1 | //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | //===----------------------------------------------------------------------===// |
7 | // |
8 | // This file implements semantic analysis for C++ templates. |
9 | //===----------------------------------------------------------------------===// |
10 | |
11 | #include "TreeTransform.h" |
12 | #include "clang/AST/ASTConsumer.h" |
13 | #include "clang/AST/ASTContext.h" |
14 | #include "clang/AST/Decl.h" |
15 | #include "clang/AST/DeclFriend.h" |
16 | #include "clang/AST/DeclTemplate.h" |
17 | #include "clang/AST/Expr.h" |
18 | #include "clang/AST/ExprCXX.h" |
19 | #include "clang/AST/RecursiveASTVisitor.h" |
20 | #include "clang/AST/TemplateName.h" |
21 | #include "clang/AST/TypeVisitor.h" |
22 | #include "clang/Basic/Builtins.h" |
23 | #include "clang/Basic/DiagnosticSema.h" |
24 | #include "clang/Basic/LangOptions.h" |
25 | #include "clang/Basic/PartialDiagnostic.h" |
26 | #include "clang/Basic/SourceLocation.h" |
27 | #include "clang/Basic/Stack.h" |
28 | #include "clang/Basic/TargetInfo.h" |
29 | #include "clang/Sema/DeclSpec.h" |
30 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
31 | #include "clang/Sema/Initialization.h" |
32 | #include "clang/Sema/Lookup.h" |
33 | #include "clang/Sema/Overload.h" |
34 | #include "clang/Sema/ParsedTemplate.h" |
35 | #include "clang/Sema/Scope.h" |
36 | #include "clang/Sema/SemaCUDA.h" |
37 | #include "clang/Sema/SemaInternal.h" |
38 | #include "clang/Sema/Template.h" |
39 | #include "clang/Sema/TemplateDeduction.h" |
40 | #include "llvm/ADT/SmallBitVector.h" |
41 | #include "llvm/ADT/SmallString.h" |
42 | #include "llvm/ADT/StringExtras.h" |
43 | |
44 | #include <iterator> |
45 | #include <optional> |
46 | using namespace clang; |
47 | using namespace sema; |
48 | |
49 | // Exported for use by Parser. |
50 | SourceRange |
51 | clang::getTemplateParamsRange(TemplateParameterList const * const *Ps, |
52 | unsigned N) { |
53 | if (!N) return SourceRange(); |
54 | return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc()); |
55 | } |
56 | |
57 | unsigned Sema::getTemplateDepth(Scope *S) const { |
58 | unsigned Depth = 0; |
59 | |
60 | // Each template parameter scope represents one level of template parameter |
61 | // depth. |
62 | for (Scope *TempParamScope = S->getTemplateParamParent(); TempParamScope; |
63 | TempParamScope = TempParamScope->getParent()->getTemplateParamParent()) { |
64 | ++Depth; |
65 | } |
66 | |
67 | // Note that there are template parameters with the given depth. |
68 | auto ParamsAtDepth = [&](unsigned D) { Depth = std::max(a: Depth, b: D + 1); }; |
69 | |
70 | // Look for parameters of an enclosing generic lambda. We don't create a |
71 | // template parameter scope for these. |
72 | for (FunctionScopeInfo *FSI : getFunctionScopes()) { |
73 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(Val: FSI)) { |
74 | if (!LSI->TemplateParams.empty()) { |
75 | ParamsAtDepth(LSI->AutoTemplateParameterDepth); |
76 | break; |
77 | } |
78 | if (LSI->GLTemplateParameterList) { |
79 | ParamsAtDepth(LSI->GLTemplateParameterList->getDepth()); |
80 | break; |
81 | } |
82 | } |
83 | } |
84 | |
85 | // Look for parameters of an enclosing terse function template. We don't |
86 | // create a template parameter scope for these either. |
87 | for (const InventedTemplateParameterInfo &Info : |
88 | getInventedParameterInfos()) { |
89 | if (!Info.TemplateParams.empty()) { |
90 | ParamsAtDepth(Info.AutoTemplateParameterDepth); |
91 | break; |
92 | } |
93 | } |
94 | |
95 | return Depth; |
96 | } |
97 | |
98 | /// \brief Determine whether the declaration found is acceptable as the name |
99 | /// of a template and, if so, return that template declaration. Otherwise, |
100 | /// returns null. |
101 | /// |
102 | /// Note that this may return an UnresolvedUsingValueDecl if AllowDependent |
103 | /// is true. In all other cases it will return a TemplateDecl (or null). |
104 | NamedDecl *Sema::getAsTemplateNameDecl(NamedDecl *D, |
105 | bool AllowFunctionTemplates, |
106 | bool AllowDependent) { |
107 | D = D->getUnderlyingDecl(); |
108 | |
109 | if (isa<TemplateDecl>(Val: D)) { |
110 | if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(Val: D)) |
111 | return nullptr; |
112 | |
113 | return D; |
114 | } |
115 | |
116 | if (const auto *Record = dyn_cast<CXXRecordDecl>(Val: D)) { |
117 | // C++ [temp.local]p1: |
118 | // Like normal (non-template) classes, class templates have an |
119 | // injected-class-name (Clause 9). The injected-class-name |
120 | // can be used with or without a template-argument-list. When |
121 | // it is used without a template-argument-list, it is |
122 | // equivalent to the injected-class-name followed by the |
123 | // template-parameters of the class template enclosed in |
124 | // <>. When it is used with a template-argument-list, it |
125 | // refers to the specified class template specialization, |
126 | // which could be the current specialization or another |
127 | // specialization. |
128 | if (Record->isInjectedClassName()) { |
129 | Record = cast<CXXRecordDecl>(Record->getDeclContext()); |
130 | if (Record->getDescribedClassTemplate()) |
131 | return Record->getDescribedClassTemplate(); |
132 | |
133 | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) |
134 | return Spec->getSpecializedTemplate(); |
135 | } |
136 | |
137 | return nullptr; |
138 | } |
139 | |
140 | // 'using Dependent::foo;' can resolve to a template name. |
141 | // 'using typename Dependent::foo;' cannot (not even if 'foo' is an |
142 | // injected-class-name). |
143 | if (AllowDependent && isa<UnresolvedUsingValueDecl>(Val: D)) |
144 | return D; |
145 | |
146 | return nullptr; |
147 | } |
148 | |
149 | void Sema::FilterAcceptableTemplateNames(LookupResult &R, |
150 | bool AllowFunctionTemplates, |
151 | bool AllowDependent) { |
152 | LookupResult::Filter filter = R.makeFilter(); |
153 | while (filter.hasNext()) { |
154 | NamedDecl *Orig = filter.next(); |
155 | if (!getAsTemplateNameDecl(D: Orig, AllowFunctionTemplates, AllowDependent)) |
156 | filter.erase(); |
157 | } |
158 | filter.done(); |
159 | } |
160 | |
161 | bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R, |
162 | bool AllowFunctionTemplates, |
163 | bool AllowDependent, |
164 | bool AllowNonTemplateFunctions) { |
165 | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { |
166 | if (getAsTemplateNameDecl(D: *I, AllowFunctionTemplates, AllowDependent)) |
167 | return true; |
168 | if (AllowNonTemplateFunctions && |
169 | isa<FunctionDecl>(Val: (*I)->getUnderlyingDecl())) |
170 | return true; |
171 | } |
172 | |
173 | return false; |
174 | } |
175 | |
176 | TemplateNameKind Sema::isTemplateName(Scope *S, |
177 | CXXScopeSpec &SS, |
178 | bool hasTemplateKeyword, |
179 | const UnqualifiedId &Name, |
180 | ParsedType ObjectTypePtr, |
181 | bool EnteringContext, |
182 | TemplateTy &TemplateResult, |
183 | bool &MemberOfUnknownSpecialization, |
184 | bool Disambiguation) { |
185 | assert(getLangOpts().CPlusPlus && "No template names in C!" ); |
186 | |
187 | DeclarationName TName; |
188 | MemberOfUnknownSpecialization = false; |
189 | |
190 | switch (Name.getKind()) { |
191 | case UnqualifiedIdKind::IK_Identifier: |
192 | TName = DeclarationName(Name.Identifier); |
193 | break; |
194 | |
195 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
196 | TName = Context.DeclarationNames.getCXXOperatorName( |
197 | Op: Name.OperatorFunctionId.Operator); |
198 | break; |
199 | |
200 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
201 | TName = Context.DeclarationNames.getCXXLiteralOperatorName(II: Name.Identifier); |
202 | break; |
203 | |
204 | default: |
205 | return TNK_Non_template; |
206 | } |
207 | |
208 | QualType ObjectType = ObjectTypePtr.get(); |
209 | |
210 | AssumedTemplateKind AssumedTemplate; |
211 | LookupResult R(*this, TName, Name.getBeginLoc(), LookupOrdinaryName); |
212 | if (LookupTemplateName(R, S, SS, ObjectType, EnteringContext, |
213 | MemberOfUnknownSpecialization, RequiredTemplate: SourceLocation(), |
214 | ATK: &AssumedTemplate, |
215 | /*AllowTypoCorrection=*/!Disambiguation)) |
216 | return TNK_Non_template; |
217 | |
218 | if (AssumedTemplate != AssumedTemplateKind::None) { |
219 | TemplateResult = TemplateTy::make(P: Context.getAssumedTemplateName(Name: TName)); |
220 | // Let the parser know whether we found nothing or found functions; if we |
221 | // found nothing, we want to more carefully check whether this is actually |
222 | // a function template name versus some other kind of undeclared identifier. |
223 | return AssumedTemplate == AssumedTemplateKind::FoundNothing |
224 | ? TNK_Undeclared_template |
225 | : TNK_Function_template; |
226 | } |
227 | |
228 | if (R.empty()) |
229 | return TNK_Non_template; |
230 | |
231 | NamedDecl *D = nullptr; |
232 | UsingShadowDecl *FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: *R.begin()); |
233 | if (R.isAmbiguous()) { |
234 | // If we got an ambiguity involving a non-function template, treat this |
235 | // as a template name, and pick an arbitrary template for error recovery. |
236 | bool AnyFunctionTemplates = false; |
237 | for (NamedDecl *FoundD : R) { |
238 | if (NamedDecl *FoundTemplate = getAsTemplateNameDecl(D: FoundD)) { |
239 | if (isa<FunctionTemplateDecl>(Val: FoundTemplate)) |
240 | AnyFunctionTemplates = true; |
241 | else { |
242 | D = FoundTemplate; |
243 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: FoundD); |
244 | break; |
245 | } |
246 | } |
247 | } |
248 | |
249 | // If we didn't find any templates at all, this isn't a template name. |
250 | // Leave the ambiguity for a later lookup to diagnose. |
251 | if (!D && !AnyFunctionTemplates) { |
252 | R.suppressDiagnostics(); |
253 | return TNK_Non_template; |
254 | } |
255 | |
256 | // If the only templates were function templates, filter out the rest. |
257 | // We'll diagnose the ambiguity later. |
258 | if (!D) |
259 | FilterAcceptableTemplateNames(R); |
260 | } |
261 | |
262 | // At this point, we have either picked a single template name declaration D |
263 | // or we have a non-empty set of results R containing either one template name |
264 | // declaration or a set of function templates. |
265 | |
266 | TemplateName Template; |
267 | TemplateNameKind TemplateKind; |
268 | |
269 | unsigned ResultCount = R.end() - R.begin(); |
270 | if (!D && ResultCount > 1) { |
271 | // We assume that we'll preserve the qualifier from a function |
272 | // template name in other ways. |
273 | Template = Context.getOverloadedTemplateName(Begin: R.begin(), End: R.end()); |
274 | TemplateKind = TNK_Function_template; |
275 | |
276 | // We'll do this lookup again later. |
277 | R.suppressDiagnostics(); |
278 | } else { |
279 | if (!D) { |
280 | D = getAsTemplateNameDecl(D: *R.begin()); |
281 | assert(D && "unambiguous result is not a template name" ); |
282 | } |
283 | |
284 | if (isa<UnresolvedUsingValueDecl>(Val: D)) { |
285 | // We don't yet know whether this is a template-name or not. |
286 | MemberOfUnknownSpecialization = true; |
287 | return TNK_Non_template; |
288 | } |
289 | |
290 | TemplateDecl *TD = cast<TemplateDecl>(Val: D); |
291 | Template = |
292 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); |
293 | assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); |
294 | if (SS.isSet() && !SS.isInvalid()) { |
295 | NestedNameSpecifier *Qualifier = SS.getScopeRep(); |
296 | Template = Context.getQualifiedTemplateName(NNS: Qualifier, TemplateKeyword: hasTemplateKeyword, |
297 | Template); |
298 | } |
299 | |
300 | if (isa<FunctionTemplateDecl>(Val: TD)) { |
301 | TemplateKind = TNK_Function_template; |
302 | |
303 | // We'll do this lookup again later. |
304 | R.suppressDiagnostics(); |
305 | } else { |
306 | assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) || |
307 | isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) || |
308 | isa<BuiltinTemplateDecl>(TD) || isa<ConceptDecl>(TD)); |
309 | TemplateKind = |
310 | isa<VarTemplateDecl>(Val: TD) ? TNK_Var_template : |
311 | isa<ConceptDecl>(Val: TD) ? TNK_Concept_template : |
312 | TNK_Type_template; |
313 | } |
314 | } |
315 | |
316 | TemplateResult = TemplateTy::make(P: Template); |
317 | return TemplateKind; |
318 | } |
319 | |
320 | bool Sema::isDeductionGuideName(Scope *S, const IdentifierInfo &Name, |
321 | SourceLocation NameLoc, CXXScopeSpec &SS, |
322 | ParsedTemplateTy *Template /*=nullptr*/) { |
323 | bool MemberOfUnknownSpecialization = false; |
324 | |
325 | // We could use redeclaration lookup here, but we don't need to: the |
326 | // syntactic form of a deduction guide is enough to identify it even |
327 | // if we can't look up the template name at all. |
328 | LookupResult R(*this, DeclarationName(&Name), NameLoc, LookupOrdinaryName); |
329 | if (LookupTemplateName(R, S, SS, /*ObjectType*/ QualType(), |
330 | /*EnteringContext*/ false, |
331 | MemberOfUnknownSpecialization)) |
332 | return false; |
333 | |
334 | if (R.empty()) return false; |
335 | if (R.isAmbiguous()) { |
336 | // FIXME: Diagnose an ambiguity if we find at least one template. |
337 | R.suppressDiagnostics(); |
338 | return false; |
339 | } |
340 | |
341 | // We only treat template-names that name type templates as valid deduction |
342 | // guide names. |
343 | TemplateDecl *TD = R.getAsSingle<TemplateDecl>(); |
344 | if (!TD || !getAsTypeTemplateDecl(TD)) |
345 | return false; |
346 | |
347 | if (Template) |
348 | *Template = TemplateTy::make(P: TemplateName(TD)); |
349 | return true; |
350 | } |
351 | |
352 | bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II, |
353 | SourceLocation IILoc, |
354 | Scope *S, |
355 | const CXXScopeSpec *SS, |
356 | TemplateTy &SuggestedTemplate, |
357 | TemplateNameKind &SuggestedKind) { |
358 | // We can't recover unless there's a dependent scope specifier preceding the |
359 | // template name. |
360 | // FIXME: Typo correction? |
361 | if (!SS || !SS->isSet() || !isDependentScopeSpecifier(SS: *SS) || |
362 | computeDeclContext(SS: *SS)) |
363 | return false; |
364 | |
365 | // The code is missing a 'template' keyword prior to the dependent template |
366 | // name. |
367 | NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep(); |
368 | Diag(IILoc, diag::err_template_kw_missing) |
369 | << Qualifier << II.getName() |
370 | << FixItHint::CreateInsertion(IILoc, "template " ); |
371 | SuggestedTemplate |
372 | = TemplateTy::make(P: Context.getDependentTemplateName(NNS: Qualifier, Name: &II)); |
373 | SuggestedKind = TNK_Dependent_template_name; |
374 | return true; |
375 | } |
376 | |
377 | bool Sema::LookupTemplateName(LookupResult &Found, |
378 | Scope *S, CXXScopeSpec &SS, |
379 | QualType ObjectType, |
380 | bool EnteringContext, |
381 | bool &MemberOfUnknownSpecialization, |
382 | RequiredTemplateKind RequiredTemplate, |
383 | AssumedTemplateKind *ATK, |
384 | bool AllowTypoCorrection) { |
385 | if (ATK) |
386 | *ATK = AssumedTemplateKind::None; |
387 | |
388 | if (SS.isInvalid()) |
389 | return true; |
390 | |
391 | Found.setTemplateNameLookup(true); |
392 | |
393 | // Determine where to perform name lookup |
394 | MemberOfUnknownSpecialization = false; |
395 | DeclContext *LookupCtx = nullptr; |
396 | bool IsDependent = false; |
397 | if (!ObjectType.isNull()) { |
398 | // This nested-name-specifier occurs in a member access expression, e.g., |
399 | // x->B::f, and we are looking into the type of the object. |
400 | assert(SS.isEmpty() && "ObjectType and scope specifier cannot coexist" ); |
401 | LookupCtx = computeDeclContext(T: ObjectType); |
402 | IsDependent = !LookupCtx && ObjectType->isDependentType(); |
403 | assert((IsDependent || !ObjectType->isIncompleteType() || |
404 | !ObjectType->getAs<TagType>() || |
405 | ObjectType->castAs<TagType>()->isBeingDefined()) && |
406 | "Caller should have completed object type" ); |
407 | |
408 | // Template names cannot appear inside an Objective-C class or object type |
409 | // or a vector type. |
410 | // |
411 | // FIXME: This is wrong. For example: |
412 | // |
413 | // template<typename T> using Vec = T __attribute__((ext_vector_type(4))); |
414 | // Vec<int> vi; |
415 | // vi.Vec<int>::~Vec<int>(); |
416 | // |
417 | // ... should be accepted but we will not treat 'Vec' as a template name |
418 | // here. The right thing to do would be to check if the name is a valid |
419 | // vector component name, and look up a template name if not. And similarly |
420 | // for lookups into Objective-C class and object types, where the same |
421 | // problem can arise. |
422 | if (ObjectType->isObjCObjectOrInterfaceType() || |
423 | ObjectType->isVectorType()) { |
424 | Found.clear(); |
425 | return false; |
426 | } |
427 | } else if (SS.isNotEmpty()) { |
428 | // This nested-name-specifier occurs after another nested-name-specifier, |
429 | // so long into the context associated with the prior nested-name-specifier. |
430 | LookupCtx = computeDeclContext(SS, EnteringContext); |
431 | IsDependent = !LookupCtx && isDependentScopeSpecifier(SS); |
432 | |
433 | // The declaration context must be complete. |
434 | if (LookupCtx && RequireCompleteDeclContext(SS, DC: LookupCtx)) |
435 | return true; |
436 | } |
437 | |
438 | bool ObjectTypeSearchedInScope = false; |
439 | bool AllowFunctionTemplatesInLookup = true; |
440 | if (LookupCtx) { |
441 | // Perform "qualified" name lookup into the declaration context we |
442 | // computed, which is either the type of the base of a member access |
443 | // expression or the declaration context associated with a prior |
444 | // nested-name-specifier. |
445 | LookupQualifiedName(R&: Found, LookupCtx); |
446 | |
447 | // FIXME: The C++ standard does not clearly specify what happens in the |
448 | // case where the object type is dependent, and implementations vary. In |
449 | // Clang, we treat a name after a . or -> as a template-name if lookup |
450 | // finds a non-dependent member or member of the current instantiation that |
451 | // is a type template, or finds no such members and lookup in the context |
452 | // of the postfix-expression finds a type template. In the latter case, the |
453 | // name is nonetheless dependent, and we may resolve it to a member of an |
454 | // unknown specialization when we come to instantiate the template. |
455 | IsDependent |= Found.wasNotFoundInCurrentInstantiation(); |
456 | } |
457 | |
458 | if (SS.isEmpty() && (ObjectType.isNull() || Found.empty())) { |
459 | // C++ [basic.lookup.classref]p1: |
460 | // In a class member access expression (5.2.5), if the . or -> token is |
461 | // immediately followed by an identifier followed by a <, the |
462 | // identifier must be looked up to determine whether the < is the |
463 | // beginning of a template argument list (14.2) or a less-than operator. |
464 | // The identifier is first looked up in the class of the object |
465 | // expression. If the identifier is not found, it is then looked up in |
466 | // the context of the entire postfix-expression and shall name a class |
467 | // template. |
468 | if (S) |
469 | LookupName(R&: Found, S); |
470 | |
471 | if (!ObjectType.isNull()) { |
472 | // FIXME: We should filter out all non-type templates here, particularly |
473 | // variable templates and concepts. But the exclusion of alias templates |
474 | // and template template parameters is a wording defect. |
475 | AllowFunctionTemplatesInLookup = false; |
476 | ObjectTypeSearchedInScope = true; |
477 | } |
478 | |
479 | IsDependent |= Found.wasNotFoundInCurrentInstantiation(); |
480 | } |
481 | |
482 | if (Found.isAmbiguous()) |
483 | return false; |
484 | |
485 | if (ATK && SS.isEmpty() && ObjectType.isNull() && |
486 | !RequiredTemplate.hasTemplateKeyword()) { |
487 | // C++2a [temp.names]p2: |
488 | // A name is also considered to refer to a template if it is an |
489 | // unqualified-id followed by a < and name lookup finds either one or more |
490 | // functions or finds nothing. |
491 | // |
492 | // To keep our behavior consistent, we apply the "finds nothing" part in |
493 | // all language modes, and diagnose the empty lookup in ActOnCallExpr if we |
494 | // successfully form a call to an undeclared template-id. |
495 | bool AllFunctions = |
496 | getLangOpts().CPlusPlus20 && llvm::all_of(Range&: Found, P: [](NamedDecl *ND) { |
497 | return isa<FunctionDecl>(Val: ND->getUnderlyingDecl()); |
498 | }); |
499 | if (AllFunctions || (Found.empty() && !IsDependent)) { |
500 | // If lookup found any functions, or if this is a name that can only be |
501 | // used for a function, then strongly assume this is a function |
502 | // template-id. |
503 | *ATK = (Found.empty() && Found.getLookupName().isIdentifier()) |
504 | ? AssumedTemplateKind::FoundNothing |
505 | : AssumedTemplateKind::FoundFunctions; |
506 | Found.clear(); |
507 | return false; |
508 | } |
509 | } |
510 | |
511 | if (Found.empty() && !IsDependent && AllowTypoCorrection) { |
512 | // If we did not find any names, and this is not a disambiguation, attempt |
513 | // to correct any typos. |
514 | DeclarationName Name = Found.getLookupName(); |
515 | Found.clear(); |
516 | // Simple filter callback that, for keywords, only accepts the C++ *_cast |
517 | DefaultFilterCCC FilterCCC{}; |
518 | FilterCCC.WantTypeSpecifiers = false; |
519 | FilterCCC.WantExpressionKeywords = false; |
520 | FilterCCC.WantRemainingKeywords = false; |
521 | FilterCCC.WantCXXNamedCasts = true; |
522 | if (TypoCorrection Corrected = |
523 | CorrectTypo(Typo: Found.getLookupNameInfo(), LookupKind: Found.getLookupKind(), S, |
524 | SS: &SS, CCC&: FilterCCC, Mode: CTK_ErrorRecovery, MemberContext: LookupCtx)) { |
525 | if (auto *ND = Corrected.getFoundDecl()) |
526 | Found.addDecl(D: ND); |
527 | FilterAcceptableTemplateNames(R&: Found); |
528 | if (Found.isAmbiguous()) { |
529 | Found.clear(); |
530 | } else if (!Found.empty()) { |
531 | Found.setLookupName(Corrected.getCorrection()); |
532 | if (LookupCtx) { |
533 | std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts())); |
534 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
535 | Name.getAsString() == CorrectedStr; |
536 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest) |
537 | << Name << LookupCtx << DroppedSpecifier |
538 | << SS.getRange()); |
539 | } else { |
540 | diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name); |
541 | } |
542 | } |
543 | } |
544 | } |
545 | |
546 | NamedDecl *ExampleLookupResult = |
547 | Found.empty() ? nullptr : Found.getRepresentativeDecl(); |
548 | FilterAcceptableTemplateNames(R&: Found, AllowFunctionTemplates: AllowFunctionTemplatesInLookup); |
549 | if (Found.empty()) { |
550 | if (IsDependent) { |
551 | MemberOfUnknownSpecialization = true; |
552 | return false; |
553 | } |
554 | |
555 | // If a 'template' keyword was used, a lookup that finds only non-template |
556 | // names is an error. |
557 | if (ExampleLookupResult && RequiredTemplate) { |
558 | Diag(Found.getNameLoc(), diag::err_template_kw_refers_to_non_template) |
559 | << Found.getLookupName() << SS.getRange() |
560 | << RequiredTemplate.hasTemplateKeyword() |
561 | << RequiredTemplate.getTemplateKeywordLoc(); |
562 | Diag(ExampleLookupResult->getUnderlyingDecl()->getLocation(), |
563 | diag::note_template_kw_refers_to_non_template) |
564 | << Found.getLookupName(); |
565 | return true; |
566 | } |
567 | |
568 | return false; |
569 | } |
570 | |
571 | if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope && |
572 | !getLangOpts().CPlusPlus11) { |
573 | // C++03 [basic.lookup.classref]p1: |
574 | // [...] If the lookup in the class of the object expression finds a |
575 | // template, the name is also looked up in the context of the entire |
576 | // postfix-expression and [...] |
577 | // |
578 | // Note: C++11 does not perform this second lookup. |
579 | LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(), |
580 | LookupOrdinaryName); |
581 | FoundOuter.setTemplateNameLookup(true); |
582 | LookupName(R&: FoundOuter, S); |
583 | // FIXME: We silently accept an ambiguous lookup here, in violation of |
584 | // [basic.lookup]/1. |
585 | FilterAcceptableTemplateNames(R&: FoundOuter, /*AllowFunctionTemplates=*/false); |
586 | |
587 | NamedDecl *OuterTemplate; |
588 | if (FoundOuter.empty()) { |
589 | // - if the name is not found, the name found in the class of the |
590 | // object expression is used, otherwise |
591 | } else if (FoundOuter.isAmbiguous() || !FoundOuter.isSingleResult() || |
592 | !(OuterTemplate = |
593 | getAsTemplateNameDecl(D: FoundOuter.getFoundDecl()))) { |
594 | // - if the name is found in the context of the entire |
595 | // postfix-expression and does not name a class template, the name |
596 | // found in the class of the object expression is used, otherwise |
597 | FoundOuter.clear(); |
598 | } else if (!Found.isSuppressingAmbiguousDiagnostics()) { |
599 | // - if the name found is a class template, it must refer to the same |
600 | // entity as the one found in the class of the object expression, |
601 | // otherwise the program is ill-formed. |
602 | if (!Found.isSingleResult() || |
603 | getAsTemplateNameDecl(D: Found.getFoundDecl())->getCanonicalDecl() != |
604 | OuterTemplate->getCanonicalDecl()) { |
605 | Diag(Found.getNameLoc(), |
606 | diag::ext_nested_name_member_ref_lookup_ambiguous) |
607 | << Found.getLookupName() |
608 | << ObjectType; |
609 | Diag(Found.getRepresentativeDecl()->getLocation(), |
610 | diag::note_ambig_member_ref_object_type) |
611 | << ObjectType; |
612 | Diag(FoundOuter.getFoundDecl()->getLocation(), |
613 | diag::note_ambig_member_ref_scope); |
614 | |
615 | // Recover by taking the template that we found in the object |
616 | // expression's type. |
617 | } |
618 | } |
619 | } |
620 | |
621 | return false; |
622 | } |
623 | |
624 | void Sema::diagnoseExprIntendedAsTemplateName(Scope *S, ExprResult TemplateName, |
625 | SourceLocation Less, |
626 | SourceLocation Greater) { |
627 | if (TemplateName.isInvalid()) |
628 | return; |
629 | |
630 | DeclarationNameInfo NameInfo; |
631 | CXXScopeSpec SS; |
632 | LookupNameKind LookupKind; |
633 | |
634 | DeclContext *LookupCtx = nullptr; |
635 | NamedDecl *Found = nullptr; |
636 | bool MissingTemplateKeyword = false; |
637 | |
638 | // Figure out what name we looked up. |
639 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: TemplateName.get())) { |
640 | NameInfo = DRE->getNameInfo(); |
641 | SS.Adopt(Other: DRE->getQualifierLoc()); |
642 | LookupKind = LookupOrdinaryName; |
643 | Found = DRE->getFoundDecl(); |
644 | } else if (auto *ME = dyn_cast<MemberExpr>(Val: TemplateName.get())) { |
645 | NameInfo = ME->getMemberNameInfo(); |
646 | SS.Adopt(Other: ME->getQualifierLoc()); |
647 | LookupKind = LookupMemberName; |
648 | LookupCtx = ME->getBase()->getType()->getAsCXXRecordDecl(); |
649 | Found = ME->getMemberDecl(); |
650 | } else if (auto *DSDRE = |
651 | dyn_cast<DependentScopeDeclRefExpr>(Val: TemplateName.get())) { |
652 | NameInfo = DSDRE->getNameInfo(); |
653 | SS.Adopt(Other: DSDRE->getQualifierLoc()); |
654 | MissingTemplateKeyword = true; |
655 | } else if (auto *DSME = |
656 | dyn_cast<CXXDependentScopeMemberExpr>(Val: TemplateName.get())) { |
657 | NameInfo = DSME->getMemberNameInfo(); |
658 | SS.Adopt(Other: DSME->getQualifierLoc()); |
659 | MissingTemplateKeyword = true; |
660 | } else { |
661 | llvm_unreachable("unexpected kind of potential template name" ); |
662 | } |
663 | |
664 | // If this is a dependent-scope lookup, diagnose that the 'template' keyword |
665 | // was missing. |
666 | if (MissingTemplateKeyword) { |
667 | Diag(NameInfo.getBeginLoc(), diag::err_template_kw_missing) |
668 | << "" << NameInfo.getName().getAsString() << SourceRange(Less, Greater); |
669 | return; |
670 | } |
671 | |
672 | // Try to correct the name by looking for templates and C++ named casts. |
673 | struct TemplateCandidateFilter : CorrectionCandidateCallback { |
674 | Sema &S; |
675 | TemplateCandidateFilter(Sema &S) : S(S) { |
676 | WantTypeSpecifiers = false; |
677 | WantExpressionKeywords = false; |
678 | WantRemainingKeywords = false; |
679 | WantCXXNamedCasts = true; |
680 | }; |
681 | bool ValidateCandidate(const TypoCorrection &Candidate) override { |
682 | if (auto *ND = Candidate.getCorrectionDecl()) |
683 | return S.getAsTemplateNameDecl(D: ND); |
684 | return Candidate.isKeyword(); |
685 | } |
686 | |
687 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
688 | return std::make_unique<TemplateCandidateFilter>(args&: *this); |
689 | } |
690 | }; |
691 | |
692 | DeclarationName Name = NameInfo.getName(); |
693 | TemplateCandidateFilter CCC(*this); |
694 | if (TypoCorrection Corrected = CorrectTypo(Typo: NameInfo, LookupKind, S, SS: &SS, CCC, |
695 | Mode: CTK_ErrorRecovery, MemberContext: LookupCtx)) { |
696 | auto *ND = Corrected.getFoundDecl(); |
697 | if (ND) |
698 | ND = getAsTemplateNameDecl(D: ND); |
699 | if (ND || Corrected.isKeyword()) { |
700 | if (LookupCtx) { |
701 | std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts())); |
702 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
703 | Name.getAsString() == CorrectedStr; |
704 | diagnoseTypo(Corrected, |
705 | PDiag(diag::err_non_template_in_member_template_id_suggest) |
706 | << Name << LookupCtx << DroppedSpecifier |
707 | << SS.getRange(), false); |
708 | } else { |
709 | diagnoseTypo(Corrected, |
710 | PDiag(diag::err_non_template_in_template_id_suggest) |
711 | << Name, false); |
712 | } |
713 | if (Found) |
714 | Diag(Found->getLocation(), |
715 | diag::note_non_template_in_template_id_found); |
716 | return; |
717 | } |
718 | } |
719 | |
720 | Diag(NameInfo.getLoc(), diag::err_non_template_in_template_id) |
721 | << Name << SourceRange(Less, Greater); |
722 | if (Found) |
723 | Diag(Found->getLocation(), diag::note_non_template_in_template_id_found); |
724 | } |
725 | |
726 | /// ActOnDependentIdExpression - Handle a dependent id-expression that |
727 | /// was just parsed. This is only possible with an explicit scope |
728 | /// specifier naming a dependent type. |
729 | ExprResult |
730 | Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS, |
731 | SourceLocation TemplateKWLoc, |
732 | const DeclarationNameInfo &NameInfo, |
733 | bool isAddressOfOperand, |
734 | const TemplateArgumentListInfo *TemplateArgs) { |
735 | DeclContext *DC = getFunctionLevelDeclContext(); |
736 | |
737 | // C++11 [expr.prim.general]p12: |
738 | // An id-expression that denotes a non-static data member or non-static |
739 | // member function of a class can only be used: |
740 | // (...) |
741 | // - if that id-expression denotes a non-static data member and it |
742 | // appears in an unevaluated operand. |
743 | // |
744 | // If this might be the case, form a DependentScopeDeclRefExpr instead of a |
745 | // CXXDependentScopeMemberExpr. The former can instantiate to either |
746 | // DeclRefExpr or MemberExpr depending on lookup results, while the latter is |
747 | // always a MemberExpr. |
748 | bool MightBeCxx11UnevalField = |
749 | getLangOpts().CPlusPlus11 && isUnevaluatedContext(); |
750 | |
751 | // Check if the nested name specifier is an enum type. |
752 | bool IsEnum = false; |
753 | if (NestedNameSpecifier *NNS = SS.getScopeRep()) |
754 | IsEnum = isa_and_nonnull<EnumType>(Val: NNS->getAsType()); |
755 | |
756 | if (!MightBeCxx11UnevalField && !isAddressOfOperand && !IsEnum && |
757 | isa<CXXMethodDecl>(Val: DC) && |
758 | cast<CXXMethodDecl>(Val: DC)->isImplicitObjectMemberFunction()) { |
759 | QualType ThisType = cast<CXXMethodDecl>(Val: DC)->getThisType().getNonReferenceType(); |
760 | |
761 | // Since the 'this' expression is synthesized, we don't need to |
762 | // perform the double-lookup check. |
763 | NamedDecl *FirstQualifierInScope = nullptr; |
764 | |
765 | return CXXDependentScopeMemberExpr::Create( |
766 | Ctx: Context, /*This=*/Base: nullptr, BaseType: ThisType, |
767 | /*IsArrow=*/!Context.getLangOpts().HLSL, |
768 | /*Op=*/OperatorLoc: SourceLocation(), QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, |
769 | FirstQualifierFoundInScope: FirstQualifierInScope, MemberNameInfo: NameInfo, TemplateArgs); |
770 | } |
771 | |
772 | return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); |
773 | } |
774 | |
775 | ExprResult |
776 | Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS, |
777 | SourceLocation TemplateKWLoc, |
778 | const DeclarationNameInfo &NameInfo, |
779 | const TemplateArgumentListInfo *TemplateArgs) { |
780 | // DependentScopeDeclRefExpr::Create requires a valid QualifierLoc |
781 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
782 | if (!QualifierLoc) |
783 | return ExprError(); |
784 | |
785 | return DependentScopeDeclRefExpr::Create( |
786 | Context, QualifierLoc, TemplateKWLoc, NameInfo, TemplateArgs); |
787 | } |
788 | |
789 | |
790 | /// Determine whether we would be unable to instantiate this template (because |
791 | /// it either has no definition, or is in the process of being instantiated). |
792 | bool Sema::DiagnoseUninstantiableTemplate(SourceLocation PointOfInstantiation, |
793 | NamedDecl *Instantiation, |
794 | bool InstantiatedFromMember, |
795 | const NamedDecl *Pattern, |
796 | const NamedDecl *PatternDef, |
797 | TemplateSpecializationKind TSK, |
798 | bool Complain /*= true*/) { |
799 | assert(isa<TagDecl>(Instantiation) || isa<FunctionDecl>(Instantiation) || |
800 | isa<VarDecl>(Instantiation)); |
801 | |
802 | bool IsEntityBeingDefined = false; |
803 | if (const TagDecl *TD = dyn_cast_or_null<TagDecl>(Val: PatternDef)) |
804 | IsEntityBeingDefined = TD->isBeingDefined(); |
805 | |
806 | if (PatternDef && !IsEntityBeingDefined) { |
807 | NamedDecl *SuggestedDef = nullptr; |
808 | if (!hasReachableDefinition(D: const_cast<NamedDecl *>(PatternDef), |
809 | Suggested: &SuggestedDef, |
810 | /*OnlyNeedComplete*/ false)) { |
811 | // If we're allowed to diagnose this and recover, do so. |
812 | bool Recover = Complain && !isSFINAEContext(); |
813 | if (Complain) |
814 | diagnoseMissingImport(Loc: PointOfInstantiation, Decl: SuggestedDef, |
815 | MIK: Sema::MissingImportKind::Definition, Recover); |
816 | return !Recover; |
817 | } |
818 | return false; |
819 | } |
820 | |
821 | if (!Complain || (PatternDef && PatternDef->isInvalidDecl())) |
822 | return true; |
823 | |
824 | QualType InstantiationTy; |
825 | if (TagDecl *TD = dyn_cast<TagDecl>(Val: Instantiation)) |
826 | InstantiationTy = Context.getTypeDeclType(TD); |
827 | if (PatternDef) { |
828 | Diag(PointOfInstantiation, |
829 | diag::err_template_instantiate_within_definition) |
830 | << /*implicit|explicit*/(TSK != TSK_ImplicitInstantiation) |
831 | << InstantiationTy; |
832 | // Not much point in noting the template declaration here, since |
833 | // we're lexically inside it. |
834 | Instantiation->setInvalidDecl(); |
835 | } else if (InstantiatedFromMember) { |
836 | if (isa<FunctionDecl>(Val: Instantiation)) { |
837 | Diag(PointOfInstantiation, |
838 | diag::err_explicit_instantiation_undefined_member) |
839 | << /*member function*/ 1 << Instantiation->getDeclName() |
840 | << Instantiation->getDeclContext(); |
841 | Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); |
842 | } else { |
843 | assert(isa<TagDecl>(Instantiation) && "Must be a TagDecl!" ); |
844 | Diag(PointOfInstantiation, |
845 | diag::err_implicit_instantiate_member_undefined) |
846 | << InstantiationTy; |
847 | Diag(Pattern->getLocation(), diag::note_member_declared_at); |
848 | } |
849 | } else { |
850 | if (isa<FunctionDecl>(Val: Instantiation)) { |
851 | Diag(PointOfInstantiation, |
852 | diag::err_explicit_instantiation_undefined_func_template) |
853 | << Pattern; |
854 | Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); |
855 | } else if (isa<TagDecl>(Val: Instantiation)) { |
856 | Diag(PointOfInstantiation, diag::err_template_instantiate_undefined) |
857 | << (TSK != TSK_ImplicitInstantiation) |
858 | << InstantiationTy; |
859 | NoteTemplateLocation(Decl: *Pattern); |
860 | } else { |
861 | assert(isa<VarDecl>(Instantiation) && "Must be a VarDecl!" ); |
862 | if (isa<VarTemplateSpecializationDecl>(Val: Instantiation)) { |
863 | Diag(PointOfInstantiation, |
864 | diag::err_explicit_instantiation_undefined_var_template) |
865 | << Instantiation; |
866 | Instantiation->setInvalidDecl(); |
867 | } else |
868 | Diag(PointOfInstantiation, |
869 | diag::err_explicit_instantiation_undefined_member) |
870 | << /*static data member*/ 2 << Instantiation->getDeclName() |
871 | << Instantiation->getDeclContext(); |
872 | Diag(Pattern->getLocation(), diag::note_explicit_instantiation_here); |
873 | } |
874 | } |
875 | |
876 | // In general, Instantiation isn't marked invalid to get more than one |
877 | // error for multiple undefined instantiations. But the code that does |
878 | // explicit declaration -> explicit definition conversion can't handle |
879 | // invalid declarations, so mark as invalid in that case. |
880 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
881 | Instantiation->setInvalidDecl(); |
882 | return true; |
883 | } |
884 | |
885 | void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl, |
886 | bool SupportedForCompatibility) { |
887 | assert(PrevDecl->isTemplateParameter() && "Not a template parameter" ); |
888 | |
889 | // C++23 [temp.local]p6: |
890 | // The name of a template-parameter shall not be bound to any following. |
891 | // declaration whose locus is contained by the scope to which the |
892 | // template-parameter belongs. |
893 | // |
894 | // When MSVC compatibility is enabled, the diagnostic is always a warning |
895 | // by default. Otherwise, it an error unless SupportedForCompatibility is |
896 | // true, in which case it is a default-to-error warning. |
897 | unsigned DiagId = |
898 | getLangOpts().MSVCCompat |
899 | ? diag::ext_template_param_shadow |
900 | : (SupportedForCompatibility ? diag::ext_compat_template_param_shadow |
901 | : diag::err_template_param_shadow); |
902 | const auto *ND = cast<NamedDecl>(Val: PrevDecl); |
903 | Diag(Loc, DiagId) << ND->getDeclName(); |
904 | NoteTemplateParameterLocation(Decl: *ND); |
905 | } |
906 | |
907 | /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset |
908 | /// the parameter D to reference the templated declaration and return a pointer |
909 | /// to the template declaration. Otherwise, do nothing to D and return null. |
910 | TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) { |
911 | if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(Val: D)) { |
912 | D = Temp->getTemplatedDecl(); |
913 | return Temp; |
914 | } |
915 | return nullptr; |
916 | } |
917 | |
918 | ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion( |
919 | SourceLocation EllipsisLoc) const { |
920 | assert(Kind == Template && |
921 | "Only template template arguments can be pack expansions here" ); |
922 | assert(getAsTemplate().get().containsUnexpandedParameterPack() && |
923 | "Template template argument pack expansion without packs" ); |
924 | ParsedTemplateArgument Result(*this); |
925 | Result.EllipsisLoc = EllipsisLoc; |
926 | return Result; |
927 | } |
928 | |
929 | static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef, |
930 | const ParsedTemplateArgument &Arg) { |
931 | |
932 | switch (Arg.getKind()) { |
933 | case ParsedTemplateArgument::Type: { |
934 | TypeSourceInfo *DI; |
935 | QualType T = SemaRef.GetTypeFromParser(Ty: Arg.getAsType(), TInfo: &DI); |
936 | if (!DI) |
937 | DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Loc: Arg.getLocation()); |
938 | return TemplateArgumentLoc(TemplateArgument(T), DI); |
939 | } |
940 | |
941 | case ParsedTemplateArgument::NonType: { |
942 | Expr *E = static_cast<Expr *>(Arg.getAsExpr()); |
943 | return TemplateArgumentLoc(TemplateArgument(E), E); |
944 | } |
945 | |
946 | case ParsedTemplateArgument::Template: { |
947 | TemplateName Template = Arg.getAsTemplate().get(); |
948 | TemplateArgument TArg; |
949 | if (Arg.getEllipsisLoc().isValid()) |
950 | TArg = TemplateArgument(Template, std::optional<unsigned int>()); |
951 | else |
952 | TArg = Template; |
953 | return TemplateArgumentLoc( |
954 | SemaRef.Context, TArg, |
955 | Arg.getScopeSpec().getWithLocInContext(Context&: SemaRef.Context), |
956 | Arg.getLocation(), Arg.getEllipsisLoc()); |
957 | } |
958 | } |
959 | |
960 | llvm_unreachable("Unhandled parsed template argument" ); |
961 | } |
962 | |
963 | /// Translates template arguments as provided by the parser |
964 | /// into template arguments used by semantic analysis. |
965 | void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn, |
966 | TemplateArgumentListInfo &TemplateArgs) { |
967 | for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I) |
968 | TemplateArgs.addArgument(Loc: translateTemplateArgument(SemaRef&: *this, |
969 | Arg: TemplateArgsIn[I])); |
970 | } |
971 | |
972 | static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S, |
973 | SourceLocation Loc, |
974 | const IdentifierInfo *Name) { |
975 | NamedDecl *PrevDecl = |
976 | SemaRef.LookupSingleName(S, Name, Loc, NameKind: Sema::LookupOrdinaryName, |
977 | Redecl: RedeclarationKind::ForVisibleRedeclaration); |
978 | if (PrevDecl && PrevDecl->isTemplateParameter()) |
979 | SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl); |
980 | } |
981 | |
982 | /// Convert a parsed type into a parsed template argument. This is mostly |
983 | /// trivial, except that we may have parsed a C++17 deduced class template |
984 | /// specialization type, in which case we should form a template template |
985 | /// argument instead of a type template argument. |
986 | ParsedTemplateArgument Sema::ActOnTemplateTypeArgument(TypeResult ParsedType) { |
987 | TypeSourceInfo *TInfo; |
988 | QualType T = GetTypeFromParser(Ty: ParsedType.get(), TInfo: &TInfo); |
989 | if (T.isNull()) |
990 | return ParsedTemplateArgument(); |
991 | assert(TInfo && "template argument with no location" ); |
992 | |
993 | // If we might have formed a deduced template specialization type, convert |
994 | // it to a template template argument. |
995 | if (getLangOpts().CPlusPlus17) { |
996 | TypeLoc TL = TInfo->getTypeLoc(); |
997 | SourceLocation EllipsisLoc; |
998 | if (auto PET = TL.getAs<PackExpansionTypeLoc>()) { |
999 | EllipsisLoc = PET.getEllipsisLoc(); |
1000 | TL = PET.getPatternLoc(); |
1001 | } |
1002 | |
1003 | CXXScopeSpec SS; |
1004 | if (auto ET = TL.getAs<ElaboratedTypeLoc>()) { |
1005 | SS.Adopt(Other: ET.getQualifierLoc()); |
1006 | TL = ET.getNamedTypeLoc(); |
1007 | } |
1008 | |
1009 | if (auto DTST = TL.getAs<DeducedTemplateSpecializationTypeLoc>()) { |
1010 | TemplateName Name = DTST.getTypePtr()->getTemplateName(); |
1011 | if (SS.isSet()) |
1012 | Name = Context.getQualifiedTemplateName(NNS: SS.getScopeRep(), |
1013 | /*HasTemplateKeyword=*/TemplateKeyword: false, |
1014 | Template: Name); |
1015 | ParsedTemplateArgument Result(SS, TemplateTy::make(P: Name), |
1016 | DTST.getTemplateNameLoc()); |
1017 | if (EllipsisLoc.isValid()) |
1018 | Result = Result.getTemplatePackExpansion(EllipsisLoc); |
1019 | return Result; |
1020 | } |
1021 | } |
1022 | |
1023 | // This is a normal type template argument. Note, if the type template |
1024 | // argument is an injected-class-name for a template, it has a dual nature |
1025 | // and can be used as either a type or a template. We handle that in |
1026 | // convertTypeTemplateArgumentToTemplate. |
1027 | return ParsedTemplateArgument(ParsedTemplateArgument::Type, |
1028 | ParsedType.get().getAsOpaquePtr(), |
1029 | TInfo->getTypeLoc().getBeginLoc()); |
1030 | } |
1031 | |
1032 | /// ActOnTypeParameter - Called when a C++ template type parameter |
1033 | /// (e.g., "typename T") has been parsed. Typename specifies whether |
1034 | /// the keyword "typename" was used to declare the type parameter |
1035 | /// (otherwise, "class" was used), and KeyLoc is the location of the |
1036 | /// "class" or "typename" keyword. ParamName is the name of the |
1037 | /// parameter (NULL indicates an unnamed template parameter) and |
1038 | /// ParamNameLoc is the location of the parameter name (if any). |
1039 | /// If the type parameter has a default argument, it will be added |
1040 | /// later via ActOnTypeParameterDefault. |
1041 | NamedDecl *Sema::ActOnTypeParameter(Scope *S, bool Typename, |
1042 | SourceLocation EllipsisLoc, |
1043 | SourceLocation KeyLoc, |
1044 | IdentifierInfo *ParamName, |
1045 | SourceLocation ParamNameLoc, |
1046 | unsigned Depth, unsigned Position, |
1047 | SourceLocation EqualLoc, |
1048 | ParsedType DefaultArg, |
1049 | bool HasTypeConstraint) { |
1050 | assert(S->isTemplateParamScope() && |
1051 | "Template type parameter not in template parameter scope!" ); |
1052 | |
1053 | bool IsParameterPack = EllipsisLoc.isValid(); |
1054 | TemplateTypeParmDecl *Param |
1055 | = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(), |
1056 | KeyLoc, ParamNameLoc, Depth, Position, |
1057 | ParamName, Typename, IsParameterPack, |
1058 | HasTypeConstraint); |
1059 | Param->setAccess(AS_public); |
1060 | |
1061 | if (Param->isParameterPack()) |
1062 | if (auto *LSI = getEnclosingLambda()) |
1063 | LSI->LocalPacks.push_back(Param); |
1064 | |
1065 | if (ParamName) { |
1066 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: ParamNameLoc, Name: ParamName); |
1067 | |
1068 | // Add the template parameter into the current scope. |
1069 | S->AddDecl(Param); |
1070 | IdResolver.AddDecl(Param); |
1071 | } |
1072 | |
1073 | // C++0x [temp.param]p9: |
1074 | // A default template-argument may be specified for any kind of |
1075 | // template-parameter that is not a template parameter pack. |
1076 | if (DefaultArg && IsParameterPack) { |
1077 | Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
1078 | DefaultArg = nullptr; |
1079 | } |
1080 | |
1081 | // Handle the default argument, if provided. |
1082 | if (DefaultArg) { |
1083 | TypeSourceInfo *DefaultTInfo; |
1084 | GetTypeFromParser(Ty: DefaultArg, TInfo: &DefaultTInfo); |
1085 | |
1086 | assert(DefaultTInfo && "expected source information for type" ); |
1087 | |
1088 | // Check for unexpanded parameter packs. |
1089 | if (DiagnoseUnexpandedParameterPack(Loc: ParamNameLoc, T: DefaultTInfo, |
1090 | UPPC: UPPC_DefaultArgument)) |
1091 | return Param; |
1092 | |
1093 | // Check the template argument itself. |
1094 | if (CheckTemplateArgument(Arg: DefaultTInfo)) { |
1095 | Param->setInvalidDecl(); |
1096 | return Param; |
1097 | } |
1098 | |
1099 | Param->setDefaultArgument(DefaultTInfo); |
1100 | } |
1101 | |
1102 | return Param; |
1103 | } |
1104 | |
1105 | /// Convert the parser's template argument list representation into our form. |
1106 | static TemplateArgumentListInfo |
1107 | makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) { |
1108 | TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc, |
1109 | TemplateId.RAngleLoc); |
1110 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(), |
1111 | TemplateId.NumArgs); |
1112 | S.translateTemplateArguments(TemplateArgsIn: TemplateArgsPtr, TemplateArgs); |
1113 | return TemplateArgs; |
1114 | } |
1115 | |
1116 | bool Sema::CheckTypeConstraint(TemplateIdAnnotation *TypeConstr) { |
1117 | |
1118 | TemplateName TN = TypeConstr->Template.get(); |
1119 | ConceptDecl *CD = cast<ConceptDecl>(Val: TN.getAsTemplateDecl()); |
1120 | |
1121 | // C++2a [temp.param]p4: |
1122 | // [...] The concept designated by a type-constraint shall be a type |
1123 | // concept ([temp.concept]). |
1124 | if (!CD->isTypeConcept()) { |
1125 | Diag(TypeConstr->TemplateNameLoc, |
1126 | diag::err_type_constraint_non_type_concept); |
1127 | return true; |
1128 | } |
1129 | |
1130 | bool WereArgsSpecified = TypeConstr->LAngleLoc.isValid(); |
1131 | |
1132 | if (!WereArgsSpecified && |
1133 | CD->getTemplateParameters()->getMinRequiredArguments() > 1) { |
1134 | Diag(TypeConstr->TemplateNameLoc, |
1135 | diag::err_type_constraint_missing_arguments) |
1136 | << CD; |
1137 | return true; |
1138 | } |
1139 | return false; |
1140 | } |
1141 | |
1142 | bool Sema::ActOnTypeConstraint(const CXXScopeSpec &SS, |
1143 | TemplateIdAnnotation *TypeConstr, |
1144 | TemplateTypeParmDecl *ConstrainedParameter, |
1145 | SourceLocation EllipsisLoc) { |
1146 | return BuildTypeConstraint(SS, TypeConstraint: TypeConstr, ConstrainedParameter, EllipsisLoc, |
1147 | AllowUnexpandedPack: false); |
1148 | } |
1149 | |
1150 | bool Sema::BuildTypeConstraint(const CXXScopeSpec &SS, |
1151 | TemplateIdAnnotation *TypeConstr, |
1152 | TemplateTypeParmDecl *ConstrainedParameter, |
1153 | SourceLocation EllipsisLoc, |
1154 | bool AllowUnexpandedPack) { |
1155 | |
1156 | if (CheckTypeConstraint(TypeConstr)) |
1157 | return true; |
1158 | |
1159 | TemplateName TN = TypeConstr->Template.get(); |
1160 | ConceptDecl *CD = cast<ConceptDecl>(Val: TN.getAsTemplateDecl()); |
1161 | UsingShadowDecl *USD = TN.getAsUsingShadowDecl(); |
1162 | |
1163 | DeclarationNameInfo ConceptName(DeclarationName(TypeConstr->Name), |
1164 | TypeConstr->TemplateNameLoc); |
1165 | |
1166 | TemplateArgumentListInfo TemplateArgs; |
1167 | if (TypeConstr->LAngleLoc.isValid()) { |
1168 | TemplateArgs = |
1169 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *TypeConstr); |
1170 | |
1171 | if (EllipsisLoc.isInvalid() && !AllowUnexpandedPack) { |
1172 | for (TemplateArgumentLoc Arg : TemplateArgs.arguments()) { |
1173 | if (DiagnoseUnexpandedParameterPack(Arg, UPPC: UPPC_TypeConstraint)) |
1174 | return true; |
1175 | } |
1176 | } |
1177 | } |
1178 | return AttachTypeConstraint( |
1179 | SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc(), |
1180 | ConceptName, CD, /*FoundDecl=*/USD ? cast<NamedDecl>(Val: USD) : CD, |
1181 | TypeConstr->LAngleLoc.isValid() ? &TemplateArgs : nullptr, |
1182 | ConstrainedParameter, EllipsisLoc); |
1183 | } |
1184 | |
1185 | template <typename ArgumentLocAppender> |
1186 | static ExprResult formImmediatelyDeclaredConstraint( |
1187 | Sema &S, NestedNameSpecifierLoc NS, DeclarationNameInfo NameInfo, |
1188 | ConceptDecl *NamedConcept, NamedDecl *FoundDecl, SourceLocation LAngleLoc, |
1189 | SourceLocation RAngleLoc, QualType ConstrainedType, |
1190 | SourceLocation ParamNameLoc, ArgumentLocAppender Appender, |
1191 | SourceLocation EllipsisLoc) { |
1192 | |
1193 | TemplateArgumentListInfo ConstraintArgs; |
1194 | ConstraintArgs.addArgument( |
1195 | Loc: S.getTrivialTemplateArgumentLoc(Arg: TemplateArgument(ConstrainedType), |
1196 | /*NTTPType=*/QualType(), Loc: ParamNameLoc)); |
1197 | |
1198 | ConstraintArgs.setRAngleLoc(RAngleLoc); |
1199 | ConstraintArgs.setLAngleLoc(LAngleLoc); |
1200 | Appender(ConstraintArgs); |
1201 | |
1202 | // C++2a [temp.param]p4: |
1203 | // [...] This constraint-expression E is called the immediately-declared |
1204 | // constraint of T. [...] |
1205 | CXXScopeSpec SS; |
1206 | SS.Adopt(Other: NS); |
1207 | ExprResult ImmediatelyDeclaredConstraint = S.CheckConceptTemplateId( |
1208 | SS, /*TemplateKWLoc=*/SourceLocation(), ConceptNameInfo: NameInfo, |
1209 | /*FoundDecl=*/FoundDecl ? FoundDecl : NamedConcept, NamedConcept, |
1210 | TemplateArgs: &ConstraintArgs); |
1211 | if (ImmediatelyDeclaredConstraint.isInvalid() || !EllipsisLoc.isValid()) |
1212 | return ImmediatelyDeclaredConstraint; |
1213 | |
1214 | // C++2a [temp.param]p4: |
1215 | // [...] If T is not a pack, then E is E', otherwise E is (E' && ...). |
1216 | // |
1217 | // We have the following case: |
1218 | // |
1219 | // template<typename T> concept C1 = true; |
1220 | // template<C1... T> struct s1; |
1221 | // |
1222 | // The constraint: (C1<T> && ...) |
1223 | // |
1224 | // Note that the type of C1<T> is known to be 'bool', so we don't need to do |
1225 | // any unqualified lookups for 'operator&&' here. |
1226 | return S.BuildCXXFoldExpr(/*UnqualifiedLookup=*/Callee: nullptr, |
1227 | /*LParenLoc=*/SourceLocation(), |
1228 | LHS: ImmediatelyDeclaredConstraint.get(), Operator: BO_LAnd, |
1229 | EllipsisLoc, /*RHS=*/nullptr, |
1230 | /*RParenLoc=*/SourceLocation(), |
1231 | /*NumExpansions=*/std::nullopt); |
1232 | } |
1233 | |
1234 | /// Attach a type-constraint to a template parameter. |
1235 | /// \returns true if an error occurred. This can happen if the |
1236 | /// immediately-declared constraint could not be formed (e.g. incorrect number |
1237 | /// of arguments for the named concept). |
1238 | bool Sema::AttachTypeConstraint(NestedNameSpecifierLoc NS, |
1239 | DeclarationNameInfo NameInfo, |
1240 | ConceptDecl *NamedConcept, NamedDecl *FoundDecl, |
1241 | const TemplateArgumentListInfo *TemplateArgs, |
1242 | TemplateTypeParmDecl *ConstrainedParameter, |
1243 | SourceLocation EllipsisLoc) { |
1244 | // C++2a [temp.param]p4: |
1245 | // [...] If Q is of the form C<A1, ..., An>, then let E' be |
1246 | // C<T, A1, ..., An>. Otherwise, let E' be C<T>. [...] |
1247 | const ASTTemplateArgumentListInfo *ArgsAsWritten = |
1248 | TemplateArgs ? ASTTemplateArgumentListInfo::Create(C: Context, |
1249 | List: *TemplateArgs) : nullptr; |
1250 | |
1251 | QualType ParamAsArgument(ConstrainedParameter->getTypeForDecl(), 0); |
1252 | |
1253 | ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( |
1254 | *this, NS, NameInfo, NamedConcept, FoundDecl, |
1255 | TemplateArgs ? TemplateArgs->getLAngleLoc() : SourceLocation(), |
1256 | TemplateArgs ? TemplateArgs->getRAngleLoc() : SourceLocation(), |
1257 | ParamAsArgument, ConstrainedParameter->getLocation(), |
1258 | [&](TemplateArgumentListInfo &ConstraintArgs) { |
1259 | if (TemplateArgs) |
1260 | for (const auto &ArgLoc : TemplateArgs->arguments()) |
1261 | ConstraintArgs.addArgument(Loc: ArgLoc); |
1262 | }, |
1263 | EllipsisLoc); |
1264 | if (ImmediatelyDeclaredConstraint.isInvalid()) |
1265 | return true; |
1266 | |
1267 | auto *CL = ConceptReference::Create(C: Context, /*NNS=*/NS, |
1268 | /*TemplateKWLoc=*/SourceLocation{}, |
1269 | /*ConceptNameInfo=*/NameInfo, |
1270 | /*FoundDecl=*/FoundDecl, |
1271 | /*NamedConcept=*/NamedConcept, |
1272 | /*ArgsWritten=*/ArgsAsWritten); |
1273 | ConstrainedParameter->setTypeConstraint(CR: CL, |
1274 | ImmediatelyDeclaredConstraint: ImmediatelyDeclaredConstraint.get()); |
1275 | return false; |
1276 | } |
1277 | |
1278 | bool Sema::AttachTypeConstraint(AutoTypeLoc TL, |
1279 | NonTypeTemplateParmDecl *NewConstrainedParm, |
1280 | NonTypeTemplateParmDecl *OrigConstrainedParm, |
1281 | SourceLocation EllipsisLoc) { |
1282 | if (NewConstrainedParm->getType() != TL.getType() || |
1283 | TL.getAutoKeyword() != AutoTypeKeyword::Auto) { |
1284 | Diag(NewConstrainedParm->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), |
1285 | diag::err_unsupported_placeholder_constraint) |
1286 | << NewConstrainedParm->getTypeSourceInfo() |
1287 | ->getTypeLoc() |
1288 | .getSourceRange(); |
1289 | return true; |
1290 | } |
1291 | // FIXME: Concepts: This should be the type of the placeholder, but this is |
1292 | // unclear in the wording right now. |
1293 | DeclRefExpr *Ref = |
1294 | BuildDeclRefExpr(OrigConstrainedParm, OrigConstrainedParm->getType(), |
1295 | VK_PRValue, OrigConstrainedParm->getLocation()); |
1296 | if (!Ref) |
1297 | return true; |
1298 | ExprResult ImmediatelyDeclaredConstraint = formImmediatelyDeclaredConstraint( |
1299 | *this, TL.getNestedNameSpecifierLoc(), TL.getConceptNameInfo(), |
1300 | TL.getNamedConcept(), /*FoundDecl=*/TL.getFoundDecl(), TL.getLAngleLoc(), |
1301 | TL.getRAngleLoc(), BuildDecltypeType(Ref), |
1302 | OrigConstrainedParm->getLocation(), |
1303 | [&](TemplateArgumentListInfo &ConstraintArgs) { |
1304 | for (unsigned I = 0, C = TL.getNumArgs(); I != C; ++I) |
1305 | ConstraintArgs.addArgument(Loc: TL.getArgLoc(i: I)); |
1306 | }, |
1307 | EllipsisLoc); |
1308 | if (ImmediatelyDeclaredConstraint.isInvalid() || |
1309 | !ImmediatelyDeclaredConstraint.isUsable()) |
1310 | return true; |
1311 | |
1312 | NewConstrainedParm->setPlaceholderTypeConstraint( |
1313 | ImmediatelyDeclaredConstraint.get()); |
1314 | return false; |
1315 | } |
1316 | |
1317 | /// Check that the type of a non-type template parameter is |
1318 | /// well-formed. |
1319 | /// |
1320 | /// \returns the (possibly-promoted) parameter type if valid; |
1321 | /// otherwise, produces a diagnostic and returns a NULL type. |
1322 | QualType Sema::CheckNonTypeTemplateParameterType(TypeSourceInfo *&TSI, |
1323 | SourceLocation Loc) { |
1324 | if (TSI->getType()->isUndeducedType()) { |
1325 | // C++17 [temp.dep.expr]p3: |
1326 | // An id-expression is type-dependent if it contains |
1327 | // - an identifier associated by name lookup with a non-type |
1328 | // template-parameter declared with a type that contains a |
1329 | // placeholder type (7.1.7.4), |
1330 | TSI = SubstAutoTypeSourceInfoDependent(TypeWithAuto: TSI); |
1331 | } |
1332 | |
1333 | return CheckNonTypeTemplateParameterType(T: TSI->getType(), Loc); |
1334 | } |
1335 | |
1336 | /// Require the given type to be a structural type, and diagnose if it is not. |
1337 | /// |
1338 | /// \return \c true if an error was produced. |
1339 | bool Sema::RequireStructuralType(QualType T, SourceLocation Loc) { |
1340 | if (T->isDependentType()) |
1341 | return false; |
1342 | |
1343 | if (RequireCompleteType(Loc, T, diag::err_template_nontype_parm_incomplete)) |
1344 | return true; |
1345 | |
1346 | if (T->isStructuralType()) |
1347 | return false; |
1348 | |
1349 | // Structural types are required to be object types or lvalue references. |
1350 | if (T->isRValueReferenceType()) { |
1351 | Diag(Loc, diag::err_template_nontype_parm_rvalue_ref) << T; |
1352 | return true; |
1353 | } |
1354 | |
1355 | // Don't mention structural types in our diagnostic prior to C++20. Also, |
1356 | // there's not much more we can say about non-scalar non-class types -- |
1357 | // because we can't see functions or arrays here, those can only be language |
1358 | // extensions. |
1359 | if (!getLangOpts().CPlusPlus20 || |
1360 | (!T->isScalarType() && !T->isRecordType())) { |
1361 | Diag(Loc, diag::err_template_nontype_parm_bad_type) << T; |
1362 | return true; |
1363 | } |
1364 | |
1365 | // Structural types are required to be literal types. |
1366 | if (RequireLiteralType(Loc, T, diag::err_template_nontype_parm_not_literal)) |
1367 | return true; |
1368 | |
1369 | Diag(Loc, diag::err_template_nontype_parm_not_structural) << T; |
1370 | |
1371 | // Drill down into the reason why the class is non-structural. |
1372 | while (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { |
1373 | // All members are required to be public and non-mutable, and can't be of |
1374 | // rvalue reference type. Check these conditions first to prefer a "local" |
1375 | // reason over a more distant one. |
1376 | for (const FieldDecl *FD : RD->fields()) { |
1377 | if (FD->getAccess() != AS_public) { |
1378 | Diag(FD->getLocation(), diag::note_not_structural_non_public) << T << 0; |
1379 | return true; |
1380 | } |
1381 | if (FD->isMutable()) { |
1382 | Diag(FD->getLocation(), diag::note_not_structural_mutable_field) << T; |
1383 | return true; |
1384 | } |
1385 | if (FD->getType()->isRValueReferenceType()) { |
1386 | Diag(FD->getLocation(), diag::note_not_structural_rvalue_ref_field) |
1387 | << T; |
1388 | return true; |
1389 | } |
1390 | } |
1391 | |
1392 | // All bases are required to be public. |
1393 | for (const auto &BaseSpec : RD->bases()) { |
1394 | if (BaseSpec.getAccessSpecifier() != AS_public) { |
1395 | Diag(BaseSpec.getBaseTypeLoc(), diag::note_not_structural_non_public) |
1396 | << T << 1; |
1397 | return true; |
1398 | } |
1399 | } |
1400 | |
1401 | // All subobjects are required to be of structural types. |
1402 | SourceLocation SubLoc; |
1403 | QualType SubType; |
1404 | int Kind = -1; |
1405 | |
1406 | for (const FieldDecl *FD : RD->fields()) { |
1407 | QualType T = Context.getBaseElementType(FD->getType()); |
1408 | if (!T->isStructuralType()) { |
1409 | SubLoc = FD->getLocation(); |
1410 | SubType = T; |
1411 | Kind = 0; |
1412 | break; |
1413 | } |
1414 | } |
1415 | |
1416 | if (Kind == -1) { |
1417 | for (const auto &BaseSpec : RD->bases()) { |
1418 | QualType T = BaseSpec.getType(); |
1419 | if (!T->isStructuralType()) { |
1420 | SubLoc = BaseSpec.getBaseTypeLoc(); |
1421 | SubType = T; |
1422 | Kind = 1; |
1423 | break; |
1424 | } |
1425 | } |
1426 | } |
1427 | |
1428 | assert(Kind != -1 && "couldn't find reason why type is not structural" ); |
1429 | Diag(SubLoc, diag::note_not_structural_subobject) |
1430 | << T << Kind << SubType; |
1431 | T = SubType; |
1432 | RD = T->getAsCXXRecordDecl(); |
1433 | } |
1434 | |
1435 | return true; |
1436 | } |
1437 | |
1438 | QualType Sema::CheckNonTypeTemplateParameterType(QualType T, |
1439 | SourceLocation Loc) { |
1440 | // We don't allow variably-modified types as the type of non-type template |
1441 | // parameters. |
1442 | if (T->isVariablyModifiedType()) { |
1443 | Diag(Loc, diag::err_variably_modified_nontype_template_param) |
1444 | << T; |
1445 | return QualType(); |
1446 | } |
1447 | |
1448 | // C++ [temp.param]p4: |
1449 | // |
1450 | // A non-type template-parameter shall have one of the following |
1451 | // (optionally cv-qualified) types: |
1452 | // |
1453 | // -- integral or enumeration type, |
1454 | if (T->isIntegralOrEnumerationType() || |
1455 | // -- pointer to object or pointer to function, |
1456 | T->isPointerType() || |
1457 | // -- lvalue reference to object or lvalue reference to function, |
1458 | T->isLValueReferenceType() || |
1459 | // -- pointer to member, |
1460 | T->isMemberPointerType() || |
1461 | // -- std::nullptr_t, or |
1462 | T->isNullPtrType() || |
1463 | // -- a type that contains a placeholder type. |
1464 | T->isUndeducedType()) { |
1465 | // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter |
1466 | // are ignored when determining its type. |
1467 | return T.getUnqualifiedType(); |
1468 | } |
1469 | |
1470 | // C++ [temp.param]p8: |
1471 | // |
1472 | // A non-type template-parameter of type "array of T" or |
1473 | // "function returning T" is adjusted to be of type "pointer to |
1474 | // T" or "pointer to function returning T", respectively. |
1475 | if (T->isArrayType() || T->isFunctionType()) |
1476 | return Context.getDecayedType(T); |
1477 | |
1478 | // If T is a dependent type, we can't do the check now, so we |
1479 | // assume that it is well-formed. Note that stripping off the |
1480 | // qualifiers here is not really correct if T turns out to be |
1481 | // an array type, but we'll recompute the type everywhere it's |
1482 | // used during instantiation, so that should be OK. (Using the |
1483 | // qualified type is equally wrong.) |
1484 | if (T->isDependentType()) |
1485 | return T.getUnqualifiedType(); |
1486 | |
1487 | // C++20 [temp.param]p6: |
1488 | // -- a structural type |
1489 | if (RequireStructuralType(T, Loc)) |
1490 | return QualType(); |
1491 | |
1492 | if (!getLangOpts().CPlusPlus20) { |
1493 | // FIXME: Consider allowing structural types as an extension in C++17. (In |
1494 | // earlier language modes, the template argument evaluation rules are too |
1495 | // inflexible.) |
1496 | Diag(Loc, diag::err_template_nontype_parm_bad_structural_type) << T; |
1497 | return QualType(); |
1498 | } |
1499 | |
1500 | Diag(Loc, diag::warn_cxx17_compat_template_nontype_parm_type) << T; |
1501 | return T.getUnqualifiedType(); |
1502 | } |
1503 | |
1504 | NamedDecl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D, |
1505 | unsigned Depth, |
1506 | unsigned Position, |
1507 | SourceLocation EqualLoc, |
1508 | Expr *Default) { |
1509 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
1510 | |
1511 | // Check that we have valid decl-specifiers specified. |
1512 | auto CheckValidDeclSpecifiers = [this, &D] { |
1513 | // C++ [temp.param] |
1514 | // p1 |
1515 | // template-parameter: |
1516 | // ... |
1517 | // parameter-declaration |
1518 | // p2 |
1519 | // ... A storage class shall not be specified in a template-parameter |
1520 | // declaration. |
1521 | // [dcl.typedef]p1: |
1522 | // The typedef specifier [...] shall not be used in the decl-specifier-seq |
1523 | // of a parameter-declaration |
1524 | const DeclSpec &DS = D.getDeclSpec(); |
1525 | auto EmitDiag = [this](SourceLocation Loc) { |
1526 | Diag(Loc, diag::err_invalid_decl_specifier_in_nontype_parm) |
1527 | << FixItHint::CreateRemoval(Loc); |
1528 | }; |
1529 | if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) |
1530 | EmitDiag(DS.getStorageClassSpecLoc()); |
1531 | |
1532 | if (DS.getThreadStorageClassSpec() != TSCS_unspecified) |
1533 | EmitDiag(DS.getThreadStorageClassSpecLoc()); |
1534 | |
1535 | // [dcl.inline]p1: |
1536 | // The inline specifier can be applied only to the declaration or |
1537 | // definition of a variable or function. |
1538 | |
1539 | if (DS.isInlineSpecified()) |
1540 | EmitDiag(DS.getInlineSpecLoc()); |
1541 | |
1542 | // [dcl.constexpr]p1: |
1543 | // The constexpr specifier shall be applied only to the definition of a |
1544 | // variable or variable template or the declaration of a function or |
1545 | // function template. |
1546 | |
1547 | if (DS.hasConstexprSpecifier()) |
1548 | EmitDiag(DS.getConstexprSpecLoc()); |
1549 | |
1550 | // [dcl.fct.spec]p1: |
1551 | // Function-specifiers can be used only in function declarations. |
1552 | |
1553 | if (DS.isVirtualSpecified()) |
1554 | EmitDiag(DS.getVirtualSpecLoc()); |
1555 | |
1556 | if (DS.hasExplicitSpecifier()) |
1557 | EmitDiag(DS.getExplicitSpecLoc()); |
1558 | |
1559 | if (DS.isNoreturnSpecified()) |
1560 | EmitDiag(DS.getNoreturnSpecLoc()); |
1561 | }; |
1562 | |
1563 | CheckValidDeclSpecifiers(); |
1564 | |
1565 | if (const auto *T = TInfo->getType()->getContainedDeducedType()) |
1566 | if (isa<AutoType>(T)) |
1567 | Diag(D.getIdentifierLoc(), |
1568 | diag::warn_cxx14_compat_template_nontype_parm_auto_type) |
1569 | << QualType(TInfo->getType()->getContainedAutoType(), 0); |
1570 | |
1571 | assert(S->isTemplateParamScope() && |
1572 | "Non-type template parameter not in template parameter scope!" ); |
1573 | bool Invalid = false; |
1574 | |
1575 | QualType T = CheckNonTypeTemplateParameterType(TSI&: TInfo, Loc: D.getIdentifierLoc()); |
1576 | if (T.isNull()) { |
1577 | T = Context.IntTy; // Recover with an 'int' type. |
1578 | Invalid = true; |
1579 | } |
1580 | |
1581 | CheckFunctionOrTemplateParamDeclarator(S, D); |
1582 | |
1583 | const IdentifierInfo *ParamName = D.getIdentifier(); |
1584 | bool IsParameterPack = D.hasEllipsis(); |
1585 | NonTypeTemplateParmDecl *Param = NonTypeTemplateParmDecl::Create( |
1586 | Context, Context.getTranslationUnitDecl(), D.getBeginLoc(), |
1587 | D.getIdentifierLoc(), Depth, Position, ParamName, T, IsParameterPack, |
1588 | TInfo); |
1589 | Param->setAccess(AS_public); |
1590 | |
1591 | if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) |
1592 | if (TL.isConstrained()) |
1593 | if (AttachTypeConstraint(TL, NewConstrainedParm: Param, OrigConstrainedParm: Param, EllipsisLoc: D.getEllipsisLoc())) |
1594 | Invalid = true; |
1595 | |
1596 | if (Invalid) |
1597 | Param->setInvalidDecl(); |
1598 | |
1599 | if (Param->isParameterPack()) |
1600 | if (auto *LSI = getEnclosingLambda()) |
1601 | LSI->LocalPacks.push_back(Param); |
1602 | |
1603 | if (ParamName) { |
1604 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: D.getIdentifierLoc(), |
1605 | Name: ParamName); |
1606 | |
1607 | // Add the template parameter into the current scope. |
1608 | S->AddDecl(Param); |
1609 | IdResolver.AddDecl(Param); |
1610 | } |
1611 | |
1612 | // C++0x [temp.param]p9: |
1613 | // A default template-argument may be specified for any kind of |
1614 | // template-parameter that is not a template parameter pack. |
1615 | if (Default && IsParameterPack) { |
1616 | Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
1617 | Default = nullptr; |
1618 | } |
1619 | |
1620 | // Check the well-formedness of the default template argument, if provided. |
1621 | if (Default) { |
1622 | // Check for unexpanded parameter packs. |
1623 | if (DiagnoseUnexpandedParameterPack(E: Default, UPPC: UPPC_DefaultArgument)) |
1624 | return Param; |
1625 | |
1626 | Param->setDefaultArgument(Default); |
1627 | } |
1628 | |
1629 | return Param; |
1630 | } |
1631 | |
1632 | /// ActOnTemplateTemplateParameter - Called when a C++ template template |
1633 | /// parameter (e.g. T in template <template \<typename> class T> class array) |
1634 | /// has been parsed. S is the current scope. |
1635 | NamedDecl *Sema::ActOnTemplateTemplateParameter( |
1636 | Scope *S, SourceLocation TmpLoc, TemplateParameterList *Params, |
1637 | bool Typename, SourceLocation EllipsisLoc, IdentifierInfo *Name, |
1638 | SourceLocation NameLoc, unsigned Depth, unsigned Position, |
1639 | SourceLocation EqualLoc, ParsedTemplateArgument Default) { |
1640 | assert(S->isTemplateParamScope() && |
1641 | "Template template parameter not in template parameter scope!" ); |
1642 | |
1643 | // Construct the parameter object. |
1644 | bool IsParameterPack = EllipsisLoc.isValid(); |
1645 | TemplateTemplateParmDecl *Param = TemplateTemplateParmDecl::Create( |
1646 | Context, Context.getTranslationUnitDecl(), |
1647 | NameLoc.isInvalid() ? TmpLoc : NameLoc, Depth, Position, IsParameterPack, |
1648 | Name, Typename, Params); |
1649 | Param->setAccess(AS_public); |
1650 | |
1651 | if (Param->isParameterPack()) |
1652 | if (auto *LSI = getEnclosingLambda()) |
1653 | LSI->LocalPacks.push_back(Param); |
1654 | |
1655 | // If the template template parameter has a name, then link the identifier |
1656 | // into the scope and lookup mechanisms. |
1657 | if (Name) { |
1658 | maybeDiagnoseTemplateParameterShadow(SemaRef&: *this, S, Loc: NameLoc, Name); |
1659 | |
1660 | S->AddDecl(Param); |
1661 | IdResolver.AddDecl(Param); |
1662 | } |
1663 | |
1664 | if (Params->size() == 0) { |
1665 | Diag(Param->getLocation(), diag::err_template_template_parm_no_parms) |
1666 | << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc()); |
1667 | Param->setInvalidDecl(); |
1668 | } |
1669 | |
1670 | // C++0x [temp.param]p9: |
1671 | // A default template-argument may be specified for any kind of |
1672 | // template-parameter that is not a template parameter pack. |
1673 | if (IsParameterPack && !Default.isInvalid()) { |
1674 | Diag(EqualLoc, diag::err_template_param_pack_default_arg); |
1675 | Default = ParsedTemplateArgument(); |
1676 | } |
1677 | |
1678 | if (!Default.isInvalid()) { |
1679 | // Check only that we have a template template argument. We don't want to |
1680 | // try to check well-formedness now, because our template template parameter |
1681 | // might have dependent types in its template parameters, which we wouldn't |
1682 | // be able to match now. |
1683 | // |
1684 | // If none of the template template parameter's template arguments mention |
1685 | // other template parameters, we could actually perform more checking here. |
1686 | // However, it isn't worth doing. |
1687 | TemplateArgumentLoc DefaultArg = translateTemplateArgument(SemaRef&: *this, Arg: Default); |
1688 | if (DefaultArg.getArgument().getAsTemplate().isNull()) { |
1689 | Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template) |
1690 | << DefaultArg.getSourceRange(); |
1691 | return Param; |
1692 | } |
1693 | |
1694 | // Check for unexpanded parameter packs. |
1695 | if (DiagnoseUnexpandedParameterPack(Loc: DefaultArg.getLocation(), |
1696 | Template: DefaultArg.getArgument().getAsTemplate(), |
1697 | UPPC: UPPC_DefaultArgument)) |
1698 | return Param; |
1699 | |
1700 | Param->setDefaultArgument(C: Context, DefArg: DefaultArg); |
1701 | } |
1702 | |
1703 | return Param; |
1704 | } |
1705 | |
1706 | namespace { |
1707 | class ConstraintRefersToContainingTemplateChecker |
1708 | : public TreeTransform<ConstraintRefersToContainingTemplateChecker> { |
1709 | bool Result = false; |
1710 | const FunctionDecl *Friend = nullptr; |
1711 | unsigned TemplateDepth = 0; |
1712 | |
1713 | // Check a record-decl that we've seen to see if it is a lexical parent of the |
1714 | // Friend, likely because it was referred to without its template arguments. |
1715 | void CheckIfContainingRecord(const CXXRecordDecl *CheckingRD) { |
1716 | CheckingRD = CheckingRD->getMostRecentDecl(); |
1717 | if (!CheckingRD->isTemplated()) |
1718 | return; |
1719 | |
1720 | for (const DeclContext *DC = Friend->getLexicalDeclContext(); |
1721 | DC && !DC->isFileContext(); DC = DC->getParent()) |
1722 | if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) |
1723 | if (CheckingRD == RD->getMostRecentDecl()) |
1724 | Result = true; |
1725 | } |
1726 | |
1727 | void CheckNonTypeTemplateParmDecl(NonTypeTemplateParmDecl *D) { |
1728 | assert(D->getDepth() <= TemplateDepth && |
1729 | "Nothing should reference a value below the actual template depth, " |
1730 | "depth is likely wrong" ); |
1731 | if (D->getDepth() != TemplateDepth) |
1732 | Result = true; |
1733 | |
1734 | // Necessary because the type of the NTTP might be what refers to the parent |
1735 | // constriant. |
1736 | TransformType(D->getType()); |
1737 | } |
1738 | |
1739 | public: |
1740 | using inherited = TreeTransform<ConstraintRefersToContainingTemplateChecker>; |
1741 | |
1742 | ConstraintRefersToContainingTemplateChecker(Sema &SemaRef, |
1743 | const FunctionDecl *Friend, |
1744 | unsigned TemplateDepth) |
1745 | : inherited(SemaRef), Friend(Friend), TemplateDepth(TemplateDepth) {} |
1746 | bool getResult() const { return Result; } |
1747 | |
1748 | // This should be the only template parm type that we have to deal with. |
1749 | // SubstTempalteTypeParmPack, SubstNonTypeTemplateParmPack, and |
1750 | // FunctionParmPackExpr are all partially substituted, which cannot happen |
1751 | // with concepts at this point in translation. |
1752 | using inherited::TransformTemplateTypeParmType; |
1753 | QualType TransformTemplateTypeParmType(TypeLocBuilder &TLB, |
1754 | TemplateTypeParmTypeLoc TL, bool) { |
1755 | assert(TL.getDecl()->getDepth() <= TemplateDepth && |
1756 | "Nothing should reference a value below the actual template depth, " |
1757 | "depth is likely wrong" ); |
1758 | if (TL.getDecl()->getDepth() != TemplateDepth) |
1759 | Result = true; |
1760 | return inherited::TransformTemplateTypeParmType( |
1761 | TLB, TL, |
1762 | /*SuppressObjCLifetime=*/false); |
1763 | } |
1764 | |
1765 | Decl *TransformDecl(SourceLocation Loc, Decl *D) { |
1766 | if (!D) |
1767 | return D; |
1768 | // FIXME : This is possibly an incomplete list, but it is unclear what other |
1769 | // Decl kinds could be used to refer to the template parameters. This is a |
1770 | // best guess so far based on examples currently available, but the |
1771 | // unreachable should catch future instances/cases. |
1772 | if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) |
1773 | TransformType(TD->getUnderlyingType()); |
1774 | else if (auto *NTTPD = dyn_cast<NonTypeTemplateParmDecl>(Val: D)) |
1775 | CheckNonTypeTemplateParmDecl(D: NTTPD); |
1776 | else if (auto *VD = dyn_cast<ValueDecl>(Val: D)) |
1777 | TransformType(VD->getType()); |
1778 | else if (auto *TD = dyn_cast<TemplateDecl>(Val: D)) |
1779 | TransformTemplateParameterList(TD->getTemplateParameters()); |
1780 | else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) |
1781 | CheckIfContainingRecord(CheckingRD: RD); |
1782 | else if (isa<NamedDecl>(Val: D)) { |
1783 | // No direct types to visit here I believe. |
1784 | } else |
1785 | llvm_unreachable("Don't know how to handle this declaration type yet" ); |
1786 | return D; |
1787 | } |
1788 | }; |
1789 | } // namespace |
1790 | |
1791 | bool Sema::ConstraintExpressionDependsOnEnclosingTemplate( |
1792 | const FunctionDecl *Friend, unsigned TemplateDepth, |
1793 | const Expr *Constraint) { |
1794 | assert(Friend->getFriendObjectKind() && "Only works on a friend" ); |
1795 | ConstraintRefersToContainingTemplateChecker Checker(*this, Friend, |
1796 | TemplateDepth); |
1797 | Checker.TransformExpr(const_cast<Expr *>(Constraint)); |
1798 | return Checker.getResult(); |
1799 | } |
1800 | |
1801 | /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally |
1802 | /// constrained by RequiresClause, that contains the template parameters in |
1803 | /// Params. |
1804 | TemplateParameterList * |
1805 | Sema::ActOnTemplateParameterList(unsigned Depth, |
1806 | SourceLocation ExportLoc, |
1807 | SourceLocation TemplateLoc, |
1808 | SourceLocation LAngleLoc, |
1809 | ArrayRef<NamedDecl *> Params, |
1810 | SourceLocation RAngleLoc, |
1811 | Expr *RequiresClause) { |
1812 | if (ExportLoc.isValid()) |
1813 | Diag(ExportLoc, diag::warn_template_export_unsupported); |
1814 | |
1815 | for (NamedDecl *P : Params) |
1816 | warnOnReservedIdentifier(D: P); |
1817 | |
1818 | return TemplateParameterList::Create( |
1819 | C: Context, TemplateLoc, LAngleLoc, |
1820 | Params: llvm::ArrayRef(Params.data(), Params.size()), RAngleLoc, RequiresClause); |
1821 | } |
1822 | |
1823 | static void SetNestedNameSpecifier(Sema &S, TagDecl *T, |
1824 | const CXXScopeSpec &SS) { |
1825 | if (SS.isSet()) |
1826 | T->setQualifierInfo(SS.getWithLocInContext(Context&: S.Context)); |
1827 | } |
1828 | |
1829 | // Returns the template parameter list with all default template argument |
1830 | // information. |
1831 | static TemplateParameterList *GetTemplateParameterList(TemplateDecl *TD) { |
1832 | // Make sure we get the template parameter list from the most |
1833 | // recent declaration, since that is the only one that is guaranteed to |
1834 | // have all the default template argument information. |
1835 | Decl *D = TD->getMostRecentDecl(); |
1836 | // C++11 N3337 [temp.param]p12: |
1837 | // A default template argument shall not be specified in a friend class |
1838 | // template declaration. |
1839 | // |
1840 | // Skip past friend *declarations* because they are not supposed to contain |
1841 | // default template arguments. Moreover, these declarations may introduce |
1842 | // template parameters living in different template depths than the |
1843 | // corresponding template parameters in TD, causing unmatched constraint |
1844 | // substitution. |
1845 | // |
1846 | // FIXME: Diagnose such cases within a class template: |
1847 | // template <class T> |
1848 | // struct S { |
1849 | // template <class = void> friend struct C; |
1850 | // }; |
1851 | // template struct S<int>; |
1852 | while (D->getFriendObjectKind() != Decl::FriendObjectKind::FOK_None && |
1853 | D->getPreviousDecl()) |
1854 | D = D->getPreviousDecl(); |
1855 | return cast<TemplateDecl>(Val: D)->getTemplateParameters(); |
1856 | } |
1857 | |
1858 | DeclResult Sema::CheckClassTemplate( |
1859 | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
1860 | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, |
1861 | const ParsedAttributesView &Attr, TemplateParameterList *TemplateParams, |
1862 | AccessSpecifier AS, SourceLocation ModulePrivateLoc, |
1863 | SourceLocation FriendLoc, unsigned NumOuterTemplateParamLists, |
1864 | TemplateParameterList **OuterTemplateParamLists, SkipBodyInfo *SkipBody) { |
1865 | assert(TemplateParams && TemplateParams->size() > 0 && |
1866 | "No template parameters" ); |
1867 | assert(TUK != TUK_Reference && "Can only declare or define class templates" ); |
1868 | bool Invalid = false; |
1869 | |
1870 | // Check that we can declare a template here. |
1871 | if (CheckTemplateDeclScope(S, TemplateParams)) |
1872 | return true; |
1873 | |
1874 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
1875 | assert(Kind != TagTypeKind::Enum && |
1876 | "can't build template of enumerated type" ); |
1877 | |
1878 | // There is no such thing as an unnamed class template. |
1879 | if (!Name) { |
1880 | Diag(KWLoc, diag::err_template_unnamed_class); |
1881 | return true; |
1882 | } |
1883 | |
1884 | // Find any previous declaration with this name. For a friend with no |
1885 | // scope explicitly specified, we only look for tag declarations (per |
1886 | // C++11 [basic.lookup.elab]p2). |
1887 | DeclContext *SemanticContext; |
1888 | LookupResult Previous(*this, Name, NameLoc, |
1889 | (SS.isEmpty() && TUK == TUK_Friend) |
1890 | ? LookupTagName : LookupOrdinaryName, |
1891 | forRedeclarationInCurContext()); |
1892 | if (SS.isNotEmpty() && !SS.isInvalid()) { |
1893 | SemanticContext = computeDeclContext(SS, EnteringContext: true); |
1894 | if (!SemanticContext) { |
1895 | // FIXME: Horrible, horrible hack! We can't currently represent this |
1896 | // in the AST, and historically we have just ignored such friend |
1897 | // class templates, so don't complain here. |
1898 | Diag(NameLoc, TUK == TUK_Friend |
1899 | ? diag::warn_template_qualified_friend_ignored |
1900 | : diag::err_template_qualified_declarator_no_match) |
1901 | << SS.getScopeRep() << SS.getRange(); |
1902 | return TUK != TUK_Friend; |
1903 | } |
1904 | |
1905 | if (RequireCompleteDeclContext(SS, DC: SemanticContext)) |
1906 | return true; |
1907 | |
1908 | // If we're adding a template to a dependent context, we may need to |
1909 | // rebuilding some of the types used within the template parameter list, |
1910 | // now that we know what the current instantiation is. |
1911 | if (SemanticContext->isDependentContext()) { |
1912 | ContextRAII SavedContext(*this, SemanticContext); |
1913 | if (RebuildTemplateParamsInCurrentInstantiation(Params: TemplateParams)) |
1914 | Invalid = true; |
1915 | } |
1916 | |
1917 | if (TUK != TUK_Friend && TUK != TUK_Reference) |
1918 | diagnoseQualifiedDeclaration(SS, DC: SemanticContext, Name, Loc: NameLoc, |
1919 | /*TemplateId-*/ TemplateId: nullptr, |
1920 | /*IsMemberSpecialization*/ false); |
1921 | |
1922 | LookupQualifiedName(R&: Previous, LookupCtx: SemanticContext); |
1923 | } else { |
1924 | SemanticContext = CurContext; |
1925 | |
1926 | // C++14 [class.mem]p14: |
1927 | // If T is the name of a class, then each of the following shall have a |
1928 | // name different from T: |
1929 | // -- every member template of class T |
1930 | if (TUK != TUK_Friend && |
1931 | DiagnoseClassNameShadow(DC: SemanticContext, |
1932 | Info: DeclarationNameInfo(Name, NameLoc))) |
1933 | return true; |
1934 | |
1935 | LookupName(R&: Previous, S); |
1936 | } |
1937 | |
1938 | if (Previous.isAmbiguous()) |
1939 | return true; |
1940 | |
1941 | NamedDecl *PrevDecl = nullptr; |
1942 | if (Previous.begin() != Previous.end()) |
1943 | PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
1944 | |
1945 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
1946 | // Maybe we will complain about the shadowed template parameter. |
1947 | DiagnoseTemplateParameterShadow(NameLoc, PrevDecl); |
1948 | // Just pretend that we didn't see the previous declaration. |
1949 | PrevDecl = nullptr; |
1950 | } |
1951 | |
1952 | // If there is a previous declaration with the same name, check |
1953 | // whether this is a valid redeclaration. |
1954 | ClassTemplateDecl *PrevClassTemplate = |
1955 | dyn_cast_or_null<ClassTemplateDecl>(Val: PrevDecl); |
1956 | |
1957 | // We may have found the injected-class-name of a class template, |
1958 | // class template partial specialization, or class template specialization. |
1959 | // In these cases, grab the template that is being defined or specialized. |
1960 | if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(Val: PrevDecl) && |
1961 | cast<CXXRecordDecl>(Val: PrevDecl)->isInjectedClassName()) { |
1962 | PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext()); |
1963 | PrevClassTemplate |
1964 | = cast<CXXRecordDecl>(Val: PrevDecl)->getDescribedClassTemplate(); |
1965 | if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(Val: PrevDecl)) { |
1966 | PrevClassTemplate |
1967 | = cast<ClassTemplateSpecializationDecl>(Val: PrevDecl) |
1968 | ->getSpecializedTemplate(); |
1969 | } |
1970 | } |
1971 | |
1972 | if (TUK == TUK_Friend) { |
1973 | // C++ [namespace.memdef]p3: |
1974 | // [...] When looking for a prior declaration of a class or a function |
1975 | // declared as a friend, and when the name of the friend class or |
1976 | // function is neither a qualified name nor a template-id, scopes outside |
1977 | // the innermost enclosing namespace scope are not considered. |
1978 | if (!SS.isSet()) { |
1979 | DeclContext *OutermostContext = CurContext; |
1980 | while (!OutermostContext->isFileContext()) |
1981 | OutermostContext = OutermostContext->getLookupParent(); |
1982 | |
1983 | if (PrevDecl && |
1984 | (OutermostContext->Equals(DC: PrevDecl->getDeclContext()) || |
1985 | OutermostContext->Encloses(DC: PrevDecl->getDeclContext()))) { |
1986 | SemanticContext = PrevDecl->getDeclContext(); |
1987 | } else { |
1988 | // Declarations in outer scopes don't matter. However, the outermost |
1989 | // context we computed is the semantic context for our new |
1990 | // declaration. |
1991 | PrevDecl = PrevClassTemplate = nullptr; |
1992 | SemanticContext = OutermostContext; |
1993 | |
1994 | // Check that the chosen semantic context doesn't already contain a |
1995 | // declaration of this name as a non-tag type. |
1996 | Previous.clear(Kind: LookupOrdinaryName); |
1997 | DeclContext *LookupContext = SemanticContext; |
1998 | while (LookupContext->isTransparentContext()) |
1999 | LookupContext = LookupContext->getLookupParent(); |
2000 | LookupQualifiedName(R&: Previous, LookupCtx: LookupContext); |
2001 | |
2002 | if (Previous.isAmbiguous()) |
2003 | return true; |
2004 | |
2005 | if (Previous.begin() != Previous.end()) |
2006 | PrevDecl = (*Previous.begin())->getUnderlyingDecl(); |
2007 | } |
2008 | } |
2009 | } else if (PrevDecl && |
2010 | !isDeclInScope(D: Previous.getRepresentativeDecl(), Ctx: SemanticContext, |
2011 | S, AllowInlineNamespace: SS.isValid())) |
2012 | PrevDecl = PrevClassTemplate = nullptr; |
2013 | |
2014 | if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>( |
2015 | Val: PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) { |
2016 | if (SS.isEmpty() && |
2017 | !(PrevClassTemplate && |
2018 | PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals( |
2019 | SemanticContext->getRedeclContext()))) { |
2020 | Diag(KWLoc, diag::err_using_decl_conflict_reverse); |
2021 | Diag(Shadow->getTargetDecl()->getLocation(), |
2022 | diag::note_using_decl_target); |
2023 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) << 0; |
2024 | // Recover by ignoring the old declaration. |
2025 | PrevDecl = PrevClassTemplate = nullptr; |
2026 | } |
2027 | } |
2028 | |
2029 | if (PrevClassTemplate) { |
2030 | // Ensure that the template parameter lists are compatible. Skip this check |
2031 | // for a friend in a dependent context: the template parameter list itself |
2032 | // could be dependent. |
2033 | if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && |
2034 | !TemplateParameterListsAreEqual( |
2035 | TemplateCompareNewDeclInfo(SemanticContext ? SemanticContext |
2036 | : CurContext, |
2037 | CurContext, KWLoc), |
2038 | TemplateParams, PrevClassTemplate, |
2039 | PrevClassTemplate->getTemplateParameters(), /*Complain=*/true, |
2040 | TPL_TemplateMatch)) |
2041 | return true; |
2042 | |
2043 | // C++ [temp.class]p4: |
2044 | // In a redeclaration, partial specialization, explicit |
2045 | // specialization or explicit instantiation of a class template, |
2046 | // the class-key shall agree in kind with the original class |
2047 | // template declaration (7.1.5.3). |
2048 | RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl(); |
2049 | if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind, |
2050 | TUK == TUK_Definition, KWLoc, Name)) { |
2051 | Diag(KWLoc, diag::err_use_with_wrong_tag) |
2052 | << Name |
2053 | << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName()); |
2054 | Diag(PrevRecordDecl->getLocation(), diag::note_previous_use); |
2055 | Kind = PrevRecordDecl->getTagKind(); |
2056 | } |
2057 | |
2058 | // Check for redefinition of this class template. |
2059 | if (TUK == TUK_Definition) { |
2060 | if (TagDecl *Def = PrevRecordDecl->getDefinition()) { |
2061 | // If we have a prior definition that is not visible, treat this as |
2062 | // simply making that previous definition visible. |
2063 | NamedDecl *Hidden = nullptr; |
2064 | if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { |
2065 | SkipBody->ShouldSkip = true; |
2066 | SkipBody->Previous = Def; |
2067 | auto *Tmpl = cast<CXXRecordDecl>(Val: Hidden)->getDescribedClassTemplate(); |
2068 | assert(Tmpl && "original definition of a class template is not a " |
2069 | "class template?" ); |
2070 | makeMergedDefinitionVisible(ND: Hidden); |
2071 | makeMergedDefinitionVisible(Tmpl); |
2072 | } else { |
2073 | Diag(NameLoc, diag::err_redefinition) << Name; |
2074 | Diag(Def->getLocation(), diag::note_previous_definition); |
2075 | // FIXME: Would it make sense to try to "forget" the previous |
2076 | // definition, as part of error recovery? |
2077 | return true; |
2078 | } |
2079 | } |
2080 | } |
2081 | } else if (PrevDecl) { |
2082 | // C++ [temp]p5: |
2083 | // A class template shall not have the same name as any other |
2084 | // template, class, function, object, enumeration, enumerator, |
2085 | // namespace, or type in the same scope (3.3), except as specified |
2086 | // in (14.5.4). |
2087 | Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
2088 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
2089 | return true; |
2090 | } |
2091 | |
2092 | // Check the template parameter list of this declaration, possibly |
2093 | // merging in the template parameter list from the previous class |
2094 | // template declaration. Skip this check for a friend in a dependent |
2095 | // context, because the template parameter list might be dependent. |
2096 | if (!(TUK == TUK_Friend && CurContext->isDependentContext()) && |
2097 | CheckTemplateParameterList( |
2098 | NewParams: TemplateParams, |
2099 | OldParams: PrevClassTemplate ? GetTemplateParameterList(PrevClassTemplate) |
2100 | : nullptr, |
2101 | TPC: (SS.isSet() && SemanticContext && SemanticContext->isRecord() && |
2102 | SemanticContext->isDependentContext()) |
2103 | ? TPC_ClassTemplateMember |
2104 | : TUK == TUK_Friend ? TPC_FriendClassTemplate |
2105 | : TPC_ClassTemplate, |
2106 | SkipBody)) |
2107 | Invalid = true; |
2108 | |
2109 | if (SS.isSet()) { |
2110 | // If the name of the template was qualified, we must be defining the |
2111 | // template out-of-line. |
2112 | if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) { |
2113 | Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match |
2114 | : diag::err_member_decl_does_not_match) |
2115 | << Name << SemanticContext << /*IsDefinition*/true << SS.getRange(); |
2116 | Invalid = true; |
2117 | } |
2118 | } |
2119 | |
2120 | // If this is a templated friend in a dependent context we should not put it |
2121 | // on the redecl chain. In some cases, the templated friend can be the most |
2122 | // recent declaration tricking the template instantiator to make substitutions |
2123 | // there. |
2124 | // FIXME: Figure out how to combine with shouldLinkDependentDeclWithPrevious |
2125 | bool ShouldAddRedecl |
2126 | = !(TUK == TUK_Friend && CurContext->isDependentContext()); |
2127 | |
2128 | CXXRecordDecl *NewClass = |
2129 | CXXRecordDecl::Create(C: Context, TK: Kind, DC: SemanticContext, StartLoc: KWLoc, IdLoc: NameLoc, Id: Name, |
2130 | PrevDecl: PrevClassTemplate && ShouldAddRedecl ? |
2131 | PrevClassTemplate->getTemplatedDecl() : nullptr, |
2132 | /*DelayTypeCreation=*/true); |
2133 | SetNestedNameSpecifier(*this, NewClass, SS); |
2134 | if (NumOuterTemplateParamLists > 0) |
2135 | NewClass->setTemplateParameterListsInfo( |
2136 | Context, |
2137 | llvm::ArrayRef(OuterTemplateParamLists, NumOuterTemplateParamLists)); |
2138 | |
2139 | // Add alignment attributes if necessary; these attributes are checked when |
2140 | // the ASTContext lays out the structure. |
2141 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
2142 | AddAlignmentAttributesForRecord(NewClass); |
2143 | AddMsStructLayoutForRecord(NewClass); |
2144 | } |
2145 | |
2146 | ClassTemplateDecl *NewTemplate |
2147 | = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc, |
2148 | DeclarationName(Name), TemplateParams, |
2149 | NewClass); |
2150 | |
2151 | if (ShouldAddRedecl) |
2152 | NewTemplate->setPreviousDecl(PrevClassTemplate); |
2153 | |
2154 | NewClass->setDescribedClassTemplate(NewTemplate); |
2155 | |
2156 | if (ModulePrivateLoc.isValid()) |
2157 | NewTemplate->setModulePrivate(); |
2158 | |
2159 | // Build the type for the class template declaration now. |
2160 | QualType T = NewTemplate->getInjectedClassNameSpecialization(); |
2161 | T = Context.getInjectedClassNameType(Decl: NewClass, TST: T); |
2162 | assert(T->isDependentType() && "Class template type is not dependent?" ); |
2163 | (void)T; |
2164 | |
2165 | // If we are providing an explicit specialization of a member that is a |
2166 | // class template, make a note of that. |
2167 | if (PrevClassTemplate && |
2168 | PrevClassTemplate->getInstantiatedFromMemberTemplate()) |
2169 | PrevClassTemplate->setMemberSpecialization(); |
2170 | |
2171 | // Set the access specifier. |
2172 | if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord()) |
2173 | SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS); |
2174 | |
2175 | // Set the lexical context of these templates |
2176 | NewClass->setLexicalDeclContext(CurContext); |
2177 | NewTemplate->setLexicalDeclContext(CurContext); |
2178 | |
2179 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) |
2180 | NewClass->startDefinition(); |
2181 | |
2182 | ProcessDeclAttributeList(S, NewClass, Attr); |
2183 | ProcessAPINotes(NewClass); |
2184 | |
2185 | if (PrevClassTemplate) |
2186 | mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl()); |
2187 | |
2188 | AddPushedVisibilityAttribute(NewClass); |
2189 | inferGslOwnerPointerAttribute(Record: NewClass); |
2190 | inferNullableClassAttribute(CRD: NewClass); |
2191 | |
2192 | if (TUK != TUK_Friend) { |
2193 | // Per C++ [basic.scope.temp]p2, skip the template parameter scopes. |
2194 | Scope *Outer = S; |
2195 | while ((Outer->getFlags() & Scope::TemplateParamScope) != 0) |
2196 | Outer = Outer->getParent(); |
2197 | PushOnScopeChains(NewTemplate, Outer); |
2198 | } else { |
2199 | if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) { |
2200 | NewTemplate->setAccess(PrevClassTemplate->getAccess()); |
2201 | NewClass->setAccess(PrevClassTemplate->getAccess()); |
2202 | } |
2203 | |
2204 | NewTemplate->setObjectOfFriendDecl(); |
2205 | |
2206 | // Friend templates are visible in fairly strange ways. |
2207 | if (!CurContext->isDependentContext()) { |
2208 | DeclContext *DC = SemanticContext->getRedeclContext(); |
2209 | DC->makeDeclVisibleInContext(NewTemplate); |
2210 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
2211 | PushOnScopeChains(NewTemplate, EnclosingScope, |
2212 | /* AddToContext = */ false); |
2213 | } |
2214 | |
2215 | FriendDecl *Friend = FriendDecl::Create( |
2216 | C&: Context, DC: CurContext, L: NewClass->getLocation(), Friend_: NewTemplate, FriendL: FriendLoc); |
2217 | Friend->setAccess(AS_public); |
2218 | CurContext->addDecl(Friend); |
2219 | } |
2220 | |
2221 | if (PrevClassTemplate) |
2222 | CheckRedeclarationInModule(NewTemplate, PrevClassTemplate); |
2223 | |
2224 | if (Invalid) { |
2225 | NewTemplate->setInvalidDecl(); |
2226 | NewClass->setInvalidDecl(); |
2227 | } |
2228 | |
2229 | ActOnDocumentableDecl(NewTemplate); |
2230 | |
2231 | if (SkipBody && SkipBody->ShouldSkip) |
2232 | return SkipBody->Previous; |
2233 | |
2234 | return NewTemplate; |
2235 | } |
2236 | |
2237 | namespace { |
2238 | /// Tree transform to "extract" a transformed type from a class template's |
2239 | /// constructor to a deduction guide. |
2240 | class |
2241 | : public TreeTransform<ExtractTypeForDeductionGuide> { |
2242 | llvm::SmallVectorImpl<TypedefNameDecl *> &; |
2243 | |
2244 | public: |
2245 | typedef TreeTransform<ExtractTypeForDeductionGuide> ; |
2246 | ( |
2247 | Sema &SemaRef, |
2248 | llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) |
2249 | : Base(SemaRef), MaterializedTypedefs(MaterializedTypedefs) {} |
2250 | |
2251 | TypeSourceInfo *(TypeSourceInfo *TSI) { return TransformType(TSI); } |
2252 | |
2253 | QualType (TypeLocBuilder &TLB, TypedefTypeLoc TL) { |
2254 | ASTContext &Context = SemaRef.getASTContext(); |
2255 | TypedefNameDecl *OrigDecl = TL.getTypedefNameDecl(); |
2256 | TypedefNameDecl *Decl = OrigDecl; |
2257 | // Transform the underlying type of the typedef and clone the Decl only if |
2258 | // the typedef has a dependent context. |
2259 | if (OrigDecl->getDeclContext()->isDependentContext()) { |
2260 | TypeLocBuilder InnerTLB; |
2261 | QualType Transformed = |
2262 | TransformType(InnerTLB, OrigDecl->getTypeSourceInfo()->getTypeLoc()); |
2263 | TypeSourceInfo *TSI = InnerTLB.getTypeSourceInfo(Context, T: Transformed); |
2264 | if (isa<TypeAliasDecl>(Val: OrigDecl)) |
2265 | Decl = TypeAliasDecl::Create( |
2266 | C&: Context, DC: Context.getTranslationUnitDecl(), StartLoc: OrigDecl->getBeginLoc(), |
2267 | IdLoc: OrigDecl->getLocation(), Id: OrigDecl->getIdentifier(), TInfo: TSI); |
2268 | else { |
2269 | assert(isa<TypedefDecl>(OrigDecl) && "Not a Type alias or typedef" ); |
2270 | Decl = TypedefDecl::Create( |
2271 | C&: Context, DC: Context.getTranslationUnitDecl(), StartLoc: OrigDecl->getBeginLoc(), |
2272 | IdLoc: OrigDecl->getLocation(), Id: OrigDecl->getIdentifier(), TInfo: TSI); |
2273 | } |
2274 | MaterializedTypedefs.push_back(Elt: Decl); |
2275 | } |
2276 | |
2277 | QualType TDTy = Context.getTypedefType(Decl); |
2278 | TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T: TDTy); |
2279 | TypedefTL.setNameLoc(TL.getNameLoc()); |
2280 | |
2281 | return TDTy; |
2282 | } |
2283 | }; |
2284 | |
2285 | // Build a deduction guide with the specified parameter types. |
2286 | FunctionTemplateDecl *buildDeductionGuide( |
2287 | Sema &SemaRef, TemplateDecl *OriginalTemplate, |
2288 | TemplateParameterList *TemplateParams, CXXConstructorDecl *Ctor, |
2289 | ExplicitSpecifier ES, TypeSourceInfo *TInfo, SourceLocation LocStart, |
2290 | SourceLocation Loc, SourceLocation LocEnd, bool IsImplicit, |
2291 | llvm::ArrayRef<TypedefNameDecl *> MaterializedTypedefs = {}) { |
2292 | DeclContext *DC = OriginalTemplate->getDeclContext(); |
2293 | auto DeductionGuideName = |
2294 | SemaRef.Context.DeclarationNames.getCXXDeductionGuideName( |
2295 | TD: OriginalTemplate); |
2296 | |
2297 | DeclarationNameInfo Name(DeductionGuideName, Loc); |
2298 | ArrayRef<ParmVarDecl *> Params = |
2299 | TInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>().getParams(); |
2300 | |
2301 | // Build the implicit deduction guide template. |
2302 | auto *Guide = |
2303 | CXXDeductionGuideDecl::Create(C&: SemaRef.Context, DC, StartLoc: LocStart, ES, NameInfo: Name, |
2304 | T: TInfo->getType(), TInfo, EndLocation: LocEnd, Ctor); |
2305 | Guide->setImplicit(IsImplicit); |
2306 | Guide->setParams(Params); |
2307 | |
2308 | for (auto *Param : Params) |
2309 | Param->setDeclContext(Guide); |
2310 | for (auto *TD : MaterializedTypedefs) |
2311 | TD->setDeclContext(Guide); |
2312 | |
2313 | auto *GuideTemplate = FunctionTemplateDecl::Create( |
2314 | C&: SemaRef.Context, DC, L: Loc, Name: DeductionGuideName, Params: TemplateParams, Decl: Guide); |
2315 | GuideTemplate->setImplicit(IsImplicit); |
2316 | Guide->setDescribedFunctionTemplate(GuideTemplate); |
2317 | |
2318 | if (isa<CXXRecordDecl>(Val: DC)) { |
2319 | Guide->setAccess(AS_public); |
2320 | GuideTemplate->setAccess(AS_public); |
2321 | } |
2322 | |
2323 | DC->addDecl(D: GuideTemplate); |
2324 | return GuideTemplate; |
2325 | } |
2326 | |
2327 | // Transform a given template type parameter `TTP`. |
2328 | TemplateTypeParmDecl * |
2329 | transformTemplateTypeParam(Sema &SemaRef, DeclContext *DC, |
2330 | TemplateTypeParmDecl *TTP, |
2331 | MultiLevelTemplateArgumentList &Args, |
2332 | unsigned NewDepth, unsigned NewIndex) { |
2333 | // TemplateTypeParmDecl's index cannot be changed after creation, so |
2334 | // substitute it directly. |
2335 | auto *NewTTP = TemplateTypeParmDecl::Create( |
2336 | C: SemaRef.Context, DC, KeyLoc: TTP->getBeginLoc(), NameLoc: TTP->getLocation(), D: NewDepth, |
2337 | P: NewIndex, Id: TTP->getIdentifier(), Typename: TTP->wasDeclaredWithTypename(), |
2338 | ParameterPack: TTP->isParameterPack(), HasTypeConstraint: TTP->hasTypeConstraint(), |
2339 | NumExpanded: TTP->isExpandedParameterPack() |
2340 | ? std::optional<unsigned>(TTP->getNumExpansionParameters()) |
2341 | : std::nullopt); |
2342 | if (const auto *TC = TTP->getTypeConstraint()) |
2343 | SemaRef.SubstTypeConstraint(Inst: NewTTP, TC, TemplateArgs: Args, |
2344 | /*EvaluateConstraint=*/true); |
2345 | if (TTP->hasDefaultArgument()) { |
2346 | TypeSourceInfo *InstantiatedDefaultArg = |
2347 | SemaRef.SubstType(TTP->getDefaultArgumentInfo(), Args, |
2348 | TTP->getDefaultArgumentLoc(), TTP->getDeclName()); |
2349 | if (InstantiatedDefaultArg) |
2350 | NewTTP->setDefaultArgument(InstantiatedDefaultArg); |
2351 | } |
2352 | SemaRef.CurrentInstantiationScope->InstantiatedLocal(D: TTP, Inst: NewTTP); |
2353 | return NewTTP; |
2354 | } |
2355 | // Similar to above, but for non-type template or template template parameters. |
2356 | template <typename NonTypeTemplateOrTemplateTemplateParmDecl> |
2357 | NonTypeTemplateOrTemplateTemplateParmDecl * |
2358 | transformTemplateParam(Sema &SemaRef, DeclContext *DC, |
2359 | NonTypeTemplateOrTemplateTemplateParmDecl *OldParam, |
2360 | MultiLevelTemplateArgumentList &Args, unsigned NewIndex, |
2361 | unsigned NewDepth) { |
2362 | // Ask the template instantiator to do the heavy lifting for us, then adjust |
2363 | // the index of the parameter once it's done. |
2364 | auto *NewParam = cast<NonTypeTemplateOrTemplateTemplateParmDecl>( |
2365 | SemaRef.SubstDecl(D: OldParam, Owner: DC, TemplateArgs: Args)); |
2366 | NewParam->setPosition(NewIndex); |
2367 | NewParam->setDepth(NewDepth); |
2368 | return NewParam; |
2369 | } |
2370 | |
2371 | /// Transform to convert portions of a constructor declaration into the |
2372 | /// corresponding deduction guide, per C++1z [over.match.class.deduct]p1. |
2373 | struct ConvertConstructorToDeductionGuideTransform { |
2374 | ConvertConstructorToDeductionGuideTransform(Sema &S, |
2375 | ClassTemplateDecl *Template) |
2376 | : SemaRef(S), Template(Template) { |
2377 | // If the template is nested, then we need to use the original |
2378 | // pattern to iterate over the constructors. |
2379 | ClassTemplateDecl *Pattern = Template; |
2380 | while (Pattern->getInstantiatedFromMemberTemplate()) { |
2381 | if (Pattern->isMemberSpecialization()) |
2382 | break; |
2383 | Pattern = Pattern->getInstantiatedFromMemberTemplate(); |
2384 | NestedPattern = Pattern; |
2385 | } |
2386 | |
2387 | if (NestedPattern) |
2388 | OuterInstantiationArgs = SemaRef.getTemplateInstantiationArgs(Template); |
2389 | } |
2390 | |
2391 | Sema &SemaRef; |
2392 | ClassTemplateDecl *Template; |
2393 | ClassTemplateDecl *NestedPattern = nullptr; |
2394 | |
2395 | DeclContext *DC = Template->getDeclContext(); |
2396 | CXXRecordDecl *Primary = Template->getTemplatedDecl(); |
2397 | DeclarationName DeductionGuideName = |
2398 | SemaRef.Context.DeclarationNames.getCXXDeductionGuideName(Template); |
2399 | |
2400 | QualType DeducedType = SemaRef.Context.getTypeDeclType(Primary); |
2401 | |
2402 | // Index adjustment to apply to convert depth-1 template parameters into |
2403 | // depth-0 template parameters. |
2404 | unsigned Depth1IndexAdjustment = Template->getTemplateParameters()->size(); |
2405 | |
2406 | // Instantiation arguments for the outermost depth-1 templates |
2407 | // when the template is nested |
2408 | MultiLevelTemplateArgumentList OuterInstantiationArgs; |
2409 | |
2410 | /// Transform a constructor declaration into a deduction guide. |
2411 | NamedDecl *transformConstructor(FunctionTemplateDecl *FTD, |
2412 | CXXConstructorDecl *CD) { |
2413 | SmallVector<TemplateArgument, 16> SubstArgs; |
2414 | |
2415 | LocalInstantiationScope Scope(SemaRef); |
2416 | |
2417 | // C++ [over.match.class.deduct]p1: |
2418 | // -- For each constructor of the class template designated by the |
2419 | // template-name, a function template with the following properties: |
2420 | |
2421 | // -- The template parameters are the template parameters of the class |
2422 | // template followed by the template parameters (including default |
2423 | // template arguments) of the constructor, if any. |
2424 | TemplateParameterList *TemplateParams = GetTemplateParameterList(Template); |
2425 | if (FTD) { |
2426 | TemplateParameterList *InnerParams = FTD->getTemplateParameters(); |
2427 | SmallVector<NamedDecl *, 16> AllParams; |
2428 | SmallVector<TemplateArgument, 16> Depth1Args; |
2429 | AllParams.reserve(N: TemplateParams->size() + InnerParams->size()); |
2430 | AllParams.insert(I: AllParams.begin(), |
2431 | From: TemplateParams->begin(), To: TemplateParams->end()); |
2432 | SubstArgs.reserve(N: InnerParams->size()); |
2433 | Depth1Args.reserve(N: InnerParams->size()); |
2434 | |
2435 | // Later template parameters could refer to earlier ones, so build up |
2436 | // a list of substituted template arguments as we go. |
2437 | for (NamedDecl *Param : *InnerParams) { |
2438 | MultiLevelTemplateArgumentList Args; |
2439 | Args.setKind(TemplateSubstitutionKind::Rewrite); |
2440 | Args.addOuterTemplateArguments(Depth1Args); |
2441 | Args.addOuterRetainedLevel(); |
2442 | if (NestedPattern) |
2443 | Args.addOuterRetainedLevels(NestedPattern->getTemplateDepth()); |
2444 | NamedDecl *NewParam = transformTemplateParameter(Param, Args); |
2445 | if (!NewParam) |
2446 | return nullptr; |
2447 | // Constraints require that we substitute depth-1 arguments |
2448 | // to match depths when substituted for evaluation later |
2449 | Depth1Args.push_back(SemaRef.Context.getCanonicalTemplateArgument( |
2450 | SemaRef.Context.getInjectedTemplateArg(NewParam))); |
2451 | |
2452 | if (NestedPattern) { |
2453 | TemplateDeclInstantiator Instantiator(SemaRef, DC, |
2454 | OuterInstantiationArgs); |
2455 | Instantiator.setEvaluateConstraints(false); |
2456 | SemaRef.runWithSufficientStackSpace(NewParam->getLocation(), [&] { |
2457 | NewParam = cast<NamedDecl>(Instantiator.Visit(NewParam)); |
2458 | }); |
2459 | } |
2460 | |
2461 | assert(NewParam->getTemplateDepth() == 0 && |
2462 | "Unexpected template parameter depth" ); |
2463 | |
2464 | AllParams.push_back(NewParam); |
2465 | SubstArgs.push_back(SemaRef.Context.getCanonicalTemplateArgument( |
2466 | SemaRef.Context.getInjectedTemplateArg(NewParam))); |
2467 | } |
2468 | |
2469 | // Substitute new template parameters into requires-clause if present. |
2470 | Expr *RequiresClause = nullptr; |
2471 | if (Expr *InnerRC = InnerParams->getRequiresClause()) { |
2472 | MultiLevelTemplateArgumentList Args; |
2473 | Args.setKind(TemplateSubstitutionKind::Rewrite); |
2474 | Args.addOuterTemplateArguments(Args: Depth1Args); |
2475 | Args.addOuterRetainedLevel(); |
2476 | if (NestedPattern) |
2477 | Args.addOuterRetainedLevels(Num: NestedPattern->getTemplateDepth()); |
2478 | ExprResult E = SemaRef.SubstExpr(E: InnerRC, TemplateArgs: Args); |
2479 | if (E.isInvalid()) |
2480 | return nullptr; |
2481 | RequiresClause = E.getAs<Expr>(); |
2482 | } |
2483 | |
2484 | TemplateParams = TemplateParameterList::Create( |
2485 | C: SemaRef.Context, TemplateLoc: InnerParams->getTemplateLoc(), |
2486 | LAngleLoc: InnerParams->getLAngleLoc(), Params: AllParams, RAngleLoc: InnerParams->getRAngleLoc(), |
2487 | RequiresClause); |
2488 | } |
2489 | |
2490 | // If we built a new template-parameter-list, track that we need to |
2491 | // substitute references to the old parameters into references to the |
2492 | // new ones. |
2493 | MultiLevelTemplateArgumentList Args; |
2494 | Args.setKind(TemplateSubstitutionKind::Rewrite); |
2495 | if (FTD) { |
2496 | Args.addOuterTemplateArguments(Args: SubstArgs); |
2497 | Args.addOuterRetainedLevel(); |
2498 | } |
2499 | |
2500 | if (NestedPattern) |
2501 | Args.addOuterRetainedLevels(Num: NestedPattern->getTemplateDepth()); |
2502 | |
2503 | FunctionProtoTypeLoc FPTL = CD->getTypeSourceInfo()->getTypeLoc() |
2504 | .getAsAdjusted<FunctionProtoTypeLoc>(); |
2505 | assert(FPTL && "no prototype for constructor declaration" ); |
2506 | |
2507 | // Transform the type of the function, adjusting the return type and |
2508 | // replacing references to the old parameters with references to the |
2509 | // new ones. |
2510 | TypeLocBuilder TLB; |
2511 | SmallVector<ParmVarDecl*, 8> Params; |
2512 | SmallVector<TypedefNameDecl *, 4> MaterializedTypedefs; |
2513 | QualType NewType = transformFunctionProtoType(TLB, TL: FPTL, Params, Args, |
2514 | MaterializedTypedefs); |
2515 | if (NewType.isNull()) |
2516 | return nullptr; |
2517 | TypeSourceInfo *NewTInfo = TLB.getTypeSourceInfo(Context&: SemaRef.Context, T: NewType); |
2518 | |
2519 | return buildDeductionGuide( |
2520 | SemaRef, Template, TemplateParams, CD, CD->getExplicitSpecifier(), |
2521 | NewTInfo, CD->getBeginLoc(), CD->getLocation(), CD->getEndLoc(), |
2522 | /*IsImplicit=*/true, MaterializedTypedefs); |
2523 | } |
2524 | |
2525 | /// Build a deduction guide with the specified parameter types. |
2526 | NamedDecl *buildSimpleDeductionGuide(MutableArrayRef<QualType> ParamTypes) { |
2527 | SourceLocation Loc = Template->getLocation(); |
2528 | |
2529 | // Build the requested type. |
2530 | FunctionProtoType::ExtProtoInfo EPI; |
2531 | EPI.HasTrailingReturn = true; |
2532 | QualType Result = SemaRef.BuildFunctionType(DeducedType, ParamTypes, Loc, |
2533 | DeductionGuideName, EPI); |
2534 | TypeSourceInfo *TSI = SemaRef.Context.getTrivialTypeSourceInfo(T: Result, Loc); |
2535 | if (NestedPattern) |
2536 | TSI = SemaRef.SubstType(T: TSI, TemplateArgs: OuterInstantiationArgs, Loc, |
2537 | Entity: DeductionGuideName); |
2538 | |
2539 | FunctionProtoTypeLoc FPTL = |
2540 | TSI->getTypeLoc().castAs<FunctionProtoTypeLoc>(); |
2541 | |
2542 | // Build the parameters, needed during deduction / substitution. |
2543 | SmallVector<ParmVarDecl*, 4> Params; |
2544 | for (auto T : ParamTypes) { |
2545 | auto *TSI = SemaRef.Context.getTrivialTypeSourceInfo(T, Loc); |
2546 | if (NestedPattern) |
2547 | TSI = SemaRef.SubstType(TSI, OuterInstantiationArgs, Loc, |
2548 | DeclarationName()); |
2549 | ParmVarDecl *NewParam = |
2550 | ParmVarDecl::Create(C&: SemaRef.Context, DC, StartLoc: Loc, IdLoc: Loc, Id: nullptr, |
2551 | T: TSI->getType(), TInfo: TSI, S: SC_None, DefArg: nullptr); |
2552 | NewParam->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size()); |
2553 | FPTL.setParam(Params.size(), NewParam); |
2554 | Params.push_back(Elt: NewParam); |
2555 | } |
2556 | |
2557 | return buildDeductionGuide( |
2558 | SemaRef, Template, GetTemplateParameterList(Template), nullptr, |
2559 | ExplicitSpecifier(), TSI, Loc, Loc, Loc, /*IsImplicit=*/true); |
2560 | } |
2561 | |
2562 | private: |
2563 | /// Transform a constructor template parameter into a deduction guide template |
2564 | /// parameter, rebuilding any internal references to earlier parameters and |
2565 | /// renumbering as we go. |
2566 | NamedDecl *transformTemplateParameter(NamedDecl *TemplateParam, |
2567 | MultiLevelTemplateArgumentList &Args) { |
2568 | if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: TemplateParam)) |
2569 | return transformTemplateTypeParam( |
2570 | SemaRef, DC, TTP, Args, NewDepth: TTP->getDepth() - 1, |
2571 | NewIndex: Depth1IndexAdjustment + TTP->getIndex()); |
2572 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: TemplateParam)) |
2573 | return transformTemplateParam(SemaRef, DC, TTP, Args, |
2574 | Depth1IndexAdjustment + TTP->getIndex(), |
2575 | TTP->getDepth() - 1); |
2576 | auto *NTTP = cast<NonTypeTemplateParmDecl>(Val: TemplateParam); |
2577 | return transformTemplateParam(SemaRef, DC, NTTP, Args, |
2578 | Depth1IndexAdjustment + NTTP->getIndex(), |
2579 | NTTP->getDepth() - 1); |
2580 | } |
2581 | |
2582 | QualType transformFunctionProtoType( |
2583 | TypeLocBuilder &TLB, FunctionProtoTypeLoc TL, |
2584 | SmallVectorImpl<ParmVarDecl *> &Params, |
2585 | MultiLevelTemplateArgumentList &Args, |
2586 | SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { |
2587 | SmallVector<QualType, 4> ParamTypes; |
2588 | const FunctionProtoType *T = TL.getTypePtr(); |
2589 | |
2590 | // -- The types of the function parameters are those of the constructor. |
2591 | for (auto *OldParam : TL.getParams()) { |
2592 | ParmVarDecl *NewParam = |
2593 | transformFunctionTypeParam(OldParam, Args, MaterializedTypedefs); |
2594 | if (NestedPattern && NewParam) |
2595 | NewParam = transformFunctionTypeParam(NewParam, OuterInstantiationArgs, |
2596 | MaterializedTypedefs); |
2597 | if (!NewParam) |
2598 | return QualType(); |
2599 | ParamTypes.push_back(NewParam->getType()); |
2600 | Params.push_back(NewParam); |
2601 | } |
2602 | |
2603 | // -- The return type is the class template specialization designated by |
2604 | // the template-name and template arguments corresponding to the |
2605 | // template parameters obtained from the class template. |
2606 | // |
2607 | // We use the injected-class-name type of the primary template instead. |
2608 | // This has the convenient property that it is different from any type that |
2609 | // the user can write in a deduction-guide (because they cannot enter the |
2610 | // context of the template), so implicit deduction guides can never collide |
2611 | // with explicit ones. |
2612 | QualType ReturnType = DeducedType; |
2613 | TLB.pushTypeSpec(T: ReturnType).setNameLoc(Primary->getLocation()); |
2614 | |
2615 | // Resolving a wording defect, we also inherit the variadicness of the |
2616 | // constructor. |
2617 | FunctionProtoType::ExtProtoInfo EPI; |
2618 | EPI.Variadic = T->isVariadic(); |
2619 | EPI.HasTrailingReturn = true; |
2620 | |
2621 | QualType Result = SemaRef.BuildFunctionType( |
2622 | T: ReturnType, ParamTypes, Loc: TL.getBeginLoc(), Entity: DeductionGuideName, EPI); |
2623 | if (Result.isNull()) |
2624 | return QualType(); |
2625 | |
2626 | FunctionProtoTypeLoc NewTL = TLB.push<FunctionProtoTypeLoc>(T: Result); |
2627 | NewTL.setLocalRangeBegin(TL.getLocalRangeBegin()); |
2628 | NewTL.setLParenLoc(TL.getLParenLoc()); |
2629 | NewTL.setRParenLoc(TL.getRParenLoc()); |
2630 | NewTL.setExceptionSpecRange(SourceRange()); |
2631 | NewTL.setLocalRangeEnd(TL.getLocalRangeEnd()); |
2632 | for (unsigned I = 0, E = NewTL.getNumParams(); I != E; ++I) |
2633 | NewTL.setParam(I, Params[I]); |
2634 | |
2635 | return Result; |
2636 | } |
2637 | |
2638 | ParmVarDecl *transformFunctionTypeParam( |
2639 | ParmVarDecl *OldParam, MultiLevelTemplateArgumentList &Args, |
2640 | llvm::SmallVectorImpl<TypedefNameDecl *> &MaterializedTypedefs) { |
2641 | TypeSourceInfo *OldDI = OldParam->getTypeSourceInfo(); |
2642 | TypeSourceInfo *NewDI; |
2643 | if (auto PackTL = OldDI->getTypeLoc().getAs<PackExpansionTypeLoc>()) { |
2644 | // Expand out the one and only element in each inner pack. |
2645 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, 0); |
2646 | NewDI = |
2647 | SemaRef.SubstType(PackTL.getPatternLoc(), Args, |
2648 | OldParam->getLocation(), OldParam->getDeclName()); |
2649 | if (!NewDI) return nullptr; |
2650 | NewDI = |
2651 | SemaRef.CheckPackExpansion(NewDI, PackTL.getEllipsisLoc(), |
2652 | PackTL.getTypePtr()->getNumExpansions()); |
2653 | } else |
2654 | NewDI = SemaRef.SubstType(OldDI, Args, OldParam->getLocation(), |
2655 | OldParam->getDeclName()); |
2656 | if (!NewDI) |
2657 | return nullptr; |
2658 | |
2659 | // Extract the type. This (for instance) replaces references to typedef |
2660 | // members of the current instantiations with the definitions of those |
2661 | // typedefs, avoiding triggering instantiation of the deduced type during |
2662 | // deduction. |
2663 | NewDI = ExtractTypeForDeductionGuide(SemaRef, MaterializedTypedefs) |
2664 | .transform(TSI: NewDI); |
2665 | |
2666 | // Resolving a wording defect, we also inherit default arguments from the |
2667 | // constructor. |
2668 | ExprResult NewDefArg; |
2669 | if (OldParam->hasDefaultArg()) { |
2670 | // We don't care what the value is (we won't use it); just create a |
2671 | // placeholder to indicate there is a default argument. |
2672 | QualType ParamTy = NewDI->getType(); |
2673 | NewDefArg = new (SemaRef.Context) |
2674 | OpaqueValueExpr(OldParam->getDefaultArg()->getBeginLoc(), |
2675 | ParamTy.getNonLValueExprType(Context: SemaRef.Context), |
2676 | ParamTy->isLValueReferenceType() ? VK_LValue |
2677 | : ParamTy->isRValueReferenceType() ? VK_XValue |
2678 | : VK_PRValue); |
2679 | } |
2680 | // Handle arrays and functions decay. |
2681 | auto NewType = NewDI->getType(); |
2682 | if (NewType->isArrayType() || NewType->isFunctionType()) |
2683 | NewType = SemaRef.Context.getDecayedType(T: NewType); |
2684 | |
2685 | ParmVarDecl *NewParam = ParmVarDecl::Create( |
2686 | C&: SemaRef.Context, DC, StartLoc: OldParam->getInnerLocStart(), |
2687 | IdLoc: OldParam->getLocation(), Id: OldParam->getIdentifier(), T: NewType, TInfo: NewDI, |
2688 | S: OldParam->getStorageClass(), DefArg: NewDefArg.get()); |
2689 | NewParam->setScopeInfo(scopeDepth: OldParam->getFunctionScopeDepth(), |
2690 | parameterIndex: OldParam->getFunctionScopeIndex()); |
2691 | SemaRef.CurrentInstantiationScope->InstantiatedLocal(OldParam, NewParam); |
2692 | return NewParam; |
2693 | } |
2694 | }; |
2695 | |
2696 | // Find all template parameters that appear in the given DeducedArgs. |
2697 | // Return the indices of the template parameters in the TemplateParams. |
2698 | SmallVector<unsigned> TemplateParamsReferencedInTemplateArgumentList( |
2699 | ArrayRef<NamedDecl *> TemplateParams, |
2700 | ArrayRef<TemplateArgument> DeducedArgs) { |
2701 | struct TemplateParamsReferencedFinder |
2702 | : public RecursiveASTVisitor<TemplateParamsReferencedFinder> { |
2703 | llvm::DenseSet<NamedDecl *> TemplateParams; |
2704 | llvm::DenseSet<const NamedDecl *> ReferencedTemplateParams; |
2705 | |
2706 | TemplateParamsReferencedFinder(ArrayRef<NamedDecl *> TemplateParams) |
2707 | : TemplateParams(TemplateParams.begin(), TemplateParams.end()) {} |
2708 | |
2709 | bool VisitTemplateTypeParmType(TemplateTypeParmType *TTP) { |
2710 | MarkAppeared(TTP->getDecl()); |
2711 | return true; |
2712 | } |
2713 | bool VisitDeclRefExpr(DeclRefExpr *DRE) { |
2714 | MarkAppeared(ND: DRE->getFoundDecl()); |
2715 | return true; |
2716 | } |
2717 | |
2718 | bool TraverseTemplateName(TemplateName Template) { |
2719 | if (auto *TD = Template.getAsTemplateDecl()) |
2720 | MarkAppeared(TD); |
2721 | return RecursiveASTVisitor::TraverseTemplateName(Template); |
2722 | } |
2723 | |
2724 | void MarkAppeared(NamedDecl *ND) { |
2725 | if (TemplateParams.contains(V: ND)) |
2726 | ReferencedTemplateParams.insert(V: ND); |
2727 | } |
2728 | }; |
2729 | TemplateParamsReferencedFinder Finder(TemplateParams); |
2730 | Finder.TraverseTemplateArguments(Args: DeducedArgs); |
2731 | |
2732 | SmallVector<unsigned> Results; |
2733 | for (unsigned Index = 0; Index < TemplateParams.size(); ++Index) { |
2734 | if (Finder.ReferencedTemplateParams.contains(V: TemplateParams[Index])) |
2735 | Results.push_back(Elt: Index); |
2736 | } |
2737 | return Results; |
2738 | } |
2739 | |
2740 | bool hasDeclaredDeductionGuides(DeclarationName Name, DeclContext *DC) { |
2741 | // Check whether we've already declared deduction guides for this template. |
2742 | // FIXME: Consider storing a flag on the template to indicate this. |
2743 | assert(Name.getNameKind() == |
2744 | DeclarationName::NameKind::CXXDeductionGuideName && |
2745 | "name must be a deduction guide name" ); |
2746 | auto Existing = DC->lookup(Name); |
2747 | for (auto *D : Existing) |
2748 | if (D->isImplicit()) |
2749 | return true; |
2750 | return false; |
2751 | } |
2752 | |
2753 | NamedDecl *transformTemplateParameter(Sema &SemaRef, DeclContext *DC, |
2754 | NamedDecl *TemplateParam, |
2755 | MultiLevelTemplateArgumentList &Args, |
2756 | unsigned NewIndex) { |
2757 | if (auto *TTP = dyn_cast<TemplateTypeParmDecl>(Val: TemplateParam)) |
2758 | return transformTemplateTypeParam(SemaRef, DC, TTP, Args, NewDepth: TTP->getDepth(), |
2759 | NewIndex); |
2760 | if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: TemplateParam)) |
2761 | return transformTemplateParam(SemaRef, DC, TTP, Args, NewIndex, |
2762 | TTP->getDepth()); |
2763 | if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParam)) |
2764 | return transformTemplateParam(SemaRef, DC, NTTP, Args, NewIndex, |
2765 | NTTP->getDepth()); |
2766 | llvm_unreachable("Unhandled template parameter types" ); |
2767 | } |
2768 | |
2769 | Expr *transformRequireClause(Sema &SemaRef, FunctionTemplateDecl *FTD, |
2770 | llvm::ArrayRef<TemplateArgument> TransformedArgs) { |
2771 | Expr *RC = FTD->getTemplateParameters()->getRequiresClause(); |
2772 | if (!RC) |
2773 | return nullptr; |
2774 | MultiLevelTemplateArgumentList Args; |
2775 | Args.setKind(TemplateSubstitutionKind::Rewrite); |
2776 | Args.addOuterTemplateArguments(Args: TransformedArgs); |
2777 | ExprResult E = SemaRef.SubstExpr(E: RC, TemplateArgs: Args); |
2778 | if (E.isInvalid()) |
2779 | return nullptr; |
2780 | return E.getAs<Expr>(); |
2781 | } |
2782 | |
2783 | std::pair<TemplateDecl *, llvm::ArrayRef<TemplateArgument>> |
2784 | getRHSTemplateDeclAndArgs(Sema &SemaRef, TypeAliasTemplateDecl *AliasTemplate) { |
2785 | // Unwrap the sugared ElaboratedType. |
2786 | auto RhsType = AliasTemplate->getTemplatedDecl() |
2787 | ->getUnderlyingType() |
2788 | .getSingleStepDesugaredType(SemaRef.Context); |
2789 | TemplateDecl *Template = nullptr; |
2790 | llvm::ArrayRef<TemplateArgument> AliasRhsTemplateArgs; |
2791 | if (const auto *TST = RhsType->getAs<TemplateSpecializationType>()) { |
2792 | // Cases where the RHS of the alias is dependent. e.g. |
2793 | // template<typename T> |
2794 | // using AliasFoo1 = Foo<T>; // a class/type alias template specialization |
2795 | Template = TST->getTemplateName().getAsTemplateDecl(); |
2796 | AliasRhsTemplateArgs = TST->template_arguments(); |
2797 | } else if (const auto *RT = RhsType->getAs<RecordType>()) { |
2798 | // Cases where template arguments in the RHS of the alias are not |
2799 | // dependent. e.g. |
2800 | // using AliasFoo = Foo<bool>; |
2801 | if (const auto *CTSD = llvm::dyn_cast<ClassTemplateSpecializationDecl>( |
2802 | RT->getAsCXXRecordDecl())) { |
2803 | Template = CTSD->getSpecializedTemplate(); |
2804 | AliasRhsTemplateArgs = CTSD->getTemplateArgs().asArray(); |
2805 | } |
2806 | } else { |
2807 | assert(false && "unhandled RHS type of the alias" ); |
2808 | } |
2809 | return {Template, AliasRhsTemplateArgs}; |
2810 | } |
2811 | |
2812 | // Build deduction guides for a type alias template. |
2813 | void DeclareImplicitDeductionGuidesForTypeAlias( |
2814 | Sema &SemaRef, TypeAliasTemplateDecl *AliasTemplate, SourceLocation Loc) { |
2815 | if (AliasTemplate->isInvalidDecl()) |
2816 | return; |
2817 | auto &Context = SemaRef.Context; |
2818 | // FIXME: if there is an explicit deduction guide after the first use of the |
2819 | // type alias usage, we will not cover this explicit deduction guide. fix this |
2820 | // case. |
2821 | if (hasDeclaredDeductionGuides( |
2822 | Context.DeclarationNames.getCXXDeductionGuideName(AliasTemplate), |
2823 | AliasTemplate->getDeclContext())) |
2824 | return; |
2825 | auto [Template, AliasRhsTemplateArgs] = |
2826 | getRHSTemplateDeclAndArgs(SemaRef, AliasTemplate); |
2827 | if (!Template) |
2828 | return; |
2829 | DeclarationNameInfo NameInfo( |
2830 | Context.DeclarationNames.getCXXDeductionGuideName(TD: Template), Loc); |
2831 | LookupResult Guides(SemaRef, NameInfo, clang::Sema::LookupOrdinaryName); |
2832 | SemaRef.LookupQualifiedName(Guides, Template->getDeclContext()); |
2833 | Guides.suppressDiagnostics(); |
2834 | |
2835 | for (auto *G : Guides) { |
2836 | FunctionTemplateDecl *F = dyn_cast<FunctionTemplateDecl>(Val: G); |
2837 | if (!F) |
2838 | continue; |
2839 | // The **aggregate** deduction guides are handled in a different code path |
2840 | // (DeclareImplicitDeductionGuideFromInitList), which involves the tricky |
2841 | // cache. |
2842 | if (cast<CXXDeductionGuideDecl>(Val: F->getTemplatedDecl()) |
2843 | ->getDeductionCandidateKind() == DeductionCandidate::Aggregate) |
2844 | continue; |
2845 | |
2846 | auto RType = F->getTemplatedDecl()->getReturnType(); |
2847 | // The (trailing) return type of the deduction guide. |
2848 | const TemplateSpecializationType *FReturnType = |
2849 | RType->getAs<TemplateSpecializationType>(); |
2850 | if (const auto *InjectedCNT = RType->getAs<InjectedClassNameType>()) |
2851 | // implicitly-generated deduction guide. |
2852 | FReturnType = InjectedCNT->getInjectedTST(); |
2853 | else if (const auto *ET = RType->getAs<ElaboratedType>()) |
2854 | // explicit deduction guide. |
2855 | FReturnType = ET->getNamedType()->getAs<TemplateSpecializationType>(); |
2856 | assert(FReturnType && "expected to see a return type" ); |
2857 | // Deduce template arguments of the deduction guide f from the RHS of |
2858 | // the alias. |
2859 | // |
2860 | // C++ [over.match.class.deduct]p3: ...For each function or function |
2861 | // template f in the guides of the template named by the |
2862 | // simple-template-id of the defining-type-id, the template arguments |
2863 | // of the return type of f are deduced from the defining-type-id of A |
2864 | // according to the process in [temp.deduct.type] with the exception |
2865 | // that deduction does not fail if not all template arguments are |
2866 | // deduced. |
2867 | // |
2868 | // |
2869 | // template<typename X, typename Y> |
2870 | // f(X, Y) -> f<Y, X>; |
2871 | // |
2872 | // template<typename U> |
2873 | // using alias = f<int, U>; |
2874 | // |
2875 | // The RHS of alias is f<int, U>, we deduced the template arguments of |
2876 | // the return type of the deduction guide from it: Y->int, X->U |
2877 | sema::TemplateDeductionInfo TDeduceInfo(Loc); |
2878 | // Must initialize n elements, this is required by DeduceTemplateArguments. |
2879 | SmallVector<DeducedTemplateArgument> DeduceResults( |
2880 | F->getTemplateParameters()->size()); |
2881 | |
2882 | // FIXME: DeduceTemplateArguments stops immediately at the first |
2883 | // non-deducible template argument. However, this doesn't seem to casue |
2884 | // issues for practice cases, we probably need to extend it to continue |
2885 | // performing deduction for rest of arguments to align with the C++ |
2886 | // standard. |
2887 | SemaRef.DeduceTemplateArguments( |
2888 | F->getTemplateParameters(), FReturnType->template_arguments(), |
2889 | AliasRhsTemplateArgs, TDeduceInfo, DeduceResults, |
2890 | /*NumberOfArgumentsMustMatch=*/false); |
2891 | |
2892 | SmallVector<TemplateArgument> DeducedArgs; |
2893 | SmallVector<unsigned> NonDeducedTemplateParamsInFIndex; |
2894 | // !!NOTE: DeduceResults respects the sequence of template parameters of |
2895 | // the deduction guide f. |
2896 | for (unsigned Index = 0; Index < DeduceResults.size(); ++Index) { |
2897 | if (const auto &D = DeduceResults[Index]; !D.isNull()) // Deduced |
2898 | DeducedArgs.push_back(Elt: D); |
2899 | else |
2900 | NonDeducedTemplateParamsInFIndex.push_back(Elt: Index); |
2901 | } |
2902 | auto DeducedAliasTemplateParams = |
2903 | TemplateParamsReferencedInTemplateArgumentList( |
2904 | AliasTemplate->getTemplateParameters()->asArray(), DeducedArgs); |
2905 | // All template arguments null by default. |
2906 | SmallVector<TemplateArgument> TemplateArgsForBuildingFPrime( |
2907 | F->getTemplateParameters()->size()); |
2908 | |
2909 | Sema::InstantiatingTemplate BuildingDeductionGuides( |
2910 | SemaRef, AliasTemplate->getLocation(), F, |
2911 | Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{}); |
2912 | if (BuildingDeductionGuides.isInvalid()) |
2913 | return; |
2914 | LocalInstantiationScope Scope(SemaRef); |
2915 | |
2916 | // Create a template parameter list for the synthesized deduction guide f'. |
2917 | // |
2918 | // C++ [over.match.class.deduct]p3.2: |
2919 | // If f is a function template, f' is a function template whose template |
2920 | // parameter list consists of all the template parameters of A |
2921 | // (including their default template arguments) that appear in the above |
2922 | // deductions or (recursively) in their default template arguments |
2923 | SmallVector<NamedDecl *> FPrimeTemplateParams; |
2924 | // Store template arguments that refer to the newly-created template |
2925 | // parameters, used for building `TemplateArgsForBuildingFPrime`. |
2926 | SmallVector<TemplateArgument, 16> TransformedDeducedAliasArgs( |
2927 | AliasTemplate->getTemplateParameters()->size()); |
2928 | |
2929 | for (unsigned AliasTemplateParamIdx : DeducedAliasTemplateParams) { |
2930 | auto *TP = AliasTemplate->getTemplateParameters()->getParam( |
2931 | AliasTemplateParamIdx); |
2932 | // Rebuild any internal references to earlier parameters and reindex as |
2933 | // we go. |
2934 | MultiLevelTemplateArgumentList Args; |
2935 | Args.setKind(TemplateSubstitutionKind::Rewrite); |
2936 | Args.addOuterTemplateArguments(TransformedDeducedAliasArgs); |
2937 | NamedDecl *NewParam = transformTemplateParameter( |
2938 | SemaRef, AliasTemplate->getDeclContext(), TP, Args, |
2939 | /*NewIndex*/ FPrimeTemplateParams.size()); |
2940 | FPrimeTemplateParams.push_back(NewParam); |
2941 | |
2942 | auto NewTemplateArgument = Context.getCanonicalTemplateArgument( |
2943 | Context.getInjectedTemplateArg(NewParam)); |
2944 | TransformedDeducedAliasArgs[AliasTemplateParamIdx] = NewTemplateArgument; |
2945 | } |
2946 | // ...followed by the template parameters of f that were not deduced |
2947 | // (including their default template arguments) |
2948 | for (unsigned FTemplateParamIdx : NonDeducedTemplateParamsInFIndex) { |
2949 | auto *TP = F->getTemplateParameters()->getParam(FTemplateParamIdx); |
2950 | MultiLevelTemplateArgumentList Args; |
2951 | Args.setKind(TemplateSubstitutionKind::Rewrite); |
2952 | // We take a shortcut here, it is ok to reuse the |
2953 | // TemplateArgsForBuildingFPrime. |
2954 | Args.addOuterTemplateArguments(Args: TemplateArgsForBuildingFPrime); |
2955 | NamedDecl *NewParam = transformTemplateParameter( |
2956 | SemaRef, F->getDeclContext(), TP, Args, FPrimeTemplateParams.size()); |
2957 | FPrimeTemplateParams.push_back(Elt: NewParam); |
2958 | |
2959 | assert(TemplateArgsForBuildingFPrime[FTemplateParamIdx].isNull() && |
2960 | "The argument must be null before setting" ); |
2961 | TemplateArgsForBuildingFPrime[FTemplateParamIdx] = |
2962 | Context.getCanonicalTemplateArgument( |
2963 | Arg: Context.getInjectedTemplateArg(ParamDecl: NewParam)); |
2964 | } |
2965 | |
2966 | // To form a deduction guide f' from f, we leverage clang's instantiation |
2967 | // mechanism, we construct a template argument list where the template |
2968 | // arguments refer to the newly-created template parameters of f', and |
2969 | // then apply instantiation on this template argument list to instantiate |
2970 | // f, this ensures all template parameter occurrences are updated |
2971 | // correctly. |
2972 | // |
2973 | // The template argument list is formed from the `DeducedArgs`, two parts: |
2974 | // 1) appeared template parameters of alias: transfrom the deduced |
2975 | // template argument; |
2976 | // 2) non-deduced template parameters of f: rebuild a |
2977 | // template argument; |
2978 | // |
2979 | // 2) has been built already (when rebuilding the new template |
2980 | // parameters), we now perform 1). |
2981 | MultiLevelTemplateArgumentList Args; |
2982 | Args.setKind(TemplateSubstitutionKind::Rewrite); |
2983 | Args.addOuterTemplateArguments(Args: TransformedDeducedAliasArgs); |
2984 | for (unsigned Index = 0; Index < DeduceResults.size(); ++Index) { |
2985 | const auto &D = DeduceResults[Index]; |
2986 | if (D.isNull()) { |
2987 | // 2): Non-deduced template parameter has been built already. |
2988 | assert(!TemplateArgsForBuildingFPrime[Index].isNull() && |
2989 | "template arguments for non-deduced template parameters should " |
2990 | "be been set!" ); |
2991 | continue; |
2992 | } |
2993 | TemplateArgumentLoc Input = SemaRef.getTrivialTemplateArgumentLoc( |
2994 | Arg: D, NTTPType: QualType(), Loc: SourceLocation{}); |
2995 | TemplateArgumentLoc Output; |
2996 | if (!SemaRef.SubstTemplateArgument(Input, TemplateArgs: Args, Output)) { |
2997 | assert(TemplateArgsForBuildingFPrime[Index].isNull() && |
2998 | "InstantiatedArgs must be null before setting" ); |
2999 | TemplateArgsForBuildingFPrime[Index] = (Output.getArgument()); |
3000 | } |
3001 | } |
3002 | |
3003 | auto *TemplateArgListForBuildingFPrime = TemplateArgumentList::CreateCopy( |
3004 | Context, Args: TemplateArgsForBuildingFPrime); |
3005 | // Form the f' by substituting the template arguments into f. |
3006 | if (auto *FPrime = SemaRef.InstantiateFunctionDeclaration( |
3007 | F, TemplateArgListForBuildingFPrime, AliasTemplate->getLocation(), |
3008 | Sema::CodeSynthesisContext::BuildingDeductionGuides)) { |
3009 | auto *GG = cast<CXXDeductionGuideDecl>(FPrime); |
3010 | // Substitute new template parameters into requires-clause if present. |
3011 | Expr *RequiresClause = |
3012 | transformRequireClause(SemaRef, FTD: F, TransformedArgs: TemplateArgsForBuildingFPrime); |
3013 | // FIXME: implement the is_deducible constraint per C++ |
3014 | // [over.match.class.deduct]p3.3: |
3015 | // ... and a constraint that is satisfied if and only if the arguments |
3016 | // of A are deducible (see below) from the return type. |
3017 | auto *FPrimeTemplateParamList = TemplateParameterList::Create( |
3018 | C: Context, TemplateLoc: AliasTemplate->getTemplateParameters()->getTemplateLoc(), |
3019 | LAngleLoc: AliasTemplate->getTemplateParameters()->getLAngleLoc(), |
3020 | Params: FPrimeTemplateParams, |
3021 | RAngleLoc: AliasTemplate->getTemplateParameters()->getRAngleLoc(), |
3022 | /*RequiresClause=*/RequiresClause); |
3023 | |
3024 | buildDeductionGuide(SemaRef, AliasTemplate, FPrimeTemplateParamList, |
3025 | GG->getCorrespondingConstructor(), |
3026 | GG->getExplicitSpecifier(), GG->getTypeSourceInfo(), |
3027 | AliasTemplate->getBeginLoc(), |
3028 | AliasTemplate->getLocation(), |
3029 | AliasTemplate->getEndLoc(), F->isImplicit()); |
3030 | } |
3031 | } |
3032 | } |
3033 | |
3034 | // Build an aggregate deduction guide for a type alias template. |
3035 | FunctionTemplateDecl *DeclareAggregateDeductionGuideForTypeAlias( |
3036 | Sema &SemaRef, TypeAliasTemplateDecl *AliasTemplate, |
3037 | MutableArrayRef<QualType> ParamTypes, SourceLocation Loc) { |
3038 | TemplateDecl *RHSTemplate = |
3039 | getRHSTemplateDeclAndArgs(SemaRef, AliasTemplate).first; |
3040 | if (!RHSTemplate) |
3041 | return nullptr; |
3042 | auto *RHSDeductionGuide = SemaRef.DeclareAggregateDeductionGuideFromInitList( |
3043 | Template: RHSTemplate, ParamTypes, Loc); |
3044 | if (!RHSDeductionGuide) |
3045 | return nullptr; |
3046 | |
3047 | LocalInstantiationScope Scope(SemaRef); |
3048 | Sema::InstantiatingTemplate BuildingDeductionGuides( |
3049 | SemaRef, AliasTemplate->getLocation(), RHSDeductionGuide, |
3050 | Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{}); |
3051 | if (BuildingDeductionGuides.isInvalid()) |
3052 | return nullptr; |
3053 | |
3054 | // Build a new template parameter list for the synthesized aggregate deduction |
3055 | // guide by transforming the one from RHSDeductionGuide. |
3056 | SmallVector<NamedDecl *> TransformedTemplateParams; |
3057 | // Template args that refer to the rebuilt template parameters. |
3058 | // All template arguments must be initialized in advance. |
3059 | SmallVector<TemplateArgument> TransformedTemplateArgs( |
3060 | RHSDeductionGuide->getTemplateParameters()->size()); |
3061 | for (auto *TP : *RHSDeductionGuide->getTemplateParameters()) { |
3062 | // Rebuild any internal references to earlier parameters and reindex as |
3063 | // we go. |
3064 | MultiLevelTemplateArgumentList Args; |
3065 | Args.setKind(TemplateSubstitutionKind::Rewrite); |
3066 | Args.addOuterTemplateArguments(TransformedTemplateArgs); |
3067 | NamedDecl *NewParam = transformTemplateParameter( |
3068 | SemaRef, AliasTemplate->getDeclContext(), TP, Args, |
3069 | /*NewIndex=*/TransformedTemplateParams.size()); |
3070 | |
3071 | TransformedTemplateArgs[TransformedTemplateParams.size()] = |
3072 | SemaRef.Context.getCanonicalTemplateArgument( |
3073 | SemaRef.Context.getInjectedTemplateArg(NewParam)); |
3074 | TransformedTemplateParams.push_back(NewParam); |
3075 | } |
3076 | // FIXME: implement the is_deducible constraint per C++ |
3077 | // [over.match.class.deduct]p3.3. |
3078 | Expr *TransformedRequiresClause = transformRequireClause( |
3079 | SemaRef, FTD: RHSDeductionGuide, TransformedArgs: TransformedTemplateArgs); |
3080 | auto *TransformedTemplateParameterList = TemplateParameterList::Create( |
3081 | C: SemaRef.Context, TemplateLoc: AliasTemplate->getTemplateParameters()->getTemplateLoc(), |
3082 | LAngleLoc: AliasTemplate->getTemplateParameters()->getLAngleLoc(), |
3083 | Params: TransformedTemplateParams, |
3084 | RAngleLoc: AliasTemplate->getTemplateParameters()->getRAngleLoc(), |
3085 | RequiresClause: TransformedRequiresClause); |
3086 | auto *TransformedTemplateArgList = TemplateArgumentList::CreateCopy( |
3087 | Context&: SemaRef.Context, Args: TransformedTemplateArgs); |
3088 | |
3089 | if (auto *TransformedDeductionGuide = SemaRef.InstantiateFunctionDeclaration( |
3090 | RHSDeductionGuide, TransformedTemplateArgList, |
3091 | AliasTemplate->getLocation(), |
3092 | Sema::CodeSynthesisContext::BuildingDeductionGuides)) { |
3093 | auto *GD = |
3094 | llvm::dyn_cast<clang::CXXDeductionGuideDecl>(TransformedDeductionGuide); |
3095 | FunctionTemplateDecl *Result = buildDeductionGuide( |
3096 | SemaRef, AliasTemplate, TransformedTemplateParameterList, |
3097 | GD->getCorrespondingConstructor(), GD->getExplicitSpecifier(), |
3098 | GD->getTypeSourceInfo(), AliasTemplate->getBeginLoc(), |
3099 | AliasTemplate->getLocation(), AliasTemplate->getEndLoc(), |
3100 | GD->isImplicit()); |
3101 | cast<CXXDeductionGuideDecl>(Val: Result->getTemplatedDecl()) |
3102 | ->setDeductionCandidateKind(DeductionCandidate::Aggregate); |
3103 | return Result; |
3104 | } |
3105 | return nullptr; |
3106 | } |
3107 | |
3108 | } // namespace |
3109 | |
3110 | FunctionTemplateDecl *Sema::DeclareAggregateDeductionGuideFromInitList( |
3111 | TemplateDecl *Template, MutableArrayRef<QualType> ParamTypes, |
3112 | SourceLocation Loc) { |
3113 | llvm::FoldingSetNodeID ID; |
3114 | ID.AddPointer(Ptr: Template); |
3115 | for (auto &T : ParamTypes) |
3116 | T.getCanonicalType().Profile(ID); |
3117 | unsigned Hash = ID.ComputeHash(); |
3118 | |
3119 | auto Found = AggregateDeductionCandidates.find(Val: Hash); |
3120 | if (Found != AggregateDeductionCandidates.end()) { |
3121 | CXXDeductionGuideDecl *GD = Found->getSecond(); |
3122 | return GD->getDescribedFunctionTemplate(); |
3123 | } |
3124 | |
3125 | if (auto *AliasTemplate = llvm::dyn_cast<TypeAliasTemplateDecl>(Val: Template)) { |
3126 | if (auto *FTD = DeclareAggregateDeductionGuideForTypeAlias( |
3127 | SemaRef&: *this, AliasTemplate, ParamTypes, Loc)) { |
3128 | auto *GD = cast<CXXDeductionGuideDecl>(Val: FTD->getTemplatedDecl()); |
3129 | GD->setDeductionCandidateKind(DeductionCandidate::Aggregate); |
3130 | AggregateDeductionCandidates[Hash] = GD; |
3131 | return FTD; |
3132 | } |
3133 | } |
3134 | |
3135 | if (CXXRecordDecl *DefRecord = |
3136 | cast<CXXRecordDecl>(Val: Template->getTemplatedDecl())->getDefinition()) { |
3137 | if (TemplateDecl *DescribedTemplate = |
3138 | DefRecord->getDescribedClassTemplate()) |
3139 | Template = DescribedTemplate; |
3140 | } |
3141 | |
3142 | DeclContext *DC = Template->getDeclContext(); |
3143 | if (DC->isDependentContext()) |
3144 | return nullptr; |
3145 | |
3146 | ConvertConstructorToDeductionGuideTransform Transform( |
3147 | *this, cast<ClassTemplateDecl>(Val: Template)); |
3148 | if (!isCompleteType(Loc, T: Transform.DeducedType)) |
3149 | return nullptr; |
3150 | |
3151 | // In case we were expanding a pack when we attempted to declare deduction |
3152 | // guides, turn off pack expansion for everything we're about to do. |
3153 | ArgumentPackSubstitutionIndexRAII SubstIndex(*this, |
3154 | /*NewSubstitutionIndex=*/-1); |
3155 | // Create a template instantiation record to track the "instantiation" of |
3156 | // constructors into deduction guides. |
3157 | InstantiatingTemplate BuildingDeductionGuides( |
3158 | *this, Loc, Template, |
3159 | Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{}); |
3160 | if (BuildingDeductionGuides.isInvalid()) |
3161 | return nullptr; |
3162 | |
3163 | ClassTemplateDecl *Pattern = |
3164 | Transform.NestedPattern ? Transform.NestedPattern : Transform.Template; |
3165 | ContextRAII SavedContext(*this, Pattern->getTemplatedDecl()); |
3166 | |
3167 | auto *FTD = cast<FunctionTemplateDecl>( |
3168 | Val: Transform.buildSimpleDeductionGuide(ParamTypes)); |
3169 | SavedContext.pop(); |
3170 | auto *GD = cast<CXXDeductionGuideDecl>(Val: FTD->getTemplatedDecl()); |
3171 | GD->setDeductionCandidateKind(DeductionCandidate::Aggregate); |
3172 | AggregateDeductionCandidates[Hash] = GD; |
3173 | return FTD; |
3174 | } |
3175 | |
3176 | void Sema::DeclareImplicitDeductionGuides(TemplateDecl *Template, |
3177 | SourceLocation Loc) { |
3178 | if (auto *AliasTemplate = llvm::dyn_cast<TypeAliasTemplateDecl>(Val: Template)) { |
3179 | DeclareImplicitDeductionGuidesForTypeAlias(SemaRef&: *this, AliasTemplate, Loc); |
3180 | return; |
3181 | } |
3182 | if (CXXRecordDecl *DefRecord = |
3183 | cast<CXXRecordDecl>(Val: Template->getTemplatedDecl())->getDefinition()) { |
3184 | if (TemplateDecl *DescribedTemplate = DefRecord->getDescribedClassTemplate()) |
3185 | Template = DescribedTemplate; |
3186 | } |
3187 | |
3188 | DeclContext *DC = Template->getDeclContext(); |
3189 | if (DC->isDependentContext()) |
3190 | return; |
3191 | |
3192 | ConvertConstructorToDeductionGuideTransform Transform( |
3193 | *this, cast<ClassTemplateDecl>(Val: Template)); |
3194 | if (!isCompleteType(Loc, T: Transform.DeducedType)) |
3195 | return; |
3196 | |
3197 | if (hasDeclaredDeductionGuides(Name: Transform.DeductionGuideName, DC)) |
3198 | return; |
3199 | |
3200 | // In case we were expanding a pack when we attempted to declare deduction |
3201 | // guides, turn off pack expansion for everything we're about to do. |
3202 | ArgumentPackSubstitutionIndexRAII SubstIndex(*this, -1); |
3203 | // Create a template instantiation record to track the "instantiation" of |
3204 | // constructors into deduction guides. |
3205 | InstantiatingTemplate BuildingDeductionGuides( |
3206 | *this, Loc, Template, |
3207 | Sema::InstantiatingTemplate::BuildingDeductionGuidesTag{}); |
3208 | if (BuildingDeductionGuides.isInvalid()) |
3209 | return; |
3210 | |
3211 | // Convert declared constructors into deduction guide templates. |
3212 | // FIXME: Skip constructors for which deduction must necessarily fail (those |
3213 | // for which some class template parameter without a default argument never |
3214 | // appears in a deduced context). |
3215 | ClassTemplateDecl *Pattern = |
3216 | Transform.NestedPattern ? Transform.NestedPattern : Transform.Template; |
3217 | ContextRAII SavedContext(*this, Pattern->getTemplatedDecl()); |
3218 | llvm::SmallPtrSet<NamedDecl *, 8> ProcessedCtors; |
3219 | bool AddedAny = false; |
3220 | for (NamedDecl *D : LookupConstructors(Class: Pattern->getTemplatedDecl())) { |
3221 | D = D->getUnderlyingDecl(); |
3222 | if (D->isInvalidDecl() || D->isImplicit()) |
3223 | continue; |
3224 | |
3225 | D = cast<NamedDecl>(D->getCanonicalDecl()); |
3226 | |
3227 | // Within C++20 modules, we may have multiple same constructors in |
3228 | // multiple same RecordDecls. And it doesn't make sense to create |
3229 | // duplicated deduction guides for the duplicated constructors. |
3230 | if (ProcessedCtors.count(Ptr: D)) |
3231 | continue; |
3232 | |
3233 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: D); |
3234 | auto *CD = |
3235 | dyn_cast_or_null<CXXConstructorDecl>(FTD ? FTD->getTemplatedDecl() : D); |
3236 | // Class-scope explicit specializations (MS extension) do not result in |
3237 | // deduction guides. |
3238 | if (!CD || (!FTD && CD->isFunctionTemplateSpecialization())) |
3239 | continue; |
3240 | |
3241 | // Cannot make a deduction guide when unparsed arguments are present. |
3242 | if (llvm::any_of(CD->parameters(), [](ParmVarDecl *P) { |
3243 | return !P || P->hasUnparsedDefaultArg(); |
3244 | })) |
3245 | continue; |
3246 | |
3247 | ProcessedCtors.insert(Ptr: D); |
3248 | Transform.transformConstructor(FTD, CD: CD); |
3249 | AddedAny = true; |
3250 | } |
3251 | |
3252 | // C++17 [over.match.class.deduct] |
3253 | // -- If C is not defined or does not declare any constructors, an |
3254 | // additional function template derived as above from a hypothetical |
3255 | // constructor C(). |
3256 | if (!AddedAny) |
3257 | Transform.buildSimpleDeductionGuide(ParamTypes: std::nullopt); |
3258 | |
3259 | // -- An additional function template derived as above from a hypothetical |
3260 | // constructor C(C), called the copy deduction candidate. |
3261 | cast<CXXDeductionGuideDecl>( |
3262 | cast<FunctionTemplateDecl>( |
3263 | Transform.buildSimpleDeductionGuide(ParamTypes: Transform.DeducedType)) |
3264 | ->getTemplatedDecl()) |
3265 | ->setDeductionCandidateKind(DeductionCandidate::Copy); |
3266 | |
3267 | SavedContext.pop(); |
3268 | } |
3269 | |
3270 | /// Diagnose the presence of a default template argument on a |
3271 | /// template parameter, which is ill-formed in certain contexts. |
3272 | /// |
3273 | /// \returns true if the default template argument should be dropped. |
3274 | static bool DiagnoseDefaultTemplateArgument(Sema &S, |
3275 | Sema::TemplateParamListContext TPC, |
3276 | SourceLocation ParamLoc, |
3277 | SourceRange DefArgRange) { |
3278 | switch (TPC) { |
3279 | case Sema::TPC_ClassTemplate: |
3280 | case Sema::TPC_VarTemplate: |
3281 | case Sema::TPC_TypeAliasTemplate: |
3282 | return false; |
3283 | |
3284 | case Sema::TPC_FunctionTemplate: |
3285 | case Sema::TPC_FriendFunctionTemplateDefinition: |
3286 | // C++ [temp.param]p9: |
3287 | // A default template-argument shall not be specified in a |
3288 | // function template declaration or a function template |
3289 | // definition [...] |
3290 | // If a friend function template declaration specifies a default |
3291 | // template-argument, that declaration shall be a definition and shall be |
3292 | // the only declaration of the function template in the translation unit. |
3293 | // (C++98/03 doesn't have this wording; see DR226). |
3294 | S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ? |
3295 | diag::warn_cxx98_compat_template_parameter_default_in_function_template |
3296 | : diag::ext_template_parameter_default_in_function_template) |
3297 | << DefArgRange; |
3298 | return false; |
3299 | |
3300 | case Sema::TPC_ClassTemplateMember: |
3301 | // C++0x [temp.param]p9: |
3302 | // A default template-argument shall not be specified in the |
3303 | // template-parameter-lists of the definition of a member of a |
3304 | // class template that appears outside of the member's class. |
3305 | S.Diag(ParamLoc, diag::err_template_parameter_default_template_member) |
3306 | << DefArgRange; |
3307 | return true; |
3308 | |
3309 | case Sema::TPC_FriendClassTemplate: |
3310 | case Sema::TPC_FriendFunctionTemplate: |
3311 | // C++ [temp.param]p9: |
3312 | // A default template-argument shall not be specified in a |
3313 | // friend template declaration. |
3314 | S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template) |
3315 | << DefArgRange; |
3316 | return true; |
3317 | |
3318 | // FIXME: C++0x [temp.param]p9 allows default template-arguments |
3319 | // for friend function templates if there is only a single |
3320 | // declaration (and it is a definition). Strange! |
3321 | } |
3322 | |
3323 | llvm_unreachable("Invalid TemplateParamListContext!" ); |
3324 | } |
3325 | |
3326 | /// Check for unexpanded parameter packs within the template parameters |
3327 | /// of a template template parameter, recursively. |
3328 | static bool DiagnoseUnexpandedParameterPacks(Sema &S, |
3329 | TemplateTemplateParmDecl *TTP) { |
3330 | // A template template parameter which is a parameter pack is also a pack |
3331 | // expansion. |
3332 | if (TTP->isParameterPack()) |
3333 | return false; |
3334 | |
3335 | TemplateParameterList *Params = TTP->getTemplateParameters(); |
3336 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
3337 | NamedDecl *P = Params->getParam(Idx: I); |
3338 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: P)) { |
3339 | if (!TTP->isParameterPack()) |
3340 | if (const TypeConstraint *TC = TTP->getTypeConstraint()) |
3341 | if (TC->hasExplicitTemplateArgs()) |
3342 | for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments()) |
3343 | if (S.DiagnoseUnexpandedParameterPack(ArgLoc, |
3344 | Sema::UPPC_TypeConstraint)) |
3345 | return true; |
3346 | continue; |
3347 | } |
3348 | |
3349 | if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: P)) { |
3350 | if (!NTTP->isParameterPack() && |
3351 | S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(), |
3352 | NTTP->getTypeSourceInfo(), |
3353 | Sema::UPPC_NonTypeTemplateParameterType)) |
3354 | return true; |
3355 | |
3356 | continue; |
3357 | } |
3358 | |
3359 | if (TemplateTemplateParmDecl *InnerTTP |
3360 | = dyn_cast<TemplateTemplateParmDecl>(Val: P)) |
3361 | if (DiagnoseUnexpandedParameterPacks(S, TTP: InnerTTP)) |
3362 | return true; |
3363 | } |
3364 | |
3365 | return false; |
3366 | } |
3367 | |
3368 | /// Checks the validity of a template parameter list, possibly |
3369 | /// considering the template parameter list from a previous |
3370 | /// declaration. |
3371 | /// |
3372 | /// If an "old" template parameter list is provided, it must be |
3373 | /// equivalent (per TemplateParameterListsAreEqual) to the "new" |
3374 | /// template parameter list. |
3375 | /// |
3376 | /// \param NewParams Template parameter list for a new template |
3377 | /// declaration. This template parameter list will be updated with any |
3378 | /// default arguments that are carried through from the previous |
3379 | /// template parameter list. |
3380 | /// |
3381 | /// \param OldParams If provided, template parameter list from a |
3382 | /// previous declaration of the same template. Default template |
3383 | /// arguments will be merged from the old template parameter list to |
3384 | /// the new template parameter list. |
3385 | /// |
3386 | /// \param TPC Describes the context in which we are checking the given |
3387 | /// template parameter list. |
3388 | /// |
3389 | /// \param SkipBody If we might have already made a prior merged definition |
3390 | /// of this template visible, the corresponding body-skipping information. |
3391 | /// Default argument redefinition is not an error when skipping such a body, |
3392 | /// because (under the ODR) we can assume the default arguments are the same |
3393 | /// as the prior merged definition. |
3394 | /// |
3395 | /// \returns true if an error occurred, false otherwise. |
3396 | bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams, |
3397 | TemplateParameterList *OldParams, |
3398 | TemplateParamListContext TPC, |
3399 | SkipBodyInfo *SkipBody) { |
3400 | bool Invalid = false; |
3401 | |
3402 | // C++ [temp.param]p10: |
3403 | // The set of default template-arguments available for use with a |
3404 | // template declaration or definition is obtained by merging the |
3405 | // default arguments from the definition (if in scope) and all |
3406 | // declarations in scope in the same way default function |
3407 | // arguments are (8.3.6). |
3408 | bool SawDefaultArgument = false; |
3409 | SourceLocation PreviousDefaultArgLoc; |
3410 | |
3411 | // Dummy initialization to avoid warnings. |
3412 | TemplateParameterList::iterator OldParam = NewParams->end(); |
3413 | if (OldParams) |
3414 | OldParam = OldParams->begin(); |
3415 | |
3416 | bool RemoveDefaultArguments = false; |
3417 | for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
3418 | NewParamEnd = NewParams->end(); |
3419 | NewParam != NewParamEnd; ++NewParam) { |
3420 | // Whether we've seen a duplicate default argument in the same translation |
3421 | // unit. |
3422 | bool RedundantDefaultArg = false; |
3423 | // Whether we've found inconsis inconsitent default arguments in different |
3424 | // translation unit. |
3425 | bool InconsistentDefaultArg = false; |
3426 | // The name of the module which contains the inconsistent default argument. |
3427 | std::string PrevModuleName; |
3428 | |
3429 | SourceLocation OldDefaultLoc; |
3430 | SourceLocation NewDefaultLoc; |
3431 | |
3432 | // Variable used to diagnose missing default arguments |
3433 | bool MissingDefaultArg = false; |
3434 | |
3435 | // Variable used to diagnose non-final parameter packs |
3436 | bool SawParameterPack = false; |
3437 | |
3438 | if (TemplateTypeParmDecl *NewTypeParm |
3439 | = dyn_cast<TemplateTypeParmDecl>(Val: *NewParam)) { |
3440 | // Check the presence of a default argument here. |
3441 | if (NewTypeParm->hasDefaultArgument() && |
3442 | DiagnoseDefaultTemplateArgument(*this, TPC, |
3443 | NewTypeParm->getLocation(), |
3444 | NewTypeParm->getDefaultArgumentInfo()->getTypeLoc() |
3445 | .getSourceRange())) |
3446 | NewTypeParm->removeDefaultArgument(); |
3447 | |
3448 | // Merge default arguments for template type parameters. |
3449 | TemplateTypeParmDecl *OldTypeParm |
3450 | = OldParams? cast<TemplateTypeParmDecl>(Val: *OldParam) : nullptr; |
3451 | if (NewTypeParm->isParameterPack()) { |
3452 | assert(!NewTypeParm->hasDefaultArgument() && |
3453 | "Parameter packs can't have a default argument!" ); |
3454 | SawParameterPack = true; |
3455 | } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) && |
3456 | NewTypeParm->hasDefaultArgument() && |
3457 | (!SkipBody || !SkipBody->ShouldSkip)) { |
3458 | OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc(); |
3459 | NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc(); |
3460 | SawDefaultArgument = true; |
3461 | |
3462 | if (!OldTypeParm->getOwningModule()) |
3463 | RedundantDefaultArg = true; |
3464 | else if (!getASTContext().isSameDefaultTemplateArgument(OldTypeParm, |
3465 | NewTypeParm)) { |
3466 | InconsistentDefaultArg = true; |
3467 | PrevModuleName = |
3468 | OldTypeParm->getImportedOwningModule()->getFullModuleName(); |
3469 | } |
3470 | PreviousDefaultArgLoc = NewDefaultLoc; |
3471 | } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) { |
3472 | // Merge the default argument from the old declaration to the |
3473 | // new declaration. |
3474 | NewTypeParm->setInheritedDefaultArgument(C: Context, Prev: OldTypeParm); |
3475 | PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc(); |
3476 | } else if (NewTypeParm->hasDefaultArgument()) { |
3477 | SawDefaultArgument = true; |
3478 | PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc(); |
3479 | } else if (SawDefaultArgument) |
3480 | MissingDefaultArg = true; |
3481 | } else if (NonTypeTemplateParmDecl *NewNonTypeParm |
3482 | = dyn_cast<NonTypeTemplateParmDecl>(Val: *NewParam)) { |
3483 | // Check for unexpanded parameter packs. |
3484 | if (!NewNonTypeParm->isParameterPack() && |
3485 | DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(), |
3486 | NewNonTypeParm->getTypeSourceInfo(), |
3487 | UPPC_NonTypeTemplateParameterType)) { |
3488 | Invalid = true; |
3489 | continue; |
3490 | } |
3491 | |
3492 | // Check the presence of a default argument here. |
3493 | if (NewNonTypeParm->hasDefaultArgument() && |
3494 | DiagnoseDefaultTemplateArgument(*this, TPC, |
3495 | NewNonTypeParm->getLocation(), |
3496 | NewNonTypeParm->getDefaultArgument()->getSourceRange())) { |
3497 | NewNonTypeParm->removeDefaultArgument(); |
3498 | } |
3499 | |
3500 | // Merge default arguments for non-type template parameters |
3501 | NonTypeTemplateParmDecl *OldNonTypeParm |
3502 | = OldParams? cast<NonTypeTemplateParmDecl>(Val: *OldParam) : nullptr; |
3503 | if (NewNonTypeParm->isParameterPack()) { |
3504 | assert(!NewNonTypeParm->hasDefaultArgument() && |
3505 | "Parameter packs can't have a default argument!" ); |
3506 | if (!NewNonTypeParm->isPackExpansion()) |
3507 | SawParameterPack = true; |
3508 | } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) && |
3509 | NewNonTypeParm->hasDefaultArgument() && |
3510 | (!SkipBody || !SkipBody->ShouldSkip)) { |
3511 | OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
3512 | NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
3513 | SawDefaultArgument = true; |
3514 | if (!OldNonTypeParm->getOwningModule()) |
3515 | RedundantDefaultArg = true; |
3516 | else if (!getASTContext().isSameDefaultTemplateArgument( |
3517 | OldNonTypeParm, NewNonTypeParm)) { |
3518 | InconsistentDefaultArg = true; |
3519 | PrevModuleName = |
3520 | OldNonTypeParm->getImportedOwningModule()->getFullModuleName(); |
3521 | } |
3522 | PreviousDefaultArgLoc = NewDefaultLoc; |
3523 | } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) { |
3524 | // Merge the default argument from the old declaration to the |
3525 | // new declaration. |
3526 | NewNonTypeParm->setInheritedDefaultArgument(C: Context, Parm: OldNonTypeParm); |
3527 | PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc(); |
3528 | } else if (NewNonTypeParm->hasDefaultArgument()) { |
3529 | SawDefaultArgument = true; |
3530 | PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc(); |
3531 | } else if (SawDefaultArgument) |
3532 | MissingDefaultArg = true; |
3533 | } else { |
3534 | TemplateTemplateParmDecl *NewTemplateParm |
3535 | = cast<TemplateTemplateParmDecl>(Val: *NewParam); |
3536 | |
3537 | // Check for unexpanded parameter packs, recursively. |
3538 | if (::DiagnoseUnexpandedParameterPacks(S&: *this, TTP: NewTemplateParm)) { |
3539 | Invalid = true; |
3540 | continue; |
3541 | } |
3542 | |
3543 | // Check the presence of a default argument here. |
3544 | if (NewTemplateParm->hasDefaultArgument() && |
3545 | DiagnoseDefaultTemplateArgument(*this, TPC, |
3546 | NewTemplateParm->getLocation(), |
3547 | NewTemplateParm->getDefaultArgument().getSourceRange())) |
3548 | NewTemplateParm->removeDefaultArgument(); |
3549 | |
3550 | // Merge default arguments for template template parameters |
3551 | TemplateTemplateParmDecl *OldTemplateParm |
3552 | = OldParams? cast<TemplateTemplateParmDecl>(Val: *OldParam) : nullptr; |
3553 | if (NewTemplateParm->isParameterPack()) { |
3554 | assert(!NewTemplateParm->hasDefaultArgument() && |
3555 | "Parameter packs can't have a default argument!" ); |
3556 | if (!NewTemplateParm->isPackExpansion()) |
3557 | SawParameterPack = true; |
3558 | } else if (OldTemplateParm && |
3559 | hasVisibleDefaultArgument(OldTemplateParm) && |
3560 | NewTemplateParm->hasDefaultArgument() && |
3561 | (!SkipBody || !SkipBody->ShouldSkip)) { |
3562 | OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation(); |
3563 | NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation(); |
3564 | SawDefaultArgument = true; |
3565 | if (!OldTemplateParm->getOwningModule()) |
3566 | RedundantDefaultArg = true; |
3567 | else if (!getASTContext().isSameDefaultTemplateArgument( |
3568 | OldTemplateParm, NewTemplateParm)) { |
3569 | InconsistentDefaultArg = true; |
3570 | PrevModuleName = |
3571 | OldTemplateParm->getImportedOwningModule()->getFullModuleName(); |
3572 | } |
3573 | PreviousDefaultArgLoc = NewDefaultLoc; |
3574 | } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) { |
3575 | // Merge the default argument from the old declaration to the |
3576 | // new declaration. |
3577 | NewTemplateParm->setInheritedDefaultArgument(C: Context, Prev: OldTemplateParm); |
3578 | PreviousDefaultArgLoc |
3579 | = OldTemplateParm->getDefaultArgument().getLocation(); |
3580 | } else if (NewTemplateParm->hasDefaultArgument()) { |
3581 | SawDefaultArgument = true; |
3582 | PreviousDefaultArgLoc |
3583 | = NewTemplateParm->getDefaultArgument().getLocation(); |
3584 | } else if (SawDefaultArgument) |
3585 | MissingDefaultArg = true; |
3586 | } |
3587 | |
3588 | // C++11 [temp.param]p11: |
3589 | // If a template parameter of a primary class template or alias template |
3590 | // is a template parameter pack, it shall be the last template parameter. |
3591 | if (SawParameterPack && (NewParam + 1) != NewParamEnd && |
3592 | (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate || |
3593 | TPC == TPC_TypeAliasTemplate)) { |
3594 | Diag((*NewParam)->getLocation(), |
3595 | diag::err_template_param_pack_must_be_last_template_parameter); |
3596 | Invalid = true; |
3597 | } |
3598 | |
3599 | // [basic.def.odr]/13: |
3600 | // There can be more than one definition of a |
3601 | // ... |
3602 | // default template argument |
3603 | // ... |
3604 | // in a program provided that each definition appears in a different |
3605 | // translation unit and the definitions satisfy the [same-meaning |
3606 | // criteria of the ODR]. |
3607 | // |
3608 | // Simply, the design of modules allows the definition of template default |
3609 | // argument to be repeated across translation unit. Note that the ODR is |
3610 | // checked elsewhere. But it is still not allowed to repeat template default |
3611 | // argument in the same translation unit. |
3612 | if (RedundantDefaultArg) { |
3613 | Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition); |
3614 | Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg); |
3615 | Invalid = true; |
3616 | } else if (InconsistentDefaultArg) { |
3617 | // We could only diagnose about the case that the OldParam is imported. |
3618 | // The case NewParam is imported should be handled in ASTReader. |
3619 | Diag(NewDefaultLoc, |
3620 | diag::err_template_param_default_arg_inconsistent_redefinition); |
3621 | Diag(OldDefaultLoc, |
3622 | diag::note_template_param_prev_default_arg_in_other_module) |
3623 | << PrevModuleName; |
3624 | Invalid = true; |
3625 | } else if (MissingDefaultArg && |
3626 | (TPC == TPC_ClassTemplate || TPC == TPC_FriendClassTemplate || |
3627 | TPC == TPC_VarTemplate || TPC == TPC_TypeAliasTemplate)) { |
3628 | // C++ 23[temp.param]p14: |
3629 | // If a template-parameter of a class template, variable template, or |
3630 | // alias template has a default template argument, each subsequent |
3631 | // template-parameter shall either have a default template argument |
3632 | // supplied or be a template parameter pack. |
3633 | Diag((*NewParam)->getLocation(), |
3634 | diag::err_template_param_default_arg_missing); |
3635 | Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg); |
3636 | Invalid = true; |
3637 | RemoveDefaultArguments = true; |
3638 | } |
3639 | |
3640 | // If we have an old template parameter list that we're merging |
3641 | // in, move on to the next parameter. |
3642 | if (OldParams) |
3643 | ++OldParam; |
3644 | } |
3645 | |
3646 | // We were missing some default arguments at the end of the list, so remove |
3647 | // all of the default arguments. |
3648 | if (RemoveDefaultArguments) { |
3649 | for (TemplateParameterList::iterator NewParam = NewParams->begin(), |
3650 | NewParamEnd = NewParams->end(); |
3651 | NewParam != NewParamEnd; ++NewParam) { |
3652 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *NewParam)) |
3653 | TTP->removeDefaultArgument(); |
3654 | else if (NonTypeTemplateParmDecl *NTTP |
3655 | = dyn_cast<NonTypeTemplateParmDecl>(Val: *NewParam)) |
3656 | NTTP->removeDefaultArgument(); |
3657 | else |
3658 | cast<TemplateTemplateParmDecl>(Val: *NewParam)->removeDefaultArgument(); |
3659 | } |
3660 | } |
3661 | |
3662 | return Invalid; |
3663 | } |
3664 | |
3665 | namespace { |
3666 | |
3667 | /// A class which looks for a use of a certain level of template |
3668 | /// parameter. |
3669 | struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> { |
3670 | typedef RecursiveASTVisitor<DependencyChecker> super; |
3671 | |
3672 | unsigned Depth; |
3673 | |
3674 | // Whether we're looking for a use of a template parameter that makes the |
3675 | // overall construct type-dependent / a dependent type. This is strictly |
3676 | // best-effort for now; we may fail to match at all for a dependent type |
3677 | // in some cases if this is set. |
3678 | bool IgnoreNonTypeDependent; |
3679 | |
3680 | bool Match; |
3681 | SourceLocation MatchLoc; |
3682 | |
3683 | DependencyChecker(unsigned Depth, bool IgnoreNonTypeDependent) |
3684 | : Depth(Depth), IgnoreNonTypeDependent(IgnoreNonTypeDependent), |
3685 | Match(false) {} |
3686 | |
3687 | DependencyChecker(TemplateParameterList *Params, bool IgnoreNonTypeDependent) |
3688 | : IgnoreNonTypeDependent(IgnoreNonTypeDependent), Match(false) { |
3689 | NamedDecl *ND = Params->getParam(Idx: 0); |
3690 | if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(Val: ND)) { |
3691 | Depth = PD->getDepth(); |
3692 | } else if (NonTypeTemplateParmDecl *PD = |
3693 | dyn_cast<NonTypeTemplateParmDecl>(Val: ND)) { |
3694 | Depth = PD->getDepth(); |
3695 | } else { |
3696 | Depth = cast<TemplateTemplateParmDecl>(Val: ND)->getDepth(); |
3697 | } |
3698 | } |
3699 | |
3700 | bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) { |
3701 | if (ParmDepth >= Depth) { |
3702 | Match = true; |
3703 | MatchLoc = Loc; |
3704 | return true; |
3705 | } |
3706 | return false; |
3707 | } |
3708 | |
3709 | bool TraverseStmt(Stmt *S, DataRecursionQueue *Q = nullptr) { |
3710 | // Prune out non-type-dependent expressions if requested. This can |
3711 | // sometimes result in us failing to find a template parameter reference |
3712 | // (if a value-dependent expression creates a dependent type), but this |
3713 | // mode is best-effort only. |
3714 | if (auto *E = dyn_cast_or_null<Expr>(Val: S)) |
3715 | if (IgnoreNonTypeDependent && !E->isTypeDependent()) |
3716 | return true; |
3717 | return super::TraverseStmt(S, Queue: Q); |
3718 | } |
3719 | |
3720 | bool TraverseTypeLoc(TypeLoc TL) { |
3721 | if (IgnoreNonTypeDependent && !TL.isNull() && |
3722 | !TL.getType()->isDependentType()) |
3723 | return true; |
3724 | return super::TraverseTypeLoc(TL); |
3725 | } |
3726 | |
3727 | bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) { |
3728 | return !Matches(ParmDepth: TL.getTypePtr()->getDepth(), Loc: TL.getNameLoc()); |
3729 | } |
3730 | |
3731 | bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) { |
3732 | // For a best-effort search, keep looking until we find a location. |
3733 | return IgnoreNonTypeDependent || !Matches(ParmDepth: T->getDepth()); |
3734 | } |
3735 | |
3736 | bool TraverseTemplateName(TemplateName N) { |
3737 | if (TemplateTemplateParmDecl *PD = |
3738 | dyn_cast_or_null<TemplateTemplateParmDecl>(Val: N.getAsTemplateDecl())) |
3739 | if (Matches(ParmDepth: PD->getDepth())) |
3740 | return false; |
3741 | return super::TraverseTemplateName(Template: N); |
3742 | } |
3743 | |
3744 | bool VisitDeclRefExpr(DeclRefExpr *E) { |
3745 | if (NonTypeTemplateParmDecl *PD = |
3746 | dyn_cast<NonTypeTemplateParmDecl>(Val: E->getDecl())) |
3747 | if (Matches(ParmDepth: PD->getDepth(), Loc: E->getExprLoc())) |
3748 | return false; |
3749 | return super::VisitDeclRefExpr(E); |
3750 | } |
3751 | |
3752 | bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) { |
3753 | return TraverseType(T: T->getReplacementType()); |
3754 | } |
3755 | |
3756 | bool |
3757 | VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) { |
3758 | return TraverseTemplateArgument(Arg: T->getArgumentPack()); |
3759 | } |
3760 | |
3761 | bool TraverseInjectedClassNameType(const InjectedClassNameType *T) { |
3762 | return TraverseType(T: T->getInjectedSpecializationType()); |
3763 | } |
3764 | }; |
3765 | } // end anonymous namespace |
3766 | |
3767 | /// Determines whether a given type depends on the given parameter |
3768 | /// list. |
3769 | static bool |
3770 | DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) { |
3771 | if (!Params->size()) |
3772 | return false; |
3773 | |
3774 | DependencyChecker Checker(Params, /*IgnoreNonTypeDependent*/false); |
3775 | Checker.TraverseType(T); |
3776 | return Checker.Match; |
3777 | } |
3778 | |
3779 | // Find the source range corresponding to the named type in the given |
3780 | // nested-name-specifier, if any. |
3781 | static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context, |
3782 | QualType T, |
3783 | const CXXScopeSpec &SS) { |
3784 | NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data()); |
3785 | while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) { |
3786 | if (const Type *CurType = NNS->getAsType()) { |
3787 | if (Context.hasSameUnqualifiedType(T1: T, T2: QualType(CurType, 0))) |
3788 | return NNSLoc.getTypeLoc().getSourceRange(); |
3789 | } else |
3790 | break; |
3791 | |
3792 | NNSLoc = NNSLoc.getPrefix(); |
3793 | } |
3794 | |
3795 | return SourceRange(); |
3796 | } |
3797 | |
3798 | /// Match the given template parameter lists to the given scope |
3799 | /// specifier, returning the template parameter list that applies to the |
3800 | /// name. |
3801 | /// |
3802 | /// \param DeclStartLoc the start of the declaration that has a scope |
3803 | /// specifier or a template parameter list. |
3804 | /// |
3805 | /// \param DeclLoc The location of the declaration itself. |
3806 | /// |
3807 | /// \param SS the scope specifier that will be matched to the given template |
3808 | /// parameter lists. This scope specifier precedes a qualified name that is |
3809 | /// being declared. |
3810 | /// |
3811 | /// \param TemplateId The template-id following the scope specifier, if there |
3812 | /// is one. Used to check for a missing 'template<>'. |
3813 | /// |
3814 | /// \param ParamLists the template parameter lists, from the outermost to the |
3815 | /// innermost template parameter lists. |
3816 | /// |
3817 | /// \param IsFriend Whether to apply the slightly different rules for |
3818 | /// matching template parameters to scope specifiers in friend |
3819 | /// declarations. |
3820 | /// |
3821 | /// \param IsMemberSpecialization will be set true if the scope specifier |
3822 | /// denotes a fully-specialized type, and therefore this is a declaration of |
3823 | /// a member specialization. |
3824 | /// |
3825 | /// \returns the template parameter list, if any, that corresponds to the |
3826 | /// name that is preceded by the scope specifier @p SS. This template |
3827 | /// parameter list may have template parameters (if we're declaring a |
3828 | /// template) or may have no template parameters (if we're declaring a |
3829 | /// template specialization), or may be NULL (if what we're declaring isn't |
3830 | /// itself a template). |
3831 | TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier( |
3832 | SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS, |
3833 | TemplateIdAnnotation *TemplateId, |
3834 | ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend, |
3835 | bool &IsMemberSpecialization, bool &Invalid, bool SuppressDiagnostic) { |
3836 | IsMemberSpecialization = false; |
3837 | Invalid = false; |
3838 | |
3839 | // The sequence of nested types to which we will match up the template |
3840 | // parameter lists. We first build this list by starting with the type named |
3841 | // by the nested-name-specifier and walking out until we run out of types. |
3842 | SmallVector<QualType, 4> NestedTypes; |
3843 | QualType T; |
3844 | if (SS.getScopeRep()) { |
3845 | if (CXXRecordDecl *Record |
3846 | = dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS, EnteringContext: true))) |
3847 | T = Context.getTypeDeclType(Record); |
3848 | else |
3849 | T = QualType(SS.getScopeRep()->getAsType(), 0); |
3850 | } |
3851 | |
3852 | // If we found an explicit specialization that prevents us from needing |
3853 | // 'template<>' headers, this will be set to the location of that |
3854 | // explicit specialization. |
3855 | SourceLocation ExplicitSpecLoc; |
3856 | |
3857 | while (!T.isNull()) { |
3858 | NestedTypes.push_back(Elt: T); |
3859 | |
3860 | // Retrieve the parent of a record type. |
3861 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { |
3862 | // If this type is an explicit specialization, we're done. |
3863 | if (ClassTemplateSpecializationDecl *Spec |
3864 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) { |
3865 | if (!isa<ClassTemplatePartialSpecializationDecl>(Val: Spec) && |
3866 | Spec->getSpecializationKind() == TSK_ExplicitSpecialization) { |
3867 | ExplicitSpecLoc = Spec->getLocation(); |
3868 | break; |
3869 | } |
3870 | } else if (Record->getTemplateSpecializationKind() |
3871 | == TSK_ExplicitSpecialization) { |
3872 | ExplicitSpecLoc = Record->getLocation(); |
3873 | break; |
3874 | } |
3875 | |
3876 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent())) |
3877 | T = Context.getTypeDeclType(Decl: Parent); |
3878 | else |
3879 | T = QualType(); |
3880 | continue; |
3881 | } |
3882 | |
3883 | if (const TemplateSpecializationType *TST |
3884 | = T->getAs<TemplateSpecializationType>()) { |
3885 | if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { |
3886 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext())) |
3887 | T = Context.getTypeDeclType(Decl: Parent); |
3888 | else |
3889 | T = QualType(); |
3890 | continue; |
3891 | } |
3892 | } |
3893 | |
3894 | // Look one step prior in a dependent template specialization type. |
3895 | if (const DependentTemplateSpecializationType *DependentTST |
3896 | = T->getAs<DependentTemplateSpecializationType>()) { |
3897 | if (NestedNameSpecifier *NNS = DependentTST->getQualifier()) |
3898 | T = QualType(NNS->getAsType(), 0); |
3899 | else |
3900 | T = QualType(); |
3901 | continue; |
3902 | } |
3903 | |
3904 | // Look one step prior in a dependent name type. |
3905 | if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){ |
3906 | if (NestedNameSpecifier *NNS = DependentName->getQualifier()) |
3907 | T = QualType(NNS->getAsType(), 0); |
3908 | else |
3909 | T = QualType(); |
3910 | continue; |
3911 | } |
3912 | |
3913 | // Retrieve the parent of an enumeration type. |
3914 | if (const EnumType *EnumT = T->getAs<EnumType>()) { |
3915 | // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization |
3916 | // check here. |
3917 | EnumDecl *Enum = EnumT->getDecl(); |
3918 | |
3919 | // Get to the parent type. |
3920 | if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent())) |
3921 | T = Context.getTypeDeclType(Decl: Parent); |
3922 | else |
3923 | T = QualType(); |
3924 | continue; |
3925 | } |
3926 | |
3927 | T = QualType(); |
3928 | } |
3929 | // Reverse the nested types list, since we want to traverse from the outermost |
3930 | // to the innermost while checking template-parameter-lists. |
3931 | std::reverse(first: NestedTypes.begin(), last: NestedTypes.end()); |
3932 | |
3933 | // C++0x [temp.expl.spec]p17: |
3934 | // A member or a member template may be nested within many |
3935 | // enclosing class templates. In an explicit specialization for |
3936 | // such a member, the member declaration shall be preceded by a |
3937 | // template<> for each enclosing class template that is |
3938 | // explicitly specialized. |
3939 | bool SawNonEmptyTemplateParameterList = false; |
3940 | |
3941 | auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) { |
3942 | if (SawNonEmptyTemplateParameterList) { |
3943 | if (!SuppressDiagnostic) |
3944 | Diag(DeclLoc, diag::err_specialize_member_of_template) |
3945 | << !Recovery << Range; |
3946 | Invalid = true; |
3947 | IsMemberSpecialization = false; |
3948 | return true; |
3949 | } |
3950 | |
3951 | return false; |
3952 | }; |
3953 | |
3954 | auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) { |
3955 | // Check that we can have an explicit specialization here. |
3956 | if (CheckExplicitSpecialization(Range, true)) |
3957 | return true; |
3958 | |
3959 | // We don't have a template header, but we should. |
3960 | SourceLocation ExpectedTemplateLoc; |
3961 | if (!ParamLists.empty()) |
3962 | ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc(); |
3963 | else |
3964 | ExpectedTemplateLoc = DeclStartLoc; |
3965 | |
3966 | if (!SuppressDiagnostic) |
3967 | Diag(DeclLoc, diag::err_template_spec_needs_header) |
3968 | << Range |
3969 | << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> " ); |
3970 | return false; |
3971 | }; |
3972 | |
3973 | unsigned ParamIdx = 0; |
3974 | for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes; |
3975 | ++TypeIdx) { |
3976 | T = NestedTypes[TypeIdx]; |
3977 | |
3978 | // Whether we expect a 'template<>' header. |
3979 | bool = false; |
3980 | |
3981 | // Whether we expect a template header with parameters. |
3982 | bool = false; |
3983 | |
3984 | // For a dependent type, the set of template parameters that we |
3985 | // expect to see. |
3986 | TemplateParameterList *ExpectedTemplateParams = nullptr; |
3987 | |
3988 | // C++0x [temp.expl.spec]p15: |
3989 | // A member or a member template may be nested within many enclosing |
3990 | // class templates. In an explicit specialization for such a member, the |
3991 | // member declaration shall be preceded by a template<> for each |
3992 | // enclosing class template that is explicitly specialized. |
3993 | if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) { |
3994 | if (ClassTemplatePartialSpecializationDecl *Partial |
3995 | = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Record)) { |
3996 | ExpectedTemplateParams = Partial->getTemplateParameters(); |
3997 | NeedNonemptyTemplateHeader = true; |
3998 | } else if (Record->isDependentType()) { |
3999 | if (Record->getDescribedClassTemplate()) { |
4000 | ExpectedTemplateParams = Record->getDescribedClassTemplate() |
4001 | ->getTemplateParameters(); |
4002 | NeedNonemptyTemplateHeader = true; |
4003 | } |
4004 | } else if (ClassTemplateSpecializationDecl *Spec |
4005 | = dyn_cast<ClassTemplateSpecializationDecl>(Val: Record)) { |
4006 | // C++0x [temp.expl.spec]p4: |
4007 | // Members of an explicitly specialized class template are defined |
4008 | // in the same manner as members of normal classes, and not using |
4009 | // the template<> syntax. |
4010 | if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization) |
4011 | NeedEmptyTemplateHeader = true; |
4012 | else |
4013 | continue; |
4014 | } else if (Record->getTemplateSpecializationKind()) { |
4015 | if (Record->getTemplateSpecializationKind() |
4016 | != TSK_ExplicitSpecialization && |
4017 | TypeIdx == NumTypes - 1) |
4018 | IsMemberSpecialization = true; |
4019 | |
4020 | continue; |
4021 | } |
4022 | } else if (const TemplateSpecializationType *TST |
4023 | = T->getAs<TemplateSpecializationType>()) { |
4024 | if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) { |
4025 | ExpectedTemplateParams = Template->getTemplateParameters(); |
4026 | NeedNonemptyTemplateHeader = true; |
4027 | } |
4028 | } else if (T->getAs<DependentTemplateSpecializationType>()) { |
4029 | // FIXME: We actually could/should check the template arguments here |
4030 | // against the corresponding template parameter list. |
4031 | NeedNonemptyTemplateHeader = false; |
4032 | } |
4033 | |
4034 | // C++ [temp.expl.spec]p16: |
4035 | // In an explicit specialization declaration for a member of a class |
4036 | // template or a member template that ap- pears in namespace scope, the |
4037 | // member template and some of its enclosing class templates may remain |
4038 | // unspecialized, except that the declaration shall not explicitly |
4039 | // specialize a class member template if its en- closing class templates |
4040 | // are not explicitly specialized as well. |
4041 | if (ParamIdx < ParamLists.size()) { |
4042 | if (ParamLists[ParamIdx]->size() == 0) { |
4043 | if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), |
4044 | false)) |
4045 | return nullptr; |
4046 | } else |
4047 | SawNonEmptyTemplateParameterList = true; |
4048 | } |
4049 | |
4050 | if (NeedEmptyTemplateHeader) { |
4051 | // If we're on the last of the types, and we need a 'template<>' header |
4052 | // here, then it's a member specialization. |
4053 | if (TypeIdx == NumTypes - 1) |
4054 | IsMemberSpecialization = true; |
4055 | |
4056 | if (ParamIdx < ParamLists.size()) { |
4057 | if (ParamLists[ParamIdx]->size() > 0) { |
4058 | // The header has template parameters when it shouldn't. Complain. |
4059 | if (!SuppressDiagnostic) |
4060 | Diag(ParamLists[ParamIdx]->getTemplateLoc(), |
4061 | diag::err_template_param_list_matches_nontemplate) |
4062 | << T |
4063 | << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(), |
4064 | ParamLists[ParamIdx]->getRAngleLoc()) |
4065 | << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); |
4066 | Invalid = true; |
4067 | return nullptr; |
4068 | } |
4069 | |
4070 | // Consume this template header. |
4071 | ++ParamIdx; |
4072 | continue; |
4073 | } |
4074 | |
4075 | if (!IsFriend) |
4076 | if (DiagnoseMissingExplicitSpecialization( |
4077 | getRangeOfTypeInNestedNameSpecifier(Context, T, SS))) |
4078 | return nullptr; |
4079 | |
4080 | continue; |
4081 | } |
4082 | |
4083 | if (NeedNonemptyTemplateHeader) { |
4084 | // In friend declarations we can have template-ids which don't |
4085 | // depend on the corresponding template parameter lists. But |
4086 | // assume that empty parameter lists are supposed to match this |
4087 | // template-id. |
4088 | if (IsFriend && T->isDependentType()) { |
4089 | if (ParamIdx < ParamLists.size() && |
4090 | DependsOnTemplateParameters(T, Params: ParamLists[ParamIdx])) |
4091 | ExpectedTemplateParams = nullptr; |
4092 | else |
4093 | continue; |
4094 | } |
4095 | |
4096 | if (ParamIdx < ParamLists.size()) { |
4097 | // Check the template parameter list, if we can. |
4098 | if (ExpectedTemplateParams && |
4099 | !TemplateParameterListsAreEqual(New: ParamLists[ParamIdx], |
4100 | Old: ExpectedTemplateParams, |
4101 | Complain: !SuppressDiagnostic, Kind: TPL_TemplateMatch)) |
4102 | Invalid = true; |
4103 | |
4104 | if (!Invalid && |
4105 | CheckTemplateParameterList(NewParams: ParamLists[ParamIdx], OldParams: nullptr, |
4106 | TPC: TPC_ClassTemplateMember)) |
4107 | Invalid = true; |
4108 | |
4109 | ++ParamIdx; |
4110 | continue; |
4111 | } |
4112 | |
4113 | if (!SuppressDiagnostic) |
4114 | Diag(DeclLoc, diag::err_template_spec_needs_template_parameters) |
4115 | << T |
4116 | << getRangeOfTypeInNestedNameSpecifier(Context, T, SS); |
4117 | Invalid = true; |
4118 | continue; |
4119 | } |
4120 | } |
4121 | |
4122 | // If there were at least as many template-ids as there were template |
4123 | // parameter lists, then there are no template parameter lists remaining for |
4124 | // the declaration itself. |
4125 | if (ParamIdx >= ParamLists.size()) { |
4126 | if (TemplateId && !IsFriend) { |
4127 | // We don't have a template header for the declaration itself, but we |
4128 | // should. |
4129 | DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc, |
4130 | TemplateId->RAngleLoc)); |
4131 | |
4132 | // Fabricate an empty template parameter list for the invented header. |
4133 | return TemplateParameterList::Create(C: Context, TemplateLoc: SourceLocation(), |
4134 | LAngleLoc: SourceLocation(), Params: std::nullopt, |
4135 | RAngleLoc: SourceLocation(), RequiresClause: nullptr); |
4136 | } |
4137 | |
4138 | return nullptr; |
4139 | } |
4140 | |
4141 | // If there were too many template parameter lists, complain about that now. |
4142 | if (ParamIdx < ParamLists.size() - 1) { |
4143 | bool = false; |
4144 | bool = true; |
4145 | for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) { |
4146 | if (ParamLists[I]->size() == 0) |
4147 | HasAnyExplicitSpecHeader = true; |
4148 | else |
4149 | AllExplicitSpecHeaders = false; |
4150 | } |
4151 | |
4152 | if (!SuppressDiagnostic) |
4153 | Diag(ParamLists[ParamIdx]->getTemplateLoc(), |
4154 | AllExplicitSpecHeaders ? diag::ext_template_spec_extra_headers |
4155 | : diag::err_template_spec_extra_headers) |
4156 | << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(), |
4157 | ParamLists[ParamLists.size() - 2]->getRAngleLoc()); |
4158 | |
4159 | // If there was a specialization somewhere, such that 'template<>' is |
4160 | // not required, and there were any 'template<>' headers, note where the |
4161 | // specialization occurred. |
4162 | if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader && |
4163 | !SuppressDiagnostic) |
4164 | Diag(ExplicitSpecLoc, |
4165 | diag::note_explicit_template_spec_does_not_need_header) |
4166 | << NestedTypes.back(); |
4167 | |
4168 | // We have a template parameter list with no corresponding scope, which |
4169 | // means that the resulting template declaration can't be instantiated |
4170 | // properly (we'll end up with dependent nodes when we shouldn't). |
4171 | if (!AllExplicitSpecHeaders) |
4172 | Invalid = true; |
4173 | } |
4174 | |
4175 | // C++ [temp.expl.spec]p16: |
4176 | // In an explicit specialization declaration for a member of a class |
4177 | // template or a member template that ap- pears in namespace scope, the |
4178 | // member template and some of its enclosing class templates may remain |
4179 | // unspecialized, except that the declaration shall not explicitly |
4180 | // specialize a class member template if its en- closing class templates |
4181 | // are not explicitly specialized as well. |
4182 | if (ParamLists.back()->size() == 0 && |
4183 | CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(), |
4184 | false)) |
4185 | return nullptr; |
4186 | |
4187 | // Return the last template parameter list, which corresponds to the |
4188 | // entity being declared. |
4189 | return ParamLists.back(); |
4190 | } |
4191 | |
4192 | void Sema::NoteAllFoundTemplates(TemplateName Name) { |
4193 | if (TemplateDecl *Template = Name.getAsTemplateDecl()) { |
4194 | Diag(Template->getLocation(), diag::note_template_declared_here) |
4195 | << (isa<FunctionTemplateDecl>(Template) |
4196 | ? 0 |
4197 | : isa<ClassTemplateDecl>(Template) |
4198 | ? 1 |
4199 | : isa<VarTemplateDecl>(Template) |
4200 | ? 2 |
4201 | : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4) |
4202 | << Template->getDeclName(); |
4203 | return; |
4204 | } |
4205 | |
4206 | if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) { |
4207 | for (OverloadedTemplateStorage::iterator I = OST->begin(), |
4208 | IEnd = OST->end(); |
4209 | I != IEnd; ++I) |
4210 | Diag((*I)->getLocation(), diag::note_template_declared_here) |
4211 | << 0 << (*I)->getDeclName(); |
4212 | |
4213 | return; |
4214 | } |
4215 | } |
4216 | |
4217 | static QualType |
4218 | checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD, |
4219 | ArrayRef<TemplateArgument> Converted, |
4220 | SourceLocation TemplateLoc, |
4221 | TemplateArgumentListInfo &TemplateArgs) { |
4222 | ASTContext &Context = SemaRef.getASTContext(); |
4223 | |
4224 | switch (BTD->getBuiltinTemplateKind()) { |
4225 | case BTK__make_integer_seq: { |
4226 | // Specializations of __make_integer_seq<S, T, N> are treated like |
4227 | // S<T, 0, ..., N-1>. |
4228 | |
4229 | QualType OrigType = Converted[1].getAsType(); |
4230 | // C++14 [inteseq.intseq]p1: |
4231 | // T shall be an integer type. |
4232 | if (!OrigType->isDependentType() && !OrigType->isIntegralType(Ctx: Context)) { |
4233 | SemaRef.Diag(TemplateArgs[1].getLocation(), |
4234 | diag::err_integer_sequence_integral_element_type); |
4235 | return QualType(); |
4236 | } |
4237 | |
4238 | TemplateArgument NumArgsArg = Converted[2]; |
4239 | if (NumArgsArg.isDependent()) |
4240 | return Context.getCanonicalTemplateSpecializationType(T: TemplateName(BTD), |
4241 | Args: Converted); |
4242 | |
4243 | TemplateArgumentListInfo SyntheticTemplateArgs; |
4244 | // The type argument, wrapped in substitution sugar, gets reused as the |
4245 | // first template argument in the synthetic template argument list. |
4246 | SyntheticTemplateArgs.addArgument( |
4247 | Loc: TemplateArgumentLoc(TemplateArgument(OrigType), |
4248 | SemaRef.Context.getTrivialTypeSourceInfo( |
4249 | T: OrigType, Loc: TemplateArgs[1].getLocation()))); |
4250 | |
4251 | if (llvm::APSInt NumArgs = NumArgsArg.getAsIntegral(); NumArgs >= 0) { |
4252 | // Expand N into 0 ... N-1. |
4253 | for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned()); |
4254 | I < NumArgs; ++I) { |
4255 | TemplateArgument TA(Context, I, OrigType); |
4256 | SyntheticTemplateArgs.addArgument(Loc: SemaRef.getTrivialTemplateArgumentLoc( |
4257 | Arg: TA, NTTPType: OrigType, Loc: TemplateArgs[2].getLocation())); |
4258 | } |
4259 | } else { |
4260 | // C++14 [inteseq.make]p1: |
4261 | // If N is negative the program is ill-formed. |
4262 | SemaRef.Diag(TemplateArgs[2].getLocation(), |
4263 | diag::err_integer_sequence_negative_length); |
4264 | return QualType(); |
4265 | } |
4266 | |
4267 | // The first template argument will be reused as the template decl that |
4268 | // our synthetic template arguments will be applied to. |
4269 | return SemaRef.CheckTemplateIdType(Template: Converted[0].getAsTemplate(), |
4270 | TemplateLoc, TemplateArgs&: SyntheticTemplateArgs); |
4271 | } |
4272 | |
4273 | case BTK__type_pack_element: |
4274 | // Specializations of |
4275 | // __type_pack_element<Index, T_1, ..., T_N> |
4276 | // are treated like T_Index. |
4277 | assert(Converted.size() == 2 && |
4278 | "__type_pack_element should be given an index and a parameter pack" ); |
4279 | |
4280 | TemplateArgument IndexArg = Converted[0], Ts = Converted[1]; |
4281 | if (IndexArg.isDependent() || Ts.isDependent()) |
4282 | return Context.getCanonicalTemplateSpecializationType(T: TemplateName(BTD), |
4283 | Args: Converted); |
4284 | |
4285 | llvm::APSInt Index = IndexArg.getAsIntegral(); |
4286 | assert(Index >= 0 && "the index used with __type_pack_element should be of " |
4287 | "type std::size_t, and hence be non-negative" ); |
4288 | // If the Index is out of bounds, the program is ill-formed. |
4289 | if (Index >= Ts.pack_size()) { |
4290 | SemaRef.Diag(TemplateArgs[0].getLocation(), |
4291 | diag::err_type_pack_element_out_of_bounds); |
4292 | return QualType(); |
4293 | } |
4294 | |
4295 | // We simply return the type at index `Index`. |
4296 | int64_t N = Index.getExtValue(); |
4297 | return Ts.getPackAsArray()[N].getAsType(); |
4298 | } |
4299 | llvm_unreachable("unexpected BuiltinTemplateDecl!" ); |
4300 | } |
4301 | |
4302 | /// Determine whether this alias template is "enable_if_t". |
4303 | /// libc++ >=14 uses "__enable_if_t" in C++11 mode. |
4304 | static bool isEnableIfAliasTemplate(TypeAliasTemplateDecl *AliasTemplate) { |
4305 | return AliasTemplate->getName().equals("enable_if_t" ) || |
4306 | AliasTemplate->getName().equals("__enable_if_t" ); |
4307 | } |
4308 | |
4309 | /// Collect all of the separable terms in the given condition, which |
4310 | /// might be a conjunction. |
4311 | /// |
4312 | /// FIXME: The right answer is to convert the logical expression into |
4313 | /// disjunctive normal form, so we can find the first failed term |
4314 | /// within each possible clause. |
4315 | static void collectConjunctionTerms(Expr *Clause, |
4316 | SmallVectorImpl<Expr *> &Terms) { |
4317 | if (auto BinOp = dyn_cast<BinaryOperator>(Val: Clause->IgnoreParenImpCasts())) { |
4318 | if (BinOp->getOpcode() == BO_LAnd) { |
4319 | collectConjunctionTerms(Clause: BinOp->getLHS(), Terms); |
4320 | collectConjunctionTerms(Clause: BinOp->getRHS(), Terms); |
4321 | return; |
4322 | } |
4323 | } |
4324 | |
4325 | Terms.push_back(Elt: Clause); |
4326 | } |
4327 | |
4328 | // The ranges-v3 library uses an odd pattern of a top-level "||" with |
4329 | // a left-hand side that is value-dependent but never true. Identify |
4330 | // the idiom and ignore that term. |
4331 | static Expr *lookThroughRangesV3Condition(Preprocessor &PP, Expr *Cond) { |
4332 | // Top-level '||'. |
4333 | auto *BinOp = dyn_cast<BinaryOperator>(Val: Cond->IgnoreParenImpCasts()); |
4334 | if (!BinOp) return Cond; |
4335 | |
4336 | if (BinOp->getOpcode() != BO_LOr) return Cond; |
4337 | |
4338 | // With an inner '==' that has a literal on the right-hand side. |
4339 | Expr *LHS = BinOp->getLHS(); |
4340 | auto *InnerBinOp = dyn_cast<BinaryOperator>(Val: LHS->IgnoreParenImpCasts()); |
4341 | if (!InnerBinOp) return Cond; |
4342 | |
4343 | if (InnerBinOp->getOpcode() != BO_EQ || |
4344 | !isa<IntegerLiteral>(Val: InnerBinOp->getRHS())) |
4345 | return Cond; |
4346 | |
4347 | // If the inner binary operation came from a macro expansion named |
4348 | // CONCEPT_REQUIRES or CONCEPT_REQUIRES_, return the right-hand side |
4349 | // of the '||', which is the real, user-provided condition. |
4350 | SourceLocation Loc = InnerBinOp->getExprLoc(); |
4351 | if (!Loc.isMacroID()) return Cond; |
4352 | |
4353 | StringRef MacroName = PP.getImmediateMacroName(Loc); |
4354 | if (MacroName == "CONCEPT_REQUIRES" || MacroName == "CONCEPT_REQUIRES_" ) |
4355 | return BinOp->getRHS(); |
4356 | |
4357 | return Cond; |
4358 | } |
4359 | |
4360 | namespace { |
4361 | |
4362 | // A PrinterHelper that prints more helpful diagnostics for some sub-expressions |
4363 | // within failing boolean expression, such as substituting template parameters |
4364 | // for actual types. |
4365 | class FailedBooleanConditionPrinterHelper : public PrinterHelper { |
4366 | public: |
4367 | explicit FailedBooleanConditionPrinterHelper(const PrintingPolicy &P) |
4368 | : Policy(P) {} |
4369 | |
4370 | bool handledStmt(Stmt *E, raw_ostream &OS) override { |
4371 | const auto *DR = dyn_cast<DeclRefExpr>(Val: E); |
4372 | if (DR && DR->getQualifier()) { |
4373 | // If this is a qualified name, expand the template arguments in nested |
4374 | // qualifiers. |
4375 | DR->getQualifier()->print(OS, Policy, ResolveTemplateArguments: true); |
4376 | // Then print the decl itself. |
4377 | const ValueDecl *VD = DR->getDecl(); |
4378 | OS << VD->getName(); |
4379 | if (const auto *IV = dyn_cast<VarTemplateSpecializationDecl>(Val: VD)) { |
4380 | // This is a template variable, print the expanded template arguments. |
4381 | printTemplateArgumentList( |
4382 | OS, IV->getTemplateArgs().asArray(), Policy, |
4383 | IV->getSpecializedTemplate()->getTemplateParameters()); |
4384 | } |
4385 | return true; |
4386 | } |
4387 | return false; |
4388 | } |
4389 | |
4390 | private: |
4391 | const PrintingPolicy Policy; |
4392 | }; |
4393 | |
4394 | } // end anonymous namespace |
4395 | |
4396 | std::pair<Expr *, std::string> |
4397 | Sema::findFailedBooleanCondition(Expr *Cond) { |
4398 | Cond = lookThroughRangesV3Condition(PP, Cond); |
4399 | |
4400 | // Separate out all of the terms in a conjunction. |
4401 | SmallVector<Expr *, 4> Terms; |
4402 | collectConjunctionTerms(Clause: Cond, Terms); |
4403 | |
4404 | // Determine which term failed. |
4405 | Expr *FailedCond = nullptr; |
4406 | for (Expr *Term : Terms) { |
4407 | Expr *TermAsWritten = Term->IgnoreParenImpCasts(); |
4408 | |
4409 | // Literals are uninteresting. |
4410 | if (isa<CXXBoolLiteralExpr>(Val: TermAsWritten) || |
4411 | isa<IntegerLiteral>(Val: TermAsWritten)) |
4412 | continue; |
4413 | |
4414 | // The initialization of the parameter from the argument is |
4415 | // a constant-evaluated context. |
4416 | EnterExpressionEvaluationContext ConstantEvaluated( |
4417 | *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
4418 | |
4419 | bool Succeeded; |
4420 | if (Term->EvaluateAsBooleanCondition(Result&: Succeeded, Ctx: Context) && |
4421 | !Succeeded) { |
4422 | FailedCond = TermAsWritten; |
4423 | break; |
4424 | } |
4425 | } |
4426 | if (!FailedCond) |
4427 | FailedCond = Cond->IgnoreParenImpCasts(); |
4428 | |
4429 | std::string Description; |
4430 | { |
4431 | llvm::raw_string_ostream Out(Description); |
4432 | PrintingPolicy Policy = getPrintingPolicy(); |
4433 | Policy.PrintCanonicalTypes = true; |
4434 | FailedBooleanConditionPrinterHelper Helper(Policy); |
4435 | FailedCond->printPretty(Out, &Helper, Policy, 0, "\n" , nullptr); |
4436 | } |
4437 | return { FailedCond, Description }; |
4438 | } |
4439 | |
4440 | QualType Sema::CheckTemplateIdType(TemplateName Name, |
4441 | SourceLocation TemplateLoc, |
4442 | TemplateArgumentListInfo &TemplateArgs) { |
4443 | DependentTemplateName *DTN |
4444 | = Name.getUnderlying().getAsDependentTemplateName(); |
4445 | if (DTN && DTN->isIdentifier()) |
4446 | // When building a template-id where the template-name is dependent, |
4447 | // assume the template is a type template. Either our assumption is |
4448 | // correct, or the code is ill-formed and will be diagnosed when the |
4449 | // dependent name is substituted. |
4450 | return Context.getDependentTemplateSpecializationType( |
4451 | Keyword: ElaboratedTypeKeyword::None, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(), |
4452 | Args: TemplateArgs.arguments()); |
4453 | |
4454 | if (Name.getAsAssumedTemplateName() && |
4455 | resolveAssumedTemplateNameAsType(/*Scope*/S: nullptr, Name, NameLoc: TemplateLoc)) |
4456 | return QualType(); |
4457 | |
4458 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
4459 | if (!Template || isa<FunctionTemplateDecl>(Val: Template) || |
4460 | isa<VarTemplateDecl>(Val: Template) || isa<ConceptDecl>(Val: Template)) { |
4461 | // We might have a substituted template template parameter pack. If so, |
4462 | // build a template specialization type for it. |
4463 | if (Name.getAsSubstTemplateTemplateParmPack()) |
4464 | return Context.getTemplateSpecializationType(T: Name, |
4465 | Args: TemplateArgs.arguments()); |
4466 | |
4467 | Diag(TemplateLoc, diag::err_template_id_not_a_type) |
4468 | << Name; |
4469 | NoteAllFoundTemplates(Name); |
4470 | return QualType(); |
4471 | } |
4472 | |
4473 | // Check that the template argument list is well-formed for this |
4474 | // template. |
4475 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
4476 | if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs, PartialTemplateArgs: false, |
4477 | SugaredConverted, CanonicalConverted, |
4478 | /*UpdateArgsWithConversions=*/true)) |
4479 | return QualType(); |
4480 | |
4481 | QualType CanonType; |
4482 | |
4483 | if (TypeAliasTemplateDecl *AliasTemplate = |
4484 | dyn_cast<TypeAliasTemplateDecl>(Val: Template)) { |
4485 | |
4486 | // Find the canonical type for this type alias template specialization. |
4487 | TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl(); |
4488 | if (Pattern->isInvalidDecl()) |
4489 | return QualType(); |
4490 | |
4491 | // Only substitute for the innermost template argument list. |
4492 | MultiLevelTemplateArgumentList TemplateArgLists; |
4493 | TemplateArgLists.addOuterTemplateArguments(Template, CanonicalConverted, |
4494 | /*Final=*/false); |
4495 | TemplateArgLists.addOuterRetainedLevels( |
4496 | Num: AliasTemplate->getTemplateParameters()->getDepth()); |
4497 | |
4498 | LocalInstantiationScope Scope(*this); |
4499 | InstantiatingTemplate Inst( |
4500 | *this, /*PointOfInstantiation=*/TemplateLoc, |
4501 | /*Entity=*/AliasTemplate, |
4502 | /*TemplateArgs=*/TemplateArgLists.getInnermost()); |
4503 | if (Inst.isInvalid()) |
4504 | return QualType(); |
4505 | |
4506 | std::optional<ContextRAII> SavedContext; |
4507 | if (!AliasTemplate->getDeclContext()->isFileContext()) |
4508 | SavedContext.emplace(*this, AliasTemplate->getDeclContext()); |
4509 | |
4510 | CanonType = |
4511 | SubstType(Pattern->getUnderlyingType(), TemplateArgLists, |
4512 | AliasTemplate->getLocation(), AliasTemplate->getDeclName()); |
4513 | if (CanonType.isNull()) { |
4514 | // If this was enable_if and we failed to find the nested type |
4515 | // within enable_if in a SFINAE context, dig out the specific |
4516 | // enable_if condition that failed and present that instead. |
4517 | if (isEnableIfAliasTemplate(AliasTemplate)) { |
4518 | if (auto DeductionInfo = isSFINAEContext()) { |
4519 | if (*DeductionInfo && |
4520 | (*DeductionInfo)->hasSFINAEDiagnostic() && |
4521 | (*DeductionInfo)->peekSFINAEDiagnostic().second.getDiagID() == |
4522 | diag::err_typename_nested_not_found_enable_if && |
4523 | TemplateArgs[0].getArgument().getKind() |
4524 | == TemplateArgument::Expression) { |
4525 | Expr *FailedCond; |
4526 | std::string FailedDescription; |
4527 | std::tie(args&: FailedCond, args&: FailedDescription) = |
4528 | findFailedBooleanCondition(Cond: TemplateArgs[0].getSourceExpression()); |
4529 | |
4530 | // Remove the old SFINAE diagnostic. |
4531 | PartialDiagnosticAt OldDiag = |
4532 | {SourceLocation(), PartialDiagnostic::NullDiagnostic()}; |
4533 | (*DeductionInfo)->takeSFINAEDiagnostic(PD&: OldDiag); |
4534 | |
4535 | // Add a new SFINAE diagnostic specifying which condition |
4536 | // failed. |
4537 | (*DeductionInfo)->addSFINAEDiagnostic( |
4538 | OldDiag.first, |
4539 | PDiag(diag::err_typename_nested_not_found_requirement) |
4540 | << FailedDescription |
4541 | << FailedCond->getSourceRange()); |
4542 | } |
4543 | } |
4544 | } |
4545 | |
4546 | return QualType(); |
4547 | } |
4548 | } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Val: Template)) { |
4549 | CanonType = checkBuiltinTemplateIdType(SemaRef&: *this, BTD, Converted: SugaredConverted, |
4550 | TemplateLoc, TemplateArgs); |
4551 | } else if (Name.isDependent() || |
4552 | TemplateSpecializationType::anyDependentTemplateArguments( |
4553 | TemplateArgs, Converted: CanonicalConverted)) { |
4554 | // This class template specialization is a dependent |
4555 | // type. Therefore, its canonical type is another class template |
4556 | // specialization type that contains all of the converted |
4557 | // arguments in canonical form. This ensures that, e.g., A<T> and |
4558 | // A<T, T> have identical types when A is declared as: |
4559 | // |
4560 | // template<typename T, typename U = T> struct A; |
4561 | CanonType = Context.getCanonicalTemplateSpecializationType( |
4562 | T: Name, Args: CanonicalConverted); |
4563 | |
4564 | // This might work out to be a current instantiation, in which |
4565 | // case the canonical type needs to be the InjectedClassNameType. |
4566 | // |
4567 | // TODO: in theory this could be a simple hashtable lookup; most |
4568 | // changes to CurContext don't change the set of current |
4569 | // instantiations. |
4570 | if (isa<ClassTemplateDecl>(Val: Template)) { |
4571 | for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) { |
4572 | // If we get out to a namespace, we're done. |
4573 | if (Ctx->isFileContext()) break; |
4574 | |
4575 | // If this isn't a record, keep looking. |
4576 | CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: Ctx); |
4577 | if (!Record) continue; |
4578 | |
4579 | // Look for one of the two cases with InjectedClassNameTypes |
4580 | // and check whether it's the same template. |
4581 | if (!isa<ClassTemplatePartialSpecializationDecl>(Val: Record) && |
4582 | !Record->getDescribedClassTemplate()) |
4583 | continue; |
4584 | |
4585 | // Fetch the injected class name type and check whether its |
4586 | // injected type is equal to the type we just built. |
4587 | QualType ICNT = Context.getTypeDeclType(Record); |
4588 | QualType Injected = cast<InjectedClassNameType>(Val&: ICNT) |
4589 | ->getInjectedSpecializationType(); |
4590 | |
4591 | if (CanonType != Injected->getCanonicalTypeInternal()) |
4592 | continue; |
4593 | |
4594 | // If so, the canonical type of this TST is the injected |
4595 | // class name type of the record we just found. |
4596 | assert(ICNT.isCanonical()); |
4597 | CanonType = ICNT; |
4598 | break; |
4599 | } |
4600 | } |
4601 | } else if (ClassTemplateDecl *ClassTemplate = |
4602 | dyn_cast<ClassTemplateDecl>(Val: Template)) { |
4603 | // Find the class template specialization declaration that |
4604 | // corresponds to these arguments. |
4605 | void *InsertPos = nullptr; |
4606 | ClassTemplateSpecializationDecl *Decl = |
4607 | ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos); |
4608 | if (!Decl) { |
4609 | // This is the first time we have referenced this class template |
4610 | // specialization. Create the canonical declaration and add it to |
4611 | // the set of specializations. |
4612 | Decl = ClassTemplateSpecializationDecl::Create( |
4613 | Context, TK: ClassTemplate->getTemplatedDecl()->getTagKind(), |
4614 | DC: ClassTemplate->getDeclContext(), |
4615 | StartLoc: ClassTemplate->getTemplatedDecl()->getBeginLoc(), |
4616 | IdLoc: ClassTemplate->getLocation(), SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, |
4617 | PrevDecl: nullptr); |
4618 | ClassTemplate->AddSpecialization(D: Decl, InsertPos); |
4619 | if (ClassTemplate->isOutOfLine()) |
4620 | Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext()); |
4621 | } |
4622 | |
4623 | if (Decl->getSpecializationKind() == TSK_Undeclared && |
4624 | ClassTemplate->getTemplatedDecl()->hasAttrs()) { |
4625 | InstantiatingTemplate Inst(*this, TemplateLoc, Decl); |
4626 | if (!Inst.isInvalid()) { |
4627 | MultiLevelTemplateArgumentList TemplateArgLists(Template, |
4628 | CanonicalConverted, |
4629 | /*Final=*/false); |
4630 | InstantiateAttrsForDecl(TemplateArgLists, |
4631 | ClassTemplate->getTemplatedDecl(), Decl); |
4632 | } |
4633 | } |
4634 | |
4635 | // Diagnose uses of this specialization. |
4636 | (void)DiagnoseUseOfDecl(Decl, TemplateLoc); |
4637 | |
4638 | CanonType = Context.getTypeDeclType(Decl); |
4639 | assert(isa<RecordType>(CanonType) && |
4640 | "type of non-dependent specialization is not a RecordType" ); |
4641 | } else { |
4642 | llvm_unreachable("Unhandled template kind" ); |
4643 | } |
4644 | |
4645 | // Build the fully-sugared type for this class template |
4646 | // specialization, which refers back to the class template |
4647 | // specialization we created or found. |
4648 | return Context.getTemplateSpecializationType(T: Name, Args: TemplateArgs.arguments(), |
4649 | Canon: CanonType); |
4650 | } |
4651 | |
4652 | void Sema::ActOnUndeclaredTypeTemplateName(Scope *S, TemplateTy &ParsedName, |
4653 | TemplateNameKind &TNK, |
4654 | SourceLocation NameLoc, |
4655 | IdentifierInfo *&II) { |
4656 | assert(TNK == TNK_Undeclared_template && "not an undeclared template name" ); |
4657 | |
4658 | TemplateName Name = ParsedName.get(); |
4659 | auto *ATN = Name.getAsAssumedTemplateName(); |
4660 | assert(ATN && "not an assumed template name" ); |
4661 | II = ATN->getDeclName().getAsIdentifierInfo(); |
4662 | |
4663 | if (!resolveAssumedTemplateNameAsType(S, Name, NameLoc, /*Diagnose*/false)) { |
4664 | // Resolved to a type template name. |
4665 | ParsedName = TemplateTy::make(P: Name); |
4666 | TNK = TNK_Type_template; |
4667 | } |
4668 | } |
4669 | |
4670 | bool Sema::resolveAssumedTemplateNameAsType(Scope *S, TemplateName &Name, |
4671 | SourceLocation NameLoc, |
4672 | bool Diagnose) { |
4673 | // We assumed this undeclared identifier to be an (ADL-only) function |
4674 | // template name, but it was used in a context where a type was required. |
4675 | // Try to typo-correct it now. |
4676 | AssumedTemplateStorage *ATN = Name.getAsAssumedTemplateName(); |
4677 | assert(ATN && "not an assumed template name" ); |
4678 | |
4679 | LookupResult R(*this, ATN->getDeclName(), NameLoc, LookupOrdinaryName); |
4680 | struct CandidateCallback : CorrectionCandidateCallback { |
4681 | bool ValidateCandidate(const TypoCorrection &TC) override { |
4682 | return TC.getCorrectionDecl() && |
4683 | getAsTypeTemplateDecl(TC.getCorrectionDecl()); |
4684 | } |
4685 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
4686 | return std::make_unique<CandidateCallback>(args&: *this); |
4687 | } |
4688 | } FilterCCC; |
4689 | |
4690 | TypoCorrection Corrected = |
4691 | CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: nullptr, |
4692 | CCC&: FilterCCC, Mode: CTK_ErrorRecovery); |
4693 | if (Corrected && Corrected.getFoundDecl()) { |
4694 | diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) |
4695 | << ATN->getDeclName()); |
4696 | Name = TemplateName(Corrected.getCorrectionDeclAs<TemplateDecl>()); |
4697 | return false; |
4698 | } |
4699 | |
4700 | if (Diagnose) |
4701 | Diag(R.getNameLoc(), diag::err_no_template) << R.getLookupName(); |
4702 | return true; |
4703 | } |
4704 | |
4705 | TypeResult Sema::ActOnTemplateIdType( |
4706 | Scope *S, CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
4707 | TemplateTy TemplateD, const IdentifierInfo *TemplateII, |
4708 | SourceLocation TemplateIILoc, SourceLocation LAngleLoc, |
4709 | ASTTemplateArgsPtr TemplateArgsIn, SourceLocation RAngleLoc, |
4710 | bool IsCtorOrDtorName, bool IsClassName, |
4711 | ImplicitTypenameContext AllowImplicitTypename) { |
4712 | if (SS.isInvalid()) |
4713 | return true; |
4714 | |
4715 | if (!IsCtorOrDtorName && !IsClassName && SS.isSet()) { |
4716 | DeclContext *LookupCtx = computeDeclContext(SS, /*EnteringContext*/false); |
4717 | |
4718 | // C++ [temp.res]p3: |
4719 | // A qualified-id that refers to a type and in which the |
4720 | // nested-name-specifier depends on a template-parameter (14.6.2) |
4721 | // shall be prefixed by the keyword typename to indicate that the |
4722 | // qualified-id denotes a type, forming an |
4723 | // elaborated-type-specifier (7.1.5.3). |
4724 | if (!LookupCtx && isDependentScopeSpecifier(SS)) { |
4725 | // C++2a relaxes some of those restrictions in [temp.res]p5. |
4726 | if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { |
4727 | if (getLangOpts().CPlusPlus20) |
4728 | Diag(SS.getBeginLoc(), diag::warn_cxx17_compat_implicit_typename); |
4729 | else |
4730 | Diag(SS.getBeginLoc(), diag::ext_implicit_typename) |
4731 | << SS.getScopeRep() << TemplateII->getName() |
4732 | << FixItHint::CreateInsertion(SS.getBeginLoc(), "typename " ); |
4733 | } else |
4734 | Diag(SS.getBeginLoc(), diag::err_typename_missing_template) |
4735 | << SS.getScopeRep() << TemplateII->getName(); |
4736 | |
4737 | // FIXME: This is not quite correct recovery as we don't transform SS |
4738 | // into the corresponding dependent form (and we don't diagnose missing |
4739 | // 'template' keywords within SS as a result). |
4740 | return ActOnTypenameType(S: nullptr, TypenameLoc: SourceLocation(), SS, TemplateLoc: TemplateKWLoc, |
4741 | TemplateName: TemplateD, TemplateII, TemplateIILoc, LAngleLoc, |
4742 | TemplateArgs: TemplateArgsIn, RAngleLoc); |
4743 | } |
4744 | |
4745 | // Per C++ [class.qual]p2, if the template-id was an injected-class-name, |
4746 | // it's not actually allowed to be used as a type in most cases. Because |
4747 | // we annotate it before we know whether it's valid, we have to check for |
4748 | // this case here. |
4749 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx); |
4750 | if (LookupRD && LookupRD->getIdentifier() == TemplateII) { |
4751 | Diag(TemplateIILoc, |
4752 | TemplateKWLoc.isInvalid() |
4753 | ? diag::err_out_of_line_qualified_id_type_names_constructor |
4754 | : diag::ext_out_of_line_qualified_id_type_names_constructor) |
4755 | << TemplateII << 0 /*injected-class-name used as template name*/ |
4756 | << 1 /*if any keyword was present, it was 'template'*/; |
4757 | } |
4758 | } |
4759 | |
4760 | TemplateName Template = TemplateD.get(); |
4761 | if (Template.getAsAssumedTemplateName() && |
4762 | resolveAssumedTemplateNameAsType(S, Name&: Template, NameLoc: TemplateIILoc)) |
4763 | return true; |
4764 | |
4765 | // Translate the parser's template argument list in our AST format. |
4766 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
4767 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
4768 | |
4769 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
4770 | assert(SS.getScopeRep() == DTN->getQualifier()); |
4771 | QualType T = Context.getDependentTemplateSpecializationType( |
4772 | Keyword: ElaboratedTypeKeyword::None, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(), |
4773 | Args: TemplateArgs.arguments()); |
4774 | // Build type-source information. |
4775 | TypeLocBuilder TLB; |
4776 | DependentTemplateSpecializationTypeLoc SpecTL |
4777 | = TLB.push<DependentTemplateSpecializationTypeLoc>(T); |
4778 | SpecTL.setElaboratedKeywordLoc(SourceLocation()); |
4779 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4780 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
4781 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
4782 | SpecTL.setLAngleLoc(LAngleLoc); |
4783 | SpecTL.setRAngleLoc(RAngleLoc); |
4784 | for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) |
4785 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
4786 | return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T)); |
4787 | } |
4788 | |
4789 | QualType SpecTy = CheckTemplateIdType(Name: Template, TemplateLoc: TemplateIILoc, TemplateArgs); |
4790 | if (SpecTy.isNull()) |
4791 | return true; |
4792 | |
4793 | // Build type-source information. |
4794 | TypeLocBuilder TLB; |
4795 | TemplateSpecializationTypeLoc SpecTL = |
4796 | TLB.push<TemplateSpecializationTypeLoc>(T: SpecTy); |
4797 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
4798 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
4799 | SpecTL.setLAngleLoc(LAngleLoc); |
4800 | SpecTL.setRAngleLoc(RAngleLoc); |
4801 | for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) |
4802 | SpecTL.setArgLocInfo(i, AI: TemplateArgs[i].getLocInfo()); |
4803 | |
4804 | // Create an elaborated-type-specifier containing the nested-name-specifier. |
4805 | QualType ElTy = |
4806 | getElaboratedType(Keyword: ElaboratedTypeKeyword::None, |
4807 | SS: !IsCtorOrDtorName ? SS : CXXScopeSpec(), T: SpecTy); |
4808 | ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(T: ElTy); |
4809 | ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
4810 | if (!ElabTL.isEmpty()) |
4811 | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4812 | return CreateParsedType(T: ElTy, TInfo: TLB.getTypeSourceInfo(Context, T: ElTy)); |
4813 | } |
4814 | |
4815 | TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK, |
4816 | TypeSpecifierType TagSpec, |
4817 | SourceLocation TagLoc, |
4818 | CXXScopeSpec &SS, |
4819 | SourceLocation TemplateKWLoc, |
4820 | TemplateTy TemplateD, |
4821 | SourceLocation TemplateLoc, |
4822 | SourceLocation LAngleLoc, |
4823 | ASTTemplateArgsPtr TemplateArgsIn, |
4824 | SourceLocation RAngleLoc) { |
4825 | if (SS.isInvalid()) |
4826 | return TypeResult(true); |
4827 | |
4828 | TemplateName Template = TemplateD.get(); |
4829 | |
4830 | // Translate the parser's template argument list in our AST format. |
4831 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
4832 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
4833 | |
4834 | // Determine the tag kind |
4835 | TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
4836 | ElaboratedTypeKeyword Keyword |
4837 | = TypeWithKeyword::getKeywordForTagTypeKind(Tag: TagKind); |
4838 | |
4839 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
4840 | assert(SS.getScopeRep() == DTN->getQualifier()); |
4841 | QualType T = Context.getDependentTemplateSpecializationType( |
4842 | Keyword, NNS: DTN->getQualifier(), Name: DTN->getIdentifier(), |
4843 | Args: TemplateArgs.arguments()); |
4844 | |
4845 | // Build type-source information. |
4846 | TypeLocBuilder TLB; |
4847 | DependentTemplateSpecializationTypeLoc SpecTL |
4848 | = TLB.push<DependentTemplateSpecializationTypeLoc>(T); |
4849 | SpecTL.setElaboratedKeywordLoc(TagLoc); |
4850 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4851 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
4852 | SpecTL.setTemplateNameLoc(TemplateLoc); |
4853 | SpecTL.setLAngleLoc(LAngleLoc); |
4854 | SpecTL.setRAngleLoc(RAngleLoc); |
4855 | for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I) |
4856 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
4857 | return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T)); |
4858 | } |
4859 | |
4860 | if (TypeAliasTemplateDecl *TAT = |
4861 | dyn_cast_or_null<TypeAliasTemplateDecl>(Val: Template.getAsTemplateDecl())) { |
4862 | // C++0x [dcl.type.elab]p2: |
4863 | // If the identifier resolves to a typedef-name or the simple-template-id |
4864 | // resolves to an alias template specialization, the |
4865 | // elaborated-type-specifier is ill-formed. |
4866 | Diag(TemplateLoc, diag::err_tag_reference_non_tag) |
4867 | << TAT << NTK_TypeAliasTemplate << llvm::to_underlying(TagKind); |
4868 | Diag(TAT->getLocation(), diag::note_declared_at); |
4869 | } |
4870 | |
4871 | QualType Result = CheckTemplateIdType(Name: Template, TemplateLoc, TemplateArgs); |
4872 | if (Result.isNull()) |
4873 | return TypeResult(true); |
4874 | |
4875 | // Check the tag kind |
4876 | if (const RecordType *RT = Result->getAs<RecordType>()) { |
4877 | RecordDecl *D = RT->getDecl(); |
4878 | |
4879 | IdentifierInfo *Id = D->getIdentifier(); |
4880 | assert(Id && "templated class must have an identifier" ); |
4881 | |
4882 | if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition, |
4883 | TagLoc, Id)) { |
4884 | Diag(TagLoc, diag::err_use_with_wrong_tag) |
4885 | << Result |
4886 | << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName()); |
4887 | Diag(D->getLocation(), diag::note_previous_use); |
4888 | } |
4889 | } |
4890 | |
4891 | // Provide source-location information for the template specialization. |
4892 | TypeLocBuilder TLB; |
4893 | TemplateSpecializationTypeLoc SpecTL |
4894 | = TLB.push<TemplateSpecializationTypeLoc>(T: Result); |
4895 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
4896 | SpecTL.setTemplateNameLoc(TemplateLoc); |
4897 | SpecTL.setLAngleLoc(LAngleLoc); |
4898 | SpecTL.setRAngleLoc(RAngleLoc); |
4899 | for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i) |
4900 | SpecTL.setArgLocInfo(i, AI: TemplateArgs[i].getLocInfo()); |
4901 | |
4902 | // Construct an elaborated type containing the nested-name-specifier (if any) |
4903 | // and tag keyword. |
4904 | Result = Context.getElaboratedType(Keyword, NNS: SS.getScopeRep(), NamedType: Result); |
4905 | ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(T: Result); |
4906 | ElabTL.setElaboratedKeywordLoc(TagLoc); |
4907 | ElabTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4908 | return CreateParsedType(T: Result, TInfo: TLB.getTypeSourceInfo(Context, T: Result)); |
4909 | } |
4910 | |
4911 | static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized, |
4912 | NamedDecl *PrevDecl, |
4913 | SourceLocation Loc, |
4914 | bool IsPartialSpecialization); |
4915 | |
4916 | static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D); |
4917 | |
4918 | static bool isTemplateArgumentTemplateParameter( |
4919 | const TemplateArgument &Arg, unsigned Depth, unsigned Index) { |
4920 | switch (Arg.getKind()) { |
4921 | case TemplateArgument::Null: |
4922 | case TemplateArgument::NullPtr: |
4923 | case TemplateArgument::Integral: |
4924 | case TemplateArgument::Declaration: |
4925 | case TemplateArgument::StructuralValue: |
4926 | case TemplateArgument::Pack: |
4927 | case TemplateArgument::TemplateExpansion: |
4928 | return false; |
4929 | |
4930 | case TemplateArgument::Type: { |
4931 | QualType Type = Arg.getAsType(); |
4932 | const TemplateTypeParmType *TPT = |
4933 | Arg.getAsType()->getAs<TemplateTypeParmType>(); |
4934 | return TPT && !Type.hasQualifiers() && |
4935 | TPT->getDepth() == Depth && TPT->getIndex() == Index; |
4936 | } |
4937 | |
4938 | case TemplateArgument::Expression: { |
4939 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg.getAsExpr()); |
4940 | if (!DRE || !DRE->getDecl()) |
4941 | return false; |
4942 | const NonTypeTemplateParmDecl *NTTP = |
4943 | dyn_cast<NonTypeTemplateParmDecl>(Val: DRE->getDecl()); |
4944 | return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index; |
4945 | } |
4946 | |
4947 | case TemplateArgument::Template: |
4948 | const TemplateTemplateParmDecl *TTP = |
4949 | dyn_cast_or_null<TemplateTemplateParmDecl>( |
4950 | Val: Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl()); |
4951 | return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index; |
4952 | } |
4953 | llvm_unreachable("unexpected kind of template argument" ); |
4954 | } |
4955 | |
4956 | static bool isSameAsPrimaryTemplate(TemplateParameterList *Params, |
4957 | ArrayRef<TemplateArgument> Args) { |
4958 | if (Params->size() != Args.size()) |
4959 | return false; |
4960 | |
4961 | unsigned Depth = Params->getDepth(); |
4962 | |
4963 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
4964 | TemplateArgument Arg = Args[I]; |
4965 | |
4966 | // If the parameter is a pack expansion, the argument must be a pack |
4967 | // whose only element is a pack expansion. |
4968 | if (Params->getParam(Idx: I)->isParameterPack()) { |
4969 | if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 || |
4970 | !Arg.pack_begin()->isPackExpansion()) |
4971 | return false; |
4972 | Arg = Arg.pack_begin()->getPackExpansionPattern(); |
4973 | } |
4974 | |
4975 | if (!isTemplateArgumentTemplateParameter(Arg, Depth, Index: I)) |
4976 | return false; |
4977 | } |
4978 | |
4979 | return true; |
4980 | } |
4981 | |
4982 | template<typename PartialSpecDecl> |
4983 | static void checkMoreSpecializedThanPrimary(Sema &S, PartialSpecDecl *Partial) { |
4984 | if (Partial->getDeclContext()->isDependentContext()) |
4985 | return; |
4986 | |
4987 | // FIXME: Get the TDK from deduction in order to provide better diagnostics |
4988 | // for non-substitution-failure issues? |
4989 | TemplateDeductionInfo Info(Partial->getLocation()); |
4990 | if (S.isMoreSpecializedThanPrimary(Partial, Info)) |
4991 | return; |
4992 | |
4993 | auto *Template = Partial->getSpecializedTemplate(); |
4994 | S.Diag(Partial->getLocation(), |
4995 | diag::ext_partial_spec_not_more_specialized_than_primary) |
4996 | << isa<VarTemplateDecl>(Template); |
4997 | |
4998 | if (Info.hasSFINAEDiagnostic()) { |
4999 | PartialDiagnosticAt Diag = {SourceLocation(), |
5000 | PartialDiagnostic::NullDiagnostic()}; |
5001 | Info.takeSFINAEDiagnostic(PD&: Diag); |
5002 | SmallString<128> SFINAEArgString; |
5003 | Diag.second.EmitToString(Diags&: S.getDiagnostics(), Buf&: SFINAEArgString); |
5004 | S.Diag(Diag.first, |
5005 | diag::note_partial_spec_not_more_specialized_than_primary) |
5006 | << SFINAEArgString; |
5007 | } |
5008 | |
5009 | S.NoteTemplateLocation(Decl: *Template); |
5010 | SmallVector<const Expr *, 3> PartialAC, TemplateAC; |
5011 | Template->getAssociatedConstraints(TemplateAC); |
5012 | Partial->getAssociatedConstraints(PartialAC); |
5013 | S.MaybeEmitAmbiguousAtomicConstraintsDiagnostic(D1: Partial, AC1: PartialAC, D2: Template, |
5014 | AC2: TemplateAC); |
5015 | } |
5016 | |
5017 | static void |
5018 | noteNonDeducibleParameters(Sema &S, TemplateParameterList *TemplateParams, |
5019 | const llvm::SmallBitVector &DeducibleParams) { |
5020 | for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) { |
5021 | if (!DeducibleParams[I]) { |
5022 | NamedDecl *Param = TemplateParams->getParam(Idx: I); |
5023 | if (Param->getDeclName()) |
5024 | S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) |
5025 | << Param->getDeclName(); |
5026 | else |
5027 | S.Diag(Param->getLocation(), diag::note_non_deducible_parameter) |
5028 | << "(anonymous)" ; |
5029 | } |
5030 | } |
5031 | } |
5032 | |
5033 | |
5034 | template<typename PartialSpecDecl> |
5035 | static void checkTemplatePartialSpecialization(Sema &S, |
5036 | PartialSpecDecl *Partial) { |
5037 | // C++1z [temp.class.spec]p8: (DR1495) |
5038 | // - The specialization shall be more specialized than the primary |
5039 | // template (14.5.5.2). |
5040 | checkMoreSpecializedThanPrimary(S, Partial); |
5041 | |
5042 | // C++ [temp.class.spec]p8: (DR1315) |
5043 | // - Each template-parameter shall appear at least once in the |
5044 | // template-id outside a non-deduced context. |
5045 | // C++1z [temp.class.spec.match]p3 (P0127R2) |
5046 | // If the template arguments of a partial specialization cannot be |
5047 | // deduced because of the structure of its template-parameter-list |
5048 | // and the template-id, the program is ill-formed. |
5049 | auto *TemplateParams = Partial->getTemplateParameters(); |
5050 | llvm::SmallBitVector DeducibleParams(TemplateParams->size()); |
5051 | S.MarkUsedTemplateParameters(Partial->getTemplateArgs(), true, |
5052 | TemplateParams->getDepth(), DeducibleParams); |
5053 | |
5054 | if (!DeducibleParams.all()) { |
5055 | unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); |
5056 | S.Diag(Partial->getLocation(), diag::ext_partial_specs_not_deducible) |
5057 | << isa<VarTemplatePartialSpecializationDecl>(Partial) |
5058 | << (NumNonDeducible > 1) |
5059 | << SourceRange(Partial->getLocation(), |
5060 | Partial->getTemplateArgsAsWritten()->RAngleLoc); |
5061 | noteNonDeducibleParameters(S, TemplateParams, DeducibleParams); |
5062 | } |
5063 | } |
5064 | |
5065 | void Sema::CheckTemplatePartialSpecialization( |
5066 | ClassTemplatePartialSpecializationDecl *Partial) { |
5067 | checkTemplatePartialSpecialization(S&: *this, Partial); |
5068 | } |
5069 | |
5070 | void Sema::CheckTemplatePartialSpecialization( |
5071 | VarTemplatePartialSpecializationDecl *Partial) { |
5072 | checkTemplatePartialSpecialization(S&: *this, Partial); |
5073 | } |
5074 | |
5075 | void Sema::CheckDeductionGuideTemplate(FunctionTemplateDecl *TD) { |
5076 | // C++1z [temp.param]p11: |
5077 | // A template parameter of a deduction guide template that does not have a |
5078 | // default-argument shall be deducible from the parameter-type-list of the |
5079 | // deduction guide template. |
5080 | auto *TemplateParams = TD->getTemplateParameters(); |
5081 | llvm::SmallBitVector DeducibleParams(TemplateParams->size()); |
5082 | MarkDeducedTemplateParameters(FunctionTemplate: TD, Deduced&: DeducibleParams); |
5083 | for (unsigned I = 0; I != TemplateParams->size(); ++I) { |
5084 | // A parameter pack is deducible (to an empty pack). |
5085 | auto *Param = TemplateParams->getParam(I); |
5086 | if (Param->isParameterPack() || hasVisibleDefaultArgument(D: Param)) |
5087 | DeducibleParams[I] = true; |
5088 | } |
5089 | |
5090 | if (!DeducibleParams.all()) { |
5091 | unsigned NumNonDeducible = DeducibleParams.size() - DeducibleParams.count(); |
5092 | Diag(TD->getLocation(), diag::err_deduction_guide_template_not_deducible) |
5093 | << (NumNonDeducible > 1); |
5094 | noteNonDeducibleParameters(*this, TemplateParams, DeducibleParams); |
5095 | } |
5096 | } |
5097 | |
5098 | DeclResult Sema::ActOnVarTemplateSpecialization( |
5099 | Scope *S, Declarator &D, TypeSourceInfo *DI, LookupResult &Previous, |
5100 | SourceLocation TemplateKWLoc, TemplateParameterList *TemplateParams, |
5101 | StorageClass SC, bool IsPartialSpecialization) { |
5102 | // D must be variable template id. |
5103 | assert(D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId && |
5104 | "Variable template specialization is declared with a template id." ); |
5105 | |
5106 | TemplateIdAnnotation *TemplateId = D.getName().TemplateId; |
5107 | TemplateArgumentListInfo TemplateArgs = |
5108 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *TemplateId); |
5109 | SourceLocation TemplateNameLoc = D.getIdentifierLoc(); |
5110 | SourceLocation LAngleLoc = TemplateId->LAngleLoc; |
5111 | SourceLocation RAngleLoc = TemplateId->RAngleLoc; |
5112 | |
5113 | TemplateName Name = TemplateId->Template.get(); |
5114 | |
5115 | // The template-id must name a variable template. |
5116 | VarTemplateDecl *VarTemplate = |
5117 | dyn_cast_or_null<VarTemplateDecl>(Val: Name.getAsTemplateDecl()); |
5118 | if (!VarTemplate) { |
5119 | NamedDecl *FnTemplate; |
5120 | if (auto *OTS = Name.getAsOverloadedTemplate()) |
5121 | FnTemplate = *OTS->begin(); |
5122 | else |
5123 | FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Val: Name.getAsTemplateDecl()); |
5124 | if (FnTemplate) |
5125 | return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method) |
5126 | << FnTemplate->getDeclName(); |
5127 | return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template) |
5128 | << IsPartialSpecialization; |
5129 | } |
5130 | |
5131 | // Check for unexpanded parameter packs in any of the template arguments. |
5132 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
5133 | if (DiagnoseUnexpandedParameterPack(Arg: TemplateArgs[I], |
5134 | UPPC: IsPartialSpecialization |
5135 | ? UPPC_PartialSpecialization |
5136 | : UPPC_ExplicitSpecialization)) |
5137 | return true; |
5138 | |
5139 | // Check that the template argument list is well-formed for this |
5140 | // template. |
5141 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
5142 | if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs, |
5143 | false, SugaredConverted, CanonicalConverted, |
5144 | /*UpdateArgsWithConversions=*/true)) |
5145 | return true; |
5146 | |
5147 | // Find the variable template (partial) specialization declaration that |
5148 | // corresponds to these arguments. |
5149 | if (IsPartialSpecialization) { |
5150 | if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, VarTemplate, |
5151 | TemplateArgs.size(), |
5152 | CanonicalConverted)) |
5153 | return true; |
5154 | |
5155 | // FIXME: Move these checks to CheckTemplatePartialSpecializationArgs so we |
5156 | // also do them during instantiation. |
5157 | if (!Name.isDependent() && |
5158 | !TemplateSpecializationType::anyDependentTemplateArguments( |
5159 | TemplateArgs, Converted: CanonicalConverted)) { |
5160 | Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) |
5161 | << VarTemplate->getDeclName(); |
5162 | IsPartialSpecialization = false; |
5163 | } |
5164 | |
5165 | if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(), |
5166 | CanonicalConverted) && |
5167 | (!Context.getLangOpts().CPlusPlus20 || |
5168 | !TemplateParams->hasAssociatedConstraints())) { |
5169 | // C++ [temp.class.spec]p9b3: |
5170 | // |
5171 | // -- The argument list of the specialization shall not be identical |
5172 | // to the implicit argument list of the primary template. |
5173 | Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) |
5174 | << /*variable template*/ 1 |
5175 | << /*is definition*/(SC != SC_Extern && !CurContext->isRecord()) |
5176 | << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); |
5177 | // FIXME: Recover from this by treating the declaration as a redeclaration |
5178 | // of the primary template. |
5179 | return true; |
5180 | } |
5181 | } |
5182 | |
5183 | void *InsertPos = nullptr; |
5184 | VarTemplateSpecializationDecl *PrevDecl = nullptr; |
5185 | |
5186 | if (IsPartialSpecialization) |
5187 | PrevDecl = VarTemplate->findPartialSpecialization( |
5188 | Args: CanonicalConverted, TPL: TemplateParams, InsertPos); |
5189 | else |
5190 | PrevDecl = VarTemplate->findSpecialization(Args: CanonicalConverted, InsertPos); |
5191 | |
5192 | VarTemplateSpecializationDecl *Specialization = nullptr; |
5193 | |
5194 | // Check whether we can declare a variable template specialization in |
5195 | // the current scope. |
5196 | if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl, |
5197 | TemplateNameLoc, |
5198 | IsPartialSpecialization)) |
5199 | return true; |
5200 | |
5201 | if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) { |
5202 | // Since the only prior variable template specialization with these |
5203 | // arguments was referenced but not declared, reuse that |
5204 | // declaration node as our own, updating its source location and |
5205 | // the list of outer template parameters to reflect our new declaration. |
5206 | Specialization = PrevDecl; |
5207 | Specialization->setLocation(TemplateNameLoc); |
5208 | PrevDecl = nullptr; |
5209 | } else if (IsPartialSpecialization) { |
5210 | // Create a new class template partial specialization declaration node. |
5211 | VarTemplatePartialSpecializationDecl *PrevPartial = |
5212 | cast_or_null<VarTemplatePartialSpecializationDecl>(Val: PrevDecl); |
5213 | VarTemplatePartialSpecializationDecl *Partial = |
5214 | VarTemplatePartialSpecializationDecl::Create( |
5215 | Context, DC: VarTemplate->getDeclContext(), StartLoc: TemplateKWLoc, |
5216 | IdLoc: TemplateNameLoc, Params: TemplateParams, SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: SC, |
5217 | Args: CanonicalConverted, ArgInfos: TemplateArgs); |
5218 | |
5219 | if (!PrevPartial) |
5220 | VarTemplate->AddPartialSpecialization(D: Partial, InsertPos); |
5221 | Specialization = Partial; |
5222 | |
5223 | // If we are providing an explicit specialization of a member variable |
5224 | // template specialization, make a note of that. |
5225 | if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
5226 | PrevPartial->setMemberSpecialization(); |
5227 | |
5228 | CheckTemplatePartialSpecialization(Partial); |
5229 | } else { |
5230 | // Create a new class template specialization declaration node for |
5231 | // this explicit specialization or friend declaration. |
5232 | Specialization = VarTemplateSpecializationDecl::Create( |
5233 | Context, DC: VarTemplate->getDeclContext(), StartLoc: TemplateKWLoc, IdLoc: TemplateNameLoc, |
5234 | SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: SC, Args: CanonicalConverted); |
5235 | Specialization->setTemplateArgsInfo(TemplateArgs); |
5236 | |
5237 | if (!PrevDecl) |
5238 | VarTemplate->AddSpecialization(D: Specialization, InsertPos); |
5239 | } |
5240 | |
5241 | // C++ [temp.expl.spec]p6: |
5242 | // If a template, a member template or the member of a class template is |
5243 | // explicitly specialized then that specialization shall be declared |
5244 | // before the first use of that specialization that would cause an implicit |
5245 | // instantiation to take place, in every translation unit in which such a |
5246 | // use occurs; no diagnostic is required. |
5247 | if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
5248 | bool Okay = false; |
5249 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
5250 | // Is there any previous explicit specialization declaration? |
5251 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
5252 | Okay = true; |
5253 | break; |
5254 | } |
5255 | } |
5256 | |
5257 | if (!Okay) { |
5258 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
5259 | Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) |
5260 | << Name << Range; |
5261 | |
5262 | Diag(PrevDecl->getPointOfInstantiation(), |
5263 | diag::note_instantiation_required_here) |
5264 | << (PrevDecl->getTemplateSpecializationKind() != |
5265 | TSK_ImplicitInstantiation); |
5266 | return true; |
5267 | } |
5268 | } |
5269 | |
5270 | Specialization->setTemplateKeywordLoc(TemplateKWLoc); |
5271 | Specialization->setLexicalDeclContext(CurContext); |
5272 | |
5273 | // Add the specialization into its lexical context, so that it can |
5274 | // be seen when iterating through the list of declarations in that |
5275 | // context. However, specializations are not found by name lookup. |
5276 | CurContext->addDecl(Specialization); |
5277 | |
5278 | // Note that this is an explicit specialization. |
5279 | Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
5280 | |
5281 | Previous.clear(); |
5282 | if (PrevDecl) |
5283 | Previous.addDecl(PrevDecl); |
5284 | else if (Specialization->isStaticDataMember() && |
5285 | Specialization->isOutOfLine()) |
5286 | Specialization->setAccess(VarTemplate->getAccess()); |
5287 | |
5288 | return Specialization; |
5289 | } |
5290 | |
5291 | namespace { |
5292 | /// A partial specialization whose template arguments have matched |
5293 | /// a given template-id. |
5294 | struct PartialSpecMatchResult { |
5295 | VarTemplatePartialSpecializationDecl *Partial; |
5296 | TemplateArgumentList *Args; |
5297 | }; |
5298 | } // end anonymous namespace |
5299 | |
5300 | DeclResult |
5301 | Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc, |
5302 | SourceLocation TemplateNameLoc, |
5303 | const TemplateArgumentListInfo &TemplateArgs) { |
5304 | assert(Template && "A variable template id without template?" ); |
5305 | |
5306 | // Check that the template argument list is well-formed for this template. |
5307 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
5308 | if (CheckTemplateArgumentList( |
5309 | Template, TemplateNameLoc, |
5310 | const_cast<TemplateArgumentListInfo &>(TemplateArgs), false, |
5311 | SugaredConverted, CanonicalConverted, |
5312 | /*UpdateArgsWithConversions=*/true)) |
5313 | return true; |
5314 | |
5315 | // Produce a placeholder value if the specialization is dependent. |
5316 | if (Template->getDeclContext()->isDependentContext() || |
5317 | TemplateSpecializationType::anyDependentTemplateArguments( |
5318 | TemplateArgs, Converted: CanonicalConverted)) |
5319 | return DeclResult(); |
5320 | |
5321 | // Find the variable template specialization declaration that |
5322 | // corresponds to these arguments. |
5323 | void *InsertPos = nullptr; |
5324 | if (VarTemplateSpecializationDecl *Spec = |
5325 | Template->findSpecialization(Args: CanonicalConverted, InsertPos)) { |
5326 | checkSpecializationReachability(TemplateNameLoc, Spec); |
5327 | // If we already have a variable template specialization, return it. |
5328 | return Spec; |
5329 | } |
5330 | |
5331 | // This is the first time we have referenced this variable template |
5332 | // specialization. Create the canonical declaration and add it to |
5333 | // the set of specializations, based on the closest partial specialization |
5334 | // that it represents. That is, |
5335 | VarDecl *InstantiationPattern = Template->getTemplatedDecl(); |
5336 | const TemplateArgumentList *PartialSpecArgs = nullptr; |
5337 | bool AmbiguousPartialSpec = false; |
5338 | typedef PartialSpecMatchResult MatchResult; |
5339 | SmallVector<MatchResult, 4> Matched; |
5340 | SourceLocation PointOfInstantiation = TemplateNameLoc; |
5341 | TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation, |
5342 | /*ForTakingAddress=*/false); |
5343 | |
5344 | // 1. Attempt to find the closest partial specialization that this |
5345 | // specializes, if any. |
5346 | // TODO: Unify with InstantiateClassTemplateSpecialization()? |
5347 | // Perhaps better after unification of DeduceTemplateArguments() and |
5348 | // getMoreSpecializedPartialSpecialization(). |
5349 | SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs; |
5350 | Template->getPartialSpecializations(PS&: PartialSpecs); |
5351 | |
5352 | for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) { |
5353 | VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I]; |
5354 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
5355 | |
5356 | if (TemplateDeductionResult Result = |
5357 | DeduceTemplateArguments(Partial, TemplateArgs: CanonicalConverted, Info); |
5358 | Result != TemplateDeductionResult::Success) { |
5359 | // Store the failed-deduction information for use in diagnostics, later. |
5360 | // TODO: Actually use the failed-deduction info? |
5361 | FailedCandidates.addCandidate().set( |
5362 | Found: DeclAccessPair::make(Template, AS_public), Spec: Partial, |
5363 | Info: MakeDeductionFailureInfo(Context, TDK: Result, Info)); |
5364 | (void)Result; |
5365 | } else { |
5366 | Matched.push_back(Elt: PartialSpecMatchResult()); |
5367 | Matched.back().Partial = Partial; |
5368 | Matched.back().Args = Info.takeCanonical(); |
5369 | } |
5370 | } |
5371 | |
5372 | if (Matched.size() >= 1) { |
5373 | SmallVector<MatchResult, 4>::iterator Best = Matched.begin(); |
5374 | if (Matched.size() == 1) { |
5375 | // -- If exactly one matching specialization is found, the |
5376 | // instantiation is generated from that specialization. |
5377 | // We don't need to do anything for this. |
5378 | } else { |
5379 | // -- If more than one matching specialization is found, the |
5380 | // partial order rules (14.5.4.2) are used to determine |
5381 | // whether one of the specializations is more specialized |
5382 | // than the others. If none of the specializations is more |
5383 | // specialized than all of the other matching |
5384 | // specializations, then the use of the variable template is |
5385 | // ambiguous and the program is ill-formed. |
5386 | for (SmallVector<MatchResult, 4>::iterator P = Best + 1, |
5387 | PEnd = Matched.end(); |
5388 | P != PEnd; ++P) { |
5389 | if (getMoreSpecializedPartialSpecialization(PS1: P->Partial, PS2: Best->Partial, |
5390 | Loc: PointOfInstantiation) == |
5391 | P->Partial) |
5392 | Best = P; |
5393 | } |
5394 | |
5395 | // Determine if the best partial specialization is more specialized than |
5396 | // the others. |
5397 | for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(), |
5398 | PEnd = Matched.end(); |
5399 | P != PEnd; ++P) { |
5400 | if (P != Best && getMoreSpecializedPartialSpecialization( |
5401 | PS1: P->Partial, PS2: Best->Partial, |
5402 | Loc: PointOfInstantiation) != Best->Partial) { |
5403 | AmbiguousPartialSpec = true; |
5404 | break; |
5405 | } |
5406 | } |
5407 | } |
5408 | |
5409 | // Instantiate using the best variable template partial specialization. |
5410 | InstantiationPattern = Best->Partial; |
5411 | PartialSpecArgs = Best->Args; |
5412 | } else { |
5413 | // -- If no match is found, the instantiation is generated |
5414 | // from the primary template. |
5415 | // InstantiationPattern = Template->getTemplatedDecl(); |
5416 | } |
5417 | |
5418 | // 2. Create the canonical declaration. |
5419 | // Note that we do not instantiate a definition until we see an odr-use |
5420 | // in DoMarkVarDeclReferenced(). |
5421 | // FIXME: LateAttrs et al.? |
5422 | VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation( |
5423 | VarTemplate: Template, FromVar: InstantiationPattern, PartialSpecArgs, TemplateArgsInfo: TemplateArgs, |
5424 | Converted&: CanonicalConverted, PointOfInstantiation: TemplateNameLoc /*, LateAttrs, StartingScope*/); |
5425 | if (!Decl) |
5426 | return true; |
5427 | |
5428 | if (AmbiguousPartialSpec) { |
5429 | // Partial ordering did not produce a clear winner. Complain. |
5430 | Decl->setInvalidDecl(); |
5431 | Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous) |
5432 | << Decl; |
5433 | |
5434 | // Print the matching partial specializations. |
5435 | for (MatchResult P : Matched) |
5436 | Diag(P.Partial->getLocation(), diag::note_partial_spec_match) |
5437 | << getTemplateArgumentBindingsText(P.Partial->getTemplateParameters(), |
5438 | *P.Args); |
5439 | return true; |
5440 | } |
5441 | |
5442 | if (VarTemplatePartialSpecializationDecl *D = |
5443 | dyn_cast<VarTemplatePartialSpecializationDecl>(Val: InstantiationPattern)) |
5444 | Decl->setInstantiationOf(PartialSpec: D, TemplateArgs: PartialSpecArgs); |
5445 | |
5446 | checkSpecializationReachability(TemplateNameLoc, Decl); |
5447 | |
5448 | assert(Decl && "No variable template specialization?" ); |
5449 | return Decl; |
5450 | } |
5451 | |
5452 | ExprResult Sema::CheckVarTemplateId( |
5453 | const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, |
5454 | VarTemplateDecl *Template, NamedDecl *FoundD, SourceLocation TemplateLoc, |
5455 | const TemplateArgumentListInfo *TemplateArgs) { |
5456 | |
5457 | DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, TemplateNameLoc: NameInfo.getLoc(), |
5458 | TemplateArgs: *TemplateArgs); |
5459 | if (Decl.isInvalid()) |
5460 | return ExprError(); |
5461 | |
5462 | if (!Decl.get()) |
5463 | return ExprResult(); |
5464 | |
5465 | VarDecl *Var = cast<VarDecl>(Val: Decl.get()); |
5466 | if (!Var->getTemplateSpecializationKind()) |
5467 | Var->setTemplateSpecializationKind(TSK: TSK_ImplicitInstantiation, |
5468 | PointOfInstantiation: NameInfo.getLoc()); |
5469 | |
5470 | // Build an ordinary singleton decl ref. |
5471 | return BuildDeclarationNameExpr(SS, NameInfo, Var, FoundD, TemplateArgs); |
5472 | } |
5473 | |
5474 | void Sema::diagnoseMissingTemplateArguments(TemplateName Name, |
5475 | SourceLocation Loc) { |
5476 | Diag(Loc, diag::err_template_missing_args) |
5477 | << (int)getTemplateNameKindForDiagnostics(Name) << Name; |
5478 | if (TemplateDecl *TD = Name.getAsTemplateDecl()) { |
5479 | NoteTemplateLocation(*TD, TD->getTemplateParameters()->getSourceRange()); |
5480 | } |
5481 | } |
5482 | |
5483 | ExprResult |
5484 | Sema::CheckConceptTemplateId(const CXXScopeSpec &SS, |
5485 | SourceLocation TemplateKWLoc, |
5486 | const DeclarationNameInfo &ConceptNameInfo, |
5487 | NamedDecl *FoundDecl, |
5488 | ConceptDecl *NamedConcept, |
5489 | const TemplateArgumentListInfo *TemplateArgs) { |
5490 | assert(NamedConcept && "A concept template id without a template?" ); |
5491 | |
5492 | llvm::SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
5493 | if (CheckTemplateArgumentList( |
5494 | NamedConcept, ConceptNameInfo.getLoc(), |
5495 | const_cast<TemplateArgumentListInfo &>(*TemplateArgs), |
5496 | /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted, |
5497 | /*UpdateArgsWithConversions=*/false)) |
5498 | return ExprError(); |
5499 | |
5500 | auto *CSD = ImplicitConceptSpecializationDecl::Create( |
5501 | C: Context, DC: NamedConcept->getDeclContext(), SL: NamedConcept->getLocation(), |
5502 | ConvertedArgs: CanonicalConverted); |
5503 | ConstraintSatisfaction Satisfaction; |
5504 | bool AreArgsDependent = |
5505 | TemplateSpecializationType::anyDependentTemplateArguments( |
5506 | *TemplateArgs, Converted: CanonicalConverted); |
5507 | MultiLevelTemplateArgumentList MLTAL(NamedConcept, CanonicalConverted, |
5508 | /*Final=*/false); |
5509 | LocalInstantiationScope Scope(*this); |
5510 | |
5511 | EnterExpressionEvaluationContext EECtx{ |
5512 | *this, ExpressionEvaluationContext::ConstantEvaluated, CSD}; |
5513 | |
5514 | if (!AreArgsDependent && |
5515 | CheckConstraintSatisfaction( |
5516 | NamedConcept, {NamedConcept->getConstraintExpr()}, MLTAL, |
5517 | SourceRange(SS.isSet() ? SS.getBeginLoc() : ConceptNameInfo.getLoc(), |
5518 | TemplateArgs->getRAngleLoc()), |
5519 | Satisfaction)) |
5520 | return ExprError(); |
5521 | auto *CL = ConceptReference::Create( |
5522 | C: Context, |
5523 | NNS: SS.isSet() ? SS.getWithLocInContext(Context) : NestedNameSpecifierLoc{}, |
5524 | TemplateKWLoc, ConceptNameInfo, FoundDecl, NamedConcept, |
5525 | ArgsAsWritten: ASTTemplateArgumentListInfo::Create(C: Context, List: *TemplateArgs)); |
5526 | return ConceptSpecializationExpr::Create( |
5527 | Context, CL, CSD, AreArgsDependent ? nullptr : &Satisfaction); |
5528 | } |
5529 | |
5530 | ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS, |
5531 | SourceLocation TemplateKWLoc, |
5532 | LookupResult &R, |
5533 | bool RequiresADL, |
5534 | const TemplateArgumentListInfo *TemplateArgs) { |
5535 | // FIXME: Can we do any checking at this point? I guess we could check the |
5536 | // template arguments that we have against the template name, if the template |
5537 | // name refers to a single template. That's not a terribly common case, |
5538 | // though. |
5539 | // foo<int> could identify a single function unambiguously |
5540 | // This approach does NOT work, since f<int>(1); |
5541 | // gets resolved prior to resorting to overload resolution |
5542 | // i.e., template<class T> void f(double); |
5543 | // vs template<class T, class U> void f(U); |
5544 | |
5545 | // These should be filtered out by our callers. |
5546 | assert(!R.isAmbiguous() && "ambiguous lookup when building templateid" ); |
5547 | |
5548 | // Non-function templates require a template argument list. |
5549 | if (auto *TD = R.getAsSingle<TemplateDecl>()) { |
5550 | if (!TemplateArgs && !isa<FunctionTemplateDecl>(Val: TD)) { |
5551 | diagnoseMissingTemplateArguments(Name: TemplateName(TD), Loc: R.getNameLoc()); |
5552 | return ExprError(); |
5553 | } |
5554 | } |
5555 | bool KnownDependent = false; |
5556 | // In C++1y, check variable template ids. |
5557 | if (R.getAsSingle<VarTemplateDecl>()) { |
5558 | ExprResult Res = CheckVarTemplateId( |
5559 | SS, NameInfo: R.getLookupNameInfo(), Template: R.getAsSingle<VarTemplateDecl>(), |
5560 | FoundD: R.getRepresentativeDecl(), TemplateLoc: TemplateKWLoc, TemplateArgs); |
5561 | if (Res.isInvalid() || Res.isUsable()) |
5562 | return Res; |
5563 | // Result is dependent. Carry on to build an UnresolvedLookupEpxr. |
5564 | KnownDependent = true; |
5565 | } |
5566 | |
5567 | if (R.getAsSingle<ConceptDecl>()) { |
5568 | return CheckConceptTemplateId(SS, TemplateKWLoc, ConceptNameInfo: R.getLookupNameInfo(), |
5569 | FoundDecl: R.getRepresentativeDecl(), |
5570 | NamedConcept: R.getAsSingle<ConceptDecl>(), TemplateArgs); |
5571 | } |
5572 | |
5573 | // We don't want lookup warnings at this point. |
5574 | R.suppressDiagnostics(); |
5575 | |
5576 | UnresolvedLookupExpr *ULE = UnresolvedLookupExpr::Create( |
5577 | Context, NamingClass: R.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context), |
5578 | TemplateKWLoc, NameInfo: R.getLookupNameInfo(), RequiresADL, Args: TemplateArgs, |
5579 | Begin: R.begin(), End: R.end(), KnownDependent); |
5580 | |
5581 | return ULE; |
5582 | } |
5583 | |
5584 | // We actually only call this from template instantiation. |
5585 | ExprResult |
5586 | Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS, |
5587 | SourceLocation TemplateKWLoc, |
5588 | const DeclarationNameInfo &NameInfo, |
5589 | const TemplateArgumentListInfo *TemplateArgs) { |
5590 | |
5591 | assert(TemplateArgs || TemplateKWLoc.isValid()); |
5592 | DeclContext *DC; |
5593 | if (!(DC = computeDeclContext(SS, EnteringContext: false)) || |
5594 | DC->isDependentContext() || |
5595 | RequireCompleteDeclContext(SS, DC)) |
5596 | return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs); |
5597 | |
5598 | bool MemberOfUnknownSpecialization; |
5599 | LookupResult R(*this, NameInfo, LookupOrdinaryName); |
5600 | if (LookupTemplateName(Found&: R, S: (Scope *)nullptr, SS, ObjectType: QualType(), |
5601 | /*Entering*/EnteringContext: false, MemberOfUnknownSpecialization, |
5602 | RequiredTemplate: TemplateKWLoc)) |
5603 | return ExprError(); |
5604 | |
5605 | if (R.isAmbiguous()) |
5606 | return ExprError(); |
5607 | |
5608 | if (R.empty()) { |
5609 | Diag(NameInfo.getLoc(), diag::err_no_member) |
5610 | << NameInfo.getName() << DC << SS.getRange(); |
5611 | return ExprError(); |
5612 | } |
5613 | |
5614 | auto DiagnoseTypeTemplateDecl = [&](TemplateDecl *Temp, |
5615 | bool isTypeAliasTemplateDecl) { |
5616 | Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_type_template) |
5617 | << SS.getScopeRep() << NameInfo.getName().getAsString() << SS.getRange() |
5618 | << isTypeAliasTemplateDecl; |
5619 | Diag(Temp->getLocation(), diag::note_referenced_type_template) << 0; |
5620 | return ExprError(); |
5621 | }; |
5622 | |
5623 | if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) |
5624 | return DiagnoseTypeTemplateDecl(Temp, false); |
5625 | |
5626 | if (TypeAliasTemplateDecl *Temp = R.getAsSingle<TypeAliasTemplateDecl>()) |
5627 | return DiagnoseTypeTemplateDecl(Temp, true); |
5628 | |
5629 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ RequiresADL: false, TemplateArgs); |
5630 | } |
5631 | |
5632 | /// Form a template name from a name that is syntactically required to name a |
5633 | /// template, either due to use of the 'template' keyword or because a name in |
5634 | /// this syntactic context is assumed to name a template (C++ [temp.names]p2-4). |
5635 | /// |
5636 | /// This action forms a template name given the name of the template and its |
5637 | /// optional scope specifier. This is used when the 'template' keyword is used |
5638 | /// or when the parsing context unambiguously treats a following '<' as |
5639 | /// introducing a template argument list. Note that this may produce a |
5640 | /// non-dependent template name if we can perform the lookup now and identify |
5641 | /// the named template. |
5642 | /// |
5643 | /// For example, given "x.MetaFun::template apply", the scope specifier |
5644 | /// \p SS will be "MetaFun::", \p TemplateKWLoc contains the location |
5645 | /// of the "template" keyword, and "apply" is the \p Name. |
5646 | TemplateNameKind Sema::ActOnTemplateName(Scope *S, |
5647 | CXXScopeSpec &SS, |
5648 | SourceLocation TemplateKWLoc, |
5649 | const UnqualifiedId &Name, |
5650 | ParsedType ObjectType, |
5651 | bool EnteringContext, |
5652 | TemplateTy &Result, |
5653 | bool AllowInjectedClassName) { |
5654 | if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent()) |
5655 | Diag(TemplateKWLoc, |
5656 | getLangOpts().CPlusPlus11 ? |
5657 | diag::warn_cxx98_compat_template_outside_of_template : |
5658 | diag::ext_template_outside_of_template) |
5659 | << FixItHint::CreateRemoval(TemplateKWLoc); |
5660 | |
5661 | if (SS.isInvalid()) |
5662 | return TNK_Non_template; |
5663 | |
5664 | // Figure out where isTemplateName is going to look. |
5665 | DeclContext *LookupCtx = nullptr; |
5666 | if (SS.isNotEmpty()) |
5667 | LookupCtx = computeDeclContext(SS, EnteringContext); |
5668 | else if (ObjectType) |
5669 | LookupCtx = computeDeclContext(T: GetTypeFromParser(Ty: ObjectType)); |
5670 | |
5671 | // C++0x [temp.names]p5: |
5672 | // If a name prefixed by the keyword template is not the name of |
5673 | // a template, the program is ill-formed. [Note: the keyword |
5674 | // template may not be applied to non-template members of class |
5675 | // templates. -end note ] [ Note: as is the case with the |
5676 | // typename prefix, the template prefix is allowed in cases |
5677 | // where it is not strictly necessary; i.e., when the |
5678 | // nested-name-specifier or the expression on the left of the -> |
5679 | // or . is not dependent on a template-parameter, or the use |
5680 | // does not appear in the scope of a template. -end note] |
5681 | // |
5682 | // Note: C++03 was more strict here, because it banned the use of |
5683 | // the "template" keyword prior to a template-name that was not a |
5684 | // dependent name. C++ DR468 relaxed this requirement (the |
5685 | // "template" keyword is now permitted). We follow the C++0x |
5686 | // rules, even in C++03 mode with a warning, retroactively applying the DR. |
5687 | bool MemberOfUnknownSpecialization; |
5688 | TemplateNameKind TNK = isTemplateName(S, SS, hasTemplateKeyword: TemplateKWLoc.isValid(), Name, |
5689 | ObjectTypePtr: ObjectType, EnteringContext, TemplateResult&: Result, |
5690 | MemberOfUnknownSpecialization); |
5691 | if (TNK != TNK_Non_template) { |
5692 | // We resolved this to a (non-dependent) template name. Return it. |
5693 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx); |
5694 | if (!AllowInjectedClassName && SS.isNotEmpty() && LookupRD && |
5695 | Name.getKind() == UnqualifiedIdKind::IK_Identifier && |
5696 | Name.Identifier && LookupRD->getIdentifier() == Name.Identifier) { |
5697 | // C++14 [class.qual]p2: |
5698 | // In a lookup in which function names are not ignored and the |
5699 | // nested-name-specifier nominates a class C, if the name specified |
5700 | // [...] is the injected-class-name of C, [...] the name is instead |
5701 | // considered to name the constructor |
5702 | // |
5703 | // We don't get here if naming the constructor would be valid, so we |
5704 | // just reject immediately and recover by treating the |
5705 | // injected-class-name as naming the template. |
5706 | Diag(Name.getBeginLoc(), |
5707 | diag::ext_out_of_line_qualified_id_type_names_constructor) |
5708 | << Name.Identifier |
5709 | << 0 /*injected-class-name used as template name*/ |
5710 | << TemplateKWLoc.isValid(); |
5711 | } |
5712 | return TNK; |
5713 | } |
5714 | |
5715 | if (!MemberOfUnknownSpecialization) { |
5716 | // Didn't find a template name, and the lookup wasn't dependent. |
5717 | // Do the lookup again to determine if this is a "nothing found" case or |
5718 | // a "not a template" case. FIXME: Refactor isTemplateName so we don't |
5719 | // need to do this. |
5720 | DeclarationNameInfo DNI = GetNameFromUnqualifiedId(Name); |
5721 | LookupResult R(*this, DNI.getName(), Name.getBeginLoc(), |
5722 | LookupOrdinaryName); |
5723 | bool MOUS; |
5724 | // Tell LookupTemplateName that we require a template so that it diagnoses |
5725 | // cases where it finds a non-template. |
5726 | RequiredTemplateKind RTK = TemplateKWLoc.isValid() |
5727 | ? RequiredTemplateKind(TemplateKWLoc) |
5728 | : TemplateNameIsRequired; |
5729 | if (!LookupTemplateName(Found&: R, S, SS, ObjectType: ObjectType.get(), EnteringContext, MemberOfUnknownSpecialization&: MOUS, |
5730 | RequiredTemplate: RTK, ATK: nullptr, /*AllowTypoCorrection=*/false) && |
5731 | !R.isAmbiguous()) { |
5732 | if (LookupCtx) |
5733 | Diag(Name.getBeginLoc(), diag::err_no_member) |
5734 | << DNI.getName() << LookupCtx << SS.getRange(); |
5735 | else |
5736 | Diag(Name.getBeginLoc(), diag::err_undeclared_use) |
5737 | << DNI.getName() << SS.getRange(); |
5738 | } |
5739 | return TNK_Non_template; |
5740 | } |
5741 | |
5742 | NestedNameSpecifier *Qualifier = SS.getScopeRep(); |
5743 | |
5744 | switch (Name.getKind()) { |
5745 | case UnqualifiedIdKind::IK_Identifier: |
5746 | Result = TemplateTy::make( |
5747 | P: Context.getDependentTemplateName(NNS: Qualifier, Name: Name.Identifier)); |
5748 | return TNK_Dependent_template_name; |
5749 | |
5750 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
5751 | Result = TemplateTy::make(P: Context.getDependentTemplateName( |
5752 | NNS: Qualifier, Operator: Name.OperatorFunctionId.Operator)); |
5753 | return TNK_Function_template; |
5754 | |
5755 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
5756 | // This is a kind of template name, but can never occur in a dependent |
5757 | // scope (literal operators can only be declared at namespace scope). |
5758 | break; |
5759 | |
5760 | default: |
5761 | break; |
5762 | } |
5763 | |
5764 | // This name cannot possibly name a dependent template. Diagnose this now |
5765 | // rather than building a dependent template name that can never be valid. |
5766 | Diag(Name.getBeginLoc(), |
5767 | diag::err_template_kw_refers_to_dependent_non_template) |
5768 | << GetNameFromUnqualifiedId(Name).getName() << Name.getSourceRange() |
5769 | << TemplateKWLoc.isValid() << TemplateKWLoc; |
5770 | return TNK_Non_template; |
5771 | } |
5772 | |
5773 | bool Sema::CheckTemplateTypeArgument( |
5774 | TemplateTypeParmDecl *Param, TemplateArgumentLoc &AL, |
5775 | SmallVectorImpl<TemplateArgument> &SugaredConverted, |
5776 | SmallVectorImpl<TemplateArgument> &CanonicalConverted) { |
5777 | const TemplateArgument &Arg = AL.getArgument(); |
5778 | QualType ArgType; |
5779 | TypeSourceInfo *TSI = nullptr; |
5780 | |
5781 | // Check template type parameter. |
5782 | switch(Arg.getKind()) { |
5783 | case TemplateArgument::Type: |
5784 | // C++ [temp.arg.type]p1: |
5785 | // A template-argument for a template-parameter which is a |
5786 | // type shall be a type-id. |
5787 | ArgType = Arg.getAsType(); |
5788 | TSI = AL.getTypeSourceInfo(); |
5789 | break; |
5790 | case TemplateArgument::Template: |
5791 | case TemplateArgument::TemplateExpansion: { |
5792 | // We have a template type parameter but the template argument |
5793 | // is a template without any arguments. |
5794 | SourceRange SR = AL.getSourceRange(); |
5795 | TemplateName Name = Arg.getAsTemplateOrTemplatePattern(); |
5796 | diagnoseMissingTemplateArguments(Name, Loc: SR.getEnd()); |
5797 | return true; |
5798 | } |
5799 | case TemplateArgument::Expression: { |
5800 | // We have a template type parameter but the template argument is an |
5801 | // expression; see if maybe it is missing the "typename" keyword. |
5802 | CXXScopeSpec SS; |
5803 | DeclarationNameInfo NameInfo; |
5804 | |
5805 | if (DependentScopeDeclRefExpr *ArgExpr = |
5806 | dyn_cast<DependentScopeDeclRefExpr>(Val: Arg.getAsExpr())) { |
5807 | SS.Adopt(Other: ArgExpr->getQualifierLoc()); |
5808 | NameInfo = ArgExpr->getNameInfo(); |
5809 | } else if (CXXDependentScopeMemberExpr *ArgExpr = |
5810 | dyn_cast<CXXDependentScopeMemberExpr>(Val: Arg.getAsExpr())) { |
5811 | if (ArgExpr->isImplicitAccess()) { |
5812 | SS.Adopt(Other: ArgExpr->getQualifierLoc()); |
5813 | NameInfo = ArgExpr->getMemberNameInfo(); |
5814 | } |
5815 | } |
5816 | |
5817 | if (auto *II = NameInfo.getName().getAsIdentifierInfo()) { |
5818 | LookupResult Result(*this, NameInfo, LookupOrdinaryName); |
5819 | LookupParsedName(R&: Result, S: CurScope, SS: &SS); |
5820 | |
5821 | if (Result.getAsSingle<TypeDecl>() || |
5822 | Result.getResultKind() == |
5823 | LookupResult::NotFoundInCurrentInstantiation) { |
5824 | assert(SS.getScopeRep() && "dependent scope expr must has a scope!" ); |
5825 | // Suggest that the user add 'typename' before the NNS. |
5826 | SourceLocation Loc = AL.getSourceRange().getBegin(); |
5827 | Diag(Loc, getLangOpts().MSVCCompat |
5828 | ? diag::ext_ms_template_type_arg_missing_typename |
5829 | : diag::err_template_arg_must_be_type_suggest) |
5830 | << FixItHint::CreateInsertion(Loc, "typename " ); |
5831 | NoteTemplateParameterLocation(*Param); |
5832 | |
5833 | // Recover by synthesizing a type using the location information that we |
5834 | // already have. |
5835 | ArgType = Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::Typename, |
5836 | NNS: SS.getScopeRep(), Name: II); |
5837 | TypeLocBuilder TLB; |
5838 | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T: ArgType); |
5839 | TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/)); |
5840 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
5841 | TL.setNameLoc(NameInfo.getLoc()); |
5842 | TSI = TLB.getTypeSourceInfo(Context, T: ArgType); |
5843 | |
5844 | // Overwrite our input TemplateArgumentLoc so that we can recover |
5845 | // properly. |
5846 | AL = TemplateArgumentLoc(TemplateArgument(ArgType), |
5847 | TemplateArgumentLocInfo(TSI)); |
5848 | |
5849 | break; |
5850 | } |
5851 | } |
5852 | // fallthrough |
5853 | [[fallthrough]]; |
5854 | } |
5855 | default: { |
5856 | // We allow instantiateing a template with template argument packs when |
5857 | // building deduction guides. |
5858 | if (Arg.getKind() == TemplateArgument::Pack && |
5859 | CodeSynthesisContexts.back().Kind == |
5860 | Sema::CodeSynthesisContext::BuildingDeductionGuides) { |
5861 | SugaredConverted.push_back(Elt: Arg); |
5862 | CanonicalConverted.push_back(Elt: Arg); |
5863 | return false; |
5864 | } |
5865 | // We have a template type parameter but the template argument |
5866 | // is not a type. |
5867 | SourceRange SR = AL.getSourceRange(); |
5868 | Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR; |
5869 | NoteTemplateParameterLocation(*Param); |
5870 | |
5871 | return true; |
5872 | } |
5873 | } |
5874 | |
5875 | if (CheckTemplateArgument(Arg: TSI)) |
5876 | return true; |
5877 | |
5878 | // Objective-C ARC: |
5879 | // If an explicitly-specified template argument type is a lifetime type |
5880 | // with no lifetime qualifier, the __strong lifetime qualifier is inferred. |
5881 | if (getLangOpts().ObjCAutoRefCount && |
5882 | ArgType->isObjCLifetimeType() && |
5883 | !ArgType.getObjCLifetime()) { |
5884 | Qualifiers Qs; |
5885 | Qs.setObjCLifetime(Qualifiers::OCL_Strong); |
5886 | ArgType = Context.getQualifiedType(T: ArgType, Qs); |
5887 | } |
5888 | |
5889 | SugaredConverted.push_back(Elt: TemplateArgument(ArgType)); |
5890 | CanonicalConverted.push_back( |
5891 | Elt: TemplateArgument(Context.getCanonicalType(T: ArgType))); |
5892 | return false; |
5893 | } |
5894 | |
5895 | /// Substitute template arguments into the default template argument for |
5896 | /// the given template type parameter. |
5897 | /// |
5898 | /// \param SemaRef the semantic analysis object for which we are performing |
5899 | /// the substitution. |
5900 | /// |
5901 | /// \param Template the template that we are synthesizing template arguments |
5902 | /// for. |
5903 | /// |
5904 | /// \param TemplateLoc the location of the template name that started the |
5905 | /// template-id we are checking. |
5906 | /// |
5907 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
5908 | /// terminates the template-id. |
5909 | /// |
5910 | /// \param Param the template template parameter whose default we are |
5911 | /// substituting into. |
5912 | /// |
5913 | /// \param Converted the list of template arguments provided for template |
5914 | /// parameters that precede \p Param in the template parameter list. |
5915 | /// \returns the substituted template argument, or NULL if an error occurred. |
5916 | static TypeSourceInfo *SubstDefaultTemplateArgument( |
5917 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
5918 | SourceLocation RAngleLoc, TemplateTypeParmDecl *Param, |
5919 | ArrayRef<TemplateArgument> SugaredConverted, |
5920 | ArrayRef<TemplateArgument> CanonicalConverted) { |
5921 | TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo(); |
5922 | |
5923 | // If the argument type is dependent, instantiate it now based |
5924 | // on the previously-computed template arguments. |
5925 | if (ArgType->getType()->isInstantiationDependentType()) { |
5926 | Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, |
5927 | SugaredConverted, |
5928 | SourceRange(TemplateLoc, RAngleLoc)); |
5929 | if (Inst.isInvalid()) |
5930 | return nullptr; |
5931 | |
5932 | // Only substitute for the innermost template argument list. |
5933 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
5934 | /*Final=*/true); |
5935 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
5936 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
5937 | |
5938 | bool ForLambdaCallOperator = false; |
5939 | if (const auto *Rec = dyn_cast<CXXRecordDecl>(Template->getDeclContext())) |
5940 | ForLambdaCallOperator = Rec->isLambda(); |
5941 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext(), |
5942 | !ForLambdaCallOperator); |
5943 | ArgType = |
5944 | SemaRef.SubstType(ArgType, TemplateArgLists, |
5945 | Param->getDefaultArgumentLoc(), Param->getDeclName()); |
5946 | } |
5947 | |
5948 | return ArgType; |
5949 | } |
5950 | |
5951 | /// Substitute template arguments into the default template argument for |
5952 | /// the given non-type template parameter. |
5953 | /// |
5954 | /// \param SemaRef the semantic analysis object for which we are performing |
5955 | /// the substitution. |
5956 | /// |
5957 | /// \param Template the template that we are synthesizing template arguments |
5958 | /// for. |
5959 | /// |
5960 | /// \param TemplateLoc the location of the template name that started the |
5961 | /// template-id we are checking. |
5962 | /// |
5963 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
5964 | /// terminates the template-id. |
5965 | /// |
5966 | /// \param Param the non-type template parameter whose default we are |
5967 | /// substituting into. |
5968 | /// |
5969 | /// \param Converted the list of template arguments provided for template |
5970 | /// parameters that precede \p Param in the template parameter list. |
5971 | /// |
5972 | /// \returns the substituted template argument, or NULL if an error occurred. |
5973 | static ExprResult SubstDefaultTemplateArgument( |
5974 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
5975 | SourceLocation RAngleLoc, NonTypeTemplateParmDecl *Param, |
5976 | ArrayRef<TemplateArgument> SugaredConverted, |
5977 | ArrayRef<TemplateArgument> CanonicalConverted) { |
5978 | Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Param, Template, |
5979 | SugaredConverted, |
5980 | SourceRange(TemplateLoc, RAngleLoc)); |
5981 | if (Inst.isInvalid()) |
5982 | return ExprError(); |
5983 | |
5984 | // Only substitute for the innermost template argument list. |
5985 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
5986 | /*Final=*/true); |
5987 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
5988 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
5989 | |
5990 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); |
5991 | EnterExpressionEvaluationContext ConstantEvaluated( |
5992 | SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
5993 | return SemaRef.SubstExpr(E: Param->getDefaultArgument(), TemplateArgs: TemplateArgLists); |
5994 | } |
5995 | |
5996 | /// Substitute template arguments into the default template argument for |
5997 | /// the given template template parameter. |
5998 | /// |
5999 | /// \param SemaRef the semantic analysis object for which we are performing |
6000 | /// the substitution. |
6001 | /// |
6002 | /// \param Template the template that we are synthesizing template arguments |
6003 | /// for. |
6004 | /// |
6005 | /// \param TemplateLoc the location of the template name that started the |
6006 | /// template-id we are checking. |
6007 | /// |
6008 | /// \param RAngleLoc the location of the right angle bracket ('>') that |
6009 | /// terminates the template-id. |
6010 | /// |
6011 | /// \param Param the template template parameter whose default we are |
6012 | /// substituting into. |
6013 | /// |
6014 | /// \param Converted the list of template arguments provided for template |
6015 | /// parameters that precede \p Param in the template parameter list. |
6016 | /// |
6017 | /// \param QualifierLoc Will be set to the nested-name-specifier (with |
6018 | /// source-location information) that precedes the template name. |
6019 | /// |
6020 | /// \returns the substituted template argument, or NULL if an error occurred. |
6021 | static TemplateName SubstDefaultTemplateArgument( |
6022 | Sema &SemaRef, TemplateDecl *Template, SourceLocation TemplateLoc, |
6023 | SourceLocation RAngleLoc, TemplateTemplateParmDecl *Param, |
6024 | ArrayRef<TemplateArgument> SugaredConverted, |
6025 | ArrayRef<TemplateArgument> CanonicalConverted, |
6026 | NestedNameSpecifierLoc &QualifierLoc) { |
6027 | Sema::InstantiatingTemplate Inst( |
6028 | SemaRef, TemplateLoc, TemplateParameter(Param), Template, |
6029 | SugaredConverted, SourceRange(TemplateLoc, RAngleLoc)); |
6030 | if (Inst.isInvalid()) |
6031 | return TemplateName(); |
6032 | |
6033 | // Only substitute for the innermost template argument list. |
6034 | MultiLevelTemplateArgumentList TemplateArgLists(Template, SugaredConverted, |
6035 | /*Final=*/true); |
6036 | for (unsigned i = 0, e = Param->getDepth(); i != e; ++i) |
6037 | TemplateArgLists.addOuterTemplateArguments(std::nullopt); |
6038 | |
6039 | Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext()); |
6040 | // Substitute into the nested-name-specifier first, |
6041 | QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc(); |
6042 | if (QualifierLoc) { |
6043 | QualifierLoc = |
6044 | SemaRef.SubstNestedNameSpecifierLoc(NNS: QualifierLoc, TemplateArgs: TemplateArgLists); |
6045 | if (!QualifierLoc) |
6046 | return TemplateName(); |
6047 | } |
6048 | |
6049 | return SemaRef.SubstTemplateName( |
6050 | QualifierLoc, |
6051 | Name: Param->getDefaultArgument().getArgument().getAsTemplate(), |
6052 | Loc: Param->getDefaultArgument().getTemplateNameLoc(), |
6053 | TemplateArgs: TemplateArgLists); |
6054 | } |
6055 | |
6056 | /// If the given template parameter has a default template |
6057 | /// argument, substitute into that default template argument and |
6058 | /// return the corresponding template argument. |
6059 | TemplateArgumentLoc Sema::SubstDefaultTemplateArgumentIfAvailable( |
6060 | TemplateDecl *Template, SourceLocation TemplateLoc, |
6061 | SourceLocation RAngleLoc, Decl *Param, |
6062 | ArrayRef<TemplateArgument> SugaredConverted, |
6063 | ArrayRef<TemplateArgument> CanonicalConverted, bool &HasDefaultArg) { |
6064 | HasDefaultArg = false; |
6065 | |
6066 | if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
6067 | if (!hasReachableDefaultArgument(TypeParm)) |
6068 | return TemplateArgumentLoc(); |
6069 | |
6070 | HasDefaultArg = true; |
6071 | TypeSourceInfo *DI = SubstDefaultTemplateArgument( |
6072 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TypeParm, SugaredConverted, |
6073 | CanonicalConverted); |
6074 | if (DI) |
6075 | return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI); |
6076 | |
6077 | return TemplateArgumentLoc(); |
6078 | } |
6079 | |
6080 | if (NonTypeTemplateParmDecl *NonTypeParm |
6081 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
6082 | if (!hasReachableDefaultArgument(NonTypeParm)) |
6083 | return TemplateArgumentLoc(); |
6084 | |
6085 | HasDefaultArg = true; |
6086 | ExprResult Arg = SubstDefaultTemplateArgument( |
6087 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: NonTypeParm, SugaredConverted, |
6088 | CanonicalConverted); |
6089 | if (Arg.isInvalid()) |
6090 | return TemplateArgumentLoc(); |
6091 | |
6092 | Expr *ArgE = Arg.getAs<Expr>(); |
6093 | return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE); |
6094 | } |
6095 | |
6096 | TemplateTemplateParmDecl *TempTempParm |
6097 | = cast<TemplateTemplateParmDecl>(Val: Param); |
6098 | if (!hasReachableDefaultArgument(TempTempParm)) |
6099 | return TemplateArgumentLoc(); |
6100 | |
6101 | HasDefaultArg = true; |
6102 | NestedNameSpecifierLoc QualifierLoc; |
6103 | TemplateName TName = SubstDefaultTemplateArgument( |
6104 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TempTempParm, SugaredConverted, |
6105 | CanonicalConverted, QualifierLoc); |
6106 | if (TName.isNull()) |
6107 | return TemplateArgumentLoc(); |
6108 | |
6109 | return TemplateArgumentLoc( |
6110 | Context, TemplateArgument(TName), |
6111 | TempTempParm->getDefaultArgument().getTemplateQualifierLoc(), |
6112 | TempTempParm->getDefaultArgument().getTemplateNameLoc()); |
6113 | } |
6114 | |
6115 | /// Convert a template-argument that we parsed as a type into a template, if |
6116 | /// possible. C++ permits injected-class-names to perform dual service as |
6117 | /// template template arguments and as template type arguments. |
6118 | static TemplateArgumentLoc |
6119 | convertTypeTemplateArgumentToTemplate(ASTContext &Context, TypeLoc TLoc) { |
6120 | // Extract and step over any surrounding nested-name-specifier. |
6121 | NestedNameSpecifierLoc QualLoc; |
6122 | if (auto ETLoc = TLoc.getAs<ElaboratedTypeLoc>()) { |
6123 | if (ETLoc.getTypePtr()->getKeyword() != ElaboratedTypeKeyword::None) |
6124 | return TemplateArgumentLoc(); |
6125 | |
6126 | QualLoc = ETLoc.getQualifierLoc(); |
6127 | TLoc = ETLoc.getNamedTypeLoc(); |
6128 | } |
6129 | // If this type was written as an injected-class-name, it can be used as a |
6130 | // template template argument. |
6131 | if (auto InjLoc = TLoc.getAs<InjectedClassNameTypeLoc>()) |
6132 | return TemplateArgumentLoc(Context, InjLoc.getTypePtr()->getTemplateName(), |
6133 | QualLoc, InjLoc.getNameLoc()); |
6134 | |
6135 | // If this type was written as an injected-class-name, it may have been |
6136 | // converted to a RecordType during instantiation. If the RecordType is |
6137 | // *not* wrapped in a TemplateSpecializationType and denotes a class |
6138 | // template specialization, it must have come from an injected-class-name. |
6139 | if (auto RecLoc = TLoc.getAs<RecordTypeLoc>()) |
6140 | if (auto *CTSD = |
6141 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RecLoc.getDecl())) |
6142 | return TemplateArgumentLoc(Context, |
6143 | TemplateName(CTSD->getSpecializedTemplate()), |
6144 | QualLoc, RecLoc.getNameLoc()); |
6145 | |
6146 | return TemplateArgumentLoc(); |
6147 | } |
6148 | |
6149 | /// Check that the given template argument corresponds to the given |
6150 | /// template parameter. |
6151 | /// |
6152 | /// \param Param The template parameter against which the argument will be |
6153 | /// checked. |
6154 | /// |
6155 | /// \param Arg The template argument, which may be updated due to conversions. |
6156 | /// |
6157 | /// \param Template The template in which the template argument resides. |
6158 | /// |
6159 | /// \param TemplateLoc The location of the template name for the template |
6160 | /// whose argument list we're matching. |
6161 | /// |
6162 | /// \param RAngleLoc The location of the right angle bracket ('>') that closes |
6163 | /// the template argument list. |
6164 | /// |
6165 | /// \param ArgumentPackIndex The index into the argument pack where this |
6166 | /// argument will be placed. Only valid if the parameter is a parameter pack. |
6167 | /// |
6168 | /// \param Converted The checked, converted argument will be added to the |
6169 | /// end of this small vector. |
6170 | /// |
6171 | /// \param CTAK Describes how we arrived at this particular template argument: |
6172 | /// explicitly written, deduced, etc. |
6173 | /// |
6174 | /// \returns true on error, false otherwise. |
6175 | bool Sema::CheckTemplateArgument( |
6176 | NamedDecl *Param, TemplateArgumentLoc &Arg, NamedDecl *Template, |
6177 | SourceLocation TemplateLoc, SourceLocation RAngleLoc, |
6178 | unsigned ArgumentPackIndex, |
6179 | SmallVectorImpl<TemplateArgument> &SugaredConverted, |
6180 | SmallVectorImpl<TemplateArgument> &CanonicalConverted, |
6181 | CheckTemplateArgumentKind CTAK) { |
6182 | // Check template type parameters. |
6183 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) |
6184 | return CheckTemplateTypeArgument(Param: TTP, AL&: Arg, SugaredConverted, |
6185 | CanonicalConverted); |
6186 | |
6187 | // Check non-type template parameters. |
6188 | if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
6189 | // Do substitution on the type of the non-type template parameter |
6190 | // with the template arguments we've seen thus far. But if the |
6191 | // template has a dependent context then we cannot substitute yet. |
6192 | QualType NTTPType = NTTP->getType(); |
6193 | if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack()) |
6194 | NTTPType = NTTP->getExpansionType(I: ArgumentPackIndex); |
6195 | |
6196 | if (NTTPType->isInstantiationDependentType() && |
6197 | !isa<TemplateTemplateParmDecl>(Val: Template) && |
6198 | !Template->getDeclContext()->isDependentContext()) { |
6199 | // Do substitution on the type of the non-type template parameter. |
6200 | InstantiatingTemplate Inst(*this, TemplateLoc, Template, NTTP, |
6201 | SugaredConverted, |
6202 | SourceRange(TemplateLoc, RAngleLoc)); |
6203 | if (Inst.isInvalid()) |
6204 | return true; |
6205 | |
6206 | MultiLevelTemplateArgumentList MLTAL(Template, SugaredConverted, |
6207 | /*Final=*/true); |
6208 | // If the parameter is a pack expansion, expand this slice of the pack. |
6209 | if (auto *PET = NTTPType->getAs<PackExpansionType>()) { |
6210 | Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, |
6211 | ArgumentPackIndex); |
6212 | NTTPType = SubstType(PET->getPattern(), MLTAL, NTTP->getLocation(), |
6213 | NTTP->getDeclName()); |
6214 | } else { |
6215 | NTTPType = SubstType(NTTPType, MLTAL, NTTP->getLocation(), |
6216 | NTTP->getDeclName()); |
6217 | } |
6218 | |
6219 | // If that worked, check the non-type template parameter type |
6220 | // for validity. |
6221 | if (!NTTPType.isNull()) |
6222 | NTTPType = CheckNonTypeTemplateParameterType(NTTPType, |
6223 | NTTP->getLocation()); |
6224 | if (NTTPType.isNull()) |
6225 | return true; |
6226 | } |
6227 | |
6228 | switch (Arg.getArgument().getKind()) { |
6229 | case TemplateArgument::Null: |
6230 | llvm_unreachable("Should never see a NULL template argument here" ); |
6231 | |
6232 | case TemplateArgument::Expression: { |
6233 | Expr *E = Arg.getArgument().getAsExpr(); |
6234 | TemplateArgument SugaredResult, CanonicalResult; |
6235 | unsigned CurSFINAEErrors = NumSFINAEErrors; |
6236 | ExprResult Res = CheckTemplateArgument(Param: NTTP, InstantiatedParamType: NTTPType, Arg: E, SugaredConverted&: SugaredResult, |
6237 | CanonicalConverted&: CanonicalResult, CTAK); |
6238 | if (Res.isInvalid()) |
6239 | return true; |
6240 | // If the current template argument causes an error, give up now. |
6241 | if (CurSFINAEErrors < NumSFINAEErrors) |
6242 | return true; |
6243 | |
6244 | // If the resulting expression is new, then use it in place of the |
6245 | // old expression in the template argument. |
6246 | if (Res.get() != E) { |
6247 | TemplateArgument TA(Res.get()); |
6248 | Arg = TemplateArgumentLoc(TA, Res.get()); |
6249 | } |
6250 | |
6251 | SugaredConverted.push_back(Elt: SugaredResult); |
6252 | CanonicalConverted.push_back(Elt: CanonicalResult); |
6253 | break; |
6254 | } |
6255 | |
6256 | case TemplateArgument::Declaration: |
6257 | case TemplateArgument::Integral: |
6258 | case TemplateArgument::StructuralValue: |
6259 | case TemplateArgument::NullPtr: |
6260 | // We've already checked this template argument, so just copy |
6261 | // it to the list of converted arguments. |
6262 | SugaredConverted.push_back(Elt: Arg.getArgument()); |
6263 | CanonicalConverted.push_back( |
6264 | Elt: Context.getCanonicalTemplateArgument(Arg: Arg.getArgument())); |
6265 | break; |
6266 | |
6267 | case TemplateArgument::Template: |
6268 | case TemplateArgument::TemplateExpansion: |
6269 | // We were given a template template argument. It may not be ill-formed; |
6270 | // see below. |
6271 | if (DependentTemplateName *DTN |
6272 | = Arg.getArgument().getAsTemplateOrTemplatePattern() |
6273 | .getAsDependentTemplateName()) { |
6274 | // We have a template argument such as \c T::template X, which we |
6275 | // parsed as a template template argument. However, since we now |
6276 | // know that we need a non-type template argument, convert this |
6277 | // template name into an expression. |
6278 | |
6279 | DeclarationNameInfo NameInfo(DTN->getIdentifier(), |
6280 | Arg.getTemplateNameLoc()); |
6281 | |
6282 | CXXScopeSpec SS; |
6283 | SS.Adopt(Other: Arg.getTemplateQualifierLoc()); |
6284 | // FIXME: the template-template arg was a DependentTemplateName, |
6285 | // so it was provided with a template keyword. However, its source |
6286 | // location is not stored in the template argument structure. |
6287 | SourceLocation TemplateKWLoc; |
6288 | ExprResult E = DependentScopeDeclRefExpr::Create( |
6289 | Context, QualifierLoc: SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, |
6290 | TemplateArgs: nullptr); |
6291 | |
6292 | // If we parsed the template argument as a pack expansion, create a |
6293 | // pack expansion expression. |
6294 | if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){ |
6295 | E = ActOnPackExpansion(Pattern: E.get(), EllipsisLoc: Arg.getTemplateEllipsisLoc()); |
6296 | if (E.isInvalid()) |
6297 | return true; |
6298 | } |
6299 | |
6300 | TemplateArgument SugaredResult, CanonicalResult; |
6301 | E = CheckTemplateArgument(Param: NTTP, InstantiatedParamType: NTTPType, Arg: E.get(), SugaredConverted&: SugaredResult, |
6302 | CanonicalConverted&: CanonicalResult, CTAK: CTAK_Specified); |
6303 | if (E.isInvalid()) |
6304 | return true; |
6305 | |
6306 | SugaredConverted.push_back(Elt: SugaredResult); |
6307 | CanonicalConverted.push_back(Elt: CanonicalResult); |
6308 | break; |
6309 | } |
6310 | |
6311 | // We have a template argument that actually does refer to a class |
6312 | // template, alias template, or template template parameter, and |
6313 | // therefore cannot be a non-type template argument. |
6314 | Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr) |
6315 | << Arg.getSourceRange(); |
6316 | NoteTemplateParameterLocation(Decl: *Param); |
6317 | |
6318 | return true; |
6319 | |
6320 | case TemplateArgument::Type: { |
6321 | // We have a non-type template parameter but the template |
6322 | // argument is a type. |
6323 | |
6324 | // C++ [temp.arg]p2: |
6325 | // In a template-argument, an ambiguity between a type-id and |
6326 | // an expression is resolved to a type-id, regardless of the |
6327 | // form of the corresponding template-parameter. |
6328 | // |
6329 | // We warn specifically about this case, since it can be rather |
6330 | // confusing for users. |
6331 | QualType T = Arg.getArgument().getAsType(); |
6332 | SourceRange SR = Arg.getSourceRange(); |
6333 | if (T->isFunctionType()) |
6334 | Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T; |
6335 | else |
6336 | Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR; |
6337 | NoteTemplateParameterLocation(Decl: *Param); |
6338 | return true; |
6339 | } |
6340 | |
6341 | case TemplateArgument::Pack: |
6342 | llvm_unreachable("Caller must expand template argument packs" ); |
6343 | } |
6344 | |
6345 | return false; |
6346 | } |
6347 | |
6348 | |
6349 | // Check template template parameters. |
6350 | TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Val: Param); |
6351 | |
6352 | TemplateParameterList *Params = TempParm->getTemplateParameters(); |
6353 | if (TempParm->isExpandedParameterPack()) |
6354 | Params = TempParm->getExpansionTemplateParameters(I: ArgumentPackIndex); |
6355 | |
6356 | // Substitute into the template parameter list of the template |
6357 | // template parameter, since previously-supplied template arguments |
6358 | // may appear within the template template parameter. |
6359 | // |
6360 | // FIXME: Skip this if the parameters aren't instantiation-dependent. |
6361 | { |
6362 | // Set up a template instantiation context. |
6363 | LocalInstantiationScope Scope(*this); |
6364 | InstantiatingTemplate Inst(*this, TemplateLoc, Template, TempParm, |
6365 | SugaredConverted, |
6366 | SourceRange(TemplateLoc, RAngleLoc)); |
6367 | if (Inst.isInvalid()) |
6368 | return true; |
6369 | |
6370 | Params = |
6371 | SubstTemplateParams(Params, Owner: CurContext, |
6372 | TemplateArgs: MultiLevelTemplateArgumentList( |
6373 | Template, SugaredConverted, /*Final=*/true), |
6374 | /*EvaluateConstraints=*/false); |
6375 | if (!Params) |
6376 | return true; |
6377 | } |
6378 | |
6379 | // C++1z [temp.local]p1: (DR1004) |
6380 | // When [the injected-class-name] is used [...] as a template-argument for |
6381 | // a template template-parameter [...] it refers to the class template |
6382 | // itself. |
6383 | if (Arg.getArgument().getKind() == TemplateArgument::Type) { |
6384 | TemplateArgumentLoc ConvertedArg = convertTypeTemplateArgumentToTemplate( |
6385 | Context, TLoc: Arg.getTypeSourceInfo()->getTypeLoc()); |
6386 | if (!ConvertedArg.getArgument().isNull()) |
6387 | Arg = ConvertedArg; |
6388 | } |
6389 | |
6390 | switch (Arg.getArgument().getKind()) { |
6391 | case TemplateArgument::Null: |
6392 | llvm_unreachable("Should never see a NULL template argument here" ); |
6393 | |
6394 | case TemplateArgument::Template: |
6395 | case TemplateArgument::TemplateExpansion: |
6396 | if (CheckTemplateTemplateArgument(Param: TempParm, Params, Arg)) |
6397 | return true; |
6398 | |
6399 | SugaredConverted.push_back(Elt: Arg.getArgument()); |
6400 | CanonicalConverted.push_back( |
6401 | Elt: Context.getCanonicalTemplateArgument(Arg: Arg.getArgument())); |
6402 | break; |
6403 | |
6404 | case TemplateArgument::Expression: |
6405 | case TemplateArgument::Type: |
6406 | // We have a template template parameter but the template |
6407 | // argument does not refer to a template. |
6408 | Diag(Arg.getLocation(), diag::err_template_arg_must_be_template) |
6409 | << getLangOpts().CPlusPlus11; |
6410 | return true; |
6411 | |
6412 | case TemplateArgument::Declaration: |
6413 | case TemplateArgument::Integral: |
6414 | case TemplateArgument::StructuralValue: |
6415 | case TemplateArgument::NullPtr: |
6416 | llvm_unreachable("non-type argument with template template parameter" ); |
6417 | |
6418 | case TemplateArgument::Pack: |
6419 | llvm_unreachable("Caller must expand template argument packs" ); |
6420 | } |
6421 | |
6422 | return false; |
6423 | } |
6424 | |
6425 | /// Diagnose a missing template argument. |
6426 | template<typename TemplateParmDecl> |
6427 | static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc, |
6428 | TemplateDecl *TD, |
6429 | const TemplateParmDecl *D, |
6430 | TemplateArgumentListInfo &Args) { |
6431 | // Dig out the most recent declaration of the template parameter; there may be |
6432 | // declarations of the template that are more recent than TD. |
6433 | D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl()) |
6434 | ->getTemplateParameters() |
6435 | ->getParam(D->getIndex())); |
6436 | |
6437 | // If there's a default argument that's not reachable, diagnose that we're |
6438 | // missing a module import. |
6439 | llvm::SmallVector<Module*, 8> Modules; |
6440 | if (D->hasDefaultArgument() && !S.hasReachableDefaultArgument(D, Modules: &Modules)) { |
6441 | S.diagnoseMissingImport(Loc, cast<NamedDecl>(Val: TD), |
6442 | D->getDefaultArgumentLoc(), Modules, |
6443 | Sema::MissingImportKind::DefaultArgument, |
6444 | /*Recover*/true); |
6445 | return true; |
6446 | } |
6447 | |
6448 | // FIXME: If there's a more recent default argument that *is* visible, |
6449 | // diagnose that it was declared too late. |
6450 | |
6451 | TemplateParameterList *Params = TD->getTemplateParameters(); |
6452 | |
6453 | S.Diag(Loc, diag::err_template_arg_list_different_arity) |
6454 | << /*not enough args*/0 |
6455 | << (int)S.getTemplateNameKindForDiagnostics(TemplateName(TD)) |
6456 | << TD; |
6457 | S.NoteTemplateLocation(*TD, Params->getSourceRange()); |
6458 | return true; |
6459 | } |
6460 | |
6461 | /// Check that the given template argument list is well-formed |
6462 | /// for specializing the given template. |
6463 | bool Sema::CheckTemplateArgumentList( |
6464 | TemplateDecl *Template, SourceLocation TemplateLoc, |
6465 | TemplateArgumentListInfo &TemplateArgs, bool PartialTemplateArgs, |
6466 | SmallVectorImpl<TemplateArgument> &SugaredConverted, |
6467 | SmallVectorImpl<TemplateArgument> &CanonicalConverted, |
6468 | bool UpdateArgsWithConversions, bool *ConstraintsNotSatisfied) { |
6469 | |
6470 | if (ConstraintsNotSatisfied) |
6471 | *ConstraintsNotSatisfied = false; |
6472 | |
6473 | // Make a copy of the template arguments for processing. Only make the |
6474 | // changes at the end when successful in matching the arguments to the |
6475 | // template. |
6476 | TemplateArgumentListInfo NewArgs = TemplateArgs; |
6477 | |
6478 | TemplateParameterList *Params = GetTemplateParameterList(TD: Template); |
6479 | |
6480 | SourceLocation RAngleLoc = NewArgs.getRAngleLoc(); |
6481 | |
6482 | // C++ [temp.arg]p1: |
6483 | // [...] The type and form of each template-argument specified in |
6484 | // a template-id shall match the type and form specified for the |
6485 | // corresponding parameter declared by the template in its |
6486 | // template-parameter-list. |
6487 | bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Val: Template); |
6488 | SmallVector<TemplateArgument, 2> SugaredArgumentPack; |
6489 | SmallVector<TemplateArgument, 2> CanonicalArgumentPack; |
6490 | unsigned ArgIdx = 0, NumArgs = NewArgs.size(); |
6491 | LocalInstantiationScope InstScope(*this, true); |
6492 | for (TemplateParameterList::iterator Param = Params->begin(), |
6493 | ParamEnd = Params->end(); |
6494 | Param != ParamEnd; /* increment in loop */) { |
6495 | // If we have an expanded parameter pack, make sure we don't have too |
6496 | // many arguments. |
6497 | if (std::optional<unsigned> Expansions = getExpandedPackSize(Param: *Param)) { |
6498 | if (*Expansions == SugaredArgumentPack.size()) { |
6499 | // We're done with this parameter pack. Pack up its arguments and add |
6500 | // them to the list. |
6501 | SugaredConverted.push_back( |
6502 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
6503 | SugaredArgumentPack.clear(); |
6504 | |
6505 | CanonicalConverted.push_back( |
6506 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
6507 | CanonicalArgumentPack.clear(); |
6508 | |
6509 | // This argument is assigned to the next parameter. |
6510 | ++Param; |
6511 | continue; |
6512 | } else if (ArgIdx == NumArgs && !PartialTemplateArgs) { |
6513 | // Not enough arguments for this parameter pack. |
6514 | Diag(TemplateLoc, diag::err_template_arg_list_different_arity) |
6515 | << /*not enough args*/0 |
6516 | << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) |
6517 | << Template; |
6518 | NoteTemplateLocation(*Template, Params->getSourceRange()); |
6519 | return true; |
6520 | } |
6521 | } |
6522 | |
6523 | if (ArgIdx < NumArgs) { |
6524 | // Check the template argument we were given. |
6525 | if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template, TemplateLoc, |
6526 | RAngleLoc, SugaredArgumentPack.size(), |
6527 | SugaredConverted, CanonicalConverted, |
6528 | CTAK_Specified)) |
6529 | return true; |
6530 | |
6531 | CanonicalConverted.back().setIsDefaulted( |
6532 | clang::isSubstitutedDefaultArgument( |
6533 | Ctx&: Context, Arg: NewArgs[ArgIdx].getArgument(), Param: *Param, |
6534 | Args: CanonicalConverted, Depth: Params->getDepth())); |
6535 | |
6536 | bool PackExpansionIntoNonPack = |
6537 | NewArgs[ArgIdx].getArgument().isPackExpansion() && |
6538 | (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(Param: *Param)); |
6539 | if (PackExpansionIntoNonPack && (isa<TypeAliasTemplateDecl>(Val: Template) || |
6540 | isa<ConceptDecl>(Val: Template))) { |
6541 | // Core issue 1430: we have a pack expansion as an argument to an |
6542 | // alias template, and it's not part of a parameter pack. This |
6543 | // can't be canonicalized, so reject it now. |
6544 | // As for concepts - we cannot normalize constraints where this |
6545 | // situation exists. |
6546 | Diag(NewArgs[ArgIdx].getLocation(), |
6547 | diag::err_template_expansion_into_fixed_list) |
6548 | << (isa<ConceptDecl>(Template) ? 1 : 0) |
6549 | << NewArgs[ArgIdx].getSourceRange(); |
6550 | NoteTemplateParameterLocation(Decl: **Param); |
6551 | return true; |
6552 | } |
6553 | |
6554 | // We're now done with this argument. |
6555 | ++ArgIdx; |
6556 | |
6557 | if ((*Param)->isTemplateParameterPack()) { |
6558 | // The template parameter was a template parameter pack, so take the |
6559 | // deduced argument and place it on the argument pack. Note that we |
6560 | // stay on the same template parameter so that we can deduce more |
6561 | // arguments. |
6562 | SugaredArgumentPack.push_back(Elt: SugaredConverted.pop_back_val()); |
6563 | CanonicalArgumentPack.push_back(Elt: CanonicalConverted.pop_back_val()); |
6564 | } else { |
6565 | // Move to the next template parameter. |
6566 | ++Param; |
6567 | } |
6568 | |
6569 | // If we just saw a pack expansion into a non-pack, then directly convert |
6570 | // the remaining arguments, because we don't know what parameters they'll |
6571 | // match up with. |
6572 | if (PackExpansionIntoNonPack) { |
6573 | if (!SugaredArgumentPack.empty()) { |
6574 | // If we were part way through filling in an expanded parameter pack, |
6575 | // fall back to just producing individual arguments. |
6576 | SugaredConverted.insert(I: SugaredConverted.end(), |
6577 | From: SugaredArgumentPack.begin(), |
6578 | To: SugaredArgumentPack.end()); |
6579 | SugaredArgumentPack.clear(); |
6580 | |
6581 | CanonicalConverted.insert(I: CanonicalConverted.end(), |
6582 | From: CanonicalArgumentPack.begin(), |
6583 | To: CanonicalArgumentPack.end()); |
6584 | CanonicalArgumentPack.clear(); |
6585 | } |
6586 | |
6587 | while (ArgIdx < NumArgs) { |
6588 | const TemplateArgument &Arg = NewArgs[ArgIdx].getArgument(); |
6589 | SugaredConverted.push_back(Elt: Arg); |
6590 | CanonicalConverted.push_back( |
6591 | Elt: Context.getCanonicalTemplateArgument(Arg)); |
6592 | ++ArgIdx; |
6593 | } |
6594 | |
6595 | return false; |
6596 | } |
6597 | |
6598 | continue; |
6599 | } |
6600 | |
6601 | // If we're checking a partial template argument list, we're done. |
6602 | if (PartialTemplateArgs) { |
6603 | if ((*Param)->isTemplateParameterPack() && !SugaredArgumentPack.empty()) { |
6604 | SugaredConverted.push_back( |
6605 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
6606 | CanonicalConverted.push_back( |
6607 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
6608 | } |
6609 | return false; |
6610 | } |
6611 | |
6612 | // If we have a template parameter pack with no more corresponding |
6613 | // arguments, just break out now and we'll fill in the argument pack below. |
6614 | if ((*Param)->isTemplateParameterPack()) { |
6615 | assert(!getExpandedPackSize(*Param) && |
6616 | "Should have dealt with this already" ); |
6617 | |
6618 | // A non-expanded parameter pack before the end of the parameter list |
6619 | // only occurs for an ill-formed template parameter list, unless we've |
6620 | // got a partial argument list for a function template, so just bail out. |
6621 | if (Param + 1 != ParamEnd) { |
6622 | assert( |
6623 | (Template->getMostRecentDecl()->getKind() != Decl::Kind::Concept) && |
6624 | "Concept templates must have parameter packs at the end." ); |
6625 | return true; |
6626 | } |
6627 | |
6628 | SugaredConverted.push_back( |
6629 | Elt: TemplateArgument::CreatePackCopy(Context, Args: SugaredArgumentPack)); |
6630 | SugaredArgumentPack.clear(); |
6631 | |
6632 | CanonicalConverted.push_back( |
6633 | Elt: TemplateArgument::CreatePackCopy(Context, Args: CanonicalArgumentPack)); |
6634 | CanonicalArgumentPack.clear(); |
6635 | |
6636 | ++Param; |
6637 | continue; |
6638 | } |
6639 | |
6640 | // Check whether we have a default argument. |
6641 | TemplateArgumentLoc Arg; |
6642 | |
6643 | // Retrieve the default template argument from the template |
6644 | // parameter. For each kind of template parameter, we substitute the |
6645 | // template arguments provided thus far and any "outer" template arguments |
6646 | // (when the template parameter was part of a nested template) into |
6647 | // the default argument. |
6648 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: *Param)) { |
6649 | if (!hasReachableDefaultArgument(TTP)) |
6650 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: TTP, |
6651 | Args&: NewArgs); |
6652 | |
6653 | TypeSourceInfo *ArgType = SubstDefaultTemplateArgument( |
6654 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TTP, SugaredConverted, |
6655 | CanonicalConverted); |
6656 | if (!ArgType) |
6657 | return true; |
6658 | |
6659 | Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()), |
6660 | ArgType); |
6661 | } else if (NonTypeTemplateParmDecl *NTTP |
6662 | = dyn_cast<NonTypeTemplateParmDecl>(Val: *Param)) { |
6663 | if (!hasReachableDefaultArgument(NTTP)) |
6664 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: NTTP, |
6665 | Args&: NewArgs); |
6666 | |
6667 | ExprResult E = SubstDefaultTemplateArgument( |
6668 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: NTTP, SugaredConverted, |
6669 | CanonicalConverted); |
6670 | if (E.isInvalid()) |
6671 | return true; |
6672 | |
6673 | Expr *Ex = E.getAs<Expr>(); |
6674 | Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex); |
6675 | } else { |
6676 | TemplateTemplateParmDecl *TempParm |
6677 | = cast<TemplateTemplateParmDecl>(Val: *Param); |
6678 | |
6679 | if (!hasReachableDefaultArgument(TempParm)) |
6680 | return diagnoseMissingArgument(S&: *this, Loc: TemplateLoc, TD: Template, D: TempParm, |
6681 | Args&: NewArgs); |
6682 | |
6683 | NestedNameSpecifierLoc QualifierLoc; |
6684 | TemplateName Name = SubstDefaultTemplateArgument( |
6685 | SemaRef&: *this, Template, TemplateLoc, RAngleLoc, Param: TempParm, SugaredConverted, |
6686 | CanonicalConverted, QualifierLoc); |
6687 | if (Name.isNull()) |
6688 | return true; |
6689 | |
6690 | Arg = TemplateArgumentLoc( |
6691 | Context, TemplateArgument(Name), QualifierLoc, |
6692 | TempParm->getDefaultArgument().getTemplateNameLoc()); |
6693 | } |
6694 | |
6695 | // Introduce an instantiation record that describes where we are using |
6696 | // the default template argument. We're not actually instantiating a |
6697 | // template here, we just create this object to put a note into the |
6698 | // context stack. |
6699 | InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, |
6700 | SugaredConverted, |
6701 | SourceRange(TemplateLoc, RAngleLoc)); |
6702 | if (Inst.isInvalid()) |
6703 | return true; |
6704 | |
6705 | // Check the default template argument. |
6706 | if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc, RAngleLoc, 0, |
6707 | SugaredConverted, CanonicalConverted, |
6708 | CTAK_Specified)) |
6709 | return true; |
6710 | |
6711 | CanonicalConverted.back().setIsDefaulted(true); |
6712 | |
6713 | // Core issue 150 (assumed resolution): if this is a template template |
6714 | // parameter, keep track of the default template arguments from the |
6715 | // template definition. |
6716 | if (isTemplateTemplateParameter) |
6717 | NewArgs.addArgument(Loc: Arg); |
6718 | |
6719 | // Move to the next template parameter and argument. |
6720 | ++Param; |
6721 | ++ArgIdx; |
6722 | } |
6723 | |
6724 | // If we're performing a partial argument substitution, allow any trailing |
6725 | // pack expansions; they might be empty. This can happen even if |
6726 | // PartialTemplateArgs is false (the list of arguments is complete but |
6727 | // still dependent). |
6728 | if (ArgIdx < NumArgs && CurrentInstantiationScope && |
6729 | CurrentInstantiationScope->getPartiallySubstitutedPack()) { |
6730 | while (ArgIdx < NumArgs && |
6731 | NewArgs[ArgIdx].getArgument().isPackExpansion()) { |
6732 | const TemplateArgument &Arg = NewArgs[ArgIdx++].getArgument(); |
6733 | SugaredConverted.push_back(Elt: Arg); |
6734 | CanonicalConverted.push_back(Elt: Context.getCanonicalTemplateArgument(Arg)); |
6735 | } |
6736 | } |
6737 | |
6738 | // If we have any leftover arguments, then there were too many arguments. |
6739 | // Complain and fail. |
6740 | if (ArgIdx < NumArgs) { |
6741 | Diag(TemplateLoc, diag::err_template_arg_list_different_arity) |
6742 | << /*too many args*/1 |
6743 | << (int)getTemplateNameKindForDiagnostics(TemplateName(Template)) |
6744 | << Template |
6745 | << SourceRange(NewArgs[ArgIdx].getLocation(), NewArgs.getRAngleLoc()); |
6746 | NoteTemplateLocation(*Template, Params->getSourceRange()); |
6747 | return true; |
6748 | } |
6749 | |
6750 | // No problems found with the new argument list, propagate changes back |
6751 | // to caller. |
6752 | if (UpdateArgsWithConversions) |
6753 | TemplateArgs = std::move(NewArgs); |
6754 | |
6755 | if (!PartialTemplateArgs) { |
6756 | // Setup the context/ThisScope for the case where we are needing to |
6757 | // re-instantiate constraints outside of normal instantiation. |
6758 | DeclContext *NewContext = Template->getDeclContext(); |
6759 | |
6760 | // If this template is in a template, make sure we extract the templated |
6761 | // decl. |
6762 | if (auto *TD = dyn_cast<TemplateDecl>(NewContext)) |
6763 | NewContext = Decl::castToDeclContext(TD->getTemplatedDecl()); |
6764 | auto *RD = dyn_cast<CXXRecordDecl>(Val: NewContext); |
6765 | |
6766 | Qualifiers ThisQuals; |
6767 | if (const auto *Method = |
6768 | dyn_cast_or_null<CXXMethodDecl>(Val: Template->getTemplatedDecl())) |
6769 | ThisQuals = Method->getMethodQualifiers(); |
6770 | |
6771 | ContextRAII Context(*this, NewContext); |
6772 | CXXThisScopeRAII(*this, RD, ThisQuals, RD != nullptr); |
6773 | |
6774 | MultiLevelTemplateArgumentList MLTAL = getTemplateInstantiationArgs( |
6775 | Template, NewContext, /*Final=*/false, CanonicalConverted, |
6776 | /*RelativeToPrimary=*/true, |
6777 | /*Pattern=*/nullptr, |
6778 | /*ForConceptInstantiation=*/true); |
6779 | if (EnsureTemplateArgumentListConstraints( |
6780 | Template, TemplateArgs: MLTAL, |
6781 | TemplateIDRange: SourceRange(TemplateLoc, TemplateArgs.getRAngleLoc()))) { |
6782 | if (ConstraintsNotSatisfied) |
6783 | *ConstraintsNotSatisfied = true; |
6784 | return true; |
6785 | } |
6786 | } |
6787 | |
6788 | return false; |
6789 | } |
6790 | |
6791 | namespace { |
6792 | class UnnamedLocalNoLinkageFinder |
6793 | : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool> |
6794 | { |
6795 | Sema &S; |
6796 | SourceRange SR; |
6797 | |
6798 | typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited; |
6799 | |
6800 | public: |
6801 | UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { } |
6802 | |
6803 | bool Visit(QualType T) { |
6804 | return T.isNull() ? false : inherited::Visit(T: T.getTypePtr()); |
6805 | } |
6806 | |
6807 | #define TYPE(Class, Parent) \ |
6808 | bool Visit##Class##Type(const Class##Type *); |
6809 | #define ABSTRACT_TYPE(Class, Parent) \ |
6810 | bool Visit##Class##Type(const Class##Type *) { return false; } |
6811 | #define NON_CANONICAL_TYPE(Class, Parent) \ |
6812 | bool Visit##Class##Type(const Class##Type *) { return false; } |
6813 | #include "clang/AST/TypeNodes.inc" |
6814 | |
6815 | bool VisitTagDecl(const TagDecl *Tag); |
6816 | bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS); |
6817 | }; |
6818 | } // end anonymous namespace |
6819 | |
6820 | bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) { |
6821 | return false; |
6822 | } |
6823 | |
6824 | bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) { |
6825 | return Visit(T: T->getElementType()); |
6826 | } |
6827 | |
6828 | bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) { |
6829 | return Visit(T: T->getPointeeType()); |
6830 | } |
6831 | |
6832 | bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType( |
6833 | const BlockPointerType* T) { |
6834 | return Visit(T: T->getPointeeType()); |
6835 | } |
6836 | |
6837 | bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType( |
6838 | const LValueReferenceType* T) { |
6839 | return Visit(T: T->getPointeeType()); |
6840 | } |
6841 | |
6842 | bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType( |
6843 | const RValueReferenceType* T) { |
6844 | return Visit(T: T->getPointeeType()); |
6845 | } |
6846 | |
6847 | bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType( |
6848 | const MemberPointerType* T) { |
6849 | return Visit(T: T->getPointeeType()) || Visit(T: QualType(T->getClass(), 0)); |
6850 | } |
6851 | |
6852 | bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType( |
6853 | const ConstantArrayType* T) { |
6854 | return Visit(T: T->getElementType()); |
6855 | } |
6856 | |
6857 | bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType( |
6858 | const IncompleteArrayType* T) { |
6859 | return Visit(T: T->getElementType()); |
6860 | } |
6861 | |
6862 | bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType( |
6863 | const VariableArrayType* T) { |
6864 | return Visit(T: T->getElementType()); |
6865 | } |
6866 | |
6867 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType( |
6868 | const DependentSizedArrayType* T) { |
6869 | return Visit(T: T->getElementType()); |
6870 | } |
6871 | |
6872 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType( |
6873 | const DependentSizedExtVectorType* T) { |
6874 | return Visit(T: T->getElementType()); |
6875 | } |
6876 | |
6877 | bool UnnamedLocalNoLinkageFinder::VisitDependentSizedMatrixType( |
6878 | const DependentSizedMatrixType *T) { |
6879 | return Visit(T: T->getElementType()); |
6880 | } |
6881 | |
6882 | bool UnnamedLocalNoLinkageFinder::VisitDependentAddressSpaceType( |
6883 | const DependentAddressSpaceType *T) { |
6884 | return Visit(T: T->getPointeeType()); |
6885 | } |
6886 | |
6887 | bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) { |
6888 | return Visit(T: T->getElementType()); |
6889 | } |
6890 | |
6891 | bool UnnamedLocalNoLinkageFinder::VisitDependentVectorType( |
6892 | const DependentVectorType *T) { |
6893 | return Visit(T: T->getElementType()); |
6894 | } |
6895 | |
6896 | bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) { |
6897 | return Visit(T: T->getElementType()); |
6898 | } |
6899 | |
6900 | bool UnnamedLocalNoLinkageFinder::VisitConstantMatrixType( |
6901 | const ConstantMatrixType *T) { |
6902 | return Visit(T: T->getElementType()); |
6903 | } |
6904 | |
6905 | bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType( |
6906 | const FunctionProtoType* T) { |
6907 | for (const auto &A : T->param_types()) { |
6908 | if (Visit(T: A)) |
6909 | return true; |
6910 | } |
6911 | |
6912 | return Visit(T: T->getReturnType()); |
6913 | } |
6914 | |
6915 | bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType( |
6916 | const FunctionNoProtoType* T) { |
6917 | return Visit(T: T->getReturnType()); |
6918 | } |
6919 | |
6920 | bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType( |
6921 | const UnresolvedUsingType*) { |
6922 | return false; |
6923 | } |
6924 | |
6925 | bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) { |
6926 | return false; |
6927 | } |
6928 | |
6929 | bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) { |
6930 | return Visit(T: T->getUnmodifiedType()); |
6931 | } |
6932 | |
6933 | bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) { |
6934 | return false; |
6935 | } |
6936 | |
6937 | bool UnnamedLocalNoLinkageFinder::VisitPackIndexingType( |
6938 | const PackIndexingType *) { |
6939 | return false; |
6940 | } |
6941 | |
6942 | bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType( |
6943 | const UnaryTransformType*) { |
6944 | return false; |
6945 | } |
6946 | |
6947 | bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) { |
6948 | return Visit(T: T->getDeducedType()); |
6949 | } |
6950 | |
6951 | bool UnnamedLocalNoLinkageFinder::VisitDeducedTemplateSpecializationType( |
6952 | const DeducedTemplateSpecializationType *T) { |
6953 | return Visit(T: T->getDeducedType()); |
6954 | } |
6955 | |
6956 | bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) { |
6957 | return VisitTagDecl(T->getDecl()); |
6958 | } |
6959 | |
6960 | bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) { |
6961 | return VisitTagDecl(T->getDecl()); |
6962 | } |
6963 | |
6964 | bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType( |
6965 | const TemplateTypeParmType*) { |
6966 | return false; |
6967 | } |
6968 | |
6969 | bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType( |
6970 | const SubstTemplateTypeParmPackType *) { |
6971 | return false; |
6972 | } |
6973 | |
6974 | bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType( |
6975 | const TemplateSpecializationType*) { |
6976 | return false; |
6977 | } |
6978 | |
6979 | bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType( |
6980 | const InjectedClassNameType* T) { |
6981 | return VisitTagDecl(T->getDecl()); |
6982 | } |
6983 | |
6984 | bool UnnamedLocalNoLinkageFinder::VisitDependentNameType( |
6985 | const DependentNameType* T) { |
6986 | return VisitNestedNameSpecifier(NNS: T->getQualifier()); |
6987 | } |
6988 | |
6989 | bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType( |
6990 | const DependentTemplateSpecializationType* T) { |
6991 | if (auto *Q = T->getQualifier()) |
6992 | return VisitNestedNameSpecifier(NNS: Q); |
6993 | return false; |
6994 | } |
6995 | |
6996 | bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType( |
6997 | const PackExpansionType* T) { |
6998 | return Visit(T: T->getPattern()); |
6999 | } |
7000 | |
7001 | bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) { |
7002 | return false; |
7003 | } |
7004 | |
7005 | bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType( |
7006 | const ObjCInterfaceType *) { |
7007 | return false; |
7008 | } |
7009 | |
7010 | bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType( |
7011 | const ObjCObjectPointerType *) { |
7012 | return false; |
7013 | } |
7014 | |
7015 | bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) { |
7016 | return Visit(T: T->getValueType()); |
7017 | } |
7018 | |
7019 | bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) { |
7020 | return false; |
7021 | } |
7022 | |
7023 | bool UnnamedLocalNoLinkageFinder::VisitBitIntType(const BitIntType *T) { |
7024 | return false; |
7025 | } |
7026 | |
7027 | bool UnnamedLocalNoLinkageFinder::VisitArrayParameterType( |
7028 | const ArrayParameterType *T) { |
7029 | return VisitConstantArrayType(T); |
7030 | } |
7031 | |
7032 | bool UnnamedLocalNoLinkageFinder::VisitDependentBitIntType( |
7033 | const DependentBitIntType *T) { |
7034 | return false; |
7035 | } |
7036 | |
7037 | bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) { |
7038 | if (Tag->getDeclContext()->isFunctionOrMethod()) { |
7039 | S.Diag(SR.getBegin(), |
7040 | S.getLangOpts().CPlusPlus11 ? |
7041 | diag::warn_cxx98_compat_template_arg_local_type : |
7042 | diag::ext_template_arg_local_type) |
7043 | << S.Context.getTypeDeclType(Tag) << SR; |
7044 | return true; |
7045 | } |
7046 | |
7047 | if (!Tag->hasNameForLinkage()) { |
7048 | S.Diag(SR.getBegin(), |
7049 | S.getLangOpts().CPlusPlus11 ? |
7050 | diag::warn_cxx98_compat_template_arg_unnamed_type : |
7051 | diag::ext_template_arg_unnamed_type) << SR; |
7052 | S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here); |
7053 | return true; |
7054 | } |
7055 | |
7056 | return false; |
7057 | } |
7058 | |
7059 | bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier( |
7060 | NestedNameSpecifier *NNS) { |
7061 | assert(NNS); |
7062 | if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS: NNS->getPrefix())) |
7063 | return true; |
7064 | |
7065 | switch (NNS->getKind()) { |
7066 | case NestedNameSpecifier::Identifier: |
7067 | case NestedNameSpecifier::Namespace: |
7068 | case NestedNameSpecifier::NamespaceAlias: |
7069 | case NestedNameSpecifier::Global: |
7070 | case NestedNameSpecifier::Super: |
7071 | return false; |
7072 | |
7073 | case NestedNameSpecifier::TypeSpec: |
7074 | case NestedNameSpecifier::TypeSpecWithTemplate: |
7075 | return Visit(T: QualType(NNS->getAsType(), 0)); |
7076 | } |
7077 | llvm_unreachable("Invalid NestedNameSpecifier::Kind!" ); |
7078 | } |
7079 | |
7080 | /// Check a template argument against its corresponding |
7081 | /// template type parameter. |
7082 | /// |
7083 | /// This routine implements the semantics of C++ [temp.arg.type]. It |
7084 | /// returns true if an error occurred, and false otherwise. |
7085 | bool Sema::CheckTemplateArgument(TypeSourceInfo *ArgInfo) { |
7086 | assert(ArgInfo && "invalid TypeSourceInfo" ); |
7087 | QualType Arg = ArgInfo->getType(); |
7088 | SourceRange SR = ArgInfo->getTypeLoc().getSourceRange(); |
7089 | QualType CanonArg = Context.getCanonicalType(T: Arg); |
7090 | |
7091 | if (CanonArg->isVariablyModifiedType()) { |
7092 | return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg; |
7093 | } else if (Context.hasSameUnqualifiedType(T1: Arg, T2: Context.OverloadTy)) { |
7094 | return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR; |
7095 | } |
7096 | |
7097 | // C++03 [temp.arg.type]p2: |
7098 | // A local type, a type with no linkage, an unnamed type or a type |
7099 | // compounded from any of these types shall not be used as a |
7100 | // template-argument for a template type-parameter. |
7101 | // |
7102 | // C++11 allows these, and even in C++03 we allow them as an extension with |
7103 | // a warning. |
7104 | if (LangOpts.CPlusPlus11 || CanonArg->hasUnnamedOrLocalType()) { |
7105 | UnnamedLocalNoLinkageFinder Finder(*this, SR); |
7106 | (void)Finder.Visit(T: CanonArg); |
7107 | } |
7108 | |
7109 | return false; |
7110 | } |
7111 | |
7112 | enum NullPointerValueKind { |
7113 | NPV_NotNullPointer, |
7114 | NPV_NullPointer, |
7115 | NPV_Error |
7116 | }; |
7117 | |
7118 | /// Determine whether the given template argument is a null pointer |
7119 | /// value of the appropriate type. |
7120 | static NullPointerValueKind |
7121 | isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param, |
7122 | QualType ParamType, Expr *Arg, |
7123 | Decl *Entity = nullptr) { |
7124 | if (Arg->isValueDependent() || Arg->isTypeDependent()) |
7125 | return NPV_NotNullPointer; |
7126 | |
7127 | // dllimport'd entities aren't constant but are available inside of template |
7128 | // arguments. |
7129 | if (Entity && Entity->hasAttr<DLLImportAttr>()) |
7130 | return NPV_NotNullPointer; |
7131 | |
7132 | if (!S.isCompleteType(Loc: Arg->getExprLoc(), T: ParamType)) |
7133 | llvm_unreachable( |
7134 | "Incomplete parameter type in isNullPointerValueTemplateArgument!" ); |
7135 | |
7136 | if (!S.getLangOpts().CPlusPlus11) |
7137 | return NPV_NotNullPointer; |
7138 | |
7139 | // Determine whether we have a constant expression. |
7140 | ExprResult ArgRV = S.DefaultFunctionArrayConversion(E: Arg); |
7141 | if (ArgRV.isInvalid()) |
7142 | return NPV_Error; |
7143 | Arg = ArgRV.get(); |
7144 | |
7145 | Expr::EvalResult EvalResult; |
7146 | SmallVector<PartialDiagnosticAt, 8> Notes; |
7147 | EvalResult.Diag = &Notes; |
7148 | if (!Arg->EvaluateAsRValue(Result&: EvalResult, Ctx: S.Context) || |
7149 | EvalResult.HasSideEffects) { |
7150 | SourceLocation DiagLoc = Arg->getExprLoc(); |
7151 | |
7152 | // If our only note is the usual "invalid subexpression" note, just point |
7153 | // the caret at its location rather than producing an essentially |
7154 | // redundant note. |
7155 | if (Notes.size() == 1 && Notes[0].second.getDiagID() == |
7156 | diag::note_invalid_subexpr_in_const_expr) { |
7157 | DiagLoc = Notes[0].first; |
7158 | Notes.clear(); |
7159 | } |
7160 | |
7161 | S.Diag(DiagLoc, diag::err_template_arg_not_address_constant) |
7162 | << Arg->getType() << Arg->getSourceRange(); |
7163 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
7164 | S.Diag(Notes[I].first, Notes[I].second); |
7165 | |
7166 | S.NoteTemplateParameterLocation(*Param); |
7167 | return NPV_Error; |
7168 | } |
7169 | |
7170 | // C++11 [temp.arg.nontype]p1: |
7171 | // - an address constant expression of type std::nullptr_t |
7172 | if (Arg->getType()->isNullPtrType()) |
7173 | return NPV_NullPointer; |
7174 | |
7175 | // - a constant expression that evaluates to a null pointer value (4.10); or |
7176 | // - a constant expression that evaluates to a null member pointer value |
7177 | // (4.11); or |
7178 | if ((EvalResult.Val.isLValue() && EvalResult.Val.isNullPointer()) || |
7179 | (EvalResult.Val.isMemberPointer() && |
7180 | !EvalResult.Val.getMemberPointerDecl())) { |
7181 | // If our expression has an appropriate type, we've succeeded. |
7182 | bool ObjCLifetimeConversion; |
7183 | if (S.Context.hasSameUnqualifiedType(T1: Arg->getType(), T2: ParamType) || |
7184 | S.IsQualificationConversion(FromType: Arg->getType(), ToType: ParamType, CStyle: false, |
7185 | ObjCLifetimeConversion)) |
7186 | return NPV_NullPointer; |
7187 | |
7188 | // The types didn't match, but we know we got a null pointer; complain, |
7189 | // then recover as if the types were correct. |
7190 | S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant) |
7191 | << Arg->getType() << ParamType << Arg->getSourceRange(); |
7192 | S.NoteTemplateParameterLocation(*Param); |
7193 | return NPV_NullPointer; |
7194 | } |
7195 | |
7196 | if (EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) { |
7197 | // We found a pointer that isn't null, but doesn't refer to an object. |
7198 | // We could just return NPV_NotNullPointer, but we can print a better |
7199 | // message with the information we have here. |
7200 | S.Diag(Arg->getExprLoc(), diag::err_template_arg_invalid) |
7201 | << EvalResult.Val.getAsString(S.Context, ParamType); |
7202 | S.NoteTemplateParameterLocation(*Param); |
7203 | return NPV_Error; |
7204 | } |
7205 | |
7206 | // If we don't have a null pointer value, but we do have a NULL pointer |
7207 | // constant, suggest a cast to the appropriate type. |
7208 | if (Arg->isNullPointerConstant(Ctx&: S.Context, NPC: Expr::NPC_NeverValueDependent)) { |
7209 | std::string Code = "static_cast<" + ParamType.getAsString() + ">(" ; |
7210 | S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant) |
7211 | << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), Code) |
7212 | << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getEndLoc()), |
7213 | ")" ); |
7214 | S.NoteTemplateParameterLocation(*Param); |
7215 | return NPV_NullPointer; |
7216 | } |
7217 | |
7218 | // FIXME: If we ever want to support general, address-constant expressions |
7219 | // as non-type template arguments, we should return the ExprResult here to |
7220 | // be interpreted by the caller. |
7221 | return NPV_NotNullPointer; |
7222 | } |
7223 | |
7224 | /// Checks whether the given template argument is compatible with its |
7225 | /// template parameter. |
7226 | static bool CheckTemplateArgumentIsCompatibleWithParameter( |
7227 | Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, |
7228 | Expr *Arg, QualType ArgType) { |
7229 | bool ObjCLifetimeConversion; |
7230 | if (ParamType->isPointerType() && |
7231 | !ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType() && |
7232 | S.IsQualificationConversion(FromType: ArgType, ToType: ParamType, CStyle: false, |
7233 | ObjCLifetimeConversion)) { |
7234 | // For pointer-to-object types, qualification conversions are |
7235 | // permitted. |
7236 | } else { |
7237 | if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) { |
7238 | if (!ParamRef->getPointeeType()->isFunctionType()) { |
7239 | // C++ [temp.arg.nontype]p5b3: |
7240 | // For a non-type template-parameter of type reference to |
7241 | // object, no conversions apply. The type referred to by the |
7242 | // reference may be more cv-qualified than the (otherwise |
7243 | // identical) type of the template- argument. The |
7244 | // template-parameter is bound directly to the |
7245 | // template-argument, which shall be an lvalue. |
7246 | |
7247 | // FIXME: Other qualifiers? |
7248 | unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers(); |
7249 | unsigned ArgQuals = ArgType.getCVRQualifiers(); |
7250 | |
7251 | if ((ParamQuals | ArgQuals) != ParamQuals) { |
7252 | S.Diag(Arg->getBeginLoc(), |
7253 | diag::err_template_arg_ref_bind_ignores_quals) |
7254 | << ParamType << Arg->getType() << Arg->getSourceRange(); |
7255 | S.NoteTemplateParameterLocation(*Param); |
7256 | return true; |
7257 | } |
7258 | } |
7259 | } |
7260 | |
7261 | // At this point, the template argument refers to an object or |
7262 | // function with external linkage. We now need to check whether the |
7263 | // argument and parameter types are compatible. |
7264 | if (!S.Context.hasSameUnqualifiedType(T1: ArgType, |
7265 | T2: ParamType.getNonReferenceType())) { |
7266 | // We can't perform this conversion or binding. |
7267 | if (ParamType->isReferenceType()) |
7268 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_no_ref_bind) |
7269 | << ParamType << ArgIn->getType() << Arg->getSourceRange(); |
7270 | else |
7271 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) |
7272 | << ArgIn->getType() << ParamType << Arg->getSourceRange(); |
7273 | S.NoteTemplateParameterLocation(*Param); |
7274 | return true; |
7275 | } |
7276 | } |
7277 | |
7278 | return false; |
7279 | } |
7280 | |
7281 | /// Checks whether the given template argument is the address |
7282 | /// of an object or function according to C++ [temp.arg.nontype]p1. |
7283 | static bool CheckTemplateArgumentAddressOfObjectOrFunction( |
7284 | Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn, |
7285 | TemplateArgument &SugaredConverted, TemplateArgument &CanonicalConverted) { |
7286 | bool Invalid = false; |
7287 | Expr *Arg = ArgIn; |
7288 | QualType ArgType = Arg->getType(); |
7289 | |
7290 | bool AddressTaken = false; |
7291 | SourceLocation AddrOpLoc; |
7292 | if (S.getLangOpts().MicrosoftExt) { |
7293 | // Microsoft Visual C++ strips all casts, allows an arbitrary number of |
7294 | // dereference and address-of operators. |
7295 | Arg = Arg->IgnoreParenCasts(); |
7296 | |
7297 | bool ExtWarnMSTemplateArg = false; |
7298 | UnaryOperatorKind FirstOpKind; |
7299 | SourceLocation FirstOpLoc; |
7300 | while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
7301 | UnaryOperatorKind UnOpKind = UnOp->getOpcode(); |
7302 | if (UnOpKind == UO_Deref) |
7303 | ExtWarnMSTemplateArg = true; |
7304 | if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) { |
7305 | Arg = UnOp->getSubExpr()->IgnoreParenCasts(); |
7306 | if (!AddrOpLoc.isValid()) { |
7307 | FirstOpKind = UnOpKind; |
7308 | FirstOpLoc = UnOp->getOperatorLoc(); |
7309 | } |
7310 | } else |
7311 | break; |
7312 | } |
7313 | if (FirstOpLoc.isValid()) { |
7314 | if (ExtWarnMSTemplateArg) |
7315 | S.Diag(ArgIn->getBeginLoc(), diag::ext_ms_deref_template_argument) |
7316 | << ArgIn->getSourceRange(); |
7317 | |
7318 | if (FirstOpKind == UO_AddrOf) |
7319 | AddressTaken = true; |
7320 | else if (Arg->getType()->isPointerType()) { |
7321 | // We cannot let pointers get dereferenced here, that is obviously not a |
7322 | // constant expression. |
7323 | assert(FirstOpKind == UO_Deref); |
7324 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) |
7325 | << Arg->getSourceRange(); |
7326 | } |
7327 | } |
7328 | } else { |
7329 | // See through any implicit casts we added to fix the type. |
7330 | Arg = Arg->IgnoreImpCasts(); |
7331 | |
7332 | // C++ [temp.arg.nontype]p1: |
7333 | // |
7334 | // A template-argument for a non-type, non-template |
7335 | // template-parameter shall be one of: [...] |
7336 | // |
7337 | // -- the address of an object or function with external |
7338 | // linkage, including function templates and function |
7339 | // template-ids but excluding non-static class members, |
7340 | // expressed as & id-expression where the & is optional if |
7341 | // the name refers to a function or array, or if the |
7342 | // corresponding template-parameter is a reference; or |
7343 | |
7344 | // In C++98/03 mode, give an extension warning on any extra parentheses. |
7345 | // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 |
7346 | bool = false; |
7347 | while (ParenExpr *Parens = dyn_cast<ParenExpr>(Val: Arg)) { |
7348 | if (!Invalid && !ExtraParens) { |
7349 | S.Diag(Arg->getBeginLoc(), |
7350 | S.getLangOpts().CPlusPlus11 |
7351 | ? diag::warn_cxx98_compat_template_arg_extra_parens |
7352 | : diag::ext_template_arg_extra_parens) |
7353 | << Arg->getSourceRange(); |
7354 | ExtraParens = true; |
7355 | } |
7356 | |
7357 | Arg = Parens->getSubExpr(); |
7358 | } |
7359 | |
7360 | while (SubstNonTypeTemplateParmExpr *subst = |
7361 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
7362 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
7363 | |
7364 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
7365 | if (UnOp->getOpcode() == UO_AddrOf) { |
7366 | Arg = UnOp->getSubExpr(); |
7367 | AddressTaken = true; |
7368 | AddrOpLoc = UnOp->getOperatorLoc(); |
7369 | } |
7370 | } |
7371 | |
7372 | while (SubstNonTypeTemplateParmExpr *subst = |
7373 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
7374 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
7375 | } |
7376 | |
7377 | ValueDecl *Entity = nullptr; |
7378 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Arg)) |
7379 | Entity = DRE->getDecl(); |
7380 | else if (CXXUuidofExpr *CUE = dyn_cast<CXXUuidofExpr>(Val: Arg)) |
7381 | Entity = CUE->getGuidDecl(); |
7382 | |
7383 | // If our parameter has pointer type, check for a null template value. |
7384 | if (ParamType->isPointerType() || ParamType->isNullPtrType()) { |
7385 | switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn, |
7386 | Entity)) { |
7387 | case NPV_NullPointer: |
7388 | S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
7389 | SugaredConverted = TemplateArgument(ParamType, |
7390 | /*isNullPtr=*/true); |
7391 | CanonicalConverted = |
7392 | TemplateArgument(S.Context.getCanonicalType(T: ParamType), |
7393 | /*isNullPtr=*/true); |
7394 | return false; |
7395 | |
7396 | case NPV_Error: |
7397 | return true; |
7398 | |
7399 | case NPV_NotNullPointer: |
7400 | break; |
7401 | } |
7402 | } |
7403 | |
7404 | // Stop checking the precise nature of the argument if it is value dependent, |
7405 | // it should be checked when instantiated. |
7406 | if (Arg->isValueDependent()) { |
7407 | SugaredConverted = TemplateArgument(ArgIn); |
7408 | CanonicalConverted = |
7409 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7410 | return false; |
7411 | } |
7412 | |
7413 | if (!Entity) { |
7414 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) |
7415 | << Arg->getSourceRange(); |
7416 | S.NoteTemplateParameterLocation(*Param); |
7417 | return true; |
7418 | } |
7419 | |
7420 | // Cannot refer to non-static data members |
7421 | if (isa<FieldDecl>(Val: Entity) || isa<IndirectFieldDecl>(Val: Entity)) { |
7422 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_field) |
7423 | << Entity << Arg->getSourceRange(); |
7424 | S.NoteTemplateParameterLocation(*Param); |
7425 | return true; |
7426 | } |
7427 | |
7428 | // Cannot refer to non-static member functions |
7429 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Entity)) { |
7430 | if (!Method->isStatic()) { |
7431 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_method) |
7432 | << Method << Arg->getSourceRange(); |
7433 | S.NoteTemplateParameterLocation(*Param); |
7434 | return true; |
7435 | } |
7436 | } |
7437 | |
7438 | FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: Entity); |
7439 | VarDecl *Var = dyn_cast<VarDecl>(Val: Entity); |
7440 | MSGuidDecl *Guid = dyn_cast<MSGuidDecl>(Val: Entity); |
7441 | |
7442 | // A non-type template argument must refer to an object or function. |
7443 | if (!Func && !Var && !Guid) { |
7444 | // We found something, but we don't know specifically what it is. |
7445 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_object_or_func) |
7446 | << Arg->getSourceRange(); |
7447 | S.Diag(Entity->getLocation(), diag::note_template_arg_refers_here); |
7448 | return true; |
7449 | } |
7450 | |
7451 | // Address / reference template args must have external linkage in C++98. |
7452 | if (Entity->getFormalLinkage() == Linkage::Internal) { |
7453 | S.Diag(Arg->getBeginLoc(), |
7454 | S.getLangOpts().CPlusPlus11 |
7455 | ? diag::warn_cxx98_compat_template_arg_object_internal |
7456 | : diag::ext_template_arg_object_internal) |
7457 | << !Func << Entity << Arg->getSourceRange(); |
7458 | S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) |
7459 | << !Func; |
7460 | } else if (!Entity->hasLinkage()) { |
7461 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_object_no_linkage) |
7462 | << !Func << Entity << Arg->getSourceRange(); |
7463 | S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object) |
7464 | << !Func; |
7465 | return true; |
7466 | } |
7467 | |
7468 | if (Var) { |
7469 | // A value of reference type is not an object. |
7470 | if (Var->getType()->isReferenceType()) { |
7471 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_reference_var) |
7472 | << Var->getType() << Arg->getSourceRange(); |
7473 | S.NoteTemplateParameterLocation(*Param); |
7474 | return true; |
7475 | } |
7476 | |
7477 | // A template argument must have static storage duration. |
7478 | if (Var->getTLSKind()) { |
7479 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_thread_local) |
7480 | << Arg->getSourceRange(); |
7481 | S.Diag(Var->getLocation(), diag::note_template_arg_refers_here); |
7482 | return true; |
7483 | } |
7484 | } |
7485 | |
7486 | if (AddressTaken && ParamType->isReferenceType()) { |
7487 | // If we originally had an address-of operator, but the |
7488 | // parameter has reference type, complain and (if things look |
7489 | // like they will work) drop the address-of operator. |
7490 | if (!S.Context.hasSameUnqualifiedType(T1: Entity->getType(), |
7491 | T2: ParamType.getNonReferenceType())) { |
7492 | S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) |
7493 | << ParamType; |
7494 | S.NoteTemplateParameterLocation(*Param); |
7495 | return true; |
7496 | } |
7497 | |
7498 | S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer) |
7499 | << ParamType |
7500 | << FixItHint::CreateRemoval(AddrOpLoc); |
7501 | S.NoteTemplateParameterLocation(*Param); |
7502 | |
7503 | ArgType = Entity->getType(); |
7504 | } |
7505 | |
7506 | // If the template parameter has pointer type, either we must have taken the |
7507 | // address or the argument must decay to a pointer. |
7508 | if (!AddressTaken && ParamType->isPointerType()) { |
7509 | if (Func) { |
7510 | // Function-to-pointer decay. |
7511 | ArgType = S.Context.getPointerType(Func->getType()); |
7512 | } else if (Entity->getType()->isArrayType()) { |
7513 | // Array-to-pointer decay. |
7514 | ArgType = S.Context.getArrayDecayedType(T: Entity->getType()); |
7515 | } else { |
7516 | // If the template parameter has pointer type but the address of |
7517 | // this object was not taken, complain and (possibly) recover by |
7518 | // taking the address of the entity. |
7519 | ArgType = S.Context.getPointerType(T: Entity->getType()); |
7520 | if (!S.Context.hasSameUnqualifiedType(T1: ArgType, T2: ParamType)) { |
7521 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) |
7522 | << ParamType; |
7523 | S.NoteTemplateParameterLocation(*Param); |
7524 | return true; |
7525 | } |
7526 | |
7527 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_address_of) |
7528 | << ParamType << FixItHint::CreateInsertion(Arg->getBeginLoc(), "&" ); |
7529 | |
7530 | S.NoteTemplateParameterLocation(*Param); |
7531 | } |
7532 | } |
7533 | |
7534 | if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn, |
7535 | Arg, ArgType)) |
7536 | return true; |
7537 | |
7538 | // Create the template argument. |
7539 | SugaredConverted = TemplateArgument(Entity, ParamType); |
7540 | CanonicalConverted = |
7541 | TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), |
7542 | S.Context.getCanonicalType(T: ParamType)); |
7543 | S.MarkAnyDeclReferenced(Loc: Arg->getBeginLoc(), D: Entity, MightBeOdrUse: false); |
7544 | return false; |
7545 | } |
7546 | |
7547 | /// Checks whether the given template argument is a pointer to |
7548 | /// member constant according to C++ [temp.arg.nontype]p1. |
7549 | static bool |
7550 | CheckTemplateArgumentPointerToMember(Sema &S, NonTypeTemplateParmDecl *Param, |
7551 | QualType ParamType, Expr *&ResultArg, |
7552 | TemplateArgument &SugaredConverted, |
7553 | TemplateArgument &CanonicalConverted) { |
7554 | bool Invalid = false; |
7555 | |
7556 | Expr *Arg = ResultArg; |
7557 | bool ObjCLifetimeConversion; |
7558 | |
7559 | // C++ [temp.arg.nontype]p1: |
7560 | // |
7561 | // A template-argument for a non-type, non-template |
7562 | // template-parameter shall be one of: [...] |
7563 | // |
7564 | // -- a pointer to member expressed as described in 5.3.1. |
7565 | DeclRefExpr *DRE = nullptr; |
7566 | |
7567 | // In C++98/03 mode, give an extension warning on any extra parentheses. |
7568 | // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773 |
7569 | bool = false; |
7570 | while (ParenExpr *Parens = dyn_cast<ParenExpr>(Val: Arg)) { |
7571 | if (!Invalid && !ExtraParens) { |
7572 | S.Diag(Arg->getBeginLoc(), |
7573 | S.getLangOpts().CPlusPlus11 |
7574 | ? diag::warn_cxx98_compat_template_arg_extra_parens |
7575 | : diag::ext_template_arg_extra_parens) |
7576 | << Arg->getSourceRange(); |
7577 | ExtraParens = true; |
7578 | } |
7579 | |
7580 | Arg = Parens->getSubExpr(); |
7581 | } |
7582 | |
7583 | while (SubstNonTypeTemplateParmExpr *subst = |
7584 | dyn_cast<SubstNonTypeTemplateParmExpr>(Val: Arg)) |
7585 | Arg = subst->getReplacement()->IgnoreImpCasts(); |
7586 | |
7587 | // A pointer-to-member constant written &Class::member. |
7588 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: Arg)) { |
7589 | if (UnOp->getOpcode() == UO_AddrOf) { |
7590 | DRE = dyn_cast<DeclRefExpr>(Val: UnOp->getSubExpr()); |
7591 | if (DRE && !DRE->getQualifier()) |
7592 | DRE = nullptr; |
7593 | } |
7594 | } |
7595 | // A constant of pointer-to-member type. |
7596 | else if ((DRE = dyn_cast<DeclRefExpr>(Val: Arg))) { |
7597 | ValueDecl *VD = DRE->getDecl(); |
7598 | if (VD->getType()->isMemberPointerType()) { |
7599 | if (isa<NonTypeTemplateParmDecl>(Val: VD)) { |
7600 | if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
7601 | SugaredConverted = TemplateArgument(Arg); |
7602 | CanonicalConverted = |
7603 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7604 | } else { |
7605 | SugaredConverted = TemplateArgument(VD, ParamType); |
7606 | CanonicalConverted = |
7607 | TemplateArgument(cast<ValueDecl>(VD->getCanonicalDecl()), |
7608 | S.Context.getCanonicalType(T: ParamType)); |
7609 | } |
7610 | return Invalid; |
7611 | } |
7612 | } |
7613 | |
7614 | DRE = nullptr; |
7615 | } |
7616 | |
7617 | ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr; |
7618 | |
7619 | // Check for a null pointer value. |
7620 | switch (isNullPointerValueTemplateArgument(S, Param, ParamType, ResultArg, |
7621 | Entity)) { |
7622 | case NPV_Error: |
7623 | return true; |
7624 | case NPV_NullPointer: |
7625 | S.Diag(ResultArg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
7626 | SugaredConverted = TemplateArgument(ParamType, |
7627 | /*isNullPtr*/ true); |
7628 | CanonicalConverted = TemplateArgument(S.Context.getCanonicalType(T: ParamType), |
7629 | /*isNullPtr*/ true); |
7630 | return false; |
7631 | case NPV_NotNullPointer: |
7632 | break; |
7633 | } |
7634 | |
7635 | if (S.IsQualificationConversion(FromType: ResultArg->getType(), |
7636 | ToType: ParamType.getNonReferenceType(), CStyle: false, |
7637 | ObjCLifetimeConversion)) { |
7638 | ResultArg = S.ImpCastExprToType(E: ResultArg, Type: ParamType, CK: CK_NoOp, |
7639 | VK: ResultArg->getValueKind()) |
7640 | .get(); |
7641 | } else if (!S.Context.hasSameUnqualifiedType( |
7642 | T1: ResultArg->getType(), T2: ParamType.getNonReferenceType())) { |
7643 | // We can't perform this conversion. |
7644 | S.Diag(ResultArg->getBeginLoc(), diag::err_template_arg_not_convertible) |
7645 | << ResultArg->getType() << ParamType << ResultArg->getSourceRange(); |
7646 | S.NoteTemplateParameterLocation(*Param); |
7647 | return true; |
7648 | } |
7649 | |
7650 | if (!DRE) |
7651 | return S.Diag(Arg->getBeginLoc(), |
7652 | diag::err_template_arg_not_pointer_to_member_form) |
7653 | << Arg->getSourceRange(); |
7654 | |
7655 | if (isa<FieldDecl>(Val: DRE->getDecl()) || |
7656 | isa<IndirectFieldDecl>(Val: DRE->getDecl()) || |
7657 | isa<CXXMethodDecl>(Val: DRE->getDecl())) { |
7658 | assert((isa<FieldDecl>(DRE->getDecl()) || |
7659 | isa<IndirectFieldDecl>(DRE->getDecl()) || |
7660 | cast<CXXMethodDecl>(DRE->getDecl()) |
7661 | ->isImplicitObjectMemberFunction()) && |
7662 | "Only non-static member pointers can make it here" ); |
7663 | |
7664 | // Okay: this is the address of a non-static member, and therefore |
7665 | // a member pointer constant. |
7666 | if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
7667 | SugaredConverted = TemplateArgument(Arg); |
7668 | CanonicalConverted = |
7669 | S.Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7670 | } else { |
7671 | ValueDecl *D = DRE->getDecl(); |
7672 | SugaredConverted = TemplateArgument(D, ParamType); |
7673 | CanonicalConverted = |
7674 | TemplateArgument(cast<ValueDecl>(D->getCanonicalDecl()), |
7675 | S.Context.getCanonicalType(T: ParamType)); |
7676 | } |
7677 | return Invalid; |
7678 | } |
7679 | |
7680 | // We found something else, but we don't know specifically what it is. |
7681 | S.Diag(Arg->getBeginLoc(), diag::err_template_arg_not_pointer_to_member_form) |
7682 | << Arg->getSourceRange(); |
7683 | S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here); |
7684 | return true; |
7685 | } |
7686 | |
7687 | /// Check a template argument against its corresponding |
7688 | /// non-type template parameter. |
7689 | /// |
7690 | /// This routine implements the semantics of C++ [temp.arg.nontype]. |
7691 | /// If an error occurred, it returns ExprError(); otherwise, it |
7692 | /// returns the converted template argument. \p ParamType is the |
7693 | /// type of the non-type template parameter after it has been instantiated. |
7694 | ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param, |
7695 | QualType ParamType, Expr *Arg, |
7696 | TemplateArgument &SugaredConverted, |
7697 | TemplateArgument &CanonicalConverted, |
7698 | CheckTemplateArgumentKind CTAK) { |
7699 | SourceLocation StartLoc = Arg->getBeginLoc(); |
7700 | |
7701 | // If the parameter type somehow involves auto, deduce the type now. |
7702 | DeducedType *DeducedT = ParamType->getContainedDeducedType(); |
7703 | if (getLangOpts().CPlusPlus17 && DeducedT && !DeducedT->isDeduced()) { |
7704 | // During template argument deduction, we allow 'decltype(auto)' to |
7705 | // match an arbitrary dependent argument. |
7706 | // FIXME: The language rules don't say what happens in this case. |
7707 | // FIXME: We get an opaque dependent type out of decltype(auto) if the |
7708 | // expression is merely instantiation-dependent; is this enough? |
7709 | if (CTAK == CTAK_Deduced && Arg->isTypeDependent()) { |
7710 | auto *AT = dyn_cast<AutoType>(Val: DeducedT); |
7711 | if (AT && AT->isDecltypeAuto()) { |
7712 | SugaredConverted = TemplateArgument(Arg); |
7713 | CanonicalConverted = TemplateArgument( |
7714 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
7715 | return Arg; |
7716 | } |
7717 | } |
7718 | |
7719 | // When checking a deduced template argument, deduce from its type even if |
7720 | // the type is dependent, in order to check the types of non-type template |
7721 | // arguments line up properly in partial ordering. |
7722 | Expr *DeductionArg = Arg; |
7723 | if (auto *PE = dyn_cast<PackExpansionExpr>(Val: DeductionArg)) |
7724 | DeductionArg = PE->getPattern(); |
7725 | TypeSourceInfo *TSI = |
7726 | Context.getTrivialTypeSourceInfo(T: ParamType, Loc: Param->getLocation()); |
7727 | if (isa<DeducedTemplateSpecializationType>(Val: DeducedT)) { |
7728 | InitializedEntity Entity = |
7729 | InitializedEntity::InitializeTemplateParameter(T: ParamType, Param); |
7730 | InitializationKind Kind = InitializationKind::CreateForInit( |
7731 | Loc: DeductionArg->getBeginLoc(), /*DirectInit*/false, Init: DeductionArg); |
7732 | Expr *Inits[1] = {DeductionArg}; |
7733 | ParamType = |
7734 | DeduceTemplateSpecializationFromInitializer(TInfo: TSI, Entity, Kind, Init: Inits); |
7735 | if (ParamType.isNull()) |
7736 | return ExprError(); |
7737 | } else { |
7738 | TemplateDeductionInfo Info(DeductionArg->getExprLoc(), |
7739 | Param->getDepth() + 1); |
7740 | ParamType = QualType(); |
7741 | TemplateDeductionResult Result = |
7742 | DeduceAutoType(AutoTypeLoc: TSI->getTypeLoc(), Initializer: DeductionArg, Result&: ParamType, Info, |
7743 | /*DependentDeduction=*/true, |
7744 | // We do not check constraints right now because the |
7745 | // immediately-declared constraint of the auto type is |
7746 | // also an associated constraint, and will be checked |
7747 | // along with the other associated constraints after |
7748 | // checking the template argument list. |
7749 | /*IgnoreConstraints=*/true); |
7750 | if (Result == TemplateDeductionResult::AlreadyDiagnosed) { |
7751 | if (ParamType.isNull()) |
7752 | return ExprError(); |
7753 | } else if (Result != TemplateDeductionResult::Success) { |
7754 | Diag(Arg->getExprLoc(), |
7755 | diag::err_non_type_template_parm_type_deduction_failure) |
7756 | << Param->getDeclName() << Param->getType() << Arg->getType() |
7757 | << Arg->getSourceRange(); |
7758 | NoteTemplateParameterLocation(*Param); |
7759 | return ExprError(); |
7760 | } |
7761 | } |
7762 | // CheckNonTypeTemplateParameterType will produce a diagnostic if there's |
7763 | // an error. The error message normally references the parameter |
7764 | // declaration, but here we'll pass the argument location because that's |
7765 | // where the parameter type is deduced. |
7766 | ParamType = CheckNonTypeTemplateParameterType(T: ParamType, Loc: Arg->getExprLoc()); |
7767 | if (ParamType.isNull()) { |
7768 | NoteTemplateParameterLocation(*Param); |
7769 | return ExprError(); |
7770 | } |
7771 | } |
7772 | |
7773 | // We should have already dropped all cv-qualifiers by now. |
7774 | assert(!ParamType.hasQualifiers() && |
7775 | "non-type template parameter type cannot be qualified" ); |
7776 | |
7777 | // FIXME: When Param is a reference, should we check that Arg is an lvalue? |
7778 | if (CTAK == CTAK_Deduced && |
7779 | (ParamType->isReferenceType() |
7780 | ? !Context.hasSameType(T1: ParamType.getNonReferenceType(), |
7781 | T2: Arg->getType()) |
7782 | : !Context.hasSameUnqualifiedType(T1: ParamType, T2: Arg->getType()))) { |
7783 | // FIXME: If either type is dependent, we skip the check. This isn't |
7784 | // correct, since during deduction we're supposed to have replaced each |
7785 | // template parameter with some unique (non-dependent) placeholder. |
7786 | // FIXME: If the argument type contains 'auto', we carry on and fail the |
7787 | // type check in order to force specific types to be more specialized than |
7788 | // 'auto'. It's not clear how partial ordering with 'auto' is supposed to |
7789 | // work. Similarly for CTAD, when comparing 'A<x>' against 'A'. |
7790 | if ((ParamType->isDependentType() || Arg->isTypeDependent()) && |
7791 | !Arg->getType()->getContainedDeducedType()) { |
7792 | SugaredConverted = TemplateArgument(Arg); |
7793 | CanonicalConverted = TemplateArgument( |
7794 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
7795 | return Arg; |
7796 | } |
7797 | // FIXME: This attempts to implement C++ [temp.deduct.type]p17. Per DR1770, |
7798 | // we should actually be checking the type of the template argument in P, |
7799 | // not the type of the template argument deduced from A, against the |
7800 | // template parameter type. |
7801 | Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch) |
7802 | << Arg->getType() |
7803 | << ParamType.getUnqualifiedType(); |
7804 | NoteTemplateParameterLocation(*Param); |
7805 | return ExprError(); |
7806 | } |
7807 | |
7808 | // If either the parameter has a dependent type or the argument is |
7809 | // type-dependent, there's nothing we can check now. |
7810 | if (ParamType->isDependentType() || Arg->isTypeDependent()) { |
7811 | // Force the argument to the type of the parameter to maintain invariants. |
7812 | auto *PE = dyn_cast<PackExpansionExpr>(Val: Arg); |
7813 | if (PE) |
7814 | Arg = PE->getPattern(); |
7815 | ExprResult E = ImpCastExprToType( |
7816 | E: Arg, Type: ParamType.getNonLValueExprType(Context), CK: CK_Dependent, |
7817 | VK: ParamType->isLValueReferenceType() ? VK_LValue |
7818 | : ParamType->isRValueReferenceType() ? VK_XValue |
7819 | : VK_PRValue); |
7820 | if (E.isInvalid()) |
7821 | return ExprError(); |
7822 | if (PE) { |
7823 | // Recreate a pack expansion if we unwrapped one. |
7824 | E = new (Context) |
7825 | PackExpansionExpr(E.get()->getType(), E.get(), PE->getEllipsisLoc(), |
7826 | PE->getNumExpansions()); |
7827 | } |
7828 | SugaredConverted = TemplateArgument(E.get()); |
7829 | CanonicalConverted = TemplateArgument( |
7830 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted)); |
7831 | return E; |
7832 | } |
7833 | |
7834 | QualType CanonParamType = Context.getCanonicalType(T: ParamType); |
7835 | // Avoid making a copy when initializing a template parameter of class type |
7836 | // from a template parameter object of the same type. This is going beyond |
7837 | // the standard, but is required for soundness: in |
7838 | // template<A a> struct X { X *p; X<a> *q; }; |
7839 | // ... we need p and q to have the same type. |
7840 | // |
7841 | // Similarly, don't inject a call to a copy constructor when initializing |
7842 | // from a template parameter of the same type. |
7843 | Expr *InnerArg = Arg->IgnoreParenImpCasts(); |
7844 | if (ParamType->isRecordType() && isa<DeclRefExpr>(Val: InnerArg) && |
7845 | Context.hasSameUnqualifiedType(T1: ParamType, T2: InnerArg->getType())) { |
7846 | NamedDecl *ND = cast<DeclRefExpr>(Val: InnerArg)->getDecl(); |
7847 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) { |
7848 | |
7849 | SugaredConverted = TemplateArgument(TPO, ParamType); |
7850 | CanonicalConverted = |
7851 | TemplateArgument(TPO->getCanonicalDecl(), CanonParamType); |
7852 | return Arg; |
7853 | } |
7854 | if (isa<NonTypeTemplateParmDecl>(Val: ND)) { |
7855 | SugaredConverted = TemplateArgument(Arg); |
7856 | CanonicalConverted = |
7857 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7858 | return Arg; |
7859 | } |
7860 | } |
7861 | |
7862 | // The initialization of the parameter from the argument is |
7863 | // a constant-evaluated context. |
7864 | EnterExpressionEvaluationContext ConstantEvaluated( |
7865 | *this, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
7866 | |
7867 | bool IsConvertedConstantExpression = true; |
7868 | if (isa<InitListExpr>(Val: Arg) || ParamType->isRecordType()) { |
7869 | InitializationKind Kind = InitializationKind::CreateForInit( |
7870 | Loc: Arg->getBeginLoc(), /*DirectInit=*/false, Init: Arg); |
7871 | Expr *Inits[1] = {Arg}; |
7872 | InitializedEntity Entity = |
7873 | InitializedEntity::InitializeTemplateParameter(T: ParamType, Param); |
7874 | InitializationSequence InitSeq(*this, Entity, Kind, Inits); |
7875 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Inits); |
7876 | if (Result.isInvalid() || !Result.get()) |
7877 | return ExprError(); |
7878 | Result = ActOnConstantExpression(Res: Result.get()); |
7879 | if (Result.isInvalid() || !Result.get()) |
7880 | return ExprError(); |
7881 | Arg = ActOnFinishFullExpr(Result.get(), Arg->getBeginLoc(), |
7882 | /*DiscardedValue=*/false, |
7883 | /*IsConstexpr=*/true, /*IsTemplateArgument=*/true) |
7884 | .get(); |
7885 | IsConvertedConstantExpression = false; |
7886 | } |
7887 | |
7888 | if (getLangOpts().CPlusPlus17) { |
7889 | // C++17 [temp.arg.nontype]p1: |
7890 | // A template-argument for a non-type template parameter shall be |
7891 | // a converted constant expression of the type of the template-parameter. |
7892 | APValue Value; |
7893 | ExprResult ArgResult; |
7894 | if (IsConvertedConstantExpression) { |
7895 | ArgResult = BuildConvertedConstantExpression(Arg, ParamType, |
7896 | CCEK_TemplateArg, Param); |
7897 | if (ArgResult.isInvalid()) |
7898 | return ExprError(); |
7899 | } else { |
7900 | ArgResult = Arg; |
7901 | } |
7902 | |
7903 | // For a value-dependent argument, CheckConvertedConstantExpression is |
7904 | // permitted (and expected) to be unable to determine a value. |
7905 | if (ArgResult.get()->isValueDependent()) { |
7906 | SugaredConverted = TemplateArgument(ArgResult.get()); |
7907 | CanonicalConverted = |
7908 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
7909 | return ArgResult; |
7910 | } |
7911 | |
7912 | APValue PreNarrowingValue; |
7913 | ArgResult = EvaluateConvertedConstantExpression( |
7914 | E: ArgResult.get(), T: ParamType, Value, CCE: CCEK_TemplateArg, /*RequireInt=*/ |
7915 | false, PreNarrowingValue); |
7916 | if (ArgResult.isInvalid()) |
7917 | return ExprError(); |
7918 | |
7919 | if (Value.isLValue()) { |
7920 | APValue::LValueBase Base = Value.getLValueBase(); |
7921 | auto *VD = const_cast<ValueDecl *>(Base.dyn_cast<const ValueDecl *>()); |
7922 | // For a non-type template-parameter of pointer or reference type, |
7923 | // the value of the constant expression shall not refer to |
7924 | assert(ParamType->isPointerType() || ParamType->isReferenceType() || |
7925 | ParamType->isNullPtrType()); |
7926 | // -- a temporary object |
7927 | // -- a string literal |
7928 | // -- the result of a typeid expression, or |
7929 | // -- a predefined __func__ variable |
7930 | if (Base && |
7931 | (!VD || |
7932 | isa<LifetimeExtendedTemporaryDecl, UnnamedGlobalConstantDecl>(Val: VD))) { |
7933 | Diag(Arg->getBeginLoc(), diag::err_template_arg_not_decl_ref) |
7934 | << Arg->getSourceRange(); |
7935 | return ExprError(); |
7936 | } |
7937 | |
7938 | if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 && VD && |
7939 | VD->getType()->isArrayType() && |
7940 | Value.getLValuePath()[0].getAsArrayIndex() == 0 && |
7941 | !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) { |
7942 | SugaredConverted = TemplateArgument(VD, ParamType); |
7943 | CanonicalConverted = TemplateArgument( |
7944 | cast<ValueDecl>(VD->getCanonicalDecl()), CanonParamType); |
7945 | return ArgResult.get(); |
7946 | } |
7947 | |
7948 | // -- a subobject [until C++20] |
7949 | if (!getLangOpts().CPlusPlus20) { |
7950 | if (!Value.hasLValuePath() || Value.getLValuePath().size() || |
7951 | Value.isLValueOnePastTheEnd()) { |
7952 | Diag(StartLoc, diag::err_non_type_template_arg_subobject) |
7953 | << Value.getAsString(Context, ParamType); |
7954 | return ExprError(); |
7955 | } |
7956 | assert((VD || !ParamType->isReferenceType()) && |
7957 | "null reference should not be a constant expression" ); |
7958 | assert((!VD || !ParamType->isNullPtrType()) && |
7959 | "non-null value of type nullptr_t?" ); |
7960 | } |
7961 | } |
7962 | |
7963 | if (Value.isAddrLabelDiff()) |
7964 | return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff); |
7965 | |
7966 | SugaredConverted = TemplateArgument(Context, ParamType, Value); |
7967 | CanonicalConverted = TemplateArgument(Context, CanonParamType, Value); |
7968 | return ArgResult.get(); |
7969 | } |
7970 | |
7971 | // C++ [temp.arg.nontype]p5: |
7972 | // The following conversions are performed on each expression used |
7973 | // as a non-type template-argument. If a non-type |
7974 | // template-argument cannot be converted to the type of the |
7975 | // corresponding template-parameter then the program is |
7976 | // ill-formed. |
7977 | if (ParamType->isIntegralOrEnumerationType()) { |
7978 | // C++11: |
7979 | // -- for a non-type template-parameter of integral or |
7980 | // enumeration type, conversions permitted in a converted |
7981 | // constant expression are applied. |
7982 | // |
7983 | // C++98: |
7984 | // -- for a non-type template-parameter of integral or |
7985 | // enumeration type, integral promotions (4.5) and integral |
7986 | // conversions (4.7) are applied. |
7987 | |
7988 | if (getLangOpts().CPlusPlus11) { |
7989 | // C++ [temp.arg.nontype]p1: |
7990 | // A template-argument for a non-type, non-template template-parameter |
7991 | // shall be one of: |
7992 | // |
7993 | // -- for a non-type template-parameter of integral or enumeration |
7994 | // type, a converted constant expression of the type of the |
7995 | // template-parameter; or |
7996 | llvm::APSInt Value; |
7997 | ExprResult ArgResult = |
7998 | CheckConvertedConstantExpression(From: Arg, T: ParamType, Value, |
7999 | CCE: CCEK_TemplateArg); |
8000 | if (ArgResult.isInvalid()) |
8001 | return ExprError(); |
8002 | |
8003 | // We can't check arbitrary value-dependent arguments. |
8004 | if (ArgResult.get()->isValueDependent()) { |
8005 | SugaredConverted = TemplateArgument(ArgResult.get()); |
8006 | CanonicalConverted = |
8007 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
8008 | return ArgResult; |
8009 | } |
8010 | |
8011 | // Widen the argument value to sizeof(parameter type). This is almost |
8012 | // always a no-op, except when the parameter type is bool. In |
8013 | // that case, this may extend the argument from 1 bit to 8 bits. |
8014 | QualType IntegerType = ParamType; |
8015 | if (const EnumType *Enum = IntegerType->getAs<EnumType>()) |
8016 | IntegerType = Enum->getDecl()->getIntegerType(); |
8017 | Value = Value.extOrTrunc(width: IntegerType->isBitIntType() |
8018 | ? Context.getIntWidth(T: IntegerType) |
8019 | : Context.getTypeSize(T: IntegerType)); |
8020 | |
8021 | SugaredConverted = TemplateArgument(Context, Value, ParamType); |
8022 | CanonicalConverted = |
8023 | TemplateArgument(Context, Value, Context.getCanonicalType(T: ParamType)); |
8024 | return ArgResult; |
8025 | } |
8026 | |
8027 | ExprResult ArgResult = DefaultLvalueConversion(E: Arg); |
8028 | if (ArgResult.isInvalid()) |
8029 | return ExprError(); |
8030 | Arg = ArgResult.get(); |
8031 | |
8032 | QualType ArgType = Arg->getType(); |
8033 | |
8034 | // C++ [temp.arg.nontype]p1: |
8035 | // A template-argument for a non-type, non-template |
8036 | // template-parameter shall be one of: |
8037 | // |
8038 | // -- an integral constant-expression of integral or enumeration |
8039 | // type; or |
8040 | // -- the name of a non-type template-parameter; or |
8041 | llvm::APSInt Value; |
8042 | if (!ArgType->isIntegralOrEnumerationType()) { |
8043 | Diag(Arg->getBeginLoc(), diag::err_template_arg_not_integral_or_enumeral) |
8044 | << ArgType << Arg->getSourceRange(); |
8045 | NoteTemplateParameterLocation(*Param); |
8046 | return ExprError(); |
8047 | } else if (!Arg->isValueDependent()) { |
8048 | class TmplArgICEDiagnoser : public VerifyICEDiagnoser { |
8049 | QualType T; |
8050 | |
8051 | public: |
8052 | TmplArgICEDiagnoser(QualType T) : T(T) { } |
8053 | |
8054 | SemaDiagnosticBuilder diagnoseNotICE(Sema &S, |
8055 | SourceLocation Loc) override { |
8056 | return S.Diag(Loc, diag::err_template_arg_not_ice) << T; |
8057 | } |
8058 | } Diagnoser(ArgType); |
8059 | |
8060 | Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser).get(); |
8061 | if (!Arg) |
8062 | return ExprError(); |
8063 | } |
8064 | |
8065 | // From here on out, all we care about is the unqualified form |
8066 | // of the argument type. |
8067 | ArgType = ArgType.getUnqualifiedType(); |
8068 | |
8069 | // Try to convert the argument to the parameter's type. |
8070 | if (Context.hasSameType(T1: ParamType, T2: ArgType)) { |
8071 | // Okay: no conversion necessary |
8072 | } else if (ParamType->isBooleanType()) { |
8073 | // This is an integral-to-boolean conversion. |
8074 | Arg = ImpCastExprToType(E: Arg, Type: ParamType, CK: CK_IntegralToBoolean).get(); |
8075 | } else if (IsIntegralPromotion(From: Arg, FromType: ArgType, ToType: ParamType) || |
8076 | !ParamType->isEnumeralType()) { |
8077 | // This is an integral promotion or conversion. |
8078 | Arg = ImpCastExprToType(E: Arg, Type: ParamType, CK: CK_IntegralCast).get(); |
8079 | } else { |
8080 | // We can't perform this conversion. |
8081 | Diag(Arg->getBeginLoc(), diag::err_template_arg_not_convertible) |
8082 | << Arg->getType() << ParamType << Arg->getSourceRange(); |
8083 | NoteTemplateParameterLocation(*Param); |
8084 | return ExprError(); |
8085 | } |
8086 | |
8087 | // Add the value of this argument to the list of converted |
8088 | // arguments. We use the bitwidth and signedness of the template |
8089 | // parameter. |
8090 | if (Arg->isValueDependent()) { |
8091 | // The argument is value-dependent. Create a new |
8092 | // TemplateArgument with the converted expression. |
8093 | SugaredConverted = TemplateArgument(Arg); |
8094 | CanonicalConverted = |
8095 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
8096 | return Arg; |
8097 | } |
8098 | |
8099 | QualType IntegerType = ParamType; |
8100 | if (const EnumType *Enum = IntegerType->getAs<EnumType>()) { |
8101 | IntegerType = Enum->getDecl()->getIntegerType(); |
8102 | } |
8103 | |
8104 | if (ParamType->isBooleanType()) { |
8105 | // Value must be zero or one. |
8106 | Value = Value != 0; |
8107 | unsigned AllowedBits = Context.getTypeSize(T: IntegerType); |
8108 | if (Value.getBitWidth() != AllowedBits) |
8109 | Value = Value.extOrTrunc(width: AllowedBits); |
8110 | Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); |
8111 | } else { |
8112 | llvm::APSInt OldValue = Value; |
8113 | |
8114 | // Coerce the template argument's value to the value it will have |
8115 | // based on the template parameter's type. |
8116 | unsigned AllowedBits = IntegerType->isBitIntType() |
8117 | ? Context.getIntWidth(T: IntegerType) |
8118 | : Context.getTypeSize(T: IntegerType); |
8119 | if (Value.getBitWidth() != AllowedBits) |
8120 | Value = Value.extOrTrunc(width: AllowedBits); |
8121 | Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType()); |
8122 | |
8123 | // Complain if an unsigned parameter received a negative value. |
8124 | if (IntegerType->isUnsignedIntegerOrEnumerationType() && |
8125 | (OldValue.isSigned() && OldValue.isNegative())) { |
8126 | Diag(Arg->getBeginLoc(), diag::warn_template_arg_negative) |
8127 | << toString(OldValue, 10) << toString(Value, 10) << Param->getType() |
8128 | << Arg->getSourceRange(); |
8129 | NoteTemplateParameterLocation(*Param); |
8130 | } |
8131 | |
8132 | // Complain if we overflowed the template parameter's type. |
8133 | unsigned RequiredBits; |
8134 | if (IntegerType->isUnsignedIntegerOrEnumerationType()) |
8135 | RequiredBits = OldValue.getActiveBits(); |
8136 | else if (OldValue.isUnsigned()) |
8137 | RequiredBits = OldValue.getActiveBits() + 1; |
8138 | else |
8139 | RequiredBits = OldValue.getSignificantBits(); |
8140 | if (RequiredBits > AllowedBits) { |
8141 | Diag(Arg->getBeginLoc(), diag::warn_template_arg_too_large) |
8142 | << toString(OldValue, 10) << toString(Value, 10) << Param->getType() |
8143 | << Arg->getSourceRange(); |
8144 | NoteTemplateParameterLocation(*Param); |
8145 | } |
8146 | } |
8147 | |
8148 | QualType T = ParamType->isEnumeralType() ? ParamType : IntegerType; |
8149 | SugaredConverted = TemplateArgument(Context, Value, T); |
8150 | CanonicalConverted = |
8151 | TemplateArgument(Context, Value, Context.getCanonicalType(T)); |
8152 | return Arg; |
8153 | } |
8154 | |
8155 | QualType ArgType = Arg->getType(); |
8156 | DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction |
8157 | |
8158 | // Handle pointer-to-function, reference-to-function, and |
8159 | // pointer-to-member-function all in (roughly) the same way. |
8160 | if (// -- For a non-type template-parameter of type pointer to |
8161 | // function, only the function-to-pointer conversion (4.3) is |
8162 | // applied. If the template-argument represents a set of |
8163 | // overloaded functions (or a pointer to such), the matching |
8164 | // function is selected from the set (13.4). |
8165 | (ParamType->isPointerType() && |
8166 | ParamType->castAs<PointerType>()->getPointeeType()->isFunctionType()) || |
8167 | // -- For a non-type template-parameter of type reference to |
8168 | // function, no conversions apply. If the template-argument |
8169 | // represents a set of overloaded functions, the matching |
8170 | // function is selected from the set (13.4). |
8171 | (ParamType->isReferenceType() && |
8172 | ParamType->castAs<ReferenceType>()->getPointeeType()->isFunctionType()) || |
8173 | // -- For a non-type template-parameter of type pointer to |
8174 | // member function, no conversions apply. If the |
8175 | // template-argument represents a set of overloaded member |
8176 | // functions, the matching member function is selected from |
8177 | // the set (13.4). |
8178 | (ParamType->isMemberPointerType() && |
8179 | ParamType->castAs<MemberPointerType>()->getPointeeType() |
8180 | ->isFunctionType())) { |
8181 | |
8182 | if (Arg->getType() == Context.OverloadTy) { |
8183 | if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: Arg, TargetType: ParamType, |
8184 | Complain: true, |
8185 | Found&: FoundResult)) { |
8186 | if (DiagnoseUseOfDecl(D: Fn, Locs: Arg->getBeginLoc())) |
8187 | return ExprError(); |
8188 | |
8189 | ExprResult Res = FixOverloadedFunctionReference(E: Arg, FoundDecl: FoundResult, Fn); |
8190 | if (Res.isInvalid()) |
8191 | return ExprError(); |
8192 | Arg = Res.get(); |
8193 | ArgType = Arg->getType(); |
8194 | } else |
8195 | return ExprError(); |
8196 | } |
8197 | |
8198 | if (!ParamType->isMemberPointerType()) { |
8199 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
8200 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, |
8201 | CanonicalConverted)) |
8202 | return ExprError(); |
8203 | return Arg; |
8204 | } |
8205 | |
8206 | if (CheckTemplateArgumentPointerToMember( |
8207 | S&: *this, Param, ParamType, ResultArg&: Arg, SugaredConverted, CanonicalConverted)) |
8208 | return ExprError(); |
8209 | return Arg; |
8210 | } |
8211 | |
8212 | if (ParamType->isPointerType()) { |
8213 | // -- for a non-type template-parameter of type pointer to |
8214 | // object, qualification conversions (4.4) and the |
8215 | // array-to-pointer conversion (4.2) are applied. |
8216 | // C++0x also allows a value of std::nullptr_t. |
8217 | assert(ParamType->getPointeeType()->isIncompleteOrObjectType() && |
8218 | "Only object pointers allowed here" ); |
8219 | |
8220 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
8221 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, CanonicalConverted)) |
8222 | return ExprError(); |
8223 | return Arg; |
8224 | } |
8225 | |
8226 | if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) { |
8227 | // -- For a non-type template-parameter of type reference to |
8228 | // object, no conversions apply. The type referred to by the |
8229 | // reference may be more cv-qualified than the (otherwise |
8230 | // identical) type of the template-argument. The |
8231 | // template-parameter is bound directly to the |
8232 | // template-argument, which must be an lvalue. |
8233 | assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() && |
8234 | "Only object references allowed here" ); |
8235 | |
8236 | if (Arg->getType() == Context.OverloadTy) { |
8237 | if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: Arg, |
8238 | TargetType: ParamRefType->getPointeeType(), |
8239 | Complain: true, |
8240 | Found&: FoundResult)) { |
8241 | if (DiagnoseUseOfDecl(D: Fn, Locs: Arg->getBeginLoc())) |
8242 | return ExprError(); |
8243 | ExprResult Res = FixOverloadedFunctionReference(E: Arg, FoundDecl: FoundResult, Fn); |
8244 | if (Res.isInvalid()) |
8245 | return ExprError(); |
8246 | Arg = Res.get(); |
8247 | ArgType = Arg->getType(); |
8248 | } else |
8249 | return ExprError(); |
8250 | } |
8251 | |
8252 | if (CheckTemplateArgumentAddressOfObjectOrFunction( |
8253 | S&: *this, Param, ParamType, ArgIn: Arg, SugaredConverted, CanonicalConverted)) |
8254 | return ExprError(); |
8255 | return Arg; |
8256 | } |
8257 | |
8258 | // Deal with parameters of type std::nullptr_t. |
8259 | if (ParamType->isNullPtrType()) { |
8260 | if (Arg->isTypeDependent() || Arg->isValueDependent()) { |
8261 | SugaredConverted = TemplateArgument(Arg); |
8262 | CanonicalConverted = |
8263 | Context.getCanonicalTemplateArgument(Arg: SugaredConverted); |
8264 | return Arg; |
8265 | } |
8266 | |
8267 | switch (isNullPointerValueTemplateArgument(S&: *this, Param, ParamType, Arg)) { |
8268 | case NPV_NotNullPointer: |
8269 | Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible) |
8270 | << Arg->getType() << ParamType; |
8271 | NoteTemplateParameterLocation(*Param); |
8272 | return ExprError(); |
8273 | |
8274 | case NPV_Error: |
8275 | return ExprError(); |
8276 | |
8277 | case NPV_NullPointer: |
8278 | Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null); |
8279 | SugaredConverted = TemplateArgument(ParamType, |
8280 | /*isNullPtr=*/true); |
8281 | CanonicalConverted = TemplateArgument(Context.getCanonicalType(T: ParamType), |
8282 | /*isNullPtr=*/true); |
8283 | return Arg; |
8284 | } |
8285 | } |
8286 | |
8287 | // -- For a non-type template-parameter of type pointer to data |
8288 | // member, qualification conversions (4.4) are applied. |
8289 | assert(ParamType->isMemberPointerType() && "Only pointers to members remain" ); |
8290 | |
8291 | if (CheckTemplateArgumentPointerToMember( |
8292 | S&: *this, Param, ParamType, ResultArg&: Arg, SugaredConverted, CanonicalConverted)) |
8293 | return ExprError(); |
8294 | return Arg; |
8295 | } |
8296 | |
8297 | static void DiagnoseTemplateParameterListArityMismatch( |
8298 | Sema &S, TemplateParameterList *New, TemplateParameterList *Old, |
8299 | Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc); |
8300 | |
8301 | /// Check a template argument against its corresponding |
8302 | /// template template parameter. |
8303 | /// |
8304 | /// This routine implements the semantics of C++ [temp.arg.template]. |
8305 | /// It returns true if an error occurred, and false otherwise. |
8306 | bool Sema::CheckTemplateTemplateArgument(TemplateTemplateParmDecl *Param, |
8307 | TemplateParameterList *Params, |
8308 | TemplateArgumentLoc &Arg) { |
8309 | TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern(); |
8310 | TemplateDecl *Template = Name.getAsTemplateDecl(); |
8311 | if (!Template) { |
8312 | // Any dependent template name is fine. |
8313 | assert(Name.isDependent() && "Non-dependent template isn't a declaration?" ); |
8314 | return false; |
8315 | } |
8316 | |
8317 | if (Template->isInvalidDecl()) |
8318 | return true; |
8319 | |
8320 | // C++0x [temp.arg.template]p1: |
8321 | // A template-argument for a template template-parameter shall be |
8322 | // the name of a class template or an alias template, expressed as an |
8323 | // id-expression. When the template-argument names a class template, only |
8324 | // primary class templates are considered when matching the |
8325 | // template template argument with the corresponding parameter; |
8326 | // partial specializations are not considered even if their |
8327 | // parameter lists match that of the template template parameter. |
8328 | // |
8329 | // Note that we also allow template template parameters here, which |
8330 | // will happen when we are dealing with, e.g., class template |
8331 | // partial specializations. |
8332 | if (!isa<ClassTemplateDecl>(Val: Template) && |
8333 | !isa<TemplateTemplateParmDecl>(Val: Template) && |
8334 | !isa<TypeAliasTemplateDecl>(Val: Template) && |
8335 | !isa<BuiltinTemplateDecl>(Val: Template)) { |
8336 | assert(isa<FunctionTemplateDecl>(Template) && |
8337 | "Only function templates are possible here" ); |
8338 | Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template); |
8339 | Diag(Template->getLocation(), diag::note_template_arg_refers_here_func) |
8340 | << Template; |
8341 | } |
8342 | |
8343 | // C++1z [temp.arg.template]p3: (DR 150) |
8344 | // A template-argument matches a template template-parameter P when P |
8345 | // is at least as specialized as the template-argument A. |
8346 | // FIXME: We should enable RelaxedTemplateTemplateArgs by default as it is a |
8347 | // defect report resolution from C++17 and shouldn't be introduced by |
8348 | // concepts. |
8349 | if (getLangOpts().RelaxedTemplateTemplateArgs) { |
8350 | // Quick check for the common case: |
8351 | // If P contains a parameter pack, then A [...] matches P if each of A's |
8352 | // template parameters matches the corresponding template parameter in |
8353 | // the template-parameter-list of P. |
8354 | if (TemplateParameterListsAreEqual( |
8355 | New: Template->getTemplateParameters(), Old: Params, Complain: false, |
8356 | Kind: TPL_TemplateTemplateArgumentMatch, TemplateArgLoc: Arg.getLocation()) && |
8357 | // If the argument has no associated constraints, then the parameter is |
8358 | // definitely at least as specialized as the argument. |
8359 | // Otherwise - we need a more thorough check. |
8360 | !Template->hasAssociatedConstraints()) |
8361 | return false; |
8362 | |
8363 | if (isTemplateTemplateParameterAtLeastAsSpecializedAs(PParam: Params, AArg: Template, |
8364 | Loc: Arg.getLocation())) { |
8365 | // P2113 |
8366 | // C++20[temp.func.order]p2 |
8367 | // [...] If both deductions succeed, the partial ordering selects the |
8368 | // more constrained template (if one exists) as determined below. |
8369 | SmallVector<const Expr *, 3> ParamsAC, TemplateAC; |
8370 | Params->getAssociatedConstraints(AC&: ParamsAC); |
8371 | // C++2a[temp.arg.template]p3 |
8372 | // [...] In this comparison, if P is unconstrained, the constraints on A |
8373 | // are not considered. |
8374 | if (ParamsAC.empty()) |
8375 | return false; |
8376 | |
8377 | Template->getAssociatedConstraints(AC&: TemplateAC); |
8378 | |
8379 | bool IsParamAtLeastAsConstrained; |
8380 | if (IsAtLeastAsConstrained(Param, ParamsAC, Template, TemplateAC, |
8381 | IsParamAtLeastAsConstrained)) |
8382 | return true; |
8383 | if (!IsParamAtLeastAsConstrained) { |
8384 | Diag(Arg.getLocation(), |
8385 | diag::err_template_template_parameter_not_at_least_as_constrained) |
8386 | << Template << Param << Arg.getSourceRange(); |
8387 | Diag(Param->getLocation(), diag::note_entity_declared_at) << Param; |
8388 | Diag(Template->getLocation(), diag::note_entity_declared_at) |
8389 | << Template; |
8390 | MaybeEmitAmbiguousAtomicConstraintsDiagnostic(Param, ParamsAC, Template, |
8391 | TemplateAC); |
8392 | return true; |
8393 | } |
8394 | return false; |
8395 | } |
8396 | // FIXME: Produce better diagnostics for deduction failures. |
8397 | } |
8398 | |
8399 | return !TemplateParameterListsAreEqual(New: Template->getTemplateParameters(), |
8400 | Old: Params, |
8401 | Complain: true, |
8402 | Kind: TPL_TemplateTemplateArgumentMatch, |
8403 | TemplateArgLoc: Arg.getLocation()); |
8404 | } |
8405 | |
8406 | static Sema::SemaDiagnosticBuilder noteLocation(Sema &S, const NamedDecl &Decl, |
8407 | unsigned HereDiagID, |
8408 | unsigned ExternalDiagID) { |
8409 | if (Decl.getLocation().isValid()) |
8410 | return S.Diag(Decl.getLocation(), HereDiagID); |
8411 | |
8412 | SmallString<128> Str; |
8413 | llvm::raw_svector_ostream Out(Str); |
8414 | PrintingPolicy PP = S.getPrintingPolicy(); |
8415 | PP.TerseOutput = 1; |
8416 | Decl.print(Out, PP); |
8417 | return S.Diag(Decl.getLocation(), ExternalDiagID) << Out.str(); |
8418 | } |
8419 | |
8420 | void Sema::NoteTemplateLocation(const NamedDecl &Decl, |
8421 | std::optional<SourceRange> ParamRange) { |
8422 | SemaDiagnosticBuilder DB = |
8423 | noteLocation(*this, Decl, diag::note_template_decl_here, |
8424 | diag::note_template_decl_external); |
8425 | if (ParamRange && ParamRange->isValid()) { |
8426 | assert(Decl.getLocation().isValid() && |
8427 | "Parameter range has location when Decl does not" ); |
8428 | DB << *ParamRange; |
8429 | } |
8430 | } |
8431 | |
8432 | void Sema::NoteTemplateParameterLocation(const NamedDecl &Decl) { |
8433 | noteLocation(*this, Decl, diag::note_template_param_here, |
8434 | diag::note_template_param_external); |
8435 | } |
8436 | |
8437 | /// Given a non-type template argument that refers to a |
8438 | /// declaration and the type of its corresponding non-type template |
8439 | /// parameter, produce an expression that properly refers to that |
8440 | /// declaration. |
8441 | ExprResult |
8442 | Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg, |
8443 | QualType ParamType, |
8444 | SourceLocation Loc) { |
8445 | // C++ [temp.param]p8: |
8446 | // |
8447 | // A non-type template-parameter of type "array of T" or |
8448 | // "function returning T" is adjusted to be of type "pointer to |
8449 | // T" or "pointer to function returning T", respectively. |
8450 | if (ParamType->isArrayType()) |
8451 | ParamType = Context.getArrayDecayedType(T: ParamType); |
8452 | else if (ParamType->isFunctionType()) |
8453 | ParamType = Context.getPointerType(T: ParamType); |
8454 | |
8455 | // For a NULL non-type template argument, return nullptr casted to the |
8456 | // parameter's type. |
8457 | if (Arg.getKind() == TemplateArgument::NullPtr) { |
8458 | return ImpCastExprToType( |
8459 | new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc), |
8460 | ParamType, |
8461 | ParamType->getAs<MemberPointerType>() |
8462 | ? CK_NullToMemberPointer |
8463 | : CK_NullToPointer); |
8464 | } |
8465 | assert(Arg.getKind() == TemplateArgument::Declaration && |
8466 | "Only declaration template arguments permitted here" ); |
8467 | |
8468 | ValueDecl *VD = Arg.getAsDecl(); |
8469 | |
8470 | CXXScopeSpec SS; |
8471 | if (ParamType->isMemberPointerType()) { |
8472 | // If this is a pointer to member, we need to use a qualified name to |
8473 | // form a suitable pointer-to-member constant. |
8474 | assert(VD->getDeclContext()->isRecord() && |
8475 | (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) || |
8476 | isa<IndirectFieldDecl>(VD))); |
8477 | QualType ClassType |
8478 | = Context.getTypeDeclType(Decl: cast<RecordDecl>(VD->getDeclContext())); |
8479 | NestedNameSpecifier *Qualifier |
8480 | = NestedNameSpecifier::Create(Context, Prefix: nullptr, Template: false, |
8481 | T: ClassType.getTypePtr()); |
8482 | SS.MakeTrivial(Context, Qualifier, R: Loc); |
8483 | } |
8484 | |
8485 | ExprResult RefExpr = BuildDeclarationNameExpr( |
8486 | SS, DeclarationNameInfo(VD->getDeclName(), Loc), VD); |
8487 | if (RefExpr.isInvalid()) |
8488 | return ExprError(); |
8489 | |
8490 | // For a pointer, the argument declaration is the pointee. Take its address. |
8491 | QualType ElemT(RefExpr.get()->getType()->getArrayElementTypeNoTypeQual(), 0); |
8492 | if (ParamType->isPointerType() && !ElemT.isNull() && |
8493 | Context.hasSimilarType(T1: ElemT, T2: ParamType->getPointeeType())) { |
8494 | // Decay an array argument if we want a pointer to its first element. |
8495 | RefExpr = DefaultFunctionArrayConversion(E: RefExpr.get()); |
8496 | if (RefExpr.isInvalid()) |
8497 | return ExprError(); |
8498 | } else if (ParamType->isPointerType() || ParamType->isMemberPointerType()) { |
8499 | // For any other pointer, take the address (or form a pointer-to-member). |
8500 | RefExpr = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_AddrOf, InputExpr: RefExpr.get()); |
8501 | if (RefExpr.isInvalid()) |
8502 | return ExprError(); |
8503 | } else if (ParamType->isRecordType()) { |
8504 | assert(isa<TemplateParamObjectDecl>(VD) && |
8505 | "arg for class template param not a template parameter object" ); |
8506 | // No conversions apply in this case. |
8507 | return RefExpr; |
8508 | } else { |
8509 | assert(ParamType->isReferenceType() && |
8510 | "unexpected type for decl template argument" ); |
8511 | } |
8512 | |
8513 | // At this point we should have the right value category. |
8514 | assert(ParamType->isReferenceType() == RefExpr.get()->isLValue() && |
8515 | "value kind mismatch for non-type template argument" ); |
8516 | |
8517 | // The type of the template parameter can differ from the type of the |
8518 | // argument in various ways; convert it now if necessary. |
8519 | QualType DestExprType = ParamType.getNonLValueExprType(Context); |
8520 | if (!Context.hasSameType(T1: RefExpr.get()->getType(), T2: DestExprType)) { |
8521 | CastKind CK; |
8522 | QualType Ignored; |
8523 | if (Context.hasSimilarType(T1: RefExpr.get()->getType(), T2: DestExprType) || |
8524 | IsFunctionConversion(FromType: RefExpr.get()->getType(), ToType: DestExprType, ResultTy&: Ignored)) { |
8525 | CK = CK_NoOp; |
8526 | } else if (ParamType->isVoidPointerType() && |
8527 | RefExpr.get()->getType()->isPointerType()) { |
8528 | CK = CK_BitCast; |
8529 | } else { |
8530 | // FIXME: Pointers to members can need conversion derived-to-base or |
8531 | // base-to-derived conversions. We currently don't retain enough |
8532 | // information to convert properly (we need to track a cast path or |
8533 | // subobject number in the template argument). |
8534 | llvm_unreachable( |
8535 | "unexpected conversion required for non-type template argument" ); |
8536 | } |
8537 | RefExpr = ImpCastExprToType(E: RefExpr.get(), Type: DestExprType, CK, |
8538 | VK: RefExpr.get()->getValueKind()); |
8539 | } |
8540 | |
8541 | return RefExpr; |
8542 | } |
8543 | |
8544 | /// Construct a new expression that refers to the given |
8545 | /// integral template argument with the given source-location |
8546 | /// information. |
8547 | /// |
8548 | /// This routine takes care of the mapping from an integral template |
8549 | /// argument (which may have any integral type) to the appropriate |
8550 | /// literal value. |
8551 | static Expr *BuildExpressionFromIntegralTemplateArgumentValue( |
8552 | Sema &S, QualType OrigT, const llvm::APSInt &Int, SourceLocation Loc) { |
8553 | assert(OrigT->isIntegralOrEnumerationType()); |
8554 | |
8555 | // If this is an enum type that we're instantiating, we need to use an integer |
8556 | // type the same size as the enumerator. We don't want to build an |
8557 | // IntegerLiteral with enum type. The integer type of an enum type can be of |
8558 | // any integral type with C++11 enum classes, make sure we create the right |
8559 | // type of literal for it. |
8560 | QualType T = OrigT; |
8561 | if (const EnumType *ET = OrigT->getAs<EnumType>()) |
8562 | T = ET->getDecl()->getIntegerType(); |
8563 | |
8564 | Expr *E; |
8565 | if (T->isAnyCharacterType()) { |
8566 | CharacterLiteralKind Kind; |
8567 | if (T->isWideCharType()) |
8568 | Kind = CharacterLiteralKind::Wide; |
8569 | else if (T->isChar8Type() && S.getLangOpts().Char8) |
8570 | Kind = CharacterLiteralKind::UTF8; |
8571 | else if (T->isChar16Type()) |
8572 | Kind = CharacterLiteralKind::UTF16; |
8573 | else if (T->isChar32Type()) |
8574 | Kind = CharacterLiteralKind::UTF32; |
8575 | else |
8576 | Kind = CharacterLiteralKind::Ascii; |
8577 | |
8578 | E = new (S.Context) CharacterLiteral(Int.getZExtValue(), Kind, T, Loc); |
8579 | } else if (T->isBooleanType()) { |
8580 | E = CXXBoolLiteralExpr::Create(C: S.Context, Val: Int.getBoolValue(), Ty: T, Loc); |
8581 | } else { |
8582 | E = IntegerLiteral::Create(C: S.Context, V: Int, type: T, l: Loc); |
8583 | } |
8584 | |
8585 | if (OrigT->isEnumeralType()) { |
8586 | // FIXME: This is a hack. We need a better way to handle substituted |
8587 | // non-type template parameters. |
8588 | E = CStyleCastExpr::Create(Context: S.Context, T: OrigT, VK: VK_PRValue, K: CK_IntegralCast, Op: E, |
8589 | BasePath: nullptr, FPO: S.CurFPFeatureOverrides(), |
8590 | WrittenTy: S.Context.getTrivialTypeSourceInfo(T: OrigT, Loc), |
8591 | L: Loc, R: Loc); |
8592 | } |
8593 | |
8594 | return E; |
8595 | } |
8596 | |
8597 | static Expr *BuildExpressionFromNonTypeTemplateArgumentValue( |
8598 | Sema &S, QualType T, const APValue &Val, SourceLocation Loc) { |
8599 | auto MakeInitList = [&](ArrayRef<Expr *> Elts) -> Expr * { |
8600 | auto *ILE = new (S.Context) InitListExpr(S.Context, Loc, Elts, Loc); |
8601 | ILE->setType(T); |
8602 | return ILE; |
8603 | }; |
8604 | |
8605 | switch (Val.getKind()) { |
8606 | case APValue::AddrLabelDiff: |
8607 | // This cannot occur in a template argument at all. |
8608 | case APValue::Array: |
8609 | case APValue::Struct: |
8610 | case APValue::Union: |
8611 | // These can only occur within a template parameter object, which is |
8612 | // represented as a TemplateArgument::Declaration. |
8613 | llvm_unreachable("unexpected template argument value" ); |
8614 | |
8615 | case APValue::Int: |
8616 | return BuildExpressionFromIntegralTemplateArgumentValue(S, OrigT: T, Int: Val.getInt(), |
8617 | Loc); |
8618 | |
8619 | case APValue::Float: |
8620 | return FloatingLiteral::Create(C: S.Context, V: Val.getFloat(), /*IsExact=*/isexact: true, |
8621 | Type: T, L: Loc); |
8622 | |
8623 | case APValue::FixedPoint: |
8624 | return FixedPointLiteral::CreateFromRawInt( |
8625 | C: S.Context, V: Val.getFixedPoint().getValue(), type: T, l: Loc, |
8626 | Scale: Val.getFixedPoint().getScale()); |
8627 | |
8628 | case APValue::ComplexInt: { |
8629 | QualType ElemT = T->castAs<ComplexType>()->getElementType(); |
8630 | return MakeInitList({BuildExpressionFromIntegralTemplateArgumentValue( |
8631 | S, OrigT: ElemT, Int: Val.getComplexIntReal(), Loc), |
8632 | BuildExpressionFromIntegralTemplateArgumentValue( |
8633 | S, OrigT: ElemT, Int: Val.getComplexIntImag(), Loc)}); |
8634 | } |
8635 | |
8636 | case APValue::ComplexFloat: { |
8637 | QualType ElemT = T->castAs<ComplexType>()->getElementType(); |
8638 | return MakeInitList( |
8639 | {FloatingLiteral::Create(C: S.Context, V: Val.getComplexFloatReal(), isexact: true, |
8640 | Type: ElemT, L: Loc), |
8641 | FloatingLiteral::Create(C: S.Context, V: Val.getComplexFloatImag(), isexact: true, |
8642 | Type: ElemT, L: Loc)}); |
8643 | } |
8644 | |
8645 | case APValue::Vector: { |
8646 | QualType ElemT = T->castAs<VectorType>()->getElementType(); |
8647 | llvm::SmallVector<Expr *, 8> Elts; |
8648 | for (unsigned I = 0, N = Val.getVectorLength(); I != N; ++I) |
8649 | Elts.push_back(Elt: BuildExpressionFromNonTypeTemplateArgumentValue( |
8650 | S, T: ElemT, Val: Val.getVectorElt(I), Loc)); |
8651 | return MakeInitList(Elts); |
8652 | } |
8653 | |
8654 | case APValue::None: |
8655 | case APValue::Indeterminate: |
8656 | llvm_unreachable("Unexpected APValue kind." ); |
8657 | case APValue::LValue: |
8658 | case APValue::MemberPointer: |
8659 | // There isn't necessarily a valid equivalent source-level syntax for |
8660 | // these; in particular, a naive lowering might violate access control. |
8661 | // So for now we lower to a ConstantExpr holding the value, wrapped around |
8662 | // an OpaqueValueExpr. |
8663 | // FIXME: We should have a better representation for this. |
8664 | ExprValueKind VK = VK_PRValue; |
8665 | if (T->isReferenceType()) { |
8666 | T = T->getPointeeType(); |
8667 | VK = VK_LValue; |
8668 | } |
8669 | auto *OVE = new (S.Context) OpaqueValueExpr(Loc, T, VK); |
8670 | return ConstantExpr::Create(S.Context, OVE, Val); |
8671 | } |
8672 | llvm_unreachable("Unhandled APValue::ValueKind enum" ); |
8673 | } |
8674 | |
8675 | ExprResult |
8676 | Sema::BuildExpressionFromNonTypeTemplateArgument(const TemplateArgument &Arg, |
8677 | SourceLocation Loc) { |
8678 | switch (Arg.getKind()) { |
8679 | case TemplateArgument::Null: |
8680 | case TemplateArgument::Type: |
8681 | case TemplateArgument::Template: |
8682 | case TemplateArgument::TemplateExpansion: |
8683 | case TemplateArgument::Pack: |
8684 | llvm_unreachable("not a non-type template argument" ); |
8685 | |
8686 | case TemplateArgument::Expression: |
8687 | return Arg.getAsExpr(); |
8688 | |
8689 | case TemplateArgument::NullPtr: |
8690 | case TemplateArgument::Declaration: |
8691 | return BuildExpressionFromDeclTemplateArgument( |
8692 | Arg, ParamType: Arg.getNonTypeTemplateArgumentType(), Loc); |
8693 | |
8694 | case TemplateArgument::Integral: |
8695 | return BuildExpressionFromIntegralTemplateArgumentValue( |
8696 | S&: *this, OrigT: Arg.getIntegralType(), Int: Arg.getAsIntegral(), Loc); |
8697 | |
8698 | case TemplateArgument::StructuralValue: |
8699 | return BuildExpressionFromNonTypeTemplateArgumentValue( |
8700 | S&: *this, T: Arg.getStructuralValueType(), Val: Arg.getAsStructuralValue(), Loc); |
8701 | } |
8702 | llvm_unreachable("Unhandled TemplateArgument::ArgKind enum" ); |
8703 | } |
8704 | |
8705 | /// Match two template parameters within template parameter lists. |
8706 | static bool MatchTemplateParameterKind( |
8707 | Sema &S, NamedDecl *New, |
8708 | const Sema::TemplateCompareNewDeclInfo &NewInstFrom, NamedDecl *Old, |
8709 | const NamedDecl *OldInstFrom, bool Complain, |
8710 | Sema::TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { |
8711 | // Check the actual kind (type, non-type, template). |
8712 | if (Old->getKind() != New->getKind()) { |
8713 | if (Complain) { |
8714 | unsigned NextDiag = diag::err_template_param_different_kind; |
8715 | if (TemplateArgLoc.isValid()) { |
8716 | S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); |
8717 | NextDiag = diag::note_template_param_different_kind; |
8718 | } |
8719 | S.Diag(New->getLocation(), NextDiag) |
8720 | << (Kind != Sema::TPL_TemplateMatch); |
8721 | S.Diag(Old->getLocation(), diag::note_template_prev_declaration) |
8722 | << (Kind != Sema::TPL_TemplateMatch); |
8723 | } |
8724 | |
8725 | return false; |
8726 | } |
8727 | |
8728 | // Check that both are parameter packs or neither are parameter packs. |
8729 | // However, if we are matching a template template argument to a |
8730 | // template template parameter, the template template parameter can have |
8731 | // a parameter pack where the template template argument does not. |
8732 | if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() && |
8733 | !(Kind == Sema::TPL_TemplateTemplateArgumentMatch && |
8734 | Old->isTemplateParameterPack())) { |
8735 | if (Complain) { |
8736 | unsigned NextDiag = diag::err_template_parameter_pack_non_pack; |
8737 | if (TemplateArgLoc.isValid()) { |
8738 | S.Diag(TemplateArgLoc, |
8739 | diag::err_template_arg_template_params_mismatch); |
8740 | NextDiag = diag::note_template_parameter_pack_non_pack; |
8741 | } |
8742 | |
8743 | unsigned ParamKind = isa<TemplateTypeParmDecl>(Val: New)? 0 |
8744 | : isa<NonTypeTemplateParmDecl>(Val: New)? 1 |
8745 | : 2; |
8746 | S.Diag(New->getLocation(), NextDiag) |
8747 | << ParamKind << New->isParameterPack(); |
8748 | S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here) |
8749 | << ParamKind << Old->isParameterPack(); |
8750 | } |
8751 | |
8752 | return false; |
8753 | } |
8754 | |
8755 | // For non-type template parameters, check the type of the parameter. |
8756 | if (NonTypeTemplateParmDecl *OldNTTP |
8757 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Old)) { |
8758 | NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(Val: New); |
8759 | |
8760 | // If we are matching a template template argument to a template |
8761 | // template parameter and one of the non-type template parameter types |
8762 | // is dependent, then we must wait until template instantiation time |
8763 | // to actually compare the arguments. |
8764 | if (Kind != Sema::TPL_TemplateTemplateArgumentMatch || |
8765 | (!OldNTTP->getType()->isDependentType() && |
8766 | !NewNTTP->getType()->isDependentType())) { |
8767 | // C++20 [temp.over.link]p6: |
8768 | // Two [non-type] template-parameters are equivalent [if] they have |
8769 | // equivalent types ignoring the use of type-constraints for |
8770 | // placeholder types |
8771 | QualType OldType = S.Context.getUnconstrainedType(T: OldNTTP->getType()); |
8772 | QualType NewType = S.Context.getUnconstrainedType(T: NewNTTP->getType()); |
8773 | if (!S.Context.hasSameType(T1: OldType, T2: NewType)) { |
8774 | if (Complain) { |
8775 | unsigned NextDiag = diag::err_template_nontype_parm_different_type; |
8776 | if (TemplateArgLoc.isValid()) { |
8777 | S.Diag(TemplateArgLoc, |
8778 | diag::err_template_arg_template_params_mismatch); |
8779 | NextDiag = diag::note_template_nontype_parm_different_type; |
8780 | } |
8781 | S.Diag(NewNTTP->getLocation(), NextDiag) |
8782 | << NewNTTP->getType() |
8783 | << (Kind != Sema::TPL_TemplateMatch); |
8784 | S.Diag(OldNTTP->getLocation(), |
8785 | diag::note_template_nontype_parm_prev_declaration) |
8786 | << OldNTTP->getType(); |
8787 | } |
8788 | |
8789 | return false; |
8790 | } |
8791 | } |
8792 | } |
8793 | // For template template parameters, check the template parameter types. |
8794 | // The template parameter lists of template template |
8795 | // parameters must agree. |
8796 | else if (TemplateTemplateParmDecl *OldTTP = |
8797 | dyn_cast<TemplateTemplateParmDecl>(Val: Old)) { |
8798 | TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(Val: New); |
8799 | if (!S.TemplateParameterListsAreEqual( |
8800 | NewInstFrom, NewTTP->getTemplateParameters(), OldInstFrom, |
8801 | OldTTP->getTemplateParameters(), Complain, |
8802 | (Kind == Sema::TPL_TemplateMatch |
8803 | ? Sema::TPL_TemplateTemplateParmMatch |
8804 | : Kind), |
8805 | TemplateArgLoc)) |
8806 | return false; |
8807 | } |
8808 | |
8809 | if (Kind != Sema::TPL_TemplateParamsEquivalent && |
8810 | Kind != Sema::TPL_TemplateTemplateArgumentMatch && |
8811 | !isa<TemplateTemplateParmDecl>(Val: Old)) { |
8812 | const Expr *NewC = nullptr, *OldC = nullptr; |
8813 | |
8814 | if (isa<TemplateTypeParmDecl>(Val: New)) { |
8815 | if (const auto *TC = cast<TemplateTypeParmDecl>(Val: New)->getTypeConstraint()) |
8816 | NewC = TC->getImmediatelyDeclaredConstraint(); |
8817 | if (const auto *TC = cast<TemplateTypeParmDecl>(Val: Old)->getTypeConstraint()) |
8818 | OldC = TC->getImmediatelyDeclaredConstraint(); |
8819 | } else if (isa<NonTypeTemplateParmDecl>(Val: New)) { |
8820 | if (const Expr *E = cast<NonTypeTemplateParmDecl>(Val: New) |
8821 | ->getPlaceholderTypeConstraint()) |
8822 | NewC = E; |
8823 | if (const Expr *E = cast<NonTypeTemplateParmDecl>(Val: Old) |
8824 | ->getPlaceholderTypeConstraint()) |
8825 | OldC = E; |
8826 | } else |
8827 | llvm_unreachable("unexpected template parameter type" ); |
8828 | |
8829 | auto Diagnose = [&] { |
8830 | S.Diag(NewC ? NewC->getBeginLoc() : New->getBeginLoc(), |
8831 | diag::err_template_different_type_constraint); |
8832 | S.Diag(OldC ? OldC->getBeginLoc() : Old->getBeginLoc(), |
8833 | diag::note_template_prev_declaration) << /*declaration*/0; |
8834 | }; |
8835 | |
8836 | if (!NewC != !OldC) { |
8837 | if (Complain) |
8838 | Diagnose(); |
8839 | return false; |
8840 | } |
8841 | |
8842 | if (NewC) { |
8843 | if (!S.AreConstraintExpressionsEqual(Old: OldInstFrom, OldConstr: OldC, New: NewInstFrom, |
8844 | NewConstr: NewC)) { |
8845 | if (Complain) |
8846 | Diagnose(); |
8847 | return false; |
8848 | } |
8849 | } |
8850 | } |
8851 | |
8852 | return true; |
8853 | } |
8854 | |
8855 | /// Diagnose a known arity mismatch when comparing template argument |
8856 | /// lists. |
8857 | static |
8858 | void DiagnoseTemplateParameterListArityMismatch(Sema &S, |
8859 | TemplateParameterList *New, |
8860 | TemplateParameterList *Old, |
8861 | Sema::TemplateParameterListEqualKind Kind, |
8862 | SourceLocation TemplateArgLoc) { |
8863 | unsigned NextDiag = diag::err_template_param_list_different_arity; |
8864 | if (TemplateArgLoc.isValid()) { |
8865 | S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch); |
8866 | NextDiag = diag::note_template_param_list_different_arity; |
8867 | } |
8868 | S.Diag(New->getTemplateLoc(), NextDiag) |
8869 | << (New->size() > Old->size()) |
8870 | << (Kind != Sema::TPL_TemplateMatch) |
8871 | << SourceRange(New->getTemplateLoc(), New->getRAngleLoc()); |
8872 | S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration) |
8873 | << (Kind != Sema::TPL_TemplateMatch) |
8874 | << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc()); |
8875 | } |
8876 | |
8877 | /// Determine whether the given template parameter lists are |
8878 | /// equivalent. |
8879 | /// |
8880 | /// \param New The new template parameter list, typically written in the |
8881 | /// source code as part of a new template declaration. |
8882 | /// |
8883 | /// \param Old The old template parameter list, typically found via |
8884 | /// name lookup of the template declared with this template parameter |
8885 | /// list. |
8886 | /// |
8887 | /// \param Complain If true, this routine will produce a diagnostic if |
8888 | /// the template parameter lists are not equivalent. |
8889 | /// |
8890 | /// \param Kind describes how we are to match the template parameter lists. |
8891 | /// |
8892 | /// \param TemplateArgLoc If this source location is valid, then we |
8893 | /// are actually checking the template parameter list of a template |
8894 | /// argument (New) against the template parameter list of its |
8895 | /// corresponding template template parameter (Old). We produce |
8896 | /// slightly different diagnostics in this scenario. |
8897 | /// |
8898 | /// \returns True if the template parameter lists are equal, false |
8899 | /// otherwise. |
8900 | bool Sema::TemplateParameterListsAreEqual( |
8901 | const TemplateCompareNewDeclInfo &NewInstFrom, TemplateParameterList *New, |
8902 | const NamedDecl *OldInstFrom, TemplateParameterList *Old, bool Complain, |
8903 | TemplateParameterListEqualKind Kind, SourceLocation TemplateArgLoc) { |
8904 | if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) { |
8905 | if (Complain) |
8906 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
8907 | TemplateArgLoc); |
8908 | |
8909 | return false; |
8910 | } |
8911 | |
8912 | // C++0x [temp.arg.template]p3: |
8913 | // A template-argument matches a template template-parameter (call it P) |
8914 | // when each of the template parameters in the template-parameter-list of |
8915 | // the template-argument's corresponding class template or alias template |
8916 | // (call it A) matches the corresponding template parameter in the |
8917 | // template-parameter-list of P. [...] |
8918 | TemplateParameterList::iterator NewParm = New->begin(); |
8919 | TemplateParameterList::iterator NewParmEnd = New->end(); |
8920 | for (TemplateParameterList::iterator OldParm = Old->begin(), |
8921 | OldParmEnd = Old->end(); |
8922 | OldParm != OldParmEnd; ++OldParm) { |
8923 | if (Kind != TPL_TemplateTemplateArgumentMatch || |
8924 | !(*OldParm)->isTemplateParameterPack()) { |
8925 | if (NewParm == NewParmEnd) { |
8926 | if (Complain) |
8927 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
8928 | TemplateArgLoc); |
8929 | |
8930 | return false; |
8931 | } |
8932 | |
8933 | if (!MatchTemplateParameterKind(S&: *this, New: *NewParm, NewInstFrom, Old: *OldParm, |
8934 | OldInstFrom, Complain, Kind, |
8935 | TemplateArgLoc)) |
8936 | return false; |
8937 | |
8938 | ++NewParm; |
8939 | continue; |
8940 | } |
8941 | |
8942 | // C++0x [temp.arg.template]p3: |
8943 | // [...] When P's template- parameter-list contains a template parameter |
8944 | // pack (14.5.3), the template parameter pack will match zero or more |
8945 | // template parameters or template parameter packs in the |
8946 | // template-parameter-list of A with the same type and form as the |
8947 | // template parameter pack in P (ignoring whether those template |
8948 | // parameters are template parameter packs). |
8949 | for (; NewParm != NewParmEnd; ++NewParm) { |
8950 | if (!MatchTemplateParameterKind(S&: *this, New: *NewParm, NewInstFrom, Old: *OldParm, |
8951 | OldInstFrom, Complain, Kind, |
8952 | TemplateArgLoc)) |
8953 | return false; |
8954 | } |
8955 | } |
8956 | |
8957 | // Make sure we exhausted all of the arguments. |
8958 | if (NewParm != NewParmEnd) { |
8959 | if (Complain) |
8960 | DiagnoseTemplateParameterListArityMismatch(S&: *this, New, Old, Kind, |
8961 | TemplateArgLoc); |
8962 | |
8963 | return false; |
8964 | } |
8965 | |
8966 | if (Kind != TPL_TemplateTemplateArgumentMatch && |
8967 | Kind != TPL_TemplateParamsEquivalent) { |
8968 | const Expr *NewRC = New->getRequiresClause(); |
8969 | const Expr *OldRC = Old->getRequiresClause(); |
8970 | |
8971 | auto Diagnose = [&] { |
8972 | Diag(NewRC ? NewRC->getBeginLoc() : New->getTemplateLoc(), |
8973 | diag::err_template_different_requires_clause); |
8974 | Diag(OldRC ? OldRC->getBeginLoc() : Old->getTemplateLoc(), |
8975 | diag::note_template_prev_declaration) << /*declaration*/0; |
8976 | }; |
8977 | |
8978 | if (!NewRC != !OldRC) { |
8979 | if (Complain) |
8980 | Diagnose(); |
8981 | return false; |
8982 | } |
8983 | |
8984 | if (NewRC) { |
8985 | if (!AreConstraintExpressionsEqual(Old: OldInstFrom, OldConstr: OldRC, New: NewInstFrom, |
8986 | NewConstr: NewRC)) { |
8987 | if (Complain) |
8988 | Diagnose(); |
8989 | return false; |
8990 | } |
8991 | } |
8992 | } |
8993 | |
8994 | return true; |
8995 | } |
8996 | |
8997 | /// Check whether a template can be declared within this scope. |
8998 | /// |
8999 | /// If the template declaration is valid in this scope, returns |
9000 | /// false. Otherwise, issues a diagnostic and returns true. |
9001 | bool |
9002 | Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) { |
9003 | if (!S) |
9004 | return false; |
9005 | |
9006 | // Find the nearest enclosing declaration scope. |
9007 | S = S->getDeclParent(); |
9008 | |
9009 | // C++ [temp.pre]p6: [P2096] |
9010 | // A template, explicit specialization, or partial specialization shall not |
9011 | // have C linkage. |
9012 | DeclContext *Ctx = S->getEntity(); |
9013 | if (Ctx && Ctx->isExternCContext()) { |
9014 | Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage) |
9015 | << TemplateParams->getSourceRange(); |
9016 | if (const LinkageSpecDecl *LSD = Ctx->getExternCContext()) |
9017 | Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); |
9018 | return true; |
9019 | } |
9020 | Ctx = Ctx ? Ctx->getRedeclContext() : nullptr; |
9021 | |
9022 | // C++ [temp]p2: |
9023 | // A template-declaration can appear only as a namespace scope or |
9024 | // class scope declaration. |
9025 | // C++ [temp.expl.spec]p3: |
9026 | // An explicit specialization may be declared in any scope in which the |
9027 | // corresponding primary template may be defined. |
9028 | // C++ [temp.class.spec]p6: [P2096] |
9029 | // A partial specialization may be declared in any scope in which the |
9030 | // corresponding primary template may be defined. |
9031 | if (Ctx) { |
9032 | if (Ctx->isFileContext()) |
9033 | return false; |
9034 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: Ctx)) { |
9035 | // C++ [temp.mem]p2: |
9036 | // A local class shall not have member templates. |
9037 | if (RD->isLocalClass()) |
9038 | return Diag(TemplateParams->getTemplateLoc(), |
9039 | diag::err_template_inside_local_class) |
9040 | << TemplateParams->getSourceRange(); |
9041 | else |
9042 | return false; |
9043 | } |
9044 | } |
9045 | |
9046 | return Diag(TemplateParams->getTemplateLoc(), |
9047 | diag::err_template_outside_namespace_or_class_scope) |
9048 | << TemplateParams->getSourceRange(); |
9049 | } |
9050 | |
9051 | /// Determine what kind of template specialization the given declaration |
9052 | /// is. |
9053 | static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) { |
9054 | if (!D) |
9055 | return TSK_Undeclared; |
9056 | |
9057 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: D)) |
9058 | return Record->getTemplateSpecializationKind(); |
9059 | if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: D)) |
9060 | return Function->getTemplateSpecializationKind(); |
9061 | if (VarDecl *Var = dyn_cast<VarDecl>(Val: D)) |
9062 | return Var->getTemplateSpecializationKind(); |
9063 | |
9064 | return TSK_Undeclared; |
9065 | } |
9066 | |
9067 | /// Check whether a specialization is well-formed in the current |
9068 | /// context. |
9069 | /// |
9070 | /// This routine determines whether a template specialization can be declared |
9071 | /// in the current context (C++ [temp.expl.spec]p2). |
9072 | /// |
9073 | /// \param S the semantic analysis object for which this check is being |
9074 | /// performed. |
9075 | /// |
9076 | /// \param Specialized the entity being specialized or instantiated, which |
9077 | /// may be a kind of template (class template, function template, etc.) or |
9078 | /// a member of a class template (member function, static data member, |
9079 | /// member class). |
9080 | /// |
9081 | /// \param PrevDecl the previous declaration of this entity, if any. |
9082 | /// |
9083 | /// \param Loc the location of the explicit specialization or instantiation of |
9084 | /// this entity. |
9085 | /// |
9086 | /// \param IsPartialSpecialization whether this is a partial specialization of |
9087 | /// a class template. |
9088 | /// |
9089 | /// \returns true if there was an error that we cannot recover from, false |
9090 | /// otherwise. |
9091 | static bool CheckTemplateSpecializationScope(Sema &S, |
9092 | NamedDecl *Specialized, |
9093 | NamedDecl *PrevDecl, |
9094 | SourceLocation Loc, |
9095 | bool IsPartialSpecialization) { |
9096 | // Keep these "kind" numbers in sync with the %select statements in the |
9097 | // various diagnostics emitted by this routine. |
9098 | int EntityKind = 0; |
9099 | if (isa<ClassTemplateDecl>(Val: Specialized)) |
9100 | EntityKind = IsPartialSpecialization? 1 : 0; |
9101 | else if (isa<VarTemplateDecl>(Val: Specialized)) |
9102 | EntityKind = IsPartialSpecialization ? 3 : 2; |
9103 | else if (isa<FunctionTemplateDecl>(Val: Specialized)) |
9104 | EntityKind = 4; |
9105 | else if (isa<CXXMethodDecl>(Val: Specialized)) |
9106 | EntityKind = 5; |
9107 | else if (isa<VarDecl>(Val: Specialized)) |
9108 | EntityKind = 6; |
9109 | else if (isa<RecordDecl>(Val: Specialized)) |
9110 | EntityKind = 7; |
9111 | else if (isa<EnumDecl>(Val: Specialized) && S.getLangOpts().CPlusPlus11) |
9112 | EntityKind = 8; |
9113 | else { |
9114 | S.Diag(Loc, diag::err_template_spec_unknown_kind) |
9115 | << S.getLangOpts().CPlusPlus11; |
9116 | S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
9117 | return true; |
9118 | } |
9119 | |
9120 | // C++ [temp.expl.spec]p2: |
9121 | // An explicit specialization may be declared in any scope in which |
9122 | // the corresponding primary template may be defined. |
9123 | if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) { |
9124 | S.Diag(Loc, diag::err_template_spec_decl_function_scope) |
9125 | << Specialized; |
9126 | return true; |
9127 | } |
9128 | |
9129 | // C++ [temp.class.spec]p6: |
9130 | // A class template partial specialization may be declared in any |
9131 | // scope in which the primary template may be defined. |
9132 | DeclContext *SpecializedContext = |
9133 | Specialized->getDeclContext()->getRedeclContext(); |
9134 | DeclContext *DC = S.CurContext->getRedeclContext(); |
9135 | |
9136 | // Make sure that this redeclaration (or definition) occurs in the same |
9137 | // scope or an enclosing namespace. |
9138 | if (!(DC->isFileContext() ? DC->Encloses(DC: SpecializedContext) |
9139 | : DC->Equals(DC: SpecializedContext))) { |
9140 | if (isa<TranslationUnitDecl>(Val: SpecializedContext)) |
9141 | S.Diag(Loc, diag::err_template_spec_redecl_global_scope) |
9142 | << EntityKind << Specialized; |
9143 | else { |
9144 | auto *ND = cast<NamedDecl>(Val: SpecializedContext); |
9145 | int Diag = diag::err_template_spec_redecl_out_of_scope; |
9146 | if (S.getLangOpts().MicrosoftExt && !DC->isRecord()) |
9147 | Diag = diag::ext_ms_template_spec_redecl_out_of_scope; |
9148 | S.Diag(Loc, Diag) << EntityKind << Specialized |
9149 | << ND << isa<CXXRecordDecl>(ND); |
9150 | } |
9151 | |
9152 | S.Diag(Specialized->getLocation(), diag::note_specialized_entity); |
9153 | |
9154 | // Don't allow specializing in the wrong class during error recovery. |
9155 | // Otherwise, things can go horribly wrong. |
9156 | if (DC->isRecord()) |
9157 | return true; |
9158 | } |
9159 | |
9160 | return false; |
9161 | } |
9162 | |
9163 | static SourceRange findTemplateParameterInType(unsigned Depth, Expr *E) { |
9164 | if (!E->isTypeDependent()) |
9165 | return SourceLocation(); |
9166 | DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); |
9167 | Checker.TraverseStmt(E); |
9168 | if (Checker.MatchLoc.isInvalid()) |
9169 | return E->getSourceRange(); |
9170 | return Checker.MatchLoc; |
9171 | } |
9172 | |
9173 | static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) { |
9174 | if (!TL.getType()->isDependentType()) |
9175 | return SourceLocation(); |
9176 | DependencyChecker Checker(Depth, /*IgnoreNonTypeDependent*/true); |
9177 | Checker.TraverseTypeLoc(TL); |
9178 | if (Checker.MatchLoc.isInvalid()) |
9179 | return TL.getSourceRange(); |
9180 | return Checker.MatchLoc; |
9181 | } |
9182 | |
9183 | /// Subroutine of Sema::CheckTemplatePartialSpecializationArgs |
9184 | /// that checks non-type template partial specialization arguments. |
9185 | static bool CheckNonTypeTemplatePartialSpecializationArgs( |
9186 | Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param, |
9187 | const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) { |
9188 | for (unsigned I = 0; I != NumArgs; ++I) { |
9189 | if (Args[I].getKind() == TemplateArgument::Pack) { |
9190 | if (CheckNonTypeTemplatePartialSpecializationArgs( |
9191 | S, TemplateNameLoc, Param, Args: Args[I].pack_begin(), |
9192 | NumArgs: Args[I].pack_size(), IsDefaultArgument)) |
9193 | return true; |
9194 | |
9195 | continue; |
9196 | } |
9197 | |
9198 | if (Args[I].getKind() != TemplateArgument::Expression) |
9199 | continue; |
9200 | |
9201 | Expr *ArgExpr = Args[I].getAsExpr(); |
9202 | |
9203 | // We can have a pack expansion of any of the bullets below. |
9204 | if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(Val: ArgExpr)) |
9205 | ArgExpr = Expansion->getPattern(); |
9206 | |
9207 | // Strip off any implicit casts we added as part of type checking. |
9208 | while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgExpr)) |
9209 | ArgExpr = ICE->getSubExpr(); |
9210 | |
9211 | // C++ [temp.class.spec]p8: |
9212 | // A non-type argument is non-specialized if it is the name of a |
9213 | // non-type parameter. All other non-type arguments are |
9214 | // specialized. |
9215 | // |
9216 | // Below, we check the two conditions that only apply to |
9217 | // specialized non-type arguments, so skip any non-specialized |
9218 | // arguments. |
9219 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: ArgExpr)) |
9220 | if (isa<NonTypeTemplateParmDecl>(Val: DRE->getDecl())) |
9221 | continue; |
9222 | |
9223 | // C++ [temp.class.spec]p9: |
9224 | // Within the argument list of a class template partial |
9225 | // specialization, the following restrictions apply: |
9226 | // -- A partially specialized non-type argument expression |
9227 | // shall not involve a template parameter of the partial |
9228 | // specialization except when the argument expression is a |
9229 | // simple identifier. |
9230 | // -- The type of a template parameter corresponding to a |
9231 | // specialized non-type argument shall not be dependent on a |
9232 | // parameter of the specialization. |
9233 | // DR1315 removes the first bullet, leaving an incoherent set of rules. |
9234 | // We implement a compromise between the original rules and DR1315: |
9235 | // -- A specialized non-type template argument shall not be |
9236 | // type-dependent and the corresponding template parameter |
9237 | // shall have a non-dependent type. |
9238 | SourceRange ParamUseRange = |
9239 | findTemplateParameterInType(Param->getDepth(), ArgExpr); |
9240 | if (ParamUseRange.isValid()) { |
9241 | if (IsDefaultArgument) { |
9242 | S.Diag(TemplateNameLoc, |
9243 | diag::err_dependent_non_type_arg_in_partial_spec); |
9244 | S.Diag(ParamUseRange.getBegin(), |
9245 | diag::note_dependent_non_type_default_arg_in_partial_spec) |
9246 | << ParamUseRange; |
9247 | } else { |
9248 | S.Diag(ParamUseRange.getBegin(), |
9249 | diag::err_dependent_non_type_arg_in_partial_spec) |
9250 | << ParamUseRange; |
9251 | } |
9252 | return true; |
9253 | } |
9254 | |
9255 | ParamUseRange = findTemplateParameter( |
9256 | Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc()); |
9257 | if (ParamUseRange.isValid()) { |
9258 | S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getBeginLoc(), |
9259 | diag::err_dependent_typed_non_type_arg_in_partial_spec) |
9260 | << Param->getType(); |
9261 | S.NoteTemplateParameterLocation(*Param); |
9262 | return true; |
9263 | } |
9264 | } |
9265 | |
9266 | return false; |
9267 | } |
9268 | |
9269 | /// Check the non-type template arguments of a class template |
9270 | /// partial specialization according to C++ [temp.class.spec]p9. |
9271 | /// |
9272 | /// \param TemplateNameLoc the location of the template name. |
9273 | /// \param PrimaryTemplate the template parameters of the primary class |
9274 | /// template. |
9275 | /// \param NumExplicit the number of explicitly-specified template arguments. |
9276 | /// \param TemplateArgs the template arguments of the class template |
9277 | /// partial specialization. |
9278 | /// |
9279 | /// \returns \c true if there was an error, \c false otherwise. |
9280 | bool Sema::CheckTemplatePartialSpecializationArgs( |
9281 | SourceLocation TemplateNameLoc, TemplateDecl *PrimaryTemplate, |
9282 | unsigned NumExplicit, ArrayRef<TemplateArgument> TemplateArgs) { |
9283 | // We have to be conservative when checking a template in a dependent |
9284 | // context. |
9285 | if (PrimaryTemplate->getDeclContext()->isDependentContext()) |
9286 | return false; |
9287 | |
9288 | TemplateParameterList *TemplateParams = |
9289 | PrimaryTemplate->getTemplateParameters(); |
9290 | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
9291 | NonTypeTemplateParmDecl *Param |
9292 | = dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: I)); |
9293 | if (!Param) |
9294 | continue; |
9295 | |
9296 | if (CheckNonTypeTemplatePartialSpecializationArgs(S&: *this, TemplateNameLoc, |
9297 | Param, Args: &TemplateArgs[I], |
9298 | NumArgs: 1, IsDefaultArgument: I >= NumExplicit)) |
9299 | return true; |
9300 | } |
9301 | |
9302 | return false; |
9303 | } |
9304 | |
9305 | DeclResult Sema::ActOnClassTemplateSpecialization( |
9306 | Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
9307 | SourceLocation ModulePrivateLoc, CXXScopeSpec &SS, |
9308 | TemplateIdAnnotation &TemplateId, const ParsedAttributesView &Attr, |
9309 | MultiTemplateParamsArg TemplateParameterLists, SkipBodyInfo *SkipBody) { |
9310 | assert(TUK != TUK_Reference && "References are not specializations" ); |
9311 | |
9312 | // NOTE: KWLoc is the location of the tag keyword. This will instead |
9313 | // store the location of the outermost template keyword in the declaration. |
9314 | SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0 |
9315 | ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc; |
9316 | SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc; |
9317 | SourceLocation LAngleLoc = TemplateId.LAngleLoc; |
9318 | SourceLocation RAngleLoc = TemplateId.RAngleLoc; |
9319 | |
9320 | // Find the class template we're specializing |
9321 | TemplateName Name = TemplateId.Template.get(); |
9322 | ClassTemplateDecl *ClassTemplate |
9323 | = dyn_cast_or_null<ClassTemplateDecl>(Val: Name.getAsTemplateDecl()); |
9324 | |
9325 | if (!ClassTemplate) { |
9326 | Diag(TemplateNameLoc, diag::err_not_class_template_specialization) |
9327 | << (Name.getAsTemplateDecl() && |
9328 | isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl())); |
9329 | return true; |
9330 | } |
9331 | |
9332 | bool isMemberSpecialization = false; |
9333 | bool isPartialSpecialization = false; |
9334 | |
9335 | if (SS.isSet()) { |
9336 | if (TUK != TUK_Reference && TUK != TUK_Friend && |
9337 | diagnoseQualifiedDeclaration(SS, DC: ClassTemplate->getDeclContext(), |
9338 | Name: ClassTemplate->getDeclName(), |
9339 | Loc: TemplateNameLoc, TemplateId: &TemplateId, |
9340 | /*IsMemberSpecialization=*/false)) |
9341 | return true; |
9342 | } |
9343 | |
9344 | // Check the validity of the template headers that introduce this |
9345 | // template. |
9346 | // FIXME: We probably shouldn't complain about these headers for |
9347 | // friend declarations. |
9348 | bool Invalid = false; |
9349 | TemplateParameterList *TemplateParams = |
9350 | MatchTemplateParametersToScopeSpecifier( |
9351 | DeclStartLoc: KWLoc, DeclLoc: TemplateNameLoc, SS, TemplateId: &TemplateId, |
9352 | ParamLists: TemplateParameterLists, IsFriend: TUK == TUK_Friend, IsMemberSpecialization&: isMemberSpecialization, |
9353 | Invalid); |
9354 | if (Invalid) |
9355 | return true; |
9356 | |
9357 | // Check that we can declare a template specialization here. |
9358 | if (TemplateParams && CheckTemplateDeclScope(S, TemplateParams)) |
9359 | return true; |
9360 | |
9361 | if (TemplateParams && TemplateParams->size() > 0) { |
9362 | isPartialSpecialization = true; |
9363 | |
9364 | if (TUK == TUK_Friend) { |
9365 | Diag(KWLoc, diag::err_partial_specialization_friend) |
9366 | << SourceRange(LAngleLoc, RAngleLoc); |
9367 | return true; |
9368 | } |
9369 | |
9370 | // C++ [temp.class.spec]p10: |
9371 | // The template parameter list of a specialization shall not |
9372 | // contain default template argument values. |
9373 | for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { |
9374 | Decl *Param = TemplateParams->getParam(Idx: I); |
9375 | if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Val: Param)) { |
9376 | if (TTP->hasDefaultArgument()) { |
9377 | Diag(TTP->getDefaultArgumentLoc(), |
9378 | diag::err_default_arg_in_partial_spec); |
9379 | TTP->removeDefaultArgument(); |
9380 | } |
9381 | } else if (NonTypeTemplateParmDecl *NTTP |
9382 | = dyn_cast<NonTypeTemplateParmDecl>(Val: Param)) { |
9383 | if (Expr *DefArg = NTTP->getDefaultArgument()) { |
9384 | Diag(NTTP->getDefaultArgumentLoc(), |
9385 | diag::err_default_arg_in_partial_spec) |
9386 | << DefArg->getSourceRange(); |
9387 | NTTP->removeDefaultArgument(); |
9388 | } |
9389 | } else { |
9390 | TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Val: Param); |
9391 | if (TTP->hasDefaultArgument()) { |
9392 | Diag(TTP->getDefaultArgument().getLocation(), |
9393 | diag::err_default_arg_in_partial_spec) |
9394 | << TTP->getDefaultArgument().getSourceRange(); |
9395 | TTP->removeDefaultArgument(); |
9396 | } |
9397 | } |
9398 | } |
9399 | } else if (TemplateParams) { |
9400 | if (TUK == TUK_Friend) |
9401 | Diag(KWLoc, diag::err_template_spec_friend) |
9402 | << FixItHint::CreateRemoval( |
9403 | SourceRange(TemplateParams->getTemplateLoc(), |
9404 | TemplateParams->getRAngleLoc())) |
9405 | << SourceRange(LAngleLoc, RAngleLoc); |
9406 | } else { |
9407 | assert(TUK == TUK_Friend && "should have a 'template<>' for this decl" ); |
9408 | } |
9409 | |
9410 | // Check that the specialization uses the same tag kind as the |
9411 | // original template. |
9412 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
9413 | assert(Kind != TagTypeKind::Enum && |
9414 | "Invalid enum tag in class template spec!" ); |
9415 | if (!isAcceptableTagRedeclaration(Previous: ClassTemplate->getTemplatedDecl(), |
9416 | NewTag: Kind, isDefinition: TUK == TUK_Definition, NewTagLoc: KWLoc, |
9417 | Name: ClassTemplate->getIdentifier())) { |
9418 | Diag(KWLoc, diag::err_use_with_wrong_tag) |
9419 | << ClassTemplate |
9420 | << FixItHint::CreateReplacement(KWLoc, |
9421 | ClassTemplate->getTemplatedDecl()->getKindName()); |
9422 | Diag(ClassTemplate->getTemplatedDecl()->getLocation(), |
9423 | diag::note_previous_use); |
9424 | Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
9425 | } |
9426 | |
9427 | // Translate the parser's template argument list in our AST format. |
9428 | TemplateArgumentListInfo TemplateArgs = |
9429 | makeTemplateArgumentListInfo(S&: *this, TemplateId); |
9430 | |
9431 | // Check for unexpanded parameter packs in any of the template arguments. |
9432 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
9433 | if (DiagnoseUnexpandedParameterPack(Arg: TemplateArgs[I], |
9434 | UPPC: isPartialSpecialization |
9435 | ? UPPC_PartialSpecialization |
9436 | : UPPC_ExplicitSpecialization)) |
9437 | return true; |
9438 | |
9439 | // Check that the template argument list is well-formed for this |
9440 | // template. |
9441 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
9442 | if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, |
9443 | false, SugaredConverted, CanonicalConverted, |
9444 | /*UpdateArgsWithConversions=*/true)) |
9445 | return true; |
9446 | |
9447 | // Find the class template (partial) specialization declaration that |
9448 | // corresponds to these arguments. |
9449 | if (isPartialSpecialization) { |
9450 | if (CheckTemplatePartialSpecializationArgs(TemplateNameLoc, ClassTemplate, |
9451 | TemplateArgs.size(), |
9452 | CanonicalConverted)) |
9453 | return true; |
9454 | |
9455 | // FIXME: Move this to CheckTemplatePartialSpecializationArgs so we |
9456 | // also do it during instantiation. |
9457 | if (!Name.isDependent() && |
9458 | !TemplateSpecializationType::anyDependentTemplateArguments( |
9459 | TemplateArgs, Converted: CanonicalConverted)) { |
9460 | Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized) |
9461 | << ClassTemplate->getDeclName(); |
9462 | isPartialSpecialization = false; |
9463 | Invalid = true; |
9464 | } |
9465 | } |
9466 | |
9467 | void *InsertPos = nullptr; |
9468 | ClassTemplateSpecializationDecl *PrevDecl = nullptr; |
9469 | |
9470 | if (isPartialSpecialization) |
9471 | PrevDecl = ClassTemplate->findPartialSpecialization( |
9472 | Args: CanonicalConverted, TPL: TemplateParams, InsertPos); |
9473 | else |
9474 | PrevDecl = ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos); |
9475 | |
9476 | ClassTemplateSpecializationDecl *Specialization = nullptr; |
9477 | |
9478 | // Check whether we can declare a class template specialization in |
9479 | // the current scope. |
9480 | if (TUK != TUK_Friend && |
9481 | CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl, |
9482 | TemplateNameLoc, |
9483 | isPartialSpecialization)) |
9484 | return true; |
9485 | |
9486 | // The canonical type |
9487 | QualType CanonType; |
9488 | if (isPartialSpecialization) { |
9489 | // Build the canonical type that describes the converted template |
9490 | // arguments of the class template partial specialization. |
9491 | TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); |
9492 | CanonType = Context.getTemplateSpecializationType(T: CanonTemplate, |
9493 | Args: CanonicalConverted); |
9494 | |
9495 | if (Context.hasSameType(T1: CanonType, |
9496 | T2: ClassTemplate->getInjectedClassNameSpecialization()) && |
9497 | (!Context.getLangOpts().CPlusPlus20 || |
9498 | !TemplateParams->hasAssociatedConstraints())) { |
9499 | // C++ [temp.class.spec]p9b3: |
9500 | // |
9501 | // -- The argument list of the specialization shall not be identical |
9502 | // to the implicit argument list of the primary template. |
9503 | // |
9504 | // This rule has since been removed, because it's redundant given DR1495, |
9505 | // but we keep it because it produces better diagnostics and recovery. |
9506 | Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template) |
9507 | << /*class template*/0 << (TUK == TUK_Definition) |
9508 | << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc)); |
9509 | return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS, |
9510 | Name: ClassTemplate->getIdentifier(), |
9511 | NameLoc: TemplateNameLoc, |
9512 | Attr, |
9513 | TemplateParams, |
9514 | AS: AS_none, /*ModulePrivateLoc=*/SourceLocation(), |
9515 | /*FriendLoc*/SourceLocation(), |
9516 | NumOuterTemplateParamLists: TemplateParameterLists.size() - 1, |
9517 | OuterTemplateParamLists: TemplateParameterLists.data()); |
9518 | } |
9519 | |
9520 | // Create a new class template partial specialization declaration node. |
9521 | ClassTemplatePartialSpecializationDecl *PrevPartial |
9522 | = cast_or_null<ClassTemplatePartialSpecializationDecl>(Val: PrevDecl); |
9523 | ClassTemplatePartialSpecializationDecl *Partial = |
9524 | ClassTemplatePartialSpecializationDecl::Create( |
9525 | Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, |
9526 | IdLoc: TemplateNameLoc, Params: TemplateParams, SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, |
9527 | ArgInfos: TemplateArgs, CanonInjectedType: CanonType, PrevDecl: PrevPartial); |
9528 | SetNestedNameSpecifier(*this, Partial, SS); |
9529 | if (TemplateParameterLists.size() > 1 && SS.isSet()) { |
9530 | Partial->setTemplateParameterListsInfo( |
9531 | Context, TemplateParameterLists.drop_back(N: 1)); |
9532 | } |
9533 | |
9534 | if (!PrevPartial) |
9535 | ClassTemplate->AddPartialSpecialization(D: Partial, InsertPos); |
9536 | Specialization = Partial; |
9537 | |
9538 | // If we are providing an explicit specialization of a member class |
9539 | // template specialization, make a note of that. |
9540 | if (PrevPartial && PrevPartial->getInstantiatedFromMember()) |
9541 | PrevPartial->setMemberSpecialization(); |
9542 | |
9543 | CheckTemplatePartialSpecialization(Partial); |
9544 | } else { |
9545 | // Create a new class template specialization declaration node for |
9546 | // this explicit specialization or friend declaration. |
9547 | Specialization = ClassTemplateSpecializationDecl::Create( |
9548 | Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, IdLoc: TemplateNameLoc, |
9549 | SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, PrevDecl); |
9550 | SetNestedNameSpecifier(*this, Specialization, SS); |
9551 | if (TemplateParameterLists.size() > 0) { |
9552 | Specialization->setTemplateParameterListsInfo(Context, |
9553 | TemplateParameterLists); |
9554 | } |
9555 | |
9556 | if (!PrevDecl) |
9557 | ClassTemplate->AddSpecialization(D: Specialization, InsertPos); |
9558 | |
9559 | if (CurContext->isDependentContext()) { |
9560 | TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); |
9561 | CanonType = Context.getTemplateSpecializationType(T: CanonTemplate, |
9562 | Args: CanonicalConverted); |
9563 | } else { |
9564 | CanonType = Context.getTypeDeclType(Specialization); |
9565 | } |
9566 | } |
9567 | |
9568 | // C++ [temp.expl.spec]p6: |
9569 | // If a template, a member template or the member of a class template is |
9570 | // explicitly specialized then that specialization shall be declared |
9571 | // before the first use of that specialization that would cause an implicit |
9572 | // instantiation to take place, in every translation unit in which such a |
9573 | // use occurs; no diagnostic is required. |
9574 | if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) { |
9575 | bool Okay = false; |
9576 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
9577 | // Is there any previous explicit specialization declaration? |
9578 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
9579 | Okay = true; |
9580 | break; |
9581 | } |
9582 | } |
9583 | |
9584 | if (!Okay) { |
9585 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
9586 | Diag(TemplateNameLoc, diag::err_specialization_after_instantiation) |
9587 | << Context.getTypeDeclType(Specialization) << Range; |
9588 | |
9589 | Diag(PrevDecl->getPointOfInstantiation(), |
9590 | diag::note_instantiation_required_here) |
9591 | << (PrevDecl->getTemplateSpecializationKind() |
9592 | != TSK_ImplicitInstantiation); |
9593 | return true; |
9594 | } |
9595 | } |
9596 | |
9597 | // If this is not a friend, note that this is an explicit specialization. |
9598 | if (TUK != TUK_Friend) |
9599 | Specialization->setSpecializationKind(TSK_ExplicitSpecialization); |
9600 | |
9601 | // Check that this isn't a redefinition of this specialization. |
9602 | if (TUK == TUK_Definition) { |
9603 | RecordDecl *Def = Specialization->getDefinition(); |
9604 | NamedDecl *Hidden = nullptr; |
9605 | if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) { |
9606 | SkipBody->ShouldSkip = true; |
9607 | SkipBody->Previous = Def; |
9608 | makeMergedDefinitionVisible(ND: Hidden); |
9609 | } else if (Def) { |
9610 | SourceRange Range(TemplateNameLoc, RAngleLoc); |
9611 | Diag(TemplateNameLoc, diag::err_redefinition) << Specialization << Range; |
9612 | Diag(Def->getLocation(), diag::note_previous_definition); |
9613 | Specialization->setInvalidDecl(); |
9614 | return true; |
9615 | } |
9616 | } |
9617 | |
9618 | ProcessDeclAttributeList(S, Specialization, Attr); |
9619 | ProcessAPINotes(Specialization); |
9620 | |
9621 | // Add alignment attributes if necessary; these attributes are checked when |
9622 | // the ASTContext lays out the structure. |
9623 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
9624 | AddAlignmentAttributesForRecord(Specialization); |
9625 | AddMsStructLayoutForRecord(Specialization); |
9626 | } |
9627 | |
9628 | if (ModulePrivateLoc.isValid()) |
9629 | Diag(Specialization->getLocation(), diag::err_module_private_specialization) |
9630 | << (isPartialSpecialization? 1 : 0) |
9631 | << FixItHint::CreateRemoval(ModulePrivateLoc); |
9632 | |
9633 | // Build the fully-sugared type for this class template |
9634 | // specialization as the user wrote in the specialization |
9635 | // itself. This means that we'll pretty-print the type retrieved |
9636 | // from the specialization's declaration the way that the user |
9637 | // actually wrote the specialization, rather than formatting the |
9638 | // name based on the "canonical" representation used to store the |
9639 | // template arguments in the specialization. |
9640 | TypeSourceInfo *WrittenTy |
9641 | = Context.getTemplateSpecializationTypeInfo(T: Name, TLoc: TemplateNameLoc, |
9642 | Args: TemplateArgs, Canon: CanonType); |
9643 | if (TUK != TUK_Friend) { |
9644 | Specialization->setTypeAsWritten(WrittenTy); |
9645 | Specialization->setTemplateKeywordLoc(TemplateKWLoc); |
9646 | } |
9647 | |
9648 | // C++ [temp.expl.spec]p9: |
9649 | // A template explicit specialization is in the scope of the |
9650 | // namespace in which the template was defined. |
9651 | // |
9652 | // We actually implement this paragraph where we set the semantic |
9653 | // context (in the creation of the ClassTemplateSpecializationDecl), |
9654 | // but we also maintain the lexical context where the actual |
9655 | // definition occurs. |
9656 | Specialization->setLexicalDeclContext(CurContext); |
9657 | |
9658 | // We may be starting the definition of this specialization. |
9659 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) |
9660 | Specialization->startDefinition(); |
9661 | |
9662 | if (TUK == TUK_Friend) { |
9663 | FriendDecl *Friend = FriendDecl::Create(C&: Context, DC: CurContext, |
9664 | L: TemplateNameLoc, |
9665 | Friend_: WrittenTy, |
9666 | /*FIXME:*/FriendL: KWLoc); |
9667 | Friend->setAccess(AS_public); |
9668 | CurContext->addDecl(Friend); |
9669 | } else { |
9670 | // Add the specialization into its lexical context, so that it can |
9671 | // be seen when iterating through the list of declarations in that |
9672 | // context. However, specializations are not found by name lookup. |
9673 | CurContext->addDecl(Specialization); |
9674 | } |
9675 | |
9676 | if (SkipBody && SkipBody->ShouldSkip) |
9677 | return SkipBody->Previous; |
9678 | |
9679 | Specialization->setInvalidDecl(Invalid); |
9680 | return Specialization; |
9681 | } |
9682 | |
9683 | Decl *Sema::ActOnTemplateDeclarator(Scope *S, |
9684 | MultiTemplateParamsArg TemplateParameterLists, |
9685 | Declarator &D) { |
9686 | Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists); |
9687 | ActOnDocumentableDecl(D: NewDecl); |
9688 | return NewDecl; |
9689 | } |
9690 | |
9691 | Decl *Sema::ActOnConceptDefinition( |
9692 | Scope *S, MultiTemplateParamsArg TemplateParameterLists, |
9693 | const IdentifierInfo *Name, SourceLocation NameLoc, Expr *ConstraintExpr) { |
9694 | DeclContext *DC = CurContext; |
9695 | |
9696 | if (!DC->getRedeclContext()->isFileContext()) { |
9697 | Diag(NameLoc, |
9698 | diag::err_concept_decls_may_only_appear_in_global_namespace_scope); |
9699 | return nullptr; |
9700 | } |
9701 | |
9702 | if (TemplateParameterLists.size() > 1) { |
9703 | Diag(NameLoc, diag::err_concept_extra_headers); |
9704 | return nullptr; |
9705 | } |
9706 | |
9707 | TemplateParameterList *Params = TemplateParameterLists.front(); |
9708 | |
9709 | if (Params->size() == 0) { |
9710 | Diag(NameLoc, diag::err_concept_no_parameters); |
9711 | return nullptr; |
9712 | } |
9713 | |
9714 | // Ensure that the parameter pack, if present, is the last parameter in the |
9715 | // template. |
9716 | for (TemplateParameterList::const_iterator ParamIt = Params->begin(), |
9717 | ParamEnd = Params->end(); |
9718 | ParamIt != ParamEnd; ++ParamIt) { |
9719 | Decl const *Param = *ParamIt; |
9720 | if (Param->isParameterPack()) { |
9721 | if (++ParamIt == ParamEnd) |
9722 | break; |
9723 | Diag(Param->getLocation(), |
9724 | diag::err_template_param_pack_must_be_last_template_parameter); |
9725 | return nullptr; |
9726 | } |
9727 | } |
9728 | |
9729 | if (DiagnoseUnexpandedParameterPack(E: ConstraintExpr)) |
9730 | return nullptr; |
9731 | |
9732 | ConceptDecl *NewDecl = |
9733 | ConceptDecl::Create(C&: Context, DC, L: NameLoc, Name, Params, ConstraintExpr); |
9734 | |
9735 | if (NewDecl->hasAssociatedConstraints()) { |
9736 | // C++2a [temp.concept]p4: |
9737 | // A concept shall not have associated constraints. |
9738 | Diag(NameLoc, diag::err_concept_no_associated_constraints); |
9739 | NewDecl->setInvalidDecl(); |
9740 | } |
9741 | |
9742 | // Check for conflicting previous declaration. |
9743 | DeclarationNameInfo NameInfo(NewDecl->getDeclName(), NameLoc); |
9744 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
9745 | forRedeclarationInCurContext()); |
9746 | LookupName(R&: Previous, S); |
9747 | FilterLookupForScope(R&: Previous, Ctx: DC, S, /*ConsiderLinkage=*/false, |
9748 | /*AllowInlineNamespace*/false); |
9749 | bool AddToScope = true; |
9750 | CheckConceptRedefinition(NewDecl, Previous, AddToScope); |
9751 | |
9752 | ActOnDocumentableDecl(NewDecl); |
9753 | if (AddToScope) |
9754 | PushOnScopeChains(NewDecl, S); |
9755 | return NewDecl; |
9756 | } |
9757 | |
9758 | void Sema::CheckConceptRedefinition(ConceptDecl *NewDecl, |
9759 | LookupResult &Previous, bool &AddToScope) { |
9760 | AddToScope = true; |
9761 | |
9762 | if (Previous.empty()) |
9763 | return; |
9764 | |
9765 | auto *OldConcept = dyn_cast<ConceptDecl>(Val: Previous.getRepresentativeDecl()->getUnderlyingDecl()); |
9766 | if (!OldConcept) { |
9767 | auto *Old = Previous.getRepresentativeDecl(); |
9768 | Diag(NewDecl->getLocation(), diag::err_redefinition_different_kind) |
9769 | << NewDecl->getDeclName(); |
9770 | notePreviousDefinition(Old, New: NewDecl->getLocation()); |
9771 | AddToScope = false; |
9772 | return; |
9773 | } |
9774 | // Check if we can merge with a concept declaration. |
9775 | bool IsSame = Context.isSameEntity(NewDecl, OldConcept); |
9776 | if (!IsSame) { |
9777 | Diag(NewDecl->getLocation(), diag::err_redefinition_different_concept) |
9778 | << NewDecl->getDeclName(); |
9779 | notePreviousDefinition(Old: OldConcept, New: NewDecl->getLocation()); |
9780 | AddToScope = false; |
9781 | return; |
9782 | } |
9783 | if (hasReachableDefinition(OldConcept) && |
9784 | IsRedefinitionInModule(NewDecl, OldConcept)) { |
9785 | Diag(NewDecl->getLocation(), diag::err_redefinition) |
9786 | << NewDecl->getDeclName(); |
9787 | notePreviousDefinition(Old: OldConcept, New: NewDecl->getLocation()); |
9788 | AddToScope = false; |
9789 | return; |
9790 | } |
9791 | if (!Previous.isSingleResult()) { |
9792 | // FIXME: we should produce an error in case of ambig and failed lookups. |
9793 | // Other decls (e.g. namespaces) also have this shortcoming. |
9794 | return; |
9795 | } |
9796 | // We unwrap canonical decl late to check for module visibility. |
9797 | Context.setPrimaryMergedDecl(NewDecl, OldConcept->getCanonicalDecl()); |
9798 | } |
9799 | |
9800 | /// \brief Strips various properties off an implicit instantiation |
9801 | /// that has just been explicitly specialized. |
9802 | static void StripImplicitInstantiation(NamedDecl *D, bool MinGW) { |
9803 | if (MinGW || (isa<FunctionDecl>(D) && |
9804 | cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())) |
9805 | D->dropAttrs<DLLImportAttr, DLLExportAttr>(); |
9806 | |
9807 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) |
9808 | FD->setInlineSpecified(false); |
9809 | } |
9810 | |
9811 | /// Compute the diagnostic location for an explicit instantiation |
9812 | // declaration or definition. |
9813 | static SourceLocation DiagLocForExplicitInstantiation( |
9814 | NamedDecl* D, SourceLocation PointOfInstantiation) { |
9815 | // Explicit instantiations following a specialization have no effect and |
9816 | // hence no PointOfInstantiation. In that case, walk decl backwards |
9817 | // until a valid name loc is found. |
9818 | SourceLocation PrevDiagLoc = PointOfInstantiation; |
9819 | for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid(); |
9820 | Prev = Prev->getPreviousDecl()) { |
9821 | PrevDiagLoc = Prev->getLocation(); |
9822 | } |
9823 | assert(PrevDiagLoc.isValid() && |
9824 | "Explicit instantiation without point of instantiation?" ); |
9825 | return PrevDiagLoc; |
9826 | } |
9827 | |
9828 | /// Diagnose cases where we have an explicit template specialization |
9829 | /// before/after an explicit template instantiation, producing diagnostics |
9830 | /// for those cases where they are required and determining whether the |
9831 | /// new specialization/instantiation will have any effect. |
9832 | /// |
9833 | /// \param NewLoc the location of the new explicit specialization or |
9834 | /// instantiation. |
9835 | /// |
9836 | /// \param NewTSK the kind of the new explicit specialization or instantiation. |
9837 | /// |
9838 | /// \param PrevDecl the previous declaration of the entity. |
9839 | /// |
9840 | /// \param PrevTSK the kind of the old explicit specialization or instantiatin. |
9841 | /// |
9842 | /// \param PrevPointOfInstantiation if valid, indicates where the previous |
9843 | /// declaration was instantiated (either implicitly or explicitly). |
9844 | /// |
9845 | /// \param HasNoEffect will be set to true to indicate that the new |
9846 | /// specialization or instantiation has no effect and should be ignored. |
9847 | /// |
9848 | /// \returns true if there was an error that should prevent the introduction of |
9849 | /// the new declaration into the AST, false otherwise. |
9850 | bool |
9851 | Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc, |
9852 | TemplateSpecializationKind NewTSK, |
9853 | NamedDecl *PrevDecl, |
9854 | TemplateSpecializationKind PrevTSK, |
9855 | SourceLocation PrevPointOfInstantiation, |
9856 | bool &HasNoEffect) { |
9857 | HasNoEffect = false; |
9858 | |
9859 | switch (NewTSK) { |
9860 | case TSK_Undeclared: |
9861 | case TSK_ImplicitInstantiation: |
9862 | assert( |
9863 | (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) && |
9864 | "previous declaration must be implicit!" ); |
9865 | return false; |
9866 | |
9867 | case TSK_ExplicitSpecialization: |
9868 | switch (PrevTSK) { |
9869 | case TSK_Undeclared: |
9870 | case TSK_ExplicitSpecialization: |
9871 | // Okay, we're just specializing something that is either already |
9872 | // explicitly specialized or has merely been mentioned without any |
9873 | // instantiation. |
9874 | return false; |
9875 | |
9876 | case TSK_ImplicitInstantiation: |
9877 | if (PrevPointOfInstantiation.isInvalid()) { |
9878 | // The declaration itself has not actually been instantiated, so it is |
9879 | // still okay to specialize it. |
9880 | StripImplicitInstantiation( |
9881 | D: PrevDecl, |
9882 | MinGW: Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()); |
9883 | return false; |
9884 | } |
9885 | // Fall through |
9886 | [[fallthrough]]; |
9887 | |
9888 | case TSK_ExplicitInstantiationDeclaration: |
9889 | case TSK_ExplicitInstantiationDefinition: |
9890 | assert((PrevTSK == TSK_ImplicitInstantiation || |
9891 | PrevPointOfInstantiation.isValid()) && |
9892 | "Explicit instantiation without point of instantiation?" ); |
9893 | |
9894 | // C++ [temp.expl.spec]p6: |
9895 | // If a template, a member template or the member of a class template |
9896 | // is explicitly specialized then that specialization shall be declared |
9897 | // before the first use of that specialization that would cause an |
9898 | // implicit instantiation to take place, in every translation unit in |
9899 | // which such a use occurs; no diagnostic is required. |
9900 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
9901 | // Is there any previous explicit specialization declaration? |
9902 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) |
9903 | return false; |
9904 | } |
9905 | |
9906 | Diag(NewLoc, diag::err_specialization_after_instantiation) |
9907 | << PrevDecl; |
9908 | Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here) |
9909 | << (PrevTSK != TSK_ImplicitInstantiation); |
9910 | |
9911 | return true; |
9912 | } |
9913 | llvm_unreachable("The switch over PrevTSK must be exhaustive." ); |
9914 | |
9915 | case TSK_ExplicitInstantiationDeclaration: |
9916 | switch (PrevTSK) { |
9917 | case TSK_ExplicitInstantiationDeclaration: |
9918 | // This explicit instantiation declaration is redundant (that's okay). |
9919 | HasNoEffect = true; |
9920 | return false; |
9921 | |
9922 | case TSK_Undeclared: |
9923 | case TSK_ImplicitInstantiation: |
9924 | // We're explicitly instantiating something that may have already been |
9925 | // implicitly instantiated; that's fine. |
9926 | return false; |
9927 | |
9928 | case TSK_ExplicitSpecialization: |
9929 | // C++0x [temp.explicit]p4: |
9930 | // For a given set of template parameters, if an explicit instantiation |
9931 | // of a template appears after a declaration of an explicit |
9932 | // specialization for that template, the explicit instantiation has no |
9933 | // effect. |
9934 | HasNoEffect = true; |
9935 | return false; |
9936 | |
9937 | case TSK_ExplicitInstantiationDefinition: |
9938 | // C++0x [temp.explicit]p10: |
9939 | // If an entity is the subject of both an explicit instantiation |
9940 | // declaration and an explicit instantiation definition in the same |
9941 | // translation unit, the definition shall follow the declaration. |
9942 | Diag(NewLoc, |
9943 | diag::err_explicit_instantiation_declaration_after_definition); |
9944 | |
9945 | // Explicit instantiations following a specialization have no effect and |
9946 | // hence no PrevPointOfInstantiation. In that case, walk decl backwards |
9947 | // until a valid name loc is found. |
9948 | Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), |
9949 | diag::note_explicit_instantiation_definition_here); |
9950 | HasNoEffect = true; |
9951 | return false; |
9952 | } |
9953 | llvm_unreachable("Unexpected TemplateSpecializationKind!" ); |
9954 | |
9955 | case TSK_ExplicitInstantiationDefinition: |
9956 | switch (PrevTSK) { |
9957 | case TSK_Undeclared: |
9958 | case TSK_ImplicitInstantiation: |
9959 | // We're explicitly instantiating something that may have already been |
9960 | // implicitly instantiated; that's fine. |
9961 | return false; |
9962 | |
9963 | case TSK_ExplicitSpecialization: |
9964 | // C++ DR 259, C++0x [temp.explicit]p4: |
9965 | // For a given set of template parameters, if an explicit |
9966 | // instantiation of a template appears after a declaration of |
9967 | // an explicit specialization for that template, the explicit |
9968 | // instantiation has no effect. |
9969 | Diag(NewLoc, diag::warn_explicit_instantiation_after_specialization) |
9970 | << PrevDecl; |
9971 | Diag(PrevDecl->getLocation(), |
9972 | diag::note_previous_template_specialization); |
9973 | HasNoEffect = true; |
9974 | return false; |
9975 | |
9976 | case TSK_ExplicitInstantiationDeclaration: |
9977 | // We're explicitly instantiating a definition for something for which we |
9978 | // were previously asked to suppress instantiations. That's fine. |
9979 | |
9980 | // C++0x [temp.explicit]p4: |
9981 | // For a given set of template parameters, if an explicit instantiation |
9982 | // of a template appears after a declaration of an explicit |
9983 | // specialization for that template, the explicit instantiation has no |
9984 | // effect. |
9985 | for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) { |
9986 | // Is there any previous explicit specialization declaration? |
9987 | if (getTemplateSpecializationKind(D: Prev) == TSK_ExplicitSpecialization) { |
9988 | HasNoEffect = true; |
9989 | break; |
9990 | } |
9991 | } |
9992 | |
9993 | return false; |
9994 | |
9995 | case TSK_ExplicitInstantiationDefinition: |
9996 | // C++0x [temp.spec]p5: |
9997 | // For a given template and a given set of template-arguments, |
9998 | // - an explicit instantiation definition shall appear at most once |
9999 | // in a program, |
10000 | |
10001 | // MSVCCompat: MSVC silently ignores duplicate explicit instantiations. |
10002 | Diag(NewLoc, (getLangOpts().MSVCCompat) |
10003 | ? diag::ext_explicit_instantiation_duplicate |
10004 | : diag::err_explicit_instantiation_duplicate) |
10005 | << PrevDecl; |
10006 | Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation), |
10007 | diag::note_previous_explicit_instantiation); |
10008 | HasNoEffect = true; |
10009 | return false; |
10010 | } |
10011 | } |
10012 | |
10013 | llvm_unreachable("Missing specialization/instantiation case?" ); |
10014 | } |
10015 | |
10016 | /// Perform semantic analysis for the given dependent function |
10017 | /// template specialization. |
10018 | /// |
10019 | /// The only possible way to get a dependent function template specialization |
10020 | /// is with a friend declaration, like so: |
10021 | /// |
10022 | /// \code |
10023 | /// template \<class T> void foo(T); |
10024 | /// template \<class T> class A { |
10025 | /// friend void foo<>(T); |
10026 | /// }; |
10027 | /// \endcode |
10028 | /// |
10029 | /// There really isn't any useful analysis we can do here, so we |
10030 | /// just store the information. |
10031 | bool Sema::CheckDependentFunctionTemplateSpecialization( |
10032 | FunctionDecl *FD, const TemplateArgumentListInfo *ExplicitTemplateArgs, |
10033 | LookupResult &Previous) { |
10034 | // Remove anything from Previous that isn't a function template in |
10035 | // the correct context. |
10036 | DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); |
10037 | LookupResult::Filter F = Previous.makeFilter(); |
10038 | enum DiscardReason { NotAFunctionTemplate, NotAMemberOfEnclosing }; |
10039 | SmallVector<std::pair<DiscardReason, Decl *>, 8> DiscardedCandidates; |
10040 | while (F.hasNext()) { |
10041 | NamedDecl *D = F.next()->getUnderlyingDecl(); |
10042 | if (!isa<FunctionTemplateDecl>(Val: D)) { |
10043 | F.erase(); |
10044 | DiscardedCandidates.push_back(std::make_pair(x: NotAFunctionTemplate, y&: D)); |
10045 | continue; |
10046 | } |
10047 | |
10048 | if (!FDLookupContext->InEnclosingNamespaceSetOf( |
10049 | NS: D->getDeclContext()->getRedeclContext())) { |
10050 | F.erase(); |
10051 | DiscardedCandidates.push_back(std::make_pair(x: NotAMemberOfEnclosing, y&: D)); |
10052 | continue; |
10053 | } |
10054 | } |
10055 | F.done(); |
10056 | |
10057 | bool IsFriend = FD->getFriendObjectKind() != Decl::FOK_None; |
10058 | if (Previous.empty()) { |
10059 | Diag(FD->getLocation(), diag::err_dependent_function_template_spec_no_match) |
10060 | << IsFriend; |
10061 | for (auto &P : DiscardedCandidates) |
10062 | Diag(P.second->getLocation(), |
10063 | diag::note_dependent_function_template_spec_discard_reason) |
10064 | << P.first << IsFriend; |
10065 | return true; |
10066 | } |
10067 | |
10068 | FD->setDependentTemplateSpecialization(Context, Templates: Previous.asUnresolvedSet(), |
10069 | TemplateArgs: ExplicitTemplateArgs); |
10070 | return false; |
10071 | } |
10072 | |
10073 | /// Perform semantic analysis for the given function template |
10074 | /// specialization. |
10075 | /// |
10076 | /// This routine performs all of the semantic analysis required for an |
10077 | /// explicit function template specialization. On successful completion, |
10078 | /// the function declaration \p FD will become a function template |
10079 | /// specialization. |
10080 | /// |
10081 | /// \param FD the function declaration, which will be updated to become a |
10082 | /// function template specialization. |
10083 | /// |
10084 | /// \param ExplicitTemplateArgs the explicitly-provided template arguments, |
10085 | /// if any. Note that this may be valid info even when 0 arguments are |
10086 | /// explicitly provided as in, e.g., \c void sort<>(char*, char*); |
10087 | /// as it anyway contains info on the angle brackets locations. |
10088 | /// |
10089 | /// \param Previous the set of declarations that may be specialized by |
10090 | /// this function specialization. |
10091 | /// |
10092 | /// \param QualifiedFriend whether this is a lookup for a qualified friend |
10093 | /// declaration with no explicit template argument list that might be |
10094 | /// befriending a function template specialization. |
10095 | bool Sema::CheckFunctionTemplateSpecialization( |
10096 | FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs, |
10097 | LookupResult &Previous, bool QualifiedFriend) { |
10098 | // The set of function template specializations that could match this |
10099 | // explicit function template specialization. |
10100 | UnresolvedSet<8> Candidates; |
10101 | TemplateSpecCandidateSet FailedCandidates(FD->getLocation(), |
10102 | /*ForTakingAddress=*/false); |
10103 | |
10104 | llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8> |
10105 | ConvertedTemplateArgs; |
10106 | |
10107 | DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext(); |
10108 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
10109 | I != E; ++I) { |
10110 | NamedDecl *Ovl = (*I)->getUnderlyingDecl(); |
10111 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Ovl)) { |
10112 | // Only consider templates found within the same semantic lookup scope as |
10113 | // FD. |
10114 | if (!FDLookupContext->InEnclosingNamespaceSetOf( |
10115 | NS: Ovl->getDeclContext()->getRedeclContext())) |
10116 | continue; |
10117 | |
10118 | // When matching a constexpr member function template specialization |
10119 | // against the primary template, we don't yet know whether the |
10120 | // specialization has an implicit 'const' (because we don't know whether |
10121 | // it will be a static member function until we know which template it |
10122 | // specializes), so adjust it now assuming it specializes this template. |
10123 | QualType FT = FD->getType(); |
10124 | if (FD->isConstexpr()) { |
10125 | CXXMethodDecl *OldMD = |
10126 | dyn_cast<CXXMethodDecl>(Val: FunTmpl->getTemplatedDecl()); |
10127 | if (OldMD && OldMD->isConst()) { |
10128 | const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>(); |
10129 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
10130 | EPI.TypeQuals.addConst(); |
10131 | FT = Context.getFunctionType(ResultTy: FPT->getReturnType(), |
10132 | Args: FPT->getParamTypes(), EPI); |
10133 | } |
10134 | } |
10135 | |
10136 | TemplateArgumentListInfo Args; |
10137 | if (ExplicitTemplateArgs) |
10138 | Args = *ExplicitTemplateArgs; |
10139 | |
10140 | // C++ [temp.expl.spec]p11: |
10141 | // A trailing template-argument can be left unspecified in the |
10142 | // template-id naming an explicit function template specialization |
10143 | // provided it can be deduced from the function argument type. |
10144 | // Perform template argument deduction to determine whether we may be |
10145 | // specializing this template. |
10146 | // FIXME: It is somewhat wasteful to build |
10147 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
10148 | FunctionDecl *Specialization = nullptr; |
10149 | if (TemplateDeductionResult TDK = DeduceTemplateArguments( |
10150 | cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()), |
10151 | ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization, Info); |
10152 | TDK != TemplateDeductionResult::Success) { |
10153 | // Template argument deduction failed; record why it failed, so |
10154 | // that we can provide nifty diagnostics. |
10155 | FailedCandidates.addCandidate().set( |
10156 | I.getPair(), FunTmpl->getTemplatedDecl(), |
10157 | MakeDeductionFailureInfo(Context, TDK, Info)); |
10158 | (void)TDK; |
10159 | continue; |
10160 | } |
10161 | |
10162 | // Target attributes are part of the cuda function signature, so |
10163 | // the deduced template's cuda target must match that of the |
10164 | // specialization. Given that C++ template deduction does not |
10165 | // take target attributes into account, we reject candidates |
10166 | // here that have a different target. |
10167 | if (LangOpts.CUDA && |
10168 | CUDA().IdentifyTarget(D: Specialization, |
10169 | /* IgnoreImplicitHDAttr = */ true) != |
10170 | CUDA().IdentifyTarget(D: FD, /* IgnoreImplicitHDAttr = */ true)) { |
10171 | FailedCandidates.addCandidate().set( |
10172 | I.getPair(), FunTmpl->getTemplatedDecl(), |
10173 | MakeDeductionFailureInfo( |
10174 | Context, TDK: TemplateDeductionResult::CUDATargetMismatch, Info)); |
10175 | continue; |
10176 | } |
10177 | |
10178 | // Record this candidate. |
10179 | if (ExplicitTemplateArgs) |
10180 | ConvertedTemplateArgs[Specialization] = std::move(Args); |
10181 | Candidates.addDecl(Specialization, I.getAccess()); |
10182 | } |
10183 | } |
10184 | |
10185 | // For a qualified friend declaration (with no explicit marker to indicate |
10186 | // that a template specialization was intended), note all (template and |
10187 | // non-template) candidates. |
10188 | if (QualifiedFriend && Candidates.empty()) { |
10189 | Diag(FD->getLocation(), diag::err_qualified_friend_no_match) |
10190 | << FD->getDeclName() << FDLookupContext; |
10191 | // FIXME: We should form a single candidate list and diagnose all |
10192 | // candidates at once, to get proper sorting and limiting. |
10193 | for (auto *OldND : Previous) { |
10194 | if (auto *OldFD = dyn_cast<FunctionDecl>(Val: OldND->getUnderlyingDecl())) |
10195 | NoteOverloadCandidate(Found: OldND, Fn: OldFD, RewriteKind: CRK_None, DestType: FD->getType(), TakingAddress: false); |
10196 | } |
10197 | FailedCandidates.NoteCandidates(*this, FD->getLocation()); |
10198 | return true; |
10199 | } |
10200 | |
10201 | // Find the most specialized function template. |
10202 | UnresolvedSetIterator Result = getMostSpecialized( |
10203 | Candidates.begin(), Candidates.end(), FailedCandidates, FD->getLocation(), |
10204 | PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(), |
10205 | PDiag(diag::err_function_template_spec_ambiguous) |
10206 | << FD->getDeclName() << (ExplicitTemplateArgs != nullptr), |
10207 | PDiag(diag::note_function_template_spec_matched)); |
10208 | |
10209 | if (Result == Candidates.end()) |
10210 | return true; |
10211 | |
10212 | // Ignore access information; it doesn't figure into redeclaration checking. |
10213 | FunctionDecl *Specialization = cast<FunctionDecl>(Val: *Result); |
10214 | |
10215 | // C++23 [except.spec]p13: |
10216 | // An exception specification is considered to be needed when: |
10217 | // - [...] |
10218 | // - the exception specification is compared to that of another declaration |
10219 | // (e.g., an explicit specialization or an overriding virtual function); |
10220 | // - [...] |
10221 | // |
10222 | // The exception specification of a defaulted function is evaluated as |
10223 | // described above only when needed; similarly, the noexcept-specifier of a |
10224 | // specialization of a function template or member function of a class |
10225 | // template is instantiated only when needed. |
10226 | // |
10227 | // The standard doesn't specify what the "comparison with another declaration" |
10228 | // entails, nor the exact circumstances in which it occurs. Moreover, it does |
10229 | // not state which properties of an explicit specialization must match the |
10230 | // primary template. |
10231 | // |
10232 | // We assume that an explicit specialization must correspond with (per |
10233 | // [basic.scope.scope]p4) and declare the same entity as (per [basic.link]p8) |
10234 | // the declaration produced by substitution into the function template. |
10235 | // |
10236 | // Since the determination whether two function declarations correspond does |
10237 | // not consider exception specification, we only need to instantiate it once |
10238 | // we determine the primary template when comparing types per |
10239 | // [basic.link]p11.1. |
10240 | auto *SpecializationFPT = |
10241 | Specialization->getType()->castAs<FunctionProtoType>(); |
10242 | // If the function has a dependent exception specification, resolve it after |
10243 | // we have selected the primary template so we can check whether it matches. |
10244 | if (getLangOpts().CPlusPlus17 && |
10245 | isUnresolvedExceptionSpec(SpecializationFPT->getExceptionSpecType()) && |
10246 | !ResolveExceptionSpec(Loc: FD->getLocation(), FPT: SpecializationFPT)) |
10247 | return true; |
10248 | |
10249 | FunctionTemplateSpecializationInfo *SpecInfo |
10250 | = Specialization->getTemplateSpecializationInfo(); |
10251 | assert(SpecInfo && "Function template specialization info missing?" ); |
10252 | |
10253 | // Note: do not overwrite location info if previous template |
10254 | // specialization kind was explicit. |
10255 | TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind(); |
10256 | if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) { |
10257 | Specialization->setLocation(FD->getLocation()); |
10258 | Specialization->setLexicalDeclContext(FD->getLexicalDeclContext()); |
10259 | // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr |
10260 | // function can differ from the template declaration with respect to |
10261 | // the constexpr specifier. |
10262 | // FIXME: We need an update record for this AST mutation. |
10263 | // FIXME: What if there are multiple such prior declarations (for instance, |
10264 | // from different modules)? |
10265 | Specialization->setConstexprKind(FD->getConstexprKind()); |
10266 | } |
10267 | |
10268 | // FIXME: Check if the prior specialization has a point of instantiation. |
10269 | // If so, we have run afoul of . |
10270 | |
10271 | // If this is a friend declaration, then we're not really declaring |
10272 | // an explicit specialization. |
10273 | bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None); |
10274 | |
10275 | // Check the scope of this explicit specialization. |
10276 | if (!isFriend && |
10277 | CheckTemplateSpecializationScope(*this, |
10278 | Specialization->getPrimaryTemplate(), |
10279 | Specialization, FD->getLocation(), |
10280 | false)) |
10281 | return true; |
10282 | |
10283 | // C++ [temp.expl.spec]p6: |
10284 | // If a template, a member template or the member of a class template is |
10285 | // explicitly specialized then that specialization shall be declared |
10286 | // before the first use of that specialization that would cause an implicit |
10287 | // instantiation to take place, in every translation unit in which such a |
10288 | // use occurs; no diagnostic is required. |
10289 | bool HasNoEffect = false; |
10290 | if (!isFriend && |
10291 | CheckSpecializationInstantiationRedecl(NewLoc: FD->getLocation(), |
10292 | NewTSK: TSK_ExplicitSpecialization, |
10293 | PrevDecl: Specialization, |
10294 | PrevTSK: SpecInfo->getTemplateSpecializationKind(), |
10295 | PrevPointOfInstantiation: SpecInfo->getPointOfInstantiation(), |
10296 | HasNoEffect)) |
10297 | return true; |
10298 | |
10299 | // Mark the prior declaration as an explicit specialization, so that later |
10300 | // clients know that this is an explicit specialization. |
10301 | if (!isFriend) { |
10302 | // Since explicit specializations do not inherit '=delete' from their |
10303 | // primary function template - check if the 'specialization' that was |
10304 | // implicitly generated (during template argument deduction for partial |
10305 | // ordering) from the most specialized of all the function templates that |
10306 | // 'FD' could have been specializing, has a 'deleted' definition. If so, |
10307 | // first check that it was implicitly generated during template argument |
10308 | // deduction by making sure it wasn't referenced, and then reset the deleted |
10309 | // flag to not-deleted, so that we can inherit that information from 'FD'. |
10310 | if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() && |
10311 | !Specialization->getCanonicalDecl()->isReferenced()) { |
10312 | // FIXME: This assert will not hold in the presence of modules. |
10313 | assert( |
10314 | Specialization->getCanonicalDecl() == Specialization && |
10315 | "This must be the only existing declaration of this specialization" ); |
10316 | // FIXME: We need an update record for this AST mutation. |
10317 | Specialization->setDeletedAsWritten(D: false); |
10318 | } |
10319 | // FIXME: We need an update record for this AST mutation. |
10320 | SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
10321 | MarkUnusedFileScopedDecl(Specialization); |
10322 | } |
10323 | |
10324 | // Turn the given function declaration into a function template |
10325 | // specialization, with the template arguments from the previous |
10326 | // specialization. |
10327 | // Take copies of (semantic and syntactic) template argument lists. |
10328 | const TemplateArgumentList *TemplArgs = TemplateArgumentList::CreateCopy( |
10329 | Context, Args: Specialization->getTemplateSpecializationArgs()->asArray()); |
10330 | FD->setFunctionTemplateSpecialization( |
10331 | Template: Specialization->getPrimaryTemplate(), TemplateArgs: TemplArgs, /*InsertPos=*/nullptr, |
10332 | TSK: SpecInfo->getTemplateSpecializationKind(), |
10333 | TemplateArgsAsWritten: ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr); |
10334 | |
10335 | // A function template specialization inherits the target attributes |
10336 | // of its template. (We require the attributes explicitly in the |
10337 | // code to match, but a template may have implicit attributes by |
10338 | // virtue e.g. of being constexpr, and it passes these implicit |
10339 | // attributes on to its specializations.) |
10340 | if (LangOpts.CUDA) |
10341 | CUDA().inheritTargetAttrs(FD, TD: *Specialization->getPrimaryTemplate()); |
10342 | |
10343 | // The "previous declaration" for this function template specialization is |
10344 | // the prior function template specialization. |
10345 | Previous.clear(); |
10346 | Previous.addDecl(Specialization); |
10347 | return false; |
10348 | } |
10349 | |
10350 | /// Perform semantic analysis for the given non-template member |
10351 | /// specialization. |
10352 | /// |
10353 | /// This routine performs all of the semantic analysis required for an |
10354 | /// explicit member function specialization. On successful completion, |
10355 | /// the function declaration \p FD will become a member function |
10356 | /// specialization. |
10357 | /// |
10358 | /// \param Member the member declaration, which will be updated to become a |
10359 | /// specialization. |
10360 | /// |
10361 | /// \param Previous the set of declarations, one of which may be specialized |
10362 | /// by this function specialization; the set will be modified to contain the |
10363 | /// redeclared member. |
10364 | bool |
10365 | Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) { |
10366 | assert(!isa<TemplateDecl>(Member) && "Only for non-template members" ); |
10367 | |
10368 | // Try to find the member we are instantiating. |
10369 | NamedDecl *FoundInstantiation = nullptr; |
10370 | NamedDecl *Instantiation = nullptr; |
10371 | NamedDecl *InstantiatedFrom = nullptr; |
10372 | MemberSpecializationInfo *MSInfo = nullptr; |
10373 | |
10374 | if (Previous.empty()) { |
10375 | // Nowhere to look anyway. |
10376 | } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: Member)) { |
10377 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
10378 | I != E; ++I) { |
10379 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
10380 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) { |
10381 | QualType Adjusted = Function->getType(); |
10382 | if (!hasExplicitCallingConv(T: Adjusted)) |
10383 | Adjusted = adjustCCAndNoReturn(ArgFunctionType: Adjusted, FunctionType: Method->getType()); |
10384 | // This doesn't handle deduced return types, but both function |
10385 | // declarations should be undeduced at this point. |
10386 | if (Context.hasSameType(Adjusted, Method->getType())) { |
10387 | FoundInstantiation = *I; |
10388 | Instantiation = Method; |
10389 | InstantiatedFrom = Method->getInstantiatedFromMemberFunction(); |
10390 | MSInfo = Method->getMemberSpecializationInfo(); |
10391 | break; |
10392 | } |
10393 | } |
10394 | } |
10395 | } else if (isa<VarDecl>(Val: Member)) { |
10396 | VarDecl *PrevVar; |
10397 | if (Previous.isSingleResult() && |
10398 | (PrevVar = dyn_cast<VarDecl>(Val: Previous.getFoundDecl()))) |
10399 | if (PrevVar->isStaticDataMember()) { |
10400 | FoundInstantiation = Previous.getRepresentativeDecl(); |
10401 | Instantiation = PrevVar; |
10402 | InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember(); |
10403 | MSInfo = PrevVar->getMemberSpecializationInfo(); |
10404 | } |
10405 | } else if (isa<RecordDecl>(Val: Member)) { |
10406 | CXXRecordDecl *PrevRecord; |
10407 | if (Previous.isSingleResult() && |
10408 | (PrevRecord = dyn_cast<CXXRecordDecl>(Val: Previous.getFoundDecl()))) { |
10409 | FoundInstantiation = Previous.getRepresentativeDecl(); |
10410 | Instantiation = PrevRecord; |
10411 | InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass(); |
10412 | MSInfo = PrevRecord->getMemberSpecializationInfo(); |
10413 | } |
10414 | } else if (isa<EnumDecl>(Val: Member)) { |
10415 | EnumDecl *PrevEnum; |
10416 | if (Previous.isSingleResult() && |
10417 | (PrevEnum = dyn_cast<EnumDecl>(Val: Previous.getFoundDecl()))) { |
10418 | FoundInstantiation = Previous.getRepresentativeDecl(); |
10419 | Instantiation = PrevEnum; |
10420 | InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum(); |
10421 | MSInfo = PrevEnum->getMemberSpecializationInfo(); |
10422 | } |
10423 | } |
10424 | |
10425 | if (!Instantiation) { |
10426 | // There is no previous declaration that matches. Since member |
10427 | // specializations are always out-of-line, the caller will complain about |
10428 | // this mismatch later. |
10429 | return false; |
10430 | } |
10431 | |
10432 | // A member specialization in a friend declaration isn't really declaring |
10433 | // an explicit specialization, just identifying a specific (possibly implicit) |
10434 | // specialization. Don't change the template specialization kind. |
10435 | // |
10436 | // FIXME: Is this really valid? Other compilers reject. |
10437 | if (Member->getFriendObjectKind() != Decl::FOK_None) { |
10438 | // Preserve instantiation information. |
10439 | if (InstantiatedFrom && isa<CXXMethodDecl>(Val: Member)) { |
10440 | cast<CXXMethodDecl>(Val: Member)->setInstantiationOfMemberFunction( |
10441 | cast<CXXMethodDecl>(Val: InstantiatedFrom), |
10442 | cast<CXXMethodDecl>(Val: Instantiation)->getTemplateSpecializationKind()); |
10443 | } else if (InstantiatedFrom && isa<CXXRecordDecl>(Val: Member)) { |
10444 | cast<CXXRecordDecl>(Val: Member)->setInstantiationOfMemberClass( |
10445 | RD: cast<CXXRecordDecl>(Val: InstantiatedFrom), |
10446 | TSK: cast<CXXRecordDecl>(Val: Instantiation)->getTemplateSpecializationKind()); |
10447 | } |
10448 | |
10449 | Previous.clear(); |
10450 | Previous.addDecl(D: FoundInstantiation); |
10451 | return false; |
10452 | } |
10453 | |
10454 | // Make sure that this is a specialization of a member. |
10455 | if (!InstantiatedFrom) { |
10456 | Diag(Member->getLocation(), diag::err_spec_member_not_instantiated) |
10457 | << Member; |
10458 | Diag(Instantiation->getLocation(), diag::note_specialized_decl); |
10459 | return true; |
10460 | } |
10461 | |
10462 | // C++ [temp.expl.spec]p6: |
10463 | // If a template, a member template or the member of a class template is |
10464 | // explicitly specialized then that specialization shall be declared |
10465 | // before the first use of that specialization that would cause an implicit |
10466 | // instantiation to take place, in every translation unit in which such a |
10467 | // use occurs; no diagnostic is required. |
10468 | assert(MSInfo && "Member specialization info missing?" ); |
10469 | |
10470 | bool HasNoEffect = false; |
10471 | if (CheckSpecializationInstantiationRedecl(NewLoc: Member->getLocation(), |
10472 | NewTSK: TSK_ExplicitSpecialization, |
10473 | PrevDecl: Instantiation, |
10474 | PrevTSK: MSInfo->getTemplateSpecializationKind(), |
10475 | PrevPointOfInstantiation: MSInfo->getPointOfInstantiation(), |
10476 | HasNoEffect)) |
10477 | return true; |
10478 | |
10479 | // Check the scope of this explicit specialization. |
10480 | if (CheckTemplateSpecializationScope(*this, |
10481 | InstantiatedFrom, |
10482 | Instantiation, Member->getLocation(), |
10483 | false)) |
10484 | return true; |
10485 | |
10486 | // Note that this member specialization is an "instantiation of" the |
10487 | // corresponding member of the original template. |
10488 | if (auto *MemberFunction = dyn_cast<FunctionDecl>(Val: Member)) { |
10489 | FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Val: Instantiation); |
10490 | if (InstantiationFunction->getTemplateSpecializationKind() == |
10491 | TSK_ImplicitInstantiation) { |
10492 | // Explicit specializations of member functions of class templates do not |
10493 | // inherit '=delete' from the member function they are specializing. |
10494 | if (InstantiationFunction->isDeleted()) { |
10495 | // FIXME: This assert will not hold in the presence of modules. |
10496 | assert(InstantiationFunction->getCanonicalDecl() == |
10497 | InstantiationFunction); |
10498 | // FIXME: We need an update record for this AST mutation. |
10499 | InstantiationFunction->setDeletedAsWritten(D: false); |
10500 | } |
10501 | } |
10502 | |
10503 | MemberFunction->setInstantiationOfMemberFunction( |
10504 | cast<CXXMethodDecl>(Val: InstantiatedFrom), TSK_ExplicitSpecialization); |
10505 | } else if (auto *MemberVar = dyn_cast<VarDecl>(Val: Member)) { |
10506 | MemberVar->setInstantiationOfStaticDataMember( |
10507 | VD: cast<VarDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
10508 | } else if (auto *MemberClass = dyn_cast<CXXRecordDecl>(Val: Member)) { |
10509 | MemberClass->setInstantiationOfMemberClass( |
10510 | RD: cast<CXXRecordDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
10511 | } else if (auto *MemberEnum = dyn_cast<EnumDecl>(Val: Member)) { |
10512 | MemberEnum->setInstantiationOfMemberEnum( |
10513 | ED: cast<EnumDecl>(Val: InstantiatedFrom), TSK: TSK_ExplicitSpecialization); |
10514 | } else { |
10515 | llvm_unreachable("unknown member specialization kind" ); |
10516 | } |
10517 | |
10518 | // Save the caller the trouble of having to figure out which declaration |
10519 | // this specialization matches. |
10520 | Previous.clear(); |
10521 | Previous.addDecl(D: FoundInstantiation); |
10522 | return false; |
10523 | } |
10524 | |
10525 | /// Complete the explicit specialization of a member of a class template by |
10526 | /// updating the instantiated member to be marked as an explicit specialization. |
10527 | /// |
10528 | /// \param OrigD The member declaration instantiated from the template. |
10529 | /// \param Loc The location of the explicit specialization of the member. |
10530 | template<typename DeclT> |
10531 | static void completeMemberSpecializationImpl(Sema &S, DeclT *OrigD, |
10532 | SourceLocation Loc) { |
10533 | if (OrigD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) |
10534 | return; |
10535 | |
10536 | // FIXME: Inform AST mutation listeners of this AST mutation. |
10537 | // FIXME: If there are multiple in-class declarations of the member (from |
10538 | // multiple modules, or a declaration and later definition of a member type), |
10539 | // should we update all of them? |
10540 | OrigD->setTemplateSpecializationKind(TSK_ExplicitSpecialization); |
10541 | OrigD->setLocation(Loc); |
10542 | } |
10543 | |
10544 | void Sema::CompleteMemberSpecialization(NamedDecl *Member, |
10545 | LookupResult &Previous) { |
10546 | NamedDecl *Instantiation = cast<NamedDecl>(Member->getCanonicalDecl()); |
10547 | if (Instantiation == Member) |
10548 | return; |
10549 | |
10550 | if (auto *Function = dyn_cast<CXXMethodDecl>(Instantiation)) |
10551 | completeMemberSpecializationImpl(*this, Function, Member->getLocation()); |
10552 | else if (auto *Var = dyn_cast<VarDecl>(Instantiation)) |
10553 | completeMemberSpecializationImpl(*this, Var, Member->getLocation()); |
10554 | else if (auto *Record = dyn_cast<CXXRecordDecl>(Instantiation)) |
10555 | completeMemberSpecializationImpl(*this, Record, Member->getLocation()); |
10556 | else if (auto *Enum = dyn_cast<EnumDecl>(Instantiation)) |
10557 | completeMemberSpecializationImpl(*this, Enum, Member->getLocation()); |
10558 | else |
10559 | llvm_unreachable("unknown member specialization kind" ); |
10560 | } |
10561 | |
10562 | /// Check the scope of an explicit instantiation. |
10563 | /// |
10564 | /// \returns true if a serious error occurs, false otherwise. |
10565 | static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D, |
10566 | SourceLocation InstLoc, |
10567 | bool WasQualifiedName) { |
10568 | DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext(); |
10569 | DeclContext *CurContext = S.CurContext->getRedeclContext(); |
10570 | |
10571 | if (CurContext->isRecord()) { |
10572 | S.Diag(InstLoc, diag::err_explicit_instantiation_in_class) |
10573 | << D; |
10574 | return true; |
10575 | } |
10576 | |
10577 | // C++11 [temp.explicit]p3: |
10578 | // An explicit instantiation shall appear in an enclosing namespace of its |
10579 | // template. If the name declared in the explicit instantiation is an |
10580 | // unqualified name, the explicit instantiation shall appear in the |
10581 | // namespace where its template is declared or, if that namespace is inline |
10582 | // (7.3.1), any namespace from its enclosing namespace set. |
10583 | // |
10584 | // This is DR275, which we do not retroactively apply to C++98/03. |
10585 | if (WasQualifiedName) { |
10586 | if (CurContext->Encloses(DC: OrigContext)) |
10587 | return false; |
10588 | } else { |
10589 | if (CurContext->InEnclosingNamespaceSetOf(NS: OrigContext)) |
10590 | return false; |
10591 | } |
10592 | |
10593 | if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Val: OrigContext)) { |
10594 | if (WasQualifiedName) |
10595 | S.Diag(InstLoc, |
10596 | S.getLangOpts().CPlusPlus11? |
10597 | diag::err_explicit_instantiation_out_of_scope : |
10598 | diag::warn_explicit_instantiation_out_of_scope_0x) |
10599 | << D << NS; |
10600 | else |
10601 | S.Diag(InstLoc, |
10602 | S.getLangOpts().CPlusPlus11? |
10603 | diag::err_explicit_instantiation_unqualified_wrong_namespace : |
10604 | diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x) |
10605 | << D << NS; |
10606 | } else |
10607 | S.Diag(InstLoc, |
10608 | S.getLangOpts().CPlusPlus11? |
10609 | diag::err_explicit_instantiation_must_be_global : |
10610 | diag::warn_explicit_instantiation_must_be_global_0x) |
10611 | << D; |
10612 | S.Diag(D->getLocation(), diag::note_explicit_instantiation_here); |
10613 | return false; |
10614 | } |
10615 | |
10616 | /// Common checks for whether an explicit instantiation of \p D is valid. |
10617 | static bool CheckExplicitInstantiation(Sema &S, NamedDecl *D, |
10618 | SourceLocation InstLoc, |
10619 | bool WasQualifiedName, |
10620 | TemplateSpecializationKind TSK) { |
10621 | // C++ [temp.explicit]p13: |
10622 | // An explicit instantiation declaration shall not name a specialization of |
10623 | // a template with internal linkage. |
10624 | if (TSK == TSK_ExplicitInstantiationDeclaration && |
10625 | D->getFormalLinkage() == Linkage::Internal) { |
10626 | S.Diag(InstLoc, diag::err_explicit_instantiation_internal_linkage) << D; |
10627 | return true; |
10628 | } |
10629 | |
10630 | // C++11 [temp.explicit]p3: [DR 275] |
10631 | // An explicit instantiation shall appear in an enclosing namespace of its |
10632 | // template. |
10633 | if (CheckExplicitInstantiationScope(S, D, InstLoc, WasQualifiedName)) |
10634 | return true; |
10635 | |
10636 | return false; |
10637 | } |
10638 | |
10639 | /// Determine whether the given scope specifier has a template-id in it. |
10640 | static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) { |
10641 | if (!SS.isSet()) |
10642 | return false; |
10643 | |
10644 | // C++11 [temp.explicit]p3: |
10645 | // If the explicit instantiation is for a member function, a member class |
10646 | // or a static data member of a class template specialization, the name of |
10647 | // the class template specialization in the qualified-id for the member |
10648 | // name shall be a simple-template-id. |
10649 | // |
10650 | // C++98 has the same restriction, just worded differently. |
10651 | for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS; |
10652 | NNS = NNS->getPrefix()) |
10653 | if (const Type *T = NNS->getAsType()) |
10654 | if (isa<TemplateSpecializationType>(Val: T)) |
10655 | return true; |
10656 | |
10657 | return false; |
10658 | } |
10659 | |
10660 | /// Make a dllexport or dllimport attr on a class template specialization take |
10661 | /// effect. |
10662 | static void dllExportImportClassTemplateSpecialization( |
10663 | Sema &S, ClassTemplateSpecializationDecl *Def) { |
10664 | auto *A = cast_or_null<InheritableAttr>(Val: getDLLAttr(Def)); |
10665 | assert(A && "dllExportImportClassTemplateSpecialization called " |
10666 | "on Def without dllexport or dllimport" ); |
10667 | |
10668 | // We reject explicit instantiations in class scope, so there should |
10669 | // never be any delayed exported classes to worry about. |
10670 | assert(S.DelayedDllExportClasses.empty() && |
10671 | "delayed exports present at explicit instantiation" ); |
10672 | S.checkClassLevelDLLAttribute(Def); |
10673 | |
10674 | // Propagate attribute to base class templates. |
10675 | for (auto &B : Def->bases()) { |
10676 | if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>( |
10677 | B.getType()->getAsCXXRecordDecl())) |
10678 | S.propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getBeginLoc()); |
10679 | } |
10680 | |
10681 | S.referenceDLLExportedClassMethods(); |
10682 | } |
10683 | |
10684 | // Explicit instantiation of a class template specialization |
10685 | DeclResult Sema::ActOnExplicitInstantiation( |
10686 | Scope *S, SourceLocation ExternLoc, SourceLocation TemplateLoc, |
10687 | unsigned TagSpec, SourceLocation KWLoc, const CXXScopeSpec &SS, |
10688 | TemplateTy TemplateD, SourceLocation TemplateNameLoc, |
10689 | SourceLocation LAngleLoc, ASTTemplateArgsPtr TemplateArgsIn, |
10690 | SourceLocation RAngleLoc, const ParsedAttributesView &Attr) { |
10691 | // Find the class template we're specializing |
10692 | TemplateName Name = TemplateD.get(); |
10693 | TemplateDecl *TD = Name.getAsTemplateDecl(); |
10694 | // Check that the specialization uses the same tag kind as the |
10695 | // original template. |
10696 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
10697 | assert(Kind != TagTypeKind::Enum && |
10698 | "Invalid enum tag in class template explicit instantiation!" ); |
10699 | |
10700 | ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(Val: TD); |
10701 | |
10702 | if (!ClassTemplate) { |
10703 | NonTagKind NTK = getNonTagTypeDeclKind(TD, Kind); |
10704 | Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) |
10705 | << TD << NTK << llvm::to_underlying(Kind); |
10706 | Diag(TD->getLocation(), diag::note_previous_use); |
10707 | return true; |
10708 | } |
10709 | |
10710 | if (!isAcceptableTagRedeclaration(Previous: ClassTemplate->getTemplatedDecl(), |
10711 | NewTag: Kind, /*isDefinition*/false, NewTagLoc: KWLoc, |
10712 | Name: ClassTemplate->getIdentifier())) { |
10713 | Diag(KWLoc, diag::err_use_with_wrong_tag) |
10714 | << ClassTemplate |
10715 | << FixItHint::CreateReplacement(KWLoc, |
10716 | ClassTemplate->getTemplatedDecl()->getKindName()); |
10717 | Diag(ClassTemplate->getTemplatedDecl()->getLocation(), |
10718 | diag::note_previous_use); |
10719 | Kind = ClassTemplate->getTemplatedDecl()->getTagKind(); |
10720 | } |
10721 | |
10722 | // C++0x [temp.explicit]p2: |
10723 | // There are two forms of explicit instantiation: an explicit instantiation |
10724 | // definition and an explicit instantiation declaration. An explicit |
10725 | // instantiation declaration begins with the extern keyword. [...] |
10726 | TemplateSpecializationKind TSK = ExternLoc.isInvalid() |
10727 | ? TSK_ExplicitInstantiationDefinition |
10728 | : TSK_ExplicitInstantiationDeclaration; |
10729 | |
10730 | if (TSK == TSK_ExplicitInstantiationDeclaration && |
10731 | !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { |
10732 | // Check for dllexport class template instantiation declarations, |
10733 | // except for MinGW mode. |
10734 | for (const ParsedAttr &AL : Attr) { |
10735 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
10736 | Diag(ExternLoc, |
10737 | diag::warn_attribute_dllexport_explicit_instantiation_decl); |
10738 | Diag(AL.getLoc(), diag::note_attribute); |
10739 | break; |
10740 | } |
10741 | } |
10742 | |
10743 | if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) { |
10744 | Diag(ExternLoc, |
10745 | diag::warn_attribute_dllexport_explicit_instantiation_decl); |
10746 | Diag(A->getLocation(), diag::note_attribute); |
10747 | } |
10748 | } |
10749 | |
10750 | // In MSVC mode, dllimported explicit instantiation definitions are treated as |
10751 | // instantiation declarations for most purposes. |
10752 | bool DLLImportExplicitInstantiationDef = false; |
10753 | if (TSK == TSK_ExplicitInstantiationDefinition && |
10754 | Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
10755 | // Check for dllimport class template instantiation definitions. |
10756 | bool DLLImport = |
10757 | ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>(); |
10758 | for (const ParsedAttr &AL : Attr) { |
10759 | if (AL.getKind() == ParsedAttr::AT_DLLImport) |
10760 | DLLImport = true; |
10761 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
10762 | // dllexport trumps dllimport here. |
10763 | DLLImport = false; |
10764 | break; |
10765 | } |
10766 | } |
10767 | if (DLLImport) { |
10768 | TSK = TSK_ExplicitInstantiationDeclaration; |
10769 | DLLImportExplicitInstantiationDef = true; |
10770 | } |
10771 | } |
10772 | |
10773 | // Translate the parser's template argument list in our AST format. |
10774 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
10775 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
10776 | |
10777 | // Check that the template argument list is well-formed for this |
10778 | // template. |
10779 | SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted; |
10780 | if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc, TemplateArgs, |
10781 | false, SugaredConverted, CanonicalConverted, |
10782 | /*UpdateArgsWithConversions=*/true)) |
10783 | return true; |
10784 | |
10785 | // Find the class template specialization declaration that |
10786 | // corresponds to these arguments. |
10787 | void *InsertPos = nullptr; |
10788 | ClassTemplateSpecializationDecl *PrevDecl = |
10789 | ClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos); |
10790 | |
10791 | TemplateSpecializationKind PrevDecl_TSK |
10792 | = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared; |
10793 | |
10794 | if (TSK == TSK_ExplicitInstantiationDefinition && PrevDecl != nullptr && |
10795 | Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) { |
10796 | // Check for dllexport class template instantiation definitions in MinGW |
10797 | // mode, if a previous declaration of the instantiation was seen. |
10798 | for (const ParsedAttr &AL : Attr) { |
10799 | if (AL.getKind() == ParsedAttr::AT_DLLExport) { |
10800 | Diag(AL.getLoc(), |
10801 | diag::warn_attribute_dllexport_explicit_instantiation_def); |
10802 | break; |
10803 | } |
10804 | } |
10805 | } |
10806 | |
10807 | if (CheckExplicitInstantiation(*this, ClassTemplate, TemplateNameLoc, |
10808 | SS.isSet(), TSK)) |
10809 | return true; |
10810 | |
10811 | ClassTemplateSpecializationDecl *Specialization = nullptr; |
10812 | |
10813 | bool HasNoEffect = false; |
10814 | if (PrevDecl) { |
10815 | if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK, |
10816 | PrevDecl, PrevDecl_TSK, |
10817 | PrevDecl->getPointOfInstantiation(), |
10818 | HasNoEffect)) |
10819 | return PrevDecl; |
10820 | |
10821 | // Even though HasNoEffect == true means that this explicit instantiation |
10822 | // has no effect on semantics, we go on to put its syntax in the AST. |
10823 | |
10824 | if (PrevDecl_TSK == TSK_ImplicitInstantiation || |
10825 | PrevDecl_TSK == TSK_Undeclared) { |
10826 | // Since the only prior class template specialization with these |
10827 | // arguments was referenced but not declared, reuse that |
10828 | // declaration node as our own, updating the source location |
10829 | // for the template name to reflect our new declaration. |
10830 | // (Other source locations will be updated later.) |
10831 | Specialization = PrevDecl; |
10832 | Specialization->setLocation(TemplateNameLoc); |
10833 | PrevDecl = nullptr; |
10834 | } |
10835 | |
10836 | if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && |
10837 | DLLImportExplicitInstantiationDef) { |
10838 | // The new specialization might add a dllimport attribute. |
10839 | HasNoEffect = false; |
10840 | } |
10841 | } |
10842 | |
10843 | if (!Specialization) { |
10844 | // Create a new class template specialization declaration node for |
10845 | // this explicit specialization. |
10846 | Specialization = ClassTemplateSpecializationDecl::Create( |
10847 | Context, TK: Kind, DC: ClassTemplate->getDeclContext(), StartLoc: KWLoc, IdLoc: TemplateNameLoc, |
10848 | SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, PrevDecl); |
10849 | SetNestedNameSpecifier(*this, Specialization, SS); |
10850 | |
10851 | // A MSInheritanceAttr attached to the previous declaration must be |
10852 | // propagated to the new node prior to instantiation. |
10853 | if (PrevDecl) { |
10854 | if (const auto *A = PrevDecl->getAttr<MSInheritanceAttr>()) { |
10855 | auto *Clone = A->clone(getASTContext()); |
10856 | Clone->setInherited(true); |
10857 | Specialization->addAttr(A: Clone); |
10858 | Consumer.AssignInheritanceModel(Specialization); |
10859 | } |
10860 | } |
10861 | |
10862 | if (!HasNoEffect && !PrevDecl) { |
10863 | // Insert the new specialization. |
10864 | ClassTemplate->AddSpecialization(D: Specialization, InsertPos); |
10865 | } |
10866 | } |
10867 | |
10868 | // Build the fully-sugared type for this explicit instantiation as |
10869 | // the user wrote in the explicit instantiation itself. This means |
10870 | // that we'll pretty-print the type retrieved from the |
10871 | // specialization's declaration the way that the user actually wrote |
10872 | // the explicit instantiation, rather than formatting the name based |
10873 | // on the "canonical" representation used to store the template |
10874 | // arguments in the specialization. |
10875 | TypeSourceInfo *WrittenTy |
10876 | = Context.getTemplateSpecializationTypeInfo(T: Name, TLoc: TemplateNameLoc, |
10877 | Args: TemplateArgs, |
10878 | Canon: Context.getTypeDeclType(Specialization)); |
10879 | Specialization->setTypeAsWritten(WrittenTy); |
10880 | |
10881 | // Set source locations for keywords. |
10882 | Specialization->setExternLoc(ExternLoc); |
10883 | Specialization->setTemplateKeywordLoc(TemplateLoc); |
10884 | Specialization->setBraceRange(SourceRange()); |
10885 | |
10886 | bool PreviouslyDLLExported = Specialization->hasAttr<DLLExportAttr>(); |
10887 | ProcessDeclAttributeList(S, Specialization, Attr); |
10888 | ProcessAPINotes(Specialization); |
10889 | |
10890 | // Add the explicit instantiation into its lexical context. However, |
10891 | // since explicit instantiations are never found by name lookup, we |
10892 | // just put it into the declaration context directly. |
10893 | Specialization->setLexicalDeclContext(CurContext); |
10894 | CurContext->addDecl(Specialization); |
10895 | |
10896 | // Syntax is now OK, so return if it has no other effect on semantics. |
10897 | if (HasNoEffect) { |
10898 | // Set the template specialization kind. |
10899 | Specialization->setTemplateSpecializationKind(TSK); |
10900 | return Specialization; |
10901 | } |
10902 | |
10903 | // C++ [temp.explicit]p3: |
10904 | // A definition of a class template or class member template |
10905 | // shall be in scope at the point of the explicit instantiation of |
10906 | // the class template or class member template. |
10907 | // |
10908 | // This check comes when we actually try to perform the |
10909 | // instantiation. |
10910 | ClassTemplateSpecializationDecl *Def |
10911 | = cast_or_null<ClassTemplateSpecializationDecl>( |
10912 | Specialization->getDefinition()); |
10913 | if (!Def) |
10914 | InstantiateClassTemplateSpecialization(PointOfInstantiation: TemplateNameLoc, ClassTemplateSpec: Specialization, TSK); |
10915 | else if (TSK == TSK_ExplicitInstantiationDefinition) { |
10916 | MarkVTableUsed(TemplateNameLoc, Specialization, true); |
10917 | Specialization->setPointOfInstantiation(Def->getPointOfInstantiation()); |
10918 | } |
10919 | |
10920 | // Instantiate the members of this class template specialization. |
10921 | Def = cast_or_null<ClassTemplateSpecializationDecl>( |
10922 | Specialization->getDefinition()); |
10923 | if (Def) { |
10924 | TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind(); |
10925 | // Fix a TSK_ExplicitInstantiationDeclaration followed by a |
10926 | // TSK_ExplicitInstantiationDefinition |
10927 | if (Old_TSK == TSK_ExplicitInstantiationDeclaration && |
10928 | (TSK == TSK_ExplicitInstantiationDefinition || |
10929 | DLLImportExplicitInstantiationDef)) { |
10930 | // FIXME: Need to notify the ASTMutationListener that we did this. |
10931 | Def->setTemplateSpecializationKind(TSK); |
10932 | |
10933 | if (!getDLLAttr(Def) && getDLLAttr(Specialization) && |
10934 | (Context.getTargetInfo().shouldDLLImportComdatSymbols() && |
10935 | !Context.getTargetInfo().getTriple().isPS())) { |
10936 | // An explicit instantiation definition can add a dll attribute to a |
10937 | // template with a previous instantiation declaration. MinGW doesn't |
10938 | // allow this. |
10939 | auto *A = cast<InheritableAttr>( |
10940 | Val: getDLLAttr(Specialization)->clone(C&: getASTContext())); |
10941 | A->setInherited(true); |
10942 | Def->addAttr(A: A); |
10943 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
10944 | } |
10945 | } |
10946 | |
10947 | // Fix a TSK_ImplicitInstantiation followed by a |
10948 | // TSK_ExplicitInstantiationDefinition |
10949 | bool NewlyDLLExported = |
10950 | !PreviouslyDLLExported && Specialization->hasAttr<DLLExportAttr>(); |
10951 | if (Old_TSK == TSK_ImplicitInstantiation && NewlyDLLExported && |
10952 | (Context.getTargetInfo().shouldDLLImportComdatSymbols() && |
10953 | !Context.getTargetInfo().getTriple().isPS())) { |
10954 | // An explicit instantiation definition can add a dll attribute to a |
10955 | // template with a previous implicit instantiation. MinGW doesn't allow |
10956 | // this. We limit clang to only adding dllexport, to avoid potentially |
10957 | // strange codegen behavior. For example, if we extend this conditional |
10958 | // to dllimport, and we have a source file calling a method on an |
10959 | // implicitly instantiated template class instance and then declaring a |
10960 | // dllimport explicit instantiation definition for the same template |
10961 | // class, the codegen for the method call will not respect the dllimport, |
10962 | // while it will with cl. The Def will already have the DLL attribute, |
10963 | // since the Def and Specialization will be the same in the case of |
10964 | // Old_TSK == TSK_ImplicitInstantiation, and we already added the |
10965 | // attribute to the Specialization; we just need to make it take effect. |
10966 | assert(Def == Specialization && |
10967 | "Def and Specialization should match for implicit instantiation" ); |
10968 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
10969 | } |
10970 | |
10971 | // In MinGW mode, export the template instantiation if the declaration |
10972 | // was marked dllexport. |
10973 | if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration && |
10974 | Context.getTargetInfo().getTriple().isWindowsGNUEnvironment() && |
10975 | PrevDecl->hasAttr<DLLExportAttr>()) { |
10976 | dllExportImportClassTemplateSpecialization(S&: *this, Def); |
10977 | } |
10978 | |
10979 | // Set the template specialization kind. Make sure it is set before |
10980 | // instantiating the members which will trigger ASTConsumer callbacks. |
10981 | Specialization->setTemplateSpecializationKind(TSK); |
10982 | InstantiateClassTemplateSpecializationMembers(PointOfInstantiation: TemplateNameLoc, ClassTemplateSpec: Def, TSK); |
10983 | } else { |
10984 | |
10985 | // Set the template specialization kind. |
10986 | Specialization->setTemplateSpecializationKind(TSK); |
10987 | } |
10988 | |
10989 | return Specialization; |
10990 | } |
10991 | |
10992 | // Explicit instantiation of a member class of a class template. |
10993 | DeclResult |
10994 | Sema::ActOnExplicitInstantiation(Scope *S, SourceLocation ExternLoc, |
10995 | SourceLocation TemplateLoc, unsigned TagSpec, |
10996 | SourceLocation KWLoc, CXXScopeSpec &SS, |
10997 | IdentifierInfo *Name, SourceLocation NameLoc, |
10998 | const ParsedAttributesView &Attr) { |
10999 | |
11000 | bool Owned = false; |
11001 | bool IsDependent = false; |
11002 | Decl *TagD = ActOnTag(S, TagSpec, TUK: Sema::TUK_Reference, KWLoc, SS, Name, |
11003 | NameLoc, Attr, AS: AS_none, /*ModulePrivateLoc=*/SourceLocation(), |
11004 | TemplateParameterLists: MultiTemplateParamsArg(), OwnedDecl&: Owned, IsDependent, ScopedEnumKWLoc: SourceLocation(), |
11005 | ScopedEnumUsesClassTag: false, UnderlyingType: TypeResult(), /*IsTypeSpecifier*/ false, |
11006 | /*IsTemplateParamOrArg*/ false, /*OOK=*/OOK_Outside).get(); |
11007 | assert(!IsDependent && "explicit instantiation of dependent name not yet handled" ); |
11008 | |
11009 | if (!TagD) |
11010 | return true; |
11011 | |
11012 | TagDecl *Tag = cast<TagDecl>(Val: TagD); |
11013 | assert(!Tag->isEnum() && "shouldn't see enumerations here" ); |
11014 | |
11015 | if (Tag->isInvalidDecl()) |
11016 | return true; |
11017 | |
11018 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: Tag); |
11019 | CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass(); |
11020 | if (!Pattern) { |
11021 | Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type) |
11022 | << Context.getTypeDeclType(Record); |
11023 | Diag(Record->getLocation(), diag::note_nontemplate_decl_here); |
11024 | return true; |
11025 | } |
11026 | |
11027 | // C++0x [temp.explicit]p2: |
11028 | // If the explicit instantiation is for a class or member class, the |
11029 | // elaborated-type-specifier in the declaration shall include a |
11030 | // simple-template-id. |
11031 | // |
11032 | // C++98 has the same restriction, just worded differently. |
11033 | if (!ScopeSpecifierHasTemplateId(SS)) |
11034 | Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id) |
11035 | << Record << SS.getRange(); |
11036 | |
11037 | // C++0x [temp.explicit]p2: |
11038 | // There are two forms of explicit instantiation: an explicit instantiation |
11039 | // definition and an explicit instantiation declaration. An explicit |
11040 | // instantiation declaration begins with the extern keyword. [...] |
11041 | TemplateSpecializationKind TSK |
11042 | = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
11043 | : TSK_ExplicitInstantiationDeclaration; |
11044 | |
11045 | CheckExplicitInstantiation(*this, Record, NameLoc, true, TSK); |
11046 | |
11047 | // Verify that it is okay to explicitly instantiate here. |
11048 | CXXRecordDecl *PrevDecl |
11049 | = cast_or_null<CXXRecordDecl>(Val: Record->getPreviousDecl()); |
11050 | if (!PrevDecl && Record->getDefinition()) |
11051 | PrevDecl = Record; |
11052 | if (PrevDecl) { |
11053 | MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo(); |
11054 | bool HasNoEffect = false; |
11055 | assert(MSInfo && "No member specialization information?" ); |
11056 | if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK, |
11057 | PrevDecl, |
11058 | MSInfo->getTemplateSpecializationKind(), |
11059 | MSInfo->getPointOfInstantiation(), |
11060 | HasNoEffect)) |
11061 | return true; |
11062 | if (HasNoEffect) |
11063 | return TagD; |
11064 | } |
11065 | |
11066 | CXXRecordDecl *RecordDef |
11067 | = cast_or_null<CXXRecordDecl>(Val: Record->getDefinition()); |
11068 | if (!RecordDef) { |
11069 | // C++ [temp.explicit]p3: |
11070 | // A definition of a member class of a class template shall be in scope |
11071 | // at the point of an explicit instantiation of the member class. |
11072 | CXXRecordDecl *Def |
11073 | = cast_or_null<CXXRecordDecl>(Val: Pattern->getDefinition()); |
11074 | if (!Def) { |
11075 | Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member) |
11076 | << 0 << Record->getDeclName() << Record->getDeclContext(); |
11077 | Diag(Pattern->getLocation(), diag::note_forward_declaration) |
11078 | << Pattern; |
11079 | return true; |
11080 | } else { |
11081 | if (InstantiateClass(PointOfInstantiation: NameLoc, Instantiation: Record, Pattern: Def, |
11082 | TemplateArgs: getTemplateInstantiationArgs(Record), |
11083 | TSK)) |
11084 | return true; |
11085 | |
11086 | RecordDef = cast_or_null<CXXRecordDecl>(Val: Record->getDefinition()); |
11087 | if (!RecordDef) |
11088 | return true; |
11089 | } |
11090 | } |
11091 | |
11092 | // Instantiate all of the members of the class. |
11093 | InstantiateClassMembers(PointOfInstantiation: NameLoc, Instantiation: RecordDef, |
11094 | TemplateArgs: getTemplateInstantiationArgs(Record), TSK); |
11095 | |
11096 | if (TSK == TSK_ExplicitInstantiationDefinition) |
11097 | MarkVTableUsed(Loc: NameLoc, Class: RecordDef, DefinitionRequired: true); |
11098 | |
11099 | // FIXME: We don't have any representation for explicit instantiations of |
11100 | // member classes. Such a representation is not needed for compilation, but it |
11101 | // should be available for clients that want to see all of the declarations in |
11102 | // the source code. |
11103 | return TagD; |
11104 | } |
11105 | |
11106 | DeclResult Sema::ActOnExplicitInstantiation(Scope *S, |
11107 | SourceLocation ExternLoc, |
11108 | SourceLocation TemplateLoc, |
11109 | Declarator &D) { |
11110 | // Explicit instantiations always require a name. |
11111 | // TODO: check if/when DNInfo should replace Name. |
11112 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
11113 | DeclarationName Name = NameInfo.getName(); |
11114 | if (!Name) { |
11115 | if (!D.isInvalidType()) |
11116 | Diag(D.getDeclSpec().getBeginLoc(), |
11117 | diag::err_explicit_instantiation_requires_name) |
11118 | << D.getDeclSpec().getSourceRange() << D.getSourceRange(); |
11119 | |
11120 | return true; |
11121 | } |
11122 | |
11123 | // Get the innermost enclosing declaration scope. |
11124 | S = S->getDeclParent(); |
11125 | |
11126 | // Determine the type of the declaration. |
11127 | TypeSourceInfo *T = GetTypeForDeclarator(D); |
11128 | QualType R = T->getType(); |
11129 | if (R.isNull()) |
11130 | return true; |
11131 | |
11132 | // C++ [dcl.stc]p1: |
11133 | // A storage-class-specifier shall not be specified in [...] an explicit |
11134 | // instantiation (14.7.2) directive. |
11135 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
11136 | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef) |
11137 | << Name; |
11138 | return true; |
11139 | } else if (D.getDeclSpec().getStorageClassSpec() |
11140 | != DeclSpec::SCS_unspecified) { |
11141 | // Complain about then remove the storage class specifier. |
11142 | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class) |
11143 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
11144 | |
11145 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
11146 | } |
11147 | |
11148 | // C++0x [temp.explicit]p1: |
11149 | // [...] An explicit instantiation of a function template shall not use the |
11150 | // inline or constexpr specifiers. |
11151 | // Presumably, this also applies to member functions of class templates as |
11152 | // well. |
11153 | if (D.getDeclSpec().isInlineSpecified()) |
11154 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
11155 | getLangOpts().CPlusPlus11 ? |
11156 | diag::err_explicit_instantiation_inline : |
11157 | diag::warn_explicit_instantiation_inline_0x) |
11158 | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
11159 | if (D.getDeclSpec().hasConstexprSpecifier() && R->isFunctionType()) |
11160 | // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is |
11161 | // not already specified. |
11162 | Diag(D.getDeclSpec().getConstexprSpecLoc(), |
11163 | diag::err_explicit_instantiation_constexpr); |
11164 | |
11165 | // A deduction guide is not on the list of entities that can be explicitly |
11166 | // instantiated. |
11167 | if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { |
11168 | Diag(D.getDeclSpec().getBeginLoc(), diag::err_deduction_guide_specialized) |
11169 | << /*explicit instantiation*/ 0; |
11170 | return true; |
11171 | } |
11172 | |
11173 | // C++0x [temp.explicit]p2: |
11174 | // There are two forms of explicit instantiation: an explicit instantiation |
11175 | // definition and an explicit instantiation declaration. An explicit |
11176 | // instantiation declaration begins with the extern keyword. [...] |
11177 | TemplateSpecializationKind TSK |
11178 | = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition |
11179 | : TSK_ExplicitInstantiationDeclaration; |
11180 | |
11181 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName); |
11182 | LookupParsedName(R&: Previous, S, SS: &D.getCXXScopeSpec()); |
11183 | |
11184 | if (!R->isFunctionType()) { |
11185 | // C++ [temp.explicit]p1: |
11186 | // A [...] static data member of a class template can be explicitly |
11187 | // instantiated from the member definition associated with its class |
11188 | // template. |
11189 | // C++1y [temp.explicit]p1: |
11190 | // A [...] variable [...] template specialization can be explicitly |
11191 | // instantiated from its template. |
11192 | if (Previous.isAmbiguous()) |
11193 | return true; |
11194 | |
11195 | VarDecl *Prev = Previous.getAsSingle<VarDecl>(); |
11196 | VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>(); |
11197 | |
11198 | if (!PrevTemplate) { |
11199 | if (!Prev || !Prev->isStaticDataMember()) { |
11200 | // We expect to see a static data member here. |
11201 | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known) |
11202 | << Name; |
11203 | for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
11204 | P != PEnd; ++P) |
11205 | Diag((*P)->getLocation(), diag::note_explicit_instantiation_here); |
11206 | return true; |
11207 | } |
11208 | |
11209 | if (!Prev->getInstantiatedFromStaticDataMember()) { |
11210 | // FIXME: Check for explicit specialization? |
11211 | Diag(D.getIdentifierLoc(), |
11212 | diag::err_explicit_instantiation_data_member_not_instantiated) |
11213 | << Prev; |
11214 | Diag(Prev->getLocation(), diag::note_explicit_instantiation_here); |
11215 | // FIXME: Can we provide a note showing where this was declared? |
11216 | return true; |
11217 | } |
11218 | } else { |
11219 | // Explicitly instantiate a variable template. |
11220 | |
11221 | // C++1y [dcl.spec.auto]p6: |
11222 | // ... A program that uses auto or decltype(auto) in a context not |
11223 | // explicitly allowed in this section is ill-formed. |
11224 | // |
11225 | // This includes auto-typed variable template instantiations. |
11226 | if (R->isUndeducedType()) { |
11227 | Diag(T->getTypeLoc().getBeginLoc(), |
11228 | diag::err_auto_not_allowed_var_inst); |
11229 | return true; |
11230 | } |
11231 | |
11232 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
11233 | // C++1y [temp.explicit]p3: |
11234 | // If the explicit instantiation is for a variable, the unqualified-id |
11235 | // in the declaration shall be a template-id. |
11236 | Diag(D.getIdentifierLoc(), |
11237 | diag::err_explicit_instantiation_without_template_id) |
11238 | << PrevTemplate; |
11239 | Diag(PrevTemplate->getLocation(), |
11240 | diag::note_explicit_instantiation_here); |
11241 | return true; |
11242 | } |
11243 | |
11244 | // Translate the parser's template argument list into our AST format. |
11245 | TemplateArgumentListInfo TemplateArgs = |
11246 | makeTemplateArgumentListInfo(S&: *this, TemplateId&: *D.getName().TemplateId); |
11247 | |
11248 | DeclResult Res = CheckVarTemplateId(Template: PrevTemplate, TemplateLoc, |
11249 | TemplateNameLoc: D.getIdentifierLoc(), TemplateArgs); |
11250 | if (Res.isInvalid()) |
11251 | return true; |
11252 | |
11253 | if (!Res.isUsable()) { |
11254 | // We somehow specified dependent template arguments in an explicit |
11255 | // instantiation. This should probably only happen during error |
11256 | // recovery. |
11257 | Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_dependent); |
11258 | return true; |
11259 | } |
11260 | |
11261 | // Ignore access control bits, we don't need them for redeclaration |
11262 | // checking. |
11263 | Prev = cast<VarDecl>(Val: Res.get()); |
11264 | } |
11265 | |
11266 | // C++0x [temp.explicit]p2: |
11267 | // If the explicit instantiation is for a member function, a member class |
11268 | // or a static data member of a class template specialization, the name of |
11269 | // the class template specialization in the qualified-id for the member |
11270 | // name shall be a simple-template-id. |
11271 | // |
11272 | // C++98 has the same restriction, just worded differently. |
11273 | // |
11274 | // This does not apply to variable template specializations, where the |
11275 | // template-id is in the unqualified-id instead. |
11276 | if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate) |
11277 | Diag(D.getIdentifierLoc(), |
11278 | diag::ext_explicit_instantiation_without_qualified_id) |
11279 | << Prev << D.getCXXScopeSpec().getRange(); |
11280 | |
11281 | CheckExplicitInstantiation(*this, Prev, D.getIdentifierLoc(), true, TSK); |
11282 | |
11283 | // Verify that it is okay to explicitly instantiate here. |
11284 | TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind(); |
11285 | SourceLocation POI = Prev->getPointOfInstantiation(); |
11286 | bool HasNoEffect = false; |
11287 | if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev, |
11288 | PrevTSK, POI, HasNoEffect)) |
11289 | return true; |
11290 | |
11291 | if (!HasNoEffect) { |
11292 | // Instantiate static data member or variable template. |
11293 | Prev->setTemplateSpecializationKind(TSK, PointOfInstantiation: D.getIdentifierLoc()); |
11294 | // Merge attributes. |
11295 | ProcessDeclAttributeList(S, Prev, D.getDeclSpec().getAttributes()); |
11296 | if (PrevTemplate) |
11297 | ProcessAPINotes(Prev); |
11298 | |
11299 | if (TSK == TSK_ExplicitInstantiationDefinition) |
11300 | InstantiateVariableDefinition(PointOfInstantiation: D.getIdentifierLoc(), Var: Prev); |
11301 | } |
11302 | |
11303 | // Check the new variable specialization against the parsed input. |
11304 | if (PrevTemplate && !Context.hasSameType(Prev->getType(), R)) { |
11305 | Diag(T->getTypeLoc().getBeginLoc(), |
11306 | diag::err_invalid_var_template_spec_type) |
11307 | << 0 << PrevTemplate << R << Prev->getType(); |
11308 | Diag(PrevTemplate->getLocation(), diag::note_template_declared_here) |
11309 | << 2 << PrevTemplate->getDeclName(); |
11310 | return true; |
11311 | } |
11312 | |
11313 | // FIXME: Create an ExplicitInstantiation node? |
11314 | return (Decl*) nullptr; |
11315 | } |
11316 | |
11317 | // If the declarator is a template-id, translate the parser's template |
11318 | // argument list into our AST format. |
11319 | bool HasExplicitTemplateArgs = false; |
11320 | TemplateArgumentListInfo TemplateArgs; |
11321 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
11322 | TemplateArgs = makeTemplateArgumentListInfo(S&: *this, TemplateId&: *D.getName().TemplateId); |
11323 | HasExplicitTemplateArgs = true; |
11324 | } |
11325 | |
11326 | // C++ [temp.explicit]p1: |
11327 | // A [...] function [...] can be explicitly instantiated from its template. |
11328 | // A member function [...] of a class template can be explicitly |
11329 | // instantiated from the member definition associated with its class |
11330 | // template. |
11331 | UnresolvedSet<8> TemplateMatches; |
11332 | FunctionDecl *NonTemplateMatch = nullptr; |
11333 | TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc()); |
11334 | for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end(); |
11335 | P != PEnd; ++P) { |
11336 | NamedDecl *Prev = *P; |
11337 | if (!HasExplicitTemplateArgs) { |
11338 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: Prev)) { |
11339 | QualType Adjusted = adjustCCAndNoReturn(ArgFunctionType: R, FunctionType: Method->getType(), |
11340 | /*AdjustExceptionSpec*/true); |
11341 | if (Context.hasSameUnqualifiedType(T1: Method->getType(), T2: Adjusted)) { |
11342 | if (Method->getPrimaryTemplate()) { |
11343 | TemplateMatches.addDecl(Method, P.getAccess()); |
11344 | } else { |
11345 | // FIXME: Can this assert ever happen? Needs a test. |
11346 | assert(!NonTemplateMatch && "Multiple NonTemplateMatches" ); |
11347 | NonTemplateMatch = Method; |
11348 | } |
11349 | } |
11350 | } |
11351 | } |
11352 | |
11353 | FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Prev); |
11354 | if (!FunTmpl) |
11355 | continue; |
11356 | |
11357 | TemplateDeductionInfo Info(FailedCandidates.getLocation()); |
11358 | FunctionDecl *Specialization = nullptr; |
11359 | if (TemplateDeductionResult TDK = DeduceTemplateArguments( |
11360 | FunctionTemplate: FunTmpl, ExplicitTemplateArgs: (HasExplicitTemplateArgs ? &TemplateArgs : nullptr), ArgFunctionType: R, |
11361 | Specialization, Info); |
11362 | TDK != TemplateDeductionResult::Success) { |
11363 | // Keep track of almost-matches. |
11364 | FailedCandidates.addCandidate() |
11365 | .set(P.getPair(), FunTmpl->getTemplatedDecl(), |
11366 | MakeDeductionFailureInfo(Context, TDK, Info)); |
11367 | (void)TDK; |
11368 | continue; |
11369 | } |
11370 | |
11371 | // Target attributes are part of the cuda function signature, so |
11372 | // the cuda target of the instantiated function must match that of its |
11373 | // template. Given that C++ template deduction does not take |
11374 | // target attributes into account, we reject candidates here that |
11375 | // have a different target. |
11376 | if (LangOpts.CUDA && |
11377 | CUDA().IdentifyTarget(D: Specialization, |
11378 | /* IgnoreImplicitHDAttr = */ true) != |
11379 | CUDA().IdentifyTarget(Attrs: D.getDeclSpec().getAttributes())) { |
11380 | FailedCandidates.addCandidate().set( |
11381 | P.getPair(), FunTmpl->getTemplatedDecl(), |
11382 | MakeDeductionFailureInfo( |
11383 | Context, TDK: TemplateDeductionResult::CUDATargetMismatch, Info)); |
11384 | continue; |
11385 | } |
11386 | |
11387 | TemplateMatches.addDecl(Specialization, P.getAccess()); |
11388 | } |
11389 | |
11390 | FunctionDecl *Specialization = NonTemplateMatch; |
11391 | if (!Specialization) { |
11392 | // Find the most specialized function template specialization. |
11393 | UnresolvedSetIterator Result = getMostSpecialized( |
11394 | TemplateMatches.begin(), TemplateMatches.end(), FailedCandidates, |
11395 | D.getIdentifierLoc(), |
11396 | PDiag(diag::err_explicit_instantiation_not_known) << Name, |
11397 | PDiag(diag::err_explicit_instantiation_ambiguous) << Name, |
11398 | PDiag(diag::note_explicit_instantiation_candidate)); |
11399 | |
11400 | if (Result == TemplateMatches.end()) |
11401 | return true; |
11402 | |
11403 | // Ignore access control bits, we don't need them for redeclaration checking. |
11404 | Specialization = cast<FunctionDecl>(Val: *Result); |
11405 | } |
11406 | |
11407 | // C++11 [except.spec]p4 |
11408 | // In an explicit instantiation an exception-specification may be specified, |
11409 | // but is not required. |
11410 | // If an exception-specification is specified in an explicit instantiation |
11411 | // directive, it shall be compatible with the exception-specifications of |
11412 | // other declarations of that function. |
11413 | if (auto *FPT = R->getAs<FunctionProtoType>()) |
11414 | if (FPT->hasExceptionSpec()) { |
11415 | unsigned DiagID = |
11416 | diag::err_mismatched_exception_spec_explicit_instantiation; |
11417 | if (getLangOpts().MicrosoftExt) |
11418 | DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation; |
11419 | bool Result = CheckEquivalentExceptionSpec( |
11420 | PDiag(DiagID) << Specialization->getType(), |
11421 | PDiag(diag::note_explicit_instantiation_here), |
11422 | Specialization->getType()->getAs<FunctionProtoType>(), |
11423 | Specialization->getLocation(), FPT, D.getBeginLoc()); |
11424 | // In Microsoft mode, mismatching exception specifications just cause a |
11425 | // warning. |
11426 | if (!getLangOpts().MicrosoftExt && Result) |
11427 | return true; |
11428 | } |
11429 | |
11430 | if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) { |
11431 | Diag(D.getIdentifierLoc(), |
11432 | diag::err_explicit_instantiation_member_function_not_instantiated) |
11433 | << Specialization |
11434 | << (Specialization->getTemplateSpecializationKind() == |
11435 | TSK_ExplicitSpecialization); |
11436 | Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here); |
11437 | return true; |
11438 | } |
11439 | |
11440 | FunctionDecl *PrevDecl = Specialization->getPreviousDecl(); |
11441 | if (!PrevDecl && Specialization->isThisDeclarationADefinition()) |
11442 | PrevDecl = Specialization; |
11443 | |
11444 | if (PrevDecl) { |
11445 | bool HasNoEffect = false; |
11446 | if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, |
11447 | PrevDecl, |
11448 | PrevDecl->getTemplateSpecializationKind(), |
11449 | PrevDecl->getPointOfInstantiation(), |
11450 | HasNoEffect)) |
11451 | return true; |
11452 | |
11453 | // FIXME: We may still want to build some representation of this |
11454 | // explicit specialization. |
11455 | if (HasNoEffect) |
11456 | return (Decl*) nullptr; |
11457 | } |
11458 | |
11459 | // HACK: libc++ has a bug where it attempts to explicitly instantiate the |
11460 | // functions |
11461 | // valarray<size_t>::valarray(size_t) and |
11462 | // valarray<size_t>::~valarray() |
11463 | // that it declared to have internal linkage with the internal_linkage |
11464 | // attribute. Ignore the explicit instantiation declaration in this case. |
11465 | if (Specialization->hasAttr<InternalLinkageAttr>() && |
11466 | TSK == TSK_ExplicitInstantiationDeclaration) { |
11467 | if (auto *RD = dyn_cast<CXXRecordDecl>(Specialization->getDeclContext())) |
11468 | if (RD->getIdentifier() && RD->getIdentifier()->isStr("valarray" ) && |
11469 | RD->isInStdNamespace()) |
11470 | return (Decl*) nullptr; |
11471 | } |
11472 | |
11473 | ProcessDeclAttributeList(S, Specialization, D.getDeclSpec().getAttributes()); |
11474 | ProcessAPINotes(Specialization); |
11475 | |
11476 | // In MSVC mode, dllimported explicit instantiation definitions are treated as |
11477 | // instantiation declarations. |
11478 | if (TSK == TSK_ExplicitInstantiationDefinition && |
11479 | Specialization->hasAttr<DLLImportAttr>() && |
11480 | Context.getTargetInfo().getCXXABI().isMicrosoft()) |
11481 | TSK = TSK_ExplicitInstantiationDeclaration; |
11482 | |
11483 | Specialization->setTemplateSpecializationKind(TSK, PointOfInstantiation: D.getIdentifierLoc()); |
11484 | |
11485 | if (Specialization->isDefined()) { |
11486 | // Let the ASTConsumer know that this function has been explicitly |
11487 | // instantiated now, and its linkage might have changed. |
11488 | Consumer.HandleTopLevelDecl(D: DeclGroupRef(Specialization)); |
11489 | } else if (TSK == TSK_ExplicitInstantiationDefinition) |
11490 | InstantiateFunctionDefinition(PointOfInstantiation: D.getIdentifierLoc(), Function: Specialization); |
11491 | |
11492 | // C++0x [temp.explicit]p2: |
11493 | // If the explicit instantiation is for a member function, a member class |
11494 | // or a static data member of a class template specialization, the name of |
11495 | // the class template specialization in the qualified-id for the member |
11496 | // name shall be a simple-template-id. |
11497 | // |
11498 | // C++98 has the same restriction, just worded differently. |
11499 | FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate(); |
11500 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId && !FunTmpl && |
11501 | D.getCXXScopeSpec().isSet() && |
11502 | !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec())) |
11503 | Diag(D.getIdentifierLoc(), |
11504 | diag::ext_explicit_instantiation_without_qualified_id) |
11505 | << Specialization << D.getCXXScopeSpec().getRange(); |
11506 | |
11507 | CheckExplicitInstantiation( |
11508 | *this, |
11509 | FunTmpl ? (NamedDecl *)FunTmpl |
11510 | : Specialization->getInstantiatedFromMemberFunction(), |
11511 | D.getIdentifierLoc(), D.getCXXScopeSpec().isSet(), TSK); |
11512 | |
11513 | // FIXME: Create some kind of ExplicitInstantiationDecl here. |
11514 | return (Decl*) nullptr; |
11515 | } |
11516 | |
11517 | TypeResult Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK, |
11518 | const CXXScopeSpec &SS, |
11519 | const IdentifierInfo *Name, |
11520 | SourceLocation TagLoc, |
11521 | SourceLocation NameLoc) { |
11522 | // This has to hold, because SS is expected to be defined. |
11523 | assert(Name && "Expected a name in a dependent tag" ); |
11524 | |
11525 | NestedNameSpecifier *NNS = SS.getScopeRep(); |
11526 | if (!NNS) |
11527 | return true; |
11528 | |
11529 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
11530 | |
11531 | if (TUK == TUK_Declaration || TUK == TUK_Definition) { |
11532 | Diag(NameLoc, diag::err_dependent_tag_decl) |
11533 | << (TUK == TUK_Definition) << llvm::to_underlying(Kind) |
11534 | << SS.getRange(); |
11535 | return true; |
11536 | } |
11537 | |
11538 | // Create the resulting type. |
11539 | ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind); |
11540 | QualType Result = Context.getDependentNameType(Keyword: Kwd, NNS, Name); |
11541 | |
11542 | // Create type-source location information for this type. |
11543 | TypeLocBuilder TLB; |
11544 | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T: Result); |
11545 | TL.setElaboratedKeywordLoc(TagLoc); |
11546 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
11547 | TL.setNameLoc(NameLoc); |
11548 | return CreateParsedType(T: Result, TInfo: TLB.getTypeSourceInfo(Context, T: Result)); |
11549 | } |
11550 | |
11551 | TypeResult Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, |
11552 | const CXXScopeSpec &SS, |
11553 | const IdentifierInfo &II, |
11554 | SourceLocation IdLoc, |
11555 | ImplicitTypenameContext IsImplicitTypename) { |
11556 | if (SS.isInvalid()) |
11557 | return true; |
11558 | |
11559 | if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) |
11560 | Diag(TypenameLoc, |
11561 | getLangOpts().CPlusPlus11 ? |
11562 | diag::warn_cxx98_compat_typename_outside_of_template : |
11563 | diag::ext_typename_outside_of_template) |
11564 | << FixItHint::CreateRemoval(TypenameLoc); |
11565 | |
11566 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
11567 | TypeSourceInfo *TSI = nullptr; |
11568 | QualType T = |
11569 | CheckTypenameType(Keyword: (TypenameLoc.isValid() || |
11570 | IsImplicitTypename == ImplicitTypenameContext::Yes) |
11571 | ? ElaboratedTypeKeyword::Typename |
11572 | : ElaboratedTypeKeyword::None, |
11573 | KeywordLoc: TypenameLoc, QualifierLoc, II, IILoc: IdLoc, TSI: &TSI, |
11574 | /*DeducedTSTContext=*/true); |
11575 | if (T.isNull()) |
11576 | return true; |
11577 | return CreateParsedType(T, TInfo: TSI); |
11578 | } |
11579 | |
11580 | TypeResult |
11581 | Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc, |
11582 | const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, |
11583 | TemplateTy TemplateIn, const IdentifierInfo *TemplateII, |
11584 | SourceLocation TemplateIILoc, SourceLocation LAngleLoc, |
11585 | ASTTemplateArgsPtr TemplateArgsIn, |
11586 | SourceLocation RAngleLoc) { |
11587 | if (TypenameLoc.isValid() && S && !S->getTemplateParamParent()) |
11588 | Diag(TypenameLoc, |
11589 | getLangOpts().CPlusPlus11 ? |
11590 | diag::warn_cxx98_compat_typename_outside_of_template : |
11591 | diag::ext_typename_outside_of_template) |
11592 | << FixItHint::CreateRemoval(TypenameLoc); |
11593 | |
11594 | // Strangely, non-type results are not ignored by this lookup, so the |
11595 | // program is ill-formed if it finds an injected-class-name. |
11596 | if (TypenameLoc.isValid()) { |
11597 | auto *LookupRD = |
11598 | dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS, EnteringContext: false)); |
11599 | if (LookupRD && LookupRD->getIdentifier() == TemplateII) { |
11600 | Diag(TemplateIILoc, |
11601 | diag::ext_out_of_line_qualified_id_type_names_constructor) |
11602 | << TemplateII << 0 /*injected-class-name used as template name*/ |
11603 | << (TemplateKWLoc.isValid() ? 1 : 0 /*'template'/'typename' keyword*/); |
11604 | } |
11605 | } |
11606 | |
11607 | // Translate the parser's template argument list in our AST format. |
11608 | TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc); |
11609 | translateTemplateArguments(TemplateArgsIn, TemplateArgs); |
11610 | |
11611 | TemplateName Template = TemplateIn.get(); |
11612 | if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) { |
11613 | // Construct a dependent template specialization type. |
11614 | assert(DTN && "dependent template has non-dependent name?" ); |
11615 | assert(DTN->getQualifier() == SS.getScopeRep()); |
11616 | QualType T = Context.getDependentTemplateSpecializationType( |
11617 | Keyword: ElaboratedTypeKeyword::Typename, NNS: DTN->getQualifier(), |
11618 | Name: DTN->getIdentifier(), Args: TemplateArgs.arguments()); |
11619 | |
11620 | // Create source-location information for this type. |
11621 | TypeLocBuilder Builder; |
11622 | DependentTemplateSpecializationTypeLoc SpecTL |
11623 | = Builder.push<DependentTemplateSpecializationTypeLoc>(T); |
11624 | SpecTL.setElaboratedKeywordLoc(TypenameLoc); |
11625 | SpecTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
11626 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
11627 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
11628 | SpecTL.setLAngleLoc(LAngleLoc); |
11629 | SpecTL.setRAngleLoc(RAngleLoc); |
11630 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
11631 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
11632 | return CreateParsedType(T, TInfo: Builder.getTypeSourceInfo(Context, T)); |
11633 | } |
11634 | |
11635 | QualType T = CheckTemplateIdType(Name: Template, TemplateLoc: TemplateIILoc, TemplateArgs); |
11636 | if (T.isNull()) |
11637 | return true; |
11638 | |
11639 | // Provide source-location information for the template specialization type. |
11640 | TypeLocBuilder Builder; |
11641 | TemplateSpecializationTypeLoc SpecTL |
11642 | = Builder.push<TemplateSpecializationTypeLoc>(T); |
11643 | SpecTL.setTemplateKeywordLoc(TemplateKWLoc); |
11644 | SpecTL.setTemplateNameLoc(TemplateIILoc); |
11645 | SpecTL.setLAngleLoc(LAngleLoc); |
11646 | SpecTL.setRAngleLoc(RAngleLoc); |
11647 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
11648 | SpecTL.setArgLocInfo(i: I, AI: TemplateArgs[I].getLocInfo()); |
11649 | |
11650 | T = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::Typename, |
11651 | NNS: SS.getScopeRep(), NamedType: T); |
11652 | ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T); |
11653 | TL.setElaboratedKeywordLoc(TypenameLoc); |
11654 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
11655 | |
11656 | TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T); |
11657 | return CreateParsedType(T, TInfo: TSI); |
11658 | } |
11659 | |
11660 | /// Determine whether this failed name lookup should be treated as being |
11661 | /// disabled by a usage of std::enable_if. |
11662 | static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II, |
11663 | SourceRange &CondRange, Expr *&Cond) { |
11664 | // We must be looking for a ::type... |
11665 | if (!II.isStr(Str: "type" )) |
11666 | return false; |
11667 | |
11668 | // ... within an explicitly-written template specialization... |
11669 | if (!NNS || !NNS.getNestedNameSpecifier()->getAsType()) |
11670 | return false; |
11671 | TypeLoc EnableIfTy = NNS.getTypeLoc(); |
11672 | TemplateSpecializationTypeLoc EnableIfTSTLoc = |
11673 | EnableIfTy.getAs<TemplateSpecializationTypeLoc>(); |
11674 | if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0) |
11675 | return false; |
11676 | const TemplateSpecializationType *EnableIfTST = EnableIfTSTLoc.getTypePtr(); |
11677 | |
11678 | // ... which names a complete class template declaration... |
11679 | const TemplateDecl *EnableIfDecl = |
11680 | EnableIfTST->getTemplateName().getAsTemplateDecl(); |
11681 | if (!EnableIfDecl || EnableIfTST->isIncompleteType()) |
11682 | return false; |
11683 | |
11684 | // ... called "enable_if". |
11685 | const IdentifierInfo *EnableIfII = |
11686 | EnableIfDecl->getDeclName().getAsIdentifierInfo(); |
11687 | if (!EnableIfII || !EnableIfII->isStr(Str: "enable_if" )) |
11688 | return false; |
11689 | |
11690 | // Assume the first template argument is the condition. |
11691 | CondRange = EnableIfTSTLoc.getArgLoc(i: 0).getSourceRange(); |
11692 | |
11693 | // Dig out the condition. |
11694 | Cond = nullptr; |
11695 | if (EnableIfTSTLoc.getArgLoc(i: 0).getArgument().getKind() |
11696 | != TemplateArgument::Expression) |
11697 | return true; |
11698 | |
11699 | Cond = EnableIfTSTLoc.getArgLoc(i: 0).getSourceExpression(); |
11700 | |
11701 | // Ignore Boolean literals; they add no value. |
11702 | if (isa<CXXBoolLiteralExpr>(Val: Cond->IgnoreParenCasts())) |
11703 | Cond = nullptr; |
11704 | |
11705 | return true; |
11706 | } |
11707 | |
11708 | QualType |
11709 | Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, |
11710 | SourceLocation KeywordLoc, |
11711 | NestedNameSpecifierLoc QualifierLoc, |
11712 | const IdentifierInfo &II, |
11713 | SourceLocation IILoc, |
11714 | TypeSourceInfo **TSI, |
11715 | bool DeducedTSTContext) { |
11716 | QualType T = CheckTypenameType(Keyword, KeywordLoc, QualifierLoc, II, IILoc, |
11717 | DeducedTSTContext); |
11718 | if (T.isNull()) |
11719 | return QualType(); |
11720 | |
11721 | *TSI = Context.CreateTypeSourceInfo(T); |
11722 | if (isa<DependentNameType>(Val: T)) { |
11723 | DependentNameTypeLoc TL = |
11724 | (*TSI)->getTypeLoc().castAs<DependentNameTypeLoc>(); |
11725 | TL.setElaboratedKeywordLoc(KeywordLoc); |
11726 | TL.setQualifierLoc(QualifierLoc); |
11727 | TL.setNameLoc(IILoc); |
11728 | } else { |
11729 | ElaboratedTypeLoc TL = (*TSI)->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
11730 | TL.setElaboratedKeywordLoc(KeywordLoc); |
11731 | TL.setQualifierLoc(QualifierLoc); |
11732 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IILoc); |
11733 | } |
11734 | return T; |
11735 | } |
11736 | |
11737 | /// Build the type that describes a C++ typename specifier, |
11738 | /// e.g., "typename T::type". |
11739 | QualType |
11740 | Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword, |
11741 | SourceLocation KeywordLoc, |
11742 | NestedNameSpecifierLoc QualifierLoc, |
11743 | const IdentifierInfo &II, |
11744 | SourceLocation IILoc, bool DeducedTSTContext) { |
11745 | CXXScopeSpec SS; |
11746 | SS.Adopt(Other: QualifierLoc); |
11747 | |
11748 | DeclContext *Ctx = nullptr; |
11749 | if (QualifierLoc) { |
11750 | Ctx = computeDeclContext(SS); |
11751 | if (!Ctx) { |
11752 | // If the nested-name-specifier is dependent and couldn't be |
11753 | // resolved to a type, build a typename type. |
11754 | assert(QualifierLoc.getNestedNameSpecifier()->isDependent()); |
11755 | return Context.getDependentNameType(Keyword, |
11756 | NNS: QualifierLoc.getNestedNameSpecifier(), |
11757 | Name: &II); |
11758 | } |
11759 | |
11760 | // If the nested-name-specifier refers to the current instantiation, |
11761 | // the "typename" keyword itself is superfluous. In C++03, the |
11762 | // program is actually ill-formed. However, DR 382 (in C++0x CD1) |
11763 | // allows such extraneous "typename" keywords, and we retroactively |
11764 | // apply this DR to C++03 code with only a warning. In any case we continue. |
11765 | |
11766 | if (RequireCompleteDeclContext(SS, DC: Ctx)) |
11767 | return QualType(); |
11768 | } |
11769 | |
11770 | DeclarationName Name(&II); |
11771 | LookupResult Result(*this, Name, IILoc, LookupOrdinaryName); |
11772 | if (Ctx) |
11773 | LookupQualifiedName(R&: Result, LookupCtx: Ctx, SS); |
11774 | else |
11775 | LookupName(R&: Result, S: CurScope); |
11776 | unsigned DiagID = 0; |
11777 | Decl *Referenced = nullptr; |
11778 | switch (Result.getResultKind()) { |
11779 | case LookupResult::NotFound: { |
11780 | // If we're looking up 'type' within a template named 'enable_if', produce |
11781 | // a more specific diagnostic. |
11782 | SourceRange CondRange; |
11783 | Expr *Cond = nullptr; |
11784 | if (Ctx && isEnableIf(NNS: QualifierLoc, II, CondRange, Cond)) { |
11785 | // If we have a condition, narrow it down to the specific failed |
11786 | // condition. |
11787 | if (Cond) { |
11788 | Expr *FailedCond; |
11789 | std::string FailedDescription; |
11790 | std::tie(args&: FailedCond, args&: FailedDescription) = |
11791 | findFailedBooleanCondition(Cond); |
11792 | |
11793 | Diag(FailedCond->getExprLoc(), |
11794 | diag::err_typename_nested_not_found_requirement) |
11795 | << FailedDescription |
11796 | << FailedCond->getSourceRange(); |
11797 | return QualType(); |
11798 | } |
11799 | |
11800 | Diag(CondRange.getBegin(), |
11801 | diag::err_typename_nested_not_found_enable_if) |
11802 | << Ctx << CondRange; |
11803 | return QualType(); |
11804 | } |
11805 | |
11806 | DiagID = Ctx ? diag::err_typename_nested_not_found |
11807 | : diag::err_unknown_typename; |
11808 | break; |
11809 | } |
11810 | |
11811 | case LookupResult::FoundUnresolvedValue: { |
11812 | // We found a using declaration that is a value. Most likely, the using |
11813 | // declaration itself is meant to have the 'typename' keyword. |
11814 | SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), |
11815 | IILoc); |
11816 | Diag(IILoc, diag::err_typename_refers_to_using_value_decl) |
11817 | << Name << Ctx << FullRange; |
11818 | if (UnresolvedUsingValueDecl *Using |
11819 | = dyn_cast<UnresolvedUsingValueDecl>(Val: Result.getRepresentativeDecl())){ |
11820 | SourceLocation Loc = Using->getQualifierLoc().getBeginLoc(); |
11821 | Diag(Loc, diag::note_using_value_decl_missing_typename) |
11822 | << FixItHint::CreateInsertion(Loc, "typename " ); |
11823 | } |
11824 | } |
11825 | // Fall through to create a dependent typename type, from which we can recover |
11826 | // better. |
11827 | [[fallthrough]]; |
11828 | |
11829 | case LookupResult::NotFoundInCurrentInstantiation: |
11830 | // Okay, it's a member of an unknown instantiation. |
11831 | return Context.getDependentNameType(Keyword, |
11832 | NNS: QualifierLoc.getNestedNameSpecifier(), |
11833 | Name: &II); |
11834 | |
11835 | case LookupResult::Found: |
11836 | if (TypeDecl *Type = dyn_cast<TypeDecl>(Val: Result.getFoundDecl())) { |
11837 | // C++ [class.qual]p2: |
11838 | // In a lookup in which function names are not ignored and the |
11839 | // nested-name-specifier nominates a class C, if the name specified |
11840 | // after the nested-name-specifier, when looked up in C, is the |
11841 | // injected-class-name of C [...] then the name is instead considered |
11842 | // to name the constructor of class C. |
11843 | // |
11844 | // Unlike in an elaborated-type-specifier, function names are not ignored |
11845 | // in typename-specifier lookup. However, they are ignored in all the |
11846 | // contexts where we form a typename type with no keyword (that is, in |
11847 | // mem-initializer-ids, base-specifiers, and elaborated-type-specifiers). |
11848 | // |
11849 | // FIXME: That's not strictly true: mem-initializer-id lookup does not |
11850 | // ignore functions, but that appears to be an oversight. |
11851 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: Ctx); |
11852 | auto *FoundRD = dyn_cast<CXXRecordDecl>(Val: Type); |
11853 | if (Keyword == ElaboratedTypeKeyword::Typename && LookupRD && FoundRD && |
11854 | FoundRD->isInjectedClassName() && |
11855 | declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) |
11856 | Diag(IILoc, diag::ext_out_of_line_qualified_id_type_names_constructor) |
11857 | << &II << 1 << 0 /*'typename' keyword used*/; |
11858 | |
11859 | // We found a type. Build an ElaboratedType, since the |
11860 | // typename-specifier was just sugar. |
11861 | MarkAnyDeclReferenced(Loc: Type->getLocation(), D: Type, /*OdrUse=*/MightBeOdrUse: false); |
11862 | return Context.getElaboratedType(Keyword, |
11863 | NNS: QualifierLoc.getNestedNameSpecifier(), |
11864 | NamedType: Context.getTypeDeclType(Decl: Type)); |
11865 | } |
11866 | |
11867 | // C++ [dcl.type.simple]p2: |
11868 | // A type-specifier of the form |
11869 | // typename[opt] nested-name-specifier[opt] template-name |
11870 | // is a placeholder for a deduced class type [...]. |
11871 | if (getLangOpts().CPlusPlus17) { |
11872 | if (auto *TD = getAsTypeTemplateDecl(Result.getFoundDecl())) { |
11873 | if (!DeducedTSTContext) { |
11874 | QualType T(QualifierLoc |
11875 | ? QualifierLoc.getNestedNameSpecifier()->getAsType() |
11876 | : nullptr, 0); |
11877 | if (!T.isNull()) |
11878 | Diag(IILoc, diag::err_dependent_deduced_tst) |
11879 | << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << T; |
11880 | else |
11881 | Diag(IILoc, diag::err_deduced_tst) |
11882 | << (int)getTemplateNameKindForDiagnostics(TemplateName(TD)); |
11883 | NoteTemplateLocation(Decl: *TD); |
11884 | return QualType(); |
11885 | } |
11886 | return Context.getElaboratedType( |
11887 | Keyword, NNS: QualifierLoc.getNestedNameSpecifier(), |
11888 | NamedType: Context.getDeducedTemplateSpecializationType(Template: TemplateName(TD), |
11889 | DeducedType: QualType(), IsDependent: false)); |
11890 | } |
11891 | } |
11892 | |
11893 | DiagID = Ctx ? diag::err_typename_nested_not_type |
11894 | : diag::err_typename_not_type; |
11895 | Referenced = Result.getFoundDecl(); |
11896 | break; |
11897 | |
11898 | case LookupResult::FoundOverloaded: |
11899 | DiagID = Ctx ? diag::err_typename_nested_not_type |
11900 | : diag::err_typename_not_type; |
11901 | Referenced = *Result.begin(); |
11902 | break; |
11903 | |
11904 | case LookupResult::Ambiguous: |
11905 | return QualType(); |
11906 | } |
11907 | |
11908 | // If we get here, it's because name lookup did not find a |
11909 | // type. Emit an appropriate diagnostic and return an error. |
11910 | SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(), |
11911 | IILoc); |
11912 | if (Ctx) |
11913 | Diag(IILoc, DiagID) << FullRange << Name << Ctx; |
11914 | else |
11915 | Diag(IILoc, DiagID) << FullRange << Name; |
11916 | if (Referenced) |
11917 | Diag(Referenced->getLocation(), |
11918 | Ctx ? diag::note_typename_member_refers_here |
11919 | : diag::note_typename_refers_here) |
11920 | << Name; |
11921 | return QualType(); |
11922 | } |
11923 | |
11924 | namespace { |
11925 | // See Sema::RebuildTypeInCurrentInstantiation |
11926 | class CurrentInstantiationRebuilder |
11927 | : public TreeTransform<CurrentInstantiationRebuilder> { |
11928 | SourceLocation Loc; |
11929 | DeclarationName Entity; |
11930 | |
11931 | public: |
11932 | typedef TreeTransform<CurrentInstantiationRebuilder> inherited; |
11933 | |
11934 | CurrentInstantiationRebuilder(Sema &SemaRef, |
11935 | SourceLocation Loc, |
11936 | DeclarationName Entity) |
11937 | : TreeTransform<CurrentInstantiationRebuilder>(SemaRef), |
11938 | Loc(Loc), Entity(Entity) { } |
11939 | |
11940 | /// Determine whether the given type \p T has already been |
11941 | /// transformed. |
11942 | /// |
11943 | /// For the purposes of type reconstruction, a type has already been |
11944 | /// transformed if it is NULL or if it is not dependent. |
11945 | bool AlreadyTransformed(QualType T) { |
11946 | return T.isNull() || !T->isInstantiationDependentType(); |
11947 | } |
11948 | |
11949 | /// Returns the location of the entity whose type is being |
11950 | /// rebuilt. |
11951 | SourceLocation getBaseLocation() { return Loc; } |
11952 | |
11953 | /// Returns the name of the entity whose type is being rebuilt. |
11954 | DeclarationName getBaseEntity() { return Entity; } |
11955 | |
11956 | /// Sets the "base" location and entity when that |
11957 | /// information is known based on another transformation. |
11958 | void setBase(SourceLocation Loc, DeclarationName Entity) { |
11959 | this->Loc = Loc; |
11960 | this->Entity = Entity; |
11961 | } |
11962 | |
11963 | ExprResult TransformLambdaExpr(LambdaExpr *E) { |
11964 | // Lambdas never need to be transformed. |
11965 | return E; |
11966 | } |
11967 | }; |
11968 | } // end anonymous namespace |
11969 | |
11970 | /// Rebuilds a type within the context of the current instantiation. |
11971 | /// |
11972 | /// The type \p T is part of the type of an out-of-line member definition of |
11973 | /// a class template (or class template partial specialization) that was parsed |
11974 | /// and constructed before we entered the scope of the class template (or |
11975 | /// partial specialization thereof). This routine will rebuild that type now |
11976 | /// that we have entered the declarator's scope, which may produce different |
11977 | /// canonical types, e.g., |
11978 | /// |
11979 | /// \code |
11980 | /// template<typename T> |
11981 | /// struct X { |
11982 | /// typedef T* pointer; |
11983 | /// pointer data(); |
11984 | /// }; |
11985 | /// |
11986 | /// template<typename T> |
11987 | /// typename X<T>::pointer X<T>::data() { ... } |
11988 | /// \endcode |
11989 | /// |
11990 | /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType, |
11991 | /// since we do not know that we can look into X<T> when we parsed the type. |
11992 | /// This function will rebuild the type, performing the lookup of "pointer" |
11993 | /// in X<T> and returning an ElaboratedType whose canonical type is the same |
11994 | /// as the canonical type of T*, allowing the return types of the out-of-line |
11995 | /// definition and the declaration to match. |
11996 | TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T, |
11997 | SourceLocation Loc, |
11998 | DeclarationName Name) { |
11999 | if (!T || !T->getType()->isInstantiationDependentType()) |
12000 | return T; |
12001 | |
12002 | CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name); |
12003 | return Rebuilder.TransformType(T); |
12004 | } |
12005 | |
12006 | ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) { |
12007 | CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(), |
12008 | DeclarationName()); |
12009 | return Rebuilder.TransformExpr(E); |
12010 | } |
12011 | |
12012 | bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) { |
12013 | if (SS.isInvalid()) |
12014 | return true; |
12015 | |
12016 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
12017 | CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(), |
12018 | DeclarationName()); |
12019 | NestedNameSpecifierLoc Rebuilt |
12020 | = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc); |
12021 | if (!Rebuilt) |
12022 | return true; |
12023 | |
12024 | SS.Adopt(Other: Rebuilt); |
12025 | return false; |
12026 | } |
12027 | |
12028 | /// Rebuild the template parameters now that we know we're in a current |
12029 | /// instantiation. |
12030 | bool Sema::RebuildTemplateParamsInCurrentInstantiation( |
12031 | TemplateParameterList *Params) { |
12032 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
12033 | Decl *Param = Params->getParam(Idx: I); |
12034 | |
12035 | // There is nothing to rebuild in a type parameter. |
12036 | if (isa<TemplateTypeParmDecl>(Val: Param)) |
12037 | continue; |
12038 | |
12039 | // Rebuild the template parameter list of a template template parameter. |
12040 | if (TemplateTemplateParmDecl *TTP |
12041 | = dyn_cast<TemplateTemplateParmDecl>(Val: Param)) { |
12042 | if (RebuildTemplateParamsInCurrentInstantiation( |
12043 | Params: TTP->getTemplateParameters())) |
12044 | return true; |
12045 | |
12046 | continue; |
12047 | } |
12048 | |
12049 | // Rebuild the type of a non-type template parameter. |
12050 | NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Val: Param); |
12051 | TypeSourceInfo *NewTSI |
12052 | = RebuildTypeInCurrentInstantiation(T: NTTP->getTypeSourceInfo(), |
12053 | Loc: NTTP->getLocation(), |
12054 | Name: NTTP->getDeclName()); |
12055 | if (!NewTSI) |
12056 | return true; |
12057 | |
12058 | if (NewTSI->getType()->isUndeducedType()) { |
12059 | // C++17 [temp.dep.expr]p3: |
12060 | // An id-expression is type-dependent if it contains |
12061 | // - an identifier associated by name lookup with a non-type |
12062 | // template-parameter declared with a type that contains a |
12063 | // placeholder type (7.1.7.4), |
12064 | NewTSI = SubstAutoTypeSourceInfoDependent(TypeWithAuto: NewTSI); |
12065 | } |
12066 | |
12067 | if (NewTSI != NTTP->getTypeSourceInfo()) { |
12068 | NTTP->setTypeSourceInfo(NewTSI); |
12069 | NTTP->setType(NewTSI->getType()); |
12070 | } |
12071 | } |
12072 | |
12073 | return false; |
12074 | } |
12075 | |
12076 | /// Produces a formatted string that describes the binding of |
12077 | /// template parameters to template arguments. |
12078 | std::string |
12079 | Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
12080 | const TemplateArgumentList &Args) { |
12081 | return getTemplateArgumentBindingsText(Params, Args: Args.data(), NumArgs: Args.size()); |
12082 | } |
12083 | |
12084 | std::string |
12085 | Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params, |
12086 | const TemplateArgument *Args, |
12087 | unsigned NumArgs) { |
12088 | SmallString<128> Str; |
12089 | llvm::raw_svector_ostream Out(Str); |
12090 | |
12091 | if (!Params || Params->size() == 0 || NumArgs == 0) |
12092 | return std::string(); |
12093 | |
12094 | for (unsigned I = 0, N = Params->size(); I != N; ++I) { |
12095 | if (I >= NumArgs) |
12096 | break; |
12097 | |
12098 | if (I == 0) |
12099 | Out << "[with " ; |
12100 | else |
12101 | Out << ", " ; |
12102 | |
12103 | if (const IdentifierInfo *Id = Params->getParam(Idx: I)->getIdentifier()) { |
12104 | Out << Id->getName(); |
12105 | } else { |
12106 | Out << '$' << I; |
12107 | } |
12108 | |
12109 | Out << " = " ; |
12110 | Args[I].print(Policy: getPrintingPolicy(), Out, |
12111 | IncludeType: TemplateParameterList::shouldIncludeTypeForArgument( |
12112 | Policy: getPrintingPolicy(), TPL: Params, Idx: I)); |
12113 | } |
12114 | |
12115 | Out << ']'; |
12116 | return std::string(Out.str()); |
12117 | } |
12118 | |
12119 | void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD, |
12120 | CachedTokens &Toks) { |
12121 | if (!FD) |
12122 | return; |
12123 | |
12124 | auto LPT = std::make_unique<LateParsedTemplate>(); |
12125 | |
12126 | // Take tokens to avoid allocations |
12127 | LPT->Toks.swap(RHS&: Toks); |
12128 | LPT->D = FnD; |
12129 | LPT->FPO = getCurFPFeatures(); |
12130 | LateParsedTemplateMap.insert(KV: std::make_pair(x&: FD, y: std::move(LPT))); |
12131 | |
12132 | FD->setLateTemplateParsed(true); |
12133 | } |
12134 | |
12135 | void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) { |
12136 | if (!FD) |
12137 | return; |
12138 | FD->setLateTemplateParsed(false); |
12139 | } |
12140 | |
12141 | bool Sema::IsInsideALocalClassWithinATemplateFunction() { |
12142 | DeclContext *DC = CurContext; |
12143 | |
12144 | while (DC) { |
12145 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: CurContext)) { |
12146 | const FunctionDecl *FD = RD->isLocalClass(); |
12147 | return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate); |
12148 | } else if (DC->isTranslationUnit() || DC->isNamespace()) |
12149 | return false; |
12150 | |
12151 | DC = DC->getParent(); |
12152 | } |
12153 | return false; |
12154 | } |
12155 | |
12156 | namespace { |
12157 | /// Walk the path from which a declaration was instantiated, and check |
12158 | /// that every explicit specialization along that path is visible. This enforces |
12159 | /// C++ [temp.expl.spec]/6: |
12160 | /// |
12161 | /// If a template, a member template or a member of a class template is |
12162 | /// explicitly specialized then that specialization shall be declared before |
12163 | /// the first use of that specialization that would cause an implicit |
12164 | /// instantiation to take place, in every translation unit in which such a |
12165 | /// use occurs; no diagnostic is required. |
12166 | /// |
12167 | /// and also C++ [temp.class.spec]/1: |
12168 | /// |
12169 | /// A partial specialization shall be declared before the first use of a |
12170 | /// class template specialization that would make use of the partial |
12171 | /// specialization as the result of an implicit or explicit instantiation |
12172 | /// in every translation unit in which such a use occurs; no diagnostic is |
12173 | /// required. |
12174 | class ExplicitSpecializationVisibilityChecker { |
12175 | Sema &S; |
12176 | SourceLocation Loc; |
12177 | llvm::SmallVector<Module *, 8> Modules; |
12178 | Sema::AcceptableKind Kind; |
12179 | |
12180 | public: |
12181 | ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc, |
12182 | Sema::AcceptableKind Kind) |
12183 | : S(S), Loc(Loc), Kind(Kind) {} |
12184 | |
12185 | void check(NamedDecl *ND) { |
12186 | if (auto *FD = dyn_cast<FunctionDecl>(Val: ND)) |
12187 | return checkImpl(Spec: FD); |
12188 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: ND)) |
12189 | return checkImpl(Spec: RD); |
12190 | if (auto *VD = dyn_cast<VarDecl>(Val: ND)) |
12191 | return checkImpl(Spec: VD); |
12192 | if (auto *ED = dyn_cast<EnumDecl>(Val: ND)) |
12193 | return checkImpl(Spec: ED); |
12194 | } |
12195 | |
12196 | private: |
12197 | void diagnose(NamedDecl *D, bool IsPartialSpec) { |
12198 | auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization |
12199 | : Sema::MissingImportKind::ExplicitSpecialization; |
12200 | const bool Recover = true; |
12201 | |
12202 | // If we got a custom set of modules (because only a subset of the |
12203 | // declarations are interesting), use them, otherwise let |
12204 | // diagnoseMissingImport intelligently pick some. |
12205 | if (Modules.empty()) |
12206 | S.diagnoseMissingImport(Loc, Decl: D, MIK: Kind, Recover); |
12207 | else |
12208 | S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover); |
12209 | } |
12210 | |
12211 | bool CheckMemberSpecialization(const NamedDecl *D) { |
12212 | return Kind == Sema::AcceptableKind::Visible |
12213 | ? S.hasVisibleMemberSpecialization(D) |
12214 | : S.hasReachableMemberSpecialization(D); |
12215 | } |
12216 | |
12217 | bool CheckExplicitSpecialization(const NamedDecl *D) { |
12218 | return Kind == Sema::AcceptableKind::Visible |
12219 | ? S.hasVisibleExplicitSpecialization(D) |
12220 | : S.hasReachableExplicitSpecialization(D); |
12221 | } |
12222 | |
12223 | bool CheckDeclaration(const NamedDecl *D) { |
12224 | return Kind == Sema::AcceptableKind::Visible ? S.hasVisibleDeclaration(D) |
12225 | : S.hasReachableDeclaration(D); |
12226 | } |
12227 | |
12228 | // Check a specific declaration. There are three problematic cases: |
12229 | // |
12230 | // 1) The declaration is an explicit specialization of a template |
12231 | // specialization. |
12232 | // 2) The declaration is an explicit specialization of a member of an |
12233 | // templated class. |
12234 | // 3) The declaration is an instantiation of a template, and that template |
12235 | // is an explicit specialization of a member of a templated class. |
12236 | // |
12237 | // We don't need to go any deeper than that, as the instantiation of the |
12238 | // surrounding class / etc is not triggered by whatever triggered this |
12239 | // instantiation, and thus should be checked elsewhere. |
12240 | template<typename SpecDecl> |
12241 | void checkImpl(SpecDecl *Spec) { |
12242 | bool IsHiddenExplicitSpecialization = false; |
12243 | if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) { |
12244 | IsHiddenExplicitSpecialization = Spec->getMemberSpecializationInfo() |
12245 | ? !CheckMemberSpecialization(D: Spec) |
12246 | : !CheckExplicitSpecialization(D: Spec); |
12247 | } else { |
12248 | checkInstantiated(Spec); |
12249 | } |
12250 | |
12251 | if (IsHiddenExplicitSpecialization) |
12252 | diagnose(D: Spec->getMostRecentDecl(), IsPartialSpec: false); |
12253 | } |
12254 | |
12255 | void checkInstantiated(FunctionDecl *FD) { |
12256 | if (auto *TD = FD->getPrimaryTemplate()) |
12257 | checkTemplate(TD); |
12258 | } |
12259 | |
12260 | void checkInstantiated(CXXRecordDecl *RD) { |
12261 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: RD); |
12262 | if (!SD) |
12263 | return; |
12264 | |
12265 | auto From = SD->getSpecializedTemplateOrPartial(); |
12266 | if (auto *TD = From.dyn_cast<ClassTemplateDecl *>()) |
12267 | checkTemplate(TD); |
12268 | else if (auto *TD = |
12269 | From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { |
12270 | if (!CheckDeclaration(TD)) |
12271 | diagnose(TD, true); |
12272 | checkTemplate(TD); |
12273 | } |
12274 | } |
12275 | |
12276 | void checkInstantiated(VarDecl *RD) { |
12277 | auto *SD = dyn_cast<VarTemplateSpecializationDecl>(Val: RD); |
12278 | if (!SD) |
12279 | return; |
12280 | |
12281 | auto From = SD->getSpecializedTemplateOrPartial(); |
12282 | if (auto *TD = From.dyn_cast<VarTemplateDecl *>()) |
12283 | checkTemplate(TD); |
12284 | else if (auto *TD = |
12285 | From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) { |
12286 | if (!CheckDeclaration(TD)) |
12287 | diagnose(TD, true); |
12288 | checkTemplate(TD); |
12289 | } |
12290 | } |
12291 | |
12292 | void checkInstantiated(EnumDecl *FD) {} |
12293 | |
12294 | template<typename TemplDecl> |
12295 | void checkTemplate(TemplDecl *TD) { |
12296 | if (TD->isMemberSpecialization()) { |
12297 | if (!CheckMemberSpecialization(D: TD)) |
12298 | diagnose(D: TD->getMostRecentDecl(), IsPartialSpec: false); |
12299 | } |
12300 | } |
12301 | }; |
12302 | } // end anonymous namespace |
12303 | |
12304 | void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) { |
12305 | if (!getLangOpts().Modules) |
12306 | return; |
12307 | |
12308 | ExplicitSpecializationVisibilityChecker(*this, Loc, |
12309 | Sema::AcceptableKind::Visible) |
12310 | .check(ND: Spec); |
12311 | } |
12312 | |
12313 | void Sema::checkSpecializationReachability(SourceLocation Loc, |
12314 | NamedDecl *Spec) { |
12315 | if (!getLangOpts().CPlusPlusModules) |
12316 | return checkSpecializationVisibility(Loc, Spec); |
12317 | |
12318 | ExplicitSpecializationVisibilityChecker(*this, Loc, |
12319 | Sema::AcceptableKind::Reachable) |
12320 | .check(ND: Spec); |
12321 | } |
12322 | |
12323 | /// Returns the top most location responsible for the definition of \p N. |
12324 | /// If \p N is a a template specialization, this is the location |
12325 | /// of the top of the instantiation stack. |
12326 | /// Otherwise, the location of \p N is returned. |
12327 | SourceLocation Sema::getTopMostPointOfInstantiation(const NamedDecl *N) const { |
12328 | if (!getLangOpts().CPlusPlus || CodeSynthesisContexts.empty()) |
12329 | return N->getLocation(); |
12330 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: N)) { |
12331 | if (!FD->isFunctionTemplateSpecialization()) |
12332 | return FD->getLocation(); |
12333 | } else if (!isa<ClassTemplateSpecializationDecl, |
12334 | VarTemplateSpecializationDecl>(Val: N)) { |
12335 | return N->getLocation(); |
12336 | } |
12337 | for (const CodeSynthesisContext &CSC : CodeSynthesisContexts) { |
12338 | if (!CSC.isInstantiationRecord() || CSC.PointOfInstantiation.isInvalid()) |
12339 | continue; |
12340 | return CSC.PointOfInstantiation; |
12341 | } |
12342 | return N->getLocation(); |
12343 | } |
12344 | |