1 | //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements type-related semantic analysis. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "TypeLocBuilder.h" |
14 | #include "clang/AST/ASTConsumer.h" |
15 | #include "clang/AST/ASTContext.h" |
16 | #include "clang/AST/ASTMutationListener.h" |
17 | #include "clang/AST/ASTStructuralEquivalence.h" |
18 | #include "clang/AST/CXXInheritance.h" |
19 | #include "clang/AST/Decl.h" |
20 | #include "clang/AST/DeclObjC.h" |
21 | #include "clang/AST/DeclTemplate.h" |
22 | #include "clang/AST/Expr.h" |
23 | #include "clang/AST/ExprObjC.h" |
24 | #include "clang/AST/LocInfoType.h" |
25 | #include "clang/AST/Type.h" |
26 | #include "clang/AST/TypeLoc.h" |
27 | #include "clang/AST/TypeLocVisitor.h" |
28 | #include "clang/Basic/LangOptions.h" |
29 | #include "clang/Basic/SourceLocation.h" |
30 | #include "clang/Basic/Specifiers.h" |
31 | #include "clang/Basic/TargetInfo.h" |
32 | #include "clang/Lex/Preprocessor.h" |
33 | #include "clang/Sema/DeclSpec.h" |
34 | #include "clang/Sema/DelayedDiagnostic.h" |
35 | #include "clang/Sema/Lookup.h" |
36 | #include "clang/Sema/ParsedAttr.h" |
37 | #include "clang/Sema/ParsedTemplate.h" |
38 | #include "clang/Sema/ScopeInfo.h" |
39 | #include "clang/Sema/SemaCUDA.h" |
40 | #include "clang/Sema/SemaHLSL.h" |
41 | #include "clang/Sema/SemaObjC.h" |
42 | #include "clang/Sema/SemaOpenMP.h" |
43 | #include "clang/Sema/Template.h" |
44 | #include "clang/Sema/TemplateInstCallback.h" |
45 | #include "llvm/ADT/ArrayRef.h" |
46 | #include "llvm/ADT/STLForwardCompat.h" |
47 | #include "llvm/ADT/StringExtras.h" |
48 | #include "llvm/IR/DerivedTypes.h" |
49 | #include "llvm/Support/ErrorHandling.h" |
50 | #include <bitset> |
51 | #include <optional> |
52 | |
53 | using namespace clang; |
54 | |
55 | enum TypeDiagSelector { |
56 | TDS_Function, |
57 | TDS_Pointer, |
58 | TDS_ObjCObjOrBlock |
59 | }; |
60 | |
61 | /// isOmittedBlockReturnType - Return true if this declarator is missing a |
62 | /// return type because this is a omitted return type on a block literal. |
63 | static bool isOmittedBlockReturnType(const Declarator &D) { |
64 | if (D.getContext() != DeclaratorContext::BlockLiteral || |
65 | D.getDeclSpec().hasTypeSpecifier()) |
66 | return false; |
67 | |
68 | if (D.getNumTypeObjects() == 0) |
69 | return true; // ^{ ... } |
70 | |
71 | if (D.getNumTypeObjects() == 1 && |
72 | D.getTypeObject(i: 0).Kind == DeclaratorChunk::Function) |
73 | return true; // ^(int X, float Y) { ... } |
74 | |
75 | return false; |
76 | } |
77 | |
78 | /// diagnoseBadTypeAttribute - Diagnoses a type attribute which |
79 | /// doesn't apply to the given type. |
80 | static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr, |
81 | QualType type) { |
82 | TypeDiagSelector WhichType; |
83 | bool useExpansionLoc = true; |
84 | switch (attr.getKind()) { |
85 | case ParsedAttr::AT_ObjCGC: |
86 | WhichType = TDS_Pointer; |
87 | break; |
88 | case ParsedAttr::AT_ObjCOwnership: |
89 | WhichType = TDS_ObjCObjOrBlock; |
90 | break; |
91 | default: |
92 | // Assume everything else was a function attribute. |
93 | WhichType = TDS_Function; |
94 | useExpansionLoc = false; |
95 | break; |
96 | } |
97 | |
98 | SourceLocation loc = attr.getLoc(); |
99 | StringRef name = attr.getAttrName()->getName(); |
100 | |
101 | // The GC attributes are usually written with macros; special-case them. |
102 | IdentifierInfo *II = |
103 | attr.isArgIdent(Arg: 0) ? attr.getArgAsIdent(Arg: 0)->getIdentifierInfo() : nullptr; |
104 | if (useExpansionLoc && loc.isMacroID() && II) { |
105 | if (II->isStr(Str: "strong")) { |
106 | if (S.findMacroSpelling(loc, name: "__strong")) name = "__strong"; |
107 | } else if (II->isStr(Str: "weak")) { |
108 | if (S.findMacroSpelling(loc, name: "__weak")) name = "__weak"; |
109 | } |
110 | } |
111 | |
112 | S.Diag(loc, attr.isRegularKeywordAttribute() |
113 | ? diag::err_type_attribute_wrong_type |
114 | : diag::warn_type_attribute_wrong_type) |
115 | << name << WhichType << type; |
116 | } |
117 | |
118 | // objc_gc applies to Objective-C pointers or, otherwise, to the |
119 | // smallest available pointer type (i.e. 'void*' in 'void**'). |
120 | #define OBJC_POINTER_TYPE_ATTRS_CASELIST \ |
121 | case ParsedAttr::AT_ObjCGC: \ |
122 | case ParsedAttr::AT_ObjCOwnership |
123 | |
124 | // Calling convention attributes. |
125 | #define CALLING_CONV_ATTRS_CASELIST \ |
126 | case ParsedAttr::AT_CDecl: \ |
127 | case ParsedAttr::AT_FastCall: \ |
128 | case ParsedAttr::AT_StdCall: \ |
129 | case ParsedAttr::AT_ThisCall: \ |
130 | case ParsedAttr::AT_RegCall: \ |
131 | case ParsedAttr::AT_Pascal: \ |
132 | case ParsedAttr::AT_SwiftCall: \ |
133 | case ParsedAttr::AT_SwiftAsyncCall: \ |
134 | case ParsedAttr::AT_VectorCall: \ |
135 | case ParsedAttr::AT_AArch64VectorPcs: \ |
136 | case ParsedAttr::AT_AArch64SVEPcs: \ |
137 | case ParsedAttr::AT_DeviceKernel: \ |
138 | case ParsedAttr::AT_MSABI: \ |
139 | case ParsedAttr::AT_SysVABI: \ |
140 | case ParsedAttr::AT_Pcs: \ |
141 | case ParsedAttr::AT_IntelOclBicc: \ |
142 | case ParsedAttr::AT_PreserveMost: \ |
143 | case ParsedAttr::AT_PreserveAll: \ |
144 | case ParsedAttr::AT_M68kRTD: \ |
145 | case ParsedAttr::AT_PreserveNone: \ |
146 | case ParsedAttr::AT_RISCVVectorCC: \ |
147 | case ParsedAttr::AT_RISCVVLSCC |
148 | |
149 | // Function type attributes. |
150 | #define FUNCTION_TYPE_ATTRS_CASELIST \ |
151 | case ParsedAttr::AT_NSReturnsRetained: \ |
152 | case ParsedAttr::AT_NoReturn: \ |
153 | case ParsedAttr::AT_NonBlocking: \ |
154 | case ParsedAttr::AT_NonAllocating: \ |
155 | case ParsedAttr::AT_Blocking: \ |
156 | case ParsedAttr::AT_Allocating: \ |
157 | case ParsedAttr::AT_Regparm: \ |
158 | case ParsedAttr::AT_CFIUncheckedCallee: \ |
159 | case ParsedAttr::AT_CmseNSCall: \ |
160 | case ParsedAttr::AT_ArmStreaming: \ |
161 | case ParsedAttr::AT_ArmStreamingCompatible: \ |
162 | case ParsedAttr::AT_ArmPreserves: \ |
163 | case ParsedAttr::AT_ArmIn: \ |
164 | case ParsedAttr::AT_ArmOut: \ |
165 | case ParsedAttr::AT_ArmInOut: \ |
166 | case ParsedAttr::AT_ArmAgnostic: \ |
167 | case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \ |
168 | case ParsedAttr::AT_AnyX86NoCfCheck: \ |
169 | CALLING_CONV_ATTRS_CASELIST |
170 | |
171 | // Microsoft-specific type qualifiers. |
172 | #define MS_TYPE_ATTRS_CASELIST \ |
173 | case ParsedAttr::AT_Ptr32: \ |
174 | case ParsedAttr::AT_Ptr64: \ |
175 | case ParsedAttr::AT_SPtr: \ |
176 | case ParsedAttr::AT_UPtr |
177 | |
178 | // Nullability qualifiers. |
179 | #define NULLABILITY_TYPE_ATTRS_CASELIST \ |
180 | case ParsedAttr::AT_TypeNonNull: \ |
181 | case ParsedAttr::AT_TypeNullable: \ |
182 | case ParsedAttr::AT_TypeNullableResult: \ |
183 | case ParsedAttr::AT_TypeNullUnspecified |
184 | |
185 | namespace { |
186 | /// An object which stores processing state for the entire |
187 | /// GetTypeForDeclarator process. |
188 | class TypeProcessingState { |
189 | Sema &sema; |
190 | |
191 | /// The declarator being processed. |
192 | Declarator &declarator; |
193 | |
194 | /// The index of the declarator chunk we're currently processing. |
195 | /// May be the total number of valid chunks, indicating the |
196 | /// DeclSpec. |
197 | unsigned chunkIndex; |
198 | |
199 | /// The original set of attributes on the DeclSpec. |
200 | SmallVector<ParsedAttr *, 2> savedAttrs; |
201 | |
202 | /// A list of attributes to diagnose the uselessness of when the |
203 | /// processing is complete. |
204 | SmallVector<ParsedAttr *, 2> ignoredTypeAttrs; |
205 | |
206 | /// Attributes corresponding to AttributedTypeLocs that we have not yet |
207 | /// populated. |
208 | // FIXME: The two-phase mechanism by which we construct Types and fill |
209 | // their TypeLocs makes it hard to correctly assign these. We keep the |
210 | // attributes in creation order as an attempt to make them line up |
211 | // properly. |
212 | using TypeAttrPair = std::pair<const AttributedType*, const Attr*>; |
213 | SmallVector<TypeAttrPair, 8> AttrsForTypes; |
214 | bool AttrsForTypesSorted = true; |
215 | |
216 | /// MacroQualifiedTypes mapping to macro expansion locations that will be |
217 | /// stored in a MacroQualifiedTypeLoc. |
218 | llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros; |
219 | |
220 | /// Flag to indicate we parsed a noderef attribute. This is used for |
221 | /// validating that noderef was used on a pointer or array. |
222 | bool parsedNoDeref; |
223 | |
224 | // Flag to indicate that we already parsed a HLSL parameter modifier |
225 | // attribute. This prevents double-mutating the type. |
226 | bool ParsedHLSLParamMod; |
227 | |
228 | public: |
229 | TypeProcessingState(Sema &sema, Declarator &declarator) |
230 | : sema(sema), declarator(declarator), |
231 | chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false), |
232 | ParsedHLSLParamMod(false) {} |
233 | |
234 | Sema &getSema() const { |
235 | return sema; |
236 | } |
237 | |
238 | Declarator &getDeclarator() const { |
239 | return declarator; |
240 | } |
241 | |
242 | bool isProcessingDeclSpec() const { |
243 | return chunkIndex == declarator.getNumTypeObjects(); |
244 | } |
245 | |
246 | unsigned getCurrentChunkIndex() const { |
247 | return chunkIndex; |
248 | } |
249 | |
250 | void setCurrentChunkIndex(unsigned idx) { |
251 | assert(idx <= declarator.getNumTypeObjects()); |
252 | chunkIndex = idx; |
253 | } |
254 | |
255 | ParsedAttributesView &getCurrentAttributes() const { |
256 | if (isProcessingDeclSpec()) |
257 | return getMutableDeclSpec().getAttributes(); |
258 | return declarator.getTypeObject(i: chunkIndex).getAttrs(); |
259 | } |
260 | |
261 | /// Save the current set of attributes on the DeclSpec. |
262 | void saveDeclSpecAttrs() { |
263 | // Don't try to save them multiple times. |
264 | if (!savedAttrs.empty()) |
265 | return; |
266 | |
267 | DeclSpec &spec = getMutableDeclSpec(); |
268 | llvm::append_range(C&: savedAttrs, |
269 | R: llvm::make_pointer_range(Range&: spec.getAttributes())); |
270 | } |
271 | |
272 | /// Record that we had nowhere to put the given type attribute. |
273 | /// We will diagnose such attributes later. |
274 | void addIgnoredTypeAttr(ParsedAttr &attr) { |
275 | ignoredTypeAttrs.push_back(Elt: &attr); |
276 | } |
277 | |
278 | /// Diagnose all the ignored type attributes, given that the |
279 | /// declarator worked out to the given type. |
280 | void diagnoseIgnoredTypeAttrs(QualType type) const { |
281 | for (auto *Attr : ignoredTypeAttrs) |
282 | diagnoseBadTypeAttribute(S&: getSema(), attr: *Attr, type); |
283 | } |
284 | |
285 | /// Get an attributed type for the given attribute, and remember the Attr |
286 | /// object so that we can attach it to the AttributedTypeLoc. |
287 | QualType getAttributedType(Attr *A, QualType ModifiedType, |
288 | QualType EquivType) { |
289 | QualType T = |
290 | sema.Context.getAttributedType(attr: A, modifiedType: ModifiedType, equivalentType: EquivType); |
291 | AttrsForTypes.push_back(Elt: {cast<AttributedType>(Val: T.getTypePtr()), A}); |
292 | AttrsForTypesSorted = false; |
293 | return T; |
294 | } |
295 | |
296 | /// Get a BTFTagAttributed type for the btf_type_tag attribute. |
297 | QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr, |
298 | QualType WrappedType) { |
299 | return sema.Context.getBTFTagAttributedType(BTFAttr, Wrapped: WrappedType); |
300 | } |
301 | |
302 | /// Completely replace the \c auto in \p TypeWithAuto by |
303 | /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if |
304 | /// necessary. |
305 | QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) { |
306 | QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement); |
307 | if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) { |
308 | // Attributed type still should be an attributed type after replacement. |
309 | auto *NewAttrTy = cast<AttributedType>(Val: T.getTypePtr()); |
310 | for (TypeAttrPair &A : AttrsForTypes) { |
311 | if (A.first == AttrTy) |
312 | A.first = NewAttrTy; |
313 | } |
314 | AttrsForTypesSorted = false; |
315 | } |
316 | return T; |
317 | } |
318 | |
319 | /// Extract and remove the Attr* for a given attributed type. |
320 | const Attr *takeAttrForAttributedType(const AttributedType *AT) { |
321 | if (!AttrsForTypesSorted) { |
322 | llvm::stable_sort(Range&: AttrsForTypes, C: llvm::less_first()); |
323 | AttrsForTypesSorted = true; |
324 | } |
325 | |
326 | // FIXME: This is quadratic if we have lots of reuses of the same |
327 | // attributed type. |
328 | for (auto It = llvm::partition_point( |
329 | Range&: AttrsForTypes, |
330 | P: [=](const TypeAttrPair &A) { return A.first < AT; }); |
331 | It != AttrsForTypes.end() && It->first == AT; ++It) { |
332 | if (It->second) { |
333 | const Attr *Result = It->second; |
334 | It->second = nullptr; |
335 | return Result; |
336 | } |
337 | } |
338 | |
339 | llvm_unreachable("no Attr* for AttributedType*"); |
340 | } |
341 | |
342 | SourceLocation |
343 | getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const { |
344 | auto FoundLoc = LocsForMacros.find(Val: MQT); |
345 | assert(FoundLoc != LocsForMacros.end() && |
346 | "Unable to find macro expansion location for MacroQualifedType"); |
347 | return FoundLoc->second; |
348 | } |
349 | |
350 | void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT, |
351 | SourceLocation Loc) { |
352 | LocsForMacros[MQT] = Loc; |
353 | } |
354 | |
355 | void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; } |
356 | |
357 | bool didParseNoDeref() const { return parsedNoDeref; } |
358 | |
359 | void setParsedHLSLParamMod(bool Parsed) { ParsedHLSLParamMod = Parsed; } |
360 | |
361 | bool didParseHLSLParamMod() const { return ParsedHLSLParamMod; } |
362 | |
363 | ~TypeProcessingState() { |
364 | if (savedAttrs.empty()) |
365 | return; |
366 | |
367 | getMutableDeclSpec().getAttributes().clearListOnly(); |
368 | for (ParsedAttr *AL : savedAttrs) |
369 | getMutableDeclSpec().getAttributes().addAtEnd(newAttr: AL); |
370 | } |
371 | |
372 | private: |
373 | DeclSpec &getMutableDeclSpec() const { |
374 | return const_cast<DeclSpec&>(declarator.getDeclSpec()); |
375 | } |
376 | }; |
377 | } // end anonymous namespace |
378 | |
379 | static void moveAttrFromListToList(ParsedAttr &attr, |
380 | ParsedAttributesView &fromList, |
381 | ParsedAttributesView &toList) { |
382 | fromList.remove(ToBeRemoved: &attr); |
383 | toList.addAtEnd(newAttr: &attr); |
384 | } |
385 | |
386 | /// The location of a type attribute. |
387 | enum TypeAttrLocation { |
388 | /// The attribute is in the decl-specifier-seq. |
389 | TAL_DeclSpec, |
390 | /// The attribute is part of a DeclaratorChunk. |
391 | TAL_DeclChunk, |
392 | /// The attribute is immediately after the declaration's name. |
393 | TAL_DeclName |
394 | }; |
395 | |
396 | static void |
397 | processTypeAttrs(TypeProcessingState &state, QualType &type, |
398 | TypeAttrLocation TAL, const ParsedAttributesView &attrs, |
399 | CUDAFunctionTarget CFT = CUDAFunctionTarget::HostDevice); |
400 | |
401 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, |
402 | QualType &type, CUDAFunctionTarget CFT); |
403 | |
404 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state, |
405 | ParsedAttr &attr, QualType &type); |
406 | |
407 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, |
408 | QualType &type); |
409 | |
410 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, |
411 | ParsedAttr &attr, QualType &type); |
412 | |
413 | static bool handleObjCPointerTypeAttr(TypeProcessingState &state, |
414 | ParsedAttr &attr, QualType &type) { |
415 | if (attr.getKind() == ParsedAttr::AT_ObjCGC) |
416 | return handleObjCGCTypeAttr(state, attr, type); |
417 | assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership); |
418 | return handleObjCOwnershipTypeAttr(state, attr, type); |
419 | } |
420 | |
421 | /// Given the index of a declarator chunk, check whether that chunk |
422 | /// directly specifies the return type of a function and, if so, find |
423 | /// an appropriate place for it. |
424 | /// |
425 | /// \param i - a notional index which the search will start |
426 | /// immediately inside |
427 | /// |
428 | /// \param onlyBlockPointers Whether we should only look into block |
429 | /// pointer types (vs. all pointer types). |
430 | static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator, |
431 | unsigned i, |
432 | bool onlyBlockPointers) { |
433 | assert(i <= declarator.getNumTypeObjects()); |
434 | |
435 | DeclaratorChunk *result = nullptr; |
436 | |
437 | // First, look inwards past parens for a function declarator. |
438 | for (; i != 0; --i) { |
439 | DeclaratorChunk &fnChunk = declarator.getTypeObject(i: i-1); |
440 | switch (fnChunk.Kind) { |
441 | case DeclaratorChunk::Paren: |
442 | continue; |
443 | |
444 | // If we find anything except a function, bail out. |
445 | case DeclaratorChunk::Pointer: |
446 | case DeclaratorChunk::BlockPointer: |
447 | case DeclaratorChunk::Array: |
448 | case DeclaratorChunk::Reference: |
449 | case DeclaratorChunk::MemberPointer: |
450 | case DeclaratorChunk::Pipe: |
451 | return result; |
452 | |
453 | // If we do find a function declarator, scan inwards from that, |
454 | // looking for a (block-)pointer declarator. |
455 | case DeclaratorChunk::Function: |
456 | for (--i; i != 0; --i) { |
457 | DeclaratorChunk &ptrChunk = declarator.getTypeObject(i: i-1); |
458 | switch (ptrChunk.Kind) { |
459 | case DeclaratorChunk::Paren: |
460 | case DeclaratorChunk::Array: |
461 | case DeclaratorChunk::Function: |
462 | case DeclaratorChunk::Reference: |
463 | case DeclaratorChunk::Pipe: |
464 | continue; |
465 | |
466 | case DeclaratorChunk::MemberPointer: |
467 | case DeclaratorChunk::Pointer: |
468 | if (onlyBlockPointers) |
469 | continue; |
470 | |
471 | [[fallthrough]]; |
472 | |
473 | case DeclaratorChunk::BlockPointer: |
474 | result = &ptrChunk; |
475 | goto continue_outer; |
476 | } |
477 | llvm_unreachable("bad declarator chunk kind"); |
478 | } |
479 | |
480 | // If we run out of declarators doing that, we're done. |
481 | return result; |
482 | } |
483 | llvm_unreachable("bad declarator chunk kind"); |
484 | |
485 | // Okay, reconsider from our new point. |
486 | continue_outer: ; |
487 | } |
488 | |
489 | // Ran out of chunks, bail out. |
490 | return result; |
491 | } |
492 | |
493 | /// Given that an objc_gc attribute was written somewhere on a |
494 | /// declaration *other* than on the declarator itself (for which, use |
495 | /// distributeObjCPointerTypeAttrFromDeclarator), and given that it |
496 | /// didn't apply in whatever position it was written in, try to move |
497 | /// it to a more appropriate position. |
498 | static void distributeObjCPointerTypeAttr(TypeProcessingState &state, |
499 | ParsedAttr &attr, QualType type) { |
500 | Declarator &declarator = state.getDeclarator(); |
501 | |
502 | // Move it to the outermost normal or block pointer declarator. |
503 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { |
504 | DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1); |
505 | switch (chunk.Kind) { |
506 | case DeclaratorChunk::Pointer: |
507 | case DeclaratorChunk::BlockPointer: { |
508 | // But don't move an ARC ownership attribute to the return type |
509 | // of a block. |
510 | DeclaratorChunk *destChunk = nullptr; |
511 | if (state.isProcessingDeclSpec() && |
512 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) |
513 | destChunk = maybeMovePastReturnType(declarator, i: i - 1, |
514 | /*onlyBlockPointers=*/true); |
515 | if (!destChunk) destChunk = &chunk; |
516 | |
517 | moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(), |
518 | toList&: destChunk->getAttrs()); |
519 | return; |
520 | } |
521 | |
522 | case DeclaratorChunk::Paren: |
523 | case DeclaratorChunk::Array: |
524 | continue; |
525 | |
526 | // We may be starting at the return type of a block. |
527 | case DeclaratorChunk::Function: |
528 | if (state.isProcessingDeclSpec() && |
529 | attr.getKind() == ParsedAttr::AT_ObjCOwnership) { |
530 | if (DeclaratorChunk *dest = maybeMovePastReturnType( |
531 | declarator, i, |
532 | /*onlyBlockPointers=*/true)) { |
533 | moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(), |
534 | toList&: dest->getAttrs()); |
535 | return; |
536 | } |
537 | } |
538 | goto error; |
539 | |
540 | // Don't walk through these. |
541 | case DeclaratorChunk::Reference: |
542 | case DeclaratorChunk::MemberPointer: |
543 | case DeclaratorChunk::Pipe: |
544 | goto error; |
545 | } |
546 | } |
547 | error: |
548 | |
549 | diagnoseBadTypeAttribute(S&: state.getSema(), attr, type); |
550 | } |
551 | |
552 | /// Distribute an objc_gc type attribute that was written on the |
553 | /// declarator. |
554 | static void distributeObjCPointerTypeAttrFromDeclarator( |
555 | TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) { |
556 | Declarator &declarator = state.getDeclarator(); |
557 | |
558 | // objc_gc goes on the innermost pointer to something that's not a |
559 | // pointer. |
560 | unsigned innermost = -1U; |
561 | bool considerDeclSpec = true; |
562 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { |
563 | DeclaratorChunk &chunk = declarator.getTypeObject(i); |
564 | switch (chunk.Kind) { |
565 | case DeclaratorChunk::Pointer: |
566 | case DeclaratorChunk::BlockPointer: |
567 | innermost = i; |
568 | continue; |
569 | |
570 | case DeclaratorChunk::Reference: |
571 | case DeclaratorChunk::MemberPointer: |
572 | case DeclaratorChunk::Paren: |
573 | case DeclaratorChunk::Array: |
574 | case DeclaratorChunk::Pipe: |
575 | continue; |
576 | |
577 | case DeclaratorChunk::Function: |
578 | considerDeclSpec = false; |
579 | goto done; |
580 | } |
581 | } |
582 | done: |
583 | |
584 | // That might actually be the decl spec if we weren't blocked by |
585 | // anything in the declarator. |
586 | if (considerDeclSpec) { |
587 | if (handleObjCPointerTypeAttr(state, attr, type&: declSpecType)) { |
588 | // Splice the attribute into the decl spec. Prevents the |
589 | // attribute from being applied multiple times and gives |
590 | // the source-location-filler something to work with. |
591 | state.saveDeclSpecAttrs(); |
592 | declarator.getMutableDeclSpec().getAttributes().takeOneFrom( |
593 | Other&: declarator.getAttributes(), PA: &attr); |
594 | return; |
595 | } |
596 | } |
597 | |
598 | // Otherwise, if we found an appropriate chunk, splice the attribute |
599 | // into it. |
600 | if (innermost != -1U) { |
601 | moveAttrFromListToList(attr, fromList&: declarator.getAttributes(), |
602 | toList&: declarator.getTypeObject(i: innermost).getAttrs()); |
603 | return; |
604 | } |
605 | |
606 | // Otherwise, diagnose when we're done building the type. |
607 | declarator.getAttributes().remove(ToBeRemoved: &attr); |
608 | state.addIgnoredTypeAttr(attr); |
609 | } |
610 | |
611 | /// A function type attribute was written somewhere in a declaration |
612 | /// *other* than on the declarator itself or in the decl spec. Given |
613 | /// that it didn't apply in whatever position it was written in, try |
614 | /// to move it to a more appropriate position. |
615 | static void distributeFunctionTypeAttr(TypeProcessingState &state, |
616 | ParsedAttr &attr, QualType type) { |
617 | Declarator &declarator = state.getDeclarator(); |
618 | |
619 | // Try to push the attribute from the return type of a function to |
620 | // the function itself. |
621 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { |
622 | DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1); |
623 | switch (chunk.Kind) { |
624 | case DeclaratorChunk::Function: |
625 | moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(), |
626 | toList&: chunk.getAttrs()); |
627 | return; |
628 | |
629 | case DeclaratorChunk::Paren: |
630 | case DeclaratorChunk::Pointer: |
631 | case DeclaratorChunk::BlockPointer: |
632 | case DeclaratorChunk::Array: |
633 | case DeclaratorChunk::Reference: |
634 | case DeclaratorChunk::MemberPointer: |
635 | case DeclaratorChunk::Pipe: |
636 | continue; |
637 | } |
638 | } |
639 | |
640 | diagnoseBadTypeAttribute(S&: state.getSema(), attr, type); |
641 | } |
642 | |
643 | /// Try to distribute a function type attribute to the innermost |
644 | /// function chunk or type. Returns true if the attribute was |
645 | /// distributed, false if no location was found. |
646 | static bool distributeFunctionTypeAttrToInnermost( |
647 | TypeProcessingState &state, ParsedAttr &attr, |
648 | ParsedAttributesView &attrList, QualType &declSpecType, |
649 | CUDAFunctionTarget CFT) { |
650 | Declarator &declarator = state.getDeclarator(); |
651 | |
652 | // Put it on the innermost function chunk, if there is one. |
653 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { |
654 | DeclaratorChunk &chunk = declarator.getTypeObject(i); |
655 | if (chunk.Kind != DeclaratorChunk::Function) continue; |
656 | |
657 | moveAttrFromListToList(attr, fromList&: attrList, toList&: chunk.getAttrs()); |
658 | return true; |
659 | } |
660 | |
661 | return handleFunctionTypeAttr(state, attr, type&: declSpecType, CFT); |
662 | } |
663 | |
664 | /// A function type attribute was written in the decl spec. Try to |
665 | /// apply it somewhere. |
666 | static void distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state, |
667 | ParsedAttr &attr, |
668 | QualType &declSpecType, |
669 | CUDAFunctionTarget CFT) { |
670 | state.saveDeclSpecAttrs(); |
671 | |
672 | // Try to distribute to the innermost. |
673 | if (distributeFunctionTypeAttrToInnermost( |
674 | state, attr, attrList&: state.getCurrentAttributes(), declSpecType, CFT)) |
675 | return; |
676 | |
677 | // If that failed, diagnose the bad attribute when the declarator is |
678 | // fully built. |
679 | state.addIgnoredTypeAttr(attr); |
680 | } |
681 | |
682 | /// A function type attribute was written on the declarator or declaration. |
683 | /// Try to apply it somewhere. |
684 | /// `Attrs` is the attribute list containing the declaration (either of the |
685 | /// declarator or the declaration). |
686 | static void distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state, |
687 | ParsedAttr &attr, |
688 | QualType &declSpecType, |
689 | CUDAFunctionTarget CFT) { |
690 | Declarator &declarator = state.getDeclarator(); |
691 | |
692 | // Try to distribute to the innermost. |
693 | if (distributeFunctionTypeAttrToInnermost( |
694 | state, attr, attrList&: declarator.getAttributes(), declSpecType, CFT)) |
695 | return; |
696 | |
697 | // If that failed, diagnose the bad attribute when the declarator is |
698 | // fully built. |
699 | declarator.getAttributes().remove(ToBeRemoved: &attr); |
700 | state.addIgnoredTypeAttr(attr); |
701 | } |
702 | |
703 | /// Given that there are attributes written on the declarator or declaration |
704 | /// itself, try to distribute any type attributes to the appropriate |
705 | /// declarator chunk. |
706 | /// |
707 | /// These are attributes like the following: |
708 | /// int f ATTR; |
709 | /// int (f ATTR)(); |
710 | /// but not necessarily this: |
711 | /// int f() ATTR; |
712 | /// |
713 | /// `Attrs` is the attribute list containing the declaration (either of the |
714 | /// declarator or the declaration). |
715 | static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state, |
716 | QualType &declSpecType, |
717 | CUDAFunctionTarget CFT) { |
718 | // The called functions in this loop actually remove things from the current |
719 | // list, so iterating over the existing list isn't possible. Instead, make a |
720 | // non-owning copy and iterate over that. |
721 | ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()}; |
722 | for (ParsedAttr &attr : AttrsCopy) { |
723 | // Do not distribute [[]] attributes. They have strict rules for what |
724 | // they appertain to. |
725 | if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) |
726 | continue; |
727 | |
728 | switch (attr.getKind()) { |
729 | OBJC_POINTER_TYPE_ATTRS_CASELIST: |
730 | distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType); |
731 | break; |
732 | |
733 | FUNCTION_TYPE_ATTRS_CASELIST: |
734 | distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT); |
735 | break; |
736 | |
737 | MS_TYPE_ATTRS_CASELIST: |
738 | // Microsoft type attributes cannot go after the declarator-id. |
739 | continue; |
740 | |
741 | NULLABILITY_TYPE_ATTRS_CASELIST: |
742 | // Nullability specifiers cannot go after the declarator-id. |
743 | |
744 | // Objective-C __kindof does not get distributed. |
745 | case ParsedAttr::AT_ObjCKindOf: |
746 | continue; |
747 | |
748 | default: |
749 | break; |
750 | } |
751 | } |
752 | } |
753 | |
754 | /// Add a synthetic '()' to a block-literal declarator if it is |
755 | /// required, given the return type. |
756 | static void maybeSynthesizeBlockSignature(TypeProcessingState &state, |
757 | QualType declSpecType) { |
758 | Declarator &declarator = state.getDeclarator(); |
759 | |
760 | // First, check whether the declarator would produce a function, |
761 | // i.e. whether the innermost semantic chunk is a function. |
762 | if (declarator.isFunctionDeclarator()) { |
763 | // If so, make that declarator a prototyped declarator. |
764 | declarator.getFunctionTypeInfo().hasPrototype = true; |
765 | return; |
766 | } |
767 | |
768 | // If there are any type objects, the type as written won't name a |
769 | // function, regardless of the decl spec type. This is because a |
770 | // block signature declarator is always an abstract-declarator, and |
771 | // abstract-declarators can't just be parentheses chunks. Therefore |
772 | // we need to build a function chunk unless there are no type |
773 | // objects and the decl spec type is a function. |
774 | if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType()) |
775 | return; |
776 | |
777 | // Note that there *are* cases with invalid declarators where |
778 | // declarators consist solely of parentheses. In general, these |
779 | // occur only in failed efforts to make function declarators, so |
780 | // faking up the function chunk is still the right thing to do. |
781 | |
782 | // Otherwise, we need to fake up a function declarator. |
783 | SourceLocation loc = declarator.getBeginLoc(); |
784 | |
785 | // ...and *prepend* it to the declarator. |
786 | SourceLocation NoLoc; |
787 | declarator.AddInnermostTypeInfo(TI: DeclaratorChunk::getFunction( |
788 | /*HasProto=*/true, |
789 | /*IsAmbiguous=*/false, |
790 | /*LParenLoc=*/NoLoc, |
791 | /*ArgInfo=*/Params: nullptr, |
792 | /*NumParams=*/0, |
793 | /*EllipsisLoc=*/NoLoc, |
794 | /*RParenLoc=*/NoLoc, |
795 | /*RefQualifierIsLvalueRef=*/true, |
796 | /*RefQualifierLoc=*/NoLoc, |
797 | /*MutableLoc=*/NoLoc, ESpecType: EST_None, |
798 | /*ESpecRange=*/SourceRange(), |
799 | /*Exceptions=*/nullptr, |
800 | /*ExceptionRanges=*/nullptr, |
801 | /*NumExceptions=*/0, |
802 | /*NoexceptExpr=*/nullptr, |
803 | /*ExceptionSpecTokens=*/nullptr, |
804 | /*DeclsInPrototype=*/{}, LocalRangeBegin: loc, LocalRangeEnd: loc, TheDeclarator&: declarator)); |
805 | |
806 | // For consistency, make sure the state still has us as processing |
807 | // the decl spec. |
808 | assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1); |
809 | state.setCurrentChunkIndex(declarator.getNumTypeObjects()); |
810 | } |
811 | |
812 | static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS, |
813 | unsigned &TypeQuals, |
814 | QualType TypeSoFar, |
815 | unsigned RemoveTQs, |
816 | unsigned DiagID) { |
817 | // If this occurs outside a template instantiation, warn the user about |
818 | // it; they probably didn't mean to specify a redundant qualifier. |
819 | typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc; |
820 | for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()), |
821 | QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()), |
822 | QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()), |
823 | QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) { |
824 | if (!(RemoveTQs & Qual.first)) |
825 | continue; |
826 | |
827 | if (!S.inTemplateInstantiation()) { |
828 | if (TypeQuals & Qual.first) |
829 | S.Diag(Qual.second, DiagID) |
830 | << DeclSpec::getSpecifierName(Q: Qual.first) << TypeSoFar |
831 | << FixItHint::CreateRemoval(RemoveRange: Qual.second); |
832 | } |
833 | |
834 | TypeQuals &= ~Qual.first; |
835 | } |
836 | } |
837 | |
838 | /// Return true if this is omitted block return type. Also check type |
839 | /// attributes and type qualifiers when returning true. |
840 | static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator, |
841 | QualType Result) { |
842 | if (!isOmittedBlockReturnType(D: declarator)) |
843 | return false; |
844 | |
845 | // Warn if we see type attributes for omitted return type on a block literal. |
846 | SmallVector<ParsedAttr *, 2> ToBeRemoved; |
847 | for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) { |
848 | if (AL.isInvalid() || !AL.isTypeAttr()) |
849 | continue; |
850 | S.Diag(AL.getLoc(), |
851 | diag::warn_block_literal_attributes_on_omitted_return_type) |
852 | << AL; |
853 | ToBeRemoved.push_back(Elt: &AL); |
854 | } |
855 | // Remove bad attributes from the list. |
856 | for (ParsedAttr *AL : ToBeRemoved) |
857 | declarator.getMutableDeclSpec().getAttributes().remove(ToBeRemoved: AL); |
858 | |
859 | // Warn if we see type qualifiers for omitted return type on a block literal. |
860 | const DeclSpec &DS = declarator.getDeclSpec(); |
861 | unsigned TypeQuals = DS.getTypeQualifiers(); |
862 | diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1, |
863 | diag::warn_block_literal_qualifiers_on_omitted_return_type); |
864 | declarator.getMutableDeclSpec().ClearTypeQualifiers(); |
865 | |
866 | return true; |
867 | } |
868 | |
869 | static OpenCLAccessAttr::Spelling |
870 | getImageAccess(const ParsedAttributesView &Attrs) { |
871 | for (const ParsedAttr &AL : Attrs) |
872 | if (AL.getKind() == ParsedAttr::AT_OpenCLAccess) |
873 | return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling()); |
874 | return OpenCLAccessAttr::Keyword_read_only; |
875 | } |
876 | |
877 | static UnaryTransformType::UTTKind |
878 | TSTToUnaryTransformType(DeclSpec::TST SwitchTST) { |
879 | switch (SwitchTST) { |
880 | #define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \ |
881 | case TST_##Trait: \ |
882 | return UnaryTransformType::Enum; |
883 | #include "clang/Basic/TransformTypeTraits.def" |
884 | default: |
885 | llvm_unreachable("attempted to parse a non-unary transform builtin"); |
886 | } |
887 | } |
888 | |
889 | /// Convert the specified declspec to the appropriate type |
890 | /// object. |
891 | /// \param state Specifies the declarator containing the declaration specifier |
892 | /// to be converted, along with other associated processing state. |
893 | /// \returns The type described by the declaration specifiers. This function |
894 | /// never returns null. |
895 | static QualType ConvertDeclSpecToType(TypeProcessingState &state) { |
896 | // FIXME: Should move the logic from DeclSpec::Finish to here for validity |
897 | // checking. |
898 | |
899 | Sema &S = state.getSema(); |
900 | Declarator &declarator = state.getDeclarator(); |
901 | DeclSpec &DS = declarator.getMutableDeclSpec(); |
902 | SourceLocation DeclLoc = declarator.getIdentifierLoc(); |
903 | if (DeclLoc.isInvalid()) |
904 | DeclLoc = DS.getBeginLoc(); |
905 | |
906 | ASTContext &Context = S.Context; |
907 | |
908 | QualType Result; |
909 | switch (DS.getTypeSpecType()) { |
910 | case DeclSpec::TST_void: |
911 | Result = Context.VoidTy; |
912 | break; |
913 | case DeclSpec::TST_char: |
914 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) |
915 | Result = Context.CharTy; |
916 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) |
917 | Result = Context.SignedCharTy; |
918 | else { |
919 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && |
920 | "Unknown TSS value"); |
921 | Result = Context.UnsignedCharTy; |
922 | } |
923 | break; |
924 | case DeclSpec::TST_wchar: |
925 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified) |
926 | Result = Context.WCharTy; |
927 | else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) { |
928 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) |
929 | << DS.getSpecifierName(DS.getTypeSpecType(), |
930 | Context.getPrintingPolicy()); |
931 | Result = Context.getSignedWCharType(); |
932 | } else { |
933 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned && |
934 | "Unknown TSS value"); |
935 | S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec) |
936 | << DS.getSpecifierName(DS.getTypeSpecType(), |
937 | Context.getPrintingPolicy()); |
938 | Result = Context.getUnsignedWCharType(); |
939 | } |
940 | break; |
941 | case DeclSpec::TST_char8: |
942 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
943 | "Unknown TSS value"); |
944 | Result = Context.Char8Ty; |
945 | break; |
946 | case DeclSpec::TST_char16: |
947 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
948 | "Unknown TSS value"); |
949 | Result = Context.Char16Ty; |
950 | break; |
951 | case DeclSpec::TST_char32: |
952 | assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
953 | "Unknown TSS value"); |
954 | Result = Context.Char32Ty; |
955 | break; |
956 | case DeclSpec::TST_unspecified: |
957 | // If this is a missing declspec in a block literal return context, then it |
958 | // is inferred from the return statements inside the block. |
959 | // The declspec is always missing in a lambda expr context; it is either |
960 | // specified with a trailing return type or inferred. |
961 | if (S.getLangOpts().CPlusPlus14 && |
962 | declarator.getContext() == DeclaratorContext::LambdaExpr) { |
963 | // In C++1y, a lambda's implicit return type is 'auto'. |
964 | Result = Context.getAutoDeductType(); |
965 | break; |
966 | } else if (declarator.getContext() == DeclaratorContext::LambdaExpr || |
967 | checkOmittedBlockReturnType(S, declarator, |
968 | Context.DependentTy)) { |
969 | Result = Context.DependentTy; |
970 | break; |
971 | } |
972 | |
973 | // Unspecified typespec defaults to int in C90. However, the C90 grammar |
974 | // [C90 6.5] only allows a decl-spec if there was *some* type-specifier, |
975 | // type-qualifier, or storage-class-specifier. If not, emit an extwarn. |
976 | // Note that the one exception to this is function definitions, which are |
977 | // allowed to be completely missing a declspec. This is handled in the |
978 | // parser already though by it pretending to have seen an 'int' in this |
979 | // case. |
980 | if (S.getLangOpts().isImplicitIntRequired()) { |
981 | S.Diag(DeclLoc, diag::warn_missing_type_specifier) |
982 | << DS.getSourceRange() |
983 | << FixItHint::CreateInsertion(DS.getBeginLoc(), "int"); |
984 | } else if (!DS.hasTypeSpecifier()) { |
985 | // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says: |
986 | // "At least one type specifier shall be given in the declaration |
987 | // specifiers in each declaration, and in the specifier-qualifier list in |
988 | // each struct declaration and type name." |
989 | if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) { |
990 | S.Diag(DeclLoc, diag::err_missing_type_specifier) |
991 | << DS.getSourceRange(); |
992 | |
993 | // When this occurs, often something is very broken with the value |
994 | // being declared, poison it as invalid so we don't get chains of |
995 | // errors. |
996 | declarator.setInvalidType(true); |
997 | } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 && |
998 | DS.isTypeSpecPipe()) { |
999 | S.Diag(DeclLoc, diag::err_missing_actual_pipe_type) |
1000 | << DS.getSourceRange(); |
1001 | declarator.setInvalidType(true); |
1002 | } else { |
1003 | assert(S.getLangOpts().isImplicitIntAllowed() && |
1004 | "implicit int is disabled?"); |
1005 | S.Diag(DeclLoc, diag::ext_missing_type_specifier) |
1006 | << DS.getSourceRange() |
1007 | << FixItHint::CreateInsertion(DS.getBeginLoc(), "int"); |
1008 | } |
1009 | } |
1010 | |
1011 | [[fallthrough]]; |
1012 | case DeclSpec::TST_int: { |
1013 | if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) { |
1014 | switch (DS.getTypeSpecWidth()) { |
1015 | case TypeSpecifierWidth::Unspecified: |
1016 | Result = Context.IntTy; |
1017 | break; |
1018 | case TypeSpecifierWidth::Short: |
1019 | Result = Context.ShortTy; |
1020 | break; |
1021 | case TypeSpecifierWidth::Long: |
1022 | Result = Context.LongTy; |
1023 | break; |
1024 | case TypeSpecifierWidth::LongLong: |
1025 | Result = Context.LongLongTy; |
1026 | |
1027 | // 'long long' is a C99 or C++11 feature. |
1028 | if (!S.getLangOpts().C99) { |
1029 | if (S.getLangOpts().CPlusPlus) |
1030 | S.Diag(DS.getTypeSpecWidthLoc(), |
1031 | S.getLangOpts().CPlusPlus11 ? |
1032 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); |
1033 | else |
1034 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); |
1035 | } |
1036 | break; |
1037 | } |
1038 | } else { |
1039 | switch (DS.getTypeSpecWidth()) { |
1040 | case TypeSpecifierWidth::Unspecified: |
1041 | Result = Context.UnsignedIntTy; |
1042 | break; |
1043 | case TypeSpecifierWidth::Short: |
1044 | Result = Context.UnsignedShortTy; |
1045 | break; |
1046 | case TypeSpecifierWidth::Long: |
1047 | Result = Context.UnsignedLongTy; |
1048 | break; |
1049 | case TypeSpecifierWidth::LongLong: |
1050 | Result = Context.UnsignedLongLongTy; |
1051 | |
1052 | // 'long long' is a C99 or C++11 feature. |
1053 | if (!S.getLangOpts().C99) { |
1054 | if (S.getLangOpts().CPlusPlus) |
1055 | S.Diag(DS.getTypeSpecWidthLoc(), |
1056 | S.getLangOpts().CPlusPlus11 ? |
1057 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); |
1058 | else |
1059 | S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong); |
1060 | } |
1061 | break; |
1062 | } |
1063 | } |
1064 | break; |
1065 | } |
1066 | case DeclSpec::TST_bitint: { |
1067 | if (!S.Context.getTargetInfo().hasBitIntType()) |
1068 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt"; |
1069 | Result = |
1070 | S.BuildBitIntType(IsUnsigned: DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned, |
1071 | BitWidth: DS.getRepAsExpr(), Loc: DS.getBeginLoc()); |
1072 | if (Result.isNull()) { |
1073 | Result = Context.IntTy; |
1074 | declarator.setInvalidType(true); |
1075 | } |
1076 | break; |
1077 | } |
1078 | case DeclSpec::TST_accum: { |
1079 | switch (DS.getTypeSpecWidth()) { |
1080 | case TypeSpecifierWidth::Short: |
1081 | Result = Context.ShortAccumTy; |
1082 | break; |
1083 | case TypeSpecifierWidth::Unspecified: |
1084 | Result = Context.AccumTy; |
1085 | break; |
1086 | case TypeSpecifierWidth::Long: |
1087 | Result = Context.LongAccumTy; |
1088 | break; |
1089 | case TypeSpecifierWidth::LongLong: |
1090 | llvm_unreachable("Unable to specify long long as _Accum width"); |
1091 | } |
1092 | |
1093 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) |
1094 | Result = Context.getCorrespondingUnsignedType(T: Result); |
1095 | |
1096 | if (DS.isTypeSpecSat()) |
1097 | Result = Context.getCorrespondingSaturatedType(Ty: Result); |
1098 | |
1099 | break; |
1100 | } |
1101 | case DeclSpec::TST_fract: { |
1102 | switch (DS.getTypeSpecWidth()) { |
1103 | case TypeSpecifierWidth::Short: |
1104 | Result = Context.ShortFractTy; |
1105 | break; |
1106 | case TypeSpecifierWidth::Unspecified: |
1107 | Result = Context.FractTy; |
1108 | break; |
1109 | case TypeSpecifierWidth::Long: |
1110 | Result = Context.LongFractTy; |
1111 | break; |
1112 | case TypeSpecifierWidth::LongLong: |
1113 | llvm_unreachable("Unable to specify long long as _Fract width"); |
1114 | } |
1115 | |
1116 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) |
1117 | Result = Context.getCorrespondingUnsignedType(T: Result); |
1118 | |
1119 | if (DS.isTypeSpecSat()) |
1120 | Result = Context.getCorrespondingSaturatedType(Ty: Result); |
1121 | |
1122 | break; |
1123 | } |
1124 | case DeclSpec::TST_int128: |
1125 | if (!S.Context.getTargetInfo().hasInt128Type() && |
1126 | !(S.getLangOpts().isTargetDevice())) |
1127 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) |
1128 | << "__int128"; |
1129 | if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned) |
1130 | Result = Context.UnsignedInt128Ty; |
1131 | else |
1132 | Result = Context.Int128Ty; |
1133 | break; |
1134 | case DeclSpec::TST_float16: |
1135 | // CUDA host and device may have different _Float16 support, therefore |
1136 | // do not diagnose _Float16 usage to avoid false alarm. |
1137 | // ToDo: more precise diagnostics for CUDA. |
1138 | if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA && |
1139 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)) |
1140 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) |
1141 | << "_Float16"; |
1142 | Result = Context.Float16Ty; |
1143 | break; |
1144 | case DeclSpec::TST_half: Result = Context.HalfTy; break; |
1145 | case DeclSpec::TST_BFloat16: |
1146 | if (!S.Context.getTargetInfo().hasBFloat16Type() && |
1147 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) && |
1148 | !S.getLangOpts().SYCLIsDevice) |
1149 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16"; |
1150 | Result = Context.BFloat16Ty; |
1151 | break; |
1152 | case DeclSpec::TST_float: Result = Context.FloatTy; break; |
1153 | case DeclSpec::TST_double: |
1154 | if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long) |
1155 | Result = Context.LongDoubleTy; |
1156 | else |
1157 | Result = Context.DoubleTy; |
1158 | if (S.getLangOpts().OpenCL) { |
1159 | if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts())) |
1160 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) |
1161 | << 0 << Result |
1162 | << (S.getLangOpts().getOpenCLCompatibleVersion() == 300 |
1163 | ? "cl_khr_fp64 and __opencl_c_fp64" |
1164 | : "cl_khr_fp64"); |
1165 | else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts())) |
1166 | S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma); |
1167 | } |
1168 | break; |
1169 | case DeclSpec::TST_float128: |
1170 | if (!S.Context.getTargetInfo().hasFloat128Type() && |
1171 | !S.getLangOpts().isTargetDevice()) |
1172 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) |
1173 | << "__float128"; |
1174 | Result = Context.Float128Ty; |
1175 | break; |
1176 | case DeclSpec::TST_ibm128: |
1177 | if (!S.Context.getTargetInfo().hasIbm128Type() && |
1178 | !S.getLangOpts().SYCLIsDevice && |
1179 | !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)) |
1180 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128"; |
1181 | Result = Context.Ibm128Ty; |
1182 | break; |
1183 | case DeclSpec::TST_bool: |
1184 | Result = Context.BoolTy; // _Bool or bool |
1185 | break; |
1186 | case DeclSpec::TST_decimal32: // _Decimal32 |
1187 | case DeclSpec::TST_decimal64: // _Decimal64 |
1188 | case DeclSpec::TST_decimal128: // _Decimal128 |
1189 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported); |
1190 | Result = Context.IntTy; |
1191 | declarator.setInvalidType(true); |
1192 | break; |
1193 | case DeclSpec::TST_class: |
1194 | case DeclSpec::TST_enum: |
1195 | case DeclSpec::TST_union: |
1196 | case DeclSpec::TST_struct: |
1197 | case DeclSpec::TST_interface: { |
1198 | TagDecl *D = dyn_cast_or_null<TagDecl>(Val: DS.getRepAsDecl()); |
1199 | if (!D) { |
1200 | // This can happen in C++ with ambiguous lookups. |
1201 | Result = Context.IntTy; |
1202 | declarator.setInvalidType(true); |
1203 | break; |
1204 | } |
1205 | |
1206 | // If the type is deprecated or unavailable, diagnose it. |
1207 | S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc()); |
1208 | |
1209 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && |
1210 | DS.getTypeSpecComplex() == 0 && |
1211 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
1212 | "No qualifiers on tag names!"); |
1213 | |
1214 | // TypeQuals handled by caller. |
1215 | Result = Context.getTypeDeclType(D); |
1216 | |
1217 | // In both C and C++, make an ElaboratedType. |
1218 | ElaboratedTypeKeyword Keyword |
1219 | = ElaboratedType::getKeywordForTypeSpec(TypeSpec: DS.getTypeSpecType()); |
1220 | Result = S.getElaboratedType(Keyword, SS: DS.getTypeSpecScope(), T: Result, |
1221 | OwnedTagDecl: DS.isTypeSpecOwned() ? D : nullptr); |
1222 | break; |
1223 | } |
1224 | case DeclSpec::TST_typename: { |
1225 | assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified && |
1226 | DS.getTypeSpecComplex() == 0 && |
1227 | DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified && |
1228 | "Can't handle qualifiers on typedef names yet!"); |
1229 | Result = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
1230 | if (Result.isNull()) { |
1231 | declarator.setInvalidType(true); |
1232 | } |
1233 | |
1234 | // TypeQuals handled by caller. |
1235 | break; |
1236 | } |
1237 | case DeclSpec::TST_typeof_unqualType: |
1238 | case DeclSpec::TST_typeofType: |
1239 | // FIXME: Preserve type source info. |
1240 | Result = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
1241 | assert(!Result.isNull() && "Didn't get a type for typeof?"); |
1242 | if (!Result->isDependentType()) |
1243 | if (const TagType *TT = Result->getAs<TagType>()) |
1244 | S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc()); |
1245 | // TypeQuals handled by caller. |
1246 | Result = Context.getTypeOfType( |
1247 | QT: Result, Kind: DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType |
1248 | ? TypeOfKind::Unqualified |
1249 | : TypeOfKind::Qualified); |
1250 | break; |
1251 | case DeclSpec::TST_typeof_unqualExpr: |
1252 | case DeclSpec::TST_typeofExpr: { |
1253 | Expr *E = DS.getRepAsExpr(); |
1254 | assert(E && "Didn't get an expression for typeof?"); |
1255 | // TypeQuals handled by caller. |
1256 | Result = S.BuildTypeofExprType(E, Kind: DS.getTypeSpecType() == |
1257 | DeclSpec::TST_typeof_unqualExpr |
1258 | ? TypeOfKind::Unqualified |
1259 | : TypeOfKind::Qualified); |
1260 | if (Result.isNull()) { |
1261 | Result = Context.IntTy; |
1262 | declarator.setInvalidType(true); |
1263 | } |
1264 | break; |
1265 | } |
1266 | case DeclSpec::TST_decltype: { |
1267 | Expr *E = DS.getRepAsExpr(); |
1268 | assert(E && "Didn't get an expression for decltype?"); |
1269 | // TypeQuals handled by caller. |
1270 | Result = S.BuildDecltypeType(E); |
1271 | if (Result.isNull()) { |
1272 | Result = Context.IntTy; |
1273 | declarator.setInvalidType(true); |
1274 | } |
1275 | break; |
1276 | } |
1277 | case DeclSpec::TST_typename_pack_indexing: { |
1278 | Expr *E = DS.getPackIndexingExpr(); |
1279 | assert(E && "Didn't get an expression for pack indexing"); |
1280 | QualType Pattern = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
1281 | Result = S.BuildPackIndexingType(Pattern, IndexExpr: E, Loc: DS.getBeginLoc(), |
1282 | EllipsisLoc: DS.getEllipsisLoc()); |
1283 | if (Result.isNull()) { |
1284 | declarator.setInvalidType(true); |
1285 | Result = Context.IntTy; |
1286 | } |
1287 | break; |
1288 | } |
1289 | |
1290 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait: |
1291 | #include "clang/Basic/TransformTypeTraits.def" |
1292 | Result = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
1293 | assert(!Result.isNull() && "Didn't get a type for the transformation?"); |
1294 | Result = S.BuildUnaryTransformType( |
1295 | BaseType: Result, UKind: TSTToUnaryTransformType(SwitchTST: DS.getTypeSpecType()), |
1296 | Loc: DS.getTypeSpecTypeLoc()); |
1297 | if (Result.isNull()) { |
1298 | Result = Context.IntTy; |
1299 | declarator.setInvalidType(true); |
1300 | } |
1301 | break; |
1302 | |
1303 | case DeclSpec::TST_auto: |
1304 | case DeclSpec::TST_decltype_auto: { |
1305 | auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto |
1306 | ? AutoTypeKeyword::DecltypeAuto |
1307 | : AutoTypeKeyword::Auto; |
1308 | |
1309 | ConceptDecl *TypeConstraintConcept = nullptr; |
1310 | llvm::SmallVector<TemplateArgument, 8> TemplateArgs; |
1311 | if (DS.isConstrainedAuto()) { |
1312 | if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) { |
1313 | TypeConstraintConcept = |
1314 | cast<ConceptDecl>(Val: TemplateId->Template.get().getAsTemplateDecl()); |
1315 | TemplateArgumentListInfo TemplateArgsInfo; |
1316 | TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc); |
1317 | TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc); |
1318 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
1319 | TemplateId->NumArgs); |
1320 | S.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo); |
1321 | for (const auto &ArgLoc : TemplateArgsInfo.arguments()) |
1322 | TemplateArgs.push_back(Elt: ArgLoc.getArgument()); |
1323 | } else { |
1324 | declarator.setInvalidType(true); |
1325 | } |
1326 | } |
1327 | Result = S.Context.getAutoType(DeducedType: QualType(), Keyword: AutoKW, |
1328 | /*IsDependent*/ false, /*IsPack=*/false, |
1329 | TypeConstraintConcept, TypeConstraintArgs: TemplateArgs); |
1330 | break; |
1331 | } |
1332 | |
1333 | case DeclSpec::TST_auto_type: |
1334 | Result = Context.getAutoType(DeducedType: QualType(), Keyword: AutoTypeKeyword::GNUAutoType, IsDependent: false); |
1335 | break; |
1336 | |
1337 | case DeclSpec::TST_unknown_anytype: |
1338 | Result = Context.UnknownAnyTy; |
1339 | break; |
1340 | |
1341 | case DeclSpec::TST_atomic: |
1342 | Result = S.GetTypeFromParser(Ty: DS.getRepAsType()); |
1343 | assert(!Result.isNull() && "Didn't get a type for _Atomic?"); |
1344 | Result = S.BuildAtomicType(T: Result, Loc: DS.getTypeSpecTypeLoc()); |
1345 | if (Result.isNull()) { |
1346 | Result = Context.IntTy; |
1347 | declarator.setInvalidType(true); |
1348 | } |
1349 | break; |
1350 | |
1351 | #define GENERIC_IMAGE_TYPE(ImgType, Id) \ |
1352 | case DeclSpec::TST_##ImgType##_t: \ |
1353 | switch (getImageAccess(DS.getAttributes())) { \ |
1354 | case OpenCLAccessAttr::Keyword_write_only: \ |
1355 | Result = Context.Id##WOTy; \ |
1356 | break; \ |
1357 | case OpenCLAccessAttr::Keyword_read_write: \ |
1358 | Result = Context.Id##RWTy; \ |
1359 | break; \ |
1360 | case OpenCLAccessAttr::Keyword_read_only: \ |
1361 | Result = Context.Id##ROTy; \ |
1362 | break; \ |
1363 | case OpenCLAccessAttr::SpellingNotCalculated: \ |
1364 | llvm_unreachable("Spelling not yet calculated"); \ |
1365 | } \ |
1366 | break; |
1367 | #include "clang/Basic/OpenCLImageTypes.def" |
1368 | |
1369 | #define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) \ |
1370 | case DeclSpec::TST_##Name: \ |
1371 | Result = Context.SingletonId; \ |
1372 | break; |
1373 | #include "clang/Basic/HLSLIntangibleTypes.def" |
1374 | |
1375 | case DeclSpec::TST_error: |
1376 | Result = Context.IntTy; |
1377 | declarator.setInvalidType(true); |
1378 | break; |
1379 | } |
1380 | |
1381 | // FIXME: we want resulting declarations to be marked invalid, but claiming |
1382 | // the type is invalid is too strong - e.g. it causes ActOnTypeName to return |
1383 | // a null type. |
1384 | if (Result->containsErrors()) |
1385 | declarator.setInvalidType(); |
1386 | |
1387 | if (S.getLangOpts().OpenCL) { |
1388 | const auto &OpenCLOptions = S.getOpenCLOptions(); |
1389 | bool IsOpenCLC30Compatible = |
1390 | S.getLangOpts().getOpenCLCompatibleVersion() == 300; |
1391 | // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images |
1392 | // support. |
1393 | // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support |
1394 | // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the |
1395 | // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices |
1396 | // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and |
1397 | // only when the optional feature is supported |
1398 | if ((Result->isImageType() || Result->isSamplerT()) && |
1399 | (IsOpenCLC30Compatible && |
1400 | !OpenCLOptions.isSupported(Ext: "__opencl_c_images", LO: S.getLangOpts()))) { |
1401 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) |
1402 | << 0 << Result << "__opencl_c_images"; |
1403 | declarator.setInvalidType(); |
1404 | } else if (Result->isOCLImage3dWOType() && |
1405 | !OpenCLOptions.isSupported(Ext: "cl_khr_3d_image_writes", |
1406 | LO: S.getLangOpts())) { |
1407 | S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension) |
1408 | << 0 << Result |
1409 | << (IsOpenCLC30Compatible |
1410 | ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes" |
1411 | : "cl_khr_3d_image_writes"); |
1412 | declarator.setInvalidType(); |
1413 | } |
1414 | } |
1415 | |
1416 | bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum || |
1417 | DS.getTypeSpecType() == DeclSpec::TST_fract; |
1418 | |
1419 | // Only fixed point types can be saturated |
1420 | if (DS.isTypeSpecSat() && !IsFixedPointType) |
1421 | S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec) |
1422 | << DS.getSpecifierName(DS.getTypeSpecType(), |
1423 | Context.getPrintingPolicy()); |
1424 | |
1425 | // Handle complex types. |
1426 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) { |
1427 | if (S.getLangOpts().Freestanding) |
1428 | S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex); |
1429 | Result = Context.getComplexType(T: Result); |
1430 | } else if (DS.isTypeAltiVecVector()) { |
1431 | unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(T: Result)); |
1432 | assert(typeSize > 0 && "type size for vector must be greater than 0 bits"); |
1433 | VectorKind VecKind = VectorKind::AltiVecVector; |
1434 | if (DS.isTypeAltiVecPixel()) |
1435 | VecKind = VectorKind::AltiVecPixel; |
1436 | else if (DS.isTypeAltiVecBool()) |
1437 | VecKind = VectorKind::AltiVecBool; |
1438 | Result = Context.getVectorType(VectorType: Result, NumElts: 128/typeSize, VecKind); |
1439 | } |
1440 | |
1441 | // _Imaginary was a feature of C99 through C23 but was never supported in |
1442 | // Clang. The feature was removed in C2y, but we retain the unsupported |
1443 | // diagnostic for an improved user experience. |
1444 | if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary) |
1445 | S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported); |
1446 | |
1447 | // Before we process any type attributes, synthesize a block literal |
1448 | // function declarator if necessary. |
1449 | if (declarator.getContext() == DeclaratorContext::BlockLiteral) |
1450 | maybeSynthesizeBlockSignature(state, declSpecType: Result); |
1451 | |
1452 | // Apply any type attributes from the decl spec. This may cause the |
1453 | // list of type attributes to be temporarily saved while the type |
1454 | // attributes are pushed around. |
1455 | // pipe attributes will be handled later ( at GetFullTypeForDeclarator ) |
1456 | if (!DS.isTypeSpecPipe()) { |
1457 | // We also apply declaration attributes that "slide" to the decl spec. |
1458 | // Ordering can be important for attributes. The decalaration attributes |
1459 | // come syntactically before the decl spec attributes, so we process them |
1460 | // in that order. |
1461 | ParsedAttributesView SlidingAttrs; |
1462 | for (ParsedAttr &AL : declarator.getDeclarationAttributes()) { |
1463 | if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) { |
1464 | SlidingAttrs.addAtEnd(newAttr: &AL); |
1465 | |
1466 | // For standard syntax attributes, which would normally appertain to the |
1467 | // declaration here, suggest moving them to the type instead. But only |
1468 | // do this for our own vendor attributes; moving other vendors' |
1469 | // attributes might hurt portability. |
1470 | // There's one special case that we need to deal with here: The |
1471 | // `MatrixType` attribute may only be used in a typedef declaration. If |
1472 | // it's being used anywhere else, don't output the warning as |
1473 | // ProcessDeclAttributes() will output an error anyway. |
1474 | if (AL.isStandardAttributeSyntax() && AL.isClangScope() && |
1475 | !(AL.getKind() == ParsedAttr::AT_MatrixType && |
1476 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) { |
1477 | S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl) |
1478 | << AL; |
1479 | } |
1480 | } |
1481 | } |
1482 | // During this call to processTypeAttrs(), |
1483 | // TypeProcessingState::getCurrentAttributes() will erroneously return a |
1484 | // reference to the DeclSpec attributes, rather than the declaration |
1485 | // attributes. However, this doesn't matter, as getCurrentAttributes() |
1486 | // is only called when distributing attributes from one attribute list |
1487 | // to another. Declaration attributes are always C++11 attributes, and these |
1488 | // are never distributed. |
1489 | processTypeAttrs(state, type&: Result, TAL: TAL_DeclSpec, attrs: SlidingAttrs); |
1490 | processTypeAttrs(state, type&: Result, TAL: TAL_DeclSpec, attrs: DS.getAttributes()); |
1491 | } |
1492 | |
1493 | // Apply const/volatile/restrict qualifiers to T. |
1494 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { |
1495 | // Warn about CV qualifiers on function types. |
1496 | // C99 6.7.3p8: |
1497 | // If the specification of a function type includes any type qualifiers, |
1498 | // the behavior is undefined. |
1499 | // C2y changed this behavior to be implementation-defined. Clang defines |
1500 | // the behavior in all cases to ignore the qualifier, as in C++. |
1501 | // C++11 [dcl.fct]p7: |
1502 | // The effect of a cv-qualifier-seq in a function declarator is not the |
1503 | // same as adding cv-qualification on top of the function type. In the |
1504 | // latter case, the cv-qualifiers are ignored. |
1505 | if (Result->isFunctionType()) { |
1506 | unsigned DiagId = diag::warn_typecheck_function_qualifiers_ignored; |
1507 | if (!S.getLangOpts().CPlusPlus && !S.getLangOpts().C2y) |
1508 | DiagId = diag::ext_typecheck_function_qualifiers_unspecified; |
1509 | diagnoseAndRemoveTypeQualifiers( |
1510 | S, DS, TypeQuals, TypeSoFar: Result, RemoveTQs: DeclSpec::TQ_const | DeclSpec::TQ_volatile, |
1511 | DiagID: DiagId); |
1512 | // No diagnostic for 'restrict' or '_Atomic' applied to a |
1513 | // function type; we'll diagnose those later, in BuildQualifiedType. |
1514 | } |
1515 | |
1516 | // C++11 [dcl.ref]p1: |
1517 | // Cv-qualified references are ill-formed except when the |
1518 | // cv-qualifiers are introduced through the use of a typedef-name |
1519 | // or decltype-specifier, in which case the cv-qualifiers are ignored. |
1520 | // |
1521 | // There don't appear to be any other contexts in which a cv-qualified |
1522 | // reference type could be formed, so the 'ill-formed' clause here appears |
1523 | // to never happen. |
1524 | if (TypeQuals && Result->isReferenceType()) { |
1525 | diagnoseAndRemoveTypeQualifiers( |
1526 | S, DS, TypeQuals, Result, |
1527 | DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic, |
1528 | diag::warn_typecheck_reference_qualifiers); |
1529 | } |
1530 | |
1531 | // C90 6.5.3 constraints: "The same type qualifier shall not appear more |
1532 | // than once in the same specifier-list or qualifier-list, either directly |
1533 | // or via one or more typedefs." |
1534 | if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus |
1535 | && TypeQuals & Result.getCVRQualifiers()) { |
1536 | if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) { |
1537 | S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec) |
1538 | << "const"; |
1539 | } |
1540 | |
1541 | if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) { |
1542 | S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec) |
1543 | << "volatile"; |
1544 | } |
1545 | |
1546 | // C90 doesn't have restrict nor _Atomic, so it doesn't force us to |
1547 | // produce a warning in this case. |
1548 | } |
1549 | |
1550 | QualType Qualified = S.BuildQualifiedType(T: Result, Loc: DeclLoc, CVRA: TypeQuals, DS: &DS); |
1551 | |
1552 | // If adding qualifiers fails, just use the unqualified type. |
1553 | if (Qualified.isNull()) |
1554 | declarator.setInvalidType(true); |
1555 | else |
1556 | Result = Qualified; |
1557 | } |
1558 | |
1559 | if (S.getLangOpts().HLSL) |
1560 | Result = S.HLSL().ProcessResourceTypeAttributes(Wrapped: Result); |
1561 | |
1562 | assert(!Result.isNull() && "This function should not return a null type"); |
1563 | return Result; |
1564 | } |
1565 | |
1566 | static std::string getPrintableNameForEntity(DeclarationName Entity) { |
1567 | if (Entity) |
1568 | return Entity.getAsString(); |
1569 | |
1570 | return "type name"; |
1571 | } |
1572 | |
1573 | static bool isDependentOrGNUAutoType(QualType T) { |
1574 | if (T->isDependentType()) |
1575 | return true; |
1576 | |
1577 | const auto *AT = dyn_cast<AutoType>(Val&: T); |
1578 | return AT && AT->isGNUAutoType(); |
1579 | } |
1580 | |
1581 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, |
1582 | Qualifiers Qs, const DeclSpec *DS) { |
1583 | if (T.isNull()) |
1584 | return QualType(); |
1585 | |
1586 | // Ignore any attempt to form a cv-qualified reference. |
1587 | if (T->isReferenceType()) { |
1588 | Qs.removeConst(); |
1589 | Qs.removeVolatile(); |
1590 | } |
1591 | |
1592 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from |
1593 | // object or incomplete types shall not be restrict-qualified." |
1594 | if (Qs.hasRestrict()) { |
1595 | unsigned DiagID = 0; |
1596 | QualType EltTy = Context.getBaseElementType(QT: T); |
1597 | |
1598 | if (EltTy->isAnyPointerType() || EltTy->isReferenceType() || |
1599 | EltTy->isMemberPointerType()) { |
1600 | |
1601 | if (const auto *PTy = EltTy->getAs<MemberPointerType>()) |
1602 | EltTy = PTy->getPointeeType(); |
1603 | else |
1604 | EltTy = EltTy->getPointeeType(); |
1605 | |
1606 | // If we have a pointer or reference, the pointee must have an object |
1607 | // incomplete type. |
1608 | if (!EltTy->isIncompleteOrObjectType()) |
1609 | DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee; |
1610 | |
1611 | } else if (!isDependentOrGNUAutoType(T)) { |
1612 | // For an __auto_type variable, we may not have seen the initializer yet |
1613 | // and so have no idea whether the underlying type is a pointer type or |
1614 | // not. |
1615 | DiagID = diag::err_typecheck_invalid_restrict_not_pointer; |
1616 | EltTy = T; |
1617 | } |
1618 | |
1619 | Loc = DS ? DS->getRestrictSpecLoc() : Loc; |
1620 | if (DiagID) { |
1621 | Diag(Loc, DiagID) << EltTy; |
1622 | Qs.removeRestrict(); |
1623 | } else { |
1624 | if (T->isArrayType()) |
1625 | Diag(Loc, getLangOpts().C23 |
1626 | ? diag::warn_c23_compat_restrict_on_array_of_pointers |
1627 | : diag::ext_restrict_on_array_of_pointers_c23); |
1628 | } |
1629 | } |
1630 | |
1631 | return Context.getQualifiedType(T, Qs); |
1632 | } |
1633 | |
1634 | QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc, |
1635 | unsigned CVRAU, const DeclSpec *DS) { |
1636 | if (T.isNull()) |
1637 | return QualType(); |
1638 | |
1639 | // Ignore any attempt to form a cv-qualified reference. |
1640 | if (T->isReferenceType()) |
1641 | CVRAU &= |
1642 | ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic); |
1643 | |
1644 | // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and |
1645 | // TQ_unaligned; |
1646 | unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned); |
1647 | |
1648 | // C11 6.7.3/5: |
1649 | // If the same qualifier appears more than once in the same |
1650 | // specifier-qualifier-list, either directly or via one or more typedefs, |
1651 | // the behavior is the same as if it appeared only once. |
1652 | // |
1653 | // It's not specified what happens when the _Atomic qualifier is applied to |
1654 | // a type specified with the _Atomic specifier, but we assume that this |
1655 | // should be treated as if the _Atomic qualifier appeared multiple times. |
1656 | if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) { |
1657 | // C11 6.7.3/5: |
1658 | // If other qualifiers appear along with the _Atomic qualifier in a |
1659 | // specifier-qualifier-list, the resulting type is the so-qualified |
1660 | // atomic type. |
1661 | // |
1662 | // Don't need to worry about array types here, since _Atomic can't be |
1663 | // applied to such types. |
1664 | SplitQualType Split = T.getSplitUnqualifiedType(); |
1665 | T = BuildAtomicType(T: QualType(Split.Ty, 0), |
1666 | Loc: DS ? DS->getAtomicSpecLoc() : Loc); |
1667 | if (T.isNull()) |
1668 | return T; |
1669 | Split.Quals.addCVRQualifiers(mask: CVR); |
1670 | return BuildQualifiedType(T, Loc, Qs: Split.Quals); |
1671 | } |
1672 | |
1673 | Qualifiers Q = Qualifiers::fromCVRMask(CVR); |
1674 | Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned); |
1675 | return BuildQualifiedType(T, Loc, Qs: Q, DS); |
1676 | } |
1677 | |
1678 | QualType Sema::BuildParenType(QualType T) { |
1679 | return Context.getParenType(NamedType: T); |
1680 | } |
1681 | |
1682 | /// Given that we're building a pointer or reference to the given |
1683 | static QualType inferARCLifetimeForPointee(Sema &S, QualType type, |
1684 | SourceLocation loc, |
1685 | bool isReference) { |
1686 | // Bail out if retention is unrequired or already specified. |
1687 | if (!type->isObjCLifetimeType() || |
1688 | type.getObjCLifetime() != Qualifiers::OCL_None) |
1689 | return type; |
1690 | |
1691 | Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None; |
1692 | |
1693 | // If the object type is const-qualified, we can safely use |
1694 | // __unsafe_unretained. This is safe (because there are no read |
1695 | // barriers), and it'll be safe to coerce anything but __weak* to |
1696 | // the resulting type. |
1697 | if (type.isConstQualified()) { |
1698 | implicitLifetime = Qualifiers::OCL_ExplicitNone; |
1699 | |
1700 | // Otherwise, check whether the static type does not require |
1701 | // retaining. This currently only triggers for Class (possibly |
1702 | // protocol-qualifed, and arrays thereof). |
1703 | } else if (type->isObjCARCImplicitlyUnretainedType()) { |
1704 | implicitLifetime = Qualifiers::OCL_ExplicitNone; |
1705 | |
1706 | // If we are in an unevaluated context, like sizeof, skip adding a |
1707 | // qualification. |
1708 | } else if (S.isUnevaluatedContext()) { |
1709 | return type; |
1710 | |
1711 | // If that failed, give an error and recover using __strong. __strong |
1712 | // is the option most likely to prevent spurious second-order diagnostics, |
1713 | // like when binding a reference to a field. |
1714 | } else { |
1715 | // These types can show up in private ivars in system headers, so |
1716 | // we need this to not be an error in those cases. Instead we |
1717 | // want to delay. |
1718 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { |
1719 | S.DelayedDiagnostics.add( |
1720 | sema::DelayedDiagnostic::makeForbiddenType(loc, |
1721 | diag::err_arc_indirect_no_ownership, type, isReference)); |
1722 | } else { |
1723 | S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference; |
1724 | } |
1725 | implicitLifetime = Qualifiers::OCL_Strong; |
1726 | } |
1727 | assert(implicitLifetime && "didn't infer any lifetime!"); |
1728 | |
1729 | Qualifiers qs; |
1730 | qs.addObjCLifetime(type: implicitLifetime); |
1731 | return S.Context.getQualifiedType(T: type, Qs: qs); |
1732 | } |
1733 | |
1734 | static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){ |
1735 | std::string Quals = FnTy->getMethodQuals().getAsString(); |
1736 | |
1737 | switch (FnTy->getRefQualifier()) { |
1738 | case RQ_None: |
1739 | break; |
1740 | |
1741 | case RQ_LValue: |
1742 | if (!Quals.empty()) |
1743 | Quals += ' '; |
1744 | Quals += '&'; |
1745 | break; |
1746 | |
1747 | case RQ_RValue: |
1748 | if (!Quals.empty()) |
1749 | Quals += ' '; |
1750 | Quals += "&&"; |
1751 | break; |
1752 | } |
1753 | |
1754 | return Quals; |
1755 | } |
1756 | |
1757 | namespace { |
1758 | /// Kinds of declarator that cannot contain a qualified function type. |
1759 | /// |
1760 | /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6: |
1761 | /// a function type with a cv-qualifier or a ref-qualifier can only appear |
1762 | /// at the topmost level of a type. |
1763 | /// |
1764 | /// Parens and member pointers are permitted. We don't diagnose array and |
1765 | /// function declarators, because they don't allow function types at all. |
1766 | /// |
1767 | /// The values of this enum are used in diagnostics. |
1768 | enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference }; |
1769 | } // end anonymous namespace |
1770 | |
1771 | /// Check whether the type T is a qualified function type, and if it is, |
1772 | /// diagnose that it cannot be contained within the given kind of declarator. |
1773 | static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc, |
1774 | QualifiedFunctionKind QFK) { |
1775 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? |
1776 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); |
1777 | if (!FPT || |
1778 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) |
1779 | return false; |
1780 | |
1781 | S.Diag(Loc, diag::err_compound_qualified_function_type) |
1782 | << QFK << isa<FunctionType>(T.IgnoreParens()) << T |
1783 | << getFunctionQualifiersAsString(FPT); |
1784 | return true; |
1785 | } |
1786 | |
1787 | bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) { |
1788 | const FunctionProtoType *FPT = T->getAs<FunctionProtoType>(); |
1789 | if (!FPT || |
1790 | (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None)) |
1791 | return false; |
1792 | |
1793 | Diag(Loc, diag::err_qualified_function_typeid) |
1794 | << T << getFunctionQualifiersAsString(FPT); |
1795 | return true; |
1796 | } |
1797 | |
1798 | // Helper to deduce addr space of a pointee type in OpenCL mode. |
1799 | static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) { |
1800 | if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() && |
1801 | !PointeeType->isSamplerT() && |
1802 | !PointeeType.hasAddressSpace()) |
1803 | PointeeType = S.getASTContext().getAddrSpaceQualType( |
1804 | T: PointeeType, AddressSpace: S.getASTContext().getDefaultOpenCLPointeeAddrSpace()); |
1805 | return PointeeType; |
1806 | } |
1807 | |
1808 | QualType Sema::BuildPointerType(QualType T, |
1809 | SourceLocation Loc, DeclarationName Entity) { |
1810 | if (T->isReferenceType()) { |
1811 | // C++ 8.3.2p4: There shall be no ... pointers to references ... |
1812 | Diag(Loc, diag::err_illegal_decl_pointer_to_reference) |
1813 | << getPrintableNameForEntity(Entity) << T; |
1814 | return QualType(); |
1815 | } |
1816 | |
1817 | if (T->isFunctionType() && getLangOpts().OpenCL && |
1818 | !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers", |
1819 | LO: getLangOpts())) { |
1820 | Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0; |
1821 | return QualType(); |
1822 | } |
1823 | |
1824 | if (getLangOpts().HLSL && Loc.isValid()) { |
1825 | Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0; |
1826 | return QualType(); |
1827 | } |
1828 | |
1829 | if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_Pointer)) |
1830 | return QualType(); |
1831 | |
1832 | if (T->isObjCObjectType()) |
1833 | return Context.getObjCObjectPointerType(OIT: T); |
1834 | |
1835 | // In ARC, it is forbidden to build pointers to unqualified pointers. |
1836 | if (getLangOpts().ObjCAutoRefCount) |
1837 | T = inferARCLifetimeForPointee(S&: *this, type: T, loc: Loc, /*reference*/ isReference: false); |
1838 | |
1839 | if (getLangOpts().OpenCL) |
1840 | T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T); |
1841 | |
1842 | // In WebAssembly, pointers to reference types and pointers to tables are |
1843 | // illegal. |
1844 | if (getASTContext().getTargetInfo().getTriple().isWasm()) { |
1845 | if (T.isWebAssemblyReferenceType()) { |
1846 | Diag(Loc, diag::err_wasm_reference_pr) << 0; |
1847 | return QualType(); |
1848 | } |
1849 | |
1850 | // We need to desugar the type here in case T is a ParenType. |
1851 | if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) { |
1852 | Diag(Loc, diag::err_wasm_table_pr) << 0; |
1853 | return QualType(); |
1854 | } |
1855 | } |
1856 | |
1857 | // Build the pointer type. |
1858 | return Context.getPointerType(T); |
1859 | } |
1860 | |
1861 | QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue, |
1862 | SourceLocation Loc, |
1863 | DeclarationName Entity) { |
1864 | assert(Context.getCanonicalType(T) != Context.OverloadTy && |
1865 | "Unresolved overloaded function type"); |
1866 | |
1867 | // C++0x [dcl.ref]p6: |
1868 | // If a typedef (7.1.3), a type template-parameter (14.3.1), or a |
1869 | // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a |
1870 | // type T, an attempt to create the type "lvalue reference to cv TR" creates |
1871 | // the type "lvalue reference to T", while an attempt to create the type |
1872 | // "rvalue reference to cv TR" creates the type TR. |
1873 | bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>(); |
1874 | |
1875 | // C++ [dcl.ref]p4: There shall be no references to references. |
1876 | // |
1877 | // According to C++ DR 106, references to references are only |
1878 | // diagnosed when they are written directly (e.g., "int & &"), |
1879 | // but not when they happen via a typedef: |
1880 | // |
1881 | // typedef int& intref; |
1882 | // typedef intref& intref2; |
1883 | // |
1884 | // Parser::ParseDeclaratorInternal diagnoses the case where |
1885 | // references are written directly; here, we handle the |
1886 | // collapsing of references-to-references as described in C++0x. |
1887 | // DR 106 and 540 introduce reference-collapsing into C++98/03. |
1888 | |
1889 | // C++ [dcl.ref]p1: |
1890 | // A declarator that specifies the type "reference to cv void" |
1891 | // is ill-formed. |
1892 | if (T->isVoidType()) { |
1893 | Diag(Loc, diag::err_reference_to_void); |
1894 | return QualType(); |
1895 | } |
1896 | |
1897 | if (getLangOpts().HLSL && Loc.isValid()) { |
1898 | Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1; |
1899 | return QualType(); |
1900 | } |
1901 | |
1902 | if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_Reference)) |
1903 | return QualType(); |
1904 | |
1905 | if (T->isFunctionType() && getLangOpts().OpenCL && |
1906 | !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers", |
1907 | LO: getLangOpts())) { |
1908 | Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1; |
1909 | return QualType(); |
1910 | } |
1911 | |
1912 | // In ARC, it is forbidden to build references to unqualified pointers. |
1913 | if (getLangOpts().ObjCAutoRefCount) |
1914 | T = inferARCLifetimeForPointee(S&: *this, type: T, loc: Loc, /*reference*/ isReference: true); |
1915 | |
1916 | if (getLangOpts().OpenCL) |
1917 | T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T); |
1918 | |
1919 | // In WebAssembly, references to reference types and tables are illegal. |
1920 | if (getASTContext().getTargetInfo().getTriple().isWasm() && |
1921 | T.isWebAssemblyReferenceType()) { |
1922 | Diag(Loc, diag::err_wasm_reference_pr) << 1; |
1923 | return QualType(); |
1924 | } |
1925 | if (T->isWebAssemblyTableType()) { |
1926 | Diag(Loc, diag::err_wasm_table_pr) << 1; |
1927 | return QualType(); |
1928 | } |
1929 | |
1930 | // Handle restrict on references. |
1931 | if (LValueRef) |
1932 | return Context.getLValueReferenceType(T, SpelledAsLValue); |
1933 | return Context.getRValueReferenceType(T); |
1934 | } |
1935 | |
1936 | QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) { |
1937 | return Context.getReadPipeType(T); |
1938 | } |
1939 | |
1940 | QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) { |
1941 | return Context.getWritePipeType(T); |
1942 | } |
1943 | |
1944 | QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth, |
1945 | SourceLocation Loc) { |
1946 | if (BitWidth->isInstantiationDependent()) |
1947 | return Context.getDependentBitIntType(Unsigned: IsUnsigned, BitsExpr: BitWidth); |
1948 | |
1949 | llvm::APSInt Bits(32); |
1950 | ExprResult ICE = VerifyIntegerConstantExpression( |
1951 | E: BitWidth, Result: &Bits, /*FIXME*/ CanFold: AllowFoldKind::Allow); |
1952 | |
1953 | if (ICE.isInvalid()) |
1954 | return QualType(); |
1955 | |
1956 | size_t NumBits = Bits.getZExtValue(); |
1957 | if (!IsUnsigned && NumBits < 2) { |
1958 | Diag(Loc, diag::err_bit_int_bad_size) << 0; |
1959 | return QualType(); |
1960 | } |
1961 | |
1962 | if (IsUnsigned && NumBits < 1) { |
1963 | Diag(Loc, diag::err_bit_int_bad_size) << 1; |
1964 | return QualType(); |
1965 | } |
1966 | |
1967 | const TargetInfo &TI = getASTContext().getTargetInfo(); |
1968 | if (NumBits > TI.getMaxBitIntWidth()) { |
1969 | Diag(Loc, diag::err_bit_int_max_size) |
1970 | << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth()); |
1971 | return QualType(); |
1972 | } |
1973 | |
1974 | return Context.getBitIntType(Unsigned: IsUnsigned, NumBits); |
1975 | } |
1976 | |
1977 | /// Check whether the specified array bound can be evaluated using the relevant |
1978 | /// language rules. If so, returns the possibly-converted expression and sets |
1979 | /// SizeVal to the size. If not, but the expression might be a VLA bound, |
1980 | /// returns ExprResult(). Otherwise, produces a diagnostic and returns |
1981 | /// ExprError(). |
1982 | static ExprResult checkArraySize(Sema &S, Expr *&ArraySize, |
1983 | llvm::APSInt &SizeVal, unsigned VLADiag, |
1984 | bool VLAIsError) { |
1985 | if (S.getLangOpts().CPlusPlus14 && |
1986 | (VLAIsError || |
1987 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) { |
1988 | // C++14 [dcl.array]p1: |
1989 | // The constant-expression shall be a converted constant expression of |
1990 | // type std::size_t. |
1991 | // |
1992 | // Don't apply this rule if we might be forming a VLA: in that case, we |
1993 | // allow non-constant expressions and constant-folding. We only need to use |
1994 | // the converted constant expression rules (to properly convert the source) |
1995 | // when the source expression is of class type. |
1996 | return S.CheckConvertedConstantExpression( |
1997 | From: ArraySize, T: S.Context.getSizeType(), Value&: SizeVal, CCE: CCEKind::ArrayBound); |
1998 | } |
1999 | |
2000 | // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode |
2001 | // (like gnu99, but not c99) accept any evaluatable value as an extension. |
2002 | class VLADiagnoser : public Sema::VerifyICEDiagnoser { |
2003 | public: |
2004 | unsigned VLADiag; |
2005 | bool VLAIsError; |
2006 | bool IsVLA = false; |
2007 | |
2008 | VLADiagnoser(unsigned VLADiag, bool VLAIsError) |
2009 | : VLADiag(VLADiag), VLAIsError(VLAIsError) {} |
2010 | |
2011 | Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc, |
2012 | QualType T) override { |
2013 | return S.Diag(Loc, diag::err_array_size_non_int) << T; |
2014 | } |
2015 | |
2016 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, |
2017 | SourceLocation Loc) override { |
2018 | IsVLA = !VLAIsError; |
2019 | return S.Diag(Loc, VLADiag); |
2020 | } |
2021 | |
2022 | Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S, |
2023 | SourceLocation Loc) override { |
2024 | return S.Diag(Loc, diag::ext_vla_folded_to_constant); |
2025 | } |
2026 | } Diagnoser(VLADiag, VLAIsError); |
2027 | |
2028 | ExprResult R = |
2029 | S.VerifyIntegerConstantExpression(E: ArraySize, Result: &SizeVal, Diagnoser); |
2030 | if (Diagnoser.IsVLA) |
2031 | return ExprResult(); |
2032 | return R; |
2033 | } |
2034 | |
2035 | bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) { |
2036 | EltTy = Context.getBaseElementType(QT: EltTy); |
2037 | if (EltTy->isIncompleteType() || EltTy->isDependentType() || |
2038 | EltTy->isUndeducedType()) |
2039 | return true; |
2040 | |
2041 | CharUnits Size = Context.getTypeSizeInChars(T: EltTy); |
2042 | CharUnits Alignment = Context.getTypeAlignInChars(T: EltTy); |
2043 | |
2044 | if (Size.isMultipleOf(N: Alignment)) |
2045 | return true; |
2046 | |
2047 | Diag(Loc, diag::err_array_element_alignment) |
2048 | << EltTy << Size.getQuantity() << Alignment.getQuantity(); |
2049 | return false; |
2050 | } |
2051 | |
2052 | QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM, |
2053 | Expr *ArraySize, unsigned Quals, |
2054 | SourceRange Brackets, DeclarationName Entity) { |
2055 | |
2056 | SourceLocation Loc = Brackets.getBegin(); |
2057 | if (getLangOpts().CPlusPlus) { |
2058 | // C++ [dcl.array]p1: |
2059 | // T is called the array element type; this type shall not be a reference |
2060 | // type, the (possibly cv-qualified) type void, a function type or an |
2061 | // abstract class type. |
2062 | // |
2063 | // C++ [dcl.array]p3: |
2064 | // When several "array of" specifications are adjacent, [...] only the |
2065 | // first of the constant expressions that specify the bounds of the arrays |
2066 | // may be omitted. |
2067 | // |
2068 | // Note: function types are handled in the common path with C. |
2069 | if (T->isReferenceType()) { |
2070 | Diag(Loc, diag::err_illegal_decl_array_of_references) |
2071 | << getPrintableNameForEntity(Entity) << T; |
2072 | return QualType(); |
2073 | } |
2074 | |
2075 | if (T->isVoidType() || T->isIncompleteArrayType()) { |
2076 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T; |
2077 | return QualType(); |
2078 | } |
2079 | |
2080 | if (RequireNonAbstractType(Brackets.getBegin(), T, |
2081 | diag::err_array_of_abstract_type)) |
2082 | return QualType(); |
2083 | |
2084 | // Mentioning a member pointer type for an array type causes us to lock in |
2085 | // an inheritance model, even if it's inside an unused typedef. |
2086 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) |
2087 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) |
2088 | if (!MPTy->getQualifier()->isDependent()) |
2089 | (void)isCompleteType(Loc, T); |
2090 | |
2091 | } else { |
2092 | // C99 6.7.5.2p1: If the element type is an incomplete or function type, |
2093 | // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]()) |
2094 | if (!T.isWebAssemblyReferenceType() && |
2095 | RequireCompleteSizedType(Loc, T, |
2096 | diag::err_array_incomplete_or_sizeless_type)) |
2097 | return QualType(); |
2098 | } |
2099 | |
2100 | // Multi-dimensional arrays of WebAssembly references are not allowed. |
2101 | if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) { |
2102 | const auto *ATy = dyn_cast<ArrayType>(Val&: T); |
2103 | if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) { |
2104 | Diag(Loc, diag::err_wasm_reftype_multidimensional_array); |
2105 | return QualType(); |
2106 | } |
2107 | } |
2108 | |
2109 | if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) { |
2110 | Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T; |
2111 | return QualType(); |
2112 | } |
2113 | |
2114 | if (T->isFunctionType()) { |
2115 | Diag(Loc, diag::err_illegal_decl_array_of_functions) |
2116 | << getPrintableNameForEntity(Entity) << T; |
2117 | return QualType(); |
2118 | } |
2119 | |
2120 | if (const RecordType *EltTy = T->getAs<RecordType>()) { |
2121 | // If the element type is a struct or union that contains a variadic |
2122 | // array, accept it as a GNU extension: C99 6.7.2.1p2. |
2123 | if (EltTy->getDecl()->hasFlexibleArrayMember()) |
2124 | Diag(Loc, diag::ext_flexible_array_in_array) << T; |
2125 | } else if (T->isObjCObjectType()) { |
2126 | Diag(Loc, diag::err_objc_array_of_interfaces) << T; |
2127 | return QualType(); |
2128 | } |
2129 | |
2130 | if (!checkArrayElementAlignment(EltTy: T, Loc)) |
2131 | return QualType(); |
2132 | |
2133 | // Do placeholder conversions on the array size expression. |
2134 | if (ArraySize && ArraySize->hasPlaceholderType()) { |
2135 | ExprResult Result = CheckPlaceholderExpr(E: ArraySize); |
2136 | if (Result.isInvalid()) return QualType(); |
2137 | ArraySize = Result.get(); |
2138 | } |
2139 | |
2140 | // Do lvalue-to-rvalue conversions on the array size expression. |
2141 | if (ArraySize && !ArraySize->isPRValue()) { |
2142 | ExprResult Result = DefaultLvalueConversion(E: ArraySize); |
2143 | if (Result.isInvalid()) |
2144 | return QualType(); |
2145 | |
2146 | ArraySize = Result.get(); |
2147 | } |
2148 | |
2149 | // C99 6.7.5.2p1: The size expression shall have integer type. |
2150 | // C++11 allows contextual conversions to such types. |
2151 | if (!getLangOpts().CPlusPlus11 && |
2152 | ArraySize && !ArraySize->isTypeDependent() && |
2153 | !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) { |
2154 | Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int) |
2155 | << ArraySize->getType() << ArraySize->getSourceRange(); |
2156 | return QualType(); |
2157 | } |
2158 | |
2159 | auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) { |
2160 | if (!ArraySize) |
2161 | return false; |
2162 | |
2163 | // If the array size expression is a conditional expression whose branches |
2164 | // are both integer constant expressions, one negative and one positive, |
2165 | // then it's assumed to be like an old-style static assertion. e.g., |
2166 | // int old_style_assert[expr ? 1 : -1]; |
2167 | // We will accept any integer constant expressions instead of assuming the |
2168 | // values 1 and -1 are always used. |
2169 | if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>( |
2170 | Val: ArraySize->IgnoreParenImpCasts())) { |
2171 | std::optional<llvm::APSInt> LHS = |
2172 | CondExpr->getLHS()->getIntegerConstantExpr(Ctx: Context); |
2173 | std::optional<llvm::APSInt> RHS = |
2174 | CondExpr->getRHS()->getIntegerConstantExpr(Ctx: Context); |
2175 | return LHS && RHS && LHS->isNegative() != RHS->isNegative(); |
2176 | } |
2177 | return false; |
2178 | }; |
2179 | |
2180 | // VLAs always produce at least a -Wvla diagnostic, sometimes an error. |
2181 | unsigned VLADiag; |
2182 | bool VLAIsError; |
2183 | if (getLangOpts().OpenCL) { |
2184 | // OpenCL v1.2 s6.9.d: variable length arrays are not supported. |
2185 | VLADiag = diag::err_opencl_vla; |
2186 | VLAIsError = true; |
2187 | } else if (getLangOpts().C99) { |
2188 | VLADiag = diag::warn_vla_used; |
2189 | VLAIsError = false; |
2190 | } else if (isSFINAEContext()) { |
2191 | VLADiag = diag::err_vla_in_sfinae; |
2192 | VLAIsError = true; |
2193 | } else if (getLangOpts().OpenMP && OpenMP().isInOpenMPTaskUntiedContext()) { |
2194 | VLADiag = diag::err_openmp_vla_in_task_untied; |
2195 | VLAIsError = true; |
2196 | } else if (getLangOpts().CPlusPlus) { |
2197 | if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context)) |
2198 | VLADiag = getLangOpts().GNUMode |
2199 | ? diag::ext_vla_cxx_in_gnu_mode_static_assert |
2200 | : diag::ext_vla_cxx_static_assert; |
2201 | else |
2202 | VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode |
2203 | : diag::ext_vla_cxx; |
2204 | VLAIsError = false; |
2205 | } else { |
2206 | VLADiag = diag::ext_vla; |
2207 | VLAIsError = false; |
2208 | } |
2209 | |
2210 | llvm::APSInt ConstVal(Context.getTypeSize(T: Context.getSizeType())); |
2211 | if (!ArraySize) { |
2212 | if (ASM == ArraySizeModifier::Star) { |
2213 | Diag(Loc, VLADiag); |
2214 | if (VLAIsError) |
2215 | return QualType(); |
2216 | |
2217 | T = Context.getVariableArrayType(EltTy: T, NumElts: nullptr, ASM, IndexTypeQuals: Quals); |
2218 | } else { |
2219 | T = Context.getIncompleteArrayType(EltTy: T, ASM, IndexTypeQuals: Quals); |
2220 | } |
2221 | } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) { |
2222 | T = Context.getDependentSizedArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals); |
2223 | } else { |
2224 | ExprResult R = |
2225 | checkArraySize(S&: *this, ArraySize, SizeVal&: ConstVal, VLADiag, VLAIsError); |
2226 | if (R.isInvalid()) |
2227 | return QualType(); |
2228 | |
2229 | if (!R.isUsable()) { |
2230 | // C99: an array with a non-ICE size is a VLA. We accept any expression |
2231 | // that we can fold to a non-zero positive value as a non-VLA as an |
2232 | // extension. |
2233 | T = Context.getVariableArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals); |
2234 | } else if (!T->isDependentType() && !T->isIncompleteType() && |
2235 | !T->isConstantSizeType()) { |
2236 | // C99: an array with an element type that has a non-constant-size is a |
2237 | // VLA. |
2238 | // FIXME: Add a note to explain why this isn't a VLA. |
2239 | Diag(Loc, VLADiag); |
2240 | if (VLAIsError) |
2241 | return QualType(); |
2242 | T = Context.getVariableArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals); |
2243 | } else { |
2244 | // C99 6.7.5.2p1: If the expression is a constant expression, it shall |
2245 | // have a value greater than zero. |
2246 | // In C++, this follows from narrowing conversions being disallowed. |
2247 | if (ConstVal.isSigned() && ConstVal.isNegative()) { |
2248 | if (Entity) |
2249 | Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size) |
2250 | << getPrintableNameForEntity(Entity) |
2251 | << ArraySize->getSourceRange(); |
2252 | else |
2253 | Diag(ArraySize->getBeginLoc(), |
2254 | diag::err_typecheck_negative_array_size) |
2255 | << ArraySize->getSourceRange(); |
2256 | return QualType(); |
2257 | } |
2258 | if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) { |
2259 | // GCC accepts zero sized static arrays. We allow them when |
2260 | // we're not in a SFINAE context. |
2261 | Diag(ArraySize->getBeginLoc(), |
2262 | isSFINAEContext() ? diag::err_typecheck_zero_array_size |
2263 | : diag::ext_typecheck_zero_array_size) |
2264 | << 0 << ArraySize->getSourceRange(); |
2265 | } |
2266 | |
2267 | // Is the array too large? |
2268 | unsigned ActiveSizeBits = |
2269 | (!T->isDependentType() && !T->isVariablyModifiedType() && |
2270 | !T->isIncompleteType() && !T->isUndeducedType()) |
2271 | ? ConstantArrayType::getNumAddressingBits(Context, ElementType: T, NumElements: ConstVal) |
2272 | : ConstVal.getActiveBits(); |
2273 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { |
2274 | Diag(ArraySize->getBeginLoc(), diag::err_array_too_large) |
2275 | << toString(ConstVal, 10) << ArraySize->getSourceRange(); |
2276 | return QualType(); |
2277 | } |
2278 | |
2279 | T = Context.getConstantArrayType(EltTy: T, ArySize: ConstVal, SizeExpr: ArraySize, ASM, IndexTypeQuals: Quals); |
2280 | } |
2281 | } |
2282 | |
2283 | if (T->isVariableArrayType()) { |
2284 | if (!Context.getTargetInfo().isVLASupported()) { |
2285 | // CUDA device code and some other targets don't support VLAs. |
2286 | bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice); |
2287 | targetDiag(Loc, |
2288 | IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported) |
2289 | << (IsCUDADevice ? llvm::to_underlying(CUDA().CurrentTarget()) : 0); |
2290 | } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) { |
2291 | // VLAs are supported on this target, but we may need to do delayed |
2292 | // checking that the VLA is not being used within a coroutine. |
2293 | FSI->setHasVLA(Loc); |
2294 | } |
2295 | } |
2296 | |
2297 | // If this is not C99, diagnose array size modifiers on non-VLAs. |
2298 | if (!getLangOpts().C99 && !T->isVariableArrayType() && |
2299 | (ASM != ArraySizeModifier::Normal || Quals != 0)) { |
2300 | Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx |
2301 | : diag::ext_c99_array_usage) |
2302 | << ASM; |
2303 | } |
2304 | |
2305 | // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported. |
2306 | // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported. |
2307 | // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported. |
2308 | if (getLangOpts().OpenCL) { |
2309 | const QualType ArrType = Context.getBaseElementType(QT: T); |
2310 | if (ArrType->isBlockPointerType() || ArrType->isPipeType() || |
2311 | ArrType->isSamplerT() || ArrType->isImageType()) { |
2312 | Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType; |
2313 | return QualType(); |
2314 | } |
2315 | } |
2316 | |
2317 | return T; |
2318 | } |
2319 | |
2320 | static bool CheckBitIntElementType(Sema &S, SourceLocation AttrLoc, |
2321 | const BitIntType *BIT, |
2322 | bool ForMatrixType = false) { |
2323 | // Only support _BitInt elements with byte-sized power of 2 NumBits. |
2324 | unsigned NumBits = BIT->getNumBits(); |
2325 | if (!llvm::isPowerOf2_32(NumBits)) |
2326 | return S.Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type) |
2327 | << ForMatrixType; |
2328 | return false; |
2329 | } |
2330 | |
2331 | QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr, |
2332 | SourceLocation AttrLoc) { |
2333 | // The base type must be integer (not Boolean or enumeration) or float, and |
2334 | // can't already be a vector. |
2335 | if ((!CurType->isDependentType() && |
2336 | (!CurType->isBuiltinType() || CurType->isBooleanType() || |
2337 | (!CurType->isIntegerType() && !CurType->isRealFloatingType())) && |
2338 | !CurType->isBitIntType()) || |
2339 | CurType->isArrayType()) { |
2340 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType; |
2341 | return QualType(); |
2342 | } |
2343 | |
2344 | if (const auto *BIT = CurType->getAs<BitIntType>(); |
2345 | BIT && CheckBitIntElementType(S&: *this, AttrLoc, BIT)) |
2346 | return QualType(); |
2347 | |
2348 | if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent()) |
2349 | return Context.getDependentVectorType(VectorType: CurType, SizeExpr, AttrLoc, |
2350 | VecKind: VectorKind::Generic); |
2351 | |
2352 | std::optional<llvm::APSInt> VecSize = |
2353 | SizeExpr->getIntegerConstantExpr(Ctx: Context); |
2354 | if (!VecSize) { |
2355 | Diag(AttrLoc, diag::err_attribute_argument_type) |
2356 | << "vector_size"<< AANT_ArgumentIntegerConstant |
2357 | << SizeExpr->getSourceRange(); |
2358 | return QualType(); |
2359 | } |
2360 | |
2361 | if (CurType->isDependentType()) |
2362 | return Context.getDependentVectorType(VectorType: CurType, SizeExpr, AttrLoc, |
2363 | VecKind: VectorKind::Generic); |
2364 | |
2365 | // vecSize is specified in bytes - convert to bits. |
2366 | if (!VecSize->isIntN(N: 61)) { |
2367 | // Bit size will overflow uint64. |
2368 | Diag(AttrLoc, diag::err_attribute_size_too_large) |
2369 | << SizeExpr->getSourceRange() << "vector"; |
2370 | return QualType(); |
2371 | } |
2372 | uint64_t VectorSizeBits = VecSize->getZExtValue() * 8; |
2373 | unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(T: CurType)); |
2374 | |
2375 | if (VectorSizeBits == 0) { |
2376 | Diag(AttrLoc, diag::err_attribute_zero_size) |
2377 | << SizeExpr->getSourceRange() << "vector"; |
2378 | return QualType(); |
2379 | } |
2380 | |
2381 | if (!TypeSize || VectorSizeBits % TypeSize) { |
2382 | Diag(AttrLoc, diag::err_attribute_invalid_size) |
2383 | << SizeExpr->getSourceRange(); |
2384 | return QualType(); |
2385 | } |
2386 | |
2387 | if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) { |
2388 | Diag(AttrLoc, diag::err_attribute_size_too_large) |
2389 | << SizeExpr->getSourceRange() << "vector"; |
2390 | return QualType(); |
2391 | } |
2392 | |
2393 | return Context.getVectorType(VectorType: CurType, NumElts: VectorSizeBits / TypeSize, |
2394 | VecKind: VectorKind::Generic); |
2395 | } |
2396 | |
2397 | QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize, |
2398 | SourceLocation AttrLoc) { |
2399 | // Unlike gcc's vector_size attribute, we do not allow vectors to be defined |
2400 | // in conjunction with complex types (pointers, arrays, functions, etc.). |
2401 | // |
2402 | // Additionally, OpenCL prohibits vectors of booleans (they're considered a |
2403 | // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects |
2404 | // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors |
2405 | // of bool aren't allowed. |
2406 | // |
2407 | // We explicitly allow bool elements in ext_vector_type for C/C++. |
2408 | bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus; |
2409 | if ((!T->isDependentType() && !T->isIntegerType() && |
2410 | !T->isRealFloatingType()) || |
2411 | (IsNoBoolVecLang && T->isBooleanType())) { |
2412 | Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T; |
2413 | return QualType(); |
2414 | } |
2415 | |
2416 | if (const auto *BIT = T->getAs<BitIntType>(); |
2417 | BIT && CheckBitIntElementType(S&: *this, AttrLoc, BIT)) |
2418 | return QualType(); |
2419 | |
2420 | if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) { |
2421 | std::optional<llvm::APSInt> vecSize = |
2422 | ArraySize->getIntegerConstantExpr(Ctx: Context); |
2423 | if (!vecSize) { |
2424 | Diag(AttrLoc, diag::err_attribute_argument_type) |
2425 | << "ext_vector_type"<< AANT_ArgumentIntegerConstant |
2426 | << ArraySize->getSourceRange(); |
2427 | return QualType(); |
2428 | } |
2429 | |
2430 | if (!vecSize->isIntN(N: 32)) { |
2431 | Diag(AttrLoc, diag::err_attribute_size_too_large) |
2432 | << ArraySize->getSourceRange() << "vector"; |
2433 | return QualType(); |
2434 | } |
2435 | // Unlike gcc's vector_size attribute, the size is specified as the |
2436 | // number of elements, not the number of bytes. |
2437 | unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue()); |
2438 | |
2439 | if (vectorSize == 0) { |
2440 | Diag(AttrLoc, diag::err_attribute_zero_size) |
2441 | << ArraySize->getSourceRange() << "vector"; |
2442 | return QualType(); |
2443 | } |
2444 | |
2445 | return Context.getExtVectorType(VectorType: T, NumElts: vectorSize); |
2446 | } |
2447 | |
2448 | return Context.getDependentSizedExtVectorType(VectorType: T, SizeExpr: ArraySize, AttrLoc); |
2449 | } |
2450 | |
2451 | QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols, |
2452 | SourceLocation AttrLoc) { |
2453 | assert(Context.getLangOpts().MatrixTypes && |
2454 | "Should never build a matrix type when it is disabled"); |
2455 | |
2456 | // Check element type, if it is not dependent. |
2457 | if (!ElementTy->isDependentType() && |
2458 | !MatrixType::isValidElementType(T: ElementTy)) { |
2459 | Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy; |
2460 | return QualType(); |
2461 | } |
2462 | |
2463 | if (const auto *BIT = ElementTy->getAs<BitIntType>(); |
2464 | BIT && |
2465 | CheckBitIntElementType(S&: *this, AttrLoc, BIT, /*ForMatrixType=*/true)) |
2466 | return QualType(); |
2467 | |
2468 | if (NumRows->isTypeDependent() || NumCols->isTypeDependent() || |
2469 | NumRows->isValueDependent() || NumCols->isValueDependent()) |
2470 | return Context.getDependentSizedMatrixType(ElementType: ElementTy, RowExpr: NumRows, ColumnExpr: NumCols, |
2471 | AttrLoc); |
2472 | |
2473 | std::optional<llvm::APSInt> ValueRows = |
2474 | NumRows->getIntegerConstantExpr(Ctx: Context); |
2475 | std::optional<llvm::APSInt> ValueColumns = |
2476 | NumCols->getIntegerConstantExpr(Ctx: Context); |
2477 | |
2478 | auto const RowRange = NumRows->getSourceRange(); |
2479 | auto const ColRange = NumCols->getSourceRange(); |
2480 | |
2481 | // Both are row and column expressions are invalid. |
2482 | if (!ValueRows && !ValueColumns) { |
2483 | Diag(AttrLoc, diag::err_attribute_argument_type) |
2484 | << "matrix_type"<< AANT_ArgumentIntegerConstant << RowRange |
2485 | << ColRange; |
2486 | return QualType(); |
2487 | } |
2488 | |
2489 | // Only the row expression is invalid. |
2490 | if (!ValueRows) { |
2491 | Diag(AttrLoc, diag::err_attribute_argument_type) |
2492 | << "matrix_type"<< AANT_ArgumentIntegerConstant << RowRange; |
2493 | return QualType(); |
2494 | } |
2495 | |
2496 | // Only the column expression is invalid. |
2497 | if (!ValueColumns) { |
2498 | Diag(AttrLoc, diag::err_attribute_argument_type) |
2499 | << "matrix_type"<< AANT_ArgumentIntegerConstant << ColRange; |
2500 | return QualType(); |
2501 | } |
2502 | |
2503 | // Check the matrix dimensions. |
2504 | unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue()); |
2505 | unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue()); |
2506 | if (MatrixRows == 0 && MatrixColumns == 0) { |
2507 | Diag(AttrLoc, diag::err_attribute_zero_size) |
2508 | << "matrix"<< RowRange << ColRange; |
2509 | return QualType(); |
2510 | } |
2511 | if (MatrixRows == 0) { |
2512 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix"<< RowRange; |
2513 | return QualType(); |
2514 | } |
2515 | if (MatrixColumns == 0) { |
2516 | Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix"<< ColRange; |
2517 | return QualType(); |
2518 | } |
2519 | if (!ConstantMatrixType::isDimensionValid(NumElements: MatrixRows)) { |
2520 | Diag(AttrLoc, diag::err_attribute_size_too_large) |
2521 | << RowRange << "matrix row"; |
2522 | return QualType(); |
2523 | } |
2524 | if (!ConstantMatrixType::isDimensionValid(NumElements: MatrixColumns)) { |
2525 | Diag(AttrLoc, diag::err_attribute_size_too_large) |
2526 | << ColRange << "matrix column"; |
2527 | return QualType(); |
2528 | } |
2529 | return Context.getConstantMatrixType(ElementType: ElementTy, NumRows: MatrixRows, NumColumns: MatrixColumns); |
2530 | } |
2531 | |
2532 | bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) { |
2533 | if ((T->isArrayType() && !getLangOpts().allowArrayReturnTypes()) || |
2534 | T->isFunctionType()) { |
2535 | Diag(Loc, diag::err_func_returning_array_function) |
2536 | << T->isFunctionType() << T; |
2537 | return true; |
2538 | } |
2539 | |
2540 | // Functions cannot return half FP. |
2541 | if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns && |
2542 | !Context.getTargetInfo().allowHalfArgsAndReturns()) { |
2543 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 << |
2544 | FixItHint::CreateInsertion(Loc, "*"); |
2545 | return true; |
2546 | } |
2547 | |
2548 | // Methods cannot return interface types. All ObjC objects are |
2549 | // passed by reference. |
2550 | if (T->isObjCObjectType()) { |
2551 | Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) |
2552 | << 0 << T << FixItHint::CreateInsertion(Loc, "*"); |
2553 | return true; |
2554 | } |
2555 | |
2556 | // __ptrauth is illegal on a function return type. |
2557 | if (T.getPointerAuth()) { |
2558 | Diag(Loc, diag::err_ptrauth_qualifier_invalid) << T << 0; |
2559 | return true; |
2560 | } |
2561 | |
2562 | if (T.hasNonTrivialToPrimitiveDestructCUnion() || |
2563 | T.hasNonTrivialToPrimitiveCopyCUnion()) |
2564 | checkNonTrivialCUnion(QT: T, Loc, UseContext: NonTrivialCUnionContext::FunctionReturn, |
2565 | NonTrivialKind: NTCUK_Destruct | NTCUK_Copy); |
2566 | |
2567 | // C++2a [dcl.fct]p12: |
2568 | // A volatile-qualified return type is deprecated |
2569 | if (T.isVolatileQualified() && getLangOpts().CPlusPlus20) |
2570 | Diag(Loc, diag::warn_deprecated_volatile_return) << T; |
2571 | |
2572 | if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL) |
2573 | return true; |
2574 | return false; |
2575 | } |
2576 | |
2577 | /// Check the extended parameter information. Most of the necessary |
2578 | /// checking should occur when applying the parameter attribute; the |
2579 | /// only other checks required are positional restrictions. |
2580 | static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes, |
2581 | const FunctionProtoType::ExtProtoInfo &EPI, |
2582 | llvm::function_ref<SourceLocation(unsigned)> getParamLoc) { |
2583 | assert(EPI.ExtParameterInfos && "shouldn't get here without param infos"); |
2584 | |
2585 | bool emittedError = false; |
2586 | auto actualCC = EPI.ExtInfo.getCC(); |
2587 | enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync }; |
2588 | auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) { |
2589 | bool isCompatible = |
2590 | (required == RequiredCC::OnlySwift) |
2591 | ? (actualCC == CC_Swift) |
2592 | : (actualCC == CC_Swift || actualCC == CC_SwiftAsync); |
2593 | if (isCompatible || emittedError) |
2594 | return; |
2595 | S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall) |
2596 | << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI()) |
2597 | << (required == RequiredCC::OnlySwift); |
2598 | emittedError = true; |
2599 | }; |
2600 | for (size_t paramIndex = 0, numParams = paramTypes.size(); |
2601 | paramIndex != numParams; ++paramIndex) { |
2602 | switch (EPI.ExtParameterInfos[paramIndex].getABI()) { |
2603 | // Nothing interesting to check for orindary-ABI parameters. |
2604 | case ParameterABI::Ordinary: |
2605 | case ParameterABI::HLSLOut: |
2606 | case ParameterABI::HLSLInOut: |
2607 | continue; |
2608 | |
2609 | // swift_indirect_result parameters must be a prefix of the function |
2610 | // arguments. |
2611 | case ParameterABI::SwiftIndirectResult: |
2612 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); |
2613 | if (paramIndex != 0 && |
2614 | EPI.ExtParameterInfos[paramIndex - 1].getABI() |
2615 | != ParameterABI::SwiftIndirectResult) { |
2616 | S.Diag(getParamLoc(paramIndex), |
2617 | diag::err_swift_indirect_result_not_first); |
2618 | } |
2619 | continue; |
2620 | |
2621 | case ParameterABI::SwiftContext: |
2622 | checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync); |
2623 | continue; |
2624 | |
2625 | // SwiftAsyncContext is not limited to swiftasynccall functions. |
2626 | case ParameterABI::SwiftAsyncContext: |
2627 | continue; |
2628 | |
2629 | // swift_error parameters must be preceded by a swift_context parameter. |
2630 | case ParameterABI::SwiftErrorResult: |
2631 | checkCompatible(paramIndex, RequiredCC::OnlySwift); |
2632 | if (paramIndex == 0 || |
2633 | EPI.ExtParameterInfos[paramIndex - 1].getABI() != |
2634 | ParameterABI::SwiftContext) { |
2635 | S.Diag(getParamLoc(paramIndex), |
2636 | diag::err_swift_error_result_not_after_swift_context); |
2637 | } |
2638 | continue; |
2639 | } |
2640 | llvm_unreachable("bad ABI kind"); |
2641 | } |
2642 | } |
2643 | |
2644 | QualType Sema::BuildFunctionType(QualType T, |
2645 | MutableArrayRef<QualType> ParamTypes, |
2646 | SourceLocation Loc, DeclarationName Entity, |
2647 | const FunctionProtoType::ExtProtoInfo &EPI) { |
2648 | bool Invalid = false; |
2649 | |
2650 | Invalid |= CheckFunctionReturnType(T, Loc); |
2651 | |
2652 | for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) { |
2653 | // FIXME: Loc is too inprecise here, should use proper locations for args. |
2654 | QualType ParamType = Context.getAdjustedParameterType(T: ParamTypes[Idx]); |
2655 | if (ParamType->isVoidType()) { |
2656 | Diag(Loc, diag::err_param_with_void_type); |
2657 | Invalid = true; |
2658 | } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns && |
2659 | !Context.getTargetInfo().allowHalfArgsAndReturns()) { |
2660 | // Disallow half FP arguments. |
2661 | Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 << |
2662 | FixItHint::CreateInsertion(Loc, "*"); |
2663 | Invalid = true; |
2664 | } else if (ParamType->isWebAssemblyTableType()) { |
2665 | Diag(Loc, diag::err_wasm_table_as_function_parameter); |
2666 | Invalid = true; |
2667 | } else if (ParamType.getPointerAuth()) { |
2668 | // __ptrauth is illegal on a function return type. |
2669 | Diag(Loc, diag::err_ptrauth_qualifier_invalid) << T << 1; |
2670 | Invalid = true; |
2671 | } |
2672 | |
2673 | // C++2a [dcl.fct]p4: |
2674 | // A parameter with volatile-qualified type is deprecated |
2675 | if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20) |
2676 | Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType; |
2677 | |
2678 | ParamTypes[Idx] = ParamType; |
2679 | } |
2680 | |
2681 | if (EPI.ExtParameterInfos) { |
2682 | checkExtParameterInfos(S&: *this, paramTypes: ParamTypes, EPI, |
2683 | getParamLoc: [=](unsigned i) { return Loc; }); |
2684 | } |
2685 | |
2686 | if (EPI.ExtInfo.getProducesResult()) { |
2687 | // This is just a warning, so we can't fail to build if we see it. |
2688 | ObjC().checkNSReturnsRetainedReturnType(loc: Loc, type: T); |
2689 | } |
2690 | |
2691 | if (Invalid) |
2692 | return QualType(); |
2693 | |
2694 | return Context.getFunctionType(ResultTy: T, Args: ParamTypes, EPI); |
2695 | } |
2696 | |
2697 | QualType Sema::BuildMemberPointerType(QualType T, const CXXScopeSpec &SS, |
2698 | CXXRecordDecl *Cls, SourceLocation Loc, |
2699 | DeclarationName Entity) { |
2700 | if (!Cls && !isDependentScopeSpecifier(SS)) { |
2701 | Cls = dyn_cast_or_null<CXXRecordDecl>(Val: computeDeclContext(SS)); |
2702 | if (!Cls) { |
2703 | auto D = |
2704 | Diag(SS.getBeginLoc(), diag::err_illegal_decl_mempointer_in_nonclass) |
2705 | << SS.getRange(); |
2706 | if (const IdentifierInfo *II = Entity.getAsIdentifierInfo()) |
2707 | D << II; |
2708 | else |
2709 | D << "member pointer"; |
2710 | return QualType(); |
2711 | } |
2712 | } |
2713 | |
2714 | // Verify that we're not building a pointer to pointer to function with |
2715 | // exception specification. |
2716 | if (CheckDistantExceptionSpec(T)) { |
2717 | Diag(Loc, diag::err_distant_exception_spec); |
2718 | return QualType(); |
2719 | } |
2720 | |
2721 | // C++ 8.3.3p3: A pointer to member shall not point to ... a member |
2722 | // with reference type, or "cv void." |
2723 | if (T->isReferenceType()) { |
2724 | Diag(Loc, diag::err_illegal_decl_mempointer_to_reference) |
2725 | << getPrintableNameForEntity(Entity) << T; |
2726 | return QualType(); |
2727 | } |
2728 | |
2729 | if (T->isVoidType()) { |
2730 | Diag(Loc, diag::err_illegal_decl_mempointer_to_void) |
2731 | << getPrintableNameForEntity(Entity); |
2732 | return QualType(); |
2733 | } |
2734 | |
2735 | if (T->isFunctionType() && getLangOpts().OpenCL && |
2736 | !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers", |
2737 | LO: getLangOpts())) { |
2738 | Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0; |
2739 | return QualType(); |
2740 | } |
2741 | |
2742 | if (getLangOpts().HLSL && Loc.isValid()) { |
2743 | Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0; |
2744 | return QualType(); |
2745 | } |
2746 | |
2747 | // Adjust the default free function calling convention to the default method |
2748 | // calling convention. |
2749 | bool IsCtorOrDtor = |
2750 | (Entity.getNameKind() == DeclarationName::CXXConstructorName) || |
2751 | (Entity.getNameKind() == DeclarationName::CXXDestructorName); |
2752 | if (T->isFunctionType()) |
2753 | adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc); |
2754 | |
2755 | return Context.getMemberPointerType(T, Qualifier: SS.getScopeRep(), Cls); |
2756 | } |
2757 | |
2758 | QualType Sema::BuildBlockPointerType(QualType T, |
2759 | SourceLocation Loc, |
2760 | DeclarationName Entity) { |
2761 | if (!T->isFunctionType()) { |
2762 | Diag(Loc, diag::err_nonfunction_block_type); |
2763 | return QualType(); |
2764 | } |
2765 | |
2766 | if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_BlockPointer)) |
2767 | return QualType(); |
2768 | |
2769 | if (getLangOpts().OpenCL) |
2770 | T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T); |
2771 | |
2772 | return Context.getBlockPointerType(T); |
2773 | } |
2774 | |
2775 | QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) { |
2776 | QualType QT = Ty.get(); |
2777 | if (QT.isNull()) { |
2778 | if (TInfo) *TInfo = nullptr; |
2779 | return QualType(); |
2780 | } |
2781 | |
2782 | TypeSourceInfo *DI = nullptr; |
2783 | if (const LocInfoType *LIT = dyn_cast<LocInfoType>(Val&: QT)) { |
2784 | QT = LIT->getType(); |
2785 | DI = LIT->getTypeSourceInfo(); |
2786 | } |
2787 | |
2788 | if (TInfo) *TInfo = DI; |
2789 | return QT; |
2790 | } |
2791 | |
2792 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, |
2793 | Qualifiers::ObjCLifetime ownership, |
2794 | unsigned chunkIndex); |
2795 | |
2796 | /// Given that this is the declaration of a parameter under ARC, |
2797 | /// attempt to infer attributes and such for pointer-to-whatever |
2798 | /// types. |
2799 | static void inferARCWriteback(TypeProcessingState &state, |
2800 | QualType &declSpecType) { |
2801 | Sema &S = state.getSema(); |
2802 | Declarator &declarator = state.getDeclarator(); |
2803 | |
2804 | // TODO: should we care about decl qualifiers? |
2805 | |
2806 | // Check whether the declarator has the expected form. We walk |
2807 | // from the inside out in order to make the block logic work. |
2808 | unsigned outermostPointerIndex = 0; |
2809 | bool isBlockPointer = false; |
2810 | unsigned numPointers = 0; |
2811 | for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) { |
2812 | unsigned chunkIndex = i; |
2813 | DeclaratorChunk &chunk = declarator.getTypeObject(i: chunkIndex); |
2814 | switch (chunk.Kind) { |
2815 | case DeclaratorChunk::Paren: |
2816 | // Ignore parens. |
2817 | break; |
2818 | |
2819 | case DeclaratorChunk::Reference: |
2820 | case DeclaratorChunk::Pointer: |
2821 | // Count the number of pointers. Treat references |
2822 | // interchangeably as pointers; if they're mis-ordered, normal |
2823 | // type building will discover that. |
2824 | outermostPointerIndex = chunkIndex; |
2825 | numPointers++; |
2826 | break; |
2827 | |
2828 | case DeclaratorChunk::BlockPointer: |
2829 | // If we have a pointer to block pointer, that's an acceptable |
2830 | // indirect reference; anything else is not an application of |
2831 | // the rules. |
2832 | if (numPointers != 1) return; |
2833 | numPointers++; |
2834 | outermostPointerIndex = chunkIndex; |
2835 | isBlockPointer = true; |
2836 | |
2837 | // We don't care about pointer structure in return values here. |
2838 | goto done; |
2839 | |
2840 | case DeclaratorChunk::Array: // suppress if written (id[])? |
2841 | case DeclaratorChunk::Function: |
2842 | case DeclaratorChunk::MemberPointer: |
2843 | case DeclaratorChunk::Pipe: |
2844 | return; |
2845 | } |
2846 | } |
2847 | done: |
2848 | |
2849 | // If we have *one* pointer, then we want to throw the qualifier on |
2850 | // the declaration-specifiers, which means that it needs to be a |
2851 | // retainable object type. |
2852 | if (numPointers == 1) { |
2853 | // If it's not a retainable object type, the rule doesn't apply. |
2854 | if (!declSpecType->isObjCRetainableType()) return; |
2855 | |
2856 | // If it already has lifetime, don't do anything. |
2857 | if (declSpecType.getObjCLifetime()) return; |
2858 | |
2859 | // Otherwise, modify the type in-place. |
2860 | Qualifiers qs; |
2861 | |
2862 | if (declSpecType->isObjCARCImplicitlyUnretainedType()) |
2863 | qs.addObjCLifetime(type: Qualifiers::OCL_ExplicitNone); |
2864 | else |
2865 | qs.addObjCLifetime(type: Qualifiers::OCL_Autoreleasing); |
2866 | declSpecType = S.Context.getQualifiedType(T: declSpecType, Qs: qs); |
2867 | |
2868 | // If we have *two* pointers, then we want to throw the qualifier on |
2869 | // the outermost pointer. |
2870 | } else if (numPointers == 2) { |
2871 | // If we don't have a block pointer, we need to check whether the |
2872 | // declaration-specifiers gave us something that will turn into a |
2873 | // retainable object pointer after we slap the first pointer on it. |
2874 | if (!isBlockPointer && !declSpecType->isObjCObjectType()) |
2875 | return; |
2876 | |
2877 | // Look for an explicit lifetime attribute there. |
2878 | DeclaratorChunk &chunk = declarator.getTypeObject(i: outermostPointerIndex); |
2879 | if (chunk.Kind != DeclaratorChunk::Pointer && |
2880 | chunk.Kind != DeclaratorChunk::BlockPointer) |
2881 | return; |
2882 | for (const ParsedAttr &AL : chunk.getAttrs()) |
2883 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) |
2884 | return; |
2885 | |
2886 | transferARCOwnershipToDeclaratorChunk(state, ownership: Qualifiers::OCL_Autoreleasing, |
2887 | chunkIndex: outermostPointerIndex); |
2888 | |
2889 | // Any other number of pointers/references does not trigger the rule. |
2890 | } else return; |
2891 | |
2892 | // TODO: mark whether we did this inference? |
2893 | } |
2894 | |
2895 | void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals, |
2896 | SourceLocation FallbackLoc, |
2897 | SourceLocation ConstQualLoc, |
2898 | SourceLocation VolatileQualLoc, |
2899 | SourceLocation RestrictQualLoc, |
2900 | SourceLocation AtomicQualLoc, |
2901 | SourceLocation UnalignedQualLoc) { |
2902 | if (!Quals) |
2903 | return; |
2904 | |
2905 | struct Qual { |
2906 | const char *Name; |
2907 | unsigned Mask; |
2908 | SourceLocation Loc; |
2909 | } const QualKinds[5] = { |
2910 | { .Name: "const", .Mask: DeclSpec::TQ_const, .Loc: ConstQualLoc }, |
2911 | { .Name: "volatile", .Mask: DeclSpec::TQ_volatile, .Loc: VolatileQualLoc }, |
2912 | { .Name: "restrict", .Mask: DeclSpec::TQ_restrict, .Loc: RestrictQualLoc }, |
2913 | { .Name: "__unaligned", .Mask: DeclSpec::TQ_unaligned, .Loc: UnalignedQualLoc }, |
2914 | { .Name: "_Atomic", .Mask: DeclSpec::TQ_atomic, .Loc: AtomicQualLoc } |
2915 | }; |
2916 | |
2917 | SmallString<32> QualStr; |
2918 | unsigned NumQuals = 0; |
2919 | SourceLocation Loc; |
2920 | FixItHint FixIts[5]; |
2921 | |
2922 | // Build a string naming the redundant qualifiers. |
2923 | for (auto &E : QualKinds) { |
2924 | if (Quals & E.Mask) { |
2925 | if (!QualStr.empty()) QualStr += ' '; |
2926 | QualStr += E.Name; |
2927 | |
2928 | // If we have a location for the qualifier, offer a fixit. |
2929 | SourceLocation QualLoc = E.Loc; |
2930 | if (QualLoc.isValid()) { |
2931 | FixIts[NumQuals] = FixItHint::CreateRemoval(RemoveRange: QualLoc); |
2932 | if (Loc.isInvalid() || |
2933 | getSourceManager().isBeforeInTranslationUnit(LHS: QualLoc, RHS: Loc)) |
2934 | Loc = QualLoc; |
2935 | } |
2936 | |
2937 | ++NumQuals; |
2938 | } |
2939 | } |
2940 | |
2941 | Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID) |
2942 | << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3]; |
2943 | } |
2944 | |
2945 | // Diagnose pointless type qualifiers on the return type of a function. |
2946 | static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy, |
2947 | Declarator &D, |
2948 | unsigned FunctionChunkIndex) { |
2949 | const DeclaratorChunk::FunctionTypeInfo &FTI = |
2950 | D.getTypeObject(i: FunctionChunkIndex).Fun; |
2951 | if (FTI.hasTrailingReturnType()) { |
2952 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, |
2953 | RetTy.getLocalCVRQualifiers(), |
2954 | FTI.getTrailingReturnTypeLoc()); |
2955 | return; |
2956 | } |
2957 | |
2958 | for (unsigned OuterChunkIndex = FunctionChunkIndex + 1, |
2959 | End = D.getNumTypeObjects(); |
2960 | OuterChunkIndex != End; ++OuterChunkIndex) { |
2961 | DeclaratorChunk &OuterChunk = D.getTypeObject(i: OuterChunkIndex); |
2962 | switch (OuterChunk.Kind) { |
2963 | case DeclaratorChunk::Paren: |
2964 | continue; |
2965 | |
2966 | case DeclaratorChunk::Pointer: { |
2967 | DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr; |
2968 | S.diagnoseIgnoredQualifiers( |
2969 | diag::warn_qual_return_type, |
2970 | PTI.TypeQuals, |
2971 | SourceLocation(), |
2972 | PTI.ConstQualLoc, |
2973 | PTI.VolatileQualLoc, |
2974 | PTI.RestrictQualLoc, |
2975 | PTI.AtomicQualLoc, |
2976 | PTI.UnalignedQualLoc); |
2977 | return; |
2978 | } |
2979 | |
2980 | case DeclaratorChunk::Function: |
2981 | case DeclaratorChunk::BlockPointer: |
2982 | case DeclaratorChunk::Reference: |
2983 | case DeclaratorChunk::Array: |
2984 | case DeclaratorChunk::MemberPointer: |
2985 | case DeclaratorChunk::Pipe: |
2986 | // FIXME: We can't currently provide an accurate source location and a |
2987 | // fix-it hint for these. |
2988 | unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0; |
2989 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, |
2990 | RetTy.getCVRQualifiers() | AtomicQual, |
2991 | D.getIdentifierLoc()); |
2992 | return; |
2993 | } |
2994 | |
2995 | llvm_unreachable("unknown declarator chunk kind"); |
2996 | } |
2997 | |
2998 | // If the qualifiers come from a conversion function type, don't diagnose |
2999 | // them -- they're not necessarily redundant, since such a conversion |
3000 | // operator can be explicitly called as "x.operator const int()". |
3001 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) |
3002 | return; |
3003 | |
3004 | // Just parens all the way out to the decl specifiers. Diagnose any qualifiers |
3005 | // which are present there. |
3006 | S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type, |
3007 | D.getDeclSpec().getTypeQualifiers(), |
3008 | D.getIdentifierLoc(), |
3009 | D.getDeclSpec().getConstSpecLoc(), |
3010 | D.getDeclSpec().getVolatileSpecLoc(), |
3011 | D.getDeclSpec().getRestrictSpecLoc(), |
3012 | D.getDeclSpec().getAtomicSpecLoc(), |
3013 | D.getDeclSpec().getUnalignedSpecLoc()); |
3014 | } |
3015 | |
3016 | static std::pair<QualType, TypeSourceInfo *> |
3017 | InventTemplateParameter(TypeProcessingState &state, QualType T, |
3018 | TypeSourceInfo *TrailingTSI, AutoType *Auto, |
3019 | InventedTemplateParameterInfo &Info) { |
3020 | Sema &S = state.getSema(); |
3021 | Declarator &D = state.getDeclarator(); |
3022 | |
3023 | const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth; |
3024 | const unsigned AutoParameterPosition = Info.TemplateParams.size(); |
3025 | const bool IsParameterPack = D.hasEllipsis(); |
3026 | |
3027 | // If auto is mentioned in a lambda parameter or abbreviated function |
3028 | // template context, convert it to a template parameter type. |
3029 | |
3030 | // Create the TemplateTypeParmDecl here to retrieve the corresponding |
3031 | // template parameter type. Template parameters are temporarily added |
3032 | // to the TU until the associated TemplateDecl is created. |
3033 | TemplateTypeParmDecl *InventedTemplateParam = |
3034 | TemplateTypeParmDecl::Create( |
3035 | S.Context, S.Context.getTranslationUnitDecl(), |
3036 | /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(), |
3037 | /*NameLoc=*/D.getIdentifierLoc(), |
3038 | TemplateParameterDepth, AutoParameterPosition, |
3039 | S.InventAbbreviatedTemplateParameterTypeName( |
3040 | ParamName: D.getIdentifier(), Index: AutoParameterPosition), false, |
3041 | IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained()); |
3042 | InventedTemplateParam->setImplicit(); |
3043 | Info.TemplateParams.push_back(InventedTemplateParam); |
3044 | |
3045 | // Attach type constraints to the new parameter. |
3046 | if (Auto->isConstrained()) { |
3047 | if (TrailingTSI) { |
3048 | // The 'auto' appears in a trailing return type we've already built; |
3049 | // extract its type constraints to attach to the template parameter. |
3050 | AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc(); |
3051 | TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc()); |
3052 | bool Invalid = false; |
3053 | for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) { |
3054 | if (D.getEllipsisLoc().isInvalid() && !Invalid && |
3055 | S.DiagnoseUnexpandedParameterPack(Arg: AutoLoc.getArgLoc(i: Idx), |
3056 | UPPC: Sema::UPPC_TypeConstraint)) |
3057 | Invalid = true; |
3058 | TAL.addArgument(Loc: AutoLoc.getArgLoc(i: Idx)); |
3059 | } |
3060 | |
3061 | if (!Invalid) { |
3062 | S.AttachTypeConstraint( |
3063 | NS: AutoLoc.getNestedNameSpecifierLoc(), NameInfo: AutoLoc.getConceptNameInfo(), |
3064 | NamedConcept: AutoLoc.getNamedConcept(), /*FoundDecl=*/AutoLoc.getFoundDecl(), |
3065 | TemplateArgs: AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr, |
3066 | ConstrainedParameter: InventedTemplateParam, EllipsisLoc: D.getEllipsisLoc()); |
3067 | } |
3068 | } else { |
3069 | // The 'auto' appears in the decl-specifiers; we've not finished forming |
3070 | // TypeSourceInfo for it yet. |
3071 | TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId(); |
3072 | TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc, |
3073 | TemplateId->RAngleLoc); |
3074 | bool Invalid = false; |
3075 | if (TemplateId->LAngleLoc.isValid()) { |
3076 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
3077 | TemplateId->NumArgs); |
3078 | S.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo); |
3079 | |
3080 | if (D.getEllipsisLoc().isInvalid()) { |
3081 | for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) { |
3082 | if (S.DiagnoseUnexpandedParameterPack(Arg, |
3083 | UPPC: Sema::UPPC_TypeConstraint)) { |
3084 | Invalid = true; |
3085 | break; |
3086 | } |
3087 | } |
3088 | } |
3089 | } |
3090 | if (!Invalid) { |
3091 | UsingShadowDecl *USD = |
3092 | TemplateId->Template.get().getAsUsingShadowDecl(); |
3093 | auto *CD = |
3094 | cast<ConceptDecl>(Val: TemplateId->Template.get().getAsTemplateDecl()); |
3095 | S.AttachTypeConstraint( |
3096 | D.getDeclSpec().getTypeSpecScope().getWithLocInContext(Context&: S.Context), |
3097 | DeclarationNameInfo(DeclarationName(TemplateId->Name), |
3098 | TemplateId->TemplateNameLoc), |
3099 | CD, |
3100 | /*FoundDecl=*/ |
3101 | USD ? cast<NamedDecl>(Val: USD) : CD, |
3102 | TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr, |
3103 | InventedTemplateParam, D.getEllipsisLoc()); |
3104 | } |
3105 | } |
3106 | } |
3107 | |
3108 | // Replace the 'auto' in the function parameter with this invented |
3109 | // template type parameter. |
3110 | // FIXME: Retain some type sugar to indicate that this was written |
3111 | // as 'auto'? |
3112 | QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0); |
3113 | QualType NewT = state.ReplaceAutoType(TypeWithAuto: T, Replacement); |
3114 | TypeSourceInfo *NewTSI = |
3115 | TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TypeWithAuto: TrailingTSI, Replacement) |
3116 | : nullptr; |
3117 | return {NewT, NewTSI}; |
3118 | } |
3119 | |
3120 | static TypeSourceInfo * |
3121 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, |
3122 | QualType T, TypeSourceInfo *ReturnTypeInfo); |
3123 | |
3124 | static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state, |
3125 | TypeSourceInfo *&ReturnTypeInfo) { |
3126 | Sema &SemaRef = state.getSema(); |
3127 | Declarator &D = state.getDeclarator(); |
3128 | QualType T; |
3129 | ReturnTypeInfo = nullptr; |
3130 | |
3131 | // The TagDecl owned by the DeclSpec. |
3132 | TagDecl *OwnedTagDecl = nullptr; |
3133 | |
3134 | switch (D.getName().getKind()) { |
3135 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
3136 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
3137 | case UnqualifiedIdKind::IK_Identifier: |
3138 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
3139 | case UnqualifiedIdKind::IK_TemplateId: |
3140 | T = ConvertDeclSpecToType(state); |
3141 | |
3142 | if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) { |
3143 | OwnedTagDecl = cast<TagDecl>(Val: D.getDeclSpec().getRepAsDecl()); |
3144 | // Owned declaration is embedded in declarator. |
3145 | OwnedTagDecl->setEmbeddedInDeclarator(true); |
3146 | } |
3147 | break; |
3148 | |
3149 | case UnqualifiedIdKind::IK_ConstructorName: |
3150 | case UnqualifiedIdKind::IK_ConstructorTemplateId: |
3151 | case UnqualifiedIdKind::IK_DestructorName: |
3152 | // Constructors and destructors don't have return types. Use |
3153 | // "void" instead. |
3154 | T = SemaRef.Context.VoidTy; |
3155 | processTypeAttrs(state, type&: T, TAL: TAL_DeclSpec, |
3156 | attrs: D.getMutableDeclSpec().getAttributes()); |
3157 | break; |
3158 | |
3159 | case UnqualifiedIdKind::IK_DeductionGuideName: |
3160 | // Deduction guides have a trailing return type and no type in their |
3161 | // decl-specifier sequence. Use a placeholder return type for now. |
3162 | T = SemaRef.Context.DependentTy; |
3163 | break; |
3164 | |
3165 | case UnqualifiedIdKind::IK_ConversionFunctionId: |
3166 | // The result type of a conversion function is the type that it |
3167 | // converts to. |
3168 | T = SemaRef.GetTypeFromParser(Ty: D.getName().ConversionFunctionId, |
3169 | TInfo: &ReturnTypeInfo); |
3170 | break; |
3171 | } |
3172 | |
3173 | // Note: We don't need to distribute declaration attributes (i.e. |
3174 | // D.getDeclarationAttributes()) because those are always C++11 attributes, |
3175 | // and those don't get distributed. |
3176 | distributeTypeAttrsFromDeclarator( |
3177 | state, declSpecType&: T, CFT: SemaRef.CUDA().IdentifyTarget(Attrs: D.getAttributes())); |
3178 | |
3179 | // Find the deduced type in this type. Look in the trailing return type if we |
3180 | // have one, otherwise in the DeclSpec type. |
3181 | // FIXME: The standard wording doesn't currently describe this. |
3182 | DeducedType *Deduced = T->getContainedDeducedType(); |
3183 | bool DeducedIsTrailingReturnType = false; |
3184 | if (Deduced && isa<AutoType>(Val: Deduced) && D.hasTrailingReturnType()) { |
3185 | QualType T = SemaRef.GetTypeFromParser(Ty: D.getTrailingReturnType()); |
3186 | Deduced = T.isNull() ? nullptr : T->getContainedDeducedType(); |
3187 | DeducedIsTrailingReturnType = true; |
3188 | } |
3189 | |
3190 | // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context. |
3191 | if (Deduced) { |
3192 | AutoType *Auto = dyn_cast<AutoType>(Val: Deduced); |
3193 | int Error = -1; |
3194 | |
3195 | // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or |
3196 | // class template argument deduction)? |
3197 | bool IsCXXAutoType = |
3198 | (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType); |
3199 | bool IsDeducedReturnType = false; |
3200 | |
3201 | switch (D.getContext()) { |
3202 | case DeclaratorContext::LambdaExpr: |
3203 | // Declared return type of a lambda-declarator is implicit and is always |
3204 | // 'auto'. |
3205 | break; |
3206 | case DeclaratorContext::ObjCParameter: |
3207 | case DeclaratorContext::ObjCResult: |
3208 | Error = 0; |
3209 | break; |
3210 | case DeclaratorContext::RequiresExpr: |
3211 | Error = 22; |
3212 | break; |
3213 | case DeclaratorContext::Prototype: |
3214 | case DeclaratorContext::LambdaExprParameter: { |
3215 | InventedTemplateParameterInfo *Info = nullptr; |
3216 | if (D.getContext() == DeclaratorContext::Prototype) { |
3217 | // With concepts we allow 'auto' in function parameters. |
3218 | if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto || |
3219 | Auto->getKeyword() != AutoTypeKeyword::Auto) { |
3220 | Error = 0; |
3221 | break; |
3222 | } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) { |
3223 | Error = 21; |
3224 | break; |
3225 | } |
3226 | |
3227 | Info = &SemaRef.InventedParameterInfos.back(); |
3228 | } else { |
3229 | // In C++14, generic lambdas allow 'auto' in their parameters. |
3230 | if (!SemaRef.getLangOpts().CPlusPlus14 && Auto && |
3231 | Auto->getKeyword() == AutoTypeKeyword::Auto) { |
3232 | Error = 25; // auto not allowed in lambda parameter (before C++14) |
3233 | break; |
3234 | } else if (!Auto || Auto->getKeyword() != AutoTypeKeyword::Auto) { |
3235 | Error = 16; // __auto_type or decltype(auto) not allowed in lambda |
3236 | // parameter |
3237 | break; |
3238 | } |
3239 | Info = SemaRef.getCurLambda(); |
3240 | assert(Info && "No LambdaScopeInfo on the stack!"); |
3241 | } |
3242 | |
3243 | // We'll deal with inventing template parameters for 'auto' in trailing |
3244 | // return types when we pick up the trailing return type when processing |
3245 | // the function chunk. |
3246 | if (!DeducedIsTrailingReturnType) |
3247 | T = InventTemplateParameter(state, T, TrailingTSI: nullptr, Auto, Info&: *Info).first; |
3248 | break; |
3249 | } |
3250 | case DeclaratorContext::Member: { |
3251 | if (D.isStaticMember() || D.isFunctionDeclarator()) |
3252 | break; |
3253 | bool Cxx = SemaRef.getLangOpts().CPlusPlus; |
3254 | if (isa<ObjCContainerDecl>(Val: SemaRef.CurContext)) { |
3255 | Error = 6; // Interface member. |
3256 | } else { |
3257 | switch (cast<TagDecl>(Val: SemaRef.CurContext)->getTagKind()) { |
3258 | case TagTypeKind::Enum: |
3259 | llvm_unreachable("unhandled tag kind"); |
3260 | case TagTypeKind::Struct: |
3261 | Error = Cxx ? 1 : 2; /* Struct member */ |
3262 | break; |
3263 | case TagTypeKind::Union: |
3264 | Error = Cxx ? 3 : 4; /* Union member */ |
3265 | break; |
3266 | case TagTypeKind::Class: |
3267 | Error = 5; /* Class member */ |
3268 | break; |
3269 | case TagTypeKind::Interface: |
3270 | Error = 6; /* Interface member */ |
3271 | break; |
3272 | } |
3273 | } |
3274 | if (D.getDeclSpec().isFriendSpecified()) |
3275 | Error = 20; // Friend type |
3276 | break; |
3277 | } |
3278 | case DeclaratorContext::CXXCatch: |
3279 | case DeclaratorContext::ObjCCatch: |
3280 | Error = 7; // Exception declaration |
3281 | break; |
3282 | case DeclaratorContext::TemplateParam: |
3283 | if (isa<DeducedTemplateSpecializationType>(Val: Deduced) && |
3284 | !SemaRef.getLangOpts().CPlusPlus20) |
3285 | Error = 19; // Template parameter (until C++20) |
3286 | else if (!SemaRef.getLangOpts().CPlusPlus17) |
3287 | Error = 8; // Template parameter (until C++17) |
3288 | break; |
3289 | case DeclaratorContext::BlockLiteral: |
3290 | Error = 9; // Block literal |
3291 | break; |
3292 | case DeclaratorContext::TemplateArg: |
3293 | // Within a template argument list, a deduced template specialization |
3294 | // type will be reinterpreted as a template template argument. |
3295 | if (isa<DeducedTemplateSpecializationType>(Val: Deduced) && |
3296 | !D.getNumTypeObjects() && |
3297 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier) |
3298 | break; |
3299 | [[fallthrough]]; |
3300 | case DeclaratorContext::TemplateTypeArg: |
3301 | Error = 10; // Template type argument |
3302 | break; |
3303 | case DeclaratorContext::AliasDecl: |
3304 | case DeclaratorContext::AliasTemplate: |
3305 | Error = 12; // Type alias |
3306 | break; |
3307 | case DeclaratorContext::TrailingReturn: |
3308 | case DeclaratorContext::TrailingReturnVar: |
3309 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) |
3310 | Error = 13; // Function return type |
3311 | IsDeducedReturnType = true; |
3312 | break; |
3313 | case DeclaratorContext::ConversionId: |
3314 | if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType) |
3315 | Error = 14; // conversion-type-id |
3316 | IsDeducedReturnType = true; |
3317 | break; |
3318 | case DeclaratorContext::FunctionalCast: |
3319 | if (isa<DeducedTemplateSpecializationType>(Val: Deduced)) |
3320 | break; |
3321 | if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType && |
3322 | !Auto->isDecltypeAuto()) |
3323 | break; // auto(x) |
3324 | [[fallthrough]]; |
3325 | case DeclaratorContext::TypeName: |
3326 | case DeclaratorContext::Association: |
3327 | Error = 15; // Generic |
3328 | break; |
3329 | case DeclaratorContext::File: |
3330 | case DeclaratorContext::Block: |
3331 | case DeclaratorContext::ForInit: |
3332 | case DeclaratorContext::SelectionInit: |
3333 | case DeclaratorContext::Condition: |
3334 | // FIXME: P0091R3 (erroneously) does not permit class template argument |
3335 | // deduction in conditions, for-init-statements, and other declarations |
3336 | // that are not simple-declarations. |
3337 | break; |
3338 | case DeclaratorContext::CXXNew: |
3339 | // FIXME: P0091R3 does not permit class template argument deduction here, |
3340 | // but we follow GCC and allow it anyway. |
3341 | if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Val: Deduced)) |
3342 | Error = 17; // 'new' type |
3343 | break; |
3344 | case DeclaratorContext::KNRTypeList: |
3345 | Error = 18; // K&R function parameter |
3346 | break; |
3347 | } |
3348 | |
3349 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) |
3350 | Error = 11; |
3351 | |
3352 | // In Objective-C it is an error to use 'auto' on a function declarator |
3353 | // (and everywhere for '__auto_type'). |
3354 | if (D.isFunctionDeclarator() && |
3355 | (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType)) |
3356 | Error = 13; |
3357 | |
3358 | SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc(); |
3359 | if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId) |
3360 | AutoRange = D.getName().getSourceRange(); |
3361 | |
3362 | if (Error != -1) { |
3363 | unsigned Kind; |
3364 | if (Auto) { |
3365 | switch (Auto->getKeyword()) { |
3366 | case AutoTypeKeyword::Auto: Kind = 0; break; |
3367 | case AutoTypeKeyword::DecltypeAuto: Kind = 1; break; |
3368 | case AutoTypeKeyword::GNUAutoType: Kind = 2; break; |
3369 | } |
3370 | } else { |
3371 | assert(isa<DeducedTemplateSpecializationType>(Deduced) && |
3372 | "unknown auto type"); |
3373 | Kind = 3; |
3374 | } |
3375 | |
3376 | auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Val: Deduced); |
3377 | TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName(); |
3378 | |
3379 | SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed) |
3380 | << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN) |
3381 | << QualType(Deduced, 0) << AutoRange; |
3382 | if (auto *TD = TN.getAsTemplateDecl()) |
3383 | SemaRef.NoteTemplateLocation(Decl: *TD); |
3384 | |
3385 | T = SemaRef.Context.IntTy; |
3386 | D.setInvalidType(true); |
3387 | } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) { |
3388 | // If there was a trailing return type, we already got |
3389 | // warn_cxx98_compat_trailing_return_type in the parser. |
3390 | // If there was a decltype(auto), we already got |
3391 | // warn_cxx11_compat_decltype_auto_type_specifier. |
3392 | unsigned DiagId = 0; |
3393 | if (D.getContext() == DeclaratorContext::LambdaExprParameter) |
3394 | DiagId = diag::warn_cxx11_compat_generic_lambda; |
3395 | else if (IsDeducedReturnType) |
3396 | DiagId = diag::warn_cxx11_compat_deduced_return_type; |
3397 | else if (Auto->getKeyword() == AutoTypeKeyword::Auto) |
3398 | DiagId = diag::warn_cxx98_compat_auto_type_specifier; |
3399 | |
3400 | if (DiagId) |
3401 | SemaRef.Diag(AutoRange.getBegin(), DiagId) << AutoRange; |
3402 | } |
3403 | } |
3404 | |
3405 | if (SemaRef.getLangOpts().CPlusPlus && |
3406 | OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) { |
3407 | // Check the contexts where C++ forbids the declaration of a new class |
3408 | // or enumeration in a type-specifier-seq. |
3409 | unsigned DiagID = 0; |
3410 | switch (D.getContext()) { |
3411 | case DeclaratorContext::TrailingReturn: |
3412 | case DeclaratorContext::TrailingReturnVar: |
3413 | // Class and enumeration definitions are syntactically not allowed in |
3414 | // trailing return types. |
3415 | llvm_unreachable("parser should not have allowed this"); |
3416 | break; |
3417 | case DeclaratorContext::File: |
3418 | case DeclaratorContext::Member: |
3419 | case DeclaratorContext::Block: |
3420 | case DeclaratorContext::ForInit: |
3421 | case DeclaratorContext::SelectionInit: |
3422 | case DeclaratorContext::BlockLiteral: |
3423 | case DeclaratorContext::LambdaExpr: |
3424 | // C++11 [dcl.type]p3: |
3425 | // A type-specifier-seq shall not define a class or enumeration unless |
3426 | // it appears in the type-id of an alias-declaration (7.1.3) that is not |
3427 | // the declaration of a template-declaration. |
3428 | case DeclaratorContext::AliasDecl: |
3429 | break; |
3430 | case DeclaratorContext::AliasTemplate: |
3431 | DiagID = diag::err_type_defined_in_alias_template; |
3432 | break; |
3433 | case DeclaratorContext::TypeName: |
3434 | case DeclaratorContext::FunctionalCast: |
3435 | case DeclaratorContext::ConversionId: |
3436 | case DeclaratorContext::TemplateParam: |
3437 | case DeclaratorContext::CXXNew: |
3438 | case DeclaratorContext::CXXCatch: |
3439 | case DeclaratorContext::ObjCCatch: |
3440 | case DeclaratorContext::TemplateArg: |
3441 | case DeclaratorContext::TemplateTypeArg: |
3442 | case DeclaratorContext::Association: |
3443 | DiagID = diag::err_type_defined_in_type_specifier; |
3444 | break; |
3445 | case DeclaratorContext::Prototype: |
3446 | case DeclaratorContext::LambdaExprParameter: |
3447 | case DeclaratorContext::ObjCParameter: |
3448 | case DeclaratorContext::ObjCResult: |
3449 | case DeclaratorContext::KNRTypeList: |
3450 | case DeclaratorContext::RequiresExpr: |
3451 | // C++ [dcl.fct]p6: |
3452 | // Types shall not be defined in return or parameter types. |
3453 | DiagID = diag::err_type_defined_in_param_type; |
3454 | break; |
3455 | case DeclaratorContext::Condition: |
3456 | // C++ 6.4p2: |
3457 | // The type-specifier-seq shall not contain typedef and shall not declare |
3458 | // a new class or enumeration. |
3459 | DiagID = diag::err_type_defined_in_condition; |
3460 | break; |
3461 | } |
3462 | |
3463 | if (DiagID != 0) { |
3464 | SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID) |
3465 | << SemaRef.Context.getTypeDeclType(OwnedTagDecl); |
3466 | D.setInvalidType(true); |
3467 | } |
3468 | } |
3469 | |
3470 | assert(!T.isNull() && "This function should not return a null type"); |
3471 | return T; |
3472 | } |
3473 | |
3474 | /// Produce an appropriate diagnostic for an ambiguity between a function |
3475 | /// declarator and a C++ direct-initializer. |
3476 | static void warnAboutAmbiguousFunction(Sema &S, Declarator &D, |
3477 | DeclaratorChunk &DeclType, QualType RT) { |
3478 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; |
3479 | assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity"); |
3480 | |
3481 | // If the return type is void there is no ambiguity. |
3482 | if (RT->isVoidType()) |
3483 | return; |
3484 | |
3485 | // An initializer for a non-class type can have at most one argument. |
3486 | if (!RT->isRecordType() && FTI.NumParams > 1) |
3487 | return; |
3488 | |
3489 | // An initializer for a reference must have exactly one argument. |
3490 | if (RT->isReferenceType() && FTI.NumParams != 1) |
3491 | return; |
3492 | |
3493 | // Only warn if this declarator is declaring a function at block scope, and |
3494 | // doesn't have a storage class (such as 'extern') specified. |
3495 | if (!D.isFunctionDeclarator() || |
3496 | D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration || |
3497 | !S.CurContext->isFunctionOrMethod() || |
3498 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified) |
3499 | return; |
3500 | |
3501 | // Inside a condition, a direct initializer is not permitted. We allow one to |
3502 | // be parsed in order to give better diagnostics in condition parsing. |
3503 | if (D.getContext() == DeclaratorContext::Condition) |
3504 | return; |
3505 | |
3506 | SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc); |
3507 | |
3508 | S.Diag(DeclType.Loc, |
3509 | FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration |
3510 | : diag::warn_empty_parens_are_function_decl) |
3511 | << ParenRange; |
3512 | |
3513 | // If the declaration looks like: |
3514 | // T var1, |
3515 | // f(); |
3516 | // and name lookup finds a function named 'f', then the ',' was |
3517 | // probably intended to be a ';'. |
3518 | if (!D.isFirstDeclarator() && D.getIdentifier()) { |
3519 | FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr); |
3520 | FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr); |
3521 | if (Comma.getFileID() != Name.getFileID() || |
3522 | Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) { |
3523 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), |
3524 | Sema::LookupOrdinaryName); |
3525 | if (S.LookupName(Result, S.getCurScope())) |
3526 | S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call) |
3527 | << FixItHint::CreateReplacement(D.getCommaLoc(), ";") |
3528 | << D.getIdentifier(); |
3529 | Result.suppressDiagnostics(); |
3530 | } |
3531 | } |
3532 | |
3533 | if (FTI.NumParams > 0) { |
3534 | // For a declaration with parameters, eg. "T var(T());", suggest adding |
3535 | // parens around the first parameter to turn the declaration into a |
3536 | // variable declaration. |
3537 | SourceRange Range = FTI.Params[0].Param->getSourceRange(); |
3538 | SourceLocation B = Range.getBegin(); |
3539 | SourceLocation E = S.getLocForEndOfToken(Loc: Range.getEnd()); |
3540 | // FIXME: Maybe we should suggest adding braces instead of parens |
3541 | // in C++11 for classes that don't have an initializer_list constructor. |
3542 | S.Diag(B, diag::note_additional_parens_for_variable_declaration) |
3543 | << FixItHint::CreateInsertion(B, "(") |
3544 | << FixItHint::CreateInsertion(E, ")"); |
3545 | } else { |
3546 | // For a declaration without parameters, eg. "T var();", suggest replacing |
3547 | // the parens with an initializer to turn the declaration into a variable |
3548 | // declaration. |
3549 | const CXXRecordDecl *RD = RT->getAsCXXRecordDecl(); |
3550 | |
3551 | // Empty parens mean value-initialization, and no parens mean |
3552 | // default initialization. These are equivalent if the default |
3553 | // constructor is user-provided or if zero-initialization is a |
3554 | // no-op. |
3555 | if (RD && RD->hasDefinition() && |
3556 | (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor())) |
3557 | S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor) |
3558 | << FixItHint::CreateRemoval(ParenRange); |
3559 | else { |
3560 | std::string Init = |
3561 | S.getFixItZeroInitializerForType(T: RT, Loc: ParenRange.getBegin()); |
3562 | if (Init.empty() && S.LangOpts.CPlusPlus11) |
3563 | Init = "{}"; |
3564 | if (!Init.empty()) |
3565 | S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize) |
3566 | << FixItHint::CreateReplacement(ParenRange, Init); |
3567 | } |
3568 | } |
3569 | } |
3570 | |
3571 | /// Produce an appropriate diagnostic for a declarator with top-level |
3572 | /// parentheses. |
3573 | static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) { |
3574 | DeclaratorChunk &Paren = D.getTypeObject(i: D.getNumTypeObjects() - 1); |
3575 | assert(Paren.Kind == DeclaratorChunk::Paren && |
3576 | "do not have redundant top-level parentheses"); |
3577 | |
3578 | // This is a syntactic check; we're not interested in cases that arise |
3579 | // during template instantiation. |
3580 | if (S.inTemplateInstantiation()) |
3581 | return; |
3582 | |
3583 | // Check whether this could be intended to be a construction of a temporary |
3584 | // object in C++ via a function-style cast. |
3585 | bool CouldBeTemporaryObject = |
3586 | S.getLangOpts().CPlusPlus && D.isExpressionContext() && |
3587 | !D.isInvalidType() && D.getIdentifier() && |
3588 | D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier && |
3589 | (T->isRecordType() || T->isDependentType()) && |
3590 | D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator(); |
3591 | |
3592 | bool StartsWithDeclaratorId = true; |
3593 | for (auto &C : D.type_objects()) { |
3594 | switch (C.Kind) { |
3595 | case DeclaratorChunk::Paren: |
3596 | if (&C == &Paren) |
3597 | continue; |
3598 | [[fallthrough]]; |
3599 | case DeclaratorChunk::Pointer: |
3600 | StartsWithDeclaratorId = false; |
3601 | continue; |
3602 | |
3603 | case DeclaratorChunk::Array: |
3604 | if (!C.Arr.NumElts) |
3605 | CouldBeTemporaryObject = false; |
3606 | continue; |
3607 | |
3608 | case DeclaratorChunk::Reference: |
3609 | // FIXME: Suppress the warning here if there is no initializer; we're |
3610 | // going to give an error anyway. |
3611 | // We assume that something like 'T (&x) = y;' is highly likely to not |
3612 | // be intended to be a temporary object. |
3613 | CouldBeTemporaryObject = false; |
3614 | StartsWithDeclaratorId = false; |
3615 | continue; |
3616 | |
3617 | case DeclaratorChunk::Function: |
3618 | // In a new-type-id, function chunks require parentheses. |
3619 | if (D.getContext() == DeclaratorContext::CXXNew) |
3620 | return; |
3621 | // FIXME: "A(f())" deserves a vexing-parse warning, not just a |
3622 | // redundant-parens warning, but we don't know whether the function |
3623 | // chunk was syntactically valid as an expression here. |
3624 | CouldBeTemporaryObject = false; |
3625 | continue; |
3626 | |
3627 | case DeclaratorChunk::BlockPointer: |
3628 | case DeclaratorChunk::MemberPointer: |
3629 | case DeclaratorChunk::Pipe: |
3630 | // These cannot appear in expressions. |
3631 | CouldBeTemporaryObject = false; |
3632 | StartsWithDeclaratorId = false; |
3633 | continue; |
3634 | } |
3635 | } |
3636 | |
3637 | // FIXME: If there is an initializer, assume that this is not intended to be |
3638 | // a construction of a temporary object. |
3639 | |
3640 | // Check whether the name has already been declared; if not, this is not a |
3641 | // function-style cast. |
3642 | if (CouldBeTemporaryObject) { |
3643 | LookupResult Result(S, D.getIdentifier(), SourceLocation(), |
3644 | Sema::LookupOrdinaryName); |
3645 | if (!S.LookupName(R&: Result, S: S.getCurScope())) |
3646 | CouldBeTemporaryObject = false; |
3647 | Result.suppressDiagnostics(); |
3648 | } |
3649 | |
3650 | SourceRange ParenRange(Paren.Loc, Paren.EndLoc); |
3651 | |
3652 | if (!CouldBeTemporaryObject) { |
3653 | // If we have A (::B), the parentheses affect the meaning of the program. |
3654 | // Suppress the warning in that case. Don't bother looking at the DeclSpec |
3655 | // here: even (e.g.) "int ::x" is visually ambiguous even though it's |
3656 | // formally unambiguous. |
3657 | if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) { |
3658 | for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS; |
3659 | NNS = NNS->getPrefix()) { |
3660 | if (NNS->getKind() == NestedNameSpecifier::Global) |
3661 | return; |
3662 | } |
3663 | } |
3664 | |
3665 | S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator) |
3666 | << ParenRange << FixItHint::CreateRemoval(Paren.Loc) |
3667 | << FixItHint::CreateRemoval(Paren.EndLoc); |
3668 | return; |
3669 | } |
3670 | |
3671 | S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration) |
3672 | << ParenRange << D.getIdentifier(); |
3673 | auto *RD = T->getAsCXXRecordDecl(); |
3674 | if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor()) |
3675 | S.Diag(Paren.Loc, diag::note_raii_guard_add_name) |
3676 | << FixItHint::CreateInsertion(Paren.Loc, " varname") << T |
3677 | << D.getIdentifier(); |
3678 | // FIXME: A cast to void is probably a better suggestion in cases where it's |
3679 | // valid (when there is no initializer and we're not in a condition). |
3680 | S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses) |
3681 | << FixItHint::CreateInsertion(D.getBeginLoc(), "(") |
3682 | << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")"); |
3683 | S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration) |
3684 | << FixItHint::CreateRemoval(Paren.Loc) |
3685 | << FixItHint::CreateRemoval(Paren.EndLoc); |
3686 | } |
3687 | |
3688 | /// Helper for figuring out the default CC for a function declarator type. If |
3689 | /// this is the outermost chunk, then we can determine the CC from the |
3690 | /// declarator context. If not, then this could be either a member function |
3691 | /// type or normal function type. |
3692 | static CallingConv getCCForDeclaratorChunk( |
3693 | Sema &S, Declarator &D, const ParsedAttributesView &AttrList, |
3694 | const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) { |
3695 | assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function); |
3696 | |
3697 | // Check for an explicit CC attribute. |
3698 | for (const ParsedAttr &AL : AttrList) { |
3699 | switch (AL.getKind()) { |
3700 | CALLING_CONV_ATTRS_CASELIST : { |
3701 | // Ignore attributes that don't validate or can't apply to the |
3702 | // function type. We'll diagnose the failure to apply them in |
3703 | // handleFunctionTypeAttr. |
3704 | CallingConv CC; |
3705 | if (!S.CheckCallingConvAttr(attr: AL, CC, /*FunctionDecl=*/FD: nullptr, |
3706 | CFT: S.CUDA().IdentifyTarget(Attrs: D.getAttributes())) && |
3707 | (!FTI.isVariadic || supportsVariadicCall(CC))) { |
3708 | return CC; |
3709 | } |
3710 | break; |
3711 | } |
3712 | |
3713 | default: |
3714 | break; |
3715 | } |
3716 | } |
3717 | |
3718 | bool IsCXXInstanceMethod = false; |
3719 | |
3720 | if (S.getLangOpts().CPlusPlus) { |
3721 | // Look inwards through parentheses to see if this chunk will form a |
3722 | // member pointer type or if we're the declarator. Any type attributes |
3723 | // between here and there will override the CC we choose here. |
3724 | unsigned I = ChunkIndex; |
3725 | bool FoundNonParen = false; |
3726 | while (I && !FoundNonParen) { |
3727 | --I; |
3728 | if (D.getTypeObject(i: I).Kind != DeclaratorChunk::Paren) |
3729 | FoundNonParen = true; |
3730 | } |
3731 | |
3732 | if (FoundNonParen) { |
3733 | // If we're not the declarator, we're a regular function type unless we're |
3734 | // in a member pointer. |
3735 | IsCXXInstanceMethod = |
3736 | D.getTypeObject(i: I).Kind == DeclaratorChunk::MemberPointer; |
3737 | } else if (D.getContext() == DeclaratorContext::LambdaExpr) { |
3738 | // This can only be a call operator for a lambda, which is an instance |
3739 | // method, unless explicitly specified as 'static'. |
3740 | IsCXXInstanceMethod = |
3741 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static; |
3742 | } else { |
3743 | // We're the innermost decl chunk, so must be a function declarator. |
3744 | assert(D.isFunctionDeclarator()); |
3745 | |
3746 | // If we're inside a record, we're declaring a method, but it could be |
3747 | // explicitly or implicitly static. |
3748 | IsCXXInstanceMethod = |
3749 | D.isFirstDeclarationOfMember() && |
3750 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
3751 | !D.isStaticMember(); |
3752 | } |
3753 | } |
3754 | |
3755 | CallingConv CC = S.Context.getDefaultCallingConvention(IsVariadic: FTI.isVariadic, |
3756 | IsCXXMethod: IsCXXInstanceMethod); |
3757 | |
3758 | if (S.getLangOpts().CUDA) { |
3759 | // If we're compiling CUDA/HIP code and targeting HIPSPV we need to make |
3760 | // sure the kernels will be marked with the right calling convention so that |
3761 | // they will be visible by the APIs that ingest SPIR-V. We do not do this |
3762 | // when targeting AMDGCNSPIRV, as it does not rely on OpenCL. |
3763 | llvm::Triple Triple = S.Context.getTargetInfo().getTriple(); |
3764 | if (Triple.isSPIRV() && Triple.getVendor() != llvm::Triple::AMD) { |
3765 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { |
3766 | if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) { |
3767 | CC = CC_DeviceKernel; |
3768 | break; |
3769 | } |
3770 | } |
3771 | } |
3772 | } |
3773 | if (!S.getLangOpts().isSYCL()) { |
3774 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { |
3775 | if (AL.getKind() == ParsedAttr::AT_DeviceKernel) { |
3776 | CC = CC_DeviceKernel; |
3777 | break; |
3778 | } |
3779 | } |
3780 | } |
3781 | return CC; |
3782 | } |
3783 | |
3784 | namespace { |
3785 | /// A simple notion of pointer kinds, which matches up with the various |
3786 | /// pointer declarators. |
3787 | enum class SimplePointerKind { |
3788 | Pointer, |
3789 | BlockPointer, |
3790 | MemberPointer, |
3791 | Array, |
3792 | }; |
3793 | } // end anonymous namespace |
3794 | |
3795 | IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) { |
3796 | switch (nullability) { |
3797 | case NullabilityKind::NonNull: |
3798 | if (!Ident__Nonnull) |
3799 | Ident__Nonnull = PP.getIdentifierInfo(Name: "_Nonnull"); |
3800 | return Ident__Nonnull; |
3801 | |
3802 | case NullabilityKind::Nullable: |
3803 | if (!Ident__Nullable) |
3804 | Ident__Nullable = PP.getIdentifierInfo(Name: "_Nullable"); |
3805 | return Ident__Nullable; |
3806 | |
3807 | case NullabilityKind::NullableResult: |
3808 | if (!Ident__Nullable_result) |
3809 | Ident__Nullable_result = PP.getIdentifierInfo(Name: "_Nullable_result"); |
3810 | return Ident__Nullable_result; |
3811 | |
3812 | case NullabilityKind::Unspecified: |
3813 | if (!Ident__Null_unspecified) |
3814 | Ident__Null_unspecified = PP.getIdentifierInfo(Name: "_Null_unspecified"); |
3815 | return Ident__Null_unspecified; |
3816 | } |
3817 | llvm_unreachable("Unknown nullability kind."); |
3818 | } |
3819 | |
3820 | /// Check whether there is a nullability attribute of any kind in the given |
3821 | /// attribute list. |
3822 | static bool hasNullabilityAttr(const ParsedAttributesView &attrs) { |
3823 | for (const ParsedAttr &AL : attrs) { |
3824 | if (AL.getKind() == ParsedAttr::AT_TypeNonNull || |
3825 | AL.getKind() == ParsedAttr::AT_TypeNullable || |
3826 | AL.getKind() == ParsedAttr::AT_TypeNullableResult || |
3827 | AL.getKind() == ParsedAttr::AT_TypeNullUnspecified) |
3828 | return true; |
3829 | } |
3830 | |
3831 | return false; |
3832 | } |
3833 | |
3834 | namespace { |
3835 | /// Describes the kind of a pointer a declarator describes. |
3836 | enum class PointerDeclaratorKind { |
3837 | // Not a pointer. |
3838 | NonPointer, |
3839 | // Single-level pointer. |
3840 | SingleLevelPointer, |
3841 | // Multi-level pointer (of any pointer kind). |
3842 | MultiLevelPointer, |
3843 | // CFFooRef* |
3844 | MaybePointerToCFRef, |
3845 | // CFErrorRef* |
3846 | CFErrorRefPointer, |
3847 | // NSError** |
3848 | NSErrorPointerPointer, |
3849 | }; |
3850 | |
3851 | /// Describes a declarator chunk wrapping a pointer that marks inference as |
3852 | /// unexpected. |
3853 | // These values must be kept in sync with diagnostics. |
3854 | enum class PointerWrappingDeclaratorKind { |
3855 | /// Pointer is top-level. |
3856 | None = -1, |
3857 | /// Pointer is an array element. |
3858 | Array = 0, |
3859 | /// Pointer is the referent type of a C++ reference. |
3860 | Reference = 1 |
3861 | }; |
3862 | } // end anonymous namespace |
3863 | |
3864 | /// Classify the given declarator, whose type-specified is \c type, based on |
3865 | /// what kind of pointer it refers to. |
3866 | /// |
3867 | /// This is used to determine the default nullability. |
3868 | static PointerDeclaratorKind |
3869 | classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator, |
3870 | PointerWrappingDeclaratorKind &wrappingKind) { |
3871 | unsigned numNormalPointers = 0; |
3872 | |
3873 | // For any dependent type, we consider it a non-pointer. |
3874 | if (type->isDependentType()) |
3875 | return PointerDeclaratorKind::NonPointer; |
3876 | |
3877 | // Look through the declarator chunks to identify pointers. |
3878 | for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) { |
3879 | DeclaratorChunk &chunk = declarator.getTypeObject(i); |
3880 | switch (chunk.Kind) { |
3881 | case DeclaratorChunk::Array: |
3882 | if (numNormalPointers == 0) |
3883 | wrappingKind = PointerWrappingDeclaratorKind::Array; |
3884 | break; |
3885 | |
3886 | case DeclaratorChunk::Function: |
3887 | case DeclaratorChunk::Pipe: |
3888 | break; |
3889 | |
3890 | case DeclaratorChunk::BlockPointer: |
3891 | case DeclaratorChunk::MemberPointer: |
3892 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer |
3893 | : PointerDeclaratorKind::SingleLevelPointer; |
3894 | |
3895 | case DeclaratorChunk::Paren: |
3896 | break; |
3897 | |
3898 | case DeclaratorChunk::Reference: |
3899 | if (numNormalPointers == 0) |
3900 | wrappingKind = PointerWrappingDeclaratorKind::Reference; |
3901 | break; |
3902 | |
3903 | case DeclaratorChunk::Pointer: |
3904 | ++numNormalPointers; |
3905 | if (numNormalPointers > 2) |
3906 | return PointerDeclaratorKind::MultiLevelPointer; |
3907 | break; |
3908 | } |
3909 | } |
3910 | |
3911 | // Then, dig into the type specifier itself. |
3912 | unsigned numTypeSpecifierPointers = 0; |
3913 | do { |
3914 | // Decompose normal pointers. |
3915 | if (auto ptrType = type->getAs<PointerType>()) { |
3916 | ++numNormalPointers; |
3917 | |
3918 | if (numNormalPointers > 2) |
3919 | return PointerDeclaratorKind::MultiLevelPointer; |
3920 | |
3921 | type = ptrType->getPointeeType(); |
3922 | ++numTypeSpecifierPointers; |
3923 | continue; |
3924 | } |
3925 | |
3926 | // Decompose block pointers. |
3927 | if (type->getAs<BlockPointerType>()) { |
3928 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer |
3929 | : PointerDeclaratorKind::SingleLevelPointer; |
3930 | } |
3931 | |
3932 | // Decompose member pointers. |
3933 | if (type->getAs<MemberPointerType>()) { |
3934 | return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer |
3935 | : PointerDeclaratorKind::SingleLevelPointer; |
3936 | } |
3937 | |
3938 | // Look at Objective-C object pointers. |
3939 | if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) { |
3940 | ++numNormalPointers; |
3941 | ++numTypeSpecifierPointers; |
3942 | |
3943 | // If this is NSError**, report that. |
3944 | if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) { |
3945 | if (objcClassDecl->getIdentifier() == S.ObjC().getNSErrorIdent() && |
3946 | numNormalPointers == 2 && numTypeSpecifierPointers < 2) { |
3947 | return PointerDeclaratorKind::NSErrorPointerPointer; |
3948 | } |
3949 | } |
3950 | |
3951 | break; |
3952 | } |
3953 | |
3954 | // Look at Objective-C class types. |
3955 | if (auto objcClass = type->getAs<ObjCInterfaceType>()) { |
3956 | if (objcClass->getInterface()->getIdentifier() == |
3957 | S.ObjC().getNSErrorIdent()) { |
3958 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2) |
3959 | return PointerDeclaratorKind::NSErrorPointerPointer; |
3960 | } |
3961 | |
3962 | break; |
3963 | } |
3964 | |
3965 | // If at this point we haven't seen a pointer, we won't see one. |
3966 | if (numNormalPointers == 0) |
3967 | return PointerDeclaratorKind::NonPointer; |
3968 | |
3969 | if (auto recordType = type->getAs<RecordType>()) { |
3970 | RecordDecl *recordDecl = recordType->getDecl(); |
3971 | |
3972 | // If this is CFErrorRef*, report it as such. |
3973 | if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 && |
3974 | S.ObjC().isCFError(D: recordDecl)) { |
3975 | return PointerDeclaratorKind::CFErrorRefPointer; |
3976 | } |
3977 | break; |
3978 | } |
3979 | |
3980 | break; |
3981 | } while (true); |
3982 | |
3983 | switch (numNormalPointers) { |
3984 | case 0: |
3985 | return PointerDeclaratorKind::NonPointer; |
3986 | |
3987 | case 1: |
3988 | return PointerDeclaratorKind::SingleLevelPointer; |
3989 | |
3990 | case 2: |
3991 | return PointerDeclaratorKind::MaybePointerToCFRef; |
3992 | |
3993 | default: |
3994 | return PointerDeclaratorKind::MultiLevelPointer; |
3995 | } |
3996 | } |
3997 | |
3998 | static FileID getNullabilityCompletenessCheckFileID(Sema &S, |
3999 | SourceLocation loc) { |
4000 | // If we're anywhere in a function, method, or closure context, don't perform |
4001 | // completeness checks. |
4002 | for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) { |
4003 | if (ctx->isFunctionOrMethod()) |
4004 | return FileID(); |
4005 | |
4006 | if (ctx->isFileContext()) |
4007 | break; |
4008 | } |
4009 | |
4010 | // We only care about the expansion location. |
4011 | loc = S.SourceMgr.getExpansionLoc(Loc: loc); |
4012 | FileID file = S.SourceMgr.getFileID(SpellingLoc: loc); |
4013 | if (file.isInvalid()) |
4014 | return FileID(); |
4015 | |
4016 | // Retrieve file information. |
4017 | bool invalid = false; |
4018 | const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(FID: file, Invalid: &invalid); |
4019 | if (invalid || !sloc.isFile()) |
4020 | return FileID(); |
4021 | |
4022 | // We don't want to perform completeness checks on the main file or in |
4023 | // system headers. |
4024 | const SrcMgr::FileInfo &fileInfo = sloc.getFile(); |
4025 | if (fileInfo.getIncludeLoc().isInvalid()) |
4026 | return FileID(); |
4027 | if (fileInfo.getFileCharacteristic() != SrcMgr::C_User && |
4028 | S.Diags.getSuppressSystemWarnings()) { |
4029 | return FileID(); |
4030 | } |
4031 | |
4032 | return file; |
4033 | } |
4034 | |
4035 | /// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc, |
4036 | /// taking into account whitespace before and after. |
4037 | template <typename DiagBuilderT> |
4038 | static void fixItNullability(Sema &S, DiagBuilderT &Diag, |
4039 | SourceLocation PointerLoc, |
4040 | NullabilityKind Nullability) { |
4041 | assert(PointerLoc.isValid()); |
4042 | if (PointerLoc.isMacroID()) |
4043 | return; |
4044 | |
4045 | SourceLocation FixItLoc = S.getLocForEndOfToken(Loc: PointerLoc); |
4046 | if (!FixItLoc.isValid() || FixItLoc == PointerLoc) |
4047 | return; |
4048 | |
4049 | const char *NextChar = S.SourceMgr.getCharacterData(SL: FixItLoc); |
4050 | if (!NextChar) |
4051 | return; |
4052 | |
4053 | SmallString<32> InsertionTextBuf{" "}; |
4054 | InsertionTextBuf += getNullabilitySpelling(kind: Nullability); |
4055 | InsertionTextBuf += " "; |
4056 | StringRef InsertionText = InsertionTextBuf.str(); |
4057 | |
4058 | if (isWhitespace(c: *NextChar)) { |
4059 | InsertionText = InsertionText.drop_back(); |
4060 | } else if (NextChar[-1] == '[') { |
4061 | if (NextChar[0] == ']') |
4062 | InsertionText = InsertionText.drop_back().drop_front(); |
4063 | else |
4064 | InsertionText = InsertionText.drop_front(); |
4065 | } else if (!isAsciiIdentifierContinue(c: NextChar[0], /*allow dollar*/ AllowDollar: true) && |
4066 | !isAsciiIdentifierContinue(c: NextChar[-1], /*allow dollar*/ AllowDollar: true)) { |
4067 | InsertionText = InsertionText.drop_back().drop_front(); |
4068 | } |
4069 | |
4070 | Diag << FixItHint::CreateInsertion(InsertionLoc: FixItLoc, Code: InsertionText); |
4071 | } |
4072 | |
4073 | static void emitNullabilityConsistencyWarning(Sema &S, |
4074 | SimplePointerKind PointerKind, |
4075 | SourceLocation PointerLoc, |
4076 | SourceLocation PointerEndLoc) { |
4077 | assert(PointerLoc.isValid()); |
4078 | |
4079 | if (PointerKind == SimplePointerKind::Array) { |
4080 | S.Diag(PointerLoc, diag::warn_nullability_missing_array); |
4081 | } else { |
4082 | S.Diag(PointerLoc, diag::warn_nullability_missing) |
4083 | << static_cast<unsigned>(PointerKind); |
4084 | } |
4085 | |
4086 | auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc; |
4087 | if (FixItLoc.isMacroID()) |
4088 | return; |
4089 | |
4090 | auto addFixIt = [&](NullabilityKind Nullability) { |
4091 | auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it); |
4092 | Diag << static_cast<unsigned>(Nullability); |
4093 | Diag << static_cast<unsigned>(PointerKind); |
4094 | fixItNullability(S, Diag, FixItLoc, Nullability); |
4095 | }; |
4096 | addFixIt(NullabilityKind::Nullable); |
4097 | addFixIt(NullabilityKind::NonNull); |
4098 | } |
4099 | |
4100 | /// Complains about missing nullability if the file containing \p pointerLoc |
4101 | /// has other uses of nullability (either the keywords or the \c assume_nonnull |
4102 | /// pragma). |
4103 | /// |
4104 | /// If the file has \e not seen other uses of nullability, this particular |
4105 | /// pointer is saved for possible later diagnosis. See recordNullabilitySeen(). |
4106 | static void |
4107 | checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind, |
4108 | SourceLocation pointerLoc, |
4109 | SourceLocation pointerEndLoc = SourceLocation()) { |
4110 | // Determine which file we're performing consistency checking for. |
4111 | FileID file = getNullabilityCompletenessCheckFileID(S, loc: pointerLoc); |
4112 | if (file.isInvalid()) |
4113 | return; |
4114 | |
4115 | // If we haven't seen any type nullability in this file, we won't warn now |
4116 | // about anything. |
4117 | FileNullability &fileNullability = S.NullabilityMap[file]; |
4118 | if (!fileNullability.SawTypeNullability) { |
4119 | // If this is the first pointer declarator in the file, and the appropriate |
4120 | // warning is on, record it in case we need to diagnose it retroactively. |
4121 | diag::kind diagKind; |
4122 | if (pointerKind == SimplePointerKind::Array) |
4123 | diagKind = diag::warn_nullability_missing_array; |
4124 | else |
4125 | diagKind = diag::warn_nullability_missing; |
4126 | |
4127 | if (fileNullability.PointerLoc.isInvalid() && |
4128 | !S.Context.getDiagnostics().isIgnored(DiagID: diagKind, Loc: pointerLoc)) { |
4129 | fileNullability.PointerLoc = pointerLoc; |
4130 | fileNullability.PointerEndLoc = pointerEndLoc; |
4131 | fileNullability.PointerKind = static_cast<unsigned>(pointerKind); |
4132 | } |
4133 | |
4134 | return; |
4135 | } |
4136 | |
4137 | // Complain about missing nullability. |
4138 | emitNullabilityConsistencyWarning(S, PointerKind: pointerKind, PointerLoc: pointerLoc, PointerEndLoc: pointerEndLoc); |
4139 | } |
4140 | |
4141 | /// Marks that a nullability feature has been used in the file containing |
4142 | /// \p loc. |
4143 | /// |
4144 | /// If this file already had pointer types in it that were missing nullability, |
4145 | /// the first such instance is retroactively diagnosed. |
4146 | /// |
4147 | /// \sa checkNullabilityConsistency |
4148 | static void recordNullabilitySeen(Sema &S, SourceLocation loc) { |
4149 | FileID file = getNullabilityCompletenessCheckFileID(S, loc); |
4150 | if (file.isInvalid()) |
4151 | return; |
4152 | |
4153 | FileNullability &fileNullability = S.NullabilityMap[file]; |
4154 | if (fileNullability.SawTypeNullability) |
4155 | return; |
4156 | fileNullability.SawTypeNullability = true; |
4157 | |
4158 | // If we haven't seen any type nullability before, now we have. Retroactively |
4159 | // diagnose the first unannotated pointer, if there was one. |
4160 | if (fileNullability.PointerLoc.isInvalid()) |
4161 | return; |
4162 | |
4163 | auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind); |
4164 | emitNullabilityConsistencyWarning(S, PointerKind: kind, PointerLoc: fileNullability.PointerLoc, |
4165 | PointerEndLoc: fileNullability.PointerEndLoc); |
4166 | } |
4167 | |
4168 | /// Returns true if any of the declarator chunks before \p endIndex include a |
4169 | /// level of indirection: array, pointer, reference, or pointer-to-member. |
4170 | /// |
4171 | /// Because declarator chunks are stored in outer-to-inner order, testing |
4172 | /// every chunk before \p endIndex is testing all chunks that embed the current |
4173 | /// chunk as part of their type. |
4174 | /// |
4175 | /// It is legal to pass the result of Declarator::getNumTypeObjects() as the |
4176 | /// end index, in which case all chunks are tested. |
4177 | static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) { |
4178 | unsigned i = endIndex; |
4179 | while (i != 0) { |
4180 | // Walk outwards along the declarator chunks. |
4181 | --i; |
4182 | const DeclaratorChunk &DC = D.getTypeObject(i); |
4183 | switch (DC.Kind) { |
4184 | case DeclaratorChunk::Paren: |
4185 | break; |
4186 | case DeclaratorChunk::Array: |
4187 | case DeclaratorChunk::Pointer: |
4188 | case DeclaratorChunk::Reference: |
4189 | case DeclaratorChunk::MemberPointer: |
4190 | return true; |
4191 | case DeclaratorChunk::Function: |
4192 | case DeclaratorChunk::BlockPointer: |
4193 | case DeclaratorChunk::Pipe: |
4194 | // These are invalid anyway, so just ignore. |
4195 | break; |
4196 | } |
4197 | } |
4198 | return false; |
4199 | } |
4200 | |
4201 | static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) { |
4202 | return (Chunk.Kind == DeclaratorChunk::Pointer || |
4203 | Chunk.Kind == DeclaratorChunk::Array); |
4204 | } |
4205 | |
4206 | template<typename AttrT> |
4207 | static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) { |
4208 | AL.setUsedAsTypeAttr(); |
4209 | return ::new (Ctx) AttrT(Ctx, AL); |
4210 | } |
4211 | |
4212 | static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr, |
4213 | NullabilityKind NK) { |
4214 | switch (NK) { |
4215 | case NullabilityKind::NonNull: |
4216 | return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr); |
4217 | |
4218 | case NullabilityKind::Nullable: |
4219 | return createSimpleAttr<TypeNullableAttr>(Ctx, Attr); |
4220 | |
4221 | case NullabilityKind::NullableResult: |
4222 | return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr); |
4223 | |
4224 | case NullabilityKind::Unspecified: |
4225 | return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr); |
4226 | } |
4227 | llvm_unreachable("unknown NullabilityKind"); |
4228 | } |
4229 | |
4230 | // Diagnose whether this is a case with the multiple addr spaces. |
4231 | // Returns true if this is an invalid case. |
4232 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified |
4233 | // by qualifiers for two or more different address spaces." |
4234 | static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld, |
4235 | LangAS ASNew, |
4236 | SourceLocation AttrLoc) { |
4237 | if (ASOld != LangAS::Default) { |
4238 | if (ASOld != ASNew) { |
4239 | S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); |
4240 | return true; |
4241 | } |
4242 | // Emit a warning if they are identical; it's likely unintended. |
4243 | S.Diag(AttrLoc, |
4244 | diag::warn_attribute_address_multiple_identical_qualifiers); |
4245 | } |
4246 | return false; |
4247 | } |
4248 | |
4249 | // Whether this is a type broadly expected to have nullability attached. |
4250 | // These types are affected by `#pragma assume_nonnull`, and missing nullability |
4251 | // will be diagnosed with -Wnullability-completeness. |
4252 | static bool shouldHaveNullability(QualType T) { |
4253 | return T->canHaveNullability(/*ResultIfUnknown=*/false) && |
4254 | // For now, do not infer/require nullability on C++ smart pointers. |
4255 | // It's unclear whether the pragma's behavior is useful for C++. |
4256 | // e.g. treating type-aliases and template-type-parameters differently |
4257 | // from types of declarations can be surprising. |
4258 | !isa<RecordType, TemplateSpecializationType>( |
4259 | Val: T->getCanonicalTypeInternal()); |
4260 | } |
4261 | |
4262 | static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state, |
4263 | QualType declSpecType, |
4264 | TypeSourceInfo *TInfo) { |
4265 | // The TypeSourceInfo that this function returns will not be a null type. |
4266 | // If there is an error, this function will fill in a dummy type as fallback. |
4267 | QualType T = declSpecType; |
4268 | Declarator &D = state.getDeclarator(); |
4269 | Sema &S = state.getSema(); |
4270 | ASTContext &Context = S.Context; |
4271 | const LangOptions &LangOpts = S.getLangOpts(); |
4272 | |
4273 | // The name we're declaring, if any. |
4274 | DeclarationName Name; |
4275 | if (D.getIdentifier()) |
4276 | Name = D.getIdentifier(); |
4277 | |
4278 | // Does this declaration declare a typedef-name? |
4279 | bool IsTypedefName = |
4280 | D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef || |
4281 | D.getContext() == DeclaratorContext::AliasDecl || |
4282 | D.getContext() == DeclaratorContext::AliasTemplate; |
4283 | |
4284 | // Does T refer to a function type with a cv-qualifier or a ref-qualifier? |
4285 | bool IsQualifiedFunction = T->isFunctionProtoType() && |
4286 | (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() || |
4287 | T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None); |
4288 | |
4289 | // If T is 'decltype(auto)', the only declarators we can have are parens |
4290 | // and at most one function declarator if this is a function declaration. |
4291 | // If T is a deduced class template specialization type, only parentheses |
4292 | // are allowed. |
4293 | if (auto *DT = T->getAs<DeducedType>()) { |
4294 | const AutoType *AT = T->getAs<AutoType>(); |
4295 | bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(Val: DT); |
4296 | if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) { |
4297 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { |
4298 | unsigned Index = E - I - 1; |
4299 | DeclaratorChunk &DeclChunk = D.getTypeObject(i: Index); |
4300 | unsigned DiagId = IsClassTemplateDeduction |
4301 | ? diag::err_deduced_class_template_compound_type |
4302 | : diag::err_decltype_auto_compound_type; |
4303 | unsigned DiagKind = 0; |
4304 | switch (DeclChunk.Kind) { |
4305 | case DeclaratorChunk::Paren: |
4306 | continue; |
4307 | case DeclaratorChunk::Function: { |
4308 | if (IsClassTemplateDeduction) { |
4309 | DiagKind = 3; |
4310 | break; |
4311 | } |
4312 | unsigned FnIndex; |
4313 | if (D.isFunctionDeclarationContext() && |
4314 | D.isFunctionDeclarator(idx&: FnIndex) && FnIndex == Index) |
4315 | continue; |
4316 | DiagId = diag::err_decltype_auto_function_declarator_not_declaration; |
4317 | break; |
4318 | } |
4319 | case DeclaratorChunk::Pointer: |
4320 | case DeclaratorChunk::BlockPointer: |
4321 | case DeclaratorChunk::MemberPointer: |
4322 | DiagKind = 0; |
4323 | break; |
4324 | case DeclaratorChunk::Reference: |
4325 | DiagKind = 1; |
4326 | break; |
4327 | case DeclaratorChunk::Array: |
4328 | DiagKind = 2; |
4329 | break; |
4330 | case DeclaratorChunk::Pipe: |
4331 | break; |
4332 | } |
4333 | |
4334 | S.Diag(DeclChunk.Loc, DiagId) << DiagKind; |
4335 | D.setInvalidType(true); |
4336 | break; |
4337 | } |
4338 | } |
4339 | } |
4340 | |
4341 | // Determine whether we should infer _Nonnull on pointer types. |
4342 | std::optional<NullabilityKind> inferNullability; |
4343 | bool inferNullabilityCS = false; |
4344 | bool inferNullabilityInnerOnly = false; |
4345 | bool inferNullabilityInnerOnlyComplete = false; |
4346 | |
4347 | // Are we in an assume-nonnull region? |
4348 | bool inAssumeNonNullRegion = false; |
4349 | SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc(); |
4350 | if (assumeNonNullLoc.isValid()) { |
4351 | inAssumeNonNullRegion = true; |
4352 | recordNullabilitySeen(S, loc: assumeNonNullLoc); |
4353 | } |
4354 | |
4355 | // Whether to complain about missing nullability specifiers or not. |
4356 | enum { |
4357 | /// Never complain. |
4358 | CAMN_No, |
4359 | /// Complain on the inner pointers (but not the outermost |
4360 | /// pointer). |
4361 | CAMN_InnerPointers, |
4362 | /// Complain about any pointers that don't have nullability |
4363 | /// specified or inferred. |
4364 | CAMN_Yes |
4365 | } complainAboutMissingNullability = CAMN_No; |
4366 | unsigned NumPointersRemaining = 0; |
4367 | auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None; |
4368 | |
4369 | if (IsTypedefName) { |
4370 | // For typedefs, we do not infer any nullability (the default), |
4371 | // and we only complain about missing nullability specifiers on |
4372 | // inner pointers. |
4373 | complainAboutMissingNullability = CAMN_InnerPointers; |
4374 | |
4375 | if (shouldHaveNullability(T) && !T->getNullability()) { |
4376 | // Note that we allow but don't require nullability on dependent types. |
4377 | ++NumPointersRemaining; |
4378 | } |
4379 | |
4380 | for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) { |
4381 | DeclaratorChunk &chunk = D.getTypeObject(i); |
4382 | switch (chunk.Kind) { |
4383 | case DeclaratorChunk::Array: |
4384 | case DeclaratorChunk::Function: |
4385 | case DeclaratorChunk::Pipe: |
4386 | break; |
4387 | |
4388 | case DeclaratorChunk::BlockPointer: |
4389 | case DeclaratorChunk::MemberPointer: |
4390 | ++NumPointersRemaining; |
4391 | break; |
4392 | |
4393 | case DeclaratorChunk::Paren: |
4394 | case DeclaratorChunk::Reference: |
4395 | continue; |
4396 | |
4397 | case DeclaratorChunk::Pointer: |
4398 | ++NumPointersRemaining; |
4399 | continue; |
4400 | } |
4401 | } |
4402 | } else { |
4403 | bool isFunctionOrMethod = false; |
4404 | switch (auto context = state.getDeclarator().getContext()) { |
4405 | case DeclaratorContext::ObjCParameter: |
4406 | case DeclaratorContext::ObjCResult: |
4407 | case DeclaratorContext::Prototype: |
4408 | case DeclaratorContext::TrailingReturn: |
4409 | case DeclaratorContext::TrailingReturnVar: |
4410 | isFunctionOrMethod = true; |
4411 | [[fallthrough]]; |
4412 | |
4413 | case DeclaratorContext::Member: |
4414 | if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) { |
4415 | complainAboutMissingNullability = CAMN_No; |
4416 | break; |
4417 | } |
4418 | |
4419 | // Weak properties are inferred to be nullable. |
4420 | if (state.getDeclarator().isObjCWeakProperty()) { |
4421 | // Weak properties cannot be nonnull, and should not complain about |
4422 | // missing nullable attributes during completeness checks. |
4423 | complainAboutMissingNullability = CAMN_No; |
4424 | if (inAssumeNonNullRegion) { |
4425 | inferNullability = NullabilityKind::Nullable; |
4426 | } |
4427 | break; |
4428 | } |
4429 | |
4430 | [[fallthrough]]; |
4431 | |
4432 | case DeclaratorContext::File: |
4433 | case DeclaratorContext::KNRTypeList: { |
4434 | complainAboutMissingNullability = CAMN_Yes; |
4435 | |
4436 | // Nullability inference depends on the type and declarator. |
4437 | auto wrappingKind = PointerWrappingDeclaratorKind::None; |
4438 | switch (classifyPointerDeclarator(S, type: T, declarator&: D, wrappingKind)) { |
4439 | case PointerDeclaratorKind::NonPointer: |
4440 | case PointerDeclaratorKind::MultiLevelPointer: |
4441 | // Cannot infer nullability. |
4442 | break; |
4443 | |
4444 | case PointerDeclaratorKind::SingleLevelPointer: |
4445 | // Infer _Nonnull if we are in an assumes-nonnull region. |
4446 | if (inAssumeNonNullRegion) { |
4447 | complainAboutInferringWithinChunk = wrappingKind; |
4448 | inferNullability = NullabilityKind::NonNull; |
4449 | inferNullabilityCS = (context == DeclaratorContext::ObjCParameter || |
4450 | context == DeclaratorContext::ObjCResult); |
4451 | } |
4452 | break; |
4453 | |
4454 | case PointerDeclaratorKind::CFErrorRefPointer: |
4455 | case PointerDeclaratorKind::NSErrorPointerPointer: |
4456 | // Within a function or method signature, infer _Nullable at both |
4457 | // levels. |
4458 | if (isFunctionOrMethod && inAssumeNonNullRegion) |
4459 | inferNullability = NullabilityKind::Nullable; |
4460 | break; |
4461 | |
4462 | case PointerDeclaratorKind::MaybePointerToCFRef: |
4463 | if (isFunctionOrMethod) { |
4464 | // On pointer-to-pointer parameters marked cf_returns_retained or |
4465 | // cf_returns_not_retained, if the outer pointer is explicit then |
4466 | // infer the inner pointer as _Nullable. |
4467 | auto hasCFReturnsAttr = |
4468 | [](const ParsedAttributesView &AttrList) -> bool { |
4469 | return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) || |
4470 | AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained); |
4471 | }; |
4472 | if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) { |
4473 | if (hasCFReturnsAttr(D.getDeclarationAttributes()) || |
4474 | hasCFReturnsAttr(D.getAttributes()) || |
4475 | hasCFReturnsAttr(InnermostChunk->getAttrs()) || |
4476 | hasCFReturnsAttr(D.getDeclSpec().getAttributes())) { |
4477 | inferNullability = NullabilityKind::Nullable; |
4478 | inferNullabilityInnerOnly = true; |
4479 | } |
4480 | } |
4481 | } |
4482 | break; |
4483 | } |
4484 | break; |
4485 | } |
4486 | |
4487 | case DeclaratorContext::ConversionId: |
4488 | complainAboutMissingNullability = CAMN_Yes; |
4489 | break; |
4490 | |
4491 | case DeclaratorContext::AliasDecl: |
4492 | case DeclaratorContext::AliasTemplate: |
4493 | case DeclaratorContext::Block: |
4494 | case DeclaratorContext::BlockLiteral: |
4495 | case DeclaratorContext::Condition: |
4496 | case DeclaratorContext::CXXCatch: |
4497 | case DeclaratorContext::CXXNew: |
4498 | case DeclaratorContext::ForInit: |
4499 | case DeclaratorContext::SelectionInit: |
4500 | case DeclaratorContext::LambdaExpr: |
4501 | case DeclaratorContext::LambdaExprParameter: |
4502 | case DeclaratorContext::ObjCCatch: |
4503 | case DeclaratorContext::TemplateParam: |
4504 | case DeclaratorContext::TemplateArg: |
4505 | case DeclaratorContext::TemplateTypeArg: |
4506 | case DeclaratorContext::TypeName: |
4507 | case DeclaratorContext::FunctionalCast: |
4508 | case DeclaratorContext::RequiresExpr: |
4509 | case DeclaratorContext::Association: |
4510 | // Don't infer in these contexts. |
4511 | break; |
4512 | } |
4513 | } |
4514 | |
4515 | // Local function that returns true if its argument looks like a va_list. |
4516 | auto isVaList = [&S](QualType T) -> bool { |
4517 | auto *typedefTy = T->getAs<TypedefType>(); |
4518 | if (!typedefTy) |
4519 | return false; |
4520 | TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl(); |
4521 | do { |
4522 | if (typedefTy->getDecl() == vaListTypedef) |
4523 | return true; |
4524 | if (auto *name = typedefTy->getDecl()->getIdentifier()) |
4525 | if (name->isStr("va_list")) |
4526 | return true; |
4527 | typedefTy = typedefTy->desugar()->getAs<TypedefType>(); |
4528 | } while (typedefTy); |
4529 | return false; |
4530 | }; |
4531 | |
4532 | // Local function that checks the nullability for a given pointer declarator. |
4533 | // Returns true if _Nonnull was inferred. |
4534 | auto inferPointerNullability = |
4535 | [&](SimplePointerKind pointerKind, SourceLocation pointerLoc, |
4536 | SourceLocation pointerEndLoc, |
4537 | ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * { |
4538 | // We've seen a pointer. |
4539 | if (NumPointersRemaining > 0) |
4540 | --NumPointersRemaining; |
4541 | |
4542 | // If a nullability attribute is present, there's nothing to do. |
4543 | if (hasNullabilityAttr(attrs)) |
4544 | return nullptr; |
4545 | |
4546 | // If we're supposed to infer nullability, do so now. |
4547 | if (inferNullability && !inferNullabilityInnerOnlyComplete) { |
4548 | ParsedAttr::Form form = |
4549 | inferNullabilityCS |
4550 | ? ParsedAttr::Form::ContextSensitiveKeyword() |
4551 | : ParsedAttr::Form::Keyword(IsAlignas: false /*IsAlignAs*/, |
4552 | IsRegularKeywordAttribute: false /*IsRegularKeywordAttribute*/); |
4553 | ParsedAttr *nullabilityAttr = Pool.create( |
4554 | attrName: S.getNullabilityKeyword(nullability: *inferNullability), attrRange: SourceRange(pointerLoc), |
4555 | scopeName: nullptr, scopeLoc: SourceLocation(), args: nullptr, numArgs: 0, form); |
4556 | |
4557 | attrs.addAtEnd(newAttr: nullabilityAttr); |
4558 | |
4559 | if (inferNullabilityCS) { |
4560 | state.getDeclarator().getMutableDeclSpec().getObjCQualifiers() |
4561 | ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability); |
4562 | } |
4563 | |
4564 | if (pointerLoc.isValid() && |
4565 | complainAboutInferringWithinChunk != |
4566 | PointerWrappingDeclaratorKind::None) { |
4567 | auto Diag = |
4568 | S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type); |
4569 | Diag << static_cast<int>(complainAboutInferringWithinChunk); |
4570 | fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull); |
4571 | } |
4572 | |
4573 | if (inferNullabilityInnerOnly) |
4574 | inferNullabilityInnerOnlyComplete = true; |
4575 | return nullabilityAttr; |
4576 | } |
4577 | |
4578 | // If we're supposed to complain about missing nullability, do so |
4579 | // now if it's truly missing. |
4580 | switch (complainAboutMissingNullability) { |
4581 | case CAMN_No: |
4582 | break; |
4583 | |
4584 | case CAMN_InnerPointers: |
4585 | if (NumPointersRemaining == 0) |
4586 | break; |
4587 | [[fallthrough]]; |
4588 | |
4589 | case CAMN_Yes: |
4590 | checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc); |
4591 | } |
4592 | return nullptr; |
4593 | }; |
4594 | |
4595 | // If the type itself could have nullability but does not, infer pointer |
4596 | // nullability and perform consistency checking. |
4597 | if (S.CodeSynthesisContexts.empty()) { |
4598 | if (shouldHaveNullability(T) && !T->getNullability()) { |
4599 | if (isVaList(T)) { |
4600 | // Record that we've seen a pointer, but do nothing else. |
4601 | if (NumPointersRemaining > 0) |
4602 | --NumPointersRemaining; |
4603 | } else { |
4604 | SimplePointerKind pointerKind = SimplePointerKind::Pointer; |
4605 | if (T->isBlockPointerType()) |
4606 | pointerKind = SimplePointerKind::BlockPointer; |
4607 | else if (T->isMemberPointerType()) |
4608 | pointerKind = SimplePointerKind::MemberPointer; |
4609 | |
4610 | if (auto *attr = inferPointerNullability( |
4611 | pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(), |
4612 | D.getDeclSpec().getEndLoc(), |
4613 | D.getMutableDeclSpec().getAttributes(), |
4614 | D.getMutableDeclSpec().getAttributePool())) { |
4615 | T = state.getAttributedType( |
4616 | A: createNullabilityAttr(Ctx&: Context, Attr&: *attr, NK: *inferNullability), ModifiedType: T, EquivType: T); |
4617 | } |
4618 | } |
4619 | } |
4620 | |
4621 | if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() && |
4622 | !T->getNullability() && !isVaList(T) && D.isPrototypeContext() && |
4623 | !hasOuterPointerLikeChunk(D, endIndex: D.getNumTypeObjects())) { |
4624 | checkNullabilityConsistency(S, pointerKind: SimplePointerKind::Array, |
4625 | pointerLoc: D.getDeclSpec().getTypeSpecTypeLoc()); |
4626 | } |
4627 | } |
4628 | |
4629 | bool ExpectNoDerefChunk = |
4630 | state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref); |
4631 | |
4632 | // Walk the DeclTypeInfo, building the recursive type as we go. |
4633 | // DeclTypeInfos are ordered from the identifier out, which is |
4634 | // opposite of what we want :). |
4635 | |
4636 | // Track if the produced type matches the structure of the declarator. |
4637 | // This is used later to decide if we can fill `TypeLoc` from |
4638 | // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from |
4639 | // an error by replacing the type with `int`. |
4640 | bool AreDeclaratorChunksValid = true; |
4641 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
4642 | unsigned chunkIndex = e - i - 1; |
4643 | state.setCurrentChunkIndex(chunkIndex); |
4644 | DeclaratorChunk &DeclType = D.getTypeObject(i: chunkIndex); |
4645 | IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren; |
4646 | switch (DeclType.Kind) { |
4647 | case DeclaratorChunk::Paren: |
4648 | if (i == 0) |
4649 | warnAboutRedundantParens(S, D, T); |
4650 | T = S.BuildParenType(T); |
4651 | break; |
4652 | case DeclaratorChunk::BlockPointer: |
4653 | // If blocks are disabled, emit an error. |
4654 | if (!LangOpts.Blocks) |
4655 | S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL; |
4656 | |
4657 | // Handle pointer nullability. |
4658 | inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc, |
4659 | DeclType.EndLoc, DeclType.getAttrs(), |
4660 | state.getDeclarator().getAttributePool()); |
4661 | |
4662 | T = S.BuildBlockPointerType(T, Loc: D.getIdentifierLoc(), Entity: Name); |
4663 | if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) { |
4664 | // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly |
4665 | // qualified with const. |
4666 | if (LangOpts.OpenCL) |
4667 | DeclType.Cls.TypeQuals |= DeclSpec::TQ_const; |
4668 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Cls.TypeQuals); |
4669 | } |
4670 | break; |
4671 | case DeclaratorChunk::Pointer: |
4672 | // Verify that we're not building a pointer to pointer to function with |
4673 | // exception specification. |
4674 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { |
4675 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); |
4676 | D.setInvalidType(true); |
4677 | // Build the type anyway. |
4678 | } |
4679 | |
4680 | // Handle pointer nullability |
4681 | inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc, |
4682 | DeclType.EndLoc, DeclType.getAttrs(), |
4683 | state.getDeclarator().getAttributePool()); |
4684 | |
4685 | if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) { |
4686 | T = Context.getObjCObjectPointerType(OIT: T); |
4687 | if (DeclType.Ptr.TypeQuals) |
4688 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Ptr.TypeQuals); |
4689 | break; |
4690 | } |
4691 | |
4692 | // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used. |
4693 | // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used. |
4694 | // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed. |
4695 | if (LangOpts.OpenCL) { |
4696 | if (T->isImageType() || T->isSamplerT() || T->isPipeType() || |
4697 | T->isBlockPointerType()) { |
4698 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T; |
4699 | D.setInvalidType(true); |
4700 | } |
4701 | } |
4702 | |
4703 | T = S.BuildPointerType(T, Loc: DeclType.Loc, Entity: Name); |
4704 | if (DeclType.Ptr.TypeQuals) |
4705 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Ptr.TypeQuals); |
4706 | break; |
4707 | case DeclaratorChunk::Reference: { |
4708 | // Verify that we're not building a reference to pointer to function with |
4709 | // exception specification. |
4710 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { |
4711 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); |
4712 | D.setInvalidType(true); |
4713 | // Build the type anyway. |
4714 | } |
4715 | T = S.BuildReferenceType(T, SpelledAsLValue: DeclType.Ref.LValueRef, Loc: DeclType.Loc, Entity: Name); |
4716 | |
4717 | if (DeclType.Ref.HasRestrict) |
4718 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: Qualifiers::Restrict); |
4719 | break; |
4720 | } |
4721 | case DeclaratorChunk::Array: { |
4722 | // Verify that we're not building an array of pointers to function with |
4723 | // exception specification. |
4724 | if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) { |
4725 | S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec); |
4726 | D.setInvalidType(true); |
4727 | // Build the type anyway. |
4728 | } |
4729 | DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr; |
4730 | Expr *ArraySize = static_cast<Expr*>(ATI.NumElts); |
4731 | ArraySizeModifier ASM; |
4732 | |
4733 | // Microsoft property fields can have multiple sizeless array chunks |
4734 | // (i.e. int x[][][]). Skip all of these except one to avoid creating |
4735 | // bad incomplete array types. |
4736 | if (chunkIndex != 0 && !ArraySize && |
4737 | D.getDeclSpec().getAttributes().hasMSPropertyAttr()) { |
4738 | // This is a sizeless chunk. If the next is also, skip this one. |
4739 | DeclaratorChunk &NextDeclType = D.getTypeObject(i: chunkIndex - 1); |
4740 | if (NextDeclType.Kind == DeclaratorChunk::Array && |
4741 | !NextDeclType.Arr.NumElts) |
4742 | break; |
4743 | } |
4744 | |
4745 | if (ATI.isStar) |
4746 | ASM = ArraySizeModifier::Star; |
4747 | else if (ATI.hasStatic) |
4748 | ASM = ArraySizeModifier::Static; |
4749 | else |
4750 | ASM = ArraySizeModifier::Normal; |
4751 | if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) { |
4752 | // FIXME: This check isn't quite right: it allows star in prototypes |
4753 | // for function definitions, and disallows some edge cases detailed |
4754 | // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html |
4755 | S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype); |
4756 | ASM = ArraySizeModifier::Normal; |
4757 | D.setInvalidType(true); |
4758 | } |
4759 | |
4760 | // C99 6.7.5.2p1: The optional type qualifiers and the keyword static |
4761 | // shall appear only in a declaration of a function parameter with an |
4762 | // array type, ... |
4763 | if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) { |
4764 | if (!(D.isPrototypeContext() || |
4765 | D.getContext() == DeclaratorContext::KNRTypeList)) { |
4766 | S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) |
4767 | << (ASM == ArraySizeModifier::Static ? "'static'" |
4768 | : "type qualifier"); |
4769 | // Remove the 'static' and the type qualifiers. |
4770 | if (ASM == ArraySizeModifier::Static) |
4771 | ASM = ArraySizeModifier::Normal; |
4772 | ATI.TypeQuals = 0; |
4773 | D.setInvalidType(true); |
4774 | } |
4775 | |
4776 | // C99 6.7.5.2p1: ... and then only in the outermost array type |
4777 | // derivation. |
4778 | if (hasOuterPointerLikeChunk(D, endIndex: chunkIndex)) { |
4779 | S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) |
4780 | << (ASM == ArraySizeModifier::Static ? "'static'" |
4781 | : "type qualifier"); |
4782 | if (ASM == ArraySizeModifier::Static) |
4783 | ASM = ArraySizeModifier::Normal; |
4784 | ATI.TypeQuals = 0; |
4785 | D.setInvalidType(true); |
4786 | } |
4787 | } |
4788 | |
4789 | // Array parameters can be marked nullable as well, although it's not |
4790 | // necessary if they're marked 'static'. |
4791 | if (complainAboutMissingNullability == CAMN_Yes && |
4792 | !hasNullabilityAttr(attrs: DeclType.getAttrs()) && |
4793 | ASM != ArraySizeModifier::Static && D.isPrototypeContext() && |
4794 | !hasOuterPointerLikeChunk(D, endIndex: chunkIndex)) { |
4795 | checkNullabilityConsistency(S, pointerKind: SimplePointerKind::Array, pointerLoc: DeclType.Loc); |
4796 | } |
4797 | |
4798 | T = S.BuildArrayType(T, ASM, ArraySize, Quals: ATI.TypeQuals, |
4799 | Brackets: SourceRange(DeclType.Loc, DeclType.EndLoc), Entity: Name); |
4800 | break; |
4801 | } |
4802 | case DeclaratorChunk::Function: { |
4803 | // If the function declarator has a prototype (i.e. it is not () and |
4804 | // does not have a K&R-style identifier list), then the arguments are part |
4805 | // of the type, otherwise the argument list is (). |
4806 | DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; |
4807 | IsQualifiedFunction = |
4808 | FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier(); |
4809 | |
4810 | // Check for auto functions and trailing return type and adjust the |
4811 | // return type accordingly. |
4812 | if (!D.isInvalidType()) { |
4813 | auto IsClassType = [&](CXXScopeSpec &SS) { |
4814 | // If there already was an problem with the scope, don’t issue another |
4815 | // error about the explicit object parameter. |
4816 | return SS.isInvalid() || |
4817 | isa_and_present<CXXRecordDecl>(Val: S.computeDeclContext(SS)); |
4818 | }; |
4819 | |
4820 | // C++23 [dcl.fct]p6: |
4821 | // |
4822 | // An explicit-object-parameter-declaration is a parameter-declaration |
4823 | // with a this specifier. An explicit-object-parameter-declaration shall |
4824 | // appear only as the first parameter-declaration of a |
4825 | // parameter-declaration-list of one of: |
4826 | // |
4827 | // - a declaration of a member function or member function template |
4828 | // ([class.mem]), or |
4829 | // |
4830 | // - an explicit instantiation ([temp.explicit]) or explicit |
4831 | // specialization ([temp.expl.spec]) of a templated member function, |
4832 | // or |
4833 | // |
4834 | // - a lambda-declarator [expr.prim.lambda]. |
4835 | DeclaratorContext C = D.getContext(); |
4836 | ParmVarDecl *First = |
4837 | FTI.NumParams |
4838 | ? dyn_cast_if_present<ParmVarDecl>(Val: FTI.Params[0].Param) |
4839 | : nullptr; |
4840 | |
4841 | bool IsFunctionDecl = D.getInnermostNonParenChunk() == &DeclType; |
4842 | if (First && First->isExplicitObjectParameter() && |
4843 | C != DeclaratorContext::LambdaExpr && |
4844 | |
4845 | // Either not a member or nested declarator in a member. |
4846 | // |
4847 | // Note that e.g. 'static' or 'friend' declarations are accepted |
4848 | // here; we diagnose them later when we build the member function |
4849 | // because it's easier that way. |
4850 | (C != DeclaratorContext::Member || !IsFunctionDecl) && |
4851 | |
4852 | // Allow out-of-line definitions of member functions. |
4853 | !IsClassType(D.getCXXScopeSpec())) { |
4854 | if (IsFunctionDecl) |
4855 | S.Diag(First->getBeginLoc(), |
4856 | diag::err_explicit_object_parameter_nonmember) |
4857 | << /*non-member*/ 2 << /*function*/ 0 |
4858 | << First->getSourceRange(); |
4859 | else |
4860 | S.Diag(First->getBeginLoc(), |
4861 | diag::err_explicit_object_parameter_invalid) |
4862 | << First->getSourceRange(); |
4863 | |
4864 | D.setInvalidType(); |
4865 | AreDeclaratorChunksValid = false; |
4866 | } |
4867 | |
4868 | // trailing-return-type is only required if we're declaring a function, |
4869 | // and not, for instance, a pointer to a function. |
4870 | if (D.getDeclSpec().hasAutoTypeSpec() && |
4871 | !FTI.hasTrailingReturnType() && chunkIndex == 0) { |
4872 | if (!S.getLangOpts().CPlusPlus14) { |
4873 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), |
4874 | D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto |
4875 | ? diag::err_auto_missing_trailing_return |
4876 | : diag::err_deduced_return_type); |
4877 | T = Context.IntTy; |
4878 | D.setInvalidType(true); |
4879 | AreDeclaratorChunksValid = false; |
4880 | } else { |
4881 | S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(), |
4882 | diag::warn_cxx11_compat_deduced_return_type); |
4883 | } |
4884 | } else if (FTI.hasTrailingReturnType()) { |
4885 | // T must be exactly 'auto' at this point. See CWG issue 681. |
4886 | if (isa<ParenType>(Val: T)) { |
4887 | S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens) |
4888 | << T << D.getSourceRange(); |
4889 | D.setInvalidType(true); |
4890 | // FIXME: recover and fill decls in `TypeLoc`s. |
4891 | AreDeclaratorChunksValid = false; |
4892 | } else if (D.getName().getKind() == |
4893 | UnqualifiedIdKind::IK_DeductionGuideName) { |
4894 | if (T != Context.DependentTy) { |
4895 | S.Diag(D.getDeclSpec().getBeginLoc(), |
4896 | diag::err_deduction_guide_with_complex_decl) |
4897 | << D.getSourceRange(); |
4898 | D.setInvalidType(true); |
4899 | // FIXME: recover and fill decls in `TypeLoc`s. |
4900 | AreDeclaratorChunksValid = false; |
4901 | } |
4902 | } else if (D.getContext() != DeclaratorContext::LambdaExpr && |
4903 | (T.hasQualifiers() || !isa<AutoType>(Val: T) || |
4904 | cast<AutoType>(Val&: T)->getKeyword() != |
4905 | AutoTypeKeyword::Auto || |
4906 | cast<AutoType>(Val&: T)->isConstrained())) { |
4907 | // Attach a valid source location for diagnostics on functions with |
4908 | // trailing return types missing 'auto'. Attempt to get the location |
4909 | // from the declared type; if invalid, fall back to the trailing |
4910 | // return type's location. |
4911 | SourceLocation Loc = D.getDeclSpec().getTypeSpecTypeLoc(); |
4912 | SourceRange SR = D.getDeclSpec().getSourceRange(); |
4913 | if (Loc.isInvalid()) { |
4914 | Loc = FTI.getTrailingReturnTypeLoc(); |
4915 | SR = D.getSourceRange(); |
4916 | } |
4917 | S.Diag(Loc, diag::err_trailing_return_without_auto) << T << SR; |
4918 | D.setInvalidType(true); |
4919 | // FIXME: recover and fill decls in `TypeLoc`s. |
4920 | AreDeclaratorChunksValid = false; |
4921 | } |
4922 | T = S.GetTypeFromParser(Ty: FTI.getTrailingReturnType(), TInfo: &TInfo); |
4923 | if (T.isNull()) { |
4924 | // An error occurred parsing the trailing return type. |
4925 | T = Context.IntTy; |
4926 | D.setInvalidType(true); |
4927 | } else if (AutoType *Auto = T->getContainedAutoType()) { |
4928 | // If the trailing return type contains an `auto`, we may need to |
4929 | // invent a template parameter for it, for cases like |
4930 | // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`. |
4931 | InventedTemplateParameterInfo *InventedParamInfo = nullptr; |
4932 | if (D.getContext() == DeclaratorContext::Prototype) |
4933 | InventedParamInfo = &S.InventedParameterInfos.back(); |
4934 | else if (D.getContext() == DeclaratorContext::LambdaExprParameter) |
4935 | InventedParamInfo = S.getCurLambda(); |
4936 | if (InventedParamInfo) { |
4937 | std::tie(args&: T, args&: TInfo) = InventTemplateParameter( |
4938 | state, T, TrailingTSI: TInfo, Auto, Info&: *InventedParamInfo); |
4939 | } |
4940 | } |
4941 | } else { |
4942 | // This function type is not the type of the entity being declared, |
4943 | // so checking the 'auto' is not the responsibility of this chunk. |
4944 | } |
4945 | } |
4946 | |
4947 | // C99 6.7.5.3p1: The return type may not be a function or array type. |
4948 | // For conversion functions, we'll diagnose this particular error later. |
4949 | if (!D.isInvalidType() && |
4950 | ((T->isArrayType() && !S.getLangOpts().allowArrayReturnTypes()) || |
4951 | T->isFunctionType()) && |
4952 | (D.getName().getKind() != |
4953 | UnqualifiedIdKind::IK_ConversionFunctionId)) { |
4954 | unsigned diagID = diag::err_func_returning_array_function; |
4955 | // Last processing chunk in block context means this function chunk |
4956 | // represents the block. |
4957 | if (chunkIndex == 0 && |
4958 | D.getContext() == DeclaratorContext::BlockLiteral) |
4959 | diagID = diag::err_block_returning_array_function; |
4960 | S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T; |
4961 | T = Context.IntTy; |
4962 | D.setInvalidType(true); |
4963 | AreDeclaratorChunksValid = false; |
4964 | } |
4965 | |
4966 | // Do not allow returning half FP value. |
4967 | // FIXME: This really should be in BuildFunctionType. |
4968 | if (T->isHalfType()) { |
4969 | if (S.getLangOpts().OpenCL) { |
4970 | if (!S.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", |
4971 | LO: S.getLangOpts())) { |
4972 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) |
4973 | << T << 0 /*pointer hint*/; |
4974 | D.setInvalidType(true); |
4975 | } |
4976 | } else if (!S.getLangOpts().NativeHalfArgsAndReturns && |
4977 | !S.Context.getTargetInfo().allowHalfArgsAndReturns()) { |
4978 | S.Diag(D.getIdentifierLoc(), |
4979 | diag::err_parameters_retval_cannot_have_fp16_type) << 1; |
4980 | D.setInvalidType(true); |
4981 | } |
4982 | } |
4983 | |
4984 | // __ptrauth is illegal on a function return type. |
4985 | if (T.getPointerAuth()) { |
4986 | S.Diag(DeclType.Loc, diag::err_ptrauth_qualifier_invalid) << T << 0; |
4987 | } |
4988 | |
4989 | if (LangOpts.OpenCL) { |
4990 | // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a |
4991 | // function. |
4992 | if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() || |
4993 | T->isPipeType()) { |
4994 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return) |
4995 | << T << 1 /*hint off*/; |
4996 | D.setInvalidType(true); |
4997 | } |
4998 | // OpenCL doesn't support variadic functions and blocks |
4999 | // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf. |
5000 | // We also allow here any toolchain reserved identifiers. |
5001 | if (FTI.isVariadic && |
5002 | !S.getOpenCLOptions().isAvailableOption( |
5003 | Ext: "__cl_clang_variadic_functions", LO: S.getLangOpts()) && |
5004 | !(D.getIdentifier() && |
5005 | ((D.getIdentifier()->getName() == "printf"&& |
5006 | LangOpts.getOpenCLCompatibleVersion() >= 120) || |
5007 | D.getIdentifier()->getName().starts_with(Prefix: "__")))) { |
5008 | S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function); |
5009 | D.setInvalidType(true); |
5010 | } |
5011 | } |
5012 | |
5013 | // Methods cannot return interface types. All ObjC objects are |
5014 | // passed by reference. |
5015 | if (T->isObjCObjectType()) { |
5016 | SourceLocation DiagLoc, FixitLoc; |
5017 | if (TInfo) { |
5018 | DiagLoc = TInfo->getTypeLoc().getBeginLoc(); |
5019 | FixitLoc = S.getLocForEndOfToken(Loc: TInfo->getTypeLoc().getEndLoc()); |
5020 | } else { |
5021 | DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc(); |
5022 | FixitLoc = S.getLocForEndOfToken(Loc: D.getDeclSpec().getEndLoc()); |
5023 | } |
5024 | S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value) |
5025 | << 0 << T |
5026 | << FixItHint::CreateInsertion(FixitLoc, "*"); |
5027 | |
5028 | T = Context.getObjCObjectPointerType(OIT: T); |
5029 | if (TInfo) { |
5030 | TypeLocBuilder TLB; |
5031 | TLB.pushFullCopy(L: TInfo->getTypeLoc()); |
5032 | ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T); |
5033 | TLoc.setStarLoc(FixitLoc); |
5034 | TInfo = TLB.getTypeSourceInfo(Context, T); |
5035 | } else { |
5036 | AreDeclaratorChunksValid = false; |
5037 | } |
5038 | |
5039 | D.setInvalidType(true); |
5040 | } |
5041 | |
5042 | // cv-qualifiers on return types are pointless except when the type is a |
5043 | // class type in C++. |
5044 | if ((T.getCVRQualifiers() || T->isAtomicType()) && |
5045 | !(S.getLangOpts().CPlusPlus && |
5046 | (T->isDependentType() || T->isRecordType()))) { |
5047 | if (T->isVoidType() && !S.getLangOpts().CPlusPlus && |
5048 | D.getFunctionDefinitionKind() == |
5049 | FunctionDefinitionKind::Definition) { |
5050 | // [6.9.1/3] qualified void return is invalid on a C |
5051 | // function definition. Apparently ok on declarations and |
5052 | // in C++ though (!) |
5053 | S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T; |
5054 | } else |
5055 | diagnoseRedundantReturnTypeQualifiers(S, RetTy: T, D, FunctionChunkIndex: chunkIndex); |
5056 | } |
5057 | |
5058 | // C++2a [dcl.fct]p12: |
5059 | // A volatile-qualified return type is deprecated |
5060 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20) |
5061 | S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T; |
5062 | |
5063 | // Objective-C ARC ownership qualifiers are ignored on the function |
5064 | // return type (by type canonicalization). Complain if this attribute |
5065 | // was written here. |
5066 | if (T.getQualifiers().hasObjCLifetime()) { |
5067 | SourceLocation AttrLoc; |
5068 | if (chunkIndex + 1 < D.getNumTypeObjects()) { |
5069 | DeclaratorChunk ReturnTypeChunk = D.getTypeObject(i: chunkIndex + 1); |
5070 | for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) { |
5071 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { |
5072 | AttrLoc = AL.getLoc(); |
5073 | break; |
5074 | } |
5075 | } |
5076 | } |
5077 | if (AttrLoc.isInvalid()) { |
5078 | for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) { |
5079 | if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) { |
5080 | AttrLoc = AL.getLoc(); |
5081 | break; |
5082 | } |
5083 | } |
5084 | } |
5085 | |
5086 | if (AttrLoc.isValid()) { |
5087 | // The ownership attributes are almost always written via |
5088 | // the predefined |
5089 | // __strong/__weak/__autoreleasing/__unsafe_unretained. |
5090 | if (AttrLoc.isMacroID()) |
5091 | AttrLoc = |
5092 | S.SourceMgr.getImmediateExpansionRange(Loc: AttrLoc).getBegin(); |
5093 | |
5094 | S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type) |
5095 | << T.getQualifiers().getObjCLifetime(); |
5096 | } |
5097 | } |
5098 | |
5099 | if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) { |
5100 | // C++ [dcl.fct]p6: |
5101 | // Types shall not be defined in return or parameter types. |
5102 | TagDecl *Tag = cast<TagDecl>(Val: D.getDeclSpec().getRepAsDecl()); |
5103 | S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type) |
5104 | << Context.getTypeDeclType(Tag); |
5105 | } |
5106 | |
5107 | // Exception specs are not allowed in typedefs. Complain, but add it |
5108 | // anyway. |
5109 | if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17) |
5110 | S.Diag(FTI.getExceptionSpecLocBeg(), |
5111 | diag::err_exception_spec_in_typedef) |
5112 | << (D.getContext() == DeclaratorContext::AliasDecl || |
5113 | D.getContext() == DeclaratorContext::AliasTemplate); |
5114 | |
5115 | // If we see "T var();" or "T var(T());" at block scope, it is probably |
5116 | // an attempt to initialize a variable, not a function declaration. |
5117 | if (FTI.isAmbiguous) |
5118 | warnAboutAmbiguousFunction(S, D, DeclType, RT: T); |
5119 | |
5120 | FunctionType::ExtInfo EI( |
5121 | getCCForDeclaratorChunk(S, D, AttrList: DeclType.getAttrs(), FTI, ChunkIndex: chunkIndex)); |
5122 | |
5123 | // OpenCL disallows functions without a prototype, but it doesn't enforce |
5124 | // strict prototypes as in C23 because it allows a function definition to |
5125 | // have an identifier list. See OpenCL 3.0 6.11/g for more details. |
5126 | if (!FTI.NumParams && !FTI.isVariadic && |
5127 | !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) { |
5128 | // Simple void foo(), where the incoming T is the result type. |
5129 | T = Context.getFunctionNoProtoType(ResultTy: T, Info: EI); |
5130 | } else { |
5131 | // We allow a zero-parameter variadic function in C if the |
5132 | // function is marked with the "overloadable" attribute. Scan |
5133 | // for this attribute now. We also allow it in C23 per WG14 N2975. |
5134 | if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) { |
5135 | if (LangOpts.C23) |
5136 | S.Diag(FTI.getEllipsisLoc(), |
5137 | diag::warn_c17_compat_ellipsis_only_parameter); |
5138 | else if (!D.getDeclarationAttributes().hasAttribute( |
5139 | ParsedAttr::AT_Overloadable) && |
5140 | !D.getAttributes().hasAttribute( |
5141 | ParsedAttr::AT_Overloadable) && |
5142 | !D.getDeclSpec().getAttributes().hasAttribute( |
5143 | ParsedAttr::AT_Overloadable)) |
5144 | S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param); |
5145 | } |
5146 | |
5147 | if (FTI.NumParams && FTI.Params[0].Param == nullptr) { |
5148 | // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function |
5149 | // definition. |
5150 | S.Diag(FTI.Params[0].IdentLoc, |
5151 | diag::err_ident_list_in_fn_declaration); |
5152 | D.setInvalidType(true); |
5153 | // Recover by creating a K&R-style function type, if possible. |
5154 | T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) |
5155 | ? Context.getFunctionNoProtoType(ResultTy: T, Info: EI) |
5156 | : Context.IntTy; |
5157 | AreDeclaratorChunksValid = false; |
5158 | break; |
5159 | } |
5160 | |
5161 | FunctionProtoType::ExtProtoInfo EPI; |
5162 | EPI.ExtInfo = EI; |
5163 | EPI.Variadic = FTI.isVariadic; |
5164 | EPI.EllipsisLoc = FTI.getEllipsisLoc(); |
5165 | EPI.HasTrailingReturn = FTI.hasTrailingReturnType(); |
5166 | EPI.TypeQuals.addCVRUQualifiers( |
5167 | mask: FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers() |
5168 | : 0); |
5169 | EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None |
5170 | : FTI.RefQualifierIsLValueRef? RQ_LValue |
5171 | : RQ_RValue; |
5172 | |
5173 | // Otherwise, we have a function with a parameter list that is |
5174 | // potentially variadic. |
5175 | SmallVector<QualType, 16> ParamTys; |
5176 | ParamTys.reserve(N: FTI.NumParams); |
5177 | |
5178 | SmallVector<FunctionProtoType::ExtParameterInfo, 16> |
5179 | ExtParameterInfos(FTI.NumParams); |
5180 | bool HasAnyInterestingExtParameterInfos = false; |
5181 | |
5182 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { |
5183 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: FTI.Params[i].Param); |
5184 | QualType ParamTy = Param->getType(); |
5185 | assert(!ParamTy.isNull() && "Couldn't parse type?"); |
5186 | |
5187 | // Look for 'void'. void is allowed only as a single parameter to a |
5188 | // function with no other parameters (C99 6.7.5.3p10). We record |
5189 | // int(void) as a FunctionProtoType with an empty parameter list. |
5190 | if (ParamTy->isVoidType()) { |
5191 | // If this is something like 'float(int, void)', reject it. 'void' |
5192 | // is an incomplete type (C99 6.2.5p19) and function decls cannot |
5193 | // have parameters of incomplete type. |
5194 | if (FTI.NumParams != 1 || FTI.isVariadic) { |
5195 | S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param); |
5196 | ParamTy = Context.IntTy; |
5197 | Param->setType(ParamTy); |
5198 | } else if (FTI.Params[i].Ident) { |
5199 | // Reject, but continue to parse 'int(void abc)'. |
5200 | S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type); |
5201 | ParamTy = Context.IntTy; |
5202 | Param->setType(ParamTy); |
5203 | } else { |
5204 | // Reject, but continue to parse 'float(const void)'. |
5205 | if (ParamTy.hasQualifiers()) |
5206 | S.Diag(DeclType.Loc, diag::err_void_param_qualified); |
5207 | |
5208 | for (const auto *A : Param->attrs()) { |
5209 | S.Diag(A->getLoc(), diag::warn_attribute_on_void_param) |
5210 | << A << A->getRange(); |
5211 | } |
5212 | |
5213 | // Reject, but continue to parse 'float(this void)' as |
5214 | // 'float(void)'. |
5215 | if (Param->isExplicitObjectParameter()) { |
5216 | S.Diag(Param->getLocation(), |
5217 | diag::err_void_explicit_object_param); |
5218 | Param->setExplicitObjectParameterLoc(SourceLocation()); |
5219 | } |
5220 | |
5221 | // Do not add 'void' to the list. |
5222 | break; |
5223 | } |
5224 | } else if (ParamTy->isHalfType()) { |
5225 | // Disallow half FP parameters. |
5226 | // FIXME: This really should be in BuildFunctionType. |
5227 | if (S.getLangOpts().OpenCL) { |
5228 | if (!S.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16", |
5229 | LO: S.getLangOpts())) { |
5230 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) |
5231 | << ParamTy << 0; |
5232 | D.setInvalidType(); |
5233 | Param->setInvalidDecl(); |
5234 | } |
5235 | } else if (!S.getLangOpts().NativeHalfArgsAndReturns && |
5236 | !S.Context.getTargetInfo().allowHalfArgsAndReturns()) { |
5237 | S.Diag(Param->getLocation(), |
5238 | diag::err_parameters_retval_cannot_have_fp16_type) << 0; |
5239 | D.setInvalidType(); |
5240 | } |
5241 | } else if (!FTI.hasPrototype) { |
5242 | if (Context.isPromotableIntegerType(T: ParamTy)) { |
5243 | ParamTy = Context.getPromotedIntegerType(PromotableType: ParamTy); |
5244 | Param->setKNRPromoted(true); |
5245 | } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) { |
5246 | if (BTy->getKind() == BuiltinType::Float) { |
5247 | ParamTy = Context.DoubleTy; |
5248 | Param->setKNRPromoted(true); |
5249 | } |
5250 | } |
5251 | } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) { |
5252 | // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function. |
5253 | S.Diag(Param->getLocation(), diag::err_opencl_invalid_param) |
5254 | << ParamTy << 1 /*hint off*/; |
5255 | D.setInvalidType(); |
5256 | } |
5257 | |
5258 | if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) { |
5259 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(consumed: true); |
5260 | HasAnyInterestingExtParameterInfos = true; |
5261 | } |
5262 | |
5263 | if (auto attr = Param->getAttr<ParameterABIAttr>()) { |
5264 | ExtParameterInfos[i] = |
5265 | ExtParameterInfos[i].withABI(kind: attr->getABI()); |
5266 | HasAnyInterestingExtParameterInfos = true; |
5267 | } |
5268 | |
5269 | if (Param->hasAttr<PassObjectSizeAttr>()) { |
5270 | ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize(); |
5271 | HasAnyInterestingExtParameterInfos = true; |
5272 | } |
5273 | |
5274 | if (Param->hasAttr<NoEscapeAttr>()) { |
5275 | ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(NoEscape: true); |
5276 | HasAnyInterestingExtParameterInfos = true; |
5277 | } |
5278 | |
5279 | ParamTys.push_back(Elt: ParamTy); |
5280 | } |
5281 | |
5282 | if (HasAnyInterestingExtParameterInfos) { |
5283 | EPI.ExtParameterInfos = ExtParameterInfos.data(); |
5284 | checkExtParameterInfos(S, paramTypes: ParamTys, EPI, |
5285 | getParamLoc: [&](unsigned i) { return FTI.Params[i].Param->getLocation(); }); |
5286 | } |
5287 | |
5288 | SmallVector<QualType, 4> Exceptions; |
5289 | SmallVector<ParsedType, 2> DynamicExceptions; |
5290 | SmallVector<SourceRange, 2> DynamicExceptionRanges; |
5291 | Expr *NoexceptExpr = nullptr; |
5292 | |
5293 | if (FTI.getExceptionSpecType() == EST_Dynamic) { |
5294 | // FIXME: It's rather inefficient to have to split into two vectors |
5295 | // here. |
5296 | unsigned N = FTI.getNumExceptions(); |
5297 | DynamicExceptions.reserve(N); |
5298 | DynamicExceptionRanges.reserve(N); |
5299 | for (unsigned I = 0; I != N; ++I) { |
5300 | DynamicExceptions.push_back(Elt: FTI.Exceptions[I].Ty); |
5301 | DynamicExceptionRanges.push_back(Elt: FTI.Exceptions[I].Range); |
5302 | } |
5303 | } else if (isComputedNoexcept(ESpecType: FTI.getExceptionSpecType())) { |
5304 | NoexceptExpr = FTI.NoexceptExpr; |
5305 | } |
5306 | |
5307 | S.checkExceptionSpecification(IsTopLevel: D.isFunctionDeclarationContext(), |
5308 | EST: FTI.getExceptionSpecType(), |
5309 | DynamicExceptions, |
5310 | DynamicExceptionRanges, |
5311 | NoexceptExpr, |
5312 | Exceptions, |
5313 | ESI&: EPI.ExceptionSpec); |
5314 | |
5315 | // FIXME: Set address space from attrs for C++ mode here. |
5316 | // OpenCLCPlusPlus: A class member function has an address space. |
5317 | auto IsClassMember = [&]() { |
5318 | return (!state.getDeclarator().getCXXScopeSpec().isEmpty() && |
5319 | state.getDeclarator() |
5320 | .getCXXScopeSpec() |
5321 | .getScopeRep() |
5322 | ->getKind() == NestedNameSpecifier::TypeSpec) || |
5323 | state.getDeclarator().getContext() == |
5324 | DeclaratorContext::Member || |
5325 | state.getDeclarator().getContext() == |
5326 | DeclaratorContext::LambdaExpr; |
5327 | }; |
5328 | |
5329 | if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) { |
5330 | LangAS ASIdx = LangAS::Default; |
5331 | // Take address space attr if any and mark as invalid to avoid adding |
5332 | // them later while creating QualType. |
5333 | if (FTI.MethodQualifiers) |
5334 | for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) { |
5335 | LangAS ASIdxNew = attr.asOpenCLLangAS(); |
5336 | if (DiagnoseMultipleAddrSpaceAttributes(S, ASOld: ASIdx, ASNew: ASIdxNew, |
5337 | AttrLoc: attr.getLoc())) |
5338 | D.setInvalidType(true); |
5339 | else |
5340 | ASIdx = ASIdxNew; |
5341 | } |
5342 | // If a class member function's address space is not set, set it to |
5343 | // __generic. |
5344 | LangAS AS = |
5345 | (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace() |
5346 | : ASIdx); |
5347 | EPI.TypeQuals.addAddressSpace(space: AS); |
5348 | } |
5349 | T = Context.getFunctionType(ResultTy: T, Args: ParamTys, EPI); |
5350 | } |
5351 | break; |
5352 | } |
5353 | case DeclaratorChunk::MemberPointer: { |
5354 | // The scope spec must refer to a class, or be dependent. |
5355 | CXXScopeSpec &SS = DeclType.Mem.Scope(); |
5356 | |
5357 | // Handle pointer nullability. |
5358 | inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc, |
5359 | DeclType.EndLoc, DeclType.getAttrs(), |
5360 | state.getDeclarator().getAttributePool()); |
5361 | |
5362 | if (SS.isInvalid()) { |
5363 | // Avoid emitting extra errors if we already errored on the scope. |
5364 | D.setInvalidType(true); |
5365 | AreDeclaratorChunksValid = false; |
5366 | } else { |
5367 | T = S.BuildMemberPointerType(T, SS, /*Cls=*/nullptr, Loc: DeclType.Loc, |
5368 | Entity: D.getIdentifier()); |
5369 | } |
5370 | |
5371 | if (T.isNull()) { |
5372 | T = Context.IntTy; |
5373 | D.setInvalidType(true); |
5374 | AreDeclaratorChunksValid = false; |
5375 | } else if (DeclType.Mem.TypeQuals) { |
5376 | T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Mem.TypeQuals); |
5377 | } |
5378 | break; |
5379 | } |
5380 | |
5381 | case DeclaratorChunk::Pipe: { |
5382 | T = S.BuildReadPipeType(T, Loc: DeclType.Loc); |
5383 | processTypeAttrs(state, type&: T, TAL: TAL_DeclSpec, |
5384 | attrs: D.getMutableDeclSpec().getAttributes()); |
5385 | break; |
5386 | } |
5387 | } |
5388 | |
5389 | if (T.isNull()) { |
5390 | D.setInvalidType(true); |
5391 | T = Context.IntTy; |
5392 | AreDeclaratorChunksValid = false; |
5393 | } |
5394 | |
5395 | // See if there are any attributes on this declarator chunk. |
5396 | processTypeAttrs(state, type&: T, TAL: TAL_DeclChunk, attrs: DeclType.getAttrs(), |
5397 | CFT: S.CUDA().IdentifyTarget(Attrs: D.getAttributes())); |
5398 | |
5399 | if (DeclType.Kind != DeclaratorChunk::Paren) { |
5400 | if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType)) |
5401 | S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array); |
5402 | |
5403 | ExpectNoDerefChunk = state.didParseNoDeref(); |
5404 | } |
5405 | } |
5406 | |
5407 | if (ExpectNoDerefChunk) |
5408 | S.Diag(state.getDeclarator().getBeginLoc(), |
5409 | diag::warn_noderef_on_non_pointer_or_array); |
5410 | |
5411 | // GNU warning -Wstrict-prototypes |
5412 | // Warn if a function declaration or definition is without a prototype. |
5413 | // This warning is issued for all kinds of unprototyped function |
5414 | // declarations (i.e. function type typedef, function pointer etc.) |
5415 | // C99 6.7.5.3p14: |
5416 | // The empty list in a function declarator that is not part of a definition |
5417 | // of that function specifies that no information about the number or types |
5418 | // of the parameters is supplied. |
5419 | // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of |
5420 | // function declarations whose behavior changes in C23. |
5421 | if (!LangOpts.requiresStrictPrototypes()) { |
5422 | bool IsBlock = false; |
5423 | for (const DeclaratorChunk &DeclType : D.type_objects()) { |
5424 | switch (DeclType.Kind) { |
5425 | case DeclaratorChunk::BlockPointer: |
5426 | IsBlock = true; |
5427 | break; |
5428 | case DeclaratorChunk::Function: { |
5429 | const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun; |
5430 | // We suppress the warning when there's no LParen location, as this |
5431 | // indicates the declaration was an implicit declaration, which gets |
5432 | // warned about separately via -Wimplicit-function-declaration. We also |
5433 | // suppress the warning when we know the function has a prototype. |
5434 | if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic && |
5435 | FTI.getLParenLoc().isValid()) |
5436 | S.Diag(DeclType.Loc, diag::warn_strict_prototypes) |
5437 | << IsBlock |
5438 | << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void"); |
5439 | IsBlock = false; |
5440 | break; |
5441 | } |
5442 | default: |
5443 | break; |
5444 | } |
5445 | } |
5446 | } |
5447 | |
5448 | assert(!T.isNull() && "T must not be null after this point"); |
5449 | |
5450 | if (LangOpts.CPlusPlus && T->isFunctionType()) { |
5451 | const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>(); |
5452 | assert(FnTy && "Why oh why is there not a FunctionProtoType here?"); |
5453 | |
5454 | // C++ 8.3.5p4: |
5455 | // A cv-qualifier-seq shall only be part of the function type |
5456 | // for a nonstatic member function, the function type to which a pointer |
5457 | // to member refers, or the top-level function type of a function typedef |
5458 | // declaration. |
5459 | // |
5460 | // Core issue 547 also allows cv-qualifiers on function types that are |
5461 | // top-level template type arguments. |
5462 | enum { |
5463 | NonMember, |
5464 | Member, |
5465 | ExplicitObjectMember, |
5466 | DeductionGuide |
5467 | } Kind = NonMember; |
5468 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) |
5469 | Kind = DeductionGuide; |
5470 | else if (!D.getCXXScopeSpec().isSet()) { |
5471 | if ((D.getContext() == DeclaratorContext::Member || |
5472 | D.getContext() == DeclaratorContext::LambdaExpr) && |
5473 | !D.getDeclSpec().isFriendSpecified()) |
5474 | Kind = Member; |
5475 | } else { |
5476 | DeclContext *DC = S.computeDeclContext(SS: D.getCXXScopeSpec()); |
5477 | if (!DC || DC->isRecord()) |
5478 | Kind = Member; |
5479 | } |
5480 | |
5481 | if (Kind == Member) { |
5482 | unsigned I; |
5483 | if (D.isFunctionDeclarator(idx&: I)) { |
5484 | const DeclaratorChunk &Chunk = D.getTypeObject(i: I); |
5485 | if (Chunk.Fun.NumParams) { |
5486 | auto *P = dyn_cast_or_null<ParmVarDecl>(Val: Chunk.Fun.Params->Param); |
5487 | if (P && P->isExplicitObjectParameter()) |
5488 | Kind = ExplicitObjectMember; |
5489 | } |
5490 | } |
5491 | } |
5492 | |
5493 | // C++11 [dcl.fct]p6 (w/DR1417): |
5494 | // An attempt to specify a function type with a cv-qualifier-seq or a |
5495 | // ref-qualifier (including by typedef-name) is ill-formed unless it is: |
5496 | // - the function type for a non-static member function, |
5497 | // - the function type to which a pointer to member refers, |
5498 | // - the top-level function type of a function typedef declaration or |
5499 | // alias-declaration, |
5500 | // - the type-id in the default argument of a type-parameter, or |
5501 | // - the type-id of a template-argument for a type-parameter |
5502 | // |
5503 | // C++23 [dcl.fct]p6 (P0847R7) |
5504 | // ... A member-declarator with an explicit-object-parameter-declaration |
5505 | // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be |
5506 | // declared static or virtual ... |
5507 | // |
5508 | // FIXME: Checking this here is insufficient. We accept-invalid on: |
5509 | // |
5510 | // template<typename T> struct S { void f(T); }; |
5511 | // S<int() const> s; |
5512 | // |
5513 | // ... for instance. |
5514 | if (IsQualifiedFunction && |
5515 | // Check for non-static member function and not and |
5516 | // explicit-object-parameter-declaration |
5517 | (Kind != Member || D.isExplicitObjectMemberFunction() || |
5518 | D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || |
5519 | (D.getContext() == clang::DeclaratorContext::Member && |
5520 | D.isStaticMember())) && |
5521 | !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg && |
5522 | D.getContext() != DeclaratorContext::TemplateTypeArg) { |
5523 | SourceLocation Loc = D.getBeginLoc(); |
5524 | SourceRange RemovalRange; |
5525 | unsigned I; |
5526 | if (D.isFunctionDeclarator(idx&: I)) { |
5527 | SmallVector<SourceLocation, 4> RemovalLocs; |
5528 | const DeclaratorChunk &Chunk = D.getTypeObject(i: I); |
5529 | assert(Chunk.Kind == DeclaratorChunk::Function); |
5530 | |
5531 | if (Chunk.Fun.hasRefQualifier()) |
5532 | RemovalLocs.push_back(Elt: Chunk.Fun.getRefQualifierLoc()); |
5533 | |
5534 | if (Chunk.Fun.hasMethodTypeQualifiers()) |
5535 | Chunk.Fun.MethodQualifiers->forEachQualifier( |
5536 | Handle: [&](DeclSpec::TQ TypeQual, StringRef QualName, |
5537 | SourceLocation SL) { RemovalLocs.push_back(Elt: SL); }); |
5538 | |
5539 | if (!RemovalLocs.empty()) { |
5540 | llvm::sort(C&: RemovalLocs, |
5541 | Comp: BeforeThanCompare<SourceLocation>(S.getSourceManager())); |
5542 | RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back()); |
5543 | Loc = RemovalLocs.front(); |
5544 | } |
5545 | } |
5546 | |
5547 | S.Diag(Loc, diag::err_invalid_qualified_function_type) |
5548 | << Kind << D.isFunctionDeclarator() << T |
5549 | << getFunctionQualifiersAsString(FnTy) |
5550 | << FixItHint::CreateRemoval(RemovalRange); |
5551 | |
5552 | // Strip the cv-qualifiers and ref-qualifiers from the type. |
5553 | FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo(); |
5554 | EPI.TypeQuals.removeCVRQualifiers(); |
5555 | EPI.RefQualifier = RQ_None; |
5556 | |
5557 | T = Context.getFunctionType(ResultTy: FnTy->getReturnType(), Args: FnTy->getParamTypes(), |
5558 | EPI); |
5559 | // Rebuild any parens around the identifier in the function type. |
5560 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
5561 | if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren) |
5562 | break; |
5563 | T = S.BuildParenType(T); |
5564 | } |
5565 | } |
5566 | } |
5567 | |
5568 | // Apply any undistributed attributes from the declaration or declarator. |
5569 | ParsedAttributesView NonSlidingAttrs; |
5570 | for (ParsedAttr &AL : D.getDeclarationAttributes()) { |
5571 | if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) { |
5572 | NonSlidingAttrs.addAtEnd(newAttr: &AL); |
5573 | } |
5574 | } |
5575 | processTypeAttrs(state, type&: T, TAL: TAL_DeclName, attrs: NonSlidingAttrs); |
5576 | processTypeAttrs(state, type&: T, TAL: TAL_DeclName, attrs: D.getAttributes()); |
5577 | |
5578 | // Diagnose any ignored type attributes. |
5579 | state.diagnoseIgnoredTypeAttrs(type: T); |
5580 | |
5581 | // C++0x [dcl.constexpr]p9: |
5582 | // A constexpr specifier used in an object declaration declares the object |
5583 | // as const. |
5584 | if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr && |
5585 | T->isObjectType()) |
5586 | T.addConst(); |
5587 | |
5588 | // C++2a [dcl.fct]p4: |
5589 | // A parameter with volatile-qualified type is deprecated |
5590 | if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 && |
5591 | (D.getContext() == DeclaratorContext::Prototype || |
5592 | D.getContext() == DeclaratorContext::LambdaExprParameter)) |
5593 | S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T; |
5594 | |
5595 | // If there was an ellipsis in the declarator, the declaration declares a |
5596 | // parameter pack whose type may be a pack expansion type. |
5597 | if (D.hasEllipsis()) { |
5598 | // C++0x [dcl.fct]p13: |
5599 | // A declarator-id or abstract-declarator containing an ellipsis shall |
5600 | // only be used in a parameter-declaration. Such a parameter-declaration |
5601 | // is a parameter pack (14.5.3). [...] |
5602 | switch (D.getContext()) { |
5603 | case DeclaratorContext::Prototype: |
5604 | case DeclaratorContext::LambdaExprParameter: |
5605 | case DeclaratorContext::RequiresExpr: |
5606 | // C++0x [dcl.fct]p13: |
5607 | // [...] When it is part of a parameter-declaration-clause, the |
5608 | // parameter pack is a function parameter pack (14.5.3). The type T |
5609 | // of the declarator-id of the function parameter pack shall contain |
5610 | // a template parameter pack; each template parameter pack in T is |
5611 | // expanded by the function parameter pack. |
5612 | // |
5613 | // We represent function parameter packs as function parameters whose |
5614 | // type is a pack expansion. |
5615 | if (!T->containsUnexpandedParameterPack() && |
5616 | (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) { |
5617 | S.Diag(D.getEllipsisLoc(), |
5618 | diag::err_function_parameter_pack_without_parameter_packs) |
5619 | << T << D.getSourceRange(); |
5620 | D.setEllipsisLoc(SourceLocation()); |
5621 | } else { |
5622 | T = Context.getPackExpansionType(Pattern: T, NumExpansions: std::nullopt, |
5623 | /*ExpectPackInType=*/false); |
5624 | } |
5625 | break; |
5626 | case DeclaratorContext::TemplateParam: |
5627 | // C++0x [temp.param]p15: |
5628 | // If a template-parameter is a [...] is a parameter-declaration that |
5629 | // declares a parameter pack (8.3.5), then the template-parameter is a |
5630 | // template parameter pack (14.5.3). |
5631 | // |
5632 | // Note: core issue 778 clarifies that, if there are any unexpanded |
5633 | // parameter packs in the type of the non-type template parameter, then |
5634 | // it expands those parameter packs. |
5635 | if (T->containsUnexpandedParameterPack()) |
5636 | T = Context.getPackExpansionType(Pattern: T, NumExpansions: std::nullopt); |
5637 | else |
5638 | S.Diag(D.getEllipsisLoc(), |
5639 | LangOpts.CPlusPlus11 |
5640 | ? diag::warn_cxx98_compat_variadic_templates |
5641 | : diag::ext_variadic_templates); |
5642 | break; |
5643 | |
5644 | case DeclaratorContext::File: |
5645 | case DeclaratorContext::KNRTypeList: |
5646 | case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here? |
5647 | case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here? |
5648 | case DeclaratorContext::TypeName: |
5649 | case DeclaratorContext::FunctionalCast: |
5650 | case DeclaratorContext::CXXNew: |
5651 | case DeclaratorContext::AliasDecl: |
5652 | case DeclaratorContext::AliasTemplate: |
5653 | case DeclaratorContext::Member: |
5654 | case DeclaratorContext::Block: |
5655 | case DeclaratorContext::ForInit: |
5656 | case DeclaratorContext::SelectionInit: |
5657 | case DeclaratorContext::Condition: |
5658 | case DeclaratorContext::CXXCatch: |
5659 | case DeclaratorContext::ObjCCatch: |
5660 | case DeclaratorContext::BlockLiteral: |
5661 | case DeclaratorContext::LambdaExpr: |
5662 | case DeclaratorContext::ConversionId: |
5663 | case DeclaratorContext::TrailingReturn: |
5664 | case DeclaratorContext::TrailingReturnVar: |
5665 | case DeclaratorContext::TemplateArg: |
5666 | case DeclaratorContext::TemplateTypeArg: |
5667 | case DeclaratorContext::Association: |
5668 | // FIXME: We may want to allow parameter packs in block-literal contexts |
5669 | // in the future. |
5670 | S.Diag(D.getEllipsisLoc(), |
5671 | diag::err_ellipsis_in_declarator_not_parameter); |
5672 | D.setEllipsisLoc(SourceLocation()); |
5673 | break; |
5674 | } |
5675 | } |
5676 | |
5677 | assert(!T.isNull() && "T must not be null at the end of this function"); |
5678 | if (!AreDeclaratorChunksValid) |
5679 | return Context.getTrivialTypeSourceInfo(T); |
5680 | |
5681 | if (state.didParseHLSLParamMod() && !T->isConstantArrayType()) |
5682 | T = S.HLSL().getInoutParameterType(Ty: T); |
5683 | return GetTypeSourceInfoForDeclarator(State&: state, T, ReturnTypeInfo: TInfo); |
5684 | } |
5685 | |
5686 | TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) { |
5687 | // Determine the type of the declarator. Not all forms of declarator |
5688 | // have a type. |
5689 | |
5690 | TypeProcessingState state(*this, D); |
5691 | |
5692 | TypeSourceInfo *ReturnTypeInfo = nullptr; |
5693 | QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); |
5694 | if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount) |
5695 | inferARCWriteback(state, declSpecType&: T); |
5696 | |
5697 | return GetFullTypeForDeclarator(state, declSpecType: T, TInfo: ReturnTypeInfo); |
5698 | } |
5699 | |
5700 | static void transferARCOwnershipToDeclSpec(Sema &S, |
5701 | QualType &declSpecTy, |
5702 | Qualifiers::ObjCLifetime ownership) { |
5703 | if (declSpecTy->isObjCRetainableType() && |
5704 | declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) { |
5705 | Qualifiers qs; |
5706 | qs.addObjCLifetime(type: ownership); |
5707 | declSpecTy = S.Context.getQualifiedType(T: declSpecTy, Qs: qs); |
5708 | } |
5709 | } |
5710 | |
5711 | static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state, |
5712 | Qualifiers::ObjCLifetime ownership, |
5713 | unsigned chunkIndex) { |
5714 | Sema &S = state.getSema(); |
5715 | Declarator &D = state.getDeclarator(); |
5716 | |
5717 | // Look for an explicit lifetime attribute. |
5718 | DeclaratorChunk &chunk = D.getTypeObject(i: chunkIndex); |
5719 | if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership)) |
5720 | return; |
5721 | |
5722 | const char *attrStr = nullptr; |
5723 | switch (ownership) { |
5724 | case Qualifiers::OCL_None: llvm_unreachable("no ownership!"); |
5725 | case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break; |
5726 | case Qualifiers::OCL_Strong: attrStr = "strong"; break; |
5727 | case Qualifiers::OCL_Weak: attrStr = "weak"; break; |
5728 | case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break; |
5729 | } |
5730 | |
5731 | IdentifierLoc *Arg = new (S.Context) IdentifierLoc; |
5732 | Arg->setIdentifierInfo(&S.Context.Idents.get(Name: attrStr)); |
5733 | |
5734 | ArgsUnion Args(Arg); |
5735 | |
5736 | // If there wasn't one, add one (with an invalid source location |
5737 | // so that we don't make an AttributedType for it). |
5738 | ParsedAttr *attr = D.getAttributePool().create( |
5739 | attrName: &S.Context.Idents.get(Name: "objc_ownership"), attrRange: SourceLocation(), |
5740 | /*scope*/ scopeName: nullptr, scopeLoc: SourceLocation(), |
5741 | /*args*/ &Args, numArgs: 1, form: ParsedAttr::Form::GNU()); |
5742 | chunk.getAttrs().addAtEnd(newAttr: attr); |
5743 | // TODO: mark whether we did this inference? |
5744 | } |
5745 | |
5746 | /// Used for transferring ownership in casts resulting in l-values. |
5747 | static void transferARCOwnership(TypeProcessingState &state, |
5748 | QualType &declSpecTy, |
5749 | Qualifiers::ObjCLifetime ownership) { |
5750 | Sema &S = state.getSema(); |
5751 | Declarator &D = state.getDeclarator(); |
5752 | |
5753 | int inner = -1; |
5754 | bool hasIndirection = false; |
5755 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
5756 | DeclaratorChunk &chunk = D.getTypeObject(i); |
5757 | switch (chunk.Kind) { |
5758 | case DeclaratorChunk::Paren: |
5759 | // Ignore parens. |
5760 | break; |
5761 | |
5762 | case DeclaratorChunk::Array: |
5763 | case DeclaratorChunk::Reference: |
5764 | case DeclaratorChunk::Pointer: |
5765 | if (inner != -1) |
5766 | hasIndirection = true; |
5767 | inner = i; |
5768 | break; |
5769 | |
5770 | case DeclaratorChunk::BlockPointer: |
5771 | if (inner != -1) |
5772 | transferARCOwnershipToDeclaratorChunk(state, ownership, chunkIndex: i); |
5773 | return; |
5774 | |
5775 | case DeclaratorChunk::Function: |
5776 | case DeclaratorChunk::MemberPointer: |
5777 | case DeclaratorChunk::Pipe: |
5778 | return; |
5779 | } |
5780 | } |
5781 | |
5782 | if (inner == -1) |
5783 | return; |
5784 | |
5785 | DeclaratorChunk &chunk = D.getTypeObject(i: inner); |
5786 | if (chunk.Kind == DeclaratorChunk::Pointer) { |
5787 | if (declSpecTy->isObjCRetainableType()) |
5788 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); |
5789 | if (declSpecTy->isObjCObjectType() && hasIndirection) |
5790 | return transferARCOwnershipToDeclaratorChunk(state, ownership, chunkIndex: inner); |
5791 | } else { |
5792 | assert(chunk.Kind == DeclaratorChunk::Array || |
5793 | chunk.Kind == DeclaratorChunk::Reference); |
5794 | return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership); |
5795 | } |
5796 | } |
5797 | |
5798 | TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) { |
5799 | TypeProcessingState state(*this, D); |
5800 | |
5801 | TypeSourceInfo *ReturnTypeInfo = nullptr; |
5802 | QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo); |
5803 | |
5804 | if (getLangOpts().ObjC) { |
5805 | Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(T: FromTy); |
5806 | if (ownership != Qualifiers::OCL_None) |
5807 | transferARCOwnership(state, declSpecTy, ownership); |
5808 | } |
5809 | |
5810 | return GetFullTypeForDeclarator(state, declSpecType: declSpecTy, TInfo: ReturnTypeInfo); |
5811 | } |
5812 | |
5813 | static void fillAttributedTypeLoc(AttributedTypeLoc TL, |
5814 | TypeProcessingState &State) { |
5815 | TL.setAttr(State.takeAttrForAttributedType(AT: TL.getTypePtr())); |
5816 | } |
5817 | |
5818 | static void fillHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL, |
5819 | TypeProcessingState &State) { |
5820 | HLSLAttributedResourceLocInfo LocInfo = |
5821 | State.getSema().HLSL().TakeLocForHLSLAttribute(RT: TL.getTypePtr()); |
5822 | TL.setSourceRange(LocInfo.Range); |
5823 | TL.setContainedTypeSourceInfo(LocInfo.ContainedTyInfo); |
5824 | } |
5825 | |
5826 | static void fillMatrixTypeLoc(MatrixTypeLoc MTL, |
5827 | const ParsedAttributesView &Attrs) { |
5828 | for (const ParsedAttr &AL : Attrs) { |
5829 | if (AL.getKind() == ParsedAttr::AT_MatrixType) { |
5830 | MTL.setAttrNameLoc(AL.getLoc()); |
5831 | MTL.setAttrRowOperand(AL.getArgAsExpr(Arg: 0)); |
5832 | MTL.setAttrColumnOperand(AL.getArgAsExpr(Arg: 1)); |
5833 | MTL.setAttrOperandParensRange(SourceRange()); |
5834 | return; |
5835 | } |
5836 | } |
5837 | |
5838 | llvm_unreachable("no matrix_type attribute found at the expected location!"); |
5839 | } |
5840 | |
5841 | static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) { |
5842 | SourceLocation Loc; |
5843 | switch (Chunk.Kind) { |
5844 | case DeclaratorChunk::Function: |
5845 | case DeclaratorChunk::Array: |
5846 | case DeclaratorChunk::Paren: |
5847 | case DeclaratorChunk::Pipe: |
5848 | llvm_unreachable("cannot be _Atomic qualified"); |
5849 | |
5850 | case DeclaratorChunk::Pointer: |
5851 | Loc = Chunk.Ptr.AtomicQualLoc; |
5852 | break; |
5853 | |
5854 | case DeclaratorChunk::BlockPointer: |
5855 | case DeclaratorChunk::Reference: |
5856 | case DeclaratorChunk::MemberPointer: |
5857 | // FIXME: Provide a source location for the _Atomic keyword. |
5858 | break; |
5859 | } |
5860 | |
5861 | ATL.setKWLoc(Loc); |
5862 | ATL.setParensRange(SourceRange()); |
5863 | } |
5864 | |
5865 | namespace { |
5866 | class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> { |
5867 | Sema &SemaRef; |
5868 | ASTContext &Context; |
5869 | TypeProcessingState &State; |
5870 | const DeclSpec &DS; |
5871 | |
5872 | public: |
5873 | TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State, |
5874 | const DeclSpec &DS) |
5875 | : SemaRef(S), Context(Context), State(State), DS(DS) {} |
5876 | |
5877 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { |
5878 | Visit(TyLoc: TL.getModifiedLoc()); |
5879 | fillAttributedTypeLoc(TL, State); |
5880 | } |
5881 | void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) { |
5882 | Visit(TyLoc: TL.getWrappedLoc()); |
5883 | } |
5884 | void VisitHLSLAttributedResourceTypeLoc(HLSLAttributedResourceTypeLoc TL) { |
5885 | Visit(TyLoc: TL.getWrappedLoc()); |
5886 | fillHLSLAttributedResourceTypeLoc(TL, State); |
5887 | } |
5888 | void VisitHLSLInlineSpirvTypeLoc(HLSLInlineSpirvTypeLoc TL) {} |
5889 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { |
5890 | Visit(TyLoc: TL.getInnerLoc()); |
5891 | TL.setExpansionLoc( |
5892 | State.getExpansionLocForMacroQualifiedType(MQT: TL.getTypePtr())); |
5893 | } |
5894 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { |
5895 | Visit(TyLoc: TL.getUnqualifiedLoc()); |
5896 | } |
5897 | // Allow to fill pointee's type locations, e.g., |
5898 | // int __attr * __attr * __attr *p; |
5899 | void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); } |
5900 | void VisitTypedefTypeLoc(TypedefTypeLoc TL) { |
5901 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
5902 | } |
5903 | void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) { |
5904 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
5905 | // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires |
5906 | // addition field. What we have is good enough for display of location |
5907 | // of 'fixit' on interface name. |
5908 | TL.setNameEndLoc(DS.getEndLoc()); |
5909 | } |
5910 | void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) { |
5911 | TypeSourceInfo *RepTInfo = nullptr; |
5912 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &RepTInfo); |
5913 | TL.copy(RepTInfo->getTypeLoc()); |
5914 | } |
5915 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { |
5916 | TypeSourceInfo *RepTInfo = nullptr; |
5917 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &RepTInfo); |
5918 | TL.copy(RepTInfo->getTypeLoc()); |
5919 | } |
5920 | void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) { |
5921 | TypeSourceInfo *TInfo = nullptr; |
5922 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
5923 | |
5924 | // If we got no declarator info from previous Sema routines, |
5925 | // just fill with the typespec loc. |
5926 | if (!TInfo) { |
5927 | TL.initialize(Context, DS.getTypeSpecTypeNameLoc()); |
5928 | return; |
5929 | } |
5930 | |
5931 | TypeLoc OldTL = TInfo->getTypeLoc(); |
5932 | if (TInfo->getType()->getAs<ElaboratedType>()) { |
5933 | ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>(); |
5934 | TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc() |
5935 | .castAs<TemplateSpecializationTypeLoc>(); |
5936 | TL.copy(Loc: NamedTL); |
5937 | } else { |
5938 | TL.copy(Loc: OldTL.castAs<TemplateSpecializationTypeLoc>()); |
5939 | assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc()); |
5940 | } |
5941 | |
5942 | } |
5943 | void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) { |
5944 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr || |
5945 | DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr); |
5946 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); |
5947 | TL.setParensRange(DS.getTypeofParensRange()); |
5948 | } |
5949 | void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) { |
5950 | assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType || |
5951 | DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType); |
5952 | TL.setTypeofLoc(DS.getTypeSpecTypeLoc()); |
5953 | TL.setParensRange(DS.getTypeofParensRange()); |
5954 | assert(DS.getRepAsType()); |
5955 | TypeSourceInfo *TInfo = nullptr; |
5956 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
5957 | TL.setUnmodifiedTInfo(TInfo); |
5958 | } |
5959 | void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) { |
5960 | assert(DS.getTypeSpecType() == DeclSpec::TST_decltype); |
5961 | TL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); |
5962 | TL.setRParenLoc(DS.getTypeofParensRange().getEnd()); |
5963 | } |
5964 | void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) { |
5965 | assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing); |
5966 | TL.setEllipsisLoc(DS.getEllipsisLoc()); |
5967 | } |
5968 | void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) { |
5969 | assert(DS.isTransformTypeTrait(DS.getTypeSpecType())); |
5970 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); |
5971 | TL.setParensRange(DS.getTypeofParensRange()); |
5972 | assert(DS.getRepAsType()); |
5973 | TypeSourceInfo *TInfo = nullptr; |
5974 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
5975 | TL.setUnderlyingTInfo(TInfo); |
5976 | } |
5977 | void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) { |
5978 | // By default, use the source location of the type specifier. |
5979 | TL.setBuiltinLoc(DS.getTypeSpecTypeLoc()); |
5980 | if (TL.needsExtraLocalData()) { |
5981 | // Set info for the written builtin specifiers. |
5982 | TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs(); |
5983 | // Try to have a meaningful source location. |
5984 | if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified) |
5985 | TL.expandBuiltinRange(Range: DS.getTypeSpecSignLoc()); |
5986 | if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified) |
5987 | TL.expandBuiltinRange(Range: DS.getTypeSpecWidthRange()); |
5988 | } |
5989 | } |
5990 | void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) { |
5991 | if (DS.getTypeSpecType() == TST_typename) { |
5992 | TypeSourceInfo *TInfo = nullptr; |
5993 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
5994 | if (TInfo) |
5995 | if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) { |
5996 | TL.copy(Loc: ETL); |
5997 | return; |
5998 | } |
5999 | } |
6000 | const ElaboratedType *T = TL.getTypePtr(); |
6001 | TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None |
6002 | ? DS.getTypeSpecTypeLoc() |
6003 | : SourceLocation()); |
6004 | const CXXScopeSpec& SS = DS.getTypeSpecScope(); |
6005 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
6006 | Visit(TL.getNextTypeLoc().getUnqualifiedLoc()); |
6007 | } |
6008 | void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) { |
6009 | assert(DS.getTypeSpecType() == TST_typename); |
6010 | TypeSourceInfo *TInfo = nullptr; |
6011 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
6012 | assert(TInfo); |
6013 | TL.copy(Loc: TInfo->getTypeLoc().castAs<DependentNameTypeLoc>()); |
6014 | } |
6015 | void VisitDependentTemplateSpecializationTypeLoc( |
6016 | DependentTemplateSpecializationTypeLoc TL) { |
6017 | assert(DS.getTypeSpecType() == TST_typename); |
6018 | TypeSourceInfo *TInfo = nullptr; |
6019 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
6020 | assert(TInfo); |
6021 | TL.copy( |
6022 | Loc: TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>()); |
6023 | } |
6024 | void VisitAutoTypeLoc(AutoTypeLoc TL) { |
6025 | assert(DS.getTypeSpecType() == TST_auto || |
6026 | DS.getTypeSpecType() == TST_decltype_auto || |
6027 | DS.getTypeSpecType() == TST_auto_type || |
6028 | DS.getTypeSpecType() == TST_unspecified); |
6029 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
6030 | if (DS.getTypeSpecType() == TST_decltype_auto) |
6031 | TL.setRParenLoc(DS.getTypeofParensRange().getEnd()); |
6032 | if (!DS.isConstrainedAuto()) |
6033 | return; |
6034 | TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId(); |
6035 | if (!TemplateId) |
6036 | return; |
6037 | |
6038 | NestedNameSpecifierLoc NNS = |
6039 | (DS.getTypeSpecScope().isNotEmpty() |
6040 | ? DS.getTypeSpecScope().getWithLocInContext(Context) |
6041 | : NestedNameSpecifierLoc()); |
6042 | TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc, |
6043 | TemplateId->RAngleLoc); |
6044 | if (TemplateId->NumArgs > 0) { |
6045 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
6046 | TemplateId->NumArgs); |
6047 | SemaRef.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo); |
6048 | } |
6049 | DeclarationNameInfo DNI = DeclarationNameInfo( |
6050 | TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(), |
6051 | TemplateId->TemplateNameLoc); |
6052 | |
6053 | NamedDecl *FoundDecl; |
6054 | if (auto TN = TemplateId->Template.get(); |
6055 | UsingShadowDecl *USD = TN.getAsUsingShadowDecl()) |
6056 | FoundDecl = cast<NamedDecl>(Val: USD); |
6057 | else |
6058 | FoundDecl = cast_if_present<NamedDecl>(Val: TN.getAsTemplateDecl()); |
6059 | |
6060 | auto *CR = ConceptReference::Create( |
6061 | C: Context, NNS, TemplateKWLoc: TemplateId->TemplateKWLoc, ConceptNameInfo: DNI, FoundDecl, |
6062 | /*NamedDecl=*/NamedConcept: TL.getTypePtr()->getTypeConstraintConcept(), |
6063 | ArgsAsWritten: ASTTemplateArgumentListInfo::Create(C: Context, List: TemplateArgsInfo)); |
6064 | TL.setConceptReference(CR); |
6065 | } |
6066 | void VisitTagTypeLoc(TagTypeLoc TL) { |
6067 | TL.setNameLoc(DS.getTypeSpecTypeNameLoc()); |
6068 | } |
6069 | void VisitAtomicTypeLoc(AtomicTypeLoc TL) { |
6070 | // An AtomicTypeLoc can come from either an _Atomic(...) type specifier |
6071 | // or an _Atomic qualifier. |
6072 | if (DS.getTypeSpecType() == DeclSpec::TST_atomic) { |
6073 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); |
6074 | TL.setParensRange(DS.getTypeofParensRange()); |
6075 | |
6076 | TypeSourceInfo *TInfo = nullptr; |
6077 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
6078 | assert(TInfo); |
6079 | TL.getValueLoc().initializeFullCopy(Other: TInfo->getTypeLoc()); |
6080 | } else { |
6081 | TL.setKWLoc(DS.getAtomicSpecLoc()); |
6082 | // No parens, to indicate this was spelled as an _Atomic qualifier. |
6083 | TL.setParensRange(SourceRange()); |
6084 | Visit(TyLoc: TL.getValueLoc()); |
6085 | } |
6086 | } |
6087 | |
6088 | void VisitPipeTypeLoc(PipeTypeLoc TL) { |
6089 | TL.setKWLoc(DS.getTypeSpecTypeLoc()); |
6090 | |
6091 | TypeSourceInfo *TInfo = nullptr; |
6092 | Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo); |
6093 | TL.getValueLoc().initializeFullCopy(Other: TInfo->getTypeLoc()); |
6094 | } |
6095 | |
6096 | void VisitExtIntTypeLoc(BitIntTypeLoc TL) { |
6097 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
6098 | } |
6099 | |
6100 | void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) { |
6101 | TL.setNameLoc(DS.getTypeSpecTypeLoc()); |
6102 | } |
6103 | |
6104 | void VisitTypeLoc(TypeLoc TL) { |
6105 | // FIXME: add other typespec types and change this to an assert. |
6106 | TL.initialize(Context, Loc: DS.getTypeSpecTypeLoc()); |
6107 | } |
6108 | }; |
6109 | |
6110 | class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> { |
6111 | ASTContext &Context; |
6112 | TypeProcessingState &State; |
6113 | const DeclaratorChunk &Chunk; |
6114 | |
6115 | public: |
6116 | DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State, |
6117 | const DeclaratorChunk &Chunk) |
6118 | : Context(Context), State(State), Chunk(Chunk) {} |
6119 | |
6120 | void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) { |
6121 | llvm_unreachable("qualified type locs not expected here!"); |
6122 | } |
6123 | void VisitDecayedTypeLoc(DecayedTypeLoc TL) { |
6124 | llvm_unreachable("decayed type locs not expected here!"); |
6125 | } |
6126 | void VisitArrayParameterTypeLoc(ArrayParameterTypeLoc TL) { |
6127 | llvm_unreachable("array parameter type locs not expected here!"); |
6128 | } |
6129 | |
6130 | void VisitAttributedTypeLoc(AttributedTypeLoc TL) { |
6131 | fillAttributedTypeLoc(TL, State); |
6132 | } |
6133 | void VisitCountAttributedTypeLoc(CountAttributedTypeLoc TL) { |
6134 | // nothing |
6135 | } |
6136 | void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) { |
6137 | // nothing |
6138 | } |
6139 | void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) { |
6140 | // nothing |
6141 | } |
6142 | void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) { |
6143 | assert(Chunk.Kind == DeclaratorChunk::BlockPointer); |
6144 | TL.setCaretLoc(Chunk.Loc); |
6145 | } |
6146 | void VisitPointerTypeLoc(PointerTypeLoc TL) { |
6147 | assert(Chunk.Kind == DeclaratorChunk::Pointer); |
6148 | TL.setStarLoc(Chunk.Loc); |
6149 | } |
6150 | void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) { |
6151 | assert(Chunk.Kind == DeclaratorChunk::Pointer); |
6152 | TL.setStarLoc(Chunk.Loc); |
6153 | } |
6154 | void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) { |
6155 | assert(Chunk.Kind == DeclaratorChunk::MemberPointer); |
6156 | TL.setStarLoc(Chunk.Mem.StarLoc); |
6157 | TL.setQualifierLoc(Chunk.Mem.Scope().getWithLocInContext(Context)); |
6158 | } |
6159 | void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) { |
6160 | assert(Chunk.Kind == DeclaratorChunk::Reference); |
6161 | // 'Amp' is misleading: this might have been originally |
6162 | /// spelled with AmpAmp. |
6163 | TL.setAmpLoc(Chunk.Loc); |
6164 | } |
6165 | void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) { |
6166 | assert(Chunk.Kind == DeclaratorChunk::Reference); |
6167 | assert(!Chunk.Ref.LValueRef); |
6168 | TL.setAmpAmpLoc(Chunk.Loc); |
6169 | } |
6170 | void VisitArrayTypeLoc(ArrayTypeLoc TL) { |
6171 | assert(Chunk.Kind == DeclaratorChunk::Array); |
6172 | TL.setLBracketLoc(Chunk.Loc); |
6173 | TL.setRBracketLoc(Chunk.EndLoc); |
6174 | TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts)); |
6175 | } |
6176 | void VisitFunctionTypeLoc(FunctionTypeLoc TL) { |
6177 | assert(Chunk.Kind == DeclaratorChunk::Function); |
6178 | TL.setLocalRangeBegin(Chunk.Loc); |
6179 | TL.setLocalRangeEnd(Chunk.EndLoc); |
6180 | |
6181 | const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun; |
6182 | TL.setLParenLoc(FTI.getLParenLoc()); |
6183 | TL.setRParenLoc(FTI.getRParenLoc()); |
6184 | for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) { |
6185 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: FTI.Params[i].Param); |
6186 | TL.setParam(i: tpi++, VD: Param); |
6187 | } |
6188 | TL.setExceptionSpecRange(FTI.getExceptionSpecRange()); |
6189 | } |
6190 | void VisitParenTypeLoc(ParenTypeLoc TL) { |
6191 | assert(Chunk.Kind == DeclaratorChunk::Paren); |
6192 | TL.setLParenLoc(Chunk.Loc); |
6193 | TL.setRParenLoc(Chunk.EndLoc); |
6194 | } |
6195 | void VisitPipeTypeLoc(PipeTypeLoc TL) { |
6196 | assert(Chunk.Kind == DeclaratorChunk::Pipe); |
6197 | TL.setKWLoc(Chunk.Loc); |
6198 | } |
6199 | void VisitBitIntTypeLoc(BitIntTypeLoc TL) { |
6200 | TL.setNameLoc(Chunk.Loc); |
6201 | } |
6202 | void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) { |
6203 | TL.setExpansionLoc(Chunk.Loc); |
6204 | } |
6205 | void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); } |
6206 | void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) { |
6207 | TL.setNameLoc(Chunk.Loc); |
6208 | } |
6209 | void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) { |
6210 | TL.setNameLoc(Chunk.Loc); |
6211 | } |
6212 | void VisitAtomicTypeLoc(AtomicTypeLoc TL) { |
6213 | fillAtomicQualLoc(ATL: TL, Chunk); |
6214 | } |
6215 | void |
6216 | VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) { |
6217 | TL.setNameLoc(Chunk.Loc); |
6218 | } |
6219 | void VisitMatrixTypeLoc(MatrixTypeLoc TL) { |
6220 | fillMatrixTypeLoc(MTL: TL, Attrs: Chunk.getAttrs()); |
6221 | } |
6222 | |
6223 | void VisitTypeLoc(TypeLoc TL) { |
6224 | llvm_unreachable("unsupported TypeLoc kind in declarator!"); |
6225 | } |
6226 | }; |
6227 | } // end anonymous namespace |
6228 | |
6229 | static void |
6230 | fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL, |
6231 | const ParsedAttributesView &Attrs) { |
6232 | for (const ParsedAttr &AL : Attrs) { |
6233 | if (AL.getKind() == ParsedAttr::AT_AddressSpace) { |
6234 | DASTL.setAttrNameLoc(AL.getLoc()); |
6235 | DASTL.setAttrExprOperand(AL.getArgAsExpr(Arg: 0)); |
6236 | DASTL.setAttrOperandParensRange(SourceRange()); |
6237 | return; |
6238 | } |
6239 | } |
6240 | |
6241 | llvm_unreachable( |
6242 | "no address_space attribute found at the expected location!"); |
6243 | } |
6244 | |
6245 | /// Create and instantiate a TypeSourceInfo with type source information. |
6246 | /// |
6247 | /// \param T QualType referring to the type as written in source code. |
6248 | /// |
6249 | /// \param ReturnTypeInfo For declarators whose return type does not show |
6250 | /// up in the normal place in the declaration specifiers (such as a C++ |
6251 | /// conversion function), this pointer will refer to a type source information |
6252 | /// for that return type. |
6253 | static TypeSourceInfo * |
6254 | GetTypeSourceInfoForDeclarator(TypeProcessingState &State, |
6255 | QualType T, TypeSourceInfo *ReturnTypeInfo) { |
6256 | Sema &S = State.getSema(); |
6257 | Declarator &D = State.getDeclarator(); |
6258 | |
6259 | TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T); |
6260 | UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc(); |
6261 | |
6262 | // Handle parameter packs whose type is a pack expansion. |
6263 | if (isa<PackExpansionType>(Val: T)) { |
6264 | CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc()); |
6265 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); |
6266 | } |
6267 | |
6268 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
6269 | // Microsoft property fields can have multiple sizeless array chunks |
6270 | // (i.e. int x[][][]). Don't create more than one level of incomplete array. |
6271 | if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 && |
6272 | D.getDeclSpec().getAttributes().hasMSPropertyAttr()) |
6273 | continue; |
6274 | |
6275 | // An AtomicTypeLoc might be produced by an atomic qualifier in this |
6276 | // declarator chunk. |
6277 | if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) { |
6278 | fillAtomicQualLoc(ATL, Chunk: D.getTypeObject(i)); |
6279 | CurrTL = ATL.getValueLoc().getUnqualifiedLoc(); |
6280 | } |
6281 | |
6282 | bool HasDesugaredTypeLoc = true; |
6283 | while (HasDesugaredTypeLoc) { |
6284 | switch (CurrTL.getTypeLocClass()) { |
6285 | case TypeLoc::MacroQualified: { |
6286 | auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>(); |
6287 | TL.setExpansionLoc( |
6288 | State.getExpansionLocForMacroQualifiedType(MQT: TL.getTypePtr())); |
6289 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); |
6290 | break; |
6291 | } |
6292 | |
6293 | case TypeLoc::Attributed: { |
6294 | auto TL = CurrTL.castAs<AttributedTypeLoc>(); |
6295 | fillAttributedTypeLoc(TL, State); |
6296 | CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc(); |
6297 | break; |
6298 | } |
6299 | |
6300 | case TypeLoc::Adjusted: |
6301 | case TypeLoc::BTFTagAttributed: { |
6302 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); |
6303 | break; |
6304 | } |
6305 | |
6306 | case TypeLoc::DependentAddressSpace: { |
6307 | auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>(); |
6308 | fillDependentAddressSpaceTypeLoc(DASTL: TL, Attrs: D.getTypeObject(i).getAttrs()); |
6309 | CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc(); |
6310 | break; |
6311 | } |
6312 | |
6313 | default: |
6314 | HasDesugaredTypeLoc = false; |
6315 | break; |
6316 | } |
6317 | } |
6318 | |
6319 | DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(TyLoc: CurrTL); |
6320 | CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc(); |
6321 | } |
6322 | |
6323 | // If we have different source information for the return type, use |
6324 | // that. This really only applies to C++ conversion functions. |
6325 | if (ReturnTypeInfo) { |
6326 | TypeLoc TL = ReturnTypeInfo->getTypeLoc(); |
6327 | assert(TL.getFullDataSize() == CurrTL.getFullDataSize()); |
6328 | memcpy(dest: CurrTL.getOpaqueData(), src: TL.getOpaqueData(), n: TL.getFullDataSize()); |
6329 | } else { |
6330 | TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(TyLoc: CurrTL); |
6331 | } |
6332 | |
6333 | return TInfo; |
6334 | } |
6335 | |
6336 | /// Create a LocInfoType to hold the given QualType and TypeSourceInfo. |
6337 | ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) { |
6338 | // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser |
6339 | // and Sema during declaration parsing. Try deallocating/caching them when |
6340 | // it's appropriate, instead of allocating them and keeping them around. |
6341 | LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(Size: sizeof(LocInfoType), |
6342 | Alignment: alignof(LocInfoType)); |
6343 | new (LocT) LocInfoType(T, TInfo); |
6344 | assert(LocT->getTypeClass() != T->getTypeClass() && |
6345 | "LocInfoType's TypeClass conflicts with an existing Type class"); |
6346 | return ParsedType::make(P: QualType(LocT, 0)); |
6347 | } |
6348 | |
6349 | void LocInfoType::getAsStringInternal(std::string &Str, |
6350 | const PrintingPolicy &Policy) const { |
6351 | llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*" |
6352 | " was used directly instead of getting the QualType through" |
6353 | " GetTypeFromParser"); |
6354 | } |
6355 | |
6356 | TypeResult Sema::ActOnTypeName(Declarator &D) { |
6357 | // C99 6.7.6: Type names have no identifier. This is already validated by |
6358 | // the parser. |
6359 | assert(D.getIdentifier() == nullptr && |
6360 | "Type name should have no identifier!"); |
6361 | |
6362 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
6363 | QualType T = TInfo->getType(); |
6364 | if (D.isInvalidType()) |
6365 | return true; |
6366 | |
6367 | // Make sure there are no unused decl attributes on the declarator. |
6368 | // We don't want to do this for ObjC parameters because we're going |
6369 | // to apply them to the actual parameter declaration. |
6370 | // Likewise, we don't want to do this for alias declarations, because |
6371 | // we are actually going to build a declaration from this eventually. |
6372 | if (D.getContext() != DeclaratorContext::ObjCParameter && |
6373 | D.getContext() != DeclaratorContext::AliasDecl && |
6374 | D.getContext() != DeclaratorContext::AliasTemplate) |
6375 | checkUnusedDeclAttributes(D); |
6376 | |
6377 | if (getLangOpts().CPlusPlus) { |
6378 | // Check that there are no default arguments (C++ only). |
6379 | CheckExtraCXXDefaultArguments(D); |
6380 | } |
6381 | |
6382 | if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) { |
6383 | const AutoType *AT = TL.getTypePtr(); |
6384 | CheckConstrainedAuto(AutoT: AT, Loc: TL.getConceptNameLoc()); |
6385 | } |
6386 | return CreateParsedType(T, TInfo); |
6387 | } |
6388 | |
6389 | //===----------------------------------------------------------------------===// |
6390 | // Type Attribute Processing |
6391 | //===----------------------------------------------------------------------===// |
6392 | |
6393 | /// Build an AddressSpace index from a constant expression and diagnose any |
6394 | /// errors related to invalid address_spaces. Returns true on successfully |
6395 | /// building an AddressSpace index. |
6396 | static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx, |
6397 | const Expr *AddrSpace, |
6398 | SourceLocation AttrLoc) { |
6399 | if (!AddrSpace->isValueDependent()) { |
6400 | std::optional<llvm::APSInt> OptAddrSpace = |
6401 | AddrSpace->getIntegerConstantExpr(Ctx: S.Context); |
6402 | if (!OptAddrSpace) { |
6403 | S.Diag(AttrLoc, diag::err_attribute_argument_type) |
6404 | << "'address_space'"<< AANT_ArgumentIntegerConstant |
6405 | << AddrSpace->getSourceRange(); |
6406 | return false; |
6407 | } |
6408 | llvm::APSInt &addrSpace = *OptAddrSpace; |
6409 | |
6410 | // Bounds checking. |
6411 | if (addrSpace.isSigned()) { |
6412 | if (addrSpace.isNegative()) { |
6413 | S.Diag(AttrLoc, diag::err_attribute_address_space_negative) |
6414 | << AddrSpace->getSourceRange(); |
6415 | return false; |
6416 | } |
6417 | addrSpace.setIsSigned(false); |
6418 | } |
6419 | |
6420 | llvm::APSInt max(addrSpace.getBitWidth()); |
6421 | max = |
6422 | Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace; |
6423 | |
6424 | if (addrSpace > max) { |
6425 | S.Diag(AttrLoc, diag::err_attribute_address_space_too_high) |
6426 | << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange(); |
6427 | return false; |
6428 | } |
6429 | |
6430 | ASIdx = |
6431 | getLangASFromTargetAS(TargetAS: static_cast<unsigned>(addrSpace.getZExtValue())); |
6432 | return true; |
6433 | } |
6434 | |
6435 | // Default value for DependentAddressSpaceTypes |
6436 | ASIdx = LangAS::Default; |
6437 | return true; |
6438 | } |
6439 | |
6440 | QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace, |
6441 | SourceLocation AttrLoc) { |
6442 | if (!AddrSpace->isValueDependent()) { |
6443 | if (DiagnoseMultipleAddrSpaceAttributes(S&: *this, ASOld: T.getAddressSpace(), ASNew: ASIdx, |
6444 | AttrLoc)) |
6445 | return QualType(); |
6446 | |
6447 | return Context.getAddrSpaceQualType(T, AddressSpace: ASIdx); |
6448 | } |
6449 | |
6450 | // A check with similar intentions as checking if a type already has an |
6451 | // address space except for on a dependent types, basically if the |
6452 | // current type is already a DependentAddressSpaceType then its already |
6453 | // lined up to have another address space on it and we can't have |
6454 | // multiple address spaces on the one pointer indirection |
6455 | if (T->getAs<DependentAddressSpaceType>()) { |
6456 | Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers); |
6457 | return QualType(); |
6458 | } |
6459 | |
6460 | return Context.getDependentAddressSpaceType(PointeeType: T, AddrSpaceExpr: AddrSpace, AttrLoc); |
6461 | } |
6462 | |
6463 | QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace, |
6464 | SourceLocation AttrLoc) { |
6465 | LangAS ASIdx; |
6466 | if (!BuildAddressSpaceIndex(S&: *this, ASIdx, AddrSpace, AttrLoc)) |
6467 | return QualType(); |
6468 | return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc); |
6469 | } |
6470 | |
6471 | static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr, |
6472 | TypeProcessingState &State) { |
6473 | Sema &S = State.getSema(); |
6474 | |
6475 | // This attribute is only supported in C. |
6476 | // FIXME: we should implement checkCommonAttributeFeatures() in SemaAttr.cpp |
6477 | // such that it handles type attributes, and then call that from |
6478 | // processTypeAttrs() instead of one-off checks like this. |
6479 | if (!Attr.diagnoseLangOpts(S)) { |
6480 | Attr.setInvalid(); |
6481 | return; |
6482 | } |
6483 | |
6484 | // Check the number of attribute arguments. |
6485 | if (Attr.getNumArgs() != 1) { |
6486 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) |
6487 | << Attr << 1; |
6488 | Attr.setInvalid(); |
6489 | return; |
6490 | } |
6491 | |
6492 | // Ensure the argument is a string. |
6493 | auto *StrLiteral = dyn_cast<StringLiteral>(Val: Attr.getArgAsExpr(Arg: 0)); |
6494 | if (!StrLiteral) { |
6495 | S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) |
6496 | << Attr << AANT_ArgumentString; |
6497 | Attr.setInvalid(); |
6498 | return; |
6499 | } |
6500 | |
6501 | ASTContext &Ctx = S.Context; |
6502 | StringRef BTFTypeTag = StrLiteral->getString(); |
6503 | Type = State.getBTFTagAttributedType( |
6504 | ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type); |
6505 | } |
6506 | |
6507 | /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the |
6508 | /// specified type. The attribute contains 1 argument, the id of the address |
6509 | /// space for the type. |
6510 | static void HandleAddressSpaceTypeAttribute(QualType &Type, |
6511 | const ParsedAttr &Attr, |
6512 | TypeProcessingState &State) { |
6513 | Sema &S = State.getSema(); |
6514 | |
6515 | // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be |
6516 | // qualified by an address-space qualifier." |
6517 | if (Type->isFunctionType()) { |
6518 | S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type); |
6519 | Attr.setInvalid(); |
6520 | return; |
6521 | } |
6522 | |
6523 | LangAS ASIdx; |
6524 | if (Attr.getKind() == ParsedAttr::AT_AddressSpace) { |
6525 | |
6526 | // Check the attribute arguments. |
6527 | if (Attr.getNumArgs() != 1) { |
6528 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr |
6529 | << 1; |
6530 | Attr.setInvalid(); |
6531 | return; |
6532 | } |
6533 | |
6534 | Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(Arg: 0)); |
6535 | LangAS ASIdx; |
6536 | if (!BuildAddressSpaceIndex(S, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc())) { |
6537 | Attr.setInvalid(); |
6538 | return; |
6539 | } |
6540 | |
6541 | ASTContext &Ctx = S.Context; |
6542 | auto *ASAttr = |
6543 | ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx)); |
6544 | |
6545 | // If the expression is not value dependent (not templated), then we can |
6546 | // apply the address space qualifiers just to the equivalent type. |
6547 | // Otherwise, we make an AttributedType with the modified and equivalent |
6548 | // type the same, and wrap it in a DependentAddressSpaceType. When this |
6549 | // dependent type is resolved, the qualifier is added to the equivalent type |
6550 | // later. |
6551 | QualType T; |
6552 | if (!ASArgExpr->isValueDependent()) { |
6553 | QualType EquivType = |
6554 | S.BuildAddressSpaceAttr(T&: Type, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc()); |
6555 | if (EquivType.isNull()) { |
6556 | Attr.setInvalid(); |
6557 | return; |
6558 | } |
6559 | T = State.getAttributedType(A: ASAttr, ModifiedType: Type, EquivType); |
6560 | } else { |
6561 | T = State.getAttributedType(A: ASAttr, ModifiedType: Type, EquivType: Type); |
6562 | T = S.BuildAddressSpaceAttr(T, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc()); |
6563 | } |
6564 | |
6565 | if (!T.isNull()) |
6566 | Type = T; |
6567 | else |
6568 | Attr.setInvalid(); |
6569 | } else { |
6570 | // The keyword-based type attributes imply which address space to use. |
6571 | ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS() |
6572 | : Attr.asOpenCLLangAS(); |
6573 | if (S.getLangOpts().HLSL) |
6574 | ASIdx = Attr.asHLSLLangAS(); |
6575 | |
6576 | if (ASIdx == LangAS::Default) |
6577 | llvm_unreachable("Invalid address space"); |
6578 | |
6579 | if (DiagnoseMultipleAddrSpaceAttributes(S, ASOld: Type.getAddressSpace(), ASNew: ASIdx, |
6580 | AttrLoc: Attr.getLoc())) { |
6581 | Attr.setInvalid(); |
6582 | return; |
6583 | } |
6584 | |
6585 | Type = S.Context.getAddrSpaceQualType(T: Type, AddressSpace: ASIdx); |
6586 | } |
6587 | } |
6588 | |
6589 | /// handleObjCOwnershipTypeAttr - Process an objc_ownership |
6590 | /// attribute on the specified type. |
6591 | /// |
6592 | /// Returns 'true' if the attribute was handled. |
6593 | static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state, |
6594 | ParsedAttr &attr, QualType &type) { |
6595 | bool NonObjCPointer = false; |
6596 | |
6597 | if (!type->isDependentType() && !type->isUndeducedType()) { |
6598 | if (const PointerType *ptr = type->getAs<PointerType>()) { |
6599 | QualType pointee = ptr->getPointeeType(); |
6600 | if (pointee->isObjCRetainableType() || pointee->isPointerType()) |
6601 | return false; |
6602 | // It is important not to lose the source info that there was an attribute |
6603 | // applied to non-objc pointer. We will create an attributed type but |
6604 | // its type will be the same as the original type. |
6605 | NonObjCPointer = true; |
6606 | } else if (!type->isObjCRetainableType()) { |
6607 | return false; |
6608 | } |
6609 | |
6610 | // Don't accept an ownership attribute in the declspec if it would |
6611 | // just be the return type of a block pointer. |
6612 | if (state.isProcessingDeclSpec()) { |
6613 | Declarator &D = state.getDeclarator(); |
6614 | if (maybeMovePastReturnType(declarator&: D, i: D.getNumTypeObjects(), |
6615 | /*onlyBlockPointers=*/true)) |
6616 | return false; |
6617 | } |
6618 | } |
6619 | |
6620 | Sema &S = state.getSema(); |
6621 | SourceLocation AttrLoc = attr.getLoc(); |
6622 | if (AttrLoc.isMacroID()) |
6623 | AttrLoc = |
6624 | S.getSourceManager().getImmediateExpansionRange(Loc: AttrLoc).getBegin(); |
6625 | |
6626 | if (!attr.isArgIdent(Arg: 0)) { |
6627 | S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr |
6628 | << AANT_ArgumentString; |
6629 | attr.setInvalid(); |
6630 | return true; |
6631 | } |
6632 | |
6633 | IdentifierInfo *II = attr.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
6634 | Qualifiers::ObjCLifetime lifetime; |
6635 | if (II->isStr(Str: "none")) |
6636 | lifetime = Qualifiers::OCL_ExplicitNone; |
6637 | else if (II->isStr(Str: "strong")) |
6638 | lifetime = Qualifiers::OCL_Strong; |
6639 | else if (II->isStr(Str: "weak")) |
6640 | lifetime = Qualifiers::OCL_Weak; |
6641 | else if (II->isStr(Str: "autoreleasing")) |
6642 | lifetime = Qualifiers::OCL_Autoreleasing; |
6643 | else { |
6644 | S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II; |
6645 | attr.setInvalid(); |
6646 | return true; |
6647 | } |
6648 | |
6649 | // Just ignore lifetime attributes other than __weak and __unsafe_unretained |
6650 | // outside of ARC mode. |
6651 | if (!S.getLangOpts().ObjCAutoRefCount && |
6652 | lifetime != Qualifiers::OCL_Weak && |
6653 | lifetime != Qualifiers::OCL_ExplicitNone) { |
6654 | return true; |
6655 | } |
6656 | |
6657 | SplitQualType underlyingType = type.split(); |
6658 | |
6659 | // Check for redundant/conflicting ownership qualifiers. |
6660 | if (Qualifiers::ObjCLifetime previousLifetime |
6661 | = type.getQualifiers().getObjCLifetime()) { |
6662 | // If it's written directly, that's an error. |
6663 | if (S.Context.hasDirectOwnershipQualifier(Ty: type)) { |
6664 | S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant) |
6665 | << type; |
6666 | return true; |
6667 | } |
6668 | |
6669 | // Otherwise, if the qualifiers actually conflict, pull sugar off |
6670 | // and remove the ObjCLifetime qualifiers. |
6671 | if (previousLifetime != lifetime) { |
6672 | // It's possible to have multiple local ObjCLifetime qualifiers. We |
6673 | // can't stop after we reach a type that is directly qualified. |
6674 | const Type *prevTy = nullptr; |
6675 | while (!prevTy || prevTy != underlyingType.Ty) { |
6676 | prevTy = underlyingType.Ty; |
6677 | underlyingType = underlyingType.getSingleStepDesugaredType(); |
6678 | } |
6679 | underlyingType.Quals.removeObjCLifetime(); |
6680 | } |
6681 | } |
6682 | |
6683 | underlyingType.Quals.addObjCLifetime(type: lifetime); |
6684 | |
6685 | if (NonObjCPointer) { |
6686 | StringRef name = attr.getAttrName()->getName(); |
6687 | switch (lifetime) { |
6688 | case Qualifiers::OCL_None: |
6689 | case Qualifiers::OCL_ExplicitNone: |
6690 | break; |
6691 | case Qualifiers::OCL_Strong: name = "__strong"; break; |
6692 | case Qualifiers::OCL_Weak: name = "__weak"; break; |
6693 | case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break; |
6694 | } |
6695 | S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name |
6696 | << TDS_ObjCObjOrBlock << type; |
6697 | } |
6698 | |
6699 | // Don't actually add the __unsafe_unretained qualifier in non-ARC files, |
6700 | // because having both 'T' and '__unsafe_unretained T' exist in the type |
6701 | // system causes unfortunate widespread consistency problems. (For example, |
6702 | // they're not considered compatible types, and we mangle them identicially |
6703 | // as template arguments.) These problems are all individually fixable, |
6704 | // but it's easier to just not add the qualifier and instead sniff it out |
6705 | // in specific places using isObjCInertUnsafeUnretainedType(). |
6706 | // |
6707 | // Doing this does means we miss some trivial consistency checks that |
6708 | // would've triggered in ARC, but that's better than trying to solve all |
6709 | // the coexistence problems with __unsafe_unretained. |
6710 | if (!S.getLangOpts().ObjCAutoRefCount && |
6711 | lifetime == Qualifiers::OCL_ExplicitNone) { |
6712 | type = state.getAttributedType( |
6713 | createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr), |
6714 | type, type); |
6715 | return true; |
6716 | } |
6717 | |
6718 | QualType origType = type; |
6719 | if (!NonObjCPointer) |
6720 | type = S.Context.getQualifiedType(split: underlyingType); |
6721 | |
6722 | // If we have a valid source location for the attribute, use an |
6723 | // AttributedType instead. |
6724 | if (AttrLoc.isValid()) { |
6725 | type = state.getAttributedType(::new (S.Context) |
6726 | ObjCOwnershipAttr(S.Context, attr, II), |
6727 | origType, type); |
6728 | } |
6729 | |
6730 | auto diagnoseOrDelay = [](Sema &S, SourceLocation loc, |
6731 | unsigned diagnostic, QualType type) { |
6732 | if (S.DelayedDiagnostics.shouldDelayDiagnostics()) { |
6733 | S.DelayedDiagnostics.add( |
6734 | diag: sema::DelayedDiagnostic::makeForbiddenType( |
6735 | loc: S.getSourceManager().getExpansionLoc(Loc: loc), |
6736 | diagnostic, type, /*ignored*/ argument: 0)); |
6737 | } else { |
6738 | S.Diag(loc, diagnostic); |
6739 | } |
6740 | }; |
6741 | |
6742 | // Sometimes, __weak isn't allowed. |
6743 | if (lifetime == Qualifiers::OCL_Weak && |
6744 | !S.getLangOpts().ObjCWeak && !NonObjCPointer) { |
6745 | |
6746 | // Use a specialized diagnostic if the runtime just doesn't support them. |
6747 | unsigned diagnostic = |
6748 | (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled |
6749 | : diag::err_arc_weak_no_runtime); |
6750 | |
6751 | // In any case, delay the diagnostic until we know what we're parsing. |
6752 | diagnoseOrDelay(S, AttrLoc, diagnostic, type); |
6753 | |
6754 | attr.setInvalid(); |
6755 | return true; |
6756 | } |
6757 | |
6758 | // Forbid __weak for class objects marked as |
6759 | // objc_arc_weak_reference_unavailable |
6760 | if (lifetime == Qualifiers::OCL_Weak) { |
6761 | if (const ObjCObjectPointerType *ObjT = |
6762 | type->getAs<ObjCObjectPointerType>()) { |
6763 | if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) { |
6764 | if (Class->isArcWeakrefUnavailable()) { |
6765 | S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class); |
6766 | S.Diag(ObjT->getInterfaceDecl()->getLocation(), |
6767 | diag::note_class_declared); |
6768 | } |
6769 | } |
6770 | } |
6771 | } |
6772 | |
6773 | return true; |
6774 | } |
6775 | |
6776 | /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type |
6777 | /// attribute on the specified type. Returns true to indicate that |
6778 | /// the attribute was handled, false to indicate that the type does |
6779 | /// not permit the attribute. |
6780 | static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr, |
6781 | QualType &type) { |
6782 | Sema &S = state.getSema(); |
6783 | |
6784 | // Delay if this isn't some kind of pointer. |
6785 | if (!type->isPointerType() && |
6786 | !type->isObjCObjectPointerType() && |
6787 | !type->isBlockPointerType()) |
6788 | return false; |
6789 | |
6790 | if (type.getObjCGCAttr() != Qualifiers::GCNone) { |
6791 | S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc); |
6792 | attr.setInvalid(); |
6793 | return true; |
6794 | } |
6795 | |
6796 | // Check the attribute arguments. |
6797 | if (!attr.isArgIdent(Arg: 0)) { |
6798 | S.Diag(attr.getLoc(), diag::err_attribute_argument_type) |
6799 | << attr << AANT_ArgumentString; |
6800 | attr.setInvalid(); |
6801 | return true; |
6802 | } |
6803 | Qualifiers::GC GCAttr; |
6804 | if (attr.getNumArgs() > 1) { |
6805 | S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr |
6806 | << 1; |
6807 | attr.setInvalid(); |
6808 | return true; |
6809 | } |
6810 | |
6811 | IdentifierInfo *II = attr.getArgAsIdent(Arg: 0)->getIdentifierInfo(); |
6812 | if (II->isStr(Str: "weak")) |
6813 | GCAttr = Qualifiers::Weak; |
6814 | else if (II->isStr(Str: "strong")) |
6815 | GCAttr = Qualifiers::Strong; |
6816 | else { |
6817 | S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported) |
6818 | << attr << II; |
6819 | attr.setInvalid(); |
6820 | return true; |
6821 | } |
6822 | |
6823 | QualType origType = type; |
6824 | type = S.Context.getObjCGCQualType(T: origType, gcAttr: GCAttr); |
6825 | |
6826 | // Make an attributed type to preserve the source information. |
6827 | if (attr.getLoc().isValid()) |
6828 | type = state.getAttributedType( |
6829 | ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type); |
6830 | |
6831 | return true; |
6832 | } |
6833 | |
6834 | namespace { |
6835 | /// A helper class to unwrap a type down to a function for the |
6836 | /// purposes of applying attributes there. |
6837 | /// |
6838 | /// Use: |
6839 | /// FunctionTypeUnwrapper unwrapped(SemaRef, T); |
6840 | /// if (unwrapped.isFunctionType()) { |
6841 | /// const FunctionType *fn = unwrapped.get(); |
6842 | /// // change fn somehow |
6843 | /// T = unwrapped.wrap(fn); |
6844 | /// } |
6845 | struct FunctionTypeUnwrapper { |
6846 | enum WrapKind { |
6847 | Desugar, |
6848 | Attributed, |
6849 | Parens, |
6850 | Array, |
6851 | Pointer, |
6852 | BlockPointer, |
6853 | Reference, |
6854 | MemberPointer, |
6855 | MacroQualified, |
6856 | }; |
6857 | |
6858 | QualType Original; |
6859 | const FunctionType *Fn; |
6860 | SmallVector<unsigned char /*WrapKind*/, 8> Stack; |
6861 | |
6862 | FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) { |
6863 | while (true) { |
6864 | const Type *Ty = T.getTypePtr(); |
6865 | if (isa<FunctionType>(Val: Ty)) { |
6866 | Fn = cast<FunctionType>(Val: Ty); |
6867 | return; |
6868 | } else if (isa<ParenType>(Val: Ty)) { |
6869 | T = cast<ParenType>(Val: Ty)->getInnerType(); |
6870 | Stack.push_back(Elt: Parens); |
6871 | } else if (isa<ConstantArrayType>(Val: Ty) || isa<VariableArrayType>(Val: Ty) || |
6872 | isa<IncompleteArrayType>(Val: Ty)) { |
6873 | T = cast<ArrayType>(Val: Ty)->getElementType(); |
6874 | Stack.push_back(Elt: Array); |
6875 | } else if (isa<PointerType>(Val: Ty)) { |
6876 | T = cast<PointerType>(Val: Ty)->getPointeeType(); |
6877 | Stack.push_back(Elt: Pointer); |
6878 | } else if (isa<BlockPointerType>(Val: Ty)) { |
6879 | T = cast<BlockPointerType>(Val: Ty)->getPointeeType(); |
6880 | Stack.push_back(Elt: BlockPointer); |
6881 | } else if (isa<MemberPointerType>(Val: Ty)) { |
6882 | T = cast<MemberPointerType>(Val: Ty)->getPointeeType(); |
6883 | Stack.push_back(Elt: MemberPointer); |
6884 | } else if (isa<ReferenceType>(Val: Ty)) { |
6885 | T = cast<ReferenceType>(Val: Ty)->getPointeeType(); |
6886 | Stack.push_back(Elt: Reference); |
6887 | } else if (isa<AttributedType>(Val: Ty)) { |
6888 | T = cast<AttributedType>(Val: Ty)->getEquivalentType(); |
6889 | Stack.push_back(Elt: Attributed); |
6890 | } else if (isa<MacroQualifiedType>(Val: Ty)) { |
6891 | T = cast<MacroQualifiedType>(Val: Ty)->getUnderlyingType(); |
6892 | Stack.push_back(Elt: MacroQualified); |
6893 | } else { |
6894 | const Type *DTy = Ty->getUnqualifiedDesugaredType(); |
6895 | if (Ty == DTy) { |
6896 | Fn = nullptr; |
6897 | return; |
6898 | } |
6899 | |
6900 | T = QualType(DTy, 0); |
6901 | Stack.push_back(Elt: Desugar); |
6902 | } |
6903 | } |
6904 | } |
6905 | |
6906 | bool isFunctionType() const { return (Fn != nullptr); } |
6907 | const FunctionType *get() const { return Fn; } |
6908 | |
6909 | QualType wrap(Sema &S, const FunctionType *New) { |
6910 | // If T wasn't modified from the unwrapped type, do nothing. |
6911 | if (New == get()) return Original; |
6912 | |
6913 | Fn = New; |
6914 | return wrap(S.Context, Original, 0); |
6915 | } |
6916 | |
6917 | private: |
6918 | QualType wrap(ASTContext &C, QualType Old, unsigned I) { |
6919 | if (I == Stack.size()) |
6920 | return C.getQualifiedType(Fn, Old.getQualifiers()); |
6921 | |
6922 | // Build up the inner type, applying the qualifiers from the old |
6923 | // type to the new type. |
6924 | SplitQualType SplitOld = Old.split(); |
6925 | |
6926 | // As a special case, tail-recurse if there are no qualifiers. |
6927 | if (SplitOld.Quals.empty()) |
6928 | return wrap(C, Old: SplitOld.Ty, I); |
6929 | return C.getQualifiedType(T: wrap(C, Old: SplitOld.Ty, I), Qs: SplitOld.Quals); |
6930 | } |
6931 | |
6932 | QualType wrap(ASTContext &C, const Type *Old, unsigned I) { |
6933 | if (I == Stack.size()) return QualType(Fn, 0); |
6934 | |
6935 | switch (static_cast<WrapKind>(Stack[I++])) { |
6936 | case Desugar: |
6937 | // This is the point at which we potentially lose source |
6938 | // information. |
6939 | return wrap(C, Old: Old->getUnqualifiedDesugaredType(), I); |
6940 | |
6941 | case Attributed: |
6942 | return wrap(C, Old: cast<AttributedType>(Val: Old)->getEquivalentType(), I); |
6943 | |
6944 | case Parens: { |
6945 | QualType New = wrap(C, Old: cast<ParenType>(Val: Old)->getInnerType(), I); |
6946 | return C.getParenType(NamedType: New); |
6947 | } |
6948 | |
6949 | case MacroQualified: |
6950 | return wrap(C, Old: cast<MacroQualifiedType>(Val: Old)->getUnderlyingType(), I); |
6951 | |
6952 | case Array: { |
6953 | if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: Old)) { |
6954 | QualType New = wrap(C, CAT->getElementType(), I); |
6955 | return C.getConstantArrayType(EltTy: New, ArySize: CAT->getSize(), SizeExpr: CAT->getSizeExpr(), |
6956 | ASM: CAT->getSizeModifier(), |
6957 | IndexTypeQuals: CAT->getIndexTypeCVRQualifiers()); |
6958 | } |
6959 | |
6960 | if (const auto *VAT = dyn_cast<VariableArrayType>(Val: Old)) { |
6961 | QualType New = wrap(C, VAT->getElementType(), I); |
6962 | return C.getVariableArrayType(EltTy: New, NumElts: VAT->getSizeExpr(), |
6963 | ASM: VAT->getSizeModifier(), |
6964 | IndexTypeQuals: VAT->getIndexTypeCVRQualifiers()); |
6965 | } |
6966 | |
6967 | const auto *IAT = cast<IncompleteArrayType>(Val: Old); |
6968 | QualType New = wrap(C, IAT->getElementType(), I); |
6969 | return C.getIncompleteArrayType(EltTy: New, ASM: IAT->getSizeModifier(), |
6970 | IndexTypeQuals: IAT->getIndexTypeCVRQualifiers()); |
6971 | } |
6972 | |
6973 | case Pointer: { |
6974 | QualType New = wrap(C, Old: cast<PointerType>(Val: Old)->getPointeeType(), I); |
6975 | return C.getPointerType(T: New); |
6976 | } |
6977 | |
6978 | case BlockPointer: { |
6979 | QualType New = wrap(C, Old: cast<BlockPointerType>(Val: Old)->getPointeeType(),I); |
6980 | return C.getBlockPointerType(T: New); |
6981 | } |
6982 | |
6983 | case MemberPointer: { |
6984 | const MemberPointerType *OldMPT = cast<MemberPointerType>(Val: Old); |
6985 | QualType New = wrap(C, Old: OldMPT->getPointeeType(), I); |
6986 | return C.getMemberPointerType(T: New, Qualifier: OldMPT->getQualifier(), |
6987 | Cls: OldMPT->getMostRecentCXXRecordDecl()); |
6988 | } |
6989 | |
6990 | case Reference: { |
6991 | const ReferenceType *OldRef = cast<ReferenceType>(Val: Old); |
6992 | QualType New = wrap(C, Old: OldRef->getPointeeType(), I); |
6993 | if (isa<LValueReferenceType>(Val: OldRef)) |
6994 | return C.getLValueReferenceType(T: New, SpelledAsLValue: OldRef->isSpelledAsLValue()); |
6995 | else |
6996 | return C.getRValueReferenceType(T: New); |
6997 | } |
6998 | } |
6999 | |
7000 | llvm_unreachable("unknown wrapping kind"); |
7001 | } |
7002 | }; |
7003 | } // end anonymous namespace |
7004 | |
7005 | static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State, |
7006 | ParsedAttr &PAttr, QualType &Type) { |
7007 | Sema &S = State.getSema(); |
7008 | |
7009 | Attr *A; |
7010 | switch (PAttr.getKind()) { |
7011 | default: llvm_unreachable("Unknown attribute kind"); |
7012 | case ParsedAttr::AT_Ptr32: |
7013 | A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr); |
7014 | break; |
7015 | case ParsedAttr::AT_Ptr64: |
7016 | A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr); |
7017 | break; |
7018 | case ParsedAttr::AT_SPtr: |
7019 | A = createSimpleAttr<SPtrAttr>(S.Context, PAttr); |
7020 | break; |
7021 | case ParsedAttr::AT_UPtr: |
7022 | A = createSimpleAttr<UPtrAttr>(S.Context, PAttr); |
7023 | break; |
7024 | } |
7025 | |
7026 | std::bitset<attr::LastAttr> Attrs; |
7027 | QualType Desugared = Type; |
7028 | for (;;) { |
7029 | if (const TypedefType *TT = dyn_cast<TypedefType>(Val&: Desugared)) { |
7030 | Desugared = TT->desugar(); |
7031 | continue; |
7032 | } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Val&: Desugared)) { |
7033 | Desugared = ET->desugar(); |
7034 | continue; |
7035 | } |
7036 | const AttributedType *AT = dyn_cast<AttributedType>(Val&: Desugared); |
7037 | if (!AT) |
7038 | break; |
7039 | Attrs[AT->getAttrKind()] = true; |
7040 | Desugared = AT->getModifiedType(); |
7041 | } |
7042 | |
7043 | // You cannot specify duplicate type attributes, so if the attribute has |
7044 | // already been applied, flag it. |
7045 | attr::Kind NewAttrKind = A->getKind(); |
7046 | if (Attrs[NewAttrKind]) { |
7047 | S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr; |
7048 | return true; |
7049 | } |
7050 | Attrs[NewAttrKind] = true; |
7051 | |
7052 | // You cannot have both __sptr and __uptr on the same type, nor can you |
7053 | // have __ptr32 and __ptr64. |
7054 | if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) { |
7055 | S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible) |
7056 | << "'__ptr32'" |
7057 | << "'__ptr64'"<< /*isRegularKeyword=*/0; |
7058 | return true; |
7059 | } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) { |
7060 | S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible) |
7061 | << "'__sptr'" |
7062 | << "'__uptr'"<< /*isRegularKeyword=*/0; |
7063 | return true; |
7064 | } |
7065 | |
7066 | // Check the raw (i.e., desugared) Canonical type to see if it |
7067 | // is a pointer type. |
7068 | if (!isa<PointerType>(Val: Desugared)) { |
7069 | // Pointer type qualifiers can only operate on pointer types, but not |
7070 | // pointer-to-member types. |
7071 | if (Type->isMemberPointerType()) |
7072 | S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr; |
7073 | else |
7074 | S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0; |
7075 | return true; |
7076 | } |
7077 | |
7078 | // Add address space to type based on its attributes. |
7079 | LangAS ASIdx = LangAS::Default; |
7080 | uint64_t PtrWidth = |
7081 | S.Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default); |
7082 | if (PtrWidth == 32) { |
7083 | if (Attrs[attr::Ptr64]) |
7084 | ASIdx = LangAS::ptr64; |
7085 | else if (Attrs[attr::UPtr]) |
7086 | ASIdx = LangAS::ptr32_uptr; |
7087 | } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) { |
7088 | if (S.Context.getTargetInfo().getTriple().isOSzOS() || Attrs[attr::UPtr]) |
7089 | ASIdx = LangAS::ptr32_uptr; |
7090 | else |
7091 | ASIdx = LangAS::ptr32_sptr; |
7092 | } |
7093 | |
7094 | QualType Pointee = Type->getPointeeType(); |
7095 | if (ASIdx != LangAS::Default) |
7096 | Pointee = S.Context.getAddrSpaceQualType( |
7097 | T: S.Context.removeAddrSpaceQualType(T: Pointee), AddressSpace: ASIdx); |
7098 | Type = State.getAttributedType(A, ModifiedType: Type, EquivType: S.Context.getPointerType(T: Pointee)); |
7099 | return false; |
7100 | } |
7101 | |
7102 | static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State, |
7103 | QualType &QT, ParsedAttr &PAttr) { |
7104 | assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref); |
7105 | |
7106 | Sema &S = State.getSema(); |
7107 | Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr); |
7108 | |
7109 | std::bitset<attr::LastAttr> Attrs; |
7110 | attr::Kind NewAttrKind = A->getKind(); |
7111 | const auto *AT = dyn_cast<AttributedType>(Val&: QT); |
7112 | while (AT) { |
7113 | Attrs[AT->getAttrKind()] = true; |
7114 | AT = dyn_cast<AttributedType>(Val: AT->getModifiedType()); |
7115 | } |
7116 | |
7117 | // You cannot specify duplicate type attributes, so if the attribute has |
7118 | // already been applied, flag it. |
7119 | if (Attrs[NewAttrKind]) { |
7120 | S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr; |
7121 | return true; |
7122 | } |
7123 | |
7124 | // Add address space to type based on its attributes. |
7125 | LangAS ASIdx = LangAS::wasm_funcref; |
7126 | QualType Pointee = QT->getPointeeType(); |
7127 | Pointee = S.Context.getAddrSpaceQualType( |
7128 | T: S.Context.removeAddrSpaceQualType(T: Pointee), AddressSpace: ASIdx); |
7129 | QT = State.getAttributedType(A, ModifiedType: QT, EquivType: S.Context.getPointerType(T: Pointee)); |
7130 | return false; |
7131 | } |
7132 | |
7133 | static void HandleSwiftAttr(TypeProcessingState &State, TypeAttrLocation TAL, |
7134 | QualType &QT, ParsedAttr &PAttr) { |
7135 | if (TAL == TAL_DeclName) |
7136 | return; |
7137 | |
7138 | Sema &S = State.getSema(); |
7139 | auto &D = State.getDeclarator(); |
7140 | |
7141 | // If the attribute appears in declaration specifiers |
7142 | // it should be handled as a declaration attribute, |
7143 | // unless it's associated with a type or a function |
7144 | // prototype (i.e. appears on a parameter or result type). |
7145 | if (State.isProcessingDeclSpec()) { |
7146 | if (!(D.isPrototypeContext() || |
7147 | D.getContext() == DeclaratorContext::TypeName)) |
7148 | return; |
7149 | |
7150 | if (auto *chunk = D.getInnermostNonParenChunk()) { |
7151 | moveAttrFromListToList(attr&: PAttr, fromList&: State.getCurrentAttributes(), |
7152 | toList&: const_cast<DeclaratorChunk *>(chunk)->getAttrs()); |
7153 | return; |
7154 | } |
7155 | } |
7156 | |
7157 | StringRef Str; |
7158 | if (!S.checkStringLiteralArgumentAttr(Attr: PAttr, ArgNum: 0, Str)) { |
7159 | PAttr.setInvalid(); |
7160 | return; |
7161 | } |
7162 | |
7163 | // If the attribute as attached to a paren move it closer to |
7164 | // the declarator. This can happen in block declarations when |
7165 | // an attribute is placed before `^` i.e. `(__attribute__((...)) ^)`. |
7166 | // |
7167 | // Note that it's actually invalid to use GNU style attributes |
7168 | // in a block but such cases are currently handled gracefully |
7169 | // but the parser and behavior should be consistent between |
7170 | // cases when attribute appears before/after block's result |
7171 | // type and inside (^). |
7172 | if (TAL == TAL_DeclChunk) { |
7173 | auto chunkIdx = State.getCurrentChunkIndex(); |
7174 | if (chunkIdx >= 1 && |
7175 | D.getTypeObject(i: chunkIdx).Kind == DeclaratorChunk::Paren) { |
7176 | moveAttrFromListToList(attr&: PAttr, fromList&: State.getCurrentAttributes(), |
7177 | toList&: D.getTypeObject(i: chunkIdx - 1).getAttrs()); |
7178 | return; |
7179 | } |
7180 | } |
7181 | |
7182 | auto *A = ::new (S.Context) SwiftAttrAttr(S.Context, PAttr, Str); |
7183 | QT = State.getAttributedType(A: A, ModifiedType: QT, EquivType: QT); |
7184 | PAttr.setUsedAsTypeAttr(); |
7185 | } |
7186 | |
7187 | /// Rebuild an attributed type without the nullability attribute on it. |
7188 | static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx, |
7189 | QualType Type) { |
7190 | auto Attributed = dyn_cast<AttributedType>(Val: Type.getTypePtr()); |
7191 | if (!Attributed) |
7192 | return Type; |
7193 | |
7194 | // Skip the nullability attribute; we're done. |
7195 | if (Attributed->getImmediateNullability()) |
7196 | return Attributed->getModifiedType(); |
7197 | |
7198 | // Build the modified type. |
7199 | QualType Modified = rebuildAttributedTypeWithoutNullability( |
7200 | Ctx, Type: Attributed->getModifiedType()); |
7201 | assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr()); |
7202 | return Ctx.getAttributedType(attrKind: Attributed->getAttrKind(), modifiedType: Modified, |
7203 | equivalentType: Attributed->getEquivalentType(), |
7204 | attr: Attributed->getAttr()); |
7205 | } |
7206 | |
7207 | /// Map a nullability attribute kind to a nullability kind. |
7208 | static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) { |
7209 | switch (kind) { |
7210 | case ParsedAttr::AT_TypeNonNull: |
7211 | return NullabilityKind::NonNull; |
7212 | |
7213 | case ParsedAttr::AT_TypeNullable: |
7214 | return NullabilityKind::Nullable; |
7215 | |
7216 | case ParsedAttr::AT_TypeNullableResult: |
7217 | return NullabilityKind::NullableResult; |
7218 | |
7219 | case ParsedAttr::AT_TypeNullUnspecified: |
7220 | return NullabilityKind::Unspecified; |
7221 | |
7222 | default: |
7223 | llvm_unreachable("not a nullability attribute kind"); |
7224 | } |
7225 | } |
7226 | |
7227 | static bool CheckNullabilityTypeSpecifier( |
7228 | Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT, |
7229 | NullabilityKind Nullability, SourceLocation NullabilityLoc, |
7230 | bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) { |
7231 | bool Implicit = (State == nullptr); |
7232 | if (!Implicit) |
7233 | recordNullabilitySeen(S, loc: NullabilityLoc); |
7234 | |
7235 | // Check for existing nullability attributes on the type. |
7236 | QualType Desugared = QT; |
7237 | while (auto *Attributed = dyn_cast<AttributedType>(Val: Desugared.getTypePtr())) { |
7238 | // Check whether there is already a null |
7239 | if (auto ExistingNullability = Attributed->getImmediateNullability()) { |
7240 | // Duplicated nullability. |
7241 | if (Nullability == *ExistingNullability) { |
7242 | if (Implicit) |
7243 | break; |
7244 | |
7245 | S.Diag(NullabilityLoc, diag::warn_nullability_duplicate) |
7246 | << DiagNullabilityKind(Nullability, IsContextSensitive) |
7247 | << FixItHint::CreateRemoval(NullabilityLoc); |
7248 | |
7249 | break; |
7250 | } |
7251 | |
7252 | if (!OverrideExisting) { |
7253 | // Conflicting nullability. |
7254 | S.Diag(NullabilityLoc, diag::err_nullability_conflicting) |
7255 | << DiagNullabilityKind(Nullability, IsContextSensitive) |
7256 | << DiagNullabilityKind(*ExistingNullability, false); |
7257 | return true; |
7258 | } |
7259 | |
7260 | // Rebuild the attributed type, dropping the existing nullability. |
7261 | QT = rebuildAttributedTypeWithoutNullability(Ctx&: S.Context, Type: QT); |
7262 | } |
7263 | |
7264 | Desugared = Attributed->getModifiedType(); |
7265 | } |
7266 | |
7267 | // If there is already a different nullability specifier, complain. |
7268 | // This (unlike the code above) looks through typedefs that might |
7269 | // have nullability specifiers on them, which means we cannot |
7270 | // provide a useful Fix-It. |
7271 | if (auto ExistingNullability = Desugared->getNullability()) { |
7272 | if (Nullability != *ExistingNullability && !Implicit) { |
7273 | S.Diag(NullabilityLoc, diag::err_nullability_conflicting) |
7274 | << DiagNullabilityKind(Nullability, IsContextSensitive) |
7275 | << DiagNullabilityKind(*ExistingNullability, false); |
7276 | |
7277 | // Try to find the typedef with the existing nullability specifier. |
7278 | if (auto TT = Desugared->getAs<TypedefType>()) { |
7279 | TypedefNameDecl *typedefDecl = TT->getDecl(); |
7280 | QualType underlyingType = typedefDecl->getUnderlyingType(); |
7281 | if (auto typedefNullability = |
7282 | AttributedType::stripOuterNullability(T&: underlyingType)) { |
7283 | if (*typedefNullability == *ExistingNullability) { |
7284 | S.Diag(typedefDecl->getLocation(), diag::note_nullability_here) |
7285 | << DiagNullabilityKind(*ExistingNullability, false); |
7286 | } |
7287 | } |
7288 | } |
7289 | |
7290 | return true; |
7291 | } |
7292 | } |
7293 | |
7294 | // If this definitely isn't a pointer type, reject the specifier. |
7295 | if (!Desugared->canHaveNullability() && |
7296 | !(AllowOnArrayType && Desugared->isArrayType())) { |
7297 | if (!Implicit) |
7298 | S.Diag(NullabilityLoc, diag::err_nullability_nonpointer) |
7299 | << DiagNullabilityKind(Nullability, IsContextSensitive) << QT; |
7300 | |
7301 | return true; |
7302 | } |
7303 | |
7304 | // For the context-sensitive keywords/Objective-C property |
7305 | // attributes, require that the type be a single-level pointer. |
7306 | if (IsContextSensitive) { |
7307 | // Make sure that the pointee isn't itself a pointer type. |
7308 | const Type *pointeeType = nullptr; |
7309 | if (Desugared->isArrayType()) |
7310 | pointeeType = Desugared->getArrayElementTypeNoTypeQual(); |
7311 | else if (Desugared->isAnyPointerType()) |
7312 | pointeeType = Desugared->getPointeeType().getTypePtr(); |
7313 | |
7314 | if (pointeeType && (pointeeType->isAnyPointerType() || |
7315 | pointeeType->isObjCObjectPointerType() || |
7316 | pointeeType->isMemberPointerType())) { |
7317 | S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel) |
7318 | << DiagNullabilityKind(Nullability, true) << QT; |
7319 | S.Diag(NullabilityLoc, diag::note_nullability_type_specifier) |
7320 | << DiagNullabilityKind(Nullability, false) << QT |
7321 | << FixItHint::CreateReplacement(NullabilityLoc, |
7322 | getNullabilitySpelling(Nullability)); |
7323 | return true; |
7324 | } |
7325 | } |
7326 | |
7327 | // Form the attributed type. |
7328 | if (State) { |
7329 | assert(PAttr); |
7330 | Attr *A = createNullabilityAttr(Ctx&: S.Context, Attr&: *PAttr, NK: Nullability); |
7331 | QT = State->getAttributedType(A, ModifiedType: QT, EquivType: QT); |
7332 | } else { |
7333 | QT = S.Context.getAttributedType(nullability: Nullability, modifiedType: QT, equivalentType: QT); |
7334 | } |
7335 | return false; |
7336 | } |
7337 | |
7338 | static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State, |
7339 | QualType &Type, ParsedAttr &Attr, |
7340 | bool AllowOnArrayType) { |
7341 | NullabilityKind Nullability = mapNullabilityAttrKind(kind: Attr.getKind()); |
7342 | SourceLocation NullabilityLoc = Attr.getLoc(); |
7343 | bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute(); |
7344 | |
7345 | return CheckNullabilityTypeSpecifier(S&: State.getSema(), State: &State, PAttr: &Attr, QT&: Type, |
7346 | Nullability, NullabilityLoc, |
7347 | IsContextSensitive, AllowOnArrayType, |
7348 | /*overrideExisting*/ OverrideExisting: false); |
7349 | } |
7350 | |
7351 | bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type, |
7352 | NullabilityKind Nullability, |
7353 | SourceLocation DiagLoc, |
7354 | bool AllowArrayTypes, |
7355 | bool OverrideExisting) { |
7356 | return CheckNullabilityTypeSpecifier( |
7357 | S&: *this, State: nullptr, PAttr: nullptr, QT&: Type, Nullability, NullabilityLoc: DiagLoc, |
7358 | /*isContextSensitive*/ IsContextSensitive: false, AllowOnArrayType: AllowArrayTypes, OverrideExisting); |
7359 | } |
7360 | |
7361 | /// Check the application of the Objective-C '__kindof' qualifier to |
7362 | /// the given type. |
7363 | static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type, |
7364 | ParsedAttr &attr) { |
7365 | Sema &S = state.getSema(); |
7366 | |
7367 | if (isa<ObjCTypeParamType>(Val: type)) { |
7368 | // Build the attributed type to record where __kindof occurred. |
7369 | type = state.getAttributedType( |
7370 | createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type); |
7371 | return false; |
7372 | } |
7373 | |
7374 | // Find out if it's an Objective-C object or object pointer type; |
7375 | const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>(); |
7376 | const ObjCObjectType *objType = ptrType ? ptrType->getObjectType() |
7377 | : type->getAs<ObjCObjectType>(); |
7378 | |
7379 | // If not, we can't apply __kindof. |
7380 | if (!objType) { |
7381 | // FIXME: Handle dependent types that aren't yet object types. |
7382 | S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject) |
7383 | << type; |
7384 | return true; |
7385 | } |
7386 | |
7387 | // Rebuild the "equivalent" type, which pushes __kindof down into |
7388 | // the object type. |
7389 | // There is no need to apply kindof on an unqualified id type. |
7390 | QualType equivType = S.Context.getObjCObjectType( |
7391 | objType->getBaseType(), objType->getTypeArgsAsWritten(), |
7392 | objType->getProtocols(), |
7393 | /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true); |
7394 | |
7395 | // If we started with an object pointer type, rebuild it. |
7396 | if (ptrType) { |
7397 | equivType = S.Context.getObjCObjectPointerType(OIT: equivType); |
7398 | if (auto nullability = type->getNullability()) { |
7399 | // We create a nullability attribute from the __kindof attribute. |
7400 | // Make sure that will make sense. |
7401 | assert(attr.getAttributeSpellingListIndex() == 0 && |
7402 | "multiple spellings for __kindof?"); |
7403 | Attr *A = createNullabilityAttr(Ctx&: S.Context, Attr&: attr, NK: *nullability); |
7404 | A->setImplicit(true); |
7405 | equivType = state.getAttributedType(A, ModifiedType: equivType, EquivType: equivType); |
7406 | } |
7407 | } |
7408 | |
7409 | // Build the attributed type to record where __kindof occurred. |
7410 | type = state.getAttributedType( |
7411 | createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType); |
7412 | return false; |
7413 | } |
7414 | |
7415 | /// Distribute a nullability type attribute that cannot be applied to |
7416 | /// the type specifier to a pointer, block pointer, or member pointer |
7417 | /// declarator, complaining if necessary. |
7418 | /// |
7419 | /// \returns true if the nullability annotation was distributed, false |
7420 | /// otherwise. |
7421 | static bool distributeNullabilityTypeAttr(TypeProcessingState &state, |
7422 | QualType type, ParsedAttr &attr) { |
7423 | Declarator &declarator = state.getDeclarator(); |
7424 | |
7425 | /// Attempt to move the attribute to the specified chunk. |
7426 | auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool { |
7427 | // If there is already a nullability attribute there, don't add |
7428 | // one. |
7429 | if (hasNullabilityAttr(attrs: chunk.getAttrs())) |
7430 | return false; |
7431 | |
7432 | // Complain about the nullability qualifier being in the wrong |
7433 | // place. |
7434 | enum { |
7435 | PK_Pointer, |
7436 | PK_BlockPointer, |
7437 | PK_MemberPointer, |
7438 | PK_FunctionPointer, |
7439 | PK_MemberFunctionPointer, |
7440 | } pointerKind |
7441 | = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer |
7442 | : PK_Pointer) |
7443 | : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer |
7444 | : inFunction? PK_MemberFunctionPointer : PK_MemberPointer; |
7445 | |
7446 | auto diag = state.getSema().Diag(attr.getLoc(), |
7447 | diag::warn_nullability_declspec) |
7448 | << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()), |
7449 | attr.isContextSensitiveKeywordAttribute()) |
7450 | << type |
7451 | << static_cast<unsigned>(pointerKind); |
7452 | |
7453 | // FIXME: MemberPointer chunks don't carry the location of the *. |
7454 | if (chunk.Kind != DeclaratorChunk::MemberPointer) { |
7455 | diag << FixItHint::CreateRemoval(RemoveRange: attr.getLoc()) |
7456 | << FixItHint::CreateInsertion( |
7457 | InsertionLoc: state.getSema().getPreprocessor().getLocForEndOfToken( |
7458 | Loc: chunk.Loc), |
7459 | Code: " "+ attr.getAttrName()->getName().str() + " "); |
7460 | } |
7461 | |
7462 | moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(), |
7463 | toList&: chunk.getAttrs()); |
7464 | return true; |
7465 | }; |
7466 | |
7467 | // Move it to the outermost pointer, member pointer, or block |
7468 | // pointer declarator. |
7469 | for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) { |
7470 | DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1); |
7471 | switch (chunk.Kind) { |
7472 | case DeclaratorChunk::Pointer: |
7473 | case DeclaratorChunk::BlockPointer: |
7474 | case DeclaratorChunk::MemberPointer: |
7475 | return moveToChunk(chunk, false); |
7476 | |
7477 | case DeclaratorChunk::Paren: |
7478 | case DeclaratorChunk::Array: |
7479 | continue; |
7480 | |
7481 | case DeclaratorChunk::Function: |
7482 | // Try to move past the return type to a function/block/member |
7483 | // function pointer. |
7484 | if (DeclaratorChunk *dest = maybeMovePastReturnType( |
7485 | declarator, i, |
7486 | /*onlyBlockPointers=*/false)) { |
7487 | return moveToChunk(*dest, true); |
7488 | } |
7489 | |
7490 | return false; |
7491 | |
7492 | // Don't walk through these. |
7493 | case DeclaratorChunk::Reference: |
7494 | case DeclaratorChunk::Pipe: |
7495 | return false; |
7496 | } |
7497 | } |
7498 | |
7499 | return false; |
7500 | } |
7501 | |
7502 | static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) { |
7503 | assert(!Attr.isInvalid()); |
7504 | switch (Attr.getKind()) { |
7505 | default: |
7506 | llvm_unreachable("not a calling convention attribute"); |
7507 | case ParsedAttr::AT_CDecl: |
7508 | return createSimpleAttr<CDeclAttr>(Ctx, Attr); |
7509 | case ParsedAttr::AT_FastCall: |
7510 | return createSimpleAttr<FastCallAttr>(Ctx, Attr); |
7511 | case ParsedAttr::AT_StdCall: |
7512 | return createSimpleAttr<StdCallAttr>(Ctx, Attr); |
7513 | case ParsedAttr::AT_ThisCall: |
7514 | return createSimpleAttr<ThisCallAttr>(Ctx, Attr); |
7515 | case ParsedAttr::AT_RegCall: |
7516 | return createSimpleAttr<RegCallAttr>(Ctx, Attr); |
7517 | case ParsedAttr::AT_Pascal: |
7518 | return createSimpleAttr<PascalAttr>(Ctx, Attr); |
7519 | case ParsedAttr::AT_SwiftCall: |
7520 | return createSimpleAttr<SwiftCallAttr>(Ctx, Attr); |
7521 | case ParsedAttr::AT_SwiftAsyncCall: |
7522 | return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr); |
7523 | case ParsedAttr::AT_VectorCall: |
7524 | return createSimpleAttr<VectorCallAttr>(Ctx, Attr); |
7525 | case ParsedAttr::AT_AArch64VectorPcs: |
7526 | return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr); |
7527 | case ParsedAttr::AT_AArch64SVEPcs: |
7528 | return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr); |
7529 | case ParsedAttr::AT_ArmStreaming: |
7530 | return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr); |
7531 | case ParsedAttr::AT_DeviceKernel: |
7532 | return createSimpleAttr<DeviceKernelAttr>(Ctx, Attr); |
7533 | case ParsedAttr::AT_Pcs: { |
7534 | // The attribute may have had a fixit applied where we treated an |
7535 | // identifier as a string literal. The contents of the string are valid, |
7536 | // but the form may not be. |
7537 | StringRef Str; |
7538 | if (Attr.isArgExpr(Arg: 0)) |
7539 | Str = cast<StringLiteral>(Val: Attr.getArgAsExpr(Arg: 0))->getString(); |
7540 | else |
7541 | Str = Attr.getArgAsIdent(Arg: 0)->getIdentifierInfo()->getName(); |
7542 | PcsAttr::PCSType Type; |
7543 | if (!PcsAttr::ConvertStrToPCSType(Str, Type)) |
7544 | llvm_unreachable("already validated the attribute"); |
7545 | return ::new (Ctx) PcsAttr(Ctx, Attr, Type); |
7546 | } |
7547 | case ParsedAttr::AT_IntelOclBicc: |
7548 | return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr); |
7549 | case ParsedAttr::AT_MSABI: |
7550 | return createSimpleAttr<MSABIAttr>(Ctx, Attr); |
7551 | case ParsedAttr::AT_SysVABI: |
7552 | return createSimpleAttr<SysVABIAttr>(Ctx, Attr); |
7553 | case ParsedAttr::AT_PreserveMost: |
7554 | return createSimpleAttr<PreserveMostAttr>(Ctx, Attr); |
7555 | case ParsedAttr::AT_PreserveAll: |
7556 | return createSimpleAttr<PreserveAllAttr>(Ctx, Attr); |
7557 | case ParsedAttr::AT_M68kRTD: |
7558 | return createSimpleAttr<M68kRTDAttr>(Ctx, Attr); |
7559 | case ParsedAttr::AT_PreserveNone: |
7560 | return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr); |
7561 | case ParsedAttr::AT_RISCVVectorCC: |
7562 | return createSimpleAttr<RISCVVectorCCAttr>(Ctx, Attr); |
7563 | case ParsedAttr::AT_RISCVVLSCC: { |
7564 | // If the riscv_abi_vlen doesn't have any argument, we set set it to default |
7565 | // value 128. |
7566 | unsigned ABIVLen = 128; |
7567 | if (Attr.getNumArgs()) { |
7568 | std::optional<llvm::APSInt> MaybeABIVLen = |
7569 | Attr.getArgAsExpr(Arg: 0)->getIntegerConstantExpr(Ctx); |
7570 | if (!MaybeABIVLen) |
7571 | llvm_unreachable("Invalid RISC-V ABI VLEN"); |
7572 | ABIVLen = MaybeABIVLen->getZExtValue(); |
7573 | } |
7574 | |
7575 | return ::new (Ctx) RISCVVLSCCAttr(Ctx, Attr, ABIVLen); |
7576 | } |
7577 | } |
7578 | llvm_unreachable("unexpected attribute kind!"); |
7579 | } |
7580 | |
7581 | std::optional<FunctionEffectMode> |
7582 | Sema::ActOnEffectExpression(Expr *CondExpr, StringRef AttributeName) { |
7583 | if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) |
7584 | return FunctionEffectMode::Dependent; |
7585 | |
7586 | std::optional<llvm::APSInt> ConditionValue = |
7587 | CondExpr->getIntegerConstantExpr(Ctx: Context); |
7588 | if (!ConditionValue) { |
7589 | // FIXME: err_attribute_argument_type doesn't quote the attribute |
7590 | // name but needs to; users are inconsistent. |
7591 | Diag(CondExpr->getExprLoc(), diag::err_attribute_argument_type) |
7592 | << AttributeName << AANT_ArgumentIntegerConstant |
7593 | << CondExpr->getSourceRange(); |
7594 | return std::nullopt; |
7595 | } |
7596 | return !ConditionValue->isZero() ? FunctionEffectMode::True |
7597 | : FunctionEffectMode::False; |
7598 | } |
7599 | |
7600 | static bool |
7601 | handleNonBlockingNonAllocatingTypeAttr(TypeProcessingState &TPState, |
7602 | ParsedAttr &PAttr, QualType &QT, |
7603 | FunctionTypeUnwrapper &Unwrapped) { |
7604 | // Delay if this is not a function type. |
7605 | if (!Unwrapped.isFunctionType()) |
7606 | return false; |
7607 | |
7608 | Sema &S = TPState.getSema(); |
7609 | |
7610 | // Require FunctionProtoType. |
7611 | auto *FPT = Unwrapped.get()->getAs<FunctionProtoType>(); |
7612 | if (FPT == nullptr) { |
7613 | S.Diag(PAttr.getLoc(), diag::err_func_with_effects_no_prototype) |
7614 | << PAttr.getAttrName()->getName(); |
7615 | return true; |
7616 | } |
7617 | |
7618 | // Parse the new attribute. |
7619 | // non/blocking or non/allocating? Or conditional (computed)? |
7620 | bool IsNonBlocking = PAttr.getKind() == ParsedAttr::AT_NonBlocking || |
7621 | PAttr.getKind() == ParsedAttr::AT_Blocking; |
7622 | |
7623 | FunctionEffectMode NewMode = FunctionEffectMode::None; |
7624 | Expr *CondExpr = nullptr; // only valid if dependent |
7625 | |
7626 | if (PAttr.getKind() == ParsedAttr::AT_NonBlocking || |
7627 | PAttr.getKind() == ParsedAttr::AT_NonAllocating) { |
7628 | if (!PAttr.checkAtMostNumArgs(S, Num: 1)) { |
7629 | PAttr.setInvalid(); |
7630 | return true; |
7631 | } |
7632 | |
7633 | // Parse the condition, if any. |
7634 | if (PAttr.getNumArgs() == 1) { |
7635 | CondExpr = PAttr.getArgAsExpr(Arg: 0); |
7636 | std::optional<FunctionEffectMode> MaybeMode = |
7637 | S.ActOnEffectExpression(CondExpr, AttributeName: PAttr.getAttrName()->getName()); |
7638 | if (!MaybeMode) { |
7639 | PAttr.setInvalid(); |
7640 | return true; |
7641 | } |
7642 | NewMode = *MaybeMode; |
7643 | if (NewMode != FunctionEffectMode::Dependent) |
7644 | CondExpr = nullptr; |
7645 | } else { |
7646 | NewMode = FunctionEffectMode::True; |
7647 | } |
7648 | } else { |
7649 | // This is the `blocking` or `allocating` attribute. |
7650 | if (S.CheckAttrNoArgs(CurrAttr: PAttr)) { |
7651 | // The attribute has been marked invalid. |
7652 | return true; |
7653 | } |
7654 | NewMode = FunctionEffectMode::False; |
7655 | } |
7656 | |
7657 | const FunctionEffect::Kind FEKind = |
7658 | (NewMode == FunctionEffectMode::False) |
7659 | ? (IsNonBlocking ? FunctionEffect::Kind::Blocking |
7660 | : FunctionEffect::Kind::Allocating) |
7661 | : (IsNonBlocking ? FunctionEffect::Kind::NonBlocking |
7662 | : FunctionEffect::Kind::NonAllocating); |
7663 | const FunctionEffectWithCondition NewEC{FunctionEffect(FEKind), |
7664 | EffectConditionExpr(CondExpr)}; |
7665 | |
7666 | if (S.diagnoseConflictingFunctionEffect(FX: FPT->getFunctionEffects(), EC: NewEC, |
7667 | NewAttrLoc: PAttr.getLoc())) { |
7668 | PAttr.setInvalid(); |
7669 | return true; |
7670 | } |
7671 | |
7672 | // Add the effect to the FunctionProtoType. |
7673 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
7674 | FunctionEffectSet FX(EPI.FunctionEffects); |
7675 | FunctionEffectSet::Conflicts Errs; |
7676 | [[maybe_unused]] bool Success = FX.insert(NewEC, Errs); |
7677 | assert(Success && "effect conflicts should have been diagnosed above"); |
7678 | EPI.FunctionEffects = FunctionEffectsRef(FX); |
7679 | |
7680 | QualType NewType = S.Context.getFunctionType(ResultTy: FPT->getReturnType(), |
7681 | Args: FPT->getParamTypes(), EPI); |
7682 | QT = Unwrapped.wrap(S, New: NewType->getAs<FunctionType>()); |
7683 | return true; |
7684 | } |
7685 | |
7686 | static bool checkMutualExclusion(TypeProcessingState &state, |
7687 | const FunctionProtoType::ExtProtoInfo &EPI, |
7688 | ParsedAttr &Attr, |
7689 | AttributeCommonInfo::Kind OtherKind) { |
7690 | auto OtherAttr = llvm::find_if( |
7691 | Range&: state.getCurrentAttributes(), |
7692 | P: [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; }); |
7693 | if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid()) |
7694 | return false; |
7695 | |
7696 | Sema &S = state.getSema(); |
7697 | S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible) |
7698 | << *OtherAttr << Attr |
7699 | << (OtherAttr->isRegularKeywordAttribute() || |
7700 | Attr.isRegularKeywordAttribute()); |
7701 | S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute); |
7702 | Attr.setInvalid(); |
7703 | return true; |
7704 | } |
7705 | |
7706 | static bool handleArmAgnosticAttribute(Sema &S, |
7707 | FunctionProtoType::ExtProtoInfo &EPI, |
7708 | ParsedAttr &Attr) { |
7709 | if (!Attr.getNumArgs()) { |
7710 | S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr; |
7711 | Attr.setInvalid(); |
7712 | return true; |
7713 | } |
7714 | |
7715 | for (unsigned I = 0; I < Attr.getNumArgs(); ++I) { |
7716 | StringRef StateName; |
7717 | SourceLocation LiteralLoc; |
7718 | if (!S.checkStringLiteralArgumentAttr(Attr, ArgNum: I, Str&: StateName, ArgLocation: &LiteralLoc)) |
7719 | return true; |
7720 | |
7721 | if (StateName != "sme_za_state") { |
7722 | S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName; |
7723 | Attr.setInvalid(); |
7724 | return true; |
7725 | } |
7726 | |
7727 | if (EPI.AArch64SMEAttributes & |
7728 | (FunctionType::SME_ZAMask | FunctionType::SME_ZT0Mask)) { |
7729 | S.Diag(Attr.getLoc(), diag::err_conflicting_attributes_arm_agnostic); |
7730 | Attr.setInvalid(); |
7731 | return true; |
7732 | } |
7733 | |
7734 | EPI.setArmSMEAttribute(Kind: FunctionType::SME_AgnosticZAStateMask); |
7735 | } |
7736 | |
7737 | return false; |
7738 | } |
7739 | |
7740 | static bool handleArmStateAttribute(Sema &S, |
7741 | FunctionProtoType::ExtProtoInfo &EPI, |
7742 | ParsedAttr &Attr, |
7743 | FunctionType::ArmStateValue State) { |
7744 | if (!Attr.getNumArgs()) { |
7745 | S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr; |
7746 | Attr.setInvalid(); |
7747 | return true; |
7748 | } |
7749 | |
7750 | for (unsigned I = 0; I < Attr.getNumArgs(); ++I) { |
7751 | StringRef StateName; |
7752 | SourceLocation LiteralLoc; |
7753 | if (!S.checkStringLiteralArgumentAttr(Attr, ArgNum: I, Str&: StateName, ArgLocation: &LiteralLoc)) |
7754 | return true; |
7755 | |
7756 | unsigned Shift; |
7757 | FunctionType::ArmStateValue ExistingState; |
7758 | if (StateName == "za") { |
7759 | Shift = FunctionType::SME_ZAShift; |
7760 | ExistingState = FunctionType::getArmZAState(AttrBits: EPI.AArch64SMEAttributes); |
7761 | } else if (StateName == "zt0") { |
7762 | Shift = FunctionType::SME_ZT0Shift; |
7763 | ExistingState = FunctionType::getArmZT0State(AttrBits: EPI.AArch64SMEAttributes); |
7764 | } else { |
7765 | S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName; |
7766 | Attr.setInvalid(); |
7767 | return true; |
7768 | } |
7769 | |
7770 | if (EPI.AArch64SMEAttributes & FunctionType::SME_AgnosticZAStateMask) { |
7771 | S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_agnostic); |
7772 | Attr.setInvalid(); |
7773 | return true; |
7774 | } |
7775 | |
7776 | // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S) |
7777 | // are all mutually exclusive for the same S, so check if there are |
7778 | // conflicting attributes. |
7779 | if (ExistingState != FunctionType::ARM_None && ExistingState != State) { |
7780 | S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state) |
7781 | << StateName; |
7782 | Attr.setInvalid(); |
7783 | return true; |
7784 | } |
7785 | |
7786 | EPI.setArmSMEAttribute( |
7787 | Kind: (FunctionType::AArch64SMETypeAttributes)((State << Shift))); |
7788 | } |
7789 | return false; |
7790 | } |
7791 | |
7792 | /// Process an individual function attribute. Returns true to |
7793 | /// indicate that the attribute was handled, false if it wasn't. |
7794 | static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr, |
7795 | QualType &type, CUDAFunctionTarget CFT) { |
7796 | Sema &S = state.getSema(); |
7797 | |
7798 | FunctionTypeUnwrapper unwrapped(S, type); |
7799 | |
7800 | if (attr.getKind() == ParsedAttr::AT_NoReturn) { |
7801 | if (S.CheckAttrNoArgs(CurrAttr: attr)) |
7802 | return true; |
7803 | |
7804 | // Delay if this is not a function type. |
7805 | if (!unwrapped.isFunctionType()) |
7806 | return false; |
7807 | |
7808 | // Otherwise we can process right away. |
7809 | FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(noReturn: true); |
7810 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
7811 | return true; |
7812 | } |
7813 | |
7814 | if (attr.getKind() == ParsedAttr::AT_CFIUncheckedCallee) { |
7815 | // Delay if this is not a prototyped function type. |
7816 | if (!unwrapped.isFunctionType()) |
7817 | return false; |
7818 | |
7819 | if (!unwrapped.get()->isFunctionProtoType()) { |
7820 | S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
7821 | << attr << attr.isRegularKeywordAttribute() |
7822 | << ExpectedFunctionWithProtoType; |
7823 | attr.setInvalid(); |
7824 | return true; |
7825 | } |
7826 | |
7827 | const auto *FPT = unwrapped.get()->getAs<FunctionProtoType>(); |
7828 | type = S.Context.getFunctionType( |
7829 | ResultTy: FPT->getReturnType(), Args: FPT->getParamTypes(), |
7830 | EPI: FPT->getExtProtoInfo().withCFIUncheckedCallee(true)); |
7831 | type = unwrapped.wrap(S, New: cast<FunctionType>(Val: type.getTypePtr())); |
7832 | return true; |
7833 | } |
7834 | |
7835 | if (attr.getKind() == ParsedAttr::AT_CmseNSCall) { |
7836 | // Delay if this is not a function type. |
7837 | if (!unwrapped.isFunctionType()) |
7838 | return false; |
7839 | |
7840 | // Ignore if we don't have CMSE enabled. |
7841 | if (!S.getLangOpts().Cmse) { |
7842 | S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr; |
7843 | attr.setInvalid(); |
7844 | return true; |
7845 | } |
7846 | |
7847 | // Otherwise we can process right away. |
7848 | FunctionType::ExtInfo EI = |
7849 | unwrapped.get()->getExtInfo().withCmseNSCall(cmseNSCall: true); |
7850 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
7851 | return true; |
7852 | } |
7853 | |
7854 | // ns_returns_retained is not always a type attribute, but if we got |
7855 | // here, we're treating it as one right now. |
7856 | if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) { |
7857 | if (attr.getNumArgs()) return true; |
7858 | |
7859 | // Delay if this is not a function type. |
7860 | if (!unwrapped.isFunctionType()) |
7861 | return false; |
7862 | |
7863 | // Check whether the return type is reasonable. |
7864 | if (S.ObjC().checkNSReturnsRetainedReturnType( |
7865 | loc: attr.getLoc(), type: unwrapped.get()->getReturnType())) |
7866 | return true; |
7867 | |
7868 | // Only actually change the underlying type in ARC builds. |
7869 | QualType origType = type; |
7870 | if (state.getSema().getLangOpts().ObjCAutoRefCount) { |
7871 | FunctionType::ExtInfo EI |
7872 | = unwrapped.get()->getExtInfo().withProducesResult(producesResult: true); |
7873 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
7874 | } |
7875 | type = state.getAttributedType( |
7876 | createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr), |
7877 | origType, type); |
7878 | return true; |
7879 | } |
7880 | |
7881 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) { |
7882 | if (S.CheckAttrTarget(CurrAttr: attr) || S.CheckAttrNoArgs(CurrAttr: attr)) |
7883 | return true; |
7884 | |
7885 | // Delay if this is not a function type. |
7886 | if (!unwrapped.isFunctionType()) |
7887 | return false; |
7888 | |
7889 | FunctionType::ExtInfo EI = |
7890 | unwrapped.get()->getExtInfo().withNoCallerSavedRegs(noCallerSavedRegs: true); |
7891 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
7892 | return true; |
7893 | } |
7894 | |
7895 | if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) { |
7896 | if (!S.getLangOpts().CFProtectionBranch) { |
7897 | S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored); |
7898 | attr.setInvalid(); |
7899 | return true; |
7900 | } |
7901 | |
7902 | if (S.CheckAttrTarget(CurrAttr: attr) || S.CheckAttrNoArgs(CurrAttr: attr)) |
7903 | return true; |
7904 | |
7905 | // If this is not a function type, warning will be asserted by subject |
7906 | // check. |
7907 | if (!unwrapped.isFunctionType()) |
7908 | return true; |
7909 | |
7910 | FunctionType::ExtInfo EI = |
7911 | unwrapped.get()->getExtInfo().withNoCfCheck(noCfCheck: true); |
7912 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
7913 | return true; |
7914 | } |
7915 | |
7916 | if (attr.getKind() == ParsedAttr::AT_Regparm) { |
7917 | unsigned value; |
7918 | if (S.CheckRegparmAttr(attr, value)) |
7919 | return true; |
7920 | |
7921 | // Delay if this is not a function type. |
7922 | if (!unwrapped.isFunctionType()) |
7923 | return false; |
7924 | |
7925 | // Diagnose regparm with fastcall. |
7926 | const FunctionType *fn = unwrapped.get(); |
7927 | CallingConv CC = fn->getCallConv(); |
7928 | if (CC == CC_X86FastCall) { |
7929 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) |
7930 | << FunctionType::getNameForCallConv(CC) << "regparm" |
7931 | << attr.isRegularKeywordAttribute(); |
7932 | attr.setInvalid(); |
7933 | return true; |
7934 | } |
7935 | |
7936 | FunctionType::ExtInfo EI = |
7937 | unwrapped.get()->getExtInfo().withRegParm(RegParm: value); |
7938 | type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
7939 | return true; |
7940 | } |
7941 | |
7942 | if (attr.getKind() == ParsedAttr::AT_ArmStreaming || |
7943 | attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible || |
7944 | attr.getKind() == ParsedAttr::AT_ArmPreserves || |
7945 | attr.getKind() == ParsedAttr::AT_ArmIn || |
7946 | attr.getKind() == ParsedAttr::AT_ArmOut || |
7947 | attr.getKind() == ParsedAttr::AT_ArmInOut || |
7948 | attr.getKind() == ParsedAttr::AT_ArmAgnostic) { |
7949 | if (S.CheckAttrTarget(CurrAttr: attr)) |
7950 | return true; |
7951 | |
7952 | if (attr.getKind() == ParsedAttr::AT_ArmStreaming || |
7953 | attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible) |
7954 | if (S.CheckAttrNoArgs(CurrAttr: attr)) |
7955 | return true; |
7956 | |
7957 | if (!unwrapped.isFunctionType()) |
7958 | return false; |
7959 | |
7960 | const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>(); |
7961 | if (!FnTy) { |
7962 | // SME ACLE attributes are not supported on K&R-style unprototyped C |
7963 | // functions. |
7964 | S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) |
7965 | << attr << attr.isRegularKeywordAttribute() |
7966 | << ExpectedFunctionWithProtoType; |
7967 | attr.setInvalid(); |
7968 | return false; |
7969 | } |
7970 | |
7971 | FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo(); |
7972 | switch (attr.getKind()) { |
7973 | case ParsedAttr::AT_ArmStreaming: |
7974 | if (checkMutualExclusion(state, EPI, attr, |
7975 | ParsedAttr::AT_ArmStreamingCompatible)) |
7976 | return true; |
7977 | EPI.setArmSMEAttribute(Kind: FunctionType::SME_PStateSMEnabledMask); |
7978 | break; |
7979 | case ParsedAttr::AT_ArmStreamingCompatible: |
7980 | if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming)) |
7981 | return true; |
7982 | EPI.setArmSMEAttribute(Kind: FunctionType::SME_PStateSMCompatibleMask); |
7983 | break; |
7984 | case ParsedAttr::AT_ArmPreserves: |
7985 | if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_Preserves)) |
7986 | return true; |
7987 | break; |
7988 | case ParsedAttr::AT_ArmIn: |
7989 | if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_In)) |
7990 | return true; |
7991 | break; |
7992 | case ParsedAttr::AT_ArmOut: |
7993 | if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_Out)) |
7994 | return true; |
7995 | break; |
7996 | case ParsedAttr::AT_ArmInOut: |
7997 | if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_InOut)) |
7998 | return true; |
7999 | break; |
8000 | case ParsedAttr::AT_ArmAgnostic: |
8001 | if (handleArmAgnosticAttribute(S, EPI, Attr&: attr)) |
8002 | return true; |
8003 | break; |
8004 | default: |
8005 | llvm_unreachable("Unsupported attribute"); |
8006 | } |
8007 | |
8008 | QualType newtype = S.Context.getFunctionType(ResultTy: FnTy->getReturnType(), |
8009 | Args: FnTy->getParamTypes(), EPI); |
8010 | type = unwrapped.wrap(S, New: newtype->getAs<FunctionType>()); |
8011 | return true; |
8012 | } |
8013 | |
8014 | if (attr.getKind() == ParsedAttr::AT_NoThrow) { |
8015 | // Delay if this is not a function type. |
8016 | if (!unwrapped.isFunctionType()) |
8017 | return false; |
8018 | |
8019 | if (S.CheckAttrNoArgs(CurrAttr: attr)) { |
8020 | attr.setInvalid(); |
8021 | return true; |
8022 | } |
8023 | |
8024 | // Otherwise we can process right away. |
8025 | auto *Proto = unwrapped.get()->castAs<FunctionProtoType>(); |
8026 | |
8027 | // MSVC ignores nothrow if it is in conflict with an explicit exception |
8028 | // specification. |
8029 | if (Proto->hasExceptionSpec()) { |
8030 | switch (Proto->getExceptionSpecType()) { |
8031 | case EST_None: |
8032 | llvm_unreachable("This doesn't have an exception spec!"); |
8033 | |
8034 | case EST_DynamicNone: |
8035 | case EST_BasicNoexcept: |
8036 | case EST_NoexceptTrue: |
8037 | case EST_NoThrow: |
8038 | // Exception spec doesn't conflict with nothrow, so don't warn. |
8039 | [[fallthrough]]; |
8040 | case EST_Unparsed: |
8041 | case EST_Uninstantiated: |
8042 | case EST_DependentNoexcept: |
8043 | case EST_Unevaluated: |
8044 | // We don't have enough information to properly determine if there is a |
8045 | // conflict, so suppress the warning. |
8046 | break; |
8047 | case EST_Dynamic: |
8048 | case EST_MSAny: |
8049 | case EST_NoexceptFalse: |
8050 | S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored); |
8051 | break; |
8052 | } |
8053 | return true; |
8054 | } |
8055 | |
8056 | type = unwrapped.wrap( |
8057 | S, New: S.Context |
8058 | .getFunctionTypeWithExceptionSpec( |
8059 | Orig: QualType{Proto, 0}, |
8060 | ESI: FunctionProtoType::ExceptionSpecInfo{EST_NoThrow}) |
8061 | ->getAs<FunctionType>()); |
8062 | return true; |
8063 | } |
8064 | |
8065 | if (attr.getKind() == ParsedAttr::AT_NonBlocking || |
8066 | attr.getKind() == ParsedAttr::AT_NonAllocating || |
8067 | attr.getKind() == ParsedAttr::AT_Blocking || |
8068 | attr.getKind() == ParsedAttr::AT_Allocating) { |
8069 | return handleNonBlockingNonAllocatingTypeAttr(TPState&: state, PAttr&: attr, QT&: type, Unwrapped&: unwrapped); |
8070 | } |
8071 | |
8072 | // Delay if the type didn't work out to a function. |
8073 | if (!unwrapped.isFunctionType()) return false; |
8074 | |
8075 | // Otherwise, a calling convention. |
8076 | CallingConv CC; |
8077 | if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/FD: nullptr, CFT)) |
8078 | return true; |
8079 | |
8080 | const FunctionType *fn = unwrapped.get(); |
8081 | CallingConv CCOld = fn->getCallConv(); |
8082 | Attr *CCAttr = getCCTypeAttr(Ctx&: S.Context, Attr&: attr); |
8083 | |
8084 | if (CCOld != CC) { |
8085 | // Error out on when there's already an attribute on the type |
8086 | // and the CCs don't match. |
8087 | if (S.getCallingConvAttributedType(T: type)) { |
8088 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) |
8089 | << FunctionType::getNameForCallConv(CC) |
8090 | << FunctionType::getNameForCallConv(CCOld) |
8091 | << attr.isRegularKeywordAttribute(); |
8092 | attr.setInvalid(); |
8093 | return true; |
8094 | } |
8095 | } |
8096 | |
8097 | // Diagnose use of variadic functions with calling conventions that |
8098 | // don't support them (e.g. because they're callee-cleanup). |
8099 | // We delay warning about this on unprototyped function declarations |
8100 | // until after redeclaration checking, just in case we pick up a |
8101 | // prototype that way. And apparently we also "delay" warning about |
8102 | // unprototyped function types in general, despite not necessarily having |
8103 | // much ability to diagnose it later. |
8104 | if (!supportsVariadicCall(CC)) { |
8105 | const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(Val: fn); |
8106 | if (FnP && FnP->isVariadic()) { |
8107 | // stdcall and fastcall are ignored with a warning for GCC and MS |
8108 | // compatibility. |
8109 | if (CC == CC_X86StdCall || CC == CC_X86FastCall) |
8110 | return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported) |
8111 | << FunctionType::getNameForCallConv(CC) |
8112 | << (int)Sema::CallingConventionIgnoredReason::VariadicFunction; |
8113 | |
8114 | attr.setInvalid(); |
8115 | return S.Diag(attr.getLoc(), diag::err_cconv_varargs) |
8116 | << FunctionType::getNameForCallConv(CC); |
8117 | } |
8118 | } |
8119 | |
8120 | // Also diagnose fastcall with regparm. |
8121 | if (CC == CC_X86FastCall && fn->getHasRegParm()) { |
8122 | S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible) |
8123 | << "regparm"<< FunctionType::getNameForCallConv(CC_X86FastCall) |
8124 | << attr.isRegularKeywordAttribute(); |
8125 | attr.setInvalid(); |
8126 | return true; |
8127 | } |
8128 | |
8129 | // Modify the CC from the wrapped function type, wrap it all back, and then |
8130 | // wrap the whole thing in an AttributedType as written. The modified type |
8131 | // might have a different CC if we ignored the attribute. |
8132 | QualType Equivalent; |
8133 | if (CCOld == CC) { |
8134 | Equivalent = type; |
8135 | } else { |
8136 | auto EI = unwrapped.get()->getExtInfo().withCallingConv(cc: CC); |
8137 | Equivalent = |
8138 | unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI)); |
8139 | } |
8140 | type = state.getAttributedType(A: CCAttr, ModifiedType: type, EquivType: Equivalent); |
8141 | return true; |
8142 | } |
8143 | |
8144 | bool Sema::hasExplicitCallingConv(QualType T) { |
8145 | const AttributedType *AT; |
8146 | |
8147 | // Stop if we'd be stripping off a typedef sugar node to reach the |
8148 | // AttributedType. |
8149 | while ((AT = T->getAs<AttributedType>()) && |
8150 | AT->getAs<TypedefType>() == T->getAs<TypedefType>()) { |
8151 | if (AT->isCallingConv()) |
8152 | return true; |
8153 | T = AT->getModifiedType(); |
8154 | } |
8155 | return false; |
8156 | } |
8157 | |
8158 | void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer, |
8159 | bool IsCtorOrDtor, SourceLocation Loc) { |
8160 | FunctionTypeUnwrapper Unwrapped(*this, T); |
8161 | const FunctionType *FT = Unwrapped.get(); |
8162 | bool IsVariadic = (isa<FunctionProtoType>(Val: FT) && |
8163 | cast<FunctionProtoType>(Val: FT)->isVariadic()); |
8164 | CallingConv CurCC = FT->getCallConv(); |
8165 | CallingConv ToCC = |
8166 | Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod: HasThisPointer); |
8167 | |
8168 | if (CurCC == ToCC) |
8169 | return; |
8170 | |
8171 | // MS compiler ignores explicit calling convention attributes on structors. We |
8172 | // should do the same. |
8173 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) { |
8174 | // Issue a warning on ignored calling convention -- except of __stdcall. |
8175 | // Again, this is what MS compiler does. |
8176 | if (CurCC != CC_X86StdCall) |
8177 | Diag(Loc, diag::warn_cconv_unsupported) |
8178 | << FunctionType::getNameForCallConv(CurCC) |
8179 | << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor; |
8180 | // Default adjustment. |
8181 | } else { |
8182 | // Only adjust types with the default convention. For example, on Windows |
8183 | // we should adjust a __cdecl type to __thiscall for instance methods, and a |
8184 | // __thiscall type to __cdecl for static methods. |
8185 | CallingConv DefaultCC = |
8186 | Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod: !HasThisPointer); |
8187 | |
8188 | if (CurCC != DefaultCC) |
8189 | return; |
8190 | |
8191 | if (hasExplicitCallingConv(T)) |
8192 | return; |
8193 | } |
8194 | |
8195 | FT = Context.adjustFunctionType(Fn: FT, EInfo: FT->getExtInfo().withCallingConv(cc: ToCC)); |
8196 | QualType Wrapped = Unwrapped.wrap(S&: *this, New: FT); |
8197 | T = Context.getAdjustedType(Orig: T, New: Wrapped); |
8198 | } |
8199 | |
8200 | /// HandleVectorSizeAttribute - this attribute is only applicable to integral |
8201 | /// and float scalars, although arrays, pointers, and function return values are |
8202 | /// allowed in conjunction with this construct. Aggregates with this attribute |
8203 | /// are invalid, even if they are of the same size as a corresponding scalar. |
8204 | /// The raw attribute should contain precisely 1 argument, the vector size for |
8205 | /// the variable, measured in bytes. If curType and rawAttr are well formed, |
8206 | /// this routine will return a new vector type. |
8207 | static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr, |
8208 | Sema &S) { |
8209 | // Check the attribute arguments. |
8210 | if (Attr.getNumArgs() != 1) { |
8211 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr |
8212 | << 1; |
8213 | Attr.setInvalid(); |
8214 | return; |
8215 | } |
8216 | |
8217 | Expr *SizeExpr = Attr.getArgAsExpr(Arg: 0); |
8218 | QualType T = S.BuildVectorType(CurType, SizeExpr, AttrLoc: Attr.getLoc()); |
8219 | if (!T.isNull()) |
8220 | CurType = T; |
8221 | else |
8222 | Attr.setInvalid(); |
8223 | } |
8224 | |
8225 | /// Process the OpenCL-like ext_vector_type attribute when it occurs on |
8226 | /// a type. |
8227 | static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, |
8228 | Sema &S) { |
8229 | // check the attribute arguments. |
8230 | if (Attr.getNumArgs() != 1) { |
8231 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr |
8232 | << 1; |
8233 | return; |
8234 | } |
8235 | |
8236 | Expr *SizeExpr = Attr.getArgAsExpr(Arg: 0); |
8237 | QualType T = S.BuildExtVectorType(T: CurType, ArraySize: SizeExpr, AttrLoc: Attr.getLoc()); |
8238 | if (!T.isNull()) |
8239 | CurType = T; |
8240 | } |
8241 | |
8242 | static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) { |
8243 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); |
8244 | if (!BTy) |
8245 | return false; |
8246 | |
8247 | llvm::Triple Triple = S.Context.getTargetInfo().getTriple(); |
8248 | |
8249 | // Signed poly is mathematically wrong, but has been baked into some ABIs by |
8250 | // now. |
8251 | bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 || |
8252 | Triple.getArch() == llvm::Triple::aarch64_32 || |
8253 | Triple.getArch() == llvm::Triple::aarch64_be; |
8254 | if (VecKind == VectorKind::NeonPoly) { |
8255 | if (IsPolyUnsigned) { |
8256 | // AArch64 polynomial vectors are unsigned. |
8257 | return BTy->getKind() == BuiltinType::UChar || |
8258 | BTy->getKind() == BuiltinType::UShort || |
8259 | BTy->getKind() == BuiltinType::ULong || |
8260 | BTy->getKind() == BuiltinType::ULongLong; |
8261 | } else { |
8262 | // AArch32 polynomial vectors are signed. |
8263 | return BTy->getKind() == BuiltinType::SChar || |
8264 | BTy->getKind() == BuiltinType::Short || |
8265 | BTy->getKind() == BuiltinType::LongLong; |
8266 | } |
8267 | } |
8268 | |
8269 | // Non-polynomial vector types: the usual suspects are allowed, as well as |
8270 | // float64_t on AArch64. |
8271 | if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) && |
8272 | BTy->getKind() == BuiltinType::Double) |
8273 | return true; |
8274 | |
8275 | return BTy->getKind() == BuiltinType::SChar || |
8276 | BTy->getKind() == BuiltinType::UChar || |
8277 | BTy->getKind() == BuiltinType::Short || |
8278 | BTy->getKind() == BuiltinType::UShort || |
8279 | BTy->getKind() == BuiltinType::Int || |
8280 | BTy->getKind() == BuiltinType::UInt || |
8281 | BTy->getKind() == BuiltinType::Long || |
8282 | BTy->getKind() == BuiltinType::ULong || |
8283 | BTy->getKind() == BuiltinType::LongLong || |
8284 | BTy->getKind() == BuiltinType::ULongLong || |
8285 | BTy->getKind() == BuiltinType::Float || |
8286 | BTy->getKind() == BuiltinType::Half || |
8287 | BTy->getKind() == BuiltinType::BFloat16 || |
8288 | BTy->getKind() == BuiltinType::MFloat8; |
8289 | } |
8290 | |
8291 | static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr, |
8292 | llvm::APSInt &Result) { |
8293 | const auto *AttrExpr = Attr.getArgAsExpr(Arg: 0); |
8294 | if (!AttrExpr->isTypeDependent()) { |
8295 | if (std::optional<llvm::APSInt> Res = |
8296 | AttrExpr->getIntegerConstantExpr(Ctx: S.Context)) { |
8297 | Result = *Res; |
8298 | return true; |
8299 | } |
8300 | } |
8301 | S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) |
8302 | << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange(); |
8303 | Attr.setInvalid(); |
8304 | return false; |
8305 | } |
8306 | |
8307 | /// HandleNeonVectorTypeAttr - The "neon_vector_type" and |
8308 | /// "neon_polyvector_type" attributes are used to create vector types that |
8309 | /// are mangled according to ARM's ABI. Otherwise, these types are identical |
8310 | /// to those created with the "vector_size" attribute. Unlike "vector_size" |
8311 | /// the argument to these Neon attributes is the number of vector elements, |
8312 | /// not the vector size in bytes. The vector width and element type must |
8313 | /// match one of the standard Neon vector types. |
8314 | static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr, |
8315 | Sema &S, VectorKind VecKind) { |
8316 | bool IsTargetOffloading = S.getLangOpts().isTargetDevice(); |
8317 | |
8318 | // Target must have NEON (or MVE, whose vectors are similar enough |
8319 | // not to need a separate attribute) |
8320 | if (!S.Context.getTargetInfo().hasFeature(Feature: "mve") && |
8321 | VecKind == VectorKind::Neon && |
8322 | S.Context.getTargetInfo().getTriple().isArmMClass()) { |
8323 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile) |
8324 | << Attr << "'mve'"; |
8325 | Attr.setInvalid(); |
8326 | return; |
8327 | } |
8328 | if (!S.Context.getTargetInfo().hasFeature(Feature: "mve") && |
8329 | VecKind == VectorKind::NeonPoly && |
8330 | S.Context.getTargetInfo().getTriple().isArmMClass()) { |
8331 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported_m_profile) |
8332 | << Attr << "'mve'"; |
8333 | Attr.setInvalid(); |
8334 | return; |
8335 | } |
8336 | |
8337 | // Check the attribute arguments. |
8338 | if (Attr.getNumArgs() != 1) { |
8339 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) |
8340 | << Attr << 1; |
8341 | Attr.setInvalid(); |
8342 | return; |
8343 | } |
8344 | // The number of elements must be an ICE. |
8345 | llvm::APSInt numEltsInt(32); |
8346 | if (!verifyValidIntegerConstantExpr(S, Attr, Result&: numEltsInt)) |
8347 | return; |
8348 | |
8349 | // Only certain element types are supported for Neon vectors. |
8350 | if (!isPermittedNeonBaseType(Ty&: CurType, VecKind, S) && !IsTargetOffloading) { |
8351 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType; |
8352 | Attr.setInvalid(); |
8353 | return; |
8354 | } |
8355 | |
8356 | // The total size of the vector must be 64 or 128 bits. |
8357 | unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(T: CurType)); |
8358 | unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue()); |
8359 | unsigned vecSize = typeSize * numElts; |
8360 | if (vecSize != 64 && vecSize != 128) { |
8361 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType; |
8362 | Attr.setInvalid(); |
8363 | return; |
8364 | } |
8365 | |
8366 | CurType = S.Context.getVectorType(VectorType: CurType, NumElts: numElts, VecKind); |
8367 | } |
8368 | |
8369 | /// Handle the __ptrauth qualifier. |
8370 | static void HandlePtrAuthQualifier(ASTContext &Ctx, QualType &T, |
8371 | const ParsedAttr &Attr, Sema &S) { |
8372 | |
8373 | assert((Attr.getNumArgs() > 0 && Attr.getNumArgs() <= 3) && |
8374 | "__ptrauth qualifier takes between 1 and 3 arguments"); |
8375 | Expr *KeyArg = Attr.getArgAsExpr(Arg: 0); |
8376 | Expr *IsAddressDiscriminatedArg = |
8377 | Attr.getNumArgs() >= 2 ? Attr.getArgAsExpr(Arg: 1) : nullptr; |
8378 | Expr *ExtraDiscriminatorArg = |
8379 | Attr.getNumArgs() >= 3 ? Attr.getArgAsExpr(Arg: 2) : nullptr; |
8380 | |
8381 | unsigned Key; |
8382 | if (S.checkConstantPointerAuthKey(keyExpr: KeyArg, key&: Key)) { |
8383 | Attr.setInvalid(); |
8384 | return; |
8385 | } |
8386 | assert(Key <= PointerAuthQualifier::MaxKey && "ptrauth key is out of range"); |
8387 | |
8388 | bool IsInvalid = false; |
8389 | unsigned IsAddressDiscriminated, ExtraDiscriminator; |
8390 | IsInvalid |= !S.checkPointerAuthDiscriminatorArg(Arg: IsAddressDiscriminatedArg, |
8391 | Kind: PointerAuthDiscArgKind::Addr, |
8392 | IntVal&: IsAddressDiscriminated); |
8393 | IsInvalid |= !S.checkPointerAuthDiscriminatorArg( |
8394 | Arg: ExtraDiscriminatorArg, Kind: PointerAuthDiscArgKind::Extra, IntVal&: ExtraDiscriminator); |
8395 | |
8396 | if (IsInvalid) { |
8397 | Attr.setInvalid(); |
8398 | return; |
8399 | } |
8400 | |
8401 | if (!T->isSignableType(Ctx) && !T->isDependentType()) { |
8402 | S.Diag(Attr.getLoc(), diag::err_ptrauth_qualifier_invalid_target) << T; |
8403 | Attr.setInvalid(); |
8404 | return; |
8405 | } |
8406 | |
8407 | if (T.getPointerAuth()) { |
8408 | S.Diag(Attr.getLoc(), diag::err_ptrauth_qualifier_redundant) << T; |
8409 | Attr.setInvalid(); |
8410 | return; |
8411 | } |
8412 | |
8413 | if (!S.getLangOpts().PointerAuthIntrinsics) { |
8414 | S.Diag(Attr.getLoc(), diag::err_ptrauth_disabled) << Attr.getRange(); |
8415 | Attr.setInvalid(); |
8416 | return; |
8417 | } |
8418 | |
8419 | assert((!IsAddressDiscriminatedArg || IsAddressDiscriminated <= 1) && |
8420 | "address discriminator arg should be either 0 or 1"); |
8421 | PointerAuthQualifier Qual = PointerAuthQualifier::Create( |
8422 | Key, IsAddressDiscriminated, ExtraDiscriminator, |
8423 | AuthenticationMode: PointerAuthenticationMode::SignAndAuth, /*IsIsaPointer=*/false, |
8424 | /*AuthenticatesNullValues=*/false); |
8425 | T = S.Context.getPointerAuthType(Ty: T, PointerAuth: Qual); |
8426 | } |
8427 | |
8428 | /// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is |
8429 | /// used to create fixed-length versions of sizeless SVE types defined by |
8430 | /// the ACLE, such as svint32_t and svbool_t. |
8431 | static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr, |
8432 | Sema &S) { |
8433 | // Target must have SVE. |
8434 | if (!S.Context.getTargetInfo().hasFeature(Feature: "sve")) { |
8435 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'"; |
8436 | Attr.setInvalid(); |
8437 | return; |
8438 | } |
8439 | |
8440 | // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or |
8441 | // if <bits>+ syntax is used. |
8442 | if (!S.getLangOpts().VScaleMin || |
8443 | S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) { |
8444 | S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported) |
8445 | << Attr; |
8446 | Attr.setInvalid(); |
8447 | return; |
8448 | } |
8449 | |
8450 | // Check the attribute arguments. |
8451 | if (Attr.getNumArgs() != 1) { |
8452 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) |
8453 | << Attr << 1; |
8454 | Attr.setInvalid(); |
8455 | return; |
8456 | } |
8457 | |
8458 | // The vector size must be an integer constant expression. |
8459 | llvm::APSInt SveVectorSizeInBits(32); |
8460 | if (!verifyValidIntegerConstantExpr(S, Attr, Result&: SveVectorSizeInBits)) |
8461 | return; |
8462 | |
8463 | unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue()); |
8464 | |
8465 | // The attribute vector size must match -msve-vector-bits. |
8466 | if (VecSize != S.getLangOpts().VScaleMin * 128) { |
8467 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size) |
8468 | << VecSize << S.getLangOpts().VScaleMin * 128; |
8469 | Attr.setInvalid(); |
8470 | return; |
8471 | } |
8472 | |
8473 | // Attribute can only be attached to a single SVE vector or predicate type. |
8474 | if (!CurType->isSveVLSBuiltinType()) { |
8475 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type) |
8476 | << Attr << CurType; |
8477 | Attr.setInvalid(); |
8478 | return; |
8479 | } |
8480 | |
8481 | const auto *BT = CurType->castAs<BuiltinType>(); |
8482 | |
8483 | QualType EltType = CurType->getSveEltType(Ctx: S.Context); |
8484 | unsigned TypeSize = S.Context.getTypeSize(T: EltType); |
8485 | VectorKind VecKind = VectorKind::SveFixedLengthData; |
8486 | if (BT->getKind() == BuiltinType::SveBool) { |
8487 | // Predicates are represented as i8. |
8488 | VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth(); |
8489 | VecKind = VectorKind::SveFixedLengthPredicate; |
8490 | } else |
8491 | VecSize /= TypeSize; |
8492 | CurType = S.Context.getVectorType(VectorType: EltType, NumElts: VecSize, VecKind); |
8493 | } |
8494 | |
8495 | static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State, |
8496 | QualType &CurType, |
8497 | ParsedAttr &Attr) { |
8498 | const VectorType *VT = dyn_cast<VectorType>(Val&: CurType); |
8499 | if (!VT || VT->getVectorKind() != VectorKind::Neon) { |
8500 | State.getSema().Diag(Attr.getLoc(), |
8501 | diag::err_attribute_arm_mve_polymorphism); |
8502 | Attr.setInvalid(); |
8503 | return; |
8504 | } |
8505 | |
8506 | CurType = |
8507 | State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>( |
8508 | State.getSema().Context, Attr), |
8509 | CurType, CurType); |
8510 | } |
8511 | |
8512 | /// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is |
8513 | /// used to create fixed-length versions of sizeless RVV types such as |
8514 | /// vint8m1_t_t. |
8515 | static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType, |
8516 | ParsedAttr &Attr, Sema &S) { |
8517 | // Target must have vector extension. |
8518 | if (!S.Context.getTargetInfo().hasFeature(Feature: "zve32x")) { |
8519 | S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) |
8520 | << Attr << "'zve32x'"; |
8521 | Attr.setInvalid(); |
8522 | return; |
8523 | } |
8524 | |
8525 | auto VScale = |
8526 | S.Context.getTargetInfo().getVScaleRange(LangOpts: S.getLangOpts(), IsArmStreamingFunction: false); |
8527 | if (!VScale || !VScale->first || VScale->first != VScale->second) { |
8528 | S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported) |
8529 | << Attr; |
8530 | Attr.setInvalid(); |
8531 | return; |
8532 | } |
8533 | |
8534 | // Check the attribute arguments. |
8535 | if (Attr.getNumArgs() != 1) { |
8536 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) |
8537 | << Attr << 1; |
8538 | Attr.setInvalid(); |
8539 | return; |
8540 | } |
8541 | |
8542 | // The vector size must be an integer constant expression. |
8543 | llvm::APSInt RVVVectorSizeInBits(32); |
8544 | if (!verifyValidIntegerConstantExpr(S, Attr, Result&: RVVVectorSizeInBits)) |
8545 | return; |
8546 | |
8547 | // Attribute can only be attached to a single RVV vector type. |
8548 | if (!CurType->isRVVVLSBuiltinType()) { |
8549 | S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type) |
8550 | << Attr << CurType; |
8551 | Attr.setInvalid(); |
8552 | return; |
8553 | } |
8554 | |
8555 | unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue()); |
8556 | |
8557 | ASTContext::BuiltinVectorTypeInfo Info = |
8558 | S.Context.getBuiltinVectorTypeInfo(VecTy: CurType->castAs<BuiltinType>()); |
8559 | unsigned MinElts = Info.EC.getKnownMinValue(); |
8560 | |
8561 | VectorKind VecKind = VectorKind::RVVFixedLengthData; |
8562 | unsigned ExpectedSize = VScale->first * MinElts; |
8563 | QualType EltType = CurType->getRVVEltType(Ctx: S.Context); |
8564 | unsigned EltSize = S.Context.getTypeSize(T: EltType); |
8565 | unsigned NumElts; |
8566 | if (Info.ElementType == S.Context.BoolTy) { |
8567 | NumElts = VecSize / S.Context.getCharWidth(); |
8568 | if (!NumElts) { |
8569 | NumElts = 1; |
8570 | switch (VecSize) { |
8571 | case 1: |
8572 | VecKind = VectorKind::RVVFixedLengthMask_1; |
8573 | break; |
8574 | case 2: |
8575 | VecKind = VectorKind::RVVFixedLengthMask_2; |
8576 | break; |
8577 | case 4: |
8578 | VecKind = VectorKind::RVVFixedLengthMask_4; |
8579 | break; |
8580 | } |
8581 | } else |
8582 | VecKind = VectorKind::RVVFixedLengthMask; |
8583 | } else { |
8584 | ExpectedSize *= EltSize; |
8585 | NumElts = VecSize / EltSize; |
8586 | } |
8587 | |
8588 | // The attribute vector size must match -mrvv-vector-bits. |
8589 | if (VecSize != ExpectedSize) { |
8590 | S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size) |
8591 | << VecSize << ExpectedSize; |
8592 | Attr.setInvalid(); |
8593 | return; |
8594 | } |
8595 | |
8596 | CurType = S.Context.getVectorType(VectorType: EltType, NumElts, VecKind); |
8597 | } |
8598 | |
8599 | /// Handle OpenCL Access Qualifier Attribute. |
8600 | static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr, |
8601 | Sema &S) { |
8602 | // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type. |
8603 | if (!(CurType->isImageType() || CurType->isPipeType())) { |
8604 | S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier); |
8605 | Attr.setInvalid(); |
8606 | return; |
8607 | } |
8608 | |
8609 | if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) { |
8610 | QualType BaseTy = TypedefTy->desugar(); |
8611 | |
8612 | std::string PrevAccessQual; |
8613 | if (BaseTy->isPipeType()) { |
8614 | if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) { |
8615 | OpenCLAccessAttr *Attr = |
8616 | TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>(); |
8617 | PrevAccessQual = Attr->getSpelling(); |
8618 | } else { |
8619 | PrevAccessQual = "read_only"; |
8620 | } |
8621 | } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) { |
8622 | |
8623 | switch (ImgType->getKind()) { |
8624 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
8625 | case BuiltinType::Id: \ |
8626 | PrevAccessQual = #Access; \ |
8627 | break; |
8628 | #include "clang/Basic/OpenCLImageTypes.def" |
8629 | default: |
8630 | llvm_unreachable("Unable to find corresponding image type."); |
8631 | } |
8632 | } else { |
8633 | llvm_unreachable("unexpected type"); |
8634 | } |
8635 | StringRef AttrName = Attr.getAttrName()->getName(); |
8636 | if (PrevAccessQual == AttrName.ltrim(Chars: "_")) { |
8637 | // Duplicated qualifiers |
8638 | S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec) |
8639 | << AttrName << Attr.getRange(); |
8640 | } else { |
8641 | // Contradicting qualifiers |
8642 | S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers); |
8643 | } |
8644 | |
8645 | S.Diag(TypedefTy->getDecl()->getBeginLoc(), |
8646 | diag::note_opencl_typedef_access_qualifier) << PrevAccessQual; |
8647 | } else if (CurType->isPipeType()) { |
8648 | if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) { |
8649 | QualType ElemType = CurType->castAs<PipeType>()->getElementType(); |
8650 | CurType = S.Context.getWritePipeType(T: ElemType); |
8651 | } |
8652 | } |
8653 | } |
8654 | |
8655 | /// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type |
8656 | static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr, |
8657 | Sema &S) { |
8658 | if (!S.getLangOpts().MatrixTypes) { |
8659 | S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled); |
8660 | return; |
8661 | } |
8662 | |
8663 | if (Attr.getNumArgs() != 2) { |
8664 | S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) |
8665 | << Attr << 2; |
8666 | return; |
8667 | } |
8668 | |
8669 | Expr *RowsExpr = Attr.getArgAsExpr(Arg: 0); |
8670 | Expr *ColsExpr = Attr.getArgAsExpr(Arg: 1); |
8671 | QualType T = S.BuildMatrixType(ElementTy: CurType, NumRows: RowsExpr, NumCols: ColsExpr, AttrLoc: Attr.getLoc()); |
8672 | if (!T.isNull()) |
8673 | CurType = T; |
8674 | } |
8675 | |
8676 | static void HandleAnnotateTypeAttr(TypeProcessingState &State, |
8677 | QualType &CurType, const ParsedAttr &PA) { |
8678 | Sema &S = State.getSema(); |
8679 | |
8680 | if (PA.getNumArgs() < 1) { |
8681 | S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1; |
8682 | return; |
8683 | } |
8684 | |
8685 | // Make sure that there is a string literal as the annotation's first |
8686 | // argument. |
8687 | StringRef Str; |
8688 | if (!S.checkStringLiteralArgumentAttr(Attr: PA, ArgNum: 0, Str)) |
8689 | return; |
8690 | |
8691 | llvm::SmallVector<Expr *, 4> Args; |
8692 | Args.reserve(N: PA.getNumArgs() - 1); |
8693 | for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) { |
8694 | assert(!PA.isArgIdent(Idx)); |
8695 | Args.push_back(Elt: PA.getArgAsExpr(Arg: Idx)); |
8696 | } |
8697 | if (!S.ConstantFoldAttrArgs(CI: PA, Args)) |
8698 | return; |
8699 | auto *AnnotateTypeAttr = |
8700 | AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA); |
8701 | CurType = State.getAttributedType(A: AnnotateTypeAttr, ModifiedType: CurType, EquivType: CurType); |
8702 | } |
8703 | |
8704 | static void HandleLifetimeBoundAttr(TypeProcessingState &State, |
8705 | QualType &CurType, |
8706 | ParsedAttr &Attr) { |
8707 | if (State.getDeclarator().isDeclarationOfFunction()) { |
8708 | CurType = State.getAttributedType( |
8709 | createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr), |
8710 | CurType, CurType); |
8711 | return; |
8712 | } |
8713 | State.getSema().Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type) |
8714 | << Attr << Attr.isRegularKeywordAttribute() |
8715 | << ExpectedParameterOrImplicitObjectParameter; |
8716 | } |
8717 | |
8718 | static void HandleLifetimeCaptureByAttr(TypeProcessingState &State, |
8719 | QualType &CurType, ParsedAttr &PA) { |
8720 | if (State.getDeclarator().isDeclarationOfFunction()) { |
8721 | auto *Attr = State.getSema().ParseLifetimeCaptureByAttr(PA, "this"); |
8722 | if (Attr) |
8723 | CurType = State.getAttributedType(A: Attr, ModifiedType: CurType, EquivType: CurType); |
8724 | } |
8725 | } |
8726 | |
8727 | static void HandleHLSLParamModifierAttr(TypeProcessingState &State, |
8728 | QualType &CurType, |
8729 | const ParsedAttr &Attr, Sema &S) { |
8730 | // Don't apply this attribute to template dependent types. It is applied on |
8731 | // substitution during template instantiation. Also skip parsing this if we've |
8732 | // already modified the type based on an earlier attribute. |
8733 | if (CurType->isDependentType() || State.didParseHLSLParamMod()) |
8734 | return; |
8735 | if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout || |
8736 | Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out) { |
8737 | State.setParsedHLSLParamMod(true); |
8738 | } |
8739 | } |
8740 | |
8741 | static bool isMultiSubjectAttrAllowedOnType(const ParsedAttr &Attr) { |
8742 | // The DeviceKernel attribute is shared for many targets, and |
8743 | // it is only allowed to be a type attribute with the AMDGPU |
8744 | // spelling, so skip processing the attr as a type attr |
8745 | // unless it has that spelling. |
8746 | if (Attr.getKind() != ParsedAttr::AT_DeviceKernel) |
8747 | return true; |
8748 | return DeviceKernelAttr::isAMDGPUSpelling(Attr); |
8749 | } |
8750 | |
8751 | static void processTypeAttrs(TypeProcessingState &state, QualType &type, |
8752 | TypeAttrLocation TAL, |
8753 | const ParsedAttributesView &attrs, |
8754 | CUDAFunctionTarget CFT) { |
8755 | |
8756 | state.setParsedNoDeref(false); |
8757 | if (attrs.empty()) |
8758 | return; |
8759 | |
8760 | // Scan through and apply attributes to this type where it makes sense. Some |
8761 | // attributes (such as __address_space__, __vector_size__, etc) apply to the |
8762 | // type, but others can be present in the type specifiers even though they |
8763 | // apply to the decl. Here we apply type attributes and ignore the rest. |
8764 | |
8765 | // This loop modifies the list pretty frequently, but we still need to make |
8766 | // sure we visit every element once. Copy the attributes list, and iterate |
8767 | // over that. |
8768 | ParsedAttributesView AttrsCopy{attrs}; |
8769 | for (ParsedAttr &attr : AttrsCopy) { |
8770 | |
8771 | // Skip attributes that were marked to be invalid. |
8772 | if (attr.isInvalid()) |
8773 | continue; |
8774 | |
8775 | if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) { |
8776 | // [[gnu::...]] attributes are treated as declaration attributes, so may |
8777 | // not appertain to a DeclaratorChunk. If we handle them as type |
8778 | // attributes, accept them in that position and diagnose the GCC |
8779 | // incompatibility. |
8780 | if (attr.isGNUScope()) { |
8781 | assert(attr.isStandardAttributeSyntax()); |
8782 | bool IsTypeAttr = attr.isTypeAttr(); |
8783 | if (TAL == TAL_DeclChunk) { |
8784 | state.getSema().Diag(attr.getLoc(), |
8785 | IsTypeAttr |
8786 | ? diag::warn_gcc_ignores_type_attr |
8787 | : diag::warn_cxx11_gnu_attribute_on_type) |
8788 | << attr; |
8789 | if (!IsTypeAttr) |
8790 | continue; |
8791 | } |
8792 | } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk && |
8793 | !attr.isTypeAttr()) { |
8794 | // Otherwise, only consider type processing for a C++11 attribute if |
8795 | // - it has actually been applied to a type (decl-specifier-seq or |
8796 | // declarator chunk), or |
8797 | // - it is a type attribute, irrespective of where it was applied (so |
8798 | // that we can support the legacy behavior of some type attributes |
8799 | // that can be applied to the declaration name). |
8800 | continue; |
8801 | } |
8802 | } |
8803 | |
8804 | // If this is an attribute we can handle, do so now, |
8805 | // otherwise, add it to the FnAttrs list for rechaining. |
8806 | switch (attr.getKind()) { |
8807 | default: |
8808 | // A [[]] attribute on a declarator chunk must appertain to a type. |
8809 | if ((attr.isStandardAttributeSyntax() || |
8810 | attr.isRegularKeywordAttribute()) && |
8811 | TAL == TAL_DeclChunk) { |
8812 | state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr) |
8813 | << attr << attr.isRegularKeywordAttribute(); |
8814 | attr.setUsedAsTypeAttr(); |
8815 | } |
8816 | break; |
8817 | |
8818 | case ParsedAttr::UnknownAttribute: |
8819 | if (attr.isStandardAttributeSyntax()) { |
8820 | state.getSema().DiagnoseUnknownAttribute(AL: attr); |
8821 | // Mark the attribute as invalid so we don't emit the same diagnostic |
8822 | // multiple times. |
8823 | attr.setInvalid(); |
8824 | } |
8825 | break; |
8826 | |
8827 | case ParsedAttr::IgnoredAttribute: |
8828 | break; |
8829 | |
8830 | case ParsedAttr::AT_BTFTypeTag: |
8831 | HandleBTFTypeTagAttribute(Type&: type, Attr: attr, State&: state); |
8832 | attr.setUsedAsTypeAttr(); |
8833 | break; |
8834 | |
8835 | case ParsedAttr::AT_MayAlias: |
8836 | // FIXME: This attribute needs to actually be handled, but if we ignore |
8837 | // it it breaks large amounts of Linux software. |
8838 | attr.setUsedAsTypeAttr(); |
8839 | break; |
8840 | case ParsedAttr::AT_OpenCLPrivateAddressSpace: |
8841 | case ParsedAttr::AT_OpenCLGlobalAddressSpace: |
8842 | case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace: |
8843 | case ParsedAttr::AT_OpenCLGlobalHostAddressSpace: |
8844 | case ParsedAttr::AT_OpenCLLocalAddressSpace: |
8845 | case ParsedAttr::AT_OpenCLConstantAddressSpace: |
8846 | case ParsedAttr::AT_OpenCLGenericAddressSpace: |
8847 | case ParsedAttr::AT_HLSLGroupSharedAddressSpace: |
8848 | case ParsedAttr::AT_AddressSpace: |
8849 | HandleAddressSpaceTypeAttribute(Type&: type, Attr: attr, State&: state); |
8850 | attr.setUsedAsTypeAttr(); |
8851 | break; |
8852 | OBJC_POINTER_TYPE_ATTRS_CASELIST: |
8853 | if (!handleObjCPointerTypeAttr(state, attr, type)) |
8854 | distributeObjCPointerTypeAttr(state, attr, type); |
8855 | attr.setUsedAsTypeAttr(); |
8856 | break; |
8857 | case ParsedAttr::AT_VectorSize: |
8858 | HandleVectorSizeAttr(CurType&: type, Attr: attr, S&: state.getSema()); |
8859 | attr.setUsedAsTypeAttr(); |
8860 | break; |
8861 | case ParsedAttr::AT_ExtVectorType: |
8862 | HandleExtVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema()); |
8863 | attr.setUsedAsTypeAttr(); |
8864 | break; |
8865 | case ParsedAttr::AT_NeonVectorType: |
8866 | HandleNeonVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema(), VecKind: VectorKind::Neon); |
8867 | attr.setUsedAsTypeAttr(); |
8868 | break; |
8869 | case ParsedAttr::AT_NeonPolyVectorType: |
8870 | HandleNeonVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema(), |
8871 | VecKind: VectorKind::NeonPoly); |
8872 | attr.setUsedAsTypeAttr(); |
8873 | break; |
8874 | case ParsedAttr::AT_ArmSveVectorBits: |
8875 | HandleArmSveVectorBitsTypeAttr(CurType&: type, Attr&: attr, S&: state.getSema()); |
8876 | attr.setUsedAsTypeAttr(); |
8877 | break; |
8878 | case ParsedAttr::AT_ArmMveStrictPolymorphism: { |
8879 | HandleArmMveStrictPolymorphismAttr(State&: state, CurType&: type, Attr&: attr); |
8880 | attr.setUsedAsTypeAttr(); |
8881 | break; |
8882 | } |
8883 | case ParsedAttr::AT_RISCVRVVVectorBits: |
8884 | HandleRISCVRVVVectorBitsTypeAttr(CurType&: type, Attr&: attr, S&: state.getSema()); |
8885 | attr.setUsedAsTypeAttr(); |
8886 | break; |
8887 | case ParsedAttr::AT_OpenCLAccess: |
8888 | HandleOpenCLAccessAttr(CurType&: type, Attr: attr, S&: state.getSema()); |
8889 | attr.setUsedAsTypeAttr(); |
8890 | break; |
8891 | case ParsedAttr::AT_PointerAuth: |
8892 | HandlePtrAuthQualifier(Ctx&: state.getSema().Context, T&: type, Attr: attr, |
8893 | S&: state.getSema()); |
8894 | attr.setUsedAsTypeAttr(); |
8895 | break; |
8896 | case ParsedAttr::AT_LifetimeBound: |
8897 | if (TAL == TAL_DeclChunk) |
8898 | HandleLifetimeBoundAttr(State&: state, CurType&: type, Attr&: attr); |
8899 | break; |
8900 | case ParsedAttr::AT_LifetimeCaptureBy: |
8901 | if (TAL == TAL_DeclChunk) |
8902 | HandleLifetimeCaptureByAttr(State&: state, CurType&: type, PA&: attr); |
8903 | break; |
8904 | |
8905 | case ParsedAttr::AT_NoDeref: { |
8906 | // FIXME: `noderef` currently doesn't work correctly in [[]] syntax. |
8907 | // See https://github.com/llvm/llvm-project/issues/55790 for details. |
8908 | // For the time being, we simply emit a warning that the attribute is |
8909 | // ignored. |
8910 | if (attr.isStandardAttributeSyntax()) { |
8911 | state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored) |
8912 | << attr; |
8913 | break; |
8914 | } |
8915 | ASTContext &Ctx = state.getSema().Context; |
8916 | type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr), |
8917 | type, type); |
8918 | attr.setUsedAsTypeAttr(); |
8919 | state.setParsedNoDeref(true); |
8920 | break; |
8921 | } |
8922 | |
8923 | case ParsedAttr::AT_MatrixType: |
8924 | HandleMatrixTypeAttr(CurType&: type, Attr: attr, S&: state.getSema()); |
8925 | attr.setUsedAsTypeAttr(); |
8926 | break; |
8927 | |
8928 | case ParsedAttr::AT_WebAssemblyFuncref: { |
8929 | if (!HandleWebAssemblyFuncrefAttr(State&: state, QT&: type, PAttr&: attr)) |
8930 | attr.setUsedAsTypeAttr(); |
8931 | break; |
8932 | } |
8933 | |
8934 | case ParsedAttr::AT_HLSLParamModifier: { |
8935 | HandleHLSLParamModifierAttr(State&: state, CurType&: type, Attr: attr, S&: state.getSema()); |
8936 | attr.setUsedAsTypeAttr(); |
8937 | break; |
8938 | } |
8939 | |
8940 | case ParsedAttr::AT_SwiftAttr: { |
8941 | HandleSwiftAttr(State&: state, TAL, QT&: type, PAttr&: attr); |
8942 | break; |
8943 | } |
8944 | |
8945 | MS_TYPE_ATTRS_CASELIST: |
8946 | if (!handleMSPointerTypeQualifierAttr(State&: state, PAttr&: attr, Type&: type)) |
8947 | attr.setUsedAsTypeAttr(); |
8948 | break; |
8949 | |
8950 | |
8951 | NULLABILITY_TYPE_ATTRS_CASELIST: |
8952 | // Either add nullability here or try to distribute it. We |
8953 | // don't want to distribute the nullability specifier past any |
8954 | // dependent type, because that complicates the user model. |
8955 | if (type->canHaveNullability() || type->isDependentType() || |
8956 | type->isArrayType() || |
8957 | !distributeNullabilityTypeAttr(state, type, attr)) { |
8958 | unsigned endIndex; |
8959 | if (TAL == TAL_DeclChunk) |
8960 | endIndex = state.getCurrentChunkIndex(); |
8961 | else |
8962 | endIndex = state.getDeclarator().getNumTypeObjects(); |
8963 | bool allowOnArrayType = |
8964 | state.getDeclarator().isPrototypeContext() && |
8965 | !hasOuterPointerLikeChunk(D: state.getDeclarator(), endIndex); |
8966 | if (CheckNullabilityTypeSpecifier(State&: state, Type&: type, Attr&: attr, |
8967 | AllowOnArrayType: allowOnArrayType)) { |
8968 | attr.setInvalid(); |
8969 | } |
8970 | |
8971 | attr.setUsedAsTypeAttr(); |
8972 | } |
8973 | break; |
8974 | |
8975 | case ParsedAttr::AT_ObjCKindOf: |
8976 | // '__kindof' must be part of the decl-specifiers. |
8977 | switch (TAL) { |
8978 | case TAL_DeclSpec: |
8979 | break; |
8980 | |
8981 | case TAL_DeclChunk: |
8982 | case TAL_DeclName: |
8983 | state.getSema().Diag(attr.getLoc(), |
8984 | diag::err_objc_kindof_wrong_position) |
8985 | << FixItHint::CreateRemoval(attr.getLoc()) |
8986 | << FixItHint::CreateInsertion( |
8987 | state.getDeclarator().getDeclSpec().getBeginLoc(), |
8988 | "__kindof "); |
8989 | break; |
8990 | } |
8991 | |
8992 | // Apply it regardless. |
8993 | if (checkObjCKindOfType(state, type, attr)) |
8994 | attr.setInvalid(); |
8995 | break; |
8996 | |
8997 | case ParsedAttr::AT_NoThrow: |
8998 | // Exception Specifications aren't generally supported in C mode throughout |
8999 | // clang, so revert to attribute-based handling for C. |
9000 | if (!state.getSema().getLangOpts().CPlusPlus) |
9001 | break; |
9002 | [[fallthrough]]; |
9003 | FUNCTION_TYPE_ATTRS_CASELIST: |
9004 | if (!isMultiSubjectAttrAllowedOnType(Attr: attr)) |
9005 | break; |
9006 | |
9007 | attr.setUsedAsTypeAttr(); |
9008 | |
9009 | // Attributes with standard syntax have strict rules for what they |
9010 | // appertain to and hence should not use the "distribution" logic below. |
9011 | if (attr.isStandardAttributeSyntax() || |
9012 | attr.isRegularKeywordAttribute()) { |
9013 | if (!handleFunctionTypeAttr(state, attr, type, CFT)) { |
9014 | diagnoseBadTypeAttribute(S&: state.getSema(), attr, type); |
9015 | attr.setInvalid(); |
9016 | } |
9017 | break; |
9018 | } |
9019 | |
9020 | // Never process function type attributes as part of the |
9021 | // declaration-specifiers. |
9022 | if (TAL == TAL_DeclSpec) |
9023 | distributeFunctionTypeAttrFromDeclSpec(state, attr, declSpecType&: type, CFT); |
9024 | |
9025 | // Otherwise, handle the possible delays. |
9026 | else if (!handleFunctionTypeAttr(state, attr, type, CFT)) |
9027 | distributeFunctionTypeAttr(state, attr, type); |
9028 | break; |
9029 | case ParsedAttr::AT_AcquireHandle: { |
9030 | if (!type->isFunctionType()) |
9031 | return; |
9032 | |
9033 | if (attr.getNumArgs() != 1) { |
9034 | state.getSema().Diag(attr.getLoc(), |
9035 | diag::err_attribute_wrong_number_arguments) |
9036 | << attr << 1; |
9037 | attr.setInvalid(); |
9038 | return; |
9039 | } |
9040 | |
9041 | StringRef HandleType; |
9042 | if (!state.getSema().checkStringLiteralArgumentAttr(Attr: attr, ArgNum: 0, Str&: HandleType)) |
9043 | return; |
9044 | type = state.getAttributedType( |
9045 | AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr), |
9046 | type, type); |
9047 | attr.setUsedAsTypeAttr(); |
9048 | break; |
9049 | } |
9050 | case ParsedAttr::AT_AnnotateType: { |
9051 | HandleAnnotateTypeAttr(State&: state, CurType&: type, PA: attr); |
9052 | attr.setUsedAsTypeAttr(); |
9053 | break; |
9054 | } |
9055 | case ParsedAttr::AT_HLSLResourceClass: |
9056 | case ParsedAttr::AT_HLSLROV: |
9057 | case ParsedAttr::AT_HLSLRawBuffer: |
9058 | case ParsedAttr::AT_HLSLContainedType: { |
9059 | // Only collect HLSL resource type attributes that are in |
9060 | // decl-specifier-seq; do not collect attributes on declarations or those |
9061 | // that get to slide after declaration name. |
9062 | if (TAL == TAL_DeclSpec && |
9063 | state.getSema().HLSL().handleResourceTypeAttr(T: type, AL: attr)) |
9064 | attr.setUsedAsTypeAttr(); |
9065 | break; |
9066 | } |
9067 | } |
9068 | |
9069 | // Handle attributes that are defined in a macro. We do not want this to be |
9070 | // applied to ObjC builtin attributes. |
9071 | if (isa<AttributedType>(type) && attr.hasMacroIdentifier() && |
9072 | !type.getQualifiers().hasObjCLifetime() && |
9073 | !type.getQualifiers().hasObjCGCAttr() && |
9074 | attr.getKind() != ParsedAttr::AT_ObjCGC && |
9075 | attr.getKind() != ParsedAttr::AT_ObjCOwnership) { |
9076 | const IdentifierInfo *MacroII = attr.getMacroIdentifier(); |
9077 | type = state.getSema().Context.getMacroQualifiedType(UnderlyingTy: type, MacroII); |
9078 | state.setExpansionLocForMacroQualifiedType( |
9079 | MQT: cast<MacroQualifiedType>(Val: type.getTypePtr()), |
9080 | Loc: attr.getMacroExpansionLoc()); |
9081 | } |
9082 | } |
9083 | } |
9084 | |
9085 | void Sema::completeExprArrayBound(Expr *E) { |
9086 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParens())) { |
9087 | if (VarDecl *Var = dyn_cast<VarDecl>(Val: DRE->getDecl())) { |
9088 | if (isTemplateInstantiation(Kind: Var->getTemplateSpecializationKind())) { |
9089 | auto *Def = Var->getDefinition(); |
9090 | if (!Def) { |
9091 | SourceLocation PointOfInstantiation = E->getExprLoc(); |
9092 | runWithSufficientStackSpace(Loc: PointOfInstantiation, Fn: [&] { |
9093 | InstantiateVariableDefinition(PointOfInstantiation, Var); |
9094 | }); |
9095 | Def = Var->getDefinition(); |
9096 | |
9097 | // If we don't already have a point of instantiation, and we managed |
9098 | // to instantiate a definition, this is the point of instantiation. |
9099 | // Otherwise, we don't request an end-of-TU instantiation, so this is |
9100 | // not a point of instantiation. |
9101 | // FIXME: Is this really the right behavior? |
9102 | if (Var->getPointOfInstantiation().isInvalid() && Def) { |
9103 | assert(Var->getTemplateSpecializationKind() == |
9104 | TSK_ImplicitInstantiation && |
9105 | "explicit instantiation with no point of instantiation"); |
9106 | Var->setTemplateSpecializationKind( |
9107 | TSK: Var->getTemplateSpecializationKind(), PointOfInstantiation); |
9108 | } |
9109 | } |
9110 | |
9111 | // Update the type to the definition's type both here and within the |
9112 | // expression. |
9113 | if (Def) { |
9114 | DRE->setDecl(Def); |
9115 | QualType T = Def->getType(); |
9116 | DRE->setType(T); |
9117 | // FIXME: Update the type on all intervening expressions. |
9118 | E->setType(T); |
9119 | } |
9120 | |
9121 | // We still go on to try to complete the type independently, as it |
9122 | // may also require instantiations or diagnostics if it remains |
9123 | // incomplete. |
9124 | } |
9125 | } |
9126 | } |
9127 | if (const auto CastE = dyn_cast<ExplicitCastExpr>(Val: E)) { |
9128 | QualType DestType = CastE->getTypeAsWritten(); |
9129 | if (const auto *IAT = Context.getAsIncompleteArrayType(T: DestType)) { |
9130 | // C++20 [expr.static.cast]p.4: ... If T is array of unknown bound, |
9131 | // this direct-initialization defines the type of the expression |
9132 | // as U[1] |
9133 | QualType ResultType = Context.getConstantArrayType( |
9134 | EltTy: IAT->getElementType(), |
9135 | ArySize: llvm::APInt(Context.getTypeSize(T: Context.getSizeType()), 1), |
9136 | /*SizeExpr=*/nullptr, ASM: ArraySizeModifier::Normal, |
9137 | /*IndexTypeQuals=*/0); |
9138 | E->setType(ResultType); |
9139 | } |
9140 | } |
9141 | } |
9142 | |
9143 | QualType Sema::getCompletedType(Expr *E) { |
9144 | // Incomplete array types may be completed by the initializer attached to |
9145 | // their definitions. For static data members of class templates and for |
9146 | // variable templates, we need to instantiate the definition to get this |
9147 | // initializer and complete the type. |
9148 | if (E->getType()->isIncompleteArrayType()) |
9149 | completeExprArrayBound(E); |
9150 | |
9151 | // FIXME: Are there other cases which require instantiating something other |
9152 | // than the type to complete the type of an expression? |
9153 | |
9154 | return E->getType(); |
9155 | } |
9156 | |
9157 | bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind, |
9158 | TypeDiagnoser &Diagnoser) { |
9159 | return RequireCompleteType(Loc: E->getExprLoc(), T: getCompletedType(E), Kind, |
9160 | Diagnoser); |
9161 | } |
9162 | |
9163 | bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) { |
9164 | BoundTypeDiagnoser<> Diagnoser(DiagID); |
9165 | return RequireCompleteExprType(E, Kind: CompleteTypeKind::Default, Diagnoser); |
9166 | } |
9167 | |
9168 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, |
9169 | CompleteTypeKind Kind, |
9170 | TypeDiagnoser &Diagnoser) { |
9171 | if (RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser: &Diagnoser)) |
9172 | return true; |
9173 | if (const TagType *Tag = T->getAs<TagType>()) { |
9174 | if (!Tag->getDecl()->isCompleteDefinitionRequired()) { |
9175 | Tag->getDecl()->setCompleteDefinitionRequired(); |
9176 | Consumer.HandleTagDeclRequiredDefinition(D: Tag->getDecl()); |
9177 | } |
9178 | } |
9179 | return false; |
9180 | } |
9181 | |
9182 | bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) { |
9183 | StructuralEquivalenceContext::NonEquivalentDeclSet NonEquivalentDecls; |
9184 | if (!Suggested) |
9185 | return false; |
9186 | |
9187 | // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext |
9188 | // and isolate from other C++ specific checks. |
9189 | StructuralEquivalenceContext Ctx( |
9190 | getLangOpts(), D->getASTContext(), Suggested->getASTContext(), |
9191 | NonEquivalentDecls, StructuralEquivalenceKind::Default, |
9192 | /*StrictTypeSpelling=*/false, /*Complain=*/true, |
9193 | /*ErrorOnTagTypeMismatch=*/true); |
9194 | return Ctx.IsEquivalent(D1: D, D2: Suggested); |
9195 | } |
9196 | |
9197 | bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested, |
9198 | AcceptableKind Kind, bool OnlyNeedComplete) { |
9199 | // Easy case: if we don't have modules, all declarations are visible. |
9200 | if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility) |
9201 | return true; |
9202 | |
9203 | // If this definition was instantiated from a template, map back to the |
9204 | // pattern from which it was instantiated. |
9205 | if (isa<TagDecl>(Val: D) && cast<TagDecl>(Val: D)->isBeingDefined()) { |
9206 | // We're in the middle of defining it; this definition should be treated |
9207 | // as visible. |
9208 | return true; |
9209 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
9210 | if (auto *Pattern = RD->getTemplateInstantiationPattern()) |
9211 | RD = Pattern; |
9212 | D = RD->getDefinition(); |
9213 | } else if (auto *ED = dyn_cast<EnumDecl>(Val: D)) { |
9214 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) |
9215 | ED = Pattern; |
9216 | if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) { |
9217 | // If the enum has a fixed underlying type, it may have been forward |
9218 | // declared. In -fms-compatibility, `enum Foo;` will also forward declare |
9219 | // the enum and assign it the underlying type of `int`. Since we're only |
9220 | // looking for a complete type (not a definition), any visible declaration |
9221 | // of it will do. |
9222 | *Suggested = nullptr; |
9223 | for (auto *Redecl : ED->redecls()) { |
9224 | if (isAcceptable(Redecl, Kind)) |
9225 | return true; |
9226 | if (Redecl->isThisDeclarationADefinition() || |
9227 | (Redecl->isCanonicalDecl() && !*Suggested)) |
9228 | *Suggested = Redecl; |
9229 | } |
9230 | |
9231 | return false; |
9232 | } |
9233 | D = ED->getDefinition(); |
9234 | } else if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) { |
9235 | if (auto *Pattern = FD->getTemplateInstantiationPattern()) |
9236 | FD = Pattern; |
9237 | D = FD->getDefinition(); |
9238 | } else if (auto *VD = dyn_cast<VarDecl>(Val: D)) { |
9239 | if (auto *Pattern = VD->getTemplateInstantiationPattern()) |
9240 | VD = Pattern; |
9241 | D = VD->getDefinition(); |
9242 | } |
9243 | |
9244 | assert(D && "missing definition for pattern of instantiated definition"); |
9245 | |
9246 | *Suggested = D; |
9247 | |
9248 | auto DefinitionIsAcceptable = [&] { |
9249 | // The (primary) definition might be in a visible module. |
9250 | if (isAcceptable(D, Kind)) |
9251 | return true; |
9252 | |
9253 | // A visible module might have a merged definition instead. |
9254 | if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(Def: D) |
9255 | : hasVisibleMergedDefinition(Def: D)) { |
9256 | if (CodeSynthesisContexts.empty() && |
9257 | !getLangOpts().ModulesLocalVisibility) { |
9258 | // Cache the fact that this definition is implicitly visible because |
9259 | // there is a visible merged definition. |
9260 | D->setVisibleDespiteOwningModule(); |
9261 | } |
9262 | return true; |
9263 | } |
9264 | |
9265 | return false; |
9266 | }; |
9267 | |
9268 | if (DefinitionIsAcceptable()) |
9269 | return true; |
9270 | |
9271 | // The external source may have additional definitions of this entity that are |
9272 | // visible, so complete the redeclaration chain now and ask again. |
9273 | if (auto *Source = Context.getExternalSource()) { |
9274 | Source->CompleteRedeclChain(D); |
9275 | return DefinitionIsAcceptable(); |
9276 | } |
9277 | |
9278 | return false; |
9279 | } |
9280 | |
9281 | /// Determine whether there is any declaration of \p D that was ever a |
9282 | /// definition (perhaps before module merging) and is currently visible. |
9283 | /// \param D The definition of the entity. |
9284 | /// \param Suggested Filled in with the declaration that should be made visible |
9285 | /// in order to provide a definition of this entity. |
9286 | /// \param OnlyNeedComplete If \c true, we only need the type to be complete, |
9287 | /// not defined. This only matters for enums with a fixed underlying |
9288 | /// type, since in all other cases, a type is complete if and only if it |
9289 | /// is defined. |
9290 | bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested, |
9291 | bool OnlyNeedComplete) { |
9292 | return hasAcceptableDefinition(D, Suggested, Kind: Sema::AcceptableKind::Visible, |
9293 | OnlyNeedComplete); |
9294 | } |
9295 | |
9296 | /// Determine whether there is any declaration of \p D that was ever a |
9297 | /// definition (perhaps before module merging) and is currently |
9298 | /// reachable. |
9299 | /// \param D The definition of the entity. |
9300 | /// \param Suggested Filled in with the declaration that should be made |
9301 | /// reachable |
9302 | /// in order to provide a definition of this entity. |
9303 | /// \param OnlyNeedComplete If \c true, we only need the type to be complete, |
9304 | /// not defined. This only matters for enums with a fixed underlying |
9305 | /// type, since in all other cases, a type is complete if and only if it |
9306 | /// is defined. |
9307 | bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested, |
9308 | bool OnlyNeedComplete) { |
9309 | return hasAcceptableDefinition(D, Suggested, Kind: Sema::AcceptableKind::Reachable, |
9310 | OnlyNeedComplete); |
9311 | } |
9312 | |
9313 | /// Locks in the inheritance model for the given class and all of its bases. |
9314 | static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) { |
9315 | RD = RD->getMostRecentNonInjectedDecl(); |
9316 | if (!RD->hasAttr<MSInheritanceAttr>()) { |
9317 | MSInheritanceModel IM; |
9318 | bool BestCase = false; |
9319 | switch (S.MSPointerToMemberRepresentationMethod) { |
9320 | case LangOptions::PPTMK_BestCase: |
9321 | BestCase = true; |
9322 | IM = RD->calculateInheritanceModel(); |
9323 | break; |
9324 | case LangOptions::PPTMK_FullGeneralitySingleInheritance: |
9325 | IM = MSInheritanceModel::Single; |
9326 | break; |
9327 | case LangOptions::PPTMK_FullGeneralityMultipleInheritance: |
9328 | IM = MSInheritanceModel::Multiple; |
9329 | break; |
9330 | case LangOptions::PPTMK_FullGeneralityVirtualInheritance: |
9331 | IM = MSInheritanceModel::Unspecified; |
9332 | break; |
9333 | } |
9334 | |
9335 | SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid() |
9336 | ? S.ImplicitMSInheritanceAttrLoc |
9337 | : RD->getSourceRange(); |
9338 | RD->addAttr(MSInheritanceAttr::CreateImplicit( |
9339 | S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM))); |
9340 | S.Consumer.AssignInheritanceModel(RD); |
9341 | } |
9342 | } |
9343 | |
9344 | bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T, |
9345 | CompleteTypeKind Kind, |
9346 | TypeDiagnoser *Diagnoser) { |
9347 | // FIXME: Add this assertion to make sure we always get instantiation points. |
9348 | // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType"); |
9349 | // FIXME: Add this assertion to help us flush out problems with |
9350 | // checking for dependent types and type-dependent expressions. |
9351 | // |
9352 | // assert(!T->isDependentType() && |
9353 | // "Can't ask whether a dependent type is complete"); |
9354 | |
9355 | if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) { |
9356 | if (CXXRecordDecl *RD = MPTy->getMostRecentCXXRecordDecl(); |
9357 | RD && !RD->isDependentType()) { |
9358 | QualType T = Context.getTypeDeclType(RD); |
9359 | if (getLangOpts().CompleteMemberPointers && !RD->isBeingDefined() && |
9360 | RequireCompleteType(Loc, T, Kind, diag::err_memptr_incomplete)) |
9361 | return true; |
9362 | |
9363 | // We lock in the inheritance model once somebody has asked us to ensure |
9364 | // that a pointer-to-member type is complete. |
9365 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
9366 | (void)isCompleteType(Loc, T); |
9367 | assignInheritanceModel(S&: *this, RD: MPTy->getMostRecentCXXRecordDecl()); |
9368 | } |
9369 | } |
9370 | } |
9371 | |
9372 | NamedDecl *Def = nullptr; |
9373 | bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless); |
9374 | bool Incomplete = (T->isIncompleteType(Def: &Def) || |
9375 | (!AcceptSizeless && T->isSizelessBuiltinType())); |
9376 | |
9377 | // Check that any necessary explicit specializations are visible. For an |
9378 | // enum, we just need the declaration, so don't check this. |
9379 | if (Def && !isa<EnumDecl>(Val: Def)) |
9380 | checkSpecializationReachability(Loc, Spec: Def); |
9381 | |
9382 | // If we have a complete type, we're done. |
9383 | if (!Incomplete) { |
9384 | NamedDecl *Suggested = nullptr; |
9385 | if (Def && |
9386 | !hasReachableDefinition(D: Def, Suggested: &Suggested, /*OnlyNeedComplete=*/true)) { |
9387 | // If the user is going to see an error here, recover by making the |
9388 | // definition visible. |
9389 | bool TreatAsComplete = Diagnoser && !isSFINAEContext(); |
9390 | if (Diagnoser && Suggested) |
9391 | diagnoseMissingImport(Loc, Decl: Suggested, MIK: MissingImportKind::Definition, |
9392 | /*Recover*/ TreatAsComplete); |
9393 | return !TreatAsComplete; |
9394 | } else if (Def && !TemplateInstCallbacks.empty()) { |
9395 | CodeSynthesisContext TempInst; |
9396 | TempInst.Kind = CodeSynthesisContext::Memoization; |
9397 | TempInst.Template = Def; |
9398 | TempInst.Entity = Def; |
9399 | TempInst.PointOfInstantiation = Loc; |
9400 | atTemplateBegin(Callbacks&: TemplateInstCallbacks, TheSema: *this, Inst: TempInst); |
9401 | atTemplateEnd(Callbacks&: TemplateInstCallbacks, TheSema: *this, Inst: TempInst); |
9402 | } |
9403 | |
9404 | return false; |
9405 | } |
9406 | |
9407 | TagDecl *Tag = dyn_cast_or_null<TagDecl>(Val: Def); |
9408 | ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Val: Def); |
9409 | |
9410 | // Give the external source a chance to provide a definition of the type. |
9411 | // This is kept separate from completing the redeclaration chain so that |
9412 | // external sources such as LLDB can avoid synthesizing a type definition |
9413 | // unless it's actually needed. |
9414 | if (Tag || IFace) { |
9415 | // Avoid diagnosing invalid decls as incomplete. |
9416 | if (Def->isInvalidDecl()) |
9417 | return true; |
9418 | |
9419 | // Give the external AST source a chance to complete the type. |
9420 | if (auto *Source = Context.getExternalSource()) { |
9421 | if (Tag && Tag->hasExternalLexicalStorage()) |
9422 | Source->CompleteType(Tag); |
9423 | if (IFace && IFace->hasExternalLexicalStorage()) |
9424 | Source->CompleteType(Class: IFace); |
9425 | // If the external source completed the type, go through the motions |
9426 | // again to ensure we're allowed to use the completed type. |
9427 | if (!T->isIncompleteType()) |
9428 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); |
9429 | } |
9430 | } |
9431 | |
9432 | // If we have a class template specialization or a class member of a |
9433 | // class template specialization, or an array with known size of such, |
9434 | // try to instantiate it. |
9435 | if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Val: Tag)) { |
9436 | bool Instantiated = false; |
9437 | bool Diagnosed = false; |
9438 | if (RD->isDependentContext()) { |
9439 | // Don't try to instantiate a dependent class (eg, a member template of |
9440 | // an instantiated class template specialization). |
9441 | // FIXME: Can this ever happen? |
9442 | } else if (auto *ClassTemplateSpec = |
9443 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RD)) { |
9444 | if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) { |
9445 | runWithSufficientStackSpace(Loc, Fn: [&] { |
9446 | Diagnosed = InstantiateClassTemplateSpecialization( |
9447 | PointOfInstantiation: Loc, ClassTemplateSpec, TSK: TSK_ImplicitInstantiation, |
9448 | /*Complain=*/Diagnoser, PrimaryStrictPackMatch: ClassTemplateSpec->hasStrictPackMatch()); |
9449 | }); |
9450 | Instantiated = true; |
9451 | } |
9452 | } else { |
9453 | CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass(); |
9454 | if (!RD->isBeingDefined() && Pattern) { |
9455 | MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo(); |
9456 | assert(MSI && "Missing member specialization information?"); |
9457 | // This record was instantiated from a class within a template. |
9458 | if (MSI->getTemplateSpecializationKind() != |
9459 | TSK_ExplicitSpecialization) { |
9460 | runWithSufficientStackSpace(Loc, Fn: [&] { |
9461 | Diagnosed = InstantiateClass(PointOfInstantiation: Loc, Instantiation: RD, Pattern, |
9462 | TemplateArgs: getTemplateInstantiationArgs(RD), |
9463 | TSK: TSK_ImplicitInstantiation, |
9464 | /*Complain=*/Diagnoser); |
9465 | }); |
9466 | Instantiated = true; |
9467 | } |
9468 | } |
9469 | } |
9470 | |
9471 | if (Instantiated) { |
9472 | // Instantiate* might have already complained that the template is not |
9473 | // defined, if we asked it to. |
9474 | if (Diagnoser && Diagnosed) |
9475 | return true; |
9476 | // If we instantiated a definition, check that it's usable, even if |
9477 | // instantiation produced an error, so that repeated calls to this |
9478 | // function give consistent answers. |
9479 | if (!T->isIncompleteType()) |
9480 | return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser); |
9481 | } |
9482 | } |
9483 | |
9484 | // FIXME: If we didn't instantiate a definition because of an explicit |
9485 | // specialization declaration, check that it's visible. |
9486 | |
9487 | if (!Diagnoser) |
9488 | return true; |
9489 | |
9490 | Diagnoser->diagnose(S&: *this, Loc, T); |
9491 | |
9492 | // If the type was a forward declaration of a class/struct/union |
9493 | // type, produce a note. |
9494 | if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid()) |
9495 | Diag(Tag->getLocation(), |
9496 | Tag->isBeingDefined() ? diag::note_type_being_defined |
9497 | : diag::note_forward_declaration) |
9498 | << Context.getTagDeclType(Tag); |
9499 | |
9500 | // If the Objective-C class was a forward declaration, produce a note. |
9501 | if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid()) |
9502 | Diag(IFace->getLocation(), diag::note_forward_class); |
9503 | |
9504 | // If we have external information that we can use to suggest a fix, |
9505 | // produce a note. |
9506 | if (ExternalSource) |
9507 | ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T); |
9508 | |
9509 | return true; |
9510 | } |
9511 | |
9512 | bool Sema::RequireCompleteType(SourceLocation Loc, QualType T, |
9513 | CompleteTypeKind Kind, unsigned DiagID) { |
9514 | BoundTypeDiagnoser<> Diagnoser(DiagID); |
9515 | return RequireCompleteType(Loc, T, Kind, Diagnoser); |
9516 | } |
9517 | |
9518 | /// Get diagnostic %select index for tag kind for |
9519 | /// literal type diagnostic message. |
9520 | /// WARNING: Indexes apply to particular diagnostics only! |
9521 | /// |
9522 | /// \returns diagnostic %select index. |
9523 | static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) { |
9524 | switch (Tag) { |
9525 | case TagTypeKind::Struct: |
9526 | return 0; |
9527 | case TagTypeKind::Interface: |
9528 | return 1; |
9529 | case TagTypeKind::Class: |
9530 | return 2; |
9531 | default: llvm_unreachable("Invalid tag kind for literal type diagnostic!"); |
9532 | } |
9533 | } |
9534 | |
9535 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, |
9536 | TypeDiagnoser &Diagnoser) { |
9537 | assert(!T->isDependentType() && "type should not be dependent"); |
9538 | |
9539 | QualType ElemType = Context.getBaseElementType(QT: T); |
9540 | if ((isCompleteType(Loc, T: ElemType) || ElemType->isVoidType()) && |
9541 | T->isLiteralType(Ctx: Context)) |
9542 | return false; |
9543 | |
9544 | Diagnoser.diagnose(S&: *this, Loc, T); |
9545 | |
9546 | if (T->isVariableArrayType()) |
9547 | return true; |
9548 | |
9549 | const RecordType *RT = ElemType->getAs<RecordType>(); |
9550 | if (!RT) |
9551 | return true; |
9552 | |
9553 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
9554 | |
9555 | // A partially-defined class type can't be a literal type, because a literal |
9556 | // class type must have a trivial destructor (which can't be checked until |
9557 | // the class definition is complete). |
9558 | if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T)) |
9559 | return true; |
9560 | |
9561 | // [expr.prim.lambda]p3: |
9562 | // This class type is [not] a literal type. |
9563 | if (RD->isLambda() && !getLangOpts().CPlusPlus17) { |
9564 | Diag(RD->getLocation(), diag::note_non_literal_lambda); |
9565 | return true; |
9566 | } |
9567 | |
9568 | // If the class has virtual base classes, then it's not an aggregate, and |
9569 | // cannot have any constexpr constructors or a trivial default constructor, |
9570 | // so is non-literal. This is better to diagnose than the resulting absence |
9571 | // of constexpr constructors. |
9572 | if (RD->getNumVBases()) { |
9573 | Diag(RD->getLocation(), diag::note_non_literal_virtual_base) |
9574 | << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); |
9575 | for (const auto &I : RD->vbases()) |
9576 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) |
9577 | << I.getSourceRange(); |
9578 | } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() && |
9579 | !RD->hasTrivialDefaultConstructor()) { |
9580 | Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD; |
9581 | } else if (RD->hasNonLiteralTypeFieldsOrBases()) { |
9582 | for (const auto &I : RD->bases()) { |
9583 | if (!I.getType()->isLiteralType(Ctx: Context)) { |
9584 | Diag(I.getBeginLoc(), diag::note_non_literal_base_class) |
9585 | << RD << I.getType() << I.getSourceRange(); |
9586 | return true; |
9587 | } |
9588 | } |
9589 | for (const auto *I : RD->fields()) { |
9590 | if (!I->getType()->isLiteralType(Context) || |
9591 | I->getType().isVolatileQualified()) { |
9592 | Diag(I->getLocation(), diag::note_non_literal_field) |
9593 | << RD << I << I->getType() |
9594 | << I->getType().isVolatileQualified(); |
9595 | return true; |
9596 | } |
9597 | } |
9598 | } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor() |
9599 | : !RD->hasTrivialDestructor()) { |
9600 | // All fields and bases are of literal types, so have trivial or constexpr |
9601 | // destructors. If this class's destructor is non-trivial / non-constexpr, |
9602 | // it must be user-declared. |
9603 | CXXDestructorDecl *Dtor = RD->getDestructor(); |
9604 | assert(Dtor && "class has literal fields and bases but no dtor?"); |
9605 | if (!Dtor) |
9606 | return true; |
9607 | |
9608 | if (getLangOpts().CPlusPlus20) { |
9609 | Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor) |
9610 | << RD; |
9611 | } else { |
9612 | Diag(Dtor->getLocation(), Dtor->isUserProvided() |
9613 | ? diag::note_non_literal_user_provided_dtor |
9614 | : diag::note_non_literal_nontrivial_dtor) |
9615 | << RD; |
9616 | if (!Dtor->isUserProvided()) |
9617 | SpecialMemberIsTrivial(Dtor, CXXSpecialMemberKind::Destructor, |
9618 | TrivialABIHandling::IgnoreTrivialABI, |
9619 | /*Diagnose*/ true); |
9620 | } |
9621 | } |
9622 | |
9623 | return true; |
9624 | } |
9625 | |
9626 | bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) { |
9627 | BoundTypeDiagnoser<> Diagnoser(DiagID); |
9628 | return RequireLiteralType(Loc, T, Diagnoser); |
9629 | } |
9630 | |
9631 | QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword, |
9632 | const CXXScopeSpec &SS, QualType T, |
9633 | TagDecl *OwnedTagDecl) { |
9634 | if (T.isNull()) |
9635 | return T; |
9636 | return Context.getElaboratedType( |
9637 | Keyword, NNS: SS.isValid() ? SS.getScopeRep() : nullptr, NamedType: T, OwnedTagDecl); |
9638 | } |
9639 | |
9640 | QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) { |
9641 | assert(!E->hasPlaceholderType() && "unexpected placeholder"); |
9642 | |
9643 | if (!getLangOpts().CPlusPlus && E->refersToBitField()) |
9644 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) |
9645 | << (Kind == TypeOfKind::Unqualified ? 3 : 2); |
9646 | |
9647 | if (!E->isTypeDependent()) { |
9648 | QualType T = E->getType(); |
9649 | if (const TagType *TT = T->getAs<TagType>()) |
9650 | DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc()); |
9651 | } |
9652 | return Context.getTypeOfExprType(E, Kind); |
9653 | } |
9654 | |
9655 | static void |
9656 | BuildTypeCoupledDecls(Expr *E, |
9657 | llvm::SmallVectorImpl<TypeCoupledDeclRefInfo> &Decls) { |
9658 | // Currently, 'counted_by' only allows direct DeclRefExpr to FieldDecl. |
9659 | auto *CountDecl = cast<DeclRefExpr>(Val: E)->getDecl(); |
9660 | Decls.push_back(Elt: TypeCoupledDeclRefInfo(CountDecl, /*IsDref*/ false)); |
9661 | } |
9662 | |
9663 | QualType Sema::BuildCountAttributedArrayOrPointerType(QualType WrappedTy, |
9664 | Expr *CountExpr, |
9665 | bool CountInBytes, |
9666 | bool OrNull) { |
9667 | assert(WrappedTy->isIncompleteArrayType() || WrappedTy->isPointerType()); |
9668 | |
9669 | llvm::SmallVector<TypeCoupledDeclRefInfo, 1> Decls; |
9670 | BuildTypeCoupledDecls(E: CountExpr, Decls); |
9671 | /// When the resulting expression is invalid, we still create the AST using |
9672 | /// the original count expression for the sake of AST dump. |
9673 | return Context.getCountAttributedType(T: WrappedTy, CountExpr, CountInBytes, |
9674 | OrNull, DependentDecls: Decls); |
9675 | } |
9676 | |
9677 | /// getDecltypeForExpr - Given an expr, will return the decltype for |
9678 | /// that expression, according to the rules in C++11 |
9679 | /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18. |
9680 | QualType Sema::getDecltypeForExpr(Expr *E) { |
9681 | |
9682 | Expr *IDExpr = E; |
9683 | if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(Val: E)) |
9684 | IDExpr = ImplCastExpr->getSubExpr(); |
9685 | |
9686 | if (auto *PackExpr = dyn_cast<PackIndexingExpr>(Val: E)) { |
9687 | if (E->isInstantiationDependent()) |
9688 | IDExpr = PackExpr->getPackIdExpression(); |
9689 | else |
9690 | IDExpr = PackExpr->getSelectedExpr(); |
9691 | } |
9692 | |
9693 | if (E->isTypeDependent()) |
9694 | return Context.DependentTy; |
9695 | |
9696 | // C++11 [dcl.type.simple]p4: |
9697 | // The type denoted by decltype(e) is defined as follows: |
9698 | |
9699 | // C++20: |
9700 | // - if E is an unparenthesized id-expression naming a non-type |
9701 | // template-parameter (13.2), decltype(E) is the type of the |
9702 | // template-parameter after performing any necessary type deduction |
9703 | // Note that this does not pick up the implicit 'const' for a template |
9704 | // parameter object. This rule makes no difference before C++20 so we apply |
9705 | // it unconditionally. |
9706 | if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: IDExpr)) |
9707 | return SNTTPE->getParameterType(Ctx: Context); |
9708 | |
9709 | // - if e is an unparenthesized id-expression or an unparenthesized class |
9710 | // member access (5.2.5), decltype(e) is the type of the entity named |
9711 | // by e. If there is no such entity, or if e names a set of overloaded |
9712 | // functions, the program is ill-formed; |
9713 | // |
9714 | // We apply the same rules for Objective-C ivar and property references. |
9715 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: IDExpr)) { |
9716 | const ValueDecl *VD = DRE->getDecl(); |
9717 | QualType T = VD->getType(); |
9718 | return isa<TemplateParamObjectDecl>(Val: VD) ? T.getUnqualifiedType() : T; |
9719 | } |
9720 | if (const auto *ME = dyn_cast<MemberExpr>(Val: IDExpr)) { |
9721 | if (const auto *VD = ME->getMemberDecl()) |
9722 | if (isa<FieldDecl>(Val: VD) || isa<VarDecl>(Val: VD)) |
9723 | return VD->getType(); |
9724 | } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(Val: IDExpr)) { |
9725 | return IR->getDecl()->getType(); |
9726 | } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(Val: IDExpr)) { |
9727 | if (PR->isExplicitProperty()) |
9728 | return PR->getExplicitProperty()->getType(); |
9729 | } else if (const auto *PE = dyn_cast<PredefinedExpr>(Val: IDExpr)) { |
9730 | return PE->getType(); |
9731 | } |
9732 | |
9733 | // C++11 [expr.lambda.prim]p18: |
9734 | // Every occurrence of decltype((x)) where x is a possibly |
9735 | // parenthesized id-expression that names an entity of automatic |
9736 | // storage duration is treated as if x were transformed into an |
9737 | // access to a corresponding data member of the closure type that |
9738 | // would have been declared if x were an odr-use of the denoted |
9739 | // entity. |
9740 | if (getCurLambda() && isa<ParenExpr>(Val: IDExpr)) { |
9741 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: IDExpr->IgnoreParens())) { |
9742 | if (auto *Var = dyn_cast<VarDecl>(Val: DRE->getDecl())) { |
9743 | QualType T = getCapturedDeclRefType(Var, DRE->getLocation()); |
9744 | if (!T.isNull()) |
9745 | return Context.getLValueReferenceType(T); |
9746 | } |
9747 | } |
9748 | } |
9749 | |
9750 | return Context.getReferenceQualifiedType(e: E); |
9751 | } |
9752 | |
9753 | QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) { |
9754 | assert(!E->hasPlaceholderType() && "unexpected placeholder"); |
9755 | |
9756 | if (AsUnevaluated && CodeSynthesisContexts.empty() && |
9757 | !E->isInstantiationDependent() && E->HasSideEffects(Ctx: Context, IncludePossibleEffects: false)) { |
9758 | // The expression operand for decltype is in an unevaluated expression |
9759 | // context, so side effects could result in unintended consequences. |
9760 | // Exclude instantiation-dependent expressions, because 'decltype' is often |
9761 | // used to build SFINAE gadgets. |
9762 | Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); |
9763 | } |
9764 | return Context.getDecltypeType(e: E, UnderlyingType: getDecltypeForExpr(E)); |
9765 | } |
9766 | |
9767 | QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr, |
9768 | SourceLocation Loc, |
9769 | SourceLocation EllipsisLoc) { |
9770 | if (!IndexExpr) |
9771 | return QualType(); |
9772 | |
9773 | // Diagnose unexpanded packs but continue to improve recovery. |
9774 | if (!Pattern->containsUnexpandedParameterPack()) |
9775 | Diag(Loc, diag::err_expected_name_of_pack) << Pattern; |
9776 | |
9777 | QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc); |
9778 | |
9779 | if (!Type.isNull()) |
9780 | Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing |
9781 | : diag::ext_pack_indexing); |
9782 | return Type; |
9783 | } |
9784 | |
9785 | QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr, |
9786 | SourceLocation Loc, |
9787 | SourceLocation EllipsisLoc, |
9788 | bool FullySubstituted, |
9789 | ArrayRef<QualType> Expansions) { |
9790 | |
9791 | UnsignedOrNone Index = std::nullopt; |
9792 | if (FullySubstituted && !IndexExpr->isValueDependent() && |
9793 | !IndexExpr->isTypeDependent()) { |
9794 | llvm::APSInt Value(Context.getIntWidth(T: Context.getSizeType())); |
9795 | ExprResult Res = CheckConvertedConstantExpression( |
9796 | From: IndexExpr, T: Context.getSizeType(), Value, CCE: CCEKind::ArrayBound); |
9797 | if (!Res.isUsable()) |
9798 | return QualType(); |
9799 | IndexExpr = Res.get(); |
9800 | int64_t V = Value.getExtValue(); |
9801 | if (FullySubstituted && (V < 0 || V >= int64_t(Expansions.size()))) { |
9802 | Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound) |
9803 | << V << Pattern << Expansions.size(); |
9804 | return QualType(); |
9805 | } |
9806 | Index = static_cast<unsigned>(V); |
9807 | } |
9808 | |
9809 | return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted, |
9810 | Expansions, Index); |
9811 | } |
9812 | |
9813 | static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType, |
9814 | SourceLocation Loc) { |
9815 | assert(BaseType->isEnumeralType()); |
9816 | EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl(); |
9817 | assert(ED && "EnumType has no EnumDecl"); |
9818 | |
9819 | S.DiagnoseUseOfDecl(ED, Loc); |
9820 | |
9821 | QualType Underlying = ED->getIntegerType(); |
9822 | assert(!Underlying.isNull()); |
9823 | |
9824 | return Underlying; |
9825 | } |
9826 | |
9827 | QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType, |
9828 | SourceLocation Loc) { |
9829 | if (!BaseType->isEnumeralType()) { |
9830 | Diag(Loc, diag::err_only_enums_have_underlying_types); |
9831 | return QualType(); |
9832 | } |
9833 | |
9834 | // The enum could be incomplete if we're parsing its definition or |
9835 | // recovering from an error. |
9836 | NamedDecl *FwdDecl = nullptr; |
9837 | if (BaseType->isIncompleteType(Def: &FwdDecl)) { |
9838 | Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType; |
9839 | Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl; |
9840 | return QualType(); |
9841 | } |
9842 | |
9843 | return GetEnumUnderlyingType(S&: *this, BaseType, Loc); |
9844 | } |
9845 | |
9846 | QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) { |
9847 | QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType() |
9848 | ? BuildPointerType(T: BaseType.getNonReferenceType(), Loc, |
9849 | Entity: DeclarationName()) |
9850 | : BaseType; |
9851 | |
9852 | return Pointer.isNull() ? QualType() : Pointer; |
9853 | } |
9854 | |
9855 | QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) { |
9856 | if (!BaseType->isAnyPointerType()) |
9857 | return BaseType; |
9858 | |
9859 | return BaseType->getPointeeType(); |
9860 | } |
9861 | |
9862 | QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) { |
9863 | QualType Underlying = BaseType.getNonReferenceType(); |
9864 | if (Underlying->isArrayType()) |
9865 | return Context.getDecayedType(T: Underlying); |
9866 | |
9867 | if (Underlying->isFunctionType()) |
9868 | return BuiltinAddPointer(BaseType, Loc); |
9869 | |
9870 | SplitQualType Split = Underlying.getSplitUnqualifiedType(); |
9871 | // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is |
9872 | // in the same group of qualifiers as 'const' and 'volatile', we're extending |
9873 | // '__decay(T)' so that it removes all qualifiers. |
9874 | Split.Quals.removeCVRQualifiers(); |
9875 | return Context.getQualifiedType(split: Split); |
9876 | } |
9877 | |
9878 | QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind, |
9879 | SourceLocation Loc) { |
9880 | assert(LangOpts.CPlusPlus); |
9881 | QualType Reference = |
9882 | BaseType.isReferenceable() |
9883 | ? BuildReferenceType(T: BaseType, |
9884 | SpelledAsLValue: UKind == UnaryTransformType::AddLvalueReference, |
9885 | Loc, Entity: DeclarationName()) |
9886 | : BaseType; |
9887 | return Reference.isNull() ? QualType() : Reference; |
9888 | } |
9889 | |
9890 | QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind, |
9891 | SourceLocation Loc) { |
9892 | if (UKind == UnaryTransformType::RemoveAllExtents) |
9893 | return Context.getBaseElementType(QT: BaseType); |
9894 | |
9895 | if (const auto *AT = Context.getAsArrayType(T: BaseType)) |
9896 | return AT->getElementType(); |
9897 | |
9898 | return BaseType; |
9899 | } |
9900 | |
9901 | QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind, |
9902 | SourceLocation Loc) { |
9903 | assert(LangOpts.CPlusPlus); |
9904 | QualType T = BaseType.getNonReferenceType(); |
9905 | if (UKind == UTTKind::RemoveCVRef && |
9906 | (T.isConstQualified() || T.isVolatileQualified())) { |
9907 | Qualifiers Quals; |
9908 | QualType Unqual = Context.getUnqualifiedArrayType(T, Quals); |
9909 | Quals.removeConst(); |
9910 | Quals.removeVolatile(); |
9911 | T = Context.getQualifiedType(T: Unqual, Qs: Quals); |
9912 | } |
9913 | return T; |
9914 | } |
9915 | |
9916 | QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind, |
9917 | SourceLocation Loc) { |
9918 | if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) || |
9919 | BaseType->isFunctionType()) |
9920 | return BaseType; |
9921 | |
9922 | Qualifiers Quals; |
9923 | QualType Unqual = Context.getUnqualifiedArrayType(T: BaseType, Quals); |
9924 | |
9925 | if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV) |
9926 | Quals.removeConst(); |
9927 | if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV) |
9928 | Quals.removeVolatile(); |
9929 | if (UKind == UTTKind::RemoveRestrict) |
9930 | Quals.removeRestrict(); |
9931 | |
9932 | return Context.getQualifiedType(T: Unqual, Qs: Quals); |
9933 | } |
9934 | |
9935 | static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType, |
9936 | bool IsMakeSigned, |
9937 | SourceLocation Loc) { |
9938 | if (BaseType->isEnumeralType()) { |
9939 | QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc); |
9940 | if (auto *BitInt = dyn_cast<BitIntType>(Val&: Underlying)) { |
9941 | unsigned int Bits = BitInt->getNumBits(); |
9942 | if (Bits > 1) |
9943 | return S.Context.getBitIntType(Unsigned: !IsMakeSigned, NumBits: Bits); |
9944 | |
9945 | S.Diag(Loc, diag::err_make_signed_integral_only) |
9946 | << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying; |
9947 | return QualType(); |
9948 | } |
9949 | if (Underlying->isBooleanType()) { |
9950 | S.Diag(Loc, diag::err_make_signed_integral_only) |
9951 | << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1 |
9952 | << Underlying; |
9953 | return QualType(); |
9954 | } |
9955 | } |
9956 | |
9957 | bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type(); |
9958 | std::array<CanQualType *, 6> AllSignedIntegers = { |
9959 | &S.Context.SignedCharTy, &S.Context.ShortTy, &S.Context.IntTy, |
9960 | &S.Context.LongTy, &S.Context.LongLongTy, &S.Context.Int128Ty}; |
9961 | ArrayRef<CanQualType *> AvailableSignedIntegers( |
9962 | AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported); |
9963 | std::array<CanQualType *, 6> AllUnsignedIntegers = { |
9964 | &S.Context.UnsignedCharTy, &S.Context.UnsignedShortTy, |
9965 | &S.Context.UnsignedIntTy, &S.Context.UnsignedLongTy, |
9966 | &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty}; |
9967 | ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(), |
9968 | AllUnsignedIntegers.size() - |
9969 | Int128Unsupported); |
9970 | ArrayRef<CanQualType *> *Consider = |
9971 | IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers; |
9972 | |
9973 | uint64_t BaseSize = S.Context.getTypeSize(T: BaseType); |
9974 | auto *Result = |
9975 | llvm::find_if(Range&: *Consider, P: [&S, BaseSize](const CanQual<Type> *T) { |
9976 | return BaseSize == S.Context.getTypeSize(T: T->getTypePtr()); |
9977 | }); |
9978 | |
9979 | assert(Result != Consider->end()); |
9980 | return QualType((*Result)->getTypePtr(), 0); |
9981 | } |
9982 | |
9983 | QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind, |
9984 | SourceLocation Loc) { |
9985 | bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned; |
9986 | if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) || |
9987 | BaseType->isBooleanType() || |
9988 | (BaseType->isBitIntType() && |
9989 | BaseType->getAs<BitIntType>()->getNumBits() < 2)) { |
9990 | Diag(Loc, diag::err_make_signed_integral_only) |
9991 | << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0; |
9992 | return QualType(); |
9993 | } |
9994 | |
9995 | bool IsNonIntIntegral = |
9996 | BaseType->isChar16Type() || BaseType->isChar32Type() || |
9997 | BaseType->isWideCharType() || BaseType->isEnumeralType(); |
9998 | |
9999 | QualType Underlying = |
10000 | IsNonIntIntegral |
10001 | ? ChangeIntegralSignedness(S&: *this, BaseType, IsMakeSigned, Loc) |
10002 | : IsMakeSigned ? Context.getCorrespondingSignedType(T: BaseType) |
10003 | : Context.getCorrespondingUnsignedType(T: BaseType); |
10004 | if (Underlying.isNull()) |
10005 | return Underlying; |
10006 | return Context.getQualifiedType(T: Underlying, Qs: BaseType.getQualifiers()); |
10007 | } |
10008 | |
10009 | QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind, |
10010 | SourceLocation Loc) { |
10011 | if (BaseType->isDependentType()) |
10012 | return Context.getUnaryTransformType(BaseType, UnderlyingType: BaseType, UKind); |
10013 | QualType Result; |
10014 | switch (UKind) { |
10015 | case UnaryTransformType::EnumUnderlyingType: { |
10016 | Result = BuiltinEnumUnderlyingType(BaseType, Loc); |
10017 | break; |
10018 | } |
10019 | case UnaryTransformType::AddPointer: { |
10020 | Result = BuiltinAddPointer(BaseType, Loc); |
10021 | break; |
10022 | } |
10023 | case UnaryTransformType::RemovePointer: { |
10024 | Result = BuiltinRemovePointer(BaseType, Loc); |
10025 | break; |
10026 | } |
10027 | case UnaryTransformType::Decay: { |
10028 | Result = BuiltinDecay(BaseType, Loc); |
10029 | break; |
10030 | } |
10031 | case UnaryTransformType::AddLvalueReference: |
10032 | case UnaryTransformType::AddRvalueReference: { |
10033 | Result = BuiltinAddReference(BaseType, UKind, Loc); |
10034 | break; |
10035 | } |
10036 | case UnaryTransformType::RemoveAllExtents: |
10037 | case UnaryTransformType::RemoveExtent: { |
10038 | Result = BuiltinRemoveExtent(BaseType, UKind, Loc); |
10039 | break; |
10040 | } |
10041 | case UnaryTransformType::RemoveCVRef: |
10042 | case UnaryTransformType::RemoveReference: { |
10043 | Result = BuiltinRemoveReference(BaseType, UKind, Loc); |
10044 | break; |
10045 | } |
10046 | case UnaryTransformType::RemoveConst: |
10047 | case UnaryTransformType::RemoveCV: |
10048 | case UnaryTransformType::RemoveRestrict: |
10049 | case UnaryTransformType::RemoveVolatile: { |
10050 | Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc); |
10051 | break; |
10052 | } |
10053 | case UnaryTransformType::MakeSigned: |
10054 | case UnaryTransformType::MakeUnsigned: { |
10055 | Result = BuiltinChangeSignedness(BaseType, UKind, Loc); |
10056 | break; |
10057 | } |
10058 | } |
10059 | |
10060 | return !Result.isNull() |
10061 | ? Context.getUnaryTransformType(BaseType, UnderlyingType: Result, UKind) |
10062 | : Result; |
10063 | } |
10064 | |
10065 | QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) { |
10066 | if (!isDependentOrGNUAutoType(T)) { |
10067 | // FIXME: It isn't entirely clear whether incomplete atomic types |
10068 | // are allowed or not; for simplicity, ban them for the moment. |
10069 | if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0)) |
10070 | return QualType(); |
10071 | |
10072 | int DisallowedKind = -1; |
10073 | if (T->isArrayType()) |
10074 | DisallowedKind = 1; |
10075 | else if (T->isFunctionType()) |
10076 | DisallowedKind = 2; |
10077 | else if (T->isReferenceType()) |
10078 | DisallowedKind = 3; |
10079 | else if (T->isAtomicType()) |
10080 | DisallowedKind = 4; |
10081 | else if (T.hasQualifiers()) |
10082 | DisallowedKind = 5; |
10083 | else if (T->isSizelessType()) |
10084 | DisallowedKind = 6; |
10085 | else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus) |
10086 | // Some other non-trivially-copyable type (probably a C++ class) |
10087 | DisallowedKind = 7; |
10088 | else if (T->isBitIntType()) |
10089 | DisallowedKind = 8; |
10090 | else if (getLangOpts().C23 && T->isUndeducedAutoType()) |
10091 | // _Atomic auto is prohibited in C23 |
10092 | DisallowedKind = 9; |
10093 | |
10094 | if (DisallowedKind != -1) { |
10095 | Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T; |
10096 | return QualType(); |
10097 | } |
10098 | |
10099 | // FIXME: Do we need any handling for ARC here? |
10100 | } |
10101 | |
10102 | // Build the pointer type. |
10103 | return Context.getAtomicType(T); |
10104 | } |
10105 |
Definitions
- TypeDiagSelector
- isOmittedBlockReturnType
- diagnoseBadTypeAttribute
- TypeProcessingState
- TypeProcessingState
- getSema
- getDeclarator
- isProcessingDeclSpec
- getCurrentChunkIndex
- setCurrentChunkIndex
- getCurrentAttributes
- saveDeclSpecAttrs
- addIgnoredTypeAttr
- diagnoseIgnoredTypeAttrs
- getAttributedType
- getBTFTagAttributedType
- ReplaceAutoType
- takeAttrForAttributedType
- getExpansionLocForMacroQualifiedType
- setExpansionLocForMacroQualifiedType
- setParsedNoDeref
- didParseNoDeref
- setParsedHLSLParamMod
- didParseHLSLParamMod
- ~TypeProcessingState
- getMutableDeclSpec
- moveAttrFromListToList
- TypeAttrLocation
- handleObjCPointerTypeAttr
- maybeMovePastReturnType
- distributeObjCPointerTypeAttr
- distributeObjCPointerTypeAttrFromDeclarator
- distributeFunctionTypeAttr
- distributeFunctionTypeAttrToInnermost
- distributeFunctionTypeAttrFromDeclSpec
- distributeFunctionTypeAttrFromDeclarator
- distributeTypeAttrsFromDeclarator
- maybeSynthesizeBlockSignature
- diagnoseAndRemoveTypeQualifiers
- checkOmittedBlockReturnType
- getImageAccess
- TSTToUnaryTransformType
- ConvertDeclSpecToType
- getPrintableNameForEntity
- isDependentOrGNUAutoType
- BuildQualifiedType
- BuildQualifiedType
- BuildParenType
- inferARCLifetimeForPointee
- getFunctionQualifiersAsString
- QualifiedFunctionKind
- checkQualifiedFunction
- CheckQualifiedFunctionForTypeId
- deduceOpenCLPointeeAddrSpace
- BuildPointerType
- BuildReferenceType
- BuildReadPipeType
- BuildWritePipeType
- BuildBitIntType
- checkArraySize
- checkArrayElementAlignment
- BuildArrayType
- CheckBitIntElementType
- BuildVectorType
- BuildExtVectorType
- BuildMatrixType
- CheckFunctionReturnType
- checkExtParameterInfos
- BuildFunctionType
- BuildMemberPointerType
- BuildBlockPointerType
- GetTypeFromParser
- inferARCWriteback
- diagnoseIgnoredQualifiers
- diagnoseRedundantReturnTypeQualifiers
- InventTemplateParameter
- GetDeclSpecTypeForDeclarator
- warnAboutAmbiguousFunction
- warnAboutRedundantParens
- getCCForDeclaratorChunk
- SimplePointerKind
- getNullabilityKeyword
- hasNullabilityAttr
- PointerDeclaratorKind
- PointerWrappingDeclaratorKind
- classifyPointerDeclarator
- getNullabilityCompletenessCheckFileID
- fixItNullability
- emitNullabilityConsistencyWarning
- checkNullabilityConsistency
- recordNullabilitySeen
- hasOuterPointerLikeChunk
- IsNoDerefableChunk
- createSimpleAttr
- createNullabilityAttr
- DiagnoseMultipleAddrSpaceAttributes
- shouldHaveNullability
- GetFullTypeForDeclarator
- GetTypeForDeclarator
- transferARCOwnershipToDeclSpec
- transferARCOwnershipToDeclaratorChunk
- transferARCOwnership
- GetTypeForDeclaratorCast
- fillAttributedTypeLoc
- fillHLSLAttributedResourceTypeLoc
- fillMatrixTypeLoc
- fillAtomicQualLoc
- TypeSpecLocFiller
- TypeSpecLocFiller
- VisitAttributedTypeLoc
- VisitBTFTagAttributedTypeLoc
- VisitHLSLAttributedResourceTypeLoc
- VisitHLSLInlineSpirvTypeLoc
- VisitMacroQualifiedTypeLoc
- VisitQualifiedTypeLoc
- VisitPointerTypeLoc
- VisitTypedefTypeLoc
- VisitObjCInterfaceTypeLoc
- VisitObjCObjectTypeLoc
- VisitObjCObjectPointerTypeLoc
- VisitTemplateSpecializationTypeLoc
- VisitTypeOfExprTypeLoc
- VisitTypeOfTypeLoc
- VisitDecltypeTypeLoc
- VisitPackIndexingTypeLoc
- VisitUnaryTransformTypeLoc
- VisitBuiltinTypeLoc
- VisitElaboratedTypeLoc
- VisitDependentNameTypeLoc
- VisitDependentTemplateSpecializationTypeLoc
- VisitAutoTypeLoc
- VisitTagTypeLoc
- VisitAtomicTypeLoc
- VisitPipeTypeLoc
- VisitExtIntTypeLoc
- VisitDependentExtIntTypeLoc
- VisitTypeLoc
- DeclaratorLocFiller
- DeclaratorLocFiller
- VisitQualifiedTypeLoc
- VisitDecayedTypeLoc
- VisitArrayParameterTypeLoc
- VisitAttributedTypeLoc
- VisitCountAttributedTypeLoc
- VisitBTFTagAttributedTypeLoc
- VisitAdjustedTypeLoc
- VisitBlockPointerTypeLoc
- VisitPointerTypeLoc
- VisitObjCObjectPointerTypeLoc
- VisitMemberPointerTypeLoc
- VisitLValueReferenceTypeLoc
- VisitRValueReferenceTypeLoc
- VisitArrayTypeLoc
- VisitFunctionTypeLoc
- VisitParenTypeLoc
- VisitPipeTypeLoc
- VisitBitIntTypeLoc
- VisitMacroQualifiedTypeLoc
- VisitVectorTypeLoc
- VisitDependentVectorTypeLoc
- VisitExtVectorTypeLoc
- VisitAtomicTypeLoc
- VisitDependentSizedExtVectorTypeLoc
- VisitMatrixTypeLoc
- VisitTypeLoc
- fillDependentAddressSpaceTypeLoc
- GetTypeSourceInfoForDeclarator
- CreateParsedType
- getAsStringInternal
- ActOnTypeName
- BuildAddressSpaceIndex
- BuildAddressSpaceAttr
- BuildAddressSpaceAttr
- HandleBTFTypeTagAttribute
- HandleAddressSpaceTypeAttribute
- handleObjCOwnershipTypeAttr
- handleObjCGCTypeAttr
- FunctionTypeUnwrapper
- WrapKind
- FunctionTypeUnwrapper
- isFunctionType
- get
- wrap
- wrap
- wrap
- handleMSPointerTypeQualifierAttr
- HandleWebAssemblyFuncrefAttr
- HandleSwiftAttr
- rebuildAttributedTypeWithoutNullability
- mapNullabilityAttrKind
- CheckNullabilityTypeSpecifier
- CheckNullabilityTypeSpecifier
- CheckImplicitNullabilityTypeSpecifier
- checkObjCKindOfType
- distributeNullabilityTypeAttr
- getCCTypeAttr
- ActOnEffectExpression
- handleNonBlockingNonAllocatingTypeAttr
- checkMutualExclusion
- handleArmAgnosticAttribute
- handleArmStateAttribute
- handleFunctionTypeAttr
- hasExplicitCallingConv
- adjustMemberFunctionCC
- HandleVectorSizeAttr
- HandleExtVectorTypeAttr
- isPermittedNeonBaseType
- verifyValidIntegerConstantExpr
- HandleNeonVectorTypeAttr
- HandlePtrAuthQualifier
- HandleArmSveVectorBitsTypeAttr
- HandleArmMveStrictPolymorphismAttr
- HandleRISCVRVVVectorBitsTypeAttr
- HandleOpenCLAccessAttr
- HandleMatrixTypeAttr
- HandleAnnotateTypeAttr
- HandleLifetimeBoundAttr
- HandleLifetimeCaptureByAttr
- HandleHLSLParamModifierAttr
- isMultiSubjectAttrAllowedOnType
- processTypeAttrs
- completeExprArrayBound
- getCompletedType
- RequireCompleteExprType
- RequireCompleteExprType
- RequireCompleteType
- hasStructuralCompatLayout
- hasAcceptableDefinition
- hasVisibleDefinition
- hasReachableDefinition
- assignInheritanceModel
- RequireCompleteTypeImpl
- RequireCompleteType
- getLiteralDiagFromTagKind
- RequireLiteralType
- RequireLiteralType
- getElaboratedType
- BuildTypeofExprType
- BuildTypeCoupledDecls
- BuildCountAttributedArrayOrPointerType
- getDecltypeForExpr
- BuildDecltypeType
- ActOnPackIndexingType
- BuildPackIndexingType
- GetEnumUnderlyingType
- BuiltinEnumUnderlyingType
- BuiltinAddPointer
- BuiltinRemovePointer
- BuiltinDecay
- BuiltinAddReference
- BuiltinRemoveExtent
- BuiltinRemoveReference
- BuiltinChangeCVRQualifiers
- ChangeIntegralSignedness
- BuiltinChangeSignedness
- BuildUnaryTransformType
Learn to use CMake with our Intro Training
Find out more