1//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===/
7//
8// This file implements C++ template instantiation for declarations.
9//
10//===----------------------------------------------------------------------===/
11
12#include "TreeTransform.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTMutationListener.h"
16#include "clang/AST/DeclTemplate.h"
17#include "clang/AST/DeclVisitor.h"
18#include "clang/AST/DependentDiagnostic.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/PrettyDeclStackTrace.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/Basic/SourceManager.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Sema/EnterExpressionEvaluationContext.h"
26#include "clang/Sema/Initialization.h"
27#include "clang/Sema/Lookup.h"
28#include "clang/Sema/ScopeInfo.h"
29#include "clang/Sema/SemaInternal.h"
30#include "clang/Sema/Template.h"
31#include "clang/Sema/TemplateInstCallback.h"
32#include "llvm/Support/TimeProfiler.h"
33#include <optional>
34
35using namespace clang;
36
37static bool isDeclWithinFunction(const Decl *D) {
38 const DeclContext *DC = D->getDeclContext();
39 if (DC->isFunctionOrMethod())
40 return true;
41
42 if (DC->isRecord())
43 return cast<CXXRecordDecl>(Val: DC)->isLocalClass();
44
45 return false;
46}
47
48template<typename DeclT>
49static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
50 const MultiLevelTemplateArgumentList &TemplateArgs) {
51 if (!OldDecl->getQualifierLoc())
52 return false;
53
54 assert((NewDecl->getFriendObjectKind() ||
55 !OldDecl->getLexicalDeclContext()->isDependentContext()) &&
56 "non-friend with qualified name defined in dependent context");
57 Sema::ContextRAII SavedContext(
58 SemaRef,
59 const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
60 ? NewDecl->getLexicalDeclContext()
61 : OldDecl->getLexicalDeclContext()));
62
63 NestedNameSpecifierLoc NewQualifierLoc
64 = SemaRef.SubstNestedNameSpecifierLoc(NNS: OldDecl->getQualifierLoc(),
65 TemplateArgs);
66
67 if (!NewQualifierLoc)
68 return true;
69
70 NewDecl->setQualifierInfo(NewQualifierLoc);
71 return false;
72}
73
74bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
75 DeclaratorDecl *NewDecl) {
76 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
77}
78
79bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
80 TagDecl *NewDecl) {
81 return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
82}
83
84// Include attribute instantiation code.
85#include "clang/Sema/AttrTemplateInstantiate.inc"
86
87static void instantiateDependentAlignedAttr(
88 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
89 const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
90 if (Aligned->isAlignmentExpr()) {
91 // The alignment expression is a constant expression.
92 EnterExpressionEvaluationContext Unevaluated(
93 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
94 ExprResult Result = S.SubstExpr(E: Aligned->getAlignmentExpr(), TemplateArgs);
95 if (!Result.isInvalid())
96 S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion);
97 } else {
98 if (TypeSourceInfo *Result =
99 S.SubstType(Aligned->getAlignmentType(), TemplateArgs,
100 Aligned->getLocation(), DeclarationName())) {
101 if (!S.CheckAlignasTypeArgument(KWName: Aligned->getSpelling(), TInfo: Result,
102 OpLoc: Aligned->getLocation(),
103 R: Result->getTypeLoc().getSourceRange()))
104 S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion);
105 }
106 }
107}
108
109static void instantiateDependentAlignedAttr(
110 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
111 const AlignedAttr *Aligned, Decl *New) {
112 if (!Aligned->isPackExpansion()) {
113 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
114 return;
115 }
116
117 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
118 if (Aligned->isAlignmentExpr())
119 S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
120 Unexpanded);
121 else
122 S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
123 Unexpanded);
124 assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
125
126 // Determine whether we can expand this attribute pack yet.
127 bool Expand = true, RetainExpansion = false;
128 std::optional<unsigned> NumExpansions;
129 // FIXME: Use the actual location of the ellipsis.
130 SourceLocation EllipsisLoc = Aligned->getLocation();
131 if (S.CheckParameterPacksForExpansion(EllipsisLoc, PatternRange: Aligned->getRange(),
132 Unexpanded, TemplateArgs, ShouldExpand&: Expand,
133 RetainExpansion, NumExpansions))
134 return;
135
136 if (!Expand) {
137 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
138 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
139 } else {
140 for (unsigned I = 0; I != *NumExpansions; ++I) {
141 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
142 instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
143 }
144 }
145}
146
147static void instantiateDependentAssumeAlignedAttr(
148 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
149 const AssumeAlignedAttr *Aligned, Decl *New) {
150 // The alignment expression is a constant expression.
151 EnterExpressionEvaluationContext Unevaluated(
152 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
153
154 Expr *E, *OE = nullptr;
155 ExprResult Result = S.SubstExpr(E: Aligned->getAlignment(), TemplateArgs);
156 if (Result.isInvalid())
157 return;
158 E = Result.getAs<Expr>();
159
160 if (Aligned->getOffset()) {
161 Result = S.SubstExpr(E: Aligned->getOffset(), TemplateArgs);
162 if (Result.isInvalid())
163 return;
164 OE = Result.getAs<Expr>();
165 }
166
167 S.AddAssumeAlignedAttr(D: New, CI: *Aligned, E, OE);
168}
169
170static void instantiateDependentAlignValueAttr(
171 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
172 const AlignValueAttr *Aligned, Decl *New) {
173 // The alignment expression is a constant expression.
174 EnterExpressionEvaluationContext Unevaluated(
175 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
176 ExprResult Result = S.SubstExpr(E: Aligned->getAlignment(), TemplateArgs);
177 if (!Result.isInvalid())
178 S.AddAlignValueAttr(D: New, CI: *Aligned, E: Result.getAs<Expr>());
179}
180
181static void instantiateDependentAllocAlignAttr(
182 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
183 const AllocAlignAttr *Align, Decl *New) {
184 Expr *Param = IntegerLiteral::Create(
185 S.getASTContext(),
186 llvm::APInt(64, Align->getParamIndex().getSourceIndex()),
187 S.getASTContext().UnsignedLongLongTy, Align->getLocation());
188 S.AddAllocAlignAttr(D: New, CI: *Align, ParamExpr: Param);
189}
190
191static void instantiateDependentAnnotationAttr(
192 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
193 const AnnotateAttr *Attr, Decl *New) {
194 EnterExpressionEvaluationContext Unevaluated(
195 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
196
197 // If the attribute has delayed arguments it will have to instantiate those
198 // and handle them as new arguments for the attribute.
199 bool HasDelayedArgs = Attr->delayedArgs_size();
200
201 ArrayRef<Expr *> ArgsToInstantiate =
202 HasDelayedArgs
203 ? ArrayRef<Expr *>{Attr->delayedArgs_begin(), Attr->delayedArgs_end()}
204 : ArrayRef<Expr *>{Attr->args_begin(), Attr->args_end()};
205
206 SmallVector<Expr *, 4> Args;
207 if (S.SubstExprs(Exprs: ArgsToInstantiate,
208 /*IsCall=*/false, TemplateArgs, Outputs&: Args))
209 return;
210
211 StringRef Str = Attr->getAnnotation();
212 if (HasDelayedArgs) {
213 if (Args.size() < 1) {
214 S.Diag(Attr->getLoc(), diag::err_attribute_too_few_arguments)
215 << Attr << 1;
216 return;
217 }
218
219 if (!S.checkStringLiteralArgumentAttr(*Attr, Args[0], Str))
220 return;
221
222 llvm::SmallVector<Expr *, 4> ActualArgs;
223 ActualArgs.insert(I: ActualArgs.begin(), From: Args.begin() + 1, To: Args.end());
224 std::swap(LHS&: Args, RHS&: ActualArgs);
225 }
226 S.AddAnnotationAttr(D: New, CI: *Attr, Annot: Str, Args);
227}
228
229static Expr *instantiateDependentFunctionAttrCondition(
230 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
231 const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
232 Expr *Cond = nullptr;
233 {
234 Sema::ContextRAII SwitchContext(S, New);
235 EnterExpressionEvaluationContext Unevaluated(
236 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
237 ExprResult Result = S.SubstExpr(E: OldCond, TemplateArgs);
238 if (Result.isInvalid())
239 return nullptr;
240 Cond = Result.getAs<Expr>();
241 }
242 if (!Cond->isTypeDependent()) {
243 ExprResult Converted = S.PerformContextuallyConvertToBool(From: Cond);
244 if (Converted.isInvalid())
245 return nullptr;
246 Cond = Converted.get();
247 }
248
249 SmallVector<PartialDiagnosticAt, 8> Diags;
250 if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
251 !Expr::isPotentialConstantExprUnevaluated(E: Cond, FD: New, Diags)) {
252 S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
253 for (const auto &P : Diags)
254 S.Diag(Loc: P.first, PD: P.second);
255 return nullptr;
256 }
257 return Cond;
258}
259
260static void instantiateDependentEnableIfAttr(
261 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
262 const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
263 Expr *Cond = instantiateDependentFunctionAttrCondition(
264 S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
265
266 if (Cond)
267 New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA,
268 Cond, EIA->getMessage()));
269}
270
271static void instantiateDependentDiagnoseIfAttr(
272 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
273 const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
274 Expr *Cond = instantiateDependentFunctionAttrCondition(
275 S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
276
277 if (Cond)
278 New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
279 S.getASTContext(), *DIA, Cond, DIA->getMessage(),
280 DIA->getDiagnosticType(), DIA->getArgDependent(), New));
281}
282
283// Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
284// template A as the base and arguments from TemplateArgs.
285static void instantiateDependentCUDALaunchBoundsAttr(
286 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
287 const CUDALaunchBoundsAttr &Attr, Decl *New) {
288 // The alignment expression is a constant expression.
289 EnterExpressionEvaluationContext Unevaluated(
290 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
291
292 ExprResult Result = S.SubstExpr(E: Attr.getMaxThreads(), TemplateArgs);
293 if (Result.isInvalid())
294 return;
295 Expr *MaxThreads = Result.getAs<Expr>();
296
297 Expr *MinBlocks = nullptr;
298 if (Attr.getMinBlocks()) {
299 Result = S.SubstExpr(E: Attr.getMinBlocks(), TemplateArgs);
300 if (Result.isInvalid())
301 return;
302 MinBlocks = Result.getAs<Expr>();
303 }
304
305 Expr *MaxBlocks = nullptr;
306 if (Attr.getMaxBlocks()) {
307 Result = S.SubstExpr(E: Attr.getMaxBlocks(), TemplateArgs);
308 if (Result.isInvalid())
309 return;
310 MaxBlocks = Result.getAs<Expr>();
311 }
312
313 S.AddLaunchBoundsAttr(D: New, CI: Attr, MaxThreads, MinBlocks, MaxBlocks);
314}
315
316static void
317instantiateDependentModeAttr(Sema &S,
318 const MultiLevelTemplateArgumentList &TemplateArgs,
319 const ModeAttr &Attr, Decl *New) {
320 S.AddModeAttr(D: New, CI: Attr, Name: Attr.getMode(),
321 /*InInstantiation=*/true);
322}
323
324/// Instantiation of 'declare simd' attribute and its arguments.
325static void instantiateOMPDeclareSimdDeclAttr(
326 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
327 const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
328 // Allow 'this' in clauses with varlists.
329 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: New))
330 New = FTD->getTemplatedDecl();
331 auto *FD = cast<FunctionDecl>(Val: New);
332 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
333 SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
334 SmallVector<unsigned, 4> LinModifiers;
335
336 auto SubstExpr = [&](Expr *E) -> ExprResult {
337 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts()))
338 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl())) {
339 Sema::ContextRAII SavedContext(S, FD);
340 LocalInstantiationScope Local(S);
341 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
342 Local.InstantiatedLocal(
343 PVD, FD->getParamDecl(i: PVD->getFunctionScopeIndex()));
344 return S.SubstExpr(E, TemplateArgs);
345 }
346 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
347 FD->isCXXInstanceMember());
348 return S.SubstExpr(E, TemplateArgs);
349 };
350
351 // Substitute a single OpenMP clause, which is a potentially-evaluated
352 // full-expression.
353 auto Subst = [&](Expr *E) -> ExprResult {
354 EnterExpressionEvaluationContext Evaluated(
355 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
356 ExprResult Res = SubstExpr(E);
357 if (Res.isInvalid())
358 return Res;
359 return S.ActOnFinishFullExpr(Expr: Res.get(), DiscardedValue: false);
360 };
361
362 ExprResult Simdlen;
363 if (auto *E = Attr.getSimdlen())
364 Simdlen = Subst(E);
365
366 if (Attr.uniforms_size() > 0) {
367 for(auto *E : Attr.uniforms()) {
368 ExprResult Inst = Subst(E);
369 if (Inst.isInvalid())
370 continue;
371 Uniforms.push_back(Inst.get());
372 }
373 }
374
375 auto AI = Attr.alignments_begin();
376 for (auto *E : Attr.aligneds()) {
377 ExprResult Inst = Subst(E);
378 if (Inst.isInvalid())
379 continue;
380 Aligneds.push_back(Inst.get());
381 Inst = ExprEmpty();
382 if (*AI)
383 Inst = S.SubstExpr(*AI, TemplateArgs);
384 Alignments.push_back(Inst.get());
385 ++AI;
386 }
387
388 auto SI = Attr.steps_begin();
389 for (auto *E : Attr.linears()) {
390 ExprResult Inst = Subst(E);
391 if (Inst.isInvalid())
392 continue;
393 Linears.push_back(Inst.get());
394 Inst = ExprEmpty();
395 if (*SI)
396 Inst = S.SubstExpr(*SI, TemplateArgs);
397 Steps.push_back(Inst.get());
398 ++SI;
399 }
400 LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
401 (void)S.ActOnOpenMPDeclareSimdDirective(
402 S.ConvertDeclToDeclGroup(Ptr: New), Attr.getBranchState(), Simdlen.get(),
403 Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
404 Attr.getRange());
405}
406
407/// Instantiation of 'declare variant' attribute and its arguments.
408static void instantiateOMPDeclareVariantAttr(
409 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
410 const OMPDeclareVariantAttr &Attr, Decl *New) {
411 // Allow 'this' in clauses with varlists.
412 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: New))
413 New = FTD->getTemplatedDecl();
414 auto *FD = cast<FunctionDecl>(Val: New);
415 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
416
417 auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) {
418 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts()))
419 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl())) {
420 Sema::ContextRAII SavedContext(S, FD);
421 LocalInstantiationScope Local(S);
422 if (FD->getNumParams() > PVD->getFunctionScopeIndex())
423 Local.InstantiatedLocal(
424 PVD, FD->getParamDecl(i: PVD->getFunctionScopeIndex()));
425 return S.SubstExpr(E, TemplateArgs);
426 }
427 Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
428 FD->isCXXInstanceMember());
429 return S.SubstExpr(E, TemplateArgs);
430 };
431
432 // Substitute a single OpenMP clause, which is a potentially-evaluated
433 // full-expression.
434 auto &&Subst = [&SubstExpr, &S](Expr *E) {
435 EnterExpressionEvaluationContext Evaluated(
436 S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
437 ExprResult Res = SubstExpr(E);
438 if (Res.isInvalid())
439 return Res;
440 return S.ActOnFinishFullExpr(Expr: Res.get(), DiscardedValue: false);
441 };
442
443 ExprResult VariantFuncRef;
444 if (Expr *E = Attr.getVariantFuncRef()) {
445 // Do not mark function as is used to prevent its emission if this is the
446 // only place where it is used.
447 EnterExpressionEvaluationContext Unevaluated(
448 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
449 VariantFuncRef = Subst(E);
450 }
451
452 // Copy the template version of the OMPTraitInfo and run substitute on all
453 // score and condition expressiosn.
454 OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo();
455 TI = *Attr.getTraitInfos();
456
457 // Try to substitute template parameters in score and condition expressions.
458 auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) {
459 if (E) {
460 EnterExpressionEvaluationContext Unevaluated(
461 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
462 ExprResult ER = Subst(E);
463 if (ER.isUsable())
464 E = ER.get();
465 else
466 return true;
467 }
468 return false;
469 };
470 if (TI.anyScoreOrCondition(Cond: SubstScoreOrConditionExpr))
471 return;
472
473 Expr *E = VariantFuncRef.get();
474
475 // Check function/variant ref for `omp declare variant` but not for `omp
476 // begin declare variant` (which use implicit attributes).
477 std::optional<std::pair<FunctionDecl *, Expr *>> DeclVarData =
478 S.checkOpenMPDeclareVariantFunction(DG: S.ConvertDeclToDeclGroup(Ptr: New), VariantRef: E, TI,
479 NumAppendArgs: Attr.appendArgs_size(),
480 SR: Attr.getRange());
481
482 if (!DeclVarData)
483 return;
484
485 E = DeclVarData->second;
486 FD = DeclVarData->first;
487
488 if (auto *VariantDRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParenImpCasts())) {
489 if (auto *VariantFD = dyn_cast<FunctionDecl>(Val: VariantDRE->getDecl())) {
490 if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) {
491 if (!VariantFTD->isThisDeclarationADefinition())
492 return;
493 Sema::TentativeAnalysisScope Trap(S);
494 const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy(
495 Context&: S.Context, Args: TemplateArgs.getInnermost());
496
497 auto *SubstFD = S.InstantiateFunctionDeclaration(FTD: VariantFTD, Args: TAL,
498 Loc: New->getLocation());
499 if (!SubstFD)
500 return;
501 QualType NewType = S.Context.mergeFunctionTypes(
502 SubstFD->getType(), FD->getType(),
503 /* OfBlockPointer */ false,
504 /* Unqualified */ false, /* AllowCXX */ true);
505 if (NewType.isNull())
506 return;
507 S.InstantiateFunctionDefinition(
508 PointOfInstantiation: New->getLocation(), Function: SubstFD, /* Recursive */ true,
509 /* DefinitionRequired */ false, /* AtEndOfTU */ false);
510 SubstFD->setInstantiationIsPending(!SubstFD->isDefined());
511 E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(),
512 SourceLocation(), SubstFD,
513 /* RefersToEnclosingVariableOrCapture */ false,
514 /* NameLoc */ SubstFD->getLocation(),
515 SubstFD->getType(), ExprValueKind::VK_PRValue);
516 }
517 }
518 }
519
520 SmallVector<Expr *, 8> NothingExprs;
521 SmallVector<Expr *, 8> NeedDevicePtrExprs;
522 SmallVector<OMPInteropInfo, 4> AppendArgs;
523
524 for (Expr *E : Attr.adjustArgsNothing()) {
525 ExprResult ER = Subst(E);
526 if (ER.isInvalid())
527 continue;
528 NothingExprs.push_back(ER.get());
529 }
530 for (Expr *E : Attr.adjustArgsNeedDevicePtr()) {
531 ExprResult ER = Subst(E);
532 if (ER.isInvalid())
533 continue;
534 NeedDevicePtrExprs.push_back(ER.get());
535 }
536 for (OMPInteropInfo &II : Attr.appendArgs()) {
537 // When prefer_type is implemented for append_args handle them here too.
538 AppendArgs.emplace_back(II.IsTarget, II.IsTargetSync);
539 }
540
541 S.ActOnOpenMPDeclareVariantDirective(
542 FD, VariantRef: E, TI, AdjustArgsNothing: NothingExprs, AdjustArgsNeedDevicePtr: NeedDevicePtrExprs, AppendArgs, AdjustArgsLoc: SourceLocation(),
543 AppendArgsLoc: SourceLocation(), SR: Attr.getRange());
544}
545
546static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
547 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
548 const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) {
549 // Both min and max expression are constant expressions.
550 EnterExpressionEvaluationContext Unevaluated(
551 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
552
553 ExprResult Result = S.SubstExpr(E: Attr.getMin(), TemplateArgs);
554 if (Result.isInvalid())
555 return;
556 Expr *MinExpr = Result.getAs<Expr>();
557
558 Result = S.SubstExpr(E: Attr.getMax(), TemplateArgs);
559 if (Result.isInvalid())
560 return;
561 Expr *MaxExpr = Result.getAs<Expr>();
562
563 S.addAMDGPUFlatWorkGroupSizeAttr(D: New, CI: Attr, Min: MinExpr, Max: MaxExpr);
564}
565
566ExplicitSpecifier Sema::instantiateExplicitSpecifier(
567 const MultiLevelTemplateArgumentList &TemplateArgs, ExplicitSpecifier ES) {
568 if (!ES.getExpr())
569 return ES;
570 Expr *OldCond = ES.getExpr();
571 Expr *Cond = nullptr;
572 {
573 EnterExpressionEvaluationContext Unevaluated(
574 *this, Sema::ExpressionEvaluationContext::ConstantEvaluated);
575 ExprResult SubstResult = SubstExpr(E: OldCond, TemplateArgs);
576 if (SubstResult.isInvalid()) {
577 return ExplicitSpecifier::Invalid();
578 }
579 Cond = SubstResult.get();
580 }
581 ExplicitSpecifier Result(Cond, ES.getKind());
582 if (!Cond->isTypeDependent())
583 tryResolveExplicitSpecifier(ExplicitSpec&: Result);
584 return Result;
585}
586
587static void instantiateDependentAMDGPUWavesPerEUAttr(
588 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
589 const AMDGPUWavesPerEUAttr &Attr, Decl *New) {
590 // Both min and max expression are constant expressions.
591 EnterExpressionEvaluationContext Unevaluated(
592 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
593
594 ExprResult Result = S.SubstExpr(E: Attr.getMin(), TemplateArgs);
595 if (Result.isInvalid())
596 return;
597 Expr *MinExpr = Result.getAs<Expr>();
598
599 Expr *MaxExpr = nullptr;
600 if (auto Max = Attr.getMax()) {
601 Result = S.SubstExpr(E: Max, TemplateArgs);
602 if (Result.isInvalid())
603 return;
604 MaxExpr = Result.getAs<Expr>();
605 }
606
607 S.addAMDGPUWavesPerEUAttr(D: New, CI: Attr, Min: MinExpr, Max: MaxExpr);
608}
609
610// This doesn't take any template parameters, but we have a custom action that
611// needs to happen when the kernel itself is instantiated. We need to run the
612// ItaniumMangler to mark the names required to name this kernel.
613static void instantiateDependentSYCLKernelAttr(
614 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
615 const SYCLKernelAttr &Attr, Decl *New) {
616 New->addAttr(A: Attr.clone(S.getASTContext()));
617}
618
619/// Determine whether the attribute A might be relevant to the declaration D.
620/// If not, we can skip instantiating it. The attribute may or may not have
621/// been instantiated yet.
622static bool isRelevantAttr(Sema &S, const Decl *D, const Attr *A) {
623 // 'preferred_name' is only relevant to the matching specialization of the
624 // template.
625 if (const auto *PNA = dyn_cast<PreferredNameAttr>(A)) {
626 QualType T = PNA->getTypedefType();
627 const auto *RD = cast<CXXRecordDecl>(Val: D);
628 if (!T->isDependentType() && !RD->isDependentContext() &&
629 !declaresSameEntity(T->getAsCXXRecordDecl(), RD))
630 return false;
631 for (const auto *ExistingPNA : D->specific_attrs<PreferredNameAttr>())
632 if (S.Context.hasSameType(ExistingPNA->getTypedefType(),
633 PNA->getTypedefType()))
634 return false;
635 return true;
636 }
637
638 if (const auto *BA = dyn_cast<BuiltinAttr>(A)) {
639 const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D);
640 switch (BA->getID()) {
641 case Builtin::BIforward:
642 // Do not treat 'std::forward' as a builtin if it takes an rvalue reference
643 // type and returns an lvalue reference type. The library implementation
644 // will produce an error in this case; don't get in its way.
645 if (FD && FD->getNumParams() >= 1 &&
646 FD->getParamDecl(i: 0)->getType()->isRValueReferenceType() &&
647 FD->getReturnType()->isLValueReferenceType()) {
648 return false;
649 }
650 [[fallthrough]];
651 case Builtin::BImove:
652 case Builtin::BImove_if_noexcept:
653 // HACK: Super-old versions of libc++ (3.1 and earlier) provide
654 // std::forward and std::move overloads that sometimes return by value
655 // instead of by reference when building in C++98 mode. Don't treat such
656 // cases as builtins.
657 if (FD && !FD->getReturnType()->isReferenceType())
658 return false;
659 break;
660 }
661 }
662
663 return true;
664}
665
666static void instantiateDependentHLSLParamModifierAttr(
667 Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
668 const HLSLParamModifierAttr *Attr, Decl *New) {
669 ParmVarDecl *P = cast<ParmVarDecl>(Val: New);
670 P->addAttr(A: Attr->clone(S.getASTContext()));
671 P->setType(S.getASTContext().getLValueReferenceType(T: P->getType()));
672}
673
674void Sema::InstantiateAttrsForDecl(
675 const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl,
676 Decl *New, LateInstantiatedAttrVec *LateAttrs,
677 LocalInstantiationScope *OuterMostScope) {
678 if (NamedDecl *ND = dyn_cast<NamedDecl>(Val: New)) {
679 // FIXME: This function is called multiple times for the same template
680 // specialization. We should only instantiate attributes that were added
681 // since the previous instantiation.
682 for (const auto *TmplAttr : Tmpl->attrs()) {
683 if (!isRelevantAttr(*this, New, TmplAttr))
684 continue;
685
686 // FIXME: If any of the special case versions from InstantiateAttrs become
687 // applicable to template declaration, we'll need to add them here.
688 CXXThisScopeRAII ThisScope(
689 *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()),
690 Qualifiers(), ND->isCXXInstanceMember());
691
692 Attr *NewAttr = sema::instantiateTemplateAttributeForDecl(
693 TmplAttr, Context, *this, TemplateArgs);
694 if (NewAttr && isRelevantAttr(*this, New, NewAttr))
695 New->addAttr(NewAttr);
696 }
697 }
698}
699
700static Sema::RetainOwnershipKind
701attrToRetainOwnershipKind(const Attr *A) {
702 switch (A->getKind()) {
703 case clang::attr::CFConsumed:
704 return Sema::RetainOwnershipKind::CF;
705 case clang::attr::OSConsumed:
706 return Sema::RetainOwnershipKind::OS;
707 case clang::attr::NSConsumed:
708 return Sema::RetainOwnershipKind::NS;
709 default:
710 llvm_unreachable("Wrong argument supplied");
711 }
712}
713
714void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
715 const Decl *Tmpl, Decl *New,
716 LateInstantiatedAttrVec *LateAttrs,
717 LocalInstantiationScope *OuterMostScope) {
718 for (const auto *TmplAttr : Tmpl->attrs()) {
719 if (!isRelevantAttr(*this, New, TmplAttr))
720 continue;
721
722 // FIXME: This should be generalized to more than just the AlignedAttr.
723 const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
724 if (Aligned && Aligned->isAlignmentDependent()) {
725 instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
726 continue;
727 }
728
729 if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) {
730 instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
731 continue;
732 }
733
734 if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) {
735 instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
736 continue;
737 }
738
739 if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) {
740 instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New);
741 continue;
742 }
743
744 if (const auto *Annotate = dyn_cast<AnnotateAttr>(TmplAttr)) {
745 instantiateDependentAnnotationAttr(*this, TemplateArgs, Annotate, New);
746 continue;
747 }
748
749 if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
750 instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
751 cast<FunctionDecl>(New));
752 continue;
753 }
754
755 if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
756 instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
757 cast<FunctionDecl>(New));
758 continue;
759 }
760
761 if (const auto *CUDALaunchBounds =
762 dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
763 instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
764 *CUDALaunchBounds, New);
765 continue;
766 }
767
768 if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) {
769 instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New);
770 continue;
771 }
772
773 if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) {
774 instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New);
775 continue;
776 }
777
778 if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) {
779 instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New);
780 continue;
781 }
782
783 if (const auto *AMDGPUFlatWorkGroupSize =
784 dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) {
785 instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
786 *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New);
787 }
788
789 if (const auto *AMDGPUFlatWorkGroupSize =
790 dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) {
791 instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs,
792 *AMDGPUFlatWorkGroupSize, New);
793 }
794
795 if (const auto *ParamAttr = dyn_cast<HLSLParamModifierAttr>(TmplAttr)) {
796 instantiateDependentHLSLParamModifierAttr(*this, TemplateArgs, ParamAttr,
797 New);
798 continue;
799 }
800
801 // Existing DLL attribute on the instantiation takes precedence.
802 if (TmplAttr->getKind() == attr::DLLExport ||
803 TmplAttr->getKind() == attr::DLLImport) {
804 if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
805 continue;
806 }
807 }
808
809 if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) {
810 AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI());
811 continue;
812 }
813
814 if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) ||
815 isa<CFConsumedAttr>(TmplAttr)) {
816 AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr),
817 /*template instantiation=*/true);
818 continue;
819 }
820
821 if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) {
822 if (!New->hasAttr<PointerAttr>())
823 New->addAttr(A->clone(Context));
824 continue;
825 }
826
827 if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) {
828 if (!New->hasAttr<OwnerAttr>())
829 New->addAttr(A->clone(Context));
830 continue;
831 }
832
833 if (auto *A = dyn_cast<SYCLKernelAttr>(TmplAttr)) {
834 instantiateDependentSYCLKernelAttr(*this, TemplateArgs, *A, New);
835 continue;
836 }
837
838 assert(!TmplAttr->isPackExpansion());
839 if (TmplAttr->isLateParsed() && LateAttrs) {
840 // Late parsed attributes must be instantiated and attached after the
841 // enclosing class has been instantiated. See Sema::InstantiateClass.
842 LocalInstantiationScope *Saved = nullptr;
843 if (CurrentInstantiationScope)
844 Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
845 LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
846 } else {
847 // Allow 'this' within late-parsed attributes.
848 auto *ND = cast<NamedDecl>(New);
849 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
850 CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(),
851 ND->isCXXInstanceMember());
852
853 Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
854 *this, TemplateArgs);
855 if (NewAttr && isRelevantAttr(*this, New, TmplAttr))
856 New->addAttr(NewAttr);
857 }
858 }
859}
860
861/// Update instantiation attributes after template was late parsed.
862///
863/// Some attributes are evaluated based on the body of template. If it is
864/// late parsed, such attributes cannot be evaluated when declaration is
865/// instantiated. This function is used to update instantiation attributes when
866/// template definition is ready.
867void Sema::updateAttrsForLateParsedTemplate(const Decl *Pattern, Decl *Inst) {
868 for (const auto *Attr : Pattern->attrs()) {
869 if (auto *A = dyn_cast<StrictFPAttr>(Attr)) {
870 if (!Inst->hasAttr<StrictFPAttr>())
871 Inst->addAttr(A->clone(getASTContext()));
872 continue;
873 }
874 }
875}
876
877/// In the MS ABI, we need to instantiate default arguments of dllexported
878/// default constructors along with the constructor definition. This allows IR
879/// gen to emit a constructor closure which calls the default constructor with
880/// its default arguments.
881void Sema::InstantiateDefaultCtorDefaultArgs(CXXConstructorDecl *Ctor) {
882 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
883 Ctor->isDefaultConstructor());
884 unsigned NumParams = Ctor->getNumParams();
885 if (NumParams == 0)
886 return;
887 DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>();
888 if (!Attr)
889 return;
890 for (unsigned I = 0; I != NumParams; ++I) {
891 (void)CheckCXXDefaultArgExpr(CallLoc: Attr->getLocation(), FD: Ctor,
892 Param: Ctor->getParamDecl(I));
893 CleanupVarDeclMarking();
894 }
895}
896
897/// Get the previous declaration of a declaration for the purposes of template
898/// instantiation. If this finds a previous declaration, then the previous
899/// declaration of the instantiation of D should be an instantiation of the
900/// result of this function.
901template<typename DeclT>
902static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
903 DeclT *Result = D->getPreviousDecl();
904
905 // If the declaration is within a class, and the previous declaration was
906 // merged from a different definition of that class, then we don't have a
907 // previous declaration for the purpose of template instantiation.
908 if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
909 D->getLexicalDeclContext() != Result->getLexicalDeclContext())
910 return nullptr;
911
912 return Result;
913}
914
915Decl *
916TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
917 llvm_unreachable("Translation units cannot be instantiated");
918}
919
920Decl *TemplateDeclInstantiator::VisitHLSLBufferDecl(HLSLBufferDecl *Decl) {
921 llvm_unreachable("HLSL buffer declarations cannot be instantiated");
922}
923
924Decl *
925TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
926 llvm_unreachable("pragma comment cannot be instantiated");
927}
928
929Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
930 PragmaDetectMismatchDecl *D) {
931 llvm_unreachable("pragma comment cannot be instantiated");
932}
933
934Decl *
935TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
936 llvm_unreachable("extern \"C\" context cannot be instantiated");
937}
938
939Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) {
940 llvm_unreachable("GUID declaration cannot be instantiated");
941}
942
943Decl *TemplateDeclInstantiator::VisitUnnamedGlobalConstantDecl(
944 UnnamedGlobalConstantDecl *D) {
945 llvm_unreachable("UnnamedGlobalConstantDecl cannot be instantiated");
946}
947
948Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl(
949 TemplateParamObjectDecl *D) {
950 llvm_unreachable("template parameter objects cannot be instantiated");
951}
952
953Decl *
954TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
955 LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
956 D->getIdentifier());
957 Owner->addDecl(Inst);
958 return Inst;
959}
960
961Decl *
962TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
963 llvm_unreachable("Namespaces cannot be instantiated");
964}
965
966Decl *
967TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
968 NamespaceAliasDecl *Inst
969 = NamespaceAliasDecl::Create(C&: SemaRef.Context, DC: Owner,
970 NamespaceLoc: D->getNamespaceLoc(),
971 AliasLoc: D->getAliasLoc(),
972 Alias: D->getIdentifier(),
973 QualifierLoc: D->getQualifierLoc(),
974 IdentLoc: D->getTargetNameLoc(),
975 Namespace: D->getNamespace());
976 Owner->addDecl(Inst);
977 return Inst;
978}
979
980Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
981 bool IsTypeAlias) {
982 bool Invalid = false;
983 TypeSourceInfo *DI = D->getTypeSourceInfo();
984 if (DI->getType()->isInstantiationDependentType() ||
985 DI->getType()->isVariablyModifiedType()) {
986 DI = SemaRef.SubstType(DI, TemplateArgs,
987 D->getLocation(), D->getDeclName());
988 if (!DI) {
989 Invalid = true;
990 DI = SemaRef.Context.getTrivialTypeSourceInfo(T: SemaRef.Context.IntTy);
991 }
992 } else {
993 SemaRef.MarkDeclarationsReferencedInType(Loc: D->getLocation(), T: DI->getType());
994 }
995
996 // HACK: 2012-10-23 g++ has a bug where it gets the value kind of ?: wrong.
997 // libstdc++ relies upon this bug in its implementation of common_type. If we
998 // happen to be processing that implementation, fake up the g++ ?:
999 // semantics. See LWG issue 2141 for more information on the bug. The bugs
1000 // are fixed in g++ and libstdc++ 4.9.0 (2014-04-22).
1001 const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
1002 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
1003 if (DT && RD && isa<ConditionalOperator>(Val: DT->getUnderlyingExpr()) &&
1004 DT->isReferenceType() &&
1005 RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
1006 RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
1007 D->getIdentifier() && D->getIdentifier()->isStr("type") &&
1008 SemaRef.getSourceManager().isInSystemHeader(Loc: D->getBeginLoc()))
1009 // Fold it to the (non-reference) type which g++ would have produced.
1010 DI = SemaRef.Context.getTrivialTypeSourceInfo(
1011 T: DI->getType().getNonReferenceType());
1012
1013 // Create the new typedef
1014 TypedefNameDecl *Typedef;
1015 if (IsTypeAlias)
1016 Typedef = TypeAliasDecl::Create(C&: SemaRef.Context, DC: Owner, StartLoc: D->getBeginLoc(),
1017 IdLoc: D->getLocation(), Id: D->getIdentifier(), TInfo: DI);
1018 else
1019 Typedef = TypedefDecl::Create(C&: SemaRef.Context, DC: Owner, StartLoc: D->getBeginLoc(),
1020 IdLoc: D->getLocation(), Id: D->getIdentifier(), TInfo: DI);
1021 if (Invalid)
1022 Typedef->setInvalidDecl();
1023
1024 // If the old typedef was the name for linkage purposes of an anonymous
1025 // tag decl, re-establish that relationship for the new typedef.
1026 if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
1027 TagDecl *oldTag = oldTagType->getDecl();
1028 if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
1029 TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
1030 assert(!newTag->hasNameForLinkage());
1031 newTag->setTypedefNameForAnonDecl(Typedef);
1032 }
1033 }
1034
1035 if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
1036 NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(Loc: D->getLocation(), D: Prev,
1037 TemplateArgs);
1038 if (!InstPrev)
1039 return nullptr;
1040
1041 TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(Val: InstPrev);
1042
1043 // If the typedef types are not identical, reject them.
1044 SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
1045
1046 Typedef->setPreviousDecl(InstPrevTypedef);
1047 }
1048
1049 SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
1050
1051 if (D->getUnderlyingType()->getAs<DependentNameType>())
1052 SemaRef.inferGslPointerAttribute(TD: Typedef);
1053
1054 Typedef->setAccess(D->getAccess());
1055 Typedef->setReferenced(D->isReferenced());
1056
1057 return Typedef;
1058}
1059
1060Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
1061 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
1062 if (Typedef)
1063 Owner->addDecl(D: Typedef);
1064 return Typedef;
1065}
1066
1067Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
1068 Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
1069 if (Typedef)
1070 Owner->addDecl(D: Typedef);
1071 return Typedef;
1072}
1073
1074Decl *
1075TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
1076 // Create a local instantiation scope for this type alias template, which
1077 // will contain the instantiations of the template parameters.
1078 LocalInstantiationScope Scope(SemaRef);
1079
1080 TemplateParameterList *TempParams = D->getTemplateParameters();
1081 TemplateParameterList *InstParams = SubstTemplateParams(List: TempParams);
1082 if (!InstParams)
1083 return nullptr;
1084
1085 TypeAliasDecl *Pattern = D->getTemplatedDecl();
1086
1087 TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
1088 if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
1089 DeclContext::lookup_result Found = Owner->lookup(Name: Pattern->getDeclName());
1090 if (!Found.empty()) {
1091 PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Val: Found.front());
1092 }
1093 }
1094
1095 TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
1096 Val: InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
1097 if (!AliasInst)
1098 return nullptr;
1099
1100 TypeAliasTemplateDecl *Inst
1101 = TypeAliasTemplateDecl::Create(C&: SemaRef.Context, DC: Owner, L: D->getLocation(),
1102 Name: D->getDeclName(), Params: InstParams, Decl: AliasInst);
1103 AliasInst->setDescribedAliasTemplate(Inst);
1104 if (PrevAliasTemplate)
1105 Inst->setPreviousDecl(PrevAliasTemplate);
1106
1107 Inst->setAccess(D->getAccess());
1108
1109 if (!PrevAliasTemplate)
1110 Inst->setInstantiatedFromMemberTemplate(D);
1111
1112 Owner->addDecl(Inst);
1113
1114 return Inst;
1115}
1116
1117Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) {
1118 auto *NewBD = BindingDecl::Create(C&: SemaRef.Context, DC: Owner, IdLoc: D->getLocation(),
1119 Id: D->getIdentifier());
1120 NewBD->setReferenced(D->isReferenced());
1121 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst: NewBD);
1122 return NewBD;
1123}
1124
1125Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) {
1126 // Transform the bindings first.
1127 SmallVector<BindingDecl*, 16> NewBindings;
1128 for (auto *OldBD : D->bindings())
1129 NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD)));
1130 ArrayRef<BindingDecl*> NewBindingArray = NewBindings;
1131
1132 auto *NewDD = cast_or_null<DecompositionDecl>(
1133 Val: VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray));
1134
1135 if (!NewDD || NewDD->isInvalidDecl())
1136 for (auto *NewBD : NewBindings)
1137 NewBD->setInvalidDecl();
1138
1139 return NewDD;
1140}
1141
1142Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
1143 return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
1144}
1145
1146Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
1147 bool InstantiatingVarTemplate,
1148 ArrayRef<BindingDecl*> *Bindings) {
1149
1150 // Do substitution on the type of the declaration
1151 TypeSourceInfo *DI = SemaRef.SubstType(
1152 D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(),
1153 D->getDeclName(), /*AllowDeducedTST*/true);
1154 if (!DI)
1155 return nullptr;
1156
1157 if (DI->getType()->isFunctionType()) {
1158 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
1159 << D->isStaticDataMember() << DI->getType();
1160 return nullptr;
1161 }
1162
1163 DeclContext *DC = Owner;
1164 if (D->isLocalExternDecl())
1165 SemaRef.adjustContextForLocalExternDecl(DC);
1166
1167 // Build the instantiated declaration.
1168 VarDecl *Var;
1169 if (Bindings)
1170 Var = DecompositionDecl::Create(C&: SemaRef.Context, DC, StartLoc: D->getInnerLocStart(),
1171 LSquareLoc: D->getLocation(), T: DI->getType(), TInfo: DI,
1172 S: D->getStorageClass(), Bindings: *Bindings);
1173 else
1174 Var = VarDecl::Create(C&: SemaRef.Context, DC, StartLoc: D->getInnerLocStart(),
1175 IdLoc: D->getLocation(), Id: D->getIdentifier(), T: DI->getType(),
1176 TInfo: DI, S: D->getStorageClass());
1177
1178 // In ARC, infer 'retaining' for variables of retainable type.
1179 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1180 SemaRef.inferObjCARCLifetime(Var))
1181 Var->setInvalidDecl();
1182
1183 if (SemaRef.getLangOpts().OpenCL)
1184 SemaRef.deduceOpenCLAddressSpace(Var);
1185
1186 // Substitute the nested name specifier, if any.
1187 if (SubstQualifier(D, Var))
1188 return nullptr;
1189
1190 SemaRef.BuildVariableInstantiation(NewVar: Var, OldVar: D, TemplateArgs, LateAttrs, Owner,
1191 StartingScope, InstantiatingVarTemplate);
1192 if (D->isNRVOVariable() && !Var->isInvalidDecl()) {
1193 QualType RT;
1194 if (auto *F = dyn_cast<FunctionDecl>(Val: DC))
1195 RT = F->getReturnType();
1196 else if (isa<BlockDecl>(Val: DC))
1197 RT = cast<FunctionType>(SemaRef.getCurBlock()->FunctionType)
1198 ->getReturnType();
1199 else
1200 llvm_unreachable("Unknown context type");
1201
1202 // This is the last chance we have of checking copy elision eligibility
1203 // for functions in dependent contexts. The sema actions for building
1204 // the return statement during template instantiation will have no effect
1205 // regarding copy elision, since NRVO propagation runs on the scope exit
1206 // actions, and these are not run on instantiation.
1207 // This might run through some VarDecls which were returned from non-taken
1208 // 'if constexpr' branches, and these will end up being constructed on the
1209 // return slot even if they will never be returned, as a sort of accidental
1210 // 'optimization'. Notably, functions with 'auto' return types won't have it
1211 // deduced by this point. Coupled with the limitation described
1212 // previously, this makes it very hard to support copy elision for these.
1213 Sema::NamedReturnInfo Info = SemaRef.getNamedReturnInfo(VD: Var);
1214 bool NRVO = SemaRef.getCopyElisionCandidate(Info, ReturnType: RT) != nullptr;
1215 Var->setNRVOVariable(NRVO);
1216 }
1217
1218 Var->setImplicit(D->isImplicit());
1219
1220 if (Var->isStaticLocal())
1221 SemaRef.CheckStaticLocalForDllExport(VD: Var);
1222
1223 if (Var->getTLSKind())
1224 SemaRef.CheckThreadLocalForLargeAlignment(VD: Var);
1225
1226 return Var;
1227}
1228
1229Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
1230 AccessSpecDecl* AD
1231 = AccessSpecDecl::Create(C&: SemaRef.Context, AS: D->getAccess(), DC: Owner,
1232 ASLoc: D->getAccessSpecifierLoc(), ColonLoc: D->getColonLoc());
1233 Owner->addHiddenDecl(AD);
1234 return AD;
1235}
1236
1237Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
1238 bool Invalid = false;
1239 TypeSourceInfo *DI = D->getTypeSourceInfo();
1240 if (DI->getType()->isInstantiationDependentType() ||
1241 DI->getType()->isVariablyModifiedType()) {
1242 DI = SemaRef.SubstType(DI, TemplateArgs,
1243 D->getLocation(), D->getDeclName());
1244 if (!DI) {
1245 DI = D->getTypeSourceInfo();
1246 Invalid = true;
1247 } else if (DI->getType()->isFunctionType()) {
1248 // C++ [temp.arg.type]p3:
1249 // If a declaration acquires a function type through a type
1250 // dependent on a template-parameter and this causes a
1251 // declaration that does not use the syntactic form of a
1252 // function declarator to have function type, the program is
1253 // ill-formed.
1254 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1255 << DI->getType();
1256 Invalid = true;
1257 }
1258 } else {
1259 SemaRef.MarkDeclarationsReferencedInType(Loc: D->getLocation(), T: DI->getType());
1260 }
1261
1262 Expr *BitWidth = D->getBitWidth();
1263 if (Invalid)
1264 BitWidth = nullptr;
1265 else if (BitWidth) {
1266 // The bit-width expression is a constant expression.
1267 EnterExpressionEvaluationContext Unevaluated(
1268 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1269
1270 ExprResult InstantiatedBitWidth
1271 = SemaRef.SubstExpr(E: BitWidth, TemplateArgs);
1272 if (InstantiatedBitWidth.isInvalid()) {
1273 Invalid = true;
1274 BitWidth = nullptr;
1275 } else
1276 BitWidth = InstantiatedBitWidth.getAs<Expr>();
1277 }
1278
1279 FieldDecl *Field = SemaRef.CheckFieldDecl(Name: D->getDeclName(),
1280 T: DI->getType(), TInfo: DI,
1281 Record: cast<RecordDecl>(Val: Owner),
1282 Loc: D->getLocation(),
1283 Mutable: D->isMutable(),
1284 BitfieldWidth: BitWidth,
1285 InitStyle: D->getInClassInitStyle(),
1286 TSSL: D->getInnerLocStart(),
1287 AS: D->getAccess(),
1288 PrevDecl: nullptr);
1289 if (!Field) {
1290 cast<Decl>(Val: Owner)->setInvalidDecl();
1291 return nullptr;
1292 }
1293
1294 SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
1295
1296 if (Field->hasAttrs())
1297 SemaRef.CheckAlignasUnderalignment(Field);
1298
1299 if (Invalid)
1300 Field->setInvalidDecl();
1301
1302 if (!Field->getDeclName()) {
1303 // Keep track of where this decl came from.
1304 SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Inst: Field, Tmpl: D);
1305 }
1306 if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
1307 if (Parent->isAnonymousStructOrUnion() &&
1308 Parent->getRedeclContext()->isFunctionOrMethod())
1309 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
1310 }
1311
1312 Field->setImplicit(D->isImplicit());
1313 Field->setAccess(D->getAccess());
1314 Owner->addDecl(Field);
1315
1316 return Field;
1317}
1318
1319Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
1320 bool Invalid = false;
1321 TypeSourceInfo *DI = D->getTypeSourceInfo();
1322
1323 if (DI->getType()->isVariablyModifiedType()) {
1324 SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
1325 << D;
1326 Invalid = true;
1327 } else if (DI->getType()->isInstantiationDependentType()) {
1328 DI = SemaRef.SubstType(DI, TemplateArgs,
1329 D->getLocation(), D->getDeclName());
1330 if (!DI) {
1331 DI = D->getTypeSourceInfo();
1332 Invalid = true;
1333 } else if (DI->getType()->isFunctionType()) {
1334 // C++ [temp.arg.type]p3:
1335 // If a declaration acquires a function type through a type
1336 // dependent on a template-parameter and this causes a
1337 // declaration that does not use the syntactic form of a
1338 // function declarator to have function type, the program is
1339 // ill-formed.
1340 SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
1341 << DI->getType();
1342 Invalid = true;
1343 }
1344 } else {
1345 SemaRef.MarkDeclarationsReferencedInType(Loc: D->getLocation(), T: DI->getType());
1346 }
1347
1348 MSPropertyDecl *Property = MSPropertyDecl::Create(
1349 C&: SemaRef.Context, DC: Owner, L: D->getLocation(), N: D->getDeclName(), T: DI->getType(),
1350 TInfo: DI, StartL: D->getBeginLoc(), Getter: D->getGetterId(), Setter: D->getSetterId());
1351
1352 SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
1353 StartingScope);
1354
1355 if (Invalid)
1356 Property->setInvalidDecl();
1357
1358 Property->setAccess(D->getAccess());
1359 Owner->addDecl(Property);
1360
1361 return Property;
1362}
1363
1364Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
1365 NamedDecl **NamedChain =
1366 new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
1367
1368 int i = 0;
1369 for (auto *PI : D->chain()) {
1370 NamedDecl *Next = SemaRef.FindInstantiatedDecl(Loc: D->getLocation(), D: PI,
1371 TemplateArgs);
1372 if (!Next)
1373 return nullptr;
1374
1375 NamedChain[i++] = Next;
1376 }
1377
1378 QualType T = cast<FieldDecl>(Val: NamedChain[i-1])->getType();
1379 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
1380 C&: SemaRef.Context, DC: Owner, L: D->getLocation(), Id: D->getIdentifier(), T,
1381 CH: {NamedChain, D->getChainingSize()});
1382
1383 for (const auto *Attr : D->attrs())
1384 IndirectField->addAttr(Attr->clone(SemaRef.Context));
1385
1386 IndirectField->setImplicit(D->isImplicit());
1387 IndirectField->setAccess(D->getAccess());
1388 Owner->addDecl(IndirectField);
1389 return IndirectField;
1390}
1391
1392Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
1393 // Handle friend type expressions by simply substituting template
1394 // parameters into the pattern type and checking the result.
1395 if (TypeSourceInfo *Ty = D->getFriendType()) {
1396 TypeSourceInfo *InstTy;
1397 // If this is an unsupported friend, don't bother substituting template
1398 // arguments into it. The actual type referred to won't be used by any
1399 // parts of Clang, and may not be valid for instantiating. Just use the
1400 // same info for the instantiated friend.
1401 if (D->isUnsupportedFriend()) {
1402 InstTy = Ty;
1403 } else {
1404 InstTy = SemaRef.SubstType(Ty, TemplateArgs,
1405 D->getLocation(), DeclarationName());
1406 }
1407 if (!InstTy)
1408 return nullptr;
1409
1410 FriendDecl *FD = FriendDecl::Create(
1411 C&: SemaRef.Context, DC: Owner, L: D->getLocation(), Friend_: InstTy, FriendL: D->getFriendLoc());
1412 FD->setAccess(AS_public);
1413 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1414 Owner->addDecl(FD);
1415 return FD;
1416 }
1417
1418 NamedDecl *ND = D->getFriendDecl();
1419 assert(ND && "friend decl must be a decl or a type!");
1420
1421 // All of the Visit implementations for the various potential friend
1422 // declarations have to be carefully written to work for friend
1423 // objects, with the most important detail being that the target
1424 // decl should almost certainly not be placed in Owner.
1425 Decl *NewND = Visit(ND);
1426 if (!NewND) return nullptr;
1427
1428 FriendDecl *FD =
1429 FriendDecl::Create(C&: SemaRef.Context, DC: Owner, L: D->getLocation(),
1430 Friend_: cast<NamedDecl>(Val: NewND), FriendL: D->getFriendLoc());
1431 FD->setAccess(AS_public);
1432 FD->setUnsupportedFriend(D->isUnsupportedFriend());
1433 Owner->addDecl(FD);
1434 return FD;
1435}
1436
1437Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
1438 Expr *AssertExpr = D->getAssertExpr();
1439
1440 // The expression in a static assertion is a constant expression.
1441 EnterExpressionEvaluationContext Unevaluated(
1442 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1443
1444 ExprResult InstantiatedAssertExpr
1445 = SemaRef.SubstExpr(E: AssertExpr, TemplateArgs);
1446 if (InstantiatedAssertExpr.isInvalid())
1447 return nullptr;
1448
1449 ExprResult InstantiatedMessageExpr =
1450 SemaRef.SubstExpr(E: D->getMessage(), TemplateArgs);
1451 if (InstantiatedMessageExpr.isInvalid())
1452 return nullptr;
1453
1454 return SemaRef.BuildStaticAssertDeclaration(
1455 StaticAssertLoc: D->getLocation(), AssertExpr: InstantiatedAssertExpr.get(),
1456 AssertMessageExpr: InstantiatedMessageExpr.get(), RParenLoc: D->getRParenLoc(), Failed: D->isFailed());
1457}
1458
1459Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
1460 EnumDecl *PrevDecl = nullptr;
1461 if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1462 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(Loc: D->getLocation(),
1463 D: PatternPrev,
1464 TemplateArgs);
1465 if (!Prev) return nullptr;
1466 PrevDecl = cast<EnumDecl>(Val: Prev);
1467 }
1468
1469 EnumDecl *Enum =
1470 EnumDecl::Create(C&: SemaRef.Context, DC: Owner, StartLoc: D->getBeginLoc(),
1471 IdLoc: D->getLocation(), Id: D->getIdentifier(), PrevDecl,
1472 IsScoped: D->isScoped(), IsScopedUsingClassTag: D->isScopedUsingClassTag(), IsFixed: D->isFixed());
1473 if (D->isFixed()) {
1474 if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
1475 // If we have type source information for the underlying type, it means it
1476 // has been explicitly set by the user. Perform substitution on it before
1477 // moving on.
1478 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1479 TypeSourceInfo *NewTI = SemaRef.SubstType(T: TI, TemplateArgs, Loc: UnderlyingLoc,
1480 Entity: DeclarationName());
1481 if (!NewTI || SemaRef.CheckEnumUnderlyingType(TI: NewTI))
1482 Enum->setIntegerType(SemaRef.Context.IntTy);
1483 else
1484 Enum->setIntegerTypeSourceInfo(NewTI);
1485 } else {
1486 assert(!D->getIntegerType()->isDependentType()
1487 && "Dependent type without type source info");
1488 Enum->setIntegerType(D->getIntegerType());
1489 }
1490 }
1491
1492 SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
1493
1494 Enum->setInstantiationOfMemberEnum(ED: D, TSK: TSK_ImplicitInstantiation);
1495 Enum->setAccess(D->getAccess());
1496 // Forward the mangling number from the template to the instantiated decl.
1497 SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
1498 // See if the old tag was defined along with a declarator.
1499 // If it did, mark the new tag as being associated with that declarator.
1500 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1501 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD);
1502 // See if the old tag was defined along with a typedef.
1503 // If it did, mark the new tag as being associated with that typedef.
1504 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1505 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND);
1506 if (SubstQualifier(D, Enum)) return nullptr;
1507 Owner->addDecl(Enum);
1508
1509 EnumDecl *Def = D->getDefinition();
1510 if (Def && Def != D) {
1511 // If this is an out-of-line definition of an enum member template, check
1512 // that the underlying types match in the instantiation of both
1513 // declarations.
1514 if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
1515 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
1516 QualType DefnUnderlying =
1517 SemaRef.SubstType(T: TI->getType(), TemplateArgs,
1518 Loc: UnderlyingLoc, Entity: DeclarationName());
1519 SemaRef.CheckEnumRedeclaration(EnumLoc: Def->getLocation(), IsScoped: Def->isScoped(),
1520 EnumUnderlyingTy: DefnUnderlying, /*IsFixed=*/true, Prev: Enum);
1521 }
1522 }
1523
1524 // C++11 [temp.inst]p1: The implicit instantiation of a class template
1525 // specialization causes the implicit instantiation of the declarations, but
1526 // not the definitions of scoped member enumerations.
1527 //
1528 // DR1484 clarifies that enumeration definitions inside of a template
1529 // declaration aren't considered entities that can be separately instantiated
1530 // from the rest of the entity they are declared inside of.
1531 if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
1532 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
1533 InstantiateEnumDefinition(Enum, Pattern: Def);
1534 }
1535
1536 return Enum;
1537}
1538
1539void TemplateDeclInstantiator::InstantiateEnumDefinition(
1540 EnumDecl *Enum, EnumDecl *Pattern) {
1541 Enum->startDefinition();
1542
1543 // Update the location to refer to the definition.
1544 Enum->setLocation(Pattern->getLocation());
1545
1546 SmallVector<Decl*, 4> Enumerators;
1547
1548 EnumConstantDecl *LastEnumConst = nullptr;
1549 for (auto *EC : Pattern->enumerators()) {
1550 // The specified value for the enumerator.
1551 ExprResult Value((Expr *)nullptr);
1552 if (Expr *UninstValue = EC->getInitExpr()) {
1553 // The enumerator's value expression is a constant expression.
1554 EnterExpressionEvaluationContext Unevaluated(
1555 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1556
1557 Value = SemaRef.SubstExpr(E: UninstValue, TemplateArgs);
1558 }
1559
1560 // Drop the initial value and continue.
1561 bool isInvalid = false;
1562 if (Value.isInvalid()) {
1563 Value = nullptr;
1564 isInvalid = true;
1565 }
1566
1567 EnumConstantDecl *EnumConst
1568 = SemaRef.CheckEnumConstant(Enum, LastEnumConst,
1569 IdLoc: EC->getLocation(), Id: EC->getIdentifier(),
1570 val: Value.get());
1571
1572 if (isInvalid) {
1573 if (EnumConst)
1574 EnumConst->setInvalidDecl();
1575 Enum->setInvalidDecl();
1576 }
1577
1578 if (EnumConst) {
1579 SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
1580
1581 EnumConst->setAccess(Enum->getAccess());
1582 Enum->addDecl(EnumConst);
1583 Enumerators.push_back(EnumConst);
1584 LastEnumConst = EnumConst;
1585
1586 if (Pattern->getDeclContext()->isFunctionOrMethod() &&
1587 !Enum->isScoped()) {
1588 // If the enumeration is within a function or method, record the enum
1589 // constant as a local.
1590 SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
1591 }
1592 }
1593 }
1594
1595 SemaRef.ActOnEnumBody(EnumLoc: Enum->getLocation(), BraceRange: Enum->getBraceRange(), EnumDecl: Enum,
1596 Elements: Enumerators, S: nullptr, Attr: ParsedAttributesView());
1597}
1598
1599Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
1600 llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.");
1601}
1602
1603Decl *
1604TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
1605 llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.");
1606}
1607
1608Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
1609 bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
1610
1611 // Create a local instantiation scope for this class template, which
1612 // will contain the instantiations of the template parameters.
1613 LocalInstantiationScope Scope(SemaRef);
1614 TemplateParameterList *TempParams = D->getTemplateParameters();
1615 TemplateParameterList *InstParams = SubstTemplateParams(List: TempParams);
1616 if (!InstParams)
1617 return nullptr;
1618
1619 CXXRecordDecl *Pattern = D->getTemplatedDecl();
1620
1621 // Instantiate the qualifier. We have to do this first in case
1622 // we're a friend declaration, because if we are then we need to put
1623 // the new declaration in the appropriate context.
1624 NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
1625 if (QualifierLoc) {
1626 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(NNS: QualifierLoc,
1627 TemplateArgs);
1628 if (!QualifierLoc)
1629 return nullptr;
1630 }
1631
1632 CXXRecordDecl *PrevDecl = nullptr;
1633 ClassTemplateDecl *PrevClassTemplate = nullptr;
1634
1635 if (!isFriend && getPreviousDeclForInstantiation(D: Pattern)) {
1636 DeclContext::lookup_result Found = Owner->lookup(Name: Pattern->getDeclName());
1637 if (!Found.empty()) {
1638 PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Val: Found.front());
1639 if (PrevClassTemplate)
1640 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1641 }
1642 }
1643
1644 // If this isn't a friend, then it's a member template, in which
1645 // case we just want to build the instantiation in the
1646 // specialization. If it is a friend, we want to build it in
1647 // the appropriate context.
1648 DeclContext *DC = Owner;
1649 if (isFriend) {
1650 if (QualifierLoc) {
1651 CXXScopeSpec SS;
1652 SS.Adopt(Other: QualifierLoc);
1653 DC = SemaRef.computeDeclContext(SS);
1654 if (!DC) return nullptr;
1655 } else {
1656 DC = SemaRef.FindInstantiatedContext(Loc: Pattern->getLocation(),
1657 DC: Pattern->getDeclContext(),
1658 TemplateArgs);
1659 }
1660
1661 // Look for a previous declaration of the template in the owning
1662 // context.
1663 LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
1664 Sema::LookupOrdinaryName,
1665 SemaRef.forRedeclarationInCurContext());
1666 SemaRef.LookupQualifiedName(R, LookupCtx: DC);
1667
1668 if (R.isSingleResult()) {
1669 PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
1670 if (PrevClassTemplate)
1671 PrevDecl = PrevClassTemplate->getTemplatedDecl();
1672 }
1673
1674 if (!PrevClassTemplate && QualifierLoc) {
1675 SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
1676 << llvm::to_underlying(D->getTemplatedDecl()->getTagKind())
1677 << Pattern->getDeclName() << DC << QualifierLoc.getSourceRange();
1678 return nullptr;
1679 }
1680 }
1681
1682 CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
1683 C: SemaRef.Context, TK: Pattern->getTagKind(), DC, StartLoc: Pattern->getBeginLoc(),
1684 IdLoc: Pattern->getLocation(), Id: Pattern->getIdentifier(), PrevDecl,
1685 /*DelayTypeCreation=*/true);
1686 if (QualifierLoc)
1687 RecordInst->setQualifierInfo(QualifierLoc);
1688
1689 SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs,
1690 StartingScope);
1691
1692 ClassTemplateDecl *Inst
1693 = ClassTemplateDecl::Create(C&: SemaRef.Context, DC, L: D->getLocation(),
1694 Name: D->getIdentifier(), Params: InstParams, Decl: RecordInst);
1695 RecordInst->setDescribedClassTemplate(Inst);
1696
1697 if (isFriend) {
1698 assert(!Owner->isDependentContext());
1699 Inst->setLexicalDeclContext(Owner);
1700 RecordInst->setLexicalDeclContext(Owner);
1701
1702 if (PrevClassTemplate) {
1703 Inst->setCommonPtr(PrevClassTemplate->getCommonPtr());
1704 RecordInst->setTypeForDecl(
1705 PrevClassTemplate->getTemplatedDecl()->getTypeForDecl());
1706 const ClassTemplateDecl *MostRecentPrevCT =
1707 PrevClassTemplate->getMostRecentDecl();
1708 TemplateParameterList *PrevParams =
1709 MostRecentPrevCT->getTemplateParameters();
1710
1711 // Make sure the parameter lists match.
1712 if (!SemaRef.TemplateParameterListsAreEqual(
1713 RecordInst, InstParams, MostRecentPrevCT->getTemplatedDecl(),
1714 PrevParams, true, Sema::TPL_TemplateMatch))
1715 return nullptr;
1716
1717 // Do some additional validation, then merge default arguments
1718 // from the existing declarations.
1719 if (SemaRef.CheckTemplateParameterList(NewParams: InstParams, OldParams: PrevParams,
1720 TPC: Sema::TPC_ClassTemplate))
1721 return nullptr;
1722
1723 Inst->setAccess(PrevClassTemplate->getAccess());
1724 } else {
1725 Inst->setAccess(D->getAccess());
1726 }
1727
1728 Inst->setObjectOfFriendDecl();
1729 // TODO: do we want to track the instantiation progeny of this
1730 // friend target decl?
1731 } else {
1732 Inst->setAccess(D->getAccess());
1733 if (!PrevClassTemplate)
1734 Inst->setInstantiatedFromMemberTemplate(D);
1735 }
1736
1737 Inst->setPreviousDecl(PrevClassTemplate);
1738
1739 // Trigger creation of the type for the instantiation.
1740 SemaRef.Context.getInjectedClassNameType(
1741 Decl: RecordInst, TST: Inst->getInjectedClassNameSpecialization());
1742
1743 // Finish handling of friends.
1744 if (isFriend) {
1745 DC->makeDeclVisibleInContext(Inst);
1746 return Inst;
1747 }
1748
1749 if (D->isOutOfLine()) {
1750 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1751 RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
1752 }
1753
1754 Owner->addDecl(Inst);
1755
1756 if (!PrevClassTemplate) {
1757 // Queue up any out-of-line partial specializations of this member
1758 // class template; the client will force their instantiation once
1759 // the enclosing class has been instantiated.
1760 SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1761 D->getPartialSpecializations(PS&: PartialSpecs);
1762 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1763 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1764 OutOfLinePartialSpecs.push_back(Elt: std::make_pair(x&: Inst, y&: PartialSpecs[I]));
1765 }
1766
1767 return Inst;
1768}
1769
1770Decl *
1771TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
1772 ClassTemplatePartialSpecializationDecl *D) {
1773 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
1774
1775 // Lookup the already-instantiated declaration in the instantiation
1776 // of the class template and return that.
1777 DeclContext::lookup_result Found
1778 = Owner->lookup(Name: ClassTemplate->getDeclName());
1779 if (Found.empty())
1780 return nullptr;
1781
1782 ClassTemplateDecl *InstClassTemplate
1783 = dyn_cast<ClassTemplateDecl>(Val: Found.front());
1784 if (!InstClassTemplate)
1785 return nullptr;
1786
1787 if (ClassTemplatePartialSpecializationDecl *Result
1788 = InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
1789 return Result;
1790
1791 return InstantiateClassTemplatePartialSpecialization(ClassTemplate: InstClassTemplate, PartialSpec: D);
1792}
1793
1794Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
1795 assert(D->getTemplatedDecl()->isStaticDataMember() &&
1796 "Only static data member templates are allowed.");
1797
1798 // Create a local instantiation scope for this variable template, which
1799 // will contain the instantiations of the template parameters.
1800 LocalInstantiationScope Scope(SemaRef);
1801 TemplateParameterList *TempParams = D->getTemplateParameters();
1802 TemplateParameterList *InstParams = SubstTemplateParams(List: TempParams);
1803 if (!InstParams)
1804 return nullptr;
1805
1806 VarDecl *Pattern = D->getTemplatedDecl();
1807 VarTemplateDecl *PrevVarTemplate = nullptr;
1808
1809 if (getPreviousDeclForInstantiation(D: Pattern)) {
1810 DeclContext::lookup_result Found = Owner->lookup(Name: Pattern->getDeclName());
1811 if (!Found.empty())
1812 PrevVarTemplate = dyn_cast<VarTemplateDecl>(Val: Found.front());
1813 }
1814
1815 VarDecl *VarInst =
1816 cast_or_null<VarDecl>(Val: VisitVarDecl(D: Pattern,
1817 /*InstantiatingVarTemplate=*/true));
1818 if (!VarInst) return nullptr;
1819
1820 DeclContext *DC = Owner;
1821
1822 VarTemplateDecl *Inst = VarTemplateDecl::Create(
1823 C&: SemaRef.Context, DC, L: D->getLocation(), Name: D->getIdentifier(), Params: InstParams,
1824 Decl: VarInst);
1825 VarInst->setDescribedVarTemplate(Inst);
1826 Inst->setPreviousDecl(PrevVarTemplate);
1827
1828 Inst->setAccess(D->getAccess());
1829 if (!PrevVarTemplate)
1830 Inst->setInstantiatedFromMemberTemplate(D);
1831
1832 if (D->isOutOfLine()) {
1833 Inst->setLexicalDeclContext(D->getLexicalDeclContext());
1834 VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
1835 }
1836
1837 Owner->addDecl(Inst);
1838
1839 if (!PrevVarTemplate) {
1840 // Queue up any out-of-line partial specializations of this member
1841 // variable template; the client will force their instantiation once
1842 // the enclosing class has been instantiated.
1843 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
1844 D->getPartialSpecializations(PS&: PartialSpecs);
1845 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
1846 if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
1847 OutOfLineVarPartialSpecs.push_back(
1848 Elt: std::make_pair(x&: Inst, y&: PartialSpecs[I]));
1849 }
1850
1851 return Inst;
1852}
1853
1854Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
1855 VarTemplatePartialSpecializationDecl *D) {
1856 assert(D->isStaticDataMember() &&
1857 "Only static data member templates are allowed.");
1858
1859 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
1860
1861 // Lookup the already-instantiated declaration and return that.
1862 DeclContext::lookup_result Found = Owner->lookup(Name: VarTemplate->getDeclName());
1863 assert(!Found.empty() && "Instantiation found nothing?");
1864
1865 VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Val: Found.front());
1866 assert(InstVarTemplate && "Instantiation did not find a variable template?");
1867
1868 if (VarTemplatePartialSpecializationDecl *Result =
1869 InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
1870 return Result;
1871
1872 return InstantiateVarTemplatePartialSpecialization(VarTemplate: InstVarTemplate, PartialSpec: D);
1873}
1874
1875Decl *
1876TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
1877 // Create a local instantiation scope for this function template, which
1878 // will contain the instantiations of the template parameters and then get
1879 // merged with the local instantiation scope for the function template
1880 // itself.
1881 LocalInstantiationScope Scope(SemaRef);
1882 Sema::ConstraintEvalRAII<TemplateDeclInstantiator> RAII(*this);
1883
1884 TemplateParameterList *TempParams = D->getTemplateParameters();
1885 TemplateParameterList *InstParams = SubstTemplateParams(List: TempParams);
1886 if (!InstParams)
1887 return nullptr;
1888
1889 FunctionDecl *Instantiated = nullptr;
1890 if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(Val: D->getTemplatedDecl()))
1891 Instantiated = cast_or_null<FunctionDecl>(Val: VisitCXXMethodDecl(D: DMethod,
1892 TemplateParams: InstParams));
1893 else
1894 Instantiated = cast_or_null<FunctionDecl>(Val: VisitFunctionDecl(
1895 D: D->getTemplatedDecl(),
1896 TemplateParams: InstParams));
1897
1898 if (!Instantiated)
1899 return nullptr;
1900
1901 // Link the instantiated function template declaration to the function
1902 // template from which it was instantiated.
1903 FunctionTemplateDecl *InstTemplate
1904 = Instantiated->getDescribedFunctionTemplate();
1905 InstTemplate->setAccess(D->getAccess());
1906 assert(InstTemplate &&
1907 "VisitFunctionDecl/CXXMethodDecl didn't create a template!");
1908
1909 bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
1910
1911 // Link the instantiation back to the pattern *unless* this is a
1912 // non-definition friend declaration.
1913 if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
1914 !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
1915 InstTemplate->setInstantiatedFromMemberTemplate(D);
1916
1917 // Make declarations visible in the appropriate context.
1918 if (!isFriend) {
1919 Owner->addDecl(InstTemplate);
1920 } else if (InstTemplate->getDeclContext()->isRecord() &&
1921 !getPreviousDeclForInstantiation(D)) {
1922 SemaRef.CheckFriendAccess(InstTemplate);
1923 }
1924
1925 return InstTemplate;
1926}
1927
1928Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
1929 CXXRecordDecl *PrevDecl = nullptr;
1930 if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
1931 NamedDecl *Prev = SemaRef.FindInstantiatedDecl(Loc: D->getLocation(),
1932 D: PatternPrev,
1933 TemplateArgs);
1934 if (!Prev) return nullptr;
1935 PrevDecl = cast<CXXRecordDecl>(Val: Prev);
1936 }
1937
1938 CXXRecordDecl *Record = nullptr;
1939 bool IsInjectedClassName = D->isInjectedClassName();
1940 if (D->isLambda())
1941 Record = CXXRecordDecl::CreateLambda(
1942 C: SemaRef.Context, DC: Owner, Info: D->getLambdaTypeInfo(), Loc: D->getLocation(),
1943 DependencyKind: D->getLambdaDependencyKind(), IsGeneric: D->isGenericLambda(),
1944 CaptureDefault: D->getLambdaCaptureDefault());
1945 else
1946 Record = CXXRecordDecl::Create(C: SemaRef.Context, TK: D->getTagKind(), DC: Owner,
1947 StartLoc: D->getBeginLoc(), IdLoc: D->getLocation(),
1948 Id: D->getIdentifier(), PrevDecl,
1949 /*DelayTypeCreation=*/IsInjectedClassName);
1950 // Link the type of the injected-class-name to that of the outer class.
1951 if (IsInjectedClassName)
1952 (void)SemaRef.Context.getTypeDeclType(Record, cast<CXXRecordDecl>(Val: Owner));
1953
1954 // Substitute the nested name specifier, if any.
1955 if (SubstQualifier(D, Record))
1956 return nullptr;
1957
1958 SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs,
1959 StartingScope);
1960
1961 Record->setImplicit(D->isImplicit());
1962 // FIXME: Check against AS_none is an ugly hack to work around the issue that
1963 // the tag decls introduced by friend class declarations don't have an access
1964 // specifier. Remove once this area of the code gets sorted out.
1965 if (D->getAccess() != AS_none)
1966 Record->setAccess(D->getAccess());
1967 if (!IsInjectedClassName)
1968 Record->setInstantiationOfMemberClass(RD: D, TSK: TSK_ImplicitInstantiation);
1969
1970 // If the original function was part of a friend declaration,
1971 // inherit its namespace state.
1972 if (D->getFriendObjectKind())
1973 Record->setObjectOfFriendDecl();
1974
1975 // Make sure that anonymous structs and unions are recorded.
1976 if (D->isAnonymousStructOrUnion())
1977 Record->setAnonymousStructOrUnion(true);
1978
1979 if (D->isLocalClass())
1980 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
1981
1982 // Forward the mangling number from the template to the instantiated decl.
1983 SemaRef.Context.setManglingNumber(Record,
1984 SemaRef.Context.getManglingNumber(D));
1985
1986 // See if the old tag was defined along with a declarator.
1987 // If it did, mark the new tag as being associated with that declarator.
1988 if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
1989 SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD);
1990
1991 // See if the old tag was defined along with a typedef.
1992 // If it did, mark the new tag as being associated with that typedef.
1993 if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
1994 SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND);
1995
1996 Owner->addDecl(Record);
1997
1998 // DR1484 clarifies that the members of a local class are instantiated as part
1999 // of the instantiation of their enclosing entity.
2000 if (D->isCompleteDefinition() && D->isLocalClass()) {
2001 Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef);
2002
2003 SemaRef.InstantiateClass(PointOfInstantiation: D->getLocation(), Instantiation: Record, Pattern: D, TemplateArgs,
2004 TSK: TSK_ImplicitInstantiation,
2005 /*Complain=*/true);
2006
2007 // For nested local classes, we will instantiate the members when we
2008 // reach the end of the outermost (non-nested) local class.
2009 if (!D->isCXXClassMember())
2010 SemaRef.InstantiateClassMembers(PointOfInstantiation: D->getLocation(), Instantiation: Record, TemplateArgs,
2011 TSK: TSK_ImplicitInstantiation);
2012
2013 // This class may have local implicit instantiations that need to be
2014 // performed within this scope.
2015 LocalInstantiations.perform();
2016 }
2017
2018 SemaRef.DiagnoseUnusedNestedTypedefs(Record);
2019
2020 if (IsInjectedClassName)
2021 assert(Record->isInjectedClassName() && "Broken injected-class-name");
2022
2023 return Record;
2024}
2025
2026/// Adjust the given function type for an instantiation of the
2027/// given declaration, to cope with modifications to the function's type that
2028/// aren't reflected in the type-source information.
2029///
2030/// \param D The declaration we're instantiating.
2031/// \param TInfo The already-instantiated type.
2032static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
2033 FunctionDecl *D,
2034 TypeSourceInfo *TInfo) {
2035 const FunctionProtoType *OrigFunc
2036 = D->getType()->castAs<FunctionProtoType>();
2037 const FunctionProtoType *NewFunc
2038 = TInfo->getType()->castAs<FunctionProtoType>();
2039 if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
2040 return TInfo->getType();
2041
2042 FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
2043 NewEPI.ExtInfo = OrigFunc->getExtInfo();
2044 return Context.getFunctionType(ResultTy: NewFunc->getReturnType(),
2045 Args: NewFunc->getParamTypes(), EPI: NewEPI);
2046}
2047
2048/// Normal class members are of more specific types and therefore
2049/// don't make it here. This function serves three purposes:
2050/// 1) instantiating function templates
2051/// 2) substituting friend and local function declarations
2052/// 3) substituting deduction guide declarations for nested class templates
2053Decl *TemplateDeclInstantiator::VisitFunctionDecl(
2054 FunctionDecl *D, TemplateParameterList *TemplateParams,
2055 RewriteKind FunctionRewriteKind) {
2056 // Check whether there is already a function template specialization for
2057 // this declaration.
2058 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2059 if (FunctionTemplate && !TemplateParams) {
2060 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2061
2062 void *InsertPos = nullptr;
2063 FunctionDecl *SpecFunc
2064 = FunctionTemplate->findSpecialization(Args: Innermost, InsertPos);
2065
2066 // If we already have a function template specialization, return it.
2067 if (SpecFunc)
2068 return SpecFunc;
2069 }
2070
2071 bool isFriend;
2072 if (FunctionTemplate)
2073 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2074 else
2075 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2076
2077 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2078 Owner->isFunctionOrMethod() ||
2079 !(isa<Decl>(Val: Owner) &&
2080 cast<Decl>(Val: Owner)->isDefinedOutsideFunctionOrMethod());
2081 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2082
2083 ExplicitSpecifier InstantiatedExplicitSpecifier;
2084 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(Val: D)) {
2085 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier(
2086 TemplateArgs, ES: DGuide->getExplicitSpecifier());
2087 if (InstantiatedExplicitSpecifier.isInvalid())
2088 return nullptr;
2089 }
2090
2091 SmallVector<ParmVarDecl *, 4> Params;
2092 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2093 if (!TInfo)
2094 return nullptr;
2095 QualType T = adjustFunctionTypeForInstantiation(Context&: SemaRef.Context, D, TInfo);
2096
2097 if (TemplateParams && TemplateParams->size()) {
2098 auto *LastParam =
2099 dyn_cast<TemplateTypeParmDecl>(Val: TemplateParams->asArray().back());
2100 if (LastParam && LastParam->isImplicit() &&
2101 LastParam->hasTypeConstraint()) {
2102 // In abbreviated templates, the type-constraints of invented template
2103 // type parameters are instantiated with the function type, invalidating
2104 // the TemplateParameterList which relied on the template type parameter
2105 // not having a type constraint. Recreate the TemplateParameterList with
2106 // the updated parameter list.
2107 TemplateParams = TemplateParameterList::Create(
2108 C: SemaRef.Context, TemplateLoc: TemplateParams->getTemplateLoc(),
2109 LAngleLoc: TemplateParams->getLAngleLoc(), Params: TemplateParams->asArray(),
2110 RAngleLoc: TemplateParams->getRAngleLoc(), RequiresClause: TemplateParams->getRequiresClause());
2111 }
2112 }
2113
2114 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2115 if (QualifierLoc) {
2116 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(NNS: QualifierLoc,
2117 TemplateArgs);
2118 if (!QualifierLoc)
2119 return nullptr;
2120 }
2121
2122 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2123
2124 // If we're instantiating a local function declaration, put the result
2125 // in the enclosing namespace; otherwise we need to find the instantiated
2126 // context.
2127 DeclContext *DC;
2128 if (D->isLocalExternDecl()) {
2129 DC = Owner;
2130 SemaRef.adjustContextForLocalExternDecl(DC);
2131 } else if (isFriend && QualifierLoc) {
2132 CXXScopeSpec SS;
2133 SS.Adopt(Other: QualifierLoc);
2134 DC = SemaRef.computeDeclContext(SS);
2135 if (!DC) return nullptr;
2136 } else {
2137 DC = SemaRef.FindInstantiatedContext(Loc: D->getLocation(), DC: D->getDeclContext(),
2138 TemplateArgs);
2139 }
2140
2141 DeclarationNameInfo NameInfo
2142 = SemaRef.SubstDeclarationNameInfo(NameInfo: D->getNameInfo(), TemplateArgs);
2143
2144 if (FunctionRewriteKind != RewriteKind::None)
2145 adjustForRewrite(RK: FunctionRewriteKind, Orig: D, T, TInfo, NameInfo);
2146
2147 FunctionDecl *Function;
2148 if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(Val: D)) {
2149 Function = CXXDeductionGuideDecl::Create(
2150 C&: SemaRef.Context, DC, StartLoc: D->getInnerLocStart(),
2151 ES: InstantiatedExplicitSpecifier, NameInfo, T, TInfo,
2152 EndLocation: D->getSourceRange().getEnd(), Ctor: DGuide->getCorrespondingConstructor(),
2153 Kind: DGuide->getDeductionCandidateKind());
2154 Function->setAccess(D->getAccess());
2155 } else {
2156 Function = FunctionDecl::Create(
2157 SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo,
2158 D->getCanonicalDecl()->getStorageClass(), D->UsesFPIntrin(),
2159 D->isInlineSpecified(), D->hasWrittenPrototype(), D->getConstexprKind(),
2160 TrailingRequiresClause);
2161 Function->setFriendConstraintRefersToEnclosingTemplate(
2162 D->FriendConstraintRefersToEnclosingTemplate());
2163 Function->setRangeEnd(D->getSourceRange().getEnd());
2164 }
2165
2166 if (D->isInlined())
2167 Function->setImplicitlyInline();
2168
2169 if (QualifierLoc)
2170 Function->setQualifierInfo(QualifierLoc);
2171
2172 if (D->isLocalExternDecl())
2173 Function->setLocalExternDecl();
2174
2175 DeclContext *LexicalDC = Owner;
2176 if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
2177 assert(D->getDeclContext()->isFileContext());
2178 LexicalDC = D->getDeclContext();
2179 }
2180 else if (D->isLocalExternDecl()) {
2181 LexicalDC = SemaRef.CurContext;
2182 }
2183
2184 Function->setLexicalDeclContext(LexicalDC);
2185
2186 // Attach the parameters
2187 for (unsigned P = 0; P < Params.size(); ++P)
2188 if (Params[P])
2189 Params[P]->setOwningFunction(Function);
2190 Function->setParams(Params);
2191
2192 if (TrailingRequiresClause)
2193 Function->setTrailingRequiresClause(TrailingRequiresClause);
2194
2195 if (TemplateParams) {
2196 // Our resulting instantiation is actually a function template, since we
2197 // are substituting only the outer template parameters. For example, given
2198 //
2199 // template<typename T>
2200 // struct X {
2201 // template<typename U> friend void f(T, U);
2202 // };
2203 //
2204 // X<int> x;
2205 //
2206 // We are instantiating the friend function template "f" within X<int>,
2207 // which means substituting int for T, but leaving "f" as a friend function
2208 // template.
2209 // Build the function template itself.
2210 FunctionTemplate = FunctionTemplateDecl::Create(C&: SemaRef.Context, DC,
2211 L: Function->getLocation(),
2212 Name: Function->getDeclName(),
2213 Params: TemplateParams, Decl: Function);
2214 Function->setDescribedFunctionTemplate(FunctionTemplate);
2215
2216 FunctionTemplate->setLexicalDeclContext(LexicalDC);
2217
2218 if (isFriend && D->isThisDeclarationADefinition()) {
2219 FunctionTemplate->setInstantiatedFromMemberTemplate(
2220 D->getDescribedFunctionTemplate());
2221 }
2222 } else if (FunctionTemplate) {
2223 // Record this function template specialization.
2224 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2225 Function->setFunctionTemplateSpecialization(Template: FunctionTemplate,
2226 TemplateArgs: TemplateArgumentList::CreateCopy(Context&: SemaRef.Context,
2227 Args: Innermost),
2228 /*InsertPos=*/nullptr);
2229 } else if (isFriend && D->isThisDeclarationADefinition()) {
2230 // Do not connect the friend to the template unless it's actually a
2231 // definition. We don't want non-template functions to be marked as being
2232 // template instantiations.
2233 Function->setInstantiationOfMemberFunction(FD: D, TSK: TSK_ImplicitInstantiation);
2234 } else if (!isFriend) {
2235 // If this is not a function template, and this is not a friend (that is,
2236 // this is a locally declared function), save the instantiation relationship
2237 // for the purposes of constraint instantiation.
2238 Function->setInstantiatedFromDecl(D);
2239 }
2240
2241 if (isFriend) {
2242 Function->setObjectOfFriendDecl();
2243 if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate())
2244 FT->setObjectOfFriendDecl();
2245 }
2246
2247 if (InitFunctionInstantiation(New: Function, Tmpl: D))
2248 Function->setInvalidDecl();
2249
2250 bool IsExplicitSpecialization = false;
2251
2252 LookupResult Previous(
2253 SemaRef, Function->getDeclName(), SourceLocation(),
2254 D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
2255 : Sema::LookupOrdinaryName,
2256 D->isLocalExternDecl() ? Sema::ForExternalRedeclaration
2257 : SemaRef.forRedeclarationInCurContext());
2258
2259 if (DependentFunctionTemplateSpecializationInfo *DFTSI =
2260 D->getDependentSpecializationInfo()) {
2261 assert(isFriend && "dependent specialization info on "
2262 "non-member non-friend function?");
2263
2264 // Instantiate the explicit template arguments.
2265 TemplateArgumentListInfo ExplicitArgs;
2266 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) {
2267 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc());
2268 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc());
2269 if (SemaRef.SubstTemplateArguments(Args: ArgsWritten->arguments(), TemplateArgs,
2270 Outputs&: ExplicitArgs))
2271 return nullptr;
2272 }
2273
2274 // Map the candidates for the primary template to their instantiations.
2275 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) {
2276 if (NamedDecl *ND =
2277 SemaRef.FindInstantiatedDecl(Loc: D->getLocation(), D: FTD, TemplateArgs))
2278 Previous.addDecl(D: ND);
2279 else
2280 return nullptr;
2281 }
2282
2283 if (SemaRef.CheckFunctionTemplateSpecialization(
2284 FD: Function,
2285 ExplicitTemplateArgs: DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr,
2286 Previous))
2287 Function->setInvalidDecl();
2288
2289 IsExplicitSpecialization = true;
2290 } else if (const ASTTemplateArgumentListInfo *ArgsWritten =
2291 D->getTemplateSpecializationArgsAsWritten()) {
2292 // The name of this function was written as a template-id.
2293 SemaRef.LookupQualifiedName(R&: Previous, LookupCtx: DC);
2294
2295 // Instantiate the explicit template arguments.
2296 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(),
2297 ArgsWritten->getRAngleLoc());
2298 if (SemaRef.SubstTemplateArguments(Args: ArgsWritten->arguments(), TemplateArgs,
2299 Outputs&: ExplicitArgs))
2300 return nullptr;
2301
2302 if (SemaRef.CheckFunctionTemplateSpecialization(FD: Function,
2303 ExplicitTemplateArgs: &ExplicitArgs,
2304 Previous))
2305 Function->setInvalidDecl();
2306
2307 IsExplicitSpecialization = true;
2308 } else if (TemplateParams || !FunctionTemplate) {
2309 // Look only into the namespace where the friend would be declared to
2310 // find a previous declaration. This is the innermost enclosing namespace,
2311 // as described in ActOnFriendFunctionDecl.
2312 SemaRef.LookupQualifiedName(R&: Previous, LookupCtx: DC->getRedeclContext());
2313
2314 // In C++, the previous declaration we find might be a tag type
2315 // (class or enum). In this case, the new declaration will hide the
2316 // tag type. Note that this does not apply if we're declaring a
2317 // typedef (C++ [dcl.typedef]p4).
2318 if (Previous.isSingleTagDecl())
2319 Previous.clear();
2320
2321 // Filter out previous declarations that don't match the scope. The only
2322 // effect this has is to remove declarations found in inline namespaces
2323 // for friend declarations with unqualified names.
2324 if (isFriend && !QualifierLoc) {
2325 SemaRef.FilterLookupForScope(R&: Previous, Ctx: DC, /*Scope=*/ S: nullptr,
2326 /*ConsiderLinkage=*/ true,
2327 AllowInlineNamespace: QualifierLoc.hasQualifier());
2328 }
2329 }
2330
2331 // Per [temp.inst], default arguments in function declarations at local scope
2332 // are instantiated along with the enclosing declaration. For example:
2333 //
2334 // template<typename T>
2335 // void ft() {
2336 // void f(int = []{ return T::value; }());
2337 // }
2338 // template void ft<int>(); // error: type 'int' cannot be used prior
2339 // to '::' because it has no members
2340 //
2341 // The error is issued during instantiation of ft<int>() because substitution
2342 // into the default argument fails; the default argument is instantiated even
2343 // though it is never used.
2344 if (Function->isLocalExternDecl()) {
2345 for (ParmVarDecl *PVD : Function->parameters()) {
2346 if (!PVD->hasDefaultArg())
2347 continue;
2348 if (SemaRef.SubstDefaultArgument(Loc: D->getInnerLocStart(), Param: PVD, TemplateArgs)) {
2349 // If substitution fails, the default argument is set to a
2350 // RecoveryExpr that wraps the uninstantiated default argument so
2351 // that downstream diagnostics are omitted.
2352 Expr *UninstExpr = PVD->getUninstantiatedDefaultArg();
2353 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr(
2354 Begin: UninstExpr->getBeginLoc(), End: UninstExpr->getEndLoc(),
2355 SubExprs: { UninstExpr }, T: UninstExpr->getType());
2356 if (ErrorResult.isUsable())
2357 PVD->setDefaultArg(ErrorResult.get());
2358 }
2359 }
2360 }
2361
2362 SemaRef.CheckFunctionDeclaration(/*Scope*/ S: nullptr, NewFD: Function, Previous,
2363 IsMemberSpecialization: IsExplicitSpecialization,
2364 DeclIsDefn: Function->isThisDeclarationADefinition());
2365
2366 // Check the template parameter list against the previous declaration. The
2367 // goal here is to pick up default arguments added since the friend was
2368 // declared; we know the template parameter lists match, since otherwise
2369 // we would not have picked this template as the previous declaration.
2370 if (isFriend && TemplateParams && FunctionTemplate->getPreviousDecl()) {
2371 SemaRef.CheckTemplateParameterList(
2372 NewParams: TemplateParams,
2373 OldParams: FunctionTemplate->getPreviousDecl()->getTemplateParameters(),
2374 TPC: Function->isThisDeclarationADefinition()
2375 ? Sema::TPC_FriendFunctionTemplateDefinition
2376 : Sema::TPC_FriendFunctionTemplate);
2377 }
2378
2379 // If we're introducing a friend definition after the first use, trigger
2380 // instantiation.
2381 // FIXME: If this is a friend function template definition, we should check
2382 // to see if any specializations have been used.
2383 if (isFriend && D->isThisDeclarationADefinition() && Function->isUsed(false)) {
2384 if (MemberSpecializationInfo *MSInfo =
2385 Function->getMemberSpecializationInfo()) {
2386 if (MSInfo->getPointOfInstantiation().isInvalid()) {
2387 SourceLocation Loc = D->getLocation(); // FIXME
2388 MSInfo->setPointOfInstantiation(Loc);
2389 SemaRef.PendingLocalImplicitInstantiations.push_back(
2390 std::make_pair(x&: Function, y&: Loc));
2391 }
2392 }
2393 }
2394
2395 if (D->isExplicitlyDefaulted()) {
2396 if (SubstDefaultedFunction(New: Function, Tmpl: D))
2397 return nullptr;
2398 }
2399 if (D->isDeleted())
2400 SemaRef.SetDeclDeleted(dcl: Function, DelLoc: D->getLocation());
2401
2402 NamedDecl *PrincipalDecl =
2403 (TemplateParams ? cast<NamedDecl>(Val: FunctionTemplate) : Function);
2404
2405 // If this declaration lives in a different context from its lexical context,
2406 // add it to the corresponding lookup table.
2407 if (isFriend ||
2408 (Function->isLocalExternDecl() && !Function->getPreviousDecl()))
2409 DC->makeDeclVisibleInContext(D: PrincipalDecl);
2410
2411 if (Function->isOverloadedOperator() && !DC->isRecord() &&
2412 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
2413 PrincipalDecl->setNonMemberOperator();
2414
2415 return Function;
2416}
2417
2418Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(
2419 CXXMethodDecl *D, TemplateParameterList *TemplateParams,
2420 RewriteKind FunctionRewriteKind) {
2421 FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
2422 if (FunctionTemplate && !TemplateParams) {
2423 // We are creating a function template specialization from a function
2424 // template. Check whether there is already a function template
2425 // specialization for this particular set of template arguments.
2426 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2427
2428 void *InsertPos = nullptr;
2429 FunctionDecl *SpecFunc
2430 = FunctionTemplate->findSpecialization(Args: Innermost, InsertPos);
2431
2432 // If we already have a function template specialization, return it.
2433 if (SpecFunc)
2434 return SpecFunc;
2435 }
2436
2437 bool isFriend;
2438 if (FunctionTemplate)
2439 isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
2440 else
2441 isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
2442
2443 bool MergeWithParentScope = (TemplateParams != nullptr) ||
2444 !(isa<Decl>(Val: Owner) &&
2445 cast<Decl>(Val: Owner)->isDefinedOutsideFunctionOrMethod());
2446 LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
2447
2448 Sema::LambdaScopeForCallOperatorInstantiationRAII LambdaScope(
2449 SemaRef, const_cast<CXXMethodDecl *>(D), TemplateArgs, Scope);
2450
2451 // Instantiate enclosing template arguments for friends.
2452 SmallVector<TemplateParameterList *, 4> TempParamLists;
2453 unsigned NumTempParamLists = 0;
2454 if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
2455 TempParamLists.resize(N: NumTempParamLists);
2456 for (unsigned I = 0; I != NumTempParamLists; ++I) {
2457 TemplateParameterList *TempParams = D->getTemplateParameterList(I);
2458 TemplateParameterList *InstParams = SubstTemplateParams(List: TempParams);
2459 if (!InstParams)
2460 return nullptr;
2461 TempParamLists[I] = InstParams;
2462 }
2463 }
2464
2465 auto InstantiatedExplicitSpecifier = ExplicitSpecifier::getFromDecl(D);
2466 // deduction guides need this
2467 const bool CouldInstantiate =
2468 InstantiatedExplicitSpecifier.getExpr() == nullptr ||
2469 !InstantiatedExplicitSpecifier.getExpr()->isValueDependent();
2470
2471 // Delay the instantiation of the explicit-specifier until after the
2472 // constraints are checked during template argument deduction.
2473 if (CouldInstantiate ||
2474 SemaRef.CodeSynthesisContexts.back().Kind !=
2475 Sema::CodeSynthesisContext::DeducedTemplateArgumentSubstitution) {
2476 InstantiatedExplicitSpecifier = SemaRef.instantiateExplicitSpecifier(
2477 TemplateArgs, ES: InstantiatedExplicitSpecifier);
2478
2479 if (InstantiatedExplicitSpecifier.isInvalid())
2480 return nullptr;
2481 } else {
2482 InstantiatedExplicitSpecifier.setKind(ExplicitSpecKind::Unresolved);
2483 }
2484
2485 // Implicit destructors/constructors created for local classes in
2486 // DeclareImplicit* (see SemaDeclCXX.cpp) might not have an associated TSI.
2487 // Unfortunately there isn't enough context in those functions to
2488 // conditionally populate the TSI without breaking non-template related use
2489 // cases. Populate TSIs prior to calling SubstFunctionType to make sure we get
2490 // a proper transformation.
2491 if (cast<CXXRecordDecl>(Val: D->getParent())->isLambda() &&
2492 !D->getTypeSourceInfo() &&
2493 isa<CXXConstructorDecl, CXXDestructorDecl>(Val: D)) {
2494 TypeSourceInfo *TSI =
2495 SemaRef.Context.getTrivialTypeSourceInfo(T: D->getType());
2496 D->setTypeSourceInfo(TSI);
2497 }
2498
2499 SmallVector<ParmVarDecl *, 4> Params;
2500 TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
2501 if (!TInfo)
2502 return nullptr;
2503 QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
2504
2505 if (TemplateParams && TemplateParams->size()) {
2506 auto *LastParam =
2507 dyn_cast<TemplateTypeParmDecl>(Val: TemplateParams->asArray().back());
2508 if (LastParam && LastParam->isImplicit() &&
2509 LastParam->hasTypeConstraint()) {
2510 // In abbreviated templates, the type-constraints of invented template
2511 // type parameters are instantiated with the function type, invalidating
2512 // the TemplateParameterList which relied on the template type parameter
2513 // not having a type constraint. Recreate the TemplateParameterList with
2514 // the updated parameter list.
2515 TemplateParams = TemplateParameterList::Create(
2516 C: SemaRef.Context, TemplateLoc: TemplateParams->getTemplateLoc(),
2517 LAngleLoc: TemplateParams->getLAngleLoc(), Params: TemplateParams->asArray(),
2518 RAngleLoc: TemplateParams->getRAngleLoc(), RequiresClause: TemplateParams->getRequiresClause());
2519 }
2520 }
2521
2522 NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
2523 if (QualifierLoc) {
2524 QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(NNS: QualifierLoc,
2525 TemplateArgs);
2526 if (!QualifierLoc)
2527 return nullptr;
2528 }
2529
2530 DeclContext *DC = Owner;
2531 if (isFriend) {
2532 if (QualifierLoc) {
2533 CXXScopeSpec SS;
2534 SS.Adopt(Other: QualifierLoc);
2535 DC = SemaRef.computeDeclContext(SS);
2536
2537 if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
2538 return nullptr;
2539 } else {
2540 DC = SemaRef.FindInstantiatedContext(Loc: D->getLocation(),
2541 DC: D->getDeclContext(),
2542 TemplateArgs);
2543 }
2544 if (!DC) return nullptr;
2545 }
2546
2547 CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: DC);
2548 Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
2549
2550 DeclarationNameInfo NameInfo
2551 = SemaRef.SubstDeclarationNameInfo(NameInfo: D->getNameInfo(), TemplateArgs);
2552
2553 if (FunctionRewriteKind != RewriteKind::None)
2554 adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
2555
2556 // Build the instantiated method declaration.
2557 CXXMethodDecl *Method = nullptr;
2558
2559 SourceLocation StartLoc = D->getInnerLocStart();
2560 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: D)) {
2561 Method = CXXConstructorDecl::Create(
2562 C&: SemaRef.Context, RD: Record, StartLoc, NameInfo, T, TInfo,
2563 ES: InstantiatedExplicitSpecifier, UsesFPIntrin: Constructor->UsesFPIntrin(),
2564 isInline: Constructor->isInlineSpecified(), isImplicitlyDeclared: false,
2565 ConstexprKind: Constructor->getConstexprKind(), Inherited: InheritedConstructor(),
2566 TrailingRequiresClause);
2567 Method->setRangeEnd(Constructor->getEndLoc());
2568 } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(Val: D)) {
2569 Method = CXXDestructorDecl::Create(
2570 C&: SemaRef.Context, RD: Record, StartLoc, NameInfo, T, TInfo,
2571 UsesFPIntrin: Destructor->UsesFPIntrin(), isInline: Destructor->isInlineSpecified(), isImplicitlyDeclared: false,
2572 ConstexprKind: Destructor->getConstexprKind(), TrailingRequiresClause);
2573 Method->setIneligibleOrNotSelected(true);
2574 Method->setRangeEnd(Destructor->getEndLoc());
2575 Method->setDeclName(SemaRef.Context.DeclarationNames.getCXXDestructorName(
2576 Ty: SemaRef.Context.getCanonicalType(
2577 T: SemaRef.Context.getTypeDeclType(Record))));
2578 } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(Val: D)) {
2579 Method = CXXConversionDecl::Create(
2580 C&: SemaRef.Context, RD: Record, StartLoc, NameInfo, T, TInfo,
2581 UsesFPIntrin: Conversion->UsesFPIntrin(), isInline: Conversion->isInlineSpecified(),
2582 ES: InstantiatedExplicitSpecifier, ConstexprKind: Conversion->getConstexprKind(),
2583 EndLocation: Conversion->getEndLoc(), TrailingRequiresClause);
2584 } else {
2585 StorageClass SC = D->isStatic() ? SC_Static : SC_None;
2586 Method = CXXMethodDecl::Create(
2587 C&: SemaRef.Context, RD: Record, StartLoc, NameInfo, T, TInfo, SC,
2588 UsesFPIntrin: D->UsesFPIntrin(), isInline: D->isInlineSpecified(), ConstexprKind: D->getConstexprKind(),
2589 EndLocation: D->getEndLoc(), TrailingRequiresClause);
2590 }
2591
2592 if (D->isInlined())
2593 Method->setImplicitlyInline();
2594
2595 if (QualifierLoc)
2596 Method->setQualifierInfo(QualifierLoc);
2597
2598 if (TemplateParams) {
2599 // Our resulting instantiation is actually a function template, since we
2600 // are substituting only the outer template parameters. For example, given
2601 //
2602 // template<typename T>
2603 // struct X {
2604 // template<typename U> void f(T, U);
2605 // };
2606 //
2607 // X<int> x;
2608 //
2609 // We are instantiating the member template "f" within X<int>, which means
2610 // substituting int for T, but leaving "f" as a member function template.
2611 // Build the function template itself.
2612 FunctionTemplate = FunctionTemplateDecl::Create(C&: SemaRef.Context, DC: Record,
2613 L: Method->getLocation(),
2614 Name: Method->getDeclName(),
2615 Params: TemplateParams, Decl: Method);
2616 if (isFriend) {
2617 FunctionTemplate->setLexicalDeclContext(Owner);
2618 FunctionTemplate->setObjectOfFriendDecl();
2619 } else if (D->isOutOfLine())
2620 FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
2621 Method->setDescribedFunctionTemplate(FunctionTemplate);
2622 } else if (FunctionTemplate) {
2623 // Record this function template specialization.
2624 ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
2625 Method->setFunctionTemplateSpecialization(FunctionTemplate,
2626 TemplateArgumentList::CreateCopy(Context&: SemaRef.Context,
2627 Args: Innermost),
2628 /*InsertPos=*/nullptr);
2629 } else if (!isFriend) {
2630 // Record that this is an instantiation of a member function.
2631 Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
2632 }
2633
2634 // If we are instantiating a member function defined
2635 // out-of-line, the instantiation will have the same lexical
2636 // context (which will be a namespace scope) as the template.
2637 if (isFriend) {
2638 if (NumTempParamLists)
2639 Method->setTemplateParameterListsInfo(
2640 SemaRef.Context,
2641 llvm::ArrayRef(TempParamLists.data(), NumTempParamLists));
2642
2643 Method->setLexicalDeclContext(Owner);
2644 Method->setObjectOfFriendDecl();
2645 } else if (D->isOutOfLine())
2646 Method->setLexicalDeclContext(D->getLexicalDeclContext());
2647
2648 // Attach the parameters
2649 for (unsigned P = 0; P < Params.size(); ++P)
2650 Params[P]->setOwningFunction(Method);
2651 Method->setParams(Params);
2652
2653 if (InitMethodInstantiation(New: Method, Tmpl: D))
2654 Method->setInvalidDecl();
2655
2656 LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
2657 Sema::ForExternalRedeclaration);
2658
2659 bool IsExplicitSpecialization = false;
2660
2661 // If the name of this function was written as a template-id, instantiate
2662 // the explicit template arguments.
2663 if (DependentFunctionTemplateSpecializationInfo *DFTSI =
2664 D->getDependentSpecializationInfo()) {
2665 // Instantiate the explicit template arguments.
2666 TemplateArgumentListInfo ExplicitArgs;
2667 if (const auto *ArgsWritten = DFTSI->TemplateArgumentsAsWritten) {
2668 ExplicitArgs.setLAngleLoc(ArgsWritten->getLAngleLoc());
2669 ExplicitArgs.setRAngleLoc(ArgsWritten->getRAngleLoc());
2670 if (SemaRef.SubstTemplateArguments(Args: ArgsWritten->arguments(), TemplateArgs,
2671 Outputs&: ExplicitArgs))
2672 return nullptr;
2673 }
2674
2675 // Map the candidates for the primary template to their instantiations.
2676 for (FunctionTemplateDecl *FTD : DFTSI->getCandidates()) {
2677 if (NamedDecl *ND =
2678 SemaRef.FindInstantiatedDecl(D->getLocation(), FTD, TemplateArgs))
2679 Previous.addDecl(ND);
2680 else
2681 return nullptr;
2682 }
2683
2684 if (SemaRef.CheckFunctionTemplateSpecialization(
2685 Method, DFTSI->TemplateArgumentsAsWritten ? &ExplicitArgs : nullptr,
2686 Previous))
2687 Method->setInvalidDecl();
2688
2689 IsExplicitSpecialization = true;
2690 } else if (const ASTTemplateArgumentListInfo *ArgsWritten =
2691 D->getTemplateSpecializationArgsAsWritten()) {
2692 SemaRef.LookupQualifiedName(R&: Previous, LookupCtx: DC);
2693
2694 TemplateArgumentListInfo ExplicitArgs(ArgsWritten->getLAngleLoc(),
2695 ArgsWritten->getRAngleLoc());
2696
2697 if (SemaRef.SubstTemplateArguments(Args: ArgsWritten->arguments(), TemplateArgs,
2698 Outputs&: ExplicitArgs))
2699 return nullptr;
2700
2701 if (SemaRef.CheckFunctionTemplateSpecialization(Method,
2702 &ExplicitArgs,
2703 Previous))
2704 Method->setInvalidDecl();
2705
2706 IsExplicitSpecialization = true;
2707 } else if (!FunctionTemplate || TemplateParams || isFriend) {
2708 SemaRef.LookupQualifiedName(Previous, Record);
2709
2710 // In C++, the previous declaration we find might be a tag type
2711 // (class or enum). In this case, the new declaration will hide the
2712 // tag type. Note that this does not apply if we're declaring a
2713 // typedef (C++ [dcl.typedef]p4).
2714 if (Previous.isSingleTagDecl())
2715 Previous.clear();
2716 }
2717
2718 // Per [temp.inst], default arguments in member functions of local classes
2719 // are instantiated along with the member function declaration. For example:
2720 //
2721 // template<typename T>
2722 // void ft() {
2723 // struct lc {
2724 // int operator()(int p = []{ return T::value; }());
2725 // };
2726 // }
2727 // template void ft<int>(); // error: type 'int' cannot be used prior
2728 // to '::'because it has no members
2729 //
2730 // The error is issued during instantiation of ft<int>()::lc::operator()
2731 // because substitution into the default argument fails; the default argument
2732 // is instantiated even though it is never used.
2733 if (D->isInLocalScopeForInstantiation()) {
2734 for (unsigned P = 0; P < Params.size(); ++P) {
2735 if (!Params[P]->hasDefaultArg())
2736 continue;
2737 if (SemaRef.SubstDefaultArgument(Loc: StartLoc, Param: Params[P], TemplateArgs)) {
2738 // If substitution fails, the default argument is set to a
2739 // RecoveryExpr that wraps the uninstantiated default argument so
2740 // that downstream diagnostics are omitted.
2741 Expr *UninstExpr = Params[P]->getUninstantiatedDefaultArg();
2742 ExprResult ErrorResult = SemaRef.CreateRecoveryExpr(
2743 Begin: UninstExpr->getBeginLoc(), End: UninstExpr->getEndLoc(),
2744 SubExprs: { UninstExpr }, T: UninstExpr->getType());
2745 if (ErrorResult.isUsable())
2746 Params[P]->setDefaultArg(ErrorResult.get());
2747 }
2748 }
2749 }
2750
2751 SemaRef.CheckFunctionDeclaration(S: nullptr, NewFD: Method, Previous,
2752 IsMemberSpecialization: IsExplicitSpecialization,
2753 DeclIsDefn: Method->isThisDeclarationADefinition());
2754
2755 if (D->isPureVirtual())
2756 SemaRef.CheckPureMethod(Method, InitRange: SourceRange());
2757
2758 // Propagate access. For a non-friend declaration, the access is
2759 // whatever we're propagating from. For a friend, it should be the
2760 // previous declaration we just found.
2761 if (isFriend && Method->getPreviousDecl())
2762 Method->setAccess(Method->getPreviousDecl()->getAccess());
2763 else
2764 Method->setAccess(D->getAccess());
2765 if (FunctionTemplate)
2766 FunctionTemplate->setAccess(Method->getAccess());
2767
2768 SemaRef.CheckOverrideControl(Method);
2769
2770 // If a function is defined as defaulted or deleted, mark it as such now.
2771 if (D->isExplicitlyDefaulted()) {
2772 if (SubstDefaultedFunction(Method, D))
2773 return nullptr;
2774 }
2775 if (D->isDeletedAsWritten())
2776 SemaRef.SetDeclDeleted(dcl: Method, DelLoc: Method->getLocation());
2777
2778 // If this is an explicit specialization, mark the implicitly-instantiated
2779 // template specialization as being an explicit specialization too.
2780 // FIXME: Is this necessary?
2781 if (IsExplicitSpecialization && !isFriend)
2782 SemaRef.CompleteMemberSpecialization(Method, Previous);
2783
2784 // If the method is a special member function, we need to mark it as
2785 // ineligible so that Owner->addDecl() won't mark the class as non trivial.
2786 // At the end of the class instantiation, we calculate eligibility again and
2787 // then we adjust trivility if needed.
2788 // We need this check to happen only after the method parameters are set,
2789 // because being e.g. a copy constructor depends on the instantiated
2790 // arguments.
2791 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Val: Method)) {
2792 if (Constructor->isDefaultConstructor() ||
2793 Constructor->isCopyOrMoveConstructor())
2794 Method->setIneligibleOrNotSelected(true);
2795 } else if (Method->isCopyAssignmentOperator() ||
2796 Method->isMoveAssignmentOperator()) {
2797 Method->setIneligibleOrNotSelected(true);
2798 }
2799
2800 // If there's a function template, let our caller handle it.
2801 if (FunctionTemplate) {
2802 // do nothing
2803
2804 // Don't hide a (potentially) valid declaration with an invalid one.
2805 } else if (Method->isInvalidDecl() && !Previous.empty()) {
2806 // do nothing
2807
2808 // Otherwise, check access to friends and make them visible.
2809 } else if (isFriend) {
2810 // We only need to re-check access for methods which we didn't
2811 // manage to match during parsing.
2812 if (!D->getPreviousDecl())
2813 SemaRef.CheckFriendAccess(Method);
2814
2815 Record->makeDeclVisibleInContext(Method);
2816
2817 // Otherwise, add the declaration. We don't need to do this for
2818 // class-scope specializations because we'll have matched them with
2819 // the appropriate template.
2820 } else {
2821 Owner->addDecl(Method);
2822 }
2823
2824 // PR17480: Honor the used attribute to instantiate member function
2825 // definitions
2826 if (Method->hasAttr<UsedAttr>()) {
2827 if (const auto *A = dyn_cast<CXXRecordDecl>(Val: Owner)) {
2828 SourceLocation Loc;
2829 if (const MemberSpecializationInfo *MSInfo =
2830 A->getMemberSpecializationInfo())
2831 Loc = MSInfo->getPointOfInstantiation();
2832 else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(Val: A))
2833 Loc = Spec->getPointOfInstantiation();
2834 SemaRef.MarkFunctionReferenced(Loc, Method);
2835 }
2836 }
2837
2838 return Method;
2839}
2840
2841Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
2842 return VisitCXXMethodDecl(D);
2843}
2844
2845Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
2846 return VisitCXXMethodDecl(D);
2847}
2848
2849Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
2850 return VisitCXXMethodDecl(D);
2851}
2852
2853Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
2854 return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0,
2855 NumExpansions: std::nullopt,
2856 /*ExpectParameterPack=*/false);
2857}
2858
2859Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
2860 TemplateTypeParmDecl *D) {
2861 assert(D->getTypeForDecl()->isTemplateTypeParmType());
2862
2863 std::optional<unsigned> NumExpanded;
2864
2865 if (const TypeConstraint *TC = D->getTypeConstraint()) {
2866 if (D->isPackExpansion() && !D->isExpandedParameterPack()) {
2867 assert(TC->getTemplateArgsAsWritten() &&
2868 "type parameter can only be an expansion when explicit arguments "
2869 "are specified");
2870 // The template type parameter pack's type is a pack expansion of types.
2871 // Determine whether we need to expand this parameter pack into separate
2872 // types.
2873 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2874 for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
2875 SemaRef.collectUnexpandedParameterPacks(Arg: ArgLoc, Unexpanded);
2876
2877 // Determine whether the set of unexpanded parameter packs can and should
2878 // be expanded.
2879 bool Expand = true;
2880 bool RetainExpansion = false;
2881 if (SemaRef.CheckParameterPacksForExpansion(
2882 EllipsisLoc: cast<CXXFoldExpr>(Val: TC->getImmediatelyDeclaredConstraint())
2883 ->getEllipsisLoc(),
2884 PatternRange: SourceRange(TC->getConceptNameLoc(),
2885 TC->hasExplicitTemplateArgs() ?
2886 TC->getTemplateArgsAsWritten()->getRAngleLoc() :
2887 TC->getConceptNameInfo().getEndLoc()),
2888 Unexpanded, TemplateArgs, ShouldExpand&: Expand, RetainExpansion, NumExpansions&: NumExpanded))
2889 return nullptr;
2890 }
2891 }
2892
2893 TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(
2894 C: SemaRef.Context, DC: Owner, KeyLoc: D->getBeginLoc(), NameLoc: D->getLocation(),
2895 D: D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), P: D->getIndex(),
2896 Id: D->getIdentifier(), Typename: D->wasDeclaredWithTypename(), ParameterPack: D->isParameterPack(),
2897 HasTypeConstraint: D->hasTypeConstraint(), NumExpanded);
2898
2899 Inst->setAccess(AS_public);
2900 Inst->setImplicit(D->isImplicit());
2901 if (auto *TC = D->getTypeConstraint()) {
2902 if (!D->isImplicit()) {
2903 // Invented template parameter type constraints will be instantiated
2904 // with the corresponding auto-typed parameter as it might reference
2905 // other parameters.
2906 if (SemaRef.SubstTypeConstraint(Inst, TC, TemplateArgs,
2907 EvaluateConstraint: EvaluateConstraints))
2908 return nullptr;
2909 }
2910 }
2911 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
2912 TypeSourceInfo *InstantiatedDefaultArg =
2913 SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
2914 D->getDefaultArgumentLoc(), D->getDeclName());
2915 if (InstantiatedDefaultArg)
2916 Inst->setDefaultArgument(InstantiatedDefaultArg);
2917 }
2918
2919 // Introduce this template parameter's instantiation into the instantiation
2920 // scope.
2921 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
2922
2923 return Inst;
2924}
2925
2926Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
2927 NonTypeTemplateParmDecl *D) {
2928 // Substitute into the type of the non-type template parameter.
2929 TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
2930 SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
2931 SmallVector<QualType, 4> ExpandedParameterPackTypes;
2932 bool IsExpandedParameterPack = false;
2933 TypeSourceInfo *DI;
2934 QualType T;
2935 bool Invalid = false;
2936
2937 if (D->isExpandedParameterPack()) {
2938 // The non-type template parameter pack is an already-expanded pack
2939 // expansion of types. Substitute into each of the expanded types.
2940 ExpandedParameterPackTypes.reserve(N: D->getNumExpansionTypes());
2941 ExpandedParameterPackTypesAsWritten.reserve(N: D->getNumExpansionTypes());
2942 for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
2943 TypeSourceInfo *NewDI =
2944 SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs,
2945 D->getLocation(), D->getDeclName());
2946 if (!NewDI)
2947 return nullptr;
2948
2949 QualType NewT =
2950 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2951 if (NewT.isNull())
2952 return nullptr;
2953
2954 ExpandedParameterPackTypesAsWritten.push_back(Elt: NewDI);
2955 ExpandedParameterPackTypes.push_back(Elt: NewT);
2956 }
2957
2958 IsExpandedParameterPack = true;
2959 DI = D->getTypeSourceInfo();
2960 T = DI->getType();
2961 } else if (D->isPackExpansion()) {
2962 // The non-type template parameter pack's type is a pack expansion of types.
2963 // Determine whether we need to expand this parameter pack into separate
2964 // types.
2965 PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
2966 TypeLoc Pattern = Expansion.getPatternLoc();
2967 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
2968 SemaRef.collectUnexpandedParameterPacks(TL: Pattern, Unexpanded);
2969
2970 // Determine whether the set of unexpanded parameter packs can and should
2971 // be expanded.
2972 bool Expand = true;
2973 bool RetainExpansion = false;
2974 std::optional<unsigned> OrigNumExpansions =
2975 Expansion.getTypePtr()->getNumExpansions();
2976 std::optional<unsigned> NumExpansions = OrigNumExpansions;
2977 if (SemaRef.CheckParameterPacksForExpansion(EllipsisLoc: Expansion.getEllipsisLoc(),
2978 PatternRange: Pattern.getSourceRange(),
2979 Unexpanded,
2980 TemplateArgs,
2981 ShouldExpand&: Expand, RetainExpansion,
2982 NumExpansions))
2983 return nullptr;
2984
2985 if (Expand) {
2986 for (unsigned I = 0; I != *NumExpansions; ++I) {
2987 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
2988 TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
2989 D->getLocation(),
2990 D->getDeclName());
2991 if (!NewDI)
2992 return nullptr;
2993
2994 QualType NewT =
2995 SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
2996 if (NewT.isNull())
2997 return nullptr;
2998
2999 ExpandedParameterPackTypesAsWritten.push_back(Elt: NewDI);
3000 ExpandedParameterPackTypes.push_back(Elt: NewT);
3001 }
3002
3003 // Note that we have an expanded parameter pack. The "type" of this
3004 // expanded parameter pack is the original expansion type, but callers
3005 // will end up using the expanded parameter pack types for type-checking.
3006 IsExpandedParameterPack = true;
3007 DI = D->getTypeSourceInfo();
3008 T = DI->getType();
3009 } else {
3010 // We cannot fully expand the pack expansion now, so substitute into the
3011 // pattern and create a new pack expansion type.
3012 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3013 TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
3014 D->getLocation(),
3015 D->getDeclName());
3016 if (!NewPattern)
3017 return nullptr;
3018
3019 SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation());
3020 DI = SemaRef.CheckPackExpansion(Pattern: NewPattern, EllipsisLoc: Expansion.getEllipsisLoc(),
3021 NumExpansions);
3022 if (!DI)
3023 return nullptr;
3024
3025 T = DI->getType();
3026 }
3027 } else {
3028 // Simple case: substitution into a parameter that is not a parameter pack.
3029 DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3030 D->getLocation(), D->getDeclName());
3031 if (!DI)
3032 return nullptr;
3033
3034 // Check that this type is acceptable for a non-type template parameter.
3035 T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation());
3036 if (T.isNull()) {
3037 T = SemaRef.Context.IntTy;
3038 Invalid = true;
3039 }
3040 }
3041
3042 NonTypeTemplateParmDecl *Param;
3043 if (IsExpandedParameterPack)
3044 Param = NonTypeTemplateParmDecl::Create(
3045 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3046 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3047 D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes,
3048 ExpandedParameterPackTypesAsWritten);
3049 else
3050 Param = NonTypeTemplateParmDecl::Create(
3051 SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
3052 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3053 D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI);
3054
3055 if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc())
3056 if (AutoLoc.isConstrained()) {
3057 SourceLocation EllipsisLoc;
3058 if (IsExpandedParameterPack)
3059 EllipsisLoc =
3060 DI->getTypeLoc().getAs<PackExpansionTypeLoc>().getEllipsisLoc();
3061 else if (auto *Constraint = dyn_cast_if_present<CXXFoldExpr>(
3062 Val: D->getPlaceholderTypeConstraint()))
3063 EllipsisLoc = Constraint->getEllipsisLoc();
3064 // Note: We attach the uninstantiated constriant here, so that it can be
3065 // instantiated relative to the top level, like all our other
3066 // constraints.
3067 if (SemaRef.AttachTypeConstraint(TL: AutoLoc, /*NewConstrainedParm=*/Param,
3068 /*OrigConstrainedParm=*/D, EllipsisLoc))
3069 Invalid = true;
3070 }
3071
3072 Param->setAccess(AS_public);
3073 Param->setImplicit(D->isImplicit());
3074 if (Invalid)
3075 Param->setInvalidDecl();
3076
3077 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3078 EnterExpressionEvaluationContext ConstantEvaluated(
3079 SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
3080 ExprResult Value = SemaRef.SubstExpr(E: D->getDefaultArgument(), TemplateArgs);
3081 if (!Value.isInvalid())
3082 Param->setDefaultArgument(Value.get());
3083 }
3084
3085 // Introduce this template parameter's instantiation into the instantiation
3086 // scope.
3087 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3088 return Param;
3089}
3090
3091static void collectUnexpandedParameterPacks(
3092 Sema &S,
3093 TemplateParameterList *Params,
3094 SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
3095 for (const auto &P : *Params) {
3096 if (P->isTemplateParameterPack())
3097 continue;
3098 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: P))
3099 S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
3100 Unexpanded);
3101 if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(Val: P))
3102 collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
3103 Unexpanded);
3104 }
3105}
3106
3107Decl *
3108TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
3109 TemplateTemplateParmDecl *D) {
3110 // Instantiate the template parameter list of the template template parameter.
3111 TemplateParameterList *TempParams = D->getTemplateParameters();
3112 TemplateParameterList *InstParams;
3113 SmallVector<TemplateParameterList*, 8> ExpandedParams;
3114
3115 bool IsExpandedParameterPack = false;
3116
3117 if (D->isExpandedParameterPack()) {
3118 // The template template parameter pack is an already-expanded pack
3119 // expansion of template parameters. Substitute into each of the expanded
3120 // parameters.
3121 ExpandedParams.reserve(N: D->getNumExpansionTemplateParameters());
3122 for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
3123 I != N; ++I) {
3124 LocalInstantiationScope Scope(SemaRef);
3125 TemplateParameterList *Expansion =
3126 SubstTemplateParams(List: D->getExpansionTemplateParameters(I));
3127 if (!Expansion)
3128 return nullptr;
3129 ExpandedParams.push_back(Elt: Expansion);
3130 }
3131
3132 IsExpandedParameterPack = true;
3133 InstParams = TempParams;
3134 } else if (D->isPackExpansion()) {
3135 // The template template parameter pack expands to a pack of template
3136 // template parameters. Determine whether we need to expand this parameter
3137 // pack into separate parameters.
3138 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3139 collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
3140 Unexpanded);
3141
3142 // Determine whether the set of unexpanded parameter packs can and should
3143 // be expanded.
3144 bool Expand = true;
3145 bool RetainExpansion = false;
3146 std::optional<unsigned> NumExpansions;
3147 if (SemaRef.CheckParameterPacksForExpansion(EllipsisLoc: D->getLocation(),
3148 PatternRange: TempParams->getSourceRange(),
3149 Unexpanded,
3150 TemplateArgs,
3151 ShouldExpand&: Expand, RetainExpansion,
3152 NumExpansions))
3153 return nullptr;
3154
3155 if (Expand) {
3156 for (unsigned I = 0; I != *NumExpansions; ++I) {
3157 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3158 LocalInstantiationScope Scope(SemaRef);
3159 TemplateParameterList *Expansion = SubstTemplateParams(List: TempParams);
3160 if (!Expansion)
3161 return nullptr;
3162 ExpandedParams.push_back(Elt: Expansion);
3163 }
3164
3165 // Note that we have an expanded parameter pack. The "type" of this
3166 // expanded parameter pack is the original expansion type, but callers
3167 // will end up using the expanded parameter pack types for type-checking.
3168 IsExpandedParameterPack = true;
3169 InstParams = TempParams;
3170 } else {
3171 // We cannot fully expand the pack expansion now, so just substitute
3172 // into the pattern.
3173 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3174
3175 LocalInstantiationScope Scope(SemaRef);
3176 InstParams = SubstTemplateParams(List: TempParams);
3177 if (!InstParams)
3178 return nullptr;
3179 }
3180 } else {
3181 // Perform the actual substitution of template parameters within a new,
3182 // local instantiation scope.
3183 LocalInstantiationScope Scope(SemaRef);
3184 InstParams = SubstTemplateParams(List: TempParams);
3185 if (!InstParams)
3186 return nullptr;
3187 }
3188
3189 // Build the template template parameter.
3190 TemplateTemplateParmDecl *Param;
3191 if (IsExpandedParameterPack)
3192 Param = TemplateTemplateParmDecl::Create(
3193 SemaRef.Context, Owner, D->getLocation(),
3194 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3195 D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams);
3196 else
3197 Param = TemplateTemplateParmDecl::Create(
3198 SemaRef.Context, Owner, D->getLocation(),
3199 D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
3200 D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams);
3201 if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
3202 NestedNameSpecifierLoc QualifierLoc =
3203 D->getDefaultArgument().getTemplateQualifierLoc();
3204 QualifierLoc =
3205 SemaRef.SubstNestedNameSpecifierLoc(NNS: QualifierLoc, TemplateArgs);
3206 TemplateName TName = SemaRef.SubstTemplateName(
3207 QualifierLoc, Name: D->getDefaultArgument().getArgument().getAsTemplate(),
3208 Loc: D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
3209 if (!TName.isNull())
3210 Param->setDefaultArgument(
3211 C: SemaRef.Context,
3212 DefArg: TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName),
3213 D->getDefaultArgument().getTemplateQualifierLoc(),
3214 D->getDefaultArgument().getTemplateNameLoc()));
3215 }
3216 Param->setAccess(AS_public);
3217 Param->setImplicit(D->isImplicit());
3218
3219 // Introduce this template parameter's instantiation into the instantiation
3220 // scope.
3221 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
3222
3223 return Param;
3224}
3225
3226Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
3227 // Using directives are never dependent (and never contain any types or
3228 // expressions), so they require no explicit instantiation work.
3229
3230 UsingDirectiveDecl *Inst
3231 = UsingDirectiveDecl::Create(C&: SemaRef.Context, DC: Owner, UsingLoc: D->getLocation(),
3232 NamespaceLoc: D->getNamespaceKeyLocation(),
3233 QualifierLoc: D->getQualifierLoc(),
3234 IdentLoc: D->getIdentLocation(),
3235 Nominated: D->getNominatedNamespace(),
3236 CommonAncestor: D->getCommonAncestor());
3237
3238 // Add the using directive to its declaration context
3239 // only if this is not a function or method.
3240 if (!Owner->isFunctionOrMethod())
3241 Owner->addDecl(Inst);
3242
3243 return Inst;
3244}
3245
3246Decl *TemplateDeclInstantiator::VisitBaseUsingDecls(BaseUsingDecl *D,
3247 BaseUsingDecl *Inst,
3248 LookupResult *Lookup) {
3249
3250 bool isFunctionScope = Owner->isFunctionOrMethod();
3251
3252 for (auto *Shadow : D->shadows()) {
3253 // FIXME: UsingShadowDecl doesn't preserve its immediate target, so
3254 // reconstruct it in the case where it matters. Hm, can we extract it from
3255 // the DeclSpec when parsing and save it in the UsingDecl itself?
3256 NamedDecl *OldTarget = Shadow->getTargetDecl();
3257 if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Val: Shadow))
3258 if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl())
3259 OldTarget = BaseShadow;
3260
3261 NamedDecl *InstTarget = nullptr;
3262 if (auto *EmptyD =
3263 dyn_cast<UnresolvedUsingIfExistsDecl>(Val: Shadow->getTargetDecl())) {
3264 InstTarget = UnresolvedUsingIfExistsDecl::Create(
3265 Ctx&: SemaRef.Context, DC: Owner, Loc: EmptyD->getLocation(), Name: EmptyD->getDeclName());
3266 } else {
3267 InstTarget = cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
3268 Loc: Shadow->getLocation(), D: OldTarget, TemplateArgs));
3269 }
3270 if (!InstTarget)
3271 return nullptr;
3272
3273 UsingShadowDecl *PrevDecl = nullptr;
3274 if (Lookup &&
3275 SemaRef.CheckUsingShadowDecl(BUD: Inst, Target: InstTarget, PreviousDecls: *Lookup, PrevShadow&: PrevDecl))
3276 continue;
3277
3278 if (UsingShadowDecl *OldPrev = getPreviousDeclForInstantiation(D: Shadow))
3279 PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
3280 Loc: Shadow->getLocation(), D: OldPrev, TemplateArgs));
3281
3282 UsingShadowDecl *InstShadow = SemaRef.BuildUsingShadowDecl(
3283 /*Scope*/ S: nullptr, BUD: Inst, Target: InstTarget, PrevDecl);
3284 SemaRef.Context.setInstantiatedFromUsingShadowDecl(Inst: InstShadow, Pattern: Shadow);
3285
3286 if (isFunctionScope)
3287 SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
3288 }
3289
3290 return Inst;
3291}
3292
3293Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
3294
3295 // The nested name specifier may be dependent, for example
3296 // template <typename T> struct t {
3297 // struct s1 { T f1(); };
3298 // struct s2 : s1 { using s1::f1; };
3299 // };
3300 // template struct t<int>;
3301 // Here, in using s1::f1, s1 refers to t<T>::s1;
3302 // we need to substitute for t<int>::s1.
3303 NestedNameSpecifierLoc QualifierLoc
3304 = SemaRef.SubstNestedNameSpecifierLoc(NNS: D->getQualifierLoc(),
3305 TemplateArgs);
3306 if (!QualifierLoc)
3307 return nullptr;
3308
3309 // For an inheriting constructor declaration, the name of the using
3310 // declaration is the name of a constructor in this class, not in the
3311 // base class.
3312 DeclarationNameInfo NameInfo = D->getNameInfo();
3313 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3314 if (auto *RD = dyn_cast<CXXRecordDecl>(Val: SemaRef.CurContext))
3315 NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName(
3316 Ty: SemaRef.Context.getCanonicalType(T: SemaRef.Context.getRecordType(RD))));
3317
3318 // We only need to do redeclaration lookups if we're in a class scope (in
3319 // fact, it's not really even possible in non-class scopes).
3320 bool CheckRedeclaration = Owner->isRecord();
3321 LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
3322 Sema::ForVisibleRedeclaration);
3323
3324 UsingDecl *NewUD = UsingDecl::Create(C&: SemaRef.Context, DC: Owner,
3325 UsingL: D->getUsingLoc(),
3326 QualifierLoc,
3327 NameInfo,
3328 HasTypenameKeyword: D->hasTypename());
3329
3330 CXXScopeSpec SS;
3331 SS.Adopt(Other: QualifierLoc);
3332 if (CheckRedeclaration) {
3333 Prev.setHideTags(false);
3334 SemaRef.LookupQualifiedName(R&: Prev, LookupCtx: Owner);
3335
3336 // Check for invalid redeclarations.
3337 if (SemaRef.CheckUsingDeclRedeclaration(UsingLoc: D->getUsingLoc(),
3338 HasTypenameKeyword: D->hasTypename(), SS,
3339 NameLoc: D->getLocation(), Previous: Prev))
3340 NewUD->setInvalidDecl();
3341 }
3342
3343 if (!NewUD->isInvalidDecl() &&
3344 SemaRef.CheckUsingDeclQualifier(UsingLoc: D->getUsingLoc(), HasTypename: D->hasTypename(), SS,
3345 NameInfo, NameLoc: D->getLocation(), R: nullptr, UD: D))
3346 NewUD->setInvalidDecl();
3347
3348 SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
3349 NewUD->setAccess(D->getAccess());
3350 Owner->addDecl(NewUD);
3351
3352 // Don't process the shadow decls for an invalid decl.
3353 if (NewUD->isInvalidDecl())
3354 return NewUD;
3355
3356 // If the using scope was dependent, or we had dependent bases, we need to
3357 // recheck the inheritance
3358 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
3359 SemaRef.CheckInheritingConstructorUsingDecl(UD: NewUD);
3360
3361 return VisitBaseUsingDecls(D, NewUD, CheckRedeclaration ? &Prev : nullptr);
3362}
3363
3364Decl *TemplateDeclInstantiator::VisitUsingEnumDecl(UsingEnumDecl *D) {
3365 // Cannot be a dependent type, but still could be an instantiation
3366 EnumDecl *EnumD = cast_or_null<EnumDecl>(SemaRef.FindInstantiatedDecl(
3367 Loc: D->getLocation(), D: D->getEnumDecl(), TemplateArgs));
3368
3369 if (SemaRef.RequireCompleteEnumDecl(D: EnumD, L: EnumD->getLocation()))
3370 return nullptr;
3371
3372 TypeSourceInfo *TSI = SemaRef.SubstType(D->getEnumType(), TemplateArgs,
3373 D->getLocation(), D->getDeclName());
3374 UsingEnumDecl *NewUD =
3375 UsingEnumDecl::Create(C&: SemaRef.Context, DC: Owner, UsingL: D->getUsingLoc(),
3376 EnumL: D->getEnumLoc(), NameL: D->getLocation(), EnumType: TSI);
3377
3378 SemaRef.Context.setInstantiatedFromUsingEnumDecl(Inst: NewUD, Pattern: D);
3379 NewUD->setAccess(D->getAccess());
3380 Owner->addDecl(NewUD);
3381
3382 // Don't process the shadow decls for an invalid decl.
3383 if (NewUD->isInvalidDecl())
3384 return NewUD;
3385
3386 // We don't have to recheck for duplication of the UsingEnumDecl itself, as it
3387 // cannot be dependent, and will therefore have been checked during template
3388 // definition.
3389
3390 return VisitBaseUsingDecls(D, NewUD, nullptr);
3391}
3392
3393Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
3394 // Ignore these; we handle them in bulk when processing the UsingDecl.
3395 return nullptr;
3396}
3397
3398Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
3399 ConstructorUsingShadowDecl *D) {
3400 // Ignore these; we handle them in bulk when processing the UsingDecl.
3401 return nullptr;
3402}
3403
3404template <typename T>
3405Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
3406 T *D, bool InstantiatingPackElement) {
3407 // If this is a pack expansion, expand it now.
3408 if (D->isPackExpansion() && !InstantiatingPackElement) {
3409 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
3410 SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded);
3411 SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded);
3412
3413 // Determine whether the set of unexpanded parameter packs can and should
3414 // be expanded.
3415 bool Expand = true;
3416 bool RetainExpansion = false;
3417 std::optional<unsigned> NumExpansions;
3418 if (SemaRef.CheckParameterPacksForExpansion(
3419 EllipsisLoc: D->getEllipsisLoc(), PatternRange: D->getSourceRange(), Unexpanded, TemplateArgs,
3420 ShouldExpand&: Expand, RetainExpansion, NumExpansions))
3421 return nullptr;
3422
3423 // This declaration cannot appear within a function template signature,
3424 // so we can't have a partial argument list for a parameter pack.
3425 assert(!RetainExpansion &&
3426 "should never need to retain an expansion for UsingPackDecl");
3427
3428 if (!Expand) {
3429 // We cannot fully expand the pack expansion now, so substitute into the
3430 // pattern and create a new pack expansion.
3431 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
3432 return instantiateUnresolvedUsingDecl(D, true);
3433 }
3434
3435 // Within a function, we don't have any normal way to check for conflicts
3436 // between shadow declarations from different using declarations in the
3437 // same pack expansion, but this is always ill-formed because all expansions
3438 // must produce (conflicting) enumerators.
3439 //
3440 // Sadly we can't just reject this in the template definition because it
3441 // could be valid if the pack is empty or has exactly one expansion.
3442 if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) {
3443 SemaRef.Diag(D->getEllipsisLoc(),
3444 diag::err_using_decl_redeclaration_expansion);
3445 return nullptr;
3446 }
3447
3448 // Instantiate the slices of this pack and build a UsingPackDecl.
3449 SmallVector<NamedDecl*, 8> Expansions;
3450 for (unsigned I = 0; I != *NumExpansions; ++I) {
3451 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
3452 Decl *Slice = instantiateUnresolvedUsingDecl(D, true);
3453 if (!Slice)
3454 return nullptr;
3455 // Note that we can still get unresolved using declarations here, if we
3456 // had arguments for all packs but the pattern also contained other
3457 // template arguments (this only happens during partial substitution, eg
3458 // into the body of a generic lambda in a function template).
3459 Expansions.push_back(Elt: cast<NamedDecl>(Val: Slice));
3460 }
3461
3462 auto *NewD = SemaRef.BuildUsingPackDecl(InstantiatedFrom: D, Expansions);
3463 if (isDeclWithinFunction(D))
3464 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst: NewD);
3465 return NewD;
3466 }
3467
3468 UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D);
3469 SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation();
3470
3471 NestedNameSpecifierLoc QualifierLoc
3472 = SemaRef.SubstNestedNameSpecifierLoc(NNS: D->getQualifierLoc(),
3473 TemplateArgs);
3474 if (!QualifierLoc)
3475 return nullptr;
3476
3477 CXXScopeSpec SS;
3478 SS.Adopt(Other: QualifierLoc);
3479
3480 DeclarationNameInfo NameInfo
3481 = SemaRef.SubstDeclarationNameInfo(NameInfo: D->getNameInfo(), TemplateArgs);
3482
3483 // Produce a pack expansion only if we're not instantiating a particular
3484 // slice of a pack expansion.
3485 bool InstantiatingSlice = D->getEllipsisLoc().isValid() &&
3486 SemaRef.ArgumentPackSubstitutionIndex != -1;
3487 SourceLocation EllipsisLoc =
3488 InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc();
3489
3490 bool IsUsingIfExists = D->template hasAttr<UsingIfExistsAttr>();
3491 NamedDecl *UD = SemaRef.BuildUsingDeclaration(
3492 /*Scope*/ S: nullptr, AS: D->getAccess(), UsingLoc: D->getUsingLoc(),
3493 /*HasTypename*/ HasTypenameKeyword: TD, TypenameLoc, SS, NameInfo, EllipsisLoc,
3494 AttrList: ParsedAttributesView(),
3495 /*IsInstantiation*/ true, IsUsingIfExists);
3496 if (UD) {
3497 SemaRef.InstantiateAttrs(TemplateArgs, Tmpl: D, New: UD);
3498 SemaRef.Context.setInstantiatedFromUsingDecl(Inst: UD, Pattern: D);
3499 }
3500
3501 return UD;
3502}
3503
3504Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
3505 UnresolvedUsingTypenameDecl *D) {
3506 return instantiateUnresolvedUsingDecl(D);
3507}
3508
3509Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
3510 UnresolvedUsingValueDecl *D) {
3511 return instantiateUnresolvedUsingDecl(D);
3512}
3513
3514Decl *TemplateDeclInstantiator::VisitUnresolvedUsingIfExistsDecl(
3515 UnresolvedUsingIfExistsDecl *D) {
3516 llvm_unreachable("referring to unresolved decl out of UsingShadowDecl");
3517}
3518
3519Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) {
3520 SmallVector<NamedDecl*, 8> Expansions;
3521 for (auto *UD : D->expansions()) {
3522 if (NamedDecl *NewUD =
3523 SemaRef.FindInstantiatedDecl(Loc: D->getLocation(), D: UD, TemplateArgs))
3524 Expansions.push_back(Elt: NewUD);
3525 else
3526 return nullptr;
3527 }
3528
3529 auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
3530 if (isDeclWithinFunction(D))
3531 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst: NewD);
3532 return NewD;
3533}
3534
3535Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
3536 OMPThreadPrivateDecl *D) {
3537 SmallVector<Expr *, 5> Vars;
3538 for (auto *I : D->varlists()) {
3539 Expr *Var = SemaRef.SubstExpr(E: I, TemplateArgs).get();
3540 assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr");
3541 Vars.push_back(Elt: Var);
3542 }
3543
3544 OMPThreadPrivateDecl *TD =
3545 SemaRef.CheckOMPThreadPrivateDecl(Loc: D->getLocation(), VarList: Vars);
3546
3547 TD->setAccess(AS_public);
3548 Owner->addDecl(TD);
3549
3550 return TD;
3551}
3552
3553Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
3554 SmallVector<Expr *, 5> Vars;
3555 for (auto *I : D->varlists()) {
3556 Expr *Var = SemaRef.SubstExpr(E: I, TemplateArgs).get();
3557 assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr");
3558 Vars.push_back(Elt: Var);
3559 }
3560 SmallVector<OMPClause *, 4> Clauses;
3561 // Copy map clauses from the original mapper.
3562 for (OMPClause *C : D->clauselists()) {
3563 OMPClause *IC = nullptr;
3564 if (auto *AC = dyn_cast<OMPAllocatorClause>(Val: C)) {
3565 ExprResult NewE = SemaRef.SubstExpr(E: AC->getAllocator(), TemplateArgs);
3566 if (!NewE.isUsable())
3567 continue;
3568 IC = SemaRef.ActOnOpenMPAllocatorClause(
3569 Allocator: NewE.get(), StartLoc: AC->getBeginLoc(), LParenLoc: AC->getLParenLoc(), EndLoc: AC->getEndLoc());
3570 } else if (auto *AC = dyn_cast<OMPAlignClause>(Val: C)) {
3571 ExprResult NewE = SemaRef.SubstExpr(E: AC->getAlignment(), TemplateArgs);
3572 if (!NewE.isUsable())
3573 continue;
3574 IC = SemaRef.ActOnOpenMPAlignClause(Alignment: NewE.get(), StartLoc: AC->getBeginLoc(),
3575 LParenLoc: AC->getLParenLoc(), EndLoc: AC->getEndLoc());
3576 // If align clause value ends up being invalid, this can end up null.
3577 if (!IC)
3578 continue;
3579 }
3580 Clauses.push_back(Elt: IC);
3581 }
3582
3583 Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective(
3584 Loc: D->getLocation(), VarList: Vars, Clauses, Owner);
3585 if (Res.get().isNull())
3586 return nullptr;
3587 return Res.get().getSingleDecl();
3588}
3589
3590Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) {
3591 llvm_unreachable(
3592 "Requires directive cannot be instantiated within a dependent context");
3593}
3594
3595Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
3596 OMPDeclareReductionDecl *D) {
3597 // Instantiate type and check if it is allowed.
3598 const bool RequiresInstantiation =
3599 D->getType()->isDependentType() ||
3600 D->getType()->isInstantiationDependentType() ||
3601 D->getType()->containsUnexpandedParameterPack();
3602 QualType SubstReductionType;
3603 if (RequiresInstantiation) {
3604 SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType(
3605 TyLoc: D->getLocation(),
3606 ParsedType: ParsedType::make(P: SemaRef.SubstType(
3607 D->getType(), TemplateArgs, D->getLocation(), DeclarationName())));
3608 } else {
3609 SubstReductionType = D->getType();
3610 }
3611 if (SubstReductionType.isNull())
3612 return nullptr;
3613 Expr *Combiner = D->getCombiner();
3614 Expr *Init = D->getInitializer();
3615 bool IsCorrect = true;
3616 // Create instantiated copy.
3617 std::pair<QualType, SourceLocation> ReductionTypes[] = {
3618 std::make_pair(SubstReductionType, D->getLocation())};
3619 auto *PrevDeclInScope = D->getPrevDeclInScope();
3620 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3621 PrevDeclInScope = cast<OMPDeclareReductionDecl>(
3622 Val: SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3623 ->get<Decl *>());
3624 }
3625 auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart(
3626 /*S=*/nullptr, DC: Owner, Name: D->getDeclName(), ReductionTypes: ReductionTypes, AS: D->getAccess(),
3627 PrevDeclInScope);
3628 auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl());
3629 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst: NewDRD);
3630 Expr *SubstCombiner = nullptr;
3631 Expr *SubstInitializer = nullptr;
3632 // Combiners instantiation sequence.
3633 if (Combiner) {
3634 SemaRef.ActOnOpenMPDeclareReductionCombinerStart(
3635 /*S=*/nullptr, D: NewDRD);
3636 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3637 D: cast<DeclRefExpr>(Val: D->getCombinerIn())->getDecl(),
3638 Inst: cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl());
3639 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3640 D: cast<DeclRefExpr>(Val: D->getCombinerOut())->getDecl(),
3641 Inst: cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl());
3642 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Val: Owner);
3643 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3644 ThisContext);
3645 SubstCombiner = SemaRef.SubstExpr(E: Combiner, TemplateArgs).get();
3646 SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(D: NewDRD, Combiner: SubstCombiner);
3647 }
3648 // Initializers instantiation sequence.
3649 if (Init) {
3650 VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart(
3651 /*S=*/nullptr, D: NewDRD);
3652 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3653 D: cast<DeclRefExpr>(Val: D->getInitOrig())->getDecl(),
3654 Inst: cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl());
3655 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3656 D: cast<DeclRefExpr>(Val: D->getInitPriv())->getDecl(),
3657 Inst: cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl());
3658 if (D->getInitializerKind() == OMPDeclareReductionInitKind::Call) {
3659 SubstInitializer = SemaRef.SubstExpr(E: Init, TemplateArgs).get();
3660 } else {
3661 auto *OldPrivParm =
3662 cast<VarDecl>(Val: cast<DeclRefExpr>(Val: D->getInitPriv())->getDecl());
3663 IsCorrect = IsCorrect && OldPrivParm->hasInit();
3664 if (IsCorrect)
3665 SemaRef.InstantiateVariableInitializer(Var: OmpPrivParm, OldVar: OldPrivParm,
3666 TemplateArgs);
3667 }
3668 SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(D: NewDRD, Initializer: SubstInitializer,
3669 OmpPrivParm);
3670 }
3671 IsCorrect = IsCorrect && SubstCombiner &&
3672 (!Init ||
3673 (D->getInitializerKind() == OMPDeclareReductionInitKind::Call &&
3674 SubstInitializer) ||
3675 (D->getInitializerKind() != OMPDeclareReductionInitKind::Call &&
3676 !SubstInitializer));
3677
3678 (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(
3679 /*S=*/nullptr, DeclReductions: DRD, IsValid: IsCorrect && !D->isInvalidDecl());
3680
3681 return NewDRD;
3682}
3683
3684Decl *
3685TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
3686 // Instantiate type and check if it is allowed.
3687 const bool RequiresInstantiation =
3688 D->getType()->isDependentType() ||
3689 D->getType()->isInstantiationDependentType() ||
3690 D->getType()->containsUnexpandedParameterPack();
3691 QualType SubstMapperTy;
3692 DeclarationName VN = D->getVarName();
3693 if (RequiresInstantiation) {
3694 SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType(
3695 TyLoc: D->getLocation(),
3696 ParsedType: ParsedType::make(P: SemaRef.SubstType(D->getType(), TemplateArgs,
3697 D->getLocation(), VN)));
3698 } else {
3699 SubstMapperTy = D->getType();
3700 }
3701 if (SubstMapperTy.isNull())
3702 return nullptr;
3703 // Create an instantiated copy of mapper.
3704 auto *PrevDeclInScope = D->getPrevDeclInScope();
3705 if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
3706 PrevDeclInScope = cast<OMPDeclareMapperDecl>(
3707 Val: SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
3708 ->get<Decl *>());
3709 }
3710 bool IsCorrect = true;
3711 SmallVector<OMPClause *, 6> Clauses;
3712 // Instantiate the mapper variable.
3713 DeclarationNameInfo DirName;
3714 SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName,
3715 /*S=*/nullptr,
3716 (*D->clauselist_begin())->getBeginLoc());
3717 ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl(
3718 /*S=*/nullptr, MapperType: SubstMapperTy, StartLoc: D->getLocation(), VN);
3719 SemaRef.CurrentInstantiationScope->InstantiatedLocal(
3720 cast<DeclRefExpr>(Val: D->getMapperVarRef())->getDecl(),
3721 cast<DeclRefExpr>(Val: MapperVarRef.get())->getDecl());
3722 auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Val: Owner);
3723 Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
3724 ThisContext);
3725 // Instantiate map clauses.
3726 for (OMPClause *C : D->clauselists()) {
3727 auto *OldC = cast<OMPMapClause>(Val: C);
3728 SmallVector<Expr *, 4> NewVars;
3729 for (Expr *OE : OldC->varlists()) {
3730 Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get();
3731 if (!NE) {
3732 IsCorrect = false;
3733 break;
3734 }
3735 NewVars.push_back(NE);
3736 }
3737 if (!IsCorrect)
3738 break;
3739 NestedNameSpecifierLoc NewQualifierLoc =
3740 SemaRef.SubstNestedNameSpecifierLoc(NNS: OldC->getMapperQualifierLoc(),
3741 TemplateArgs);
3742 CXXScopeSpec SS;
3743 SS.Adopt(Other: NewQualifierLoc);
3744 DeclarationNameInfo NewNameInfo =
3745 SemaRef.SubstDeclarationNameInfo(NameInfo: OldC->getMapperIdInfo(), TemplateArgs);
3746 OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(),
3747 OldC->getEndLoc());
3748 OMPClause *NewC = SemaRef.ActOnOpenMPMapClause(
3749 IteratorModifier: OldC->getIteratorModifier(), MapTypeModifiers: OldC->getMapTypeModifiers(),
3750 MapTypeModifiersLoc: OldC->getMapTypeModifiersLoc(), MapperIdScopeSpec&: SS, MapperId&: NewNameInfo, MapType: OldC->getMapType(),
3751 IsMapTypeImplicit: OldC->isImplicitMapType(), MapLoc: OldC->getMapLoc(), ColonLoc: OldC->getColonLoc(),
3752 VarList: NewVars, Locs);
3753 Clauses.push_back(Elt: NewC);
3754 }
3755 SemaRef.EndOpenMPDSABlock(CurDirective: nullptr);
3756 if (!IsCorrect)
3757 return nullptr;
3758 Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective(
3759 /*S=*/nullptr, DC: Owner, Name: D->getDeclName(), MapperType: SubstMapperTy, StartLoc: D->getLocation(),
3760 VN, AS: D->getAccess(), MapperVarRef: MapperVarRef.get(), Clauses, PrevDeclInScope);
3761 Decl *NewDMD = DG.get().getSingleDecl();
3762 SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD);
3763 return NewDMD;
3764}
3765
3766Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
3767 OMPCapturedExprDecl * /*D*/) {
3768 llvm_unreachable("Should not be met in templates");
3769}
3770
3771Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
3772 return VisitFunctionDecl(D, TemplateParams: nullptr);
3773}
3774
3775Decl *
3776TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
3777 Decl *Inst = VisitFunctionDecl(D, nullptr);
3778 if (Inst && !D->getDescribedFunctionTemplate())
3779 Owner->addDecl(D: Inst);
3780 return Inst;
3781}
3782
3783Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
3784 return VisitCXXMethodDecl(D, TemplateParams: nullptr);
3785}
3786
3787Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
3788 llvm_unreachable("There are only CXXRecordDecls in C++");
3789}
3790
3791Decl *
3792TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
3793 ClassTemplateSpecializationDecl *D) {
3794 // As a MS extension, we permit class-scope explicit specialization
3795 // of member class templates.
3796 ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
3797 assert(ClassTemplate->getDeclContext()->isRecord() &&
3798 D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
3799 "can only instantiate an explicit specialization "
3800 "for a member class template");
3801
3802 // Lookup the already-instantiated declaration in the instantiation
3803 // of the class template.
3804 ClassTemplateDecl *InstClassTemplate =
3805 cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl(
3806 Loc: D->getLocation(), D: ClassTemplate, TemplateArgs));
3807 if (!InstClassTemplate)
3808 return nullptr;
3809
3810 // Substitute into the template arguments of the class template explicit
3811 // specialization.
3812 TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
3813 castAs<TemplateSpecializationTypeLoc>();
3814 TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
3815 Loc.getRAngleLoc());
3816 SmallVector<TemplateArgumentLoc, 4> ArgLocs;
3817 for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
3818 ArgLocs.push_back(Elt: Loc.getArgLoc(i: I));
3819 if (SemaRef.SubstTemplateArguments(Args: ArgLocs, TemplateArgs, Outputs&: InstTemplateArgs))
3820 return nullptr;
3821
3822 // Check that the template argument list is well-formed for this
3823 // class template.
3824 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3825 if (SemaRef.CheckTemplateArgumentList(Template: InstClassTemplate, TemplateLoc: D->getLocation(),
3826 TemplateArgs&: InstTemplateArgs, PartialTemplateArgs: false,
3827 SugaredConverted, CanonicalConverted,
3828 /*UpdateArgsWithConversions=*/true))
3829 return nullptr;
3830
3831 // Figure out where to insert this class template explicit specialization
3832 // in the member template's set of class template explicit specializations.
3833 void *InsertPos = nullptr;
3834 ClassTemplateSpecializationDecl *PrevDecl =
3835 InstClassTemplate->findSpecialization(Args: CanonicalConverted, InsertPos);
3836
3837 // Check whether we've already seen a conflicting instantiation of this
3838 // declaration (for instance, if there was a prior implicit instantiation).
3839 bool Ignored;
3840 if (PrevDecl &&
3841 SemaRef.CheckSpecializationInstantiationRedecl(NewLoc: D->getLocation(),
3842 NewTSK: D->getSpecializationKind(),
3843 PrevDecl,
3844 PrevTSK: PrevDecl->getSpecializationKind(),
3845 PrevPtOfInstantiation: PrevDecl->getPointOfInstantiation(),
3846 SuppressNew&: Ignored))
3847 return nullptr;
3848
3849 // If PrevDecl was a definition and D is also a definition, diagnose.
3850 // This happens in cases like:
3851 //
3852 // template<typename T, typename U>
3853 // struct Outer {
3854 // template<typename X> struct Inner;
3855 // template<> struct Inner<T> {};
3856 // template<> struct Inner<U> {};
3857 // };
3858 //
3859 // Outer<int, int> outer; // error: the explicit specializations of Inner
3860 // // have the same signature.
3861 if (PrevDecl && PrevDecl->getDefinition() &&
3862 D->isThisDeclarationADefinition()) {
3863 SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
3864 SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
3865 diag::note_previous_definition);
3866 return nullptr;
3867 }
3868
3869 // Create the class template partial specialization declaration.
3870 ClassTemplateSpecializationDecl *InstD =
3871 ClassTemplateSpecializationDecl::Create(
3872 Context&: SemaRef.Context, TK: D->getTagKind(), DC: Owner, StartLoc: D->getBeginLoc(),
3873 IdLoc: D->getLocation(), SpecializedTemplate: InstClassTemplate, Args: CanonicalConverted, PrevDecl);
3874
3875 // Add this partial specialization to the set of class template partial
3876 // specializations.
3877 if (!PrevDecl)
3878 InstClassTemplate->AddSpecialization(D: InstD, InsertPos);
3879
3880 // Substitute the nested name specifier, if any.
3881 if (SubstQualifier(D, InstD))
3882 return nullptr;
3883
3884 // Build the canonical type that describes the converted template
3885 // arguments of the class template explicit specialization.
3886 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
3887 T: TemplateName(InstClassTemplate), Args: CanonicalConverted,
3888 Canon: SemaRef.Context.getRecordType(InstD));
3889
3890 // Build the fully-sugared type for this class template
3891 // specialization as the user wrote in the specialization
3892 // itself. This means that we'll pretty-print the type retrieved
3893 // from the specialization's declaration the way that the user
3894 // actually wrote the specialization, rather than formatting the
3895 // name based on the "canonical" representation used to store the
3896 // template arguments in the specialization.
3897 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
3898 T: TemplateName(InstClassTemplate), TLoc: D->getLocation(), Args: InstTemplateArgs,
3899 Canon: CanonType);
3900
3901 InstD->setAccess(D->getAccess());
3902 InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
3903 InstD->setSpecializationKind(D->getSpecializationKind());
3904 InstD->setTypeAsWritten(WrittenTy);
3905 InstD->setExternLoc(D->getExternLoc());
3906 InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
3907
3908 Owner->addDecl(InstD);
3909
3910 // Instantiate the members of the class-scope explicit specialization eagerly.
3911 // We don't have support for lazy instantiation of an explicit specialization
3912 // yet, and MSVC eagerly instantiates in this case.
3913 // FIXME: This is wrong in standard C++.
3914 if (D->isThisDeclarationADefinition() &&
3915 SemaRef.InstantiateClass(PointOfInstantiation: D->getLocation(), Instantiation: InstD, Pattern: D, TemplateArgs,
3916 TSK: TSK_ImplicitInstantiation,
3917 /*Complain=*/true))
3918 return nullptr;
3919
3920 return InstD;
3921}
3922
3923Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3924 VarTemplateSpecializationDecl *D) {
3925
3926 TemplateArgumentListInfo VarTemplateArgsInfo;
3927 VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
3928 assert(VarTemplate &&
3929 "A template specialization without specialized template?");
3930
3931 VarTemplateDecl *InstVarTemplate =
3932 cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl(
3933 Loc: D->getLocation(), D: VarTemplate, TemplateArgs));
3934 if (!InstVarTemplate)
3935 return nullptr;
3936
3937 // Substitute the current template arguments.
3938 if (const ASTTemplateArgumentListInfo *TemplateArgsInfo =
3939 D->getTemplateArgsInfo()) {
3940 VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo->getLAngleLoc());
3941 VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo->getRAngleLoc());
3942
3943 if (SemaRef.SubstTemplateArguments(Args: TemplateArgsInfo->arguments(),
3944 TemplateArgs, Outputs&: VarTemplateArgsInfo))
3945 return nullptr;
3946 }
3947
3948 // Check that the template argument list is well-formed for this template.
3949 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
3950 if (SemaRef.CheckTemplateArgumentList(Template: InstVarTemplate, TemplateLoc: D->getLocation(),
3951 TemplateArgs&: VarTemplateArgsInfo, PartialTemplateArgs: false,
3952 SugaredConverted, CanonicalConverted,
3953 /*UpdateArgsWithConversions=*/true))
3954 return nullptr;
3955
3956 // Check whether we've already seen a declaration of this specialization.
3957 void *InsertPos = nullptr;
3958 VarTemplateSpecializationDecl *PrevDecl =
3959 InstVarTemplate->findSpecialization(Args: CanonicalConverted, InsertPos);
3960
3961 // Check whether we've already seen a conflicting instantiation of this
3962 // declaration (for instance, if there was a prior implicit instantiation).
3963 bool Ignored;
3964 if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(
3965 NewLoc: D->getLocation(), NewTSK: D->getSpecializationKind(), PrevDecl,
3966 PrevTSK: PrevDecl->getSpecializationKind(),
3967 PrevPtOfInstantiation: PrevDecl->getPointOfInstantiation(), SuppressNew&: Ignored))
3968 return nullptr;
3969
3970 return VisitVarTemplateSpecializationDecl(
3971 InstVarTemplate, D, VarTemplateArgsInfo, CanonicalConverted, PrevDecl);
3972}
3973
3974Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
3975 VarTemplateDecl *VarTemplate, VarDecl *D,
3976 const TemplateArgumentListInfo &TemplateArgsInfo,
3977 ArrayRef<TemplateArgument> Converted,
3978 VarTemplateSpecializationDecl *PrevDecl) {
3979
3980 // Do substitution on the type of the declaration
3981 TypeSourceInfo *DI =
3982 SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
3983 D->getTypeSpecStartLoc(), D->getDeclName());
3984 if (!DI)
3985 return nullptr;
3986
3987 if (DI->getType()->isFunctionType()) {
3988 SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
3989 << D->isStaticDataMember() << DI->getType();
3990 return nullptr;
3991 }
3992
3993 // Build the instantiated declaration
3994 VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
3995 Context&: SemaRef.Context, DC: Owner, StartLoc: D->getInnerLocStart(), IdLoc: D->getLocation(),
3996 SpecializedTemplate: VarTemplate, T: DI->getType(), TInfo: DI, S: D->getStorageClass(), Args: Converted);
3997 Var->setTemplateArgsInfo(TemplateArgsInfo);
3998 if (!PrevDecl) {
3999 void *InsertPos = nullptr;
4000 VarTemplate->findSpecialization(Args: Converted, InsertPos);
4001 VarTemplate->AddSpecialization(D: Var, InsertPos);
4002 }
4003
4004 if (SemaRef.getLangOpts().OpenCL)
4005 SemaRef.deduceOpenCLAddressSpace(Var);
4006
4007 // Substitute the nested name specifier, if any.
4008 if (SubstQualifier(D, Var))
4009 return nullptr;
4010
4011 SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
4012 StartingScope, false, PrevDecl);
4013
4014 return Var;
4015}
4016
4017Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
4018 llvm_unreachable("@defs is not supported in Objective-C++");
4019}
4020
4021Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
4022 // FIXME: We need to be able to instantiate FriendTemplateDecls.
4023 unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
4024 L: DiagnosticsEngine::Error,
4025 FormatString: "cannot instantiate %0 yet");
4026 SemaRef.Diag(D->getLocation(), DiagID)
4027 << D->getDeclKindName();
4028
4029 return nullptr;
4030}
4031
4032Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) {
4033 llvm_unreachable("Concept definitions cannot reside inside a template");
4034}
4035
4036Decl *TemplateDeclInstantiator::VisitImplicitConceptSpecializationDecl(
4037 ImplicitConceptSpecializationDecl *D) {
4038 llvm_unreachable("Concept specializations cannot reside inside a template");
4039}
4040
4041Decl *
4042TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
4043 return RequiresExprBodyDecl::Create(C&: SemaRef.Context, DC: D->getDeclContext(),
4044 StartLoc: D->getBeginLoc());
4045}
4046
4047Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
4048 llvm_unreachable("Unexpected decl");
4049}
4050
4051Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
4052 const MultiLevelTemplateArgumentList &TemplateArgs) {
4053 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
4054 if (D->isInvalidDecl())
4055 return nullptr;
4056
4057 Decl *SubstD;
4058 runWithSufficientStackSpace(Loc: D->getLocation(), Fn: [&] {
4059 SubstD = Instantiator.Visit(D);
4060 });
4061 return SubstD;
4062}
4063
4064void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK,
4065 FunctionDecl *Orig, QualType &T,
4066 TypeSourceInfo *&TInfo,
4067 DeclarationNameInfo &NameInfo) {
4068 assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual);
4069
4070 // C++2a [class.compare.default]p3:
4071 // the return type is replaced with bool
4072 auto *FPT = T->castAs<FunctionProtoType>();
4073 T = SemaRef.Context.getFunctionType(
4074 ResultTy: SemaRef.Context.BoolTy, Args: FPT->getParamTypes(), EPI: FPT->getExtProtoInfo());
4075
4076 // Update the return type in the source info too. The most straightforward
4077 // way is to create new TypeSourceInfo for the new type. Use the location of
4078 // the '= default' as the location of the new type.
4079 //
4080 // FIXME: Set the correct return type when we initially transform the type,
4081 // rather than delaying it to now.
4082 TypeSourceInfo *NewTInfo =
4083 SemaRef.Context.getTrivialTypeSourceInfo(T, Loc: Orig->getEndLoc());
4084 auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>();
4085 assert(OldLoc && "type of function is not a function type?");
4086 auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>();
4087 for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I)
4088 NewLoc.setParam(I, OldLoc.getParam(I));
4089 TInfo = NewTInfo;
4090
4091 // and the declarator-id is replaced with operator==
4092 NameInfo.setName(
4093 SemaRef.Context.DeclarationNames.getCXXOperatorName(Op: OO_EqualEqual));
4094}
4095
4096FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
4097 FunctionDecl *Spaceship) {
4098 if (Spaceship->isInvalidDecl())
4099 return nullptr;
4100
4101 // C++2a [class.compare.default]p3:
4102 // an == operator function is declared implicitly [...] with the same
4103 // access and function-definition and in the same class scope as the
4104 // three-way comparison operator function
4105 MultiLevelTemplateArgumentList NoTemplateArgs;
4106 NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite);
4107 NoTemplateArgs.addOuterRetainedLevels(Num: RD->getTemplateDepth());
4108 TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs);
4109 Decl *R;
4110 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: Spaceship)) {
4111 R = Instantiator.VisitCXXMethodDecl(
4112 D: MD, /*TemplateParams=*/nullptr,
4113 FunctionRewriteKind: TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
4114 } else {
4115 assert(Spaceship->getFriendObjectKind() &&
4116 "defaulted spaceship is neither a member nor a friend");
4117
4118 R = Instantiator.VisitFunctionDecl(
4119 D: Spaceship, /*TemplateParams=*/nullptr,
4120 FunctionRewriteKind: TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
4121 if (!R)
4122 return nullptr;
4123
4124 FriendDecl *FD =
4125 FriendDecl::Create(C&: Context, DC: RD, L: Spaceship->getLocation(),
4126 Friend_: cast<NamedDecl>(Val: R), FriendL: Spaceship->getBeginLoc());
4127 FD->setAccess(AS_public);
4128 RD->addDecl(FD);
4129 }
4130 return cast_or_null<FunctionDecl>(Val: R);
4131}
4132
4133/// Instantiates a nested template parameter list in the current
4134/// instantiation context.
4135///
4136/// \param L The parameter list to instantiate
4137///
4138/// \returns NULL if there was an error
4139TemplateParameterList *
4140TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
4141 // Get errors for all the parameters before bailing out.
4142 bool Invalid = false;
4143
4144 unsigned N = L->size();
4145 typedef SmallVector<NamedDecl *, 8> ParamVector;
4146 ParamVector Params;
4147 Params.reserve(N);
4148 for (auto &P : *L) {
4149 NamedDecl *D = cast_or_null<NamedDecl>(Visit(P));
4150 Params.push_back(Elt: D);
4151 Invalid = Invalid || !D || D->isInvalidDecl();
4152 }
4153
4154 // Clean up if we had an error.
4155 if (Invalid)
4156 return nullptr;
4157
4158 Expr *InstRequiresClause = L->getRequiresClause();
4159
4160 TemplateParameterList *InstL
4161 = TemplateParameterList::Create(C: SemaRef.Context, TemplateLoc: L->getTemplateLoc(),
4162 LAngleLoc: L->getLAngleLoc(), Params,
4163 RAngleLoc: L->getRAngleLoc(), RequiresClause: InstRequiresClause);
4164 return InstL;
4165}
4166
4167TemplateParameterList *
4168Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
4169 const MultiLevelTemplateArgumentList &TemplateArgs,
4170 bool EvaluateConstraints) {
4171 TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
4172 Instantiator.setEvaluateConstraints(EvaluateConstraints);
4173 return Instantiator.SubstTemplateParams(L: Params);
4174}
4175
4176/// Instantiate the declaration of a class template partial
4177/// specialization.
4178///
4179/// \param ClassTemplate the (instantiated) class template that is partially
4180// specialized by the instantiation of \p PartialSpec.
4181///
4182/// \param PartialSpec the (uninstantiated) class template partial
4183/// specialization that we are instantiating.
4184///
4185/// \returns The instantiated partial specialization, if successful; otherwise,
4186/// NULL to indicate an error.
4187ClassTemplatePartialSpecializationDecl *
4188TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
4189 ClassTemplateDecl *ClassTemplate,
4190 ClassTemplatePartialSpecializationDecl *PartialSpec) {
4191 // Create a local instantiation scope for this class template partial
4192 // specialization, which will contain the instantiations of the template
4193 // parameters.
4194 LocalInstantiationScope Scope(SemaRef);
4195
4196 // Substitute into the template parameters of the class template partial
4197 // specialization.
4198 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4199 TemplateParameterList *InstParams = SubstTemplateParams(L: TempParams);
4200 if (!InstParams)
4201 return nullptr;
4202
4203 // Substitute into the template arguments of the class template partial
4204 // specialization.
4205 const ASTTemplateArgumentListInfo *TemplArgInfo
4206 = PartialSpec->getTemplateArgsAsWritten();
4207 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4208 TemplArgInfo->RAngleLoc);
4209 if (SemaRef.SubstTemplateArguments(Args: TemplArgInfo->arguments(), TemplateArgs,
4210 Outputs&: InstTemplateArgs))
4211 return nullptr;
4212
4213 // Check that the template argument list is well-formed for this
4214 // class template.
4215 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4216 if (SemaRef.CheckTemplateArgumentList(
4217 Template: ClassTemplate, TemplateLoc: PartialSpec->getLocation(), TemplateArgs&: InstTemplateArgs,
4218 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted))
4219 return nullptr;
4220
4221 // Check these arguments are valid for a template partial specialization.
4222 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4223 Loc: PartialSpec->getLocation(), PrimaryTemplate: ClassTemplate, NumExplicitArgs: InstTemplateArgs.size(),
4224 Args: CanonicalConverted))
4225 return nullptr;
4226
4227 // Figure out where to insert this class template partial specialization
4228 // in the member template's set of class template partial specializations.
4229 void *InsertPos = nullptr;
4230 ClassTemplateSpecializationDecl *PrevDecl =
4231 ClassTemplate->findPartialSpecialization(Args: CanonicalConverted, TPL: InstParams,
4232 InsertPos);
4233
4234 // Build the canonical type that describes the converted template
4235 // arguments of the class template partial specialization.
4236 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4237 T: TemplateName(ClassTemplate), Args: CanonicalConverted);
4238
4239 // Build the fully-sugared type for this class template
4240 // specialization as the user wrote in the specialization
4241 // itself. This means that we'll pretty-print the type retrieved
4242 // from the specialization's declaration the way that the user
4243 // actually wrote the specialization, rather than formatting the
4244 // name based on the "canonical" representation used to store the
4245 // template arguments in the specialization.
4246 TypeSourceInfo *WrittenTy
4247 = SemaRef.Context.getTemplateSpecializationTypeInfo(
4248 T: TemplateName(ClassTemplate),
4249 TLoc: PartialSpec->getLocation(),
4250 Args: InstTemplateArgs,
4251 Canon: CanonType);
4252
4253 if (PrevDecl) {
4254 // We've already seen a partial specialization with the same template
4255 // parameters and template arguments. This can happen, for example, when
4256 // substituting the outer template arguments ends up causing two
4257 // class template partial specializations of a member class template
4258 // to have identical forms, e.g.,
4259 //
4260 // template<typename T, typename U>
4261 // struct Outer {
4262 // template<typename X, typename Y> struct Inner;
4263 // template<typename Y> struct Inner<T, Y>;
4264 // template<typename Y> struct Inner<U, Y>;
4265 // };
4266 //
4267 // Outer<int, int> outer; // error: the partial specializations of Inner
4268 // // have the same signature.
4269 SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
4270 << WrittenTy->getType();
4271 SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
4272 << SemaRef.Context.getTypeDeclType(PrevDecl);
4273 return nullptr;
4274 }
4275
4276
4277 // Create the class template partial specialization declaration.
4278 ClassTemplatePartialSpecializationDecl *InstPartialSpec =
4279 ClassTemplatePartialSpecializationDecl::Create(
4280 Context&: SemaRef.Context, TK: PartialSpec->getTagKind(), DC: Owner,
4281 StartLoc: PartialSpec->getBeginLoc(), IdLoc: PartialSpec->getLocation(), Params: InstParams,
4282 SpecializedTemplate: ClassTemplate, Args: CanonicalConverted, ArgInfos: InstTemplateArgs, CanonInjectedType: CanonType,
4283 PrevDecl: nullptr);
4284 // Substitute the nested name specifier, if any.
4285 if (SubstQualifier(PartialSpec, InstPartialSpec))
4286 return nullptr;
4287
4288 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4289 InstPartialSpec->setTypeAsWritten(WrittenTy);
4290
4291 // Check the completed partial specialization.
4292 SemaRef.CheckTemplatePartialSpecialization(Partial: InstPartialSpec);
4293
4294 // Add this partial specialization to the set of class template partial
4295 // specializations.
4296 ClassTemplate->AddPartialSpecialization(D: InstPartialSpec,
4297 /*InsertPos=*/nullptr);
4298 return InstPartialSpec;
4299}
4300
4301/// Instantiate the declaration of a variable template partial
4302/// specialization.
4303///
4304/// \param VarTemplate the (instantiated) variable template that is partially
4305/// specialized by the instantiation of \p PartialSpec.
4306///
4307/// \param PartialSpec the (uninstantiated) variable template partial
4308/// specialization that we are instantiating.
4309///
4310/// \returns The instantiated partial specialization, if successful; otherwise,
4311/// NULL to indicate an error.
4312VarTemplatePartialSpecializationDecl *
4313TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
4314 VarTemplateDecl *VarTemplate,
4315 VarTemplatePartialSpecializationDecl *PartialSpec) {
4316 // Create a local instantiation scope for this variable template partial
4317 // specialization, which will contain the instantiations of the template
4318 // parameters.
4319 LocalInstantiationScope Scope(SemaRef);
4320
4321 // Substitute into the template parameters of the variable template partial
4322 // specialization.
4323 TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
4324 TemplateParameterList *InstParams = SubstTemplateParams(L: TempParams);
4325 if (!InstParams)
4326 return nullptr;
4327
4328 // Substitute into the template arguments of the variable template partial
4329 // specialization.
4330 const ASTTemplateArgumentListInfo *TemplArgInfo
4331 = PartialSpec->getTemplateArgsAsWritten();
4332 TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
4333 TemplArgInfo->RAngleLoc);
4334 if (SemaRef.SubstTemplateArguments(Args: TemplArgInfo->arguments(), TemplateArgs,
4335 Outputs&: InstTemplateArgs))
4336 return nullptr;
4337
4338 // Check that the template argument list is well-formed for this
4339 // class template.
4340 SmallVector<TemplateArgument, 4> SugaredConverted, CanonicalConverted;
4341 if (SemaRef.CheckTemplateArgumentList(
4342 Template: VarTemplate, TemplateLoc: PartialSpec->getLocation(), TemplateArgs&: InstTemplateArgs,
4343 /*PartialTemplateArgs=*/false, SugaredConverted, CanonicalConverted))
4344 return nullptr;
4345
4346 // Check these arguments are valid for a template partial specialization.
4347 if (SemaRef.CheckTemplatePartialSpecializationArgs(
4348 Loc: PartialSpec->getLocation(), PrimaryTemplate: VarTemplate, NumExplicitArgs: InstTemplateArgs.size(),
4349 Args: CanonicalConverted))
4350 return nullptr;
4351
4352 // Figure out where to insert this variable template partial specialization
4353 // in the member template's set of variable template partial specializations.
4354 void *InsertPos = nullptr;
4355 VarTemplateSpecializationDecl *PrevDecl =
4356 VarTemplate->findPartialSpecialization(Args: CanonicalConverted, TPL: InstParams,
4357 InsertPos);
4358
4359 // Build the canonical type that describes the converted template
4360 // arguments of the variable template partial specialization.
4361 QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
4362 T: TemplateName(VarTemplate), Args: CanonicalConverted);
4363
4364 // Build the fully-sugared type for this variable template
4365 // specialization as the user wrote in the specialization
4366 // itself. This means that we'll pretty-print the type retrieved
4367 // from the specialization's declaration the way that the user
4368 // actually wrote the specialization, rather than formatting the
4369 // name based on the "canonical" representation used to store the
4370 // template arguments in the specialization.
4371 TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
4372 T: TemplateName(VarTemplate), TLoc: PartialSpec->getLocation(), Args: InstTemplateArgs,
4373 Canon: CanonType);
4374
4375 if (PrevDecl) {
4376 // We've already seen a partial specialization with the same template
4377 // parameters and template arguments. This can happen, for example, when
4378 // substituting the outer template arguments ends up causing two
4379 // variable template partial specializations of a member variable template
4380 // to have identical forms, e.g.,
4381 //
4382 // template<typename T, typename U>
4383 // struct Outer {
4384 // template<typename X, typename Y> pair<X,Y> p;
4385 // template<typename Y> pair<T, Y> p;
4386 // template<typename Y> pair<U, Y> p;
4387 // };
4388 //
4389 // Outer<int, int> outer; // error: the partial specializations of Inner
4390 // // have the same signature.
4391 SemaRef.Diag(PartialSpec->getLocation(),
4392 diag::err_var_partial_spec_redeclared)
4393 << WrittenTy->getType();
4394 SemaRef.Diag(PrevDecl->getLocation(),
4395 diag::note_var_prev_partial_spec_here);
4396 return nullptr;
4397 }
4398
4399 // Do substitution on the type of the declaration
4400 TypeSourceInfo *DI = SemaRef.SubstType(
4401 PartialSpec->getTypeSourceInfo(), TemplateArgs,
4402 PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
4403 if (!DI)
4404 return nullptr;
4405
4406 if (DI->getType()->isFunctionType()) {
4407 SemaRef.Diag(PartialSpec->getLocation(),
4408 diag::err_variable_instantiates_to_function)
4409 << PartialSpec->isStaticDataMember() << DI->getType();
4410 return nullptr;
4411 }
4412
4413 // Create the variable template partial specialization declaration.
4414 VarTemplatePartialSpecializationDecl *InstPartialSpec =
4415 VarTemplatePartialSpecializationDecl::Create(
4416 Context&: SemaRef.Context, DC: Owner, StartLoc: PartialSpec->getInnerLocStart(),
4417 IdLoc: PartialSpec->getLocation(), Params: InstParams, SpecializedTemplate: VarTemplate, T: DI->getType(),
4418 TInfo: DI, S: PartialSpec->getStorageClass(), Args: CanonicalConverted,
4419 ArgInfos: InstTemplateArgs);
4420
4421 // Substitute the nested name specifier, if any.
4422 if (SubstQualifier(PartialSpec, InstPartialSpec))
4423 return nullptr;
4424
4425 InstPartialSpec->setInstantiatedFromMember(PartialSpec);
4426 InstPartialSpec->setTypeAsWritten(WrittenTy);
4427
4428 // Check the completed partial specialization.
4429 SemaRef.CheckTemplatePartialSpecialization(Partial: InstPartialSpec);
4430
4431 // Add this partial specialization to the set of variable template partial
4432 // specializations. The instantiation of the initializer is not necessary.
4433 VarTemplate->AddPartialSpecialization(D: InstPartialSpec, /*InsertPos=*/nullptr);
4434
4435 SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
4436 LateAttrs, Owner, StartingScope);
4437
4438 return InstPartialSpec;
4439}
4440
4441TypeSourceInfo*
4442TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
4443 SmallVectorImpl<ParmVarDecl *> &Params) {
4444 TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
4445 assert(OldTInfo && "substituting function without type source info");
4446 assert(Params.empty() && "parameter vector is non-empty at start");
4447
4448 CXXRecordDecl *ThisContext = nullptr;
4449 Qualifiers ThisTypeQuals;
4450 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) {
4451 ThisContext = cast<CXXRecordDecl>(Val: Owner);
4452 ThisTypeQuals = Method->getFunctionObjectParameterType().getQualifiers();
4453 }
4454
4455 TypeSourceInfo *NewTInfo = SemaRef.SubstFunctionDeclType(
4456 T: OldTInfo, TemplateArgs, Loc: D->getTypeSpecStartLoc(), Entity: D->getDeclName(),
4457 ThisContext, ThisTypeQuals, EvaluateConstraints);
4458 if (!NewTInfo)
4459 return nullptr;
4460
4461 TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
4462 if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
4463 if (NewTInfo != OldTInfo) {
4464 // Get parameters from the new type info.
4465 TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
4466 FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
4467 unsigned NewIdx = 0;
4468 for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
4469 OldIdx != NumOldParams; ++OldIdx) {
4470 ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
4471 if (!OldParam)
4472 return nullptr;
4473
4474 LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
4475
4476 std::optional<unsigned> NumArgumentsInExpansion;
4477 if (OldParam->isParameterPack())
4478 NumArgumentsInExpansion =
4479 SemaRef.getNumArgumentsInExpansion(T: OldParam->getType(),
4480 TemplateArgs);
4481 if (!NumArgumentsInExpansion) {
4482 // Simple case: normal parameter, or a parameter pack that's
4483 // instantiated to a (still-dependent) parameter pack.
4484 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4485 Params.push_back(Elt: NewParam);
4486 Scope->InstantiatedLocal(OldParam, NewParam);
4487 } else {
4488 // Parameter pack expansion: make the instantiation an argument pack.
4489 Scope->MakeInstantiatedLocalArgPack(OldParam);
4490 for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
4491 ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
4492 Params.push_back(Elt: NewParam);
4493 Scope->InstantiatedLocalPackArg(OldParam, NewParam);
4494 }
4495 }
4496 }
4497 } else {
4498 // The function type itself was not dependent and therefore no
4499 // substitution occurred. However, we still need to instantiate
4500 // the function parameters themselves.
4501 const FunctionProtoType *OldProto =
4502 cast<FunctionProtoType>(OldProtoLoc.getType());
4503 for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
4504 ++i) {
4505 ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
4506 if (!OldParam) {
4507 Params.push_back(Elt: SemaRef.BuildParmVarDeclForTypedef(
4508 DC: D, Loc: D->getLocation(), T: OldProto->getParamType(i)));
4509 continue;
4510 }
4511
4512 ParmVarDecl *Parm =
4513 cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
4514 if (!Parm)
4515 return nullptr;
4516 Params.push_back(Elt: Parm);
4517 }
4518 }
4519 } else {
4520 // If the type of this function, after ignoring parentheses, is not
4521 // *directly* a function type, then we're instantiating a function that
4522 // was declared via a typedef or with attributes, e.g.,
4523 //
4524 // typedef int functype(int, int);
4525 // functype func;
4526 // int __cdecl meth(int, int);
4527 //
4528 // In this case, we'll just go instantiate the ParmVarDecls that we
4529 // synthesized in the method declaration.
4530 SmallVector<QualType, 4> ParamTypes;
4531 Sema::ExtParameterInfoBuilder ExtParamInfos;
4532 if (SemaRef.SubstParmTypes(Loc: D->getLocation(), Params: D->parameters(), ExtParamInfos: nullptr,
4533 TemplateArgs, ParamTypes, OutParams: &Params,
4534 ParamInfos&: ExtParamInfos))
4535 return nullptr;
4536 }
4537
4538 return NewTInfo;
4539}
4540
4541/// Introduce the instantiated local variables into the local
4542/// instantiation scope.
4543void Sema::addInstantiatedLocalVarsToScope(FunctionDecl *Function,
4544 const FunctionDecl *PatternDecl,
4545 LocalInstantiationScope &Scope) {
4546 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(Val: getFunctionScopes().back());
4547
4548 for (auto *decl : PatternDecl->decls()) {
4549 if (!isa<VarDecl>(decl) || isa<ParmVarDecl>(decl))
4550 continue;
4551
4552 VarDecl *VD = cast<VarDecl>(decl);
4553 IdentifierInfo *II = VD->getIdentifier();
4554
4555 auto it = llvm::find_if(Function->decls(), [&](Decl *inst) {
4556 VarDecl *InstVD = dyn_cast<VarDecl>(inst);
4557 return InstVD && InstVD->isLocalVarDecl() &&
4558 InstVD->getIdentifier() == II;
4559 });
4560
4561 if (it == Function->decls().end())
4562 continue;
4563
4564 Scope.InstantiatedLocal(VD, *it);
4565 LSI->addCapture(cast<VarDecl>(*it), /*isBlock=*/false, /*isByref=*/false,
4566 /*isNested=*/false, VD->getLocation(), SourceLocation(),
4567 VD->getType(), /*Invalid=*/false);
4568 }
4569}
4570
4571/// Introduce the instantiated function parameters into the local
4572/// instantiation scope, and set the parameter names to those used
4573/// in the template.
4574bool Sema::addInstantiatedParametersToScope(
4575 FunctionDecl *Function, const FunctionDecl *PatternDecl,
4576 LocalInstantiationScope &Scope,
4577 const MultiLevelTemplateArgumentList &TemplateArgs) {
4578 unsigned FParamIdx = 0;
4579 for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
4580 const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(i: I);
4581 if (!PatternParam->isParameterPack()) {
4582 // Simple case: not a parameter pack.
4583 assert(FParamIdx < Function->getNumParams());
4584 ParmVarDecl *FunctionParam = Function->getParamDecl(i: FParamIdx);
4585 FunctionParam->setDeclName(PatternParam->getDeclName());
4586 // If the parameter's type is not dependent, update it to match the type
4587 // in the pattern. They can differ in top-level cv-qualifiers, and we want
4588 // the pattern's type here. If the type is dependent, they can't differ,
4589 // per core issue 1668. Substitute into the type from the pattern, in case
4590 // it's instantiation-dependent.
4591 // FIXME: Updating the type to work around this is at best fragile.
4592 if (!PatternDecl->getType()->isDependentType()) {
4593 QualType T = SubstType(PatternParam->getType(), TemplateArgs,
4594 FunctionParam->getLocation(),
4595 FunctionParam->getDeclName());
4596 if (T.isNull())
4597 return true;
4598 FunctionParam->setType(T);
4599 }
4600
4601 Scope.InstantiatedLocal(PatternParam, FunctionParam);
4602 ++FParamIdx;
4603 continue;
4604 }
4605
4606 // Expand the parameter pack.
4607 Scope.MakeInstantiatedLocalArgPack(PatternParam);
4608 std::optional<unsigned> NumArgumentsInExpansion =
4609 getNumArgumentsInExpansion(T: PatternParam->getType(), TemplateArgs);
4610 if (NumArgumentsInExpansion) {
4611 QualType PatternType =
4612 PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
4613 for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
4614 ParmVarDecl *FunctionParam = Function->getParamDecl(i: FParamIdx);
4615 FunctionParam->setDeclName(PatternParam->getDeclName());
4616 if (!PatternDecl->getType()->isDependentType()) {
4617 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, Arg);
4618 QualType T =
4619 SubstType(PatternType, TemplateArgs, FunctionParam->getLocation(),
4620 FunctionParam->getDeclName());
4621 if (T.isNull())
4622 return true;
4623 FunctionParam->setType(T);
4624 }
4625
4626 Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
4627 ++FParamIdx;
4628 }
4629 }
4630 }
4631
4632 return false;
4633}
4634
4635bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
4636 ParmVarDecl *Param) {
4637 assert(Param->hasUninstantiatedDefaultArg());
4638
4639 // Instantiate the expression.
4640 //
4641 // FIXME: Pass in a correct Pattern argument, otherwise
4642 // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4643 //
4644 // template<typename T>
4645 // struct A {
4646 // static int FooImpl();
4647 //
4648 // template<typename Tp>
4649 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4650 // // template argument list [[T], [Tp]], should be [[Tp]].
4651 // friend A<Tp> Foo(int a);
4652 // };
4653 //
4654 // template<typename T>
4655 // A<T> Foo(int a = A<T>::FooImpl());
4656 MultiLevelTemplateArgumentList TemplateArgs =
4657 getTemplateInstantiationArgs(D: FD, DC: FD->getLexicalDeclContext(),
4658 /*Final=*/false, /*Innermost=*/std::nullopt,
4659 /*RelativeToPrimary=*/true);
4660
4661 if (SubstDefaultArgument(Loc: CallLoc, Param, TemplateArgs, /*ForCallExpr*/ true))
4662 return true;
4663
4664 if (ASTMutationListener *L = getASTMutationListener())
4665 L->DefaultArgumentInstantiated(D: Param);
4666
4667 return false;
4668}
4669
4670void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
4671 FunctionDecl *Decl) {
4672 const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
4673 if (Proto->getExceptionSpecType() != EST_Uninstantiated)
4674 return;
4675
4676 InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
4677 InstantiatingTemplate::ExceptionSpecification());
4678 if (Inst.isInvalid()) {
4679 // We hit the instantiation depth limit. Clear the exception specification
4680 // so that our callers don't have to cope with EST_Uninstantiated.
4681 UpdateExceptionSpec(FD: Decl, ESI: EST_None);
4682 return;
4683 }
4684 if (Inst.isAlreadyInstantiating()) {
4685 // This exception specification indirectly depends on itself. Reject.
4686 // FIXME: Corresponding rule in the standard?
4687 Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl;
4688 UpdateExceptionSpec(FD: Decl, ESI: EST_None);
4689 return;
4690 }
4691
4692 // Enter the scope of this instantiation. We don't use
4693 // PushDeclContext because we don't have a scope.
4694 Sema::ContextRAII savedContext(*this, Decl);
4695 LocalInstantiationScope Scope(*this);
4696
4697 MultiLevelTemplateArgumentList TemplateArgs =
4698 getTemplateInstantiationArgs(D: Decl, DC: Decl->getLexicalDeclContext(),
4699 /*Final=*/false, /*Innermost=*/std::nullopt,
4700 /*RelativeToPrimary*/ true);
4701
4702 // FIXME: We can't use getTemplateInstantiationPattern(false) in general
4703 // here, because for a non-defining friend declaration in a class template,
4704 // we don't store enough information to map back to the friend declaration in
4705 // the template.
4706 FunctionDecl *Template = Proto->getExceptionSpecTemplate();
4707 if (addInstantiatedParametersToScope(Function: Decl, PatternDecl: Template, Scope, TemplateArgs)) {
4708 UpdateExceptionSpec(FD: Decl, ESI: EST_None);
4709 return;
4710 }
4711
4712 SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
4713 TemplateArgs);
4714}
4715
4716/// Initializes the common fields of an instantiation function
4717/// declaration (New) from the corresponding fields of its template (Tmpl).
4718///
4719/// \returns true if there was an error
4720bool
4721TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
4722 FunctionDecl *Tmpl) {
4723 New->setImplicit(Tmpl->isImplicit());
4724
4725 // Forward the mangling number from the template to the instantiated decl.
4726 SemaRef.Context.setManglingNumber(New,
4727 SemaRef.Context.getManglingNumber(Tmpl));
4728
4729 // If we are performing substituting explicitly-specified template arguments
4730 // or deduced template arguments into a function template and we reach this
4731 // point, we are now past the point where SFINAE applies and have committed
4732 // to keeping the new function template specialization. We therefore
4733 // convert the active template instantiation for the function template
4734 // into a template instantiation for this specific function template
4735 // specialization, which is not a SFINAE context, so that we diagnose any
4736 // further errors in the declaration itself.
4737 //
4738 // FIXME: This is a hack.
4739 typedef Sema::CodeSynthesisContext ActiveInstType;
4740 ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back();
4741 if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
4742 ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
4743 if (isa<FunctionTemplateDecl>(Val: ActiveInst.Entity)) {
4744 SemaRef.InstantiatingSpecializations.erase(
4745 V: {ActiveInst.Entity->getCanonicalDecl(), ActiveInst.Kind});
4746 atTemplateEnd(Callbacks&: SemaRef.TemplateInstCallbacks, TheSema: SemaRef, Inst: ActiveInst);
4747 ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
4748 ActiveInst.Entity = New;
4749 atTemplateBegin(Callbacks&: SemaRef.TemplateInstCallbacks, TheSema: SemaRef, Inst: ActiveInst);
4750 }
4751 }
4752
4753 const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
4754 assert(Proto && "Function template without prototype?");
4755
4756 if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
4757 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4758
4759 // DR1330: In C++11, defer instantiation of a non-trivial
4760 // exception specification.
4761 // DR1484: Local classes and their members are instantiated along with the
4762 // containing function.
4763 if (SemaRef.getLangOpts().CPlusPlus11 &&
4764 EPI.ExceptionSpec.Type != EST_None &&
4765 EPI.ExceptionSpec.Type != EST_DynamicNone &&
4766 EPI.ExceptionSpec.Type != EST_BasicNoexcept &&
4767 !Tmpl->isInLocalScopeForInstantiation()) {
4768 FunctionDecl *ExceptionSpecTemplate = Tmpl;
4769 if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
4770 ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
4771 ExceptionSpecificationType NewEST = EST_Uninstantiated;
4772 if (EPI.ExceptionSpec.Type == EST_Unevaluated)
4773 NewEST = EST_Unevaluated;
4774
4775 // Mark the function has having an uninstantiated exception specification.
4776 const FunctionProtoType *NewProto
4777 = New->getType()->getAs<FunctionProtoType>();
4778 assert(NewProto && "Template instantiation without function prototype?");
4779 EPI = NewProto->getExtProtoInfo();
4780 EPI.ExceptionSpec.Type = NewEST;
4781 EPI.ExceptionSpec.SourceDecl = New;
4782 EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
4783 New->setType(SemaRef.Context.getFunctionType(
4784 ResultTy: NewProto->getReturnType(), Args: NewProto->getParamTypes(), EPI));
4785 } else {
4786 Sema::ContextRAII SwitchContext(SemaRef, New);
4787 SemaRef.SubstExceptionSpec(New, Proto, Args: TemplateArgs);
4788 }
4789 }
4790
4791 // Get the definition. Leaves the variable unchanged if undefined.
4792 const FunctionDecl *Definition = Tmpl;
4793 Tmpl->isDefined(Definition);
4794
4795 SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
4796 LateAttrs, StartingScope);
4797
4798 return false;
4799}
4800
4801/// Initializes common fields of an instantiated method
4802/// declaration (New) from the corresponding fields of its template
4803/// (Tmpl).
4804///
4805/// \returns true if there was an error
4806bool
4807TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
4808 CXXMethodDecl *Tmpl) {
4809 if (InitFunctionInstantiation(New, Tmpl))
4810 return true;
4811
4812 if (isa<CXXDestructorDecl>(Val: New) && SemaRef.getLangOpts().CPlusPlus11)
4813 SemaRef.AdjustDestructorExceptionSpec(Destructor: cast<CXXDestructorDecl>(Val: New));
4814
4815 New->setAccess(Tmpl->getAccess());
4816 if (Tmpl->isVirtualAsWritten())
4817 New->setVirtualAsWritten(true);
4818
4819 // FIXME: New needs a pointer to Tmpl
4820 return false;
4821}
4822
4823bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New,
4824 FunctionDecl *Tmpl) {
4825 // Transfer across any unqualified lookups.
4826 if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) {
4827 SmallVector<DeclAccessPair, 32> Lookups;
4828 Lookups.reserve(N: DFI->getUnqualifiedLookups().size());
4829 bool AnyChanged = false;
4830 for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) {
4831 NamedDecl *D = SemaRef.FindInstantiatedDecl(Loc: New->getLocation(),
4832 D: DA.getDecl(), TemplateArgs);
4833 if (!D)
4834 return true;
4835 AnyChanged |= (D != DA.getDecl());
4836 Lookups.push_back(Elt: DeclAccessPair::make(D, AS: DA.getAccess()));
4837 }
4838
4839 // It's unlikely that substitution will change any declarations. Don't
4840 // store an unnecessary copy in that case.
4841 New->setDefaultedFunctionInfo(
4842 AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create(
4843 Context&: SemaRef.Context, Lookups)
4844 : DFI);
4845 }
4846
4847 SemaRef.SetDeclDefaulted(dcl: New, DefaultLoc: Tmpl->getLocation());
4848 return false;
4849}
4850
4851/// Instantiate (or find existing instantiation of) a function template with a
4852/// given set of template arguments.
4853///
4854/// Usually this should not be used, and template argument deduction should be
4855/// used in its place.
4856FunctionDecl *
4857Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
4858 const TemplateArgumentList *Args,
4859 SourceLocation Loc) {
4860 FunctionDecl *FD = FTD->getTemplatedDecl();
4861
4862 sema::TemplateDeductionInfo Info(Loc);
4863 InstantiatingTemplate Inst(
4864 *this, Loc, FTD, Args->asArray(),
4865 CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
4866 if (Inst.isInvalid())
4867 return nullptr;
4868
4869 ContextRAII SavedContext(*this, FD);
4870 MultiLevelTemplateArgumentList MArgs(FTD, Args->asArray(),
4871 /*Final=*/false);
4872
4873 return cast_or_null<FunctionDecl>(SubstDecl(D: FD, Owner: FD->getParent(), TemplateArgs: MArgs));
4874}
4875
4876/// Instantiate the definition of the given function from its
4877/// template.
4878///
4879/// \param PointOfInstantiation the point at which the instantiation was
4880/// required. Note that this is not precisely a "point of instantiation"
4881/// for the function, but it's close.
4882///
4883/// \param Function the already-instantiated declaration of a
4884/// function template specialization or member function of a class template
4885/// specialization.
4886///
4887/// \param Recursive if true, recursively instantiates any functions that
4888/// are required by this instantiation.
4889///
4890/// \param DefinitionRequired if true, then we are performing an explicit
4891/// instantiation where the body of the function is required. Complain if
4892/// there is no such body.
4893void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
4894 FunctionDecl *Function,
4895 bool Recursive,
4896 bool DefinitionRequired,
4897 bool AtEndOfTU) {
4898 if (Function->isInvalidDecl() || isa<CXXDeductionGuideDecl>(Val: Function))
4899 return;
4900
4901 // Never instantiate an explicit specialization except if it is a class scope
4902 // explicit specialization.
4903 TemplateSpecializationKind TSK =
4904 Function->getTemplateSpecializationKindForInstantiation();
4905 if (TSK == TSK_ExplicitSpecialization)
4906 return;
4907
4908 // Never implicitly instantiate a builtin; we don't actually need a function
4909 // body.
4910 if (Function->getBuiltinID() && TSK == TSK_ImplicitInstantiation &&
4911 !DefinitionRequired)
4912 return;
4913
4914 // Don't instantiate a definition if we already have one.
4915 const FunctionDecl *ExistingDefn = nullptr;
4916 if (Function->isDefined(Definition&: ExistingDefn,
4917 /*CheckForPendingFriendDefinition=*/true)) {
4918 if (ExistingDefn->isThisDeclarationADefinition())
4919 return;
4920
4921 // If we're asked to instantiate a function whose body comes from an
4922 // instantiated friend declaration, attach the instantiated body to the
4923 // corresponding declaration of the function.
4924 assert(ExistingDefn->isThisDeclarationInstantiatedFromAFriendDefinition());
4925 Function = const_cast<FunctionDecl*>(ExistingDefn);
4926 }
4927
4928 // Find the function body that we'll be substituting.
4929 const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
4930 assert(PatternDecl && "instantiating a non-template");
4931
4932 const FunctionDecl *PatternDef = PatternDecl->getDefinition();
4933 Stmt *Pattern = nullptr;
4934 if (PatternDef) {
4935 Pattern = PatternDef->getBody(Definition&: PatternDef);
4936 PatternDecl = PatternDef;
4937 if (PatternDef->willHaveBody())
4938 PatternDef = nullptr;
4939 }
4940
4941 // FIXME: We need to track the instantiation stack in order to know which
4942 // definitions should be visible within this instantiation.
4943 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function,
4944 Function->getInstantiatedFromMemberFunction(),
4945 PatternDecl, PatternDef, TSK,
4946 /*Complain*/DefinitionRequired)) {
4947 if (DefinitionRequired)
4948 Function->setInvalidDecl();
4949 else if (TSK == TSK_ExplicitInstantiationDefinition ||
4950 (Function->isConstexpr() && !Recursive)) {
4951 // Try again at the end of the translation unit (at which point a
4952 // definition will be required).
4953 assert(!Recursive);
4954 Function->setInstantiationIsPending(true);
4955 PendingInstantiations.push_back(
4956 std::make_pair(x&: Function, y&: PointOfInstantiation));
4957 } else if (TSK == TSK_ImplicitInstantiation) {
4958 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
4959 !getSourceManager().isInSystemHeader(Loc: PatternDecl->getBeginLoc())) {
4960 Diag(PointOfInstantiation, diag::warn_func_template_missing)
4961 << Function;
4962 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
4963 if (getLangOpts().CPlusPlus11)
4964 Diag(PointOfInstantiation, diag::note_inst_declaration_hint)
4965 << Function;
4966 }
4967 }
4968
4969 return;
4970 }
4971
4972 // Postpone late parsed template instantiations.
4973 if (PatternDecl->isLateTemplateParsed() &&
4974 !LateTemplateParser) {
4975 Function->setInstantiationIsPending(true);
4976 LateParsedInstantiations.push_back(
4977 std::make_pair(x&: Function, y&: PointOfInstantiation));
4978 return;
4979 }
4980
4981 llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() {
4982 std::string Name;
4983 llvm::raw_string_ostream OS(Name);
4984 Function->getNameForDiagnostic(OS, Policy: getPrintingPolicy(),
4985 /*Qualified=*/true);
4986 return Name;
4987 });
4988
4989 // If we're performing recursive template instantiation, create our own
4990 // queue of pending implicit instantiations that we will instantiate later,
4991 // while we're still within our own instantiation context.
4992 // This has to happen before LateTemplateParser below is called, so that
4993 // it marks vtables used in late parsed templates as used.
4994 GlobalEagerInstantiationScope GlobalInstantiations(*this,
4995 /*Enabled=*/Recursive);
4996 LocalEagerInstantiationScope LocalInstantiations(*this);
4997
4998 // Call the LateTemplateParser callback if there is a need to late parse
4999 // a templated function definition.
5000 if (!Pattern && PatternDecl->isLateTemplateParsed() &&
5001 LateTemplateParser) {
5002 // FIXME: Optimize to allow individual templates to be deserialized.
5003 if (PatternDecl->isFromASTFile())
5004 ExternalSource->ReadLateParsedTemplates(LPTMap&: LateParsedTemplateMap);
5005
5006 auto LPTIter = LateParsedTemplateMap.find(Key: PatternDecl);
5007 assert(LPTIter != LateParsedTemplateMap.end() &&
5008 "missing LateParsedTemplate");
5009 LateTemplateParser(OpaqueParser, *LPTIter->second);
5010 Pattern = PatternDecl->getBody(Definition&: PatternDecl);
5011 updateAttrsForLateParsedTemplate(PatternDecl, Function);
5012 }
5013
5014 // Note, we should never try to instantiate a deleted function template.
5015 assert((Pattern || PatternDecl->isDefaulted() ||
5016 PatternDecl->hasSkippedBody()) &&
5017 "unexpected kind of function template definition");
5018
5019 // C++1y [temp.explicit]p10:
5020 // Except for inline functions, declarations with types deduced from their
5021 // initializer or return value, and class template specializations, other
5022 // explicit instantiation declarations have the effect of suppressing the
5023 // implicit instantiation of the entity to which they refer.
5024 if (TSK == TSK_ExplicitInstantiationDeclaration &&
5025 !PatternDecl->isInlined() &&
5026 !PatternDecl->getReturnType()->getContainedAutoType())
5027 return;
5028
5029 if (PatternDecl->isInlined()) {
5030 // Function, and all later redeclarations of it (from imported modules,
5031 // for instance), are now implicitly inline.
5032 for (auto *D = Function->getMostRecentDecl(); /**/;
5033 D = D->getPreviousDecl()) {
5034 D->setImplicitlyInline();
5035 if (D == Function)
5036 break;
5037 }
5038 }
5039
5040 InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
5041 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5042 return;
5043 PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(),
5044 "instantiating function definition");
5045
5046 // The instantiation is visible here, even if it was first declared in an
5047 // unimported module.
5048 Function->setVisibleDespiteOwningModule();
5049
5050 // Copy the source locations from the pattern.
5051 Function->setLocation(PatternDecl->getLocation());
5052 Function->setInnerLocStart(PatternDecl->getInnerLocStart());
5053 Function->setRangeEnd(PatternDecl->getEndLoc());
5054
5055 EnterExpressionEvaluationContext EvalContext(
5056 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
5057
5058 // Introduce a new scope where local variable instantiations will be
5059 // recorded, unless we're actually a member function within a local
5060 // class, in which case we need to merge our results with the parent
5061 // scope (of the enclosing function). The exception is instantiating
5062 // a function template specialization, since the template to be
5063 // instantiated already has references to locals properly substituted.
5064 bool MergeWithParentScope = false;
5065 if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
5066 MergeWithParentScope =
5067 Rec->isLocalClass() && !Function->isFunctionTemplateSpecialization();
5068
5069 LocalInstantiationScope Scope(*this, MergeWithParentScope);
5070 auto RebuildTypeSourceInfoForDefaultSpecialMembers = [&]() {
5071 // Special members might get their TypeSourceInfo set up w.r.t the
5072 // PatternDecl context, in which case parameters could still be pointing
5073 // back to the original class, make sure arguments are bound to the
5074 // instantiated record instead.
5075 assert(PatternDecl->isDefaulted() &&
5076 "Special member needs to be defaulted");
5077 auto PatternSM = getDefaultedFunctionKind(FD: PatternDecl).asSpecialMember();
5078 if (!(PatternSM == Sema::CXXCopyConstructor ||
5079 PatternSM == Sema::CXXCopyAssignment ||
5080 PatternSM == Sema::CXXMoveConstructor ||
5081 PatternSM == Sema::CXXMoveAssignment))
5082 return;
5083
5084 auto *NewRec = dyn_cast<CXXRecordDecl>(Function->getDeclContext());
5085 const auto *PatternRec =
5086 dyn_cast<CXXRecordDecl>(PatternDecl->getDeclContext());
5087 if (!NewRec || !PatternRec)
5088 return;
5089 if (!PatternRec->isLambda())
5090 return;
5091
5092 struct SpecialMemberTypeInfoRebuilder
5093 : TreeTransform<SpecialMemberTypeInfoRebuilder> {
5094 using Base = TreeTransform<SpecialMemberTypeInfoRebuilder>;
5095 const CXXRecordDecl *OldDecl;
5096 CXXRecordDecl *NewDecl;
5097
5098 SpecialMemberTypeInfoRebuilder(Sema &SemaRef, const CXXRecordDecl *O,
5099 CXXRecordDecl *N)
5100 : TreeTransform(SemaRef), OldDecl(O), NewDecl(N) {}
5101
5102 bool TransformExceptionSpec(SourceLocation Loc,
5103 FunctionProtoType::ExceptionSpecInfo &ESI,
5104 SmallVectorImpl<QualType> &Exceptions,
5105 bool &Changed) {
5106 return false;
5107 }
5108
5109 QualType TransformRecordType(TypeLocBuilder &TLB, RecordTypeLoc TL) {
5110 const RecordType *T = TL.getTypePtr();
5111 RecordDecl *Record = cast_or_null<RecordDecl>(
5112 getDerived().TransformDecl(TL.getNameLoc(), T->getDecl()));
5113 if (Record != OldDecl)
5114 return Base::TransformRecordType(TLB, TL);
5115
5116 QualType Result = getDerived().RebuildRecordType(NewDecl);
5117 if (Result.isNull())
5118 return QualType();
5119
5120 RecordTypeLoc NewTL = TLB.push<RecordTypeLoc>(T: Result);
5121 NewTL.setNameLoc(TL.getNameLoc());
5122 return Result;
5123 }
5124 } IR{*this, PatternRec, NewRec};
5125
5126 TypeSourceInfo *NewSI = IR.TransformType(Function->getTypeSourceInfo());
5127 assert(NewSI && "Type Transform failed?");
5128 Function->setType(NewSI->getType());
5129 Function->setTypeSourceInfo(NewSI);
5130
5131 ParmVarDecl *Parm = Function->getParamDecl(i: 0);
5132 TypeSourceInfo *NewParmSI = IR.TransformType(Parm->getTypeSourceInfo());
5133 Parm->setType(NewParmSI->getType());
5134 Parm->setTypeSourceInfo(NewParmSI);
5135 };
5136
5137 if (PatternDecl->isDefaulted()) {
5138 RebuildTypeSourceInfoForDefaultSpecialMembers();
5139 SetDeclDefaulted(dcl: Function, DefaultLoc: PatternDecl->getLocation());
5140 } else {
5141 MultiLevelTemplateArgumentList TemplateArgs = getTemplateInstantiationArgs(
5142 D: Function, DC: Function->getLexicalDeclContext(), /*Final=*/false,
5143 /*Innermost=*/std::nullopt, RelativeToPrimary: false, Pattern: PatternDecl);
5144
5145 // Substitute into the qualifier; we can get a substitution failure here
5146 // through evil use of alias templates.
5147 // FIXME: Is CurContext correct for this? Should we go to the (instantiation
5148 // of the) lexical context of the pattern?
5149 SubstQualifier(SemaRef&: *this, OldDecl: PatternDecl, NewDecl: Function, TemplateArgs);
5150
5151 ActOnStartOfFunctionDef(nullptr, Function);
5152
5153 // Enter the scope of this instantiation. We don't use
5154 // PushDeclContext because we don't have a scope.
5155 Sema::ContextRAII savedContext(*this, Function);
5156
5157 FPFeaturesStateRAII SavedFPFeatures(*this);
5158 CurFPFeatures = FPOptions(getLangOpts());
5159 FpPragmaStack.CurrentValue = FPOptionsOverride();
5160
5161 if (addInstantiatedParametersToScope(Function, PatternDecl, Scope,
5162 TemplateArgs))
5163 return;
5164
5165 StmtResult Body;
5166 if (PatternDecl->hasSkippedBody()) {
5167 ActOnSkippedFunctionBody(Function);
5168 Body = nullptr;
5169 } else {
5170 if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Val: Function)) {
5171 // If this is a constructor, instantiate the member initializers.
5172 InstantiateMemInitializers(New: Ctor, Tmpl: cast<CXXConstructorDecl>(Val: PatternDecl),
5173 TemplateArgs);
5174
5175 // If this is an MS ABI dllexport default constructor, instantiate any
5176 // default arguments.
5177 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5178 Ctor->isDefaultConstructor()) {
5179 InstantiateDefaultCtorDefaultArgs(Ctor);
5180 }
5181 }
5182
5183 // Instantiate the function body.
5184 Body = SubstStmt(S: Pattern, TemplateArgs);
5185
5186 if (Body.isInvalid())
5187 Function->setInvalidDecl();
5188 }
5189 // FIXME: finishing the function body while in an expression evaluation
5190 // context seems wrong. Investigate more.
5191 ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true);
5192
5193 PerformDependentDiagnostics(PatternDecl, TemplateArgs);
5194
5195 if (auto *Listener = getASTMutationListener())
5196 Listener->FunctionDefinitionInstantiated(D: Function);
5197
5198 savedContext.pop();
5199 }
5200
5201 DeclGroupRef DG(Function);
5202 Consumer.HandleTopLevelDecl(D: DG);
5203
5204 // This class may have local implicit instantiations that need to be
5205 // instantiation within this scope.
5206 LocalInstantiations.perform();
5207 Scope.Exit();
5208 GlobalInstantiations.perform();
5209}
5210
5211VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
5212 VarTemplateDecl *VarTemplate, VarDecl *FromVar,
5213 const TemplateArgumentList *PartialSpecArgs,
5214 const TemplateArgumentListInfo &TemplateArgsInfo,
5215 SmallVectorImpl<TemplateArgument> &Converted,
5216 SourceLocation PointOfInstantiation, LateInstantiatedAttrVec *LateAttrs,
5217 LocalInstantiationScope *StartingScope) {
5218 if (FromVar->isInvalidDecl())
5219 return nullptr;
5220
5221 InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
5222 if (Inst.isInvalid())
5223 return nullptr;
5224
5225 // Instantiate the first declaration of the variable template: for a partial
5226 // specialization of a static data member template, the first declaration may
5227 // or may not be the declaration in the class; if it's in the class, we want
5228 // to instantiate a member in the class (a declaration), and if it's outside,
5229 // we want to instantiate a definition.
5230 //
5231 // If we're instantiating an explicitly-specialized member template or member
5232 // partial specialization, don't do this. The member specialization completely
5233 // replaces the original declaration in this case.
5234 bool IsMemberSpec = false;
5235 MultiLevelTemplateArgumentList MultiLevelList;
5236 if (auto *PartialSpec =
5237 dyn_cast<VarTemplatePartialSpecializationDecl>(Val: FromVar)) {
5238 assert(PartialSpecArgs);
5239 IsMemberSpec = PartialSpec->isMemberSpecialization();
5240 MultiLevelList.addOuterTemplateArguments(
5241 PartialSpec, PartialSpecArgs->asArray(), /*Final=*/false);
5242 } else {
5243 assert(VarTemplate == FromVar->getDescribedVarTemplate());
5244 IsMemberSpec = VarTemplate->isMemberSpecialization();
5245 MultiLevelList.addOuterTemplateArguments(VarTemplate, Converted,
5246 /*Final=*/false);
5247 }
5248 if (!IsMemberSpec)
5249 FromVar = FromVar->getFirstDecl();
5250
5251 TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
5252 MultiLevelList);
5253
5254 // TODO: Set LateAttrs and StartingScope ...
5255
5256 return cast_or_null<VarTemplateSpecializationDecl>(
5257 Val: Instantiator.VisitVarTemplateSpecializationDecl(
5258 VarTemplate, D: FromVar, TemplateArgsInfo, Converted));
5259}
5260
5261/// Instantiates a variable template specialization by completing it
5262/// with appropriate type information and initializer.
5263VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
5264 VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
5265 const MultiLevelTemplateArgumentList &TemplateArgs) {
5266 assert(PatternDecl->isThisDeclarationADefinition() &&
5267 "don't have a definition to instantiate from");
5268
5269 // Do substitution on the type of the declaration
5270 TypeSourceInfo *DI =
5271 SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
5272 PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
5273 if (!DI)
5274 return nullptr;
5275
5276 // Update the type of this variable template specialization.
5277 VarSpec->setType(DI->getType());
5278
5279 // Convert the declaration into a definition now.
5280 VarSpec->setCompleteDefinition();
5281
5282 // Instantiate the initializer.
5283 InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
5284
5285 if (getLangOpts().OpenCL)
5286 deduceOpenCLAddressSpace(VarSpec);
5287
5288 return VarSpec;
5289}
5290
5291/// BuildVariableInstantiation - Used after a new variable has been created.
5292/// Sets basic variable data and decides whether to postpone the
5293/// variable instantiation.
5294void Sema::BuildVariableInstantiation(
5295 VarDecl *NewVar, VarDecl *OldVar,
5296 const MultiLevelTemplateArgumentList &TemplateArgs,
5297 LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
5298 LocalInstantiationScope *StartingScope,
5299 bool InstantiatingVarTemplate,
5300 VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) {
5301 // Instantiating a partial specialization to produce a partial
5302 // specialization.
5303 bool InstantiatingVarTemplatePartialSpec =
5304 isa<VarTemplatePartialSpecializationDecl>(Val: OldVar) &&
5305 isa<VarTemplatePartialSpecializationDecl>(Val: NewVar);
5306 // Instantiating from a variable template (or partial specialization) to
5307 // produce a variable template specialization.
5308 bool InstantiatingSpecFromTemplate =
5309 isa<VarTemplateSpecializationDecl>(Val: NewVar) &&
5310 (OldVar->getDescribedVarTemplate() ||
5311 isa<VarTemplatePartialSpecializationDecl>(Val: OldVar));
5312
5313 // If we are instantiating a local extern declaration, the
5314 // instantiation belongs lexically to the containing function.
5315 // If we are instantiating a static data member defined
5316 // out-of-line, the instantiation will have the same lexical
5317 // context (which will be a namespace scope) as the template.
5318 if (OldVar->isLocalExternDecl()) {
5319 NewVar->setLocalExternDecl();
5320 NewVar->setLexicalDeclContext(Owner);
5321 } else if (OldVar->isOutOfLine())
5322 NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
5323 NewVar->setTSCSpec(OldVar->getTSCSpec());
5324 NewVar->setInitStyle(OldVar->getInitStyle());
5325 NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
5326 NewVar->setObjCForDecl(OldVar->isObjCForDecl());
5327 NewVar->setConstexpr(OldVar->isConstexpr());
5328 NewVar->setInitCapture(OldVar->isInitCapture());
5329 NewVar->setPreviousDeclInSameBlockScope(
5330 OldVar->isPreviousDeclInSameBlockScope());
5331 NewVar->setAccess(OldVar->getAccess());
5332
5333 if (!OldVar->isStaticDataMember()) {
5334 if (OldVar->isUsed(false))
5335 NewVar->setIsUsed();
5336 NewVar->setReferenced(OldVar->isReferenced());
5337 }
5338
5339 InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
5340
5341 LookupResult Previous(
5342 *this, NewVar->getDeclName(), NewVar->getLocation(),
5343 NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
5344 : Sema::LookupOrdinaryName,
5345 NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration
5346 : forRedeclarationInCurContext());
5347
5348 if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
5349 (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
5350 OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
5351 // We have a previous declaration. Use that one, so we merge with the
5352 // right type.
5353 if (NamedDecl *NewPrev = FindInstantiatedDecl(
5354 Loc: NewVar->getLocation(), D: OldVar->getPreviousDecl(), TemplateArgs))
5355 Previous.addDecl(D: NewPrev);
5356 } else if (!isa<VarTemplateSpecializationDecl>(Val: NewVar) &&
5357 OldVar->hasLinkage()) {
5358 LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
5359 } else if (PrevDeclForVarTemplateSpecialization) {
5360 Previous.addDecl(PrevDeclForVarTemplateSpecialization);
5361 }
5362 CheckVariableDeclaration(NewVD: NewVar, Previous);
5363
5364 if (!InstantiatingVarTemplate) {
5365 NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
5366 if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
5367 NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
5368 }
5369
5370 if (!OldVar->isOutOfLine()) {
5371 if (NewVar->getDeclContext()->isFunctionOrMethod())
5372 CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
5373 }
5374
5375 // Link instantiations of static data members back to the template from
5376 // which they were instantiated.
5377 //
5378 // Don't do this when instantiating a template (we link the template itself
5379 // back in that case) nor when instantiating a static data member template
5380 // (that's not a member specialization).
5381 if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate &&
5382 !InstantiatingSpecFromTemplate)
5383 NewVar->setInstantiationOfStaticDataMember(VD: OldVar,
5384 TSK: TSK_ImplicitInstantiation);
5385
5386 // If the pattern is an (in-class) explicit specialization, then the result
5387 // is also an explicit specialization.
5388 if (VarTemplateSpecializationDecl *OldVTSD =
5389 dyn_cast<VarTemplateSpecializationDecl>(Val: OldVar)) {
5390 if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization &&
5391 !isa<VarTemplatePartialSpecializationDecl>(Val: OldVTSD))
5392 cast<VarTemplateSpecializationDecl>(Val: NewVar)->setSpecializationKind(
5393 TSK_ExplicitSpecialization);
5394 }
5395
5396 // Forward the mangling number from the template to the instantiated decl.
5397 Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
5398 Context.setStaticLocalNumber(VD: NewVar, Number: Context.getStaticLocalNumber(VD: OldVar));
5399
5400 // Figure out whether to eagerly instantiate the initializer.
5401 if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) {
5402 // We're producing a template. Don't instantiate the initializer yet.
5403 } else if (NewVar->getType()->isUndeducedType()) {
5404 // We need the type to complete the declaration of the variable.
5405 InstantiateVariableInitializer(Var: NewVar, OldVar, TemplateArgs);
5406 } else if (InstantiatingSpecFromTemplate ||
5407 (OldVar->isInline() && OldVar->isThisDeclarationADefinition() &&
5408 !NewVar->isThisDeclarationADefinition())) {
5409 // Delay instantiation of the initializer for variable template
5410 // specializations or inline static data members until a definition of the
5411 // variable is needed.
5412 } else {
5413 InstantiateVariableInitializer(Var: NewVar, OldVar, TemplateArgs);
5414 }
5415
5416 // Diagnose unused local variables with dependent types, where the diagnostic
5417 // will have been deferred.
5418 if (!NewVar->isInvalidDecl() &&
5419 NewVar->getDeclContext()->isFunctionOrMethod() &&
5420 OldVar->getType()->isDependentType())
5421 DiagnoseUnusedDecl(NewVar);
5422}
5423
5424/// Instantiate the initializer of a variable.
5425void Sema::InstantiateVariableInitializer(
5426 VarDecl *Var, VarDecl *OldVar,
5427 const MultiLevelTemplateArgumentList &TemplateArgs) {
5428 if (ASTMutationListener *L = getASTContext().getASTMutationListener())
5429 L->VariableDefinitionInstantiated(D: Var);
5430
5431 // We propagate the 'inline' flag with the initializer, because it
5432 // would otherwise imply that the variable is a definition for a
5433 // non-static data member.
5434 if (OldVar->isInlineSpecified())
5435 Var->setInlineSpecified();
5436 else if (OldVar->isInline())
5437 Var->setImplicitlyInline();
5438
5439 if (OldVar->getInit()) {
5440 EnterExpressionEvaluationContext Evaluated(
5441 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var);
5442
5443 keepInLifetimeExtendingContext();
5444 keepInMaterializeTemporaryObjectContext();
5445 // Instantiate the initializer.
5446 ExprResult Init;
5447
5448 {
5449 ContextRAII SwitchContext(*this, Var->getDeclContext());
5450 Init = SubstInitializer(E: OldVar->getInit(), TemplateArgs,
5451 CXXDirectInit: OldVar->getInitStyle() == VarDecl::CallInit);
5452 }
5453
5454 if (!Init.isInvalid()) {
5455 Expr *InitExpr = Init.get();
5456
5457 if (Var->hasAttr<DLLImportAttr>() &&
5458 (!InitExpr ||
5459 !InitExpr->isConstantInitializer(getASTContext(), false))) {
5460 // Do not dynamically initialize dllimport variables.
5461 } else if (InitExpr) {
5462 bool DirectInit = OldVar->isDirectInit();
5463 AddInitializerToDecl(Var, InitExpr, DirectInit);
5464 } else
5465 ActOnUninitializedDecl(Var);
5466 } else {
5467 // FIXME: Not too happy about invalidating the declaration
5468 // because of a bogus initializer.
5469 Var->setInvalidDecl();
5470 }
5471 } else {
5472 // `inline` variables are a definition and declaration all in one; we won't
5473 // pick up an initializer from anywhere else.
5474 if (Var->isStaticDataMember() && !Var->isInline()) {
5475 if (!Var->isOutOfLine())
5476 return;
5477
5478 // If the declaration inside the class had an initializer, don't add
5479 // another one to the out-of-line definition.
5480 if (OldVar->getFirstDecl()->hasInit())
5481 return;
5482 }
5483
5484 // We'll add an initializer to a for-range declaration later.
5485 if (Var->isCXXForRangeDecl() || Var->isObjCForDecl())
5486 return;
5487
5488 ActOnUninitializedDecl(Var);
5489 }
5490
5491 if (getLangOpts().CUDA)
5492 checkAllowedCUDAInitializer(VD: Var);
5493}
5494
5495/// Instantiate the definition of the given variable from its
5496/// template.
5497///
5498/// \param PointOfInstantiation the point at which the instantiation was
5499/// required. Note that this is not precisely a "point of instantiation"
5500/// for the variable, but it's close.
5501///
5502/// \param Var the already-instantiated declaration of a templated variable.
5503///
5504/// \param Recursive if true, recursively instantiates any functions that
5505/// are required by this instantiation.
5506///
5507/// \param DefinitionRequired if true, then we are performing an explicit
5508/// instantiation where a definition of the variable is required. Complain
5509/// if there is no such definition.
5510void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
5511 VarDecl *Var, bool Recursive,
5512 bool DefinitionRequired, bool AtEndOfTU) {
5513 if (Var->isInvalidDecl())
5514 return;
5515
5516 // Never instantiate an explicitly-specialized entity.
5517 TemplateSpecializationKind TSK =
5518 Var->getTemplateSpecializationKindForInstantiation();
5519 if (TSK == TSK_ExplicitSpecialization)
5520 return;
5521
5522 // Find the pattern and the arguments to substitute into it.
5523 VarDecl *PatternDecl = Var->getTemplateInstantiationPattern();
5524 assert(PatternDecl && "no pattern for templated variable");
5525 MultiLevelTemplateArgumentList TemplateArgs =
5526 getTemplateInstantiationArgs(Var);
5527
5528 VarTemplateSpecializationDecl *VarSpec =
5529 dyn_cast<VarTemplateSpecializationDecl>(Val: Var);
5530 if (VarSpec) {
5531 // If this is a static data member template, there might be an
5532 // uninstantiated initializer on the declaration. If so, instantiate
5533 // it now.
5534 //
5535 // FIXME: This largely duplicates what we would do below. The difference
5536 // is that along this path we may instantiate an initializer from an
5537 // in-class declaration of the template and instantiate the definition
5538 // from a separate out-of-class definition.
5539 if (PatternDecl->isStaticDataMember() &&
5540 (PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
5541 !Var->hasInit()) {
5542 // FIXME: Factor out the duplicated instantiation context setup/tear down
5543 // code here.
5544 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5545 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5546 return;
5547 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5548 "instantiating variable initializer");
5549
5550 // The instantiation is visible here, even if it was first declared in an
5551 // unimported module.
5552 Var->setVisibleDespiteOwningModule();
5553
5554 // If we're performing recursive template instantiation, create our own
5555 // queue of pending implicit instantiations that we will instantiate
5556 // later, while we're still within our own instantiation context.
5557 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5558 /*Enabled=*/Recursive);
5559 LocalInstantiationScope Local(*this);
5560 LocalEagerInstantiationScope LocalInstantiations(*this);
5561
5562 // Enter the scope of this instantiation. We don't use
5563 // PushDeclContext because we don't have a scope.
5564 ContextRAII PreviousContext(*this, Var->getDeclContext());
5565 InstantiateVariableInitializer(Var, OldVar: PatternDecl, TemplateArgs);
5566 PreviousContext.pop();
5567
5568 // This variable may have local implicit instantiations that need to be
5569 // instantiated within this scope.
5570 LocalInstantiations.perform();
5571 Local.Exit();
5572 GlobalInstantiations.perform();
5573 }
5574 } else {
5575 assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() &&
5576 "not a static data member?");
5577 }
5578
5579 VarDecl *Def = PatternDecl->getDefinition(getASTContext());
5580
5581 // If we don't have a definition of the variable template, we won't perform
5582 // any instantiation. Rather, we rely on the user to instantiate this
5583 // definition (or provide a specialization for it) in another translation
5584 // unit.
5585 if (!Def && !DefinitionRequired) {
5586 if (TSK == TSK_ExplicitInstantiationDefinition) {
5587 PendingInstantiations.push_back(
5588 std::make_pair(x&: Var, y&: PointOfInstantiation));
5589 } else if (TSK == TSK_ImplicitInstantiation) {
5590 // Warn about missing definition at the end of translation unit.
5591 if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
5592 !getSourceManager().isInSystemHeader(Loc: PatternDecl->getBeginLoc())) {
5593 Diag(PointOfInstantiation, diag::warn_var_template_missing)
5594 << Var;
5595 Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
5596 if (getLangOpts().CPlusPlus11)
5597 Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var;
5598 }
5599 return;
5600 }
5601 }
5602
5603 // FIXME: We need to track the instantiation stack in order to know which
5604 // definitions should be visible within this instantiation.
5605 // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
5606 if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var,
5607 /*InstantiatedFromMember*/false,
5608 PatternDecl, Def, TSK,
5609 /*Complain*/DefinitionRequired))
5610 return;
5611
5612 // C++11 [temp.explicit]p10:
5613 // Except for inline functions, const variables of literal types, variables
5614 // of reference types, [...] explicit instantiation declarations
5615 // have the effect of suppressing the implicit instantiation of the entity
5616 // to which they refer.
5617 //
5618 // FIXME: That's not exactly the same as "might be usable in constant
5619 // expressions", which only allows constexpr variables and const integral
5620 // types, not arbitrary const literal types.
5621 if (TSK == TSK_ExplicitInstantiationDeclaration &&
5622 !Var->mightBeUsableInConstantExpressions(C: getASTContext()))
5623 return;
5624
5625 // Make sure to pass the instantiated variable to the consumer at the end.
5626 struct PassToConsumerRAII {
5627 ASTConsumer &Consumer;
5628 VarDecl *Var;
5629
5630 PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
5631 : Consumer(Consumer), Var(Var) { }
5632
5633 ~PassToConsumerRAII() {
5634 Consumer.HandleCXXStaticMemberVarInstantiation(D: Var);
5635 }
5636 } PassToConsumerRAII(Consumer, Var);
5637
5638 // If we already have a definition, we're done.
5639 if (VarDecl *Def = Var->getDefinition()) {
5640 // We may be explicitly instantiating something we've already implicitly
5641 // instantiated.
5642 Def->setTemplateSpecializationKind(TSK: Var->getTemplateSpecializationKind(),
5643 PointOfInstantiation);
5644 return;
5645 }
5646
5647 InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
5648 if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
5649 return;
5650 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
5651 "instantiating variable definition");
5652
5653 // If we're performing recursive template instantiation, create our own
5654 // queue of pending implicit instantiations that we will instantiate later,
5655 // while we're still within our own instantiation context.
5656 GlobalEagerInstantiationScope GlobalInstantiations(*this,
5657 /*Enabled=*/Recursive);
5658
5659 // Enter the scope of this instantiation. We don't use
5660 // PushDeclContext because we don't have a scope.
5661 ContextRAII PreviousContext(*this, Var->getDeclContext());
5662 LocalInstantiationScope Local(*this);
5663
5664 LocalEagerInstantiationScope LocalInstantiations(*this);
5665
5666 VarDecl *OldVar = Var;
5667 if (Def->isStaticDataMember() && !Def->isOutOfLine()) {
5668 // We're instantiating an inline static data member whose definition was
5669 // provided inside the class.
5670 InstantiateVariableInitializer(Var, OldVar: Def, TemplateArgs);
5671 } else if (!VarSpec) {
5672 Var = cast_or_null<VarDecl>(SubstDecl(D: Def, Owner: Var->getDeclContext(),
5673 TemplateArgs));
5674 } else if (Var->isStaticDataMember() &&
5675 Var->getLexicalDeclContext()->isRecord()) {
5676 // We need to instantiate the definition of a static data member template,
5677 // and all we have is the in-class declaration of it. Instantiate a separate
5678 // declaration of the definition.
5679 TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
5680 TemplateArgs);
5681
5682 TemplateArgumentListInfo TemplateArgInfo;
5683 if (const ASTTemplateArgumentListInfo *ArgInfo =
5684 VarSpec->getTemplateArgsInfo()) {
5685 TemplateArgInfo.setLAngleLoc(ArgInfo->getLAngleLoc());
5686 TemplateArgInfo.setRAngleLoc(ArgInfo->getRAngleLoc());
5687 for (const TemplateArgumentLoc &Arg : ArgInfo->arguments())
5688 TemplateArgInfo.addArgument(Loc: Arg);
5689 }
5690
5691 Var = cast_or_null<VarDecl>(Val: Instantiator.VisitVarTemplateSpecializationDecl(
5692 VarTemplate: VarSpec->getSpecializedTemplate(), D: Def, TemplateArgsInfo: TemplateArgInfo,
5693 Converted: VarSpec->getTemplateArgs().asArray(), PrevDecl: VarSpec));
5694 if (Var) {
5695 llvm::PointerUnion<VarTemplateDecl *,
5696 VarTemplatePartialSpecializationDecl *> PatternPtr =
5697 VarSpec->getSpecializedTemplateOrPartial();
5698 if (VarTemplatePartialSpecializationDecl *Partial =
5699 PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
5700 cast<VarTemplateSpecializationDecl>(Val: Var)->setInstantiationOf(
5701 PartialSpec: Partial, TemplateArgs: &VarSpec->getTemplateInstantiationArgs());
5702
5703 // Attach the initializer.
5704 InstantiateVariableInitializer(Var, OldVar: Def, TemplateArgs);
5705 }
5706 } else
5707 // Complete the existing variable's definition with an appropriately
5708 // substituted type and initializer.
5709 Var = CompleteVarTemplateSpecializationDecl(VarSpec, PatternDecl: Def, TemplateArgs);
5710
5711 PreviousContext.pop();
5712
5713 if (Var) {
5714 PassToConsumerRAII.Var = Var;
5715 Var->setTemplateSpecializationKind(TSK: OldVar->getTemplateSpecializationKind(),
5716 PointOfInstantiation: OldVar->getPointOfInstantiation());
5717 }
5718
5719 // This variable may have local implicit instantiations that need to be
5720 // instantiated within this scope.
5721 LocalInstantiations.perform();
5722 Local.Exit();
5723 GlobalInstantiations.perform();
5724}
5725
5726void
5727Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
5728 const CXXConstructorDecl *Tmpl,
5729 const MultiLevelTemplateArgumentList &TemplateArgs) {
5730
5731 SmallVector<CXXCtorInitializer*, 4> NewInits;
5732 bool AnyErrors = Tmpl->isInvalidDecl();
5733
5734 // Instantiate all the initializers.
5735 for (const auto *Init : Tmpl->inits()) {
5736 // Only instantiate written initializers, let Sema re-construct implicit
5737 // ones.
5738 if (!Init->isWritten())
5739 continue;
5740
5741 SourceLocation EllipsisLoc;
5742
5743 if (Init->isPackExpansion()) {
5744 // This is a pack expansion. We should expand it now.
5745 TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
5746 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5747 collectUnexpandedParameterPacks(TL: BaseTL, Unexpanded);
5748 collectUnexpandedParameterPacks(Arg: Init->getInit(), Unexpanded);
5749 bool ShouldExpand = false;
5750 bool RetainExpansion = false;
5751 std::optional<unsigned> NumExpansions;
5752 if (CheckParameterPacksForExpansion(EllipsisLoc: Init->getEllipsisLoc(),
5753 PatternRange: BaseTL.getSourceRange(),
5754 Unexpanded,
5755 TemplateArgs, ShouldExpand,
5756 RetainExpansion,
5757 NumExpansions)) {
5758 AnyErrors = true;
5759 New->setInvalidDecl();
5760 continue;
5761 }
5762 assert(ShouldExpand && "Partial instantiation of base initializer?");
5763
5764 // Loop over all of the arguments in the argument pack(s),
5765 for (unsigned I = 0; I != *NumExpansions; ++I) {
5766 Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
5767
5768 // Instantiate the initializer.
5769 ExprResult TempInit = SubstInitializer(E: Init->getInit(), TemplateArgs,
5770 /*CXXDirectInit=*/true);
5771 if (TempInit.isInvalid()) {
5772 AnyErrors = true;
5773 break;
5774 }
5775
5776 // Instantiate the base type.
5777 TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
5778 TemplateArgs,
5779 Init->getSourceLocation(),
5780 New->getDeclName());
5781 if (!BaseTInfo) {
5782 AnyErrors = true;
5783 break;
5784 }
5785
5786 // Build the initializer.
5787 MemInitResult NewInit = BuildBaseInitializer(BaseType: BaseTInfo->getType(),
5788 BaseTInfo, Init: TempInit.get(),
5789 ClassDecl: New->getParent(),
5790 EllipsisLoc: SourceLocation());
5791 if (NewInit.isInvalid()) {
5792 AnyErrors = true;
5793 break;
5794 }
5795
5796 NewInits.push_back(Elt: NewInit.get());
5797 }
5798
5799 continue;
5800 }
5801
5802 // Instantiate the initializer.
5803 ExprResult TempInit = SubstInitializer(E: Init->getInit(), TemplateArgs,
5804 /*CXXDirectInit=*/true);
5805 if (TempInit.isInvalid()) {
5806 AnyErrors = true;
5807 continue;
5808 }
5809
5810 MemInitResult NewInit;
5811 if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
5812 TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
5813 TemplateArgs,
5814 Init->getSourceLocation(),
5815 New->getDeclName());
5816 if (!TInfo) {
5817 AnyErrors = true;
5818 New->setInvalidDecl();
5819 continue;
5820 }
5821
5822 if (Init->isBaseInitializer())
5823 NewInit = BuildBaseInitializer(BaseType: TInfo->getType(), BaseTInfo: TInfo, Init: TempInit.get(),
5824 ClassDecl: New->getParent(), EllipsisLoc);
5825 else
5826 NewInit = BuildDelegatingInitializer(TInfo, Init: TempInit.get(),
5827 ClassDecl: cast<CXXRecordDecl>(Val: CurContext->getParent()));
5828 } else if (Init->isMemberInitializer()) {
5829 FieldDecl *Member = cast_or_null<FieldDecl>(Val: FindInstantiatedDecl(
5830 Init->getMemberLocation(),
5831 Init->getMember(),
5832 TemplateArgs));
5833 if (!Member) {
5834 AnyErrors = true;
5835 New->setInvalidDecl();
5836 continue;
5837 }
5838
5839 NewInit = BuildMemberInitializer(Member, TempInit.get(),
5840 Init->getSourceLocation());
5841 } else if (Init->isIndirectMemberInitializer()) {
5842 IndirectFieldDecl *IndirectMember =
5843 cast_or_null<IndirectFieldDecl>(Val: FindInstantiatedDecl(
5844 Init->getMemberLocation(),
5845 Init->getIndirectMember(), TemplateArgs));
5846
5847 if (!IndirectMember) {
5848 AnyErrors = true;
5849 New->setInvalidDecl();
5850 continue;
5851 }
5852
5853 NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
5854 Init->getSourceLocation());
5855 }
5856
5857 if (NewInit.isInvalid()) {
5858 AnyErrors = true;
5859 New->setInvalidDecl();
5860 } else {
5861 NewInits.push_back(Elt: NewInit.get());
5862 }
5863 }
5864
5865 // Assign all the initializers to the new constructor.
5866 ActOnMemInitializers(New,
5867 /*FIXME: ColonLoc */
5868 SourceLocation(),
5869 NewInits,
5870 AnyErrors);
5871}
5872
5873// TODO: this could be templated if the various decl types used the
5874// same method name.
5875static bool isInstantiationOf(ClassTemplateDecl *Pattern,
5876 ClassTemplateDecl *Instance) {
5877 Pattern = Pattern->getCanonicalDecl();
5878
5879 do {
5880 Instance = Instance->getCanonicalDecl();
5881 if (Pattern == Instance) return true;
5882 Instance = Instance->getInstantiatedFromMemberTemplate();
5883 } while (Instance);
5884
5885 return false;
5886}
5887
5888static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
5889 FunctionTemplateDecl *Instance) {
5890 Pattern = Pattern->getCanonicalDecl();
5891
5892 do {
5893 Instance = Instance->getCanonicalDecl();
5894 if (Pattern == Instance) return true;
5895 Instance = Instance->getInstantiatedFromMemberTemplate();
5896 } while (Instance);
5897
5898 return false;
5899}
5900
5901static bool
5902isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
5903 ClassTemplatePartialSpecializationDecl *Instance) {
5904 Pattern
5905 = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
5906 do {
5907 Instance = cast<ClassTemplatePartialSpecializationDecl>(
5908 Instance->getCanonicalDecl());
5909 if (Pattern == Instance)
5910 return true;
5911 Instance = Instance->getInstantiatedFromMember();
5912 } while (Instance);
5913
5914 return false;
5915}
5916
5917static bool isInstantiationOf(CXXRecordDecl *Pattern,
5918 CXXRecordDecl *Instance) {
5919 Pattern = Pattern->getCanonicalDecl();
5920
5921 do {
5922 Instance = Instance->getCanonicalDecl();
5923 if (Pattern == Instance) return true;
5924 Instance = Instance->getInstantiatedFromMemberClass();
5925 } while (Instance);
5926
5927 return false;
5928}
5929
5930static bool isInstantiationOf(FunctionDecl *Pattern,
5931 FunctionDecl *Instance) {
5932 Pattern = Pattern->getCanonicalDecl();
5933
5934 do {
5935 Instance = Instance->getCanonicalDecl();
5936 if (Pattern == Instance) return true;
5937 Instance = Instance->getInstantiatedFromMemberFunction();
5938 } while (Instance);
5939
5940 return false;
5941}
5942
5943static bool isInstantiationOf(EnumDecl *Pattern,
5944 EnumDecl *Instance) {
5945 Pattern = Pattern->getCanonicalDecl();
5946
5947 do {
5948 Instance = Instance->getCanonicalDecl();
5949 if (Pattern == Instance) return true;
5950 Instance = Instance->getInstantiatedFromMemberEnum();
5951 } while (Instance);
5952
5953 return false;
5954}
5955
5956static bool isInstantiationOf(UsingShadowDecl *Pattern,
5957 UsingShadowDecl *Instance,
5958 ASTContext &C) {
5959 return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Inst: Instance),
5960 Pattern);
5961}
5962
5963static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance,
5964 ASTContext &C) {
5965 return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
5966}
5967
5968template<typename T>
5969static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other,
5970 ASTContext &Ctx) {
5971 // An unresolved using declaration can instantiate to an unresolved using
5972 // declaration, or to a using declaration or a using declaration pack.
5973 //
5974 // Multiple declarations can claim to be instantiated from an unresolved
5975 // using declaration if it's a pack expansion. We want the UsingPackDecl
5976 // in that case, not the individual UsingDecls within the pack.
5977 bool OtherIsPackExpansion;
5978 NamedDecl *OtherFrom;
5979 if (auto *OtherUUD = dyn_cast<T>(Other)) {
5980 OtherIsPackExpansion = OtherUUD->isPackExpansion();
5981 OtherFrom = Ctx.getInstantiatedFromUsingDecl(Inst: OtherUUD);
5982 } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Val: Other)) {
5983 OtherIsPackExpansion = true;
5984 OtherFrom = OtherUPD->getInstantiatedFromUsingDecl();
5985 } else if (auto *OtherUD = dyn_cast<UsingDecl>(Val: Other)) {
5986 OtherIsPackExpansion = false;
5987 OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD);
5988 } else {
5989 return false;
5990 }
5991 return Pattern->isPackExpansion() == OtherIsPackExpansion &&
5992 declaresSameEntity(OtherFrom, Pattern);
5993}
5994
5995static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
5996 VarDecl *Instance) {
5997 assert(Instance->isStaticDataMember());
5998
5999 Pattern = Pattern->getCanonicalDecl();
6000
6001 do {
6002 Instance = Instance->getCanonicalDecl();
6003 if (Pattern == Instance) return true;
6004 Instance = Instance->getInstantiatedFromStaticDataMember();
6005 } while (Instance);
6006
6007 return false;
6008}
6009
6010// Other is the prospective instantiation
6011// D is the prospective pattern
6012static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
6013 if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(Val: D))
6014 return isInstantiationOfUnresolvedUsingDecl(Pattern: UUD, Other, Ctx);
6015
6016 if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(Val: D))
6017 return isInstantiationOfUnresolvedUsingDecl(Pattern: UUD, Other, Ctx);
6018
6019 if (D->getKind() != Other->getKind())
6020 return false;
6021
6022 if (auto *Record = dyn_cast<CXXRecordDecl>(Val: Other))
6023 return isInstantiationOf(Pattern: cast<CXXRecordDecl>(Val: D), Instance: Record);
6024
6025 if (auto *Function = dyn_cast<FunctionDecl>(Val: Other))
6026 return isInstantiationOf(Pattern: cast<FunctionDecl>(Val: D), Instance: Function);
6027
6028 if (auto *Enum = dyn_cast<EnumDecl>(Val: Other))
6029 return isInstantiationOf(Pattern: cast<EnumDecl>(Val: D), Instance: Enum);
6030
6031 if (auto *Var = dyn_cast<VarDecl>(Val: Other))
6032 if (Var->isStaticDataMember())
6033 return isInstantiationOfStaticDataMember(Pattern: cast<VarDecl>(Val: D), Instance: Var);
6034
6035 if (auto *Temp = dyn_cast<ClassTemplateDecl>(Val: Other))
6036 return isInstantiationOf(Pattern: cast<ClassTemplateDecl>(Val: D), Instance: Temp);
6037
6038 if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Val: Other))
6039 return isInstantiationOf(Pattern: cast<FunctionTemplateDecl>(Val: D), Instance: Temp);
6040
6041 if (auto *PartialSpec =
6042 dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Other))
6043 return isInstantiationOf(Pattern: cast<ClassTemplatePartialSpecializationDecl>(Val: D),
6044 Instance: PartialSpec);
6045
6046 if (auto *Field = dyn_cast<FieldDecl>(Val: Other)) {
6047 if (!Field->getDeclName()) {
6048 // This is an unnamed field.
6049 return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
6050 cast<FieldDecl>(Val: D));
6051 }
6052 }
6053
6054 if (auto *Using = dyn_cast<UsingDecl>(Val: Other))
6055 return isInstantiationOf(Pattern: cast<UsingDecl>(Val: D), Instance: Using, C&: Ctx);
6056
6057 if (auto *Shadow = dyn_cast<UsingShadowDecl>(Val: Other))
6058 return isInstantiationOf(Pattern: cast<UsingShadowDecl>(Val: D), Instance: Shadow, C&: Ctx);
6059
6060 return D->getDeclName() &&
6061 D->getDeclName() == cast<NamedDecl>(Val: Other)->getDeclName();
6062}
6063
6064template<typename ForwardIterator>
6065static NamedDecl *findInstantiationOf(ASTContext &Ctx,
6066 NamedDecl *D,
6067 ForwardIterator first,
6068 ForwardIterator last) {
6069 for (; first != last; ++first)
6070 if (isInstantiationOf(Ctx, D, *first))
6071 return cast<NamedDecl>(*first);
6072
6073 return nullptr;
6074}
6075
6076/// Finds the instantiation of the given declaration context
6077/// within the current instantiation.
6078///
6079/// \returns NULL if there was an error
6080DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
6081 const MultiLevelTemplateArgumentList &TemplateArgs) {
6082 if (NamedDecl *D = dyn_cast<NamedDecl>(Val: DC)) {
6083 Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, FindingInstantiatedContext: true);
6084 return cast_or_null<DeclContext>(Val: ID);
6085 } else return DC;
6086}
6087
6088/// Determine whether the given context is dependent on template parameters at
6089/// level \p Level or below.
6090///
6091/// Sometimes we only substitute an inner set of template arguments and leave
6092/// the outer templates alone. In such cases, contexts dependent only on the
6093/// outer levels are not effectively dependent.
6094static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) {
6095 if (!DC->isDependentContext())
6096 return false;
6097 if (!Level)
6098 return true;
6099 return cast<Decl>(Val: DC)->getTemplateDepth() > Level;
6100}
6101
6102/// Find the instantiation of the given declaration within the
6103/// current instantiation.
6104///
6105/// This routine is intended to be used when \p D is a declaration
6106/// referenced from within a template, that needs to mapped into the
6107/// corresponding declaration within an instantiation. For example,
6108/// given:
6109///
6110/// \code
6111/// template<typename T>
6112/// struct X {
6113/// enum Kind {
6114/// KnownValue = sizeof(T)
6115/// };
6116///
6117/// bool getKind() const { return KnownValue; }
6118/// };
6119///
6120/// template struct X<int>;
6121/// \endcode
6122///
6123/// In the instantiation of X<int>::getKind(), we need to map the \p
6124/// EnumConstantDecl for \p KnownValue (which refers to
6125/// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue).
6126/// \p FindInstantiatedDecl performs this mapping from within the instantiation
6127/// of X<int>.
6128NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
6129 const MultiLevelTemplateArgumentList &TemplateArgs,
6130 bool FindingInstantiatedContext) {
6131 DeclContext *ParentDC = D->getDeclContext();
6132 // Determine whether our parent context depends on any of the template
6133 // arguments we're currently substituting.
6134 bool ParentDependsOnArgs = isDependentContextAtLevel(
6135 DC: ParentDC, Level: TemplateArgs.getNumRetainedOuterLevels());
6136 // FIXME: Parameters of pointer to functions (y below) that are themselves
6137 // parameters (p below) can have their ParentDC set to the translation-unit
6138 // - thus we can not consistently check if the ParentDC of such a parameter
6139 // is Dependent or/and a FunctionOrMethod.
6140 // For e.g. this code, during Template argument deduction tries to
6141 // find an instantiated decl for (T y) when the ParentDC for y is
6142 // the translation unit.
6143 // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
6144 // float baz(float(*)()) { return 0.0; }
6145 // Foo(baz);
6146 // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
6147 // it gets here, always has a FunctionOrMethod as its ParentDC??
6148 // For now:
6149 // - as long as we have a ParmVarDecl whose parent is non-dependent and
6150 // whose type is not instantiation dependent, do nothing to the decl
6151 // - otherwise find its instantiated decl.
6152 if (isa<ParmVarDecl>(Val: D) && !ParentDependsOnArgs &&
6153 !cast<ParmVarDecl>(Val: D)->getType()->isInstantiationDependentType())
6154 return D;
6155 if (isa<ParmVarDecl>(Val: D) || isa<NonTypeTemplateParmDecl>(Val: D) ||
6156 isa<TemplateTypeParmDecl>(Val: D) || isa<TemplateTemplateParmDecl>(Val: D) ||
6157 (ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() ||
6158 isa<OMPDeclareReductionDecl>(Val: ParentDC) ||
6159 isa<OMPDeclareMapperDecl>(Val: ParentDC))) ||
6160 (isa<CXXRecordDecl>(Val: D) && cast<CXXRecordDecl>(Val: D)->isLambda() &&
6161 cast<CXXRecordDecl>(Val: D)->getTemplateDepth() >
6162 TemplateArgs.getNumRetainedOuterLevels())) {
6163 // D is a local of some kind. Look into the map of local
6164 // declarations to their instantiations.
6165 if (CurrentInstantiationScope) {
6166 if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
6167 if (Decl *FD = Found->dyn_cast<Decl *>())
6168 return cast<NamedDecl>(Val: FD);
6169
6170 int PackIdx = ArgumentPackSubstitutionIndex;
6171 assert(PackIdx != -1 &&
6172 "found declaration pack but not pack expanding");
6173 typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
6174 return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
6175 }
6176 }
6177
6178 // If we're performing a partial substitution during template argument
6179 // deduction, we may not have values for template parameters yet. They
6180 // just map to themselves.
6181 if (isa<NonTypeTemplateParmDecl>(Val: D) || isa<TemplateTypeParmDecl>(Val: D) ||
6182 isa<TemplateTemplateParmDecl>(Val: D))
6183 return D;
6184
6185 if (D->isInvalidDecl())
6186 return nullptr;
6187
6188 // Normally this function only searches for already instantiated declaration
6189 // however we have to make an exclusion for local types used before
6190 // definition as in the code:
6191 //
6192 // template<typename T> void f1() {
6193 // void g1(struct x1);
6194 // struct x1 {};
6195 // }
6196 //
6197 // In this case instantiation of the type of 'g1' requires definition of
6198 // 'x1', which is defined later. Error recovery may produce an enum used
6199 // before definition. In these cases we need to instantiate relevant
6200 // declarations here.
6201 bool NeedInstantiate = false;
6202 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: D))
6203 NeedInstantiate = RD->isLocalClass();
6204 else if (isa<TypedefNameDecl>(Val: D) &&
6205 isa<CXXDeductionGuideDecl>(D->getDeclContext()))
6206 NeedInstantiate = true;
6207 else
6208 NeedInstantiate = isa<EnumDecl>(Val: D);
6209 if (NeedInstantiate) {
6210 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6211 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6212 return cast<TypeDecl>(Val: Inst);
6213 }
6214
6215 // If we didn't find the decl, then we must have a label decl that hasn't
6216 // been found yet. Lazily instantiate it and return it now.
6217 assert(isa<LabelDecl>(D));
6218
6219 Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
6220 assert(Inst && "Failed to instantiate label??");
6221
6222 CurrentInstantiationScope->InstantiatedLocal(D, Inst);
6223 return cast<LabelDecl>(Val: Inst);
6224 }
6225
6226 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: D)) {
6227 if (!Record->isDependentContext())
6228 return D;
6229
6230 // Determine whether this record is the "templated" declaration describing
6231 // a class template or class template specialization.
6232 ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
6233 if (ClassTemplate)
6234 ClassTemplate = ClassTemplate->getCanonicalDecl();
6235 else if (ClassTemplateSpecializationDecl *Spec =
6236 dyn_cast<ClassTemplateSpecializationDecl>(Val: Record))
6237 ClassTemplate = Spec->getSpecializedTemplate()->getCanonicalDecl();
6238
6239 // Walk the current context to find either the record or an instantiation of
6240 // it.
6241 DeclContext *DC = CurContext;
6242 while (!DC->isFileContext()) {
6243 // If we're performing substitution while we're inside the template
6244 // definition, we'll find our own context. We're done.
6245 if (DC->Equals(Record))
6246 return Record;
6247
6248 if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(Val: DC)) {
6249 // Check whether we're in the process of instantiating a class template
6250 // specialization of the template we're mapping.
6251 if (ClassTemplateSpecializationDecl *InstSpec
6252 = dyn_cast<ClassTemplateSpecializationDecl>(Val: InstRecord)){
6253 ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
6254 if (ClassTemplate && isInstantiationOf(Pattern: ClassTemplate, Instance: SpecTemplate))
6255 return InstRecord;
6256 }
6257
6258 // Check whether we're in the process of instantiating a member class.
6259 if (isInstantiationOf(Pattern: Record, Instance: InstRecord))
6260 return InstRecord;
6261 }
6262
6263 // Move to the outer template scope.
6264 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: DC)) {
6265 if (FD->getFriendObjectKind() &&
6266 FD->getNonTransparentDeclContext()->isFileContext()) {
6267 DC = FD->getLexicalDeclContext();
6268 continue;
6269 }
6270 // An implicit deduction guide acts as if it's within the class template
6271 // specialization described by its name and first N template params.
6272 auto *Guide = dyn_cast<CXXDeductionGuideDecl>(Val: FD);
6273 if (Guide && Guide->isImplicit()) {
6274 TemplateDecl *TD = Guide->getDeducedTemplate();
6275 // Convert the arguments to an "as-written" list.
6276 TemplateArgumentListInfo Args(Loc, Loc);
6277 for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front(
6278 N: TD->getTemplateParameters()->size())) {
6279 ArrayRef<TemplateArgument> Unpacked(Arg);
6280 if (Arg.getKind() == TemplateArgument::Pack)
6281 Unpacked = Arg.pack_elements();
6282 for (TemplateArgument UnpackedArg : Unpacked)
6283 Args.addArgument(
6284 Loc: getTrivialTemplateArgumentLoc(Arg: UnpackedArg, NTTPType: QualType(), Loc));
6285 }
6286 QualType T = CheckTemplateIdType(Template: TemplateName(TD), TemplateLoc: Loc, TemplateArgs&: Args);
6287 if (T.isNull())
6288 return nullptr;
6289 auto *SubstRecord = T->getAsCXXRecordDecl();
6290 assert(SubstRecord && "class template id not a class type?");
6291 // Check that this template-id names the primary template and not a
6292 // partial or explicit specialization. (In the latter cases, it's
6293 // meaningless to attempt to find an instantiation of D within the
6294 // specialization.)
6295 // FIXME: The standard doesn't say what should happen here.
6296 if (FindingInstantiatedContext &&
6297 usesPartialOrExplicitSpecialization(
6298 Loc, ClassTemplateSpec: cast<ClassTemplateSpecializationDecl>(Val: SubstRecord))) {
6299 Diag(Loc, diag::err_specialization_not_primary_template)
6300 << T << (SubstRecord->getTemplateSpecializationKind() ==
6301 TSK_ExplicitSpecialization);
6302 return nullptr;
6303 }
6304 DC = SubstRecord;
6305 continue;
6306 }
6307 }
6308
6309 DC = DC->getParent();
6310 }
6311
6312 // Fall through to deal with other dependent record types (e.g.,
6313 // anonymous unions in class templates).
6314 }
6315
6316 if (!ParentDependsOnArgs)
6317 return D;
6318
6319 ParentDC = FindInstantiatedContext(Loc, DC: ParentDC, TemplateArgs);
6320 if (!ParentDC)
6321 return nullptr;
6322
6323 if (ParentDC != D->getDeclContext()) {
6324 // We performed some kind of instantiation in the parent context,
6325 // so now we need to look into the instantiated parent context to
6326 // find the instantiation of the declaration D.
6327
6328 // If our context used to be dependent, we may need to instantiate
6329 // it before performing lookup into that context.
6330 bool IsBeingInstantiated = false;
6331 if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(Val: ParentDC)) {
6332 if (!Spec->isDependentContext()) {
6333 QualType T = Context.getTypeDeclType(Spec);
6334 const RecordType *Tag = T->getAs<RecordType>();
6335 assert(Tag && "type of non-dependent record is not a RecordType");
6336 if (Tag->isBeingDefined())
6337 IsBeingInstantiated = true;
6338 if (!Tag->isBeingDefined() &&
6339 RequireCompleteType(Loc, T, diag::err_incomplete_type))
6340 return nullptr;
6341
6342 ParentDC = Tag->getDecl();
6343 }
6344 }
6345
6346 NamedDecl *Result = nullptr;
6347 // FIXME: If the name is a dependent name, this lookup won't necessarily
6348 // find it. Does that ever matter?
6349 if (auto Name = D->getDeclName()) {
6350 DeclarationNameInfo NameInfo(Name, D->getLocation());
6351 DeclarationNameInfo NewNameInfo =
6352 SubstDeclarationNameInfo(NameInfo, TemplateArgs);
6353 Name = NewNameInfo.getName();
6354 if (!Name)
6355 return nullptr;
6356 DeclContext::lookup_result Found = ParentDC->lookup(Name);
6357
6358 Result = findInstantiationOf(Ctx&: Context, D, first: Found.begin(), last: Found.end());
6359 } else {
6360 // Since we don't have a name for the entity we're looking for,
6361 // our only option is to walk through all of the declarations to
6362 // find that name. This will occur in a few cases:
6363 //
6364 // - anonymous struct/union within a template
6365 // - unnamed class/struct/union/enum within a template
6366 //
6367 // FIXME: Find a better way to find these instantiations!
6368 Result = findInstantiationOf(Ctx&: Context, D,
6369 first: ParentDC->decls_begin(),
6370 last: ParentDC->decls_end());
6371 }
6372
6373 if (!Result) {
6374 if (isa<UsingShadowDecl>(Val: D)) {
6375 // UsingShadowDecls can instantiate to nothing because of using hiding.
6376 } else if (hasUncompilableErrorOccurred()) {
6377 // We've already complained about some ill-formed code, so most likely
6378 // this declaration failed to instantiate. There's no point in
6379 // complaining further, since this is normal in invalid code.
6380 // FIXME: Use more fine-grained 'invalid' tracking for this.
6381 } else if (IsBeingInstantiated) {
6382 // The class in which this member exists is currently being
6383 // instantiated, and we haven't gotten around to instantiating this
6384 // member yet. This can happen when the code uses forward declarations
6385 // of member classes, and introduces ordering dependencies via
6386 // template instantiation.
6387 Diag(Loc, diag::err_member_not_yet_instantiated)
6388 << D->getDeclName()
6389 << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
6390 Diag(D->getLocation(), diag::note_non_instantiated_member_here);
6391 } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(Val: D)) {
6392 // This enumeration constant was found when the template was defined,
6393 // but can't be found in the instantiation. This can happen if an
6394 // unscoped enumeration member is explicitly specialized.
6395 EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
6396 EnumDecl *Spec = cast<EnumDecl>(Val: FindInstantiatedDecl(Loc, Enum,
6397 TemplateArgs));
6398 assert(Spec->getTemplateSpecializationKind() ==
6399 TSK_ExplicitSpecialization);
6400 Diag(Loc, diag::err_enumerator_does_not_exist)
6401 << D->getDeclName()
6402 << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
6403 Diag(Spec->getLocation(), diag::note_enum_specialized_here)
6404 << Context.getTypeDeclType(Spec);
6405 } else {
6406 // We should have found something, but didn't.
6407 llvm_unreachable("Unable to find instantiation of declaration!");
6408 }
6409 }
6410
6411 D = Result;
6412 }
6413
6414 return D;
6415}
6416
6417/// Performs template instantiation for all implicit template
6418/// instantiations we have seen until this point.
6419void Sema::PerformPendingInstantiations(bool LocalOnly) {
6420 std::deque<PendingImplicitInstantiation> delayedPCHInstantiations;
6421 while (!PendingLocalImplicitInstantiations.empty() ||
6422 (!LocalOnly && !PendingInstantiations.empty())) {
6423 PendingImplicitInstantiation Inst;
6424
6425 if (PendingLocalImplicitInstantiations.empty()) {
6426 Inst = PendingInstantiations.front();
6427 PendingInstantiations.pop_front();
6428 } else {
6429 Inst = PendingLocalImplicitInstantiations.front();
6430 PendingLocalImplicitInstantiations.pop_front();
6431 }
6432
6433 // Instantiate function definitions
6434 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Val: Inst.first)) {
6435 bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
6436 TSK_ExplicitInstantiationDefinition;
6437 if (Function->isMultiVersion()) {
6438 getASTContext().forEachMultiversionedFunctionVersion(
6439 FD: Function, Pred: [this, Inst, DefinitionRequired](FunctionDecl *CurFD) {
6440 InstantiateFunctionDefinition(/*FIXME:*/ PointOfInstantiation: Inst.second, Function: CurFD, Recursive: true,
6441 DefinitionRequired, AtEndOfTU: true);
6442 if (CurFD->isDefined())
6443 CurFD->setInstantiationIsPending(false);
6444 });
6445 } else {
6446 InstantiateFunctionDefinition(/*FIXME:*/ PointOfInstantiation: Inst.second, Function, Recursive: true,
6447 DefinitionRequired, AtEndOfTU: true);
6448 if (Function->isDefined())
6449 Function->setInstantiationIsPending(false);
6450 }
6451 // Definition of a PCH-ed template declaration may be available only in the TU.
6452 if (!LocalOnly && LangOpts.PCHInstantiateTemplates &&
6453 TUKind == TU_Prefix && Function->instantiationIsPending())
6454 delayedPCHInstantiations.push_back(x: Inst);
6455 continue;
6456 }
6457
6458 // Instantiate variable definitions
6459 VarDecl *Var = cast<VarDecl>(Val: Inst.first);
6460
6461 assert((Var->isStaticDataMember() ||
6462 isa<VarTemplateSpecializationDecl>(Var)) &&
6463 "Not a static data member, nor a variable template"
6464 " specialization?");
6465
6466 // Don't try to instantiate declarations if the most recent redeclaration
6467 // is invalid.
6468 if (Var->getMostRecentDecl()->isInvalidDecl())
6469 continue;
6470
6471 // Check if the most recent declaration has changed the specialization kind
6472 // and removed the need for implicit instantiation.
6473 switch (Var->getMostRecentDecl()
6474 ->getTemplateSpecializationKindForInstantiation()) {
6475 case TSK_Undeclared:
6476 llvm_unreachable("Cannot instantitiate an undeclared specialization.");
6477 case TSK_ExplicitInstantiationDeclaration:
6478 case TSK_ExplicitSpecialization:
6479 continue; // No longer need to instantiate this type.
6480 case TSK_ExplicitInstantiationDefinition:
6481 // We only need an instantiation if the pending instantiation *is* the
6482 // explicit instantiation.
6483 if (Var != Var->getMostRecentDecl())
6484 continue;
6485 break;
6486 case TSK_ImplicitInstantiation:
6487 break;
6488 }
6489
6490 PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
6491 "instantiating variable definition");
6492 bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
6493 TSK_ExplicitInstantiationDefinition;
6494
6495 // Instantiate static data member definitions or variable template
6496 // specializations.
6497 InstantiateVariableDefinition(/*FIXME:*/ PointOfInstantiation: Inst.second, Var, Recursive: true,
6498 DefinitionRequired, AtEndOfTU: true);
6499 }
6500
6501 if (!LocalOnly && LangOpts.PCHInstantiateTemplates)
6502 PendingInstantiations.swap(x&: delayedPCHInstantiations);
6503}
6504
6505void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
6506 const MultiLevelTemplateArgumentList &TemplateArgs) {
6507 for (auto *DD : Pattern->ddiags()) {
6508 switch (DD->getKind()) {
6509 case DependentDiagnostic::Access:
6510 HandleDependentAccessCheck(DD: *DD, TemplateArgs);
6511 break;
6512 }
6513 }
6514}
6515

source code of clang/lib/Sema/SemaTemplateInstantiateDecl.cpp