1//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements type-related semantic analysis.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/ASTStructuralEquivalence.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/Type.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeLocVisitor.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceLocation.h"
28#include "clang/Basic/Specifiers.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/DelayedDiagnostic.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/SemaInternal.h"
37#include "clang/Sema/Template.h"
38#include "clang/Sema/TemplateInstCallback.h"
39#include "llvm/ADT/ArrayRef.h"
40#include "llvm/ADT/SmallPtrSet.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/StringExtras.h"
43#include "llvm/IR/DerivedTypes.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/ErrorHandling.h"
46#include <bitset>
47#include <optional>
48
49using namespace clang;
50
51enum TypeDiagSelector {
52 TDS_Function,
53 TDS_Pointer,
54 TDS_ObjCObjOrBlock
55};
56
57/// isOmittedBlockReturnType - Return true if this declarator is missing a
58/// return type because this is a omitted return type on a block literal.
59static bool isOmittedBlockReturnType(const Declarator &D) {
60 if (D.getContext() != DeclaratorContext::BlockLiteral ||
61 D.getDeclSpec().hasTypeSpecifier())
62 return false;
63
64 if (D.getNumTypeObjects() == 0)
65 return true; // ^{ ... }
66
67 if (D.getNumTypeObjects() == 1 &&
68 D.getTypeObject(i: 0).Kind == DeclaratorChunk::Function)
69 return true; // ^(int X, float Y) { ... }
70
71 return false;
72}
73
74/// diagnoseBadTypeAttribute - Diagnoses a type attribute which
75/// doesn't apply to the given type.
76static void diagnoseBadTypeAttribute(Sema &S, const ParsedAttr &attr,
77 QualType type) {
78 TypeDiagSelector WhichType;
79 bool useExpansionLoc = true;
80 switch (attr.getKind()) {
81 case ParsedAttr::AT_ObjCGC:
82 WhichType = TDS_Pointer;
83 break;
84 case ParsedAttr::AT_ObjCOwnership:
85 WhichType = TDS_ObjCObjOrBlock;
86 break;
87 default:
88 // Assume everything else was a function attribute.
89 WhichType = TDS_Function;
90 useExpansionLoc = false;
91 break;
92 }
93
94 SourceLocation loc = attr.getLoc();
95 StringRef name = attr.getAttrName()->getName();
96
97 // The GC attributes are usually written with macros; special-case them.
98 IdentifierInfo *II = attr.isArgIdent(Arg: 0) ? attr.getArgAsIdent(Arg: 0)->Ident
99 : nullptr;
100 if (useExpansionLoc && loc.isMacroID() && II) {
101 if (II->isStr(Str: "strong")) {
102 if (S.findMacroSpelling(loc, name: "__strong")) name = "__strong";
103 } else if (II->isStr(Str: "weak")) {
104 if (S.findMacroSpelling(loc, name: "__weak")) name = "__weak";
105 }
106 }
107
108 S.Diag(loc, attr.isRegularKeywordAttribute()
109 ? diag::err_type_attribute_wrong_type
110 : diag::warn_type_attribute_wrong_type)
111 << name << WhichType << type;
112}
113
114// objc_gc applies to Objective-C pointers or, otherwise, to the
115// smallest available pointer type (i.e. 'void*' in 'void**').
116#define OBJC_POINTER_TYPE_ATTRS_CASELIST \
117 case ParsedAttr::AT_ObjCGC: \
118 case ParsedAttr::AT_ObjCOwnership
119
120// Calling convention attributes.
121#define CALLING_CONV_ATTRS_CASELIST \
122 case ParsedAttr::AT_CDecl: \
123 case ParsedAttr::AT_FastCall: \
124 case ParsedAttr::AT_StdCall: \
125 case ParsedAttr::AT_ThisCall: \
126 case ParsedAttr::AT_RegCall: \
127 case ParsedAttr::AT_Pascal: \
128 case ParsedAttr::AT_SwiftCall: \
129 case ParsedAttr::AT_SwiftAsyncCall: \
130 case ParsedAttr::AT_VectorCall: \
131 case ParsedAttr::AT_AArch64VectorPcs: \
132 case ParsedAttr::AT_AArch64SVEPcs: \
133 case ParsedAttr::AT_AMDGPUKernelCall: \
134 case ParsedAttr::AT_MSABI: \
135 case ParsedAttr::AT_SysVABI: \
136 case ParsedAttr::AT_Pcs: \
137 case ParsedAttr::AT_IntelOclBicc: \
138 case ParsedAttr::AT_PreserveMost: \
139 case ParsedAttr::AT_PreserveAll: \
140 case ParsedAttr::AT_M68kRTD: \
141 case ParsedAttr::AT_PreserveNone
142
143// Function type attributes.
144#define FUNCTION_TYPE_ATTRS_CASELIST \
145 case ParsedAttr::AT_NSReturnsRetained: \
146 case ParsedAttr::AT_NoReturn: \
147 case ParsedAttr::AT_Regparm: \
148 case ParsedAttr::AT_CmseNSCall: \
149 case ParsedAttr::AT_ArmStreaming: \
150 case ParsedAttr::AT_ArmStreamingCompatible: \
151 case ParsedAttr::AT_ArmPreserves: \
152 case ParsedAttr::AT_ArmIn: \
153 case ParsedAttr::AT_ArmOut: \
154 case ParsedAttr::AT_ArmInOut: \
155 case ParsedAttr::AT_AnyX86NoCallerSavedRegisters: \
156 case ParsedAttr::AT_AnyX86NoCfCheck: \
157 CALLING_CONV_ATTRS_CASELIST
158
159// Microsoft-specific type qualifiers.
160#define MS_TYPE_ATTRS_CASELIST \
161 case ParsedAttr::AT_Ptr32: \
162 case ParsedAttr::AT_Ptr64: \
163 case ParsedAttr::AT_SPtr: \
164 case ParsedAttr::AT_UPtr
165
166// Nullability qualifiers.
167#define NULLABILITY_TYPE_ATTRS_CASELIST \
168 case ParsedAttr::AT_TypeNonNull: \
169 case ParsedAttr::AT_TypeNullable: \
170 case ParsedAttr::AT_TypeNullableResult: \
171 case ParsedAttr::AT_TypeNullUnspecified
172
173namespace {
174 /// An object which stores processing state for the entire
175 /// GetTypeForDeclarator process.
176 class TypeProcessingState {
177 Sema &sema;
178
179 /// The declarator being processed.
180 Declarator &declarator;
181
182 /// The index of the declarator chunk we're currently processing.
183 /// May be the total number of valid chunks, indicating the
184 /// DeclSpec.
185 unsigned chunkIndex;
186
187 /// The original set of attributes on the DeclSpec.
188 SmallVector<ParsedAttr *, 2> savedAttrs;
189
190 /// A list of attributes to diagnose the uselessness of when the
191 /// processing is complete.
192 SmallVector<ParsedAttr *, 2> ignoredTypeAttrs;
193
194 /// Attributes corresponding to AttributedTypeLocs that we have not yet
195 /// populated.
196 // FIXME: The two-phase mechanism by which we construct Types and fill
197 // their TypeLocs makes it hard to correctly assign these. We keep the
198 // attributes in creation order as an attempt to make them line up
199 // properly.
200 using TypeAttrPair = std::pair<const AttributedType*, const Attr*>;
201 SmallVector<TypeAttrPair, 8> AttrsForTypes;
202 bool AttrsForTypesSorted = true;
203
204 /// MacroQualifiedTypes mapping to macro expansion locations that will be
205 /// stored in a MacroQualifiedTypeLoc.
206 llvm::DenseMap<const MacroQualifiedType *, SourceLocation> LocsForMacros;
207
208 /// Flag to indicate we parsed a noderef attribute. This is used for
209 /// validating that noderef was used on a pointer or array.
210 bool parsedNoDeref;
211
212 public:
213 TypeProcessingState(Sema &sema, Declarator &declarator)
214 : sema(sema), declarator(declarator),
215 chunkIndex(declarator.getNumTypeObjects()), parsedNoDeref(false) {}
216
217 Sema &getSema() const {
218 return sema;
219 }
220
221 Declarator &getDeclarator() const {
222 return declarator;
223 }
224
225 bool isProcessingDeclSpec() const {
226 return chunkIndex == declarator.getNumTypeObjects();
227 }
228
229 unsigned getCurrentChunkIndex() const {
230 return chunkIndex;
231 }
232
233 void setCurrentChunkIndex(unsigned idx) {
234 assert(idx <= declarator.getNumTypeObjects());
235 chunkIndex = idx;
236 }
237
238 ParsedAttributesView &getCurrentAttributes() const {
239 if (isProcessingDeclSpec())
240 return getMutableDeclSpec().getAttributes();
241 return declarator.getTypeObject(i: chunkIndex).getAttrs();
242 }
243
244 /// Save the current set of attributes on the DeclSpec.
245 void saveDeclSpecAttrs() {
246 // Don't try to save them multiple times.
247 if (!savedAttrs.empty())
248 return;
249
250 DeclSpec &spec = getMutableDeclSpec();
251 llvm::append_range(C&: savedAttrs,
252 R: llvm::make_pointer_range(Range&: spec.getAttributes()));
253 }
254
255 /// Record that we had nowhere to put the given type attribute.
256 /// We will diagnose such attributes later.
257 void addIgnoredTypeAttr(ParsedAttr &attr) {
258 ignoredTypeAttrs.push_back(Elt: &attr);
259 }
260
261 /// Diagnose all the ignored type attributes, given that the
262 /// declarator worked out to the given type.
263 void diagnoseIgnoredTypeAttrs(QualType type) const {
264 for (auto *Attr : ignoredTypeAttrs)
265 diagnoseBadTypeAttribute(S&: getSema(), attr: *Attr, type);
266 }
267
268 /// Get an attributed type for the given attribute, and remember the Attr
269 /// object so that we can attach it to the AttributedTypeLoc.
270 QualType getAttributedType(Attr *A, QualType ModifiedType,
271 QualType EquivType) {
272 QualType T =
273 sema.Context.getAttributedType(attrKind: A->getKind(), modifiedType: ModifiedType, equivalentType: EquivType);
274 AttrsForTypes.push_back(Elt: {cast<AttributedType>(Val: T.getTypePtr()), A});
275 AttrsForTypesSorted = false;
276 return T;
277 }
278
279 /// Get a BTFTagAttributed type for the btf_type_tag attribute.
280 QualType getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
281 QualType WrappedType) {
282 return sema.Context.getBTFTagAttributedType(BTFAttr, Wrapped: WrappedType);
283 }
284
285 /// Completely replace the \c auto in \p TypeWithAuto by
286 /// \p Replacement. Also replace \p TypeWithAuto in \c TypeAttrPair if
287 /// necessary.
288 QualType ReplaceAutoType(QualType TypeWithAuto, QualType Replacement) {
289 QualType T = sema.ReplaceAutoType(TypeWithAuto, Replacement);
290 if (auto *AttrTy = TypeWithAuto->getAs<AttributedType>()) {
291 // Attributed type still should be an attributed type after replacement.
292 auto *NewAttrTy = cast<AttributedType>(Val: T.getTypePtr());
293 for (TypeAttrPair &A : AttrsForTypes) {
294 if (A.first == AttrTy)
295 A.first = NewAttrTy;
296 }
297 AttrsForTypesSorted = false;
298 }
299 return T;
300 }
301
302 /// Extract and remove the Attr* for a given attributed type.
303 const Attr *takeAttrForAttributedType(const AttributedType *AT) {
304 if (!AttrsForTypesSorted) {
305 llvm::stable_sort(Range&: AttrsForTypes, C: llvm::less_first());
306 AttrsForTypesSorted = true;
307 }
308
309 // FIXME: This is quadratic if we have lots of reuses of the same
310 // attributed type.
311 for (auto It = std::partition_point(
312 first: AttrsForTypes.begin(), last: AttrsForTypes.end(),
313 pred: [=](const TypeAttrPair &A) { return A.first < AT; });
314 It != AttrsForTypes.end() && It->first == AT; ++It) {
315 if (It->second) {
316 const Attr *Result = It->second;
317 It->second = nullptr;
318 return Result;
319 }
320 }
321
322 llvm_unreachable("no Attr* for AttributedType*");
323 }
324
325 SourceLocation
326 getExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT) const {
327 auto FoundLoc = LocsForMacros.find(Val: MQT);
328 assert(FoundLoc != LocsForMacros.end() &&
329 "Unable to find macro expansion location for MacroQualifedType");
330 return FoundLoc->second;
331 }
332
333 void setExpansionLocForMacroQualifiedType(const MacroQualifiedType *MQT,
334 SourceLocation Loc) {
335 LocsForMacros[MQT] = Loc;
336 }
337
338 void setParsedNoDeref(bool parsed) { parsedNoDeref = parsed; }
339
340 bool didParseNoDeref() const { return parsedNoDeref; }
341
342 ~TypeProcessingState() {
343 if (savedAttrs.empty())
344 return;
345
346 getMutableDeclSpec().getAttributes().clearListOnly();
347 for (ParsedAttr *AL : savedAttrs)
348 getMutableDeclSpec().getAttributes().addAtEnd(newAttr: AL);
349 }
350
351 private:
352 DeclSpec &getMutableDeclSpec() const {
353 return const_cast<DeclSpec&>(declarator.getDeclSpec());
354 }
355 };
356} // end anonymous namespace
357
358static void moveAttrFromListToList(ParsedAttr &attr,
359 ParsedAttributesView &fromList,
360 ParsedAttributesView &toList) {
361 fromList.remove(ToBeRemoved: &attr);
362 toList.addAtEnd(newAttr: &attr);
363}
364
365/// The location of a type attribute.
366enum TypeAttrLocation {
367 /// The attribute is in the decl-specifier-seq.
368 TAL_DeclSpec,
369 /// The attribute is part of a DeclaratorChunk.
370 TAL_DeclChunk,
371 /// The attribute is immediately after the declaration's name.
372 TAL_DeclName
373};
374
375static void
376processTypeAttrs(TypeProcessingState &state, QualType &type,
377 TypeAttrLocation TAL, const ParsedAttributesView &attrs,
378 Sema::CUDAFunctionTarget CFT = Sema::CFT_HostDevice);
379
380static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
381 QualType &type,
382 Sema::CUDAFunctionTarget CFT);
383
384static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
385 ParsedAttr &attr, QualType &type);
386
387static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
388 QualType &type);
389
390static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
391 ParsedAttr &attr, QualType &type);
392
393static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
394 ParsedAttr &attr, QualType &type) {
395 if (attr.getKind() == ParsedAttr::AT_ObjCGC)
396 return handleObjCGCTypeAttr(state, attr, type);
397 assert(attr.getKind() == ParsedAttr::AT_ObjCOwnership);
398 return handleObjCOwnershipTypeAttr(state, attr, type);
399}
400
401/// Given the index of a declarator chunk, check whether that chunk
402/// directly specifies the return type of a function and, if so, find
403/// an appropriate place for it.
404///
405/// \param i - a notional index which the search will start
406/// immediately inside
407///
408/// \param onlyBlockPointers Whether we should only look into block
409/// pointer types (vs. all pointer types).
410static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
411 unsigned i,
412 bool onlyBlockPointers) {
413 assert(i <= declarator.getNumTypeObjects());
414
415 DeclaratorChunk *result = nullptr;
416
417 // First, look inwards past parens for a function declarator.
418 for (; i != 0; --i) {
419 DeclaratorChunk &fnChunk = declarator.getTypeObject(i: i-1);
420 switch (fnChunk.Kind) {
421 case DeclaratorChunk::Paren:
422 continue;
423
424 // If we find anything except a function, bail out.
425 case DeclaratorChunk::Pointer:
426 case DeclaratorChunk::BlockPointer:
427 case DeclaratorChunk::Array:
428 case DeclaratorChunk::Reference:
429 case DeclaratorChunk::MemberPointer:
430 case DeclaratorChunk::Pipe:
431 return result;
432
433 // If we do find a function declarator, scan inwards from that,
434 // looking for a (block-)pointer declarator.
435 case DeclaratorChunk::Function:
436 for (--i; i != 0; --i) {
437 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i: i-1);
438 switch (ptrChunk.Kind) {
439 case DeclaratorChunk::Paren:
440 case DeclaratorChunk::Array:
441 case DeclaratorChunk::Function:
442 case DeclaratorChunk::Reference:
443 case DeclaratorChunk::Pipe:
444 continue;
445
446 case DeclaratorChunk::MemberPointer:
447 case DeclaratorChunk::Pointer:
448 if (onlyBlockPointers)
449 continue;
450
451 [[fallthrough]];
452
453 case DeclaratorChunk::BlockPointer:
454 result = &ptrChunk;
455 goto continue_outer;
456 }
457 llvm_unreachable("bad declarator chunk kind");
458 }
459
460 // If we run out of declarators doing that, we're done.
461 return result;
462 }
463 llvm_unreachable("bad declarator chunk kind");
464
465 // Okay, reconsider from our new point.
466 continue_outer: ;
467 }
468
469 // Ran out of chunks, bail out.
470 return result;
471}
472
473/// Given that an objc_gc attribute was written somewhere on a
474/// declaration *other* than on the declarator itself (for which, use
475/// distributeObjCPointerTypeAttrFromDeclarator), and given that it
476/// didn't apply in whatever position it was written in, try to move
477/// it to a more appropriate position.
478static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
479 ParsedAttr &attr, QualType type) {
480 Declarator &declarator = state.getDeclarator();
481
482 // Move it to the outermost normal or block pointer declarator.
483 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
484 DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1);
485 switch (chunk.Kind) {
486 case DeclaratorChunk::Pointer:
487 case DeclaratorChunk::BlockPointer: {
488 // But don't move an ARC ownership attribute to the return type
489 // of a block.
490 DeclaratorChunk *destChunk = nullptr;
491 if (state.isProcessingDeclSpec() &&
492 attr.getKind() == ParsedAttr::AT_ObjCOwnership)
493 destChunk = maybeMovePastReturnType(declarator, i: i - 1,
494 /*onlyBlockPointers=*/true);
495 if (!destChunk) destChunk = &chunk;
496
497 moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(),
498 toList&: destChunk->getAttrs());
499 return;
500 }
501
502 case DeclaratorChunk::Paren:
503 case DeclaratorChunk::Array:
504 continue;
505
506 // We may be starting at the return type of a block.
507 case DeclaratorChunk::Function:
508 if (state.isProcessingDeclSpec() &&
509 attr.getKind() == ParsedAttr::AT_ObjCOwnership) {
510 if (DeclaratorChunk *dest = maybeMovePastReturnType(
511 declarator, i,
512 /*onlyBlockPointers=*/true)) {
513 moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(),
514 toList&: dest->getAttrs());
515 return;
516 }
517 }
518 goto error;
519
520 // Don't walk through these.
521 case DeclaratorChunk::Reference:
522 case DeclaratorChunk::MemberPointer:
523 case DeclaratorChunk::Pipe:
524 goto error;
525 }
526 }
527 error:
528
529 diagnoseBadTypeAttribute(S&: state.getSema(), attr, type);
530}
531
532/// Distribute an objc_gc type attribute that was written on the
533/// declarator.
534static void distributeObjCPointerTypeAttrFromDeclarator(
535 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType) {
536 Declarator &declarator = state.getDeclarator();
537
538 // objc_gc goes on the innermost pointer to something that's not a
539 // pointer.
540 unsigned innermost = -1U;
541 bool considerDeclSpec = true;
542 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
543 DeclaratorChunk &chunk = declarator.getTypeObject(i);
544 switch (chunk.Kind) {
545 case DeclaratorChunk::Pointer:
546 case DeclaratorChunk::BlockPointer:
547 innermost = i;
548 continue;
549
550 case DeclaratorChunk::Reference:
551 case DeclaratorChunk::MemberPointer:
552 case DeclaratorChunk::Paren:
553 case DeclaratorChunk::Array:
554 case DeclaratorChunk::Pipe:
555 continue;
556
557 case DeclaratorChunk::Function:
558 considerDeclSpec = false;
559 goto done;
560 }
561 }
562 done:
563
564 // That might actually be the decl spec if we weren't blocked by
565 // anything in the declarator.
566 if (considerDeclSpec) {
567 if (handleObjCPointerTypeAttr(state, attr, type&: declSpecType)) {
568 // Splice the attribute into the decl spec. Prevents the
569 // attribute from being applied multiple times and gives
570 // the source-location-filler something to work with.
571 state.saveDeclSpecAttrs();
572 declarator.getMutableDeclSpec().getAttributes().takeOneFrom(
573 Other&: declarator.getAttributes(), PA: &attr);
574 return;
575 }
576 }
577
578 // Otherwise, if we found an appropriate chunk, splice the attribute
579 // into it.
580 if (innermost != -1U) {
581 moveAttrFromListToList(attr, fromList&: declarator.getAttributes(),
582 toList&: declarator.getTypeObject(i: innermost).getAttrs());
583 return;
584 }
585
586 // Otherwise, diagnose when we're done building the type.
587 declarator.getAttributes().remove(ToBeRemoved: &attr);
588 state.addIgnoredTypeAttr(attr);
589}
590
591/// A function type attribute was written somewhere in a declaration
592/// *other* than on the declarator itself or in the decl spec. Given
593/// that it didn't apply in whatever position it was written in, try
594/// to move it to a more appropriate position.
595static void distributeFunctionTypeAttr(TypeProcessingState &state,
596 ParsedAttr &attr, QualType type) {
597 Declarator &declarator = state.getDeclarator();
598
599 // Try to push the attribute from the return type of a function to
600 // the function itself.
601 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
602 DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1);
603 switch (chunk.Kind) {
604 case DeclaratorChunk::Function:
605 moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(),
606 toList&: chunk.getAttrs());
607 return;
608
609 case DeclaratorChunk::Paren:
610 case DeclaratorChunk::Pointer:
611 case DeclaratorChunk::BlockPointer:
612 case DeclaratorChunk::Array:
613 case DeclaratorChunk::Reference:
614 case DeclaratorChunk::MemberPointer:
615 case DeclaratorChunk::Pipe:
616 continue;
617 }
618 }
619
620 diagnoseBadTypeAttribute(S&: state.getSema(), attr, type);
621}
622
623/// Try to distribute a function type attribute to the innermost
624/// function chunk or type. Returns true if the attribute was
625/// distributed, false if no location was found.
626static bool distributeFunctionTypeAttrToInnermost(
627 TypeProcessingState &state, ParsedAttr &attr,
628 ParsedAttributesView &attrList, QualType &declSpecType,
629 Sema::CUDAFunctionTarget CFT) {
630 Declarator &declarator = state.getDeclarator();
631
632 // Put it on the innermost function chunk, if there is one.
633 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
634 DeclaratorChunk &chunk = declarator.getTypeObject(i);
635 if (chunk.Kind != DeclaratorChunk::Function) continue;
636
637 moveAttrFromListToList(attr, fromList&: attrList, toList&: chunk.getAttrs());
638 return true;
639 }
640
641 return handleFunctionTypeAttr(state, attr, type&: declSpecType, CFT);
642}
643
644/// A function type attribute was written in the decl spec. Try to
645/// apply it somewhere.
646static void
647distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
648 ParsedAttr &attr, QualType &declSpecType,
649 Sema::CUDAFunctionTarget CFT) {
650 state.saveDeclSpecAttrs();
651
652 // Try to distribute to the innermost.
653 if (distributeFunctionTypeAttrToInnermost(
654 state, attr, attrList&: state.getCurrentAttributes(), declSpecType, CFT))
655 return;
656
657 // If that failed, diagnose the bad attribute when the declarator is
658 // fully built.
659 state.addIgnoredTypeAttr(attr);
660}
661
662/// A function type attribute was written on the declarator or declaration.
663/// Try to apply it somewhere.
664/// `Attrs` is the attribute list containing the declaration (either of the
665/// declarator or the declaration).
666static void distributeFunctionTypeAttrFromDeclarator(
667 TypeProcessingState &state, ParsedAttr &attr, QualType &declSpecType,
668 Sema::CUDAFunctionTarget CFT) {
669 Declarator &declarator = state.getDeclarator();
670
671 // Try to distribute to the innermost.
672 if (distributeFunctionTypeAttrToInnermost(
673 state, attr, attrList&: declarator.getAttributes(), declSpecType, CFT))
674 return;
675
676 // If that failed, diagnose the bad attribute when the declarator is
677 // fully built.
678 declarator.getAttributes().remove(ToBeRemoved: &attr);
679 state.addIgnoredTypeAttr(attr);
680}
681
682/// Given that there are attributes written on the declarator or declaration
683/// itself, try to distribute any type attributes to the appropriate
684/// declarator chunk.
685///
686/// These are attributes like the following:
687/// int f ATTR;
688/// int (f ATTR)();
689/// but not necessarily this:
690/// int f() ATTR;
691///
692/// `Attrs` is the attribute list containing the declaration (either of the
693/// declarator or the declaration).
694static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
695 QualType &declSpecType,
696 Sema::CUDAFunctionTarget CFT) {
697 // The called functions in this loop actually remove things from the current
698 // list, so iterating over the existing list isn't possible. Instead, make a
699 // non-owning copy and iterate over that.
700 ParsedAttributesView AttrsCopy{state.getDeclarator().getAttributes()};
701 for (ParsedAttr &attr : AttrsCopy) {
702 // Do not distribute [[]] attributes. They have strict rules for what
703 // they appertain to.
704 if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute())
705 continue;
706
707 switch (attr.getKind()) {
708 OBJC_POINTER_TYPE_ATTRS_CASELIST:
709 distributeObjCPointerTypeAttrFromDeclarator(state, attr, declSpecType);
710 break;
711
712 FUNCTION_TYPE_ATTRS_CASELIST:
713 distributeFunctionTypeAttrFromDeclarator(state, attr, declSpecType, CFT);
714 break;
715
716 MS_TYPE_ATTRS_CASELIST:
717 // Microsoft type attributes cannot go after the declarator-id.
718 continue;
719
720 NULLABILITY_TYPE_ATTRS_CASELIST:
721 // Nullability specifiers cannot go after the declarator-id.
722
723 // Objective-C __kindof does not get distributed.
724 case ParsedAttr::AT_ObjCKindOf:
725 continue;
726
727 default:
728 break;
729 }
730 }
731}
732
733/// Add a synthetic '()' to a block-literal declarator if it is
734/// required, given the return type.
735static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
736 QualType declSpecType) {
737 Declarator &declarator = state.getDeclarator();
738
739 // First, check whether the declarator would produce a function,
740 // i.e. whether the innermost semantic chunk is a function.
741 if (declarator.isFunctionDeclarator()) {
742 // If so, make that declarator a prototyped declarator.
743 declarator.getFunctionTypeInfo().hasPrototype = true;
744 return;
745 }
746
747 // If there are any type objects, the type as written won't name a
748 // function, regardless of the decl spec type. This is because a
749 // block signature declarator is always an abstract-declarator, and
750 // abstract-declarators can't just be parentheses chunks. Therefore
751 // we need to build a function chunk unless there are no type
752 // objects and the decl spec type is a function.
753 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
754 return;
755
756 // Note that there *are* cases with invalid declarators where
757 // declarators consist solely of parentheses. In general, these
758 // occur only in failed efforts to make function declarators, so
759 // faking up the function chunk is still the right thing to do.
760
761 // Otherwise, we need to fake up a function declarator.
762 SourceLocation loc = declarator.getBeginLoc();
763
764 // ...and *prepend* it to the declarator.
765 SourceLocation NoLoc;
766 declarator.AddInnermostTypeInfo(TI: DeclaratorChunk::getFunction(
767 /*HasProto=*/true,
768 /*IsAmbiguous=*/false,
769 /*LParenLoc=*/NoLoc,
770 /*ArgInfo=*/Params: nullptr,
771 /*NumParams=*/0,
772 /*EllipsisLoc=*/NoLoc,
773 /*RParenLoc=*/NoLoc,
774 /*RefQualifierIsLvalueRef=*/true,
775 /*RefQualifierLoc=*/NoLoc,
776 /*MutableLoc=*/NoLoc, ESpecType: EST_None,
777 /*ESpecRange=*/SourceRange(),
778 /*Exceptions=*/nullptr,
779 /*ExceptionRanges=*/nullptr,
780 /*NumExceptions=*/0,
781 /*NoexceptExpr=*/nullptr,
782 /*ExceptionSpecTokens=*/nullptr,
783 /*DeclsInPrototype=*/std::nullopt, LocalRangeBegin: loc, LocalRangeEnd: loc, TheDeclarator&: declarator));
784
785 // For consistency, make sure the state still has us as processing
786 // the decl spec.
787 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
788 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
789}
790
791static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
792 unsigned &TypeQuals,
793 QualType TypeSoFar,
794 unsigned RemoveTQs,
795 unsigned DiagID) {
796 // If this occurs outside a template instantiation, warn the user about
797 // it; they probably didn't mean to specify a redundant qualifier.
798 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
799 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
800 QualLoc(DeclSpec::TQ_restrict, DS.getRestrictSpecLoc()),
801 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
802 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
803 if (!(RemoveTQs & Qual.first))
804 continue;
805
806 if (!S.inTemplateInstantiation()) {
807 if (TypeQuals & Qual.first)
808 S.Diag(Loc: Qual.second, DiagID)
809 << DeclSpec::getSpecifierName(Q: Qual.first) << TypeSoFar
810 << FixItHint::CreateRemoval(RemoveRange: Qual.second);
811 }
812
813 TypeQuals &= ~Qual.first;
814 }
815}
816
817/// Return true if this is omitted block return type. Also check type
818/// attributes and type qualifiers when returning true.
819static bool checkOmittedBlockReturnType(Sema &S, Declarator &declarator,
820 QualType Result) {
821 if (!isOmittedBlockReturnType(D: declarator))
822 return false;
823
824 // Warn if we see type attributes for omitted return type on a block literal.
825 SmallVector<ParsedAttr *, 2> ToBeRemoved;
826 for (ParsedAttr &AL : declarator.getMutableDeclSpec().getAttributes()) {
827 if (AL.isInvalid() || !AL.isTypeAttr())
828 continue;
829 S.Diag(AL.getLoc(),
830 diag::warn_block_literal_attributes_on_omitted_return_type)
831 << AL;
832 ToBeRemoved.push_back(Elt: &AL);
833 }
834 // Remove bad attributes from the list.
835 for (ParsedAttr *AL : ToBeRemoved)
836 declarator.getMutableDeclSpec().getAttributes().remove(ToBeRemoved: AL);
837
838 // Warn if we see type qualifiers for omitted return type on a block literal.
839 const DeclSpec &DS = declarator.getDeclSpec();
840 unsigned TypeQuals = DS.getTypeQualifiers();
841 diagnoseAndRemoveTypeQualifiers(S, DS, TypeQuals, Result, (unsigned)-1,
842 diag::warn_block_literal_qualifiers_on_omitted_return_type);
843 declarator.getMutableDeclSpec().ClearTypeQualifiers();
844
845 return true;
846}
847
848/// Apply Objective-C type arguments to the given type.
849static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
850 ArrayRef<TypeSourceInfo *> typeArgs,
851 SourceRange typeArgsRange, bool failOnError,
852 bool rebuilding) {
853 // We can only apply type arguments to an Objective-C class type.
854 const auto *objcObjectType = type->getAs<ObjCObjectType>();
855 if (!objcObjectType || !objcObjectType->getInterface()) {
856 S.Diag(loc, diag::err_objc_type_args_non_class)
857 << type
858 << typeArgsRange;
859
860 if (failOnError)
861 return QualType();
862 return type;
863 }
864
865 // The class type must be parameterized.
866 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
867 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
868 if (!typeParams) {
869 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
870 << objcClass->getDeclName()
871 << FixItHint::CreateRemoval(typeArgsRange);
872
873 if (failOnError)
874 return QualType();
875
876 return type;
877 }
878
879 // The type must not already be specialized.
880 if (objcObjectType->isSpecialized()) {
881 S.Diag(loc, diag::err_objc_type_args_specialized_class)
882 << type
883 << FixItHint::CreateRemoval(typeArgsRange);
884
885 if (failOnError)
886 return QualType();
887
888 return type;
889 }
890
891 // Check the type arguments.
892 SmallVector<QualType, 4> finalTypeArgs;
893 unsigned numTypeParams = typeParams->size();
894 bool anyPackExpansions = false;
895 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
896 TypeSourceInfo *typeArgInfo = typeArgs[i];
897 QualType typeArg = typeArgInfo->getType();
898
899 // Type arguments cannot have explicit qualifiers or nullability.
900 // We ignore indirect sources of these, e.g. behind typedefs or
901 // template arguments.
902 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
903 bool diagnosed = false;
904 SourceRange rangeToRemove;
905 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
906 rangeToRemove = attr.getLocalSourceRange();
907 if (attr.getTypePtr()->getImmediateNullability()) {
908 typeArg = attr.getTypePtr()->getModifiedType();
909 S.Diag(attr.getBeginLoc(),
910 diag::err_objc_type_arg_explicit_nullability)
911 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
912 diagnosed = true;
913 }
914 }
915
916 // When rebuilding, qualifiers might have gotten here through a
917 // final substitution.
918 if (!rebuilding && !diagnosed) {
919 S.Diag(qual.getBeginLoc(), diag::err_objc_type_arg_qualified)
920 << typeArg << typeArg.getQualifiers().getAsString()
921 << FixItHint::CreateRemoval(rangeToRemove);
922 }
923 }
924
925 // Remove qualifiers even if they're non-local.
926 typeArg = typeArg.getUnqualifiedType();
927
928 finalTypeArgs.push_back(Elt: typeArg);
929
930 if (typeArg->getAs<PackExpansionType>())
931 anyPackExpansions = true;
932
933 // Find the corresponding type parameter, if there is one.
934 ObjCTypeParamDecl *typeParam = nullptr;
935 if (!anyPackExpansions) {
936 if (i < numTypeParams) {
937 typeParam = typeParams->begin()[i];
938 } else {
939 // Too many arguments.
940 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
941 << false
942 << objcClass->getDeclName()
943 << (unsigned)typeArgs.size()
944 << numTypeParams;
945 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
946 << objcClass;
947
948 if (failOnError)
949 return QualType();
950
951 return type;
952 }
953 }
954
955 // Objective-C object pointer types must be substitutable for the bounds.
956 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
957 // If we don't have a type parameter to match against, assume
958 // everything is fine. There was a prior pack expansion that
959 // means we won't be able to match anything.
960 if (!typeParam) {
961 assert(anyPackExpansions && "Too many arguments?");
962 continue;
963 }
964
965 // Retrieve the bound.
966 QualType bound = typeParam->getUnderlyingType();
967 const auto *boundObjC = bound->castAs<ObjCObjectPointerType>();
968
969 // Determine whether the type argument is substitutable for the bound.
970 if (typeArgObjC->isObjCIdType()) {
971 // When the type argument is 'id', the only acceptable type
972 // parameter bound is 'id'.
973 if (boundObjC->isObjCIdType())
974 continue;
975 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
976 // Otherwise, we follow the assignability rules.
977 continue;
978 }
979
980 // Diagnose the mismatch.
981 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
982 diag::err_objc_type_arg_does_not_match_bound)
983 << typeArg << bound << typeParam->getDeclName();
984 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
985 << typeParam->getDeclName();
986
987 if (failOnError)
988 return QualType();
989
990 return type;
991 }
992
993 // Block pointer types are permitted for unqualified 'id' bounds.
994 if (typeArg->isBlockPointerType()) {
995 // If we don't have a type parameter to match against, assume
996 // everything is fine. There was a prior pack expansion that
997 // means we won't be able to match anything.
998 if (!typeParam) {
999 assert(anyPackExpansions && "Too many arguments?");
1000 continue;
1001 }
1002
1003 // Retrieve the bound.
1004 QualType bound = typeParam->getUnderlyingType();
1005 if (bound->isBlockCompatibleObjCPointerType(ctx&: S.Context))
1006 continue;
1007
1008 // Diagnose the mismatch.
1009 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1010 diag::err_objc_type_arg_does_not_match_bound)
1011 << typeArg << bound << typeParam->getDeclName();
1012 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
1013 << typeParam->getDeclName();
1014
1015 if (failOnError)
1016 return QualType();
1017
1018 return type;
1019 }
1020
1021 // Dependent types will be checked at instantiation time.
1022 if (typeArg->isDependentType()) {
1023 continue;
1024 }
1025
1026 // Diagnose non-id-compatible type arguments.
1027 S.Diag(typeArgInfo->getTypeLoc().getBeginLoc(),
1028 diag::err_objc_type_arg_not_id_compatible)
1029 << typeArg << typeArgInfo->getTypeLoc().getSourceRange();
1030
1031 if (failOnError)
1032 return QualType();
1033
1034 return type;
1035 }
1036
1037 // Make sure we didn't have the wrong number of arguments.
1038 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
1039 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
1040 << (typeArgs.size() < typeParams->size())
1041 << objcClass->getDeclName()
1042 << (unsigned)finalTypeArgs.size()
1043 << (unsigned)numTypeParams;
1044 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
1045 << objcClass;
1046
1047 if (failOnError)
1048 return QualType();
1049
1050 return type;
1051 }
1052
1053 // Success. Form the specialized type.
1054 return S.Context.getObjCObjectType(Base: type, typeArgs: finalTypeArgs, protocols: { }, isKindOf: false);
1055}
1056
1057QualType Sema::BuildObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1058 SourceLocation ProtocolLAngleLoc,
1059 ArrayRef<ObjCProtocolDecl *> Protocols,
1060 ArrayRef<SourceLocation> ProtocolLocs,
1061 SourceLocation ProtocolRAngleLoc,
1062 bool FailOnError) {
1063 QualType Result = QualType(Decl->getTypeForDecl(), 0);
1064 if (!Protocols.empty()) {
1065 bool HasError;
1066 Result = Context.applyObjCProtocolQualifiers(type: Result, protocols: Protocols,
1067 hasError&: HasError);
1068 if (HasError) {
1069 Diag(SourceLocation(), diag::err_invalid_protocol_qualifiers)
1070 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1071 if (FailOnError) Result = QualType();
1072 }
1073 if (FailOnError && Result.isNull())
1074 return QualType();
1075 }
1076
1077 return Result;
1078}
1079
1080QualType Sema::BuildObjCObjectType(
1081 QualType BaseType, SourceLocation Loc, SourceLocation TypeArgsLAngleLoc,
1082 ArrayRef<TypeSourceInfo *> TypeArgs, SourceLocation TypeArgsRAngleLoc,
1083 SourceLocation ProtocolLAngleLoc, ArrayRef<ObjCProtocolDecl *> Protocols,
1084 ArrayRef<SourceLocation> ProtocolLocs, SourceLocation ProtocolRAngleLoc,
1085 bool FailOnError, bool Rebuilding) {
1086 QualType Result = BaseType;
1087 if (!TypeArgs.empty()) {
1088 Result =
1089 applyObjCTypeArgs(S&: *this, loc: Loc, type: Result, typeArgs: TypeArgs,
1090 typeArgsRange: SourceRange(TypeArgsLAngleLoc, TypeArgsRAngleLoc),
1091 failOnError: FailOnError, rebuilding: Rebuilding);
1092 if (FailOnError && Result.isNull())
1093 return QualType();
1094 }
1095
1096 if (!Protocols.empty()) {
1097 bool HasError;
1098 Result = Context.applyObjCProtocolQualifiers(type: Result, protocols: Protocols,
1099 hasError&: HasError);
1100 if (HasError) {
1101 Diag(Loc, diag::err_invalid_protocol_qualifiers)
1102 << SourceRange(ProtocolLAngleLoc, ProtocolRAngleLoc);
1103 if (FailOnError) Result = QualType();
1104 }
1105 if (FailOnError && Result.isNull())
1106 return QualType();
1107 }
1108
1109 return Result;
1110}
1111
1112TypeResult Sema::actOnObjCProtocolQualifierType(
1113 SourceLocation lAngleLoc,
1114 ArrayRef<Decl *> protocols,
1115 ArrayRef<SourceLocation> protocolLocs,
1116 SourceLocation rAngleLoc) {
1117 // Form id<protocol-list>.
1118 QualType Result = Context.getObjCObjectType(
1119 Context.ObjCBuiltinIdTy, {},
1120 llvm::ArrayRef((ObjCProtocolDecl *const *)protocols.data(),
1121 protocols.size()),
1122 false);
1123 Result = Context.getObjCObjectPointerType(OIT: Result);
1124
1125 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(T: Result);
1126 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1127
1128 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1129 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1130
1131 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1132 .castAs<ObjCObjectTypeLoc>();
1133 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1134 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1135
1136 // No type arguments.
1137 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1138 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1139
1140 // Fill in protocol qualifiers.
1141 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1142 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1143 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1144 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1145
1146 // We're done. Return the completed type to the parser.
1147 return CreateParsedType(T: Result, TInfo: ResultTInfo);
1148}
1149
1150TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1151 Scope *S,
1152 SourceLocation Loc,
1153 ParsedType BaseType,
1154 SourceLocation TypeArgsLAngleLoc,
1155 ArrayRef<ParsedType> TypeArgs,
1156 SourceLocation TypeArgsRAngleLoc,
1157 SourceLocation ProtocolLAngleLoc,
1158 ArrayRef<Decl *> Protocols,
1159 ArrayRef<SourceLocation> ProtocolLocs,
1160 SourceLocation ProtocolRAngleLoc) {
1161 TypeSourceInfo *BaseTypeInfo = nullptr;
1162 QualType T = GetTypeFromParser(Ty: BaseType, TInfo: &BaseTypeInfo);
1163 if (T.isNull())
1164 return true;
1165
1166 // Handle missing type-source info.
1167 if (!BaseTypeInfo)
1168 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1169
1170 // Extract type arguments.
1171 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1172 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1173 TypeSourceInfo *TypeArgInfo = nullptr;
1174 QualType TypeArg = GetTypeFromParser(Ty: TypeArgs[i], TInfo: &TypeArgInfo);
1175 if (TypeArg.isNull()) {
1176 ActualTypeArgInfos.clear();
1177 break;
1178 }
1179
1180 assert(TypeArgInfo && "No type source info?");
1181 ActualTypeArgInfos.push_back(Elt: TypeArgInfo);
1182 }
1183
1184 // Build the object type.
1185 QualType Result = BuildObjCObjectType(
1186 BaseType: T, Loc: BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1187 TypeArgsLAngleLoc, TypeArgs: ActualTypeArgInfos, TypeArgsRAngleLoc,
1188 ProtocolLAngleLoc,
1189 Protocols: llvm::ArrayRef((ObjCProtocolDecl *const *)Protocols.data(),
1190 Protocols.size()),
1191 ProtocolLocs, ProtocolRAngleLoc,
1192 /*FailOnError=*/false,
1193 /*Rebuilding=*/false);
1194
1195 if (Result == T)
1196 return BaseType;
1197
1198 // Create source information for this type.
1199 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(T: Result);
1200 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1201
1202 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1203 // object pointer type. Fill in source information for it.
1204 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1205 // The '*' is implicit.
1206 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1207 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1208 }
1209
1210 if (auto OTPTL = ResultTL.getAs<ObjCTypeParamTypeLoc>()) {
1211 // Protocol qualifier information.
1212 if (OTPTL.getNumProtocols() > 0) {
1213 assert(OTPTL.getNumProtocols() == Protocols.size());
1214 OTPTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1215 OTPTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1216 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1217 OTPTL.setProtocolLoc(i, Loc: ProtocolLocs[i]);
1218 }
1219
1220 // We're done. Return the completed type to the parser.
1221 return CreateParsedType(T: Result, TInfo: ResultTInfo);
1222 }
1223
1224 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1225
1226 // Type argument information.
1227 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1228 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1229 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1230 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1231 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1232 ObjCObjectTL.setTypeArgTInfo(i, TInfo: ActualTypeArgInfos[i]);
1233 } else {
1234 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1235 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1236 }
1237
1238 // Protocol qualifier information.
1239 if (ObjCObjectTL.getNumProtocols() > 0) {
1240 assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1241 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1242 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1243 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1244 ObjCObjectTL.setProtocolLoc(i, Loc: ProtocolLocs[i]);
1245 } else {
1246 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1247 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1248 }
1249
1250 // Base type.
1251 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1252 if (ObjCObjectTL.getType() == T)
1253 ObjCObjectTL.getBaseLoc().initializeFullCopy(Other: BaseTypeInfo->getTypeLoc());
1254 else
1255 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1256
1257 // We're done. Return the completed type to the parser.
1258 return CreateParsedType(T: Result, TInfo: ResultTInfo);
1259}
1260
1261static OpenCLAccessAttr::Spelling
1262getImageAccess(const ParsedAttributesView &Attrs) {
1263 for (const ParsedAttr &AL : Attrs)
1264 if (AL.getKind() == ParsedAttr::AT_OpenCLAccess)
1265 return static_cast<OpenCLAccessAttr::Spelling>(AL.getSemanticSpelling());
1266 return OpenCLAccessAttr::Keyword_read_only;
1267}
1268
1269static UnaryTransformType::UTTKind
1270TSTToUnaryTransformType(DeclSpec::TST SwitchTST) {
1271 switch (SwitchTST) {
1272#define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \
1273 case TST_##Trait: \
1274 return UnaryTransformType::Enum;
1275#include "clang/Basic/TransformTypeTraits.def"
1276 default:
1277 llvm_unreachable("attempted to parse a non-unary transform builtin");
1278 }
1279}
1280
1281/// Convert the specified declspec to the appropriate type
1282/// object.
1283/// \param state Specifies the declarator containing the declaration specifier
1284/// to be converted, along with other associated processing state.
1285/// \returns The type described by the declaration specifiers. This function
1286/// never returns null.
1287static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1288 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1289 // checking.
1290
1291 Sema &S = state.getSema();
1292 Declarator &declarator = state.getDeclarator();
1293 DeclSpec &DS = declarator.getMutableDeclSpec();
1294 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1295 if (DeclLoc.isInvalid())
1296 DeclLoc = DS.getBeginLoc();
1297
1298 ASTContext &Context = S.Context;
1299
1300 QualType Result;
1301 switch (DS.getTypeSpecType()) {
1302 case DeclSpec::TST_void:
1303 Result = Context.VoidTy;
1304 break;
1305 case DeclSpec::TST_char:
1306 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1307 Result = Context.CharTy;
1308 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed)
1309 Result = Context.SignedCharTy;
1310 else {
1311 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
1312 "Unknown TSS value");
1313 Result = Context.UnsignedCharTy;
1314 }
1315 break;
1316 case DeclSpec::TST_wchar:
1317 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified)
1318 Result = Context.WCharTy;
1319 else if (DS.getTypeSpecSign() == TypeSpecifierSign::Signed) {
1320 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1321 << DS.getSpecifierName(DS.getTypeSpecType(),
1322 Context.getPrintingPolicy());
1323 Result = Context.getSignedWCharType();
1324 } else {
1325 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned &&
1326 "Unknown TSS value");
1327 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_wchar_t_sign_spec)
1328 << DS.getSpecifierName(DS.getTypeSpecType(),
1329 Context.getPrintingPolicy());
1330 Result = Context.getUnsignedWCharType();
1331 }
1332 break;
1333 case DeclSpec::TST_char8:
1334 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1335 "Unknown TSS value");
1336 Result = Context.Char8Ty;
1337 break;
1338 case DeclSpec::TST_char16:
1339 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1340 "Unknown TSS value");
1341 Result = Context.Char16Ty;
1342 break;
1343 case DeclSpec::TST_char32:
1344 assert(DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1345 "Unknown TSS value");
1346 Result = Context.Char32Ty;
1347 break;
1348 case DeclSpec::TST_unspecified:
1349 // If this is a missing declspec in a block literal return context, then it
1350 // is inferred from the return statements inside the block.
1351 // The declspec is always missing in a lambda expr context; it is either
1352 // specified with a trailing return type or inferred.
1353 if (S.getLangOpts().CPlusPlus14 &&
1354 declarator.getContext() == DeclaratorContext::LambdaExpr) {
1355 // In C++1y, a lambda's implicit return type is 'auto'.
1356 Result = Context.getAutoDeductType();
1357 break;
1358 } else if (declarator.getContext() == DeclaratorContext::LambdaExpr ||
1359 checkOmittedBlockReturnType(S, declarator,
1360 Context.DependentTy)) {
1361 Result = Context.DependentTy;
1362 break;
1363 }
1364
1365 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1366 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1367 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1368 // Note that the one exception to this is function definitions, which are
1369 // allowed to be completely missing a declspec. This is handled in the
1370 // parser already though by it pretending to have seen an 'int' in this
1371 // case.
1372 if (S.getLangOpts().isImplicitIntRequired()) {
1373 S.Diag(DeclLoc, diag::warn_missing_type_specifier)
1374 << DS.getSourceRange()
1375 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1376 } else if (!DS.hasTypeSpecifier()) {
1377 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1378 // "At least one type specifier shall be given in the declaration
1379 // specifiers in each declaration, and in the specifier-qualifier list in
1380 // each struct declaration and type name."
1381 if (!S.getLangOpts().isImplicitIntAllowed() && !DS.isTypeSpecPipe()) {
1382 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1383 << DS.getSourceRange();
1384
1385 // When this occurs, often something is very broken with the value
1386 // being declared, poison it as invalid so we don't get chains of
1387 // errors.
1388 declarator.setInvalidType(true);
1389 } else if (S.getLangOpts().getOpenCLCompatibleVersion() >= 200 &&
1390 DS.isTypeSpecPipe()) {
1391 S.Diag(DeclLoc, diag::err_missing_actual_pipe_type)
1392 << DS.getSourceRange();
1393 declarator.setInvalidType(true);
1394 } else {
1395 assert(S.getLangOpts().isImplicitIntAllowed() &&
1396 "implicit int is disabled?");
1397 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1398 << DS.getSourceRange()
1399 << FixItHint::CreateInsertion(DS.getBeginLoc(), "int");
1400 }
1401 }
1402
1403 [[fallthrough]];
1404 case DeclSpec::TST_int: {
1405 if (DS.getTypeSpecSign() != TypeSpecifierSign::Unsigned) {
1406 switch (DS.getTypeSpecWidth()) {
1407 case TypeSpecifierWidth::Unspecified:
1408 Result = Context.IntTy;
1409 break;
1410 case TypeSpecifierWidth::Short:
1411 Result = Context.ShortTy;
1412 break;
1413 case TypeSpecifierWidth::Long:
1414 Result = Context.LongTy;
1415 break;
1416 case TypeSpecifierWidth::LongLong:
1417 Result = Context.LongLongTy;
1418
1419 // 'long long' is a C99 or C++11 feature.
1420 if (!S.getLangOpts().C99) {
1421 if (S.getLangOpts().CPlusPlus)
1422 S.Diag(DS.getTypeSpecWidthLoc(),
1423 S.getLangOpts().CPlusPlus11 ?
1424 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1425 else
1426 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1427 }
1428 break;
1429 }
1430 } else {
1431 switch (DS.getTypeSpecWidth()) {
1432 case TypeSpecifierWidth::Unspecified:
1433 Result = Context.UnsignedIntTy;
1434 break;
1435 case TypeSpecifierWidth::Short:
1436 Result = Context.UnsignedShortTy;
1437 break;
1438 case TypeSpecifierWidth::Long:
1439 Result = Context.UnsignedLongTy;
1440 break;
1441 case TypeSpecifierWidth::LongLong:
1442 Result = Context.UnsignedLongLongTy;
1443
1444 // 'long long' is a C99 or C++11 feature.
1445 if (!S.getLangOpts().C99) {
1446 if (S.getLangOpts().CPlusPlus)
1447 S.Diag(DS.getTypeSpecWidthLoc(),
1448 S.getLangOpts().CPlusPlus11 ?
1449 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1450 else
1451 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1452 }
1453 break;
1454 }
1455 }
1456 break;
1457 }
1458 case DeclSpec::TST_bitint: {
1459 if (!S.Context.getTargetInfo().hasBitIntType())
1460 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "_BitInt";
1461 Result =
1462 S.BuildBitIntType(IsUnsigned: DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned,
1463 BitWidth: DS.getRepAsExpr(), Loc: DS.getBeginLoc());
1464 if (Result.isNull()) {
1465 Result = Context.IntTy;
1466 declarator.setInvalidType(true);
1467 }
1468 break;
1469 }
1470 case DeclSpec::TST_accum: {
1471 switch (DS.getTypeSpecWidth()) {
1472 case TypeSpecifierWidth::Short:
1473 Result = Context.ShortAccumTy;
1474 break;
1475 case TypeSpecifierWidth::Unspecified:
1476 Result = Context.AccumTy;
1477 break;
1478 case TypeSpecifierWidth::Long:
1479 Result = Context.LongAccumTy;
1480 break;
1481 case TypeSpecifierWidth::LongLong:
1482 llvm_unreachable("Unable to specify long long as _Accum width");
1483 }
1484
1485 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1486 Result = Context.getCorrespondingUnsignedType(T: Result);
1487
1488 if (DS.isTypeSpecSat())
1489 Result = Context.getCorrespondingSaturatedType(Ty: Result);
1490
1491 break;
1492 }
1493 case DeclSpec::TST_fract: {
1494 switch (DS.getTypeSpecWidth()) {
1495 case TypeSpecifierWidth::Short:
1496 Result = Context.ShortFractTy;
1497 break;
1498 case TypeSpecifierWidth::Unspecified:
1499 Result = Context.FractTy;
1500 break;
1501 case TypeSpecifierWidth::Long:
1502 Result = Context.LongFractTy;
1503 break;
1504 case TypeSpecifierWidth::LongLong:
1505 llvm_unreachable("Unable to specify long long as _Fract width");
1506 }
1507
1508 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1509 Result = Context.getCorrespondingUnsignedType(T: Result);
1510
1511 if (DS.isTypeSpecSat())
1512 Result = Context.getCorrespondingSaturatedType(Ty: Result);
1513
1514 break;
1515 }
1516 case DeclSpec::TST_int128:
1517 if (!S.Context.getTargetInfo().hasInt128Type() &&
1518 !(S.getLangOpts().SYCLIsDevice || S.getLangOpts().CUDAIsDevice ||
1519 (S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice)))
1520 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1521 << "__int128";
1522 if (DS.getTypeSpecSign() == TypeSpecifierSign::Unsigned)
1523 Result = Context.UnsignedInt128Ty;
1524 else
1525 Result = Context.Int128Ty;
1526 break;
1527 case DeclSpec::TST_float16:
1528 // CUDA host and device may have different _Float16 support, therefore
1529 // do not diagnose _Float16 usage to avoid false alarm.
1530 // ToDo: more precise diagnostics for CUDA.
1531 if (!S.Context.getTargetInfo().hasFloat16Type() && !S.getLangOpts().CUDA &&
1532 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1533 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1534 << "_Float16";
1535 Result = Context.Float16Ty;
1536 break;
1537 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1538 case DeclSpec::TST_BFloat16:
1539 if (!S.Context.getTargetInfo().hasBFloat16Type() &&
1540 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice) &&
1541 !S.getLangOpts().SYCLIsDevice)
1542 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__bf16";
1543 Result = Context.BFloat16Ty;
1544 break;
1545 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1546 case DeclSpec::TST_double:
1547 if (DS.getTypeSpecWidth() == TypeSpecifierWidth::Long)
1548 Result = Context.LongDoubleTy;
1549 else
1550 Result = Context.DoubleTy;
1551 if (S.getLangOpts().OpenCL) {
1552 if (!S.getOpenCLOptions().isSupported("cl_khr_fp64", S.getLangOpts()))
1553 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1554 << 0 << Result
1555 << (S.getLangOpts().getOpenCLCompatibleVersion() == 300
1556 ? "cl_khr_fp64 and __opencl_c_fp64"
1557 : "cl_khr_fp64");
1558 else if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp64", S.getLangOpts()))
1559 S.Diag(DS.getTypeSpecTypeLoc(), diag::ext_opencl_double_without_pragma);
1560 }
1561 break;
1562 case DeclSpec::TST_float128:
1563 if (!S.Context.getTargetInfo().hasFloat128Type() &&
1564 !S.getLangOpts().SYCLIsDevice &&
1565 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1566 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported)
1567 << "__float128";
1568 Result = Context.Float128Ty;
1569 break;
1570 case DeclSpec::TST_ibm128:
1571 if (!S.Context.getTargetInfo().hasIbm128Type() &&
1572 !S.getLangOpts().SYCLIsDevice &&
1573 !(S.getLangOpts().OpenMP && S.getLangOpts().OpenMPIsTargetDevice))
1574 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_unsupported) << "__ibm128";
1575 Result = Context.Ibm128Ty;
1576 break;
1577 case DeclSpec::TST_bool:
1578 Result = Context.BoolTy; // _Bool or bool
1579 break;
1580 case DeclSpec::TST_decimal32: // _Decimal32
1581 case DeclSpec::TST_decimal64: // _Decimal64
1582 case DeclSpec::TST_decimal128: // _Decimal128
1583 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1584 Result = Context.IntTy;
1585 declarator.setInvalidType(true);
1586 break;
1587 case DeclSpec::TST_class:
1588 case DeclSpec::TST_enum:
1589 case DeclSpec::TST_union:
1590 case DeclSpec::TST_struct:
1591 case DeclSpec::TST_interface: {
1592 TagDecl *D = dyn_cast_or_null<TagDecl>(Val: DS.getRepAsDecl());
1593 if (!D) {
1594 // This can happen in C++ with ambiguous lookups.
1595 Result = Context.IntTy;
1596 declarator.setInvalidType(true);
1597 break;
1598 }
1599
1600 // If the type is deprecated or unavailable, diagnose it.
1601 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1602
1603 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1604 DS.getTypeSpecComplex() == 0 &&
1605 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1606 "No qualifiers on tag names!");
1607
1608 // TypeQuals handled by caller.
1609 Result = Context.getTypeDeclType(D);
1610
1611 // In both C and C++, make an ElaboratedType.
1612 ElaboratedTypeKeyword Keyword
1613 = ElaboratedType::getKeywordForTypeSpec(TypeSpec: DS.getTypeSpecType());
1614 Result = S.getElaboratedType(Keyword, SS: DS.getTypeSpecScope(), T: Result,
1615 OwnedTagDecl: DS.isTypeSpecOwned() ? D : nullptr);
1616 break;
1617 }
1618 case DeclSpec::TST_typename: {
1619 assert(DS.getTypeSpecWidth() == TypeSpecifierWidth::Unspecified &&
1620 DS.getTypeSpecComplex() == 0 &&
1621 DS.getTypeSpecSign() == TypeSpecifierSign::Unspecified &&
1622 "Can't handle qualifiers on typedef names yet!");
1623 Result = S.GetTypeFromParser(Ty: DS.getRepAsType());
1624 if (Result.isNull()) {
1625 declarator.setInvalidType(true);
1626 }
1627
1628 // TypeQuals handled by caller.
1629 break;
1630 }
1631 case DeclSpec::TST_typeof_unqualType:
1632 case DeclSpec::TST_typeofType:
1633 // FIXME: Preserve type source info.
1634 Result = S.GetTypeFromParser(Ty: DS.getRepAsType());
1635 assert(!Result.isNull() && "Didn't get a type for typeof?");
1636 if (!Result->isDependentType())
1637 if (const TagType *TT = Result->getAs<TagType>())
1638 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1639 // TypeQuals handled by caller.
1640 Result = Context.getTypeOfType(
1641 QT: Result, Kind: DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType
1642 ? TypeOfKind::Unqualified
1643 : TypeOfKind::Qualified);
1644 break;
1645 case DeclSpec::TST_typeof_unqualExpr:
1646 case DeclSpec::TST_typeofExpr: {
1647 Expr *E = DS.getRepAsExpr();
1648 assert(E && "Didn't get an expression for typeof?");
1649 // TypeQuals handled by caller.
1650 Result = S.BuildTypeofExprType(E, Kind: DS.getTypeSpecType() ==
1651 DeclSpec::TST_typeof_unqualExpr
1652 ? TypeOfKind::Unqualified
1653 : TypeOfKind::Qualified);
1654 if (Result.isNull()) {
1655 Result = Context.IntTy;
1656 declarator.setInvalidType(true);
1657 }
1658 break;
1659 }
1660 case DeclSpec::TST_decltype: {
1661 Expr *E = DS.getRepAsExpr();
1662 assert(E && "Didn't get an expression for decltype?");
1663 // TypeQuals handled by caller.
1664 Result = S.BuildDecltypeType(E);
1665 if (Result.isNull()) {
1666 Result = Context.IntTy;
1667 declarator.setInvalidType(true);
1668 }
1669 break;
1670 }
1671 case DeclSpec::TST_typename_pack_indexing: {
1672 Expr *E = DS.getPackIndexingExpr();
1673 assert(E && "Didn't get an expression for pack indexing");
1674 QualType Pattern = S.GetTypeFromParser(Ty: DS.getRepAsType());
1675 Result = S.BuildPackIndexingType(Pattern, IndexExpr: E, Loc: DS.getBeginLoc(),
1676 EllipsisLoc: DS.getEllipsisLoc());
1677 if (Result.isNull()) {
1678 declarator.setInvalidType(true);
1679 Result = Context.IntTy;
1680 }
1681 break;
1682 }
1683
1684#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait:
1685#include "clang/Basic/TransformTypeTraits.def"
1686 Result = S.GetTypeFromParser(Ty: DS.getRepAsType());
1687 assert(!Result.isNull() && "Didn't get a type for the transformation?");
1688 Result = S.BuildUnaryTransformType(
1689 BaseType: Result, UKind: TSTToUnaryTransformType(SwitchTST: DS.getTypeSpecType()),
1690 Loc: DS.getTypeSpecTypeLoc());
1691 if (Result.isNull()) {
1692 Result = Context.IntTy;
1693 declarator.setInvalidType(true);
1694 }
1695 break;
1696
1697 case DeclSpec::TST_auto:
1698 case DeclSpec::TST_decltype_auto: {
1699 auto AutoKW = DS.getTypeSpecType() == DeclSpec::TST_decltype_auto
1700 ? AutoTypeKeyword::DecltypeAuto
1701 : AutoTypeKeyword::Auto;
1702
1703 ConceptDecl *TypeConstraintConcept = nullptr;
1704 llvm::SmallVector<TemplateArgument, 8> TemplateArgs;
1705 if (DS.isConstrainedAuto()) {
1706 if (TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId()) {
1707 TypeConstraintConcept =
1708 cast<ConceptDecl>(Val: TemplateId->Template.get().getAsTemplateDecl());
1709 TemplateArgumentListInfo TemplateArgsInfo;
1710 TemplateArgsInfo.setLAngleLoc(TemplateId->LAngleLoc);
1711 TemplateArgsInfo.setRAngleLoc(TemplateId->RAngleLoc);
1712 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
1713 TemplateId->NumArgs);
1714 S.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo);
1715 for (const auto &ArgLoc : TemplateArgsInfo.arguments())
1716 TemplateArgs.push_back(Elt: ArgLoc.getArgument());
1717 } else {
1718 declarator.setInvalidType(true);
1719 }
1720 }
1721 Result = S.Context.getAutoType(DeducedType: QualType(), Keyword: AutoKW,
1722 /*IsDependent*/ false, /*IsPack=*/false,
1723 TypeConstraintConcept, TypeConstraintArgs: TemplateArgs);
1724 break;
1725 }
1726
1727 case DeclSpec::TST_auto_type:
1728 Result = Context.getAutoType(DeducedType: QualType(), Keyword: AutoTypeKeyword::GNUAutoType, IsDependent: false);
1729 break;
1730
1731 case DeclSpec::TST_unknown_anytype:
1732 Result = Context.UnknownAnyTy;
1733 break;
1734
1735 case DeclSpec::TST_atomic:
1736 Result = S.GetTypeFromParser(Ty: DS.getRepAsType());
1737 assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1738 Result = S.BuildAtomicType(T: Result, Loc: DS.getTypeSpecTypeLoc());
1739 if (Result.isNull()) {
1740 Result = Context.IntTy;
1741 declarator.setInvalidType(true);
1742 }
1743 break;
1744
1745#define GENERIC_IMAGE_TYPE(ImgType, Id) \
1746 case DeclSpec::TST_##ImgType##_t: \
1747 switch (getImageAccess(DS.getAttributes())) { \
1748 case OpenCLAccessAttr::Keyword_write_only: \
1749 Result = Context.Id##WOTy; \
1750 break; \
1751 case OpenCLAccessAttr::Keyword_read_write: \
1752 Result = Context.Id##RWTy; \
1753 break; \
1754 case OpenCLAccessAttr::Keyword_read_only: \
1755 Result = Context.Id##ROTy; \
1756 break; \
1757 case OpenCLAccessAttr::SpellingNotCalculated: \
1758 llvm_unreachable("Spelling not yet calculated"); \
1759 } \
1760 break;
1761#include "clang/Basic/OpenCLImageTypes.def"
1762
1763 case DeclSpec::TST_error:
1764 Result = Context.IntTy;
1765 declarator.setInvalidType(true);
1766 break;
1767 }
1768
1769 // FIXME: we want resulting declarations to be marked invalid, but claiming
1770 // the type is invalid is too strong - e.g. it causes ActOnTypeName to return
1771 // a null type.
1772 if (Result->containsErrors())
1773 declarator.setInvalidType();
1774
1775 if (S.getLangOpts().OpenCL) {
1776 const auto &OpenCLOptions = S.getOpenCLOptions();
1777 bool IsOpenCLC30Compatible =
1778 S.getLangOpts().getOpenCLCompatibleVersion() == 300;
1779 // OpenCL C v3.0 s6.3.3 - OpenCL image types require __opencl_c_images
1780 // support.
1781 // OpenCL C v3.0 s6.2.1 - OpenCL 3d image write types requires support
1782 // for OpenCL C 2.0, or OpenCL C 3.0 or newer and the
1783 // __opencl_c_3d_image_writes feature. OpenCL C v3.0 API s4.2 - For devices
1784 // that support OpenCL 3.0, cl_khr_3d_image_writes must be returned when and
1785 // only when the optional feature is supported
1786 if ((Result->isImageType() || Result->isSamplerT()) &&
1787 (IsOpenCLC30Compatible &&
1788 !OpenCLOptions.isSupported(Ext: "__opencl_c_images", LO: S.getLangOpts()))) {
1789 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1790 << 0 << Result << "__opencl_c_images";
1791 declarator.setInvalidType();
1792 } else if (Result->isOCLImage3dWOType() &&
1793 !OpenCLOptions.isSupported(Ext: "cl_khr_3d_image_writes",
1794 LO: S.getLangOpts())) {
1795 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_opencl_requires_extension)
1796 << 0 << Result
1797 << (IsOpenCLC30Compatible
1798 ? "cl_khr_3d_image_writes and __opencl_c_3d_image_writes"
1799 : "cl_khr_3d_image_writes");
1800 declarator.setInvalidType();
1801 }
1802 }
1803
1804 bool IsFixedPointType = DS.getTypeSpecType() == DeclSpec::TST_accum ||
1805 DS.getTypeSpecType() == DeclSpec::TST_fract;
1806
1807 // Only fixed point types can be saturated
1808 if (DS.isTypeSpecSat() && !IsFixedPointType)
1809 S.Diag(DS.getTypeSpecSatLoc(), diag::err_invalid_saturation_spec)
1810 << DS.getSpecifierName(DS.getTypeSpecType(),
1811 Context.getPrintingPolicy());
1812
1813 // Handle complex types.
1814 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1815 if (S.getLangOpts().Freestanding)
1816 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1817 Result = Context.getComplexType(T: Result);
1818 } else if (DS.isTypeAltiVecVector()) {
1819 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(T: Result));
1820 assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1821 VectorKind VecKind = VectorKind::AltiVecVector;
1822 if (DS.isTypeAltiVecPixel())
1823 VecKind = VectorKind::AltiVecPixel;
1824 else if (DS.isTypeAltiVecBool())
1825 VecKind = VectorKind::AltiVecBool;
1826 Result = Context.getVectorType(VectorType: Result, NumElts: 128/typeSize, VecKind);
1827 }
1828
1829 // FIXME: Imaginary.
1830 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1831 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1832
1833 // Before we process any type attributes, synthesize a block literal
1834 // function declarator if necessary.
1835 if (declarator.getContext() == DeclaratorContext::BlockLiteral)
1836 maybeSynthesizeBlockSignature(state, declSpecType: Result);
1837
1838 // Apply any type attributes from the decl spec. This may cause the
1839 // list of type attributes to be temporarily saved while the type
1840 // attributes are pushed around.
1841 // pipe attributes will be handled later ( at GetFullTypeForDeclarator )
1842 if (!DS.isTypeSpecPipe()) {
1843 // We also apply declaration attributes that "slide" to the decl spec.
1844 // Ordering can be important for attributes. The decalaration attributes
1845 // come syntactically before the decl spec attributes, so we process them
1846 // in that order.
1847 ParsedAttributesView SlidingAttrs;
1848 for (ParsedAttr &AL : declarator.getDeclarationAttributes()) {
1849 if (AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
1850 SlidingAttrs.addAtEnd(newAttr: &AL);
1851
1852 // For standard syntax attributes, which would normally appertain to the
1853 // declaration here, suggest moving them to the type instead. But only
1854 // do this for our own vendor attributes; moving other vendors'
1855 // attributes might hurt portability.
1856 // There's one special case that we need to deal with here: The
1857 // `MatrixType` attribute may only be used in a typedef declaration. If
1858 // it's being used anywhere else, don't output the warning as
1859 // ProcessDeclAttributes() will output an error anyway.
1860 if (AL.isStandardAttributeSyntax() && AL.isClangScope() &&
1861 !(AL.getKind() == ParsedAttr::AT_MatrixType &&
1862 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)) {
1863 S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl)
1864 << AL;
1865 }
1866 }
1867 }
1868 // During this call to processTypeAttrs(),
1869 // TypeProcessingState::getCurrentAttributes() will erroneously return a
1870 // reference to the DeclSpec attributes, rather than the declaration
1871 // attributes. However, this doesn't matter, as getCurrentAttributes()
1872 // is only called when distributing attributes from one attribute list
1873 // to another. Declaration attributes are always C++11 attributes, and these
1874 // are never distributed.
1875 processTypeAttrs(state, type&: Result, TAL: TAL_DeclSpec, attrs: SlidingAttrs);
1876 processTypeAttrs(state, type&: Result, TAL: TAL_DeclSpec, attrs: DS.getAttributes());
1877 }
1878
1879 // Apply const/volatile/restrict qualifiers to T.
1880 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1881 // Warn about CV qualifiers on function types.
1882 // C99 6.7.3p8:
1883 // If the specification of a function type includes any type qualifiers,
1884 // the behavior is undefined.
1885 // C++11 [dcl.fct]p7:
1886 // The effect of a cv-qualifier-seq in a function declarator is not the
1887 // same as adding cv-qualification on top of the function type. In the
1888 // latter case, the cv-qualifiers are ignored.
1889 if (Result->isFunctionType()) {
1890 diagnoseAndRemoveTypeQualifiers(
1891 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1892 S.getLangOpts().CPlusPlus
1893 ? diag::warn_typecheck_function_qualifiers_ignored
1894 : diag::warn_typecheck_function_qualifiers_unspecified);
1895 // No diagnostic for 'restrict' or '_Atomic' applied to a
1896 // function type; we'll diagnose those later, in BuildQualifiedType.
1897 }
1898
1899 // C++11 [dcl.ref]p1:
1900 // Cv-qualified references are ill-formed except when the
1901 // cv-qualifiers are introduced through the use of a typedef-name
1902 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1903 //
1904 // There don't appear to be any other contexts in which a cv-qualified
1905 // reference type could be formed, so the 'ill-formed' clause here appears
1906 // to never happen.
1907 if (TypeQuals && Result->isReferenceType()) {
1908 diagnoseAndRemoveTypeQualifiers(
1909 S, DS, TypeQuals, Result,
1910 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1911 diag::warn_typecheck_reference_qualifiers);
1912 }
1913
1914 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1915 // than once in the same specifier-list or qualifier-list, either directly
1916 // or via one or more typedefs."
1917 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1918 && TypeQuals & Result.getCVRQualifiers()) {
1919 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1920 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1921 << "const";
1922 }
1923
1924 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1925 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1926 << "volatile";
1927 }
1928
1929 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1930 // produce a warning in this case.
1931 }
1932
1933 QualType Qualified = S.BuildQualifiedType(T: Result, Loc: DeclLoc, CVRA: TypeQuals, DS: &DS);
1934
1935 // If adding qualifiers fails, just use the unqualified type.
1936 if (Qualified.isNull())
1937 declarator.setInvalidType(true);
1938 else
1939 Result = Qualified;
1940 }
1941
1942 assert(!Result.isNull() && "This function should not return a null type");
1943 return Result;
1944}
1945
1946static std::string getPrintableNameForEntity(DeclarationName Entity) {
1947 if (Entity)
1948 return Entity.getAsString();
1949
1950 return "type name";
1951}
1952
1953static bool isDependentOrGNUAutoType(QualType T) {
1954 if (T->isDependentType())
1955 return true;
1956
1957 const auto *AT = dyn_cast<AutoType>(Val&: T);
1958 return AT && AT->isGNUAutoType();
1959}
1960
1961QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1962 Qualifiers Qs, const DeclSpec *DS) {
1963 if (T.isNull())
1964 return QualType();
1965
1966 // Ignore any attempt to form a cv-qualified reference.
1967 if (T->isReferenceType()) {
1968 Qs.removeConst();
1969 Qs.removeVolatile();
1970 }
1971
1972 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1973 // object or incomplete types shall not be restrict-qualified."
1974 if (Qs.hasRestrict()) {
1975 unsigned DiagID = 0;
1976 QualType ProblemTy;
1977
1978 if (T->isAnyPointerType() || T->isReferenceType() ||
1979 T->isMemberPointerType()) {
1980 QualType EltTy;
1981 if (T->isObjCObjectPointerType())
1982 EltTy = T;
1983 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1984 EltTy = PTy->getPointeeType();
1985 else
1986 EltTy = T->getPointeeType();
1987
1988 // If we have a pointer or reference, the pointee must have an object
1989 // incomplete type.
1990 if (!EltTy->isIncompleteOrObjectType()) {
1991 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1992 ProblemTy = EltTy;
1993 }
1994 } else if (!isDependentOrGNUAutoType(T)) {
1995 // For an __auto_type variable, we may not have seen the initializer yet
1996 // and so have no idea whether the underlying type is a pointer type or
1997 // not.
1998 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1999 ProblemTy = T;
2000 }
2001
2002 if (DiagID) {
2003 Diag(Loc: DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
2004 Qs.removeRestrict();
2005 }
2006 }
2007
2008 return Context.getQualifiedType(T, Qs);
2009}
2010
2011QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
2012 unsigned CVRAU, const DeclSpec *DS) {
2013 if (T.isNull())
2014 return QualType();
2015
2016 // Ignore any attempt to form a cv-qualified reference.
2017 if (T->isReferenceType())
2018 CVRAU &=
2019 ~(DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic);
2020
2021 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic and
2022 // TQ_unaligned;
2023 unsigned CVR = CVRAU & ~(DeclSpec::TQ_atomic | DeclSpec::TQ_unaligned);
2024
2025 // C11 6.7.3/5:
2026 // If the same qualifier appears more than once in the same
2027 // specifier-qualifier-list, either directly or via one or more typedefs,
2028 // the behavior is the same as if it appeared only once.
2029 //
2030 // It's not specified what happens when the _Atomic qualifier is applied to
2031 // a type specified with the _Atomic specifier, but we assume that this
2032 // should be treated as if the _Atomic qualifier appeared multiple times.
2033 if (CVRAU & DeclSpec::TQ_atomic && !T->isAtomicType()) {
2034 // C11 6.7.3/5:
2035 // If other qualifiers appear along with the _Atomic qualifier in a
2036 // specifier-qualifier-list, the resulting type is the so-qualified
2037 // atomic type.
2038 //
2039 // Don't need to worry about array types here, since _Atomic can't be
2040 // applied to such types.
2041 SplitQualType Split = T.getSplitUnqualifiedType();
2042 T = BuildAtomicType(T: QualType(Split.Ty, 0),
2043 Loc: DS ? DS->getAtomicSpecLoc() : Loc);
2044 if (T.isNull())
2045 return T;
2046 Split.Quals.addCVRQualifiers(mask: CVR);
2047 return BuildQualifiedType(T, Loc, Qs: Split.Quals);
2048 }
2049
2050 Qualifiers Q = Qualifiers::fromCVRMask(CVR);
2051 Q.setUnaligned(CVRAU & DeclSpec::TQ_unaligned);
2052 return BuildQualifiedType(T, Loc, Qs: Q, DS);
2053}
2054
2055/// Build a paren type including \p T.
2056QualType Sema::BuildParenType(QualType T) {
2057 return Context.getParenType(NamedType: T);
2058}
2059
2060/// Given that we're building a pointer or reference to the given
2061static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
2062 SourceLocation loc,
2063 bool isReference) {
2064 // Bail out if retention is unrequired or already specified.
2065 if (!type->isObjCLifetimeType() ||
2066 type.getObjCLifetime() != Qualifiers::OCL_None)
2067 return type;
2068
2069 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
2070
2071 // If the object type is const-qualified, we can safely use
2072 // __unsafe_unretained. This is safe (because there are no read
2073 // barriers), and it'll be safe to coerce anything but __weak* to
2074 // the resulting type.
2075 if (type.isConstQualified()) {
2076 implicitLifetime = Qualifiers::OCL_ExplicitNone;
2077
2078 // Otherwise, check whether the static type does not require
2079 // retaining. This currently only triggers for Class (possibly
2080 // protocol-qualifed, and arrays thereof).
2081 } else if (type->isObjCARCImplicitlyUnretainedType()) {
2082 implicitLifetime = Qualifiers::OCL_ExplicitNone;
2083
2084 // If we are in an unevaluated context, like sizeof, skip adding a
2085 // qualification.
2086 } else if (S.isUnevaluatedContext()) {
2087 return type;
2088
2089 // If that failed, give an error and recover using __strong. __strong
2090 // is the option most likely to prevent spurious second-order diagnostics,
2091 // like when binding a reference to a field.
2092 } else {
2093 // These types can show up in private ivars in system headers, so
2094 // we need this to not be an error in those cases. Instead we
2095 // want to delay.
2096 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
2097 S.DelayedDiagnostics.add(
2098 sema::DelayedDiagnostic::makeForbiddenType(loc,
2099 diag::err_arc_indirect_no_ownership, type, isReference));
2100 } else {
2101 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
2102 }
2103 implicitLifetime = Qualifiers::OCL_Strong;
2104 }
2105 assert(implicitLifetime && "didn't infer any lifetime!");
2106
2107 Qualifiers qs;
2108 qs.addObjCLifetime(type: implicitLifetime);
2109 return S.Context.getQualifiedType(T: type, Qs: qs);
2110}
2111
2112static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
2113 std::string Quals = FnTy->getMethodQuals().getAsString();
2114
2115 switch (FnTy->getRefQualifier()) {
2116 case RQ_None:
2117 break;
2118
2119 case RQ_LValue:
2120 if (!Quals.empty())
2121 Quals += ' ';
2122 Quals += '&';
2123 break;
2124
2125 case RQ_RValue:
2126 if (!Quals.empty())
2127 Quals += ' ';
2128 Quals += "&&";
2129 break;
2130 }
2131
2132 return Quals;
2133}
2134
2135namespace {
2136/// Kinds of declarator that cannot contain a qualified function type.
2137///
2138/// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
2139/// a function type with a cv-qualifier or a ref-qualifier can only appear
2140/// at the topmost level of a type.
2141///
2142/// Parens and member pointers are permitted. We don't diagnose array and
2143/// function declarators, because they don't allow function types at all.
2144///
2145/// The values of this enum are used in diagnostics.
2146enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
2147} // end anonymous namespace
2148
2149/// Check whether the type T is a qualified function type, and if it is,
2150/// diagnose that it cannot be contained within the given kind of declarator.
2151static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
2152 QualifiedFunctionKind QFK) {
2153 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
2154 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2155 if (!FPT ||
2156 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2157 return false;
2158
2159 S.Diag(Loc, diag::err_compound_qualified_function_type)
2160 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
2161 << getFunctionQualifiersAsString(FPT);
2162 return true;
2163}
2164
2165bool Sema::CheckQualifiedFunctionForTypeId(QualType T, SourceLocation Loc) {
2166 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
2167 if (!FPT ||
2168 (FPT->getMethodQuals().empty() && FPT->getRefQualifier() == RQ_None))
2169 return false;
2170
2171 Diag(Loc, diag::err_qualified_function_typeid)
2172 << T << getFunctionQualifiersAsString(FPT);
2173 return true;
2174}
2175
2176// Helper to deduce addr space of a pointee type in OpenCL mode.
2177static QualType deduceOpenCLPointeeAddrSpace(Sema &S, QualType PointeeType) {
2178 if (!PointeeType->isUndeducedAutoType() && !PointeeType->isDependentType() &&
2179 !PointeeType->isSamplerT() &&
2180 !PointeeType.hasAddressSpace())
2181 PointeeType = S.getASTContext().getAddrSpaceQualType(
2182 T: PointeeType, AddressSpace: S.getASTContext().getDefaultOpenCLPointeeAddrSpace());
2183 return PointeeType;
2184}
2185
2186/// Build a pointer type.
2187///
2188/// \param T The type to which we'll be building a pointer.
2189///
2190/// \param Loc The location of the entity whose type involves this
2191/// pointer type or, if there is no such entity, the location of the
2192/// type that will have pointer type.
2193///
2194/// \param Entity The name of the entity that involves the pointer
2195/// type, if known.
2196///
2197/// \returns A suitable pointer type, if there are no
2198/// errors. Otherwise, returns a NULL type.
2199QualType Sema::BuildPointerType(QualType T,
2200 SourceLocation Loc, DeclarationName Entity) {
2201 if (T->isReferenceType()) {
2202 // C++ 8.3.2p4: There shall be no ... pointers to references ...
2203 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
2204 << getPrintableNameForEntity(Entity) << T;
2205 return QualType();
2206 }
2207
2208 if (T->isFunctionType() && getLangOpts().OpenCL &&
2209 !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers",
2210 LO: getLangOpts())) {
2211 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
2212 return QualType();
2213 }
2214
2215 if (getLangOpts().HLSL && Loc.isValid()) {
2216 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
2217 return QualType();
2218 }
2219
2220 if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_Pointer))
2221 return QualType();
2222
2223 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
2224
2225 // In ARC, it is forbidden to build pointers to unqualified pointers.
2226 if (getLangOpts().ObjCAutoRefCount)
2227 T = inferARCLifetimeForPointee(S&: *this, type: T, loc: Loc, /*reference*/ isReference: false);
2228
2229 if (getLangOpts().OpenCL)
2230 T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T);
2231
2232 // In WebAssembly, pointers to reference types and pointers to tables are
2233 // illegal.
2234 if (getASTContext().getTargetInfo().getTriple().isWasm()) {
2235 if (T.isWebAssemblyReferenceType()) {
2236 Diag(Loc, diag::err_wasm_reference_pr) << 0;
2237 return QualType();
2238 }
2239
2240 // We need to desugar the type here in case T is a ParenType.
2241 if (T->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) {
2242 Diag(Loc, diag::err_wasm_table_pr) << 0;
2243 return QualType();
2244 }
2245 }
2246
2247 // Build the pointer type.
2248 return Context.getPointerType(T);
2249}
2250
2251/// Build a reference type.
2252///
2253/// \param T The type to which we'll be building a reference.
2254///
2255/// \param Loc The location of the entity whose type involves this
2256/// reference type or, if there is no such entity, the location of the
2257/// type that will have reference type.
2258///
2259/// \param Entity The name of the entity that involves the reference
2260/// type, if known.
2261///
2262/// \returns A suitable reference type, if there are no
2263/// errors. Otherwise, returns a NULL type.
2264QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
2265 SourceLocation Loc,
2266 DeclarationName Entity) {
2267 assert(Context.getCanonicalType(T) != Context.OverloadTy &&
2268 "Unresolved overloaded function type");
2269
2270 // C++0x [dcl.ref]p6:
2271 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
2272 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
2273 // type T, an attempt to create the type "lvalue reference to cv TR" creates
2274 // the type "lvalue reference to T", while an attempt to create the type
2275 // "rvalue reference to cv TR" creates the type TR.
2276 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
2277
2278 // C++ [dcl.ref]p4: There shall be no references to references.
2279 //
2280 // According to C++ DR 106, references to references are only
2281 // diagnosed when they are written directly (e.g., "int & &"),
2282 // but not when they happen via a typedef:
2283 //
2284 // typedef int& intref;
2285 // typedef intref& intref2;
2286 //
2287 // Parser::ParseDeclaratorInternal diagnoses the case where
2288 // references are written directly; here, we handle the
2289 // collapsing of references-to-references as described in C++0x.
2290 // DR 106 and 540 introduce reference-collapsing into C++98/03.
2291
2292 // C++ [dcl.ref]p1:
2293 // A declarator that specifies the type "reference to cv void"
2294 // is ill-formed.
2295 if (T->isVoidType()) {
2296 Diag(Loc, diag::err_reference_to_void);
2297 return QualType();
2298 }
2299
2300 if (getLangOpts().HLSL && Loc.isValid()) {
2301 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 1;
2302 return QualType();
2303 }
2304
2305 if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_Reference))
2306 return QualType();
2307
2308 if (T->isFunctionType() && getLangOpts().OpenCL &&
2309 !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers",
2310 LO: getLangOpts())) {
2311 Diag(Loc, diag::err_opencl_function_pointer) << /*reference*/ 1;
2312 return QualType();
2313 }
2314
2315 // In ARC, it is forbidden to build references to unqualified pointers.
2316 if (getLangOpts().ObjCAutoRefCount)
2317 T = inferARCLifetimeForPointee(S&: *this, type: T, loc: Loc, /*reference*/ isReference: true);
2318
2319 if (getLangOpts().OpenCL)
2320 T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T);
2321
2322 // In WebAssembly, references to reference types and tables are illegal.
2323 if (getASTContext().getTargetInfo().getTriple().isWasm() &&
2324 T.isWebAssemblyReferenceType()) {
2325 Diag(Loc, diag::err_wasm_reference_pr) << 1;
2326 return QualType();
2327 }
2328 if (T->isWebAssemblyTableType()) {
2329 Diag(Loc, diag::err_wasm_table_pr) << 1;
2330 return QualType();
2331 }
2332
2333 // Handle restrict on references.
2334 if (LValueRef)
2335 return Context.getLValueReferenceType(T, SpelledAsLValue);
2336 return Context.getRValueReferenceType(T);
2337}
2338
2339/// Build a Read-only Pipe type.
2340///
2341/// \param T The type to which we'll be building a Pipe.
2342///
2343/// \param Loc We do not use it for now.
2344///
2345/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2346/// NULL type.
2347QualType Sema::BuildReadPipeType(QualType T, SourceLocation Loc) {
2348 return Context.getReadPipeType(T);
2349}
2350
2351/// Build a Write-only Pipe type.
2352///
2353/// \param T The type to which we'll be building a Pipe.
2354///
2355/// \param Loc We do not use it for now.
2356///
2357/// \returns A suitable pipe type, if there are no errors. Otherwise, returns a
2358/// NULL type.
2359QualType Sema::BuildWritePipeType(QualType T, SourceLocation Loc) {
2360 return Context.getWritePipeType(T);
2361}
2362
2363/// Build a bit-precise integer type.
2364///
2365/// \param IsUnsigned Boolean representing the signedness of the type.
2366///
2367/// \param BitWidth Size of this int type in bits, or an expression representing
2368/// that.
2369///
2370/// \param Loc Location of the keyword.
2371QualType Sema::BuildBitIntType(bool IsUnsigned, Expr *BitWidth,
2372 SourceLocation Loc) {
2373 if (BitWidth->isInstantiationDependent())
2374 return Context.getDependentBitIntType(Unsigned: IsUnsigned, BitsExpr: BitWidth);
2375
2376 llvm::APSInt Bits(32);
2377 ExprResult ICE =
2378 VerifyIntegerConstantExpression(E: BitWidth, Result: &Bits, /*FIXME*/ CanFold: AllowFold);
2379
2380 if (ICE.isInvalid())
2381 return QualType();
2382
2383 size_t NumBits = Bits.getZExtValue();
2384 if (!IsUnsigned && NumBits < 2) {
2385 Diag(Loc, diag::err_bit_int_bad_size) << 0;
2386 return QualType();
2387 }
2388
2389 if (IsUnsigned && NumBits < 1) {
2390 Diag(Loc, diag::err_bit_int_bad_size) << 1;
2391 return QualType();
2392 }
2393
2394 const TargetInfo &TI = getASTContext().getTargetInfo();
2395 if (NumBits > TI.getMaxBitIntWidth()) {
2396 Diag(Loc, diag::err_bit_int_max_size)
2397 << IsUnsigned << static_cast<uint64_t>(TI.getMaxBitIntWidth());
2398 return QualType();
2399 }
2400
2401 return Context.getBitIntType(Unsigned: IsUnsigned, NumBits);
2402}
2403
2404/// Check whether the specified array bound can be evaluated using the relevant
2405/// language rules. If so, returns the possibly-converted expression and sets
2406/// SizeVal to the size. If not, but the expression might be a VLA bound,
2407/// returns ExprResult(). Otherwise, produces a diagnostic and returns
2408/// ExprError().
2409static ExprResult checkArraySize(Sema &S, Expr *&ArraySize,
2410 llvm::APSInt &SizeVal, unsigned VLADiag,
2411 bool VLAIsError) {
2412 if (S.getLangOpts().CPlusPlus14 &&
2413 (VLAIsError ||
2414 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType())) {
2415 // C++14 [dcl.array]p1:
2416 // The constant-expression shall be a converted constant expression of
2417 // type std::size_t.
2418 //
2419 // Don't apply this rule if we might be forming a VLA: in that case, we
2420 // allow non-constant expressions and constant-folding. We only need to use
2421 // the converted constant expression rules (to properly convert the source)
2422 // when the source expression is of class type.
2423 return S.CheckConvertedConstantExpression(
2424 From: ArraySize, T: S.Context.getSizeType(), Value&: SizeVal, CCE: Sema::CCEK_ArrayBound);
2425 }
2426
2427 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
2428 // (like gnu99, but not c99) accept any evaluatable value as an extension.
2429 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
2430 public:
2431 unsigned VLADiag;
2432 bool VLAIsError;
2433 bool IsVLA = false;
2434
2435 VLADiagnoser(unsigned VLADiag, bool VLAIsError)
2436 : VLADiag(VLADiag), VLAIsError(VLAIsError) {}
2437
2438 Sema::SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
2439 QualType T) override {
2440 return S.Diag(Loc, diag::err_array_size_non_int) << T;
2441 }
2442
2443 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
2444 SourceLocation Loc) override {
2445 IsVLA = !VLAIsError;
2446 return S.Diag(Loc, DiagID: VLADiag);
2447 }
2448
2449 Sema::SemaDiagnosticBuilder diagnoseFold(Sema &S,
2450 SourceLocation Loc) override {
2451 return S.Diag(Loc, diag::ext_vla_folded_to_constant);
2452 }
2453 } Diagnoser(VLADiag, VLAIsError);
2454
2455 ExprResult R =
2456 S.VerifyIntegerConstantExpression(E: ArraySize, Result: &SizeVal, Diagnoser);
2457 if (Diagnoser.IsVLA)
2458 return ExprResult();
2459 return R;
2460}
2461
2462bool Sema::checkArrayElementAlignment(QualType EltTy, SourceLocation Loc) {
2463 EltTy = Context.getBaseElementType(QT: EltTy);
2464 if (EltTy->isIncompleteType() || EltTy->isDependentType() ||
2465 EltTy->isUndeducedType())
2466 return true;
2467
2468 CharUnits Size = Context.getTypeSizeInChars(T: EltTy);
2469 CharUnits Alignment = Context.getTypeAlignInChars(T: EltTy);
2470
2471 if (Size.isMultipleOf(N: Alignment))
2472 return true;
2473
2474 Diag(Loc, diag::err_array_element_alignment)
2475 << EltTy << Size.getQuantity() << Alignment.getQuantity();
2476 return false;
2477}
2478
2479/// Build an array type.
2480///
2481/// \param T The type of each element in the array.
2482///
2483/// \param ASM C99 array size modifier (e.g., '*', 'static').
2484///
2485/// \param ArraySize Expression describing the size of the array.
2486///
2487/// \param Brackets The range from the opening '[' to the closing ']'.
2488///
2489/// \param Entity The name of the entity that involves the array
2490/// type, if known.
2491///
2492/// \returns A suitable array type, if there are no errors. Otherwise,
2493/// returns a NULL type.
2494QualType Sema::BuildArrayType(QualType T, ArraySizeModifier ASM,
2495 Expr *ArraySize, unsigned Quals,
2496 SourceRange Brackets, DeclarationName Entity) {
2497
2498 SourceLocation Loc = Brackets.getBegin();
2499 if (getLangOpts().CPlusPlus) {
2500 // C++ [dcl.array]p1:
2501 // T is called the array element type; this type shall not be a reference
2502 // type, the (possibly cv-qualified) type void, a function type or an
2503 // abstract class type.
2504 //
2505 // C++ [dcl.array]p3:
2506 // When several "array of" specifications are adjacent, [...] only the
2507 // first of the constant expressions that specify the bounds of the arrays
2508 // may be omitted.
2509 //
2510 // Note: function types are handled in the common path with C.
2511 if (T->isReferenceType()) {
2512 Diag(Loc, diag::err_illegal_decl_array_of_references)
2513 << getPrintableNameForEntity(Entity) << T;
2514 return QualType();
2515 }
2516
2517 if (T->isVoidType() || T->isIncompleteArrayType()) {
2518 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 0 << T;
2519 return QualType();
2520 }
2521
2522 if (RequireNonAbstractType(Brackets.getBegin(), T,
2523 diag::err_array_of_abstract_type))
2524 return QualType();
2525
2526 // Mentioning a member pointer type for an array type causes us to lock in
2527 // an inheritance model, even if it's inside an unused typedef.
2528 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2529 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2530 if (!MPTy->getClass()->isDependentType())
2531 (void)isCompleteType(Loc, T);
2532
2533 } else {
2534 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2535 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2536 if (!T.isWebAssemblyReferenceType() &&
2537 RequireCompleteSizedType(Loc, T,
2538 diag::err_array_incomplete_or_sizeless_type))
2539 return QualType();
2540 }
2541
2542 // Multi-dimensional arrays of WebAssembly references are not allowed.
2543 if (Context.getTargetInfo().getTriple().isWasm() && T->isArrayType()) {
2544 const auto *ATy = dyn_cast<ArrayType>(Val&: T);
2545 if (ATy && ATy->getElementType().isWebAssemblyReferenceType()) {
2546 Diag(Loc, diag::err_wasm_reftype_multidimensional_array);
2547 return QualType();
2548 }
2549 }
2550
2551 if (T->isSizelessType() && !T.isWebAssemblyReferenceType()) {
2552 Diag(Loc, diag::err_array_incomplete_or_sizeless_type) << 1 << T;
2553 return QualType();
2554 }
2555
2556 if (T->isFunctionType()) {
2557 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2558 << getPrintableNameForEntity(Entity) << T;
2559 return QualType();
2560 }
2561
2562 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2563 // If the element type is a struct or union that contains a variadic
2564 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2565 if (EltTy->getDecl()->hasFlexibleArrayMember())
2566 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2567 } else if (T->isObjCObjectType()) {
2568 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2569 return QualType();
2570 }
2571
2572 if (!checkArrayElementAlignment(EltTy: T, Loc))
2573 return QualType();
2574
2575 // Do placeholder conversions on the array size expression.
2576 if (ArraySize && ArraySize->hasPlaceholderType()) {
2577 ExprResult Result = CheckPlaceholderExpr(E: ArraySize);
2578 if (Result.isInvalid()) return QualType();
2579 ArraySize = Result.get();
2580 }
2581
2582 // Do lvalue-to-rvalue conversions on the array size expression.
2583 if (ArraySize && !ArraySize->isPRValue()) {
2584 ExprResult Result = DefaultLvalueConversion(E: ArraySize);
2585 if (Result.isInvalid())
2586 return QualType();
2587
2588 ArraySize = Result.get();
2589 }
2590
2591 // C99 6.7.5.2p1: The size expression shall have integer type.
2592 // C++11 allows contextual conversions to such types.
2593 if (!getLangOpts().CPlusPlus11 &&
2594 ArraySize && !ArraySize->isTypeDependent() &&
2595 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2596 Diag(ArraySize->getBeginLoc(), diag::err_array_size_non_int)
2597 << ArraySize->getType() << ArraySize->getSourceRange();
2598 return QualType();
2599 }
2600
2601 auto IsStaticAssertLike = [](const Expr *ArraySize, ASTContext &Context) {
2602 if (!ArraySize)
2603 return false;
2604
2605 // If the array size expression is a conditional expression whose branches
2606 // are both integer constant expressions, one negative and one positive,
2607 // then it's assumed to be like an old-style static assertion. e.g.,
2608 // int old_style_assert[expr ? 1 : -1];
2609 // We will accept any integer constant expressions instead of assuming the
2610 // values 1 and -1 are always used.
2611 if (const auto *CondExpr = dyn_cast_if_present<ConditionalOperator>(
2612 Val: ArraySize->IgnoreParenImpCasts())) {
2613 std::optional<llvm::APSInt> LHS =
2614 CondExpr->getLHS()->getIntegerConstantExpr(Ctx: Context);
2615 std::optional<llvm::APSInt> RHS =
2616 CondExpr->getRHS()->getIntegerConstantExpr(Ctx: Context);
2617 return LHS && RHS && LHS->isNegative() != RHS->isNegative();
2618 }
2619 return false;
2620 };
2621
2622 // VLAs always produce at least a -Wvla diagnostic, sometimes an error.
2623 unsigned VLADiag;
2624 bool VLAIsError;
2625 if (getLangOpts().OpenCL) {
2626 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2627 VLADiag = diag::err_opencl_vla;
2628 VLAIsError = true;
2629 } else if (getLangOpts().C99) {
2630 VLADiag = diag::warn_vla_used;
2631 VLAIsError = false;
2632 } else if (isSFINAEContext()) {
2633 VLADiag = diag::err_vla_in_sfinae;
2634 VLAIsError = true;
2635 } else if (getLangOpts().OpenMP && isInOpenMPTaskUntiedContext()) {
2636 VLADiag = diag::err_openmp_vla_in_task_untied;
2637 VLAIsError = true;
2638 } else if (getLangOpts().CPlusPlus) {
2639 if (getLangOpts().CPlusPlus11 && IsStaticAssertLike(ArraySize, Context))
2640 VLADiag = getLangOpts().GNUMode
2641 ? diag::ext_vla_cxx_in_gnu_mode_static_assert
2642 : diag::ext_vla_cxx_static_assert;
2643 else
2644 VLADiag = getLangOpts().GNUMode ? diag::ext_vla_cxx_in_gnu_mode
2645 : diag::ext_vla_cxx;
2646 VLAIsError = false;
2647 } else {
2648 VLADiag = diag::ext_vla;
2649 VLAIsError = false;
2650 }
2651
2652 llvm::APSInt ConstVal(Context.getTypeSize(T: Context.getSizeType()));
2653 if (!ArraySize) {
2654 if (ASM == ArraySizeModifier::Star) {
2655 Diag(Loc, DiagID: VLADiag);
2656 if (VLAIsError)
2657 return QualType();
2658
2659 T = Context.getVariableArrayType(EltTy: T, NumElts: nullptr, ASM, IndexTypeQuals: Quals, Brackets);
2660 } else {
2661 T = Context.getIncompleteArrayType(EltTy: T, ASM, IndexTypeQuals: Quals);
2662 }
2663 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2664 T = Context.getDependentSizedArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals, Brackets);
2665 } else {
2666 ExprResult R =
2667 checkArraySize(S&: *this, ArraySize, SizeVal&: ConstVal, VLADiag, VLAIsError);
2668 if (R.isInvalid())
2669 return QualType();
2670
2671 if (!R.isUsable()) {
2672 // C99: an array with a non-ICE size is a VLA. We accept any expression
2673 // that we can fold to a non-zero positive value as a non-VLA as an
2674 // extension.
2675 T = Context.getVariableArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals, Brackets);
2676 } else if (!T->isDependentType() && !T->isIncompleteType() &&
2677 !T->isConstantSizeType()) {
2678 // C99: an array with an element type that has a non-constant-size is a
2679 // VLA.
2680 // FIXME: Add a note to explain why this isn't a VLA.
2681 Diag(Loc, DiagID: VLADiag);
2682 if (VLAIsError)
2683 return QualType();
2684 T = Context.getVariableArrayType(EltTy: T, NumElts: ArraySize, ASM, IndexTypeQuals: Quals, Brackets);
2685 } else {
2686 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2687 // have a value greater than zero.
2688 // In C++, this follows from narrowing conversions being disallowed.
2689 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2690 if (Entity)
2691 Diag(ArraySize->getBeginLoc(), diag::err_decl_negative_array_size)
2692 << getPrintableNameForEntity(Entity)
2693 << ArraySize->getSourceRange();
2694 else
2695 Diag(ArraySize->getBeginLoc(),
2696 diag::err_typecheck_negative_array_size)
2697 << ArraySize->getSourceRange();
2698 return QualType();
2699 }
2700 if (ConstVal == 0 && !T.isWebAssemblyReferenceType()) {
2701 // GCC accepts zero sized static arrays. We allow them when
2702 // we're not in a SFINAE context.
2703 Diag(ArraySize->getBeginLoc(),
2704 isSFINAEContext() ? diag::err_typecheck_zero_array_size
2705 : diag::ext_typecheck_zero_array_size)
2706 << 0 << ArraySize->getSourceRange();
2707 }
2708
2709 // Is the array too large?
2710 unsigned ActiveSizeBits =
2711 (!T->isDependentType() && !T->isVariablyModifiedType() &&
2712 !T->isIncompleteType() && !T->isUndeducedType())
2713 ? ConstantArrayType::getNumAddressingBits(Context, ElementType: T, NumElements: ConstVal)
2714 : ConstVal.getActiveBits();
2715 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2716 Diag(ArraySize->getBeginLoc(), diag::err_array_too_large)
2717 << toString(ConstVal, 10) << ArraySize->getSourceRange();
2718 return QualType();
2719 }
2720
2721 T = Context.getConstantArrayType(EltTy: T, ArySize: ConstVal, SizeExpr: ArraySize, ASM, IndexTypeQuals: Quals);
2722 }
2723 }
2724
2725 if (T->isVariableArrayType()) {
2726 if (!Context.getTargetInfo().isVLASupported()) {
2727 // CUDA device code and some other targets don't support VLAs.
2728 bool IsCUDADevice = (getLangOpts().CUDA && getLangOpts().CUDAIsDevice);
2729 targetDiag(Loc,
2730 IsCUDADevice ? diag::err_cuda_vla : diag::err_vla_unsupported)
2731 << (IsCUDADevice ? CurrentCUDATarget() : 0);
2732 } else if (sema::FunctionScopeInfo *FSI = getCurFunction()) {
2733 // VLAs are supported on this target, but we may need to do delayed
2734 // checking that the VLA is not being used within a coroutine.
2735 FSI->setHasVLA(Loc);
2736 }
2737 }
2738
2739 // If this is not C99, diagnose array size modifiers on non-VLAs.
2740 if (!getLangOpts().C99 && !T->isVariableArrayType() &&
2741 (ASM != ArraySizeModifier::Normal || Quals != 0)) {
2742 Diag(Loc, getLangOpts().CPlusPlus ? diag::err_c99_array_usage_cxx
2743 : diag::ext_c99_array_usage)
2744 << llvm::to_underlying(ASM);
2745 }
2746
2747 // OpenCL v2.0 s6.12.5 - Arrays of blocks are not supported.
2748 // OpenCL v2.0 s6.16.13.1 - Arrays of pipe type are not supported.
2749 // OpenCL v2.0 s6.9.b - Arrays of image/sampler type are not supported.
2750 if (getLangOpts().OpenCL) {
2751 const QualType ArrType = Context.getBaseElementType(QT: T);
2752 if (ArrType->isBlockPointerType() || ArrType->isPipeType() ||
2753 ArrType->isSamplerT() || ArrType->isImageType()) {
2754 Diag(Loc, diag::err_opencl_invalid_type_array) << ArrType;
2755 return QualType();
2756 }
2757 }
2758
2759 return T;
2760}
2761
2762QualType Sema::BuildVectorType(QualType CurType, Expr *SizeExpr,
2763 SourceLocation AttrLoc) {
2764 // The base type must be integer (not Boolean or enumeration) or float, and
2765 // can't already be a vector.
2766 if ((!CurType->isDependentType() &&
2767 (!CurType->isBuiltinType() || CurType->isBooleanType() ||
2768 (!CurType->isIntegerType() && !CurType->isRealFloatingType())) &&
2769 !CurType->isBitIntType()) ||
2770 CurType->isArrayType()) {
2771 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << CurType;
2772 return QualType();
2773 }
2774 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2775 if (const auto *BIT = CurType->getAs<BitIntType>()) {
2776 unsigned NumBits = BIT->getNumBits();
2777 if (!llvm::isPowerOf2_32(Value: NumBits) || NumBits < 8) {
2778 Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2779 << (NumBits < 8);
2780 return QualType();
2781 }
2782 }
2783
2784 if (SizeExpr->isTypeDependent() || SizeExpr->isValueDependent())
2785 return Context.getDependentVectorType(VectorType: CurType, SizeExpr, AttrLoc,
2786 VecKind: VectorKind::Generic);
2787
2788 std::optional<llvm::APSInt> VecSize =
2789 SizeExpr->getIntegerConstantExpr(Ctx: Context);
2790 if (!VecSize) {
2791 Diag(AttrLoc, diag::err_attribute_argument_type)
2792 << "vector_size" << AANT_ArgumentIntegerConstant
2793 << SizeExpr->getSourceRange();
2794 return QualType();
2795 }
2796
2797 if (CurType->isDependentType())
2798 return Context.getDependentVectorType(VectorType: CurType, SizeExpr, AttrLoc,
2799 VecKind: VectorKind::Generic);
2800
2801 // vecSize is specified in bytes - convert to bits.
2802 if (!VecSize->isIntN(N: 61)) {
2803 // Bit size will overflow uint64.
2804 Diag(AttrLoc, diag::err_attribute_size_too_large)
2805 << SizeExpr->getSourceRange() << "vector";
2806 return QualType();
2807 }
2808 uint64_t VectorSizeBits = VecSize->getZExtValue() * 8;
2809 unsigned TypeSize = static_cast<unsigned>(Context.getTypeSize(T: CurType));
2810
2811 if (VectorSizeBits == 0) {
2812 Diag(AttrLoc, diag::err_attribute_zero_size)
2813 << SizeExpr->getSourceRange() << "vector";
2814 return QualType();
2815 }
2816
2817 if (!TypeSize || VectorSizeBits % TypeSize) {
2818 Diag(AttrLoc, diag::err_attribute_invalid_size)
2819 << SizeExpr->getSourceRange();
2820 return QualType();
2821 }
2822
2823 if (VectorSizeBits / TypeSize > std::numeric_limits<uint32_t>::max()) {
2824 Diag(AttrLoc, diag::err_attribute_size_too_large)
2825 << SizeExpr->getSourceRange() << "vector";
2826 return QualType();
2827 }
2828
2829 return Context.getVectorType(VectorType: CurType, NumElts: VectorSizeBits / TypeSize,
2830 VecKind: VectorKind::Generic);
2831}
2832
2833/// Build an ext-vector type.
2834///
2835/// Run the required checks for the extended vector type.
2836QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2837 SourceLocation AttrLoc) {
2838 // Unlike gcc's vector_size attribute, we do not allow vectors to be defined
2839 // in conjunction with complex types (pointers, arrays, functions, etc.).
2840 //
2841 // Additionally, OpenCL prohibits vectors of booleans (they're considered a
2842 // reserved data type under OpenCL v2.0 s6.1.4), we don't support selects
2843 // on bitvectors, and we have no well-defined ABI for bitvectors, so vectors
2844 // of bool aren't allowed.
2845 //
2846 // We explictly allow bool elements in ext_vector_type for C/C++.
2847 bool IsNoBoolVecLang = getLangOpts().OpenCL || getLangOpts().OpenCLCPlusPlus;
2848 if ((!T->isDependentType() && !T->isIntegerType() &&
2849 !T->isRealFloatingType()) ||
2850 (IsNoBoolVecLang && T->isBooleanType())) {
2851 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2852 return QualType();
2853 }
2854
2855 // Only support _BitInt elements with byte-sized power of 2 NumBits.
2856 if (T->isBitIntType()) {
2857 unsigned NumBits = T->castAs<BitIntType>()->getNumBits();
2858 if (!llvm::isPowerOf2_32(Value: NumBits) || NumBits < 8) {
2859 Diag(AttrLoc, diag::err_attribute_invalid_bitint_vector_type)
2860 << (NumBits < 8);
2861 return QualType();
2862 }
2863 }
2864
2865 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2866 std::optional<llvm::APSInt> vecSize =
2867 ArraySize->getIntegerConstantExpr(Ctx: Context);
2868 if (!vecSize) {
2869 Diag(AttrLoc, diag::err_attribute_argument_type)
2870 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2871 << ArraySize->getSourceRange();
2872 return QualType();
2873 }
2874
2875 if (!vecSize->isIntN(N: 32)) {
2876 Diag(AttrLoc, diag::err_attribute_size_too_large)
2877 << ArraySize->getSourceRange() << "vector";
2878 return QualType();
2879 }
2880 // Unlike gcc's vector_size attribute, the size is specified as the
2881 // number of elements, not the number of bytes.
2882 unsigned vectorSize = static_cast<unsigned>(vecSize->getZExtValue());
2883
2884 if (vectorSize == 0) {
2885 Diag(AttrLoc, diag::err_attribute_zero_size)
2886 << ArraySize->getSourceRange() << "vector";
2887 return QualType();
2888 }
2889
2890 return Context.getExtVectorType(VectorType: T, NumElts: vectorSize);
2891 }
2892
2893 return Context.getDependentSizedExtVectorType(VectorType: T, SizeExpr: ArraySize, AttrLoc);
2894}
2895
2896QualType Sema::BuildMatrixType(QualType ElementTy, Expr *NumRows, Expr *NumCols,
2897 SourceLocation AttrLoc) {
2898 assert(Context.getLangOpts().MatrixTypes &&
2899 "Should never build a matrix type when it is disabled");
2900
2901 // Check element type, if it is not dependent.
2902 if (!ElementTy->isDependentType() &&
2903 !MatrixType::isValidElementType(T: ElementTy)) {
2904 Diag(AttrLoc, diag::err_attribute_invalid_matrix_type) << ElementTy;
2905 return QualType();
2906 }
2907
2908 if (NumRows->isTypeDependent() || NumCols->isTypeDependent() ||
2909 NumRows->isValueDependent() || NumCols->isValueDependent())
2910 return Context.getDependentSizedMatrixType(ElementType: ElementTy, RowExpr: NumRows, ColumnExpr: NumCols,
2911 AttrLoc);
2912
2913 std::optional<llvm::APSInt> ValueRows =
2914 NumRows->getIntegerConstantExpr(Ctx: Context);
2915 std::optional<llvm::APSInt> ValueColumns =
2916 NumCols->getIntegerConstantExpr(Ctx: Context);
2917
2918 auto const RowRange = NumRows->getSourceRange();
2919 auto const ColRange = NumCols->getSourceRange();
2920
2921 // Both are row and column expressions are invalid.
2922 if (!ValueRows && !ValueColumns) {
2923 Diag(AttrLoc, diag::err_attribute_argument_type)
2924 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange
2925 << ColRange;
2926 return QualType();
2927 }
2928
2929 // Only the row expression is invalid.
2930 if (!ValueRows) {
2931 Diag(AttrLoc, diag::err_attribute_argument_type)
2932 << "matrix_type" << AANT_ArgumentIntegerConstant << RowRange;
2933 return QualType();
2934 }
2935
2936 // Only the column expression is invalid.
2937 if (!ValueColumns) {
2938 Diag(AttrLoc, diag::err_attribute_argument_type)
2939 << "matrix_type" << AANT_ArgumentIntegerConstant << ColRange;
2940 return QualType();
2941 }
2942
2943 // Check the matrix dimensions.
2944 unsigned MatrixRows = static_cast<unsigned>(ValueRows->getZExtValue());
2945 unsigned MatrixColumns = static_cast<unsigned>(ValueColumns->getZExtValue());
2946 if (MatrixRows == 0 && MatrixColumns == 0) {
2947 Diag(AttrLoc, diag::err_attribute_zero_size)
2948 << "matrix" << RowRange << ColRange;
2949 return QualType();
2950 }
2951 if (MatrixRows == 0) {
2952 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << RowRange;
2953 return QualType();
2954 }
2955 if (MatrixColumns == 0) {
2956 Diag(AttrLoc, diag::err_attribute_zero_size) << "matrix" << ColRange;
2957 return QualType();
2958 }
2959 if (!ConstantMatrixType::isDimensionValid(NumElements: MatrixRows)) {
2960 Diag(AttrLoc, diag::err_attribute_size_too_large)
2961 << RowRange << "matrix row";
2962 return QualType();
2963 }
2964 if (!ConstantMatrixType::isDimensionValid(NumElements: MatrixColumns)) {
2965 Diag(AttrLoc, diag::err_attribute_size_too_large)
2966 << ColRange << "matrix column";
2967 return QualType();
2968 }
2969 return Context.getConstantMatrixType(ElementType: ElementTy, NumRows: MatrixRows, NumColumns: MatrixColumns);
2970}
2971
2972bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2973 if (T->isArrayType() || T->isFunctionType()) {
2974 Diag(Loc, diag::err_func_returning_array_function)
2975 << T->isFunctionType() << T;
2976 return true;
2977 }
2978
2979 // Functions cannot return half FP.
2980 if (T->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
2981 !Context.getTargetInfo().allowHalfArgsAndReturns()) {
2982 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2983 FixItHint::CreateInsertion(Loc, "*");
2984 return true;
2985 }
2986
2987 // Methods cannot return interface types. All ObjC objects are
2988 // passed by reference.
2989 if (T->isObjCObjectType()) {
2990 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value)
2991 << 0 << T << FixItHint::CreateInsertion(Loc, "*");
2992 return true;
2993 }
2994
2995 if (T.hasNonTrivialToPrimitiveDestructCUnion() ||
2996 T.hasNonTrivialToPrimitiveCopyCUnion())
2997 checkNonTrivialCUnion(QT: T, Loc, UseContext: NTCUC_FunctionReturn,
2998 NonTrivialKind: NTCUK_Destruct|NTCUK_Copy);
2999
3000 // C++2a [dcl.fct]p12:
3001 // A volatile-qualified return type is deprecated
3002 if (T.isVolatileQualified() && getLangOpts().CPlusPlus20)
3003 Diag(Loc, diag::warn_deprecated_volatile_return) << T;
3004
3005 if (T.getAddressSpace() != LangAS::Default && getLangOpts().HLSL)
3006 return true;
3007 return false;
3008}
3009
3010/// Check the extended parameter information. Most of the necessary
3011/// checking should occur when applying the parameter attribute; the
3012/// only other checks required are positional restrictions.
3013static void checkExtParameterInfos(Sema &S, ArrayRef<QualType> paramTypes,
3014 const FunctionProtoType::ExtProtoInfo &EPI,
3015 llvm::function_ref<SourceLocation(unsigned)> getParamLoc) {
3016 assert(EPI.ExtParameterInfos && "shouldn't get here without param infos");
3017
3018 bool emittedError = false;
3019 auto actualCC = EPI.ExtInfo.getCC();
3020 enum class RequiredCC { OnlySwift, SwiftOrSwiftAsync };
3021 auto checkCompatible = [&](unsigned paramIndex, RequiredCC required) {
3022 bool isCompatible =
3023 (required == RequiredCC::OnlySwift)
3024 ? (actualCC == CC_Swift)
3025 : (actualCC == CC_Swift || actualCC == CC_SwiftAsync);
3026 if (isCompatible || emittedError)
3027 return;
3028 S.Diag(getParamLoc(paramIndex), diag::err_swift_param_attr_not_swiftcall)
3029 << getParameterABISpelling(EPI.ExtParameterInfos[paramIndex].getABI())
3030 << (required == RequiredCC::OnlySwift);
3031 emittedError = true;
3032 };
3033 for (size_t paramIndex = 0, numParams = paramTypes.size();
3034 paramIndex != numParams; ++paramIndex) {
3035 switch (EPI.ExtParameterInfos[paramIndex].getABI()) {
3036 // Nothing interesting to check for orindary-ABI parameters.
3037 case ParameterABI::Ordinary:
3038 continue;
3039
3040 // swift_indirect_result parameters must be a prefix of the function
3041 // arguments.
3042 case ParameterABI::SwiftIndirectResult:
3043 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
3044 if (paramIndex != 0 &&
3045 EPI.ExtParameterInfos[paramIndex - 1].getABI()
3046 != ParameterABI::SwiftIndirectResult) {
3047 S.Diag(getParamLoc(paramIndex),
3048 diag::err_swift_indirect_result_not_first);
3049 }
3050 continue;
3051
3052 case ParameterABI::SwiftContext:
3053 checkCompatible(paramIndex, RequiredCC::SwiftOrSwiftAsync);
3054 continue;
3055
3056 // SwiftAsyncContext is not limited to swiftasynccall functions.
3057 case ParameterABI::SwiftAsyncContext:
3058 continue;
3059
3060 // swift_error parameters must be preceded by a swift_context parameter.
3061 case ParameterABI::SwiftErrorResult:
3062 checkCompatible(paramIndex, RequiredCC::OnlySwift);
3063 if (paramIndex == 0 ||
3064 EPI.ExtParameterInfos[paramIndex - 1].getABI() !=
3065 ParameterABI::SwiftContext) {
3066 S.Diag(getParamLoc(paramIndex),
3067 diag::err_swift_error_result_not_after_swift_context);
3068 }
3069 continue;
3070 }
3071 llvm_unreachable("bad ABI kind");
3072 }
3073}
3074
3075QualType Sema::BuildFunctionType(QualType T,
3076 MutableArrayRef<QualType> ParamTypes,
3077 SourceLocation Loc, DeclarationName Entity,
3078 const FunctionProtoType::ExtProtoInfo &EPI) {
3079 bool Invalid = false;
3080
3081 Invalid |= CheckFunctionReturnType(T, Loc);
3082
3083 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
3084 // FIXME: Loc is too inprecise here, should use proper locations for args.
3085 QualType ParamType = Context.getAdjustedParameterType(T: ParamTypes[Idx]);
3086 if (ParamType->isVoidType()) {
3087 Diag(Loc, diag::err_param_with_void_type);
3088 Invalid = true;
3089 } else if (ParamType->isHalfType() && !getLangOpts().NativeHalfArgsAndReturns &&
3090 !Context.getTargetInfo().allowHalfArgsAndReturns()) {
3091 // Disallow half FP arguments.
3092 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
3093 FixItHint::CreateInsertion(Loc, "*");
3094 Invalid = true;
3095 } else if (ParamType->isWebAssemblyTableType()) {
3096 Diag(Loc, diag::err_wasm_table_as_function_parameter);
3097 Invalid = true;
3098 }
3099
3100 // C++2a [dcl.fct]p4:
3101 // A parameter with volatile-qualified type is deprecated
3102 if (ParamType.isVolatileQualified() && getLangOpts().CPlusPlus20)
3103 Diag(Loc, diag::warn_deprecated_volatile_param) << ParamType;
3104
3105 ParamTypes[Idx] = ParamType;
3106 }
3107
3108 if (EPI.ExtParameterInfos) {
3109 checkExtParameterInfos(S&: *this, paramTypes: ParamTypes, EPI,
3110 getParamLoc: [=](unsigned i) { return Loc; });
3111 }
3112
3113 if (EPI.ExtInfo.getProducesResult()) {
3114 // This is just a warning, so we can't fail to build if we see it.
3115 checkNSReturnsRetainedReturnType(loc: Loc, type: T);
3116 }
3117
3118 if (Invalid)
3119 return QualType();
3120
3121 return Context.getFunctionType(ResultTy: T, Args: ParamTypes, EPI);
3122}
3123
3124/// Build a member pointer type \c T Class::*.
3125///
3126/// \param T the type to which the member pointer refers.
3127/// \param Class the class type into which the member pointer points.
3128/// \param Loc the location where this type begins
3129/// \param Entity the name of the entity that will have this member pointer type
3130///
3131/// \returns a member pointer type, if successful, or a NULL type if there was
3132/// an error.
3133QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
3134 SourceLocation Loc,
3135 DeclarationName Entity) {
3136 // Verify that we're not building a pointer to pointer to function with
3137 // exception specification.
3138 if (CheckDistantExceptionSpec(T)) {
3139 Diag(Loc, diag::err_distant_exception_spec);
3140 return QualType();
3141 }
3142
3143 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
3144 // with reference type, or "cv void."
3145 if (T->isReferenceType()) {
3146 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
3147 << getPrintableNameForEntity(Entity) << T;
3148 return QualType();
3149 }
3150
3151 if (T->isVoidType()) {
3152 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
3153 << getPrintableNameForEntity(Entity);
3154 return QualType();
3155 }
3156
3157 if (!Class->isDependentType() && !Class->isRecordType()) {
3158 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
3159 return QualType();
3160 }
3161
3162 if (T->isFunctionType() && getLangOpts().OpenCL &&
3163 !getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers",
3164 LO: getLangOpts())) {
3165 Diag(Loc, diag::err_opencl_function_pointer) << /*pointer*/ 0;
3166 return QualType();
3167 }
3168
3169 if (getLangOpts().HLSL && Loc.isValid()) {
3170 Diag(Loc, diag::err_hlsl_pointers_unsupported) << 0;
3171 return QualType();
3172 }
3173
3174 // Adjust the default free function calling convention to the default method
3175 // calling convention.
3176 bool IsCtorOrDtor =
3177 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
3178 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
3179 if (T->isFunctionType())
3180 adjustMemberFunctionCC(T, /*HasThisPointer=*/true, IsCtorOrDtor, Loc);
3181
3182 return Context.getMemberPointerType(T, Cls: Class.getTypePtr());
3183}
3184
3185/// Build a block pointer type.
3186///
3187/// \param T The type to which we'll be building a block pointer.
3188///
3189/// \param Loc The source location, used for diagnostics.
3190///
3191/// \param Entity The name of the entity that involves the block pointer
3192/// type, if known.
3193///
3194/// \returns A suitable block pointer type, if there are no
3195/// errors. Otherwise, returns a NULL type.
3196QualType Sema::BuildBlockPointerType(QualType T,
3197 SourceLocation Loc,
3198 DeclarationName Entity) {
3199 if (!T->isFunctionType()) {
3200 Diag(Loc, diag::err_nonfunction_block_type);
3201 return QualType();
3202 }
3203
3204 if (checkQualifiedFunction(S&: *this, T, Loc, QFK: QFK_BlockPointer))
3205 return QualType();
3206
3207 if (getLangOpts().OpenCL)
3208 T = deduceOpenCLPointeeAddrSpace(S&: *this, PointeeType: T);
3209
3210 return Context.getBlockPointerType(T);
3211}
3212
3213QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
3214 QualType QT = Ty.get();
3215 if (QT.isNull()) {
3216 if (TInfo) *TInfo = nullptr;
3217 return QualType();
3218 }
3219
3220 TypeSourceInfo *DI = nullptr;
3221 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(Val&: QT)) {
3222 QT = LIT->getType();
3223 DI = LIT->getTypeSourceInfo();
3224 }
3225
3226 if (TInfo) *TInfo = DI;
3227 return QT;
3228}
3229
3230static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
3231 Qualifiers::ObjCLifetime ownership,
3232 unsigned chunkIndex);
3233
3234/// Given that this is the declaration of a parameter under ARC,
3235/// attempt to infer attributes and such for pointer-to-whatever
3236/// types.
3237static void inferARCWriteback(TypeProcessingState &state,
3238 QualType &declSpecType) {
3239 Sema &S = state.getSema();
3240 Declarator &declarator = state.getDeclarator();
3241
3242 // TODO: should we care about decl qualifiers?
3243
3244 // Check whether the declarator has the expected form. We walk
3245 // from the inside out in order to make the block logic work.
3246 unsigned outermostPointerIndex = 0;
3247 bool isBlockPointer = false;
3248 unsigned numPointers = 0;
3249 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
3250 unsigned chunkIndex = i;
3251 DeclaratorChunk &chunk = declarator.getTypeObject(i: chunkIndex);
3252 switch (chunk.Kind) {
3253 case DeclaratorChunk::Paren:
3254 // Ignore parens.
3255 break;
3256
3257 case DeclaratorChunk::Reference:
3258 case DeclaratorChunk::Pointer:
3259 // Count the number of pointers. Treat references
3260 // interchangeably as pointers; if they're mis-ordered, normal
3261 // type building will discover that.
3262 outermostPointerIndex = chunkIndex;
3263 numPointers++;
3264 break;
3265
3266 case DeclaratorChunk::BlockPointer:
3267 // If we have a pointer to block pointer, that's an acceptable
3268 // indirect reference; anything else is not an application of
3269 // the rules.
3270 if (numPointers != 1) return;
3271 numPointers++;
3272 outermostPointerIndex = chunkIndex;
3273 isBlockPointer = true;
3274
3275 // We don't care about pointer structure in return values here.
3276 goto done;
3277
3278 case DeclaratorChunk::Array: // suppress if written (id[])?
3279 case DeclaratorChunk::Function:
3280 case DeclaratorChunk::MemberPointer:
3281 case DeclaratorChunk::Pipe:
3282 return;
3283 }
3284 }
3285 done:
3286
3287 // If we have *one* pointer, then we want to throw the qualifier on
3288 // the declaration-specifiers, which means that it needs to be a
3289 // retainable object type.
3290 if (numPointers == 1) {
3291 // If it's not a retainable object type, the rule doesn't apply.
3292 if (!declSpecType->isObjCRetainableType()) return;
3293
3294 // If it already has lifetime, don't do anything.
3295 if (declSpecType.getObjCLifetime()) return;
3296
3297 // Otherwise, modify the type in-place.
3298 Qualifiers qs;
3299
3300 if (declSpecType->isObjCARCImplicitlyUnretainedType())
3301 qs.addObjCLifetime(type: Qualifiers::OCL_ExplicitNone);
3302 else
3303 qs.addObjCLifetime(type: Qualifiers::OCL_Autoreleasing);
3304 declSpecType = S.Context.getQualifiedType(T: declSpecType, Qs: qs);
3305
3306 // If we have *two* pointers, then we want to throw the qualifier on
3307 // the outermost pointer.
3308 } else if (numPointers == 2) {
3309 // If we don't have a block pointer, we need to check whether the
3310 // declaration-specifiers gave us something that will turn into a
3311 // retainable object pointer after we slap the first pointer on it.
3312 if (!isBlockPointer && !declSpecType->isObjCObjectType())
3313 return;
3314
3315 // Look for an explicit lifetime attribute there.
3316 DeclaratorChunk &chunk = declarator.getTypeObject(i: outermostPointerIndex);
3317 if (chunk.Kind != DeclaratorChunk::Pointer &&
3318 chunk.Kind != DeclaratorChunk::BlockPointer)
3319 return;
3320 for (const ParsedAttr &AL : chunk.getAttrs())
3321 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership)
3322 return;
3323
3324 transferARCOwnershipToDeclaratorChunk(state, ownership: Qualifiers::OCL_Autoreleasing,
3325 chunkIndex: outermostPointerIndex);
3326
3327 // Any other number of pointers/references does not trigger the rule.
3328 } else return;
3329
3330 // TODO: mark whether we did this inference?
3331}
3332
3333void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
3334 SourceLocation FallbackLoc,
3335 SourceLocation ConstQualLoc,
3336 SourceLocation VolatileQualLoc,
3337 SourceLocation RestrictQualLoc,
3338 SourceLocation AtomicQualLoc,
3339 SourceLocation UnalignedQualLoc) {
3340 if (!Quals)
3341 return;
3342
3343 struct Qual {
3344 const char *Name;
3345 unsigned Mask;
3346 SourceLocation Loc;
3347 } const QualKinds[5] = {
3348 { .Name: "const", .Mask: DeclSpec::TQ_const, .Loc: ConstQualLoc },
3349 { .Name: "volatile", .Mask: DeclSpec::TQ_volatile, .Loc: VolatileQualLoc },
3350 { .Name: "restrict", .Mask: DeclSpec::TQ_restrict, .Loc: RestrictQualLoc },
3351 { .Name: "__unaligned", .Mask: DeclSpec::TQ_unaligned, .Loc: UnalignedQualLoc },
3352 { .Name: "_Atomic", .Mask: DeclSpec::TQ_atomic, .Loc: AtomicQualLoc }
3353 };
3354
3355 SmallString<32> QualStr;
3356 unsigned NumQuals = 0;
3357 SourceLocation Loc;
3358 FixItHint FixIts[5];
3359
3360 // Build a string naming the redundant qualifiers.
3361 for (auto &E : QualKinds) {
3362 if (Quals & E.Mask) {
3363 if (!QualStr.empty()) QualStr += ' ';
3364 QualStr += E.Name;
3365
3366 // If we have a location for the qualifier, offer a fixit.
3367 SourceLocation QualLoc = E.Loc;
3368 if (QualLoc.isValid()) {
3369 FixIts[NumQuals] = FixItHint::CreateRemoval(RemoveRange: QualLoc);
3370 if (Loc.isInvalid() ||
3371 getSourceManager().isBeforeInTranslationUnit(LHS: QualLoc, RHS: Loc))
3372 Loc = QualLoc;
3373 }
3374
3375 ++NumQuals;
3376 }
3377 }
3378
3379 Diag(Loc: Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
3380 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
3381}
3382
3383// Diagnose pointless type qualifiers on the return type of a function.
3384static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
3385 Declarator &D,
3386 unsigned FunctionChunkIndex) {
3387 const DeclaratorChunk::FunctionTypeInfo &FTI =
3388 D.getTypeObject(i: FunctionChunkIndex).Fun;
3389 if (FTI.hasTrailingReturnType()) {
3390 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3391 RetTy.getLocalCVRQualifiers(),
3392 FTI.getTrailingReturnTypeLoc());
3393 return;
3394 }
3395
3396 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
3397 End = D.getNumTypeObjects();
3398 OuterChunkIndex != End; ++OuterChunkIndex) {
3399 DeclaratorChunk &OuterChunk = D.getTypeObject(i: OuterChunkIndex);
3400 switch (OuterChunk.Kind) {
3401 case DeclaratorChunk::Paren:
3402 continue;
3403
3404 case DeclaratorChunk::Pointer: {
3405 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
3406 S.diagnoseIgnoredQualifiers(
3407 diag::warn_qual_return_type,
3408 PTI.TypeQuals,
3409 SourceLocation(),
3410 PTI.ConstQualLoc,
3411 PTI.VolatileQualLoc,
3412 PTI.RestrictQualLoc,
3413 PTI.AtomicQualLoc,
3414 PTI.UnalignedQualLoc);
3415 return;
3416 }
3417
3418 case DeclaratorChunk::Function:
3419 case DeclaratorChunk::BlockPointer:
3420 case DeclaratorChunk::Reference:
3421 case DeclaratorChunk::Array:
3422 case DeclaratorChunk::MemberPointer:
3423 case DeclaratorChunk::Pipe:
3424 // FIXME: We can't currently provide an accurate source location and a
3425 // fix-it hint for these.
3426 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
3427 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3428 RetTy.getCVRQualifiers() | AtomicQual,
3429 D.getIdentifierLoc());
3430 return;
3431 }
3432
3433 llvm_unreachable("unknown declarator chunk kind");
3434 }
3435
3436 // If the qualifiers come from a conversion function type, don't diagnose
3437 // them -- they're not necessarily redundant, since such a conversion
3438 // operator can be explicitly called as "x.operator const int()".
3439 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3440 return;
3441
3442 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
3443 // which are present there.
3444 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
3445 D.getDeclSpec().getTypeQualifiers(),
3446 D.getIdentifierLoc(),
3447 D.getDeclSpec().getConstSpecLoc(),
3448 D.getDeclSpec().getVolatileSpecLoc(),
3449 D.getDeclSpec().getRestrictSpecLoc(),
3450 D.getDeclSpec().getAtomicSpecLoc(),
3451 D.getDeclSpec().getUnalignedSpecLoc());
3452}
3453
3454static std::pair<QualType, TypeSourceInfo *>
3455InventTemplateParameter(TypeProcessingState &state, QualType T,
3456 TypeSourceInfo *TrailingTSI, AutoType *Auto,
3457 InventedTemplateParameterInfo &Info) {
3458 Sema &S = state.getSema();
3459 Declarator &D = state.getDeclarator();
3460
3461 const unsigned TemplateParameterDepth = Info.AutoTemplateParameterDepth;
3462 const unsigned AutoParameterPosition = Info.TemplateParams.size();
3463 const bool IsParameterPack = D.hasEllipsis();
3464
3465 // If auto is mentioned in a lambda parameter or abbreviated function
3466 // template context, convert it to a template parameter type.
3467
3468 // Create the TemplateTypeParmDecl here to retrieve the corresponding
3469 // template parameter type. Template parameters are temporarily added
3470 // to the TU until the associated TemplateDecl is created.
3471 TemplateTypeParmDecl *InventedTemplateParam =
3472 TemplateTypeParmDecl::Create(
3473 S.Context, S.Context.getTranslationUnitDecl(),
3474 /*KeyLoc=*/D.getDeclSpec().getTypeSpecTypeLoc(),
3475 /*NameLoc=*/D.getIdentifierLoc(),
3476 TemplateParameterDepth, AutoParameterPosition,
3477 S.InventAbbreviatedTemplateParameterTypeName(
3478 ParamName: D.getIdentifier(), Index: AutoParameterPosition), false,
3479 IsParameterPack, /*HasTypeConstraint=*/Auto->isConstrained());
3480 InventedTemplateParam->setImplicit();
3481 Info.TemplateParams.push_back(InventedTemplateParam);
3482
3483 // Attach type constraints to the new parameter.
3484 if (Auto->isConstrained()) {
3485 if (TrailingTSI) {
3486 // The 'auto' appears in a trailing return type we've already built;
3487 // extract its type constraints to attach to the template parameter.
3488 AutoTypeLoc AutoLoc = TrailingTSI->getTypeLoc().getContainedAutoTypeLoc();
3489 TemplateArgumentListInfo TAL(AutoLoc.getLAngleLoc(), AutoLoc.getRAngleLoc());
3490 bool Invalid = false;
3491 for (unsigned Idx = 0; Idx < AutoLoc.getNumArgs(); ++Idx) {
3492 if (D.getEllipsisLoc().isInvalid() && !Invalid &&
3493 S.DiagnoseUnexpandedParameterPack(Arg: AutoLoc.getArgLoc(i: Idx),
3494 UPPC: Sema::UPPC_TypeConstraint))
3495 Invalid = true;
3496 TAL.addArgument(Loc: AutoLoc.getArgLoc(i: Idx));
3497 }
3498
3499 if (!Invalid) {
3500 S.AttachTypeConstraint(
3501 NS: AutoLoc.getNestedNameSpecifierLoc(), NameInfo: AutoLoc.getConceptNameInfo(),
3502 NamedConcept: AutoLoc.getNamedConcept(),
3503 TemplateArgs: AutoLoc.hasExplicitTemplateArgs() ? &TAL : nullptr,
3504 ConstrainedParameter: InventedTemplateParam, EllipsisLoc: D.getEllipsisLoc());
3505 }
3506 } else {
3507 // The 'auto' appears in the decl-specifiers; we've not finished forming
3508 // TypeSourceInfo for it yet.
3509 TemplateIdAnnotation *TemplateId = D.getDeclSpec().getRepAsTemplateId();
3510 TemplateArgumentListInfo TemplateArgsInfo;
3511 bool Invalid = false;
3512 if (TemplateId->LAngleLoc.isValid()) {
3513 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
3514 TemplateId->NumArgs);
3515 S.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo);
3516
3517 if (D.getEllipsisLoc().isInvalid()) {
3518 for (TemplateArgumentLoc Arg : TemplateArgsInfo.arguments()) {
3519 if (S.DiagnoseUnexpandedParameterPack(Arg,
3520 UPPC: Sema::UPPC_TypeConstraint)) {
3521 Invalid = true;
3522 break;
3523 }
3524 }
3525 }
3526 }
3527 if (!Invalid) {
3528 S.AttachTypeConstraint(
3529 NS: D.getDeclSpec().getTypeSpecScope().getWithLocInContext(Context&: S.Context),
3530 NameInfo: DeclarationNameInfo(DeclarationName(TemplateId->Name),
3531 TemplateId->TemplateNameLoc),
3532 NamedConcept: cast<ConceptDecl>(Val: TemplateId->Template.get().getAsTemplateDecl()),
3533 TemplateArgs: TemplateId->LAngleLoc.isValid() ? &TemplateArgsInfo : nullptr,
3534 ConstrainedParameter: InventedTemplateParam, EllipsisLoc: D.getEllipsisLoc());
3535 }
3536 }
3537 }
3538
3539 // Replace the 'auto' in the function parameter with this invented
3540 // template type parameter.
3541 // FIXME: Retain some type sugar to indicate that this was written
3542 // as 'auto'?
3543 QualType Replacement(InventedTemplateParam->getTypeForDecl(), 0);
3544 QualType NewT = state.ReplaceAutoType(TypeWithAuto: T, Replacement);
3545 TypeSourceInfo *NewTSI =
3546 TrailingTSI ? S.ReplaceAutoTypeSourceInfo(TypeWithAuto: TrailingTSI, Replacement)
3547 : nullptr;
3548 return {NewT, NewTSI};
3549}
3550
3551static TypeSourceInfo *
3552GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
3553 QualType T, TypeSourceInfo *ReturnTypeInfo);
3554
3555static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
3556 TypeSourceInfo *&ReturnTypeInfo) {
3557 Sema &SemaRef = state.getSema();
3558 Declarator &D = state.getDeclarator();
3559 QualType T;
3560 ReturnTypeInfo = nullptr;
3561
3562 // The TagDecl owned by the DeclSpec.
3563 TagDecl *OwnedTagDecl = nullptr;
3564
3565 switch (D.getName().getKind()) {
3566 case UnqualifiedIdKind::IK_ImplicitSelfParam:
3567 case UnqualifiedIdKind::IK_OperatorFunctionId:
3568 case UnqualifiedIdKind::IK_Identifier:
3569 case UnqualifiedIdKind::IK_LiteralOperatorId:
3570 case UnqualifiedIdKind::IK_TemplateId:
3571 T = ConvertDeclSpecToType(state);
3572
3573 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
3574 OwnedTagDecl = cast<TagDecl>(Val: D.getDeclSpec().getRepAsDecl());
3575 // Owned declaration is embedded in declarator.
3576 OwnedTagDecl->setEmbeddedInDeclarator(true);
3577 }
3578 break;
3579
3580 case UnqualifiedIdKind::IK_ConstructorName:
3581 case UnqualifiedIdKind::IK_ConstructorTemplateId:
3582 case UnqualifiedIdKind::IK_DestructorName:
3583 // Constructors and destructors don't have return types. Use
3584 // "void" instead.
3585 T = SemaRef.Context.VoidTy;
3586 processTypeAttrs(state, type&: T, TAL: TAL_DeclSpec,
3587 attrs: D.getMutableDeclSpec().getAttributes());
3588 break;
3589
3590 case UnqualifiedIdKind::IK_DeductionGuideName:
3591 // Deduction guides have a trailing return type and no type in their
3592 // decl-specifier sequence. Use a placeholder return type for now.
3593 T = SemaRef.Context.DependentTy;
3594 break;
3595
3596 case UnqualifiedIdKind::IK_ConversionFunctionId:
3597 // The result type of a conversion function is the type that it
3598 // converts to.
3599 T = SemaRef.GetTypeFromParser(Ty: D.getName().ConversionFunctionId,
3600 TInfo: &ReturnTypeInfo);
3601 break;
3602 }
3603
3604 // Note: We don't need to distribute declaration attributes (i.e.
3605 // D.getDeclarationAttributes()) because those are always C++11 attributes,
3606 // and those don't get distributed.
3607 distributeTypeAttrsFromDeclarator(
3608 state, declSpecType&: T, CFT: SemaRef.IdentifyCUDATarget(Attrs: D.getAttributes()));
3609
3610 // Find the deduced type in this type. Look in the trailing return type if we
3611 // have one, otherwise in the DeclSpec type.
3612 // FIXME: The standard wording doesn't currently describe this.
3613 DeducedType *Deduced = T->getContainedDeducedType();
3614 bool DeducedIsTrailingReturnType = false;
3615 if (Deduced && isa<AutoType>(Val: Deduced) && D.hasTrailingReturnType()) {
3616 QualType T = SemaRef.GetTypeFromParser(Ty: D.getTrailingReturnType());
3617 Deduced = T.isNull() ? nullptr : T->getContainedDeducedType();
3618 DeducedIsTrailingReturnType = true;
3619 }
3620
3621 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
3622 if (Deduced) {
3623 AutoType *Auto = dyn_cast<AutoType>(Val: Deduced);
3624 int Error = -1;
3625
3626 // Is this a 'auto' or 'decltype(auto)' type (as opposed to __auto_type or
3627 // class template argument deduction)?
3628 bool IsCXXAutoType =
3629 (Auto && Auto->getKeyword() != AutoTypeKeyword::GNUAutoType);
3630 bool IsDeducedReturnType = false;
3631
3632 switch (D.getContext()) {
3633 case DeclaratorContext::LambdaExpr:
3634 // Declared return type of a lambda-declarator is implicit and is always
3635 // 'auto'.
3636 break;
3637 case DeclaratorContext::ObjCParameter:
3638 case DeclaratorContext::ObjCResult:
3639 Error = 0;
3640 break;
3641 case DeclaratorContext::RequiresExpr:
3642 Error = 22;
3643 break;
3644 case DeclaratorContext::Prototype:
3645 case DeclaratorContext::LambdaExprParameter: {
3646 InventedTemplateParameterInfo *Info = nullptr;
3647 if (D.getContext() == DeclaratorContext::Prototype) {
3648 // With concepts we allow 'auto' in function parameters.
3649 if (!SemaRef.getLangOpts().CPlusPlus20 || !Auto ||
3650 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3651 Error = 0;
3652 break;
3653 } else if (!SemaRef.getCurScope()->isFunctionDeclarationScope()) {
3654 Error = 21;
3655 break;
3656 }
3657
3658 Info = &SemaRef.InventedParameterInfos.back();
3659 } else {
3660 // In C++14, generic lambdas allow 'auto' in their parameters.
3661 if (!SemaRef.getLangOpts().CPlusPlus14 || !Auto ||
3662 Auto->getKeyword() != AutoTypeKeyword::Auto) {
3663 Error = 16;
3664 break;
3665 }
3666 Info = SemaRef.getCurLambda();
3667 assert(Info && "No LambdaScopeInfo on the stack!");
3668 }
3669
3670 // We'll deal with inventing template parameters for 'auto' in trailing
3671 // return types when we pick up the trailing return type when processing
3672 // the function chunk.
3673 if (!DeducedIsTrailingReturnType)
3674 T = InventTemplateParameter(state, T, TrailingTSI: nullptr, Auto, Info&: *Info).first;
3675 break;
3676 }
3677 case DeclaratorContext::Member: {
3678 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
3679 D.isFunctionDeclarator())
3680 break;
3681 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
3682 if (isa<ObjCContainerDecl>(Val: SemaRef.CurContext)) {
3683 Error = 6; // Interface member.
3684 } else {
3685 switch (cast<TagDecl>(Val: SemaRef.CurContext)->getTagKind()) {
3686 case TagTypeKind::Enum:
3687 llvm_unreachable("unhandled tag kind");
3688 case TagTypeKind::Struct:
3689 Error = Cxx ? 1 : 2; /* Struct member */
3690 break;
3691 case TagTypeKind::Union:
3692 Error = Cxx ? 3 : 4; /* Union member */
3693 break;
3694 case TagTypeKind::Class:
3695 Error = 5; /* Class member */
3696 break;
3697 case TagTypeKind::Interface:
3698 Error = 6; /* Interface member */
3699 break;
3700 }
3701 }
3702 if (D.getDeclSpec().isFriendSpecified())
3703 Error = 20; // Friend type
3704 break;
3705 }
3706 case DeclaratorContext::CXXCatch:
3707 case DeclaratorContext::ObjCCatch:
3708 Error = 7; // Exception declaration
3709 break;
3710 case DeclaratorContext::TemplateParam:
3711 if (isa<DeducedTemplateSpecializationType>(Val: Deduced) &&
3712 !SemaRef.getLangOpts().CPlusPlus20)
3713 Error = 19; // Template parameter (until C++20)
3714 else if (!SemaRef.getLangOpts().CPlusPlus17)
3715 Error = 8; // Template parameter (until C++17)
3716 break;
3717 case DeclaratorContext::BlockLiteral:
3718 Error = 9; // Block literal
3719 break;
3720 case DeclaratorContext::TemplateArg:
3721 // Within a template argument list, a deduced template specialization
3722 // type will be reinterpreted as a template template argument.
3723 if (isa<DeducedTemplateSpecializationType>(Val: Deduced) &&
3724 !D.getNumTypeObjects() &&
3725 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier)
3726 break;
3727 [[fallthrough]];
3728 case DeclaratorContext::TemplateTypeArg:
3729 Error = 10; // Template type argument
3730 break;
3731 case DeclaratorContext::AliasDecl:
3732 case DeclaratorContext::AliasTemplate:
3733 Error = 12; // Type alias
3734 break;
3735 case DeclaratorContext::TrailingReturn:
3736 case DeclaratorContext::TrailingReturnVar:
3737 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3738 Error = 13; // Function return type
3739 IsDeducedReturnType = true;
3740 break;
3741 case DeclaratorContext::ConversionId:
3742 if (!SemaRef.getLangOpts().CPlusPlus14 || !IsCXXAutoType)
3743 Error = 14; // conversion-type-id
3744 IsDeducedReturnType = true;
3745 break;
3746 case DeclaratorContext::FunctionalCast:
3747 if (isa<DeducedTemplateSpecializationType>(Val: Deduced))
3748 break;
3749 if (SemaRef.getLangOpts().CPlusPlus23 && IsCXXAutoType &&
3750 !Auto->isDecltypeAuto())
3751 break; // auto(x)
3752 [[fallthrough]];
3753 case DeclaratorContext::TypeName:
3754 case DeclaratorContext::Association:
3755 Error = 15; // Generic
3756 break;
3757 case DeclaratorContext::File:
3758 case DeclaratorContext::Block:
3759 case DeclaratorContext::ForInit:
3760 case DeclaratorContext::SelectionInit:
3761 case DeclaratorContext::Condition:
3762 // FIXME: P0091R3 (erroneously) does not permit class template argument
3763 // deduction in conditions, for-init-statements, and other declarations
3764 // that are not simple-declarations.
3765 break;
3766 case DeclaratorContext::CXXNew:
3767 // FIXME: P0091R3 does not permit class template argument deduction here,
3768 // but we follow GCC and allow it anyway.
3769 if (!IsCXXAutoType && !isa<DeducedTemplateSpecializationType>(Val: Deduced))
3770 Error = 17; // 'new' type
3771 break;
3772 case DeclaratorContext::KNRTypeList:
3773 Error = 18; // K&R function parameter
3774 break;
3775 }
3776
3777 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3778 Error = 11;
3779
3780 // In Objective-C it is an error to use 'auto' on a function declarator
3781 // (and everywhere for '__auto_type').
3782 if (D.isFunctionDeclarator() &&
3783 (!SemaRef.getLangOpts().CPlusPlus11 || !IsCXXAutoType))
3784 Error = 13;
3785
3786 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
3787 if (D.getName().getKind() == UnqualifiedIdKind::IK_ConversionFunctionId)
3788 AutoRange = D.getName().getSourceRange();
3789
3790 if (Error != -1) {
3791 unsigned Kind;
3792 if (Auto) {
3793 switch (Auto->getKeyword()) {
3794 case AutoTypeKeyword::Auto: Kind = 0; break;
3795 case AutoTypeKeyword::DecltypeAuto: Kind = 1; break;
3796 case AutoTypeKeyword::GNUAutoType: Kind = 2; break;
3797 }
3798 } else {
3799 assert(isa<DeducedTemplateSpecializationType>(Deduced) &&
3800 "unknown auto type");
3801 Kind = 3;
3802 }
3803
3804 auto *DTST = dyn_cast<DeducedTemplateSpecializationType>(Val: Deduced);
3805 TemplateName TN = DTST ? DTST->getTemplateName() : TemplateName();
3806
3807 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
3808 << Kind << Error << (int)SemaRef.getTemplateNameKindForDiagnostics(TN)
3809 << QualType(Deduced, 0) << AutoRange;
3810 if (auto *TD = TN.getAsTemplateDecl())
3811 SemaRef.NoteTemplateLocation(Decl: *TD);
3812
3813 T = SemaRef.Context.IntTy;
3814 D.setInvalidType(true);
3815 } else if (Auto && D.getContext() != DeclaratorContext::LambdaExpr) {
3816 // If there was a trailing return type, we already got
3817 // warn_cxx98_compat_trailing_return_type in the parser.
3818 SemaRef.Diag(AutoRange.getBegin(),
3819 D.getContext() == DeclaratorContext::LambdaExprParameter
3820 ? diag::warn_cxx11_compat_generic_lambda
3821 : IsDeducedReturnType
3822 ? diag::warn_cxx11_compat_deduced_return_type
3823 : diag::warn_cxx98_compat_auto_type_specifier)
3824 << AutoRange;
3825 }
3826 }
3827
3828 if (SemaRef.getLangOpts().CPlusPlus &&
3829 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
3830 // Check the contexts where C++ forbids the declaration of a new class
3831 // or enumeration in a type-specifier-seq.
3832 unsigned DiagID = 0;
3833 switch (D.getContext()) {
3834 case DeclaratorContext::TrailingReturn:
3835 case DeclaratorContext::TrailingReturnVar:
3836 // Class and enumeration definitions are syntactically not allowed in
3837 // trailing return types.
3838 llvm_unreachable("parser should not have allowed this");
3839 break;
3840 case DeclaratorContext::File:
3841 case DeclaratorContext::Member:
3842 case DeclaratorContext::Block:
3843 case DeclaratorContext::ForInit:
3844 case DeclaratorContext::SelectionInit:
3845 case DeclaratorContext::BlockLiteral:
3846 case DeclaratorContext::LambdaExpr:
3847 // C++11 [dcl.type]p3:
3848 // A type-specifier-seq shall not define a class or enumeration unless
3849 // it appears in the type-id of an alias-declaration (7.1.3) that is not
3850 // the declaration of a template-declaration.
3851 case DeclaratorContext::AliasDecl:
3852 break;
3853 case DeclaratorContext::AliasTemplate:
3854 DiagID = diag::err_type_defined_in_alias_template;
3855 break;
3856 case DeclaratorContext::TypeName:
3857 case DeclaratorContext::FunctionalCast:
3858 case DeclaratorContext::ConversionId:
3859 case DeclaratorContext::TemplateParam:
3860 case DeclaratorContext::CXXNew:
3861 case DeclaratorContext::CXXCatch:
3862 case DeclaratorContext::ObjCCatch:
3863 case DeclaratorContext::TemplateArg:
3864 case DeclaratorContext::TemplateTypeArg:
3865 case DeclaratorContext::Association:
3866 DiagID = diag::err_type_defined_in_type_specifier;
3867 break;
3868 case DeclaratorContext::Prototype:
3869 case DeclaratorContext::LambdaExprParameter:
3870 case DeclaratorContext::ObjCParameter:
3871 case DeclaratorContext::ObjCResult:
3872 case DeclaratorContext::KNRTypeList:
3873 case DeclaratorContext::RequiresExpr:
3874 // C++ [dcl.fct]p6:
3875 // Types shall not be defined in return or parameter types.
3876 DiagID = diag::err_type_defined_in_param_type;
3877 break;
3878 case DeclaratorContext::Condition:
3879 // C++ 6.4p2:
3880 // The type-specifier-seq shall not contain typedef and shall not declare
3881 // a new class or enumeration.
3882 DiagID = diag::err_type_defined_in_condition;
3883 break;
3884 }
3885
3886 if (DiagID != 0) {
3887 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
3888 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
3889 D.setInvalidType(true);
3890 }
3891 }
3892
3893 assert(!T.isNull() && "This function should not return a null type");
3894 return T;
3895}
3896
3897/// Produce an appropriate diagnostic for an ambiguity between a function
3898/// declarator and a C++ direct-initializer.
3899static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
3900 DeclaratorChunk &DeclType, QualType RT) {
3901 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3902 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
3903
3904 // If the return type is void there is no ambiguity.
3905 if (RT->isVoidType())
3906 return;
3907
3908 // An initializer for a non-class type can have at most one argument.
3909 if (!RT->isRecordType() && FTI.NumParams > 1)
3910 return;
3911
3912 // An initializer for a reference must have exactly one argument.
3913 if (RT->isReferenceType() && FTI.NumParams != 1)
3914 return;
3915
3916 // Only warn if this declarator is declaring a function at block scope, and
3917 // doesn't have a storage class (such as 'extern') specified.
3918 if (!D.isFunctionDeclarator() ||
3919 D.getFunctionDefinitionKind() != FunctionDefinitionKind::Declaration ||
3920 !S.CurContext->isFunctionOrMethod() ||
3921 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_unspecified)
3922 return;
3923
3924 // Inside a condition, a direct initializer is not permitted. We allow one to
3925 // be parsed in order to give better diagnostics in condition parsing.
3926 if (D.getContext() == DeclaratorContext::Condition)
3927 return;
3928
3929 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
3930
3931 S.Diag(DeclType.Loc,
3932 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
3933 : diag::warn_empty_parens_are_function_decl)
3934 << ParenRange;
3935
3936 // If the declaration looks like:
3937 // T var1,
3938 // f();
3939 // and name lookup finds a function named 'f', then the ',' was
3940 // probably intended to be a ';'.
3941 if (!D.isFirstDeclarator() && D.getIdentifier()) {
3942 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
3943 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
3944 if (Comma.getFileID() != Name.getFileID() ||
3945 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
3946 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
3947 Sema::LookupOrdinaryName);
3948 if (S.LookupName(Result, S.getCurScope()))
3949 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
3950 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
3951 << D.getIdentifier();
3952 Result.suppressDiagnostics();
3953 }
3954 }
3955
3956 if (FTI.NumParams > 0) {
3957 // For a declaration with parameters, eg. "T var(T());", suggest adding
3958 // parens around the first parameter to turn the declaration into a
3959 // variable declaration.
3960 SourceRange Range = FTI.Params[0].Param->getSourceRange();
3961 SourceLocation B = Range.getBegin();
3962 SourceLocation E = S.getLocForEndOfToken(Loc: Range.getEnd());
3963 // FIXME: Maybe we should suggest adding braces instead of parens
3964 // in C++11 for classes that don't have an initializer_list constructor.
3965 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
3966 << FixItHint::CreateInsertion(B, "(")
3967 << FixItHint::CreateInsertion(E, ")");
3968 } else {
3969 // For a declaration without parameters, eg. "T var();", suggest replacing
3970 // the parens with an initializer to turn the declaration into a variable
3971 // declaration.
3972 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
3973
3974 // Empty parens mean value-initialization, and no parens mean
3975 // default initialization. These are equivalent if the default
3976 // constructor is user-provided or if zero-initialization is a
3977 // no-op.
3978 if (RD && RD->hasDefinition() &&
3979 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
3980 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
3981 << FixItHint::CreateRemoval(ParenRange);
3982 else {
3983 std::string Init =
3984 S.getFixItZeroInitializerForType(T: RT, Loc: ParenRange.getBegin());
3985 if (Init.empty() && S.LangOpts.CPlusPlus11)
3986 Init = "{}";
3987 if (!Init.empty())
3988 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
3989 << FixItHint::CreateReplacement(ParenRange, Init);
3990 }
3991 }
3992}
3993
3994/// Produce an appropriate diagnostic for a declarator with top-level
3995/// parentheses.
3996static void warnAboutRedundantParens(Sema &S, Declarator &D, QualType T) {
3997 DeclaratorChunk &Paren = D.getTypeObject(i: D.getNumTypeObjects() - 1);
3998 assert(Paren.Kind == DeclaratorChunk::Paren &&
3999 "do not have redundant top-level parentheses");
4000
4001 // This is a syntactic check; we're not interested in cases that arise
4002 // during template instantiation.
4003 if (S.inTemplateInstantiation())
4004 return;
4005
4006 // Check whether this could be intended to be a construction of a temporary
4007 // object in C++ via a function-style cast.
4008 bool CouldBeTemporaryObject =
4009 S.getLangOpts().CPlusPlus && D.isExpressionContext() &&
4010 !D.isInvalidType() && D.getIdentifier() &&
4011 D.getDeclSpec().getParsedSpecifiers() == DeclSpec::PQ_TypeSpecifier &&
4012 (T->isRecordType() || T->isDependentType()) &&
4013 D.getDeclSpec().getTypeQualifiers() == 0 && D.isFirstDeclarator();
4014
4015 bool StartsWithDeclaratorId = true;
4016 for (auto &C : D.type_objects()) {
4017 switch (C.Kind) {
4018 case DeclaratorChunk::Paren:
4019 if (&C == &Paren)
4020 continue;
4021 [[fallthrough]];
4022 case DeclaratorChunk::Pointer:
4023 StartsWithDeclaratorId = false;
4024 continue;
4025
4026 case DeclaratorChunk::Array:
4027 if (!C.Arr.NumElts)
4028 CouldBeTemporaryObject = false;
4029 continue;
4030
4031 case DeclaratorChunk::Reference:
4032 // FIXME: Suppress the warning here if there is no initializer; we're
4033 // going to give an error anyway.
4034 // We assume that something like 'T (&x) = y;' is highly likely to not
4035 // be intended to be a temporary object.
4036 CouldBeTemporaryObject = false;
4037 StartsWithDeclaratorId = false;
4038 continue;
4039
4040 case DeclaratorChunk::Function:
4041 // In a new-type-id, function chunks require parentheses.
4042 if (D.getContext() == DeclaratorContext::CXXNew)
4043 return;
4044 // FIXME: "A(f())" deserves a vexing-parse warning, not just a
4045 // redundant-parens warning, but we don't know whether the function
4046 // chunk was syntactically valid as an expression here.
4047 CouldBeTemporaryObject = false;
4048 continue;
4049
4050 case DeclaratorChunk::BlockPointer:
4051 case DeclaratorChunk::MemberPointer:
4052 case DeclaratorChunk::Pipe:
4053 // These cannot appear in expressions.
4054 CouldBeTemporaryObject = false;
4055 StartsWithDeclaratorId = false;
4056 continue;
4057 }
4058 }
4059
4060 // FIXME: If there is an initializer, assume that this is not intended to be
4061 // a construction of a temporary object.
4062
4063 // Check whether the name has already been declared; if not, this is not a
4064 // function-style cast.
4065 if (CouldBeTemporaryObject) {
4066 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
4067 Sema::LookupOrdinaryName);
4068 if (!S.LookupName(R&: Result, S: S.getCurScope()))
4069 CouldBeTemporaryObject = false;
4070 Result.suppressDiagnostics();
4071 }
4072
4073 SourceRange ParenRange(Paren.Loc, Paren.EndLoc);
4074
4075 if (!CouldBeTemporaryObject) {
4076 // If we have A (::B), the parentheses affect the meaning of the program.
4077 // Suppress the warning in that case. Don't bother looking at the DeclSpec
4078 // here: even (e.g.) "int ::x" is visually ambiguous even though it's
4079 // formally unambiguous.
4080 if (StartsWithDeclaratorId && D.getCXXScopeSpec().isValid()) {
4081 for (NestedNameSpecifier *NNS = D.getCXXScopeSpec().getScopeRep(); NNS;
4082 NNS = NNS->getPrefix()) {
4083 if (NNS->getKind() == NestedNameSpecifier::Global)
4084 return;
4085 }
4086 }
4087
4088 S.Diag(Paren.Loc, diag::warn_redundant_parens_around_declarator)
4089 << ParenRange << FixItHint::CreateRemoval(Paren.Loc)
4090 << FixItHint::CreateRemoval(Paren.EndLoc);
4091 return;
4092 }
4093
4094 S.Diag(Paren.Loc, diag::warn_parens_disambiguated_as_variable_declaration)
4095 << ParenRange << D.getIdentifier();
4096 auto *RD = T->getAsCXXRecordDecl();
4097 if (!RD || !RD->hasDefinition() || RD->hasNonTrivialDestructor())
4098 S.Diag(Paren.Loc, diag::note_raii_guard_add_name)
4099 << FixItHint::CreateInsertion(Paren.Loc, " varname") << T
4100 << D.getIdentifier();
4101 // FIXME: A cast to void is probably a better suggestion in cases where it's
4102 // valid (when there is no initializer and we're not in a condition).
4103 S.Diag(D.getBeginLoc(), diag::note_function_style_cast_add_parentheses)
4104 << FixItHint::CreateInsertion(D.getBeginLoc(), "(")
4105 << FixItHint::CreateInsertion(S.getLocForEndOfToken(D.getEndLoc()), ")");
4106 S.Diag(Paren.Loc, diag::note_remove_parens_for_variable_declaration)
4107 << FixItHint::CreateRemoval(Paren.Loc)
4108 << FixItHint::CreateRemoval(Paren.EndLoc);
4109}
4110
4111/// Helper for figuring out the default CC for a function declarator type. If
4112/// this is the outermost chunk, then we can determine the CC from the
4113/// declarator context. If not, then this could be either a member function
4114/// type or normal function type.
4115static CallingConv getCCForDeclaratorChunk(
4116 Sema &S, Declarator &D, const ParsedAttributesView &AttrList,
4117 const DeclaratorChunk::FunctionTypeInfo &FTI, unsigned ChunkIndex) {
4118 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
4119
4120 // Check for an explicit CC attribute.
4121 for (const ParsedAttr &AL : AttrList) {
4122 switch (AL.getKind()) {
4123 CALLING_CONV_ATTRS_CASELIST : {
4124 // Ignore attributes that don't validate or can't apply to the
4125 // function type. We'll diagnose the failure to apply them in
4126 // handleFunctionTypeAttr.
4127 CallingConv CC;
4128 if (!S.CheckCallingConvAttr(attr: AL, CC, /*FunctionDecl=*/FD: nullptr,
4129 CFT: S.IdentifyCUDATarget(Attrs: D.getAttributes())) &&
4130 (!FTI.isVariadic || supportsVariadicCall(CC))) {
4131 return CC;
4132 }
4133 break;
4134 }
4135
4136 default:
4137 break;
4138 }
4139 }
4140
4141 bool IsCXXInstanceMethod = false;
4142
4143 if (S.getLangOpts().CPlusPlus) {
4144 // Look inwards through parentheses to see if this chunk will form a
4145 // member pointer type or if we're the declarator. Any type attributes
4146 // between here and there will override the CC we choose here.
4147 unsigned I = ChunkIndex;
4148 bool FoundNonParen = false;
4149 while (I && !FoundNonParen) {
4150 --I;
4151 if (D.getTypeObject(i: I).Kind != DeclaratorChunk::Paren)
4152 FoundNonParen = true;
4153 }
4154
4155 if (FoundNonParen) {
4156 // If we're not the declarator, we're a regular function type unless we're
4157 // in a member pointer.
4158 IsCXXInstanceMethod =
4159 D.getTypeObject(i: I).Kind == DeclaratorChunk::MemberPointer;
4160 } else if (D.getContext() == DeclaratorContext::LambdaExpr) {
4161 // This can only be a call operator for a lambda, which is an instance
4162 // method, unless explicitly specified as 'static'.
4163 IsCXXInstanceMethod =
4164 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static;
4165 } else {
4166 // We're the innermost decl chunk, so must be a function declarator.
4167 assert(D.isFunctionDeclarator());
4168
4169 // If we're inside a record, we're declaring a method, but it could be
4170 // explicitly or implicitly static.
4171 IsCXXInstanceMethod =
4172 D.isFirstDeclarationOfMember() &&
4173 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
4174 !D.isStaticMember();
4175 }
4176 }
4177
4178 CallingConv CC = S.Context.getDefaultCallingConvention(IsVariadic: FTI.isVariadic,
4179 IsCXXMethod: IsCXXInstanceMethod);
4180
4181 // Attribute AT_OpenCLKernel affects the calling convention for SPIR
4182 // and AMDGPU targets, hence it cannot be treated as a calling
4183 // convention attribute. This is the simplest place to infer
4184 // calling convention for OpenCL kernels.
4185 if (S.getLangOpts().OpenCL) {
4186 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4187 if (AL.getKind() == ParsedAttr::AT_OpenCLKernel) {
4188 CC = CC_OpenCLKernel;
4189 break;
4190 }
4191 }
4192 } else if (S.getLangOpts().CUDA) {
4193 // If we're compiling CUDA/HIP code and targeting SPIR-V we need to make
4194 // sure the kernels will be marked with the right calling convention so that
4195 // they will be visible by the APIs that ingest SPIR-V.
4196 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
4197 if (Triple.getArch() == llvm::Triple::spirv32 ||
4198 Triple.getArch() == llvm::Triple::spirv64) {
4199 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
4200 if (AL.getKind() == ParsedAttr::AT_CUDAGlobal) {
4201 CC = CC_OpenCLKernel;
4202 break;
4203 }
4204 }
4205 }
4206 }
4207
4208 return CC;
4209}
4210
4211namespace {
4212 /// A simple notion of pointer kinds, which matches up with the various
4213 /// pointer declarators.
4214 enum class SimplePointerKind {
4215 Pointer,
4216 BlockPointer,
4217 MemberPointer,
4218 Array,
4219 };
4220} // end anonymous namespace
4221
4222IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
4223 switch (nullability) {
4224 case NullabilityKind::NonNull:
4225 if (!Ident__Nonnull)
4226 Ident__Nonnull = PP.getIdentifierInfo(Name: "_Nonnull");
4227 return Ident__Nonnull;
4228
4229 case NullabilityKind::Nullable:
4230 if (!Ident__Nullable)
4231 Ident__Nullable = PP.getIdentifierInfo(Name: "_Nullable");
4232 return Ident__Nullable;
4233
4234 case NullabilityKind::NullableResult:
4235 if (!Ident__Nullable_result)
4236 Ident__Nullable_result = PP.getIdentifierInfo(Name: "_Nullable_result");
4237 return Ident__Nullable_result;
4238
4239 case NullabilityKind::Unspecified:
4240 if (!Ident__Null_unspecified)
4241 Ident__Null_unspecified = PP.getIdentifierInfo(Name: "_Null_unspecified");
4242 return Ident__Null_unspecified;
4243 }
4244 llvm_unreachable("Unknown nullability kind.");
4245}
4246
4247/// Retrieve the identifier "NSError".
4248IdentifierInfo *Sema::getNSErrorIdent() {
4249 if (!Ident_NSError)
4250 Ident_NSError = PP.getIdentifierInfo(Name: "NSError");
4251
4252 return Ident_NSError;
4253}
4254
4255/// Check whether there is a nullability attribute of any kind in the given
4256/// attribute list.
4257static bool hasNullabilityAttr(const ParsedAttributesView &attrs) {
4258 for (const ParsedAttr &AL : attrs) {
4259 if (AL.getKind() == ParsedAttr::AT_TypeNonNull ||
4260 AL.getKind() == ParsedAttr::AT_TypeNullable ||
4261 AL.getKind() == ParsedAttr::AT_TypeNullableResult ||
4262 AL.getKind() == ParsedAttr::AT_TypeNullUnspecified)
4263 return true;
4264 }
4265
4266 return false;
4267}
4268
4269namespace {
4270 /// Describes the kind of a pointer a declarator describes.
4271 enum class PointerDeclaratorKind {
4272 // Not a pointer.
4273 NonPointer,
4274 // Single-level pointer.
4275 SingleLevelPointer,
4276 // Multi-level pointer (of any pointer kind).
4277 MultiLevelPointer,
4278 // CFFooRef*
4279 MaybePointerToCFRef,
4280 // CFErrorRef*
4281 CFErrorRefPointer,
4282 // NSError**
4283 NSErrorPointerPointer,
4284 };
4285
4286 /// Describes a declarator chunk wrapping a pointer that marks inference as
4287 /// unexpected.
4288 // These values must be kept in sync with diagnostics.
4289 enum class PointerWrappingDeclaratorKind {
4290 /// Pointer is top-level.
4291 None = -1,
4292 /// Pointer is an array element.
4293 Array = 0,
4294 /// Pointer is the referent type of a C++ reference.
4295 Reference = 1
4296 };
4297} // end anonymous namespace
4298
4299/// Classify the given declarator, whose type-specified is \c type, based on
4300/// what kind of pointer it refers to.
4301///
4302/// This is used to determine the default nullability.
4303static PointerDeclaratorKind
4304classifyPointerDeclarator(Sema &S, QualType type, Declarator &declarator,
4305 PointerWrappingDeclaratorKind &wrappingKind) {
4306 unsigned numNormalPointers = 0;
4307
4308 // For any dependent type, we consider it a non-pointer.
4309 if (type->isDependentType())
4310 return PointerDeclaratorKind::NonPointer;
4311
4312 // Look through the declarator chunks to identify pointers.
4313 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
4314 DeclaratorChunk &chunk = declarator.getTypeObject(i);
4315 switch (chunk.Kind) {
4316 case DeclaratorChunk::Array:
4317 if (numNormalPointers == 0)
4318 wrappingKind = PointerWrappingDeclaratorKind::Array;
4319 break;
4320
4321 case DeclaratorChunk::Function:
4322 case DeclaratorChunk::Pipe:
4323 break;
4324
4325 case DeclaratorChunk::BlockPointer:
4326 case DeclaratorChunk::MemberPointer:
4327 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4328 : PointerDeclaratorKind::SingleLevelPointer;
4329
4330 case DeclaratorChunk::Paren:
4331 break;
4332
4333 case DeclaratorChunk::Reference:
4334 if (numNormalPointers == 0)
4335 wrappingKind = PointerWrappingDeclaratorKind::Reference;
4336 break;
4337
4338 case DeclaratorChunk::Pointer:
4339 ++numNormalPointers;
4340 if (numNormalPointers > 2)
4341 return PointerDeclaratorKind::MultiLevelPointer;
4342 break;
4343 }
4344 }
4345
4346 // Then, dig into the type specifier itself.
4347 unsigned numTypeSpecifierPointers = 0;
4348 do {
4349 // Decompose normal pointers.
4350 if (auto ptrType = type->getAs<PointerType>()) {
4351 ++numNormalPointers;
4352
4353 if (numNormalPointers > 2)
4354 return PointerDeclaratorKind::MultiLevelPointer;
4355
4356 type = ptrType->getPointeeType();
4357 ++numTypeSpecifierPointers;
4358 continue;
4359 }
4360
4361 // Decompose block pointers.
4362 if (type->getAs<BlockPointerType>()) {
4363 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4364 : PointerDeclaratorKind::SingleLevelPointer;
4365 }
4366
4367 // Decompose member pointers.
4368 if (type->getAs<MemberPointerType>()) {
4369 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
4370 : PointerDeclaratorKind::SingleLevelPointer;
4371 }
4372
4373 // Look at Objective-C object pointers.
4374 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
4375 ++numNormalPointers;
4376 ++numTypeSpecifierPointers;
4377
4378 // If this is NSError**, report that.
4379 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
4380 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
4381 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
4382 return PointerDeclaratorKind::NSErrorPointerPointer;
4383 }
4384 }
4385
4386 break;
4387 }
4388
4389 // Look at Objective-C class types.
4390 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
4391 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
4392 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
4393 return PointerDeclaratorKind::NSErrorPointerPointer;
4394 }
4395
4396 break;
4397 }
4398
4399 // If at this point we haven't seen a pointer, we won't see one.
4400 if (numNormalPointers == 0)
4401 return PointerDeclaratorKind::NonPointer;
4402
4403 if (auto recordType = type->getAs<RecordType>()) {
4404 RecordDecl *recordDecl = recordType->getDecl();
4405
4406 // If this is CFErrorRef*, report it as such.
4407 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2 &&
4408 S.isCFError(D: recordDecl)) {
4409 return PointerDeclaratorKind::CFErrorRefPointer;
4410 }
4411 break;
4412 }
4413
4414 break;
4415 } while (true);
4416
4417 switch (numNormalPointers) {
4418 case 0:
4419 return PointerDeclaratorKind::NonPointer;
4420
4421 case 1:
4422 return PointerDeclaratorKind::SingleLevelPointer;
4423
4424 case 2:
4425 return PointerDeclaratorKind::MaybePointerToCFRef;
4426
4427 default:
4428 return PointerDeclaratorKind::MultiLevelPointer;
4429 }
4430}
4431
4432bool Sema::isCFError(RecordDecl *RD) {
4433 // If we already know about CFError, test it directly.
4434 if (CFError)
4435 return CFError == RD;
4436
4437 // Check whether this is CFError, which we identify based on its bridge to
4438 // NSError. CFErrorRef used to be declared with "objc_bridge" but is now
4439 // declared with "objc_bridge_mutable", so look for either one of the two
4440 // attributes.
4441 if (RD->getTagKind() == TagTypeKind::Struct) {
4442 IdentifierInfo *bridgedType = nullptr;
4443 if (auto bridgeAttr = RD->getAttr<ObjCBridgeAttr>())
4444 bridgedType = bridgeAttr->getBridgedType();
4445 else if (auto bridgeAttr = RD->getAttr<ObjCBridgeMutableAttr>())
4446 bridgedType = bridgeAttr->getBridgedType();
4447
4448 if (bridgedType == getNSErrorIdent()) {
4449 CFError = RD;
4450 return true;
4451 }
4452 }
4453
4454 return false;
4455}
4456
4457static FileID getNullabilityCompletenessCheckFileID(Sema &S,
4458 SourceLocation loc) {
4459 // If we're anywhere in a function, method, or closure context, don't perform
4460 // completeness checks.
4461 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
4462 if (ctx->isFunctionOrMethod())
4463 return FileID();
4464
4465 if (ctx->isFileContext())
4466 break;
4467 }
4468
4469 // We only care about the expansion location.
4470 loc = S.SourceMgr.getExpansionLoc(Loc: loc);
4471 FileID file = S.SourceMgr.getFileID(SpellingLoc: loc);
4472 if (file.isInvalid())
4473 return FileID();
4474
4475 // Retrieve file information.
4476 bool invalid = false;
4477 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(FID: file, Invalid: &invalid);
4478 if (invalid || !sloc.isFile())
4479 return FileID();
4480
4481 // We don't want to perform completeness checks on the main file or in
4482 // system headers.
4483 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
4484 if (fileInfo.getIncludeLoc().isInvalid())
4485 return FileID();
4486 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
4487 S.Diags.getSuppressSystemWarnings()) {
4488 return FileID();
4489 }
4490
4491 return file;
4492}
4493
4494/// Creates a fix-it to insert a C-style nullability keyword at \p pointerLoc,
4495/// taking into account whitespace before and after.
4496template <typename DiagBuilderT>
4497static void fixItNullability(Sema &S, DiagBuilderT &Diag,
4498 SourceLocation PointerLoc,
4499 NullabilityKind Nullability) {
4500 assert(PointerLoc.isValid());
4501 if (PointerLoc.isMacroID())
4502 return;
4503
4504 SourceLocation FixItLoc = S.getLocForEndOfToken(Loc: PointerLoc);
4505 if (!FixItLoc.isValid() || FixItLoc == PointerLoc)
4506 return;
4507
4508 const char *NextChar = S.SourceMgr.getCharacterData(SL: FixItLoc);
4509 if (!NextChar)
4510 return;
4511
4512 SmallString<32> InsertionTextBuf{" "};
4513 InsertionTextBuf += getNullabilitySpelling(kind: Nullability);
4514 InsertionTextBuf += " ";
4515 StringRef InsertionText = InsertionTextBuf.str();
4516
4517 if (isWhitespace(c: *NextChar)) {
4518 InsertionText = InsertionText.drop_back();
4519 } else if (NextChar[-1] == '[') {
4520 if (NextChar[0] == ']')
4521 InsertionText = InsertionText.drop_back().drop_front();
4522 else
4523 InsertionText = InsertionText.drop_front();
4524 } else if (!isAsciiIdentifierContinue(c: NextChar[0], /*allow dollar*/ AllowDollar: true) &&
4525 !isAsciiIdentifierContinue(c: NextChar[-1], /*allow dollar*/ AllowDollar: true)) {
4526 InsertionText = InsertionText.drop_back().drop_front();
4527 }
4528
4529 Diag << FixItHint::CreateInsertion(InsertionLoc: FixItLoc, Code: InsertionText);
4530}
4531
4532static void emitNullabilityConsistencyWarning(Sema &S,
4533 SimplePointerKind PointerKind,
4534 SourceLocation PointerLoc,
4535 SourceLocation PointerEndLoc) {
4536 assert(PointerLoc.isValid());
4537
4538 if (PointerKind == SimplePointerKind::Array) {
4539 S.Diag(PointerLoc, diag::warn_nullability_missing_array);
4540 } else {
4541 S.Diag(PointerLoc, diag::warn_nullability_missing)
4542 << static_cast<unsigned>(PointerKind);
4543 }
4544
4545 auto FixItLoc = PointerEndLoc.isValid() ? PointerEndLoc : PointerLoc;
4546 if (FixItLoc.isMacroID())
4547 return;
4548
4549 auto addFixIt = [&](NullabilityKind Nullability) {
4550 auto Diag = S.Diag(FixItLoc, diag::note_nullability_fix_it);
4551 Diag << static_cast<unsigned>(Nullability);
4552 Diag << static_cast<unsigned>(PointerKind);
4553 fixItNullability(S, Diag, FixItLoc, Nullability);
4554 };
4555 addFixIt(NullabilityKind::Nullable);
4556 addFixIt(NullabilityKind::NonNull);
4557}
4558
4559/// Complains about missing nullability if the file containing \p pointerLoc
4560/// has other uses of nullability (either the keywords or the \c assume_nonnull
4561/// pragma).
4562///
4563/// If the file has \e not seen other uses of nullability, this particular
4564/// pointer is saved for possible later diagnosis. See recordNullabilitySeen().
4565static void
4566checkNullabilityConsistency(Sema &S, SimplePointerKind pointerKind,
4567 SourceLocation pointerLoc,
4568 SourceLocation pointerEndLoc = SourceLocation()) {
4569 // Determine which file we're performing consistency checking for.
4570 FileID file = getNullabilityCompletenessCheckFileID(S, loc: pointerLoc);
4571 if (file.isInvalid())
4572 return;
4573
4574 // If we haven't seen any type nullability in this file, we won't warn now
4575 // about anything.
4576 FileNullability &fileNullability = S.NullabilityMap[file];
4577 if (!fileNullability.SawTypeNullability) {
4578 // If this is the first pointer declarator in the file, and the appropriate
4579 // warning is on, record it in case we need to diagnose it retroactively.
4580 diag::kind diagKind;
4581 if (pointerKind == SimplePointerKind::Array)
4582 diagKind = diag::warn_nullability_missing_array;
4583 else
4584 diagKind = diag::warn_nullability_missing;
4585
4586 if (fileNullability.PointerLoc.isInvalid() &&
4587 !S.Context.getDiagnostics().isIgnored(DiagID: diagKind, Loc: pointerLoc)) {
4588 fileNullability.PointerLoc = pointerLoc;
4589 fileNullability.PointerEndLoc = pointerEndLoc;
4590 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
4591 }
4592
4593 return;
4594 }
4595
4596 // Complain about missing nullability.
4597 emitNullabilityConsistencyWarning(S, PointerKind: pointerKind, PointerLoc: pointerLoc, PointerEndLoc: pointerEndLoc);
4598}
4599
4600/// Marks that a nullability feature has been used in the file containing
4601/// \p loc.
4602///
4603/// If this file already had pointer types in it that were missing nullability,
4604/// the first such instance is retroactively diagnosed.
4605///
4606/// \sa checkNullabilityConsistency
4607static void recordNullabilitySeen(Sema &S, SourceLocation loc) {
4608 FileID file = getNullabilityCompletenessCheckFileID(S, loc);
4609 if (file.isInvalid())
4610 return;
4611
4612 FileNullability &fileNullability = S.NullabilityMap[file];
4613 if (fileNullability.SawTypeNullability)
4614 return;
4615 fileNullability.SawTypeNullability = true;
4616
4617 // If we haven't seen any type nullability before, now we have. Retroactively
4618 // diagnose the first unannotated pointer, if there was one.
4619 if (fileNullability.PointerLoc.isInvalid())
4620 return;
4621
4622 auto kind = static_cast<SimplePointerKind>(fileNullability.PointerKind);
4623 emitNullabilityConsistencyWarning(S, PointerKind: kind, PointerLoc: fileNullability.PointerLoc,
4624 PointerEndLoc: fileNullability.PointerEndLoc);
4625}
4626
4627/// Returns true if any of the declarator chunks before \p endIndex include a
4628/// level of indirection: array, pointer, reference, or pointer-to-member.
4629///
4630/// Because declarator chunks are stored in outer-to-inner order, testing
4631/// every chunk before \p endIndex is testing all chunks that embed the current
4632/// chunk as part of their type.
4633///
4634/// It is legal to pass the result of Declarator::getNumTypeObjects() as the
4635/// end index, in which case all chunks are tested.
4636static bool hasOuterPointerLikeChunk(const Declarator &D, unsigned endIndex) {
4637 unsigned i = endIndex;
4638 while (i != 0) {
4639 // Walk outwards along the declarator chunks.
4640 --i;
4641 const DeclaratorChunk &DC = D.getTypeObject(i);
4642 switch (DC.Kind) {
4643 case DeclaratorChunk::Paren:
4644 break;
4645 case DeclaratorChunk::Array:
4646 case DeclaratorChunk::Pointer:
4647 case DeclaratorChunk::Reference:
4648 case DeclaratorChunk::MemberPointer:
4649 return true;
4650 case DeclaratorChunk::Function:
4651 case DeclaratorChunk::BlockPointer:
4652 case DeclaratorChunk::Pipe:
4653 // These are invalid anyway, so just ignore.
4654 break;
4655 }
4656 }
4657 return false;
4658}
4659
4660static bool IsNoDerefableChunk(const DeclaratorChunk &Chunk) {
4661 return (Chunk.Kind == DeclaratorChunk::Pointer ||
4662 Chunk.Kind == DeclaratorChunk::Array);
4663}
4664
4665template<typename AttrT>
4666static AttrT *createSimpleAttr(ASTContext &Ctx, ParsedAttr &AL) {
4667 AL.setUsedAsTypeAttr();
4668 return ::new (Ctx) AttrT(Ctx, AL);
4669}
4670
4671static Attr *createNullabilityAttr(ASTContext &Ctx, ParsedAttr &Attr,
4672 NullabilityKind NK) {
4673 switch (NK) {
4674 case NullabilityKind::NonNull:
4675 return createSimpleAttr<TypeNonNullAttr>(Ctx, Attr);
4676
4677 case NullabilityKind::Nullable:
4678 return createSimpleAttr<TypeNullableAttr>(Ctx, Attr);
4679
4680 case NullabilityKind::NullableResult:
4681 return createSimpleAttr<TypeNullableResultAttr>(Ctx, Attr);
4682
4683 case NullabilityKind::Unspecified:
4684 return createSimpleAttr<TypeNullUnspecifiedAttr>(Ctx, Attr);
4685 }
4686 llvm_unreachable("unknown NullabilityKind");
4687}
4688
4689// Diagnose whether this is a case with the multiple addr spaces.
4690// Returns true if this is an invalid case.
4691// ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified
4692// by qualifiers for two or more different address spaces."
4693static bool DiagnoseMultipleAddrSpaceAttributes(Sema &S, LangAS ASOld,
4694 LangAS ASNew,
4695 SourceLocation AttrLoc) {
4696 if (ASOld != LangAS::Default) {
4697 if (ASOld != ASNew) {
4698 S.Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
4699 return true;
4700 }
4701 // Emit a warning if they are identical; it's likely unintended.
4702 S.Diag(AttrLoc,
4703 diag::warn_attribute_address_multiple_identical_qualifiers);
4704 }
4705 return false;
4706}
4707
4708static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
4709 QualType declSpecType,
4710 TypeSourceInfo *TInfo) {
4711 // The TypeSourceInfo that this function returns will not be a null type.
4712 // If there is an error, this function will fill in a dummy type as fallback.
4713 QualType T = declSpecType;
4714 Declarator &D = state.getDeclarator();
4715 Sema &S = state.getSema();
4716 ASTContext &Context = S.Context;
4717 const LangOptions &LangOpts = S.getLangOpts();
4718
4719 // The name we're declaring, if any.
4720 DeclarationName Name;
4721 if (D.getIdentifier())
4722 Name = D.getIdentifier();
4723
4724 // Does this declaration declare a typedef-name?
4725 bool IsTypedefName =
4726 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
4727 D.getContext() == DeclaratorContext::AliasDecl ||
4728 D.getContext() == DeclaratorContext::AliasTemplate;
4729
4730 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
4731 bool IsQualifiedFunction = T->isFunctionProtoType() &&
4732 (!T->castAs<FunctionProtoType>()->getMethodQuals().empty() ||
4733 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
4734
4735 // If T is 'decltype(auto)', the only declarators we can have are parens
4736 // and at most one function declarator if this is a function declaration.
4737 // If T is a deduced class template specialization type, we can have no
4738 // declarator chunks at all.
4739 if (auto *DT = T->getAs<DeducedType>()) {
4740 const AutoType *AT = T->getAs<AutoType>();
4741 bool IsClassTemplateDeduction = isa<DeducedTemplateSpecializationType>(Val: DT);
4742 if ((AT && AT->isDecltypeAuto()) || IsClassTemplateDeduction) {
4743 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4744 unsigned Index = E - I - 1;
4745 DeclaratorChunk &DeclChunk = D.getTypeObject(i: Index);
4746 unsigned DiagId = IsClassTemplateDeduction
4747 ? diag::err_deduced_class_template_compound_type
4748 : diag::err_decltype_auto_compound_type;
4749 unsigned DiagKind = 0;
4750 switch (DeclChunk.Kind) {
4751 case DeclaratorChunk::Paren:
4752 // FIXME: Rejecting this is a little silly.
4753 if (IsClassTemplateDeduction) {
4754 DiagKind = 4;
4755 break;
4756 }
4757 continue;
4758 case DeclaratorChunk::Function: {
4759 if (IsClassTemplateDeduction) {
4760 DiagKind = 3;
4761 break;
4762 }
4763 unsigned FnIndex;
4764 if (D.isFunctionDeclarationContext() &&
4765 D.isFunctionDeclarator(idx&: FnIndex) && FnIndex == Index)
4766 continue;
4767 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
4768 break;
4769 }
4770 case DeclaratorChunk::Pointer:
4771 case DeclaratorChunk::BlockPointer:
4772 case DeclaratorChunk::MemberPointer:
4773 DiagKind = 0;
4774 break;
4775 case DeclaratorChunk::Reference:
4776 DiagKind = 1;
4777 break;
4778 case DeclaratorChunk::Array:
4779 DiagKind = 2;
4780 break;
4781 case DeclaratorChunk::Pipe:
4782 break;
4783 }
4784
4785 S.Diag(Loc: DeclChunk.Loc, DiagID: DiagId) << DiagKind;
4786 D.setInvalidType(true);
4787 break;
4788 }
4789 }
4790 }
4791
4792 // Determine whether we should infer _Nonnull on pointer types.
4793 std::optional<NullabilityKind> inferNullability;
4794 bool inferNullabilityCS = false;
4795 bool inferNullabilityInnerOnly = false;
4796 bool inferNullabilityInnerOnlyComplete = false;
4797
4798 // Are we in an assume-nonnull region?
4799 bool inAssumeNonNullRegion = false;
4800 SourceLocation assumeNonNullLoc = S.PP.getPragmaAssumeNonNullLoc();
4801 if (assumeNonNullLoc.isValid()) {
4802 inAssumeNonNullRegion = true;
4803 recordNullabilitySeen(S, loc: assumeNonNullLoc);
4804 }
4805
4806 // Whether to complain about missing nullability specifiers or not.
4807 enum {
4808 /// Never complain.
4809 CAMN_No,
4810 /// Complain on the inner pointers (but not the outermost
4811 /// pointer).
4812 CAMN_InnerPointers,
4813 /// Complain about any pointers that don't have nullability
4814 /// specified or inferred.
4815 CAMN_Yes
4816 } complainAboutMissingNullability = CAMN_No;
4817 unsigned NumPointersRemaining = 0;
4818 auto complainAboutInferringWithinChunk = PointerWrappingDeclaratorKind::None;
4819
4820 if (IsTypedefName) {
4821 // For typedefs, we do not infer any nullability (the default),
4822 // and we only complain about missing nullability specifiers on
4823 // inner pointers.
4824 complainAboutMissingNullability = CAMN_InnerPointers;
4825
4826 if (T->canHaveNullability(/*ResultIfUnknown*/ false) &&
4827 !T->getNullability()) {
4828 // Note that we allow but don't require nullability on dependent types.
4829 ++NumPointersRemaining;
4830 }
4831
4832 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
4833 DeclaratorChunk &chunk = D.getTypeObject(i);
4834 switch (chunk.Kind) {
4835 case DeclaratorChunk::Array:
4836 case DeclaratorChunk::Function:
4837 case DeclaratorChunk::Pipe:
4838 break;
4839
4840 case DeclaratorChunk::BlockPointer:
4841 case DeclaratorChunk::MemberPointer:
4842 ++NumPointersRemaining;
4843 break;
4844
4845 case DeclaratorChunk::Paren:
4846 case DeclaratorChunk::Reference:
4847 continue;
4848
4849 case DeclaratorChunk::Pointer:
4850 ++NumPointersRemaining;
4851 continue;
4852 }
4853 }
4854 } else {
4855 bool isFunctionOrMethod = false;
4856 switch (auto context = state.getDeclarator().getContext()) {
4857 case DeclaratorContext::ObjCParameter:
4858 case DeclaratorContext::ObjCResult:
4859 case DeclaratorContext::Prototype:
4860 case DeclaratorContext::TrailingReturn:
4861 case DeclaratorContext::TrailingReturnVar:
4862 isFunctionOrMethod = true;
4863 [[fallthrough]];
4864
4865 case DeclaratorContext::Member:
4866 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
4867 complainAboutMissingNullability = CAMN_No;
4868 break;
4869 }
4870
4871 // Weak properties are inferred to be nullable.
4872 if (state.getDeclarator().isObjCWeakProperty()) {
4873 // Weak properties cannot be nonnull, and should not complain about
4874 // missing nullable attributes during completeness checks.
4875 complainAboutMissingNullability = CAMN_No;
4876 if (inAssumeNonNullRegion) {
4877 inferNullability = NullabilityKind::Nullable;
4878 }
4879 break;
4880 }
4881
4882 [[fallthrough]];
4883
4884 case DeclaratorContext::File:
4885 case DeclaratorContext::KNRTypeList: {
4886 complainAboutMissingNullability = CAMN_Yes;
4887
4888 // Nullability inference depends on the type and declarator.
4889 auto wrappingKind = PointerWrappingDeclaratorKind::None;
4890 switch (classifyPointerDeclarator(S, type: T, declarator&: D, wrappingKind)) {
4891 case PointerDeclaratorKind::NonPointer:
4892 case PointerDeclaratorKind::MultiLevelPointer:
4893 // Cannot infer nullability.
4894 break;
4895
4896 case PointerDeclaratorKind::SingleLevelPointer:
4897 // Infer _Nonnull if we are in an assumes-nonnull region.
4898 if (inAssumeNonNullRegion) {
4899 complainAboutInferringWithinChunk = wrappingKind;
4900 inferNullability = NullabilityKind::NonNull;
4901 inferNullabilityCS = (context == DeclaratorContext::ObjCParameter ||
4902 context == DeclaratorContext::ObjCResult);
4903 }
4904 break;
4905
4906 case PointerDeclaratorKind::CFErrorRefPointer:
4907 case PointerDeclaratorKind::NSErrorPointerPointer:
4908 // Within a function or method signature, infer _Nullable at both
4909 // levels.
4910 if (isFunctionOrMethod && inAssumeNonNullRegion)
4911 inferNullability = NullabilityKind::Nullable;
4912 break;
4913
4914 case PointerDeclaratorKind::MaybePointerToCFRef:
4915 if (isFunctionOrMethod) {
4916 // On pointer-to-pointer parameters marked cf_returns_retained or
4917 // cf_returns_not_retained, if the outer pointer is explicit then
4918 // infer the inner pointer as _Nullable.
4919 auto hasCFReturnsAttr =
4920 [](const ParsedAttributesView &AttrList) -> bool {
4921 return AttrList.hasAttribute(ParsedAttr::AT_CFReturnsRetained) ||
4922 AttrList.hasAttribute(ParsedAttr::AT_CFReturnsNotRetained);
4923 };
4924 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
4925 if (hasCFReturnsAttr(D.getDeclarationAttributes()) ||
4926 hasCFReturnsAttr(D.getAttributes()) ||
4927 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
4928 hasCFReturnsAttr(D.getDeclSpec().getAttributes())) {
4929 inferNullability = NullabilityKind::Nullable;
4930 inferNullabilityInnerOnly = true;
4931 }
4932 }
4933 }
4934 break;
4935 }
4936 break;
4937 }
4938
4939 case DeclaratorContext::ConversionId:
4940 complainAboutMissingNullability = CAMN_Yes;
4941 break;
4942
4943 case DeclaratorContext::AliasDecl:
4944 case DeclaratorContext::AliasTemplate:
4945 case DeclaratorContext::Block:
4946 case DeclaratorContext::BlockLiteral:
4947 case DeclaratorContext::Condition:
4948 case DeclaratorContext::CXXCatch:
4949 case DeclaratorContext::CXXNew:
4950 case DeclaratorContext::ForInit:
4951 case DeclaratorContext::SelectionInit:
4952 case DeclaratorContext::LambdaExpr:
4953 case DeclaratorContext::LambdaExprParameter:
4954 case DeclaratorContext::ObjCCatch:
4955 case DeclaratorContext::TemplateParam:
4956 case DeclaratorContext::TemplateArg:
4957 case DeclaratorContext::TemplateTypeArg:
4958 case DeclaratorContext::TypeName:
4959 case DeclaratorContext::FunctionalCast:
4960 case DeclaratorContext::RequiresExpr:
4961 case DeclaratorContext::Association:
4962 // Don't infer in these contexts.
4963 break;
4964 }
4965 }
4966
4967 // Local function that returns true if its argument looks like a va_list.
4968 auto isVaList = [&S](QualType T) -> bool {
4969 auto *typedefTy = T->getAs<TypedefType>();
4970 if (!typedefTy)
4971 return false;
4972 TypedefDecl *vaListTypedef = S.Context.getBuiltinVaListDecl();
4973 do {
4974 if (typedefTy->getDecl() == vaListTypedef)
4975 return true;
4976 if (auto *name = typedefTy->getDecl()->getIdentifier())
4977 if (name->isStr("va_list"))
4978 return true;
4979 typedefTy = typedefTy->desugar()->getAs<TypedefType>();
4980 } while (typedefTy);
4981 return false;
4982 };
4983
4984 // Local function that checks the nullability for a given pointer declarator.
4985 // Returns true if _Nonnull was inferred.
4986 auto inferPointerNullability =
4987 [&](SimplePointerKind pointerKind, SourceLocation pointerLoc,
4988 SourceLocation pointerEndLoc,
4989 ParsedAttributesView &attrs, AttributePool &Pool) -> ParsedAttr * {
4990 // We've seen a pointer.
4991 if (NumPointersRemaining > 0)
4992 --NumPointersRemaining;
4993
4994 // If a nullability attribute is present, there's nothing to do.
4995 if (hasNullabilityAttr(attrs))
4996 return nullptr;
4997
4998 // If we're supposed to infer nullability, do so now.
4999 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
5000 ParsedAttr::Form form =
5001 inferNullabilityCS
5002 ? ParsedAttr::Form::ContextSensitiveKeyword()
5003 : ParsedAttr::Form::Keyword(IsAlignas: false /*IsAlignAs*/,
5004 IsRegularKeywordAttribute: false /*IsRegularKeywordAttribute*/);
5005 ParsedAttr *nullabilityAttr = Pool.create(
5006 attrName: S.getNullabilityKeyword(nullability: *inferNullability), attrRange: SourceRange(pointerLoc),
5007 scopeName: nullptr, scopeLoc: SourceLocation(), args: nullptr, numArgs: 0, form);
5008
5009 attrs.addAtEnd(newAttr: nullabilityAttr);
5010
5011 if (inferNullabilityCS) {
5012 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
5013 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
5014 }
5015
5016 if (pointerLoc.isValid() &&
5017 complainAboutInferringWithinChunk !=
5018 PointerWrappingDeclaratorKind::None) {
5019 auto Diag =
5020 S.Diag(pointerLoc, diag::warn_nullability_inferred_on_nested_type);
5021 Diag << static_cast<int>(complainAboutInferringWithinChunk);
5022 fixItNullability(S, Diag, pointerLoc, NullabilityKind::NonNull);
5023 }
5024
5025 if (inferNullabilityInnerOnly)
5026 inferNullabilityInnerOnlyComplete = true;
5027 return nullabilityAttr;
5028 }
5029
5030 // If we're supposed to complain about missing nullability, do so
5031 // now if it's truly missing.
5032 switch (complainAboutMissingNullability) {
5033 case CAMN_No:
5034 break;
5035
5036 case CAMN_InnerPointers:
5037 if (NumPointersRemaining == 0)
5038 break;
5039 [[fallthrough]];
5040
5041 case CAMN_Yes:
5042 checkNullabilityConsistency(S, pointerKind, pointerLoc, pointerEndLoc);
5043 }
5044 return nullptr;
5045 };
5046
5047 // If the type itself could have nullability but does not, infer pointer
5048 // nullability and perform consistency checking.
5049 if (S.CodeSynthesisContexts.empty()) {
5050 if (T->canHaveNullability(/*ResultIfUnknown*/ false) &&
5051 !T->getNullability()) {
5052 if (isVaList(T)) {
5053 // Record that we've seen a pointer, but do nothing else.
5054 if (NumPointersRemaining > 0)
5055 --NumPointersRemaining;
5056 } else {
5057 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
5058 if (T->isBlockPointerType())
5059 pointerKind = SimplePointerKind::BlockPointer;
5060 else if (T->isMemberPointerType())
5061 pointerKind = SimplePointerKind::MemberPointer;
5062
5063 if (auto *attr = inferPointerNullability(
5064 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
5065 D.getDeclSpec().getEndLoc(),
5066 D.getMutableDeclSpec().getAttributes(),
5067 D.getMutableDeclSpec().getAttributePool())) {
5068 T = state.getAttributedType(
5069 A: createNullabilityAttr(Ctx&: Context, Attr&: *attr, NK: *inferNullability), ModifiedType: T, EquivType: T);
5070 }
5071 }
5072 }
5073
5074 if (complainAboutMissingNullability == CAMN_Yes && T->isArrayType() &&
5075 !T->getNullability() && !isVaList(T) && D.isPrototypeContext() &&
5076 !hasOuterPointerLikeChunk(D, endIndex: D.getNumTypeObjects())) {
5077 checkNullabilityConsistency(S, pointerKind: SimplePointerKind::Array,
5078 pointerLoc: D.getDeclSpec().getTypeSpecTypeLoc());
5079 }
5080 }
5081
5082 bool ExpectNoDerefChunk =
5083 state.getCurrentAttributes().hasAttribute(ParsedAttr::AT_NoDeref);
5084
5085 // Walk the DeclTypeInfo, building the recursive type as we go.
5086 // DeclTypeInfos are ordered from the identifier out, which is
5087 // opposite of what we want :).
5088
5089 // Track if the produced type matches the structure of the declarator.
5090 // This is used later to decide if we can fill `TypeLoc` from
5091 // `DeclaratorChunk`s. E.g. it must be false if Clang recovers from
5092 // an error by replacing the type with `int`.
5093 bool AreDeclaratorChunksValid = true;
5094 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5095 unsigned chunkIndex = e - i - 1;
5096 state.setCurrentChunkIndex(chunkIndex);
5097 DeclaratorChunk &DeclType = D.getTypeObject(i: chunkIndex);
5098 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
5099 switch (DeclType.Kind) {
5100 case DeclaratorChunk::Paren:
5101 if (i == 0)
5102 warnAboutRedundantParens(S, D, T);
5103 T = S.BuildParenType(T);
5104 break;
5105 case DeclaratorChunk::BlockPointer:
5106 // If blocks are disabled, emit an error.
5107 if (!LangOpts.Blocks)
5108 S.Diag(DeclType.Loc, diag::err_blocks_disable) << LangOpts.OpenCL;
5109
5110 // Handle pointer nullability.
5111 inferPointerNullability(SimplePointerKind::BlockPointer, DeclType.Loc,
5112 DeclType.EndLoc, DeclType.getAttrs(),
5113 state.getDeclarator().getAttributePool());
5114
5115 T = S.BuildBlockPointerType(T, Loc: D.getIdentifierLoc(), Entity: Name);
5116 if (DeclType.Cls.TypeQuals || LangOpts.OpenCL) {
5117 // OpenCL v2.0, s6.12.5 - Block variable declarations are implicitly
5118 // qualified with const.
5119 if (LangOpts.OpenCL)
5120 DeclType.Cls.TypeQuals |= DeclSpec::TQ_const;
5121 T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Cls.TypeQuals);
5122 }
5123 break;
5124 case DeclaratorChunk::Pointer:
5125 // Verify that we're not building a pointer to pointer to function with
5126 // exception specification.
5127 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
5128 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
5129 D.setInvalidType(true);
5130 // Build the type anyway.
5131 }
5132
5133 // Handle pointer nullability
5134 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
5135 DeclType.EndLoc, DeclType.getAttrs(),
5136 state.getDeclarator().getAttributePool());
5137
5138 if (LangOpts.ObjC && T->getAs<ObjCObjectType>()) {
5139 T = Context.getObjCObjectPointerType(OIT: T);
5140 if (DeclType.Ptr.TypeQuals)
5141 T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Ptr.TypeQuals);
5142 break;
5143 }
5144
5145 // OpenCL v2.0 s6.9b - Pointer to image/sampler cannot be used.
5146 // OpenCL v2.0 s6.13.16.1 - Pointer to pipe cannot be used.
5147 // OpenCL v2.0 s6.12.5 - Pointers to Blocks are not allowed.
5148 if (LangOpts.OpenCL) {
5149 if (T->isImageType() || T->isSamplerT() || T->isPipeType() ||
5150 T->isBlockPointerType()) {
5151 S.Diag(D.getIdentifierLoc(), diag::err_opencl_pointer_to_type) << T;
5152 D.setInvalidType(true);
5153 }
5154 }
5155
5156 T = S.BuildPointerType(T, Loc: DeclType.Loc, Entity: Name);
5157 if (DeclType.Ptr.TypeQuals)
5158 T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Ptr.TypeQuals);
5159 break;
5160 case DeclaratorChunk::Reference: {
5161 // Verify that we're not building a reference to pointer to function with
5162 // exception specification.
5163 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
5164 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
5165 D.setInvalidType(true);
5166 // Build the type anyway.
5167 }
5168 T = S.BuildReferenceType(T, SpelledAsLValue: DeclType.Ref.LValueRef, Loc: DeclType.Loc, Entity: Name);
5169
5170 if (DeclType.Ref.HasRestrict)
5171 T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: Qualifiers::Restrict);
5172 break;
5173 }
5174 case DeclaratorChunk::Array: {
5175 // Verify that we're not building an array of pointers to function with
5176 // exception specification.
5177 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
5178 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
5179 D.setInvalidType(true);
5180 // Build the type anyway.
5181 }
5182 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
5183 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
5184 ArraySizeModifier ASM;
5185
5186 // Microsoft property fields can have multiple sizeless array chunks
5187 // (i.e. int x[][][]). Skip all of these except one to avoid creating
5188 // bad incomplete array types.
5189 if (chunkIndex != 0 && !ArraySize &&
5190 D.getDeclSpec().getAttributes().hasMSPropertyAttr()) {
5191 // This is a sizeless chunk. If the next is also, skip this one.
5192 DeclaratorChunk &NextDeclType = D.getTypeObject(i: chunkIndex - 1);
5193 if (NextDeclType.Kind == DeclaratorChunk::Array &&
5194 !NextDeclType.Arr.NumElts)
5195 break;
5196 }
5197
5198 if (ATI.isStar)
5199 ASM = ArraySizeModifier::Star;
5200 else if (ATI.hasStatic)
5201 ASM = ArraySizeModifier::Static;
5202 else
5203 ASM = ArraySizeModifier::Normal;
5204 if (ASM == ArraySizeModifier::Star && !D.isPrototypeContext()) {
5205 // FIXME: This check isn't quite right: it allows star in prototypes
5206 // for function definitions, and disallows some edge cases detailed
5207 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
5208 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
5209 ASM = ArraySizeModifier::Normal;
5210 D.setInvalidType(true);
5211 }
5212
5213 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
5214 // shall appear only in a declaration of a function parameter with an
5215 // array type, ...
5216 if (ASM == ArraySizeModifier::Static || ATI.TypeQuals) {
5217 if (!(D.isPrototypeContext() ||
5218 D.getContext() == DeclaratorContext::KNRTypeList)) {
5219 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype)
5220 << (ASM == ArraySizeModifier::Static ? "'static'"
5221 : "type qualifier");
5222 // Remove the 'static' and the type qualifiers.
5223 if (ASM == ArraySizeModifier::Static)
5224 ASM = ArraySizeModifier::Normal;
5225 ATI.TypeQuals = 0;
5226 D.setInvalidType(true);
5227 }
5228
5229 // C99 6.7.5.2p1: ... and then only in the outermost array type
5230 // derivation.
5231 if (hasOuterPointerLikeChunk(D, endIndex: chunkIndex)) {
5232 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost)
5233 << (ASM == ArraySizeModifier::Static ? "'static'"
5234 : "type qualifier");
5235 if (ASM == ArraySizeModifier::Static)
5236 ASM = ArraySizeModifier::Normal;
5237 ATI.TypeQuals = 0;
5238 D.setInvalidType(true);
5239 }
5240 }
5241
5242 // Array parameters can be marked nullable as well, although it's not
5243 // necessary if they're marked 'static'.
5244 if (complainAboutMissingNullability == CAMN_Yes &&
5245 !hasNullabilityAttr(attrs: DeclType.getAttrs()) &&
5246 ASM != ArraySizeModifier::Static && D.isPrototypeContext() &&
5247 !hasOuterPointerLikeChunk(D, endIndex: chunkIndex)) {
5248 checkNullabilityConsistency(S, pointerKind: SimplePointerKind::Array, pointerLoc: DeclType.Loc);
5249 }
5250
5251 T = S.BuildArrayType(T, ASM, ArraySize, Quals: ATI.TypeQuals,
5252 Brackets: SourceRange(DeclType.Loc, DeclType.EndLoc), Entity: Name);
5253 break;
5254 }
5255 case DeclaratorChunk::Function: {
5256 // If the function declarator has a prototype (i.e. it is not () and
5257 // does not have a K&R-style identifier list), then the arguments are part
5258 // of the type, otherwise the argument list is ().
5259 DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5260 IsQualifiedFunction =
5261 FTI.hasMethodTypeQualifiers() || FTI.hasRefQualifier();
5262
5263 // Check for auto functions and trailing return type and adjust the
5264 // return type accordingly.
5265 if (!D.isInvalidType()) {
5266 // trailing-return-type is only required if we're declaring a function,
5267 // and not, for instance, a pointer to a function.
5268 if (D.getDeclSpec().hasAutoTypeSpec() &&
5269 !FTI.hasTrailingReturnType() && chunkIndex == 0) {
5270 if (!S.getLangOpts().CPlusPlus14) {
5271 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5272 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
5273 ? diag::err_auto_missing_trailing_return
5274 : diag::err_deduced_return_type);
5275 T = Context.IntTy;
5276 D.setInvalidType(true);
5277 AreDeclaratorChunksValid = false;
5278 } else {
5279 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5280 diag::warn_cxx11_compat_deduced_return_type);
5281 }
5282 } else if (FTI.hasTrailingReturnType()) {
5283 // T must be exactly 'auto' at this point. See CWG issue 681.
5284 if (isa<ParenType>(Val: T)) {
5285 S.Diag(D.getBeginLoc(), diag::err_trailing_return_in_parens)
5286 << T << D.getSourceRange();
5287 D.setInvalidType(true);
5288 // FIXME: recover and fill decls in `TypeLoc`s.
5289 AreDeclaratorChunksValid = false;
5290 } else if (D.getName().getKind() ==
5291 UnqualifiedIdKind::IK_DeductionGuideName) {
5292 if (T != Context.DependentTy) {
5293 S.Diag(D.getDeclSpec().getBeginLoc(),
5294 diag::err_deduction_guide_with_complex_decl)
5295 << D.getSourceRange();
5296 D.setInvalidType(true);
5297 // FIXME: recover and fill decls in `TypeLoc`s.
5298 AreDeclaratorChunksValid = false;
5299 }
5300 } else if (D.getContext() != DeclaratorContext::LambdaExpr &&
5301 (T.hasQualifiers() || !isa<AutoType>(Val: T) ||
5302 cast<AutoType>(Val&: T)->getKeyword() !=
5303 AutoTypeKeyword::Auto ||
5304 cast<AutoType>(Val&: T)->isConstrained())) {
5305 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
5306 diag::err_trailing_return_without_auto)
5307 << T << D.getDeclSpec().getSourceRange();
5308 D.setInvalidType(true);
5309 // FIXME: recover and fill decls in `TypeLoc`s.
5310 AreDeclaratorChunksValid = false;
5311 }
5312 T = S.GetTypeFromParser(Ty: FTI.getTrailingReturnType(), TInfo: &TInfo);
5313 if (T.isNull()) {
5314 // An error occurred parsing the trailing return type.
5315 T = Context.IntTy;
5316 D.setInvalidType(true);
5317 } else if (AutoType *Auto = T->getContainedAutoType()) {
5318 // If the trailing return type contains an `auto`, we may need to
5319 // invent a template parameter for it, for cases like
5320 // `auto f() -> C auto` or `[](auto (*p) -> auto) {}`.
5321 InventedTemplateParameterInfo *InventedParamInfo = nullptr;
5322 if (D.getContext() == DeclaratorContext::Prototype)
5323 InventedParamInfo = &S.InventedParameterInfos.back();
5324 else if (D.getContext() == DeclaratorContext::LambdaExprParameter)
5325 InventedParamInfo = S.getCurLambda();
5326 if (InventedParamInfo) {
5327 std::tie(args&: T, args&: TInfo) = InventTemplateParameter(
5328 state, T, TrailingTSI: TInfo, Auto, Info&: *InventedParamInfo);
5329 }
5330 }
5331 } else {
5332 // This function type is not the type of the entity being declared,
5333 // so checking the 'auto' is not the responsibility of this chunk.
5334 }
5335 }
5336
5337 // C99 6.7.5.3p1: The return type may not be a function or array type.
5338 // For conversion functions, we'll diagnose this particular error later.
5339 if (!D.isInvalidType() && (T->isArrayType() || T->isFunctionType()) &&
5340 (D.getName().getKind() !=
5341 UnqualifiedIdKind::IK_ConversionFunctionId)) {
5342 unsigned diagID = diag::err_func_returning_array_function;
5343 // Last processing chunk in block context means this function chunk
5344 // represents the block.
5345 if (chunkIndex == 0 &&
5346 D.getContext() == DeclaratorContext::BlockLiteral)
5347 diagID = diag::err_block_returning_array_function;
5348 S.Diag(Loc: DeclType.Loc, DiagID: diagID) << T->isFunctionType() << T;
5349 T = Context.IntTy;
5350 D.setInvalidType(true);
5351 AreDeclaratorChunksValid = false;
5352 }
5353
5354 // Do not allow returning half FP value.
5355 // FIXME: This really should be in BuildFunctionType.
5356 if (T->isHalfType()) {
5357 if (S.getLangOpts().OpenCL) {
5358 if (!S.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16",
5359 LO: S.getLangOpts())) {
5360 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5361 << T << 0 /*pointer hint*/;
5362 D.setInvalidType(true);
5363 }
5364 } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5365 !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5366 S.Diag(D.getIdentifierLoc(),
5367 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
5368 D.setInvalidType(true);
5369 }
5370 }
5371
5372 if (LangOpts.OpenCL) {
5373 // OpenCL v2.0 s6.12.5 - A block cannot be the return value of a
5374 // function.
5375 if (T->isBlockPointerType() || T->isImageType() || T->isSamplerT() ||
5376 T->isPipeType()) {
5377 S.Diag(D.getIdentifierLoc(), diag::err_opencl_invalid_return)
5378 << T << 1 /*hint off*/;
5379 D.setInvalidType(true);
5380 }
5381 // OpenCL doesn't support variadic functions and blocks
5382 // (s6.9.e and s6.12.5 OpenCL v2.0) except for printf.
5383 // We also allow here any toolchain reserved identifiers.
5384 if (FTI.isVariadic &&
5385 !S.getOpenCLOptions().isAvailableOption(
5386 Ext: "__cl_clang_variadic_functions", LO: S.getLangOpts()) &&
5387 !(D.getIdentifier() &&
5388 ((D.getIdentifier()->getName() == "printf" &&
5389 LangOpts.getOpenCLCompatibleVersion() >= 120) ||
5390 D.getIdentifier()->getName().starts_with(Prefix: "__")))) {
5391 S.Diag(D.getIdentifierLoc(), diag::err_opencl_variadic_function);
5392 D.setInvalidType(true);
5393 }
5394 }
5395
5396 // Methods cannot return interface types. All ObjC objects are
5397 // passed by reference.
5398 if (T->isObjCObjectType()) {
5399 SourceLocation DiagLoc, FixitLoc;
5400 if (TInfo) {
5401 DiagLoc = TInfo->getTypeLoc().getBeginLoc();
5402 FixitLoc = S.getLocForEndOfToken(Loc: TInfo->getTypeLoc().getEndLoc());
5403 } else {
5404 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
5405 FixitLoc = S.getLocForEndOfToken(Loc: D.getDeclSpec().getEndLoc());
5406 }
5407 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
5408 << 0 << T
5409 << FixItHint::CreateInsertion(FixitLoc, "*");
5410
5411 T = Context.getObjCObjectPointerType(OIT: T);
5412 if (TInfo) {
5413 TypeLocBuilder TLB;
5414 TLB.pushFullCopy(L: TInfo->getTypeLoc());
5415 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
5416 TLoc.setStarLoc(FixitLoc);
5417 TInfo = TLB.getTypeSourceInfo(Context, T);
5418 } else {
5419 AreDeclaratorChunksValid = false;
5420 }
5421
5422 D.setInvalidType(true);
5423 }
5424
5425 // cv-qualifiers on return types are pointless except when the type is a
5426 // class type in C++.
5427 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
5428 !(S.getLangOpts().CPlusPlus &&
5429 (T->isDependentType() || T->isRecordType()))) {
5430 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
5431 D.getFunctionDefinitionKind() ==
5432 FunctionDefinitionKind::Definition) {
5433 // [6.9.1/3] qualified void return is invalid on a C
5434 // function definition. Apparently ok on declarations and
5435 // in C++ though (!)
5436 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
5437 } else
5438 diagnoseRedundantReturnTypeQualifiers(S, RetTy: T, D, FunctionChunkIndex: chunkIndex);
5439
5440 // C++2a [dcl.fct]p12:
5441 // A volatile-qualified return type is deprecated
5442 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20)
5443 S.Diag(DeclType.Loc, diag::warn_deprecated_volatile_return) << T;
5444 }
5445
5446 // Objective-C ARC ownership qualifiers are ignored on the function
5447 // return type (by type canonicalization). Complain if this attribute
5448 // was written here.
5449 if (T.getQualifiers().hasObjCLifetime()) {
5450 SourceLocation AttrLoc;
5451 if (chunkIndex + 1 < D.getNumTypeObjects()) {
5452 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(i: chunkIndex + 1);
5453 for (const ParsedAttr &AL : ReturnTypeChunk.getAttrs()) {
5454 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5455 AttrLoc = AL.getLoc();
5456 break;
5457 }
5458 }
5459 }
5460 if (AttrLoc.isInvalid()) {
5461 for (const ParsedAttr &AL : D.getDeclSpec().getAttributes()) {
5462 if (AL.getKind() == ParsedAttr::AT_ObjCOwnership) {
5463 AttrLoc = AL.getLoc();
5464 break;
5465 }
5466 }
5467 }
5468
5469 if (AttrLoc.isValid()) {
5470 // The ownership attributes are almost always written via
5471 // the predefined
5472 // __strong/__weak/__autoreleasing/__unsafe_unretained.
5473 if (AttrLoc.isMacroID())
5474 AttrLoc =
5475 S.SourceMgr.getImmediateExpansionRange(Loc: AttrLoc).getBegin();
5476
5477 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
5478 << T.getQualifiers().getObjCLifetime();
5479 }
5480 }
5481
5482 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
5483 // C++ [dcl.fct]p6:
5484 // Types shall not be defined in return or parameter types.
5485 TagDecl *Tag = cast<TagDecl>(Val: D.getDeclSpec().getRepAsDecl());
5486 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
5487 << Context.getTypeDeclType(Tag);
5488 }
5489
5490 // Exception specs are not allowed in typedefs. Complain, but add it
5491 // anyway.
5492 if (IsTypedefName && FTI.getExceptionSpecType() && !LangOpts.CPlusPlus17)
5493 S.Diag(FTI.getExceptionSpecLocBeg(),
5494 diag::err_exception_spec_in_typedef)
5495 << (D.getContext() == DeclaratorContext::AliasDecl ||
5496 D.getContext() == DeclaratorContext::AliasTemplate);
5497
5498 // If we see "T var();" or "T var(T());" at block scope, it is probably
5499 // an attempt to initialize a variable, not a function declaration.
5500 if (FTI.isAmbiguous)
5501 warnAboutAmbiguousFunction(S, D, DeclType, RT: T);
5502
5503 FunctionType::ExtInfo EI(
5504 getCCForDeclaratorChunk(S, D, AttrList: DeclType.getAttrs(), FTI, ChunkIndex: chunkIndex));
5505
5506 // OpenCL disallows functions without a prototype, but it doesn't enforce
5507 // strict prototypes as in C23 because it allows a function definition to
5508 // have an identifier list. See OpenCL 3.0 6.11/g for more details.
5509 if (!FTI.NumParams && !FTI.isVariadic &&
5510 !LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL) {
5511 // Simple void foo(), where the incoming T is the result type.
5512 T = Context.getFunctionNoProtoType(ResultTy: T, Info: EI);
5513 } else {
5514 // We allow a zero-parameter variadic function in C if the
5515 // function is marked with the "overloadable" attribute. Scan
5516 // for this attribute now. We also allow it in C23 per WG14 N2975.
5517 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
5518 if (LangOpts.C23)
5519 S.Diag(FTI.getEllipsisLoc(),
5520 diag::warn_c17_compat_ellipsis_only_parameter);
5521 else if (!D.getDeclarationAttributes().hasAttribute(
5522 ParsedAttr::AT_Overloadable) &&
5523 !D.getAttributes().hasAttribute(
5524 ParsedAttr::AT_Overloadable) &&
5525 !D.getDeclSpec().getAttributes().hasAttribute(
5526 ParsedAttr::AT_Overloadable))
5527 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
5528 }
5529
5530 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
5531 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
5532 // definition.
5533 S.Diag(FTI.Params[0].IdentLoc,
5534 diag::err_ident_list_in_fn_declaration);
5535 D.setInvalidType(true);
5536 // Recover by creating a K&R-style function type, if possible.
5537 T = (!LangOpts.requiresStrictPrototypes() && !LangOpts.OpenCL)
5538 ? Context.getFunctionNoProtoType(ResultTy: T, Info: EI)
5539 : Context.IntTy;
5540 AreDeclaratorChunksValid = false;
5541 break;
5542 }
5543
5544 FunctionProtoType::ExtProtoInfo EPI;
5545 EPI.ExtInfo = EI;
5546 EPI.Variadic = FTI.isVariadic;
5547 EPI.EllipsisLoc = FTI.getEllipsisLoc();
5548 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
5549 EPI.TypeQuals.addCVRUQualifiers(
5550 mask: FTI.MethodQualifiers ? FTI.MethodQualifiers->getTypeQualifiers()
5551 : 0);
5552 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
5553 : FTI.RefQualifierIsLValueRef? RQ_LValue
5554 : RQ_RValue;
5555
5556 // Otherwise, we have a function with a parameter list that is
5557 // potentially variadic.
5558 SmallVector<QualType, 16> ParamTys;
5559 ParamTys.reserve(N: FTI.NumParams);
5560
5561 SmallVector<FunctionProtoType::ExtParameterInfo, 16>
5562 ExtParameterInfos(FTI.NumParams);
5563 bool HasAnyInterestingExtParameterInfos = false;
5564
5565 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
5566 ParmVarDecl *Param = cast<ParmVarDecl>(Val: FTI.Params[i].Param);
5567 QualType ParamTy = Param->getType();
5568 assert(!ParamTy.isNull() && "Couldn't parse type?");
5569
5570 // Look for 'void'. void is allowed only as a single parameter to a
5571 // function with no other parameters (C99 6.7.5.3p10). We record
5572 // int(void) as a FunctionProtoType with an empty parameter list.
5573 if (ParamTy->isVoidType()) {
5574 // If this is something like 'float(int, void)', reject it. 'void'
5575 // is an incomplete type (C99 6.2.5p19) and function decls cannot
5576 // have parameters of incomplete type.
5577 if (FTI.NumParams != 1 || FTI.isVariadic) {
5578 S.Diag(FTI.Params[i].IdentLoc, diag::err_void_only_param);
5579 ParamTy = Context.IntTy;
5580 Param->setType(ParamTy);
5581 } else if (FTI.Params[i].Ident) {
5582 // Reject, but continue to parse 'int(void abc)'.
5583 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
5584 ParamTy = Context.IntTy;
5585 Param->setType(ParamTy);
5586 } else {
5587 // Reject, but continue to parse 'float(const void)'.
5588 if (ParamTy.hasQualifiers())
5589 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
5590
5591 // Do not add 'void' to the list.
5592 break;
5593 }
5594 } else if (ParamTy->isHalfType()) {
5595 // Disallow half FP parameters.
5596 // FIXME: This really should be in BuildFunctionType.
5597 if (S.getLangOpts().OpenCL) {
5598 if (!S.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16",
5599 LO: S.getLangOpts())) {
5600 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5601 << ParamTy << 0;
5602 D.setInvalidType();
5603 Param->setInvalidDecl();
5604 }
5605 } else if (!S.getLangOpts().NativeHalfArgsAndReturns &&
5606 !S.Context.getTargetInfo().allowHalfArgsAndReturns()) {
5607 S.Diag(Param->getLocation(),
5608 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
5609 D.setInvalidType();
5610 }
5611 } else if (!FTI.hasPrototype) {
5612 if (Context.isPromotableIntegerType(T: ParamTy)) {
5613 ParamTy = Context.getPromotedIntegerType(PromotableType: ParamTy);
5614 Param->setKNRPromoted(true);
5615 } else if (const BuiltinType *BTy = ParamTy->getAs<BuiltinType>()) {
5616 if (BTy->getKind() == BuiltinType::Float) {
5617 ParamTy = Context.DoubleTy;
5618 Param->setKNRPromoted(true);
5619 }
5620 }
5621 } else if (S.getLangOpts().OpenCL && ParamTy->isBlockPointerType()) {
5622 // OpenCL 2.0 s6.12.5: A block cannot be a parameter of a function.
5623 S.Diag(Param->getLocation(), diag::err_opencl_invalid_param)
5624 << ParamTy << 1 /*hint off*/;
5625 D.setInvalidType();
5626 }
5627
5628 if (LangOpts.ObjCAutoRefCount && Param->hasAttr<NSConsumedAttr>()) {
5629 ExtParameterInfos[i] = ExtParameterInfos[i].withIsConsumed(consumed: true);
5630 HasAnyInterestingExtParameterInfos = true;
5631 }
5632
5633 if (auto attr = Param->getAttr<ParameterABIAttr>()) {
5634 ExtParameterInfos[i] =
5635 ExtParameterInfos[i].withABI(kind: attr->getABI());
5636 HasAnyInterestingExtParameterInfos = true;
5637 }
5638
5639 if (Param->hasAttr<PassObjectSizeAttr>()) {
5640 ExtParameterInfos[i] = ExtParameterInfos[i].withHasPassObjectSize();
5641 HasAnyInterestingExtParameterInfos = true;
5642 }
5643
5644 if (Param->hasAttr<NoEscapeAttr>()) {
5645 ExtParameterInfos[i] = ExtParameterInfos[i].withIsNoEscape(NoEscape: true);
5646 HasAnyInterestingExtParameterInfos = true;
5647 }
5648
5649 ParamTys.push_back(Elt: ParamTy);
5650 }
5651
5652 if (HasAnyInterestingExtParameterInfos) {
5653 EPI.ExtParameterInfos = ExtParameterInfos.data();
5654 checkExtParameterInfos(S, paramTypes: ParamTys, EPI,
5655 getParamLoc: [&](unsigned i) { return FTI.Params[i].Param->getLocation(); });
5656 }
5657
5658 SmallVector<QualType, 4> Exceptions;
5659 SmallVector<ParsedType, 2> DynamicExceptions;
5660 SmallVector<SourceRange, 2> DynamicExceptionRanges;
5661 Expr *NoexceptExpr = nullptr;
5662
5663 if (FTI.getExceptionSpecType() == EST_Dynamic) {
5664 // FIXME: It's rather inefficient to have to split into two vectors
5665 // here.
5666 unsigned N = FTI.getNumExceptions();
5667 DynamicExceptions.reserve(N);
5668 DynamicExceptionRanges.reserve(N);
5669 for (unsigned I = 0; I != N; ++I) {
5670 DynamicExceptions.push_back(Elt: FTI.Exceptions[I].Ty);
5671 DynamicExceptionRanges.push_back(Elt: FTI.Exceptions[I].Range);
5672 }
5673 } else if (isComputedNoexcept(ESpecType: FTI.getExceptionSpecType())) {
5674 NoexceptExpr = FTI.NoexceptExpr;
5675 }
5676
5677 S.checkExceptionSpecification(IsTopLevel: D.isFunctionDeclarationContext(),
5678 EST: FTI.getExceptionSpecType(),
5679 DynamicExceptions,
5680 DynamicExceptionRanges,
5681 NoexceptExpr,
5682 Exceptions,
5683 ESI&: EPI.ExceptionSpec);
5684
5685 // FIXME: Set address space from attrs for C++ mode here.
5686 // OpenCLCPlusPlus: A class member function has an address space.
5687 auto IsClassMember = [&]() {
5688 return (!state.getDeclarator().getCXXScopeSpec().isEmpty() &&
5689 state.getDeclarator()
5690 .getCXXScopeSpec()
5691 .getScopeRep()
5692 ->getKind() == NestedNameSpecifier::TypeSpec) ||
5693 state.getDeclarator().getContext() ==
5694 DeclaratorContext::Member ||
5695 state.getDeclarator().getContext() ==
5696 DeclaratorContext::LambdaExpr;
5697 };
5698
5699 if (state.getSema().getLangOpts().OpenCLCPlusPlus && IsClassMember()) {
5700 LangAS ASIdx = LangAS::Default;
5701 // Take address space attr if any and mark as invalid to avoid adding
5702 // them later while creating QualType.
5703 if (FTI.MethodQualifiers)
5704 for (ParsedAttr &attr : FTI.MethodQualifiers->getAttributes()) {
5705 LangAS ASIdxNew = attr.asOpenCLLangAS();
5706 if (DiagnoseMultipleAddrSpaceAttributes(S, ASOld: ASIdx, ASNew: ASIdxNew,
5707 AttrLoc: attr.getLoc()))
5708 D.setInvalidType(true);
5709 else
5710 ASIdx = ASIdxNew;
5711 }
5712 // If a class member function's address space is not set, set it to
5713 // __generic.
5714 LangAS AS =
5715 (ASIdx == LangAS::Default ? S.getDefaultCXXMethodAddrSpace()
5716 : ASIdx);
5717 EPI.TypeQuals.addAddressSpace(space: AS);
5718 }
5719 T = Context.getFunctionType(ResultTy: T, Args: ParamTys, EPI);
5720 }
5721 break;
5722 }
5723 case DeclaratorChunk::MemberPointer: {
5724 // The scope spec must refer to a class, or be dependent.
5725 CXXScopeSpec &SS = DeclType.Mem.Scope();
5726 QualType ClsType;
5727
5728 // Handle pointer nullability.
5729 inferPointerNullability(SimplePointerKind::MemberPointer, DeclType.Loc,
5730 DeclType.EndLoc, DeclType.getAttrs(),
5731 state.getDeclarator().getAttributePool());
5732
5733 if (SS.isInvalid()) {
5734 // Avoid emitting extra errors if we already errored on the scope.
5735 D.setInvalidType(true);
5736 } else if (S.isDependentScopeSpecifier(SS) ||
5737 isa_and_nonnull<CXXRecordDecl>(Val: S.computeDeclContext(SS))) {
5738 NestedNameSpecifier *NNS = SS.getScopeRep();
5739 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
5740 switch (NNS->getKind()) {
5741 case NestedNameSpecifier::Identifier:
5742 ClsType = Context.getDependentNameType(
5743 Keyword: ElaboratedTypeKeyword::None, NNS: NNSPrefix, Name: NNS->getAsIdentifier());
5744 break;
5745
5746 case NestedNameSpecifier::Namespace:
5747 case NestedNameSpecifier::NamespaceAlias:
5748 case NestedNameSpecifier::Global:
5749 case NestedNameSpecifier::Super:
5750 llvm_unreachable("Nested-name-specifier must name a type");
5751
5752 case NestedNameSpecifier::TypeSpec:
5753 case NestedNameSpecifier::TypeSpecWithTemplate:
5754 ClsType = QualType(NNS->getAsType(), 0);
5755 // Note: if the NNS has a prefix and ClsType is a nondependent
5756 // TemplateSpecializationType, then the NNS prefix is NOT included
5757 // in ClsType; hence we wrap ClsType into an ElaboratedType.
5758 // NOTE: in particular, no wrap occurs if ClsType already is an
5759 // Elaborated, DependentName, or DependentTemplateSpecialization.
5760 if (isa<TemplateSpecializationType>(Val: NNS->getAsType()))
5761 ClsType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None,
5762 NNS: NNSPrefix, NamedType: ClsType);
5763 break;
5764 }
5765 } else {
5766 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
5767 diag::err_illegal_decl_mempointer_in_nonclass)
5768 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
5769 << DeclType.Mem.Scope().getRange();
5770 D.setInvalidType(true);
5771 }
5772
5773 if (!ClsType.isNull())
5774 T = S.BuildMemberPointerType(T, Class: ClsType, Loc: DeclType.Loc,
5775 Entity: D.getIdentifier());
5776 else
5777 AreDeclaratorChunksValid = false;
5778
5779 if (T.isNull()) {
5780 T = Context.IntTy;
5781 D.setInvalidType(true);
5782 AreDeclaratorChunksValid = false;
5783 } else if (DeclType.Mem.TypeQuals) {
5784 T = S.BuildQualifiedType(T, Loc: DeclType.Loc, CVRAU: DeclType.Mem.TypeQuals);
5785 }
5786 break;
5787 }
5788
5789 case DeclaratorChunk::Pipe: {
5790 T = S.BuildReadPipeType(T, Loc: DeclType.Loc);
5791 processTypeAttrs(state, type&: T, TAL: TAL_DeclSpec,
5792 attrs: D.getMutableDeclSpec().getAttributes());
5793 break;
5794 }
5795 }
5796
5797 if (T.isNull()) {
5798 D.setInvalidType(true);
5799 T = Context.IntTy;
5800 AreDeclaratorChunksValid = false;
5801 }
5802
5803 // See if there are any attributes on this declarator chunk.
5804 processTypeAttrs(state, type&: T, TAL: TAL_DeclChunk, attrs: DeclType.getAttrs(),
5805 CFT: S.IdentifyCUDATarget(Attrs: D.getAttributes()));
5806
5807 if (DeclType.Kind != DeclaratorChunk::Paren) {
5808 if (ExpectNoDerefChunk && !IsNoDerefableChunk(DeclType))
5809 S.Diag(DeclType.Loc, diag::warn_noderef_on_non_pointer_or_array);
5810
5811 ExpectNoDerefChunk = state.didParseNoDeref();
5812 }
5813 }
5814
5815 if (ExpectNoDerefChunk)
5816 S.Diag(state.getDeclarator().getBeginLoc(),
5817 diag::warn_noderef_on_non_pointer_or_array);
5818
5819 // GNU warning -Wstrict-prototypes
5820 // Warn if a function declaration or definition is without a prototype.
5821 // This warning is issued for all kinds of unprototyped function
5822 // declarations (i.e. function type typedef, function pointer etc.)
5823 // C99 6.7.5.3p14:
5824 // The empty list in a function declarator that is not part of a definition
5825 // of that function specifies that no information about the number or types
5826 // of the parameters is supplied.
5827 // See ActOnFinishFunctionBody() and MergeFunctionDecl() for handling of
5828 // function declarations whose behavior changes in C23.
5829 if (!LangOpts.requiresStrictPrototypes()) {
5830 bool IsBlock = false;
5831 for (const DeclaratorChunk &DeclType : D.type_objects()) {
5832 switch (DeclType.Kind) {
5833 case DeclaratorChunk::BlockPointer:
5834 IsBlock = true;
5835 break;
5836 case DeclaratorChunk::Function: {
5837 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
5838 // We suppress the warning when there's no LParen location, as this
5839 // indicates the declaration was an implicit declaration, which gets
5840 // warned about separately via -Wimplicit-function-declaration. We also
5841 // suppress the warning when we know the function has a prototype.
5842 if (!FTI.hasPrototype && FTI.NumParams == 0 && !FTI.isVariadic &&
5843 FTI.getLParenLoc().isValid())
5844 S.Diag(DeclType.Loc, diag::warn_strict_prototypes)
5845 << IsBlock
5846 << FixItHint::CreateInsertion(FTI.getRParenLoc(), "void");
5847 IsBlock = false;
5848 break;
5849 }
5850 default:
5851 break;
5852 }
5853 }
5854 }
5855
5856 assert(!T.isNull() && "T must not be null after this point");
5857
5858 if (LangOpts.CPlusPlus && T->isFunctionType()) {
5859 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
5860 assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
5861
5862 // C++ 8.3.5p4:
5863 // A cv-qualifier-seq shall only be part of the function type
5864 // for a nonstatic member function, the function type to which a pointer
5865 // to member refers, or the top-level function type of a function typedef
5866 // declaration.
5867 //
5868 // Core issue 547 also allows cv-qualifiers on function types that are
5869 // top-level template type arguments.
5870 enum {
5871 NonMember,
5872 Member,
5873 ExplicitObjectMember,
5874 DeductionGuide
5875 } Kind = NonMember;
5876 if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName)
5877 Kind = DeductionGuide;
5878 else if (!D.getCXXScopeSpec().isSet()) {
5879 if ((D.getContext() == DeclaratorContext::Member ||
5880 D.getContext() == DeclaratorContext::LambdaExpr) &&
5881 !D.getDeclSpec().isFriendSpecified())
5882 Kind = Member;
5883 } else {
5884 DeclContext *DC = S.computeDeclContext(SS: D.getCXXScopeSpec());
5885 if (!DC || DC->isRecord())
5886 Kind = Member;
5887 }
5888
5889 if (Kind == Member) {
5890 unsigned I;
5891 if (D.isFunctionDeclarator(idx&: I)) {
5892 const DeclaratorChunk &Chunk = D.getTypeObject(i: I);
5893 if (Chunk.Fun.NumParams) {
5894 auto *P = dyn_cast_or_null<ParmVarDecl>(Val: Chunk.Fun.Params->Param);
5895 if (P && P->isExplicitObjectParameter())
5896 Kind = ExplicitObjectMember;
5897 }
5898 }
5899 }
5900
5901 // C++11 [dcl.fct]p6 (w/DR1417):
5902 // An attempt to specify a function type with a cv-qualifier-seq or a
5903 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
5904 // - the function type for a non-static member function,
5905 // - the function type to which a pointer to member refers,
5906 // - the top-level function type of a function typedef declaration or
5907 // alias-declaration,
5908 // - the type-id in the default argument of a type-parameter, or
5909 // - the type-id of a template-argument for a type-parameter
5910 //
5911 // C++23 [dcl.fct]p6 (P0847R7)
5912 // ... A member-declarator with an explicit-object-parameter-declaration
5913 // shall not include a ref-qualifier or a cv-qualifier-seq and shall not be
5914 // declared static or virtual ...
5915 //
5916 // FIXME: Checking this here is insufficient. We accept-invalid on:
5917 //
5918 // template<typename T> struct S { void f(T); };
5919 // S<int() const> s;
5920 //
5921 // ... for instance.
5922 if (IsQualifiedFunction &&
5923 // Check for non-static member function and not and
5924 // explicit-object-parameter-declaration
5925 (Kind != Member || D.isExplicitObjectMemberFunction() ||
5926 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
5927 (D.getContext() == clang::DeclaratorContext::Member &&
5928 D.isStaticMember())) &&
5929 !IsTypedefName && D.getContext() != DeclaratorContext::TemplateArg &&
5930 D.getContext() != DeclaratorContext::TemplateTypeArg) {
5931 SourceLocation Loc = D.getBeginLoc();
5932 SourceRange RemovalRange;
5933 unsigned I;
5934 if (D.isFunctionDeclarator(idx&: I)) {
5935 SmallVector<SourceLocation, 4> RemovalLocs;
5936 const DeclaratorChunk &Chunk = D.getTypeObject(i: I);
5937 assert(Chunk.Kind == DeclaratorChunk::Function);
5938
5939 if (Chunk.Fun.hasRefQualifier())
5940 RemovalLocs.push_back(Elt: Chunk.Fun.getRefQualifierLoc());
5941
5942 if (Chunk.Fun.hasMethodTypeQualifiers())
5943 Chunk.Fun.MethodQualifiers->forEachQualifier(
5944 Handle: [&](DeclSpec::TQ TypeQual, StringRef QualName,
5945 SourceLocation SL) { RemovalLocs.push_back(Elt: SL); });
5946
5947 if (!RemovalLocs.empty()) {
5948 llvm::sort(C&: RemovalLocs,
5949 Comp: BeforeThanCompare<SourceLocation>(S.getSourceManager()));
5950 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
5951 Loc = RemovalLocs.front();
5952 }
5953 }
5954
5955 S.Diag(Loc, diag::err_invalid_qualified_function_type)
5956 << Kind << D.isFunctionDeclarator() << T
5957 << getFunctionQualifiersAsString(FnTy)
5958 << FixItHint::CreateRemoval(RemovalRange);
5959
5960 // Strip the cv-qualifiers and ref-qualifiers from the type.
5961 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
5962 EPI.TypeQuals.removeCVRQualifiers();
5963 EPI.RefQualifier = RQ_None;
5964
5965 T = Context.getFunctionType(ResultTy: FnTy->getReturnType(), Args: FnTy->getParamTypes(),
5966 EPI);
5967 // Rebuild any parens around the identifier in the function type.
5968 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
5969 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
5970 break;
5971 T = S.BuildParenType(T);
5972 }
5973 }
5974 }
5975
5976 // Apply any undistributed attributes from the declaration or declarator.
5977 ParsedAttributesView NonSlidingAttrs;
5978 for (ParsedAttr &AL : D.getDeclarationAttributes()) {
5979 if (!AL.slidesFromDeclToDeclSpecLegacyBehavior()) {
5980 NonSlidingAttrs.addAtEnd(newAttr: &AL);
5981 }
5982 }
5983 processTypeAttrs(state, type&: T, TAL: TAL_DeclName, attrs: NonSlidingAttrs);
5984 processTypeAttrs(state, type&: T, TAL: TAL_DeclName, attrs: D.getAttributes());
5985
5986 // Diagnose any ignored type attributes.
5987 state.diagnoseIgnoredTypeAttrs(type: T);
5988
5989 // C++0x [dcl.constexpr]p9:
5990 // A constexpr specifier used in an object declaration declares the object
5991 // as const.
5992 if (D.getDeclSpec().getConstexprSpecifier() == ConstexprSpecKind::Constexpr &&
5993 T->isObjectType())
5994 T.addConst();
5995
5996 // C++2a [dcl.fct]p4:
5997 // A parameter with volatile-qualified type is deprecated
5998 if (T.isVolatileQualified() && S.getLangOpts().CPlusPlus20 &&
5999 (D.getContext() == DeclaratorContext::Prototype ||
6000 D.getContext() == DeclaratorContext::LambdaExprParameter))
6001 S.Diag(D.getIdentifierLoc(), diag::warn_deprecated_volatile_param) << T;
6002
6003 // If there was an ellipsis in the declarator, the declaration declares a
6004 // parameter pack whose type may be a pack expansion type.
6005 if (D.hasEllipsis()) {
6006 // C++0x [dcl.fct]p13:
6007 // A declarator-id or abstract-declarator containing an ellipsis shall
6008 // only be used in a parameter-declaration. Such a parameter-declaration
6009 // is a parameter pack (14.5.3). [...]
6010 switch (D.getContext()) {
6011 case DeclaratorContext::Prototype:
6012 case DeclaratorContext::LambdaExprParameter:
6013 case DeclaratorContext::RequiresExpr:
6014 // C++0x [dcl.fct]p13:
6015 // [...] When it is part of a parameter-declaration-clause, the
6016 // parameter pack is a function parameter pack (14.5.3). The type T
6017 // of the declarator-id of the function parameter pack shall contain
6018 // a template parameter pack; each template parameter pack in T is
6019 // expanded by the function parameter pack.
6020 //
6021 // We represent function parameter packs as function parameters whose
6022 // type is a pack expansion.
6023 if (!T->containsUnexpandedParameterPack() &&
6024 (!LangOpts.CPlusPlus20 || !T->getContainedAutoType())) {
6025 S.Diag(D.getEllipsisLoc(),
6026 diag::err_function_parameter_pack_without_parameter_packs)
6027 << T << D.getSourceRange();
6028 D.setEllipsisLoc(SourceLocation());
6029 } else {
6030 T = Context.getPackExpansionType(Pattern: T, NumExpansions: std::nullopt,
6031 /*ExpectPackInType=*/false);
6032 }
6033 break;
6034 case DeclaratorContext::TemplateParam:
6035 // C++0x [temp.param]p15:
6036 // If a template-parameter is a [...] is a parameter-declaration that
6037 // declares a parameter pack (8.3.5), then the template-parameter is a
6038 // template parameter pack (14.5.3).
6039 //
6040 // Note: core issue 778 clarifies that, if there are any unexpanded
6041 // parameter packs in the type of the non-type template parameter, then
6042 // it expands those parameter packs.
6043 if (T->containsUnexpandedParameterPack())
6044 T = Context.getPackExpansionType(Pattern: T, NumExpansions: std::nullopt);
6045 else
6046 S.Diag(D.getEllipsisLoc(),
6047 LangOpts.CPlusPlus11
6048 ? diag::warn_cxx98_compat_variadic_templates
6049 : diag::ext_variadic_templates);
6050 break;
6051
6052 case DeclaratorContext::File:
6053 case DeclaratorContext::KNRTypeList:
6054 case DeclaratorContext::ObjCParameter: // FIXME: special diagnostic here?
6055 case DeclaratorContext::ObjCResult: // FIXME: special diagnostic here?
6056 case DeclaratorContext::TypeName:
6057 case DeclaratorContext::FunctionalCast:
6058 case DeclaratorContext::CXXNew:
6059 case DeclaratorContext::AliasDecl:
6060 case DeclaratorContext::AliasTemplate:
6061 case DeclaratorContext::Member:
6062 case DeclaratorContext::Block:
6063 case DeclaratorContext::ForInit:
6064 case DeclaratorContext::SelectionInit:
6065 case DeclaratorContext::Condition:
6066 case DeclaratorContext::CXXCatch:
6067 case DeclaratorContext::ObjCCatch:
6068 case DeclaratorContext::BlockLiteral:
6069 case DeclaratorContext::LambdaExpr:
6070 case DeclaratorContext::ConversionId:
6071 case DeclaratorContext::TrailingReturn:
6072 case DeclaratorContext::TrailingReturnVar:
6073 case DeclaratorContext::TemplateArg:
6074 case DeclaratorContext::TemplateTypeArg:
6075 case DeclaratorContext::Association:
6076 // FIXME: We may want to allow parameter packs in block-literal contexts
6077 // in the future.
6078 S.Diag(D.getEllipsisLoc(),
6079 diag::err_ellipsis_in_declarator_not_parameter);
6080 D.setEllipsisLoc(SourceLocation());
6081 break;
6082 }
6083 }
6084
6085 assert(!T.isNull() && "T must not be null at the end of this function");
6086 if (!AreDeclaratorChunksValid)
6087 return Context.getTrivialTypeSourceInfo(T);
6088 return GetTypeSourceInfoForDeclarator(State&: state, T, ReturnTypeInfo: TInfo);
6089}
6090
6091/// GetTypeForDeclarator - Convert the type for the specified
6092/// declarator to Type instances.
6093///
6094/// The result of this call will never be null, but the associated
6095/// type may be a null type if there's an unrecoverable error.
6096TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D) {
6097 // Determine the type of the declarator. Not all forms of declarator
6098 // have a type.
6099
6100 TypeProcessingState state(*this, D);
6101
6102 TypeSourceInfo *ReturnTypeInfo = nullptr;
6103 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
6104 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
6105 inferARCWriteback(state, declSpecType&: T);
6106
6107 return GetFullTypeForDeclarator(state, declSpecType: T, TInfo: ReturnTypeInfo);
6108}
6109
6110static void transferARCOwnershipToDeclSpec(Sema &S,
6111 QualType &declSpecTy,
6112 Qualifiers::ObjCLifetime ownership) {
6113 if (declSpecTy->isObjCRetainableType() &&
6114 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
6115 Qualifiers qs;
6116 qs.addObjCLifetime(type: ownership);
6117 declSpecTy = S.Context.getQualifiedType(T: declSpecTy, Qs: qs);
6118 }
6119}
6120
6121static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
6122 Qualifiers::ObjCLifetime ownership,
6123 unsigned chunkIndex) {
6124 Sema &S = state.getSema();
6125 Declarator &D = state.getDeclarator();
6126
6127 // Look for an explicit lifetime attribute.
6128 DeclaratorChunk &chunk = D.getTypeObject(i: chunkIndex);
6129 if (chunk.getAttrs().hasAttribute(ParsedAttr::AT_ObjCOwnership))
6130 return;
6131
6132 const char *attrStr = nullptr;
6133 switch (ownership) {
6134 case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
6135 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
6136 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
6137 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
6138 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
6139 }
6140
6141 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
6142 Arg->Ident = &S.Context.Idents.get(Name: attrStr);
6143 Arg->Loc = SourceLocation();
6144
6145 ArgsUnion Args(Arg);
6146
6147 // If there wasn't one, add one (with an invalid source location
6148 // so that we don't make an AttributedType for it).
6149 ParsedAttr *attr = D.getAttributePool().create(
6150 attrName: &S.Context.Idents.get(Name: "objc_ownership"), attrRange: SourceLocation(),
6151 /*scope*/ scopeName: nullptr, scopeLoc: SourceLocation(),
6152 /*args*/ &Args, numArgs: 1, form: ParsedAttr::Form::GNU());
6153 chunk.getAttrs().addAtEnd(newAttr: attr);
6154 // TODO: mark whether we did this inference?
6155}
6156
6157/// Used for transferring ownership in casts resulting in l-values.
6158static void transferARCOwnership(TypeProcessingState &state,
6159 QualType &declSpecTy,
6160 Qualifiers::ObjCLifetime ownership) {
6161 Sema &S = state.getSema();
6162 Declarator &D = state.getDeclarator();
6163
6164 int inner = -1;
6165 bool hasIndirection = false;
6166 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6167 DeclaratorChunk &chunk = D.getTypeObject(i);
6168 switch (chunk.Kind) {
6169 case DeclaratorChunk::Paren:
6170 // Ignore parens.
6171 break;
6172
6173 case DeclaratorChunk::Array:
6174 case DeclaratorChunk::Reference:
6175 case DeclaratorChunk::Pointer:
6176 if (inner != -1)
6177 hasIndirection = true;
6178 inner = i;
6179 break;
6180
6181 case DeclaratorChunk::BlockPointer:
6182 if (inner != -1)
6183 transferARCOwnershipToDeclaratorChunk(state, ownership, chunkIndex: i);
6184 return;
6185
6186 case DeclaratorChunk::Function:
6187 case DeclaratorChunk::MemberPointer:
6188 case DeclaratorChunk::Pipe:
6189 return;
6190 }
6191 }
6192
6193 if (inner == -1)
6194 return;
6195
6196 DeclaratorChunk &chunk = D.getTypeObject(i: inner);
6197 if (chunk.Kind == DeclaratorChunk::Pointer) {
6198 if (declSpecTy->isObjCRetainableType())
6199 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
6200 if (declSpecTy->isObjCObjectType() && hasIndirection)
6201 return transferARCOwnershipToDeclaratorChunk(state, ownership, chunkIndex: inner);
6202 } else {
6203 assert(chunk.Kind == DeclaratorChunk::Array ||
6204 chunk.Kind == DeclaratorChunk::Reference);
6205 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
6206 }
6207}
6208
6209TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
6210 TypeProcessingState state(*this, D);
6211
6212 TypeSourceInfo *ReturnTypeInfo = nullptr;
6213 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
6214
6215 if (getLangOpts().ObjC) {
6216 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(T: FromTy);
6217 if (ownership != Qualifiers::OCL_None)
6218 transferARCOwnership(state, declSpecTy, ownership);
6219 }
6220
6221 return GetFullTypeForDeclarator(state, declSpecType: declSpecTy, TInfo: ReturnTypeInfo);
6222}
6223
6224static void fillAttributedTypeLoc(AttributedTypeLoc TL,
6225 TypeProcessingState &State) {
6226 TL.setAttr(State.takeAttrForAttributedType(AT: TL.getTypePtr()));
6227}
6228
6229static void fillMatrixTypeLoc(MatrixTypeLoc MTL,
6230 const ParsedAttributesView &Attrs) {
6231 for (const ParsedAttr &AL : Attrs) {
6232 if (AL.getKind() == ParsedAttr::AT_MatrixType) {
6233 MTL.setAttrNameLoc(AL.getLoc());
6234 MTL.setAttrRowOperand(AL.getArgAsExpr(Arg: 0));
6235 MTL.setAttrColumnOperand(AL.getArgAsExpr(Arg: 1));
6236 MTL.setAttrOperandParensRange(SourceRange());
6237 return;
6238 }
6239 }
6240
6241 llvm_unreachable("no matrix_type attribute found at the expected location!");
6242}
6243
6244namespace {
6245 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
6246 Sema &SemaRef;
6247 ASTContext &Context;
6248 TypeProcessingState &State;
6249 const DeclSpec &DS;
6250
6251 public:
6252 TypeSpecLocFiller(Sema &S, ASTContext &Context, TypeProcessingState &State,
6253 const DeclSpec &DS)
6254 : SemaRef(S), Context(Context), State(State), DS(DS) {}
6255
6256 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6257 Visit(TyLoc: TL.getModifiedLoc());
6258 fillAttributedTypeLoc(TL, State);
6259 }
6260 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6261 Visit(TyLoc: TL.getWrappedLoc());
6262 }
6263 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6264 Visit(TyLoc: TL.getInnerLoc());
6265 TL.setExpansionLoc(
6266 State.getExpansionLocForMacroQualifiedType(MQT: TL.getTypePtr()));
6267 }
6268 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6269 Visit(TyLoc: TL.getUnqualifiedLoc());
6270 }
6271 // Allow to fill pointee's type locations, e.g.,
6272 // int __attr * __attr * __attr *p;
6273 void VisitPointerTypeLoc(PointerTypeLoc TL) { Visit(TL.getNextTypeLoc()); }
6274 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
6275 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6276 }
6277 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
6278 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6279 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
6280 // addition field. What we have is good enough for display of location
6281 // of 'fixit' on interface name.
6282 TL.setNameEndLoc(DS.getEndLoc());
6283 }
6284 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
6285 TypeSourceInfo *RepTInfo = nullptr;
6286 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &RepTInfo);
6287 TL.copy(RepTInfo->getTypeLoc());
6288 }
6289 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6290 TypeSourceInfo *RepTInfo = nullptr;
6291 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &RepTInfo);
6292 TL.copy(RepTInfo->getTypeLoc());
6293 }
6294 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
6295 TypeSourceInfo *TInfo = nullptr;
6296 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo);
6297
6298 // If we got no declarator info from previous Sema routines,
6299 // just fill with the typespec loc.
6300 if (!TInfo) {
6301 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
6302 return;
6303 }
6304
6305 TypeLoc OldTL = TInfo->getTypeLoc();
6306 if (TInfo->getType()->getAs<ElaboratedType>()) {
6307 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
6308 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
6309 .castAs<TemplateSpecializationTypeLoc>();
6310 TL.copy(Loc: NamedTL);
6311 } else {
6312 TL.copy(Loc: OldTL.castAs<TemplateSpecializationTypeLoc>());
6313 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
6314 }
6315
6316 }
6317 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
6318 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
6319 DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualExpr);
6320 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
6321 TL.setParensRange(DS.getTypeofParensRange());
6322 }
6323 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
6324 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
6325 DS.getTypeSpecType() == DeclSpec::TST_typeof_unqualType);
6326 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
6327 TL.setParensRange(DS.getTypeofParensRange());
6328 assert(DS.getRepAsType());
6329 TypeSourceInfo *TInfo = nullptr;
6330 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo);
6331 TL.setUnmodifiedTInfo(TInfo);
6332 }
6333 void VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
6334 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
6335 TL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
6336 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6337 }
6338 void VisitPackIndexingTypeLoc(PackIndexingTypeLoc TL) {
6339 assert(DS.getTypeSpecType() == DeclSpec::TST_typename_pack_indexing);
6340 TL.setEllipsisLoc(DS.getEllipsisLoc());
6341 }
6342 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
6343 assert(DS.isTransformTypeTrait(DS.getTypeSpecType()));
6344 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6345 TL.setParensRange(DS.getTypeofParensRange());
6346 assert(DS.getRepAsType());
6347 TypeSourceInfo *TInfo = nullptr;
6348 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo);
6349 TL.setUnderlyingTInfo(TInfo);
6350 }
6351 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
6352 // By default, use the source location of the type specifier.
6353 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
6354 if (TL.needsExtraLocalData()) {
6355 // Set info for the written builtin specifiers.
6356 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
6357 // Try to have a meaningful source location.
6358 if (TL.getWrittenSignSpec() != TypeSpecifierSign::Unspecified)
6359 TL.expandBuiltinRange(Range: DS.getTypeSpecSignLoc());
6360 if (TL.getWrittenWidthSpec() != TypeSpecifierWidth::Unspecified)
6361 TL.expandBuiltinRange(Range: DS.getTypeSpecWidthRange());
6362 }
6363 }
6364 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
6365 if (DS.getTypeSpecType() == TST_typename) {
6366 TypeSourceInfo *TInfo = nullptr;
6367 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo);
6368 if (TInfo)
6369 if (auto ETL = TInfo->getTypeLoc().getAs<ElaboratedTypeLoc>()) {
6370 TL.copy(Loc: ETL);
6371 return;
6372 }
6373 }
6374 const ElaboratedType *T = TL.getTypePtr();
6375 TL.setElaboratedKeywordLoc(T->getKeyword() != ElaboratedTypeKeyword::None
6376 ? DS.getTypeSpecTypeLoc()
6377 : SourceLocation());
6378 const CXXScopeSpec& SS = DS.getTypeSpecScope();
6379 TL.setQualifierLoc(SS.getWithLocInContext(Context));
6380 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
6381 }
6382 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
6383 assert(DS.getTypeSpecType() == TST_typename);
6384 TypeSourceInfo *TInfo = nullptr;
6385 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo);
6386 assert(TInfo);
6387 TL.copy(Loc: TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
6388 }
6389 void VisitDependentTemplateSpecializationTypeLoc(
6390 DependentTemplateSpecializationTypeLoc TL) {
6391 assert(DS.getTypeSpecType() == TST_typename);
6392 TypeSourceInfo *TInfo = nullptr;
6393 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo);
6394 assert(TInfo);
6395 TL.copy(
6396 Loc: TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
6397 }
6398 void VisitAutoTypeLoc(AutoTypeLoc TL) {
6399 assert(DS.getTypeSpecType() == TST_auto ||
6400 DS.getTypeSpecType() == TST_decltype_auto ||
6401 DS.getTypeSpecType() == TST_auto_type ||
6402 DS.getTypeSpecType() == TST_unspecified);
6403 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6404 if (DS.getTypeSpecType() == TST_decltype_auto)
6405 TL.setRParenLoc(DS.getTypeofParensRange().getEnd());
6406 if (!DS.isConstrainedAuto())
6407 return;
6408 TemplateIdAnnotation *TemplateId = DS.getRepAsTemplateId();
6409 if (!TemplateId)
6410 return;
6411
6412 NestedNameSpecifierLoc NNS =
6413 (DS.getTypeSpecScope().isNotEmpty()
6414 ? DS.getTypeSpecScope().getWithLocInContext(Context)
6415 : NestedNameSpecifierLoc());
6416 TemplateArgumentListInfo TemplateArgsInfo(TemplateId->LAngleLoc,
6417 TemplateId->RAngleLoc);
6418 if (TemplateId->NumArgs > 0) {
6419 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6420 TemplateId->NumArgs);
6421 SemaRef.translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgsInfo);
6422 }
6423 DeclarationNameInfo DNI = DeclarationNameInfo(
6424 TL.getTypePtr()->getTypeConstraintConcept()->getDeclName(),
6425 TemplateId->TemplateNameLoc);
6426 auto *CR = ConceptReference::Create(
6427 C: Context, NNS, TemplateKWLoc: TemplateId->TemplateKWLoc, ConceptNameInfo: DNI,
6428 /*FoundDecl=*/nullptr,
6429 /*NamedDecl=*/NamedConcept: TL.getTypePtr()->getTypeConstraintConcept(),
6430 ArgsAsWritten: ASTTemplateArgumentListInfo::Create(C: Context, List: TemplateArgsInfo));
6431 TL.setConceptReference(CR);
6432 }
6433 void VisitTagTypeLoc(TagTypeLoc TL) {
6434 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
6435 }
6436 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
6437 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
6438 // or an _Atomic qualifier.
6439 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
6440 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6441 TL.setParensRange(DS.getTypeofParensRange());
6442
6443 TypeSourceInfo *TInfo = nullptr;
6444 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo);
6445 assert(TInfo);
6446 TL.getValueLoc().initializeFullCopy(Other: TInfo->getTypeLoc());
6447 } else {
6448 TL.setKWLoc(DS.getAtomicSpecLoc());
6449 // No parens, to indicate this was spelled as an _Atomic qualifier.
6450 TL.setParensRange(SourceRange());
6451 Visit(TyLoc: TL.getValueLoc());
6452 }
6453 }
6454
6455 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6456 TL.setKWLoc(DS.getTypeSpecTypeLoc());
6457
6458 TypeSourceInfo *TInfo = nullptr;
6459 Sema::GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TInfo);
6460 TL.getValueLoc().initializeFullCopy(Other: TInfo->getTypeLoc());
6461 }
6462
6463 void VisitExtIntTypeLoc(BitIntTypeLoc TL) {
6464 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6465 }
6466
6467 void VisitDependentExtIntTypeLoc(DependentBitIntTypeLoc TL) {
6468 TL.setNameLoc(DS.getTypeSpecTypeLoc());
6469 }
6470
6471 void VisitTypeLoc(TypeLoc TL) {
6472 // FIXME: add other typespec types and change this to an assert.
6473 TL.initialize(Context, Loc: DS.getTypeSpecTypeLoc());
6474 }
6475 };
6476
6477 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
6478 ASTContext &Context;
6479 TypeProcessingState &State;
6480 const DeclaratorChunk &Chunk;
6481
6482 public:
6483 DeclaratorLocFiller(ASTContext &Context, TypeProcessingState &State,
6484 const DeclaratorChunk &Chunk)
6485 : Context(Context), State(State), Chunk(Chunk) {}
6486
6487 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
6488 llvm_unreachable("qualified type locs not expected here!");
6489 }
6490 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
6491 llvm_unreachable("decayed type locs not expected here!");
6492 }
6493
6494 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
6495 fillAttributedTypeLoc(TL, State);
6496 }
6497 void VisitBTFTagAttributedTypeLoc(BTFTagAttributedTypeLoc TL) {
6498 // nothing
6499 }
6500 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
6501 // nothing
6502 }
6503 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
6504 assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
6505 TL.setCaretLoc(Chunk.Loc);
6506 }
6507 void VisitPointerTypeLoc(PointerTypeLoc TL) {
6508 assert(Chunk.Kind == DeclaratorChunk::Pointer);
6509 TL.setStarLoc(Chunk.Loc);
6510 }
6511 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
6512 assert(Chunk.Kind == DeclaratorChunk::Pointer);
6513 TL.setStarLoc(Chunk.Loc);
6514 }
6515 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
6516 assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
6517 const CXXScopeSpec& SS = Chunk.Mem.Scope();
6518 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
6519
6520 const Type* ClsTy = TL.getClass();
6521 QualType ClsQT = QualType(ClsTy, 0);
6522 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(T: ClsQT, Size: 0);
6523 // Now copy source location info into the type loc component.
6524 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
6525 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
6526 case NestedNameSpecifier::Identifier:
6527 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
6528 {
6529 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
6530 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
6531 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
6532 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
6533 }
6534 break;
6535
6536 case NestedNameSpecifier::TypeSpec:
6537 case NestedNameSpecifier::TypeSpecWithTemplate:
6538 if (isa<ElaboratedType>(Val: ClsTy)) {
6539 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
6540 ETLoc.setElaboratedKeywordLoc(SourceLocation());
6541 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
6542 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
6543 NamedTL.initializeFullCopy(Other: NNSLoc.getTypeLoc());
6544 } else {
6545 ClsTL.initializeFullCopy(Other: NNSLoc.getTypeLoc());
6546 }
6547 break;
6548
6549 case NestedNameSpecifier::Namespace:
6550 case NestedNameSpecifier::NamespaceAlias:
6551 case NestedNameSpecifier::Global:
6552 case NestedNameSpecifier::Super:
6553 llvm_unreachable("Nested-name-specifier must name a type");
6554 }
6555
6556 // Finally fill in MemberPointerLocInfo fields.
6557 TL.setStarLoc(Chunk.Mem.StarLoc);
6558 TL.setClassTInfo(ClsTInfo);
6559 }
6560 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
6561 assert(Chunk.Kind == DeclaratorChunk::Reference);
6562 // 'Amp' is misleading: this might have been originally
6563 /// spelled with AmpAmp.
6564 TL.setAmpLoc(Chunk.Loc);
6565 }
6566 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
6567 assert(Chunk.Kind == DeclaratorChunk::Reference);
6568 assert(!Chunk.Ref.LValueRef);
6569 TL.setAmpAmpLoc(Chunk.Loc);
6570 }
6571 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
6572 assert(Chunk.Kind == DeclaratorChunk::Array);
6573 TL.setLBracketLoc(Chunk.Loc);
6574 TL.setRBracketLoc(Chunk.EndLoc);
6575 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
6576 }
6577 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
6578 assert(Chunk.Kind == DeclaratorChunk::Function);
6579 TL.setLocalRangeBegin(Chunk.Loc);
6580 TL.setLocalRangeEnd(Chunk.EndLoc);
6581
6582 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
6583 TL.setLParenLoc(FTI.getLParenLoc());
6584 TL.setRParenLoc(FTI.getRParenLoc());
6585 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
6586 ParmVarDecl *Param = cast<ParmVarDecl>(Val: FTI.Params[i].Param);
6587 TL.setParam(i: tpi++, VD: Param);
6588 }
6589 TL.setExceptionSpecRange(FTI.getExceptionSpecRange());
6590 }
6591 void VisitParenTypeLoc(ParenTypeLoc TL) {
6592 assert(Chunk.Kind == DeclaratorChunk::Paren);
6593 TL.setLParenLoc(Chunk.Loc);
6594 TL.setRParenLoc(Chunk.EndLoc);
6595 }
6596 void VisitPipeTypeLoc(PipeTypeLoc TL) {
6597 assert(Chunk.Kind == DeclaratorChunk::Pipe);
6598 TL.setKWLoc(Chunk.Loc);
6599 }
6600 void VisitBitIntTypeLoc(BitIntTypeLoc TL) {
6601 TL.setNameLoc(Chunk.Loc);
6602 }
6603 void VisitMacroQualifiedTypeLoc(MacroQualifiedTypeLoc TL) {
6604 TL.setExpansionLoc(Chunk.Loc);
6605 }
6606 void VisitVectorTypeLoc(VectorTypeLoc TL) { TL.setNameLoc(Chunk.Loc); }
6607 void VisitDependentVectorTypeLoc(DependentVectorTypeLoc TL) {
6608 TL.setNameLoc(Chunk.Loc);
6609 }
6610 void VisitExtVectorTypeLoc(ExtVectorTypeLoc TL) {
6611 TL.setNameLoc(Chunk.Loc);
6612 }
6613 void
6614 VisitDependentSizedExtVectorTypeLoc(DependentSizedExtVectorTypeLoc TL) {
6615 TL.setNameLoc(Chunk.Loc);
6616 }
6617 void VisitMatrixTypeLoc(MatrixTypeLoc TL) {
6618 fillMatrixTypeLoc(MTL: TL, Attrs: Chunk.getAttrs());
6619 }
6620
6621 void VisitTypeLoc(TypeLoc TL) {
6622 llvm_unreachable("unsupported TypeLoc kind in declarator!");
6623 }
6624 };
6625} // end anonymous namespace
6626
6627static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
6628 SourceLocation Loc;
6629 switch (Chunk.Kind) {
6630 case DeclaratorChunk::Function:
6631 case DeclaratorChunk::Array:
6632 case DeclaratorChunk::Paren:
6633 case DeclaratorChunk::Pipe:
6634 llvm_unreachable("cannot be _Atomic qualified");
6635
6636 case DeclaratorChunk::Pointer:
6637 Loc = Chunk.Ptr.AtomicQualLoc;
6638 break;
6639
6640 case DeclaratorChunk::BlockPointer:
6641 case DeclaratorChunk::Reference:
6642 case DeclaratorChunk::MemberPointer:
6643 // FIXME: Provide a source location for the _Atomic keyword.
6644 break;
6645 }
6646
6647 ATL.setKWLoc(Loc);
6648 ATL.setParensRange(SourceRange());
6649}
6650
6651static void
6652fillDependentAddressSpaceTypeLoc(DependentAddressSpaceTypeLoc DASTL,
6653 const ParsedAttributesView &Attrs) {
6654 for (const ParsedAttr &AL : Attrs) {
6655 if (AL.getKind() == ParsedAttr::AT_AddressSpace) {
6656 DASTL.setAttrNameLoc(AL.getLoc());
6657 DASTL.setAttrExprOperand(AL.getArgAsExpr(Arg: 0));
6658 DASTL.setAttrOperandParensRange(SourceRange());
6659 return;
6660 }
6661 }
6662
6663 llvm_unreachable(
6664 "no address_space attribute found at the expected location!");
6665}
6666
6667/// Create and instantiate a TypeSourceInfo with type source information.
6668///
6669/// \param T QualType referring to the type as written in source code.
6670///
6671/// \param ReturnTypeInfo For declarators whose return type does not show
6672/// up in the normal place in the declaration specifiers (such as a C++
6673/// conversion function), this pointer will refer to a type source information
6674/// for that return type.
6675static TypeSourceInfo *
6676GetTypeSourceInfoForDeclarator(TypeProcessingState &State,
6677 QualType T, TypeSourceInfo *ReturnTypeInfo) {
6678 Sema &S = State.getSema();
6679 Declarator &D = State.getDeclarator();
6680
6681 TypeSourceInfo *TInfo = S.Context.CreateTypeSourceInfo(T);
6682 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
6683
6684 // Handle parameter packs whose type is a pack expansion.
6685 if (isa<PackExpansionType>(Val: T)) {
6686 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
6687 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6688 }
6689
6690 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
6691 // Microsoft property fields can have multiple sizeless array chunks
6692 // (i.e. int x[][][]). Don't create more than one level of incomplete array.
6693 if (CurrTL.getTypeLocClass() == TypeLoc::IncompleteArray && e != 1 &&
6694 D.getDeclSpec().getAttributes().hasMSPropertyAttr())
6695 continue;
6696
6697 // An AtomicTypeLoc might be produced by an atomic qualifier in this
6698 // declarator chunk.
6699 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
6700 fillAtomicQualLoc(ATL, Chunk: D.getTypeObject(i));
6701 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
6702 }
6703
6704 bool HasDesugaredTypeLoc = true;
6705 while (HasDesugaredTypeLoc) {
6706 switch (CurrTL.getTypeLocClass()) {
6707 case TypeLoc::MacroQualified: {
6708 auto TL = CurrTL.castAs<MacroQualifiedTypeLoc>();
6709 TL.setExpansionLoc(
6710 State.getExpansionLocForMacroQualifiedType(MQT: TL.getTypePtr()));
6711 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6712 break;
6713 }
6714
6715 case TypeLoc::Attributed: {
6716 auto TL = CurrTL.castAs<AttributedTypeLoc>();
6717 fillAttributedTypeLoc(TL, State);
6718 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
6719 break;
6720 }
6721
6722 case TypeLoc::Adjusted:
6723 case TypeLoc::BTFTagAttributed: {
6724 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6725 break;
6726 }
6727
6728 case TypeLoc::DependentAddressSpace: {
6729 auto TL = CurrTL.castAs<DependentAddressSpaceTypeLoc>();
6730 fillDependentAddressSpaceTypeLoc(DASTL: TL, Attrs: D.getTypeObject(i).getAttrs());
6731 CurrTL = TL.getPointeeTypeLoc().getUnqualifiedLoc();
6732 break;
6733 }
6734
6735 default:
6736 HasDesugaredTypeLoc = false;
6737 break;
6738 }
6739 }
6740
6741 DeclaratorLocFiller(S.Context, State, D.getTypeObject(i)).Visit(TyLoc: CurrTL);
6742 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
6743 }
6744
6745 // If we have different source information for the return type, use
6746 // that. This really only applies to C++ conversion functions.
6747 if (ReturnTypeInfo) {
6748 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
6749 assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
6750 memcpy(dest: CurrTL.getOpaqueData(), src: TL.getOpaqueData(), n: TL.getFullDataSize());
6751 } else {
6752 TypeSpecLocFiller(S, S.Context, State, D.getDeclSpec()).Visit(TyLoc: CurrTL);
6753 }
6754
6755 return TInfo;
6756}
6757
6758/// Create a LocInfoType to hold the given QualType and TypeSourceInfo.
6759ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
6760 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
6761 // and Sema during declaration parsing. Try deallocating/caching them when
6762 // it's appropriate, instead of allocating them and keeping them around.
6763 LocInfoType *LocT = (LocInfoType *)BumpAlloc.Allocate(Size: sizeof(LocInfoType),
6764 Alignment: alignof(LocInfoType));
6765 new (LocT) LocInfoType(T, TInfo);
6766 assert(LocT->getTypeClass() != T->getTypeClass() &&
6767 "LocInfoType's TypeClass conflicts with an existing Type class");
6768 return ParsedType::make(P: QualType(LocT, 0));
6769}
6770
6771void LocInfoType::getAsStringInternal(std::string &Str,
6772 const PrintingPolicy &Policy) const {
6773 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
6774 " was used directly instead of getting the QualType through"
6775 " GetTypeFromParser");
6776}
6777
6778TypeResult Sema::ActOnTypeName(Declarator &D) {
6779 // C99 6.7.6: Type names have no identifier. This is already validated by
6780 // the parser.
6781 assert(D.getIdentifier() == nullptr &&
6782 "Type name should have no identifier!");
6783
6784 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
6785 QualType T = TInfo->getType();
6786 if (D.isInvalidType())
6787 return true;
6788
6789 // Make sure there are no unused decl attributes on the declarator.
6790 // We don't want to do this for ObjC parameters because we're going
6791 // to apply them to the actual parameter declaration.
6792 // Likewise, we don't want to do this for alias declarations, because
6793 // we are actually going to build a declaration from this eventually.
6794 if (D.getContext() != DeclaratorContext::ObjCParameter &&
6795 D.getContext() != DeclaratorContext::AliasDecl &&
6796 D.getContext() != DeclaratorContext::AliasTemplate)
6797 checkUnusedDeclAttributes(D);
6798
6799 if (getLangOpts().CPlusPlus) {
6800 // Check that there are no default arguments (C++ only).
6801 CheckExtraCXXDefaultArguments(D);
6802 }
6803
6804 return CreateParsedType(T, TInfo);
6805}
6806
6807ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
6808 QualType T = Context.getObjCInstanceType();
6809 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6810 return CreateParsedType(T, TInfo);
6811}
6812
6813//===----------------------------------------------------------------------===//
6814// Type Attribute Processing
6815//===----------------------------------------------------------------------===//
6816
6817/// Build an AddressSpace index from a constant expression and diagnose any
6818/// errors related to invalid address_spaces. Returns true on successfully
6819/// building an AddressSpace index.
6820static bool BuildAddressSpaceIndex(Sema &S, LangAS &ASIdx,
6821 const Expr *AddrSpace,
6822 SourceLocation AttrLoc) {
6823 if (!AddrSpace->isValueDependent()) {
6824 std::optional<llvm::APSInt> OptAddrSpace =
6825 AddrSpace->getIntegerConstantExpr(Ctx: S.Context);
6826 if (!OptAddrSpace) {
6827 S.Diag(AttrLoc, diag::err_attribute_argument_type)
6828 << "'address_space'" << AANT_ArgumentIntegerConstant
6829 << AddrSpace->getSourceRange();
6830 return false;
6831 }
6832 llvm::APSInt &addrSpace = *OptAddrSpace;
6833
6834 // Bounds checking.
6835 if (addrSpace.isSigned()) {
6836 if (addrSpace.isNegative()) {
6837 S.Diag(AttrLoc, diag::err_attribute_address_space_negative)
6838 << AddrSpace->getSourceRange();
6839 return false;
6840 }
6841 addrSpace.setIsSigned(false);
6842 }
6843
6844 llvm::APSInt max(addrSpace.getBitWidth());
6845 max =
6846 Qualifiers::MaxAddressSpace - (unsigned)LangAS::FirstTargetAddressSpace;
6847
6848 if (addrSpace > max) {
6849 S.Diag(AttrLoc, diag::err_attribute_address_space_too_high)
6850 << (unsigned)max.getZExtValue() << AddrSpace->getSourceRange();
6851 return false;
6852 }
6853
6854 ASIdx =
6855 getLangASFromTargetAS(TargetAS: static_cast<unsigned>(addrSpace.getZExtValue()));
6856 return true;
6857 }
6858
6859 // Default value for DependentAddressSpaceTypes
6860 ASIdx = LangAS::Default;
6861 return true;
6862}
6863
6864/// BuildAddressSpaceAttr - Builds a DependentAddressSpaceType if an expression
6865/// is uninstantiated. If instantiated it will apply the appropriate address
6866/// space to the type. This function allows dependent template variables to be
6867/// used in conjunction with the address_space attribute
6868QualType Sema::BuildAddressSpaceAttr(QualType &T, LangAS ASIdx, Expr *AddrSpace,
6869 SourceLocation AttrLoc) {
6870 if (!AddrSpace->isValueDependent()) {
6871 if (DiagnoseMultipleAddrSpaceAttributes(S&: *this, ASOld: T.getAddressSpace(), ASNew: ASIdx,
6872 AttrLoc))
6873 return QualType();
6874
6875 return Context.getAddrSpaceQualType(T, AddressSpace: ASIdx);
6876 }
6877
6878 // A check with similar intentions as checking if a type already has an
6879 // address space except for on a dependent types, basically if the
6880 // current type is already a DependentAddressSpaceType then its already
6881 // lined up to have another address space on it and we can't have
6882 // multiple address spaces on the one pointer indirection
6883 if (T->getAs<DependentAddressSpaceType>()) {
6884 Diag(AttrLoc, diag::err_attribute_address_multiple_qualifiers);
6885 return QualType();
6886 }
6887
6888 return Context.getDependentAddressSpaceType(PointeeType: T, AddrSpaceExpr: AddrSpace, AttrLoc);
6889}
6890
6891QualType Sema::BuildAddressSpaceAttr(QualType &T, Expr *AddrSpace,
6892 SourceLocation AttrLoc) {
6893 LangAS ASIdx;
6894 if (!BuildAddressSpaceIndex(S&: *this, ASIdx, AddrSpace, AttrLoc))
6895 return QualType();
6896 return BuildAddressSpaceAttr(T, ASIdx, AddrSpace, AttrLoc);
6897}
6898
6899static void HandleBTFTypeTagAttribute(QualType &Type, const ParsedAttr &Attr,
6900 TypeProcessingState &State) {
6901 Sema &S = State.getSema();
6902
6903 // Check the number of attribute arguments.
6904 if (Attr.getNumArgs() != 1) {
6905 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6906 << Attr << 1;
6907 Attr.setInvalid();
6908 return;
6909 }
6910
6911 // Ensure the argument is a string.
6912 auto *StrLiteral = dyn_cast<StringLiteral>(Val: Attr.getArgAsExpr(Arg: 0));
6913 if (!StrLiteral) {
6914 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6915 << Attr << AANT_ArgumentString;
6916 Attr.setInvalid();
6917 return;
6918 }
6919
6920 ASTContext &Ctx = S.Context;
6921 StringRef BTFTypeTag = StrLiteral->getString();
6922 Type = State.getBTFTagAttributedType(
6923 ::new (Ctx) BTFTypeTagAttr(Ctx, Attr, BTFTypeTag), Type);
6924}
6925
6926/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
6927/// specified type. The attribute contains 1 argument, the id of the address
6928/// space for the type.
6929static void HandleAddressSpaceTypeAttribute(QualType &Type,
6930 const ParsedAttr &Attr,
6931 TypeProcessingState &State) {
6932 Sema &S = State.getSema();
6933
6934 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
6935 // qualified by an address-space qualifier."
6936 if (Type->isFunctionType()) {
6937 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
6938 Attr.setInvalid();
6939 return;
6940 }
6941
6942 LangAS ASIdx;
6943 if (Attr.getKind() == ParsedAttr::AT_AddressSpace) {
6944
6945 // Check the attribute arguments.
6946 if (Attr.getNumArgs() != 1) {
6947 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
6948 << 1;
6949 Attr.setInvalid();
6950 return;
6951 }
6952
6953 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(Arg: 0));
6954 LangAS ASIdx;
6955 if (!BuildAddressSpaceIndex(S, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc())) {
6956 Attr.setInvalid();
6957 return;
6958 }
6959
6960 ASTContext &Ctx = S.Context;
6961 auto *ASAttr =
6962 ::new (Ctx) AddressSpaceAttr(Ctx, Attr, static_cast<unsigned>(ASIdx));
6963
6964 // If the expression is not value dependent (not templated), then we can
6965 // apply the address space qualifiers just to the equivalent type.
6966 // Otherwise, we make an AttributedType with the modified and equivalent
6967 // type the same, and wrap it in a DependentAddressSpaceType. When this
6968 // dependent type is resolved, the qualifier is added to the equivalent type
6969 // later.
6970 QualType T;
6971 if (!ASArgExpr->isValueDependent()) {
6972 QualType EquivType =
6973 S.BuildAddressSpaceAttr(T&: Type, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc());
6974 if (EquivType.isNull()) {
6975 Attr.setInvalid();
6976 return;
6977 }
6978 T = State.getAttributedType(A: ASAttr, ModifiedType: Type, EquivType);
6979 } else {
6980 T = State.getAttributedType(A: ASAttr, ModifiedType: Type, EquivType: Type);
6981 T = S.BuildAddressSpaceAttr(T, ASIdx, AddrSpace: ASArgExpr, AttrLoc: Attr.getLoc());
6982 }
6983
6984 if (!T.isNull())
6985 Type = T;
6986 else
6987 Attr.setInvalid();
6988 } else {
6989 // The keyword-based type attributes imply which address space to use.
6990 ASIdx = S.getLangOpts().SYCLIsDevice ? Attr.asSYCLLangAS()
6991 : Attr.asOpenCLLangAS();
6992 if (S.getLangOpts().HLSL)
6993 ASIdx = Attr.asHLSLLangAS();
6994
6995 if (ASIdx == LangAS::Default)
6996 llvm_unreachable("Invalid address space");
6997
6998 if (DiagnoseMultipleAddrSpaceAttributes(S, ASOld: Type.getAddressSpace(), ASNew: ASIdx,
6999 AttrLoc: Attr.getLoc())) {
7000 Attr.setInvalid();
7001 return;
7002 }
7003
7004 Type = S.Context.getAddrSpaceQualType(T: Type, AddressSpace: ASIdx);
7005 }
7006}
7007
7008/// handleObjCOwnershipTypeAttr - Process an objc_ownership
7009/// attribute on the specified type.
7010///
7011/// Returns 'true' if the attribute was handled.
7012static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
7013 ParsedAttr &attr, QualType &type) {
7014 bool NonObjCPointer = false;
7015
7016 if (!type->isDependentType() && !type->isUndeducedType()) {
7017 if (const PointerType *ptr = type->getAs<PointerType>()) {
7018 QualType pointee = ptr->getPointeeType();
7019 if (pointee->isObjCRetainableType() || pointee->isPointerType())
7020 return false;
7021 // It is important not to lose the source info that there was an attribute
7022 // applied to non-objc pointer. We will create an attributed type but
7023 // its type will be the same as the original type.
7024 NonObjCPointer = true;
7025 } else if (!type->isObjCRetainableType()) {
7026 return false;
7027 }
7028
7029 // Don't accept an ownership attribute in the declspec if it would
7030 // just be the return type of a block pointer.
7031 if (state.isProcessingDeclSpec()) {
7032 Declarator &D = state.getDeclarator();
7033 if (maybeMovePastReturnType(declarator&: D, i: D.getNumTypeObjects(),
7034 /*onlyBlockPointers=*/true))
7035 return false;
7036 }
7037 }
7038
7039 Sema &S = state.getSema();
7040 SourceLocation AttrLoc = attr.getLoc();
7041 if (AttrLoc.isMacroID())
7042 AttrLoc =
7043 S.getSourceManager().getImmediateExpansionRange(Loc: AttrLoc).getBegin();
7044
7045 if (!attr.isArgIdent(Arg: 0)) {
7046 S.Diag(AttrLoc, diag::err_attribute_argument_type) << attr
7047 << AANT_ArgumentString;
7048 attr.setInvalid();
7049 return true;
7050 }
7051
7052 IdentifierInfo *II = attr.getArgAsIdent(Arg: 0)->Ident;
7053 Qualifiers::ObjCLifetime lifetime;
7054 if (II->isStr(Str: "none"))
7055 lifetime = Qualifiers::OCL_ExplicitNone;
7056 else if (II->isStr(Str: "strong"))
7057 lifetime = Qualifiers::OCL_Strong;
7058 else if (II->isStr(Str: "weak"))
7059 lifetime = Qualifiers::OCL_Weak;
7060 else if (II->isStr(Str: "autoreleasing"))
7061 lifetime = Qualifiers::OCL_Autoreleasing;
7062 else {
7063 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported) << attr << II;
7064 attr.setInvalid();
7065 return true;
7066 }
7067
7068 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
7069 // outside of ARC mode.
7070 if (!S.getLangOpts().ObjCAutoRefCount &&
7071 lifetime != Qualifiers::OCL_Weak &&
7072 lifetime != Qualifiers::OCL_ExplicitNone) {
7073 return true;
7074 }
7075
7076 SplitQualType underlyingType = type.split();
7077
7078 // Check for redundant/conflicting ownership qualifiers.
7079 if (Qualifiers::ObjCLifetime previousLifetime
7080 = type.getQualifiers().getObjCLifetime()) {
7081 // If it's written directly, that's an error.
7082 if (S.Context.hasDirectOwnershipQualifier(Ty: type)) {
7083 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
7084 << type;
7085 return true;
7086 }
7087
7088 // Otherwise, if the qualifiers actually conflict, pull sugar off
7089 // and remove the ObjCLifetime qualifiers.
7090 if (previousLifetime != lifetime) {
7091 // It's possible to have multiple local ObjCLifetime qualifiers. We
7092 // can't stop after we reach a type that is directly qualified.
7093 const Type *prevTy = nullptr;
7094 while (!prevTy || prevTy != underlyingType.Ty) {
7095 prevTy = underlyingType.Ty;
7096 underlyingType = underlyingType.getSingleStepDesugaredType();
7097 }
7098 underlyingType.Quals.removeObjCLifetime();
7099 }
7100 }
7101
7102 underlyingType.Quals.addObjCLifetime(type: lifetime);
7103
7104 if (NonObjCPointer) {
7105 StringRef name = attr.getAttrName()->getName();
7106 switch (lifetime) {
7107 case Qualifiers::OCL_None:
7108 case Qualifiers::OCL_ExplicitNone:
7109 break;
7110 case Qualifiers::OCL_Strong: name = "__strong"; break;
7111 case Qualifiers::OCL_Weak: name = "__weak"; break;
7112 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
7113 }
7114 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
7115 << TDS_ObjCObjOrBlock << type;
7116 }
7117
7118 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
7119 // because having both 'T' and '__unsafe_unretained T' exist in the type
7120 // system causes unfortunate widespread consistency problems. (For example,
7121 // they're not considered compatible types, and we mangle them identicially
7122 // as template arguments.) These problems are all individually fixable,
7123 // but it's easier to just not add the qualifier and instead sniff it out
7124 // in specific places using isObjCInertUnsafeUnretainedType().
7125 //
7126 // Doing this does means we miss some trivial consistency checks that
7127 // would've triggered in ARC, but that's better than trying to solve all
7128 // the coexistence problems with __unsafe_unretained.
7129 if (!S.getLangOpts().ObjCAutoRefCount &&
7130 lifetime == Qualifiers::OCL_ExplicitNone) {
7131 type = state.getAttributedType(
7132 createSimpleAttr<ObjCInertUnsafeUnretainedAttr>(S.Context, attr),
7133 type, type);
7134 return true;
7135 }
7136
7137 QualType origType = type;
7138 if (!NonObjCPointer)
7139 type = S.Context.getQualifiedType(split: underlyingType);
7140
7141 // If we have a valid source location for the attribute, use an
7142 // AttributedType instead.
7143 if (AttrLoc.isValid()) {
7144 type = state.getAttributedType(::new (S.Context)
7145 ObjCOwnershipAttr(S.Context, attr, II),
7146 origType, type);
7147 }
7148
7149 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
7150 unsigned diagnostic, QualType type) {
7151 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
7152 S.DelayedDiagnostics.add(
7153 diag: sema::DelayedDiagnostic::makeForbiddenType(
7154 loc: S.getSourceManager().getExpansionLoc(Loc: loc),
7155 diagnostic, type, /*ignored*/ argument: 0));
7156 } else {
7157 S.Diag(Loc: loc, DiagID: diagnostic);
7158 }
7159 };
7160
7161 // Sometimes, __weak isn't allowed.
7162 if (lifetime == Qualifiers::OCL_Weak &&
7163 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
7164
7165 // Use a specialized diagnostic if the runtime just doesn't support them.
7166 unsigned diagnostic =
7167 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
7168 : diag::err_arc_weak_no_runtime);
7169
7170 // In any case, delay the diagnostic until we know what we're parsing.
7171 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
7172
7173 attr.setInvalid();
7174 return true;
7175 }
7176
7177 // Forbid __weak for class objects marked as
7178 // objc_arc_weak_reference_unavailable
7179 if (lifetime == Qualifiers::OCL_Weak) {
7180 if (const ObjCObjectPointerType *ObjT =
7181 type->getAs<ObjCObjectPointerType>()) {
7182 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
7183 if (Class->isArcWeakrefUnavailable()) {
7184 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
7185 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
7186 diag::note_class_declared);
7187 }
7188 }
7189 }
7190 }
7191
7192 return true;
7193}
7194
7195/// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
7196/// attribute on the specified type. Returns true to indicate that
7197/// the attribute was handled, false to indicate that the type does
7198/// not permit the attribute.
7199static bool handleObjCGCTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7200 QualType &type) {
7201 Sema &S = state.getSema();
7202
7203 // Delay if this isn't some kind of pointer.
7204 if (!type->isPointerType() &&
7205 !type->isObjCObjectPointerType() &&
7206 !type->isBlockPointerType())
7207 return false;
7208
7209 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
7210 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
7211 attr.setInvalid();
7212 return true;
7213 }
7214
7215 // Check the attribute arguments.
7216 if (!attr.isArgIdent(Arg: 0)) {
7217 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
7218 << attr << AANT_ArgumentString;
7219 attr.setInvalid();
7220 return true;
7221 }
7222 Qualifiers::GC GCAttr;
7223 if (attr.getNumArgs() > 1) {
7224 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments) << attr
7225 << 1;
7226 attr.setInvalid();
7227 return true;
7228 }
7229
7230 IdentifierInfo *II = attr.getArgAsIdent(Arg: 0)->Ident;
7231 if (II->isStr(Str: "weak"))
7232 GCAttr = Qualifiers::Weak;
7233 else if (II->isStr(Str: "strong"))
7234 GCAttr = Qualifiers::Strong;
7235 else {
7236 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
7237 << attr << II;
7238 attr.setInvalid();
7239 return true;
7240 }
7241
7242 QualType origType = type;
7243 type = S.Context.getObjCGCQualType(T: origType, gcAttr: GCAttr);
7244
7245 // Make an attributed type to preserve the source information.
7246 if (attr.getLoc().isValid())
7247 type = state.getAttributedType(
7248 ::new (S.Context) ObjCGCAttr(S.Context, attr, II), origType, type);
7249
7250 return true;
7251}
7252
7253namespace {
7254 /// A helper class to unwrap a type down to a function for the
7255 /// purposes of applying attributes there.
7256 ///
7257 /// Use:
7258 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
7259 /// if (unwrapped.isFunctionType()) {
7260 /// const FunctionType *fn = unwrapped.get();
7261 /// // change fn somehow
7262 /// T = unwrapped.wrap(fn);
7263 /// }
7264 struct FunctionTypeUnwrapper {
7265 enum WrapKind {
7266 Desugar,
7267 Attributed,
7268 Parens,
7269 Array,
7270 Pointer,
7271 BlockPointer,
7272 Reference,
7273 MemberPointer,
7274 MacroQualified,
7275 };
7276
7277 QualType Original;
7278 const FunctionType *Fn;
7279 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
7280
7281 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
7282 while (true) {
7283 const Type *Ty = T.getTypePtr();
7284 if (isa<FunctionType>(Val: Ty)) {
7285 Fn = cast<FunctionType>(Val: Ty);
7286 return;
7287 } else if (isa<ParenType>(Val: Ty)) {
7288 T = cast<ParenType>(Val: Ty)->getInnerType();
7289 Stack.push_back(Elt: Parens);
7290 } else if (isa<ConstantArrayType>(Val: Ty) || isa<VariableArrayType>(Val: Ty) ||
7291 isa<IncompleteArrayType>(Val: Ty)) {
7292 T = cast<ArrayType>(Val: Ty)->getElementType();
7293 Stack.push_back(Elt: Array);
7294 } else if (isa<PointerType>(Val: Ty)) {
7295 T = cast<PointerType>(Val: Ty)->getPointeeType();
7296 Stack.push_back(Elt: Pointer);
7297 } else if (isa<BlockPointerType>(Val: Ty)) {
7298 T = cast<BlockPointerType>(Val: Ty)->getPointeeType();
7299 Stack.push_back(Elt: BlockPointer);
7300 } else if (isa<MemberPointerType>(Val: Ty)) {
7301 T = cast<MemberPointerType>(Val: Ty)->getPointeeType();
7302 Stack.push_back(Elt: MemberPointer);
7303 } else if (isa<ReferenceType>(Val: Ty)) {
7304 T = cast<ReferenceType>(Val: Ty)->getPointeeType();
7305 Stack.push_back(Elt: Reference);
7306 } else if (isa<AttributedType>(Val: Ty)) {
7307 T = cast<AttributedType>(Val: Ty)->getEquivalentType();
7308 Stack.push_back(Elt: Attributed);
7309 } else if (isa<MacroQualifiedType>(Val: Ty)) {
7310 T = cast<MacroQualifiedType>(Val: Ty)->getUnderlyingType();
7311 Stack.push_back(Elt: MacroQualified);
7312 } else {
7313 const Type *DTy = Ty->getUnqualifiedDesugaredType();
7314 if (Ty == DTy) {
7315 Fn = nullptr;
7316 return;
7317 }
7318
7319 T = QualType(DTy, 0);
7320 Stack.push_back(Elt: Desugar);
7321 }
7322 }
7323 }
7324
7325 bool isFunctionType() const { return (Fn != nullptr); }
7326 const FunctionType *get() const { return Fn; }
7327
7328 QualType wrap(Sema &S, const FunctionType *New) {
7329 // If T wasn't modified from the unwrapped type, do nothing.
7330 if (New == get()) return Original;
7331
7332 Fn = New;
7333 return wrap(S.Context, Original, 0);
7334 }
7335
7336 private:
7337 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
7338 if (I == Stack.size())
7339 return C.getQualifiedType(Fn, Old.getQualifiers());
7340
7341 // Build up the inner type, applying the qualifiers from the old
7342 // type to the new type.
7343 SplitQualType SplitOld = Old.split();
7344
7345 // As a special case, tail-recurse if there are no qualifiers.
7346 if (SplitOld.Quals.empty())
7347 return wrap(C, Old: SplitOld.Ty, I);
7348 return C.getQualifiedType(T: wrap(C, Old: SplitOld.Ty, I), Qs: SplitOld.Quals);
7349 }
7350
7351 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
7352 if (I == Stack.size()) return QualType(Fn, 0);
7353
7354 switch (static_cast<WrapKind>(Stack[I++])) {
7355 case Desugar:
7356 // This is the point at which we potentially lose source
7357 // information.
7358 return wrap(C, Old: Old->getUnqualifiedDesugaredType(), I);
7359
7360 case Attributed:
7361 return wrap(C, Old: cast<AttributedType>(Val: Old)->getEquivalentType(), I);
7362
7363 case Parens: {
7364 QualType New = wrap(C, Old: cast<ParenType>(Val: Old)->getInnerType(), I);
7365 return C.getParenType(NamedType: New);
7366 }
7367
7368 case MacroQualified:
7369 return wrap(C, Old: cast<MacroQualifiedType>(Val: Old)->getUnderlyingType(), I);
7370
7371 case Array: {
7372 if (const auto *CAT = dyn_cast<ConstantArrayType>(Val: Old)) {
7373 QualType New = wrap(C, CAT->getElementType(), I);
7374 return C.getConstantArrayType(EltTy: New, ArySize: CAT->getSize(), SizeExpr: CAT->getSizeExpr(),
7375 ASM: CAT->getSizeModifier(),
7376 IndexTypeQuals: CAT->getIndexTypeCVRQualifiers());
7377 }
7378
7379 if (const auto *VAT = dyn_cast<VariableArrayType>(Val: Old)) {
7380 QualType New = wrap(C, VAT->getElementType(), I);
7381 return C.getVariableArrayType(
7382 EltTy: New, NumElts: VAT->getSizeExpr(), ASM: VAT->getSizeModifier(),
7383 IndexTypeQuals: VAT->getIndexTypeCVRQualifiers(), Brackets: VAT->getBracketsRange());
7384 }
7385
7386 const auto *IAT = cast<IncompleteArrayType>(Val: Old);
7387 QualType New = wrap(C, IAT->getElementType(), I);
7388 return C.getIncompleteArrayType(EltTy: New, ASM: IAT->getSizeModifier(),
7389 IndexTypeQuals: IAT->getIndexTypeCVRQualifiers());
7390 }
7391
7392 case Pointer: {
7393 QualType New = wrap(C, Old: cast<PointerType>(Val: Old)->getPointeeType(), I);
7394 return C.getPointerType(T: New);
7395 }
7396
7397 case BlockPointer: {
7398 QualType New = wrap(C, Old: cast<BlockPointerType>(Val: Old)->getPointeeType(),I);
7399 return C.getBlockPointerType(T: New);
7400 }
7401
7402 case MemberPointer: {
7403 const MemberPointerType *OldMPT = cast<MemberPointerType>(Val: Old);
7404 QualType New = wrap(C, Old: OldMPT->getPointeeType(), I);
7405 return C.getMemberPointerType(T: New, Cls: OldMPT->getClass());
7406 }
7407
7408 case Reference: {
7409 const ReferenceType *OldRef = cast<ReferenceType>(Val: Old);
7410 QualType New = wrap(C, Old: OldRef->getPointeeType(), I);
7411 if (isa<LValueReferenceType>(Val: OldRef))
7412 return C.getLValueReferenceType(T: New, SpelledAsLValue: OldRef->isSpelledAsLValue());
7413 else
7414 return C.getRValueReferenceType(T: New);
7415 }
7416 }
7417
7418 llvm_unreachable("unknown wrapping kind");
7419 }
7420 };
7421} // end anonymous namespace
7422
7423static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
7424 ParsedAttr &PAttr, QualType &Type) {
7425 Sema &S = State.getSema();
7426
7427 Attr *A;
7428 switch (PAttr.getKind()) {
7429 default: llvm_unreachable("Unknown attribute kind");
7430 case ParsedAttr::AT_Ptr32:
7431 A = createSimpleAttr<Ptr32Attr>(S.Context, PAttr);
7432 break;
7433 case ParsedAttr::AT_Ptr64:
7434 A = createSimpleAttr<Ptr64Attr>(S.Context, PAttr);
7435 break;
7436 case ParsedAttr::AT_SPtr:
7437 A = createSimpleAttr<SPtrAttr>(S.Context, PAttr);
7438 break;
7439 case ParsedAttr::AT_UPtr:
7440 A = createSimpleAttr<UPtrAttr>(S.Context, PAttr);
7441 break;
7442 }
7443
7444 std::bitset<attr::LastAttr> Attrs;
7445 QualType Desugared = Type;
7446 for (;;) {
7447 if (const TypedefType *TT = dyn_cast<TypedefType>(Val&: Desugared)) {
7448 Desugared = TT->desugar();
7449 continue;
7450 } else if (const ElaboratedType *ET = dyn_cast<ElaboratedType>(Val&: Desugared)) {
7451 Desugared = ET->desugar();
7452 continue;
7453 }
7454 const AttributedType *AT = dyn_cast<AttributedType>(Val&: Desugared);
7455 if (!AT)
7456 break;
7457 Attrs[AT->getAttrKind()] = true;
7458 Desugared = AT->getModifiedType();
7459 }
7460
7461 // You cannot specify duplicate type attributes, so if the attribute has
7462 // already been applied, flag it.
7463 attr::Kind NewAttrKind = A->getKind();
7464 if (Attrs[NewAttrKind]) {
7465 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7466 return true;
7467 }
7468 Attrs[NewAttrKind] = true;
7469
7470 // You cannot have both __sptr and __uptr on the same type, nor can you
7471 // have __ptr32 and __ptr64.
7472 if (Attrs[attr::Ptr32] && Attrs[attr::Ptr64]) {
7473 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7474 << "'__ptr32'"
7475 << "'__ptr64'" << /*isRegularKeyword=*/0;
7476 return true;
7477 } else if (Attrs[attr::SPtr] && Attrs[attr::UPtr]) {
7478 S.Diag(PAttr.getLoc(), diag::err_attributes_are_not_compatible)
7479 << "'__sptr'"
7480 << "'__uptr'" << /*isRegularKeyword=*/0;
7481 return true;
7482 }
7483
7484 // Check the raw (i.e., desugared) Canonical type to see if it
7485 // is a pointer type.
7486 if (!isa<PointerType>(Val: Desugared)) {
7487 // Pointer type qualifiers can only operate on pointer types, but not
7488 // pointer-to-member types.
7489 if (Type->isMemberPointerType())
7490 S.Diag(PAttr.getLoc(), diag::err_attribute_no_member_pointers) << PAttr;
7491 else
7492 S.Diag(PAttr.getLoc(), diag::err_attribute_pointers_only) << PAttr << 0;
7493 return true;
7494 }
7495
7496 // Add address space to type based on its attributes.
7497 LangAS ASIdx = LangAS::Default;
7498 uint64_t PtrWidth =
7499 S.Context.getTargetInfo().getPointerWidth(AddrSpace: LangAS::Default);
7500 if (PtrWidth == 32) {
7501 if (Attrs[attr::Ptr64])
7502 ASIdx = LangAS::ptr64;
7503 else if (Attrs[attr::UPtr])
7504 ASIdx = LangAS::ptr32_uptr;
7505 } else if (PtrWidth == 64 && Attrs[attr::Ptr32]) {
7506 if (Attrs[attr::UPtr])
7507 ASIdx = LangAS::ptr32_uptr;
7508 else
7509 ASIdx = LangAS::ptr32_sptr;
7510 }
7511
7512 QualType Pointee = Type->getPointeeType();
7513 if (ASIdx != LangAS::Default)
7514 Pointee = S.Context.getAddrSpaceQualType(
7515 T: S.Context.removeAddrSpaceQualType(T: Pointee), AddressSpace: ASIdx);
7516 Type = State.getAttributedType(A, ModifiedType: Type, EquivType: S.Context.getPointerType(T: Pointee));
7517 return false;
7518}
7519
7520static bool HandleWebAssemblyFuncrefAttr(TypeProcessingState &State,
7521 QualType &QT, ParsedAttr &PAttr) {
7522 assert(PAttr.getKind() == ParsedAttr::AT_WebAssemblyFuncref);
7523
7524 Sema &S = State.getSema();
7525 Attr *A = createSimpleAttr<WebAssemblyFuncrefAttr>(S.Context, PAttr);
7526
7527 std::bitset<attr::LastAttr> Attrs;
7528 attr::Kind NewAttrKind = A->getKind();
7529 const auto *AT = dyn_cast<AttributedType>(Val&: QT);
7530 while (AT) {
7531 Attrs[AT->getAttrKind()] = true;
7532 AT = dyn_cast<AttributedType>(Val: AT->getModifiedType());
7533 }
7534
7535 // You cannot specify duplicate type attributes, so if the attribute has
7536 // already been applied, flag it.
7537 if (Attrs[NewAttrKind]) {
7538 S.Diag(PAttr.getLoc(), diag::warn_duplicate_attribute_exact) << PAttr;
7539 return true;
7540 }
7541
7542 // Add address space to type based on its attributes.
7543 LangAS ASIdx = LangAS::wasm_funcref;
7544 QualType Pointee = QT->getPointeeType();
7545 Pointee = S.Context.getAddrSpaceQualType(
7546 T: S.Context.removeAddrSpaceQualType(T: Pointee), AddressSpace: ASIdx);
7547 QT = State.getAttributedType(A, ModifiedType: QT, EquivType: S.Context.getPointerType(T: Pointee));
7548 return false;
7549}
7550
7551/// Rebuild an attributed type without the nullability attribute on it.
7552static QualType rebuildAttributedTypeWithoutNullability(ASTContext &Ctx,
7553 QualType Type) {
7554 auto Attributed = dyn_cast<AttributedType>(Val: Type.getTypePtr());
7555 if (!Attributed)
7556 return Type;
7557
7558 // Skip the nullability attribute; we're done.
7559 if (Attributed->getImmediateNullability())
7560 return Attributed->getModifiedType();
7561
7562 // Build the modified type.
7563 QualType Modified = rebuildAttributedTypeWithoutNullability(
7564 Ctx, Type: Attributed->getModifiedType());
7565 assert(Modified.getTypePtr() != Attributed->getModifiedType().getTypePtr());
7566 return Ctx.getAttributedType(attrKind: Attributed->getAttrKind(), modifiedType: Modified,
7567 equivalentType: Attributed->getEquivalentType());
7568}
7569
7570/// Map a nullability attribute kind to a nullability kind.
7571static NullabilityKind mapNullabilityAttrKind(ParsedAttr::Kind kind) {
7572 switch (kind) {
7573 case ParsedAttr::AT_TypeNonNull:
7574 return NullabilityKind::NonNull;
7575
7576 case ParsedAttr::AT_TypeNullable:
7577 return NullabilityKind::Nullable;
7578
7579 case ParsedAttr::AT_TypeNullableResult:
7580 return NullabilityKind::NullableResult;
7581
7582 case ParsedAttr::AT_TypeNullUnspecified:
7583 return NullabilityKind::Unspecified;
7584
7585 default:
7586 llvm_unreachable("not a nullability attribute kind");
7587 }
7588}
7589
7590static bool CheckNullabilityTypeSpecifier(
7591 Sema &S, TypeProcessingState *State, ParsedAttr *PAttr, QualType &QT,
7592 NullabilityKind Nullability, SourceLocation NullabilityLoc,
7593 bool IsContextSensitive, bool AllowOnArrayType, bool OverrideExisting) {
7594 bool Implicit = (State == nullptr);
7595 if (!Implicit)
7596 recordNullabilitySeen(S, loc: NullabilityLoc);
7597
7598 // Check for existing nullability attributes on the type.
7599 QualType Desugared = QT;
7600 while (auto *Attributed = dyn_cast<AttributedType>(Val: Desugared.getTypePtr())) {
7601 // Check whether there is already a null
7602 if (auto ExistingNullability = Attributed->getImmediateNullability()) {
7603 // Duplicated nullability.
7604 if (Nullability == *ExistingNullability) {
7605 if (Implicit)
7606 break;
7607
7608 S.Diag(NullabilityLoc, diag::warn_nullability_duplicate)
7609 << DiagNullabilityKind(Nullability, IsContextSensitive)
7610 << FixItHint::CreateRemoval(NullabilityLoc);
7611
7612 break;
7613 }
7614
7615 if (!OverrideExisting) {
7616 // Conflicting nullability.
7617 S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7618 << DiagNullabilityKind(Nullability, IsContextSensitive)
7619 << DiagNullabilityKind(*ExistingNullability, false);
7620 return true;
7621 }
7622
7623 // Rebuild the attributed type, dropping the existing nullability.
7624 QT = rebuildAttributedTypeWithoutNullability(Ctx&: S.Context, Type: QT);
7625 }
7626
7627 Desugared = Attributed->getModifiedType();
7628 }
7629
7630 // If there is already a different nullability specifier, complain.
7631 // This (unlike the code above) looks through typedefs that might
7632 // have nullability specifiers on them, which means we cannot
7633 // provide a useful Fix-It.
7634 if (auto ExistingNullability = Desugared->getNullability()) {
7635 if (Nullability != *ExistingNullability && !Implicit) {
7636 S.Diag(NullabilityLoc, diag::err_nullability_conflicting)
7637 << DiagNullabilityKind(Nullability, IsContextSensitive)
7638 << DiagNullabilityKind(*ExistingNullability, false);
7639
7640 // Try to find the typedef with the existing nullability specifier.
7641 if (auto TT = Desugared->getAs<TypedefType>()) {
7642 TypedefNameDecl *typedefDecl = TT->getDecl();
7643 QualType underlyingType = typedefDecl->getUnderlyingType();
7644 if (auto typedefNullability =
7645 AttributedType::stripOuterNullability(T&: underlyingType)) {
7646 if (*typedefNullability == *ExistingNullability) {
7647 S.Diag(typedefDecl->getLocation(), diag::note_nullability_here)
7648 << DiagNullabilityKind(*ExistingNullability, false);
7649 }
7650 }
7651 }
7652
7653 return true;
7654 }
7655 }
7656
7657 // If this definitely isn't a pointer type, reject the specifier.
7658 if (!Desugared->canHaveNullability() &&
7659 !(AllowOnArrayType && Desugared->isArrayType())) {
7660 if (!Implicit)
7661 S.Diag(NullabilityLoc, diag::err_nullability_nonpointer)
7662 << DiagNullabilityKind(Nullability, IsContextSensitive) << QT;
7663
7664 return true;
7665 }
7666
7667 // For the context-sensitive keywords/Objective-C property
7668 // attributes, require that the type be a single-level pointer.
7669 if (IsContextSensitive) {
7670 // Make sure that the pointee isn't itself a pointer type.
7671 const Type *pointeeType = nullptr;
7672 if (Desugared->isArrayType())
7673 pointeeType = Desugared->getArrayElementTypeNoTypeQual();
7674 else if (Desugared->isAnyPointerType())
7675 pointeeType = Desugared->getPointeeType().getTypePtr();
7676
7677 if (pointeeType && (pointeeType->isAnyPointerType() ||
7678 pointeeType->isObjCObjectPointerType() ||
7679 pointeeType->isMemberPointerType())) {
7680 S.Diag(NullabilityLoc, diag::err_nullability_cs_multilevel)
7681 << DiagNullabilityKind(Nullability, true) << QT;
7682 S.Diag(NullabilityLoc, diag::note_nullability_type_specifier)
7683 << DiagNullabilityKind(Nullability, false) << QT
7684 << FixItHint::CreateReplacement(NullabilityLoc,
7685 getNullabilitySpelling(Nullability));
7686 return true;
7687 }
7688 }
7689
7690 // Form the attributed type.
7691 if (State) {
7692 assert(PAttr);
7693 Attr *A = createNullabilityAttr(Ctx&: S.Context, Attr&: *PAttr, NK: Nullability);
7694 QT = State->getAttributedType(A, ModifiedType: QT, EquivType: QT);
7695 } else {
7696 attr::Kind attrKind = AttributedType::getNullabilityAttrKind(kind: Nullability);
7697 QT = S.Context.getAttributedType(attrKind, modifiedType: QT, equivalentType: QT);
7698 }
7699 return false;
7700}
7701
7702static bool CheckNullabilityTypeSpecifier(TypeProcessingState &State,
7703 QualType &Type, ParsedAttr &Attr,
7704 bool AllowOnArrayType) {
7705 NullabilityKind Nullability = mapNullabilityAttrKind(kind: Attr.getKind());
7706 SourceLocation NullabilityLoc = Attr.getLoc();
7707 bool IsContextSensitive = Attr.isContextSensitiveKeywordAttribute();
7708
7709 return CheckNullabilityTypeSpecifier(S&: State.getSema(), State: &State, PAttr: &Attr, QT&: Type,
7710 Nullability, NullabilityLoc,
7711 IsContextSensitive, AllowOnArrayType,
7712 /*overrideExisting*/ OverrideExisting: false);
7713}
7714
7715bool Sema::CheckImplicitNullabilityTypeSpecifier(QualType &Type,
7716 NullabilityKind Nullability,
7717 SourceLocation DiagLoc,
7718 bool AllowArrayTypes,
7719 bool OverrideExisting) {
7720 return CheckNullabilityTypeSpecifier(
7721 S&: *this, State: nullptr, PAttr: nullptr, QT&: Type, Nullability, NullabilityLoc: DiagLoc,
7722 /*isContextSensitive*/ IsContextSensitive: false, AllowOnArrayType: AllowArrayTypes, OverrideExisting);
7723}
7724
7725/// Check the application of the Objective-C '__kindof' qualifier to
7726/// the given type.
7727static bool checkObjCKindOfType(TypeProcessingState &state, QualType &type,
7728 ParsedAttr &attr) {
7729 Sema &S = state.getSema();
7730
7731 if (isa<ObjCTypeParamType>(Val: type)) {
7732 // Build the attributed type to record where __kindof occurred.
7733 type = state.getAttributedType(
7734 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, type);
7735 return false;
7736 }
7737
7738 // Find out if it's an Objective-C object or object pointer type;
7739 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
7740 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
7741 : type->getAs<ObjCObjectType>();
7742
7743 // If not, we can't apply __kindof.
7744 if (!objType) {
7745 // FIXME: Handle dependent types that aren't yet object types.
7746 S.Diag(attr.getLoc(), diag::err_objc_kindof_nonobject)
7747 << type;
7748 return true;
7749 }
7750
7751 // Rebuild the "equivalent" type, which pushes __kindof down into
7752 // the object type.
7753 // There is no need to apply kindof on an unqualified id type.
7754 QualType equivType = S.Context.getObjCObjectType(
7755 objType->getBaseType(), objType->getTypeArgsAsWritten(),
7756 objType->getProtocols(),
7757 /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
7758
7759 // If we started with an object pointer type, rebuild it.
7760 if (ptrType) {
7761 equivType = S.Context.getObjCObjectPointerType(OIT: equivType);
7762 if (auto nullability = type->getNullability()) {
7763 // We create a nullability attribute from the __kindof attribute.
7764 // Make sure that will make sense.
7765 assert(attr.getAttributeSpellingListIndex() == 0 &&
7766 "multiple spellings for __kindof?");
7767 Attr *A = createNullabilityAttr(Ctx&: S.Context, Attr&: attr, NK: *nullability);
7768 A->setImplicit(true);
7769 equivType = state.getAttributedType(A, ModifiedType: equivType, EquivType: equivType);
7770 }
7771 }
7772
7773 // Build the attributed type to record where __kindof occurred.
7774 type = state.getAttributedType(
7775 createSimpleAttr<ObjCKindOfAttr>(S.Context, attr), type, equivType);
7776 return false;
7777}
7778
7779/// Distribute a nullability type attribute that cannot be applied to
7780/// the type specifier to a pointer, block pointer, or member pointer
7781/// declarator, complaining if necessary.
7782///
7783/// \returns true if the nullability annotation was distributed, false
7784/// otherwise.
7785static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
7786 QualType type, ParsedAttr &attr) {
7787 Declarator &declarator = state.getDeclarator();
7788
7789 /// Attempt to move the attribute to the specified chunk.
7790 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
7791 // If there is already a nullability attribute there, don't add
7792 // one.
7793 if (hasNullabilityAttr(attrs: chunk.getAttrs()))
7794 return false;
7795
7796 // Complain about the nullability qualifier being in the wrong
7797 // place.
7798 enum {
7799 PK_Pointer,
7800 PK_BlockPointer,
7801 PK_MemberPointer,
7802 PK_FunctionPointer,
7803 PK_MemberFunctionPointer,
7804 } pointerKind
7805 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
7806 : PK_Pointer)
7807 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
7808 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
7809
7810 auto diag = state.getSema().Diag(attr.getLoc(),
7811 diag::warn_nullability_declspec)
7812 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
7813 attr.isContextSensitiveKeywordAttribute())
7814 << type
7815 << static_cast<unsigned>(pointerKind);
7816
7817 // FIXME: MemberPointer chunks don't carry the location of the *.
7818 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
7819 diag << FixItHint::CreateRemoval(RemoveRange: attr.getLoc())
7820 << FixItHint::CreateInsertion(
7821 InsertionLoc: state.getSema().getPreprocessor().getLocForEndOfToken(
7822 Loc: chunk.Loc),
7823 Code: " " + attr.getAttrName()->getName().str() + " ");
7824 }
7825
7826 moveAttrFromListToList(attr, fromList&: state.getCurrentAttributes(),
7827 toList&: chunk.getAttrs());
7828 return true;
7829 };
7830
7831 // Move it to the outermost pointer, member pointer, or block
7832 // pointer declarator.
7833 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
7834 DeclaratorChunk &chunk = declarator.getTypeObject(i: i-1);
7835 switch (chunk.Kind) {
7836 case DeclaratorChunk::Pointer:
7837 case DeclaratorChunk::BlockPointer:
7838 case DeclaratorChunk::MemberPointer:
7839 return moveToChunk(chunk, false);
7840
7841 case DeclaratorChunk::Paren:
7842 case DeclaratorChunk::Array:
7843 continue;
7844
7845 case DeclaratorChunk::Function:
7846 // Try to move past the return type to a function/block/member
7847 // function pointer.
7848 if (DeclaratorChunk *dest = maybeMovePastReturnType(
7849 declarator, i,
7850 /*onlyBlockPointers=*/false)) {
7851 return moveToChunk(*dest, true);
7852 }
7853
7854 return false;
7855
7856 // Don't walk through these.
7857 case DeclaratorChunk::Reference:
7858 case DeclaratorChunk::Pipe:
7859 return false;
7860 }
7861 }
7862
7863 return false;
7864}
7865
7866static Attr *getCCTypeAttr(ASTContext &Ctx, ParsedAttr &Attr) {
7867 assert(!Attr.isInvalid());
7868 switch (Attr.getKind()) {
7869 default:
7870 llvm_unreachable("not a calling convention attribute");
7871 case ParsedAttr::AT_CDecl:
7872 return createSimpleAttr<CDeclAttr>(Ctx, Attr);
7873 case ParsedAttr::AT_FastCall:
7874 return createSimpleAttr<FastCallAttr>(Ctx, Attr);
7875 case ParsedAttr::AT_StdCall:
7876 return createSimpleAttr<StdCallAttr>(Ctx, Attr);
7877 case ParsedAttr::AT_ThisCall:
7878 return createSimpleAttr<ThisCallAttr>(Ctx, Attr);
7879 case ParsedAttr::AT_RegCall:
7880 return createSimpleAttr<RegCallAttr>(Ctx, Attr);
7881 case ParsedAttr::AT_Pascal:
7882 return createSimpleAttr<PascalAttr>(Ctx, Attr);
7883 case ParsedAttr::AT_SwiftCall:
7884 return createSimpleAttr<SwiftCallAttr>(Ctx, Attr);
7885 case ParsedAttr::AT_SwiftAsyncCall:
7886 return createSimpleAttr<SwiftAsyncCallAttr>(Ctx, Attr);
7887 case ParsedAttr::AT_VectorCall:
7888 return createSimpleAttr<VectorCallAttr>(Ctx, Attr);
7889 case ParsedAttr::AT_AArch64VectorPcs:
7890 return createSimpleAttr<AArch64VectorPcsAttr>(Ctx, Attr);
7891 case ParsedAttr::AT_AArch64SVEPcs:
7892 return createSimpleAttr<AArch64SVEPcsAttr>(Ctx, Attr);
7893 case ParsedAttr::AT_ArmStreaming:
7894 return createSimpleAttr<ArmStreamingAttr>(Ctx, Attr);
7895 case ParsedAttr::AT_AMDGPUKernelCall:
7896 return createSimpleAttr<AMDGPUKernelCallAttr>(Ctx, Attr);
7897 case ParsedAttr::AT_Pcs: {
7898 // The attribute may have had a fixit applied where we treated an
7899 // identifier as a string literal. The contents of the string are valid,
7900 // but the form may not be.
7901 StringRef Str;
7902 if (Attr.isArgExpr(Arg: 0))
7903 Str = cast<StringLiteral>(Val: Attr.getArgAsExpr(Arg: 0))->getString();
7904 else
7905 Str = Attr.getArgAsIdent(Arg: 0)->Ident->getName();
7906 PcsAttr::PCSType Type;
7907 if (!PcsAttr::ConvertStrToPCSType(Str, Type))
7908 llvm_unreachable("already validated the attribute");
7909 return ::new (Ctx) PcsAttr(Ctx, Attr, Type);
7910 }
7911 case ParsedAttr::AT_IntelOclBicc:
7912 return createSimpleAttr<IntelOclBiccAttr>(Ctx, Attr);
7913 case ParsedAttr::AT_MSABI:
7914 return createSimpleAttr<MSABIAttr>(Ctx, Attr);
7915 case ParsedAttr::AT_SysVABI:
7916 return createSimpleAttr<SysVABIAttr>(Ctx, Attr);
7917 case ParsedAttr::AT_PreserveMost:
7918 return createSimpleAttr<PreserveMostAttr>(Ctx, Attr);
7919 case ParsedAttr::AT_PreserveAll:
7920 return createSimpleAttr<PreserveAllAttr>(Ctx, Attr);
7921 case ParsedAttr::AT_M68kRTD:
7922 return createSimpleAttr<M68kRTDAttr>(Ctx, Attr);
7923 case ParsedAttr::AT_PreserveNone:
7924 return createSimpleAttr<PreserveNoneAttr>(Ctx, Attr);
7925 }
7926 llvm_unreachable("unexpected attribute kind!");
7927}
7928
7929static bool checkMutualExclusion(TypeProcessingState &state,
7930 const FunctionProtoType::ExtProtoInfo &EPI,
7931 ParsedAttr &Attr,
7932 AttributeCommonInfo::Kind OtherKind) {
7933 auto OtherAttr = std::find_if(
7934 first: state.getCurrentAttributes().begin(), last: state.getCurrentAttributes().end(),
7935 pred: [OtherKind](const ParsedAttr &A) { return A.getKind() == OtherKind; });
7936 if (OtherAttr == state.getCurrentAttributes().end() || OtherAttr->isInvalid())
7937 return false;
7938
7939 Sema &S = state.getSema();
7940 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
7941 << *OtherAttr << Attr
7942 << (OtherAttr->isRegularKeywordAttribute() ||
7943 Attr.isRegularKeywordAttribute());
7944 S.Diag(OtherAttr->getLoc(), diag::note_conflicting_attribute);
7945 Attr.setInvalid();
7946 return true;
7947}
7948
7949static bool handleArmStateAttribute(Sema &S,
7950 FunctionProtoType::ExtProtoInfo &EPI,
7951 ParsedAttr &Attr,
7952 FunctionType::ArmStateValue State) {
7953 if (!Attr.getNumArgs()) {
7954 S.Diag(Attr.getLoc(), diag::err_missing_arm_state) << Attr;
7955 Attr.setInvalid();
7956 return true;
7957 }
7958
7959 for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
7960 StringRef StateName;
7961 SourceLocation LiteralLoc;
7962 if (!S.checkStringLiteralArgumentAttr(Attr, ArgNum: I, Str&: StateName, ArgLocation: &LiteralLoc))
7963 return true;
7964
7965 unsigned Shift;
7966 FunctionType::ArmStateValue ExistingState;
7967 if (StateName == "za") {
7968 Shift = FunctionType::SME_ZAShift;
7969 ExistingState = FunctionType::getArmZAState(AttrBits: EPI.AArch64SMEAttributes);
7970 } else if (StateName == "zt0") {
7971 Shift = FunctionType::SME_ZT0Shift;
7972 ExistingState = FunctionType::getArmZT0State(AttrBits: EPI.AArch64SMEAttributes);
7973 } else {
7974 S.Diag(LiteralLoc, diag::err_unknown_arm_state) << StateName;
7975 Attr.setInvalid();
7976 return true;
7977 }
7978
7979 // __arm_in(S), __arm_out(S), __arm_inout(S) and __arm_preserves(S)
7980 // are all mutually exclusive for the same S, so check if there are
7981 // conflicting attributes.
7982 if (ExistingState != FunctionType::ARM_None && ExistingState != State) {
7983 S.Diag(LiteralLoc, diag::err_conflicting_attributes_arm_state)
7984 << StateName;
7985 Attr.setInvalid();
7986 return true;
7987 }
7988
7989 EPI.setArmSMEAttribute(
7990 Kind: (FunctionType::AArch64SMETypeAttributes)((State << Shift)));
7991 }
7992 return false;
7993}
7994
7995/// Process an individual function attribute. Returns true to
7996/// indicate that the attribute was handled, false if it wasn't.
7997static bool handleFunctionTypeAttr(TypeProcessingState &state, ParsedAttr &attr,
7998 QualType &type,
7999 Sema::CUDAFunctionTarget CFT) {
8000 Sema &S = state.getSema();
8001
8002 FunctionTypeUnwrapper unwrapped(S, type);
8003
8004 if (attr.getKind() == ParsedAttr::AT_NoReturn) {
8005 if (S.CheckAttrNoArgs(CurrAttr: attr))
8006 return true;
8007
8008 // Delay if this is not a function type.
8009 if (!unwrapped.isFunctionType())
8010 return false;
8011
8012 // Otherwise we can process right away.
8013 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(noReturn: true);
8014 type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI));
8015 return true;
8016 }
8017
8018 if (attr.getKind() == ParsedAttr::AT_CmseNSCall) {
8019 // Delay if this is not a function type.
8020 if (!unwrapped.isFunctionType())
8021 return false;
8022
8023 // Ignore if we don't have CMSE enabled.
8024 if (!S.getLangOpts().Cmse) {
8025 S.Diag(attr.getLoc(), diag::warn_attribute_ignored) << attr;
8026 attr.setInvalid();
8027 return true;
8028 }
8029
8030 // Otherwise we can process right away.
8031 FunctionType::ExtInfo EI =
8032 unwrapped.get()->getExtInfo().withCmseNSCall(cmseNSCall: true);
8033 type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI));
8034 return true;
8035 }
8036
8037 // ns_returns_retained is not always a type attribute, but if we got
8038 // here, we're treating it as one right now.
8039 if (attr.getKind() == ParsedAttr::AT_NSReturnsRetained) {
8040 if (attr.getNumArgs()) return true;
8041
8042 // Delay if this is not a function type.
8043 if (!unwrapped.isFunctionType())
8044 return false;
8045
8046 // Check whether the return type is reasonable.
8047 if (S.checkNSReturnsRetainedReturnType(loc: attr.getLoc(),
8048 type: unwrapped.get()->getReturnType()))
8049 return true;
8050
8051 // Only actually change the underlying type in ARC builds.
8052 QualType origType = type;
8053 if (state.getSema().getLangOpts().ObjCAutoRefCount) {
8054 FunctionType::ExtInfo EI
8055 = unwrapped.get()->getExtInfo().withProducesResult(producesResult: true);
8056 type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI));
8057 }
8058 type = state.getAttributedType(
8059 createSimpleAttr<NSReturnsRetainedAttr>(S.Context, attr),
8060 origType, type);
8061 return true;
8062 }
8063
8064 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCallerSavedRegisters) {
8065 if (S.CheckAttrTarget(CurrAttr: attr) || S.CheckAttrNoArgs(CurrAttr: attr))
8066 return true;
8067
8068 // Delay if this is not a function type.
8069 if (!unwrapped.isFunctionType())
8070 return false;
8071
8072 FunctionType::ExtInfo EI =
8073 unwrapped.get()->getExtInfo().withNoCallerSavedRegs(noCallerSavedRegs: true);
8074 type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI));
8075 return true;
8076 }
8077
8078 if (attr.getKind() == ParsedAttr::AT_AnyX86NoCfCheck) {
8079 if (!S.getLangOpts().CFProtectionBranch) {
8080 S.Diag(attr.getLoc(), diag::warn_nocf_check_attribute_ignored);
8081 attr.setInvalid();
8082 return true;
8083 }
8084
8085 if (S.CheckAttrTarget(CurrAttr: attr) || S.CheckAttrNoArgs(CurrAttr: attr))
8086 return true;
8087
8088 // If this is not a function type, warning will be asserted by subject
8089 // check.
8090 if (!unwrapped.isFunctionType())
8091 return true;
8092
8093 FunctionType::ExtInfo EI =
8094 unwrapped.get()->getExtInfo().withNoCfCheck(noCfCheck: true);
8095 type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI));
8096 return true;
8097 }
8098
8099 if (attr.getKind() == ParsedAttr::AT_Regparm) {
8100 unsigned value;
8101 if (S.CheckRegparmAttr(attr, value))
8102 return true;
8103
8104 // Delay if this is not a function type.
8105 if (!unwrapped.isFunctionType())
8106 return false;
8107
8108 // Diagnose regparm with fastcall.
8109 const FunctionType *fn = unwrapped.get();
8110 CallingConv CC = fn->getCallConv();
8111 if (CC == CC_X86FastCall) {
8112 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8113 << FunctionType::getNameForCallConv(CC) << "regparm"
8114 << attr.isRegularKeywordAttribute();
8115 attr.setInvalid();
8116 return true;
8117 }
8118
8119 FunctionType::ExtInfo EI =
8120 unwrapped.get()->getExtInfo().withRegParm(RegParm: value);
8121 type = unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI));
8122 return true;
8123 }
8124
8125 if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
8126 attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible ||
8127 attr.getKind() == ParsedAttr::AT_ArmPreserves ||
8128 attr.getKind() == ParsedAttr::AT_ArmIn ||
8129 attr.getKind() == ParsedAttr::AT_ArmOut ||
8130 attr.getKind() == ParsedAttr::AT_ArmInOut) {
8131 if (S.CheckAttrTarget(CurrAttr: attr))
8132 return true;
8133
8134 if (attr.getKind() == ParsedAttr::AT_ArmStreaming ||
8135 attr.getKind() == ParsedAttr::AT_ArmStreamingCompatible)
8136 if (S.CheckAttrNoArgs(CurrAttr: attr))
8137 return true;
8138
8139 if (!unwrapped.isFunctionType())
8140 return false;
8141
8142 const auto *FnTy = unwrapped.get()->getAs<FunctionProtoType>();
8143 if (!FnTy) {
8144 // SME ACLE attributes are not supported on K&R-style unprototyped C
8145 // functions.
8146 S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type) <<
8147 attr << attr.isRegularKeywordAttribute() << ExpectedFunctionWithProtoType;
8148 attr.setInvalid();
8149 return false;
8150 }
8151
8152 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
8153 switch (attr.getKind()) {
8154 case ParsedAttr::AT_ArmStreaming:
8155 if (checkMutualExclusion(state, EPI, attr,
8156 ParsedAttr::AT_ArmStreamingCompatible))
8157 return true;
8158 EPI.setArmSMEAttribute(Kind: FunctionType::SME_PStateSMEnabledMask);
8159 break;
8160 case ParsedAttr::AT_ArmStreamingCompatible:
8161 if (checkMutualExclusion(state, EPI, attr, ParsedAttr::AT_ArmStreaming))
8162 return true;
8163 EPI.setArmSMEAttribute(Kind: FunctionType::SME_PStateSMCompatibleMask);
8164 break;
8165 case ParsedAttr::AT_ArmPreserves:
8166 if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_Preserves))
8167 return true;
8168 break;
8169 case ParsedAttr::AT_ArmIn:
8170 if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_In))
8171 return true;
8172 break;
8173 case ParsedAttr::AT_ArmOut:
8174 if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_Out))
8175 return true;
8176 break;
8177 case ParsedAttr::AT_ArmInOut:
8178 if (handleArmStateAttribute(S, EPI, Attr&: attr, State: FunctionType::ARM_InOut))
8179 return true;
8180 break;
8181 default:
8182 llvm_unreachable("Unsupported attribute");
8183 }
8184
8185 QualType newtype = S.Context.getFunctionType(ResultTy: FnTy->getReturnType(),
8186 Args: FnTy->getParamTypes(), EPI);
8187 type = unwrapped.wrap(S, New: newtype->getAs<FunctionType>());
8188 return true;
8189 }
8190
8191 if (attr.getKind() == ParsedAttr::AT_NoThrow) {
8192 // Delay if this is not a function type.
8193 if (!unwrapped.isFunctionType())
8194 return false;
8195
8196 if (S.CheckAttrNoArgs(CurrAttr: attr)) {
8197 attr.setInvalid();
8198 return true;
8199 }
8200
8201 // Otherwise we can process right away.
8202 auto *Proto = unwrapped.get()->castAs<FunctionProtoType>();
8203
8204 // MSVC ignores nothrow if it is in conflict with an explicit exception
8205 // specification.
8206 if (Proto->hasExceptionSpec()) {
8207 switch (Proto->getExceptionSpecType()) {
8208 case EST_None:
8209 llvm_unreachable("This doesn't have an exception spec!");
8210
8211 case EST_DynamicNone:
8212 case EST_BasicNoexcept:
8213 case EST_NoexceptTrue:
8214 case EST_NoThrow:
8215 // Exception spec doesn't conflict with nothrow, so don't warn.
8216 [[fallthrough]];
8217 case EST_Unparsed:
8218 case EST_Uninstantiated:
8219 case EST_DependentNoexcept:
8220 case EST_Unevaluated:
8221 // We don't have enough information to properly determine if there is a
8222 // conflict, so suppress the warning.
8223 break;
8224 case EST_Dynamic:
8225 case EST_MSAny:
8226 case EST_NoexceptFalse:
8227 S.Diag(attr.getLoc(), diag::warn_nothrow_attribute_ignored);
8228 break;
8229 }
8230 return true;
8231 }
8232
8233 type = unwrapped.wrap(
8234 S, New: S.Context
8235 .getFunctionTypeWithExceptionSpec(
8236 Orig: QualType{Proto, 0},
8237 ESI: FunctionProtoType::ExceptionSpecInfo{EST_NoThrow})
8238 ->getAs<FunctionType>());
8239 return true;
8240 }
8241
8242 // Delay if the type didn't work out to a function.
8243 if (!unwrapped.isFunctionType()) return false;
8244
8245 // Otherwise, a calling convention.
8246 CallingConv CC;
8247 if (S.CheckCallingConvAttr(attr, CC, /*FunctionDecl=*/FD: nullptr, CFT))
8248 return true;
8249
8250 const FunctionType *fn = unwrapped.get();
8251 CallingConv CCOld = fn->getCallConv();
8252 Attr *CCAttr = getCCTypeAttr(Ctx&: S.Context, Attr&: attr);
8253
8254 if (CCOld != CC) {
8255 // Error out on when there's already an attribute on the type
8256 // and the CCs don't match.
8257 if (S.getCallingConvAttributedType(T: type)) {
8258 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8259 << FunctionType::getNameForCallConv(CC)
8260 << FunctionType::getNameForCallConv(CCOld)
8261 << attr.isRegularKeywordAttribute();
8262 attr.setInvalid();
8263 return true;
8264 }
8265 }
8266
8267 // Diagnose use of variadic functions with calling conventions that
8268 // don't support them (e.g. because they're callee-cleanup).
8269 // We delay warning about this on unprototyped function declarations
8270 // until after redeclaration checking, just in case we pick up a
8271 // prototype that way. And apparently we also "delay" warning about
8272 // unprototyped function types in general, despite not necessarily having
8273 // much ability to diagnose it later.
8274 if (!supportsVariadicCall(CC)) {
8275 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(Val: fn);
8276 if (FnP && FnP->isVariadic()) {
8277 // stdcall and fastcall are ignored with a warning for GCC and MS
8278 // compatibility.
8279 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
8280 return S.Diag(attr.getLoc(), diag::warn_cconv_unsupported)
8281 << FunctionType::getNameForCallConv(CC)
8282 << (int)Sema::CallingConventionIgnoredReason::VariadicFunction;
8283
8284 attr.setInvalid();
8285 return S.Diag(attr.getLoc(), diag::err_cconv_varargs)
8286 << FunctionType::getNameForCallConv(CC);
8287 }
8288 }
8289
8290 // Also diagnose fastcall with regparm.
8291 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
8292 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
8293 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall)
8294 << attr.isRegularKeywordAttribute();
8295 attr.setInvalid();
8296 return true;
8297 }
8298
8299 // Modify the CC from the wrapped function type, wrap it all back, and then
8300 // wrap the whole thing in an AttributedType as written. The modified type
8301 // might have a different CC if we ignored the attribute.
8302 QualType Equivalent;
8303 if (CCOld == CC) {
8304 Equivalent = type;
8305 } else {
8306 auto EI = unwrapped.get()->getExtInfo().withCallingConv(cc: CC);
8307 Equivalent =
8308 unwrapped.wrap(S, New: S.Context.adjustFunctionType(Fn: unwrapped.get(), EInfo: EI));
8309 }
8310 type = state.getAttributedType(A: CCAttr, ModifiedType: type, EquivType: Equivalent);
8311 return true;
8312}
8313
8314bool Sema::hasExplicitCallingConv(QualType T) {
8315 const AttributedType *AT;
8316
8317 // Stop if we'd be stripping off a typedef sugar node to reach the
8318 // AttributedType.
8319 while ((AT = T->getAs<AttributedType>()) &&
8320 AT->getAs<TypedefType>() == T->getAs<TypedefType>()) {
8321 if (AT->isCallingConv())
8322 return true;
8323 T = AT->getModifiedType();
8324 }
8325 return false;
8326}
8327
8328void Sema::adjustMemberFunctionCC(QualType &T, bool HasThisPointer,
8329 bool IsCtorOrDtor, SourceLocation Loc) {
8330 FunctionTypeUnwrapper Unwrapped(*this, T);
8331 const FunctionType *FT = Unwrapped.get();
8332 bool IsVariadic = (isa<FunctionProtoType>(Val: FT) &&
8333 cast<FunctionProtoType>(Val: FT)->isVariadic());
8334 CallingConv CurCC = FT->getCallConv();
8335 CallingConv ToCC =
8336 Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod: HasThisPointer);
8337
8338 if (CurCC == ToCC)
8339 return;
8340
8341 // MS compiler ignores explicit calling convention attributes on structors. We
8342 // should do the same.
8343 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
8344 // Issue a warning on ignored calling convention -- except of __stdcall.
8345 // Again, this is what MS compiler does.
8346 if (CurCC != CC_X86StdCall)
8347 Diag(Loc, diag::warn_cconv_unsupported)
8348 << FunctionType::getNameForCallConv(CurCC)
8349 << (int)Sema::CallingConventionIgnoredReason::ConstructorDestructor;
8350 // Default adjustment.
8351 } else {
8352 // Only adjust types with the default convention. For example, on Windows
8353 // we should adjust a __cdecl type to __thiscall for instance methods, and a
8354 // __thiscall type to __cdecl for static methods.
8355 CallingConv DefaultCC =
8356 Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod: !HasThisPointer);
8357
8358 if (CurCC != DefaultCC)
8359 return;
8360
8361 if (hasExplicitCallingConv(T))
8362 return;
8363 }
8364
8365 FT = Context.adjustFunctionType(Fn: FT, EInfo: FT->getExtInfo().withCallingConv(cc: ToCC));
8366 QualType Wrapped = Unwrapped.wrap(S&: *this, New: FT);
8367 T = Context.getAdjustedType(Orig: T, New: Wrapped);
8368}
8369
8370/// HandleVectorSizeAttribute - this attribute is only applicable to integral
8371/// and float scalars, although arrays, pointers, and function return values are
8372/// allowed in conjunction with this construct. Aggregates with this attribute
8373/// are invalid, even if they are of the same size as a corresponding scalar.
8374/// The raw attribute should contain precisely 1 argument, the vector size for
8375/// the variable, measured in bytes. If curType and rawAttr are well formed,
8376/// this routine will return a new vector type.
8377static void HandleVectorSizeAttr(QualType &CurType, const ParsedAttr &Attr,
8378 Sema &S) {
8379 // Check the attribute arguments.
8380 if (Attr.getNumArgs() != 1) {
8381 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8382 << 1;
8383 Attr.setInvalid();
8384 return;
8385 }
8386
8387 Expr *SizeExpr = Attr.getArgAsExpr(Arg: 0);
8388 QualType T = S.BuildVectorType(CurType, SizeExpr, AttrLoc: Attr.getLoc());
8389 if (!T.isNull())
8390 CurType = T;
8391 else
8392 Attr.setInvalid();
8393}
8394
8395/// Process the OpenCL-like ext_vector_type attribute when it occurs on
8396/// a type.
8397static void HandleExtVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8398 Sema &S) {
8399 // check the attribute arguments.
8400 if (Attr.getNumArgs() != 1) {
8401 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << Attr
8402 << 1;
8403 return;
8404 }
8405
8406 Expr *SizeExpr = Attr.getArgAsExpr(Arg: 0);
8407 QualType T = S.BuildExtVectorType(T: CurType, ArraySize: SizeExpr, AttrLoc: Attr.getLoc());
8408 if (!T.isNull())
8409 CurType = T;
8410}
8411
8412static bool isPermittedNeonBaseType(QualType &Ty, VectorKind VecKind, Sema &S) {
8413 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
8414 if (!BTy)
8415 return false;
8416
8417 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
8418
8419 // Signed poly is mathematically wrong, but has been baked into some ABIs by
8420 // now.
8421 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
8422 Triple.getArch() == llvm::Triple::aarch64_32 ||
8423 Triple.getArch() == llvm::Triple::aarch64_be;
8424 if (VecKind == VectorKind::NeonPoly) {
8425 if (IsPolyUnsigned) {
8426 // AArch64 polynomial vectors are unsigned.
8427 return BTy->getKind() == BuiltinType::UChar ||
8428 BTy->getKind() == BuiltinType::UShort ||
8429 BTy->getKind() == BuiltinType::ULong ||
8430 BTy->getKind() == BuiltinType::ULongLong;
8431 } else {
8432 // AArch32 polynomial vectors are signed.
8433 return BTy->getKind() == BuiltinType::SChar ||
8434 BTy->getKind() == BuiltinType::Short ||
8435 BTy->getKind() == BuiltinType::LongLong;
8436 }
8437 }
8438
8439 // Non-polynomial vector types: the usual suspects are allowed, as well as
8440 // float64_t on AArch64.
8441 if ((Triple.isArch64Bit() || Triple.getArch() == llvm::Triple::aarch64_32) &&
8442 BTy->getKind() == BuiltinType::Double)
8443 return true;
8444
8445 return BTy->getKind() == BuiltinType::SChar ||
8446 BTy->getKind() == BuiltinType::UChar ||
8447 BTy->getKind() == BuiltinType::Short ||
8448 BTy->getKind() == BuiltinType::UShort ||
8449 BTy->getKind() == BuiltinType::Int ||
8450 BTy->getKind() == BuiltinType::UInt ||
8451 BTy->getKind() == BuiltinType::Long ||
8452 BTy->getKind() == BuiltinType::ULong ||
8453 BTy->getKind() == BuiltinType::LongLong ||
8454 BTy->getKind() == BuiltinType::ULongLong ||
8455 BTy->getKind() == BuiltinType::Float ||
8456 BTy->getKind() == BuiltinType::Half ||
8457 BTy->getKind() == BuiltinType::BFloat16;
8458}
8459
8460static bool verifyValidIntegerConstantExpr(Sema &S, const ParsedAttr &Attr,
8461 llvm::APSInt &Result) {
8462 const auto *AttrExpr = Attr.getArgAsExpr(Arg: 0);
8463 if (!AttrExpr->isTypeDependent()) {
8464 if (std::optional<llvm::APSInt> Res =
8465 AttrExpr->getIntegerConstantExpr(Ctx: S.Context)) {
8466 Result = *Res;
8467 return true;
8468 }
8469 }
8470 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
8471 << Attr << AANT_ArgumentIntegerConstant << AttrExpr->getSourceRange();
8472 Attr.setInvalid();
8473 return false;
8474}
8475
8476/// HandleNeonVectorTypeAttr - The "neon_vector_type" and
8477/// "neon_polyvector_type" attributes are used to create vector types that
8478/// are mangled according to ARM's ABI. Otherwise, these types are identical
8479/// to those created with the "vector_size" attribute. Unlike "vector_size"
8480/// the argument to these Neon attributes is the number of vector elements,
8481/// not the vector size in bytes. The vector width and element type must
8482/// match one of the standard Neon vector types.
8483static void HandleNeonVectorTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8484 Sema &S, VectorKind VecKind) {
8485 bool IsTargetCUDAAndHostARM = false;
8486 if (S.getLangOpts().CUDAIsDevice) {
8487 const TargetInfo *AuxTI = S.getASTContext().getAuxTargetInfo();
8488 IsTargetCUDAAndHostARM =
8489 AuxTI && (AuxTI->getTriple().isAArch64() || AuxTI->getTriple().isARM());
8490 }
8491
8492 // Target must have NEON (or MVE, whose vectors are similar enough
8493 // not to need a separate attribute)
8494 if (!(S.Context.getTargetInfo().hasFeature(Feature: "neon") ||
8495 S.Context.getTargetInfo().hasFeature(Feature: "mve") ||
8496 S.Context.getTargetInfo().hasFeature(Feature: "sve") ||
8497 S.Context.getTargetInfo().hasFeature(Feature: "sme") ||
8498 IsTargetCUDAAndHostARM) &&
8499 VecKind == VectorKind::Neon) {
8500 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8501 << Attr << "'neon', 'mve', 'sve' or 'sme'";
8502 Attr.setInvalid();
8503 return;
8504 }
8505 if (!(S.Context.getTargetInfo().hasFeature(Feature: "neon") ||
8506 S.Context.getTargetInfo().hasFeature(Feature: "mve") ||
8507 IsTargetCUDAAndHostARM) &&
8508 VecKind == VectorKind::NeonPoly) {
8509 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8510 << Attr << "'neon' or 'mve'";
8511 Attr.setInvalid();
8512 return;
8513 }
8514
8515 // Check the attribute arguments.
8516 if (Attr.getNumArgs() != 1) {
8517 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8518 << Attr << 1;
8519 Attr.setInvalid();
8520 return;
8521 }
8522 // The number of elements must be an ICE.
8523 llvm::APSInt numEltsInt(32);
8524 if (!verifyValidIntegerConstantExpr(S, Attr, Result&: numEltsInt))
8525 return;
8526
8527 // Only certain element types are supported for Neon vectors.
8528 if (!isPermittedNeonBaseType(Ty&: CurType, VecKind, S) &&
8529 !IsTargetCUDAAndHostARM) {
8530 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
8531 Attr.setInvalid();
8532 return;
8533 }
8534
8535 // The total size of the vector must be 64 or 128 bits.
8536 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(T: CurType));
8537 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
8538 unsigned vecSize = typeSize * numElts;
8539 if (vecSize != 64 && vecSize != 128) {
8540 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
8541 Attr.setInvalid();
8542 return;
8543 }
8544
8545 CurType = S.Context.getVectorType(VectorType: CurType, NumElts: numElts, VecKind);
8546}
8547
8548/// HandleArmSveVectorBitsTypeAttr - The "arm_sve_vector_bits" attribute is
8549/// used to create fixed-length versions of sizeless SVE types defined by
8550/// the ACLE, such as svint32_t and svbool_t.
8551static void HandleArmSveVectorBitsTypeAttr(QualType &CurType, ParsedAttr &Attr,
8552 Sema &S) {
8553 // Target must have SVE.
8554 if (!S.Context.getTargetInfo().hasFeature(Feature: "sve")) {
8555 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr << "'sve'";
8556 Attr.setInvalid();
8557 return;
8558 }
8559
8560 // Attribute is unsupported if '-msve-vector-bits=<bits>' isn't specified, or
8561 // if <bits>+ syntax is used.
8562 if (!S.getLangOpts().VScaleMin ||
8563 S.getLangOpts().VScaleMin != S.getLangOpts().VScaleMax) {
8564 S.Diag(Attr.getLoc(), diag::err_attribute_arm_feature_sve_bits_unsupported)
8565 << Attr;
8566 Attr.setInvalid();
8567 return;
8568 }
8569
8570 // Check the attribute arguments.
8571 if (Attr.getNumArgs() != 1) {
8572 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8573 << Attr << 1;
8574 Attr.setInvalid();
8575 return;
8576 }
8577
8578 // The vector size must be an integer constant expression.
8579 llvm::APSInt SveVectorSizeInBits(32);
8580 if (!verifyValidIntegerConstantExpr(S, Attr, Result&: SveVectorSizeInBits))
8581 return;
8582
8583 unsigned VecSize = static_cast<unsigned>(SveVectorSizeInBits.getZExtValue());
8584
8585 // The attribute vector size must match -msve-vector-bits.
8586 if (VecSize != S.getLangOpts().VScaleMin * 128) {
8587 S.Diag(Attr.getLoc(), diag::err_attribute_bad_sve_vector_size)
8588 << VecSize << S.getLangOpts().VScaleMin * 128;
8589 Attr.setInvalid();
8590 return;
8591 }
8592
8593 // Attribute can only be attached to a single SVE vector or predicate type.
8594 if (!CurType->isSveVLSBuiltinType()) {
8595 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_sve_type)
8596 << Attr << CurType;
8597 Attr.setInvalid();
8598 return;
8599 }
8600
8601 const auto *BT = CurType->castAs<BuiltinType>();
8602
8603 QualType EltType = CurType->getSveEltType(Ctx: S.Context);
8604 unsigned TypeSize = S.Context.getTypeSize(T: EltType);
8605 VectorKind VecKind = VectorKind::SveFixedLengthData;
8606 if (BT->getKind() == BuiltinType::SveBool) {
8607 // Predicates are represented as i8.
8608 VecSize /= S.Context.getCharWidth() * S.Context.getCharWidth();
8609 VecKind = VectorKind::SveFixedLengthPredicate;
8610 } else
8611 VecSize /= TypeSize;
8612 CurType = S.Context.getVectorType(VectorType: EltType, NumElts: VecSize, VecKind);
8613}
8614
8615static void HandleArmMveStrictPolymorphismAttr(TypeProcessingState &State,
8616 QualType &CurType,
8617 ParsedAttr &Attr) {
8618 const VectorType *VT = dyn_cast<VectorType>(Val&: CurType);
8619 if (!VT || VT->getVectorKind() != VectorKind::Neon) {
8620 State.getSema().Diag(Attr.getLoc(),
8621 diag::err_attribute_arm_mve_polymorphism);
8622 Attr.setInvalid();
8623 return;
8624 }
8625
8626 CurType =
8627 State.getAttributedType(createSimpleAttr<ArmMveStrictPolymorphismAttr>(
8628 State.getSema().Context, Attr),
8629 CurType, CurType);
8630}
8631
8632/// HandleRISCVRVVVectorBitsTypeAttr - The "riscv_rvv_vector_bits" attribute is
8633/// used to create fixed-length versions of sizeless RVV types such as
8634/// vint8m1_t_t.
8635static void HandleRISCVRVVVectorBitsTypeAttr(QualType &CurType,
8636 ParsedAttr &Attr, Sema &S) {
8637 // Target must have vector extension.
8638 if (!S.Context.getTargetInfo().hasFeature(Feature: "zve32x")) {
8639 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported)
8640 << Attr << "'zve32x'";
8641 Attr.setInvalid();
8642 return;
8643 }
8644
8645 auto VScale = S.Context.getTargetInfo().getVScaleRange(LangOpts: S.getLangOpts());
8646 if (!VScale || !VScale->first || VScale->first != VScale->second) {
8647 S.Diag(Attr.getLoc(), diag::err_attribute_riscv_rvv_bits_unsupported)
8648 << Attr;
8649 Attr.setInvalid();
8650 return;
8651 }
8652
8653 // Check the attribute arguments.
8654 if (Attr.getNumArgs() != 1) {
8655 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8656 << Attr << 1;
8657 Attr.setInvalid();
8658 return;
8659 }
8660
8661 // The vector size must be an integer constant expression.
8662 llvm::APSInt RVVVectorSizeInBits(32);
8663 if (!verifyValidIntegerConstantExpr(S, Attr, Result&: RVVVectorSizeInBits))
8664 return;
8665
8666 // Attribute can only be attached to a single RVV vector type.
8667 if (!CurType->isRVVVLSBuiltinType()) {
8668 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_rvv_type)
8669 << Attr << CurType;
8670 Attr.setInvalid();
8671 return;
8672 }
8673
8674 unsigned VecSize = static_cast<unsigned>(RVVVectorSizeInBits.getZExtValue());
8675
8676 ASTContext::BuiltinVectorTypeInfo Info =
8677 S.Context.getBuiltinVectorTypeInfo(VecTy: CurType->castAs<BuiltinType>());
8678 unsigned MinElts = Info.EC.getKnownMinValue();
8679
8680 VectorKind VecKind = VectorKind::RVVFixedLengthData;
8681 unsigned ExpectedSize = VScale->first * MinElts;
8682 QualType EltType = CurType->getRVVEltType(Ctx: S.Context);
8683 unsigned EltSize = S.Context.getTypeSize(T: EltType);
8684 unsigned NumElts;
8685 if (Info.ElementType == S.Context.BoolTy) {
8686 NumElts = VecSize / S.Context.getCharWidth();
8687 VecKind = VectorKind::RVVFixedLengthMask;
8688 } else {
8689 ExpectedSize *= EltSize;
8690 NumElts = VecSize / EltSize;
8691 }
8692
8693 // The attribute vector size must match -mrvv-vector-bits.
8694 if (ExpectedSize % 8 != 0 || VecSize != ExpectedSize) {
8695 S.Diag(Attr.getLoc(), diag::err_attribute_bad_rvv_vector_size)
8696 << VecSize << ExpectedSize;
8697 Attr.setInvalid();
8698 return;
8699 }
8700
8701 CurType = S.Context.getVectorType(VectorType: EltType, NumElts, VecKind);
8702}
8703
8704/// Handle OpenCL Access Qualifier Attribute.
8705static void HandleOpenCLAccessAttr(QualType &CurType, const ParsedAttr &Attr,
8706 Sema &S) {
8707 // OpenCL v2.0 s6.6 - Access qualifier can be used only for image and pipe type.
8708 if (!(CurType->isImageType() || CurType->isPipeType())) {
8709 S.Diag(Attr.getLoc(), diag::err_opencl_invalid_access_qualifier);
8710 Attr.setInvalid();
8711 return;
8712 }
8713
8714 if (const TypedefType* TypedefTy = CurType->getAs<TypedefType>()) {
8715 QualType BaseTy = TypedefTy->desugar();
8716
8717 std::string PrevAccessQual;
8718 if (BaseTy->isPipeType()) {
8719 if (TypedefTy->getDecl()->hasAttr<OpenCLAccessAttr>()) {
8720 OpenCLAccessAttr *Attr =
8721 TypedefTy->getDecl()->getAttr<OpenCLAccessAttr>();
8722 PrevAccessQual = Attr->getSpelling();
8723 } else {
8724 PrevAccessQual = "read_only";
8725 }
8726 } else if (const BuiltinType* ImgType = BaseTy->getAs<BuiltinType>()) {
8727
8728 switch (ImgType->getKind()) {
8729 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8730 case BuiltinType::Id: \
8731 PrevAccessQual = #Access; \
8732 break;
8733 #include "clang/Basic/OpenCLImageTypes.def"
8734 default:
8735 llvm_unreachable("Unable to find corresponding image type.");
8736 }
8737 } else {
8738 llvm_unreachable("unexpected type");
8739 }
8740 StringRef AttrName = Attr.getAttrName()->getName();
8741 if (PrevAccessQual == AttrName.ltrim(Chars: "_")) {
8742 // Duplicated qualifiers
8743 S.Diag(Attr.getLoc(), diag::warn_duplicate_declspec)
8744 << AttrName << Attr.getRange();
8745 } else {
8746 // Contradicting qualifiers
8747 S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers);
8748 }
8749
8750 S.Diag(TypedefTy->getDecl()->getBeginLoc(),
8751 diag::note_opencl_typedef_access_qualifier) << PrevAccessQual;
8752 } else if (CurType->isPipeType()) {
8753 if (Attr.getSemanticSpelling() == OpenCLAccessAttr::Keyword_write_only) {
8754 QualType ElemType = CurType->castAs<PipeType>()->getElementType();
8755 CurType = S.Context.getWritePipeType(T: ElemType);
8756 }
8757 }
8758}
8759
8760/// HandleMatrixTypeAttr - "matrix_type" attribute, like ext_vector_type
8761static void HandleMatrixTypeAttr(QualType &CurType, const ParsedAttr &Attr,
8762 Sema &S) {
8763 if (!S.getLangOpts().MatrixTypes) {
8764 S.Diag(Attr.getLoc(), diag::err_builtin_matrix_disabled);
8765 return;
8766 }
8767
8768 if (Attr.getNumArgs() != 2) {
8769 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
8770 << Attr << 2;
8771 return;
8772 }
8773
8774 Expr *RowsExpr = Attr.getArgAsExpr(Arg: 0);
8775 Expr *ColsExpr = Attr.getArgAsExpr(Arg: 1);
8776 QualType T = S.BuildMatrixType(ElementTy: CurType, NumRows: RowsExpr, NumCols: ColsExpr, AttrLoc: Attr.getLoc());
8777 if (!T.isNull())
8778 CurType = T;
8779}
8780
8781static void HandleAnnotateTypeAttr(TypeProcessingState &State,
8782 QualType &CurType, const ParsedAttr &PA) {
8783 Sema &S = State.getSema();
8784
8785 if (PA.getNumArgs() < 1) {
8786 S.Diag(PA.getLoc(), diag::err_attribute_too_few_arguments) << PA << 1;
8787 return;
8788 }
8789
8790 // Make sure that there is a string literal as the annotation's first
8791 // argument.
8792 StringRef Str;
8793 if (!S.checkStringLiteralArgumentAttr(Attr: PA, ArgNum: 0, Str))
8794 return;
8795
8796 llvm::SmallVector<Expr *, 4> Args;
8797 Args.reserve(N: PA.getNumArgs() - 1);
8798 for (unsigned Idx = 1; Idx < PA.getNumArgs(); Idx++) {
8799 assert(!PA.isArgIdent(Idx));
8800 Args.push_back(Elt: PA.getArgAsExpr(Arg: Idx));
8801 }
8802 if (!S.ConstantFoldAttrArgs(CI: PA, Args))
8803 return;
8804 auto *AnnotateTypeAttr =
8805 AnnotateTypeAttr::Create(S.Context, Str, Args.data(), Args.size(), PA);
8806 CurType = State.getAttributedType(A: AnnotateTypeAttr, ModifiedType: CurType, EquivType: CurType);
8807}
8808
8809static void HandleLifetimeBoundAttr(TypeProcessingState &State,
8810 QualType &CurType,
8811 ParsedAttr &Attr) {
8812 if (State.getDeclarator().isDeclarationOfFunction()) {
8813 CurType = State.getAttributedType(
8814 createSimpleAttr<LifetimeBoundAttr>(State.getSema().Context, Attr),
8815 CurType, CurType);
8816 }
8817}
8818
8819static void HandleHLSLParamModifierAttr(QualType &CurType,
8820 const ParsedAttr &Attr, Sema &S) {
8821 // Don't apply this attribute to template dependent types. It is applied on
8822 // substitution during template instantiation.
8823 if (CurType->isDependentType())
8824 return;
8825 if (Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_inout ||
8826 Attr.getSemanticSpelling() == HLSLParamModifierAttr::Keyword_out)
8827 CurType = S.getASTContext().getLValueReferenceType(T: CurType);
8828}
8829
8830static void processTypeAttrs(TypeProcessingState &state, QualType &type,
8831 TypeAttrLocation TAL,
8832 const ParsedAttributesView &attrs,
8833 Sema::CUDAFunctionTarget CFT) {
8834
8835 state.setParsedNoDeref(false);
8836 if (attrs.empty())
8837 return;
8838
8839 // Scan through and apply attributes to this type where it makes sense. Some
8840 // attributes (such as __address_space__, __vector_size__, etc) apply to the
8841 // type, but others can be present in the type specifiers even though they
8842 // apply to the decl. Here we apply type attributes and ignore the rest.
8843
8844 // This loop modifies the list pretty frequently, but we still need to make
8845 // sure we visit every element once. Copy the attributes list, and iterate
8846 // over that.
8847 ParsedAttributesView AttrsCopy{attrs};
8848 for (ParsedAttr &attr : AttrsCopy) {
8849
8850 // Skip attributes that were marked to be invalid.
8851 if (attr.isInvalid())
8852 continue;
8853
8854 if (attr.isStandardAttributeSyntax() || attr.isRegularKeywordAttribute()) {
8855 // [[gnu::...]] attributes are treated as declaration attributes, so may
8856 // not appertain to a DeclaratorChunk. If we handle them as type
8857 // attributes, accept them in that position and diagnose the GCC
8858 // incompatibility.
8859 if (attr.isGNUScope()) {
8860 assert(attr.isStandardAttributeSyntax());
8861 bool IsTypeAttr = attr.isTypeAttr();
8862 if (TAL == TAL_DeclChunk) {
8863 state.getSema().Diag(attr.getLoc(),
8864 IsTypeAttr
8865 ? diag::warn_gcc_ignores_type_attr
8866 : diag::warn_cxx11_gnu_attribute_on_type)
8867 << attr;
8868 if (!IsTypeAttr)
8869 continue;
8870 }
8871 } else if (TAL != TAL_DeclSpec && TAL != TAL_DeclChunk &&
8872 !attr.isTypeAttr()) {
8873 // Otherwise, only consider type processing for a C++11 attribute if
8874 // - it has actually been applied to a type (decl-specifier-seq or
8875 // declarator chunk), or
8876 // - it is a type attribute, irrespective of where it was applied (so
8877 // that we can support the legacy behavior of some type attributes
8878 // that can be applied to the declaration name).
8879 continue;
8880 }
8881 }
8882
8883 // If this is an attribute we can handle, do so now,
8884 // otherwise, add it to the FnAttrs list for rechaining.
8885 switch (attr.getKind()) {
8886 default:
8887 // A [[]] attribute on a declarator chunk must appertain to a type.
8888 if ((attr.isStandardAttributeSyntax() ||
8889 attr.isRegularKeywordAttribute()) &&
8890 TAL == TAL_DeclChunk) {
8891 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
8892 << attr << attr.isRegularKeywordAttribute();
8893 attr.setUsedAsTypeAttr();
8894 }
8895 break;
8896
8897 case ParsedAttr::UnknownAttribute:
8898 if (attr.isStandardAttributeSyntax()) {
8899 state.getSema().Diag(attr.getLoc(),
8900 diag::warn_unknown_attribute_ignored)
8901 << attr << attr.getRange();
8902 // Mark the attribute as invalid so we don't emit the same diagnostic
8903 // multiple times.
8904 attr.setInvalid();
8905 }
8906 break;
8907
8908 case ParsedAttr::IgnoredAttribute:
8909 break;
8910
8911 case ParsedAttr::AT_BTFTypeTag:
8912 HandleBTFTypeTagAttribute(Type&: type, Attr: attr, State&: state);
8913 attr.setUsedAsTypeAttr();
8914 break;
8915
8916 case ParsedAttr::AT_MayAlias:
8917 // FIXME: This attribute needs to actually be handled, but if we ignore
8918 // it it breaks large amounts of Linux software.
8919 attr.setUsedAsTypeAttr();
8920 break;
8921 case ParsedAttr::AT_OpenCLPrivateAddressSpace:
8922 case ParsedAttr::AT_OpenCLGlobalAddressSpace:
8923 case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
8924 case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
8925 case ParsedAttr::AT_OpenCLLocalAddressSpace:
8926 case ParsedAttr::AT_OpenCLConstantAddressSpace:
8927 case ParsedAttr::AT_OpenCLGenericAddressSpace:
8928 case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
8929 case ParsedAttr::AT_AddressSpace:
8930 HandleAddressSpaceTypeAttribute(Type&: type, Attr: attr, State&: state);
8931 attr.setUsedAsTypeAttr();
8932 break;
8933 OBJC_POINTER_TYPE_ATTRS_CASELIST:
8934 if (!handleObjCPointerTypeAttr(state, attr, type))
8935 distributeObjCPointerTypeAttr(state, attr, type);
8936 attr.setUsedAsTypeAttr();
8937 break;
8938 case ParsedAttr::AT_VectorSize:
8939 HandleVectorSizeAttr(CurType&: type, Attr: attr, S&: state.getSema());
8940 attr.setUsedAsTypeAttr();
8941 break;
8942 case ParsedAttr::AT_ExtVectorType:
8943 HandleExtVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema());
8944 attr.setUsedAsTypeAttr();
8945 break;
8946 case ParsedAttr::AT_NeonVectorType:
8947 HandleNeonVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema(), VecKind: VectorKind::Neon);
8948 attr.setUsedAsTypeAttr();
8949 break;
8950 case ParsedAttr::AT_NeonPolyVectorType:
8951 HandleNeonVectorTypeAttr(CurType&: type, Attr: attr, S&: state.getSema(),
8952 VecKind: VectorKind::NeonPoly);
8953 attr.setUsedAsTypeAttr();
8954 break;
8955 case ParsedAttr::AT_ArmSveVectorBits:
8956 HandleArmSveVectorBitsTypeAttr(CurType&: type, Attr&: attr, S&: state.getSema());
8957 attr.setUsedAsTypeAttr();
8958 break;
8959 case ParsedAttr::AT_ArmMveStrictPolymorphism: {
8960 HandleArmMveStrictPolymorphismAttr(State&: state, CurType&: type, Attr&: attr);
8961 attr.setUsedAsTypeAttr();
8962 break;
8963 }
8964 case ParsedAttr::AT_RISCVRVVVectorBits:
8965 HandleRISCVRVVVectorBitsTypeAttr(CurType&: type, Attr&: attr, S&: state.getSema());
8966 attr.setUsedAsTypeAttr();
8967 break;
8968 case ParsedAttr::AT_OpenCLAccess:
8969 HandleOpenCLAccessAttr(CurType&: type, Attr: attr, S&: state.getSema());
8970 attr.setUsedAsTypeAttr();
8971 break;
8972 case ParsedAttr::AT_LifetimeBound:
8973 if (TAL == TAL_DeclChunk)
8974 HandleLifetimeBoundAttr(State&: state, CurType&: type, Attr&: attr);
8975 break;
8976
8977 case ParsedAttr::AT_NoDeref: {
8978 // FIXME: `noderef` currently doesn't work correctly in [[]] syntax.
8979 // See https://github.com/llvm/llvm-project/issues/55790 for details.
8980 // For the time being, we simply emit a warning that the attribute is
8981 // ignored.
8982 if (attr.isStandardAttributeSyntax()) {
8983 state.getSema().Diag(attr.getLoc(), diag::warn_attribute_ignored)
8984 << attr;
8985 break;
8986 }
8987 ASTContext &Ctx = state.getSema().Context;
8988 type = state.getAttributedType(createSimpleAttr<NoDerefAttr>(Ctx, attr),
8989 type, type);
8990 attr.setUsedAsTypeAttr();
8991 state.setParsedNoDeref(true);
8992 break;
8993 }
8994
8995 case ParsedAttr::AT_MatrixType:
8996 HandleMatrixTypeAttr(CurType&: type, Attr: attr, S&: state.getSema());
8997 attr.setUsedAsTypeAttr();
8998 break;
8999
9000 case ParsedAttr::AT_WebAssemblyFuncref: {
9001 if (!HandleWebAssemblyFuncrefAttr(State&: state, QT&: type, PAttr&: attr))
9002 attr.setUsedAsTypeAttr();
9003 break;
9004 }
9005
9006 case ParsedAttr::AT_HLSLParamModifier: {
9007 HandleHLSLParamModifierAttr(CurType&: type, Attr: attr, S&: state.getSema());
9008 attr.setUsedAsTypeAttr();
9009 break;
9010 }
9011
9012 MS_TYPE_ATTRS_CASELIST:
9013 if (!handleMSPointerTypeQualifierAttr(State&: state, PAttr&: attr, Type&: type))
9014 attr.setUsedAsTypeAttr();
9015 break;
9016
9017
9018 NULLABILITY_TYPE_ATTRS_CASELIST:
9019 // Either add nullability here or try to distribute it. We
9020 // don't want to distribute the nullability specifier past any
9021 // dependent type, because that complicates the user model.
9022 if (type->canHaveNullability() || type->isDependentType() ||
9023 type->isArrayType() ||
9024 !distributeNullabilityTypeAttr(state, type, attr)) {
9025 unsigned endIndex;
9026 if (TAL == TAL_DeclChunk)
9027 endIndex = state.getCurrentChunkIndex();
9028 else
9029 endIndex = state.getDeclarator().getNumTypeObjects();
9030 bool allowOnArrayType =
9031 state.getDeclarator().isPrototypeContext() &&
9032 !hasOuterPointerLikeChunk(D: state.getDeclarator(), endIndex);
9033 if (CheckNullabilityTypeSpecifier(State&: state, Type&: type, Attr&: attr,
9034 AllowOnArrayType: allowOnArrayType)) {
9035 attr.setInvalid();
9036 }
9037
9038 attr.setUsedAsTypeAttr();
9039 }
9040 break;
9041
9042 case ParsedAttr::AT_ObjCKindOf:
9043 // '__kindof' must be part of the decl-specifiers.
9044 switch (TAL) {
9045 case TAL_DeclSpec:
9046 break;
9047
9048 case TAL_DeclChunk:
9049 case TAL_DeclName:
9050 state.getSema().Diag(attr.getLoc(),
9051 diag::err_objc_kindof_wrong_position)
9052 << FixItHint::CreateRemoval(attr.getLoc())
9053 << FixItHint::CreateInsertion(
9054 state.getDeclarator().getDeclSpec().getBeginLoc(),
9055 "__kindof ");
9056 break;
9057 }
9058
9059 // Apply it regardless.
9060 if (checkObjCKindOfType(state, type, attr))
9061 attr.setInvalid();
9062 break;
9063
9064 case ParsedAttr::AT_NoThrow:
9065 // Exception Specifications aren't generally supported in C mode throughout
9066 // clang, so revert to attribute-based handling for C.
9067 if (!state.getSema().getLangOpts().CPlusPlus)
9068 break;
9069 [[fallthrough]];
9070 FUNCTION_TYPE_ATTRS_CASELIST:
9071 attr.setUsedAsTypeAttr();
9072
9073 // Attributes with standard syntax have strict rules for what they
9074 // appertain to and hence should not use the "distribution" logic below.
9075 if (attr.isStandardAttributeSyntax() ||
9076 attr.isRegularKeywordAttribute()) {
9077 if (!handleFunctionTypeAttr(state, attr, type, CFT)) {
9078 diagnoseBadTypeAttribute(S&: state.getSema(), attr, type);
9079 attr.setInvalid();
9080 }
9081 break;
9082 }
9083
9084 // Never process function type attributes as part of the
9085 // declaration-specifiers.
9086 if (TAL == TAL_DeclSpec)
9087 distributeFunctionTypeAttrFromDeclSpec(state, attr, declSpecType&: type, CFT);
9088
9089 // Otherwise, handle the possible delays.
9090 else if (!handleFunctionTypeAttr(state, attr, type, CFT))
9091 distributeFunctionTypeAttr(state, attr, type);
9092 break;
9093 case ParsedAttr::AT_AcquireHandle: {
9094 if (!type->isFunctionType())
9095 return;
9096
9097 if (attr.getNumArgs() != 1) {
9098 state.getSema().Diag(attr.getLoc(),
9099 diag::err_attribute_wrong_number_arguments)
9100 << attr << 1;
9101 attr.setInvalid();
9102 return;
9103 }
9104
9105 StringRef HandleType;
9106 if (!state.getSema().checkStringLiteralArgumentAttr(Attr: attr, ArgNum: 0, Str&: HandleType))
9107 return;
9108 type = state.getAttributedType(
9109 AcquireHandleAttr::Create(state.getSema().Context, HandleType, attr),
9110 type, type);
9111 attr.setUsedAsTypeAttr();
9112 break;
9113 }
9114 case ParsedAttr::AT_AnnotateType: {
9115 HandleAnnotateTypeAttr(State&: state, CurType&: type, PA: attr);
9116 attr.setUsedAsTypeAttr();
9117 break;
9118 }
9119 }
9120
9121 // Handle attributes that are defined in a macro. We do not want this to be
9122 // applied to ObjC builtin attributes.
9123 if (isa<AttributedType>(type) && attr.hasMacroIdentifier() &&
9124 !type.getQualifiers().hasObjCLifetime() &&
9125 !type.getQualifiers().hasObjCGCAttr() &&
9126 attr.getKind() != ParsedAttr::AT_ObjCGC &&
9127 attr.getKind() != ParsedAttr::AT_ObjCOwnership) {
9128 const IdentifierInfo *MacroII = attr.getMacroIdentifier();
9129 type = state.getSema().Context.getMacroQualifiedType(UnderlyingTy: type, MacroII);
9130 state.setExpansionLocForMacroQualifiedType(
9131 MQT: cast<MacroQualifiedType>(Val: type.getTypePtr()),
9132 Loc: attr.getMacroExpansionLoc());
9133 }
9134 }
9135}
9136
9137void Sema::completeExprArrayBound(Expr *E) {
9138 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E->IgnoreParens())) {
9139 if (VarDecl *Var = dyn_cast<VarDecl>(Val: DRE->getDecl())) {
9140 if (isTemplateInstantiation(Kind: Var->getTemplateSpecializationKind())) {
9141 auto *Def = Var->getDefinition();
9142 if (!Def) {
9143 SourceLocation PointOfInstantiation = E->getExprLoc();
9144 runWithSufficientStackSpace(Loc: PointOfInstantiation, Fn: [&] {
9145 InstantiateVariableDefinition(PointOfInstantiation, Var);
9146 });
9147 Def = Var->getDefinition();
9148
9149 // If we don't already have a point of instantiation, and we managed
9150 // to instantiate a definition, this is the point of instantiation.
9151 // Otherwise, we don't request an end-of-TU instantiation, so this is
9152 // not a point of instantiation.
9153 // FIXME: Is this really the right behavior?
9154 if (Var->getPointOfInstantiation().isInvalid() && Def) {
9155 assert(Var->getTemplateSpecializationKind() ==
9156 TSK_ImplicitInstantiation &&
9157 "explicit instantiation with no point of instantiation");
9158 Var->setTemplateSpecializationKind(
9159 TSK: Var->getTemplateSpecializationKind(), PointOfInstantiation);
9160 }
9161 }
9162
9163 // Update the type to the definition's type both here and within the
9164 // expression.
9165 if (Def) {
9166 DRE->setDecl(Def);
9167 QualType T = Def->getType();
9168 DRE->setType(T);
9169 // FIXME: Update the type on all intervening expressions.
9170 E->setType(T);
9171 }
9172
9173 // We still go on to try to complete the type independently, as it
9174 // may also require instantiations or diagnostics if it remains
9175 // incomplete.
9176 }
9177 }
9178 }
9179}
9180
9181QualType Sema::getCompletedType(Expr *E) {
9182 // Incomplete array types may be completed by the initializer attached to
9183 // their definitions. For static data members of class templates and for
9184 // variable templates, we need to instantiate the definition to get this
9185 // initializer and complete the type.
9186 if (E->getType()->isIncompleteArrayType())
9187 completeExprArrayBound(E);
9188
9189 // FIXME: Are there other cases which require instantiating something other
9190 // than the type to complete the type of an expression?
9191
9192 return E->getType();
9193}
9194
9195/// Ensure that the type of the given expression is complete.
9196///
9197/// This routine checks whether the expression \p E has a complete type. If the
9198/// expression refers to an instantiable construct, that instantiation is
9199/// performed as needed to complete its type. Furthermore
9200/// Sema::RequireCompleteType is called for the expression's type (or in the
9201/// case of a reference type, the referred-to type).
9202///
9203/// \param E The expression whose type is required to be complete.
9204/// \param Kind Selects which completeness rules should be applied.
9205/// \param Diagnoser The object that will emit a diagnostic if the type is
9206/// incomplete.
9207///
9208/// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
9209/// otherwise.
9210bool Sema::RequireCompleteExprType(Expr *E, CompleteTypeKind Kind,
9211 TypeDiagnoser &Diagnoser) {
9212 return RequireCompleteType(Loc: E->getExprLoc(), T: getCompletedType(E), Kind,
9213 Diagnoser);
9214}
9215
9216bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
9217 BoundTypeDiagnoser<> Diagnoser(DiagID);
9218 return RequireCompleteExprType(E, Kind: CompleteTypeKind::Default, Diagnoser);
9219}
9220
9221/// Ensure that the type T is a complete type.
9222///
9223/// This routine checks whether the type @p T is complete in any
9224/// context where a complete type is required. If @p T is a complete
9225/// type, returns false. If @p T is a class template specialization,
9226/// this routine then attempts to perform class template
9227/// instantiation. If instantiation fails, or if @p T is incomplete
9228/// and cannot be completed, issues the diagnostic @p diag (giving it
9229/// the type @p T) and returns true.
9230///
9231/// @param Loc The location in the source that the incomplete type
9232/// diagnostic should refer to.
9233///
9234/// @param T The type that this routine is examining for completeness.
9235///
9236/// @param Kind Selects which completeness rules should be applied.
9237///
9238/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
9239/// @c false otherwise.
9240bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9241 CompleteTypeKind Kind,
9242 TypeDiagnoser &Diagnoser) {
9243 if (RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser: &Diagnoser))
9244 return true;
9245 if (const TagType *Tag = T->getAs<TagType>()) {
9246 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
9247 Tag->getDecl()->setCompleteDefinitionRequired();
9248 Consumer.HandleTagDeclRequiredDefinition(D: Tag->getDecl());
9249 }
9250 }
9251 return false;
9252}
9253
9254bool Sema::hasStructuralCompatLayout(Decl *D, Decl *Suggested) {
9255 llvm::DenseSet<std::pair<Decl *, Decl *>> NonEquivalentDecls;
9256 if (!Suggested)
9257 return false;
9258
9259 // FIXME: Add a specific mode for C11 6.2.7/1 in StructuralEquivalenceContext
9260 // and isolate from other C++ specific checks.
9261 StructuralEquivalenceContext Ctx(
9262 D->getASTContext(), Suggested->getASTContext(), NonEquivalentDecls,
9263 StructuralEquivalenceKind::Default,
9264 false /*StrictTypeSpelling*/, true /*Complain*/,
9265 true /*ErrorOnTagTypeMismatch*/);
9266 return Ctx.IsEquivalent(D1: D, D2: Suggested);
9267}
9268
9269bool Sema::hasAcceptableDefinition(NamedDecl *D, NamedDecl **Suggested,
9270 AcceptableKind Kind, bool OnlyNeedComplete) {
9271 // Easy case: if we don't have modules, all declarations are visible.
9272 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
9273 return true;
9274
9275 // If this definition was instantiated from a template, map back to the
9276 // pattern from which it was instantiated.
9277 if (isa<TagDecl>(Val: D) && cast<TagDecl>(Val: D)->isBeingDefined()) {
9278 // We're in the middle of defining it; this definition should be treated
9279 // as visible.
9280 return true;
9281 } else if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) {
9282 if (auto *Pattern = RD->getTemplateInstantiationPattern())
9283 RD = Pattern;
9284 D = RD->getDefinition();
9285 } else if (auto *ED = dyn_cast<EnumDecl>(Val: D)) {
9286 if (auto *Pattern = ED->getTemplateInstantiationPattern())
9287 ED = Pattern;
9288 if (OnlyNeedComplete && (ED->isFixed() || getLangOpts().MSVCCompat)) {
9289 // If the enum has a fixed underlying type, it may have been forward
9290 // declared. In -fms-compatibility, `enum Foo;` will also forward declare
9291 // the enum and assign it the underlying type of `int`. Since we're only
9292 // looking for a complete type (not a definition), any visible declaration
9293 // of it will do.
9294 *Suggested = nullptr;
9295 for (auto *Redecl : ED->redecls()) {
9296 if (isAcceptable(Redecl, Kind))
9297 return true;
9298 if (Redecl->isThisDeclarationADefinition() ||
9299 (Redecl->isCanonicalDecl() && !*Suggested))
9300 *Suggested = Redecl;
9301 }
9302
9303 return false;
9304 }
9305 D = ED->getDefinition();
9306 } else if (auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
9307 if (auto *Pattern = FD->getTemplateInstantiationPattern())
9308 FD = Pattern;
9309 D = FD->getDefinition();
9310 } else if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
9311 if (auto *Pattern = VD->getTemplateInstantiationPattern())
9312 VD = Pattern;
9313 D = VD->getDefinition();
9314 }
9315
9316 assert(D && "missing definition for pattern of instantiated definition");
9317
9318 *Suggested = D;
9319
9320 auto DefinitionIsAcceptable = [&] {
9321 // The (primary) definition might be in a visible module.
9322 if (isAcceptable(D, Kind))
9323 return true;
9324
9325 // A visible module might have a merged definition instead.
9326 if (D->isModulePrivate() ? hasMergedDefinitionInCurrentModule(Def: D)
9327 : hasVisibleMergedDefinition(Def: D)) {
9328 if (CodeSynthesisContexts.empty() &&
9329 !getLangOpts().ModulesLocalVisibility) {
9330 // Cache the fact that this definition is implicitly visible because
9331 // there is a visible merged definition.
9332 D->setVisibleDespiteOwningModule();
9333 }
9334 return true;
9335 }
9336
9337 return false;
9338 };
9339
9340 if (DefinitionIsAcceptable())
9341 return true;
9342
9343 // The external source may have additional definitions of this entity that are
9344 // visible, so complete the redeclaration chain now and ask again.
9345 if (auto *Source = Context.getExternalSource()) {
9346 Source->CompleteRedeclChain(D);
9347 return DefinitionIsAcceptable();
9348 }
9349
9350 return false;
9351}
9352
9353/// Determine whether there is any declaration of \p D that was ever a
9354/// definition (perhaps before module merging) and is currently visible.
9355/// \param D The definition of the entity.
9356/// \param Suggested Filled in with the declaration that should be made visible
9357/// in order to provide a definition of this entity.
9358/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9359/// not defined. This only matters for enums with a fixed underlying
9360/// type, since in all other cases, a type is complete if and only if it
9361/// is defined.
9362bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
9363 bool OnlyNeedComplete) {
9364 return hasAcceptableDefinition(D, Suggested, Kind: Sema::AcceptableKind::Visible,
9365 OnlyNeedComplete);
9366}
9367
9368/// Determine whether there is any declaration of \p D that was ever a
9369/// definition (perhaps before module merging) and is currently
9370/// reachable.
9371/// \param D The definition of the entity.
9372/// \param Suggested Filled in with the declaration that should be made
9373/// reachable
9374/// in order to provide a definition of this entity.
9375/// \param OnlyNeedComplete If \c true, we only need the type to be complete,
9376/// not defined. This only matters for enums with a fixed underlying
9377/// type, since in all other cases, a type is complete if and only if it
9378/// is defined.
9379bool Sema::hasReachableDefinition(NamedDecl *D, NamedDecl **Suggested,
9380 bool OnlyNeedComplete) {
9381 return hasAcceptableDefinition(D, Suggested, Kind: Sema::AcceptableKind::Reachable,
9382 OnlyNeedComplete);
9383}
9384
9385/// Locks in the inheritance model for the given class and all of its bases.
9386static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
9387 RD = RD->getMostRecentNonInjectedDecl();
9388 if (!RD->hasAttr<MSInheritanceAttr>()) {
9389 MSInheritanceModel IM;
9390 bool BestCase = false;
9391 switch (S.MSPointerToMemberRepresentationMethod) {
9392 case LangOptions::PPTMK_BestCase:
9393 BestCase = true;
9394 IM = RD->calculateInheritanceModel();
9395 break;
9396 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
9397 IM = MSInheritanceModel::Single;
9398 break;
9399 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
9400 IM = MSInheritanceModel::Multiple;
9401 break;
9402 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
9403 IM = MSInheritanceModel::Unspecified;
9404 break;
9405 }
9406
9407 SourceRange Loc = S.ImplicitMSInheritanceAttrLoc.isValid()
9408 ? S.ImplicitMSInheritanceAttrLoc
9409 : RD->getSourceRange();
9410 RD->addAttr(MSInheritanceAttr::CreateImplicit(
9411 S.getASTContext(), BestCase, Loc, MSInheritanceAttr::Spelling(IM)));
9412 S.Consumer.AssignInheritanceModel(RD);
9413 }
9414}
9415
9416/// The implementation of RequireCompleteType
9417bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
9418 CompleteTypeKind Kind,
9419 TypeDiagnoser *Diagnoser) {
9420 // FIXME: Add this assertion to make sure we always get instantiation points.
9421 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
9422 // FIXME: Add this assertion to help us flush out problems with
9423 // checking for dependent types and type-dependent expressions.
9424 //
9425 // assert(!T->isDependentType() &&
9426 // "Can't ask whether a dependent type is complete");
9427
9428 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
9429 if (!MPTy->getClass()->isDependentType()) {
9430 if (getLangOpts().CompleteMemberPointers &&
9431 !MPTy->getClass()->getAsCXXRecordDecl()->isBeingDefined() &&
9432 RequireCompleteType(Loc, QualType(MPTy->getClass(), 0), Kind,
9433 diag::err_memptr_incomplete))
9434 return true;
9435
9436 // We lock in the inheritance model once somebody has asked us to ensure
9437 // that a pointer-to-member type is complete.
9438 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9439 (void)isCompleteType(Loc, T: QualType(MPTy->getClass(), 0));
9440 assignInheritanceModel(S&: *this, RD: MPTy->getMostRecentCXXRecordDecl());
9441 }
9442 }
9443 }
9444
9445 NamedDecl *Def = nullptr;
9446 bool AcceptSizeless = (Kind == CompleteTypeKind::AcceptSizeless);
9447 bool Incomplete = (T->isIncompleteType(Def: &Def) ||
9448 (!AcceptSizeless && T->isSizelessBuiltinType()));
9449
9450 // Check that any necessary explicit specializations are visible. For an
9451 // enum, we just need the declaration, so don't check this.
9452 if (Def && !isa<EnumDecl>(Val: Def))
9453 checkSpecializationReachability(Loc, Spec: Def);
9454
9455 // If we have a complete type, we're done.
9456 if (!Incomplete) {
9457 NamedDecl *Suggested = nullptr;
9458 if (Def &&
9459 !hasReachableDefinition(D: Def, Suggested: &Suggested, /*OnlyNeedComplete=*/true)) {
9460 // If the user is going to see an error here, recover by making the
9461 // definition visible.
9462 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
9463 if (Diagnoser && Suggested)
9464 diagnoseMissingImport(Loc, Decl: Suggested, MIK: MissingImportKind::Definition,
9465 /*Recover*/ TreatAsComplete);
9466 return !TreatAsComplete;
9467 } else if (Def && !TemplateInstCallbacks.empty()) {
9468 CodeSynthesisContext TempInst;
9469 TempInst.Kind = CodeSynthesisContext::Memoization;
9470 TempInst.Template = Def;
9471 TempInst.Entity = Def;
9472 TempInst.PointOfInstantiation = Loc;
9473 atTemplateBegin(Callbacks&: TemplateInstCallbacks, TheSema: *this, Inst: TempInst);
9474 atTemplateEnd(Callbacks&: TemplateInstCallbacks, TheSema: *this, Inst: TempInst);
9475 }
9476
9477 return false;
9478 }
9479
9480 TagDecl *Tag = dyn_cast_or_null<TagDecl>(Val: Def);
9481 ObjCInterfaceDecl *IFace = dyn_cast_or_null<ObjCInterfaceDecl>(Val: Def);
9482
9483 // Give the external source a chance to provide a definition of the type.
9484 // This is kept separate from completing the redeclaration chain so that
9485 // external sources such as LLDB can avoid synthesizing a type definition
9486 // unless it's actually needed.
9487 if (Tag || IFace) {
9488 // Avoid diagnosing invalid decls as incomplete.
9489 if (Def->isInvalidDecl())
9490 return true;
9491
9492 // Give the external AST source a chance to complete the type.
9493 if (auto *Source = Context.getExternalSource()) {
9494 if (Tag && Tag->hasExternalLexicalStorage())
9495 Source->CompleteType(Tag);
9496 if (IFace && IFace->hasExternalLexicalStorage())
9497 Source->CompleteType(Class: IFace);
9498 // If the external source completed the type, go through the motions
9499 // again to ensure we're allowed to use the completed type.
9500 if (!T->isIncompleteType())
9501 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9502 }
9503 }
9504
9505 // If we have a class template specialization or a class member of a
9506 // class template specialization, or an array with known size of such,
9507 // try to instantiate it.
9508 if (auto *RD = dyn_cast_or_null<CXXRecordDecl>(Val: Tag)) {
9509 bool Instantiated = false;
9510 bool Diagnosed = false;
9511 if (RD->isDependentContext()) {
9512 // Don't try to instantiate a dependent class (eg, a member template of
9513 // an instantiated class template specialization).
9514 // FIXME: Can this ever happen?
9515 } else if (auto *ClassTemplateSpec =
9516 dyn_cast<ClassTemplateSpecializationDecl>(Val: RD)) {
9517 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
9518 runWithSufficientStackSpace(Loc, Fn: [&] {
9519 Diagnosed = InstantiateClassTemplateSpecialization(
9520 PointOfInstantiation: Loc, ClassTemplateSpec, TSK: TSK_ImplicitInstantiation,
9521 /*Complain=*/Diagnoser);
9522 });
9523 Instantiated = true;
9524 }
9525 } else {
9526 CXXRecordDecl *Pattern = RD->getInstantiatedFromMemberClass();
9527 if (!RD->isBeingDefined() && Pattern) {
9528 MemberSpecializationInfo *MSI = RD->getMemberSpecializationInfo();
9529 assert(MSI && "Missing member specialization information?");
9530 // This record was instantiated from a class within a template.
9531 if (MSI->getTemplateSpecializationKind() !=
9532 TSK_ExplicitSpecialization) {
9533 runWithSufficientStackSpace(Loc, Fn: [&] {
9534 Diagnosed = InstantiateClass(PointOfInstantiation: Loc, Instantiation: RD, Pattern,
9535 TemplateArgs: getTemplateInstantiationArgs(RD),
9536 TSK: TSK_ImplicitInstantiation,
9537 /*Complain=*/Diagnoser);
9538 });
9539 Instantiated = true;
9540 }
9541 }
9542 }
9543
9544 if (Instantiated) {
9545 // Instantiate* might have already complained that the template is not
9546 // defined, if we asked it to.
9547 if (Diagnoser && Diagnosed)
9548 return true;
9549 // If we instantiated a definition, check that it's usable, even if
9550 // instantiation produced an error, so that repeated calls to this
9551 // function give consistent answers.
9552 if (!T->isIncompleteType())
9553 return RequireCompleteTypeImpl(Loc, T, Kind, Diagnoser);
9554 }
9555 }
9556
9557 // FIXME: If we didn't instantiate a definition because of an explicit
9558 // specialization declaration, check that it's visible.
9559
9560 if (!Diagnoser)
9561 return true;
9562
9563 Diagnoser->diagnose(S&: *this, Loc, T);
9564
9565 // If the type was a forward declaration of a class/struct/union
9566 // type, produce a note.
9567 if (Tag && !Tag->isInvalidDecl() && !Tag->getLocation().isInvalid())
9568 Diag(Tag->getLocation(),
9569 Tag->isBeingDefined() ? diag::note_type_being_defined
9570 : diag::note_forward_declaration)
9571 << Context.getTagDeclType(Tag);
9572
9573 // If the Objective-C class was a forward declaration, produce a note.
9574 if (IFace && !IFace->isInvalidDecl() && !IFace->getLocation().isInvalid())
9575 Diag(IFace->getLocation(), diag::note_forward_class);
9576
9577 // If we have external information that we can use to suggest a fix,
9578 // produce a note.
9579 if (ExternalSource)
9580 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
9581
9582 return true;
9583}
9584
9585bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
9586 CompleteTypeKind Kind, unsigned DiagID) {
9587 BoundTypeDiagnoser<> Diagnoser(DiagID);
9588 return RequireCompleteType(Loc, T, Kind, Diagnoser);
9589}
9590
9591/// Get diagnostic %select index for tag kind for
9592/// literal type diagnostic message.
9593/// WARNING: Indexes apply to particular diagnostics only!
9594///
9595/// \returns diagnostic %select index.
9596static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
9597 switch (Tag) {
9598 case TagTypeKind::Struct:
9599 return 0;
9600 case TagTypeKind::Interface:
9601 return 1;
9602 case TagTypeKind::Class:
9603 return 2;
9604 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
9605 }
9606}
9607
9608/// Ensure that the type T is a literal type.
9609///
9610/// This routine checks whether the type @p T is a literal type. If @p T is an
9611/// incomplete type, an attempt is made to complete it. If @p T is a literal
9612/// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
9613/// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
9614/// it the type @p T), along with notes explaining why the type is not a
9615/// literal type, and returns true.
9616///
9617/// @param Loc The location in the source that the non-literal type
9618/// diagnostic should refer to.
9619///
9620/// @param T The type that this routine is examining for literalness.
9621///
9622/// @param Diagnoser Emits a diagnostic if T is not a literal type.
9623///
9624/// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
9625/// @c false otherwise.
9626bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
9627 TypeDiagnoser &Diagnoser) {
9628 assert(!T->isDependentType() && "type should not be dependent");
9629
9630 QualType ElemType = Context.getBaseElementType(QT: T);
9631 if ((isCompleteType(Loc, T: ElemType) || ElemType->isVoidType()) &&
9632 T->isLiteralType(Ctx: Context))
9633 return false;
9634
9635 Diagnoser.diagnose(S&: *this, Loc, T);
9636
9637 if (T->isVariableArrayType())
9638 return true;
9639
9640 const RecordType *RT = ElemType->getAs<RecordType>();
9641 if (!RT)
9642 return true;
9643
9644 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl());
9645
9646 // A partially-defined class type can't be a literal type, because a literal
9647 // class type must have a trivial destructor (which can't be checked until
9648 // the class definition is complete).
9649 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
9650 return true;
9651
9652 // [expr.prim.lambda]p3:
9653 // This class type is [not] a literal type.
9654 if (RD->isLambda() && !getLangOpts().CPlusPlus17) {
9655 Diag(RD->getLocation(), diag::note_non_literal_lambda);
9656 return true;
9657 }
9658
9659 // If the class has virtual base classes, then it's not an aggregate, and
9660 // cannot have any constexpr constructors or a trivial default constructor,
9661 // so is non-literal. This is better to diagnose than the resulting absence
9662 // of constexpr constructors.
9663 if (RD->getNumVBases()) {
9664 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
9665 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
9666 for (const auto &I : RD->vbases())
9667 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
9668 << I.getSourceRange();
9669 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
9670 !RD->hasTrivialDefaultConstructor()) {
9671 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
9672 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
9673 for (const auto &I : RD->bases()) {
9674 if (!I.getType()->isLiteralType(Ctx: Context)) {
9675 Diag(I.getBeginLoc(), diag::note_non_literal_base_class)
9676 << RD << I.getType() << I.getSourceRange();
9677 return true;
9678 }
9679 }
9680 for (const auto *I : RD->fields()) {
9681 if (!I->getType()->isLiteralType(Context) ||
9682 I->getType().isVolatileQualified()) {
9683 Diag(I->getLocation(), diag::note_non_literal_field)
9684 << RD << I << I->getType()
9685 << I->getType().isVolatileQualified();
9686 return true;
9687 }
9688 }
9689 } else if (getLangOpts().CPlusPlus20 ? !RD->hasConstexprDestructor()
9690 : !RD->hasTrivialDestructor()) {
9691 // All fields and bases are of literal types, so have trivial or constexpr
9692 // destructors. If this class's destructor is non-trivial / non-constexpr,
9693 // it must be user-declared.
9694 CXXDestructorDecl *Dtor = RD->getDestructor();
9695 assert(Dtor && "class has literal fields and bases but no dtor?");
9696 if (!Dtor)
9697 return true;
9698
9699 if (getLangOpts().CPlusPlus20) {
9700 Diag(Dtor->getLocation(), diag::note_non_literal_non_constexpr_dtor)
9701 << RD;
9702 } else {
9703 Diag(Dtor->getLocation(), Dtor->isUserProvided()
9704 ? diag::note_non_literal_user_provided_dtor
9705 : diag::note_non_literal_nontrivial_dtor)
9706 << RD;
9707 if (!Dtor->isUserProvided())
9708 SpecialMemberIsTrivial(Dtor, CXXDestructor, TAH_IgnoreTrivialABI,
9709 /*Diagnose*/ true);
9710 }
9711 }
9712
9713 return true;
9714}
9715
9716bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
9717 BoundTypeDiagnoser<> Diagnoser(DiagID);
9718 return RequireLiteralType(Loc, T, Diagnoser);
9719}
9720
9721/// Retrieve a version of the type 'T' that is elaborated by Keyword, qualified
9722/// by the nested-name-specifier contained in SS, and that is (re)declared by
9723/// OwnedTagDecl, which is nullptr if this is not a (re)declaration.
9724QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
9725 const CXXScopeSpec &SS, QualType T,
9726 TagDecl *OwnedTagDecl) {
9727 if (T.isNull())
9728 return T;
9729 return Context.getElaboratedType(
9730 Keyword, NNS: SS.isValid() ? SS.getScopeRep() : nullptr, NamedType: T, OwnedTagDecl);
9731}
9732
9733QualType Sema::BuildTypeofExprType(Expr *E, TypeOfKind Kind) {
9734 assert(!E->hasPlaceholderType() && "unexpected placeholder");
9735
9736 if (!getLangOpts().CPlusPlus && E->refersToBitField())
9737 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
9738 << (Kind == TypeOfKind::Unqualified ? 3 : 2);
9739
9740 if (!E->isTypeDependent()) {
9741 QualType T = E->getType();
9742 if (const TagType *TT = T->getAs<TagType>())
9743 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
9744 }
9745 return Context.getTypeOfExprType(E, Kind);
9746}
9747
9748/// getDecltypeForExpr - Given an expr, will return the decltype for
9749/// that expression, according to the rules in C++11
9750/// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
9751QualType Sema::getDecltypeForExpr(Expr *E) {
9752 if (E->isTypeDependent())
9753 return Context.DependentTy;
9754
9755 Expr *IDExpr = E;
9756 if (auto *ImplCastExpr = dyn_cast<ImplicitCastExpr>(Val: E))
9757 IDExpr = ImplCastExpr->getSubExpr();
9758
9759 if (auto *PackExpr = dyn_cast<PackIndexingExpr>(Val: E))
9760 IDExpr = PackExpr->getSelectedExpr();
9761
9762 // C++11 [dcl.type.simple]p4:
9763 // The type denoted by decltype(e) is defined as follows:
9764
9765 // C++20:
9766 // - if E is an unparenthesized id-expression naming a non-type
9767 // template-parameter (13.2), decltype(E) is the type of the
9768 // template-parameter after performing any necessary type deduction
9769 // Note that this does not pick up the implicit 'const' for a template
9770 // parameter object. This rule makes no difference before C++20 so we apply
9771 // it unconditionally.
9772 if (const auto *SNTTPE = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: IDExpr))
9773 return SNTTPE->getParameterType(Ctx: Context);
9774
9775 // - if e is an unparenthesized id-expression or an unparenthesized class
9776 // member access (5.2.5), decltype(e) is the type of the entity named
9777 // by e. If there is no such entity, or if e names a set of overloaded
9778 // functions, the program is ill-formed;
9779 //
9780 // We apply the same rules for Objective-C ivar and property references.
9781 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: IDExpr)) {
9782 const ValueDecl *VD = DRE->getDecl();
9783 QualType T = VD->getType();
9784 return isa<TemplateParamObjectDecl>(Val: VD) ? T.getUnqualifiedType() : T;
9785 }
9786 if (const auto *ME = dyn_cast<MemberExpr>(Val: IDExpr)) {
9787 if (const auto *VD = ME->getMemberDecl())
9788 if (isa<FieldDecl>(Val: VD) || isa<VarDecl>(Val: VD))
9789 return VD->getType();
9790 } else if (const auto *IR = dyn_cast<ObjCIvarRefExpr>(Val: IDExpr)) {
9791 return IR->getDecl()->getType();
9792 } else if (const auto *PR = dyn_cast<ObjCPropertyRefExpr>(Val: IDExpr)) {
9793 if (PR->isExplicitProperty())
9794 return PR->getExplicitProperty()->getType();
9795 } else if (const auto *PE = dyn_cast<PredefinedExpr>(Val: IDExpr)) {
9796 return PE->getType();
9797 }
9798
9799 // C++11 [expr.lambda.prim]p18:
9800 // Every occurrence of decltype((x)) where x is a possibly
9801 // parenthesized id-expression that names an entity of automatic
9802 // storage duration is treated as if x were transformed into an
9803 // access to a corresponding data member of the closure type that
9804 // would have been declared if x were an odr-use of the denoted
9805 // entity.
9806 if (getCurLambda() && isa<ParenExpr>(Val: IDExpr)) {
9807 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: IDExpr->IgnoreParens())) {
9808 if (auto *Var = dyn_cast<VarDecl>(Val: DRE->getDecl())) {
9809 QualType T = getCapturedDeclRefType(Var, DRE->getLocation());
9810 if (!T.isNull())
9811 return Context.getLValueReferenceType(T);
9812 }
9813 }
9814 }
9815
9816 return Context.getReferenceQualifiedType(e: E);
9817}
9818
9819QualType Sema::BuildDecltypeType(Expr *E, bool AsUnevaluated) {
9820 assert(!E->hasPlaceholderType() && "unexpected placeholder");
9821
9822 if (AsUnevaluated && CodeSynthesisContexts.empty() &&
9823 !E->isInstantiationDependent() && E->HasSideEffects(Ctx: Context, IncludePossibleEffects: false)) {
9824 // The expression operand for decltype is in an unevaluated expression
9825 // context, so side effects could result in unintended consequences.
9826 // Exclude instantiation-dependent expressions, because 'decltype' is often
9827 // used to build SFINAE gadgets.
9828 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
9829 }
9830 return Context.getDecltypeType(e: E, UnderlyingType: getDecltypeForExpr(E));
9831}
9832
9833QualType Sema::ActOnPackIndexingType(QualType Pattern, Expr *IndexExpr,
9834 SourceLocation Loc,
9835 SourceLocation EllipsisLoc) {
9836 if (!IndexExpr)
9837 return QualType();
9838
9839 // Diagnose unexpanded packs but continue to improve recovery.
9840 if (!Pattern->containsUnexpandedParameterPack())
9841 Diag(Loc, diag::err_expected_name_of_pack) << Pattern;
9842
9843 QualType Type = BuildPackIndexingType(Pattern, IndexExpr, Loc, EllipsisLoc);
9844
9845 if (!Type.isNull())
9846 Diag(Loc, getLangOpts().CPlusPlus26 ? diag::warn_cxx23_pack_indexing
9847 : diag::ext_pack_indexing);
9848 return Type;
9849}
9850
9851QualType Sema::BuildPackIndexingType(QualType Pattern, Expr *IndexExpr,
9852 SourceLocation Loc,
9853 SourceLocation EllipsisLoc,
9854 bool FullySubstituted,
9855 ArrayRef<QualType> Expansions) {
9856
9857 std::optional<int64_t> Index;
9858 if (FullySubstituted && !IndexExpr->isValueDependent() &&
9859 !IndexExpr->isTypeDependent()) {
9860 llvm::APSInt Value(Context.getIntWidth(T: Context.getSizeType()));
9861 ExprResult Res = CheckConvertedConstantExpression(
9862 From: IndexExpr, T: Context.getSizeType(), Value, CCE: CCEK_ArrayBound);
9863 if (!Res.isUsable())
9864 return QualType();
9865 Index = Value.getExtValue();
9866 IndexExpr = Res.get();
9867 }
9868
9869 if (FullySubstituted && Index) {
9870 if (*Index < 0 || *Index >= int64_t(Expansions.size())) {
9871 Diag(IndexExpr->getBeginLoc(), diag::err_pack_index_out_of_bound)
9872 << *Index << Pattern << Expansions.size();
9873 return QualType();
9874 }
9875 }
9876
9877 return Context.getPackIndexingType(Pattern, IndexExpr, FullySubstituted,
9878 Expansions, Index: Index.value_or(u: -1));
9879}
9880
9881static QualType GetEnumUnderlyingType(Sema &S, QualType BaseType,
9882 SourceLocation Loc) {
9883 assert(BaseType->isEnumeralType());
9884 EnumDecl *ED = BaseType->castAs<EnumType>()->getDecl();
9885 assert(ED && "EnumType has no EnumDecl");
9886
9887 S.DiagnoseUseOfDecl(ED, Loc);
9888
9889 QualType Underlying = ED->getIntegerType();
9890 assert(!Underlying.isNull());
9891
9892 return Underlying;
9893}
9894
9895QualType Sema::BuiltinEnumUnderlyingType(QualType BaseType,
9896 SourceLocation Loc) {
9897 if (!BaseType->isEnumeralType()) {
9898 Diag(Loc, diag::err_only_enums_have_underlying_types);
9899 return QualType();
9900 }
9901
9902 // The enum could be incomplete if we're parsing its definition or
9903 // recovering from an error.
9904 NamedDecl *FwdDecl = nullptr;
9905 if (BaseType->isIncompleteType(Def: &FwdDecl)) {
9906 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
9907 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
9908 return QualType();
9909 }
9910
9911 return GetEnumUnderlyingType(S&: *this, BaseType, Loc);
9912}
9913
9914QualType Sema::BuiltinAddPointer(QualType BaseType, SourceLocation Loc) {
9915 QualType Pointer = BaseType.isReferenceable() || BaseType->isVoidType()
9916 ? BuildPointerType(T: BaseType.getNonReferenceType(), Loc,
9917 Entity: DeclarationName())
9918 : BaseType;
9919
9920 return Pointer.isNull() ? QualType() : Pointer;
9921}
9922
9923QualType Sema::BuiltinRemovePointer(QualType BaseType, SourceLocation Loc) {
9924 // We don't want block pointers or ObjectiveC's id type.
9925 if (!BaseType->isAnyPointerType() || BaseType->isObjCIdType())
9926 return BaseType;
9927
9928 return BaseType->getPointeeType();
9929}
9930
9931QualType Sema::BuiltinDecay(QualType BaseType, SourceLocation Loc) {
9932 QualType Underlying = BaseType.getNonReferenceType();
9933 if (Underlying->isArrayType())
9934 return Context.getDecayedType(T: Underlying);
9935
9936 if (Underlying->isFunctionType())
9937 return BuiltinAddPointer(BaseType, Loc);
9938
9939 SplitQualType Split = Underlying.getSplitUnqualifiedType();
9940 // std::decay is supposed to produce 'std::remove_cv', but since 'restrict' is
9941 // in the same group of qualifiers as 'const' and 'volatile', we're extending
9942 // '__decay(T)' so that it removes all qualifiers.
9943 Split.Quals.removeCVRQualifiers();
9944 return Context.getQualifiedType(split: Split);
9945}
9946
9947QualType Sema::BuiltinAddReference(QualType BaseType, UTTKind UKind,
9948 SourceLocation Loc) {
9949 assert(LangOpts.CPlusPlus);
9950 QualType Reference =
9951 BaseType.isReferenceable()
9952 ? BuildReferenceType(T: BaseType,
9953 SpelledAsLValue: UKind == UnaryTransformType::AddLvalueReference,
9954 Loc, Entity: DeclarationName())
9955 : BaseType;
9956 return Reference.isNull() ? QualType() : Reference;
9957}
9958
9959QualType Sema::BuiltinRemoveExtent(QualType BaseType, UTTKind UKind,
9960 SourceLocation Loc) {
9961 if (UKind == UnaryTransformType::RemoveAllExtents)
9962 return Context.getBaseElementType(QT: BaseType);
9963
9964 if (const auto *AT = Context.getAsArrayType(T: BaseType))
9965 return AT->getElementType();
9966
9967 return BaseType;
9968}
9969
9970QualType Sema::BuiltinRemoveReference(QualType BaseType, UTTKind UKind,
9971 SourceLocation Loc) {
9972 assert(LangOpts.CPlusPlus);
9973 QualType T = BaseType.getNonReferenceType();
9974 if (UKind == UTTKind::RemoveCVRef &&
9975 (T.isConstQualified() || T.isVolatileQualified())) {
9976 Qualifiers Quals;
9977 QualType Unqual = Context.getUnqualifiedArrayType(T, Quals);
9978 Quals.removeConst();
9979 Quals.removeVolatile();
9980 T = Context.getQualifiedType(T: Unqual, Qs: Quals);
9981 }
9982 return T;
9983}
9984
9985QualType Sema::BuiltinChangeCVRQualifiers(QualType BaseType, UTTKind UKind,
9986 SourceLocation Loc) {
9987 if ((BaseType->isReferenceType() && UKind != UTTKind::RemoveRestrict) ||
9988 BaseType->isFunctionType())
9989 return BaseType;
9990
9991 Qualifiers Quals;
9992 QualType Unqual = Context.getUnqualifiedArrayType(T: BaseType, Quals);
9993
9994 if (UKind == UTTKind::RemoveConst || UKind == UTTKind::RemoveCV)
9995 Quals.removeConst();
9996 if (UKind == UTTKind::RemoveVolatile || UKind == UTTKind::RemoveCV)
9997 Quals.removeVolatile();
9998 if (UKind == UTTKind::RemoveRestrict)
9999 Quals.removeRestrict();
10000
10001 return Context.getQualifiedType(T: Unqual, Qs: Quals);
10002}
10003
10004static QualType ChangeIntegralSignedness(Sema &S, QualType BaseType,
10005 bool IsMakeSigned,
10006 SourceLocation Loc) {
10007 if (BaseType->isEnumeralType()) {
10008 QualType Underlying = GetEnumUnderlyingType(S, BaseType, Loc);
10009 if (auto *BitInt = dyn_cast<BitIntType>(Val&: Underlying)) {
10010 unsigned int Bits = BitInt->getNumBits();
10011 if (Bits > 1)
10012 return S.Context.getBitIntType(Unsigned: !IsMakeSigned, NumBits: Bits);
10013
10014 S.Diag(Loc, diag::err_make_signed_integral_only)
10015 << IsMakeSigned << /*_BitInt(1)*/ true << BaseType << 1 << Underlying;
10016 return QualType();
10017 }
10018 if (Underlying->isBooleanType()) {
10019 S.Diag(Loc, diag::err_make_signed_integral_only)
10020 << IsMakeSigned << /*_BitInt(1)*/ false << BaseType << 1
10021 << Underlying;
10022 return QualType();
10023 }
10024 }
10025
10026 bool Int128Unsupported = !S.Context.getTargetInfo().hasInt128Type();
10027 std::array<CanQualType *, 6> AllSignedIntegers = {
10028 &S.Context.SignedCharTy, &S.Context.ShortTy, &S.Context.IntTy,
10029 &S.Context.LongTy, &S.Context.LongLongTy, &S.Context.Int128Ty};
10030 ArrayRef<CanQualType *> AvailableSignedIntegers(
10031 AllSignedIntegers.data(), AllSignedIntegers.size() - Int128Unsupported);
10032 std::array<CanQualType *, 6> AllUnsignedIntegers = {
10033 &S.Context.UnsignedCharTy, &S.Context.UnsignedShortTy,
10034 &S.Context.UnsignedIntTy, &S.Context.UnsignedLongTy,
10035 &S.Context.UnsignedLongLongTy, &S.Context.UnsignedInt128Ty};
10036 ArrayRef<CanQualType *> AvailableUnsignedIntegers(AllUnsignedIntegers.data(),
10037 AllUnsignedIntegers.size() -
10038 Int128Unsupported);
10039 ArrayRef<CanQualType *> *Consider =
10040 IsMakeSigned ? &AvailableSignedIntegers : &AvailableUnsignedIntegers;
10041
10042 uint64_t BaseSize = S.Context.getTypeSize(T: BaseType);
10043 auto *Result =
10044 llvm::find_if(Range&: *Consider, P: [&S, BaseSize](const CanQual<Type> *T) {
10045 return BaseSize == S.Context.getTypeSize(T: T->getTypePtr());
10046 });
10047
10048 assert(Result != Consider->end());
10049 return QualType((*Result)->getTypePtr(), 0);
10050}
10051
10052QualType Sema::BuiltinChangeSignedness(QualType BaseType, UTTKind UKind,
10053 SourceLocation Loc) {
10054 bool IsMakeSigned = UKind == UnaryTransformType::MakeSigned;
10055 if ((!BaseType->isIntegerType() && !BaseType->isEnumeralType()) ||
10056 BaseType->isBooleanType() ||
10057 (BaseType->isBitIntType() &&
10058 BaseType->getAs<BitIntType>()->getNumBits() < 2)) {
10059 Diag(Loc, diag::err_make_signed_integral_only)
10060 << IsMakeSigned << BaseType->isBitIntType() << BaseType << 0;
10061 return QualType();
10062 }
10063
10064 bool IsNonIntIntegral =
10065 BaseType->isChar16Type() || BaseType->isChar32Type() ||
10066 BaseType->isWideCharType() || BaseType->isEnumeralType();
10067
10068 QualType Underlying =
10069 IsNonIntIntegral
10070 ? ChangeIntegralSignedness(S&: *this, BaseType, IsMakeSigned, Loc)
10071 : IsMakeSigned ? Context.getCorrespondingSignedType(T: BaseType)
10072 : Context.getCorrespondingUnsignedType(T: BaseType);
10073 if (Underlying.isNull())
10074 return Underlying;
10075 return Context.getQualifiedType(T: Underlying, Qs: BaseType.getQualifiers());
10076}
10077
10078QualType Sema::BuildUnaryTransformType(QualType BaseType, UTTKind UKind,
10079 SourceLocation Loc) {
10080 if (BaseType->isDependentType())
10081 return Context.getUnaryTransformType(BaseType, UnderlyingType: BaseType, UKind);
10082 QualType Result;
10083 switch (UKind) {
10084 case UnaryTransformType::EnumUnderlyingType: {
10085 Result = BuiltinEnumUnderlyingType(BaseType, Loc);
10086 break;
10087 }
10088 case UnaryTransformType::AddPointer: {
10089 Result = BuiltinAddPointer(BaseType, Loc);
10090 break;
10091 }
10092 case UnaryTransformType::RemovePointer: {
10093 Result = BuiltinRemovePointer(BaseType, Loc);
10094 break;
10095 }
10096 case UnaryTransformType::Decay: {
10097 Result = BuiltinDecay(BaseType, Loc);
10098 break;
10099 }
10100 case UnaryTransformType::AddLvalueReference:
10101 case UnaryTransformType::AddRvalueReference: {
10102 Result = BuiltinAddReference(BaseType, UKind, Loc);
10103 break;
10104 }
10105 case UnaryTransformType::RemoveAllExtents:
10106 case UnaryTransformType::RemoveExtent: {
10107 Result = BuiltinRemoveExtent(BaseType, UKind, Loc);
10108 break;
10109 }
10110 case UnaryTransformType::RemoveCVRef:
10111 case UnaryTransformType::RemoveReference: {
10112 Result = BuiltinRemoveReference(BaseType, UKind, Loc);
10113 break;
10114 }
10115 case UnaryTransformType::RemoveConst:
10116 case UnaryTransformType::RemoveCV:
10117 case UnaryTransformType::RemoveRestrict:
10118 case UnaryTransformType::RemoveVolatile: {
10119 Result = BuiltinChangeCVRQualifiers(BaseType, UKind, Loc);
10120 break;
10121 }
10122 case UnaryTransformType::MakeSigned:
10123 case UnaryTransformType::MakeUnsigned: {
10124 Result = BuiltinChangeSignedness(BaseType, UKind, Loc);
10125 break;
10126 }
10127 }
10128
10129 return !Result.isNull()
10130 ? Context.getUnaryTransformType(BaseType, UnderlyingType: Result, UKind)
10131 : Result;
10132}
10133
10134QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
10135 if (!isDependentOrGNUAutoType(T)) {
10136 // FIXME: It isn't entirely clear whether incomplete atomic types
10137 // are allowed or not; for simplicity, ban them for the moment.
10138 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
10139 return QualType();
10140
10141 int DisallowedKind = -1;
10142 if (T->isArrayType())
10143 DisallowedKind = 1;
10144 else if (T->isFunctionType())
10145 DisallowedKind = 2;
10146 else if (T->isReferenceType())
10147 DisallowedKind = 3;
10148 else if (T->isAtomicType())
10149 DisallowedKind = 4;
10150 else if (T.hasQualifiers())
10151 DisallowedKind = 5;
10152 else if (T->isSizelessType())
10153 DisallowedKind = 6;
10154 else if (!T.isTriviallyCopyableType(Context) && getLangOpts().CPlusPlus)
10155 // Some other non-trivially-copyable type (probably a C++ class)
10156 DisallowedKind = 7;
10157 else if (T->isBitIntType())
10158 DisallowedKind = 8;
10159 else if (getLangOpts().C23 && T->isUndeducedAutoType())
10160 // _Atomic auto is prohibited in C23
10161 DisallowedKind = 9;
10162
10163 if (DisallowedKind != -1) {
10164 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
10165 return QualType();
10166 }
10167
10168 // FIXME: Do we need any handling for ARC here?
10169 }
10170
10171 // Build the pointer type.
10172 return Context.getAtomicType(T);
10173}
10174

source code of clang/lib/Sema/SemaType.cpp