.extOrTrunc(width: IntegerType->isBitIntType()
7515 ? Context.getIntWidth(T: IntegerType)
7516 : Context.getTypeSize(T: IntegerType));
7517
7518 SugaredConverted = TemplateArgument(Context, Value, ParamType);
7519 CanonicalConverted =
7520 TemplateArgument(Context, Value, Context.getCanonicalType(T: ParamType));
7521 return ArgResult;
7522 }
7523
7524 ExprResult ArgResult = DefaultLvalueConversion(E: Arg);
7525 if (ArgResult.isInvalid())
7526 return ExprError();
7527 Arg = ArgResult.get();
7528
7529 QualType ArgType = Arg->getType();
7530
7531 // C++ [temp.arg.nontype]p1:
7532 // A template-argument for a non-type, non-template
7533 // template-parameter shall be one of:
7534 //
7535 // -- an integral constant-expression of integral or enumeration
7536 // type; or
7537 // -- the name of a non-type template-parameter; or
7538 llvm::APSInt Value;
7539 if (!ArgType->isIntegralOrEnumerationType()) {
7540 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral)
7541 << ArgType << Arg->getSourceRange();
7542 NoteTemplateParameterLocation(*Param);
7543 return ExprError();
7544 } else if (!Arg->isValueDependent()) {
7545 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
7546 QualType T;
7547
7548 public:
7549 TmplArgICEDiagnoser(QualType T) : T(T) { }
7550
7551 SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
7552 SourceLocation Loc) override {
7553 return S.Diag(Loc, diag::err_template_arg_not_ice) << T;
7554 }
7555 } Diagnoser(ArgType);
7556
7557 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get();
7558 if (!Arg)
7559 return ExprError();
7560 }
7561
7562 // From here on out, all we care about is the unqualified form
7563 // of the argument type.
7564 ArgType = ArgType.getUnqualifiedType();
7565
7566 // Try to convert the argument to the parameter's type.
7567 if (Context.hasSameType(T1: ParamType, T2: ArgType)) {
7568 // Okay: no conversion necessary
7569 } else if (ParamType->isBooleanType()) {
7570 // This is an integral-to-boolean conversion.
7571 Arg = ImpCastExprToType(E: Arg, Type: ParamType, CK: CK_IntegralToBoolean).get();
7572 } else if (IsIntegralPromotion(From: Arg, FromType: ArgType, ToType: ParamType) ||
7573 !ParamType->isEnumeralType()) {
7574 // This is an integral promotion or conversion.
7575 Arg = ImpCastExprToType(E: Arg, Type: ParamType, CK: CK_IntegralCast).get();
7576 } else {
7577 // We can't perform this conversion.
7578 Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible)
7579 << Arg->getType() << ParamType << Arg->getSourceRange();
7580 NoteTemplateParameterLocation(*Param);
7581 return ExprError();
7582 }
7583
7584 // Add the value of this argument to the list of converted
7585 // arguments. We use the bitwidth and signedness of the template
7586 // parameter.
7587 if (Arg->isValueDependent()) {
7588 // The argument is value-dependent. Create a new
7589 // TemplateArgument with the converted expression.
7590 SugaredConverted = TemplateArgument(Arg);
7591 CanonicalConverted =
7592 Context.getCanonicalTemplateArgument(Arg: SugaredConverted);
7593 return Arg;
7594 }
7595
7596 QualType IntegerType = ParamType;
7597 if (const EnumType *Enum = IntegerType->getAs<EnumType>()) {
7598 IntegerType = Enum->getDecl()->getIntegerType();
7599 }
7600
7601 if (ParamType->isBooleanType()) {
7602 // Value must be zero or one.
7603 Value = Value != 0;
7604 unsigned AllowedBits = Context.getTypeSize(T: IntegerType);
7605 if (Value.getBitWidth() != AllowedBits)
7606 Value = Value.extOrTrunc(width: AllowedBits);
7607 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7608 } else {
7609 llvm::APSInt OldValue = Value;
7610
7611 // Coerce the template argument's value to the value it will have
7612 // based on the template parameter's type.
7613 unsigned AllowedBits = IntegerType->isBitIntType()
7614 ? Context.getIntWidth(T: IntegerType)
7615 : Context.getTypeSize(T: IntegerType);
7616 if (Value.getBitWidth() != AllowedBits)
7617 Value = Value.extOrTrunc(width: AllowedBits);
7618 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
7619
7620 // Complain if an unsigned parameter received a negative value.
7621 if (IntegerType->isUnsignedIntegerOrEnumerationType() &&
7622 (OldValue.isSigned() && OldValue.isNegative())) {
7623 Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative)
7624 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7625 << Arg->getSourceRange();
7626 NoteTemplateParameterLocation(*Param);
7627 }
7628
7629 // Complain if we overflowed the template parameter's type.
7630 unsigned RequiredBits;
7631 if (IntegerType->isUnsignedIntegerOrEnumerationType())
7632 RequiredBits = OldValue.getActiveBits();
7633 else if (OldValue.isUnsigned())
7634 RequiredBits = OldValue.getActiveBits() + 1;
7635 else
7636 RequiredBits = OldValue.getSignificantBits();
7637 if (RequiredBits > AllowedBits) {
7638 Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large)
7639 << toString(OldValue, 10) << toString(Value, 10) << Param->getType()
7640 << Arg->getSourceRange();
7641 NoteTemplateParameterLocation(*Param);
7642 }
7643 }
7644
7645 QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType;
7646 SugaredConverted = TemplateArgument(Context, Value, T);
7647 CanonicalConverted =
7648 TemplateArgument(Context, Value, Context.getCanonicalType(T));
7649 return Arg;
7650 }
7651
7652 QualType ArgType = Arg->getType();
7653 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
7654
7655 // Handle pointer-to-function, reference-to-function, and
7656 // pointer-to-member-function all in (roughly) the same way.
7657 if (// -- For a non-type template-parameter of type pointer to
7658 // function, only the function-to-pointer conversion (4.3) is
7659 // applied. If the template-argument represents a set of
7660 // overloaded functions (or a pointer to such), the matching
7661 // function is selected from the set (13.4).
7662 (ParamType->isPointerType() &&
7663 ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) ||
7664 // -- For a non-type template-parameter of type reference to
7665 // function, no conversions apply. If the template-argument
7666 // represents a set of overloaded functions, the matching
7667 // function is selected from the set (13.4).
7668 (ParamType->isReferenceType() &&
7669 ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
7670 // -- For a non-type template-parameter of type pointer to
7671 // member function, no conversions apply. If the
7672 // template-argument represents a set of overloaded member
7673 // functions, the matching member function is selected from
7674 // the set (13.4).
7675 (ParamType->isMemberPointerType() &&
7676 ParamType->castAs<MemberPointerType>()->getPointeeType()
7677 ->isFunctionType())) {
7678
7679 if (Arg->getType() == Context.OverloadTy) {
7680 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: Arg, TargetType: ParamType,
7681 Complain: true,
7682 Found&: FoundResult)) {
7683 if (DiagnoseUseOfDecl(D: Fn, Locs: Arg->getBeginLoc()))
7684 return ExprError();
7685
7686 ExprResult Res = FixOverloadedFunctionReference(E: Arg, FoundDecl: FoundResult, Fn);
7687 if (Res.isInvalid())
7688 return ExprError();
7689 Arg = Res.get();
7690 ArgType = Arg->getType();
7691 } else
7692 return ExprError();
7693 }
7694
7695 if (!ParamType->isMemberPointerType()) {
7696 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7697 S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted,
7698 CanonicalConverted))
7699 return ExprError();
7700 return Arg;
7701 }
7702
7703 if (CheckTemplateArgumentPointerToMember(
7704 S&: *this, Param, ParamType, ResultArg&: Arg, SugaredConverted, CanonicalConverted))
7705 return ExprError();
7706 return Arg;
7707 }
7708
7709 if (ParamType->isPointerType()) {
7710 // -- for a non-type template-parameter of type pointer to
7711 // object, qualification conversions (4.4) and the
7712 // array-to-pointer conversion (4.2) are applied.
7713 // C++0x also allows a value of std::nullptr_t.
7714 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
7715 "Only object pointers allowed here");
7716
7717 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7718 S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, CanonicalConverted))
7719 return ExprError();
7720 return Arg;
7721 }
7722
7723 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
7724 // -- For a non-type template-parameter of type reference to
7725 // object, no conversions apply. The type referred to by the
7726 // reference may be more cv-qualified than the (otherwise
7727 // identical) type of the template-argument. The
7728 // template-parameter is bound directly to the
7729 // template-argument, which must be an lvalue.
7730 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
7731 "Only object references allowed here");
7732
7733 if (Arg->getType() == Context.OverloadTy) {
7734 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: Arg,
7735 TargetType: ParamRefType->getPointeeType(),
7736 Complain: true,
7737 Found&: FoundResult)) {
7738 if (DiagnoseUseOfDecl(D: Fn, Locs: Arg->getBeginLoc()))
7739 return ExprError();
7740 ExprResult Res = FixOverloadedFunctionReference(E: Arg, FoundDecl: FoundResult, Fn);
7741 if (Res.isInvalid())
7742 return ExprError();
7743 Arg = Res.get();
7744 ArgType = Arg->getType();
7745 } else
7746 return ExprError();
7747 }
7748
7749 if (CheckTemplateArgumentAddressOfObjectOrFunction(
7750 S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, CanonicalConverted))
7751 return ExprError();
7752 return Arg;
7753 }
7754
7755 // Deal with parameters of type std::nullptr_t.
7756 if (ParamType->isNullPtrType()) {
7757 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
7758 SugaredConverted = TemplateArgument(Arg);
7759 CanonicalConverted =
7760 Context.getCanonicalTemplateArgument(Arg: SugaredConverted);
7761 return Arg;
7762 }
7763
7764 switch (isNullPointerValueTemplateArgument(S&: *this, Param, ParamType, Arg)) {
7765 case NPV_NotNullPointer:
7766 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
7767 << Arg->getType() << ParamType;
7768 NoteTemplateParameterLocation(*Param);
7769 return ExprError();
7770
7771 case NPV_Error:
7772 return ExprError();
7773
7774 case NPV_NullPointer:
7775 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
7776 SugaredConverted = TemplateArgument(ParamType,
7777 /*isNullPtr=*/true);
7778 CanonicalConverted = TemplateArgument(Context.getCanonicalType(T: ParamType),
7779 /*isNullPtr=*/true);
7780 return Arg;
7781 }
7782 }
7783
7784 // -- For a non-type template-parameter of type pointer to data
7785 // member, qualification conversions (4.4) are applied.
7786 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
7787
7788 if (CheckTemplateArgumentPointerToMember(
7789 S&: *this, Param, ParamType, ResultArg&: Arg, SugaredConverted, CanonicalConverted))
7790 return ExprError();
7791 return Arg;
7792}
7793
7794static void DiagnoseTemplateParameterListArityMismatch(
7795 Sema &S, TemplateParameterList *New, TemplateParameterList *Old,
7796 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc);
7797
7798/// Check a template argument against its corresponding
7799/// template template parameter.
7800///
7801/// This routine implements the semantics of C++ [temp.arg.template].
7802/// It returns true if an error occurred, and false otherwise.
7803bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param,
7804 TemplateParameterList *Params,
7805 TemplateArgumentLoc &Arg) {
7806 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
7807 TemplateDecl *Template = Name.getAsTemplateDecl();
7808 if (!Template) {
7809 // Any dependent template name is fine.
7810 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
7811 return false;
7812 }
7813
7814 if (Template->isInvalidDecl())
7815 return true;
7816
7817 // C++0x [temp.arg.template]p1:
7818 // A template-argument for a template template-parameter shall be
7819 // the name of a class template or an alias template, expressed as an
7820 // id-expression. When the template-argument names a class template, only
7821 // primary class templates are considered when matching the
7822 // template template argument with the corresponding parameter;
7823 // partial specializations are not considered even if their
7824 // parameter lists match that of the template template parameter.
7825 //
7826 // Note that we also allow template template parameters here, which
7827 // will happen when we are dealing with, e.g., class template
7828 // partial specializations.
7829 if (!isa<ClassTemplateDecl>(Val: Template) &&
7830 !isa<TemplateTemplateParmDecl>(Val: Template) &&
7831 !isa<TypeAliasTemplateDecl>(Val: Template) &&
7832 !isa<BuiltinTemplateDecl>(Val: Template)) {
7833 assert(isa<FunctionTemplateDecl>(Template) &&
7834 "Only function templates are possible here");
7835 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
7836 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
7837 << Template;
7838 }
7839
7840 // C++1z [temp.arg.template]p3: (DR 150)
7841 // A template-argument matches a template template-parameter P when P
7842 // is at least as specialized as the template-argument A.
7843 // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a
7844 // defect report resolution from C++17 and shouldn't be introduced by
7845 // concepts.
7846 if (getLangOpts().RelaxedTemplateTemplateArgs) {
7847 // Quick check for the common case:
7848 // If P contains a parameter pack, then A [...] matches P if each of A's
7849 // template parameters matches the corresponding template parameter in
7850 // the template-parameter-list of P.
7851 if (TemplateParameterListsAreEqual(
7852 New: Template->getTemplateParameters(), Old: Params, Complain: false,
7853 Kind: TPL_TemplateTemplateArgumentMatch, TemplateArgLoc: Arg.getLocation()) &&
7854 // If the argument has no associated constraints, then the parameter is
7855 // definitely at least as specialized as the argument.
7856 // Otherwise - we need a more thorough check.
7857 !Template->hasAssociatedConstraints())
7858 return false;
7859
7860 if (isTemplateTemplateParameterAtLeastAsSpecializedAs(PParam: Params, AArg: Template,
7861 Loc: Arg.getLocation())) {
7862 // P2113
7863 // C++20[temp.func.order]p2
7864 // [...] If both deductions succeed, the partial ordering selects the
7865 // more constrained template (if one exists) as determined below.
7866 SmallVector<const Expr *, 3> ParamsAC, TemplateAC;
7867 Params->getAssociatedConstraints(AC&: ParamsAC);
7868 // C++2a[temp.arg.template]p3
7869 // [...] In this comparison, if P is unconstrained, the constraints on A
7870 // are not considered.
7871 if (ParamsAC.empty())
7872 return false;
7873
7874 Template->getAssociatedConstraints(AC&: TemplateAC);
7875
7876 bool IsParamAtLeastAsConstrained;
7877 if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC,
7878 IsParamAtLeastAsConstrained))
7879 return true;
7880 if (!IsParamAtLeastAsConstrained) {
7881 Diag(Arg.getLocation(),
7882 diag::err_template_template_parameter_not_at_least_as_constrained)
7883 << Template << Param << Arg.getSourceRange();
7884 Diag(Param->getLocation(), diag::note_entity_declared_at) << Param;
7885 Diag(Template->getLocation(), diag::note_entity_declared_at)
7886 << Template;
7887 MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template,
7888 TemplateAC);
7889 return true;
7890 }
7891 return false;
7892 }
7893 // FIXME: Produce better diagnostics for deduction failures.
7894 }
7895
7896 return !TemplateParameterListsAreEqual(New: Template->getTemplateParameters(),
7897 Old: Params,
7898 Complain: true,
7899 Kind: TPL_TemplateTemplateArgumentMatch,
7900 TemplateArgLoc: Arg.getLocation());
7901}
7902
7903static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl,
7904 unsigned HereDiagID,
7905 unsigned ExternalDiagID) {
7906 if (Decl.getLocation().isValid())
7907 return S.Diag(Decl.getLocation(), HereDiagID);
7908
7909 SmallString<128> Str;
7910 llvm::raw_svector_ostream Out(Str);
7911 PrintingPolicy PP = S.getPrintingPolicy();
7912 PP.TerseOutput = 1;
7913 Decl.print(Out, PP);
7914 return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str();
7915}
7916
7917void Sema::NoteTemplateLocation(const NamedDecl &Decl,
7918 std::optional<SourceRange> ParamRange) {
7919 SemaDiagnosticBuilder DB =
7920 noteLocation(*this, Decl, diag::note_template_decl_here,
7921 diag::note_template_decl_external);
7922 if (ParamRange && ParamRange->isValid()) {
7923 assert(Decl.getLocation().isValid() &&
7924 "Parameter range has location when Decl does not");
7925 DB << *ParamRange;
7926 }
7927}
7928
7929void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) {
7930 noteLocation(*this, Decl, diag::note_template_param_here,
7931 diag::note_template_param_external);
7932}
7933
7934/// Given a non-type template argument that refers to a
7935/// declaration and the type of its corresponding non-type template
7936/// parameter, produce an expression that properly refers to that
7937/// declaration.
7938ExprResult
7939Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
7940 QualType ParamType,
7941 SourceLocation Loc) {
7942 // C++ [temp.param]p8:
7943 //
7944 // A non-type template-parameter of type "array of T" or
7945 // "function returning T" is adjusted to be of type "pointer to
7946 // T" or "pointer to function returning T", respectively.
7947 if (ParamType->isArrayType())
7948 ParamType = Context.getArrayDecayedType(T: ParamType);
7949 else if (ParamType->isFunctionType())
7950 ParamType = Context.getPointerType(T: ParamType);
7951
7952 // For a NULL non-type template argument, return nullptr casted to the
7953 // parameter's type.
7954 if (Arg.getKind() == TemplateArgument::NullPtr) {
7955 return ImpCastExprToType(
7956 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
7957 ParamType,
7958 ParamType->getAs<MemberPointerType>()
7959 ? CK_NullToMemberPointer
7960 : CK_NullToPointer);
7961 }
7962 assert(Arg.getKind() == TemplateArgument::Declaration &&
7963 "Only declaration template arguments permitted here");
7964
7965 ValueDecl *VD = Arg.getAsDecl();
7966
7967 CXXScopeSpec SS;
7968 if (ParamType->isMemberPointerType()) {
7969 // If this is a pointer to member, we need to use a qualified name to
7970 // form a suitable pointer-to-member constant.
7971 assert(VD->getDeclContext()->isRecord() &&
7972 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
7973 isa<IndirectFieldDecl>(VD)));
7974 QualType ClassType
7975 = Context.getTypeDeclType(Decl: cast<RecordDecl>(VD->getDeclContext()));
7976 NestedNameSpecifier *Qualifier
7977 = NestedNameSpecifier::Create(Context, Prefix: nullptr, Template: false,
7978 T: ClassType.getTypePtr());
7979 SS.MakeTrivial(Context, Qualifier, R: Loc);
7980 }
7981
7982 ExprResult RefExpr = BuildDeclarationNameExpr(
7983 SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD);
7984 if (RefExpr.isInvalid())
7985 return ExprError();
7986
7987 // For a pointer, the argument declaration is the pointee. Take its address.
7988 QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0);
7989 if (ParamType->isPointerType() && !ElemT.isNull() &&
7990 Context.hasSimilarType(T1: ElemT, T2: ParamType->getPointeeType())) {
7991 // Decay an array argument if we want a pointer to its first element.
7992 RefExpr = DefaultFunctionArrayConversion(E: RefExpr.get());
7993 if (RefExpr.isInvalid())
7994 return ExprError();
7995 } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) {
7996 // For any other pointer, take the address (or form a pointer-to-member).
7997 RefExpr = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_AddrOf, InputExpr: RefExpr.get());
7998 if (RefExpr.isInvalid())
7999 return ExprError();
8000 } else if (ParamType->isRecordType()) {
8001 assert(isa<TemplateParamObjectDecl>(VD) &&
8002 "arg for class template param not a template parameter object");
8003 // No conversions apply in this case.
8004 return RefExpr;
8005 } else {
8006 assert(ParamType->isReferenceType() &&
8007 "unexpected type for decl template argument");
8008 }
8009
8010 // At this point we should have the right value category.
8011 assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() &&
8012 "value kind mismatch for non-type template argument");
8013
8014 // The type of the template parameter can differ from the type of the
8015 // argument in various ways; convert it now if necessary.
8016 QualType DestExprType = ParamType.getNonLValueExprType(Context);
8017 if (!Context.hasSameType(T1: RefExpr.get()->getType(), T2: DestExprType)) {
8018 CastKind CK;
8019 QualType Ignored;
8020 if (Context.hasSimilarType(T1: RefExpr.get()->getType(), T2: DestExprType) ||
8021 IsFunctionConversion(FromType: RefExpr.get()->getType(), ToType: DestExprType, ResultTy&: Ignored)) {
8022 CK = CK_NoOp;
8023 } else if (ParamType->isVoidPointerType() &&
8024 RefExpr.get()->getType()->isPointerType()) {
8025 CK = CK_BitCast;
8026 } else {
8027 // FIXME: Pointers to members can need conversion derived-to-base or
8028 // base-to-derived conversions. We currently don't retain enough
8029 // information to convert properly (we need to track a cast path or
8030 // subobject number in the template argument).
8031 llvm_unreachable(
8032 "unexpected conversion required for non-type template argument");
8033 }
8034 RefExpr = ImpCastExprToType(E: RefExpr.get(), Type: DestExprType, CK,
8035 VK: RefExpr.get()->getValueKind());
8036 }
8037
8038 return RefExpr;
8039}
8040
8041/// Construct a new expression that refers to the given
8042/// integral template argument with the given source-location
8043/// information.
8044///
8045/// This routine takes care of the mapping from an integral template
8046/// argument (which may have any integral type) to the appropriate
8047/// literal value.
8048static Expr *BuildExpressionFromIntegralTemplateArgumentValue(
8049 Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) {
8050 assert(OrigT->isIntegralOrEnumerationType());
8051
8052 // If this is an enum type that we're instantiating, we need to use an integer
8053 // type the same size as the enumerator. We don't want to build an
8054 // IntegerLiteral with enum type. The integer type of an enum type can be of
8055 // any integral type with C++11 enum classes, make sure we create the right
8056 // type of literal for it.
8057 QualType T = OrigT;
8058 if (const EnumType *ET = OrigT->getAs<EnumType>())
8059 T = ET->getDecl()->getIntegerType();
8060
8061 Expr *E;
8062 if (T->isAnyCharacterType()) {
8063 CharacterLiteralKind Kind;
8064 if (T->isWideCharType())
8065 Kind = CharacterLiteralKind::Wide;
8066 else if (T->isChar8Type() && S.getLangOpts().Char8)
8067 Kind = CharacterLiteralKind::UTF8;
8068 else if (T->isChar16Type())
8069 Kind = CharacterLiteralKind::UTF16;
8070 else if (T->isChar32Type())
8071 Kind = CharacterLiteralKind::UTF32;
8072 else
8073 Kind = CharacterLiteralKind::Ascii;
8074
8075 E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc);
8076 } else if (T->isBooleanType()) {
8077 E = CXXBoolLiteralExpr::Create(C: S.Context, Val: Int.getBoolValue(), Ty: T, Loc);
8078 } else {
8079 E = IntegerLiteral::Create(C: S.Context, V: Int, type: T, l: Loc);
8080 }
8081
8082 if (OrigT->isEnumeralType()) {
8083 // FIXME: This is a hack. We need a better way to handle substituted
8084 // non-type template parameters.
8085 E = CStyleCastExpr::Create(Context: S.Context, T: OrigT, VK: VK_PRValue, K: CK_IntegralCast, Op: E,
8086 BasePath: nullptr, FPO: S.CurFPFeatureOverrides(),
8087 WrittenTy: S.Context.getTrivialTypeSourceInfo(T: OrigT, Loc),
8088 L: Loc, R: Loc);
8089 }
8090
8091 return E;
8092}
8093
8094static Expr *BuildExpressionFromNonTypeTemplateArgumentValue(
8095 Sema &S, QualType T, const APValue &Val, SourceLocation Loc) {
8096 auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * {
8097 auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc);
8098 ILE->setType(T);
8099 return ILE;
8100 };
8101
8102 switch (Val.getKind()) {
8103 case APValue::AddrLabelDiff:
8104 // This cannot occur in a template argument at all.
8105 case APValue::Array:
8106 case APValue::Struct:
8107 case APValue::Union:
8108 // These can only occur within a template parameter object, which is
8109 // represented as a TemplateArgument::Declaration.
8110 llvm_unreachable("unexpected template argument value");
8111
8112 case APValue::Int:
8113 return BuildExpressionFromIntegralTemplateArgumentValue(S, OrigT: T, Int: Val.getInt(),
8114 Loc);
8115
8116 case APValue::Float:
8117 return FloatingLiteral::Create(C: S.Context, V: Val.getFloat(), /*IsExact=*/isexact: true,
8118 Type: T, L: Loc);
8119
8120 case APValue::FixedPoint:
8121 return FixedPointLiteral::CreateFromRawInt(
8122 C: S.Context, V: Val.getFixedPoint().getValue(), type: T, l: Loc,
8123 Scale: Val.getFixedPoint().getScale());
8124
8125 case APValue::ComplexInt: {
8126 QualType ElemT = T->castAs<ComplexType>()->getElementType();
8127 return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue(
8128 S, OrigT: ElemT, Int: Val.getComplexIntReal(), Loc),
8129 BuildExpressionFromIntegralTemplateArgumentValue(
8130 S, OrigT: ElemT, Int: Val.getComplexIntImag(), Loc)});
8131 }
8132
8133 case APValue::ComplexFloat: {
8134 QualType ElemT = T->castAs<ComplexType>()->getElementType();
8135 return MakeInitList(
8136 {FloatingLiteral::Create(C: S.Context, V: Val.getComplexFloatReal(), isexact: true,
8137 Type: ElemT, L: Loc),
8138 FloatingLiteral::Create(C: S.Context, V: Val.getComplexFloatImag(), isexact: true,
8139 Type: ElemT, L: Loc)});
8140 }
8141
8142 case APValue::Vector: {
8143 QualType ElemT = T->castAs<VectorType>()->getElementType();
8144 llvm::SmallVector<Expr *, 8> Elts;
8145 for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I)
8146 Elts.push_back(Elt: BuildExpressionFromNonTypeTemplateArgumentValue(
8147 S, T: ElemT, Val: Val.getVectorElt(I), Loc));
8148 return MakeInitList(Elts);
8149 }
8150
8151 case APValue::None:
8152 case APValue::Indeterminate:
8153 llvm_unreachable("Unexpected APValue kind.");
8154 case APValue::LValue:
8155 case APValue::MemberPointer:
8156 // There isn't necessarily a valid equivalent source-level syntax for
8157 // these; in particular, a naive lowering might violate access control.
8158 // So for now we lower to a ConstantExpr holding the value, wrapped around
8159 // an OpaqueValueExpr.
8160 // FIXME: We should have a better representation for this.
8161 ExprValueKind VK = VK_PRValue;
8162 if (T->isReferenceType()) {
8163 T = T->getPointeeType();
8164 VK = VK_LValue;
8165 }
8166 auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK);
8167 return ConstantExpr::Create(S.Context, OVE, Val);
8168 }
8169 llvm_unreachable("Unhandled APValue::ValueKind enum");
8170}
8171
8172ExprResult
8173Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg,
8174 SourceLocation Loc) {
8175 switch (Arg.getKind()) {
8176 case TemplateArgument::Null:
8177 case TemplateArgument::Type:
8178 case TemplateArgument::Template:
8179 case TemplateArgument::TemplateExpansion:
8180 case TemplateArgument::Pack:
8181 llvm_unreachable("not a non-type template argument");
8182
8183 case TemplateArgument::Expression:
8184 return Arg.getAsExpr();
8185
8186 case TemplateArgument::NullPtr:
8187 case TemplateArgument::Declaration:
8188 return BuildExpressionFromDeclTemplateArgument(
8189 Arg, ParamType: Arg.getNonTypeTemplateArgumentType(), Loc);
8190
8191 case TemplateArgument::Integral:
8192 return BuildExpressionFromIntegralTemplateArgumentValue(
8193 S&: *this, OrigT: Arg.getIntegralType(), Int: Arg.getAsIntegral(), Loc);
8194
8195 case TemplateArgument::StructuralValue:
8196 return BuildExpressionFromNonTypeTemplateArgumentValue(
8197 S&: *this, T: Arg.getStructuralValueType(), Val: Arg.getAsStructuralValue(), Loc);
8198 }
8199 llvm_unreachable("Unhandled TemplateArgument::ArgKind enum");
8200}
8201
8202/// Match two template parameters within template parameter lists.
8203static bool MatchTemplateParameterKind(
8204 Sema &S, NamedDecl *New,
8205 const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old,
8206 const NamedDecl *OldInstFrom, bool Complain,
8207 Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8208 // Check the actual kind (type, non-type, template).
8209 if (Old->getKind() != New->getKind()) {
8210 if (Complain) {
8211 unsigned NextDiag = diag::err_template_param_different_kind;
8212 if (TemplateArgLoc.isValid()) {
8213 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8214 NextDiag = diag::note_template_param_different_kind;
8215 }
8216 S.Diag(New->getLocation(), NextDiag)
8217 << (Kind != Sema::TPL_TemplateMatch);
8218 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
8219 << (Kind != Sema::TPL_TemplateMatch);
8220 }
8221
8222 return false;
8223 }
8224
8225 // Check that both are parameter packs or neither are parameter packs.
8226 // However, if we are matching a template template argument to a
8227 // template template parameter, the template template parameter can have
8228 // a parameter pack where the template template argument does not.
8229 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
8230 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
8231 Old->isTemplateParameterPack())) {
8232 if (Complain) {
8233 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
8234 if (TemplateArgLoc.isValid()) {
8235 S.Diag(TemplateArgLoc,
8236 diag::err_template_arg_template_params_mismatch);
8237 NextDiag = diag::note_template_parameter_pack_non_pack;
8238 }
8239
8240 unsigned ParamKind = isa<TemplateTypeParmDecl>(Val: New)? 0
8241 : isa<NonTypeTemplateParmDecl>(Val: New)? 1
8242 : 2;
8243 S.Diag(New->getLocation(), NextDiag)
8244 << ParamKind << New->isParameterPack();
8245 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
8246 << ParamKind << Old->isParameterPack();
8247 }
8248
8249 return false;
8250 }
8251
8252 // For non-type template parameters, check the type of the parameter.
8253 if (NonTypeTemplateParmDecl *OldNTTP
8254 = dyn_cast<NonTypeTemplateParmDecl>(Val: Old)) {
8255 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(Val: New);
8256
8257 // If we are matching a template template argument to a template
8258 // template parameter and one of the non-type template parameter types
8259 // is dependent, then we must wait until template instantiation time
8260 // to actually compare the arguments.
8261 if (Kind != Sema::TPL_TemplateTemplateArgumentMatch ||
8262 (!OldNTTP->getType()->isDependentType() &&
8263 !NewNTTP->getType()->isDependentType())) {
8264 // C++20 [temp.over.link]p6:
8265 // Two [non-type] template-parameters are equivalent [if] they have
8266 // equivalent types ignoring the use of type-constraints for
8267 // placeholder types
8268 QualType OldType = S.Context.getUnconstrainedType(T: OldNTTP->getType());
8269 QualType NewType = S.Context.getUnconstrainedType(T: NewNTTP->getType());
8270 if (!S.Context.hasSameType(T1: OldType, T2: NewType)) {
8271 if (Complain) {
8272 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
8273 if (TemplateArgLoc.isValid()) {
8274 S.Diag(TemplateArgLoc,
8275 diag::err_template_arg_template_params_mismatch);
8276 NextDiag = diag::note_template_nontype_parm_different_type;
8277 }
8278 S.Diag(NewNTTP->getLocation(), NextDiag)
8279 << NewNTTP->getType()
8280 << (Kind != Sema::TPL_TemplateMatch);
8281 S.Diag(OldNTTP->getLocation(),
8282 diag::note_template_nontype_parm_prev_declaration)
8283 << OldNTTP->getType();
8284 }
8285
8286 return false;
8287 }
8288 }
8289 }
8290 // For template template parameters, check the template parameter types.
8291 // The template parameter lists of template template
8292 // parameters must agree.
8293 else if (TemplateTemplateParmDecl *OldTTP =
8294 dyn_cast<TemplateTemplateParmDecl>(Val: Old)) {
8295 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(Val: New);
8296 if (!S.TemplateParameterListsAreEqual(
8297 NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom,
8298 OldTTP->getTemplateParameters(), Complain,
8299 (Kind == Sema::TPL_TemplateMatch
8300 ? Sema::TPL_TemplateTemplateParmMatch
8301 : Kind),
8302 TemplateArgLoc))
8303 return false;
8304 }
8305
8306 if (Kind != Sema::TPL_TemplateParamsEquivalent &&
8307 Kind != Sema::TPL_TemplateTemplateArgumentMatch &&
8308 !isa<TemplateTemplateParmDecl>(Val: Old)) {
8309 const Expr *NewC = nullptr, *OldC = nullptr;
8310
8311 if (isa<TemplateTypeParmDecl>(Val: New)) {
8312 if (const auto *TC = cast<TemplateTypeParmDecl>(Val: New)->getTypeConstraint())
8313 NewC = TC->getImmediatelyDeclaredConstraint();
8314 if (const auto *TC = cast<TemplateTypeParmDecl>(Val: Old)->getTypeConstraint())
8315 OldC = TC->getImmediatelyDeclaredConstraint();
8316 } else if (isa<NonTypeTemplateParmDecl>(Val: New)) {
8317 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Val: New)
8318 ->getPlaceholderTypeConstraint())
8319 NewC = E;
8320 if (const Expr *E = cast<NonTypeTemplateParmDecl>(Val: Old)
8321 ->getPlaceholderTypeConstraint())
8322 OldC = E;
8323 } else
8324 llvm_unreachable("unexpected template parameter type");
8325
8326 auto Diagnose = [&] {
8327 S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(),
8328 diag::err_template_different_type_constraint);
8329 S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(),
8330 diag::note_template_prev_declaration) << /*declaration*/0;
8331 };
8332
8333 if (!NewC != !OldC) {
8334 if (Complain)
8335 Diagnose();
8336 return false;
8337 }
8338
8339 if (NewC) {
8340 if (!S.AreConstraintExpressionsEqual(Old: OldInstFrom, OldConstr: OldC, New: NewInstFrom,
8341 NewConstr: NewC)) {
8342 if (Complain)
8343 Diagnose();
8344 return false;
8345 }
8346 }
8347 }
8348
8349 return true;
8350}
8351
8352/// Diagnose a known arity mismatch when comparing template argument
8353/// lists.
8354static
8355void DiagnoseTemplateParameterListArityMismatch(Sema &S,
8356 TemplateParameterList *New,
8357 TemplateParameterList *Old,
8358 Sema::TemplateParameterListEqualKind Kind,
8359 SourceLocation TemplateArgLoc) {
8360 unsigned NextDiag = diag::err_template_param_list_different_arity;
8361 if (TemplateArgLoc.isValid()) {
8362 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
8363 NextDiag = diag::note_template_param_list_different_arity;
8364 }
8365 S.Diag(Loc: New->getTemplateLoc(), DiagID: NextDiag)
8366 << (New->size() > Old->size())
8367 << (Kind != Sema::TPL_TemplateMatch)
8368 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
8369 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
8370 << (Kind != Sema::TPL_TemplateMatch)
8371 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
8372}
8373
8374/// Determine whether the given template parameter lists are
8375/// equivalent.
8376///
8377/// \param New The new template parameter list, typically written in the
8378/// source code as part of a new template declaration.
8379///
8380/// \param Old The old template parameter list, typically found via
8381/// name lookup of the template declared with this template parameter
8382/// list.
8383///
8384/// \param Complain If true, this routine will produce a diagnostic if
8385/// the template parameter lists are not equivalent.
8386///
8387/// \param Kind describes how we are to match the template parameter lists.
8388///
8389/// \param TemplateArgLoc If this source location is valid, then we
8390/// are actually checking the template parameter list of a template
8391/// argument (New) against the template parameter list of its
8392/// corresponding template template parameter (Old). We produce
8393/// slightly different diagnostics in this scenario.
8394///
8395/// \returns True if the template parameter lists are equal, false
8396/// otherwise.
8397bool Sema::TemplateParameterListsAreEqual(
8398 const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New,
8399 const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain,
8400 TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) {
8401 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
8402 if (Complain)
8403 DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind,
8404 TemplateArgLoc);
8405
8406 return false;
8407 }
8408
8409 // C++0x [temp.arg.template]p3:
8410 // A template-argument matches a template template-parameter (call it P)
8411 // when each of the template parameters in the template-parameter-list of
8412 // the template-argument's corresponding class template or alias template
8413 // (call it A) matches the corresponding template parameter in the
8414 // template-parameter-list of P. [...]
8415 TemplateParameterList::iterator NewParm = New->begin();
8416 TemplateParameterList::iterator NewParmEnd = New->end();
8417 for (TemplateParameterList::iterator OldParm = Old->begin(),
8418 OldParmEnd = Old->end();
8419 OldParm != OldParmEnd; ++OldParm) {
8420 if (Kind != TPL_TemplateTemplateArgumentMatch ||
8421 !(*OldParm)->isTemplateParameterPack()) {
8422 if (NewParm == NewParmEnd) {
8423 if (Complain)
8424 DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind,
8425 TemplateArgLoc);
8426
8427 return false;
8428 }
8429
8430 if (!MatchTemplateParameterKind(S&: *this, New: *NewParm, NewInstFrom, Old: *OldParm,
8431 OldInstFrom, Complain, Kind,
8432 TemplateArgLoc))
8433 return false;
8434
8435 ++NewParm;
8436 continue;
8437 }
8438
8439 // C++0x [temp.arg.template]p3:
8440 // [...] When P's template- parameter-list contains a template parameter
8441 // pack (14.5.3), the template parameter pack will match zero or more
8442 // template parameters or template parameter packs in the
8443 // template-parameter-list of A with the same type and form as the
8444 // template parameter pack in P (ignoring whether those template
8445 // parameters are template parameter packs).
8446 for (; NewParm != NewParmEnd; ++NewParm) {
8447 if (!MatchTemplateParameterKind(S&: *this, New: *NewParm, NewInstFrom, Old: *OldParm,
8448 OldInstFrom, Complain, Kind,
8449 TemplateArgLoc))
8450 return false;
8451 }
8452 }
8453
8454 // Make sure we exhausted all of the arguments.
8455 if (NewParm != NewParmEnd) {
8456 if (Complain)
8457 DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind,
8458 TemplateArgLoc);
8459
8460 return false;
8461 }
8462
8463 if (Kind != TPL_TemplateTemplateArgumentMatch &&
8464 Kind != TPL_TemplateParamsEquivalent) {
8465 const Expr *NewRC = New->getRequiresClause();
8466 const Expr *OldRC = Old->getRequiresClause();
8467
8468 auto Diagnose = [&] {
8469 Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(),
8470 diag::err_template_different_requires_clause);
8471 Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(),
8472 diag::note_template_prev_declaration) << /*declaration*/0;
8473 };
8474
8475 if (!NewRC != !OldRC) {
8476 if (Complain)
8477 Diagnose();
8478 return false;
8479 }
8480
8481 if (NewRC) {
8482 if (!AreConstraintExpressionsEqual(Old: OldInstFrom, OldConstr: OldRC, New: NewInstFrom,
8483 NewConstr: NewRC)) {
8484 if (Complain)
8485 Diagnose();
8486 return false;
8487 }
8488 }
8489 }
8490
8491 return true;
8492}
8493
8494/// Check whether a template can be declared within this scope.
8495///
8496/// If the template declaration is valid in this scope, returns
8497/// false. Otherwise, issues a diagnostic and returns true.
8498bool
8499Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
8500 if (!S)
8501 return false;
8502
8503 // Find the nearest enclosing declaration scope.
8504 while ((S->getFlags() & Scope::DeclScope) == 0 ||
8505 (S->getFlags() & Scope::TemplateParamScope) != 0)
8506 S = S->getParent();
8507
8508 // C++ [temp.pre]p6: [P2096]
8509 // A template, explicit specialization, or partial specialization shall not
8510 // have C linkage.
8511 DeclContext *Ctx = S->getEntity();
8512 if (Ctx && Ctx->isExternCContext()) {
8513 Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
8514 << TemplateParams->getSourceRange();
8515 if (const LinkageSpecDecl *LSD = Ctx->getExternCContext())
8516 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
8517 return true;
8518 }
8519 Ctx = Ctx ? Ctx->getRedeclContext() : nullptr;
8520
8521 // C++ [temp]p2:
8522 // A template-declaration can appear only as a namespace scope or
8523 // class scope declaration.
8524 // C++ [temp.expl.spec]p3:
8525 // An explicit specialization may be declared in any scope in which the
8526 // corresponding primary template may be defined.
8527 // C++ [temp.class.spec]p6: [P2096]
8528 // A partial specialization may be declared in any scope in which the
8529 // corresponding primary template may be defined.
8530 if (Ctx) {
8531 if (Ctx->isFileContext())
8532 return false;
8533 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: Ctx)) {
8534 // C++ [temp.mem]p2:
8535 // A local class shall not have member templates.
8536 if (RD->isLocalClass())
8537 return Diag(TemplateParams->getTemplateLoc(),
8538 diag::err_template_inside_local_class)
8539 << TemplateParams->getSourceRange();
8540 else
8541 return false;
8542 }
8543 }
8544
8545 return Diag(TemplateParams->getTemplateLoc(),
8546 diag::err_template_outside_namespace_or_class_scope)
8547 << TemplateParams->getSourceRange();
8548}
8549
8550/// Determine what kind of template specialization the given declaration
8551/// is.
8552static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
8553 if (!D)
8554 return TSK_Undeclared;
8555
8556 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: D))
8557 return Record->getTemplateSpecializationKind();
8558 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: D))
8559 return Function->getTemplateSpecializationKind();
8560 if (VarDecl *Var = dyn_cast<VarDecl>(Val: D))
8561 return Var->getTemplateSpecializationKind();
8562
8563 return TSK_Undeclared;
8564}
8565
8566/// Check whether a specialization is well-formed in the current
8567/// context.
8568///
8569/// This routine determines whether a template specialization can be declared
8570/// in the current context (C++ [temp.expl.spec]p2).
8571///
8572/// \param S the semantic analysis object for which this check is being
8573/// performed.
8574///
8575/// \param Specialized the entity being specialized or instantiated, which
8576/// may be a kind of template (class template, function template, etc.) or
8577/// a member of a class template (member function, static data member,
8578/// member class).
8579///
8580/// \param PrevDecl the previous declaration of this entity, if any.
8581///
8582/// \param Loc the location of the explicit specialization or instantiation of
8583/// this entity.
8584///
8585/// \param IsPartialSpecialization whether this is a partial specialization of
8586/// a class template.
8587///
8588/// \returns true if there was an error that we cannot recover from, false
8589/// otherwise.
8590static bool CheckTemplateSpecializationScope(Sema &S,
8591 NamedDecl *Specialized,
8592 NamedDecl *PrevDecl,
8593 SourceLocation Loc,
8594 bool IsPartialSpecialization) {
8595 // Keep these "kind" numbers in sync with the %select statements in the
8596 // various diagnostics emitted by this routine.
8597 int EntityKind = 0;
8598 if (isa<ClassTemplateDecl>(Val: Specialized))
8599 EntityKind = IsPartialSpecialization? 1 : 0;
8600 else if (isa<VarTemplateDecl>(Val: Specialized))
8601 EntityKind = IsPartialSpecialization ? 3 : 2;
8602 else if (isa<FunctionTemplateDecl>(Val: Specialized))
8603 EntityKind = 4;
8604 else if (isa<CXXMethodDecl>(Val: Specialized))
8605 EntityKind = 5;
8606 else if (isa<VarDecl>(Val: Specialized))
8607 EntityKind = 6;
8608 else if (isa<RecordDecl>(Val: Specialized))
8609 EntityKind = 7;
8610 else if (isa<EnumDecl>(Val: Specialized) && S.getLangOpts().CPlusPlus11)
8611 EntityKind = 8;
8612 else {
8613 S.Diag(Loc, diag::err_template_spec_unknown_kind)
8614 << S.getLangOpts().CPlusPlus11;
8615 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8616 return true;
8617 }
8618
8619 // C++ [temp.expl.spec]p2:
8620 // An explicit specialization may be declared in any scope in which
8621 // the corresponding primary template may be defined.
8622 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8623 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
8624 << Specialized;
8625 return true;
8626 }
8627
8628 // C++ [temp.class.spec]p6:
8629 // A class template partial specialization may be declared in any
8630 // scope in which the primary template may be defined.
8631 DeclContext *SpecializedContext =
8632 Specialized->getDeclContext()->getRedeclContext();
8633 DeclContext *DC = S.CurContext->getRedeclContext();
8634
8635 // Make sure that this redeclaration (or definition) occurs in the same
8636 // scope or an enclosing namespace.
8637 if (!(DC->isFileContext() ? DC->Encloses(DC: SpecializedContext)
8638 : DC->Equals(DC: SpecializedContext))) {
8639 if (isa<TranslationUnitDecl>(Val: SpecializedContext))
8640 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
8641 << EntityKind << Specialized;
8642 else {
8643 auto *ND = cast<NamedDecl>(Val: SpecializedContext);
8644 int Diag = diag::err_template_spec_redecl_out_of_scope;
8645 if (S.getLangOpts().MicrosoftExt && !DC->isRecord())
8646 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
8647 S.Diag(Loc, DiagID: Diag) << EntityKind << Specialized
8648 << ND << isa<CXXRecordDecl>(ND);
8649 }
8650
8651 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
8652
8653 // Don't allow specializing in the wrong class during error recovery.
8654 // Otherwise, things can go horribly wrong.
8655 if (DC->isRecord())
8656 return true;
8657 }
8658
8659 return false;
8660}
8661
8662static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) {
8663 if (!E->isTypeDependent())
8664 return SourceLocation();
8665 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8666 Checker.TraverseStmt(E);
8667 if (Checker.MatchLoc.isInvalid())
8668 return E->getSourceRange();
8669 return Checker.MatchLoc;
8670}
8671
8672static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
8673 if (!TL.getType()->isDependentType())
8674 return SourceLocation();
8675 DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true);
8676 Checker.TraverseTypeLoc(TL);
8677 if (Checker.MatchLoc.isInvalid())
8678 return TL.getSourceRange();
8679 return Checker.MatchLoc;
8680}
8681
8682/// Subroutine of Sema::CheckTemplatePartialSpecializationArgs
8683/// that checks non-type template partial specialization arguments.
8684static bool CheckNonTypeTemplatePartialSpecializationArgs(
8685 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
8686 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
8687 for (unsigned I = 0; I != NumArgs; ++I) {
8688 if (Args[I].getKind() == TemplateArgument::Pack) {
8689 if (CheckNonTypeTemplatePartialSpecializationArgs(
8690 S, TemplateNameLoc, Param, Args: Args[I].pack_begin(),
8691 NumArgs: Args[I].pack_size(), IsDefaultArgument))
8692 return true;
8693
8694 continue;
8695 }
8696
8697 if (Args[I].getKind() != TemplateArgument::Expression)
8698 continue;
8699
8700 Expr *ArgExpr = Args[I].getAsExpr();
8701
8702 // We can have a pack expansion of any of the bullets below.
8703 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Val: ArgExpr))
8704 ArgExpr = Expansion->getPattern();
8705
8706 // Strip off any implicit casts we added as part of type checking.
8707 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgExpr))
8708 ArgExpr = ICE->getSubExpr();
8709
8710 // C++ [temp.class.spec]p8:
8711 // A non-type argument is non-specialized if it is the name of a
8712 // non-type parameter. All other non-type arguments are
8713 // specialized.
8714 //
8715 // Below, we check the two conditions that only apply to
8716 // specialized non-type arguments, so skip any non-specialized
8717 // arguments.
8718 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: ArgExpr))
8719 if (isa<NonTypeTemplateParmDecl>(Val: DRE->getDecl()))
8720 continue;
8721
8722 // C++ [temp.class.spec]p9:
8723 // Within the argument list of a class template partial
8724 // specialization, the following restrictions apply:
8725 // -- A partially specialized non-type argument expression
8726 // shall not involve a template parameter of the partial
8727 // specialization except when the argument expression is a
8728 // simple identifier.
8729 // -- The type of a template parameter corresponding to a
8730 // specialized non-type argument shall not be dependent on a
8731 // parameter of the specialization.
8732 // DR1315 removes the first bullet, leaving an incoherent set of rules.
8733 // We implement a compromise between the original rules and DR1315:
8734 // -- A specialized non-type template argument shall not be
8735 // type-dependent and the corresponding template parameter
8736 // shall have a non-dependent type.
8737 SourceRange ParamUseRange =
8738 findTemplateParameterInType(Param->getDepth(), ArgExpr);
8739 if (ParamUseRange.isValid()) {
8740 if (IsDefaultArgument) {
8741 S.Diag(TemplateNameLoc,
8742 diag::err_dependent_non_type_arg_in_partial_spec);
8743 S.Diag(ParamUseRange.getBegin(),
8744 diag::note_dependent_non_type_default_arg_in_partial_spec)
8745 << ParamUseRange;
8746 } else {
8747 S.Diag(ParamUseRange.getBegin(),
8748 diag::err_dependent_non_type_arg_in_partial_spec)
8749 << ParamUseRange;
8750 }
8751 return true;
8752 }
8753
8754 ParamUseRange = findTemplateParameter(
8755 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
8756 if (ParamUseRange.isValid()) {
8757 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(),
8758 diag::err_dependent_typed_non_type_arg_in_partial_spec)
8759 << Param->getType();
8760 S.NoteTemplateParameterLocation(*Param);
8761 return true;
8762 }
8763 }
8764
8765 return false;
8766}
8767
8768/// Check the non-type template arguments of a class template
8769/// partial specialization according to C++ [temp.class.spec]p9.
8770///
8771/// \param TemplateNameLoc the location of the template name.
8772/// \param PrimaryTemplate the template parameters of the primary class
8773/// template.
8774/// \param NumExplicit the number of explicitly-specified template arguments.
8775/// \param TemplateArgs the template arguments of the class template
8776/// partial specialization.
8777///
8778/// \returns \c true if there was an error, \c false otherwise.
8779bool Sema::CheckTemplatePartialSpecializationArgs(
8780 SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate,
8781 unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) {
8782 // We have to be conservative when checking a template in a dependent
8783 // context.
8784 if (PrimaryTemplate->getDeclContext()->isDependentContext())
8785 return false;
8786
8787 TemplateParameterList *TemplateParams =
8788 PrimaryTemplate->getTemplateParameters();
8789 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8790 NonTypeTemplateParmDecl *Param
8791 = dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: I));
8792 if (!Param)
8793 continue;
8794
8795 if (CheckNonTypeTemplatePartialSpecializationArgs(S&: *this, TemplateNameLoc,
8796 Param, Args: &TemplateArgs[I],
8797 NumArgs: 1, IsDefaultArgument: I >= NumExplicit))
8798 return true;
8799 }
8800
8801 return false;
8802}
8803
8804DeclResult Sema::ActOnClassTemplateSpecialization(
8805 Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc,
8806 SourceLocation ModulePrivateLoc, CXXScopeSpec &SS,
8807 TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr,
8808 MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) {
8809 assert(TUK != TUK_Reference && "References are not specializations");
8810
8811 // NOTE: KWLoc is the location of the tag keyword. This will instead
8812 // store the location of the outermost template keyword in the declaration.
8813 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
8814 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
8815 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
8816 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
8817 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
8818
8819 // Find the class template we're specializing
8820 TemplateName Name = TemplateId.Template.get();
8821 ClassTemplateDecl *ClassTemplate
8822 = dyn_cast_or_null<ClassTemplateDecl>(Val: Name.getAsTemplateDecl());
8823
8824 if (!ClassTemplate) {
8825 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
8826 << (Name.getAsTemplateDecl() &&
8827 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
8828 return true;
8829 }
8830
8831 bool isMemberSpecialization = false;
8832 bool isPartialSpecialization = false;
8833
8834 if (SS.isSet()) {
8835 if (TUK != TUK_Reference && TUK != TUK_Friend &&
8836 diagnoseQualifiedDeclaration(SS, DC: ClassTemplate->getDeclContext(),
8837 Name: ClassTemplate->getDeclName(),
8838 Loc: TemplateNameLoc, TemplateId: &TemplateId,
8839 /*IsMemberSpecialization=*/false))
8840 return true;
8841 }
8842
8843 // Check the validity of the template headers that introduce this
8844 // template.
8845 // FIXME: We probably shouldn't complain about these headers for
8846 // friend declarations.
8847 bool Invalid = false;
8848 TemplateParameterList *TemplateParams =
8849 MatchTemplateParametersToScopeSpecifier(
8850 DeclStartLoc: KWLoc, DeclLoc: TemplateNameLoc, SS, TemplateId: &TemplateId,
8851 ParamLists: TemplateParameterLists, IsFriend: TUK == TUK_Friend, IsMemberSpecialization&: isMemberSpecialization,
8852 Invalid);
8853 if (Invalid)
8854 return true;
8855
8856 // Check that we can declare a template specialization here.
8857 if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams))
8858 return true;
8859
8860 if (TemplateParams && TemplateParams->size() > 0) {
8861 isPartialSpecialization = true;
8862
8863 if (TUK == TUK_Friend) {
8864 Diag(KWLoc, diag::err_partial_specialization_friend)
8865 << SourceRange(LAngleLoc, RAngleLoc);
8866 return true;
8867 }
8868
8869 // C++ [temp.class.spec]p10:
8870 // The template parameter list of a specialization shall not
8871 // contain default template argument values.
8872 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
8873 Decl *Param = TemplateParams->getParam(Idx: I);
8874 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) {
8875 if (TTP->hasDefaultArgument()) {
8876 Diag(TTP->getDefaultArgumentLoc(),
8877 diag::err_default_arg_in_partial_spec);
8878 TTP->removeDefaultArgument();
8879 }
8880 } else if (NonTypeTemplateParmDecl *NTTP
8881 = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) {
8882 if (Expr *DefArg = NTTP->getDefaultArgument()) {
8883 Diag(NTTP->getDefaultArgumentLoc(),
8884 diag::err_default_arg_in_partial_spec)
8885 << DefArg->getSourceRange();
8886 NTTP->removeDefaultArgument();
8887 }
8888 } else {
8889 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Val: Param);
8890 if (TTP->hasDefaultArgument()) {
8891 Diag(TTP->getDefaultArgument().getLocation(),
8892 diag::err_default_arg_in_partial_spec)
8893 << TTP->getDefaultArgument().getSourceRange();
8894 TTP->removeDefaultArgument();
8895 }
8896 }
8897 }
8898 } else if (TemplateParams) {
8899 if (TUK == TUK_Friend)
8900 Diag(KWLoc, diag::err_template_spec_friend)
8901 << FixItHint::CreateRemoval(
8902 SourceRange(TemplateParams->getTemplateLoc(),
8903 TemplateParams->getRAngleLoc()))
8904 << SourceRange(LAngleLoc, RAngleLoc);
8905 } else {
8906 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
8907 }
8908
8909 // Check that the specialization uses the same tag kind as the
8910 // original template.
8911 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec);
8912 assert(Kind != TagTypeKind::Enum &&
8913 "Invalid enum tag in class template spec!");
8914 if (!isAcceptableTagRedeclaration(Previous: ClassTemplate->getTemplatedDecl(),
8915 NewTag: Kind, isDefinition: TUK == TUK_Definition, NewTagLoc: KWLoc,
8916 Name: ClassTemplate->getIdentifier())) {
8917 Diag(KWLoc, diag::err_use_with_wrong_tag)
8918 << ClassTemplate
8919 << FixItHint::CreateReplacement(KWLoc,
8920 ClassTemplate->getTemplatedDecl()->getKindName());
8921 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
8922 diag::note_previous_use);
8923 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
8924 }
8925
8926 // Translate the parser's template argument list in our AST format.
8927 TemplateArgumentListInfo TemplateArgs =
8928 makeTemplateArgumentListInfo(S&: *this, TemplateId);
8929
8930 // Check for unexpanded parameter packs in any of the template arguments.
8931 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8932 if (DiagnoseUnexpandedParameterPack(Arg: TemplateArgs[I],
8933 UPPC: isPartialSpecialization
8934 ? UPPC_PartialSpecialization
8935 : UPPC_ExplicitSpecialization))
8936 return true;
8937
8938 // Check that the template argument list is well-formed for this
8939 // template.
8940 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
8941 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
8942 false, SugaredConverted, CanonicalConverted,
8943 /*UpdateArgsWithConversions=*/true))
8944 return true;
8945
8946 // Find the class template (partial) specialization declaration that
8947 // corresponds to these arguments.
8948 if (isPartialSpecialization) {
8949 if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate,
8950 TemplateArgs.size(),
8951 CanonicalConverted))
8952 return true;
8953
8954 // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we
8955 // also do it during instantiation.
8956 if (!Name.isDependent() &&
8957 !TemplateSpecializationType::anyDependentTemplateArguments(
8958 TemplateArgs, Converted: CanonicalConverted)) {
8959 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
8960 << ClassTemplate->getDeclName();
8961 isPartialSpecialization = false;
8962 }
8963 }
8964
8965 void *InsertPos = nullptr;
8966 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
8967
8968 if (isPartialSpecialization)
8969 PrevDecl = ClassTemplate->findPartialSpecialization(
8970 Args: CanonicalConverted, TPL: TemplateParams, InsertPos);
8971 else
8972 PrevDecl = ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos);
8973
8974 ClassTemplateSpecializationDecl *Specialization = nullptr;
8975
8976 // Check whether we can declare a class template specialization in
8977 // the current scope.
8978 if (TUK != TUK_Friend &&
8979 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
8980 TemplateNameLoc,
8981 isPartialSpecialization))
8982 return true;
8983
8984 // The canonical type
8985 QualType CanonType;
8986 if (isPartialSpecialization) {
8987 // Build the canonical type that describes the converted template
8988 // arguments of the class template partial specialization.
8989 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
8990 CanonType = Context.getTemplateSpecializationType(T: CanonTemplate,
8991 Args: CanonicalConverted);
8992
8993 if (Context.hasSameType(T1: CanonType,
8994 T2: ClassTemplate->getInjectedClassNameSpecialization()) &&
8995 (!Context.getLangOpts().CPlusPlus20 ||
8996 !TemplateParams->hasAssociatedConstraints())) {
8997 // C++ [temp.class.spec]p9b3:
8998 //
8999 // -- The argument list of the specialization shall not be identical
9000 // to the implicit argument list of the primary template.
9001 //
9002 // This rule has since been removed, because it's redundant given DR1495,
9003 // but we keep it because it produces better diagnostics and recovery.
9004 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
9005 << /*class template*/0 << (TUK == TUK_Definition)
9006 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
9007 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
9008 Name: ClassTemplate->getIdentifier(),
9009 NameLoc: TemplateNameLoc,
9010 Attr,
9011 TemplateParams,
9012 AS: AS_none, /*ModulePrivateLoc=*/SourceLocation(),
9013 /*FriendLoc*/SourceLocation(),
9014 NumOuterTemplateParamLists: TemplateParameterLists.size() - 1,
9015 OuterTemplateParamLists: TemplateParameterLists.data());
9016 }
9017
9018 // Create a new class template partial specialization declaration node.
9019 ClassTemplatePartialSpecializationDecl *PrevPartial
9020 = cast_or_null<ClassTemplatePartialSpecializationDecl>(Val: PrevDecl);
9021 ClassTemplatePartialSpecializationDecl *Partial =
9022 ClassTemplatePartialSpecializationDecl::Create(
9023 Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc,
9024 IdLoc: TemplateNameLoc, Params: TemplateParams, SpecializedTemplate: ClassTemplate, Args: CanonicalConverted,
9025 ArgInfos: TemplateArgs, CanonInjectedType: CanonType, PrevDecl: PrevPartial);
9026 SetNestedNameSpecifier(*this, Partial, SS);
9027 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
9028 Partial->setTemplateParameterListsInfo(
9029 Context, TemplateParameterLists.drop_back(N: 1));
9030 }
9031
9032 if (!PrevPartial)
9033 ClassTemplate->AddPartialSpecialization(D: Partial, InsertPos);
9034 Specialization = Partial;
9035
9036 // If we are providing an explicit specialization of a member class
9037 // template specialization, make a note of that.
9038 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
9039 PrevPartial->setMemberSpecialization();
9040
9041 CheckTemplatePartialSpecialization(Partial);
9042 } else {
9043 // Create a new class template specialization declaration node for
9044 // this explicit specialization or friend declaration.
9045 Specialization = ClassTemplateSpecializationDecl::Create(
9046 Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, IdLoc: TemplateNameLoc,
9047 SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, PrevDecl);
9048 SetNestedNameSpecifier(*this, Specialization, SS);
9049 if (TemplateParameterLists.size() > 0) {
9050 Specialization->setTemplateParameterListsInfo(Context,
9051 TemplateParameterLists);
9052 }
9053
9054 if (!PrevDecl)
9055 ClassTemplate->AddSpecialization(D: Specialization, InsertPos);
9056
9057 if (CurContext->isDependentContext()) {
9058 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
9059 CanonType = Context.getTemplateSpecializationType(T: CanonTemplate,
9060 Args: CanonicalConverted);
9061 } else {
9062 CanonType = Context.getTypeDeclType(Specialization);
9063 }
9064 }
9065
9066 // C++ [temp.expl.spec]p6:
9067 // If a template, a member template or the member of a class template is
9068 // explicitly specialized then that specialization shall be declared
9069 // before the first use of that specialization that would cause an implicit
9070 // instantiation to take place, in every translation unit in which such a
9071 // use occurs; no diagnostic is required.
9072 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
9073 bool Okay = false;
9074 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9075 // Is there any previous explicit specialization declaration?
9076 if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) {
9077 Okay = true;
9078 break;
9079 }
9080 }
9081
9082 if (!Okay) {
9083 SourceRange Range(TemplateNameLoc, RAngleLoc);
9084 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
9085 << Context.getTypeDeclType(Specialization) << Range;
9086
9087 Diag(PrevDecl->getPointOfInstantiation(),
9088 diag::note_instantiation_required_here)
9089 << (PrevDecl->getTemplateSpecializationKind()
9090 != TSK_ImplicitInstantiation);
9091 return true;
9092 }
9093 }
9094
9095 // If this is not a friend, note that this is an explicit specialization.
9096 if (TUK != TUK_Friend)
9097 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
9098
9099 // Check that this isn't a redefinition of this specialization.
9100 if (TUK == TUK_Definition) {
9101 RecordDecl *Def = Specialization->getDefinition();
9102 NamedDecl *Hidden = nullptr;
9103 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
9104 SkipBody->ShouldSkip = true;
9105 SkipBody->Previous = Def;
9106 makeMergedDefinitionVisible(ND: Hidden);
9107 } else if (Def) {
9108 SourceRange Range(TemplateNameLoc, RAngleLoc);
9109 Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range;
9110 Diag(Def->getLocation(), diag::note_previous_definition);
9111 Specialization->setInvalidDecl();
9112 return true;
9113 }
9114 }
9115
9116 ProcessDeclAttributeList(S, Specialization, Attr);
9117
9118 // Add alignment attributes if necessary; these attributes are checked when
9119 // the ASTContext lays out the structure.
9120 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
9121 AddAlignmentAttributesForRecord(Specialization);
9122 AddMsStructLayoutForRecord(Specialization);
9123 }
9124
9125 if (ModulePrivateLoc.isValid())
9126 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
9127 << (isPartialSpecialization? 1 : 0)
9128 << FixItHint::CreateRemoval(ModulePrivateLoc);
9129
9130 // Build the fully-sugared type for this class template
9131 // specialization as the user wrote in the specialization
9132 // itself. This means that we'll pretty-print the type retrieved
9133 // from the specialization's declaration the way that the user
9134 // actually wrote the specialization, rather than formatting the
9135 // name based on the "canonical" representation used to store the
9136 // template arguments in the specialization.
9137 TypeSourceInfo *WrittenTy
9138 = Context.getTemplateSpecializationTypeInfo(T: Name, TLoc: TemplateNameLoc,
9139 Args: TemplateArgs, Canon: CanonType);
9140 if (TUK != TUK_Friend) {
9141 Specialization->setTypeAsWritten(WrittenTy);
9142 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
9143 }
9144
9145 // C++ [temp.expl.spec]p9:
9146 // A template explicit specialization is in the scope of the
9147 // namespace in which the template was defined.
9148 //
9149 // We actually implement this paragraph where we set the semantic
9150 // context (in the creation of the ClassTemplateSpecializationDecl),
9151 // but we also maintain the lexical context where the actual
9152 // definition occurs.
9153 Specialization->setLexicalDeclContext(CurContext);
9154
9155 // We may be starting the definition of this specialization.
9156 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
9157 Specialization->startDefinition();
9158
9159 if (TUK == TUK_Friend) {
9160 FriendDecl *Friend = FriendDecl::Create(C&: Context, DC: CurContext,
9161 L: TemplateNameLoc,
9162 Friend_: WrittenTy,
9163 /*FIXME:*/FriendL: KWLoc);
9164 Friend->setAccess(AS_public);
9165 CurContext->addDecl(Friend);
9166 } else {
9167 // Add the specialization into its lexical context, so that it can
9168 // be seen when iterating through the list of declarations in that
9169 // context. However, specializations are not found by name lookup.
9170 CurContext->addDecl(Specialization);
9171 }
9172
9173 if (SkipBody && SkipBody->ShouldSkip)
9174 return SkipBody->Previous;
9175
9176 return Specialization;
9177}
9178
9179Decl *Sema::ActOnTemplateDeclarator(Scope *S,
9180 MultiTemplateParamsArg TemplateParameterLists,
9181 Declarator &D) {
9182 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
9183 ActOnDocumentableDecl(D: NewDecl);
9184 return NewDecl;
9185}
9186
9187Decl *Sema::ActOnConceptDefinition(Scope *S,
9188 MultiTemplateParamsArg TemplateParameterLists,
9189 IdentifierInfo *Name, SourceLocation NameLoc,
9190 Expr *ConstraintExpr) {
9191 DeclContext *DC = CurContext;
9192
9193 if (!DC->getRedeclContext()->isFileContext()) {
9194 Diag(NameLoc,
9195 diag::err_concept_decls_may_only_appear_in_global_namespace_scope);
9196 return nullptr;
9197 }
9198
9199 if (TemplateParameterLists.size() > 1) {
9200 Diag(NameLoc, diag::err_concept_extra_headers);
9201 return nullptr;
9202 }
9203
9204 TemplateParameterList *Params = TemplateParameterLists.front();
9205
9206 if (Params->size() == 0) {
9207 Diag(NameLoc, diag::err_concept_no_parameters);
9208 return nullptr;
9209 }
9210
9211 // Ensure that the parameter pack, if present, is the last parameter in the
9212 // template.
9213 for (TemplateParameterList::const_iterator ParamIt = Params->begin(),
9214 ParamEnd = Params->end();
9215 ParamIt != ParamEnd; ++ParamIt) {
9216 Decl const *Param = *ParamIt;
9217 if (Param->isParameterPack()) {
9218 if (++ParamIt == ParamEnd)
9219 break;
9220 Diag(Param->getLocation(),
9221 diag::err_template_param_pack_must_be_last_template_parameter);
9222 return nullptr;
9223 }
9224 }
9225
9226 if (DiagnoseUnexpandedParameterPack(E: ConstraintExpr))
9227 return nullptr;
9228
9229 ConceptDecl *NewDecl =
9230 ConceptDecl::Create(C&: Context, DC, L: NameLoc, Name, Params, ConstraintExpr);
9231
9232 if (NewDecl->hasAssociatedConstraints()) {
9233 // C++2a [temp.concept]p4:
9234 // A concept shall not have associated constraints.
9235 Diag(NameLoc, diag::err_concept_no_associated_constraints);
9236 NewDecl->setInvalidDecl();
9237 }
9238
9239 // Check for conflicting previous declaration.
9240 DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc);
9241 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9242 forRedeclarationInCurContext());
9243 LookupName(R&: Previous, S);
9244 FilterLookupForScope(R&: Previous, Ctx: DC, S, /*ConsiderLinkage=*/false,
9245 /*AllowInlineNamespace*/false);
9246 bool AddToScope = true;
9247 CheckConceptRedefinition(NewDecl, Previous, AddToScope);
9248
9249 ActOnDocumentableDecl(NewDecl);
9250 if (AddToScope)
9251 PushOnScopeChains(NewDecl, S);
9252 return NewDecl;
9253}
9254
9255void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl,
9256 LookupResult &Previous, bool &AddToScope) {
9257 AddToScope = true;
9258
9259 if (Previous.empty())
9260 return;
9261
9262 auto *OldConcept = dyn_cast<ConceptDecl>(Val: Previous.getRepresentativeDecl()->getUnderlyingDecl());
9263 if (!OldConcept) {
9264 auto *Old = Previous.getRepresentativeDecl();
9265 Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind)
9266 << NewDecl->getDeclName();
9267 notePreviousDefinition(Old, New: NewDecl->getLocation());
9268 AddToScope = false;
9269 return;
9270 }
9271 // Check if we can merge with a concept declaration.
9272 bool IsSame = Context.isSameEntity(NewDecl, OldConcept);
9273 if (!IsSame) {
9274 Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept)
9275 << NewDecl->getDeclName();
9276 notePreviousDefinition(Old: OldConcept, New: NewDecl->getLocation());
9277 AddToScope = false;
9278 return;
9279 }
9280 if (hasReachableDefinition(OldConcept) &&
9281 IsRedefinitionInModule(NewDecl, OldConcept)) {
9282 Diag(NewDecl->getLocation(), diag::err_redefinition)
9283 << NewDecl->getDeclName();
9284 notePreviousDefinition(Old: OldConcept, New: NewDecl->getLocation());
9285 AddToScope = false;
9286 return;
9287 }
9288 if (!Previous.isSingleResult()) {
9289 // FIXME: we should produce an error in case of ambig and failed lookups.
9290 // Other decls (e.g. namespaces) also have this shortcoming.
9291 return;
9292 }
9293 // We unwrap canonical decl late to check for module visibility.
9294 Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl());
9295}
9296
9297/// \brief Strips various properties off an implicit instantiation
9298/// that has just been explicitly specialized.
9299static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) {
9300 if (MinGW || (isa<FunctionDecl>(D) &&
9301 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()))
9302 D->dropAttrs<DLLImportAttr, DLLExportAttr>();
9303
9304 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D))
9305 FD->setInlineSpecified(false);
9306}
9307
9308/// Compute the diagnostic location for an explicit instantiation
9309// declaration or definition.
9310static SourceLocation DiagLocForExplicitInstantiation(
9311 NamedDecl* D, SourceLocation PointOfInstantiation) {
9312 // Explicit instantiations following a specialization have no effect and
9313 // hence no PointOfInstantiation. In that case, walk decl backwards
9314 // until a valid name loc is found.
9315 SourceLocation PrevDiagLoc = PointOfInstantiation;
9316 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
9317 Prev = Prev->getPreviousDecl()) {
9318 PrevDiagLoc = Prev->getLocation();
9319 }
9320 assert(PrevDiagLoc.isValid() &&
9321 "Explicit instantiation without point of instantiation?");
9322 return PrevDiagLoc;
9323}
9324
9325/// Diagnose cases where we have an explicit template specialization
9326/// before/after an explicit template instantiation, producing diagnostics
9327/// for those cases where they are required and determining whether the
9328/// new specialization/instantiation will have any effect.
9329///
9330/// \param NewLoc the location of the new explicit specialization or
9331/// instantiation.
9332///
9333/// \param NewTSK the kind of the new explicit specialization or instantiation.
9334///
9335/// \param PrevDecl the previous declaration of the entity.
9336///
9337/// \param PrevTSK the kind of the old explicit specialization or instantiatin.
9338///
9339/// \param PrevPointOfInstantiation if valid, indicates where the previous
9340/// declaration was instantiated (either implicitly or explicitly).
9341///
9342/// \param HasNoEffect will be set to true to indicate that the new
9343/// specialization or instantiation has no effect and should be ignored.
9344///
9345/// \returns true if there was an error that should prevent the introduction of
9346/// the new declaration into the AST, false otherwise.
9347bool
9348Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
9349 TemplateSpecializationKind NewTSK,
9350 NamedDecl *PrevDecl,
9351 TemplateSpecializationKind PrevTSK,
9352 SourceLocation PrevPointOfInstantiation,
9353 bool &HasNoEffect) {
9354 HasNoEffect = false;
9355
9356 switch (NewTSK) {
9357 case TSK_Undeclared:
9358 case TSK_ImplicitInstantiation:
9359 assert(
9360 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
9361 "previous declaration must be implicit!");
9362 return false;
9363
9364 case TSK_ExplicitSpecialization:
9365 switch (PrevTSK) {
9366 case TSK_Undeclared:
9367 case TSK_ExplicitSpecialization:
9368 // Okay, we're just specializing something that is either already
9369 // explicitly specialized or has merely been mentioned without any
9370 // instantiation.
9371 return false;
9372
9373 case TSK_ImplicitInstantiation:
9374 if (PrevPointOfInstantiation.isInvalid()) {
9375 // The declaration itself has not actually been instantiated, so it is
9376 // still okay to specialize it.
9377 StripImplicitInstantiation(
9378 D: PrevDecl,
9379 MinGW: Context.getTargetInfo().getTriple().isWindowsGNUEnvironment());
9380 return false;
9381 }
9382 // Fall through
9383 [[fallthrough]];
9384
9385 case TSK_ExplicitInstantiationDeclaration:
9386 case TSK_ExplicitInstantiationDefinition:
9387 assert((PrevTSK == TSK_ImplicitInstantiation ||
9388 PrevPointOfInstantiation.isValid()) &&
9389 "Explicit instantiation without point of instantiation?");
9390
9391 // C++ [temp.expl.spec]p6:
9392 // If a template, a member template or the member of a class template
9393 // is explicitly specialized then that specialization shall be declared
9394 // before the first use of that specialization that would cause an
9395 // implicit instantiation to take place, in every translation unit in
9396 // which such a use occurs; no diagnostic is required.
9397 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9398 // Is there any previous explicit specialization declaration?
9399 if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization)
9400 return false;
9401 }
9402
9403 Diag(NewLoc, diag::err_specialization_after_instantiation)
9404 << PrevDecl;
9405 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
9406 << (PrevTSK != TSK_ImplicitInstantiation);
9407
9408 return true;
9409 }
9410 llvm_unreachable("The switch over PrevTSK must be exhaustive.");
9411
9412 case TSK_ExplicitInstantiationDeclaration:
9413 switch (PrevTSK) {
9414 case TSK_ExplicitInstantiationDeclaration:
9415 // This explicit instantiation declaration is redundant (that's okay).
9416 HasNoEffect = true;
9417 return false;
9418
9419 case TSK_Undeclared:
9420 case TSK_ImplicitInstantiation:
9421 // We're explicitly instantiating something that may have already been
9422 // implicitly instantiated; that's fine.
9423 return false;
9424
9425 case TSK_ExplicitSpecialization:
9426 // C++0x [temp.explicit]p4:
9427 // For a given set of template parameters, if an explicit instantiation
9428 // of a template appears after a declaration of an explicit
9429 // specialization for that template, the explicit instantiation has no
9430 // effect.
9431 HasNoEffect = true;
9432 return false;
9433
9434 case TSK_ExplicitInstantiationDefinition:
9435 // C++0x [temp.explicit]p10:
9436 // If an entity is the subject of both an explicit instantiation
9437 // declaration and an explicit instantiation definition in the same
9438 // translation unit, the definition shall follow the declaration.
9439 Diag(NewLoc,
9440 diag::err_explicit_instantiation_declaration_after_definition);
9441
9442 // Explicit instantiations following a specialization have no effect and
9443 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
9444 // until a valid name loc is found.
9445 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9446 diag::note_explicit_instantiation_definition_here);
9447 HasNoEffect = true;
9448 return false;
9449 }
9450 llvm_unreachable("Unexpected TemplateSpecializationKind!");
9451
9452 case TSK_ExplicitInstantiationDefinition:
9453 switch (PrevTSK) {
9454 case TSK_Undeclared:
9455 case TSK_ImplicitInstantiation:
9456 // We're explicitly instantiating something that may have already been
9457 // implicitly instantiated; that's fine.
9458 return false;
9459
9460 case TSK_ExplicitSpecialization:
9461 // C++ DR 259, C++0x [temp.explicit]p4:
9462 // For a given set of template parameters, if an explicit
9463 // instantiation of a template appears after a declaration of
9464 // an explicit specialization for that template, the explicit
9465 // instantiation has no effect.
9466 Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization)
9467 << PrevDecl;
9468 Diag(PrevDecl->getLocation(),
9469 diag::note_previous_template_specialization);
9470 HasNoEffect = true;
9471 return false;
9472
9473 case TSK_ExplicitInstantiationDeclaration:
9474 // We're explicitly instantiating a definition for something for which we
9475 // were previously asked to suppress instantiations. That's fine.
9476
9477 // C++0x [temp.explicit]p4:
9478 // For a given set of template parameters, if an explicit instantiation
9479 // of a template appears after a declaration of an explicit
9480 // specialization for that template, the explicit instantiation has no
9481 // effect.
9482 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
9483 // Is there any previous explicit specialization declaration?
9484 if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) {
9485 HasNoEffect = true;
9486 break;
9487 }
9488 }
9489
9490 return false;
9491
9492 case TSK_ExplicitInstantiationDefinition:
9493 // C++0x [temp.spec]p5:
9494 // For a given template and a given set of template-arguments,
9495 // - an explicit instantiation definition shall appear at most once
9496 // in a program,
9497
9498 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
9499 Diag(NewLoc, (getLangOpts().MSVCCompat)
9500 ? diag::ext_explicit_instantiation_duplicate
9501 : diag::err_explicit_instantiation_duplicate)
9502 << PrevDecl;
9503 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
9504 diag::note_previous_explicit_instantiation);
9505 HasNoEffect = true;
9506 return false;
9507 }
9508 }
9509
9510 llvm_unreachable("Missing specialization/instantiation case?");
9511}
9512
9513/// Perform semantic analysis for the given dependent function
9514/// template specialization.
9515///
9516/// The only possible way to get a dependent function template specialization
9517/// is with a friend declaration, like so:
9518///
9519/// \code
9520/// template \<class T> void foo(T);
9521/// template \<class T> class A {
9522/// friend void foo<>(T);
9523/// };
9524/// \endcode
9525///
9526/// There really isn't any useful analysis we can do here, so we
9527/// just store the information.
9528bool Sema::CheckDependentFunctionTemplateSpecialization(
9529 FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs,
9530 LookupResult &Previous) {
9531 // Remove anything from Previous that isn't a function template in
9532 // the correct context.
9533 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9534 LookupResult::Filter F = Previous.makeFilter();
9535 enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing };
9536 SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates;
9537 while (F.hasNext()) {
9538 NamedDecl *D = F.next()->getUnderlyingDecl();
9539 if (!isa<FunctionTemplateDecl>(Val: D)) {
9540 F.erase();
9541 DiscardedCandidates.push_back(std::make_pair(x: NotAFunctionTemplate, y&: D));
9542 continue;
9543 }
9544
9545 if (!FDLookupContext->InEnclosingNamespaceSetOf(
9546 NS: D->getDeclContext()->getRedeclContext())) {
9547 F.erase();
9548 DiscardedCandidates.push_back(std::make_pair(x: NotAMemberOfEnclosing, y&: D));
9549 continue;
9550 }
9551 }
9552 F.done();
9553
9554 bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None;
9555 if (Previous.empty()) {
9556 Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match)
9557 << IsFriend;
9558 for (auto &P : DiscardedCandidates)
9559 Diag(P.second->getLocation(),
9560 diag::note_dependent_function_template_spec_discard_reason)
9561 << P.first << IsFriend;
9562 return true;
9563 }
9564
9565 FD->setDependentTemplateSpecialization(Context, Templates: Previous.asUnresolvedSet(),
9566 TemplateArgs: ExplicitTemplateArgs);
9567 return false;
9568}
9569
9570/// Perform semantic analysis for the given function template
9571/// specialization.
9572///
9573/// This routine performs all of the semantic analysis required for an
9574/// explicit function template specialization. On successful completion,
9575/// the function declaration \p FD will become a function template
9576/// specialization.
9577///
9578/// \param FD the function declaration, which will be updated to become a
9579/// function template specialization.
9580///
9581/// \param ExplicitTemplateArgs the explicitly-provided template arguments,
9582/// if any. Note that this may be valid info even when 0 arguments are
9583/// explicitly provided as in, e.g., \c void sort<>(char*, char*);
9584/// as it anyway contains info on the angle brackets locations.
9585///
9586/// \param Previous the set of declarations that may be specialized by
9587/// this function specialization.
9588///
9589/// \param QualifiedFriend whether this is a lookup for a qualified friend
9590/// declaration with no explicit template argument list that might be
9591/// befriending a function template specialization.
9592bool Sema::CheckFunctionTemplateSpecialization(
9593 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
9594 LookupResult &Previous, bool QualifiedFriend) {
9595 // The set of function template specializations that could match this
9596 // explicit function template specialization.
9597 UnresolvedSet<8> Candidates;
9598 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
9599 /*ForTakingAddress=*/false);
9600
9601 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
9602 ConvertedTemplateArgs;
9603
9604 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
9605 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9606 I != E; ++I) {
9607 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
9608 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Ovl)) {
9609 // Only consider templates found within the same semantic lookup scope as
9610 // FD.
9611 if (!FDLookupContext->InEnclosingNamespaceSetOf(
9612 NS: Ovl->getDeclContext()->getRedeclContext()))
9613 continue;
9614
9615 // When matching a constexpr member function template specialization
9616 // against the primary template, we don't yet know whether the
9617 // specialization has an implicit 'const' (because we don't know whether
9618 // it will be a static member function until we know which template it
9619 // specializes), so adjust it now assuming it specializes this template.
9620 QualType FT = FD->getType();
9621 if (FD->isConstexpr()) {
9622 CXXMethodDecl *OldMD =
9623 dyn_cast<CXXMethodDecl>(Val: FunTmpl->getTemplatedDecl());
9624 if (OldMD && OldMD->isConst()) {
9625 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
9626 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9627 EPI.TypeQuals.addConst();
9628 FT = Context.getFunctionType(ResultTy: FPT->getReturnType(),
9629 Args: FPT->getParamTypes(), EPI);
9630 }
9631 }
9632
9633 TemplateArgumentListInfo Args;
9634 if (ExplicitTemplateArgs)
9635 Args = *ExplicitTemplateArgs;
9636
9637 // C++ [temp.expl.spec]p11:
9638 // A trailing template-argument can be left unspecified in the
9639 // template-id naming an explicit function template specialization
9640 // provided it can be deduced from the function argument type.
9641 // Perform template argument deduction to determine whether we may be
9642 // specializing this template.
9643 // FIXME: It is somewhat wasteful to build
9644 TemplateDeductionInfo Info(FailedCandidates.getLocation());
9645 FunctionDecl *Specialization = nullptr;
9646 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
9647 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
9648 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info);
9649 TDK != TemplateDeductionResult::Success) {
9650 // Template argument deduction failed; record why it failed, so
9651 // that we can provide nifty diagnostics.
9652 FailedCandidates.addCandidate().set(
9653 I.getPair(), FunTmpl->getTemplatedDecl(),
9654 MakeDeductionFailureInfo(Context, TDK, Info));
9655 (void)TDK;
9656 continue;
9657 }
9658
9659 // Target attributes are part of the cuda function signature, so
9660 // the deduced template's cuda target must match that of the
9661 // specialization. Given that C++ template deduction does not
9662 // take target attributes into account, we reject candidates
9663 // here that have a different target.
9664 if (LangOpts.CUDA &&
9665 IdentifyCUDATarget(D: Specialization,
9666 /* IgnoreImplicitHDAttr = */ true) !=
9667 IdentifyCUDATarget(D: FD, /* IgnoreImplicitHDAttr = */ true)) {
9668 FailedCandidates.addCandidate().set(
9669 I.getPair(), FunTmpl->getTemplatedDecl(),
9670 MakeDeductionFailureInfo(
9671 Context, TDK: TemplateDeductionResult::CUDATargetMismatch, Info));
9672 continue;
9673 }
9674
9675 // Record this candidate.
9676 if (ExplicitTemplateArgs)
9677 ConvertedTemplateArgs[Specialization] = std::move(Args);
9678 Candidates.addDecl(Specialization, I.getAccess());
9679 }
9680 }
9681
9682 // For a qualified friend declaration (with no explicit marker to indicate
9683 // that a template specialization was intended), note all (template and
9684 // non-template) candidates.
9685 if (QualifiedFriend && Candidates.empty()) {
9686 Diag(FD->getLocation(), diag::err_qualified_friend_no_match)
9687 << FD->getDeclName() << FDLookupContext;
9688 // FIXME: We should form a single candidate list and diagnose all
9689 // candidates at once, to get proper sorting and limiting.
9690 for (auto *OldND : Previous) {
9691 if (auto *OldFD = dyn_cast<FunctionDecl>(Val: OldND->getUnderlyingDecl()))
9692 NoteOverloadCandidate(Found: OldND, Fn: OldFD, RewriteKind: CRK_None, DestType: FD->getType(), TakingAddress: false);
9693 }
9694 FailedCandidates.NoteCandidates(*this, FD->getLocation());
9695 return true;
9696 }
9697
9698 // Find the most specialized function template.
9699 UnresolvedSetIterator Result = getMostSpecialized(
9700 Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(),
9701 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
9702 PDiag(diag::err_function_template_spec_ambiguous)
9703 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
9704 PDiag(diag::note_function_template_spec_matched));
9705
9706 if (Result == Candidates.end())
9707 return true;
9708
9709 // Ignore access information; it doesn't figure into redeclaration checking.
9710 FunctionDecl *Specialization = cast<FunctionDecl>(Val: *Result);
9711
9712 FunctionTemplateSpecializationInfo *SpecInfo
9713 = Specialization->getTemplateSpecializationInfo();
9714 assert(SpecInfo && "Function template specialization info missing?");
9715
9716 // Note: do not overwrite location info if previous template
9717 // specialization kind was explicit.
9718 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
9719 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
9720 Specialization->setLocation(FD->getLocation());
9721 Specialization->setLexicalDeclContext(FD->getLexicalDeclContext());
9722 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
9723 // function can differ from the template declaration with respect to
9724 // the constexpr specifier.
9725 // FIXME: We need an update record for this AST mutation.
9726 // FIXME: What if there are multiple such prior declarations (for instance,
9727 // from different modules)?
9728 Specialization->setConstexprKind(FD->getConstexprKind());
9729 }
9730
9731 // FIXME: Check if the prior specialization has a point of instantiation.
9732 // If so, we have run afoul of .
9733
9734 // If this is a friend declaration, then we're not really declaring
9735 // an explicit specialization.
9736 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
9737
9738 // Check the scope of this explicit specialization.
9739 if (!isFriend &&
9740 CheckTemplateSpecializationScope(*this,
9741 Specialization->getPrimaryTemplate(),
9742 Specialization, FD->getLocation(),
9743 false))
9744 return true;
9745
9746 // C++ [temp.expl.spec]p6:
9747 // If a template, a member template or the member of a class template is
9748 // explicitly specialized then that specialization shall be declared
9749 // before the first use of that specialization that would cause an implicit
9750 // instantiation to take place, in every translation unit in which such a
9751 // use occurs; no diagnostic is required.
9752 bool HasNoEffect = false;
9753 if (!isFriend &&
9754 CheckSpecializationInstantiationRedecl(NewLoc: FD->getLocation(),
9755 NewTSK: TSK_ExplicitSpecialization,
9756 PrevDecl: Specialization,
9757 PrevTSK: SpecInfo->getTemplateSpecializationKind(),
9758 PrevPointOfInstantiation: SpecInfo->getPointOfInstantiation(),
9759 HasNoEffect))
9760 return true;
9761
9762 // Mark the prior declaration as an explicit specialization, so that later
9763 // clients know that this is an explicit specialization.
9764 if (!isFriend) {
9765 // Since explicit specializations do not inherit '=delete' from their
9766 // primary function template - check if the 'specialization' that was
9767 // implicitly generated (during template argument deduction for partial
9768 // ordering) from the most specialized of all the function templates that
9769 // 'FD' could have been specializing, has a 'deleted' definition. If so,
9770 // first check that it was implicitly generated during template argument
9771 // deduction by making sure it wasn't referenced, and then reset the deleted
9772 // flag to not-deleted, so that we can inherit that information from 'FD'.
9773 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
9774 !Specialization->getCanonicalDecl()->isReferenced()) {
9775 // FIXME: This assert will not hold in the presence of modules.
9776 assert(
9777 Specialization->getCanonicalDecl() == Specialization &&
9778 "This must be the only existing declaration of this specialization");
9779 // FIXME: We need an update record for this AST mutation.
9780 Specialization->setDeletedAsWritten(false);
9781 }
9782 // FIXME: We need an update record for this AST mutation.
9783 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
9784 MarkUnusedFileScopedDecl(Specialization);
9785 }
9786
9787 // Turn the given function declaration into a function template
9788 // specialization, with the template arguments from the previous
9789 // specialization.
9790 // Take copies of (semantic and syntactic) template argument lists.
9791 const TemplateArgumentList *TemplArgs = TemplateArgumentList::CreateCopy(
9792 Context, Args: Specialization->getTemplateSpecializationArgs()->asArray());
9793 FD->setFunctionTemplateSpecialization(
9794 Template: Specialization->getPrimaryTemplate(), TemplateArgs: TemplArgs, /*InsertPos=*/nullptr,
9795 TSK: SpecInfo->getTemplateSpecializationKind(),
9796 TemplateArgsAsWritten: ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
9797
9798 // A function template specialization inherits the target attributes
9799 // of its template. (We require the attributes explicitly in the
9800 // code to match, but a template may have implicit attributes by
9801 // virtue e.g. of being constexpr, and it passes these implicit
9802 // attributes on to its specializations.)
9803 if (LangOpts.CUDA)
9804 inheritCUDATargetAttrs(FD, TD: *Specialization->getPrimaryTemplate());
9805
9806 // The "previous declaration" for this function template specialization is
9807 // the prior function template specialization.
9808 Previous.clear();
9809 Previous.addDecl(Specialization);
9810 return false;
9811}
9812
9813/// Perform semantic analysis for the given non-template member
9814/// specialization.
9815///
9816/// This routine performs all of the semantic analysis required for an
9817/// explicit member function specialization. On successful completion,
9818/// the function declaration \p FD will become a member function
9819/// specialization.
9820///
9821/// \param Member the member declaration, which will be updated to become a
9822/// specialization.
9823///
9824/// \param Previous the set of declarations, one of which may be specialized
9825/// by this function specialization; the set will be modified to contain the
9826/// redeclared member.
9827bool
9828Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
9829 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
9830
9831 // Try to find the member we are instantiating.
9832 NamedDecl *FoundInstantiation = nullptr;
9833 NamedDecl *Instantiation = nullptr;
9834 NamedDecl *InstantiatedFrom = nullptr;
9835 MemberSpecializationInfo *MSInfo = nullptr;
9836
9837 if (Previous.empty()) {
9838 // Nowhere to look anyway.
9839 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: Member)) {
9840 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9841 I != E; ++I) {
9842 NamedDecl *D = (*I)->getUnderlyingDecl();
9843 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) {
9844 QualType Adjusted = Function->getType();
9845 if (!hasExplicitCallingConv(T: Adjusted))
9846 Adjusted = adjustCCAndNoReturn(ArgFunctionType: Adjusted, FunctionType: Method->getType());
9847 // This doesn't handle deduced return types, but both function
9848 // declarations should be undeduced at this point.
9849 if (Context.hasSameType(Adjusted, Method->getType())) {
9850 FoundInstantiation = *I;
9851 Instantiation = Method;
9852 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
9853 MSInfo = Method->getMemberSpecializationInfo();
9854 break;
9855 }
9856 }
9857 }
9858 } else if (isa<VarDecl>(Val: Member)) {
9859 VarDecl *PrevVar;
9860 if (Previous.isSingleResult() &&
9861 (PrevVar = dyn_cast<VarDecl>(Val: Previous.getFoundDecl())))
9862 if (PrevVar->isStaticDataMember()) {
9863 FoundInstantiation = Previous.getRepresentativeDecl();
9864 Instantiation = PrevVar;
9865 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
9866 MSInfo = PrevVar->getMemberSpecializationInfo();
9867 }
9868 } else if (isa<RecordDecl>(Val: Member)) {
9869 CXXRecordDecl *PrevRecord;
9870 if (Previous.isSingleResult() &&
9871 (PrevRecord = dyn_cast<CXXRecordDecl>(Val: Previous.getFoundDecl()))) {
9872 FoundInstantiation = Previous.getRepresentativeDecl();
9873 Instantiation = PrevRecord;
9874 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
9875 MSInfo = PrevRecord->getMemberSpecializationInfo();
9876 }
9877 } else if (isa<EnumDecl>(Val: Member)) {
9878 EnumDecl *PrevEnum;
9879 if (Previous.isSingleResult() &&
9880 (PrevEnum = dyn_cast<EnumDecl>(Val: Previous.getFoundDecl()))) {
9881 FoundInstantiation = Previous.getRepresentativeDecl();
9882 Instantiation = PrevEnum;
9883 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
9884 MSInfo = PrevEnum->getMemberSpecializationInfo();
9885 }
9886 }
9887
9888 if (!Instantiation) {
9889 // There is no previous declaration that matches. Since member
9890 // specializations are always out-of-line, the caller will complain about
9891 // this mismatch later.
9892 return false;
9893 }
9894
9895 // A member specialization in a friend declaration isn't really declaring
9896 // an explicit specialization, just identifying a specific (possibly implicit)
9897 // specialization. Don't change the template specialization kind.
9898 //
9899 // FIXME: Is this really valid? Other compilers reject.
9900 if (Member->getFriendObjectKind() != Decl::FOK_None) {
9901 // Preserve instantiation information.
9902 if (InstantiatedFrom && isa<CXXMethodDecl>(Val: Member)) {
9903 cast<CXXMethodDecl>(Val: Member)->setInstantiationOfMemberFunction(
9904 cast<CXXMethodDecl>(Val: InstantiatedFrom),
9905 cast<CXXMethodDecl>(Val: Instantiation)->getTemplateSpecializationKind());
9906 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Val: Member)) {
9907 cast<CXXRecordDecl>(Val: Member)->setInstantiationOfMemberClass(
9908 RD: cast<CXXRecordDecl>(Val: InstantiatedFrom),
9909 TSK: cast<CXXRecordDecl>(Val: Instantiation)->getTemplateSpecializationKind());
9910 }
9911
9912 Previous.clear();
9913 Previous.addDecl(D: FoundInstantiation);
9914 return false;
9915 }
9916
9917 // Make sure that this is a specialization of a member.
9918 if (!InstantiatedFrom) {
9919 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
9920 << Member;
9921 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
9922 return true;
9923 }
9924
9925 // C++ [temp.expl.spec]p6:
9926 // If a template, a member template or the member of a class template is
9927 // explicitly specialized then that specialization shall be declared
9928 // before the first use of that specialization that would cause an implicit
9929 // instantiation to take place, in every translation unit in which such a
9930 // use occurs; no diagnostic is required.
9931 assert(MSInfo && "Member specialization info missing?");
9932
9933 bool HasNoEffect = false;
9934 if (CheckSpecializationInstantiationRedecl(NewLoc: Member->getLocation(),
9935 NewTSK: TSK_ExplicitSpecialization,
9936 PrevDecl: Instantiation,
9937 PrevTSK: MSInfo->getTemplateSpecializationKind(),
9938 PrevPointOfInstantiation: MSInfo->getPointOfInstantiation(),
9939 HasNoEffect))
9940 return true;
9941
9942 // Check the scope of this explicit specialization.
9943 if (CheckTemplateSpecializationScope(*this,
9944 InstantiatedFrom,
9945 Instantiation, Member->getLocation(),
9946 false))
9947 return true;
9948
9949 // Note that this member specialization is an "instantiation of" the
9950 // corresponding member of the original template.
9951 if (auto *MemberFunction = dyn_cast<FunctionDecl>(Val: Member)) {
9952 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Val: Instantiation);
9953 if (InstantiationFunction->getTemplateSpecializationKind() ==
9954 TSK_ImplicitInstantiation) {
9955 // Explicit specializations of member functions of class templates do not
9956 // inherit '=delete' from the member function they are specializing.
9957 if (InstantiationFunction->isDeleted()) {
9958 // FIXME: This assert will not hold in the presence of modules.
9959 assert(InstantiationFunction->getCanonicalDecl() ==
9960 InstantiationFunction);
9961 // FIXME: We need an update record for this AST mutation.
9962 InstantiationFunction->setDeletedAsWritten(false);
9963 }
9964 }
9965
9966 MemberFunction->setInstantiationOfMemberFunction(
9967 cast<CXXMethodDecl>(Val: InstantiatedFrom), TSK_ExplicitSpecialization);
9968 } else if (auto *MemberVar = dyn_cast<VarDecl>(Val: Member)) {
9969 MemberVar->setInstantiationOfStaticDataMember(
9970 VD: cast<VarDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization);
9971 } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Val: Member)) {
9972 MemberClass->setInstantiationOfMemberClass(
9973 RD: cast<CXXRecordDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization);
9974 } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Val: Member)) {
9975 MemberEnum->setInstantiationOfMemberEnum(
9976 ED: cast<EnumDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization);
9977 } else {
9978 llvm_unreachable("unknown member specialization kind");
9979 }
9980
9981 // Save the caller the trouble of having to figure out which declaration
9982 // this specialization matches.
9983 Previous.clear();
9984 Previous.addDecl(D: FoundInstantiation);
9985 return false;
9986}
9987
9988/// Complete the explicit specialization of a member of a class template by
9989/// updating the instantiated member to be marked as an explicit specialization.
9990///
9991/// \param OrigD The member declaration instantiated from the template.
9992/// \param Loc The location of the explicit specialization of the member.
9993template<typename DeclT>
9994static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD,
9995 SourceLocation Loc) {
9996 if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
9997 return;
9998
9999 // FIXME: Inform AST mutation listeners of this AST mutation.
10000 // FIXME: If there are multiple in-class declarations of the member (from
10001 // multiple modules, or a declaration and later definition of a member type),
10002 // should we update all of them?
10003 OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
10004 OrigD->setLocation(Loc);
10005}
10006
10007void Sema::CompleteMemberSpecialization(NamedDecl *Member,
10008 LookupResult &Previous) {
10009 NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl());
10010 if (Instantiation == Member)
10011 return;
10012
10013 if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation))
10014 completeMemberSpecializationImpl(*this, Function, Member->getLocation());
10015 else if (auto *Var = dyn_cast<VarDecl>(Instantiation))
10016 completeMemberSpecializationImpl(*this, Var, Member->getLocation());
10017 else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation))
10018 completeMemberSpecializationImpl(*this, Record, Member->getLocation());
10019 else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation))
10020 completeMemberSpecializationImpl(*this, Enum, Member->getLocation());
10021 else
10022 llvm_unreachable("unknown member specialization kind");
10023}
10024
10025/// Check the scope of an explicit instantiation.
10026///
10027/// \returns true if a serious error occurs, false otherwise.
10028static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
10029 SourceLocation InstLoc,
10030 bool WasQualifiedName) {
10031 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
10032 DeclContext *CurContext = S.CurContext->getRedeclContext();
10033
10034 if (CurContext->isRecord()) {
10035 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
10036 << D;
10037 return true;
10038 }
10039
10040 // C++11 [temp.explicit]p3:
10041 // An explicit instantiation shall appear in an enclosing namespace of its
10042 // template. If the name declared in the explicit instantiation is an
10043 // unqualified name, the explicit instantiation shall appear in the
10044 // namespace where its template is declared or, if that namespace is inline
10045 // (7.3.1), any namespace from its enclosing namespace set.
10046 //
10047 // This is DR275, which we do not retroactively apply to C++98/03.
10048 if (WasQualifiedName) {
10049 if (CurContext->Encloses(DC: OrigContext))
10050 return false;
10051 } else {
10052 if (CurContext->InEnclosingNamespaceSetOf(NS: OrigContext))
10053 return false;
10054 }
10055
10056 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: OrigContext)) {
10057 if (WasQualifiedName)
10058 S.Diag(InstLoc,
10059 S.getLangOpts().CPlusPlus11?
10060 diag::err_explicit_instantiation_out_of_scope :
10061 diag::warn_explicit_instantiation_out_of_scope_0x)
10062 << D << NS;
10063 else
10064 S.Diag(InstLoc,
10065 S.getLangOpts().CPlusPlus11?
10066 diag::err_explicit_instantiation_unqualified_wrong_namespace :
10067 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
10068 << D << NS;
10069 } else
10070 S.Diag(InstLoc,
10071 S.getLangOpts().CPlusPlus11?
10072 diag::err_explicit_instantiation_must_be_global :
10073 diag::warn_explicit_instantiation_must_be_global_0x)
10074 << D;
10075 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
10076 return false;
10077}
10078
10079/// Common checks for whether an explicit instantiation of \p D is valid.
10080static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D,
10081 SourceLocation InstLoc,
10082 bool WasQualifiedName,
10083 TemplateSpecializationKind TSK) {
10084 // C++ [temp.explicit]p13:
10085 // An explicit instantiation declaration shall not name a specialization of
10086 // a template with internal linkage.
10087 if (TSK == TSK_ExplicitInstantiationDeclaration &&
10088 D->getFormalLinkage() == Linkage::Internal) {
10089 S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D;
10090 return true;
10091 }
10092
10093 // C++11 [temp.explicit]p3: [DR 275]
10094 // An explicit instantiation shall appear in an enclosing namespace of its
10095 // template.
10096 if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName))
10097 return true;
10098
10099 return false;
10100}
10101
10102/// Determine whether the given scope specifier has a template-id in it.
10103static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
10104 if (!SS.isSet())
10105 return false;
10106
10107 // C++11 [temp.explicit]p3:
10108 // If the explicit instantiation is for a member function, a member class
10109 // or a static data member of a class template specialization, the name of
10110 // the class template specialization in the qualified-id for the member
10111 // name shall be a simple-template-id.
10112 //
10113 // C++98 has the same restriction, just worded differently.
10114 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
10115 NNS = NNS->getPrefix())
10116 if (const Type *T = NNS->getAsType())
10117 if (isa<TemplateSpecializationType>(Val: T))
10118 return true;
10119
10120 return false;
10121}
10122
10123/// Make a dllexport or dllimport attr on a class template specialization take
10124/// effect.
10125static void dllExportImportClassTemplateSpecialization(
10126 Sema &S, ClassTemplateSpecializationDecl *Def) {
10127 auto *A = cast_or_null<InheritableAttr>(Val: getDLLAttr(Def));
10128 assert(A && "dllExportImportClassTemplateSpecialization called "
10129 "on Def without dllexport or dllimport");
10130
10131 // We reject explicit instantiations in class scope, so there should
10132 // never be any delayed exported classes to worry about.
10133 assert(S.DelayedDllExportClasses.empty() &&
10134 "delayed exports present at explicit instantiation");
10135 S.checkClassLevelDLLAttribute(Def);
10136
10137 // Propagate attribute to base class templates.
10138 for (auto &B : Def->bases()) {
10139 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
10140 B.getType()->getAsCXXRecordDecl()))
10141 S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc());
10142 }
10143
10144 S.referenceDLLExportedClassMethods();
10145}
10146
10147// Explicit instantiation of a class template specialization
10148DeclResult Sema::ActOnExplicitInstantiation(
10149 Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc,
10150 unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS,
10151 TemplateTy TemplateD, SourceLocation TemplateNameLoc,
10152 SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn,
10153 SourceLocation RAngleLoc, const ParsedAttributesView &Attr) {
10154 // Find the class template we're specializing
10155 TemplateName Name = TemplateD.get();
10156 TemplateDecl *TD = Name.getAsTemplateDecl();
10157 // Check that the specialization uses the same tag kind as the
10158 // original template.
10159 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec);
10160 assert(Kind != TagTypeKind::Enum &&
10161 "Invalid enum tag in class template explicit instantiation!");
10162
10163 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(Val: TD);
10164
10165 if (!ClassTemplate) {
10166 NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind);
10167 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag)
10168 << TD << NTK << llvm::to_underlying(Kind);
10169 Diag(TD->getLocation(), diag::note_previous_use);
10170 return true;
10171 }
10172
10173 if (!isAcceptableTagRedeclaration(Previous: ClassTemplate->getTemplatedDecl(),
10174 NewTag: Kind, /*isDefinition*/false, NewTagLoc: KWLoc,
10175 Name: ClassTemplate->getIdentifier())) {
10176 Diag(KWLoc, diag::err_use_with_wrong_tag)
10177 << ClassTemplate
10178 << FixItHint::CreateReplacement(KWLoc,
10179 ClassTemplate->getTemplatedDecl()->getKindName());
10180 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
10181 diag::note_previous_use);
10182 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
10183 }
10184
10185 // C++0x [temp.explicit]p2:
10186 // There are two forms of explicit instantiation: an explicit instantiation
10187 // definition and an explicit instantiation declaration. An explicit
10188 // instantiation declaration begins with the extern keyword. [...]
10189 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
10190 ? TSK_ExplicitInstantiationDefinition
10191 : TSK_ExplicitInstantiationDeclaration;
10192
10193 if (TSK == TSK_ExplicitInstantiationDeclaration &&
10194 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10195 // Check for dllexport class template instantiation declarations,
10196 // except for MinGW mode.
10197 for (const ParsedAttr &AL : Attr) {
10198 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10199 Diag(ExternLoc,
10200 diag::warn_attribute_dllexport_explicit_instantiation_decl);
10201 Diag(AL.getLoc(), diag::note_attribute);
10202 break;
10203 }
10204 }
10205
10206 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
10207 Diag(ExternLoc,
10208 diag::warn_attribute_dllexport_explicit_instantiation_decl);
10209 Diag(A->getLocation(), diag::note_attribute);
10210 }
10211 }
10212
10213 // In MSVC mode, dllimported explicit instantiation definitions are treated as
10214 // instantiation declarations for most purposes.
10215 bool DLLImportExplicitInstantiationDef = false;
10216 if (TSK == TSK_ExplicitInstantiationDefinition &&
10217 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
10218 // Check for dllimport class template instantiation definitions.
10219 bool DLLImport =
10220 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
10221 for (const ParsedAttr &AL : Attr) {
10222 if (AL.getKind() == ParsedAttr::AT_DLLImport)
10223 DLLImport = true;
10224 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10225 // dllexport trumps dllimport here.
10226 DLLImport = false;
10227 break;
10228 }
10229 }
10230 if (DLLImport) {
10231 TSK = TSK_ExplicitInstantiationDeclaration;
10232 DLLImportExplicitInstantiationDef = true;
10233 }
10234 }
10235
10236 // Translate the parser's template argument list in our AST format.
10237 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
10238 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
10239
10240 // Check that the template argument list is well-formed for this
10241 // template.
10242 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
10243 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs,
10244 false, SugaredConverted, CanonicalConverted,
10245 /*UpdateArgsWithConversions=*/true))
10246 return true;
10247
10248 // Find the class template specialization declaration that
10249 // corresponds to these arguments.
10250 void *InsertPos = nullptr;
10251 ClassTemplateSpecializationDecl *PrevDecl =
10252 ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos);
10253
10254 TemplateSpecializationKind PrevDecl_TSK
10255 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
10256
10257 if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr &&
10258 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
10259 // Check for dllexport class template instantiation definitions in MinGW
10260 // mode, if a previous declaration of the instantiation was seen.
10261 for (const ParsedAttr &AL : Attr) {
10262 if (AL.getKind() == ParsedAttr::AT_DLLExport) {
10263 Diag(AL.getLoc(),
10264 diag::warn_attribute_dllexport_explicit_instantiation_def);
10265 break;
10266 }
10267 }
10268 }
10269
10270 if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc,
10271 SS.isSet(), TSK))
10272 return true;
10273
10274 ClassTemplateSpecializationDecl *Specialization = nullptr;
10275
10276 bool HasNoEffect = false;
10277 if (PrevDecl) {
10278 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
10279 PrevDecl, PrevDecl_TSK,
10280 PrevDecl->getPointOfInstantiation(),
10281 HasNoEffect))
10282 return PrevDecl;
10283
10284 // Even though HasNoEffect == true means that this explicit instantiation
10285 // has no effect on semantics, we go on to put its syntax in the AST.
10286
10287 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
10288 PrevDecl_TSK == TSK_Undeclared) {
10289 // Since the only prior class template specialization with these
10290 // arguments was referenced but not declared, reuse that
10291 // declaration node as our own, updating the source location
10292 // for the template name to reflect our new declaration.
10293 // (Other source locations will be updated later.)
10294 Specialization = PrevDecl;
10295 Specialization->setLocation(TemplateNameLoc);
10296 PrevDecl = nullptr;
10297 }
10298
10299 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10300 DLLImportExplicitInstantiationDef) {
10301 // The new specialization might add a dllimport attribute.
10302 HasNoEffect = false;
10303 }
10304 }
10305
10306 if (!Specialization) {
10307 // Create a new class template specialization declaration node for
10308 // this explicit specialization.
10309 Specialization = ClassTemplateSpecializationDecl::Create(
10310 Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, IdLoc: TemplateNameLoc,
10311 SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, PrevDecl);
10312 SetNestedNameSpecifier(*this, Specialization, SS);
10313
10314 // A MSInheritanceAttr attached to the previous declaration must be
10315 // propagated to the new node prior to instantiation.
10316 if (PrevDecl) {
10317 if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) {
10318 auto *Clone = A->clone(getASTContext());
10319 Clone->setInherited(true);
10320 Specialization->addAttr(A: Clone);
10321 Consumer.AssignInheritanceModel(Specialization);
10322 }
10323 }
10324
10325 if (!HasNoEffect && !PrevDecl) {
10326 // Insert the new specialization.
10327 ClassTemplate->AddSpecialization(D: Specialization, InsertPos);
10328 }
10329 }
10330
10331 // Build the fully-sugared type for this explicit instantiation as
10332 // the user wrote in the explicit instantiation itself. This means
10333 // that we'll pretty-print the type retrieved from the
10334 // specialization's declaration the way that the user actually wrote
10335 // the explicit instantiation, rather than formatting the name based
10336 // on the "canonical" representation used to store the template
10337 // arguments in the specialization.
10338 TypeSourceInfo *WrittenTy
10339 = Context.getTemplateSpecializationTypeInfo(T: Name, TLoc: TemplateNameLoc,
10340 Args: TemplateArgs,
10341 Canon: Context.getTypeDeclType(Specialization));
10342 Specialization->setTypeAsWritten(WrittenTy);
10343
10344 // Set source locations for keywords.
10345 Specialization->setExternLoc(ExternLoc);
10346 Specialization->setTemplateKeywordLoc(TemplateLoc);
10347 Specialization->setBraceRange(SourceRange());
10348
10349 bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>();
10350 ProcessDeclAttributeList(S, Specialization, Attr);
10351
10352 // Add the explicit instantiation into its lexical context. However,
10353 // since explicit instantiations are never found by name lookup, we
10354 // just put it into the declaration context directly.
10355 Specialization->setLexicalDeclContext(CurContext);
10356 CurContext->addDecl(Specialization);
10357
10358 // Syntax is now OK, so return if it has no other effect on semantics.
10359 if (HasNoEffect) {
10360 // Set the template specialization kind.
10361 Specialization->setTemplateSpecializationKind(TSK);
10362 return Specialization;
10363 }
10364
10365 // C++ [temp.explicit]p3:
10366 // A definition of a class template or class member template
10367 // shall be in scope at the point of the explicit instantiation of
10368 // the class template or class member template.
10369 //
10370 // This check comes when we actually try to perform the
10371 // instantiation.
10372 ClassTemplateSpecializationDecl *Def
10373 = cast_or_null<ClassTemplateSpecializationDecl>(
10374 Specialization->getDefinition());
10375 if (!Def)
10376 InstantiateClassTemplateSpecialization(PointOfInstantiation: TemplateNameLoc, ClassTemplateSpec: Specialization, TSK);
10377 else if (TSK == TSK_ExplicitInstantiationDefinition) {
10378 MarkVTableUsed(TemplateNameLoc, Specialization, true);
10379 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
10380 }
10381
10382 // Instantiate the members of this class template specialization.
10383 Def = cast_or_null<ClassTemplateSpecializationDecl>(
10384 Specialization->getDefinition());
10385 if (Def) {
10386 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
10387 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
10388 // TSK_ExplicitInstantiationDefinition
10389 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
10390 (TSK == TSK_ExplicitInstantiationDefinition ||
10391 DLLImportExplicitInstantiationDef)) {
10392 // FIXME: Need to notify the ASTMutationListener that we did this.
10393 Def->setTemplateSpecializationKind(TSK);
10394
10395 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
10396 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10397 !Context.getTargetInfo().getTriple().isPS())) {
10398 // An explicit instantiation definition can add a dll attribute to a
10399 // template with a previous instantiation declaration. MinGW doesn't
10400 // allow this.
10401 auto *A = cast<InheritableAttr>(
10402 Val: getDLLAttr(Specialization)->clone(C&: getASTContext()));
10403 A->setInherited(true);
10404 Def->addAttr(A: A);
10405 dllExportImportClassTemplateSpecialization(S&: *this, Def);
10406 }
10407 }
10408
10409 // Fix a TSK_ImplicitInstantiation followed by a
10410 // TSK_ExplicitInstantiationDefinition
10411 bool NewlyDLLExported =
10412 !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>();
10413 if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported &&
10414 (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
10415 !Context.getTargetInfo().getTriple().isPS())) {
10416 // An explicit instantiation definition can add a dll attribute to a
10417 // template with a previous implicit instantiation. MinGW doesn't allow
10418 // this. We limit clang to only adding dllexport, to avoid potentially
10419 // strange codegen behavior. For example, if we extend this conditional
10420 // to dllimport, and we have a source file calling a method on an
10421 // implicitly instantiated template class instance and then declaring a
10422 // dllimport explicit instantiation definition for the same template
10423 // class, the codegen for the method call will not respect the dllimport,
10424 // while it will with cl. The Def will already have the DLL attribute,
10425 // since the Def and Specialization will be the same in the case of
10426 // Old_TSK == TSK_ImplicitInstantiation, and we already added the
10427 // attribute to the Specialization; we just need to make it take effect.
10428 assert(Def == Specialization &&
10429 "Def and Specialization should match for implicit instantiation");
10430 dllExportImportClassTemplateSpecialization(S&: *this, Def);
10431 }
10432
10433 // In MinGW mode, export the template instantiation if the declaration
10434 // was marked dllexport.
10435 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
10436 Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() &&
10437 PrevDecl->hasAttr<DLLExportAttr>()) {
10438 dllExportImportClassTemplateSpecialization(S&: *this, Def);
10439 }
10440
10441 // Set the template specialization kind. Make sure it is set before
10442 // instantiating the members which will trigger ASTConsumer callbacks.
10443 Specialization->setTemplateSpecializationKind(TSK);
10444 InstantiateClassTemplateSpecializationMembers(PointOfInstantiation: TemplateNameLoc, ClassTemplateSpec: Def, TSK);
10445 } else {
10446
10447 // Set the template specialization kind.
10448 Specialization->setTemplateSpecializationKind(TSK);
10449 }
10450
10451 return Specialization;
10452}
10453
10454// Explicit instantiation of a member class of a class template.
10455DeclResult
10456Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc,
10457 SourceLocation TemplateLoc, unsigned TagSpec,
10458 SourceLocation KWLoc, CXXScopeSpec &SS,
10459 IdentifierInfo *Name, SourceLocation NameLoc,
10460 const ParsedAttributesView &Attr) {
10461
10462 bool Owned = false;
10463 bool IsDependent = false;
10464 Decl *TagD = ActOnTag(S, TagSpec, TUK: Sema::TUK_Reference, KWLoc, SS, Name,
10465 NameLoc, Attr, AS: AS_none, /*ModulePrivateLoc=*/SourceLocation(),
10466 TemplateParameterLists: MultiTemplateParamsArg(), OwnedDecl&: Owned, IsDependent, ScopedEnumKWLoc: SourceLocation(),
10467 ScopedEnumUsesClassTag: false, UnderlyingType: TypeResult(), /*IsTypeSpecifier*/ false,
10468 /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get();
10469 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
10470
10471 if (!TagD)
10472 return true;
10473
10474 TagDecl *Tag = cast<TagDecl>(Val: TagD);
10475 assert(!Tag->isEnum() && "shouldn't see enumerations here");
10476
10477 if (Tag->isInvalidDecl())
10478 return true;
10479
10480 CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: Tag);
10481 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
10482 if (!Pattern) {
10483 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
10484 << Context.getTypeDeclType(Record);
10485 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
10486 return true;
10487 }
10488
10489 // C++0x [temp.explicit]p2:
10490 // If the explicit instantiation is for a class or member class, the
10491 // elaborated-type-specifier in the declaration shall include a
10492 // simple-template-id.
10493 //
10494 // C++98 has the same restriction, just worded differently.
10495 if (!ScopeSpecifierHasTemplateId(SS))
10496 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
10497 << Record << SS.getRange();
10498
10499 // C++0x [temp.explicit]p2:
10500 // There are two forms of explicit instantiation: an explicit instantiation
10501 // definition and an explicit instantiation declaration. An explicit
10502 // instantiation declaration begins with the extern keyword. [...]
10503 TemplateSpecializationKind TSK
10504 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10505 : TSK_ExplicitInstantiationDeclaration;
10506
10507 CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK);
10508
10509 // Verify that it is okay to explicitly instantiate here.
10510 CXXRecordDecl *PrevDecl
10511 = cast_or_null<CXXRecordDecl>(Val: Record->getPreviousDecl());
10512 if (!PrevDecl && Record->getDefinition())
10513 PrevDecl = Record;
10514 if (PrevDecl) {
10515 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
10516 bool HasNoEffect = false;
10517 assert(MSInfo && "No member specialization information?");
10518 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
10519 PrevDecl,
10520 MSInfo->getTemplateSpecializationKind(),
10521 MSInfo->getPointOfInstantiation(),
10522 HasNoEffect))
10523 return true;
10524 if (HasNoEffect)
10525 return TagD;
10526 }
10527
10528 CXXRecordDecl *RecordDef
10529 = cast_or_null<CXXRecordDecl>(Val: Record->getDefinition());
10530 if (!RecordDef) {
10531 // C++ [temp.explicit]p3:
10532 // A definition of a member class of a class template shall be in scope
10533 // at the point of an explicit instantiation of the member class.
10534 CXXRecordDecl *Def
10535 = cast_or_null<CXXRecordDecl>(Val: Pattern->getDefinition());
10536 if (!Def) {
10537 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
10538 << 0 << Record->getDeclName() << Record->getDeclContext();
10539 Diag(Pattern->getLocation(), diag::note_forward_declaration)
10540 << Pattern;
10541 return true;
10542 } else {
10543 if (InstantiateClass(PointOfInstantiation: NameLoc, Instantiation: Record, Pattern: Def,
10544 TemplateArgs: getTemplateInstantiationArgs(Record),
10545 TSK))
10546 return true;
10547
10548 RecordDef = cast_or_null<CXXRecordDecl>(Val: Record->getDefinition());
10549 if (!RecordDef)
10550 return true;
10551 }
10552 }
10553
10554 // Instantiate all of the members of the class.
10555 InstantiateClassMembers(PointOfInstantiation: NameLoc, Instantiation: RecordDef,
10556 TemplateArgs: getTemplateInstantiationArgs(Record), TSK);
10557
10558 if (TSK == TSK_ExplicitInstantiationDefinition)
10559 MarkVTableUsed(Loc: NameLoc, Class: RecordDef, DefinitionRequired: true);
10560
10561 // FIXME: We don't have any representation for explicit instantiations of
10562 // member classes. Such a representation is not needed for compilation, but it
10563 // should be available for clients that want to see all of the declarations in
10564 // the source code.
10565 return TagD;
10566}
10567
10568DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
10569 SourceLocation ExternLoc,
10570 SourceLocation TemplateLoc,
10571 Declarator &D) {
10572 // Explicit instantiations always require a name.
10573 // TODO: check if/when DNInfo should replace Name.
10574 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10575 DeclarationName Name = NameInfo.getName();
10576 if (!Name) {
10577 if (!D.isInvalidType())
10578 Diag(D.getDeclSpec().getBeginLoc(),
10579 diag::err_explicit_instantiation_requires_name)
10580 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
10581
10582 return true;
10583 }
10584
10585 // The scope passed in may not be a decl scope. Zip up the scope tree until
10586 // we find one that is.
10587 while ((S->getFlags() & Scope::DeclScope) == 0 ||
10588 (S->getFlags() & Scope::TemplateParamScope) != 0)
10589 S = S->getParent();
10590
10591 // Determine the type of the declaration.
10592 TypeSourceInfo *T = GetTypeForDeclarator(D);
10593 QualType R = T->getType();
10594 if (R.isNull())
10595 return true;
10596
10597 // C++ [dcl.stc]p1:
10598 // A storage-class-specifier shall not be specified in [...] an explicit
10599 // instantiation (14.7.2) directive.
10600 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
10601 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
10602 << Name;
10603 return true;
10604 } else if (D.getDeclSpec().getStorageClassSpec()
10605 != DeclSpec::SCS_unspecified) {
10606 // Complain about then remove the storage class specifier.
10607 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
10608 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10609
10610 D.getMutableDeclSpec().ClearStorageClassSpecs();
10611 }
10612
10613 // C++0x [temp.explicit]p1:
10614 // [...] An explicit instantiation of a function template shall not use the
10615 // inline or constexpr specifiers.
10616 // Presumably, this also applies to member functions of class templates as
10617 // well.
10618 if (D.getDeclSpec().isInlineSpecified())
10619 Diag(D.getDeclSpec().getInlineSpecLoc(),
10620 getLangOpts().CPlusPlus11 ?
10621 diag::err_explicit_instantiation_inline :
10622 diag::warn_explicit_instantiation_inline_0x)
10623 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
10624 if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType())
10625 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
10626 // not already specified.
10627 Diag(D.getDeclSpec().getConstexprSpecLoc(),
10628 diag::err_explicit_instantiation_constexpr);
10629
10630 // A deduction guide is not on the list of entities that can be explicitly
10631 // instantiated.
10632 if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
10633 Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized)
10634 << /*explicit instantiation*/ 0;
10635 return true;
10636 }
10637
10638 // C++0x [temp.explicit]p2:
10639 // There are two forms of explicit instantiation: an explicit instantiation
10640 // definition and an explicit instantiation declaration. An explicit
10641 // instantiation declaration begins with the extern keyword. [...]
10642 TemplateSpecializationKind TSK
10643 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
10644 : TSK_ExplicitInstantiationDeclaration;
10645
10646 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
10647 LookupParsedName(R&: Previous, S, SS: &D.getCXXScopeSpec());
10648
10649 if (!R->isFunctionType()) {
10650 // C++ [temp.explicit]p1:
10651 // A [...] static data member of a class template can be explicitly
10652 // instantiated from the member definition associated with its class
10653 // template.
10654 // C++1y [temp.explicit]p1:
10655 // A [...] variable [...] template specialization can be explicitly
10656 // instantiated from its template.
10657 if (Previous.isAmbiguous())
10658 return true;
10659
10660 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
10661 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
10662
10663 if (!PrevTemplate) {
10664 if (!Prev || !Prev->isStaticDataMember()) {
10665 // We expect to see a static data member here.
10666 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
10667 << Name;
10668 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10669 P != PEnd; ++P)
10670 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
10671 return true;
10672 }
10673
10674 if (!Prev->getInstantiatedFromStaticDataMember()) {
10675 // FIXME: Check for explicit specialization?
10676 Diag(D.getIdentifierLoc(),
10677 diag::err_explicit_instantiation_data_member_not_instantiated)
10678 << Prev;
10679 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
10680 // FIXME: Can we provide a note showing where this was declared?
10681 return true;
10682 }
10683 } else {
10684 // Explicitly instantiate a variable template.
10685
10686 // C++1y [dcl.spec.auto]p6:
10687 // ... A program that uses auto or decltype(auto) in a context not
10688 // explicitly allowed in this section is ill-formed.
10689 //
10690 // This includes auto-typed variable template instantiations.
10691 if (R->isUndeducedType()) {
10692 Diag(T->getTypeLoc().getBeginLoc(),
10693 diag::err_auto_not_allowed_var_inst);
10694 return true;
10695 }
10696
10697 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
10698 // C++1y [temp.explicit]p3:
10699 // If the explicit instantiation is for a variable, the unqualified-id
10700 // in the declaration shall be a template-id.
10701 Diag(D.getIdentifierLoc(),
10702 diag::err_explicit_instantiation_without_template_id)
10703 << PrevTemplate;
10704 Diag(PrevTemplate->getLocation(),
10705 diag::note_explicit_instantiation_here);
10706 return true;
10707 }
10708
10709 // Translate the parser's template argument list into our AST format.
10710 TemplateArgumentListInfo TemplateArgs =
10711 makeTemplateArgumentListInfo(S&: *this, TemplateId&: *D.getName().TemplateId);
10712
10713 DeclResult Res = CheckVarTemplateId(Template: PrevTemplate, TemplateLoc,
10714 TemplateNameLoc: D.getIdentifierLoc(), TemplateArgs);
10715 if (Res.isInvalid())
10716 return true;
10717
10718 if (!Res.isUsable()) {
10719 // We somehow specified dependent template arguments in an explicit
10720 // instantiation. This should probably only happen during error
10721 // recovery.
10722 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent);
10723 return true;
10724 }
10725
10726 // Ignore access control bits, we don't need them for redeclaration
10727 // checking.
10728 Prev = cast<VarDecl>(Val: Res.get());
10729 }
10730
10731 // C++0x [temp.explicit]p2:
10732 // If the explicit instantiation is for a member function, a member class
10733 // or a static data member of a class template specialization, the name of
10734 // the class template specialization in the qualified-id for the member
10735 // name shall be a simple-template-id.
10736 //
10737 // C++98 has the same restriction, just worded differently.
10738 //
10739 // This does not apply to variable template specializations, where the
10740 // template-id is in the unqualified-id instead.
10741 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
10742 Diag(D.getIdentifierLoc(),
10743 diag::ext_explicit_instantiation_without_qualified_id)
10744 << Prev << D.getCXXScopeSpec().getRange();
10745
10746 CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK);
10747
10748 // Verify that it is okay to explicitly instantiate here.
10749 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
10750 SourceLocation POI = Prev->getPointOfInstantiation();
10751 bool HasNoEffect = false;
10752 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
10753 PrevTSK, POI, HasNoEffect))
10754 return true;
10755
10756 if (!HasNoEffect) {
10757 // Instantiate static data member or variable template.
10758 Prev->setTemplateSpecializationKind(TSK, PointOfInstantiation: D.getIdentifierLoc());
10759 // Merge attributes.
10760 ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes());
10761 if (TSK == TSK_ExplicitInstantiationDefinition)
10762 InstantiateVariableDefinition(PointOfInstantiation: D.getIdentifierLoc(), Var: Prev);
10763 }
10764
10765 // Check the new variable specialization against the parsed input.
10766 if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) {
10767 Diag(T->getTypeLoc().getBeginLoc(),
10768 diag::err_invalid_var_template_spec_type)
10769 << 0 << PrevTemplate << R << Prev->getType();
10770 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
10771 << 2 << PrevTemplate->getDeclName();
10772 return true;
10773 }
10774
10775 // FIXME: Create an ExplicitInstantiation node?
10776 return (Decl*) nullptr;
10777 }
10778
10779 // If the declarator is a template-id, translate the parser's template
10780 // argument list into our AST format.
10781 bool HasExplicitTemplateArgs = false;
10782 TemplateArgumentListInfo TemplateArgs;
10783 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
10784 TemplateArgs = makeTemplateArgumentListInfo(S&: *this, TemplateId&: *D.getName().TemplateId);
10785 HasExplicitTemplateArgs = true;
10786 }
10787
10788 // C++ [temp.explicit]p1:
10789 // A [...] function [...] can be explicitly instantiated from its template.
10790 // A member function [...] of a class template can be explicitly
10791 // instantiated from the member definition associated with its class
10792 // template.
10793 UnresolvedSet<8> TemplateMatches;
10794 FunctionDecl *NonTemplateMatch = nullptr;
10795 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
10796 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
10797 P != PEnd; ++P) {
10798 NamedDecl *Prev = *P;
10799 if (!HasExplicitTemplateArgs) {
10800 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Prev)) {
10801 QualType Adjusted = adjustCCAndNoReturn(ArgFunctionType: R, FunctionType: Method->getType(),
10802 /*AdjustExceptionSpec*/true);
10803 if (Context.hasSameUnqualifiedType(T1: Method->getType(), T2: Adjusted)) {
10804 if (Method->getPrimaryTemplate()) {
10805 TemplateMatches.addDecl(Method, P.getAccess());
10806 } else {
10807 // FIXME: Can this assert ever happen? Needs a test.
10808 assert(!NonTemplateMatch && "Multiple NonTemplateMatches");
10809 NonTemplateMatch = Method;
10810 }
10811 }
10812 }
10813 }
10814
10815 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Prev);
10816 if (!FunTmpl)
10817 continue;
10818
10819 TemplateDeductionInfo Info(FailedCandidates.getLocation());
10820 FunctionDecl *Specialization = nullptr;
10821 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
10822 FunctionTemplate: FunTmpl, ExplicitTemplateArgs: (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), ArgFunctionType: R,
10823 Specialization, Info);
10824 TDK != TemplateDeductionResult::Success) {
10825 // Keep track of almost-matches.
10826 FailedCandidates.addCandidate()
10827 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
10828 MakeDeductionFailureInfo(Context, TDK, Info));
10829 (void)TDK;
10830 continue;
10831 }
10832
10833 // Target attributes are part of the cuda function signature, so
10834 // the cuda target of the instantiated function must match that of its
10835 // template. Given that C++ template deduction does not take
10836 // target attributes into account, we reject candidates here that
10837 // have a different target.
10838 if (LangOpts.CUDA &&
10839 IdentifyCUDATarget(D: Specialization,
10840 /* IgnoreImplicitHDAttr = */ true) !=
10841 IdentifyCUDATarget(Attrs: D.getDeclSpec().getAttributes())) {
10842 FailedCandidates.addCandidate().set(
10843 P.getPair(), FunTmpl->getTemplatedDecl(),
10844 MakeDeductionFailureInfo(
10845 Context, TDK: TemplateDeductionResult::CUDATargetMismatch, Info));
10846 continue;
10847 }
10848
10849 TemplateMatches.addDecl(Specialization, P.getAccess());
10850 }
10851
10852 FunctionDecl *Specialization = NonTemplateMatch;
10853 if (!Specialization) {
10854 // Find the most specialized function template specialization.
10855 UnresolvedSetIterator Result = getMostSpecialized(
10856 TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates,
10857 D.getIdentifierLoc(),
10858 PDiag(diag::err_explicit_instantiation_not_known) << Name,
10859 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
10860 PDiag(diag::note_explicit_instantiation_candidate));
10861
10862 if (Result == TemplateMatches.end())
10863 return true;
10864
10865 // Ignore access control bits, we don't need them for redeclaration checking.
10866 Specialization = cast<FunctionDecl>(Val: *Result);
10867 }
10868
10869 // C++11 [except.spec]p4
10870 // In an explicit instantiation an exception-specification may be specified,
10871 // but is not required.
10872 // If an exception-specification is specified in an explicit instantiation
10873 // directive, it shall be compatible with the exception-specifications of
10874 // other declarations of that function.
10875 if (auto *FPT = R->getAs<FunctionProtoType>())
10876 if (FPT->hasExceptionSpec()) {
10877 unsigned DiagID =
10878 diag::err_mismatched_exception_spec_explicit_instantiation;
10879 if (getLangOpts().MicrosoftExt)
10880 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
10881 bool Result = CheckEquivalentExceptionSpec(
10882 PDiag(DiagID) << Specialization->getType(),
10883 PDiag(diag::note_explicit_instantiation_here),
10884 Specialization->getType()->getAs<FunctionProtoType>(),
10885 Specialization->getLocation(), FPT, D.getBeginLoc());
10886 // In Microsoft mode, mismatching exception specifications just cause a
10887 // warning.
10888 if (!getLangOpts().MicrosoftExt && Result)
10889 return true;
10890 }
10891
10892 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
10893 Diag(D.getIdentifierLoc(),
10894 diag::err_explicit_instantiation_member_function_not_instantiated)
10895 << Specialization
10896 << (Specialization->getTemplateSpecializationKind() ==
10897 TSK_ExplicitSpecialization);
10898 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
10899 return true;
10900 }
10901
10902 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
10903 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
10904 PrevDecl = Specialization;
10905
10906 if (PrevDecl) {
10907 bool HasNoEffect = false;
10908 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
10909 PrevDecl,
10910 PrevDecl->getTemplateSpecializationKind(),
10911 PrevDecl->getPointOfInstantiation(),
10912 HasNoEffect))
10913 return true;
10914
10915 // FIXME: We may still want to build some representation of this
10916 // explicit specialization.
10917 if (HasNoEffect)
10918 return (Decl*) nullptr;
10919 }
10920
10921 // HACK: libc++ has a bug where it attempts to explicitly instantiate the
10922 // functions
10923 // valarray<size_t>::valarray(size_t) and
10924 // valarray<size_t>::~valarray()
10925 // that it declared to have internal linkage with the internal_linkage
10926 // attribute. Ignore the explicit instantiation declaration in this case.
10927 if (Specialization->hasAttr<InternalLinkageAttr>() &&
10928 TSK == TSK_ExplicitInstantiationDeclaration) {
10929 if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext()))
10930 if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray") &&
10931 RD->isInStdNamespace())
10932 return (Decl*) nullptr;
10933 }
10934
10935 ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes());
10936
10937 // In MSVC mode, dllimported explicit instantiation definitions are treated as
10938 // instantiation declarations.
10939 if (TSK == TSK_ExplicitInstantiationDefinition &&
10940 Specialization->hasAttr<DLLImportAttr>() &&
10941 Context.getTargetInfo().getCXXABI().isMicrosoft())
10942 TSK = TSK_ExplicitInstantiationDeclaration;
10943
10944 Specialization->setTemplateSpecializationKind(TSK, PointOfInstantiation: D.getIdentifierLoc());
10945
10946 if (Specialization->isDefined()) {
10947 // Let the ASTConsumer know that this function has been explicitly
10948 // instantiated now, and its linkage might have changed.
10949 Consumer.HandleTopLevelDecl(D: DeclGroupRef(Specialization));
10950 } else if (TSK == TSK_ExplicitInstantiationDefinition)
10951 InstantiateFunctionDefinition(PointOfInstantiation: D.getIdentifierLoc(), Function: Specialization);
10952
10953 // C++0x [temp.explicit]p2:
10954 // If the explicit instantiation is for a member function, a member class
10955 // or a static data member of a class template specialization, the name of
10956 // the class template specialization in the qualified-id for the member
10957 // name shall be a simple-template-id.
10958 //
10959 // C++98 has the same restriction, just worded differently.
10960 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
10961 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl &&
10962 D.getCXXScopeSpec().isSet() &&
10963 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
10964 Diag(D.getIdentifierLoc(),
10965 diag::ext_explicit_instantiation_without_qualified_id)
10966 << Specialization << D.getCXXScopeSpec().getRange();
10967
10968 CheckExplicitInstantiation(
10969 *this,
10970 FunTmpl ? (NamedDecl *)FunTmpl
10971 : Specialization->getInstantiatedFromMemberFunction(),
10972 D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK);
10973
10974 // FIXME: Create some kind of ExplicitInstantiationDecl here.
10975 return (Decl*) nullptr;
10976}
10977
10978TypeResult
10979Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10980 const CXXScopeSpec &SS, IdentifierInfo *Name,
10981 SourceLocation TagLoc, SourceLocation NameLoc) {
10982 // This has to hold, because SS is expected to be defined.
10983 assert(Name && "Expected a name in a dependent tag");
10984
10985 NestedNameSpecifier *NNS = SS.getScopeRep();
10986 if (!NNS)
10987 return true;
10988
10989 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec);
10990
10991 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
10992 Diag(NameLoc, diag::err_dependent_tag_decl)
10993 << (TUK == TUK_Definition) << llvm::to_underlying(Kind)
10994 << SS.getRange();
10995 return true;
10996 }
10997
10998 // Create the resulting type.
10999 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind);
11000 QualType Result = Context.getDependentNameType(Keyword: Kwd, NNS, Name);
11001
11002 // Create type-source location information for this type.
11003 TypeLocBuilder TLB;
11004 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T: Result);
11005 TL.setElaboratedKeywordLoc(TagLoc);
11006 TL.setQualifierLoc(SS.getWithLocInContext(Context));
11007 TL.setNameLoc(NameLoc);
11008 return CreateParsedType(T: Result, TInfo: TLB.getTypeSourceInfo(Context, T: Result));
11009}
11010
11011TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
11012 const CXXScopeSpec &SS,
11013 const IdentifierInfo &II,
11014 SourceLocation IdLoc,
11015 ImplicitTypenameContext IsImplicitTypename) {
11016 if (SS.isInvalid())
11017 return true;
11018
11019 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
11020 Diag(TypenameLoc,
11021 getLangOpts().CPlusPlus11 ?
11022 diag::warn_cxx98_compat_typename_outside_of_template :
11023 diag::ext_typename_outside_of_template)
11024 << FixItHint::CreateRemoval(TypenameLoc);
11025
11026 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11027 TypeSourceInfo *TSI = nullptr;
11028 QualType T =
11029 CheckTypenameType(Keyword: (TypenameLoc.isValid() ||
11030 IsImplicitTypename == ImplicitTypenameContext::Yes)
11031 ? ElaboratedTypeKeyword::Typename
11032 : ElaboratedTypeKeyword::None,
11033 KeywordLoc: TypenameLoc, QualifierLoc, II, IILoc: IdLoc, TSI: &TSI,
11034 /*DeducedTSTContext=*/true);
11035 if (T.isNull())
11036 return true;
11037 return CreateParsedType(T, TInfo: TSI);
11038}
11039
11040TypeResult
11041Sema::ActOnTypenameType(Scope *S,
11042 SourceLocation TypenameLoc,
11043 const CXXScopeSpec &SS,
11044 SourceLocation TemplateKWLoc,
11045 TemplateTy TemplateIn,
11046 IdentifierInfo *TemplateII,
11047 SourceLocation TemplateIILoc,
11048 SourceLocation LAngleLoc,
11049 ASTTemplateArgsPtr TemplateArgsIn,
11050 SourceLocation RAngleLoc) {
11051 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
11052 Diag(TypenameLoc,
11053 getLangOpts().CPlusPlus11 ?
11054 diag::warn_cxx98_compat_typename_outside_of_template :
11055 diag::ext_typename_outside_of_template)
11056 << FixItHint::CreateRemoval(TypenameLoc);
11057
11058 // Strangely, non-type results are not ignored by this lookup, so the
11059 // program is ill-formed if it finds an injected-class-name.
11060 if (TypenameLoc.isValid()) {
11061 auto *LookupRD =
11062 dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS, EnteringContext: false));
11063 if (LookupRD && LookupRD->getIdentifier() == TemplateII) {
11064 Diag(TemplateIILoc,
11065 diag::ext_out_of_line_qualified_id_type_names_constructor)
11066 << TemplateII << 0 /*injected-class-name used as template name*/
11067 << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/);
11068 }
11069 }
11070
11071 // Translate the parser's template argument list in our AST format.
11072 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
11073 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
11074
11075 TemplateName Template = TemplateIn.get();
11076 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
11077 // Construct a dependent template specialization type.
11078 assert(DTN && "dependent template has non-dependent name?");
11079 assert(DTN->getQualifier() == SS.getScopeRep());
11080 QualType T = Context.getDependentTemplateSpecializationType(
11081 Keyword: ElaboratedTypeKeyword::Typename, NNS: DTN->getQualifier(),
11082 Name: DTN->getIdentifier(), Args: TemplateArgs.arguments());
11083
11084 // Create source-location information for this type.
11085 TypeLocBuilder Builder;
11086 DependentTemplateSpecializationTypeLoc SpecTL
11087 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
11088 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
11089 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
11090 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
11091 SpecTL.setTemplateNameLoc(TemplateIILoc);
11092 SpecTL.setLAngleLoc(LAngleLoc);
11093 SpecTL.setRAngleLoc(RAngleLoc);
11094 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
11095 SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo());
11096 return CreateParsedType(T, TInfo: Builder.getTypeSourceInfo(Context, T));
11097 }
11098
11099 QualType T = CheckTemplateIdType(Name: Template, TemplateLoc: TemplateIILoc, TemplateArgs);
11100 if (T.isNull())
11101 return true;
11102
11103 // Provide source-location information for the template specialization type.
11104 TypeLocBuilder Builder;
11105 TemplateSpecializationTypeLoc SpecTL
11106 = Builder.push<TemplateSpecializationTypeLoc>(T);
11107 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
11108 SpecTL.setTemplateNameLoc(TemplateIILoc);
11109 SpecTL.setLAngleLoc(LAngleLoc);
11110 SpecTL.setRAngleLoc(RAngleLoc);
11111 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
11112 SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo());
11113
11114 T = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::Typename,
11115 NNS: SS.getScopeRep(), NamedType: T);
11116 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
11117 TL.setElaboratedKeywordLoc(TypenameLoc);
11118 TL.setQualifierLoc(SS.getWithLocInContext(Context));
11119
11120 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
11121 return CreateParsedType(T, TInfo: TSI);
11122}
11123
11124
11125/// Determine whether this failed name lookup should be treated as being
11126/// disabled by a usage of std::enable_if.
11127static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
11128 SourceRange &CondRange, Expr *&Cond) {
11129 // We must be looking for a ::type...
11130 if (!II.isStr(Str: "type"))
11131 return false;
11132
11133 // ... within an explicitly-written template specialization...
11134 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
11135 return false;
11136 TypeLoc EnableIfTy = NNS.getTypeLoc();
11137 TemplateSpecializationTypeLoc EnableIfTSTLoc =
11138 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
11139 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
11140 return false;
11141 const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr();
11142
11143 // ... which names a complete class template declaration...
11144 const TemplateDecl *EnableIfDecl =
11145 EnableIfTST->getTemplateName().getAsTemplateDecl();
11146 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
11147 return false;
11148
11149 // ... called "enable_if".
11150 const IdentifierInfo *EnableIfII =
11151 EnableIfDecl->getDeclName().getAsIdentifierInfo();
11152 if (!EnableIfII || !EnableIfII->isStr(Str: "enable_if"))
11153 return false;
11154
11155 // Assume the first template argument is the condition.
11156 CondRange = EnableIfTSTLoc.getArgLoc(i: 0).getSourceRange();
11157
11158 // Dig out the condition.
11159 Cond = nullptr;
11160 if (EnableIfTSTLoc.getArgLoc(i: 0).getArgument().getKind()
11161 != TemplateArgument::Expression)
11162 return true;
11163
11164 Cond = EnableIfTSTLoc.getArgLoc(i: 0).getSourceExpression();
11165
11166 // Ignore Boolean literals; they add no value.
11167 if (isa<CXXBoolLiteralExpr>(Val: Cond->IgnoreParenCasts()))
11168 Cond = nullptr;
11169
11170 return true;
11171}
11172
11173QualType
11174Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11175 SourceLocation KeywordLoc,
11176 NestedNameSpecifierLoc QualifierLoc,
11177 const IdentifierInfo &II,
11178 SourceLocation IILoc,
11179 TypeSourceInfo **TSI,
11180 bool DeducedTSTContext) {
11181 QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc,
11182 DeducedTSTContext);
11183 if (T.isNull())
11184 return QualType();
11185
11186 *TSI = Context.CreateTypeSourceInfo(T);
11187 if (isa<DependentNameType>(Val: T)) {
11188 DependentNameTypeLoc TL =
11189 (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>();
11190 TL.setElaboratedKeywordLoc(KeywordLoc);
11191 TL.setQualifierLoc(QualifierLoc);
11192 TL.setNameLoc(IILoc);
11193 } else {
11194 ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>();
11195 TL.setElaboratedKeywordLoc(KeywordLoc);
11196 TL.setQualifierLoc(QualifierLoc);
11197 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc);
11198 }
11199 return T;
11200}
11201
11202/// Build the type that describes a C++ typename specifier,
11203/// e.g., "typename T::type".
11204QualType
11205Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
11206 SourceLocation KeywordLoc,
11207 NestedNameSpecifierLoc QualifierLoc,
11208 const IdentifierInfo &II,
11209 SourceLocation IILoc, bool DeducedTSTContext) {
11210 CXXScopeSpec SS;
11211 SS.Adopt(Other: QualifierLoc);
11212
11213 DeclContext *Ctx = nullptr;
11214 if (QualifierLoc) {
11215 Ctx = computeDeclContext(SS);
11216 if (!Ctx) {
11217 // If the nested-name-specifier is dependent and couldn't be
11218 // resolved to a type, build a typename type.
11219 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
11220 return Context.getDependentNameType(Keyword,
11221 NNS: QualifierLoc.getNestedNameSpecifier(),
11222 Name: &II);
11223 }
11224
11225 // If the nested-name-specifier refers to the current instantiation,
11226 // the "typename" keyword itself is superfluous. In C++03, the
11227 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
11228 // allows such extraneous "typename" keywords, and we retroactively
11229 // apply this DR to C++03 code with only a warning. In any case we continue.
11230
11231 if (RequireCompleteDeclContext(SS, DC: Ctx))
11232 return QualType();
11233 }
11234
11235 DeclarationName Name(&II);
11236 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
11237 if (Ctx)
11238 LookupQualifiedName(R&: Result, LookupCtx: Ctx, SS);
11239 else
11240 LookupName(R&: Result, S: CurScope);
11241 unsigned DiagID = 0;
11242 Decl *Referenced = nullptr;
11243 switch (Result.getResultKind()) {
11244 case LookupResult::NotFound: {
11245 // If we're looking up 'type' within a template named 'enable_if', produce
11246 // a more specific diagnostic.
11247 SourceRange CondRange;
11248 Expr *Cond = nullptr;
11249 if (Ctx && isEnableIf(NNS: QualifierLoc, II, CondRange, Cond)) {
11250 // If we have a condition, narrow it down to the specific failed
11251 // condition.
11252 if (Cond) {
11253 Expr *FailedCond;
11254 std::string FailedDescription;
11255 std::tie(args&: FailedCond, args&: FailedDescription) =
11256 findFailedBooleanCondition(Cond);
11257
11258 Diag(FailedCond->getExprLoc(),
11259 diag::err_typename_nested_not_found_requirement)
11260 << FailedDescription
11261 << FailedCond->getSourceRange();
11262 return QualType();
11263 }
11264
11265 Diag(CondRange.getBegin(),
11266 diag::err_typename_nested_not_found_enable_if)
11267 << Ctx << CondRange;
11268 return QualType();
11269 }
11270
11271 DiagID = Ctx ? diag::err_typename_nested_not_found
11272 : diag::err_unknown_typename;
11273 break;
11274 }
11275
11276 case LookupResult::FoundUnresolvedValue: {
11277 // We found a using declaration that is a value. Most likely, the using
11278 // declaration itself is meant to have the 'typename' keyword.
11279 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11280 IILoc);
11281 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
11282 << Name << Ctx << FullRange;
11283 if (UnresolvedUsingValueDecl *Using
11284 = dyn_cast<UnresolvedUsingValueDecl>(Val: Result.getRepresentativeDecl())){
11285 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
11286 Diag(Loc, diag::note_using_value_decl_missing_typename)
11287 << FixItHint::CreateInsertion(Loc, "typename ");
11288 }
11289 }
11290 // Fall through to create a dependent typename type, from which we can recover
11291 // better.
11292 [[fallthrough]];
11293
11294 case LookupResult::NotFoundInCurrentInstantiation:
11295 // Okay, it's a member of an unknown instantiation.
11296 return Context.getDependentNameType(Keyword,
11297 NNS: QualifierLoc.getNestedNameSpecifier(),
11298 Name: &II);
11299
11300 case LookupResult::Found:
11301 if (TypeDecl *Type = dyn_cast<TypeDecl>(Val: Result.getFoundDecl())) {
11302 // C++ [class.qual]p2:
11303 // In a lookup in which function names are not ignored and the
11304 // nested-name-specifier nominates a class C, if the name specified
11305 // after the nested-name-specifier, when looked up in C, is the
11306 // injected-class-name of C [...] then the name is instead considered
11307 // to name the constructor of class C.
11308 //
11309 // Unlike in an elaborated-type-specifier, function names are not ignored
11310 // in typename-specifier lookup. However, they are ignored in all the
11311 // contexts where we form a typename type with no keyword (that is, in
11312 // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers).
11313 //
11314 // FIXME: That's not strictly true: mem-initializer-id lookup does not
11315 // ignore functions, but that appears to be an oversight.
11316 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: Ctx);
11317 auto *FoundRD = dyn_cast<CXXRecordDecl>(Val: Type);
11318 if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD &&
11319 FoundRD->isInjectedClassName() &&
11320 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
11321 Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor)
11322 << &II << 1 << 0 /*'typename' keyword used*/;
11323
11324 // We found a type. Build an ElaboratedType, since the
11325 // typename-specifier was just sugar.
11326 MarkAnyDeclReferenced(Loc: Type->getLocation(), D: Type, /*OdrUse=*/MightBeOdrUse: false);
11327 return Context.getElaboratedType(Keyword,
11328 NNS: QualifierLoc.getNestedNameSpecifier(),
11329 NamedType: Context.getTypeDeclType(Decl: Type));
11330 }
11331
11332 // C++ [dcl.type.simple]p2:
11333 // A type-specifier of the form
11334 // typename[opt] nested-name-specifier[opt] template-name
11335 // is a placeholder for a deduced class type [...].
11336 if (getLangOpts().CPlusPlus17) {
11337 if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) {
11338 if (!DeducedTSTContext) {
11339 QualType T(QualifierLoc
11340 ? QualifierLoc.getNestedNameSpecifier()->getAsType()
11341 : nullptr, 0);
11342 if (!T.isNull())
11343 Diag(IILoc, diag::err_dependent_deduced_tst)
11344 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T;
11345 else
11346 Diag(IILoc, diag::err_deduced_tst)
11347 << (int)getTemplateNameKindForDiagnostics(TemplateName(TD));
11348 NoteTemplateLocation(Decl: *TD);
11349 return QualType();
11350 }
11351 return Context.getElaboratedType(
11352 Keyword, NNS: QualifierLoc.getNestedNameSpecifier(),
11353 NamedType: Context.getDeducedTemplateSpecializationType(Template: TemplateName(TD),
11354 DeducedType: QualType(), IsDependent: false));
11355 }
11356 }
11357
11358 DiagID = Ctx ? diag::err_typename_nested_not_type
11359 : diag::err_typename_not_type;
11360 Referenced = Result.getFoundDecl();
11361 break;
11362
11363 case LookupResult::FoundOverloaded:
11364 DiagID = Ctx ? diag::err_typename_nested_not_type
11365 : diag::err_typename_not_type;
11366 Referenced = *Result.begin();
11367 break;
11368
11369 case LookupResult::Ambiguous:
11370 return QualType();
11371 }
11372
11373 // If we get here, it's because name lookup did not find a
11374 // type. Emit an appropriate diagnostic and return an error.
11375 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
11376 IILoc);
11377 if (Ctx)
11378 Diag(Loc: IILoc, DiagID) << FullRange << Name << Ctx;
11379 else
11380 Diag(Loc: IILoc, DiagID) << FullRange << Name;
11381 if (Referenced)
11382 Diag(Referenced->getLocation(),
11383 Ctx ? diag::note_typename_member_refers_here
11384 : diag::note_typename_refers_here)
11385 << Name;
11386 return QualType();
11387}
11388
11389namespace {
11390 // See Sema::RebuildTypeInCurrentInstantiation
11391 class CurrentInstantiationRebuilder
11392 : public TreeTransform<CurrentInstantiationRebuilder> {
11393 SourceLocation Loc;
11394 DeclarationName Entity;
11395
11396 public:
11397 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
11398
11399 CurrentInstantiationRebuilder(Sema &SemaRef,
11400 SourceLocation Loc,
11401 DeclarationName Entity)
11402 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
11403 Loc(Loc), Entity(Entity) { }
11404
11405 /// Determine whether the given type \p T has already been
11406 /// transformed.
11407 ///
11408 /// For the purposes of type reconstruction, a type has already been
11409 /// transformed if it is NULL or if it is not dependent.
11410 bool AlreadyTransformed(QualType T) {
11411 return T.isNull() || !T->isInstantiationDependentType();
11412 }
11413
11414 /// Returns the location of the entity whose type is being
11415 /// rebuilt.
11416 SourceLocation getBaseLocation() { return Loc; }
11417
11418 /// Returns the name of the entity whose type is being rebuilt.
11419 DeclarationName getBaseEntity() { return Entity; }
11420
11421 /// Sets the "base" location and entity when that
11422 /// information is known based on another transformation.
11423 void setBase(SourceLocation Loc, DeclarationName Entity) {
11424 this->Loc = Loc;
11425 this->Entity = Entity;
11426 }
11427
11428 ExprResult TransformLambdaExpr(LambdaExpr *E) {
11429 // Lambdas never need to be transformed.
11430 return E;
11431 }
11432 };
11433} // end anonymous namespace
11434
11435/// Rebuilds a type within the context of the current instantiation.
11436///
11437/// The type \p T is part of the type of an out-of-line member definition of
11438/// a class template (or class template partial specialization) that was parsed
11439/// and constructed before we entered the scope of the class template (or
11440/// partial specialization thereof). This routine will rebuild that type now
11441/// that we have entered the declarator's scope, which may produce different
11442/// canonical types, e.g.,
11443///
11444/// \code
11445/// template<typename T>
11446/// struct X {
11447/// typedef T* pointer;
11448/// pointer data();
11449/// };
11450///
11451/// template<typename T>
11452/// typename X<T>::pointer X<T>::data() { ... }
11453/// \endcode
11454///
11455/// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
11456/// since we do not know that we can look into X<T> when we parsed the type.
11457/// This function will rebuild the type, performing the lookup of "pointer"
11458/// in X<T> and returning an ElaboratedType whose canonical type is the same
11459/// as the canonical type of T*, allowing the return types of the out-of-line
11460/// definition and the declaration to match.
11461TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
11462 SourceLocation Loc,
11463 DeclarationName Name) {
11464 if (!T || !T->getType()->isInstantiationDependentType())
11465 return T;
11466
11467 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
11468 return Rebuilder.TransformType(T);
11469}
11470
11471ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
11472 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
11473 DeclarationName());
11474 return Rebuilder.TransformExpr(E);
11475}
11476
11477bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
11478 if (SS.isInvalid())
11479 return true;
11480
11481 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11482 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
11483 DeclarationName());
11484 NestedNameSpecifierLoc Rebuilt
11485 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
11486 if (!Rebuilt)
11487 return true;
11488
11489 SS.Adopt(Other: Rebuilt);
11490 return false;
11491}
11492
11493/// Rebuild the template parameters now that we know we're in a current
11494/// instantiation.
11495bool Sema::RebuildTemplateParamsInCurrentInstantiation(
11496 TemplateParameterList *Params) {
11497 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11498 Decl *Param = Params->getParam(Idx: I);
11499
11500 // There is nothing to rebuild in a type parameter.
11501 if (isa<TemplateTypeParmDecl>(Val: Param))
11502 continue;
11503
11504 // Rebuild the template parameter list of a template template parameter.
11505 if (TemplateTemplateParmDecl *TTP
11506 = dyn_cast<TemplateTemplateParmDecl>(Val: Param)) {
11507 if (RebuildTemplateParamsInCurrentInstantiation(
11508 Params: TTP->getTemplateParameters()))
11509 return true;
11510
11511 continue;
11512 }
11513
11514 // Rebuild the type of a non-type template parameter.
11515 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Val: Param);
11516 TypeSourceInfo *NewTSI
11517 = RebuildTypeInCurrentInstantiation(T: NTTP->getTypeSourceInfo(),
11518 Loc: NTTP->getLocation(),
11519 Name: NTTP->getDeclName());
11520 if (!NewTSI)
11521 return true;
11522
11523 if (NewTSI->getType()->isUndeducedType()) {
11524 // C++17 [temp.dep.expr]p3:
11525 // An id-expression is type-dependent if it contains
11526 // - an identifier associated by name lookup with a non-type
11527 // template-parameter declared with a type that contains a
11528 // placeholder type (7.1.7.4),
11529 NewTSI = SubstAutoTypeSourceInfoDependent(TypeWithAuto: NewTSI);
11530 }
11531
11532 if (NewTSI != NTTP->getTypeSourceInfo()) {
11533 NTTP->setTypeSourceInfo(NewTSI);
11534 NTTP->setType(NewTSI->getType());
11535 }
11536 }
11537
11538 return false;
11539}
11540
11541/// Produces a formatted string that describes the binding of
11542/// template parameters to template arguments.
11543std::string
11544Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11545 const TemplateArgumentList &Args) {
11546 return getTemplateArgumentBindingsText(Params, Args: Args.data(), NumArgs: Args.size());
11547}
11548
11549std::string
11550Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
11551 const TemplateArgument *Args,
11552 unsigned NumArgs) {
11553 SmallString<128> Str;
11554 llvm::raw_svector_ostream Out(Str);
11555
11556 if (!Params || Params->size() == 0 || NumArgs == 0)
11557 return std::string();
11558
11559 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
11560 if (I >= NumArgs)
11561 break;
11562
11563 if (I == 0)
11564 Out << "[with ";
11565 else
11566 Out << ", ";
11567
11568 if (const IdentifierInfo *Id = Params->getParam(Idx: I)->getIdentifier()) {
11569 Out << Id->getName();
11570 } else {
11571 Out << '$' << I;
11572 }
11573
11574 Out << " = ";
11575 Args[I].print(Policy: getPrintingPolicy(), Out,
11576 IncludeType: TemplateParameterList::shouldIncludeTypeForArgument(
11577 Policy: getPrintingPolicy(), TPL: Params, Idx: I));
11578 }
11579
11580 Out << ']';
11581 return std::string(Out.str());
11582}
11583
11584void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
11585 CachedTokens &Toks) {
11586 if (!FD)
11587 return;
11588
11589 auto LPT = std::make_unique<LateParsedTemplate>();
11590
11591 // Take tokens to avoid allocations
11592 LPT->Toks.swap(RHS&: Toks);
11593 LPT->D = FnD;
11594 LPT->FPO = getCurFPFeatures();
11595 LateParsedTemplateMap.insert(KV: std::make_pair(x&: FD, y: std::move(LPT)));
11596
11597 FD->setLateTemplateParsed(true);
11598}
11599
11600void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
11601 if (!FD)
11602 return;
11603 FD->setLateTemplateParsed(false);
11604}
11605
11606bool Sema::IsInsideALocalClassWithinATemplateFunction() {
11607 DeclContext *DC = CurContext;
11608
11609 while (DC) {
11610 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: CurContext)) {
11611 const FunctionDecl *FD = RD->isLocalClass();
11612 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
11613 } else if (DC->isTranslationUnit() || DC->isNamespace())
11614 return false;
11615
11616 DC = DC->getParent();
11617 }
11618 return false;
11619}
11620
11621namespace {
11622/// Walk the path from which a declaration was instantiated, and check
11623/// that every explicit specialization along that path is visible. This enforces
11624/// C++ [temp.expl.spec]/6:
11625///
11626/// If a template, a member template or a member of a class template is
11627/// explicitly specialized then that specialization shall be declared before
11628/// the first use of that specialization that would cause an implicit
11629/// instantiation to take place, in every translation unit in which such a
11630/// use occurs; no diagnostic is required.
11631///
11632/// and also C++ [temp.class.spec]/1:
11633///
11634/// A partial specialization shall be declared before the first use of a
11635/// class template specialization that would make use of the partial
11636/// specialization as the result of an implicit or explicit instantiation
11637/// in every translation unit in which such a use occurs; no diagnostic is
11638/// required.
11639class ExplicitSpecializationVisibilityChecker {
11640 Sema &S;
11641 SourceLocation Loc;
11642 llvm::SmallVector<Module *, 8> Modules;
11643 Sema::AcceptableKind Kind;
11644
11645public:
11646 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc,
11647 Sema::AcceptableKind Kind)
11648 : S(S), Loc(Loc), Kind(Kind) {}
11649
11650 void check(NamedDecl *ND) {
11651 if (auto *FD = dyn_cast<FunctionDecl>(Val: ND))
11652 return checkImpl(Spec: FD);
11653 if (auto *RD = dyn_cast<CXXRecordDecl>(Val: ND))
11654 return checkImpl(Spec: RD);
11655 if (auto *VD = dyn_cast<VarDecl>(Val: ND))
11656 return checkImpl(Spec: VD);
11657 if (auto *ED = dyn_cast<EnumDecl>(Val: ND))
11658 return checkImpl(Spec: ED);
11659 }
11660
11661private:
11662 void diagnose(NamedDecl *D, bool IsPartialSpec) {
11663 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
11664 : Sema::MissingImportKind::ExplicitSpecialization;
11665 const bool Recover = true;
11666
11667 // If we got a custom set of modules (because only a subset of the
11668 // declarations are interesting), use them, otherwise let
11669 // diagnoseMissingImport intelligently pick some.
11670 if (Modules.empty())
11671 S.diagnoseMissingImport(Loc, Decl: D, MIK: Kind, Recover);
11672 else
11673 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
11674 }
11675
11676 bool CheckMemberSpecialization(const NamedDecl *D) {
11677 return Kind == Sema::AcceptableKind::Visible
11678 ? S.hasVisibleMemberSpecialization(D)
11679 : S.hasReachableMemberSpecialization(D);
11680 }
11681
11682 bool CheckExplicitSpecialization(const NamedDecl *D) {
11683 return Kind == Sema::AcceptableKind::Visible
11684 ? S.hasVisibleExplicitSpecialization(D)
11685 : S.hasReachableExplicitSpecialization(D);
11686 }
11687
11688 bool CheckDeclaration(const NamedDecl *D) {
11689 return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D)
11690 : S.hasReachableDeclaration(D);
11691 }
11692
11693 // Check a specific declaration. There are three problematic cases:
11694 //
11695 // 1) The declaration is an explicit specialization of a template
11696 // specialization.
11697 // 2) The declaration is an explicit specialization of a member of an
11698 // templated class.
11699 // 3) The declaration is an instantiation of a template, and that template
11700 // is an explicit specialization of a member of a templated class.
11701 //
11702 // We don't need to go any deeper than that, as the instantiation of the
11703 // surrounding class / etc is not triggered by whatever triggered this
11704 // instantiation, and thus should be checked elsewhere.
11705 template<typename SpecDecl>
11706 void checkImpl(SpecDecl *Spec) {
11707 bool IsHiddenExplicitSpecialization = false;
11708 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
11709 IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo()
11710 ? !CheckMemberSpecialization(D: Spec)
11711 : !CheckExplicitSpecialization(D: Spec);
11712 } else {
11713 checkInstantiated(Spec);
11714 }
11715
11716 if (IsHiddenExplicitSpecialization)
11717 diagnose(D: Spec->getMostRecentDecl(), IsPartialSpec: false);
11718 }
11719
11720 void checkInstantiated(FunctionDecl *FD) {
11721 if (auto *TD = FD->getPrimaryTemplate())
11722 checkTemplate(TD);
11723 }
11724
11725 void checkInstantiated(CXXRecordDecl *RD) {
11726 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: RD);
11727 if (!SD)
11728 return;
11729
11730 auto From = SD->getSpecializedTemplateOrPartial();
11731 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
11732 checkTemplate(TD);
11733 else if (auto *TD =
11734 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
11735 if (!CheckDeclaration(TD))
11736 diagnose(TD, true);
11737 checkTemplate(TD);
11738 }
11739 }
11740
11741 void checkInstantiated(VarDecl *RD) {
11742 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(Val: RD);
11743 if (!SD)
11744 return;
11745
11746 auto From = SD->getSpecializedTemplateOrPartial();
11747 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
11748 checkTemplate(TD);
11749 else if (auto *TD =
11750 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
11751 if (!CheckDeclaration(TD))
11752 diagnose(TD, true);
11753 checkTemplate(TD);
11754 }
11755 }
11756
11757 void checkInstantiated(EnumDecl *FD) {}
11758
11759 template<typename TemplDecl>
11760 void checkTemplate(TemplDecl *TD) {
11761 if (TD->isMemberSpecialization()) {
11762 if (!CheckMemberSpecialization(D: TD))
11763 diagnose(D: TD->getMostRecentDecl(), IsPartialSpec: false);
11764 }
11765 }
11766};
11767} // end anonymous namespace
11768
11769void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
11770 if (!getLangOpts().Modules)
11771 return;
11772
11773 ExplicitSpecializationVisibilityChecker(*this, Loc,
11774 Sema::AcceptableKind::Visible)
11775 .check(ND: Spec);
11776}
11777
11778void Sema::checkSpecializationReachability(SourceLocation Loc,
11779 NamedDecl *Spec) {
11780 if (!getLangOpts().CPlusPlusModules)
11781 return checkSpecializationVisibility(Loc, Spec);
11782
11783 ExplicitSpecializationVisibilityChecker(*this, Loc,
11784 Sema::AcceptableKind::Reachable)
11785 .check(ND: Spec);
11786}
11787
11788/// Returns the top most location responsible for the definition of \p N.
11789/// If \p N is a a template specialization, this is the location
11790/// of the top of the instantiation stack.
11791/// Otherwise, the location of \p N is returned.
11792SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const {
11793 if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty())
11794 return N->getLocation();
11795 if (const auto *FD = dyn_cast<FunctionDecl>(Val: N)) {
11796 if (!FD->isFunctionTemplateSpecialization())
11797 return FD->getLocation();
11798 } else if (!isa<ClassTemplateSpecializationDecl,
11799 VarTemplateSpecializationDecl>(Val: N)) {
11800 return N->getLocation();
11801 }
11802 for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) {
11803 if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid())
11804 continue;
11805 return CSC.PointOfInstantiation;
11806 }
11807 return N->getLocation();
11808}
11809

source code of clang/lib/Sema/SemaTemplate.cpp