1//===- SyntheticSections.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains linker-synthesized sections. Currently,
10// synthetic sections are created either output sections or input sections,
11// but we are rewriting code so that all synthetic sections are created as
12// input sections.
13//
14//===----------------------------------------------------------------------===//
15
16#include "SyntheticSections.h"
17#include "Config.h"
18#include "DWARF.h"
19#include "EhFrame.h"
20#include "InputFiles.h"
21#include "LinkerScript.h"
22#include "OutputSections.h"
23#include "SymbolTable.h"
24#include "Symbols.h"
25#include "Target.h"
26#include "Thunks.h"
27#include "Writer.h"
28#include "lld/Common/Version.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/Sequence.h"
31#include "llvm/ADT/SetOperations.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/BinaryFormat/Dwarf.h"
34#include "llvm/BinaryFormat/ELF.h"
35#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
36#include "llvm/DebugInfo/DWARF/DWARFDebugPubTable.h"
37#include "llvm/Support/DJB.h"
38#include "llvm/Support/Endian.h"
39#include "llvm/Support/LEB128.h"
40#include "llvm/Support/Parallel.h"
41#include "llvm/Support/TimeProfiler.h"
42#include <cinttypes>
43#include <cstdlib>
44
45using namespace llvm;
46using namespace llvm::dwarf;
47using namespace llvm::ELF;
48using namespace llvm::object;
49using namespace llvm::support;
50using namespace lld;
51using namespace lld::elf;
52
53using llvm::support::endian::read32le;
54using llvm::support::endian::write32le;
55using llvm::support::endian::write64le;
56
57constexpr size_t MergeNoTailSection::numShards;
58
59static uint64_t readUint(Ctx &ctx, uint8_t *buf) {
60 return ctx.arg.is64 ? read64(ctx, p: buf) : read32(ctx, p: buf);
61}
62
63static void writeUint(Ctx &ctx, uint8_t *buf, uint64_t val) {
64 if (ctx.arg.is64)
65 write64(ctx, p: buf, v: val);
66 else
67 write32(ctx, p: buf, v: val);
68}
69
70// Returns an LLD version string.
71static ArrayRef<uint8_t> getVersion(Ctx &ctx) {
72 // Check LLD_VERSION first for ease of testing.
73 // You can get consistent output by using the environment variable.
74 // This is only for testing.
75 StringRef s = getenv(name: "LLD_VERSION");
76 if (s.empty())
77 s = ctx.saver.save(S: Twine("Linker: ") + getLLDVersion());
78
79 // +1 to include the terminating '\0'.
80 return {(const uint8_t *)s.data(), s.size() + 1};
81}
82
83// Creates a .comment section containing LLD version info.
84// With this feature, you can identify LLD-generated binaries easily
85// by "readelf --string-dump .comment <file>".
86// The returned object is a mergeable string section.
87MergeInputSection *elf::createCommentSection(Ctx &ctx) {
88 auto *sec =
89 make<MergeInputSection>(args&: ctx, args: ".comment", args: SHT_PROGBITS,
90 args: SHF_MERGE | SHF_STRINGS, args: 1, args: getVersion(ctx));
91 sec->splitIntoPieces();
92 return sec;
93}
94
95// .MIPS.abiflags section.
96template <class ELFT>
97MipsAbiFlagsSection<ELFT>::MipsAbiFlagsSection(Ctx &ctx,
98 Elf_Mips_ABIFlags flags)
99 : SyntheticSection(ctx, ".MIPS.abiflags", SHT_MIPS_ABIFLAGS, SHF_ALLOC, 8),
100 flags(flags) {
101 this->entsize = sizeof(Elf_Mips_ABIFlags);
102}
103
104template <class ELFT> void MipsAbiFlagsSection<ELFT>::writeTo(uint8_t *buf) {
105 memcpy(buf, &flags, sizeof(flags));
106}
107
108template <class ELFT>
109std::unique_ptr<MipsAbiFlagsSection<ELFT>>
110MipsAbiFlagsSection<ELFT>::create(Ctx &ctx) {
111 Elf_Mips_ABIFlags flags = {};
112 bool create = false;
113
114 for (InputSectionBase *sec : ctx.inputSections) {
115 if (sec->type != SHT_MIPS_ABIFLAGS)
116 continue;
117 sec->markDead();
118 create = true;
119
120 const size_t size = sec->content().size();
121 // Older version of BFD (such as the default FreeBSD linker) concatenate
122 // .MIPS.abiflags instead of merging. To allow for this case (or potential
123 // zero padding) we ignore everything after the first Elf_Mips_ABIFlags
124 if (size < sizeof(Elf_Mips_ABIFlags)) {
125 Err(ctx) << sec->file << ": invalid size of .MIPS.abiflags section: got "
126 << size << " instead of " << sizeof(Elf_Mips_ABIFlags);
127 return nullptr;
128 }
129 auto *s =
130 reinterpret_cast<const Elf_Mips_ABIFlags *>(sec->content().data());
131 if (s->version != 0) {
132 Err(ctx) << sec->file << ": unexpected .MIPS.abiflags version "
133 << s->version;
134 return nullptr;
135 }
136
137 // LLD checks ISA compatibility in calcMipsEFlags(). Here we just
138 // select the highest number of ISA/Rev/Ext.
139 flags.isa_level = std::max(flags.isa_level, s->isa_level);
140 flags.isa_rev = std::max(flags.isa_rev, s->isa_rev);
141 flags.isa_ext = std::max(flags.isa_ext, s->isa_ext);
142 flags.gpr_size = std::max(flags.gpr_size, s->gpr_size);
143 flags.cpr1_size = std::max(flags.cpr1_size, s->cpr1_size);
144 flags.cpr2_size = std::max(flags.cpr2_size, s->cpr2_size);
145 flags.ases |= s->ases;
146 flags.flags1 |= s->flags1;
147 flags.flags2 |= s->flags2;
148 flags.fp_abi =
149 elf::getMipsFpAbiFlag(ctx, file: sec->file, oldFlag: flags.fp_abi, newFlag: s->fp_abi);
150 };
151
152 if (create)
153 return std::make_unique<MipsAbiFlagsSection<ELFT>>(ctx, flags);
154 return nullptr;
155}
156
157// .MIPS.options section.
158template <class ELFT>
159MipsOptionsSection<ELFT>::MipsOptionsSection(Ctx &ctx, Elf_Mips_RegInfo reginfo)
160 : SyntheticSection(ctx, ".MIPS.options", SHT_MIPS_OPTIONS, SHF_ALLOC, 8),
161 reginfo(reginfo) {
162 this->entsize = sizeof(Elf_Mips_Options) + sizeof(Elf_Mips_RegInfo);
163}
164
165template <class ELFT> void MipsOptionsSection<ELFT>::writeTo(uint8_t *buf) {
166 auto *options = reinterpret_cast<Elf_Mips_Options *>(buf);
167 options->kind = ODK_REGINFO;
168 options->size = getSize();
169
170 if (!ctx.arg.relocatable)
171 reginfo.ri_gp_value = ctx.in.mipsGot->getGp();
172 memcpy(buf + sizeof(Elf_Mips_Options), &reginfo, sizeof(reginfo));
173}
174
175template <class ELFT>
176std::unique_ptr<MipsOptionsSection<ELFT>>
177MipsOptionsSection<ELFT>::create(Ctx &ctx) {
178 // N64 ABI only.
179 if (!ELFT::Is64Bits)
180 return nullptr;
181
182 SmallVector<InputSectionBase *, 0> sections;
183 for (InputSectionBase *sec : ctx.inputSections)
184 if (sec->type == SHT_MIPS_OPTIONS)
185 sections.push_back(Elt: sec);
186
187 if (sections.empty())
188 return nullptr;
189
190 Elf_Mips_RegInfo reginfo = {};
191 for (InputSectionBase *sec : sections) {
192 sec->markDead();
193
194 ArrayRef<uint8_t> d = sec->content();
195 while (!d.empty()) {
196 if (d.size() < sizeof(Elf_Mips_Options)) {
197 Err(ctx) << sec->file << ": invalid size of .MIPS.options section";
198 break;
199 }
200
201 auto *opt = reinterpret_cast<const Elf_Mips_Options *>(d.data());
202 if (opt->kind == ODK_REGINFO) {
203 reginfo.ri_gprmask |= opt->getRegInfo().ri_gprmask;
204 sec->getFile<ELFT>()->mipsGp0 = opt->getRegInfo().ri_gp_value;
205 break;
206 }
207
208 if (!opt->size) {
209 Err(ctx) << sec->file << ": zero option descriptor size";
210 break;
211 }
212 d = d.slice(opt->size);
213 }
214 };
215
216 return std::make_unique<MipsOptionsSection<ELFT>>(ctx, reginfo);
217}
218
219// MIPS .reginfo section.
220template <class ELFT>
221MipsReginfoSection<ELFT>::MipsReginfoSection(Ctx &ctx, Elf_Mips_RegInfo reginfo)
222 : SyntheticSection(ctx, ".reginfo", SHT_MIPS_REGINFO, SHF_ALLOC, 4),
223 reginfo(reginfo) {
224 this->entsize = sizeof(Elf_Mips_RegInfo);
225}
226
227template <class ELFT> void MipsReginfoSection<ELFT>::writeTo(uint8_t *buf) {
228 if (!ctx.arg.relocatable)
229 reginfo.ri_gp_value = ctx.in.mipsGot->getGp();
230 memcpy(buf, &reginfo, sizeof(reginfo));
231}
232
233template <class ELFT>
234std::unique_ptr<MipsReginfoSection<ELFT>>
235MipsReginfoSection<ELFT>::create(Ctx &ctx) {
236 // Section should be alive for O32 and N32 ABIs only.
237 if (ELFT::Is64Bits)
238 return nullptr;
239
240 SmallVector<InputSectionBase *, 0> sections;
241 for (InputSectionBase *sec : ctx.inputSections)
242 if (sec->type == SHT_MIPS_REGINFO)
243 sections.push_back(Elt: sec);
244
245 if (sections.empty())
246 return nullptr;
247
248 Elf_Mips_RegInfo reginfo = {};
249 for (InputSectionBase *sec : sections) {
250 sec->markDead();
251
252 if (sec->content().size() != sizeof(Elf_Mips_RegInfo)) {
253 Err(ctx) << sec->file << ": invalid size of .reginfo section";
254 return nullptr;
255 }
256
257 auto *r = reinterpret_cast<const Elf_Mips_RegInfo *>(sec->content().data());
258 reginfo.ri_gprmask |= r->ri_gprmask;
259 sec->getFile<ELFT>()->mipsGp0 = r->ri_gp_value;
260 };
261
262 return std::make_unique<MipsReginfoSection<ELFT>>(ctx, reginfo);
263}
264
265InputSection *elf::createInterpSection(Ctx &ctx) {
266 // StringSaver guarantees that the returned string ends with '\0'.
267 StringRef s = ctx.saver.save(S: ctx.arg.dynamicLinker);
268 ArrayRef<uint8_t> contents = {(const uint8_t *)s.data(), s.size() + 1};
269
270 return make<InputSection>(args&: ctx.internalFile, args: ".interp", args: SHT_PROGBITS,
271 args: SHF_ALLOC,
272 /*addralign=*/args: 1, /*entsize=*/args: 0, args&: contents);
273}
274
275Defined *elf::addSyntheticLocal(Ctx &ctx, StringRef name, uint8_t type,
276 uint64_t value, uint64_t size,
277 InputSectionBase &section) {
278 Defined *s = makeDefined(args&: ctx, args&: section.file, args&: name, args: STB_LOCAL, args: STV_DEFAULT,
279 args&: type, args&: value, args&: size, args: &section);
280 if (ctx.in.symTab)
281 ctx.in.symTab->addSymbol(sym: s);
282
283 if (ctx.arg.emachine == EM_ARM && !ctx.arg.isLE && ctx.arg.armBe8 &&
284 (section.flags & SHF_EXECINSTR))
285 // Adding Linker generated mapping symbols to the arm specific mapping
286 // symbols list.
287 addArmSyntheticSectionMappingSymbol(s);
288
289 return s;
290}
291
292static size_t getHashSize(Ctx &ctx) {
293 switch (ctx.arg.buildId) {
294 case BuildIdKind::Fast:
295 return 8;
296 case BuildIdKind::Md5:
297 case BuildIdKind::Uuid:
298 return 16;
299 case BuildIdKind::Sha1:
300 return 20;
301 case BuildIdKind::Hexstring:
302 return ctx.arg.buildIdVector.size();
303 default:
304 llvm_unreachable("unknown BuildIdKind");
305 }
306}
307
308// This class represents a linker-synthesized .note.gnu.property section.
309//
310// In x86 and AArch64, object files may contain feature flags indicating the
311// features that they have used. The flags are stored in a .note.gnu.property
312// section.
313//
314// lld reads the sections from input files and merges them by computing AND of
315// the flags. The result is written as a new .note.gnu.property section.
316//
317// If the flag is zero (which indicates that the intersection of the feature
318// sets is empty, or some input files didn't have .note.gnu.property sections),
319// we don't create this section.
320GnuPropertySection::GnuPropertySection(Ctx &ctx)
321 : SyntheticSection(ctx, ".note.gnu.property", SHT_NOTE, SHF_ALLOC,
322 ctx.arg.wordsize) {}
323
324void GnuPropertySection::writeTo(uint8_t *buf) {
325 uint32_t featureAndType;
326 switch (ctx.arg.emachine) {
327 case EM_386:
328 case EM_X86_64:
329 featureAndType = GNU_PROPERTY_X86_FEATURE_1_AND;
330 break;
331 case EM_AARCH64:
332 featureAndType = GNU_PROPERTY_AARCH64_FEATURE_1_AND;
333 break;
334 case EM_RISCV:
335 featureAndType = GNU_PROPERTY_RISCV_FEATURE_1_AND;
336 break;
337 default:
338 llvm_unreachable(
339 "target machine does not support .note.gnu.property section");
340 }
341
342 write32(ctx, p: buf, v: 4); // Name size
343 write32(ctx, p: buf + 4, v: getSize() - 16); // Content size
344 write32(ctx, p: buf + 8, v: NT_GNU_PROPERTY_TYPE_0); // Type
345 memcpy(dest: buf + 12, src: "GNU", n: 4); // Name string
346
347 unsigned offset = 16;
348 if (ctx.arg.andFeatures != 0) {
349 write32(ctx, p: buf + offset + 0, v: featureAndType); // Feature type
350 write32(ctx, p: buf + offset + 4, v: 4); // Feature size
351 write32(ctx, p: buf + offset + 8, v: ctx.arg.andFeatures); // Feature flags
352 if (ctx.arg.is64)
353 write32(ctx, p: buf + offset + 12, v: 0); // Padding
354 offset += 16;
355 }
356
357 if (!ctx.aarch64PauthAbiCoreInfo.empty()) {
358 write32(ctx, p: buf + offset + 0, v: GNU_PROPERTY_AARCH64_FEATURE_PAUTH);
359 write32(ctx, p: buf + offset + 4, v: ctx.aarch64PauthAbiCoreInfo.size());
360 memcpy(dest: buf + offset + 8, src: ctx.aarch64PauthAbiCoreInfo.data(),
361 n: ctx.aarch64PauthAbiCoreInfo.size());
362 }
363}
364
365size_t GnuPropertySection::getSize() const {
366 uint32_t contentSize = 0;
367 if (ctx.arg.andFeatures != 0)
368 contentSize += ctx.arg.is64 ? 16 : 12;
369 if (!ctx.aarch64PauthAbiCoreInfo.empty())
370 contentSize += 4 + 4 + ctx.aarch64PauthAbiCoreInfo.size();
371 assert(contentSize != 0);
372 return contentSize + 16;
373}
374
375BuildIdSection::BuildIdSection(Ctx &ctx)
376 : SyntheticSection(ctx, ".note.gnu.build-id", SHT_NOTE, SHF_ALLOC, 4),
377 hashSize(getHashSize(ctx)) {}
378
379void BuildIdSection::writeTo(uint8_t *buf) {
380 write32(ctx, p: buf, v: 4); // Name size
381 write32(ctx, p: buf + 4, v: hashSize); // Content size
382 write32(ctx, p: buf + 8, v: NT_GNU_BUILD_ID); // Type
383 memcpy(dest: buf + 12, src: "GNU", n: 4); // Name string
384 hashBuf = buf + 16;
385}
386
387void BuildIdSection::writeBuildId(ArrayRef<uint8_t> buf) {
388 assert(buf.size() == hashSize);
389 memcpy(dest: hashBuf, src: buf.data(), n: hashSize);
390}
391
392BssSection::BssSection(Ctx &ctx, StringRef name, uint64_t size,
393 uint32_t alignment)
394 : SyntheticSection(ctx, name, SHT_NOBITS, SHF_ALLOC | SHF_WRITE,
395 alignment) {
396 this->bss = true;
397 this->size = size;
398}
399
400EhFrameSection::EhFrameSection(Ctx &ctx)
401 : SyntheticSection(ctx, ".eh_frame", SHT_PROGBITS, SHF_ALLOC, 1) {}
402
403// Search for an existing CIE record or create a new one.
404// CIE records from input object files are uniquified by their contents
405// and where their relocations point to.
406template <class ELFT, class RelTy>
407CieRecord *EhFrameSection::addCie(EhSectionPiece &cie, ArrayRef<RelTy> rels) {
408 Symbol *personality = nullptr;
409 unsigned firstRelI = cie.firstRelocation;
410 if (firstRelI != (unsigned)-1)
411 personality = &cie.sec->file->getRelocTargetSym(rels[firstRelI]);
412
413 // Search for an existing CIE by CIE contents/relocation target pair.
414 CieRecord *&rec = cieMap[{cie.data(), personality}];
415
416 // If not found, create a new one.
417 if (!rec) {
418 rec = make<CieRecord>();
419 rec->cie = &cie;
420 cieRecords.push_back(Elt: rec);
421 }
422 return rec;
423}
424
425// There is one FDE per function. Returns a non-null pointer to the function
426// symbol if the given FDE points to a live function.
427template <class ELFT, class RelTy>
428Defined *EhFrameSection::isFdeLive(EhSectionPiece &fde, ArrayRef<RelTy> rels) {
429 auto *sec = cast<EhInputSection>(Val: fde.sec);
430 unsigned firstRelI = fde.firstRelocation;
431
432 // An FDE should point to some function because FDEs are to describe
433 // functions. That's however not always the case due to an issue of
434 // ld.gold with -r. ld.gold may discard only functions and leave their
435 // corresponding FDEs, which results in creating bad .eh_frame sections.
436 // To deal with that, we ignore such FDEs.
437 if (firstRelI == (unsigned)-1)
438 return nullptr;
439
440 const RelTy &rel = rels[firstRelI];
441 Symbol &b = sec->file->getRelocTargetSym(rel);
442
443 // FDEs for garbage-collected or merged-by-ICF sections, or sections in
444 // another partition, are dead.
445 if (auto *d = dyn_cast<Defined>(Val: &b))
446 if (!d->folded && d->section && d->section->partition == partition)
447 return d;
448 return nullptr;
449}
450
451// .eh_frame is a sequence of CIE or FDE records. In general, there
452// is one CIE record per input object file which is followed by
453// a list of FDEs. This function searches an existing CIE or create a new
454// one and associates FDEs to the CIE.
455template <class ELFT, class RelTy>
456void EhFrameSection::addRecords(EhInputSection *sec, ArrayRef<RelTy> rels) {
457 offsetToCie.clear();
458 for (EhSectionPiece &cie : sec->cies)
459 offsetToCie[cie.inputOff] = addCie<ELFT>(cie, rels);
460 for (EhSectionPiece &fde : sec->fdes) {
461 uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4);
462 CieRecord *rec = offsetToCie[fde.inputOff + 4 - id];
463 if (!rec)
464 Fatal(ctx) << sec << ": invalid CIE reference";
465
466 if (!isFdeLive<ELFT>(fde, rels))
467 continue;
468 rec->fdes.push_back(Elt: &fde);
469 numFdes++;
470 }
471}
472
473template <class ELFT>
474void EhFrameSection::addSectionAux(EhInputSection *sec) {
475 if (!sec->isLive())
476 return;
477 const RelsOrRelas<ELFT> rels =
478 sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false);
479 if (rels.areRelocsRel())
480 addRecords<ELFT>(sec, rels.rels);
481 else
482 addRecords<ELFT>(sec, rels.relas);
483}
484
485// Used by ICF<ELFT>::handleLSDA(). This function is very similar to
486// EhFrameSection::addRecords().
487template <class ELFT, class RelTy>
488void EhFrameSection::iterateFDEWithLSDAAux(
489 EhInputSection &sec, ArrayRef<RelTy> rels, DenseSet<size_t> &ciesWithLSDA,
490 llvm::function_ref<void(InputSection &)> fn) {
491 for (EhSectionPiece &cie : sec.cies)
492 if (hasLSDA(p: cie))
493 ciesWithLSDA.insert(V: cie.inputOff);
494 for (EhSectionPiece &fde : sec.fdes) {
495 uint32_t id = endian::read32<ELFT::Endianness>(fde.data().data() + 4);
496 if (!ciesWithLSDA.contains(V: fde.inputOff + 4 - id))
497 continue;
498
499 // The CIE has a LSDA argument. Call fn with d's section.
500 if (Defined *d = isFdeLive<ELFT>(fde, rels))
501 if (auto *s = dyn_cast_or_null<InputSection>(Val: d->section))
502 fn(*s);
503 }
504}
505
506template <class ELFT>
507void EhFrameSection::iterateFDEWithLSDA(
508 llvm::function_ref<void(InputSection &)> fn) {
509 DenseSet<size_t> ciesWithLSDA;
510 for (EhInputSection *sec : sections) {
511 ciesWithLSDA.clear();
512 const RelsOrRelas<ELFT> rels =
513 sec->template relsOrRelas<ELFT>(/*supportsCrel=*/false);
514 if (rels.areRelocsRel())
515 iterateFDEWithLSDAAux<ELFT>(*sec, rels.rels, ciesWithLSDA, fn);
516 else
517 iterateFDEWithLSDAAux<ELFT>(*sec, rels.relas, ciesWithLSDA, fn);
518 }
519}
520
521static void writeCieFde(Ctx &ctx, uint8_t *buf, ArrayRef<uint8_t> d) {
522 memcpy(dest: buf, src: d.data(), n: d.size());
523 // Fix the size field. -4 since size does not include the size field itself.
524 write32(ctx, p: buf, v: d.size() - 4);
525}
526
527void EhFrameSection::finalizeContents() {
528 assert(!this->size); // Not finalized.
529
530 switch (ctx.arg.ekind) {
531 case ELFNoneKind:
532 llvm_unreachable("invalid ekind");
533 case ELF32LEKind:
534 for (EhInputSection *sec : sections)
535 addSectionAux<ELF32LE>(sec);
536 break;
537 case ELF32BEKind:
538 for (EhInputSection *sec : sections)
539 addSectionAux<ELF32BE>(sec);
540 break;
541 case ELF64LEKind:
542 for (EhInputSection *sec : sections)
543 addSectionAux<ELF64LE>(sec);
544 break;
545 case ELF64BEKind:
546 for (EhInputSection *sec : sections)
547 addSectionAux<ELF64BE>(sec);
548 break;
549 }
550
551 size_t off = 0;
552 for (CieRecord *rec : cieRecords) {
553 rec->cie->outputOff = off;
554 off += rec->cie->size;
555
556 for (EhSectionPiece *fde : rec->fdes) {
557 fde->outputOff = off;
558 off += fde->size;
559 }
560 }
561
562 // The LSB standard does not allow a .eh_frame section with zero
563 // Call Frame Information records. glibc unwind-dw2-fde.c
564 // classify_object_over_fdes expects there is a CIE record length 0 as a
565 // terminator. Thus we add one unconditionally.
566 off += 4;
567
568 this->size = off;
569}
570
571// Returns data for .eh_frame_hdr. .eh_frame_hdr is a binary search table
572// to get an FDE from an address to which FDE is applied. This function
573// returns a list of such pairs.
574SmallVector<EhFrameSection::FdeData, 0> EhFrameSection::getFdeData() const {
575 uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff;
576 SmallVector<FdeData, 0> ret;
577
578 uint64_t va = getPartition(ctx).ehFrameHdr->getVA();
579 for (CieRecord *rec : cieRecords) {
580 uint8_t enc = getFdeEncoding(p: rec->cie);
581 for (EhSectionPiece *fde : rec->fdes) {
582 uint64_t pc = getFdePc(buf, off: fde->outputOff, enc);
583 uint64_t fdeVA = getParent()->addr + fde->outputOff;
584 if (!isInt<32>(x: pc - va)) {
585 Err(ctx) << fde->sec << ": PC offset is too large: 0x"
586 << Twine::utohexstr(Val: pc - va);
587 continue;
588 }
589 ret.push_back(Elt: {.pcRel: uint32_t(pc - va), .fdeVARel: uint32_t(fdeVA - va)});
590 }
591 }
592
593 // Sort the FDE list by their PC and uniqueify. Usually there is only
594 // one FDE for a PC (i.e. function), but if ICF merges two functions
595 // into one, there can be more than one FDEs pointing to the address.
596 auto less = [](const FdeData &a, const FdeData &b) {
597 return a.pcRel < b.pcRel;
598 };
599 llvm::stable_sort(Range&: ret, C: less);
600 auto eq = [](const FdeData &a, const FdeData &b) {
601 return a.pcRel == b.pcRel;
602 };
603 ret.erase(CS: llvm::unique(R&: ret, P: eq), CE: ret.end());
604
605 return ret;
606}
607
608static uint64_t readFdeAddr(Ctx &ctx, uint8_t *buf, int size) {
609 switch (size) {
610 case DW_EH_PE_udata2:
611 return read16(ctx, p: buf);
612 case DW_EH_PE_sdata2:
613 return (int16_t)read16(ctx, p: buf);
614 case DW_EH_PE_udata4:
615 return read32(ctx, p: buf);
616 case DW_EH_PE_sdata4:
617 return (int32_t)read32(ctx, p: buf);
618 case DW_EH_PE_udata8:
619 case DW_EH_PE_sdata8:
620 return read64(ctx, p: buf);
621 case DW_EH_PE_absptr:
622 return readUint(ctx, buf);
623 }
624 Err(ctx) << "unknown FDE size encoding";
625 return 0;
626}
627
628// Returns the VA to which a given FDE (on a mmap'ed buffer) is applied to.
629// We need it to create .eh_frame_hdr section.
630uint64_t EhFrameSection::getFdePc(uint8_t *buf, size_t fdeOff,
631 uint8_t enc) const {
632 // The starting address to which this FDE applies is
633 // stored at FDE + 8 byte. And this offset is within
634 // the .eh_frame section.
635 size_t off = fdeOff + 8;
636 uint64_t addr = readFdeAddr(ctx, buf: buf + off, size: enc & 0xf);
637 if ((enc & 0x70) == DW_EH_PE_absptr)
638 return ctx.arg.is64 ? addr : uint32_t(addr);
639 if ((enc & 0x70) == DW_EH_PE_pcrel)
640 return addr + getParent()->addr + off + outSecOff;
641 Err(ctx) << "unknown FDE size relative encoding";
642 return 0;
643}
644
645void EhFrameSection::writeTo(uint8_t *buf) {
646 // Write CIE and FDE records.
647 for (CieRecord *rec : cieRecords) {
648 size_t cieOffset = rec->cie->outputOff;
649 writeCieFde(ctx, buf: buf + cieOffset, d: rec->cie->data());
650
651 for (EhSectionPiece *fde : rec->fdes) {
652 size_t off = fde->outputOff;
653 writeCieFde(ctx, buf: buf + off, d: fde->data());
654
655 // FDE's second word should have the offset to an associated CIE.
656 // Write it.
657 write32(ctx, p: buf + off + 4, v: off + 4 - cieOffset);
658 }
659 }
660
661 // Apply relocations. .eh_frame section contents are not contiguous
662 // in the output buffer, but relocateAlloc() still works because
663 // getOffset() takes care of discontiguous section pieces.
664 for (EhInputSection *s : sections)
665 ctx.target->relocateAlloc(sec&: *s, buf);
666
667 if (getPartition(ctx).ehFrameHdr && getPartition(ctx).ehFrameHdr->getParent())
668 getPartition(ctx).ehFrameHdr->write();
669}
670
671GotSection::GotSection(Ctx &ctx)
672 : SyntheticSection(ctx, ".got", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE,
673 ctx.target->gotEntrySize) {
674 numEntries = ctx.target->gotHeaderEntriesNum;
675}
676
677void GotSection::addConstant(const Relocation &r) { relocations.push_back(Elt: r); }
678void GotSection::addEntry(const Symbol &sym) {
679 assert(sym.auxIdx == ctx.symAux.size() - 1);
680 ctx.symAux.back().gotIdx = numEntries++;
681}
682
683void GotSection::addAuthEntry(const Symbol &sym) {
684 authEntries.push_back(
685 Elt: {.offset: (numEntries - 1) * ctx.target->gotEntrySize, .isSymbolFunc: sym.isFunc()});
686}
687
688bool GotSection::addTlsDescEntry(const Symbol &sym) {
689 assert(sym.auxIdx == ctx.symAux.size() - 1);
690 ctx.symAux.back().tlsDescIdx = numEntries;
691 numEntries += 2;
692 return true;
693}
694
695void GotSection::addTlsDescAuthEntry() {
696 authEntries.push_back(Elt: {.offset: (numEntries - 2) * ctx.target->gotEntrySize, .isSymbolFunc: true});
697 authEntries.push_back(Elt: {.offset: (numEntries - 1) * ctx.target->gotEntrySize, .isSymbolFunc: false});
698}
699
700bool GotSection::addDynTlsEntry(const Symbol &sym) {
701 assert(sym.auxIdx == ctx.symAux.size() - 1);
702 ctx.symAux.back().tlsGdIdx = numEntries;
703 // Global Dynamic TLS entries take two GOT slots.
704 numEntries += 2;
705 return true;
706}
707
708// Reserves TLS entries for a TLS module ID and a TLS block offset.
709// In total it takes two GOT slots.
710bool GotSection::addTlsIndex() {
711 if (tlsIndexOff != uint32_t(-1))
712 return false;
713 tlsIndexOff = numEntries * ctx.target->gotEntrySize;
714 numEntries += 2;
715 return true;
716}
717
718uint32_t GotSection::getTlsDescOffset(const Symbol &sym) const {
719 return sym.getTlsDescIdx(ctx) * ctx.target->gotEntrySize;
720}
721
722uint64_t GotSection::getTlsDescAddr(const Symbol &sym) const {
723 return getVA() + getTlsDescOffset(sym);
724}
725
726uint64_t GotSection::getGlobalDynAddr(const Symbol &b) const {
727 return this->getVA() + b.getTlsGdIdx(ctx) * ctx.target->gotEntrySize;
728}
729
730uint64_t GotSection::getGlobalDynOffset(const Symbol &b) const {
731 return b.getTlsGdIdx(ctx) * ctx.target->gotEntrySize;
732}
733
734void GotSection::finalizeContents() {
735 if (ctx.arg.emachine == EM_PPC64 &&
736 numEntries <= ctx.target->gotHeaderEntriesNum &&
737 !ctx.sym.globalOffsetTable)
738 size = 0;
739 else
740 size = numEntries * ctx.target->gotEntrySize;
741}
742
743bool GotSection::isNeeded() const {
744 // Needed if the GOT symbol is used or the number of entries is more than just
745 // the header. A GOT with just the header may not be needed.
746 return hasGotOffRel || numEntries > ctx.target->gotHeaderEntriesNum;
747}
748
749void GotSection::writeTo(uint8_t *buf) {
750 // On PPC64 .got may be needed but empty. Skip the write.
751 if (size == 0)
752 return;
753 ctx.target->writeGotHeader(buf);
754 ctx.target->relocateAlloc(sec&: *this, buf);
755 for (const AuthEntryInfo &authEntry : authEntries) {
756 // https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#default-signing-schema
757 // Signed GOT entries use the IA key for symbols of type STT_FUNC and the
758 // DA key for all other symbol types, with the address of the GOT entry as
759 // the modifier. The static linker must encode the signing schema into the
760 // GOT slot.
761 //
762 // https://github.com/ARM-software/abi-aa/blob/2024Q3/pauthabielf64/pauthabielf64.rst#encoding-the-signing-schema
763 // If address diversity is set and the discriminator
764 // is 0 then modifier = Place
765 uint8_t *dest = buf + authEntry.offset;
766 uint64_t key = authEntry.isSymbolFunc ? /*IA=*/0b00 : /*DA=*/0b10;
767 uint64_t addrDiversity = 1;
768 write64(ctx, p: dest, v: (addrDiversity << 63) | (key << 60));
769 }
770}
771
772static uint64_t getMipsPageAddr(uint64_t addr) {
773 return (addr + 0x8000) & ~0xffff;
774}
775
776static uint64_t getMipsPageCount(uint64_t size) {
777 return (size + 0xfffe) / 0xffff + 1;
778}
779
780MipsGotSection::MipsGotSection(Ctx &ctx)
781 : SyntheticSection(ctx, ".got", SHT_PROGBITS,
782 SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL, 16) {}
783
784void MipsGotSection::addEntry(InputFile &file, Symbol &sym, int64_t addend,
785 RelExpr expr) {
786 FileGot &g = getGot(f&: file);
787 if (expr == RE_MIPS_GOT_LOCAL_PAGE) {
788 if (const OutputSection *os = sym.getOutputSection())
789 g.pagesMap.insert(KV: {os, {}});
790 else
791 g.local16.insert(KV: {{nullptr, getMipsPageAddr(addr: sym.getVA(ctx, addend))}, 0});
792 } else if (sym.isTls())
793 g.tls.insert(KV: {&sym, 0});
794 else if (sym.isPreemptible && expr == R_ABS)
795 g.relocs.insert(KV: {&sym, 0});
796 else if (sym.isPreemptible)
797 g.global.insert(KV: {&sym, 0});
798 else if (expr == RE_MIPS_GOT_OFF32)
799 g.local32.insert(KV: {{&sym, addend}, 0});
800 else
801 g.local16.insert(KV: {{&sym, addend}, 0});
802}
803
804void MipsGotSection::addDynTlsEntry(InputFile &file, Symbol &sym) {
805 getGot(f&: file).dynTlsSymbols.insert(KV: {&sym, 0});
806}
807
808void MipsGotSection::addTlsIndex(InputFile &file) {
809 getGot(f&: file).dynTlsSymbols.insert(KV: {nullptr, 0});
810}
811
812size_t MipsGotSection::FileGot::getEntriesNum() const {
813 return getPageEntriesNum() + local16.size() + global.size() + relocs.size() +
814 tls.size() + dynTlsSymbols.size() * 2;
815}
816
817size_t MipsGotSection::FileGot::getPageEntriesNum() const {
818 size_t num = 0;
819 for (const std::pair<const OutputSection *, FileGot::PageBlock> &p : pagesMap)
820 num += p.second.count;
821 return num;
822}
823
824size_t MipsGotSection::FileGot::getIndexedEntriesNum() const {
825 size_t count = getPageEntriesNum() + local16.size() + global.size();
826 // If there are relocation-only entries in the GOT, TLS entries
827 // are allocated after them. TLS entries should be addressable
828 // by 16-bit index so count both reloc-only and TLS entries.
829 if (!tls.empty() || !dynTlsSymbols.empty())
830 count += relocs.size() + tls.size() + dynTlsSymbols.size() * 2;
831 return count;
832}
833
834MipsGotSection::FileGot &MipsGotSection::getGot(InputFile &f) {
835 if (f.mipsGotIndex == uint32_t(-1)) {
836 gots.emplace_back();
837 gots.back().file = &f;
838 f.mipsGotIndex = gots.size() - 1;
839 }
840 return gots[f.mipsGotIndex];
841}
842
843uint64_t MipsGotSection::getPageEntryOffset(const InputFile *f,
844 const Symbol &sym,
845 int64_t addend) const {
846 const FileGot &g = gots[f->mipsGotIndex];
847 uint64_t index = 0;
848 if (const OutputSection *outSec = sym.getOutputSection()) {
849 uint64_t secAddr = getMipsPageAddr(addr: outSec->addr);
850 uint64_t symAddr = getMipsPageAddr(addr: sym.getVA(ctx, addend));
851 index = g.pagesMap.lookup(Key: outSec).firstIndex + (symAddr - secAddr) / 0xffff;
852 } else {
853 index =
854 g.local16.lookup(Key: {nullptr, getMipsPageAddr(addr: sym.getVA(ctx, addend))});
855 }
856 return index * ctx.arg.wordsize;
857}
858
859uint64_t MipsGotSection::getSymEntryOffset(const InputFile *f, const Symbol &s,
860 int64_t addend) const {
861 const FileGot &g = gots[f->mipsGotIndex];
862 Symbol *sym = const_cast<Symbol *>(&s);
863 if (sym->isTls())
864 return g.tls.lookup(Key: sym) * ctx.arg.wordsize;
865 if (sym->isPreemptible)
866 return g.global.lookup(Key: sym) * ctx.arg.wordsize;
867 return g.local16.lookup(Key: {sym, addend}) * ctx.arg.wordsize;
868}
869
870uint64_t MipsGotSection::getTlsIndexOffset(const InputFile *f) const {
871 const FileGot &g = gots[f->mipsGotIndex];
872 return g.dynTlsSymbols.lookup(Key: nullptr) * ctx.arg.wordsize;
873}
874
875uint64_t MipsGotSection::getGlobalDynOffset(const InputFile *f,
876 const Symbol &s) const {
877 const FileGot &g = gots[f->mipsGotIndex];
878 Symbol *sym = const_cast<Symbol *>(&s);
879 return g.dynTlsSymbols.lookup(Key: sym) * ctx.arg.wordsize;
880}
881
882const Symbol *MipsGotSection::getFirstGlobalEntry() const {
883 if (gots.empty())
884 return nullptr;
885 const FileGot &primGot = gots.front();
886 if (!primGot.global.empty())
887 return primGot.global.front().first;
888 if (!primGot.relocs.empty())
889 return primGot.relocs.front().first;
890 return nullptr;
891}
892
893unsigned MipsGotSection::getLocalEntriesNum() const {
894 if (gots.empty())
895 return headerEntriesNum;
896 return headerEntriesNum + gots.front().getPageEntriesNum() +
897 gots.front().local16.size();
898}
899
900bool MipsGotSection::tryMergeGots(FileGot &dst, FileGot &src, bool isPrimary) {
901 FileGot tmp = dst;
902 set_union(S1&: tmp.pagesMap, S2: src.pagesMap);
903 set_union(S1&: tmp.local16, S2: src.local16);
904 set_union(S1&: tmp.global, S2: src.global);
905 set_union(S1&: tmp.relocs, S2: src.relocs);
906 set_union(S1&: tmp.tls, S2: src.tls);
907 set_union(S1&: tmp.dynTlsSymbols, S2: src.dynTlsSymbols);
908
909 size_t count = isPrimary ? headerEntriesNum : 0;
910 count += tmp.getIndexedEntriesNum();
911
912 if (count * ctx.arg.wordsize > ctx.arg.mipsGotSize)
913 return false;
914
915 std::swap(a&: tmp, b&: dst);
916 return true;
917}
918
919void MipsGotSection::finalizeContents() { updateAllocSize(ctx); }
920
921bool MipsGotSection::updateAllocSize(Ctx &ctx) {
922 size = headerEntriesNum * ctx.arg.wordsize;
923 for (const FileGot &g : gots)
924 size += g.getEntriesNum() * ctx.arg.wordsize;
925 return false;
926}
927
928void MipsGotSection::build() {
929 if (gots.empty())
930 return;
931
932 std::vector<FileGot> mergedGots(1);
933
934 // For each GOT move non-preemptible symbols from the `Global`
935 // to `Local16` list. Preemptible symbol might become non-preemptible
936 // one if, for example, it gets a related copy relocation.
937 for (FileGot &got : gots) {
938 for (auto &p: got.global)
939 if (!p.first->isPreemptible)
940 got.local16.insert(KV: {{p.first, 0}, 0});
941 got.global.remove_if(Pred: [&](const std::pair<Symbol *, size_t> &p) {
942 return !p.first->isPreemptible;
943 });
944 }
945
946 // For each GOT remove "reloc-only" entry if there is "global"
947 // entry for the same symbol. And add local entries which indexed
948 // using 32-bit value at the end of 16-bit entries.
949 for (FileGot &got : gots) {
950 got.relocs.remove_if(Pred: [&](const std::pair<Symbol *, size_t> &p) {
951 return got.global.count(Key: p.first);
952 });
953 set_union(S1&: got.local16, S2: got.local32);
954 got.local32.clear();
955 }
956
957 // Evaluate number of "reloc-only" entries in the resulting GOT.
958 // To do that put all unique "reloc-only" and "global" entries
959 // from all GOTs to the future primary GOT.
960 FileGot *primGot = &mergedGots.front();
961 for (FileGot &got : gots) {
962 set_union(S1&: primGot->relocs, S2: got.global);
963 set_union(S1&: primGot->relocs, S2: got.relocs);
964 got.relocs.clear();
965 }
966
967 // Evaluate number of "page" entries in each GOT.
968 for (FileGot &got : gots) {
969 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
970 got.pagesMap) {
971 const OutputSection *os = p.first;
972 uint64_t secSize = 0;
973 for (SectionCommand *cmd : os->commands) {
974 if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd))
975 for (InputSection *isec : isd->sections) {
976 uint64_t off = alignToPowerOf2(Value: secSize, Align: isec->addralign);
977 secSize = off + isec->getSize();
978 }
979 }
980 p.second.count = getMipsPageCount(size: secSize);
981 }
982 }
983
984 // Merge GOTs. Try to join as much as possible GOTs but do not exceed
985 // maximum GOT size. At first, try to fill the primary GOT because
986 // the primary GOT can be accessed in the most effective way. If it
987 // is not possible, try to fill the last GOT in the list, and finally
988 // create a new GOT if both attempts failed.
989 for (FileGot &srcGot : gots) {
990 InputFile *file = srcGot.file;
991 if (tryMergeGots(dst&: mergedGots.front(), src&: srcGot, isPrimary: true)) {
992 file->mipsGotIndex = 0;
993 } else {
994 // If this is the first time we failed to merge with the primary GOT,
995 // MergedGots.back() will also be the primary GOT. We must make sure not
996 // to try to merge again with isPrimary=false, as otherwise, if the
997 // inputs are just right, we could allow the primary GOT to become 1 or 2
998 // words bigger due to ignoring the header size.
999 if (mergedGots.size() == 1 ||
1000 !tryMergeGots(dst&: mergedGots.back(), src&: srcGot, isPrimary: false)) {
1001 mergedGots.emplace_back();
1002 std::swap(a&: mergedGots.back(), b&: srcGot);
1003 }
1004 file->mipsGotIndex = mergedGots.size() - 1;
1005 }
1006 }
1007 std::swap(x&: gots, y&: mergedGots);
1008
1009 // Reduce number of "reloc-only" entries in the primary GOT
1010 // by subtracting "global" entries in the primary GOT.
1011 primGot = &gots.front();
1012 primGot->relocs.remove_if(Pred: [&](const std::pair<Symbol *, size_t> &p) {
1013 return primGot->global.count(Key: p.first);
1014 });
1015
1016 // Calculate indexes for each GOT entry.
1017 size_t index = headerEntriesNum;
1018 for (FileGot &got : gots) {
1019 got.startIndex = &got == primGot ? 0 : index;
1020 for (std::pair<const OutputSection *, FileGot::PageBlock> &p :
1021 got.pagesMap) {
1022 // For each output section referenced by GOT page relocations calculate
1023 // and save into pagesMap an upper bound of MIPS GOT entries required
1024 // to store page addresses of local symbols. We assume the worst case -
1025 // each 64kb page of the output section has at least one GOT relocation
1026 // against it. And take in account the case when the section intersects
1027 // page boundaries.
1028 p.second.firstIndex = index;
1029 index += p.second.count;
1030 }
1031 for (auto &p: got.local16)
1032 p.second = index++;
1033 for (auto &p: got.global)
1034 p.second = index++;
1035 for (auto &p: got.relocs)
1036 p.second = index++;
1037 for (auto &p: got.tls)
1038 p.second = index++;
1039 for (auto &p: got.dynTlsSymbols) {
1040 p.second = index;
1041 index += 2;
1042 }
1043 }
1044
1045 // Update SymbolAux::gotIdx field to use this
1046 // value later in the `sortMipsSymbols` function.
1047 for (auto &p : primGot->global) {
1048 if (p.first->auxIdx == 0)
1049 p.first->allocateAux(ctx);
1050 ctx.symAux.back().gotIdx = p.second;
1051 }
1052 for (auto &p : primGot->relocs) {
1053 if (p.first->auxIdx == 0)
1054 p.first->allocateAux(ctx);
1055 ctx.symAux.back().gotIdx = p.second;
1056 }
1057
1058 // Create dynamic relocations.
1059 for (FileGot &got : gots) {
1060 // Create dynamic relocations for TLS entries.
1061 for (std::pair<Symbol *, size_t> &p : got.tls) {
1062 Symbol *s = p.first;
1063 uint64_t offset = p.second * ctx.arg.wordsize;
1064 // When building a shared library we still need a dynamic relocation
1065 // for the TP-relative offset as we don't know how much other data will
1066 // be allocated before us in the static TLS block.
1067 if (s->isPreemptible || ctx.arg.shared)
1068 ctx.mainPart->relaDyn->addReloc(
1069 reloc: {ctx.target->tlsGotRel, this, offset,
1070 DynamicReloc::AgainstSymbolWithTargetVA, *s, 0, R_ABS});
1071 }
1072 for (std::pair<Symbol *, size_t> &p : got.dynTlsSymbols) {
1073 Symbol *s = p.first;
1074 uint64_t offset = p.second * ctx.arg.wordsize;
1075 if (s == nullptr) {
1076 if (!ctx.arg.shared)
1077 continue;
1078 ctx.mainPart->relaDyn->addReloc(
1079 reloc: {ctx.target->tlsModuleIndexRel, this, offset});
1080 } else {
1081 // When building a shared library we still need a dynamic relocation
1082 // for the module index. Therefore only checking for
1083 // S->isPreemptible is not sufficient (this happens e.g. for
1084 // thread-locals that have been marked as local through a linker script)
1085 if (!s->isPreemptible && !ctx.arg.shared)
1086 continue;
1087 ctx.mainPart->relaDyn->addSymbolReloc(dynType: ctx.target->tlsModuleIndexRel,
1088 isec&: *this, offsetInSec: offset, sym&: *s);
1089 // However, we can skip writing the TLS offset reloc for non-preemptible
1090 // symbols since it is known even in shared libraries
1091 if (!s->isPreemptible)
1092 continue;
1093 offset += ctx.arg.wordsize;
1094 ctx.mainPart->relaDyn->addSymbolReloc(dynType: ctx.target->tlsOffsetRel, isec&: *this,
1095 offsetInSec: offset, sym&: *s);
1096 }
1097 }
1098
1099 // Do not create dynamic relocations for non-TLS
1100 // entries in the primary GOT.
1101 if (&got == primGot)
1102 continue;
1103
1104 // Dynamic relocations for "global" entries.
1105 for (const std::pair<Symbol *, size_t> &p : got.global) {
1106 uint64_t offset = p.second * ctx.arg.wordsize;
1107 ctx.mainPart->relaDyn->addSymbolReloc(dynType: ctx.target->relativeRel, isec&: *this,
1108 offsetInSec: offset, sym&: *p.first);
1109 }
1110 if (!ctx.arg.isPic)
1111 continue;
1112 // Dynamic relocations for "local" entries in case of PIC.
1113 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1114 got.pagesMap) {
1115 size_t pageCount = l.second.count;
1116 for (size_t pi = 0; pi < pageCount; ++pi) {
1117 uint64_t offset = (l.second.firstIndex + pi) * ctx.arg.wordsize;
1118 ctx.mainPart->relaDyn->addReloc(reloc: {ctx.target->relativeRel, this, offset,
1119 l.first, int64_t(pi * 0x10000)});
1120 }
1121 }
1122 for (const std::pair<GotEntry, size_t> &p : got.local16) {
1123 uint64_t offset = p.second * ctx.arg.wordsize;
1124 ctx.mainPart->relaDyn->addReloc(reloc: {ctx.target->relativeRel, this, offset,
1125 DynamicReloc::AddendOnlyWithTargetVA,
1126 *p.first.first, p.first.second, R_ABS});
1127 }
1128 }
1129}
1130
1131bool MipsGotSection::isNeeded() const {
1132 // We add the .got section to the result for dynamic MIPS target because
1133 // its address and properties are mentioned in the .dynamic section.
1134 return !ctx.arg.relocatable;
1135}
1136
1137uint64_t MipsGotSection::getGp(const InputFile *f) const {
1138 // For files without related GOT or files refer a primary GOT
1139 // returns "common" _gp value. For secondary GOTs calculate
1140 // individual _gp values.
1141 if (!f || f->mipsGotIndex == uint32_t(-1) || f->mipsGotIndex == 0)
1142 return ctx.sym.mipsGp->getVA(ctx, addend: 0);
1143 return getVA() + gots[f->mipsGotIndex].startIndex * ctx.arg.wordsize + 0x7ff0;
1144}
1145
1146void MipsGotSection::writeTo(uint8_t *buf) {
1147 // Set the MSB of the second GOT slot. This is not required by any
1148 // MIPS ABI documentation, though.
1149 //
1150 // There is a comment in glibc saying that "The MSB of got[1] of a
1151 // gnu object is set to identify gnu objects," and in GNU gold it
1152 // says "the second entry will be used by some runtime loaders".
1153 // But how this field is being used is unclear.
1154 //
1155 // We are not really willing to mimic other linkers behaviors
1156 // without understanding why they do that, but because all files
1157 // generated by GNU tools have this special GOT value, and because
1158 // we've been doing this for years, it is probably a safe bet to
1159 // keep doing this for now. We really need to revisit this to see
1160 // if we had to do this.
1161 writeUint(ctx, buf: buf + ctx.arg.wordsize,
1162 val: (uint64_t)1 << (ctx.arg.wordsize * 8 - 1));
1163 for (const FileGot &g : gots) {
1164 auto write = [&](size_t i, const Symbol *s, int64_t a) {
1165 uint64_t va = a;
1166 if (s)
1167 va = s->getVA(ctx, addend: a);
1168 writeUint(ctx, buf: buf + i * ctx.arg.wordsize, val: va);
1169 };
1170 // Write 'page address' entries to the local part of the GOT.
1171 for (const std::pair<const OutputSection *, FileGot::PageBlock> &l :
1172 g.pagesMap) {
1173 size_t pageCount = l.second.count;
1174 uint64_t firstPageAddr = getMipsPageAddr(addr: l.first->addr);
1175 for (size_t pi = 0; pi < pageCount; ++pi)
1176 write(l.second.firstIndex + pi, nullptr, firstPageAddr + pi * 0x10000);
1177 }
1178 // Local, global, TLS, reloc-only entries.
1179 // If TLS entry has a corresponding dynamic relocations, leave it
1180 // initialized by zero. Write down adjusted TLS symbol's values otherwise.
1181 // To calculate the adjustments use offsets for thread-local storage.
1182 // http://web.archive.org/web/20190324223224/https://www.linux-mips.org/wiki/NPTL
1183 for (const std::pair<GotEntry, size_t> &p : g.local16)
1184 write(p.second, p.first.first, p.first.second);
1185 // Write VA to the primary GOT only. For secondary GOTs that
1186 // will be done by REL32 dynamic relocations.
1187 if (&g == &gots.front())
1188 for (const std::pair<Symbol *, size_t> &p : g.global)
1189 write(p.second, p.first, 0);
1190 for (const std::pair<Symbol *, size_t> &p : g.relocs)
1191 write(p.second, p.first, 0);
1192 for (const std::pair<Symbol *, size_t> &p : g.tls)
1193 write(p.second, p.first,
1194 p.first->isPreemptible || ctx.arg.shared ? 0 : -0x7000);
1195 for (const std::pair<Symbol *, size_t> &p : g.dynTlsSymbols) {
1196 if (p.first == nullptr && !ctx.arg.shared)
1197 write(p.second, nullptr, 1);
1198 else if (p.first && !p.first->isPreemptible) {
1199 // If we are emitting a shared library with relocations we mustn't write
1200 // anything to the GOT here. When using Elf_Rel relocations the value
1201 // one will be treated as an addend and will cause crashes at runtime
1202 if (!ctx.arg.shared)
1203 write(p.second, nullptr, 1);
1204 write(p.second + 1, p.first, -0x8000);
1205 }
1206 }
1207 }
1208}
1209
1210// On PowerPC the .plt section is used to hold the table of function addresses
1211// instead of the .got.plt, and the type is SHT_NOBITS similar to a .bss
1212// section. I don't know why we have a BSS style type for the section but it is
1213// consistent across both 64-bit PowerPC ABIs as well as the 32-bit PowerPC ABI.
1214GotPltSection::GotPltSection(Ctx &ctx)
1215 : SyntheticSection(ctx, ".got.plt", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE,
1216 ctx.target->gotEntrySize) {
1217 if (ctx.arg.emachine == EM_PPC) {
1218 name = ".plt";
1219 } else if (ctx.arg.emachine == EM_PPC64) {
1220 type = SHT_NOBITS;
1221 name = ".plt";
1222 }
1223}
1224
1225void GotPltSection::addEntry(Symbol &sym) {
1226 assert(sym.auxIdx == ctx.symAux.size() - 1 &&
1227 ctx.symAux.back().pltIdx == entries.size());
1228 entries.push_back(Elt: &sym);
1229}
1230
1231size_t GotPltSection::getSize() const {
1232 return (ctx.target->gotPltHeaderEntriesNum + entries.size()) *
1233 ctx.target->gotEntrySize;
1234}
1235
1236void GotPltSection::writeTo(uint8_t *buf) {
1237 ctx.target->writeGotPltHeader(buf);
1238 buf += ctx.target->gotPltHeaderEntriesNum * ctx.target->gotEntrySize;
1239 for (const Symbol *b : entries) {
1240 ctx.target->writeGotPlt(buf, s: *b);
1241 buf += ctx.target->gotEntrySize;
1242 }
1243}
1244
1245bool GotPltSection::isNeeded() const {
1246 // We need to emit GOTPLT even if it's empty if there's a relocation relative
1247 // to it.
1248 return !entries.empty() || hasGotPltOffRel;
1249}
1250
1251static StringRef getIgotPltName(Ctx &ctx) {
1252 // On ARM the IgotPltSection is part of the GotSection.
1253 if (ctx.arg.emachine == EM_ARM)
1254 return ".got";
1255
1256 // On PowerPC64 the GotPltSection is renamed to '.plt' so the IgotPltSection
1257 // needs to be named the same.
1258 if (ctx.arg.emachine == EM_PPC64)
1259 return ".plt";
1260
1261 return ".got.plt";
1262}
1263
1264// On PowerPC64 the GotPltSection type is SHT_NOBITS so we have to follow suit
1265// with the IgotPltSection.
1266IgotPltSection::IgotPltSection(Ctx &ctx)
1267 : SyntheticSection(ctx, getIgotPltName(ctx),
1268 ctx.arg.emachine == EM_PPC64 ? SHT_NOBITS : SHT_PROGBITS,
1269 SHF_ALLOC | SHF_WRITE, ctx.target->gotEntrySize) {}
1270
1271void IgotPltSection::addEntry(Symbol &sym) {
1272 assert(ctx.symAux.back().pltIdx == entries.size());
1273 entries.push_back(Elt: &sym);
1274}
1275
1276size_t IgotPltSection::getSize() const {
1277 return entries.size() * ctx.target->gotEntrySize;
1278}
1279
1280void IgotPltSection::writeTo(uint8_t *buf) {
1281 for (const Symbol *b : entries) {
1282 ctx.target->writeIgotPlt(buf, s: *b);
1283 buf += ctx.target->gotEntrySize;
1284 }
1285}
1286
1287StringTableSection::StringTableSection(Ctx &ctx, StringRef name, bool dynamic)
1288 : SyntheticSection(ctx, name, SHT_STRTAB, dynamic ? (uint64_t)SHF_ALLOC : 0,
1289 1),
1290 dynamic(dynamic) {
1291 // ELF string tables start with a NUL byte.
1292 strings.push_back(Elt: "");
1293 stringMap.try_emplace(Key: CachedHashStringRef(""), Args: 0);
1294 size = 1;
1295}
1296
1297// Adds a string to the string table. If `hashIt` is true we hash and check for
1298// duplicates. It is optional because the name of global symbols are already
1299// uniqued and hashing them again has a big cost for a small value: uniquing
1300// them with some other string that happens to be the same.
1301unsigned StringTableSection::addString(StringRef s, bool hashIt) {
1302 if (hashIt) {
1303 auto r = stringMap.try_emplace(Key: CachedHashStringRef(s), Args&: size);
1304 if (!r.second)
1305 return r.first->second;
1306 }
1307 if (s.empty())
1308 return 0;
1309 unsigned ret = this->size;
1310 this->size = this->size + s.size() + 1;
1311 strings.push_back(Elt: s);
1312 return ret;
1313}
1314
1315void StringTableSection::writeTo(uint8_t *buf) {
1316 for (StringRef s : strings) {
1317 memcpy(dest: buf, src: s.data(), n: s.size());
1318 buf[s.size()] = '\0';
1319 buf += s.size() + 1;
1320 }
1321}
1322
1323// Returns the number of entries in .gnu.version_d: the number of
1324// non-VER_NDX_LOCAL-non-VER_NDX_GLOBAL definitions, plus 1.
1325// Note that we don't support vd_cnt > 1 yet.
1326static unsigned getVerDefNum(Ctx &ctx) {
1327 return namedVersionDefs(ctx).size() + 1;
1328}
1329
1330template <class ELFT>
1331DynamicSection<ELFT>::DynamicSection(Ctx &ctx)
1332 : SyntheticSection(ctx, ".dynamic", SHT_DYNAMIC, SHF_ALLOC | SHF_WRITE,
1333 ctx.arg.wordsize) {
1334 this->entsize = ELFT::Is64Bits ? 16 : 8;
1335
1336 // .dynamic section is not writable on MIPS and on Fuchsia OS
1337 // which passes -z rodynamic.
1338 // See "Special Section" in Chapter 4 in the following document:
1339 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
1340 if (ctx.arg.emachine == EM_MIPS || ctx.arg.zRodynamic)
1341 this->flags = SHF_ALLOC;
1342}
1343
1344// The output section .rela.dyn may include these synthetic sections:
1345//
1346// - part.relaDyn
1347// - ctx.in.relaPlt: this is included if a linker script places .rela.plt inside
1348// .rela.dyn
1349//
1350// DT_RELASZ is the total size of the included sections.
1351static uint64_t addRelaSz(Ctx &ctx, const RelocationBaseSection &relaDyn) {
1352 size_t size = relaDyn.getSize();
1353 if (ctx.in.relaPlt->getParent() == relaDyn.getParent())
1354 size += ctx.in.relaPlt->getSize();
1355 return size;
1356}
1357
1358// A Linker script may assign the RELA relocation sections to the same
1359// output section. When this occurs we cannot just use the OutputSection
1360// Size. Moreover the [DT_JMPREL, DT_JMPREL + DT_PLTRELSZ) is permitted to
1361// overlap with the [DT_RELA, DT_RELA + DT_RELASZ).
1362static uint64_t addPltRelSz(Ctx &ctx) { return ctx.in.relaPlt->getSize(); }
1363
1364// Add remaining entries to complete .dynamic contents.
1365template <class ELFT>
1366std::vector<std::pair<int32_t, uint64_t>>
1367DynamicSection<ELFT>::computeContents() {
1368 elf::Partition &part = getPartition(ctx);
1369 bool isMain = part.name.empty();
1370 std::vector<std::pair<int32_t, uint64_t>> entries;
1371
1372 auto addInt = [&](int32_t tag, uint64_t val) {
1373 entries.emplace_back(args&: tag, args&: val);
1374 };
1375 auto addInSec = [&](int32_t tag, const InputSection &sec) {
1376 entries.emplace_back(args&: tag, args: sec.getVA());
1377 };
1378
1379 for (StringRef s : ctx.arg.filterList)
1380 addInt(DT_FILTER, part.dynStrTab->addString(s));
1381 for (StringRef s : ctx.arg.auxiliaryList)
1382 addInt(DT_AUXILIARY, part.dynStrTab->addString(s));
1383
1384 if (!ctx.arg.rpath.empty())
1385 addInt(ctx.arg.enableNewDtags ? DT_RUNPATH : DT_RPATH,
1386 part.dynStrTab->addString(s: ctx.arg.rpath));
1387
1388 for (SharedFile *file : ctx.sharedFiles)
1389 if (file->isNeeded)
1390 addInt(DT_NEEDED, part.dynStrTab->addString(s: file->soName));
1391
1392 if (isMain) {
1393 if (!ctx.arg.soName.empty())
1394 addInt(DT_SONAME, part.dynStrTab->addString(s: ctx.arg.soName));
1395 } else {
1396 if (!ctx.arg.soName.empty())
1397 addInt(DT_NEEDED, part.dynStrTab->addString(s: ctx.arg.soName));
1398 addInt(DT_SONAME, part.dynStrTab->addString(s: part.name));
1399 }
1400
1401 // Set DT_FLAGS and DT_FLAGS_1.
1402 uint32_t dtFlags = 0;
1403 uint32_t dtFlags1 = 0;
1404 if (ctx.arg.bsymbolic == BsymbolicKind::All)
1405 dtFlags |= DF_SYMBOLIC;
1406 if (ctx.arg.zGlobal)
1407 dtFlags1 |= DF_1_GLOBAL;
1408 if (ctx.arg.zInitfirst)
1409 dtFlags1 |= DF_1_INITFIRST;
1410 if (ctx.arg.zInterpose)
1411 dtFlags1 |= DF_1_INTERPOSE;
1412 if (ctx.arg.zNodefaultlib)
1413 dtFlags1 |= DF_1_NODEFLIB;
1414 if (ctx.arg.zNodelete)
1415 dtFlags1 |= DF_1_NODELETE;
1416 if (ctx.arg.zNodlopen)
1417 dtFlags1 |= DF_1_NOOPEN;
1418 if (ctx.arg.pie)
1419 dtFlags1 |= DF_1_PIE;
1420 if (ctx.arg.zNow) {
1421 dtFlags |= DF_BIND_NOW;
1422 dtFlags1 |= DF_1_NOW;
1423 }
1424 if (ctx.arg.zOrigin) {
1425 dtFlags |= DF_ORIGIN;
1426 dtFlags1 |= DF_1_ORIGIN;
1427 }
1428 if (!ctx.arg.zText)
1429 dtFlags |= DF_TEXTREL;
1430 if (ctx.hasTlsIe && ctx.arg.shared)
1431 dtFlags |= DF_STATIC_TLS;
1432
1433 if (dtFlags)
1434 addInt(DT_FLAGS, dtFlags);
1435 if (dtFlags1)
1436 addInt(DT_FLAGS_1, dtFlags1);
1437
1438 // DT_DEBUG is a pointer to debug information used by debuggers at runtime. We
1439 // need it for each process, so we don't write it for DSOs. The loader writes
1440 // the pointer into this entry.
1441 //
1442 // DT_DEBUG is the only .dynamic entry that needs to be written to. Some
1443 // systems (currently only Fuchsia OS) provide other means to give the
1444 // debugger this information. Such systems may choose make .dynamic read-only.
1445 // If the target is such a system (used -z rodynamic) don't write DT_DEBUG.
1446 if (!ctx.arg.shared && !ctx.arg.relocatable && !ctx.arg.zRodynamic)
1447 addInt(DT_DEBUG, 0);
1448
1449 if (part.relaDyn->isNeeded()) {
1450 addInSec(part.relaDyn->dynamicTag, *part.relaDyn);
1451 entries.emplace_back(part.relaDyn->sizeDynamicTag,
1452 addRelaSz(ctx, *part.relaDyn));
1453
1454 bool isRela = ctx.arg.isRela;
1455 addInt(isRela ? DT_RELAENT : DT_RELENT,
1456 isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel));
1457
1458 // MIPS dynamic loader does not support RELCOUNT tag.
1459 // The problem is in the tight relation between dynamic
1460 // relocations and GOT. So do not emit this tag on MIPS.
1461 if (ctx.arg.emachine != EM_MIPS) {
1462 size_t numRelativeRels = part.relaDyn->getRelativeRelocCount();
1463 if (ctx.arg.zCombreloc && numRelativeRels)
1464 addInt(isRela ? DT_RELACOUNT : DT_RELCOUNT, numRelativeRels);
1465 }
1466 }
1467 if (part.relrDyn && part.relrDyn->getParent() &&
1468 !part.relrDyn->relocs.empty()) {
1469 addInSec(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELR : DT_RELR,
1470 *part.relrDyn);
1471 addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRSZ : DT_RELRSZ,
1472 part.relrDyn->getParent()->size);
1473 addInt(ctx.arg.useAndroidRelrTags ? DT_ANDROID_RELRENT : DT_RELRENT,
1474 sizeof(Elf_Relr));
1475 }
1476 if (part.relrAuthDyn && part.relrAuthDyn->getParent() &&
1477 !part.relrAuthDyn->relocs.empty()) {
1478 addInSec(DT_AARCH64_AUTH_RELR, *part.relrAuthDyn);
1479 addInt(DT_AARCH64_AUTH_RELRSZ, part.relrAuthDyn->getParent()->size);
1480 addInt(DT_AARCH64_AUTH_RELRENT, sizeof(Elf_Relr));
1481 }
1482 if (isMain && ctx.in.relaPlt->isNeeded()) {
1483 addInSec(DT_JMPREL, *ctx.in.relaPlt);
1484 entries.emplace_back(DT_PLTRELSZ, addPltRelSz(ctx));
1485 switch (ctx.arg.emachine) {
1486 case EM_MIPS:
1487 addInSec(DT_MIPS_PLTGOT, *ctx.in.gotPlt);
1488 break;
1489 case EM_S390:
1490 addInSec(DT_PLTGOT, *ctx.in.got);
1491 break;
1492 case EM_SPARCV9:
1493 addInSec(DT_PLTGOT, *ctx.in.plt);
1494 break;
1495 case EM_AARCH64:
1496 if (llvm::find_if(ctx.in.relaPlt->relocs, [&ctx = ctx](
1497 const DynamicReloc &r) {
1498 return r.type == ctx.target->pltRel &&
1499 r.sym->stOther & STO_AARCH64_VARIANT_PCS;
1500 }) != ctx.in.relaPlt->relocs.end())
1501 addInt(DT_AARCH64_VARIANT_PCS, 0);
1502 addInSec(DT_PLTGOT, *ctx.in.gotPlt);
1503 break;
1504 case EM_RISCV:
1505 if (llvm::any_of(ctx.in.relaPlt->relocs, [&ctx = ctx](
1506 const DynamicReloc &r) {
1507 return r.type == ctx.target->pltRel &&
1508 (r.sym->stOther & STO_RISCV_VARIANT_CC);
1509 }))
1510 addInt(DT_RISCV_VARIANT_CC, 0);
1511 [[fallthrough]];
1512 default:
1513 addInSec(DT_PLTGOT, *ctx.in.gotPlt);
1514 break;
1515 }
1516 addInt(DT_PLTREL, ctx.arg.isRela ? DT_RELA : DT_REL);
1517 }
1518
1519 if (ctx.arg.emachine == EM_AARCH64) {
1520 if (ctx.arg.andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
1521 addInt(DT_AARCH64_BTI_PLT, 0);
1522 if (ctx.arg.zPacPlt)
1523 addInt(DT_AARCH64_PAC_PLT, 0);
1524
1525 if (hasMemtag(ctx)) {
1526 addInt(DT_AARCH64_MEMTAG_MODE, ctx.arg.androidMemtagMode == NT_MEMTAG_LEVEL_ASYNC);
1527 addInt(DT_AARCH64_MEMTAG_HEAP, ctx.arg.androidMemtagHeap);
1528 addInt(DT_AARCH64_MEMTAG_STACK, ctx.arg.androidMemtagStack);
1529 if (ctx.mainPart->memtagGlobalDescriptors->isNeeded()) {
1530 addInSec(DT_AARCH64_MEMTAG_GLOBALS,
1531 *ctx.mainPart->memtagGlobalDescriptors);
1532 addInt(DT_AARCH64_MEMTAG_GLOBALSSZ,
1533 ctx.mainPart->memtagGlobalDescriptors->getSize());
1534 }
1535 }
1536 }
1537
1538 addInSec(DT_SYMTAB, *part.dynSymTab);
1539 addInt(DT_SYMENT, sizeof(Elf_Sym));
1540 addInSec(DT_STRTAB, *part.dynStrTab);
1541 addInt(DT_STRSZ, part.dynStrTab->getSize());
1542 if (!ctx.arg.zText)
1543 addInt(DT_TEXTREL, 0);
1544 if (part.gnuHashTab && part.gnuHashTab->getParent())
1545 addInSec(DT_GNU_HASH, *part.gnuHashTab);
1546 if (part.hashTab && part.hashTab->getParent())
1547 addInSec(DT_HASH, *part.hashTab);
1548
1549 if (isMain) {
1550 if (ctx.out.preinitArray) {
1551 addInt(DT_PREINIT_ARRAY, ctx.out.preinitArray->addr);
1552 addInt(DT_PREINIT_ARRAYSZ, ctx.out.preinitArray->size);
1553 }
1554 if (ctx.out.initArray) {
1555 addInt(DT_INIT_ARRAY, ctx.out.initArray->addr);
1556 addInt(DT_INIT_ARRAYSZ, ctx.out.initArray->size);
1557 }
1558 if (ctx.out.finiArray) {
1559 addInt(DT_FINI_ARRAY, ctx.out.finiArray->addr);
1560 addInt(DT_FINI_ARRAYSZ, ctx.out.finiArray->size);
1561 }
1562
1563 if (Symbol *b = ctx.symtab->find(name: ctx.arg.init))
1564 if (b->isDefined())
1565 addInt(DT_INIT, b->getVA(ctx));
1566 if (Symbol *b = ctx.symtab->find(name: ctx.arg.fini))
1567 if (b->isDefined())
1568 addInt(DT_FINI, b->getVA(ctx));
1569 }
1570
1571 if (part.verSym && part.verSym->isNeeded())
1572 addInSec(DT_VERSYM, *part.verSym);
1573 if (part.verDef && part.verDef->isLive()) {
1574 addInSec(DT_VERDEF, *part.verDef);
1575 addInt(DT_VERDEFNUM, getVerDefNum(ctx));
1576 }
1577 if (part.verNeed && part.verNeed->isNeeded()) {
1578 addInSec(DT_VERNEED, *part.verNeed);
1579 unsigned needNum = 0;
1580 for (SharedFile *f : ctx.sharedFiles)
1581 if (!f->vernauxs.empty())
1582 ++needNum;
1583 addInt(DT_VERNEEDNUM, needNum);
1584 }
1585
1586 if (ctx.arg.emachine == EM_MIPS) {
1587 addInt(DT_MIPS_RLD_VERSION, 1);
1588 addInt(DT_MIPS_FLAGS, RHF_NOTPOT);
1589 addInt(DT_MIPS_BASE_ADDRESS, ctx.target->getImageBase());
1590 addInt(DT_MIPS_SYMTABNO, part.dynSymTab->getNumSymbols());
1591 addInt(DT_MIPS_LOCAL_GOTNO, ctx.in.mipsGot->getLocalEntriesNum());
1592
1593 if (const Symbol *b = ctx.in.mipsGot->getFirstGlobalEntry())
1594 addInt(DT_MIPS_GOTSYM, b->dynsymIndex);
1595 else
1596 addInt(DT_MIPS_GOTSYM, part.dynSymTab->getNumSymbols());
1597 addInSec(DT_PLTGOT, *ctx.in.mipsGot);
1598 if (ctx.in.mipsRldMap) {
1599 if (!ctx.arg.pie)
1600 addInSec(DT_MIPS_RLD_MAP, *ctx.in.mipsRldMap);
1601 // Store the offset to the .rld_map section
1602 // relative to the address of the tag.
1603 addInt(DT_MIPS_RLD_MAP_REL,
1604 ctx.in.mipsRldMap->getVA() - (getVA() + entries.size() * entsize));
1605 }
1606 }
1607
1608 // DT_PPC_GOT indicates to glibc Secure PLT is used. If DT_PPC_GOT is absent,
1609 // glibc assumes the old-style BSS PLT layout which we don't support.
1610 if (ctx.arg.emachine == EM_PPC)
1611 addInSec(DT_PPC_GOT, *ctx.in.got);
1612
1613 // Glink dynamic tag is required by the V2 abi if the plt section isn't empty.
1614 if (ctx.arg.emachine == EM_PPC64 && ctx.in.plt->isNeeded()) {
1615 // The Glink tag points to 32 bytes before the first lazy symbol resolution
1616 // stub, which starts directly after the header.
1617 addInt(DT_PPC64_GLINK,
1618 ctx.in.plt->getVA() + ctx.target->pltHeaderSize - 32);
1619 }
1620
1621 if (ctx.arg.emachine == EM_PPC64)
1622 addInt(DT_PPC64_OPT, ctx.target->ppc64DynamicSectionOpt);
1623
1624 addInt(DT_NULL, 0);
1625 return entries;
1626}
1627
1628template <class ELFT> void DynamicSection<ELFT>::finalizeContents() {
1629 if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
1630 getParent()->link = sec->sectionIndex;
1631 this->size = computeContents().size() * this->entsize;
1632}
1633
1634template <class ELFT> void DynamicSection<ELFT>::writeTo(uint8_t *buf) {
1635 auto *p = reinterpret_cast<Elf_Dyn *>(buf);
1636
1637 for (std::pair<int32_t, uint64_t> kv : computeContents()) {
1638 p->d_tag = kv.first;
1639 p->d_un.d_val = kv.second;
1640 ++p;
1641 }
1642}
1643
1644uint64_t DynamicReloc::getOffset() const {
1645 return inputSec->getVA(offset: offsetInSec);
1646}
1647
1648int64_t DynamicReloc::computeAddend(Ctx &ctx) const {
1649 switch (kind) {
1650 case AddendOnly:
1651 assert(sym == nullptr);
1652 return addend;
1653 case AgainstSymbol:
1654 assert(sym != nullptr);
1655 return addend;
1656 case AddendOnlyWithTargetVA:
1657 case AgainstSymbolWithTargetVA: {
1658 uint64_t ca = inputSec->getRelocTargetVA(
1659 ctx, r: Relocation{.expr: expr, .type: type, .offset: 0, .addend: addend, .sym: sym}, p: getOffset());
1660 return ctx.arg.is64 ? ca : SignExtend64<32>(x: ca);
1661 }
1662 case MipsMultiGotPage:
1663 assert(sym == nullptr);
1664 return getMipsPageAddr(addr: outputSec->addr) + addend;
1665 }
1666 llvm_unreachable("Unknown DynamicReloc::Kind enum");
1667}
1668
1669uint32_t DynamicReloc::getSymIndex(SymbolTableBaseSection *symTab) const {
1670 if (!needsDynSymIndex())
1671 return 0;
1672
1673 size_t index = symTab->getSymbolIndex(sym: *sym);
1674 assert((index != 0 ||
1675 (type != symTab->ctx.target->gotRel &&
1676 type != symTab->ctx.target->pltRel) ||
1677 !symTab->ctx.mainPart->dynSymTab->getParent()) &&
1678 "GOT or PLT relocation must refer to symbol in dynamic symbol table");
1679 return index;
1680}
1681
1682RelocationBaseSection::RelocationBaseSection(Ctx &ctx, StringRef name,
1683 uint32_t type, int32_t dynamicTag,
1684 int32_t sizeDynamicTag,
1685 bool combreloc,
1686 unsigned concurrency)
1687 : SyntheticSection(ctx, name, type, SHF_ALLOC, ctx.arg.wordsize),
1688 dynamicTag(dynamicTag), sizeDynamicTag(sizeDynamicTag),
1689 relocsVec(concurrency), combreloc(combreloc) {}
1690
1691void RelocationBaseSection::addSymbolReloc(
1692 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1693 int64_t addend, std::optional<RelType> addendRelType) {
1694 addReloc(kind: DynamicReloc::AgainstSymbol, dynType, sec&: isec, offsetInSec, sym, addend,
1695 expr: R_ADDEND, addendRelType: addendRelType ? *addendRelType : ctx.target->noneRel);
1696}
1697
1698void RelocationBaseSection::addAddendOnlyRelocIfNonPreemptible(
1699 RelType dynType, InputSectionBase &isec, uint64_t offsetInSec, Symbol &sym,
1700 RelType addendRelType) {
1701 // No need to write an addend to the section for preemptible symbols.
1702 if (sym.isPreemptible)
1703 addReloc(reloc: {dynType, &isec, offsetInSec, DynamicReloc::AgainstSymbol, sym, 0,
1704 R_ABS});
1705 else
1706 addReloc(kind: DynamicReloc::AddendOnlyWithTargetVA, dynType, sec&: isec, offsetInSec,
1707 sym, addend: 0, expr: R_ABS, addendRelType);
1708}
1709
1710void RelocationBaseSection::mergeRels() {
1711 size_t newSize = relocs.size();
1712 for (const auto &v : relocsVec)
1713 newSize += v.size();
1714 relocs.reserve(N: newSize);
1715 for (const auto &v : relocsVec)
1716 llvm::append_range(C&: relocs, R: v);
1717 relocsVec.clear();
1718}
1719
1720void RelocationBaseSection::partitionRels() {
1721 if (!combreloc)
1722 return;
1723 const RelType relativeRel = ctx.target->relativeRel;
1724 numRelativeRelocs =
1725 std::stable_partition(first: relocs.begin(), last: relocs.end(),
1726 pred: [=](auto &r) { return r.type == relativeRel; }) -
1727 relocs.begin();
1728}
1729
1730void RelocationBaseSection::finalizeContents() {
1731 SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
1732
1733 // When linking glibc statically, .rel{,a}.plt contains R_*_IRELATIVE
1734 // relocations due to IFUNC (e.g. strcpy). sh_link will be set to 0 in that
1735 // case.
1736 if (symTab && symTab->getParent())
1737 getParent()->link = symTab->getParent()->sectionIndex;
1738 else
1739 getParent()->link = 0;
1740
1741 if (ctx.in.relaPlt.get() == this && ctx.in.gotPlt->getParent()) {
1742 getParent()->flags |= ELF::SHF_INFO_LINK;
1743 getParent()->info = ctx.in.gotPlt->getParent()->sectionIndex;
1744 }
1745}
1746
1747void DynamicReloc::computeRaw(Ctx &ctx, SymbolTableBaseSection *symt) {
1748 r_offset = getOffset();
1749 r_sym = getSymIndex(symTab: symt);
1750 addend = computeAddend(ctx);
1751 kind = AddendOnly; // Catch errors
1752}
1753
1754void RelocationBaseSection::computeRels() {
1755 SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
1756 parallelForEach(R&: relocs, Fn: [&ctx = ctx, symTab](DynamicReloc &rel) {
1757 rel.computeRaw(ctx, symt: symTab);
1758 });
1759
1760 auto irelative = std::stable_partition(
1761 first: relocs.begin() + numRelativeRelocs, last: relocs.end(),
1762 pred: [t = ctx.target->iRelativeRel](auto &r) { return r.type != t; });
1763
1764 // Sort by (!IsRelative,SymIndex,r_offset). DT_REL[A]COUNT requires us to
1765 // place R_*_RELATIVE first. SymIndex is to improve locality, while r_offset
1766 // is to make results easier to read.
1767 if (combreloc) {
1768 auto nonRelative = relocs.begin() + numRelativeRelocs;
1769 parallelSort(Start: relocs.begin(), End: nonRelative,
1770 Comp: [&](auto &a, auto &b) { return a.r_offset < b.r_offset; });
1771 // Non-relative relocations are few, so don't bother with parallelSort.
1772 llvm::sort(Start: nonRelative, End: irelative, Comp: [&](auto &a, auto &b) {
1773 return std::tie(a.r_sym, a.r_offset) < std::tie(b.r_sym, b.r_offset);
1774 });
1775 }
1776}
1777
1778template <class ELFT>
1779RelocationSection<ELFT>::RelocationSection(Ctx &ctx, StringRef name,
1780 bool combreloc, unsigned concurrency)
1781 : RelocationBaseSection(ctx, name, ctx.arg.isRela ? SHT_RELA : SHT_REL,
1782 ctx.arg.isRela ? DT_RELA : DT_REL,
1783 ctx.arg.isRela ? DT_RELASZ : DT_RELSZ, combreloc,
1784 concurrency) {
1785 this->entsize = ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1786}
1787
1788template <class ELFT> void RelocationSection<ELFT>::writeTo(uint8_t *buf) {
1789 computeRels();
1790 for (const DynamicReloc &rel : relocs) {
1791 auto *p = reinterpret_cast<Elf_Rela *>(buf);
1792 p->r_offset = rel.r_offset;
1793 p->setSymbolAndType(rel.r_sym, rel.type, ctx.arg.isMips64EL);
1794 if (ctx.arg.isRela)
1795 p->r_addend = rel.addend;
1796 buf += ctx.arg.isRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
1797 }
1798}
1799
1800RelrBaseSection::RelrBaseSection(Ctx &ctx, unsigned concurrency,
1801 bool isAArch64Auth)
1802 : SyntheticSection(
1803 ctx, isAArch64Auth ? ".relr.auth.dyn" : ".relr.dyn",
1804 isAArch64Auth
1805 ? SHT_AARCH64_AUTH_RELR
1806 : (ctx.arg.useAndroidRelrTags ? SHT_ANDROID_RELR : SHT_RELR),
1807 SHF_ALLOC, ctx.arg.wordsize),
1808 relocsVec(concurrency) {}
1809
1810void RelrBaseSection::mergeRels() {
1811 size_t newSize = relocs.size();
1812 for (const auto &v : relocsVec)
1813 newSize += v.size();
1814 relocs.reserve(N: newSize);
1815 for (const auto &v : relocsVec)
1816 llvm::append_range(C&: relocs, R: v);
1817 relocsVec.clear();
1818}
1819
1820template <class ELFT>
1821AndroidPackedRelocationSection<ELFT>::AndroidPackedRelocationSection(
1822 Ctx &ctx, StringRef name, unsigned concurrency)
1823 : RelocationBaseSection(
1824 ctx, name, ctx.arg.isRela ? SHT_ANDROID_RELA : SHT_ANDROID_REL,
1825 ctx.arg.isRela ? DT_ANDROID_RELA : DT_ANDROID_REL,
1826 ctx.arg.isRela ? DT_ANDROID_RELASZ : DT_ANDROID_RELSZ,
1827 /*combreloc=*/false, concurrency) {
1828 this->entsize = 1;
1829}
1830
1831template <class ELFT>
1832bool AndroidPackedRelocationSection<ELFT>::updateAllocSize(Ctx &ctx) {
1833 // This function computes the contents of an Android-format packed relocation
1834 // section.
1835 //
1836 // This format compresses relocations by using relocation groups to factor out
1837 // fields that are common between relocations and storing deltas from previous
1838 // relocations in SLEB128 format (which has a short representation for small
1839 // numbers). A good example of a relocation type with common fields is
1840 // R_*_RELATIVE, which is normally used to represent function pointers in
1841 // vtables. In the REL format, each relative relocation has the same r_info
1842 // field, and is only different from other relative relocations in terms of
1843 // the r_offset field. By sorting relocations by offset, grouping them by
1844 // r_info and representing each relocation with only the delta from the
1845 // previous offset, each 8-byte relocation can be compressed to as little as 1
1846 // byte (or less with run-length encoding). This relocation packer was able to
1847 // reduce the size of the relocation section in an Android Chromium DSO from
1848 // 2,911,184 bytes to 174,693 bytes, or 6% of the original size.
1849 //
1850 // A relocation section consists of a header containing the literal bytes
1851 // 'APS2' followed by a sequence of SLEB128-encoded integers. The first two
1852 // elements are the total number of relocations in the section and an initial
1853 // r_offset value. The remaining elements define a sequence of relocation
1854 // groups. Each relocation group starts with a header consisting of the
1855 // following elements:
1856 //
1857 // - the number of relocations in the relocation group
1858 // - flags for the relocation group
1859 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is set) the r_offset delta
1860 // for each relocation in the group.
1861 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is set) the value of the r_info
1862 // field for each relocation in the group.
1863 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG and
1864 // RELOCATION_GROUPED_BY_ADDEND_FLAG are set) the r_addend delta for
1865 // each relocation in the group.
1866 //
1867 // Following the relocation group header are descriptions of each of the
1868 // relocations in the group. They consist of the following elements:
1869 //
1870 // - (if RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG is not set) the r_offset
1871 // delta for this relocation.
1872 // - (if RELOCATION_GROUPED_BY_INFO_FLAG is not set) the value of the r_info
1873 // field for this relocation.
1874 // - (if RELOCATION_GROUP_HAS_ADDEND_FLAG is set and
1875 // RELOCATION_GROUPED_BY_ADDEND_FLAG is not set) the r_addend delta for
1876 // this relocation.
1877
1878 size_t oldSize = relocData.size();
1879
1880 relocData = {'A', 'P', 'S', '2'};
1881 raw_svector_ostream os(relocData);
1882 auto add = [&](int64_t v) { encodeSLEB128(Value: v, OS&: os); };
1883
1884 // The format header includes the number of relocations and the initial
1885 // offset (we set this to zero because the first relocation group will
1886 // perform the initial adjustment).
1887 add(relocs.size());
1888 add(0);
1889
1890 std::vector<Elf_Rela> relatives, nonRelatives;
1891
1892 for (const DynamicReloc &rel : relocs) {
1893 Elf_Rela r;
1894 r.r_offset = rel.getOffset();
1895 r.setSymbolAndType(rel.getSymIndex(symTab: getPartition(ctx).dynSymTab.get()),
1896 rel.type, false);
1897 r.r_addend = ctx.arg.isRela ? rel.computeAddend(ctx) : 0;
1898
1899 if (r.getType(ctx.arg.isMips64EL) == ctx.target->relativeRel)
1900 relatives.push_back(r);
1901 else
1902 nonRelatives.push_back(r);
1903 }
1904
1905 llvm::sort(relatives, [](const Elf_Rel &a, const Elf_Rel &b) {
1906 return a.r_offset < b.r_offset;
1907 });
1908
1909 // Try to find groups of relative relocations which are spaced one word
1910 // apart from one another. These generally correspond to vtable entries. The
1911 // format allows these groups to be encoded using a sort of run-length
1912 // encoding, but each group will cost 7 bytes in addition to the offset from
1913 // the previous group, so it is only profitable to do this for groups of
1914 // size 8 or larger.
1915 std::vector<Elf_Rela> ungroupedRelatives;
1916 std::vector<std::vector<Elf_Rela>> relativeGroups;
1917 for (auto i = relatives.begin(), e = relatives.end(); i != e;) {
1918 std::vector<Elf_Rela> group;
1919 do {
1920 group.push_back(*i++);
1921 } while (i != e && (i - 1)->r_offset + ctx.arg.wordsize == i->r_offset);
1922
1923 if (group.size() < 8)
1924 ungroupedRelatives.insert(ungroupedRelatives.end(), group.begin(),
1925 group.end());
1926 else
1927 relativeGroups.emplace_back(std::move(group));
1928 }
1929
1930 // For non-relative relocations, we would like to:
1931 // 1. Have relocations with the same symbol offset to be consecutive, so
1932 // that the runtime linker can speed-up symbol lookup by implementing an
1933 // 1-entry cache.
1934 // 2. Group relocations by r_info to reduce the size of the relocation
1935 // section.
1936 // Since the symbol offset is the high bits in r_info, sorting by r_info
1937 // allows us to do both.
1938 //
1939 // For Rela, we also want to sort by r_addend when r_info is the same. This
1940 // enables us to group by r_addend as well.
1941 llvm::sort(nonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1942 return std::tie(a.r_info, a.r_addend, a.r_offset) <
1943 std::tie(b.r_info, b.r_addend, b.r_offset);
1944 });
1945
1946 // Group relocations with the same r_info. Note that each group emits a group
1947 // header and that may make the relocation section larger. It is hard to
1948 // estimate the size of a group header as the encoded size of that varies
1949 // based on r_info. However, we can approximate this trade-off by the number
1950 // of values encoded. Each group header contains 3 values, and each relocation
1951 // in a group encodes one less value, as compared to when it is not grouped.
1952 // Therefore, we only group relocations if there are 3 or more of them with
1953 // the same r_info.
1954 //
1955 // For Rela, the addend for most non-relative relocations is zero, and thus we
1956 // can usually get a smaller relocation section if we group relocations with 0
1957 // addend as well.
1958 std::vector<Elf_Rela> ungroupedNonRelatives;
1959 std::vector<std::vector<Elf_Rela>> nonRelativeGroups;
1960 for (auto i = nonRelatives.begin(), e = nonRelatives.end(); i != e;) {
1961 auto j = i + 1;
1962 while (j != e && i->r_info == j->r_info &&
1963 (!ctx.arg.isRela || i->r_addend == j->r_addend))
1964 ++j;
1965 if (j - i < 3 || (ctx.arg.isRela && i->r_addend != 0))
1966 ungroupedNonRelatives.insert(ungroupedNonRelatives.end(), i, j);
1967 else
1968 nonRelativeGroups.emplace_back(i, j);
1969 i = j;
1970 }
1971
1972 // Sort ungrouped relocations by offset to minimize the encoded length.
1973 llvm::sort(ungroupedNonRelatives, [](const Elf_Rela &a, const Elf_Rela &b) {
1974 return a.r_offset < b.r_offset;
1975 });
1976
1977 unsigned hasAddendIfRela =
1978 ctx.arg.isRela ? RELOCATION_GROUP_HAS_ADDEND_FLAG : 0;
1979
1980 uint64_t offset = 0;
1981 uint64_t addend = 0;
1982
1983 // Emit the run-length encoding for the groups of adjacent relative
1984 // relocations. Each group is represented using two groups in the packed
1985 // format. The first is used to set the current offset to the start of the
1986 // group (and also encodes the first relocation), and the second encodes the
1987 // remaining relocations.
1988 for (std::vector<Elf_Rela> &g : relativeGroups) {
1989 // The first relocation in the group.
1990 add(1);
1991 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
1992 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
1993 add(g[0].r_offset - offset);
1994 add(ctx.target->relativeRel);
1995 if (ctx.arg.isRela) {
1996 add(g[0].r_addend - addend);
1997 addend = g[0].r_addend;
1998 }
1999
2000 // The remaining relocations.
2001 add(g.size() - 1);
2002 add(RELOCATION_GROUPED_BY_OFFSET_DELTA_FLAG |
2003 RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
2004 add(ctx.arg.wordsize);
2005 add(ctx.target->relativeRel);
2006 if (ctx.arg.isRela) {
2007 for (const auto &i : llvm::drop_begin(g)) {
2008 add(i.r_addend - addend);
2009 addend = i.r_addend;
2010 }
2011 }
2012
2013 offset = g.back().r_offset;
2014 }
2015
2016 // Now the ungrouped relatives.
2017 if (!ungroupedRelatives.empty()) {
2018 add(ungroupedRelatives.size());
2019 add(RELOCATION_GROUPED_BY_INFO_FLAG | hasAddendIfRela);
2020 add(ctx.target->relativeRel);
2021 for (Elf_Rela &r : ungroupedRelatives) {
2022 add(r.r_offset - offset);
2023 offset = r.r_offset;
2024 if (ctx.arg.isRela) {
2025 add(r.r_addend - addend);
2026 addend = r.r_addend;
2027 }
2028 }
2029 }
2030
2031 // Grouped non-relatives.
2032 for (ArrayRef<Elf_Rela> g : nonRelativeGroups) {
2033 add(g.size());
2034 add(RELOCATION_GROUPED_BY_INFO_FLAG);
2035 add(g[0].r_info);
2036 for (const Elf_Rela &r : g) {
2037 add(r.r_offset - offset);
2038 offset = r.r_offset;
2039 }
2040 addend = 0;
2041 }
2042
2043 // Finally the ungrouped non-relative relocations.
2044 if (!ungroupedNonRelatives.empty()) {
2045 add(ungroupedNonRelatives.size());
2046 add(hasAddendIfRela);
2047 for (Elf_Rela &r : ungroupedNonRelatives) {
2048 add(r.r_offset - offset);
2049 offset = r.r_offset;
2050 add(r.r_info);
2051 if (ctx.arg.isRela) {
2052 add(r.r_addend - addend);
2053 addend = r.r_addend;
2054 }
2055 }
2056 }
2057
2058 // Don't allow the section to shrink; otherwise the size of the section can
2059 // oscillate infinitely.
2060 if (relocData.size() < oldSize)
2061 relocData.append(NumInputs: oldSize - relocData.size(), Elt: 0);
2062
2063 // Returns whether the section size changed. We need to keep recomputing both
2064 // section layout and the contents of this section until the size converges
2065 // because changing this section's size can affect section layout, which in
2066 // turn can affect the sizes of the LEB-encoded integers stored in this
2067 // section.
2068 return relocData.size() != oldSize;
2069}
2070
2071template <class ELFT>
2072RelrSection<ELFT>::RelrSection(Ctx &ctx, unsigned concurrency,
2073 bool isAArch64Auth)
2074 : RelrBaseSection(ctx, concurrency, isAArch64Auth) {
2075 this->entsize = ctx.arg.wordsize;
2076}
2077
2078template <class ELFT> bool RelrSection<ELFT>::updateAllocSize(Ctx &ctx) {
2079 // This function computes the contents of an SHT_RELR packed relocation
2080 // section.
2081 //
2082 // Proposal for adding SHT_RELR sections to generic-abi is here:
2083 // https://groups.google.com/forum/#!topic/generic-abi/bX460iggiKg
2084 //
2085 // The encoded sequence of Elf64_Relr entries in a SHT_RELR section looks
2086 // like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
2087 //
2088 // i.e. start with an address, followed by any number of bitmaps. The address
2089 // entry encodes 1 relocation. The subsequent bitmap entries encode up to 63
2090 // relocations each, at subsequent offsets following the last address entry.
2091 //
2092 // The bitmap entries must have 1 in the least significant bit. The assumption
2093 // here is that an address cannot have 1 in lsb. Odd addresses are not
2094 // supported.
2095 //
2096 // Excluding the least significant bit in the bitmap, each non-zero bit in
2097 // the bitmap represents a relocation to be applied to a corresponding machine
2098 // word that follows the base address word. The second least significant bit
2099 // represents the machine word immediately following the initial address, and
2100 // each bit that follows represents the next word, in linear order. As such,
2101 // a single bitmap can encode up to 31 relocations in a 32-bit object, and
2102 // 63 relocations in a 64-bit object.
2103 //
2104 // This encoding has a couple of interesting properties:
2105 // 1. Looking at any entry, it is clear whether it's an address or a bitmap:
2106 // even means address, odd means bitmap.
2107 // 2. Just a simple list of addresses is a valid encoding.
2108
2109 size_t oldSize = relrRelocs.size();
2110 relrRelocs.clear();
2111
2112 const size_t wordsize = sizeof(typename ELFT::uint);
2113
2114 // Number of bits to use for the relocation offsets bitmap.
2115 // Must be either 63 or 31.
2116 const size_t nBits = wordsize * 8 - 1;
2117
2118 // Get offsets for all relative relocations and sort them.
2119 std::unique_ptr<uint64_t[]> offsets(new uint64_t[relocs.size()]);
2120 for (auto [i, r] : llvm::enumerate(relocs))
2121 offsets[i] = r.getOffset();
2122 llvm::sort(offsets.get(), offsets.get() + relocs.size());
2123
2124 // For each leading relocation, find following ones that can be folded
2125 // as a bitmap and fold them.
2126 for (size_t i = 0, e = relocs.size(); i != e;) {
2127 // Add a leading relocation.
2128 relrRelocs.push_back(Elf_Relr(offsets[i]));
2129 uint64_t base = offsets[i] + wordsize;
2130 ++i;
2131
2132 // Find foldable relocations to construct bitmaps.
2133 for (;;) {
2134 uint64_t bitmap = 0;
2135 for (; i != e; ++i) {
2136 uint64_t d = offsets[i] - base;
2137 if (d >= nBits * wordsize || d % wordsize)
2138 break;
2139 bitmap |= uint64_t(1) << (d / wordsize);
2140 }
2141 if (!bitmap)
2142 break;
2143 relrRelocs.push_back(Elf_Relr((bitmap << 1) | 1));
2144 base += nBits * wordsize;
2145 }
2146 }
2147
2148 // Don't allow the section to shrink; otherwise the size of the section can
2149 // oscillate infinitely. Trailing 1s do not decode to more relocations.
2150 if (relrRelocs.size() < oldSize) {
2151 Log(ctx) << ".relr.dyn needs " << (oldSize - relrRelocs.size())
2152 << " padding word(s)";
2153 relrRelocs.resize(oldSize, Elf_Relr(1));
2154 }
2155
2156 return relrRelocs.size() != oldSize;
2157}
2158
2159SymbolTableBaseSection::SymbolTableBaseSection(Ctx &ctx,
2160 StringTableSection &strTabSec)
2161 : SyntheticSection(ctx, strTabSec.isDynamic() ? ".dynsym" : ".symtab",
2162 strTabSec.isDynamic() ? SHT_DYNSYM : SHT_SYMTAB,
2163 strTabSec.isDynamic() ? (uint64_t)SHF_ALLOC : 0,
2164 ctx.arg.wordsize),
2165 strTabSec(strTabSec) {}
2166
2167// Orders symbols according to their positions in the GOT,
2168// in compliance with MIPS ABI rules.
2169// See "Global Offset Table" in Chapter 5 in the following document
2170// for detailed description:
2171// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2172static void sortMipsSymbols(Ctx &ctx, SmallVector<SymbolTableEntry, 0> &syms) {
2173 llvm::stable_sort(Range&: syms,
2174 C: [&](const SymbolTableEntry &l, const SymbolTableEntry &r) {
2175 // Sort entries related to non-local preemptible symbols
2176 // by GOT indexes. All other entries go to the beginning
2177 // of a dynsym in arbitrary order.
2178 if (l.sym->isInGot(ctx) && r.sym->isInGot(ctx))
2179 return l.sym->getGotIdx(ctx) < r.sym->getGotIdx(ctx);
2180 if (!l.sym->isInGot(ctx) && !r.sym->isInGot(ctx))
2181 return false;
2182 return !l.sym->isInGot(ctx);
2183 });
2184}
2185
2186void SymbolTableBaseSection::finalizeContents() {
2187 if (OutputSection *sec = strTabSec.getParent())
2188 getParent()->link = sec->sectionIndex;
2189
2190 if (this->type != SHT_DYNSYM) {
2191 sortSymTabSymbols();
2192 return;
2193 }
2194
2195 // If it is a .dynsym, there should be no local symbols, but we need
2196 // to do a few things for the dynamic linker.
2197
2198 // Section's Info field has the index of the first non-local symbol.
2199 // Because the first symbol entry is a null entry, 1 is the first.
2200 getParent()->info = 1;
2201
2202 if (getPartition(ctx).gnuHashTab) {
2203 // NB: It also sorts Symbols to meet the GNU hash table requirements.
2204 getPartition(ctx).gnuHashTab->addSymbols(symbols);
2205 } else if (ctx.arg.emachine == EM_MIPS) {
2206 sortMipsSymbols(ctx, syms&: symbols);
2207 }
2208
2209 // Only the main partition's dynsym indexes are stored in the symbols
2210 // themselves. All other partitions use a lookup table.
2211 if (this == ctx.mainPart->dynSymTab.get()) {
2212 size_t i = 0;
2213 for (const SymbolTableEntry &s : symbols)
2214 s.sym->dynsymIndex = ++i;
2215 }
2216}
2217
2218// The ELF spec requires that all local symbols precede global symbols, so we
2219// sort symbol entries in this function. (For .dynsym, we don't do that because
2220// symbols for dynamic linking are inherently all globals.)
2221//
2222// Aside from above, we put local symbols in groups starting with the STT_FILE
2223// symbol. That is convenient for purpose of identifying where are local symbols
2224// coming from.
2225void SymbolTableBaseSection::sortSymTabSymbols() {
2226 // Move all local symbols before global symbols.
2227 auto e = std::stable_partition(
2228 first: symbols.begin(), last: symbols.end(),
2229 pred: [](const SymbolTableEntry &s) { return s.sym->isLocal(); });
2230 size_t numLocals = e - symbols.begin();
2231 getParent()->info = numLocals + 1;
2232
2233 // We want to group the local symbols by file. For that we rebuild the local
2234 // part of the symbols vector. We do not need to care about the STT_FILE
2235 // symbols, they are already naturally placed first in each group. That
2236 // happens because STT_FILE is always the first symbol in the object and hence
2237 // precede all other local symbols we add for a file.
2238 MapVector<InputFile *, SmallVector<SymbolTableEntry, 0>> arr;
2239 for (const SymbolTableEntry &s : llvm::make_range(x: symbols.begin(), y: e))
2240 arr[s.sym->file].push_back(Elt: s);
2241
2242 auto i = symbols.begin();
2243 for (auto &p : arr)
2244 for (SymbolTableEntry &entry : p.second)
2245 *i++ = entry;
2246}
2247
2248void SymbolTableBaseSection::addSymbol(Symbol *b) {
2249 // Adding a local symbol to a .dynsym is a bug.
2250 assert(this->type != SHT_DYNSYM || !b->isLocal());
2251 symbols.push_back(Elt: {.sym: b, .strTabOffset: strTabSec.addString(s: b->getName(), hashIt: false)});
2252}
2253
2254size_t SymbolTableBaseSection::getSymbolIndex(const Symbol &sym) {
2255 if (this == ctx.mainPart->dynSymTab.get())
2256 return sym.dynsymIndex;
2257
2258 // Initializes symbol lookup tables lazily. This is used only for -r,
2259 // --emit-relocs and dynsyms in partitions other than the main one.
2260 llvm::call_once(flag&: onceFlag, F: [&] {
2261 symbolIndexMap.reserve(NumEntries: symbols.size());
2262 size_t i = 0;
2263 for (const SymbolTableEntry &e : symbols) {
2264 if (e.sym->type == STT_SECTION)
2265 sectionIndexMap[e.sym->getOutputSection()] = ++i;
2266 else
2267 symbolIndexMap[e.sym] = ++i;
2268 }
2269 });
2270
2271 // Section symbols are mapped based on their output sections
2272 // to maintain their semantics.
2273 if (sym.type == STT_SECTION)
2274 return sectionIndexMap.lookup(Val: sym.getOutputSection());
2275 return symbolIndexMap.lookup(Val: &sym);
2276}
2277
2278template <class ELFT>
2279SymbolTableSection<ELFT>::SymbolTableSection(Ctx &ctx,
2280 StringTableSection &strTabSec)
2281 : SymbolTableBaseSection(ctx, strTabSec) {
2282 this->entsize = sizeof(Elf_Sym);
2283}
2284
2285static BssSection *getCommonSec(bool relocatable, Symbol *sym) {
2286 if (relocatable)
2287 if (auto *d = dyn_cast<Defined>(Val: sym))
2288 return dyn_cast_or_null<BssSection>(Val: d->section);
2289 return nullptr;
2290}
2291
2292static uint32_t getSymSectionIndex(Symbol *sym) {
2293 assert(!(sym->hasFlag(NEEDS_COPY) && sym->isObject()));
2294 if (!isa<Defined>(Val: sym) || sym->hasFlag(bit: NEEDS_COPY))
2295 return SHN_UNDEF;
2296 if (const OutputSection *os = sym->getOutputSection())
2297 return os->sectionIndex >= SHN_LORESERVE ? (uint32_t)SHN_XINDEX
2298 : os->sectionIndex;
2299 return SHN_ABS;
2300}
2301
2302// Write the internal symbol table contents to the output symbol table.
2303template <class ELFT> void SymbolTableSection<ELFT>::writeTo(uint8_t *buf) {
2304 // The first entry is a null entry as per the ELF spec.
2305 buf += sizeof(Elf_Sym);
2306
2307 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2308 bool relocatable = ctx.arg.relocatable;
2309 for (SymbolTableEntry &ent : symbols) {
2310 Symbol *sym = ent.sym;
2311 bool isDefinedHere = type == SHT_SYMTAB || sym->partition == partition;
2312
2313 // Set st_name, st_info and st_other.
2314 eSym->st_name = ent.strTabOffset;
2315 eSym->setBindingAndType(sym->binding, sym->type);
2316 eSym->st_other = sym->stOther;
2317
2318 if (BssSection *commonSec = getCommonSec(relocatable, sym)) {
2319 // When -r is specified, a COMMON symbol is not allocated. Its st_shndx
2320 // holds SHN_COMMON and st_value holds the alignment.
2321 eSym->st_shndx = SHN_COMMON;
2322 eSym->st_value = commonSec->addralign;
2323 eSym->st_size = cast<Defined>(Val: sym)->size;
2324 } else {
2325 const uint32_t shndx = getSymSectionIndex(sym);
2326 if (isDefinedHere) {
2327 eSym->st_shndx = shndx;
2328 eSym->st_value = sym->getVA(ctx);
2329 // Copy symbol size if it is a defined symbol. st_size is not
2330 // significant for undefined symbols, so whether copying it or not is up
2331 // to us if that's the case. We'll leave it as zero because by not
2332 // setting a value, we can get the exact same outputs for two sets of
2333 // input files that differ only in undefined symbol size in DSOs.
2334 eSym->st_size = shndx != SHN_UNDEF ? cast<Defined>(Val: sym)->size : 0;
2335 } else {
2336 eSym->st_shndx = 0;
2337 eSym->st_value = 0;
2338 eSym->st_size = 0;
2339 }
2340 }
2341
2342 ++eSym;
2343 }
2344
2345 // On MIPS we need to mark symbol which has a PLT entry and requires
2346 // pointer equality by STO_MIPS_PLT flag. That is necessary to help
2347 // dynamic linker distinguish such symbols and MIPS lazy-binding stubs.
2348 // https://sourceware.org/ml/binutils/2008-07/txt00000.txt
2349 if (ctx.arg.emachine == EM_MIPS) {
2350 auto *eSym = reinterpret_cast<Elf_Sym *>(buf);
2351
2352 for (SymbolTableEntry &ent : symbols) {
2353 Symbol *sym = ent.sym;
2354 if (sym->isInPlt(ctx) && sym->hasFlag(bit: NEEDS_COPY))
2355 eSym->st_other |= STO_MIPS_PLT;
2356 if (isMicroMips(ctx)) {
2357 // We already set the less-significant bit for symbols
2358 // marked by the `STO_MIPS_MICROMIPS` flag and for microMIPS PLT
2359 // records. That allows us to distinguish such symbols in
2360 // the `MIPS<ELFT>::relocate()` routine. Now we should
2361 // clear that bit for non-dynamic symbol table, so tools
2362 // like `objdump` will be able to deal with a correct
2363 // symbol position.
2364 if (sym->isDefined() &&
2365 ((sym->stOther & STO_MIPS_MICROMIPS) || sym->hasFlag(bit: NEEDS_COPY))) {
2366 if (!strTabSec.isDynamic())
2367 eSym->st_value &= ~1;
2368 eSym->st_other |= STO_MIPS_MICROMIPS;
2369 }
2370 }
2371 if (ctx.arg.relocatable)
2372 if (auto *d = dyn_cast<Defined>(Val: sym))
2373 if (isMipsPIC<ELFT>(d))
2374 eSym->st_other |= STO_MIPS_PIC;
2375 ++eSym;
2376 }
2377 }
2378}
2379
2380SymtabShndxSection::SymtabShndxSection(Ctx &ctx)
2381 : SyntheticSection(ctx, ".symtab_shndx", SHT_SYMTAB_SHNDX, 0, 4) {
2382 this->entsize = 4;
2383}
2384
2385void SymtabShndxSection::writeTo(uint8_t *buf) {
2386 // We write an array of 32 bit values, where each value has 1:1 association
2387 // with an entry in ctx.in.symTab if the corresponding entry contains
2388 // SHN_XINDEX, we need to write actual index, otherwise, we must write
2389 // SHN_UNDEF(0).
2390 buf += 4; // Ignore .symtab[0] entry.
2391 bool relocatable = ctx.arg.relocatable;
2392 for (const SymbolTableEntry &entry : ctx.in.symTab->getSymbols()) {
2393 if (!getCommonSec(relocatable, sym: entry.sym) &&
2394 getSymSectionIndex(sym: entry.sym) == SHN_XINDEX)
2395 write32(ctx, p: buf, v: entry.sym->getOutputSection()->sectionIndex);
2396 buf += 4;
2397 }
2398}
2399
2400bool SymtabShndxSection::isNeeded() const {
2401 // SHT_SYMTAB can hold symbols with section indices values up to
2402 // SHN_LORESERVE. If we need more, we want to use extension SHT_SYMTAB_SHNDX
2403 // section. Problem is that we reveal the final section indices a bit too
2404 // late, and we do not know them here. For simplicity, we just always create
2405 // a .symtab_shndx section when the amount of output sections is huge.
2406 size_t size = 0;
2407 for (SectionCommand *cmd : ctx.script->sectionCommands)
2408 if (isa<OutputDesc>(Val: cmd))
2409 ++size;
2410 return size >= SHN_LORESERVE;
2411}
2412
2413void SymtabShndxSection::finalizeContents() {
2414 getParent()->link = ctx.in.symTab->getParent()->sectionIndex;
2415}
2416
2417size_t SymtabShndxSection::getSize() const {
2418 return ctx.in.symTab->getNumSymbols() * 4;
2419}
2420
2421// .hash and .gnu.hash sections contain on-disk hash tables that map
2422// symbol names to their dynamic symbol table indices. Their purpose
2423// is to help the dynamic linker resolve symbols quickly. If ELF files
2424// don't have them, the dynamic linker has to do linear search on all
2425// dynamic symbols, which makes programs slower. Therefore, a .hash
2426// section is added to a DSO by default.
2427//
2428// The Unix semantics of resolving dynamic symbols is somewhat expensive.
2429// Each ELF file has a list of DSOs that the ELF file depends on and a
2430// list of dynamic symbols that need to be resolved from any of the
2431// DSOs. That means resolving all dynamic symbols takes O(m)*O(n)
2432// where m is the number of DSOs and n is the number of dynamic
2433// symbols. For modern large programs, both m and n are large. So
2434// making each step faster by using hash tables substantially
2435// improves time to load programs.
2436//
2437// (Note that this is not the only way to design the shared library.
2438// For instance, the Windows DLL takes a different approach. On
2439// Windows, each dynamic symbol has a name of DLL from which the symbol
2440// has to be resolved. That makes the cost of symbol resolution O(n).
2441// This disables some hacky techniques you can use on Unix such as
2442// LD_PRELOAD, but this is arguably better semantics than the Unix ones.)
2443//
2444// Due to historical reasons, we have two different hash tables, .hash
2445// and .gnu.hash. They are for the same purpose, and .gnu.hash is a new
2446// and better version of .hash. .hash is just an on-disk hash table, but
2447// .gnu.hash has a bloom filter in addition to a hash table to skip
2448// DSOs very quickly. If you are sure that your dynamic linker knows
2449// about .gnu.hash, you want to specify --hash-style=gnu. Otherwise, a
2450// safe bet is to specify --hash-style=both for backward compatibility.
2451GnuHashTableSection::GnuHashTableSection(Ctx &ctx)
2452 : SyntheticSection(ctx, ".gnu.hash", SHT_GNU_HASH, SHF_ALLOC,
2453 ctx.arg.wordsize) {}
2454
2455void GnuHashTableSection::finalizeContents() {
2456 if (OutputSection *sec = getPartition(ctx).dynSymTab->getParent())
2457 getParent()->link = sec->sectionIndex;
2458
2459 // Computes bloom filter size in word size. We want to allocate 12
2460 // bits for each symbol. It must be a power of two.
2461 if (symbols.empty()) {
2462 maskWords = 1;
2463 } else {
2464 uint64_t numBits = symbols.size() * 12;
2465 maskWords = NextPowerOf2(A: numBits / (ctx.arg.wordsize * 8));
2466 }
2467
2468 size = 16; // Header
2469 size += ctx.arg.wordsize * maskWords; // Bloom filter
2470 size += nBuckets * 4; // Hash buckets
2471 size += symbols.size() * 4; // Hash values
2472}
2473
2474void GnuHashTableSection::writeTo(uint8_t *buf) {
2475 // Write a header.
2476 write32(ctx, p: buf, v: nBuckets);
2477 write32(ctx, p: buf + 4,
2478 v: getPartition(ctx).dynSymTab->getNumSymbols() - symbols.size());
2479 write32(ctx, p: buf + 8, v: maskWords);
2480 write32(ctx, p: buf + 12, v: Shift2);
2481 buf += 16;
2482
2483 // Write the 2-bit bloom filter.
2484 const unsigned c = ctx.arg.is64 ? 64 : 32;
2485 for (const Entry &sym : symbols) {
2486 // When C = 64, we choose a word with bits [6:...] and set 1 to two bits in
2487 // the word using bits [0:5] and [26:31].
2488 size_t i = (sym.hash / c) & (maskWords - 1);
2489 uint64_t val = readUint(ctx, buf: buf + i * ctx.arg.wordsize);
2490 val |= uint64_t(1) << (sym.hash % c);
2491 val |= uint64_t(1) << ((sym.hash >> Shift2) % c);
2492 writeUint(ctx, buf: buf + i * ctx.arg.wordsize, val);
2493 }
2494 buf += ctx.arg.wordsize * maskWords;
2495
2496 // Write the hash table.
2497 uint32_t *buckets = reinterpret_cast<uint32_t *>(buf);
2498 uint32_t oldBucket = -1;
2499 uint32_t *values = buckets + nBuckets;
2500 for (auto i = symbols.begin(), e = symbols.end(); i != e; ++i) {
2501 // Write a hash value. It represents a sequence of chains that share the
2502 // same hash modulo value. The last element of each chain is terminated by
2503 // LSB 1.
2504 uint32_t hash = i->hash;
2505 bool isLastInChain = (i + 1) == e || i->bucketIdx != (i + 1)->bucketIdx;
2506 hash = isLastInChain ? hash | 1 : hash & ~1;
2507 write32(ctx, p: values++, v: hash);
2508
2509 if (i->bucketIdx == oldBucket)
2510 continue;
2511 // Write a hash bucket. Hash buckets contain indices in the following hash
2512 // value table.
2513 write32(ctx, p: buckets + i->bucketIdx,
2514 v: getPartition(ctx).dynSymTab->getSymbolIndex(sym: *i->sym));
2515 oldBucket = i->bucketIdx;
2516 }
2517}
2518
2519// Add symbols to this symbol hash table. Note that this function
2520// destructively sort a given vector -- which is needed because
2521// GNU-style hash table places some sorting requirements.
2522void GnuHashTableSection::addSymbols(SmallVectorImpl<SymbolTableEntry> &v) {
2523 // We cannot use 'auto' for Mid because GCC 6.1 cannot deduce
2524 // its type correctly.
2525 auto mid =
2526 std::stable_partition(first: v.begin(), last: v.end(), pred: [&](const SymbolTableEntry &s) {
2527 return !s.sym->isDefined() || s.sym->partition != partition;
2528 });
2529
2530 // We chose load factor 4 for the on-disk hash table. For each hash
2531 // collision, the dynamic linker will compare a uint32_t hash value.
2532 // Since the integer comparison is quite fast, we believe we can
2533 // make the load factor even larger. 4 is just a conservative choice.
2534 //
2535 // Note that we don't want to create a zero-sized hash table because
2536 // Android loader as of 2018 doesn't like a .gnu.hash containing such
2537 // table. If that's the case, we create a hash table with one unused
2538 // dummy slot.
2539 nBuckets = std::max<size_t>(a: (v.end() - mid) / 4, b: 1);
2540
2541 if (mid == v.end())
2542 return;
2543
2544 for (SymbolTableEntry &ent : llvm::make_range(x: mid, y: v.end())) {
2545 Symbol *b = ent.sym;
2546 uint32_t hash = hashGnu(Name: b->getName());
2547 uint32_t bucketIdx = hash % nBuckets;
2548 symbols.push_back(Elt: {.sym: b, .strTabOffset: ent.strTabOffset, .hash: hash, .bucketIdx: bucketIdx});
2549 }
2550
2551 llvm::sort(C&: symbols, Comp: [](const Entry &l, const Entry &r) {
2552 return std::tie(args: l.bucketIdx, args: l.strTabOffset) <
2553 std::tie(args: r.bucketIdx, args: r.strTabOffset);
2554 });
2555
2556 v.erase(CS: mid, CE: v.end());
2557 for (const Entry &ent : symbols)
2558 v.push_back(Elt: {.sym: ent.sym, .strTabOffset: ent.strTabOffset});
2559}
2560
2561HashTableSection::HashTableSection(Ctx &ctx)
2562 : SyntheticSection(ctx, ".hash", SHT_HASH, SHF_ALLOC, 4) {
2563 this->entsize = 4;
2564}
2565
2566void HashTableSection::finalizeContents() {
2567 SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
2568
2569 if (OutputSection *sec = symTab->getParent())
2570 getParent()->link = sec->sectionIndex;
2571
2572 unsigned numEntries = 2; // nbucket and nchain.
2573 numEntries += symTab->getNumSymbols(); // The chain entries.
2574
2575 // Create as many buckets as there are symbols.
2576 numEntries += symTab->getNumSymbols();
2577 this->size = numEntries * 4;
2578}
2579
2580void HashTableSection::writeTo(uint8_t *buf) {
2581 SymbolTableBaseSection *symTab = getPartition(ctx).dynSymTab.get();
2582 unsigned numSymbols = symTab->getNumSymbols();
2583
2584 uint32_t *p = reinterpret_cast<uint32_t *>(buf);
2585 write32(ctx, p: p++, v: numSymbols); // nbucket
2586 write32(ctx, p: p++, v: numSymbols); // nchain
2587
2588 uint32_t *buckets = p;
2589 uint32_t *chains = p + numSymbols;
2590
2591 for (const SymbolTableEntry &s : symTab->getSymbols()) {
2592 Symbol *sym = s.sym;
2593 StringRef name = sym->getName();
2594 unsigned i = sym->dynsymIndex;
2595 uint32_t hash = hashSysV(SymbolName: name) % numSymbols;
2596 chains[i] = buckets[hash];
2597 write32(ctx, p: buckets + hash, v: i);
2598 }
2599}
2600
2601PltSection::PltSection(Ctx &ctx)
2602 : SyntheticSection(ctx, ".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR,
2603 16),
2604 headerSize(ctx.target->pltHeaderSize) {
2605 // On AArch64, PLT entries only do loads from the .got.plt section, so the
2606 // .plt section can be marked with the SHF_AARCH64_PURECODE section flag.
2607 if (ctx.arg.emachine == EM_AARCH64)
2608 this->flags |= SHF_AARCH64_PURECODE;
2609
2610 // On PowerPC, this section contains lazy symbol resolvers.
2611 if (ctx.arg.emachine == EM_PPC64) {
2612 name = ".glink";
2613 addralign = 4;
2614 }
2615
2616 // On x86 when IBT is enabled, this section contains the second PLT (lazy
2617 // symbol resolvers).
2618 if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) &&
2619 (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT))
2620 name = ".plt.sec";
2621
2622 // The PLT needs to be writable on SPARC as the dynamic linker will
2623 // modify the instructions in the PLT entries.
2624 if (ctx.arg.emachine == EM_SPARCV9)
2625 this->flags |= SHF_WRITE;
2626}
2627
2628void PltSection::writeTo(uint8_t *buf) {
2629 // At beginning of PLT, we have code to call the dynamic
2630 // linker to resolve dynsyms at runtime. Write such code.
2631 ctx.target->writePltHeader(buf);
2632 size_t off = headerSize;
2633
2634 for (const Symbol *sym : entries) {
2635 ctx.target->writePlt(buf: buf + off, sym: *sym, pltEntryAddr: getVA() + off);
2636 off += ctx.target->pltEntrySize;
2637 }
2638}
2639
2640void PltSection::addEntry(Symbol &sym) {
2641 assert(sym.auxIdx == ctx.symAux.size() - 1);
2642 ctx.symAux.back().pltIdx = entries.size();
2643 entries.push_back(Elt: &sym);
2644}
2645
2646size_t PltSection::getSize() const {
2647 return headerSize + entries.size() * ctx.target->pltEntrySize;
2648}
2649
2650bool PltSection::isNeeded() const {
2651 // For -z retpolineplt, .iplt needs the .plt header.
2652 return !entries.empty() || (ctx.arg.zRetpolineplt && ctx.in.iplt->isNeeded());
2653}
2654
2655// Used by ARM to add mapping symbols in the PLT section, which aid
2656// disassembly.
2657void PltSection::addSymbols() {
2658 ctx.target->addPltHeaderSymbols(isec&: *this);
2659
2660 size_t off = headerSize;
2661 for (size_t i = 0; i < entries.size(); ++i) {
2662 ctx.target->addPltSymbols(isec&: *this, off);
2663 off += ctx.target->pltEntrySize;
2664 }
2665}
2666
2667IpltSection::IpltSection(Ctx &ctx)
2668 : SyntheticSection(ctx, ".iplt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR,
2669 16) {
2670 // On AArch64, PLT entries only do loads from the .got.plt section, so the
2671 // .iplt section can be marked with the SHF_AARCH64_PURECODE section flag.
2672 if (ctx.arg.emachine == EM_AARCH64)
2673 this->flags |= SHF_AARCH64_PURECODE;
2674
2675 if (ctx.arg.emachine == EM_PPC || ctx.arg.emachine == EM_PPC64) {
2676 name = ".glink";
2677 addralign = 4;
2678 }
2679}
2680
2681void IpltSection::writeTo(uint8_t *buf) {
2682 uint32_t off = 0;
2683 for (const Symbol *sym : entries) {
2684 ctx.target->writeIplt(buf: buf + off, sym: *sym, pltEntryAddr: getVA() + off);
2685 off += ctx.target->ipltEntrySize;
2686 }
2687}
2688
2689size_t IpltSection::getSize() const {
2690 return entries.size() * ctx.target->ipltEntrySize;
2691}
2692
2693void IpltSection::addEntry(Symbol &sym) {
2694 assert(sym.auxIdx == ctx.symAux.size() - 1);
2695 ctx.symAux.back().pltIdx = entries.size();
2696 entries.push_back(Elt: &sym);
2697}
2698
2699// ARM uses mapping symbols to aid disassembly.
2700void IpltSection::addSymbols() {
2701 size_t off = 0;
2702 for (size_t i = 0, e = entries.size(); i != e; ++i) {
2703 ctx.target->addPltSymbols(isec&: *this, off);
2704 off += ctx.target->pltEntrySize;
2705 }
2706}
2707
2708PPC32GlinkSection::PPC32GlinkSection(Ctx &ctx) : PltSection(ctx) {
2709 name = ".glink";
2710 addralign = 4;
2711}
2712
2713void PPC32GlinkSection::writeTo(uint8_t *buf) {
2714 writePPC32GlinkSection(ctx, buf, numEntries: entries.size());
2715}
2716
2717size_t PPC32GlinkSection::getSize() const {
2718 return headerSize + entries.size() * ctx.target->pltEntrySize + footerSize;
2719}
2720
2721// This is an x86-only extra PLT section and used only when a security
2722// enhancement feature called CET is enabled. In this comment, I'll explain what
2723// the feature is and why we have two PLT sections if CET is enabled.
2724//
2725// So, what does CET do? CET introduces a new restriction to indirect jump
2726// instructions. CET works this way. Assume that CET is enabled. Then, if you
2727// execute an indirect jump instruction, the processor verifies that a special
2728// "landing pad" instruction (which is actually a repurposed NOP instruction and
2729// now called "endbr32" or "endbr64") is at the jump target. If the jump target
2730// does not start with that instruction, the processor raises an exception
2731// instead of continuing executing code.
2732//
2733// If CET is enabled, the compiler emits endbr to all locations where indirect
2734// jumps may jump to.
2735//
2736// This mechanism makes it extremely hard to transfer the control to a middle of
2737// a function that is not supporsed to be a indirect jump target, preventing
2738// certain types of attacks such as ROP or JOP.
2739//
2740// Note that the processors in the market as of 2019 don't actually support the
2741// feature. Only the spec is available at the moment.
2742//
2743// Now, I'll explain why we have this extra PLT section for CET.
2744//
2745// Since you can indirectly jump to a PLT entry, we have to make PLT entries
2746// start with endbr. The problem is there's no extra space for endbr (which is 4
2747// bytes long), as the PLT entry is only 16 bytes long and all bytes are already
2748// used.
2749//
2750// In order to deal with the issue, we split a PLT entry into two PLT entries.
2751// Remember that each PLT entry contains code to jump to an address read from
2752// .got.plt AND code to resolve a dynamic symbol lazily. With the 2-PLT scheme,
2753// the former code is written to .plt.sec, and the latter code is written to
2754// .plt.
2755//
2756// Lazy symbol resolution in the 2-PLT scheme works in the usual way, except
2757// that the regular .plt is now called .plt.sec and .plt is repurposed to
2758// contain only code for lazy symbol resolution.
2759//
2760// In other words, this is how the 2-PLT scheme works. Application code is
2761// supposed to jump to .plt.sec to call an external function. Each .plt.sec
2762// entry contains code to read an address from a corresponding .got.plt entry
2763// and jump to that address. Addresses in .got.plt initially point to .plt, so
2764// when an application calls an external function for the first time, the
2765// control is transferred to a function that resolves a symbol name from
2766// external shared object files. That function then rewrites a .got.plt entry
2767// with a resolved address, so that the subsequent function calls directly jump
2768// to a desired location from .plt.sec.
2769//
2770// There is an open question as to whether the 2-PLT scheme was desirable or
2771// not. We could have simply extended the PLT entry size to 32-bytes to
2772// accommodate endbr, and that scheme would have been much simpler than the
2773// 2-PLT scheme. One reason to split PLT was, by doing that, we could keep hot
2774// code (.plt.sec) from cold code (.plt). But as far as I know no one proved
2775// that the optimization actually makes a difference.
2776//
2777// That said, the 2-PLT scheme is a part of the ABI, debuggers and other tools
2778// depend on it, so we implement the ABI.
2779IBTPltSection::IBTPltSection(Ctx &ctx)
2780 : SyntheticSection(ctx, ".plt", SHT_PROGBITS, SHF_ALLOC | SHF_EXECINSTR,
2781 16) {}
2782
2783void IBTPltSection::writeTo(uint8_t *buf) {
2784 ctx.target->writeIBTPlt(buf, numEntries: ctx.in.plt->getNumEntries());
2785}
2786
2787size_t IBTPltSection::getSize() const {
2788 // 16 is the header size of .plt.
2789 return 16 + ctx.in.plt->getNumEntries() * ctx.target->pltEntrySize;
2790}
2791
2792bool IBTPltSection::isNeeded() const { return ctx.in.plt->getNumEntries() > 0; }
2793
2794RelroPaddingSection::RelroPaddingSection(Ctx &ctx)
2795 : SyntheticSection(ctx, ".relro_padding", SHT_NOBITS, SHF_ALLOC | SHF_WRITE,
2796 1) {}
2797
2798RandomizePaddingSection::RandomizePaddingSection(Ctx &ctx, uint64_t size,
2799 OutputSection *parent)
2800 : SyntheticSection(ctx, ".randomize_padding", SHT_PROGBITS, SHF_ALLOC, 1),
2801 size(size) {
2802 this->parent = parent;
2803}
2804
2805void RandomizePaddingSection::writeTo(uint8_t *buf) {
2806 std::array<uint8_t, 4> filler = getParent()->getFiller(ctx);
2807 uint8_t *end = buf + size;
2808 for (; buf + 4 <= end; buf += 4)
2809 memcpy(dest: buf, src: &filler[0], n: 4);
2810 memcpy(dest: buf, src: &filler[0], n: end - buf);
2811}
2812
2813// The string hash function for .gdb_index.
2814static uint32_t computeGdbHash(StringRef s) {
2815 uint32_t h = 0;
2816 for (uint8_t c : s)
2817 h = h * 67 + toLower(x: c) - 113;
2818 return h;
2819}
2820
2821// 4-byte alignment ensures that values in the hash lookup table and the name
2822// table are aligned.
2823DebugNamesBaseSection::DebugNamesBaseSection(Ctx &ctx)
2824 : SyntheticSection(ctx, ".debug_names", SHT_PROGBITS, 0, 4) {}
2825
2826// Get the size of the .debug_names section header in bytes for DWARF32:
2827static uint32_t getDebugNamesHeaderSize(uint32_t augmentationStringSize) {
2828 return /* unit length */ 4 +
2829 /* version */ 2 +
2830 /* padding */ 2 +
2831 /* CU count */ 4 +
2832 /* TU count */ 4 +
2833 /* Foreign TU count */ 4 +
2834 /* Bucket Count */ 4 +
2835 /* Name Count */ 4 +
2836 /* Abbrev table size */ 4 +
2837 /* Augmentation string size */ 4 +
2838 /* Augmentation string */ augmentationStringSize;
2839}
2840
2841static Expected<DebugNamesBaseSection::IndexEntry *>
2842readEntry(uint64_t &offset, const DWARFDebugNames::NameIndex &ni,
2843 uint64_t entriesBase, DWARFDataExtractor &namesExtractor,
2844 const LLDDWARFSection &namesSec) {
2845 auto ie = makeThreadLocal<DebugNamesBaseSection::IndexEntry>();
2846 ie->poolOffset = offset;
2847 Error err = Error::success();
2848 uint64_t ulebVal = namesExtractor.getULEB128(offset_ptr: &offset, Err: &err);
2849 if (err)
2850 return createStringError(EC: inconvertibleErrorCode(),
2851 Fmt: "invalid abbrev code: %s",
2852 Vals: llvm::toString(E: std::move(err)).c_str());
2853 if (!isUInt<32>(x: ulebVal))
2854 return createStringError(EC: inconvertibleErrorCode(),
2855 Fmt: "abbrev code too large for DWARF32: %" PRIu64,
2856 Vals: ulebVal);
2857 ie->abbrevCode = static_cast<uint32_t>(ulebVal);
2858 auto it = ni.getAbbrevs().find_as(Val: ie->abbrevCode);
2859 if (it == ni.getAbbrevs().end())
2860 return createStringError(EC: inconvertibleErrorCode(),
2861 Fmt: "abbrev code not found in abbrev table: %" PRIu32,
2862 Vals: ie->abbrevCode);
2863
2864 DebugNamesBaseSection::AttrValue attr, cuAttr = {.attrValue: 0, .attrSize: 0};
2865 for (DWARFDebugNames::AttributeEncoding a : it->Attributes) {
2866 if (a.Index == dwarf::DW_IDX_parent) {
2867 if (a.Form == dwarf::DW_FORM_ref4) {
2868 attr.attrValue = namesExtractor.getU32(offset_ptr: &offset, Err: &err);
2869 attr.attrSize = 4;
2870 ie->parentOffset = entriesBase + attr.attrValue;
2871 } else if (a.Form != DW_FORM_flag_present)
2872 return createStringError(EC: inconvertibleErrorCode(),
2873 S: "invalid form for DW_IDX_parent");
2874 } else {
2875 switch (a.Form) {
2876 case DW_FORM_data1:
2877 case DW_FORM_ref1: {
2878 attr.attrValue = namesExtractor.getU8(offset_ptr: &offset, Err: &err);
2879 attr.attrSize = 1;
2880 break;
2881 }
2882 case DW_FORM_data2:
2883 case DW_FORM_ref2: {
2884 attr.attrValue = namesExtractor.getU16(offset_ptr: &offset, Err: &err);
2885 attr.attrSize = 2;
2886 break;
2887 }
2888 case DW_FORM_data4:
2889 case DW_FORM_ref4: {
2890 attr.attrValue = namesExtractor.getU32(offset_ptr: &offset, Err: &err);
2891 attr.attrSize = 4;
2892 break;
2893 }
2894 default:
2895 return createStringError(
2896 EC: inconvertibleErrorCode(),
2897 Fmt: "unrecognized form encoding %d in abbrev table", Vals: a.Form);
2898 }
2899 }
2900 if (err)
2901 return createStringError(EC: inconvertibleErrorCode(),
2902 Fmt: "error while reading attributes: %s",
2903 Vals: llvm::toString(E: std::move(err)).c_str());
2904 if (a.Index == DW_IDX_compile_unit)
2905 cuAttr = attr;
2906 else if (a.Form != DW_FORM_flag_present)
2907 ie->attrValues.push_back(Elt: attr);
2908 }
2909 // Canonicalize abbrev by placing the CU/TU index at the end.
2910 ie->attrValues.push_back(Elt: cuAttr);
2911 return ie;
2912}
2913
2914void DebugNamesBaseSection::parseDebugNames(
2915 Ctx &ctx, InputChunk &inputChunk, OutputChunk &chunk,
2916 DWARFDataExtractor &namesExtractor, DataExtractor &strExtractor,
2917 function_ref<SmallVector<uint32_t, 0>(
2918 uint32_t numCus, const DWARFDebugNames::Header &,
2919 const DWARFDebugNames::DWARFDebugNamesOffsets &)>
2920 readOffsets) {
2921 const LLDDWARFSection &namesSec = inputChunk.section;
2922 DenseMap<uint32_t, IndexEntry *> offsetMap;
2923 // Number of CUs seen in previous NameIndex sections within current chunk.
2924 uint32_t numCus = 0;
2925 for (const DWARFDebugNames::NameIndex &ni : *inputChunk.llvmDebugNames) {
2926 NameData &nd = inputChunk.nameData.emplace_back();
2927 nd.hdr = ni.getHeader();
2928 if (nd.hdr.Format != DwarfFormat::DWARF32) {
2929 Err(ctx) << namesSec.sec
2930 << ": found DWARF64, which is currently unsupported";
2931 return;
2932 }
2933 if (nd.hdr.Version != 5) {
2934 Err(ctx) << namesSec.sec << ": unsupported version: " << nd.hdr.Version;
2935 return;
2936 }
2937 uint32_t dwarfSize = dwarf::getDwarfOffsetByteSize(Format: DwarfFormat::DWARF32);
2938 DWARFDebugNames::DWARFDebugNamesOffsets locs = ni.getOffsets();
2939 if (locs.EntriesBase > namesExtractor.getData().size()) {
2940 Err(ctx) << namesSec.sec << ": entry pool start is beyond end of section";
2941 return;
2942 }
2943
2944 SmallVector<uint32_t, 0> entryOffsets = readOffsets(numCus, nd.hdr, locs);
2945
2946 // Read the entry pool.
2947 offsetMap.clear();
2948 nd.nameEntries.resize(N: nd.hdr.NameCount);
2949 for (auto i : seq(Size: nd.hdr.NameCount)) {
2950 NameEntry &ne = nd.nameEntries[i];
2951 uint64_t strOffset = locs.StringOffsetsBase + i * dwarfSize;
2952 ne.stringOffset = strOffset;
2953 uint64_t strp = namesExtractor.getRelocatedValue(Size: dwarfSize, Off: &strOffset);
2954 StringRef name = strExtractor.getCStrRef(OffsetPtr: &strp);
2955 ne.name = name.data();
2956 ne.hashValue = caseFoldingDjbHash(Buffer: name);
2957
2958 // Read a series of index entries that end with abbreviation code 0.
2959 uint64_t offset = locs.EntriesBase + entryOffsets[i];
2960 while (offset < namesSec.Data.size() && namesSec.Data[offset] != 0) {
2961 // Read & store all entries (for the same string).
2962 Expected<IndexEntry *> ieOrErr =
2963 readEntry(offset, ni, entriesBase: locs.EntriesBase, namesExtractor, namesSec);
2964 if (!ieOrErr) {
2965 Err(ctx) << namesSec.sec << ": " << ieOrErr.takeError();
2966 return;
2967 }
2968 ne.indexEntries.push_back(Elt: std::move(*ieOrErr));
2969 }
2970 if (offset >= namesSec.Data.size())
2971 Err(ctx) << namesSec.sec << ": index entry is out of bounds";
2972
2973 for (IndexEntry &ie : ne.entries())
2974 offsetMap[ie.poolOffset] = &ie;
2975 }
2976
2977 // Assign parent pointers, which will be used to update DW_IDX_parent index
2978 // attributes. Note: offsetMap[0] does not exist, so parentOffset == 0 will
2979 // get parentEntry == null as well.
2980 for (NameEntry &ne : nd.nameEntries)
2981 for (IndexEntry &ie : ne.entries())
2982 ie.parentEntry = offsetMap.lookup(Val: ie.parentOffset);
2983 numCus += nd.hdr.CompUnitCount;
2984 }
2985}
2986
2987// Compute the form for output DW_IDX_compile_unit attributes, similar to
2988// DIEInteger::BestForm. The input form (often DW_FORM_data1) may not hold all
2989// the merged CU indices.
2990std::pair<uint8_t, dwarf::Form> static getMergedCuCountForm(
2991 uint32_t compUnitCount) {
2992 if (compUnitCount > UINT16_MAX)
2993 return {4, DW_FORM_data4};
2994 if (compUnitCount > UINT8_MAX)
2995 return {2, DW_FORM_data2};
2996 return {1, DW_FORM_data1};
2997}
2998
2999void DebugNamesBaseSection::computeHdrAndAbbrevTable(
3000 MutableArrayRef<InputChunk> inputChunks) {
3001 TimeTraceScope timeScope("Merge .debug_names", "hdr and abbrev table");
3002 size_t numCu = 0;
3003 hdr.Format = DwarfFormat::DWARF32;
3004 hdr.Version = 5;
3005 hdr.CompUnitCount = 0;
3006 hdr.LocalTypeUnitCount = 0;
3007 hdr.ForeignTypeUnitCount = 0;
3008 hdr.AugmentationStringSize = 0;
3009
3010 // Compute CU and TU counts.
3011 for (auto i : seq(Size: numChunks)) {
3012 InputChunk &inputChunk = inputChunks[i];
3013 inputChunk.baseCuIdx = numCu;
3014 numCu += chunks[i].compUnits.size();
3015 for (const NameData &nd : inputChunk.nameData) {
3016 hdr.CompUnitCount += nd.hdr.CompUnitCount;
3017 // TODO: We don't handle type units yet, so LocalTypeUnitCount &
3018 // ForeignTypeUnitCount are left as 0.
3019 if (nd.hdr.LocalTypeUnitCount || nd.hdr.ForeignTypeUnitCount)
3020 Warn(ctx) << inputChunk.section.sec
3021 << ": type units are not implemented";
3022 // If augmentation strings are not identical, use an empty string.
3023 if (i == 0) {
3024 hdr.AugmentationStringSize = nd.hdr.AugmentationStringSize;
3025 hdr.AugmentationString = nd.hdr.AugmentationString;
3026 } else if (hdr.AugmentationString != nd.hdr.AugmentationString) {
3027 // There are conflicting augmentation strings, so it's best for the
3028 // merged index to not use an augmentation string.
3029 hdr.AugmentationStringSize = 0;
3030 hdr.AugmentationString.clear();
3031 }
3032 }
3033 }
3034
3035 // Create the merged abbrev table, uniquifyinng the input abbrev tables and
3036 // computing mapping from old (per-cu) abbrev codes to new (merged) abbrev
3037 // codes.
3038 FoldingSet<Abbrev> abbrevSet;
3039 // Determine the form for the DW_IDX_compile_unit attributes in the merged
3040 // index. The input form may not be big enough for all CU indices.
3041 dwarf::Form cuAttrForm = getMergedCuCountForm(compUnitCount: hdr.CompUnitCount).second;
3042 for (InputChunk &inputChunk : inputChunks) {
3043 for (auto [i, ni] : enumerate(First&: *inputChunk.llvmDebugNames)) {
3044 for (const DWARFDebugNames::Abbrev &oldAbbrev : ni.getAbbrevs()) {
3045 // Canonicalize abbrev by placing the CU/TU index at the end,
3046 // similar to 'parseDebugNames'.
3047 Abbrev abbrev;
3048 DWARFDebugNames::AttributeEncoding cuAttr(DW_IDX_compile_unit,
3049 cuAttrForm);
3050 abbrev.code = oldAbbrev.Code;
3051 abbrev.tag = oldAbbrev.Tag;
3052 for (DWARFDebugNames::AttributeEncoding a : oldAbbrev.Attributes) {
3053 if (a.Index == DW_IDX_compile_unit)
3054 cuAttr.Index = a.Index;
3055 else
3056 abbrev.attributes.push_back(Elt: {a.Index, a.Form});
3057 }
3058 // Put the CU/TU index at the end of the attributes list.
3059 abbrev.attributes.push_back(Elt: cuAttr);
3060
3061 // Profile the abbrev, get or assign a new code, then record the abbrev
3062 // code mapping.
3063 FoldingSetNodeID id;
3064 abbrev.Profile(id);
3065 uint32_t newCode;
3066 void *insertPos;
3067 if (Abbrev *existing = abbrevSet.FindNodeOrInsertPos(ID: id, InsertPos&: insertPos)) {
3068 // Found it; we've already seen an identical abbreviation.
3069 newCode = existing->code;
3070 } else {
3071 Abbrev *abbrev2 =
3072 new (abbrevAlloc.Allocate()) Abbrev(std::move(abbrev));
3073 abbrevSet.InsertNode(N: abbrev2, InsertPos: insertPos);
3074 abbrevTable.push_back(Elt: abbrev2);
3075 newCode = abbrevTable.size();
3076 abbrev2->code = newCode;
3077 }
3078 inputChunk.nameData[i].abbrevCodeMap[oldAbbrev.Code] = newCode;
3079 }
3080 }
3081 }
3082
3083 // Compute the merged abbrev table.
3084 raw_svector_ostream os(abbrevTableBuf);
3085 for (Abbrev *abbrev : abbrevTable) {
3086 encodeULEB128(Value: abbrev->code, OS&: os);
3087 encodeULEB128(Value: abbrev->tag, OS&: os);
3088 for (DWARFDebugNames::AttributeEncoding a : abbrev->attributes) {
3089 encodeULEB128(Value: a.Index, OS&: os);
3090 encodeULEB128(Value: a.Form, OS&: os);
3091 }
3092 os.write(Ptr: "\0", Size: 2); // attribute specification end
3093 }
3094 os.write(C: 0); // abbrev table end
3095 hdr.AbbrevTableSize = abbrevTableBuf.size();
3096}
3097
3098void DebugNamesBaseSection::Abbrev::Profile(FoldingSetNodeID &id) const {
3099 id.AddInteger(I: tag);
3100 for (const DWARFDebugNames::AttributeEncoding &attr : attributes) {
3101 id.AddInteger(I: attr.Index);
3102 id.AddInteger(I: attr.Form);
3103 }
3104}
3105
3106std::pair<uint32_t, uint32_t> DebugNamesBaseSection::computeEntryPool(
3107 MutableArrayRef<InputChunk> inputChunks) {
3108 TimeTraceScope timeScope("Merge .debug_names", "entry pool");
3109 // Collect and de-duplicate all the names (preserving all the entries).
3110 // Speed it up using multithreading, as the number of symbols can be in the
3111 // order of millions.
3112 const size_t concurrency =
3113 bit_floor(Value: std::min<size_t>(a: ctx.arg.threadCount, b: numShards));
3114 const size_t shift = 32 - countr_zero(Val: numShards);
3115 const uint8_t cuAttrSize = getMergedCuCountForm(compUnitCount: hdr.CompUnitCount).first;
3116 DenseMap<CachedHashStringRef, size_t> maps[numShards];
3117
3118 parallelFor(Begin: 0, End: concurrency, Fn: [&](size_t threadId) {
3119 for (auto i : seq(Size: numChunks)) {
3120 InputChunk &inputChunk = inputChunks[i];
3121 for (auto j : seq(Size: inputChunk.nameData.size())) {
3122 NameData &nd = inputChunk.nameData[j];
3123 // Deduplicate the NameEntry records (based on the string/name),
3124 // appending all IndexEntries from duplicate NameEntry records to
3125 // the single preserved copy.
3126 for (NameEntry &ne : nd.nameEntries) {
3127 auto shardId = ne.hashValue >> shift;
3128 if ((shardId & (concurrency - 1)) != threadId)
3129 continue;
3130
3131 ne.chunkIdx = i;
3132 for (IndexEntry &ie : ne.entries()) {
3133 // Update the IndexEntry's abbrev code to match the merged
3134 // abbreviations.
3135 ie.abbrevCode = nd.abbrevCodeMap[ie.abbrevCode];
3136 // Update the DW_IDX_compile_unit attribute (the last one after
3137 // canonicalization) to have correct merged offset value and size.
3138 auto &back = ie.attrValues.back();
3139 back.attrValue += inputChunk.baseCuIdx + j;
3140 back.attrSize = cuAttrSize;
3141 }
3142
3143 auto &nameVec = nameVecs[shardId];
3144 auto [it, inserted] = maps[shardId].try_emplace(
3145 Key: CachedHashStringRef(ne.name, ne.hashValue), Args: nameVec.size());
3146 if (inserted)
3147 nameVec.push_back(Elt: std::move(ne));
3148 else
3149 nameVec[it->second].indexEntries.append(RHS: std::move(ne.indexEntries));
3150 }
3151 }
3152 }
3153 });
3154
3155 // Compute entry offsets in parallel. First, compute offsets relative to the
3156 // current shard.
3157 uint32_t offsets[numShards];
3158 parallelFor(Begin: 0, End: numShards, Fn: [&](size_t shard) {
3159 uint32_t offset = 0;
3160 for (NameEntry &ne : nameVecs[shard]) {
3161 ne.entryOffset = offset;
3162 for (IndexEntry &ie : ne.entries()) {
3163 ie.poolOffset = offset;
3164 offset += getULEB128Size(Value: ie.abbrevCode);
3165 for (AttrValue value : ie.attrValues)
3166 offset += value.attrSize;
3167 }
3168 ++offset; // index entry sentinel
3169 }
3170 offsets[shard] = offset;
3171 });
3172 // Then add shard offsets.
3173 std::partial_sum(first: offsets, last: std::end(arr&: offsets), result: offsets);
3174 parallelFor(Begin: 1, End: numShards, Fn: [&](size_t shard) {
3175 uint32_t offset = offsets[shard - 1];
3176 for (NameEntry &ne : nameVecs[shard]) {
3177 ne.entryOffset += offset;
3178 for (IndexEntry &ie : ne.entries())
3179 ie.poolOffset += offset;
3180 }
3181 });
3182
3183 // Update the DW_IDX_parent entries that refer to real parents (have
3184 // DW_FORM_ref4).
3185 parallelFor(Begin: 0, End: numShards, Fn: [&](size_t shard) {
3186 for (NameEntry &ne : nameVecs[shard]) {
3187 for (IndexEntry &ie : ne.entries()) {
3188 if (!ie.parentEntry)
3189 continue;
3190 // Abbrevs are indexed starting at 1; vector starts at 0. (abbrevCode
3191 // corresponds to position in the merged table vector).
3192 const Abbrev *abbrev = abbrevTable[ie.abbrevCode - 1];
3193 for (const auto &[a, v] : zip_equal(t: abbrev->attributes, u&: ie.attrValues))
3194 if (a.Index == DW_IDX_parent && a.Form == DW_FORM_ref4)
3195 v.attrValue = ie.parentEntry->poolOffset;
3196 }
3197 }
3198 });
3199
3200 // Return (entry pool size, number of entries).
3201 uint32_t num = 0;
3202 for (auto &map : maps)
3203 num += map.size();
3204 return {offsets[numShards - 1], num};
3205}
3206
3207void DebugNamesBaseSection::init(
3208 function_ref<void(InputFile *, InputChunk &, OutputChunk &)> parseFile) {
3209 TimeTraceScope timeScope("Merge .debug_names");
3210 // Collect and remove input .debug_names sections. Save InputSection pointers
3211 // to relocate string offsets in `writeTo`.
3212 SetVector<InputFile *> files;
3213 for (InputSectionBase *s : ctx.inputSections) {
3214 InputSection *isec = dyn_cast<InputSection>(Val: s);
3215 if (!isec)
3216 continue;
3217 if (!(s->flags & SHF_ALLOC) && s->name == ".debug_names") {
3218 s->markDead();
3219 inputSections.push_back(Elt: isec);
3220 files.insert(X: isec->file);
3221 }
3222 }
3223
3224 // Parse input .debug_names sections and extract InputChunk and OutputChunk
3225 // data. OutputChunk contains CU information, which will be needed by
3226 // `writeTo`.
3227 auto inputChunksPtr = std::make_unique<InputChunk[]>(num: files.size());
3228 MutableArrayRef<InputChunk> inputChunks(inputChunksPtr.get(), files.size());
3229 numChunks = files.size();
3230 chunks = std::make_unique<OutputChunk[]>(num: files.size());
3231 {
3232 TimeTraceScope timeScope("Merge .debug_names", "parse");
3233 parallelFor(Begin: 0, End: files.size(), Fn: [&](size_t i) {
3234 parseFile(files[i], inputChunks[i], chunks[i]);
3235 });
3236 }
3237
3238 // Compute section header (except unit_length), abbrev table, and entry pool.
3239 computeHdrAndAbbrevTable(inputChunks);
3240 uint32_t entryPoolSize;
3241 std::tie(args&: entryPoolSize, args&: hdr.NameCount) = computeEntryPool(inputChunks);
3242 hdr.BucketCount = dwarf::getDebugNamesBucketCount(UniqueHashCount: hdr.NameCount);
3243
3244 // Compute the section size. Subtract 4 to get the unit_length for DWARF32.
3245 uint32_t hdrSize = getDebugNamesHeaderSize(augmentationStringSize: hdr.AugmentationStringSize);
3246 size = findDebugNamesOffsets(EndOfHeaderOffset: hdrSize, Hdr: hdr).EntriesBase + entryPoolSize;
3247 hdr.UnitLength = size - 4;
3248}
3249
3250template <class ELFT>
3251DebugNamesSection<ELFT>::DebugNamesSection(Ctx &ctx)
3252 : DebugNamesBaseSection(ctx) {
3253 init(parseFile: [&](InputFile *f, InputChunk &inputChunk, OutputChunk &chunk) {
3254 auto *file = cast<ObjFile<ELFT>>(f);
3255 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
3256 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
3257 chunk.infoSec = dobj.getInfoSection();
3258 DWARFDataExtractor namesExtractor(dobj, dobj.getNamesSection(),
3259 ELFT::Endianness == endianness::little,
3260 ELFT::Is64Bits ? 8 : 4);
3261 // .debug_str is needed to get symbol names from string offsets.
3262 DataExtractor strExtractor(dobj.getStrSection(),
3263 ELFT::Endianness == endianness::little,
3264 ELFT::Is64Bits ? 8 : 4);
3265 inputChunk.section = dobj.getNamesSection();
3266
3267 inputChunk.llvmDebugNames.emplace(args&: namesExtractor, args&: strExtractor);
3268 if (Error e = inputChunk.llvmDebugNames->extract()) {
3269 Err(ctx) << dobj.getNamesSection().sec << ": " << std::move(e);
3270 }
3271 parseDebugNames(
3272 ctx, inputChunk, chunk, namesExtractor, strExtractor,
3273 readOffsets: [&chunk, namesData = dobj.getNamesSection().Data.data()](
3274 uint32_t numCus, const DWARFDebugNames::Header &hdr,
3275 const DWARFDebugNames::DWARFDebugNamesOffsets &locs) {
3276 // Read CU offsets, which are relocated by .debug_info + X
3277 // relocations. Record the section offset to be relocated by
3278 // `finalizeContents`.
3279 chunk.compUnits.resize_for_overwrite(N: numCus + hdr.CompUnitCount);
3280 for (auto i : seq(Size: hdr.CompUnitCount))
3281 chunk.compUnits[numCus + i] = locs.CUsBase + i * 4;
3282
3283 // Read entry offsets.
3284 const char *p = namesData + locs.EntryOffsetsBase;
3285 SmallVector<uint32_t, 0> entryOffsets;
3286 entryOffsets.resize_for_overwrite(N: hdr.NameCount);
3287 for (uint32_t &offset : entryOffsets)
3288 offset = endian::readNext<uint32_t, ELFT::Endianness, unaligned>(p);
3289 return entryOffsets;
3290 });
3291 });
3292}
3293
3294template <class ELFT>
3295template <class RelTy>
3296void DebugNamesSection<ELFT>::getNameRelocs(
3297 const InputFile &file, DenseMap<uint32_t, uint32_t> &relocs,
3298 Relocs<RelTy> rels) {
3299 for (const RelTy &rel : rels) {
3300 Symbol &sym = file.getRelocTargetSym(rel);
3301 relocs[rel.r_offset] = sym.getVA(ctx, addend: getAddend<ELFT>(rel));
3302 }
3303}
3304
3305template <class ELFT> void DebugNamesSection<ELFT>::finalizeContents() {
3306 // Get relocations of .debug_names sections.
3307 auto relocs = std::make_unique<DenseMap<uint32_t, uint32_t>[]>(numChunks);
3308 parallelFor(0, numChunks, [&](size_t i) {
3309 InputSection *sec = inputSections[i];
3310 invokeOnRelocs(*sec, getNameRelocs, *sec->file, relocs.get()[i]);
3311
3312 // Relocate CU offsets with .debug_info + X relocations.
3313 OutputChunk &chunk = chunks.get()[i];
3314 for (auto [j, cuOffset] : enumerate(First&: chunk.compUnits))
3315 cuOffset = relocs.get()[i].lookup(cuOffset);
3316 });
3317
3318 // Relocate string offsets in the name table with .debug_str + X relocations.
3319 parallelForEach(nameVecs, [&](auto &nameVec) {
3320 for (NameEntry &ne : nameVec)
3321 ne.stringOffset = relocs.get()[ne.chunkIdx].lookup(ne.stringOffset);
3322 });
3323}
3324
3325template <class ELFT> void DebugNamesSection<ELFT>::writeTo(uint8_t *buf) {
3326 [[maybe_unused]] const uint8_t *const beginBuf = buf;
3327 // Write the header.
3328 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.UnitLength);
3329 endian::writeNext<uint16_t, ELFT::Endianness>(buf, hdr.Version);
3330 buf += 2; // padding
3331 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.CompUnitCount);
3332 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.LocalTypeUnitCount);
3333 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.ForeignTypeUnitCount);
3334 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.BucketCount);
3335 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.NameCount);
3336 endian::writeNext<uint32_t, ELFT::Endianness>(buf, hdr.AbbrevTableSize);
3337 endian::writeNext<uint32_t, ELFT::Endianness>(buf,
3338 hdr.AugmentationStringSize);
3339 memcpy(buf, hdr.AugmentationString.c_str(), hdr.AugmentationString.size());
3340 buf += hdr.AugmentationStringSize;
3341
3342 // Write the CU list.
3343 for (auto &chunk : getChunks())
3344 for (uint32_t cuOffset : chunk.compUnits)
3345 endian::writeNext<uint32_t, ELFT::Endianness>(buf, cuOffset);
3346
3347 // TODO: Write the local TU list, then the foreign TU list..
3348
3349 // Write the hash lookup table.
3350 SmallVector<SmallVector<NameEntry *, 0>, 0> buckets(hdr.BucketCount);
3351 // Symbols enter into a bucket whose index is the hash modulo bucket_count.
3352 for (auto &nameVec : nameVecs)
3353 for (NameEntry &ne : nameVec)
3354 buckets[ne.hashValue % hdr.BucketCount].push_back(&ne);
3355
3356 // Write buckets (accumulated bucket counts).
3357 uint32_t bucketIdx = 1;
3358 for (const SmallVector<NameEntry *, 0> &bucket : buckets) {
3359 if (!bucket.empty())
3360 endian::write32<ELFT::Endianness>(buf, bucketIdx);
3361 buf += 4;
3362 bucketIdx += bucket.size();
3363 }
3364 // Write the hashes.
3365 for (const SmallVector<NameEntry *, 0> &bucket : buckets)
3366 for (const NameEntry *e : bucket)
3367 endian::writeNext<uint32_t, ELFT::Endianness>(buf, e->hashValue);
3368
3369 // Write the name table. The name entries are ordered by bucket_idx and
3370 // correspond one-to-one with the hash lookup table.
3371 //
3372 // First, write the relocated string offsets.
3373 for (const SmallVector<NameEntry *, 0> &bucket : buckets)
3374 for (const NameEntry *ne : bucket)
3375 endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->stringOffset);
3376
3377 // Then write the entry offsets.
3378 for (const SmallVector<NameEntry *, 0> &bucket : buckets)
3379 for (const NameEntry *ne : bucket)
3380 endian::writeNext<uint32_t, ELFT::Endianness>(buf, ne->entryOffset);
3381
3382 // Write the abbrev table.
3383 buf = llvm::copy(abbrevTableBuf, buf);
3384
3385 // Write the entry pool. Unlike the name table, the name entries follow the
3386 // nameVecs order computed by `computeEntryPool`.
3387 for (auto &nameVec : nameVecs) {
3388 for (NameEntry &ne : nameVec) {
3389 // Write all the entries for the string.
3390 for (const IndexEntry &ie : ne.entries()) {
3391 buf += encodeULEB128(Value: ie.abbrevCode, p: buf);
3392 for (AttrValue value : ie.attrValues) {
3393 switch (value.attrSize) {
3394 case 1:
3395 *buf++ = value.attrValue;
3396 break;
3397 case 2:
3398 endian::writeNext<uint16_t, ELFT::Endianness>(buf, value.attrValue);
3399 break;
3400 case 4:
3401 endian::writeNext<uint32_t, ELFT::Endianness>(buf, value.attrValue);
3402 break;
3403 default:
3404 llvm_unreachable("invalid attrSize");
3405 }
3406 }
3407 }
3408 ++buf; // index entry sentinel
3409 }
3410 }
3411 assert(uint64_t(buf - beginBuf) == size);
3412}
3413
3414GdbIndexSection::GdbIndexSection(Ctx &ctx)
3415 : SyntheticSection(ctx, ".gdb_index", SHT_PROGBITS, 0, 1) {}
3416
3417// Returns the desired size of an on-disk hash table for a .gdb_index section.
3418// There's a tradeoff between size and collision rate. We aim 75% utilization.
3419size_t GdbIndexSection::computeSymtabSize() const {
3420 return std::max<size_t>(a: NextPowerOf2(A: symbols.size() * 4 / 3), b: 1024);
3421}
3422
3423static SmallVector<GdbIndexSection::CuEntry, 0>
3424readCuList(DWARFContext &dwarf) {
3425 SmallVector<GdbIndexSection::CuEntry, 0> ret;
3426 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units())
3427 ret.push_back(Elt: {.cuOffset: cu->getOffset(), .cuLength: cu->getLength() + 4});
3428 return ret;
3429}
3430
3431static SmallVector<GdbIndexSection::AddressEntry, 0>
3432readAddressAreas(Ctx &ctx, DWARFContext &dwarf, InputSection *sec) {
3433 SmallVector<GdbIndexSection::AddressEntry, 0> ret;
3434
3435 uint32_t cuIdx = 0;
3436 for (std::unique_ptr<DWARFUnit> &cu : dwarf.compile_units()) {
3437 if (Error e = cu->tryExtractDIEsIfNeeded(CUDieOnly: false)) {
3438 Warn(ctx) << sec << ": " << std::move(e);
3439 return {};
3440 }
3441 Expected<DWARFAddressRangesVector> ranges = cu->collectAddressRanges();
3442 if (!ranges) {
3443 Warn(ctx) << sec << ": " << ranges.takeError();
3444 return {};
3445 }
3446
3447 ArrayRef<InputSectionBase *> sections = sec->file->getSections();
3448 for (DWARFAddressRange &r : *ranges) {
3449 if (r.SectionIndex == -1ULL)
3450 continue;
3451 // Range list with zero size has no effect.
3452 InputSectionBase *s = sections[r.SectionIndex];
3453 if (s && s != &InputSection::discarded && s->isLive())
3454 if (r.LowPC != r.HighPC)
3455 ret.push_back(Elt: {.section: cast<InputSection>(Val: s), .lowAddress: r.LowPC, .highAddress: r.HighPC, .cuIndex: cuIdx});
3456 }
3457 ++cuIdx;
3458 }
3459
3460 return ret;
3461}
3462
3463template <class ELFT>
3464static SmallVector<GdbIndexSection::NameAttrEntry, 0>
3465readPubNamesAndTypes(Ctx &ctx, const LLDDwarfObj<ELFT> &obj,
3466 const SmallVectorImpl<GdbIndexSection::CuEntry> &cus) {
3467 const LLDDWARFSection &pubNames = obj.getGnuPubnamesSection();
3468 const LLDDWARFSection &pubTypes = obj.getGnuPubtypesSection();
3469
3470 SmallVector<GdbIndexSection::NameAttrEntry, 0> ret;
3471 for (const LLDDWARFSection *pub : {&pubNames, &pubTypes}) {
3472 DWARFDataExtractor data(obj, *pub, ELFT::Endianness == endianness::little,
3473 ELFT::Is64Bits ? 8 : 4);
3474 DWARFDebugPubTable table;
3475 table.extract(Data: data, /*GnuStyle=*/true, RecoverableErrorHandler: [&](Error e) {
3476 Warn(ctx) << pub->sec << ": " << std::move(e);
3477 });
3478 for (const DWARFDebugPubTable::Set &set : table.getData()) {
3479 // The value written into the constant pool is kind << 24 | cuIndex. As we
3480 // don't know how many compilation units precede this object to compute
3481 // cuIndex, we compute (kind << 24 | cuIndexInThisObject) instead, and add
3482 // the number of preceding compilation units later.
3483 uint32_t i = llvm::partition_point(cus,
3484 [&](GdbIndexSection::CuEntry cu) {
3485 return cu.cuOffset < set.Offset;
3486 }) -
3487 cus.begin();
3488 for (const DWARFDebugPubTable::Entry &ent : set.Entries)
3489 ret.push_back(Elt: {.name: {ent.Name, computeGdbHash(s: ent.Name)},
3490 .cuIndexAndAttrs: (ent.Descriptor.toBits() << 24) | i});
3491 }
3492 }
3493 return ret;
3494}
3495
3496// Create a list of symbols from a given list of symbol names and types
3497// by uniquifying them by name.
3498static std::pair<SmallVector<GdbIndexSection::GdbSymbol, 0>, size_t>
3499createSymbols(
3500 Ctx &ctx,
3501 ArrayRef<SmallVector<GdbIndexSection::NameAttrEntry, 0>> nameAttrs,
3502 const SmallVector<GdbIndexSection::GdbChunk, 0> &chunks) {
3503 using GdbSymbol = GdbIndexSection::GdbSymbol;
3504 using NameAttrEntry = GdbIndexSection::NameAttrEntry;
3505
3506 // For each chunk, compute the number of compilation units preceding it.
3507 uint32_t cuIdx = 0;
3508 std::unique_ptr<uint32_t[]> cuIdxs(new uint32_t[chunks.size()]);
3509 for (uint32_t i = 0, e = chunks.size(); i != e; ++i) {
3510 cuIdxs[i] = cuIdx;
3511 cuIdx += chunks[i].compilationUnits.size();
3512 }
3513
3514 // Collect the compilation unitss for each unique name. Speed it up using
3515 // multi-threading as the number of symbols can be in the order of millions.
3516 // Shard GdbSymbols by hash's high bits.
3517 constexpr size_t numShards = 32;
3518 const size_t concurrency =
3519 llvm::bit_floor(Value: std::min<size_t>(a: ctx.arg.threadCount, b: numShards));
3520 const size_t shift = 32 - llvm::countr_zero(Val: numShards);
3521 auto map =
3522 std::make_unique<DenseMap<CachedHashStringRef, size_t>[]>(num: numShards);
3523 auto symbols = std::make_unique<SmallVector<GdbSymbol, 0>[]>(num: numShards);
3524 parallelFor(Begin: 0, End: concurrency, Fn: [&](size_t threadId) {
3525 uint32_t i = 0;
3526 for (ArrayRef<NameAttrEntry> entries : nameAttrs) {
3527 for (const NameAttrEntry &ent : entries) {
3528 size_t shardId = ent.name.hash() >> shift;
3529 if ((shardId & (concurrency - 1)) != threadId)
3530 continue;
3531
3532 uint32_t v = ent.cuIndexAndAttrs + cuIdxs[i];
3533 auto [it, inserted] =
3534 map[shardId].try_emplace(Key: ent.name, Args: symbols[shardId].size());
3535 if (inserted)
3536 symbols[shardId].push_back(Elt: {.name: ent.name, .cuVector: {v}, .nameOff: 0, .cuVectorOff: 0});
3537 else
3538 symbols[shardId][it->second].cuVector.push_back(Elt: v);
3539 }
3540 ++i;
3541 }
3542 });
3543
3544 size_t numSymbols = 0;
3545 for (ArrayRef<GdbSymbol> v : ArrayRef(symbols.get(), numShards))
3546 numSymbols += v.size();
3547
3548 // The return type is a flattened vector, so we'll copy each vector
3549 // contents to Ret.
3550 SmallVector<GdbSymbol, 0> ret;
3551 ret.reserve(N: numSymbols);
3552 for (SmallVector<GdbSymbol, 0> &vec :
3553 MutableArrayRef(symbols.get(), numShards))
3554 for (GdbSymbol &sym : vec)
3555 ret.push_back(Elt: std::move(sym));
3556
3557 // CU vectors and symbol names are adjacent in the output file.
3558 // We can compute their offsets in the output file now.
3559 size_t off = 0;
3560 for (GdbSymbol &sym : ret) {
3561 sym.cuVectorOff = off;
3562 off += (sym.cuVector.size() + 1) * 4;
3563 }
3564 for (GdbSymbol &sym : ret) {
3565 sym.nameOff = off;
3566 off += sym.name.size() + 1;
3567 }
3568 // If off overflows, the last symbol's nameOff likely overflows.
3569 if (!isUInt<32>(x: off))
3570 Err(ctx) << "--gdb-index: constant pool size (" << off
3571 << ") exceeds UINT32_MAX";
3572
3573 return {ret, off};
3574}
3575
3576// Returns a newly-created .gdb_index section.
3577template <class ELFT>
3578std::unique_ptr<GdbIndexSection> GdbIndexSection::create(Ctx &ctx) {
3579 llvm::TimeTraceScope timeScope("Create gdb index");
3580
3581 // Collect InputFiles with .debug_info. See the comment in
3582 // LLDDwarfObj<ELFT>::LLDDwarfObj. If we do lightweight parsing in the future,
3583 // note that isec->data() may uncompress the full content, which should be
3584 // parallelized.
3585 SetVector<InputFile *> files;
3586 for (InputSectionBase *s : ctx.inputSections) {
3587 InputSection *isec = dyn_cast<InputSection>(Val: s);
3588 if (!isec)
3589 continue;
3590 // .debug_gnu_pub{names,types} are useless in executables.
3591 // They are present in input object files solely for creating
3592 // a .gdb_index. So we can remove them from the output.
3593 if (s->name == ".debug_gnu_pubnames" || s->name == ".debug_gnu_pubtypes")
3594 s->markDead();
3595 else if (isec->name == ".debug_info")
3596 files.insert(X: isec->file);
3597 }
3598 // Drop .rel[a].debug_gnu_pub{names,types} for --emit-relocs.
3599 llvm::erase_if(ctx.inputSections, [](InputSectionBase *s) {
3600 if (auto *isec = dyn_cast<InputSection>(Val: s))
3601 if (InputSectionBase *rel = isec->getRelocatedSection())
3602 return !rel->isLive();
3603 return !s->isLive();
3604 });
3605
3606 SmallVector<GdbChunk, 0> chunks(files.size());
3607 SmallVector<SmallVector<NameAttrEntry, 0>, 0> nameAttrs(files.size());
3608
3609 parallelFor(0, files.size(), [&](size_t i) {
3610 // To keep memory usage low, we don't want to keep cached DWARFContext, so
3611 // avoid getDwarf() here.
3612 ObjFile<ELFT> *file = cast<ObjFile<ELFT>>(files[i]);
3613 DWARFContext dwarf(std::make_unique<LLDDwarfObj<ELFT>>(file));
3614 auto &dobj = static_cast<const LLDDwarfObj<ELFT> &>(dwarf.getDWARFObj());
3615
3616 // If the are multiple compile units .debug_info (very rare ld -r --unique),
3617 // this only picks the last one. Other address ranges are lost.
3618 chunks[i].sec = dobj.getInfoSection();
3619 chunks[i].compilationUnits = readCuList(dwarf);
3620 chunks[i].addressAreas = readAddressAreas(ctx, dwarf, sec: chunks[i].sec);
3621 nameAttrs[i] =
3622 readPubNamesAndTypes<ELFT>(ctx, dobj, chunks[i].compilationUnits);
3623 });
3624
3625 auto ret = std::make_unique<GdbIndexSection>(args&: ctx);
3626 ret->chunks = std::move(chunks);
3627 std::tie(args&: ret->symbols, args&: ret->size) =
3628 createSymbols(ctx, nameAttrs, chunks: ret->chunks);
3629
3630 // Count the areas other than the constant pool.
3631 ret->size += sizeof(GdbIndexHeader) + ret->computeSymtabSize() * 8;
3632 for (GdbChunk &chunk : ret->chunks)
3633 ret->size +=
3634 chunk.compilationUnits.size() * 16 + chunk.addressAreas.size() * 20;
3635
3636 return ret;
3637}
3638
3639void GdbIndexSection::writeTo(uint8_t *buf) {
3640 // Write the header.
3641 auto *hdr = reinterpret_cast<GdbIndexHeader *>(buf);
3642 uint8_t *start = buf;
3643 hdr->version = 7;
3644 buf += sizeof(*hdr);
3645
3646 // Write the CU list.
3647 hdr->cuListOff = buf - start;
3648 for (GdbChunk &chunk : chunks) {
3649 for (CuEntry &cu : chunk.compilationUnits) {
3650 write64le(P: buf, V: chunk.sec->outSecOff + cu.cuOffset);
3651 write64le(P: buf + 8, V: cu.cuLength);
3652 buf += 16;
3653 }
3654 }
3655
3656 // Write the address area.
3657 hdr->cuTypesOff = buf - start;
3658 hdr->addressAreaOff = buf - start;
3659 uint32_t cuOff = 0;
3660 for (GdbChunk &chunk : chunks) {
3661 for (AddressEntry &e : chunk.addressAreas) {
3662 // In the case of ICF there may be duplicate address range entries.
3663 const uint64_t baseAddr = e.section->repl->getVA(offset: 0);
3664 write64le(P: buf, V: baseAddr + e.lowAddress);
3665 write64le(P: buf + 8, V: baseAddr + e.highAddress);
3666 write32le(P: buf + 16, V: e.cuIndex + cuOff);
3667 buf += 20;
3668 }
3669 cuOff += chunk.compilationUnits.size();
3670 }
3671
3672 // Write the on-disk open-addressing hash table containing symbols.
3673 hdr->symtabOff = buf - start;
3674 size_t symtabSize = computeSymtabSize();
3675 uint32_t mask = symtabSize - 1;
3676
3677 for (GdbSymbol &sym : symbols) {
3678 uint32_t h = sym.name.hash();
3679 uint32_t i = h & mask;
3680 uint32_t step = ((h * 17) & mask) | 1;
3681
3682 while (read32le(P: buf + i * 8))
3683 i = (i + step) & mask;
3684
3685 write32le(P: buf + i * 8, V: sym.nameOff);
3686 write32le(P: buf + i * 8 + 4, V: sym.cuVectorOff);
3687 }
3688
3689 buf += symtabSize * 8;
3690
3691 // Write the string pool.
3692 hdr->constantPoolOff = buf - start;
3693 parallelForEach(R&: symbols, Fn: [&](GdbSymbol &sym) {
3694 memcpy(dest: buf + sym.nameOff, src: sym.name.data(), n: sym.name.size());
3695 });
3696
3697 // Write the CU vectors.
3698 for (GdbSymbol &sym : symbols) {
3699 write32le(P: buf, V: sym.cuVector.size());
3700 buf += 4;
3701 for (uint32_t val : sym.cuVector) {
3702 write32le(P: buf, V: val);
3703 buf += 4;
3704 }
3705 }
3706}
3707
3708bool GdbIndexSection::isNeeded() const { return !chunks.empty(); }
3709
3710EhFrameHeader::EhFrameHeader(Ctx &ctx)
3711 : SyntheticSection(ctx, ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, 4) {}
3712
3713void EhFrameHeader::writeTo(uint8_t *buf) {
3714 // Unlike most sections, the EhFrameHeader section is written while writing
3715 // another section, namely EhFrameSection, which calls the write() function
3716 // below from its writeTo() function. This is necessary because the contents
3717 // of EhFrameHeader depend on the relocated contents of EhFrameSection and we
3718 // don't know which order the sections will be written in.
3719}
3720
3721// .eh_frame_hdr contains a binary search table of pointers to FDEs.
3722// Each entry of the search table consists of two values,
3723// the starting PC from where FDEs covers, and the FDE's address.
3724// It is sorted by PC.
3725void EhFrameHeader::write() {
3726 uint8_t *buf = ctx.bufferStart + getParent()->offset + outSecOff;
3727 using FdeData = EhFrameSection::FdeData;
3728 SmallVector<FdeData, 0> fdes = getPartition(ctx).ehFrame->getFdeData();
3729
3730 buf[0] = 1;
3731 buf[1] = DW_EH_PE_pcrel | DW_EH_PE_sdata4;
3732 buf[2] = DW_EH_PE_udata4;
3733 buf[3] = DW_EH_PE_datarel | DW_EH_PE_sdata4;
3734 write32(ctx, p: buf + 4,
3735 v: getPartition(ctx).ehFrame->getParent()->addr - this->getVA() - 4);
3736 write32(ctx, p: buf + 8, v: fdes.size());
3737 buf += 12;
3738
3739 for (FdeData &fde : fdes) {
3740 write32(ctx, p: buf, v: fde.pcRel);
3741 write32(ctx, p: buf + 4, v: fde.fdeVARel);
3742 buf += 8;
3743 }
3744}
3745
3746size_t EhFrameHeader::getSize() const {
3747 // .eh_frame_hdr has a 12 bytes header followed by an array of FDEs.
3748 return 12 + getPartition(ctx).ehFrame->numFdes * 8;
3749}
3750
3751bool EhFrameHeader::isNeeded() const {
3752 return isLive() && getPartition(ctx).ehFrame->isNeeded();
3753}
3754
3755VersionDefinitionSection::VersionDefinitionSection(Ctx &ctx)
3756 : SyntheticSection(ctx, ".gnu.version_d", SHT_GNU_verdef, SHF_ALLOC,
3757 sizeof(uint32_t)) {}
3758
3759StringRef VersionDefinitionSection::getFileDefName() {
3760 if (!getPartition(ctx).name.empty())
3761 return getPartition(ctx).name;
3762 if (!ctx.arg.soName.empty())
3763 return ctx.arg.soName;
3764 return ctx.arg.outputFile;
3765}
3766
3767void VersionDefinitionSection::finalizeContents() {
3768 fileDefNameOff = getPartition(ctx).dynStrTab->addString(s: getFileDefName());
3769 for (const VersionDefinition &v : namedVersionDefs(ctx))
3770 verDefNameOffs.push_back(Elt: getPartition(ctx).dynStrTab->addString(s: v.name));
3771
3772 if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
3773 getParent()->link = sec->sectionIndex;
3774
3775 // sh_info should be set to the number of definitions. This fact is missed in
3776 // documentation, but confirmed by binutils community:
3777 // https://sourceware.org/ml/binutils/2014-11/msg00355.html
3778 getParent()->info = getVerDefNum(ctx);
3779}
3780
3781void VersionDefinitionSection::writeOne(uint8_t *buf, uint32_t index,
3782 StringRef name, size_t nameOff) {
3783 uint16_t flags = index == 1 ? VER_FLG_BASE : 0;
3784
3785 // Write a verdef.
3786 write16(ctx, p: buf, v: 1); // vd_version
3787 write16(ctx, p: buf + 2, v: flags); // vd_flags
3788 write16(ctx, p: buf + 4, v: index); // vd_ndx
3789 write16(ctx, p: buf + 6, v: 1); // vd_cnt
3790 write32(ctx, p: buf + 8, v: hashSysV(SymbolName: name)); // vd_hash
3791 write32(ctx, p: buf + 12, v: 20); // vd_aux
3792 write32(ctx, p: buf + 16, v: 28); // vd_next
3793
3794 // Write a veraux.
3795 write32(ctx, p: buf + 20, v: nameOff); // vda_name
3796 write32(ctx, p: buf + 24, v: 0); // vda_next
3797}
3798
3799void VersionDefinitionSection::writeTo(uint8_t *buf) {
3800 writeOne(buf, index: 1, name: getFileDefName(), nameOff: fileDefNameOff);
3801
3802 auto nameOffIt = verDefNameOffs.begin();
3803 for (const VersionDefinition &v : namedVersionDefs(ctx)) {
3804 buf += EntrySize;
3805 writeOne(buf, index: v.id, name: v.name, nameOff: *nameOffIt++);
3806 }
3807
3808 // Need to terminate the last version definition.
3809 write32(ctx, p: buf + 16, v: 0); // vd_next
3810}
3811
3812size_t VersionDefinitionSection::getSize() const {
3813 return EntrySize * getVerDefNum(ctx);
3814}
3815
3816// .gnu.version is a table where each entry is 2 byte long.
3817VersionTableSection::VersionTableSection(Ctx &ctx)
3818 : SyntheticSection(ctx, ".gnu.version", SHT_GNU_versym, SHF_ALLOC,
3819 sizeof(uint16_t)) {
3820 this->entsize = 2;
3821}
3822
3823void VersionTableSection::finalizeContents() {
3824 if (OutputSection *osec = getPartition(ctx).dynSymTab->getParent())
3825 getParent()->link = osec->sectionIndex;
3826}
3827
3828size_t VersionTableSection::getSize() const {
3829 return (getPartition(ctx).dynSymTab->getSymbols().size() + 1) * 2;
3830}
3831
3832void VersionTableSection::writeTo(uint8_t *buf) {
3833 buf += 2;
3834 for (const SymbolTableEntry &s : getPartition(ctx).dynSymTab->getSymbols()) {
3835 // For an unextracted lazy symbol (undefined weak), it must have been
3836 // converted to Undefined and have VER_NDX_GLOBAL version here.
3837 assert(!s.sym->isLazy());
3838 write16(ctx, p: buf, v: s.sym->versionId);
3839 buf += 2;
3840 }
3841}
3842
3843bool VersionTableSection::isNeeded() const {
3844 return isLive() &&
3845 (getPartition(ctx).verDef || getPartition(ctx).verNeed->isNeeded());
3846}
3847
3848void elf::addVerneed(Ctx &ctx, Symbol &ss) {
3849 auto &file = cast<SharedFile>(Val&: *ss.file);
3850 if (ss.versionId == VER_NDX_GLOBAL)
3851 return;
3852
3853 if (file.vernauxs.empty())
3854 file.vernauxs.resize(N: file.verdefs.size());
3855
3856 // Select a version identifier for the vernaux data structure, if we haven't
3857 // already allocated one. The verdef identifiers cover the range
3858 // [1..getVerDefNum(ctx)]; this causes the vernaux identifiers to start from
3859 // getVerDefNum(ctx)+1.
3860 if (file.vernauxs[ss.versionId] == 0)
3861 file.vernauxs[ss.versionId] = ++ctx.vernauxNum + getVerDefNum(ctx);
3862
3863 ss.versionId = file.vernauxs[ss.versionId];
3864}
3865
3866template <class ELFT>
3867VersionNeedSection<ELFT>::VersionNeedSection(Ctx &ctx)
3868 : SyntheticSection(ctx, ".gnu.version_r", SHT_GNU_verneed, SHF_ALLOC,
3869 sizeof(uint32_t)) {}
3870
3871template <class ELFT> void VersionNeedSection<ELFT>::finalizeContents() {
3872 for (SharedFile *f : ctx.sharedFiles) {
3873 if (f->vernauxs.empty())
3874 continue;
3875 verneeds.emplace_back();
3876 Verneed &vn = verneeds.back();
3877 vn.nameStrTab = getPartition(ctx).dynStrTab->addString(f->soName);
3878 bool isLibc = ctx.arg.relrGlibc && f->soName.starts_with(Prefix: "libc.so.");
3879 bool isGlibc2 = false;
3880 for (unsigned i = 0; i != f->vernauxs.size(); ++i) {
3881 if (f->vernauxs[i] == 0)
3882 continue;
3883 auto *verdef =
3884 reinterpret_cast<const typename ELFT::Verdef *>(f->verdefs[i]);
3885 StringRef ver(f->getStringTable().data() + verdef->getAux()->vda_name);
3886 if (isLibc && ver.starts_with(Prefix: "GLIBC_2."))
3887 isGlibc2 = true;
3888 vn.vernauxs.push_back({verdef->vd_hash, f->vernauxs[i],
3889 getPartition(ctx).dynStrTab->addString(ver)});
3890 }
3891 if (isGlibc2) {
3892 const char *ver = "GLIBC_ABI_DT_RELR";
3893 vn.vernauxs.push_back({hashSysV(SymbolName: ver),
3894 ++ctx.vernauxNum + getVerDefNum(ctx),
3895 getPartition(ctx).dynStrTab->addString(ver)});
3896 }
3897 }
3898
3899 if (OutputSection *sec = getPartition(ctx).dynStrTab->getParent())
3900 getParent()->link = sec->sectionIndex;
3901 getParent()->info = verneeds.size();
3902}
3903
3904template <class ELFT> void VersionNeedSection<ELFT>::writeTo(uint8_t *buf) {
3905 // The Elf_Verneeds need to appear first, followed by the Elf_Vernauxs.
3906 auto *verneed = reinterpret_cast<Elf_Verneed *>(buf);
3907 auto *vernaux = reinterpret_cast<Elf_Vernaux *>(verneed + verneeds.size());
3908
3909 for (auto &vn : verneeds) {
3910 // Create an Elf_Verneed for this DSO.
3911 verneed->vn_version = 1;
3912 verneed->vn_cnt = vn.vernauxs.size();
3913 verneed->vn_file = vn.nameStrTab;
3914 verneed->vn_aux =
3915 reinterpret_cast<char *>(vernaux) - reinterpret_cast<char *>(verneed);
3916 verneed->vn_next = sizeof(Elf_Verneed);
3917 ++verneed;
3918
3919 // Create the Elf_Vernauxs for this Elf_Verneed.
3920 for (auto &vna : vn.vernauxs) {
3921 vernaux->vna_hash = vna.hash;
3922 vernaux->vna_flags = 0;
3923 vernaux->vna_other = vna.verneedIndex;
3924 vernaux->vna_name = vna.nameStrTab;
3925 vernaux->vna_next = sizeof(Elf_Vernaux);
3926 ++vernaux;
3927 }
3928
3929 vernaux[-1].vna_next = 0;
3930 }
3931 verneed[-1].vn_next = 0;
3932}
3933
3934template <class ELFT> size_t VersionNeedSection<ELFT>::getSize() const {
3935 return verneeds.size() * sizeof(Elf_Verneed) +
3936 ctx.vernauxNum * sizeof(Elf_Vernaux);
3937}
3938
3939template <class ELFT> bool VersionNeedSection<ELFT>::isNeeded() const {
3940 return isLive() && ctx.vernauxNum != 0;
3941}
3942
3943void MergeSyntheticSection::addSection(MergeInputSection *ms) {
3944 ms->parent = this;
3945 sections.push_back(Elt: ms);
3946 assert(addralign == ms->addralign || !(ms->flags & SHF_STRINGS));
3947 addralign = std::max(a: addralign, b: ms->addralign);
3948}
3949
3950MergeTailSection::MergeTailSection(Ctx &ctx, StringRef name, uint32_t type,
3951 uint64_t flags, uint32_t alignment)
3952 : MergeSyntheticSection(ctx, name, type, flags, alignment),
3953 builder(StringTableBuilder::RAW, llvm::Align(alignment)) {}
3954
3955size_t MergeTailSection::getSize() const { return builder.getSize(); }
3956
3957void MergeTailSection::writeTo(uint8_t *buf) { builder.write(Buf: buf); }
3958
3959void MergeTailSection::finalizeContents() {
3960 // Add all string pieces to the string table builder to create section
3961 // contents.
3962 for (MergeInputSection *sec : sections)
3963 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3964 if (sec->pieces[i].live)
3965 builder.add(S: sec->getData(i));
3966
3967 // Fix the string table content. After this, the contents will never change.
3968 builder.finalize();
3969
3970 // finalize() fixed tail-optimized strings, so we can now get
3971 // offsets of strings. Get an offset for each string and save it
3972 // to a corresponding SectionPiece for easy access.
3973 for (MergeInputSection *sec : sections)
3974 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
3975 if (sec->pieces[i].live)
3976 sec->pieces[i].outputOff = builder.getOffset(S: sec->getData(i));
3977}
3978
3979void MergeNoTailSection::writeTo(uint8_t *buf) {
3980 parallelFor(Begin: 0, End: numShards,
3981 Fn: [&](size_t i) { shards[i].write(Buf: buf + shardOffsets[i]); });
3982}
3983
3984// This function is very hot (i.e. it can take several seconds to finish)
3985// because sometimes the number of inputs is in an order of magnitude of
3986// millions. So, we use multi-threading.
3987//
3988// For any strings S and T, we know S is not mergeable with T if S's hash
3989// value is different from T's. If that's the case, we can safely put S and
3990// T into different string builders without worrying about merge misses.
3991// We do it in parallel.
3992void MergeNoTailSection::finalizeContents() {
3993 // Initializes string table builders.
3994 for (size_t i = 0; i < numShards; ++i)
3995 shards.emplace_back(Args: StringTableBuilder::RAW, Args: llvm::Align(addralign));
3996
3997 // Concurrency level. Must be a power of 2 to avoid expensive modulo
3998 // operations in the following tight loop.
3999 const size_t concurrency =
4000 llvm::bit_floor(Value: std::min<size_t>(a: ctx.arg.threadCount, b: numShards));
4001
4002 // Add section pieces to the builders.
4003 parallelFor(Begin: 0, End: concurrency, Fn: [&](size_t threadId) {
4004 for (MergeInputSection *sec : sections) {
4005 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i) {
4006 if (!sec->pieces[i].live)
4007 continue;
4008 size_t shardId = getShardId(hash: sec->pieces[i].hash);
4009 if ((shardId & (concurrency - 1)) == threadId)
4010 sec->pieces[i].outputOff = shards[shardId].add(S: sec->getData(i));
4011 }
4012 }
4013 });
4014
4015 // Compute an in-section offset for each shard.
4016 size_t off = 0;
4017 for (size_t i = 0; i < numShards; ++i) {
4018 shards[i].finalizeInOrder();
4019 if (shards[i].getSize() > 0)
4020 off = alignToPowerOf2(Value: off, Align: addralign);
4021 shardOffsets[i] = off;
4022 off += shards[i].getSize();
4023 }
4024 size = off;
4025
4026 // So far, section pieces have offsets from beginning of shards, but
4027 // we want offsets from beginning of the whole section. Fix them.
4028 parallelForEach(R&: sections, Fn: [&](MergeInputSection *sec) {
4029 for (size_t i = 0, e = sec->pieces.size(); i != e; ++i)
4030 if (sec->pieces[i].live)
4031 sec->pieces[i].outputOff +=
4032 shardOffsets[getShardId(hash: sec->pieces[i].hash)];
4033 });
4034}
4035
4036template <class ELFT> void elf::splitSections(Ctx &ctx) {
4037 llvm::TimeTraceScope timeScope("Split sections");
4038 // splitIntoPieces needs to be called on each MergeInputSection
4039 // before calling finalizeContents().
4040 parallelForEach(ctx.objectFiles, [](ELFFileBase *file) {
4041 for (InputSectionBase *sec : file->getSections()) {
4042 if (!sec)
4043 continue;
4044 if (auto *s = dyn_cast<MergeInputSection>(Val: sec))
4045 s->splitIntoPieces();
4046 else if (auto *eh = dyn_cast<EhInputSection>(Val: sec))
4047 eh->split<ELFT>();
4048 }
4049 });
4050}
4051
4052void elf::combineEhSections(Ctx &ctx) {
4053 llvm::TimeTraceScope timeScope("Combine EH sections");
4054 for (EhInputSection *sec : ctx.ehInputSections) {
4055 EhFrameSection &eh = *sec->getPartition(ctx).ehFrame;
4056 sec->parent = &eh;
4057 eh.addralign = std::max(a: eh.addralign, b: sec->addralign);
4058 eh.sections.push_back(Elt: sec);
4059 llvm::append_range(C&: eh.dependentSections, R&: sec->dependentSections);
4060 }
4061
4062 if (!ctx.mainPart->armExidx)
4063 return;
4064 llvm::erase_if(C&: ctx.inputSections, P: [&](InputSectionBase *s) {
4065 // Ignore dead sections and the partition end marker (.part.end),
4066 // whose partition number is out of bounds.
4067 if (!s->isLive() || s->partition == 255)
4068 return false;
4069 Partition &part = s->getPartition(ctx);
4070 return s->kind() == SectionBase::Regular && part.armExidx &&
4071 part.armExidx->addSection(isec: cast<InputSection>(Val: s));
4072 });
4073}
4074
4075MipsRldMapSection::MipsRldMapSection(Ctx &ctx)
4076 : SyntheticSection(ctx, ".rld_map", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE,
4077 ctx.arg.wordsize) {}
4078
4079ARMExidxSyntheticSection::ARMExidxSyntheticSection(Ctx &ctx)
4080 : SyntheticSection(ctx, ".ARM.exidx", SHT_ARM_EXIDX,
4081 SHF_ALLOC | SHF_LINK_ORDER, ctx.arg.wordsize) {}
4082
4083static InputSection *findExidxSection(InputSection *isec) {
4084 for (InputSection *d : isec->dependentSections)
4085 if (d->type == SHT_ARM_EXIDX && d->isLive())
4086 return d;
4087 return nullptr;
4088}
4089
4090static bool isValidExidxSectionDep(InputSection *isec) {
4091 return (isec->flags & SHF_ALLOC) && (isec->flags & SHF_EXECINSTR) &&
4092 isec->getSize() > 0;
4093}
4094
4095bool ARMExidxSyntheticSection::addSection(InputSection *isec) {
4096 if (isec->type == SHT_ARM_EXIDX) {
4097 if (InputSection *dep = isec->getLinkOrderDep())
4098 if (isValidExidxSectionDep(isec: dep)) {
4099 exidxSections.push_back(Elt: isec);
4100 // Every exidxSection is 8 bytes, we need an estimate of
4101 // size before assignAddresses can be called. Final size
4102 // will only be known after finalize is called.
4103 size += 8;
4104 }
4105 return true;
4106 }
4107
4108 if (isValidExidxSectionDep(isec)) {
4109 executableSections.push_back(Elt: isec);
4110 return false;
4111 }
4112
4113 // FIXME: we do not output a relocation section when --emit-relocs is used
4114 // as we do not have relocation sections for linker generated table entries
4115 // and we would have to erase at a late stage relocations from merged entries.
4116 // Given that exception tables are already position independent and a binary
4117 // analyzer could derive the relocations we choose to erase the relocations.
4118 if (ctx.arg.emitRelocs && isec->type == SHT_REL)
4119 if (InputSectionBase *ex = isec->getRelocatedSection())
4120 if (isa<InputSection>(Val: ex) && ex->type == SHT_ARM_EXIDX)
4121 return true;
4122
4123 return false;
4124}
4125
4126// References to .ARM.Extab Sections have bit 31 clear and are not the
4127// special EXIDX_CANTUNWIND bit-pattern.
4128static bool isExtabRef(uint32_t unwind) {
4129 return (unwind & 0x80000000) == 0 && unwind != 0x1;
4130}
4131
4132// Return true if the .ARM.exidx section Cur can be merged into the .ARM.exidx
4133// section Prev, where Cur follows Prev in the table. This can be done if the
4134// unwinding instructions in Cur are identical to Prev. Linker generated
4135// EXIDX_CANTUNWIND entries are represented by nullptr as they do not have an
4136// InputSection.
4137static bool isDuplicateArmExidxSec(Ctx &ctx, InputSection *prev,
4138 InputSection *cur) {
4139 // Get the last table Entry from the previous .ARM.exidx section. If Prev is
4140 // nullptr then it will be a synthesized EXIDX_CANTUNWIND entry.
4141 uint32_t prevUnwind = 1;
4142 if (prev)
4143 prevUnwind =
4144 read32(ctx, p: prev->content().data() + prev->content().size() - 4);
4145 if (isExtabRef(unwind: prevUnwind))
4146 return false;
4147
4148 // We consider the unwind instructions of an .ARM.exidx table entry
4149 // a duplicate if the previous unwind instructions if:
4150 // - Both are the special EXIDX_CANTUNWIND.
4151 // - Both are the same inline unwind instructions.
4152 // We do not attempt to follow and check links into .ARM.extab tables as
4153 // consecutive identical entries are rare and the effort to check that they
4154 // are identical is high.
4155
4156 // If Cur is nullptr then this is synthesized EXIDX_CANTUNWIND entry.
4157 if (cur == nullptr)
4158 return prevUnwind == 1;
4159
4160 for (uint32_t offset = 4; offset < (uint32_t)cur->content().size(); offset +=8) {
4161 uint32_t curUnwind = read32(ctx, p: cur->content().data() + offset);
4162 if (isExtabRef(unwind: curUnwind) || curUnwind != prevUnwind)
4163 return false;
4164 }
4165 // All table entries in this .ARM.exidx Section can be merged into the
4166 // previous Section.
4167 return true;
4168}
4169
4170// The .ARM.exidx table must be sorted in ascending order of the address of the
4171// functions the table describes. std::optionally duplicate adjacent table
4172// entries can be removed. At the end of the function the executableSections
4173// must be sorted in ascending order of address, Sentinel is set to the
4174// InputSection with the highest address and any InputSections that have
4175// mergeable .ARM.exidx table entries are removed from it.
4176void ARMExidxSyntheticSection::finalizeContents() {
4177 // Ensure that any fixed-point iterations after the first see the original set
4178 // of sections.
4179 if (!originalExecutableSections.empty())
4180 executableSections = originalExecutableSections;
4181 else if (ctx.arg.enableNonContiguousRegions)
4182 originalExecutableSections = executableSections;
4183
4184 // The executableSections and exidxSections that we use to derive the final
4185 // contents of this SyntheticSection are populated before
4186 // processSectionCommands() and ICF. A /DISCARD/ entry in SECTIONS command or
4187 // ICF may remove executable InputSections and their dependent .ARM.exidx
4188 // section that we recorded earlier.
4189 auto isDiscarded = [](const InputSection *isec) { return !isec->isLive(); };
4190 llvm::erase_if(C&: exidxSections, P: isDiscarded);
4191 // We need to remove discarded InputSections and InputSections without
4192 // .ARM.exidx sections that if we generated the .ARM.exidx it would be out
4193 // of range.
4194 auto isDiscardedOrOutOfRange = [this](InputSection *isec) {
4195 if (!isec->isLive())
4196 return true;
4197 if (findExidxSection(isec))
4198 return false;
4199 int64_t off = static_cast<int64_t>(isec->getVA() - getVA());
4200 return off != llvm::SignExtend64(X: off, B: 31);
4201 };
4202 llvm::erase_if(C&: executableSections, P: isDiscardedOrOutOfRange);
4203
4204 // Sort the executable sections that may or may not have associated
4205 // .ARM.exidx sections by order of ascending address. This requires the
4206 // relative positions of InputSections and OutputSections to be known.
4207 auto compareByFilePosition = [](const InputSection *a,
4208 const InputSection *b) {
4209 OutputSection *aOut = a->getParent();
4210 OutputSection *bOut = b->getParent();
4211
4212 if (aOut != bOut)
4213 return aOut->addr < bOut->addr;
4214 return a->outSecOff < b->outSecOff;
4215 };
4216 llvm::stable_sort(Range&: executableSections, C: compareByFilePosition);
4217 sentinel = executableSections.back();
4218 // std::optionally merge adjacent duplicate entries.
4219 if (ctx.arg.mergeArmExidx) {
4220 SmallVector<InputSection *, 0> selectedSections;
4221 selectedSections.reserve(N: executableSections.size());
4222 selectedSections.push_back(Elt: executableSections[0]);
4223 size_t prev = 0;
4224 for (size_t i = 1; i < executableSections.size(); ++i) {
4225 InputSection *ex1 = findExidxSection(isec: executableSections[prev]);
4226 InputSection *ex2 = findExidxSection(isec: executableSections[i]);
4227 if (!isDuplicateArmExidxSec(ctx, prev: ex1, cur: ex2)) {
4228 selectedSections.push_back(Elt: executableSections[i]);
4229 prev = i;
4230 }
4231 }
4232 executableSections = std::move(selectedSections);
4233 }
4234 // offset is within the SyntheticSection.
4235 size_t offset = 0;
4236 size = 0;
4237 for (InputSection *isec : executableSections) {
4238 if (InputSection *d = findExidxSection(isec)) {
4239 d->outSecOff = offset;
4240 d->parent = getParent();
4241 offset += d->getSize();
4242 } else {
4243 offset += 8;
4244 }
4245 }
4246 // Size includes Sentinel.
4247 size = offset + 8;
4248}
4249
4250InputSection *ARMExidxSyntheticSection::getLinkOrderDep() const {
4251 return executableSections.front();
4252}
4253
4254// To write the .ARM.exidx table from the ExecutableSections we have three cases
4255// 1.) The InputSection has a .ARM.exidx InputSection in its dependent sections.
4256// We write the .ARM.exidx section contents and apply its relocations.
4257// 2.) The InputSection does not have a dependent .ARM.exidx InputSection. We
4258// must write the contents of an EXIDX_CANTUNWIND directly. We use the
4259// start of the InputSection as the purpose of the linker generated
4260// section is to terminate the address range of the previous entry.
4261// 3.) A trailing EXIDX_CANTUNWIND sentinel section is required at the end of
4262// the table to terminate the address range of the final entry.
4263void ARMExidxSyntheticSection::writeTo(uint8_t *buf) {
4264
4265 // A linker generated CANTUNWIND entry is made up of two words:
4266 // 0x0 with R_ARM_PREL31 relocation to target.
4267 // 0x1 with EXIDX_CANTUNWIND.
4268 uint64_t offset = 0;
4269 for (InputSection *isec : executableSections) {
4270 assert(isec->getParent() != nullptr);
4271 if (InputSection *d = findExidxSection(isec)) {
4272 for (int dataOffset = 0; dataOffset != (int)d->content().size();
4273 dataOffset += 4)
4274 write32(ctx, p: buf + offset + dataOffset,
4275 v: read32(ctx, p: d->content().data() + dataOffset));
4276 // Recalculate outSecOff as finalizeAddressDependentContent()
4277 // may have altered syntheticSection outSecOff.
4278 d->outSecOff = offset + outSecOff;
4279 ctx.target->relocateAlloc(sec&: *d, buf: buf + offset);
4280 offset += d->getSize();
4281 } else {
4282 // A Linker generated CANTUNWIND section.
4283 write32(ctx, p: buf + offset + 0, v: 0x0);
4284 write32(ctx, p: buf + offset + 4, v: 0x1);
4285 uint64_t s = isec->getVA();
4286 uint64_t p = getVA() + offset;
4287 ctx.target->relocateNoSym(loc: buf + offset, type: R_ARM_PREL31, val: s - p);
4288 offset += 8;
4289 }
4290 }
4291 // Write Sentinel CANTUNWIND entry.
4292 write32(ctx, p: buf + offset + 0, v: 0x0);
4293 write32(ctx, p: buf + offset + 4, v: 0x1);
4294 uint64_t s = sentinel->getVA(offset: sentinel->getSize());
4295 uint64_t p = getVA() + offset;
4296 ctx.target->relocateNoSym(loc: buf + offset, type: R_ARM_PREL31, val: s - p);
4297 assert(size == offset + 8);
4298}
4299
4300bool ARMExidxSyntheticSection::isNeeded() const {
4301 return llvm::any_of(Range: exidxSections,
4302 P: [](InputSection *isec) { return isec->isLive(); });
4303}
4304
4305ThunkSection::ThunkSection(Ctx &ctx, OutputSection *os, uint64_t off)
4306 : SyntheticSection(ctx, ".text.thunk", SHT_PROGBITS,
4307 SHF_ALLOC | SHF_EXECINSTR,
4308 ctx.arg.emachine == EM_PPC64 ? 16 : 4) {
4309 this->parent = os;
4310 this->outSecOff = off;
4311}
4312
4313size_t ThunkSection::getSize() const {
4314 if (roundUpSizeForErrata)
4315 return alignTo(Value: size, Align: 4096);
4316 return size;
4317}
4318
4319void ThunkSection::addThunk(Thunk *t) {
4320 thunks.push_back(Elt: t);
4321 t->addSymbols(isec&: *this);
4322}
4323
4324void ThunkSection::writeTo(uint8_t *buf) {
4325 for (Thunk *t : thunks)
4326 t->writeTo(buf: buf + t->offset);
4327}
4328
4329InputSection *ThunkSection::getTargetInputSection() const {
4330 if (thunks.empty())
4331 return nullptr;
4332 const Thunk *t = thunks.front();
4333 return t->getTargetInputSection();
4334}
4335
4336bool ThunkSection::assignOffsets() {
4337 uint64_t off = 0;
4338 bool changed = false;
4339 for (Thunk *t : thunks) {
4340 if (t->alignment > addralign) {
4341 addralign = t->alignment;
4342 changed = true;
4343 }
4344 off = alignToPowerOf2(Value: off, Align: t->alignment);
4345 t->setOffset(off);
4346 uint32_t size = t->size();
4347 t->getThunkTargetSym()->size = size;
4348 off += size;
4349 }
4350 if (off != size)
4351 changed = true;
4352 size = off;
4353 return changed;
4354}
4355
4356PPC32Got2Section::PPC32Got2Section(Ctx &ctx)
4357 : SyntheticSection(ctx, ".got2", SHT_PROGBITS, SHF_ALLOC | SHF_WRITE, 4) {}
4358
4359bool PPC32Got2Section::isNeeded() const {
4360 // See the comment below. This is not needed if there is no other
4361 // InputSection.
4362 for (SectionCommand *cmd : getParent()->commands)
4363 if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd))
4364 for (InputSection *isec : isd->sections)
4365 if (isec != this)
4366 return true;
4367 return false;
4368}
4369
4370void PPC32Got2Section::finalizeContents() {
4371 // PPC32 may create multiple GOT sections for -fPIC/-fPIE, one per file in
4372 // .got2 . This function computes outSecOff of each .got2 to be used in
4373 // PPC32PltCallStub::writeTo(). The purpose of this empty synthetic section is
4374 // to collect input sections named ".got2".
4375 for (SectionCommand *cmd : getParent()->commands)
4376 if (auto *isd = dyn_cast<InputSectionDescription>(Val: cmd)) {
4377 for (InputSection *isec : isd->sections) {
4378 // isec->file may be nullptr for MergeSyntheticSection.
4379 if (isec != this && isec->file)
4380 isec->file->ppc32Got2 = isec;
4381 }
4382 }
4383}
4384
4385// If linking position-dependent code then the table will store the addresses
4386// directly in the binary so the section has type SHT_PROGBITS. If linking
4387// position-independent code the section has type SHT_NOBITS since it will be
4388// allocated and filled in by the dynamic linker.
4389PPC64LongBranchTargetSection::PPC64LongBranchTargetSection(Ctx &ctx)
4390 : SyntheticSection(ctx, ".branch_lt",
4391 ctx.arg.isPic ? SHT_NOBITS : SHT_PROGBITS,
4392 SHF_ALLOC | SHF_WRITE, 8) {}
4393
4394uint64_t PPC64LongBranchTargetSection::getEntryVA(const Symbol *sym,
4395 int64_t addend) {
4396 return getVA() + entry_index.find(Val: {sym, addend})->second * 8;
4397}
4398
4399std::optional<uint32_t>
4400PPC64LongBranchTargetSection::addEntry(const Symbol *sym, int64_t addend) {
4401 auto res =
4402 entry_index.try_emplace(Key: std::make_pair(x&: sym, y&: addend), Args: entries.size());
4403 if (!res.second)
4404 return std::nullopt;
4405 entries.emplace_back(Args&: sym, Args&: addend);
4406 return res.first->second;
4407}
4408
4409size_t PPC64LongBranchTargetSection::getSize() const {
4410 return entries.size() * 8;
4411}
4412
4413void PPC64LongBranchTargetSection::writeTo(uint8_t *buf) {
4414 // If linking non-pic we have the final addresses of the targets and they get
4415 // written to the table directly. For pic the dynamic linker will allocate
4416 // the section and fill it.
4417 if (ctx.arg.isPic)
4418 return;
4419
4420 for (auto entry : entries) {
4421 const Symbol *sym = entry.first;
4422 int64_t addend = entry.second;
4423 assert(sym->getVA(ctx));
4424 // Need calls to branch to the local entry-point since a long-branch
4425 // must be a local-call.
4426 write64(ctx, p: buf,
4427 v: sym->getVA(ctx, addend) +
4428 getPPC64GlobalEntryToLocalEntryOffset(ctx, stOther: sym->stOther));
4429 buf += 8;
4430 }
4431}
4432
4433bool PPC64LongBranchTargetSection::isNeeded() const {
4434 // `removeUnusedSyntheticSections()` is called before thunk allocation which
4435 // is too early to determine if this section will be empty or not. We need
4436 // Finalized to keep the section alive until after thunk creation. Finalized
4437 // only gets set to true once `finalizeSections()` is called after thunk
4438 // creation. Because of this, if we don't create any long-branch thunks we end
4439 // up with an empty .branch_lt section in the binary.
4440 return !finalized || !entries.empty();
4441}
4442
4443static uint8_t getAbiVersion(Ctx &ctx) {
4444 // MIPS non-PIC executable gets ABI version 1.
4445 if (ctx.arg.emachine == EM_MIPS) {
4446 if (!ctx.arg.isPic && !ctx.arg.relocatable &&
4447 (ctx.arg.eflags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
4448 return 1;
4449 return 0;
4450 }
4451
4452 if (ctx.arg.emachine == EM_AMDGPU && !ctx.objectFiles.empty()) {
4453 uint8_t ver = ctx.objectFiles[0]->abiVersion;
4454 for (InputFile *file : ArrayRef(ctx.objectFiles).slice(N: 1))
4455 if (file->abiVersion != ver)
4456 Err(ctx) << "incompatible ABI version: " << file;
4457 return ver;
4458 }
4459
4460 return 0;
4461}
4462
4463template <typename ELFT>
4464void elf::writeEhdr(Ctx &ctx, uint8_t *buf, Partition &part) {
4465 memcpy(dest: buf, src: "\177ELF", n: 4);
4466
4467 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
4468 eHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
4469 eHdr->e_ident[EI_DATA] =
4470 ELFT::Endianness == endianness::little ? ELFDATA2LSB : ELFDATA2MSB;
4471 eHdr->e_ident[EI_VERSION] = EV_CURRENT;
4472 eHdr->e_ident[EI_OSABI] = ctx.arg.osabi;
4473 eHdr->e_ident[EI_ABIVERSION] = getAbiVersion(ctx);
4474 eHdr->e_machine = ctx.arg.emachine;
4475 eHdr->e_version = EV_CURRENT;
4476 eHdr->e_flags = ctx.arg.eflags;
4477 eHdr->e_ehsize = sizeof(typename ELFT::Ehdr);
4478 eHdr->e_phnum = part.phdrs.size();
4479 eHdr->e_shentsize = sizeof(typename ELFT::Shdr);
4480
4481 if (!ctx.arg.relocatable) {
4482 eHdr->e_phoff = sizeof(typename ELFT::Ehdr);
4483 eHdr->e_phentsize = sizeof(typename ELFT::Phdr);
4484 }
4485}
4486
4487template <typename ELFT> void elf::writePhdrs(uint8_t *buf, Partition &part) {
4488 // Write the program header table.
4489 auto *hBuf = reinterpret_cast<typename ELFT::Phdr *>(buf);
4490 for (std::unique_ptr<PhdrEntry> &p : part.phdrs) {
4491 hBuf->p_type = p->p_type;
4492 hBuf->p_flags = p->p_flags;
4493 hBuf->p_offset = p->p_offset;
4494 hBuf->p_vaddr = p->p_vaddr;
4495 hBuf->p_paddr = p->p_paddr;
4496 hBuf->p_filesz = p->p_filesz;
4497 hBuf->p_memsz = p->p_memsz;
4498 hBuf->p_align = p->p_align;
4499 ++hBuf;
4500 }
4501}
4502
4503template <typename ELFT>
4504PartitionElfHeaderSection<ELFT>::PartitionElfHeaderSection(Ctx &ctx)
4505 : SyntheticSection(ctx, "", SHT_LLVM_PART_EHDR, SHF_ALLOC, 1) {}
4506
4507template <typename ELFT>
4508size_t PartitionElfHeaderSection<ELFT>::getSize() const {
4509 return sizeof(typename ELFT::Ehdr);
4510}
4511
4512template <typename ELFT>
4513void PartitionElfHeaderSection<ELFT>::writeTo(uint8_t *buf) {
4514 writeEhdr<ELFT>(ctx, buf, getPartition(ctx));
4515
4516 // Loadable partitions are always ET_DYN.
4517 auto *eHdr = reinterpret_cast<typename ELFT::Ehdr *>(buf);
4518 eHdr->e_type = ET_DYN;
4519}
4520
4521template <typename ELFT>
4522PartitionProgramHeadersSection<ELFT>::PartitionProgramHeadersSection(Ctx &ctx)
4523 : SyntheticSection(ctx, ".phdrs", SHT_LLVM_PART_PHDR, SHF_ALLOC, 1) {}
4524
4525template <typename ELFT>
4526size_t PartitionProgramHeadersSection<ELFT>::getSize() const {
4527 return sizeof(typename ELFT::Phdr) * getPartition(ctx).phdrs.size();
4528}
4529
4530template <typename ELFT>
4531void PartitionProgramHeadersSection<ELFT>::writeTo(uint8_t *buf) {
4532 writePhdrs<ELFT>(buf, getPartition(ctx));
4533}
4534
4535PartitionIndexSection::PartitionIndexSection(Ctx &ctx)
4536 : SyntheticSection(ctx, ".rodata", SHT_PROGBITS, SHF_ALLOC, 4) {}
4537
4538size_t PartitionIndexSection::getSize() const {
4539 return 12 * (ctx.partitions.size() - 1);
4540}
4541
4542void PartitionIndexSection::finalizeContents() {
4543 for (size_t i = 1; i != ctx.partitions.size(); ++i)
4544 ctx.partitions[i].nameStrTab =
4545 ctx.mainPart->dynStrTab->addString(s: ctx.partitions[i].name);
4546}
4547
4548void PartitionIndexSection::writeTo(uint8_t *buf) {
4549 uint64_t va = getVA();
4550 for (size_t i = 1; i != ctx.partitions.size(); ++i) {
4551 write32(ctx, p: buf,
4552 v: ctx.mainPart->dynStrTab->getVA() + ctx.partitions[i].nameStrTab -
4553 va);
4554 write32(ctx, p: buf + 4, v: ctx.partitions[i].elfHeader->getVA() - (va + 4));
4555
4556 SyntheticSection *next = i == ctx.partitions.size() - 1
4557 ? ctx.in.partEnd.get()
4558 : ctx.partitions[i + 1].elfHeader.get();
4559 write32(ctx, p: buf + 8, v: next->getVA() - ctx.partitions[i].elfHeader->getVA());
4560
4561 va += 12;
4562 buf += 12;
4563 }
4564}
4565
4566static bool needsInterpSection(Ctx &ctx) {
4567 return !ctx.arg.relocatable && !ctx.arg.shared &&
4568 !ctx.arg.dynamicLinker.empty() && ctx.script->needsInterpSection();
4569}
4570
4571bool elf::hasMemtag(Ctx &ctx) {
4572 return ctx.arg.emachine == EM_AARCH64 &&
4573 ctx.arg.androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE;
4574}
4575
4576// Fully static executables don't support MTE globals at this point in time, as
4577// we currently rely on:
4578// - A dynamic loader to process relocations, and
4579// - Dynamic entries.
4580// This restriction could be removed in future by re-using some of the ideas
4581// that ifuncs use in fully static executables.
4582bool elf::canHaveMemtagGlobals(Ctx &ctx) {
4583 return hasMemtag(ctx) &&
4584 (ctx.arg.relocatable || ctx.arg.shared || needsInterpSection(ctx));
4585}
4586
4587constexpr char kMemtagAndroidNoteName[] = "Android";
4588void MemtagAndroidNote::writeTo(uint8_t *buf) {
4589 static_assert(
4590 sizeof(kMemtagAndroidNoteName) == 8,
4591 "Android 11 & 12 have an ABI that the note name is 8 bytes long. Keep it "
4592 "that way for backwards compatibility.");
4593
4594 write32(ctx, p: buf, v: sizeof(kMemtagAndroidNoteName));
4595 write32(ctx, p: buf + 4, v: sizeof(uint32_t));
4596 write32(ctx, p: buf + 8, v: ELF::NT_ANDROID_TYPE_MEMTAG);
4597 memcpy(dest: buf + 12, src: kMemtagAndroidNoteName, n: sizeof(kMemtagAndroidNoteName));
4598 buf += 12 + alignTo(Value: sizeof(kMemtagAndroidNoteName), Align: 4);
4599
4600 uint32_t value = 0;
4601 value |= ctx.arg.androidMemtagMode;
4602 if (ctx.arg.androidMemtagHeap)
4603 value |= ELF::NT_MEMTAG_HEAP;
4604 // Note, MTE stack is an ABI break. Attempting to run an MTE stack-enabled
4605 // binary on Android 11 or 12 will result in a checkfail in the loader.
4606 if (ctx.arg.androidMemtagStack)
4607 value |= ELF::NT_MEMTAG_STACK;
4608 write32(ctx, p: buf, v: value); // note value
4609}
4610
4611size_t MemtagAndroidNote::getSize() const {
4612 return sizeof(llvm::ELF::Elf64_Nhdr) +
4613 /*namesz=*/alignTo(Value: sizeof(kMemtagAndroidNoteName), Align: 4) +
4614 /*descsz=*/sizeof(uint32_t);
4615}
4616
4617void PackageMetadataNote::writeTo(uint8_t *buf) {
4618 write32(ctx, p: buf, v: 4);
4619 write32(ctx, p: buf + 4, v: ctx.arg.packageMetadata.size() + 1);
4620 write32(ctx, p: buf + 8, v: FDO_PACKAGING_METADATA);
4621 memcpy(dest: buf + 12, src: "FDO", n: 4);
4622 memcpy(dest: buf + 16, src: ctx.arg.packageMetadata.data(),
4623 n: ctx.arg.packageMetadata.size());
4624}
4625
4626size_t PackageMetadataNote::getSize() const {
4627 return sizeof(llvm::ELF::Elf64_Nhdr) + 4 +
4628 alignTo(Value: ctx.arg.packageMetadata.size() + 1, Align: 4);
4629}
4630
4631// Helper function, return the size of the ULEB128 for 'v', optionally writing
4632// it to `*(buf + offset)` if `buf` is non-null.
4633static size_t computeOrWriteULEB128(uint64_t v, uint8_t *buf, size_t offset) {
4634 if (buf)
4635 return encodeULEB128(Value: v, p: buf + offset);
4636 return getULEB128Size(Value: v);
4637}
4638
4639// https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
4640constexpr uint64_t kMemtagStepSizeBits = 3;
4641constexpr uint64_t kMemtagGranuleSize = 16;
4642static size_t
4643createMemtagGlobalDescriptors(Ctx &ctx,
4644 const SmallVector<const Symbol *, 0> &symbols,
4645 uint8_t *buf = nullptr) {
4646 size_t sectionSize = 0;
4647 uint64_t lastGlobalEnd = 0;
4648
4649 for (const Symbol *sym : symbols) {
4650 if (!includeInSymtab(ctx, *sym))
4651 continue;
4652 const uint64_t addr = sym->getVA(ctx);
4653 const uint64_t size = sym->getSize();
4654
4655 if (addr <= kMemtagGranuleSize && buf != nullptr)
4656 Err(ctx) << "address of the tagged symbol \"" << sym->getName()
4657 << "\" falls in the ELF header. This is indicative of a "
4658 "compiler/linker bug";
4659 if (addr % kMemtagGranuleSize != 0)
4660 Err(ctx) << "address of the tagged symbol \"" << sym->getName()
4661 << "\" at 0x" << Twine::utohexstr(Val: addr)
4662 << "\" is not granule (16-byte) aligned";
4663 if (size == 0)
4664 Err(ctx) << "size of the tagged symbol \"" << sym->getName()
4665 << "\" is not allowed to be zero";
4666 if (size % kMemtagGranuleSize != 0)
4667 Err(ctx) << "size of the tagged symbol \"" << sym->getName()
4668 << "\" (size 0x" << Twine::utohexstr(Val: size)
4669 << ") is not granule (16-byte) aligned";
4670
4671 const uint64_t sizeToEncode = size / kMemtagGranuleSize;
4672 const uint64_t stepToEncode = ((addr - lastGlobalEnd) / kMemtagGranuleSize)
4673 << kMemtagStepSizeBits;
4674 if (sizeToEncode < (1 << kMemtagStepSizeBits)) {
4675 sectionSize += computeOrWriteULEB128(v: stepToEncode | sizeToEncode, buf, offset: sectionSize);
4676 } else {
4677 sectionSize += computeOrWriteULEB128(v: stepToEncode, buf, offset: sectionSize);
4678 sectionSize += computeOrWriteULEB128(v: sizeToEncode - 1, buf, offset: sectionSize);
4679 }
4680 lastGlobalEnd = addr + size;
4681 }
4682
4683 return sectionSize;
4684}
4685
4686bool MemtagGlobalDescriptors::updateAllocSize(Ctx &ctx) {
4687 size_t oldSize = getSize();
4688 llvm::stable_sort(Range&: symbols, C: [&ctx = ctx](const Symbol *s1, const Symbol *s2) {
4689 return s1->getVA(ctx) < s2->getVA(ctx);
4690 });
4691 return oldSize != getSize();
4692}
4693
4694void MemtagGlobalDescriptors::writeTo(uint8_t *buf) {
4695 createMemtagGlobalDescriptors(ctx, symbols, buf);
4696}
4697
4698size_t MemtagGlobalDescriptors::getSize() const {
4699 return createMemtagGlobalDescriptors(ctx, symbols);
4700}
4701
4702static OutputSection *findSection(Ctx &ctx, StringRef name) {
4703 for (SectionCommand *cmd : ctx.script->sectionCommands)
4704 if (auto *osd = dyn_cast<OutputDesc>(Val: cmd))
4705 if (osd->osec.name == name)
4706 return &osd->osec;
4707 return nullptr;
4708}
4709
4710static Defined *addOptionalRegular(Ctx &ctx, StringRef name, SectionBase *sec,
4711 uint64_t val, uint8_t stOther = STV_HIDDEN) {
4712 Symbol *s = ctx.symtab->find(name);
4713 if (!s || s->isDefined() || s->isCommon())
4714 return nullptr;
4715
4716 s->resolve(ctx, other: Defined{ctx, ctx.internalFile, StringRef(), STB_GLOBAL,
4717 stOther, STT_NOTYPE, val,
4718 /*size=*/0, sec});
4719 s->isUsedInRegularObj = true;
4720 return cast<Defined>(Val: s);
4721}
4722
4723template <class ELFT> void elf::createSyntheticSections(Ctx &ctx) {
4724 // Add the .interp section first because it is not a SyntheticSection.
4725 // The removeUnusedSyntheticSections() function relies on the
4726 // SyntheticSections coming last.
4727 if (needsInterpSection(ctx)) {
4728 for (size_t i = 1; i <= ctx.partitions.size(); ++i) {
4729 InputSection *sec = createInterpSection(ctx);
4730 sec->partition = i;
4731 ctx.inputSections.push_back(Elt: sec);
4732 }
4733 }
4734
4735 auto add = [&](SyntheticSection &sec) { ctx.inputSections.push_back(Elt: &sec); };
4736
4737 if (ctx.arg.zSectionHeader)
4738 ctx.in.shStrTab =
4739 std::make_unique<StringTableSection>(args&: ctx, args: ".shstrtab", args: false);
4740
4741 ctx.out.programHeaders =
4742 std::make_unique<OutputSection>(args&: ctx, args: "", args: 0, args: SHF_ALLOC);
4743 ctx.out.programHeaders->addralign = ctx.arg.wordsize;
4744
4745 if (ctx.arg.strip != StripPolicy::All) {
4746 ctx.in.strTab = std::make_unique<StringTableSection>(args&: ctx, args: ".strtab", args: false);
4747 ctx.in.symTab =
4748 std::make_unique<SymbolTableSection<ELFT>>(ctx, *ctx.in.strTab);
4749 ctx.in.symTabShndx = std::make_unique<SymtabShndxSection>(args&: ctx);
4750 }
4751
4752 ctx.in.bss = std::make_unique<BssSection>(args&: ctx, args: ".bss", args: 0, args: 1);
4753 add(*ctx.in.bss);
4754
4755 // If there is a SECTIONS command and a .data.rel.ro section name use name
4756 // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
4757 // This makes sure our relro is contiguous.
4758 bool hasDataRelRo =
4759 ctx.script->hasSectionsCommand && findSection(ctx, name: ".data.rel.ro");
4760 ctx.in.bssRelRo = std::make_unique<BssSection>(
4761 args&: ctx, args: hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", args: 0, args: 1);
4762 add(*ctx.in.bssRelRo);
4763
4764 // Add MIPS-specific sections.
4765 if (ctx.arg.emachine == EM_MIPS) {
4766 if (!ctx.arg.shared && ctx.hasDynsym) {
4767 ctx.in.mipsRldMap = std::make_unique<MipsRldMapSection>(args&: ctx);
4768 add(*ctx.in.mipsRldMap);
4769 }
4770 if ((ctx.in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create(ctx)))
4771 add(*ctx.in.mipsAbiFlags);
4772 if ((ctx.in.mipsOptions = MipsOptionsSection<ELFT>::create(ctx)))
4773 add(*ctx.in.mipsOptions);
4774 if ((ctx.in.mipsReginfo = MipsReginfoSection<ELFT>::create(ctx)))
4775 add(*ctx.in.mipsReginfo);
4776 }
4777
4778 StringRef relaDynName = ctx.arg.isRela ? ".rela.dyn" : ".rel.dyn";
4779
4780 const unsigned threadCount = ctx.arg.threadCount;
4781 for (Partition &part : ctx.partitions) {
4782 auto add = [&](SyntheticSection &sec) {
4783 sec.partition = part.getNumber(ctx);
4784 ctx.inputSections.push_back(Elt: &sec);
4785 };
4786
4787 if (!part.name.empty()) {
4788 part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(ctx);
4789 part.elfHeader->name = part.name;
4790 add(*part.elfHeader);
4791
4792 part.programHeaders =
4793 std::make_unique<PartitionProgramHeadersSection<ELFT>>(ctx);
4794 add(*part.programHeaders);
4795 }
4796
4797 if (ctx.arg.buildId != BuildIdKind::None) {
4798 part.buildId = std::make_unique<BuildIdSection>(args&: ctx);
4799 add(*part.buildId);
4800 }
4801
4802 // dynSymTab is always present to simplify several finalizeSections
4803 // functions.
4804 part.dynStrTab = std::make_unique<StringTableSection>(args&: ctx, args: ".dynstr", args: true);
4805 part.dynSymTab =
4806 std::make_unique<SymbolTableSection<ELFT>>(ctx, *part.dynStrTab);
4807
4808 if (ctx.arg.relocatable)
4809 continue;
4810 part.dynamic = std::make_unique<DynamicSection<ELFT>>(ctx);
4811
4812 if (hasMemtag(ctx)) {
4813 part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(args&: ctx);
4814 add(*part.memtagAndroidNote);
4815 if (canHaveMemtagGlobals(ctx)) {
4816 part.memtagGlobalDescriptors =
4817 std::make_unique<MemtagGlobalDescriptors>(args&: ctx);
4818 add(*part.memtagGlobalDescriptors);
4819 }
4820 }
4821
4822 if (ctx.arg.androidPackDynRelocs)
4823 part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>(
4824 ctx, relaDynName, threadCount);
4825 else
4826 part.relaDyn = std::make_unique<RelocationSection<ELFT>>(
4827 ctx, relaDynName, ctx.arg.zCombreloc, threadCount);
4828
4829 if (ctx.hasDynsym) {
4830 add(*part.dynSymTab);
4831
4832 part.verSym = std::make_unique<VersionTableSection>(args&: ctx);
4833 add(*part.verSym);
4834
4835 if (!namedVersionDefs(ctx).empty()) {
4836 part.verDef = std::make_unique<VersionDefinitionSection>(args&: ctx);
4837 add(*part.verDef);
4838 }
4839
4840 part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(ctx);
4841 add(*part.verNeed);
4842
4843 if (ctx.arg.gnuHash) {
4844 part.gnuHashTab = std::make_unique<GnuHashTableSection>(args&: ctx);
4845 add(*part.gnuHashTab);
4846 }
4847
4848 if (ctx.arg.sysvHash) {
4849 part.hashTab = std::make_unique<HashTableSection>(args&: ctx);
4850 add(*part.hashTab);
4851 }
4852
4853 add(*part.dynamic);
4854 add(*part.dynStrTab);
4855 }
4856 add(*part.relaDyn);
4857
4858 if (ctx.arg.relrPackDynRelocs) {
4859 part.relrDyn = std::make_unique<RelrSection<ELFT>>(ctx, threadCount);
4860 add(*part.relrDyn);
4861 part.relrAuthDyn = std::make_unique<RelrSection<ELFT>>(
4862 ctx, threadCount, /*isAArch64Auth=*/true);
4863 add(*part.relrAuthDyn);
4864 }
4865
4866 if (ctx.arg.ehFrameHdr) {
4867 part.ehFrameHdr = std::make_unique<EhFrameHeader>(args&: ctx);
4868 add(*part.ehFrameHdr);
4869 }
4870 part.ehFrame = std::make_unique<EhFrameSection>(args&: ctx);
4871 add(*part.ehFrame);
4872
4873 if (ctx.arg.emachine == EM_ARM) {
4874 // This section replaces all the individual .ARM.exidx InputSections.
4875 part.armExidx = std::make_unique<ARMExidxSyntheticSection>(args&: ctx);
4876 add(*part.armExidx);
4877 }
4878
4879 if (!ctx.arg.packageMetadata.empty()) {
4880 part.packageMetadataNote = std::make_unique<PackageMetadataNote>(args&: ctx);
4881 add(*part.packageMetadataNote);
4882 }
4883 }
4884
4885 if (ctx.partitions.size() != 1) {
4886 // Create the partition end marker. This needs to be in partition number 255
4887 // so that it is sorted after all other partitions. It also has other
4888 // special handling (see createPhdrs() and combineEhSections()).
4889 ctx.in.partEnd =
4890 std::make_unique<BssSection>(args&: ctx, args: ".part.end", args&: ctx.arg.maxPageSize, args: 1);
4891 ctx.in.partEnd->partition = 255;
4892 add(*ctx.in.partEnd);
4893
4894 ctx.in.partIndex = std::make_unique<PartitionIndexSection>(args&: ctx);
4895 addOptionalRegular(ctx, name: "__part_index_begin", sec: ctx.in.partIndex.get(), val: 0);
4896 addOptionalRegular(ctx, name: "__part_index_end", sec: ctx.in.partIndex.get(),
4897 val: ctx.in.partIndex->getSize());
4898 add(*ctx.in.partIndex);
4899 }
4900
4901 // Add .got. MIPS' .got is so different from the other archs,
4902 // it has its own class.
4903 if (ctx.arg.emachine == EM_MIPS) {
4904 ctx.in.mipsGot = std::make_unique<MipsGotSection>(args&: ctx);
4905 add(*ctx.in.mipsGot);
4906 } else {
4907 ctx.in.got = std::make_unique<GotSection>(args&: ctx);
4908 add(*ctx.in.got);
4909 }
4910
4911 if (ctx.arg.emachine == EM_PPC) {
4912 ctx.in.ppc32Got2 = std::make_unique<PPC32Got2Section>(args&: ctx);
4913 add(*ctx.in.ppc32Got2);
4914 }
4915
4916 if (ctx.arg.emachine == EM_PPC64) {
4917 ctx.in.ppc64LongBranchTarget =
4918 std::make_unique<PPC64LongBranchTargetSection>(args&: ctx);
4919 add(*ctx.in.ppc64LongBranchTarget);
4920 }
4921
4922 ctx.in.gotPlt = std::make_unique<GotPltSection>(args&: ctx);
4923 add(*ctx.in.gotPlt);
4924 ctx.in.igotPlt = std::make_unique<IgotPltSection>(args&: ctx);
4925 add(*ctx.in.igotPlt);
4926 // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the
4927 // section in the absence of PHDRS/SECTIONS commands.
4928 if (ctx.arg.zRelro &&
4929 ((ctx.script->phdrsCommands.empty() && !ctx.script->hasSectionsCommand) ||
4930 ctx.script->seenRelroEnd)) {
4931 ctx.in.relroPadding = std::make_unique<RelroPaddingSection>(args&: ctx);
4932 add(*ctx.in.relroPadding);
4933 }
4934
4935 if (ctx.arg.emachine == EM_ARM) {
4936 ctx.in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(args&: ctx);
4937 add(*ctx.in.armCmseSGSection);
4938 }
4939
4940 // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
4941 // it as a relocation and ensure the referenced section is created.
4942 if (ctx.sym.globalOffsetTable && ctx.arg.emachine != EM_MIPS) {
4943 if (ctx.target->gotBaseSymInGotPlt)
4944 ctx.in.gotPlt->hasGotPltOffRel = true;
4945 else
4946 ctx.in.got->hasGotOffRel = true;
4947 }
4948
4949 // We always need to add rel[a].plt to output if it has entries.
4950 // Even for static linking it can contain R_[*]_IRELATIVE relocations.
4951 ctx.in.relaPlt = std::make_unique<RelocationSection<ELFT>>(
4952 ctx, ctx.arg.isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false,
4953 /*threadCount=*/1);
4954 add(*ctx.in.relaPlt);
4955
4956 if ((ctx.arg.emachine == EM_386 || ctx.arg.emachine == EM_X86_64) &&
4957 (ctx.arg.andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
4958 ctx.in.ibtPlt = std::make_unique<IBTPltSection>(args&: ctx);
4959 add(*ctx.in.ibtPlt);
4960 }
4961
4962 if (ctx.arg.emachine == EM_PPC)
4963 ctx.in.plt = std::make_unique<PPC32GlinkSection>(args&: ctx);
4964 else
4965 ctx.in.plt = std::make_unique<PltSection>(args&: ctx);
4966 add(*ctx.in.plt);
4967 ctx.in.iplt = std::make_unique<IpltSection>(args&: ctx);
4968 add(*ctx.in.iplt);
4969
4970 if (ctx.arg.andFeatures || !ctx.aarch64PauthAbiCoreInfo.empty()) {
4971 ctx.in.gnuProperty = std::make_unique<GnuPropertySection>(args&: ctx);
4972 add(*ctx.in.gnuProperty);
4973 }
4974
4975 if (ctx.arg.debugNames) {
4976 ctx.in.debugNames = std::make_unique<DebugNamesSection<ELFT>>(ctx);
4977 add(*ctx.in.debugNames);
4978 }
4979
4980 if (ctx.arg.gdbIndex) {
4981 ctx.in.gdbIndex = GdbIndexSection::create<ELFT>(ctx);
4982 add(*ctx.in.gdbIndex);
4983 }
4984
4985 // .note.GNU-stack is always added when we are creating a re-linkable
4986 // object file. Other linkers are using the presence of this marker
4987 // section to control the executable-ness of the stack area, but that
4988 // is irrelevant these days. Stack area should always be non-executable
4989 // by default. So we emit this section unconditionally.
4990 if (ctx.arg.relocatable) {
4991 ctx.in.gnuStack = std::make_unique<GnuStackSection>(args&: ctx);
4992 add(*ctx.in.gnuStack);
4993 }
4994
4995 if (ctx.in.symTab)
4996 add(*ctx.in.symTab);
4997 if (ctx.in.symTabShndx)
4998 add(*ctx.in.symTabShndx);
4999 if (ctx.in.shStrTab)
5000 add(*ctx.in.shStrTab);
5001 if (ctx.in.strTab)
5002 add(*ctx.in.strTab);
5003}
5004
5005template void elf::splitSections<ELF32LE>(Ctx &);
5006template void elf::splitSections<ELF32BE>(Ctx &);
5007template void elf::splitSections<ELF64LE>(Ctx &);
5008template void elf::splitSections<ELF64BE>(Ctx &);
5009
5010template void EhFrameSection::iterateFDEWithLSDA<ELF32LE>(
5011 function_ref<void(InputSection &)>);
5012template void EhFrameSection::iterateFDEWithLSDA<ELF32BE>(
5013 function_ref<void(InputSection &)>);
5014template void EhFrameSection::iterateFDEWithLSDA<ELF64LE>(
5015 function_ref<void(InputSection &)>);
5016template void EhFrameSection::iterateFDEWithLSDA<ELF64BE>(
5017 function_ref<void(InputSection &)>);
5018
5019template class elf::SymbolTableSection<ELF32LE>;
5020template class elf::SymbolTableSection<ELF32BE>;
5021template class elf::SymbolTableSection<ELF64LE>;
5022template class elf::SymbolTableSection<ELF64BE>;
5023
5024template void elf::writeEhdr<ELF32LE>(Ctx &, uint8_t *Buf, Partition &Part);
5025template void elf::writeEhdr<ELF32BE>(Ctx &, uint8_t *Buf, Partition &Part);
5026template void elf::writeEhdr<ELF64LE>(Ctx &, uint8_t *Buf, Partition &Part);
5027template void elf::writeEhdr<ELF64BE>(Ctx &, uint8_t *Buf, Partition &Part);
5028
5029template void elf::writePhdrs<ELF32LE>(uint8_t *Buf, Partition &Part);
5030template void elf::writePhdrs<ELF32BE>(uint8_t *Buf, Partition &Part);
5031template void elf::writePhdrs<ELF64LE>(uint8_t *Buf, Partition &Part);
5032template void elf::writePhdrs<ELF64BE>(uint8_t *Buf, Partition &Part);
5033
5034template void elf::createSyntheticSections<ELF32LE>(Ctx &);
5035template void elf::createSyntheticSections<ELF32BE>(Ctx &);
5036template void elf::createSyntheticSections<ELF64LE>(Ctx &);
5037template void elf::createSyntheticSections<ELF64BE>(Ctx &);
5038

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of lld/ELF/SyntheticSections.cpp