1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Bitcode/BitcodeReader.h"
10#include "MetadataLoader.h"
11#include "ValueList.h"
12#include "llvm/ADT/APFloat.h"
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/SmallString.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringRef.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Bitcode/BitcodeCommon.h"
22#include "llvm/Bitcode/LLVMBitCodes.h"
23#include "llvm/Bitstream/BitstreamReader.h"
24#include "llvm/Config/llvm-config.h"
25#include "llvm/IR/Argument.h"
26#include "llvm/IR/AttributeMask.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/AutoUpgrade.h"
29#include "llvm/IR/BasicBlock.h"
30#include "llvm/IR/CallingConv.h"
31#include "llvm/IR/Comdat.h"
32#include "llvm/IR/Constant.h"
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/DebugInfo.h"
36#include "llvm/IR/DebugInfoMetadata.h"
37#include "llvm/IR/DebugLoc.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GVMaterializer.h"
41#include "llvm/IR/GetElementPtrTypeIterator.h"
42#include "llvm/IR/GlobalAlias.h"
43#include "llvm/IR/GlobalIFunc.h"
44#include "llvm/IR/GlobalObject.h"
45#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/GlobalVariable.h"
47#include "llvm/IR/InlineAsm.h"
48#include "llvm/IR/InstIterator.h"
49#include "llvm/IR/InstrTypes.h"
50#include "llvm/IR/Instruction.h"
51#include "llvm/IR/Instructions.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/IntrinsicsAArch64.h"
54#include "llvm/IR/IntrinsicsARM.h"
55#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/Metadata.h"
57#include "llvm/IR/Module.h"
58#include "llvm/IR/ModuleSummaryIndex.h"
59#include "llvm/IR/Operator.h"
60#include "llvm/IR/Type.h"
61#include "llvm/IR/Value.h"
62#include "llvm/IR/Verifier.h"
63#include "llvm/Support/AtomicOrdering.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Compiler.h"
67#include "llvm/Support/Debug.h"
68#include "llvm/Support/Error.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/ErrorOr.h"
71#include "llvm/Support/MathExtras.h"
72#include "llvm/Support/MemoryBuffer.h"
73#include "llvm/Support/ModRef.h"
74#include "llvm/Support/raw_ostream.h"
75#include "llvm/TargetParser/Triple.h"
76#include <algorithm>
77#include <cassert>
78#include <cstddef>
79#include <cstdint>
80#include <deque>
81#include <map>
82#include <memory>
83#include <optional>
84#include <set>
85#include <string>
86#include <system_error>
87#include <tuple>
88#include <utility>
89#include <vector>
90
91using namespace llvm;
92
93static cl::opt<bool> PrintSummaryGUIDs(
94 "print-summary-global-ids", cl::init(Val: false), cl::Hidden,
95 cl::desc(
96 "Print the global id for each value when reading the module summary"));
97
98static cl::opt<bool> ExpandConstantExprs(
99 "expand-constant-exprs", cl::Hidden,
100 cl::desc(
101 "Expand constant expressions to instructions for testing purposes"));
102
103/// Load bitcode directly into RemoveDIs format (use debug records instead
104/// of debug intrinsics). UNSET is treated as FALSE, so the default action
105/// is to do nothing. Individual tools can override this to incrementally add
106/// support for the RemoveDIs format.
107cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat(
108 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden,
109 cl::desc("Load bitcode directly into the new debug info format (regardless "
110 "of input format)"));
111extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat;
112extern bool WriteNewDbgInfoFormatToBitcode;
113extern cl::opt<bool> WriteNewDbgInfoFormat;
114
115namespace {
116
117enum {
118 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
119};
120
121} // end anonymous namespace
122
123static Error error(const Twine &Message) {
124 return make_error<StringError>(
125 Args: Message, Args: make_error_code(E: BitcodeError::CorruptedBitcode));
126}
127
128static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
129 if (!Stream.canSkipToPos(pos: 4))
130 return createStringError(EC: std::errc::illegal_byte_sequence,
131 Fmt: "file too small to contain bitcode header");
132 for (unsigned C : {'B', 'C'})
133 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(NumBits: 8)) {
134 if (Res.get() != C)
135 return createStringError(EC: std::errc::illegal_byte_sequence,
136 Fmt: "file doesn't start with bitcode header");
137 } else
138 return Res.takeError();
139 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
140 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(NumBits: 4)) {
141 if (Res.get() != C)
142 return createStringError(EC: std::errc::illegal_byte_sequence,
143 Fmt: "file doesn't start with bitcode header");
144 } else
145 return Res.takeError();
146 return Error::success();
147}
148
149static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
150 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
151 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
152
153 if (Buffer.getBufferSize() & 3)
154 return error(Message: "Invalid bitcode signature");
155
156 // If we have a wrapper header, parse it and ignore the non-bc file contents.
157 // The magic number is 0x0B17C0DE stored in little endian.
158 if (isBitcodeWrapper(BufPtr, BufEnd))
159 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, VerifyBufferSize: true))
160 return error(Message: "Invalid bitcode wrapper header");
161
162 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
163 if (Error Err = hasInvalidBitcodeHeader(Stream))
164 return std::move(Err);
165
166 return std::move(Stream);
167}
168
169/// Convert a string from a record into an std::string, return true on failure.
170template <typename StrTy>
171static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
172 StrTy &Result) {
173 if (Idx > Record.size())
174 return true;
175
176 Result.append(Record.begin() + Idx, Record.end());
177 return false;
178}
179
180// Strip all the TBAA attachment for the module.
181static void stripTBAA(Module *M) {
182 for (auto &F : *M) {
183 if (F.isMaterializable())
184 continue;
185 for (auto &I : instructions(F))
186 I.setMetadata(KindID: LLVMContext::MD_tbaa, Node: nullptr);
187 }
188}
189
190/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
191/// "epoch" encoded in the bitcode, and return the producer name if any.
192static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
193 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::IDENTIFICATION_BLOCK_ID))
194 return std::move(Err);
195
196 // Read all the records.
197 SmallVector<uint64_t, 64> Record;
198
199 std::string ProducerIdentification;
200
201 while (true) {
202 BitstreamEntry Entry;
203 if (Error E = Stream.advance().moveInto(Value&: Entry))
204 return std::move(E);
205
206 switch (Entry.Kind) {
207 default:
208 case BitstreamEntry::Error:
209 return error(Message: "Malformed block");
210 case BitstreamEntry::EndBlock:
211 return ProducerIdentification;
212 case BitstreamEntry::Record:
213 // The interesting case.
214 break;
215 }
216
217 // Read a record.
218 Record.clear();
219 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
220 if (!MaybeBitCode)
221 return MaybeBitCode.takeError();
222 switch (MaybeBitCode.get()) {
223 default: // Default behavior: reject
224 return error(Message: "Invalid value");
225 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
226 convertToString(Record, Idx: 0, Result&: ProducerIdentification);
227 break;
228 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
229 unsigned epoch = (unsigned)Record[0];
230 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
231 return error(
232 Message: Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
233 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
234 }
235 }
236 }
237 }
238}
239
240static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
241 // We expect a number of well-defined blocks, though we don't necessarily
242 // need to understand them all.
243 while (true) {
244 if (Stream.AtEndOfStream())
245 return "";
246
247 BitstreamEntry Entry;
248 if (Error E = Stream.advance().moveInto(Value&: Entry))
249 return std::move(E);
250
251 switch (Entry.Kind) {
252 case BitstreamEntry::EndBlock:
253 case BitstreamEntry::Error:
254 return error(Message: "Malformed block");
255
256 case BitstreamEntry::SubBlock:
257 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
258 return readIdentificationBlock(Stream);
259
260 // Ignore other sub-blocks.
261 if (Error Err = Stream.SkipBlock())
262 return std::move(Err);
263 continue;
264 case BitstreamEntry::Record:
265 if (Error E = Stream.skipRecord(AbbrevID: Entry.ID).takeError())
266 return std::move(E);
267 continue;
268 }
269 }
270}
271
272static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
273 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
274 return std::move(Err);
275
276 SmallVector<uint64_t, 64> Record;
277 // Read all the records for this module.
278
279 while (true) {
280 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
281 if (!MaybeEntry)
282 return MaybeEntry.takeError();
283 BitstreamEntry Entry = MaybeEntry.get();
284
285 switch (Entry.Kind) {
286 case BitstreamEntry::SubBlock: // Handled for us already.
287 case BitstreamEntry::Error:
288 return error(Message: "Malformed block");
289 case BitstreamEntry::EndBlock:
290 return false;
291 case BitstreamEntry::Record:
292 // The interesting case.
293 break;
294 }
295
296 // Read a record.
297 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
298 if (!MaybeRecord)
299 return MaybeRecord.takeError();
300 switch (MaybeRecord.get()) {
301 default:
302 break; // Default behavior, ignore unknown content.
303 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
304 std::string S;
305 if (convertToString(Record, Idx: 0, Result&: S))
306 return error(Message: "Invalid section name record");
307 // Check for the i386 and other (x86_64, ARM) conventions
308 if (S.find(s: "__DATA,__objc_catlist") != std::string::npos ||
309 S.find(s: "__OBJC,__category") != std::string::npos)
310 return true;
311 break;
312 }
313 }
314 Record.clear();
315 }
316 llvm_unreachable("Exit infinite loop");
317}
318
319static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
320 // We expect a number of well-defined blocks, though we don't necessarily
321 // need to understand them all.
322 while (true) {
323 BitstreamEntry Entry;
324 if (Error E = Stream.advance().moveInto(Value&: Entry))
325 return std::move(E);
326
327 switch (Entry.Kind) {
328 case BitstreamEntry::Error:
329 return error(Message: "Malformed block");
330 case BitstreamEntry::EndBlock:
331 return false;
332
333 case BitstreamEntry::SubBlock:
334 if (Entry.ID == bitc::MODULE_BLOCK_ID)
335 return hasObjCCategoryInModule(Stream);
336
337 // Ignore other sub-blocks.
338 if (Error Err = Stream.SkipBlock())
339 return std::move(Err);
340 continue;
341
342 case BitstreamEntry::Record:
343 if (Error E = Stream.skipRecord(AbbrevID: Entry.ID).takeError())
344 return std::move(E);
345 continue;
346 }
347 }
348}
349
350static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
351 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
352 return std::move(Err);
353
354 SmallVector<uint64_t, 64> Record;
355
356 std::string Triple;
357
358 // Read all the records for this module.
359 while (true) {
360 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
361 if (!MaybeEntry)
362 return MaybeEntry.takeError();
363 BitstreamEntry Entry = MaybeEntry.get();
364
365 switch (Entry.Kind) {
366 case BitstreamEntry::SubBlock: // Handled for us already.
367 case BitstreamEntry::Error:
368 return error(Message: "Malformed block");
369 case BitstreamEntry::EndBlock:
370 return Triple;
371 case BitstreamEntry::Record:
372 // The interesting case.
373 break;
374 }
375
376 // Read a record.
377 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
378 if (!MaybeRecord)
379 return MaybeRecord.takeError();
380 switch (MaybeRecord.get()) {
381 default: break; // Default behavior, ignore unknown content.
382 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
383 std::string S;
384 if (convertToString(Record, Idx: 0, Result&: S))
385 return error(Message: "Invalid triple record");
386 Triple = S;
387 break;
388 }
389 }
390 Record.clear();
391 }
392 llvm_unreachable("Exit infinite loop");
393}
394
395static Expected<std::string> readTriple(BitstreamCursor &Stream) {
396 // We expect a number of well-defined blocks, though we don't necessarily
397 // need to understand them all.
398 while (true) {
399 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
400 if (!MaybeEntry)
401 return MaybeEntry.takeError();
402 BitstreamEntry Entry = MaybeEntry.get();
403
404 switch (Entry.Kind) {
405 case BitstreamEntry::Error:
406 return error(Message: "Malformed block");
407 case BitstreamEntry::EndBlock:
408 return "";
409
410 case BitstreamEntry::SubBlock:
411 if (Entry.ID == bitc::MODULE_BLOCK_ID)
412 return readModuleTriple(Stream);
413
414 // Ignore other sub-blocks.
415 if (Error Err = Stream.SkipBlock())
416 return std::move(Err);
417 continue;
418
419 case BitstreamEntry::Record:
420 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(AbbrevID: Entry.ID))
421 continue;
422 else
423 return Skipped.takeError();
424 }
425 }
426}
427
428namespace {
429
430class BitcodeReaderBase {
431protected:
432 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
433 : Stream(std::move(Stream)), Strtab(Strtab) {
434 this->Stream.setBlockInfo(&BlockInfo);
435 }
436
437 BitstreamBlockInfo BlockInfo;
438 BitstreamCursor Stream;
439 StringRef Strtab;
440
441 /// In version 2 of the bitcode we store names of global values and comdats in
442 /// a string table rather than in the VST.
443 bool UseStrtab = false;
444
445 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
446
447 /// If this module uses a string table, pop the reference to the string table
448 /// and return the referenced string and the rest of the record. Otherwise
449 /// just return the record itself.
450 std::pair<StringRef, ArrayRef<uint64_t>>
451 readNameFromStrtab(ArrayRef<uint64_t> Record);
452
453 Error readBlockInfo();
454
455 // Contains an arbitrary and optional string identifying the bitcode producer
456 std::string ProducerIdentification;
457
458 Error error(const Twine &Message);
459};
460
461} // end anonymous namespace
462
463Error BitcodeReaderBase::error(const Twine &Message) {
464 std::string FullMsg = Message.str();
465 if (!ProducerIdentification.empty())
466 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
467 LLVM_VERSION_STRING "')";
468 return ::error(Message: FullMsg);
469}
470
471Expected<unsigned>
472BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
473 if (Record.empty())
474 return error(Message: "Invalid version record");
475 unsigned ModuleVersion = Record[0];
476 if (ModuleVersion > 2)
477 return error(Message: "Invalid value");
478 UseStrtab = ModuleVersion >= 2;
479 return ModuleVersion;
480}
481
482std::pair<StringRef, ArrayRef<uint64_t>>
483BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
484 if (!UseStrtab)
485 return {"", Record};
486 // Invalid reference. Let the caller complain about the record being empty.
487 if (Record[0] + Record[1] > Strtab.size())
488 return {"", {}};
489 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(N: 2)};
490}
491
492namespace {
493
494/// This represents a constant expression or constant aggregate using a custom
495/// structure internal to the bitcode reader. Later, this structure will be
496/// expanded by materializeValue() either into a constant expression/aggregate,
497/// or into an instruction sequence at the point of use. This allows us to
498/// upgrade bitcode using constant expressions even if this kind of constant
499/// expression is no longer supported.
500class BitcodeConstant final : public Value,
501 TrailingObjects<BitcodeConstant, unsigned> {
502 friend TrailingObjects;
503
504 // Value subclass ID: Pick largest possible value to avoid any clashes.
505 static constexpr uint8_t SubclassID = 255;
506
507public:
508 // Opcodes used for non-expressions. This includes constant aggregates
509 // (struct, array, vector) that might need expansion, as well as non-leaf
510 // constants that don't need expansion (no_cfi, dso_local, blockaddress),
511 // but still go through BitcodeConstant to avoid different uselist orders
512 // between the two cases.
513 static constexpr uint8_t ConstantStructOpcode = 255;
514 static constexpr uint8_t ConstantArrayOpcode = 254;
515 static constexpr uint8_t ConstantVectorOpcode = 253;
516 static constexpr uint8_t NoCFIOpcode = 252;
517 static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
518 static constexpr uint8_t BlockAddressOpcode = 250;
519 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
520
521 // Separate struct to make passing different number of parameters to
522 // BitcodeConstant::create() more convenient.
523 struct ExtraInfo {
524 uint8_t Opcode;
525 uint8_t Flags;
526 unsigned BlockAddressBB = 0;
527 Type *SrcElemTy = nullptr;
528 std::optional<ConstantRange> InRange;
529
530 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr,
531 std::optional<ConstantRange> InRange = std::nullopt)
532 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy),
533 InRange(std::move(InRange)) {}
534
535 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB)
536 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {}
537 };
538
539 uint8_t Opcode;
540 uint8_t Flags;
541 unsigned NumOperands;
542 unsigned BlockAddressBB;
543 Type *SrcElemTy; // GEP source element type.
544 std::optional<ConstantRange> InRange; // GEP inrange attribute.
545
546private:
547 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
548 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
549 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB),
550 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) {
551 std::uninitialized_copy(first: OpIDs.begin(), last: OpIDs.end(),
552 result: getTrailingObjects<unsigned>());
553 }
554
555 BitcodeConstant &operator=(const BitcodeConstant &) = delete;
556
557public:
558 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
559 const ExtraInfo &Info,
560 ArrayRef<unsigned> OpIDs) {
561 void *Mem = A.Allocate(Size: totalSizeToAlloc<unsigned>(Counts: OpIDs.size()),
562 Alignment: alignof(BitcodeConstant));
563 return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
564 }
565
566 static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
567
568 ArrayRef<unsigned> getOperandIDs() const {
569 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands);
570 }
571
572 std::optional<ConstantRange> getInRange() const {
573 assert(Opcode == Instruction::GetElementPtr);
574 return InRange;
575 }
576
577 const char *getOpcodeName() const {
578 return Instruction::getOpcodeName(Opcode);
579 }
580};
581
582class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
583 LLVMContext &Context;
584 Module *TheModule = nullptr;
585 // Next offset to start scanning for lazy parsing of function bodies.
586 uint64_t NextUnreadBit = 0;
587 // Last function offset found in the VST.
588 uint64_t LastFunctionBlockBit = 0;
589 bool SeenValueSymbolTable = false;
590 uint64_t VSTOffset = 0;
591
592 std::vector<std::string> SectionTable;
593 std::vector<std::string> GCTable;
594
595 std::vector<Type *> TypeList;
596 /// Track type IDs of contained types. Order is the same as the contained
597 /// types of a Type*. This is used during upgrades of typed pointer IR in
598 /// opaque pointer mode.
599 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
600 /// In some cases, we need to create a type ID for a type that was not
601 /// explicitly encoded in the bitcode, or we don't know about at the current
602 /// point. For example, a global may explicitly encode the value type ID, but
603 /// not have a type ID for the pointer to value type, for which we create a
604 /// virtual type ID instead. This map stores the new type ID that was created
605 /// for the given pair of Type and contained type ID.
606 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
607 DenseMap<Function *, unsigned> FunctionTypeIDs;
608 /// Allocator for BitcodeConstants. This should come before ValueList,
609 /// because the ValueList might hold ValueHandles to these constants, so
610 /// ValueList must be destroyed before Alloc.
611 BumpPtrAllocator Alloc;
612 BitcodeReaderValueList ValueList;
613 std::optional<MetadataLoader> MDLoader;
614 std::vector<Comdat *> ComdatList;
615 DenseSet<GlobalObject *> ImplicitComdatObjects;
616 SmallVector<Instruction *, 64> InstructionList;
617
618 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
619 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
620
621 struct FunctionOperandInfo {
622 Function *F;
623 unsigned PersonalityFn;
624 unsigned Prefix;
625 unsigned Prologue;
626 };
627 std::vector<FunctionOperandInfo> FunctionOperands;
628
629 /// The set of attributes by index. Index zero in the file is for null, and
630 /// is thus not represented here. As such all indices are off by one.
631 std::vector<AttributeList> MAttributes;
632
633 /// The set of attribute groups.
634 std::map<unsigned, AttributeList> MAttributeGroups;
635
636 /// While parsing a function body, this is a list of the basic blocks for the
637 /// function.
638 std::vector<BasicBlock*> FunctionBBs;
639
640 // When reading the module header, this list is populated with functions that
641 // have bodies later in the file.
642 std::vector<Function*> FunctionsWithBodies;
643
644 // When intrinsic functions are encountered which require upgrading they are
645 // stored here with their replacement function.
646 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
647 UpdatedIntrinsicMap UpgradedIntrinsics;
648
649 // Several operations happen after the module header has been read, but
650 // before function bodies are processed. This keeps track of whether
651 // we've done this yet.
652 bool SeenFirstFunctionBody = false;
653
654 /// When function bodies are initially scanned, this map contains info about
655 /// where to find deferred function body in the stream.
656 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
657
658 /// When Metadata block is initially scanned when parsing the module, we may
659 /// choose to defer parsing of the metadata. This vector contains info about
660 /// which Metadata blocks are deferred.
661 std::vector<uint64_t> DeferredMetadataInfo;
662
663 /// These are basic blocks forward-referenced by block addresses. They are
664 /// inserted lazily into functions when they're loaded. The basic block ID is
665 /// its index into the vector.
666 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
667 std::deque<Function *> BasicBlockFwdRefQueue;
668
669 /// These are Functions that contain BlockAddresses which refer a different
670 /// Function. When parsing the different Function, queue Functions that refer
671 /// to the different Function. Those Functions must be materialized in order
672 /// to resolve their BlockAddress constants before the different Function
673 /// gets moved into another Module.
674 std::vector<Function *> BackwardRefFunctions;
675
676 /// Indicates that we are using a new encoding for instruction operands where
677 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
678 /// instruction number, for a more compact encoding. Some instruction
679 /// operands are not relative to the instruction ID: basic block numbers, and
680 /// types. Once the old style function blocks have been phased out, we would
681 /// not need this flag.
682 bool UseRelativeIDs = false;
683
684 /// True if all functions will be materialized, negating the need to process
685 /// (e.g.) blockaddress forward references.
686 bool WillMaterializeAllForwardRefs = false;
687
688 /// Tracks whether we have seen debug intrinsics or records in this bitcode;
689 /// seeing both in a single module is currently a fatal error.
690 bool SeenDebugIntrinsic = false;
691 bool SeenDebugRecord = false;
692
693 bool StripDebugInfo = false;
694 TBAAVerifier TBAAVerifyHelper;
695
696 std::vector<std::string> BundleTags;
697 SmallVector<SyncScope::ID, 8> SSIDs;
698
699 std::optional<ValueTypeCallbackTy> ValueTypeCallback;
700
701public:
702 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
703 StringRef ProducerIdentification, LLVMContext &Context);
704
705 Error materializeForwardReferencedFunctions();
706
707 Error materialize(GlobalValue *GV) override;
708 Error materializeModule() override;
709 std::vector<StructType *> getIdentifiedStructTypes() const override;
710
711 /// Main interface to parsing a bitcode buffer.
712 /// \returns true if an error occurred.
713 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
714 bool IsImporting, ParserCallbacks Callbacks = {});
715
716 static uint64_t decodeSignRotatedValue(uint64_t V);
717
718 /// Materialize any deferred Metadata block.
719 Error materializeMetadata() override;
720
721 void setStripDebugInfo() override;
722
723private:
724 std::vector<StructType *> IdentifiedStructTypes;
725 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
726 StructType *createIdentifiedStructType(LLVMContext &Context);
727
728 static constexpr unsigned InvalidTypeID = ~0u;
729
730 Type *getTypeByID(unsigned ID);
731 Type *getPtrElementTypeByID(unsigned ID);
732 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
733 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
734
735 void callValueTypeCallback(Value *F, unsigned TypeID);
736 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
737 Expected<Constant *> getValueForInitializer(unsigned ID);
738
739 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
740 BasicBlock *ConstExprInsertBB) {
741 if (Ty && Ty->isMetadataTy())
742 return MetadataAsValue::get(Context&: Ty->getContext(), MD: getFnMetadataByID(ID));
743 return ValueList.getValueFwdRef(Idx: ID, Ty, TyID, ConstExprInsertBB);
744 }
745
746 Metadata *getFnMetadataByID(unsigned ID) {
747 return MDLoader->getMetadataFwdRefOrLoad(Idx: ID);
748 }
749
750 BasicBlock *getBasicBlock(unsigned ID) const {
751 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
752 return FunctionBBs[ID];
753 }
754
755 AttributeList getAttributes(unsigned i) const {
756 if (i-1 < MAttributes.size())
757 return MAttributes[i-1];
758 return AttributeList();
759 }
760
761 /// Read a value/type pair out of the specified record from slot 'Slot'.
762 /// Increment Slot past the number of slots used in the record. Return true on
763 /// failure.
764 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
765 unsigned InstNum, Value *&ResVal, unsigned &TypeID,
766 BasicBlock *ConstExprInsertBB) {
767 if (Slot == Record.size()) return true;
768 unsigned ValNo = (unsigned)Record[Slot++];
769 // Adjust the ValNo, if it was encoded relative to the InstNum.
770 if (UseRelativeIDs)
771 ValNo = InstNum - ValNo;
772 if (ValNo < InstNum) {
773 // If this is not a forward reference, just return the value we already
774 // have.
775 TypeID = ValueList.getTypeID(ValNo);
776 ResVal = getFnValueByID(ID: ValNo, Ty: nullptr, TyID: TypeID, ConstExprInsertBB);
777 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&
778 "Incorrect type ID stored for value");
779 return ResVal == nullptr;
780 }
781 if (Slot == Record.size())
782 return true;
783
784 TypeID = (unsigned)Record[Slot++];
785 ResVal = getFnValueByID(ID: ValNo, Ty: getTypeByID(ID: TypeID), TyID: TypeID,
786 ConstExprInsertBB);
787 return ResVal == nullptr;
788 }
789
790 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
791 /// past the number of slots used by the value in the record. Return true if
792 /// there is an error.
793 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
794 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
795 BasicBlock *ConstExprInsertBB) {
796 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
797 return true;
798 // All values currently take a single record slot.
799 ++Slot;
800 return false;
801 }
802
803 /// Like popValue, but does not increment the Slot number.
804 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
805 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
806 BasicBlock *ConstExprInsertBB) {
807 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
808 return ResVal == nullptr;
809 }
810
811 /// Version of getValue that returns ResVal directly, or 0 if there is an
812 /// error.
813 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
814 unsigned InstNum, Type *Ty, unsigned TyID,
815 BasicBlock *ConstExprInsertBB) {
816 if (Slot == Record.size()) return nullptr;
817 unsigned ValNo = (unsigned)Record[Slot];
818 // Adjust the ValNo, if it was encoded relative to the InstNum.
819 if (UseRelativeIDs)
820 ValNo = InstNum - ValNo;
821 return getFnValueByID(ID: ValNo, Ty, TyID, ConstExprInsertBB);
822 }
823
824 /// Like getValue, but decodes signed VBRs.
825 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
826 unsigned InstNum, Type *Ty, unsigned TyID,
827 BasicBlock *ConstExprInsertBB) {
828 if (Slot == Record.size()) return nullptr;
829 unsigned ValNo = (unsigned)decodeSignRotatedValue(V: Record[Slot]);
830 // Adjust the ValNo, if it was encoded relative to the InstNum.
831 if (UseRelativeIDs)
832 ValNo = InstNum - ValNo;
833 return getFnValueByID(ID: ValNo, Ty, TyID, ConstExprInsertBB);
834 }
835
836 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record,
837 unsigned &OpNum) {
838 if (Record.size() - OpNum < 3)
839 return error(Message: "Too few records for range");
840 unsigned BitWidth = Record[OpNum++];
841 if (BitWidth > 64) {
842 unsigned LowerActiveWords = Record[OpNum];
843 unsigned UpperActiveWords = Record[OpNum++] >> 32;
844 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords)
845 return error(Message: "Too few records for range");
846 APInt Lower =
847 readWideAPInt(Vals: ArrayRef(&Record[OpNum], LowerActiveWords), TypeBits: BitWidth);
848 OpNum += LowerActiveWords;
849 APInt Upper =
850 readWideAPInt(Vals: ArrayRef(&Record[OpNum], UpperActiveWords), TypeBits: BitWidth);
851 OpNum += UpperActiveWords;
852 return ConstantRange(Lower, Upper);
853 } else {
854 int64_t Start = BitcodeReader::decodeSignRotatedValue(V: Record[OpNum++]);
855 int64_t End = BitcodeReader::decodeSignRotatedValue(V: Record[OpNum++]);
856 return ConstantRange(APInt(BitWidth, Start), APInt(BitWidth, End));
857 }
858 }
859
860 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
861 /// corresponding argument's pointee type. Also upgrades intrinsics that now
862 /// require an elementtype attribute.
863 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
864
865 /// Converts alignment exponent (i.e. power of two (or zero)) to the
866 /// corresponding alignment to use. If alignment is too large, returns
867 /// a corresponding error code.
868 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
869 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
870 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
871 ParserCallbacks Callbacks = {});
872
873 Error parseComdatRecord(ArrayRef<uint64_t> Record);
874 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
875 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
876 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
877 ArrayRef<uint64_t> Record);
878
879 Error parseAttributeBlock();
880 Error parseAttributeGroupBlock();
881 Error parseTypeTable();
882 Error parseTypeTableBody();
883 Error parseOperandBundleTags();
884 Error parseSyncScopeNames();
885
886 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
887 unsigned NameIndex, Triple &TT);
888 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
889 ArrayRef<uint64_t> Record);
890 Error parseValueSymbolTable(uint64_t Offset = 0);
891 Error parseGlobalValueSymbolTable();
892 Error parseConstants();
893 Error rememberAndSkipFunctionBodies();
894 Error rememberAndSkipFunctionBody();
895 /// Save the positions of the Metadata blocks and skip parsing the blocks.
896 Error rememberAndSkipMetadata();
897 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
898 Error parseFunctionBody(Function *F);
899 Error globalCleanup();
900 Error resolveGlobalAndIndirectSymbolInits();
901 Error parseUseLists();
902 Error findFunctionInStream(
903 Function *F,
904 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
905
906 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
907};
908
909/// Class to manage reading and parsing function summary index bitcode
910/// files/sections.
911class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
912 /// The module index built during parsing.
913 ModuleSummaryIndex &TheIndex;
914
915 /// Indicates whether we have encountered a global value summary section
916 /// yet during parsing.
917 bool SeenGlobalValSummary = false;
918
919 /// Indicates whether we have already parsed the VST, used for error checking.
920 bool SeenValueSymbolTable = false;
921
922 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
923 /// Used to enable on-demand parsing of the VST.
924 uint64_t VSTOffset = 0;
925
926 // Map to save ValueId to ValueInfo association that was recorded in the
927 // ValueSymbolTable. It is used after the VST is parsed to convert
928 // call graph edges read from the function summary from referencing
929 // callees by their ValueId to using the ValueInfo instead, which is how
930 // they are recorded in the summary index being built.
931 // We save a GUID which refers to the same global as the ValueInfo, but
932 // ignoring the linkage, i.e. for values other than local linkage they are
933 // identical (this is the second tuple member).
934 // The third tuple member is the real GUID of the ValueInfo.
935 DenseMap<unsigned,
936 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>>
937 ValueIdToValueInfoMap;
938
939 /// Map populated during module path string table parsing, from the
940 /// module ID to a string reference owned by the index's module
941 /// path string table, used to correlate with combined index
942 /// summary records.
943 DenseMap<uint64_t, StringRef> ModuleIdMap;
944
945 /// Original source file name recorded in a bitcode record.
946 std::string SourceFileName;
947
948 /// The string identifier given to this module by the client, normally the
949 /// path to the bitcode file.
950 StringRef ModulePath;
951
952 /// Callback to ask whether a symbol is the prevailing copy when invoked
953 /// during combined index building.
954 std::function<bool(GlobalValue::GUID)> IsPrevailing;
955
956 /// Saves the stack ids from the STACK_IDS record to consult when adding stack
957 /// ids from the lists in the callsite and alloc entries to the index.
958 std::vector<uint64_t> StackIds;
959
960public:
961 ModuleSummaryIndexBitcodeReader(
962 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex,
963 StringRef ModulePath,
964 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr);
965
966 Error parseModule();
967
968private:
969 void setValueGUID(uint64_t ValueID, StringRef ValueName,
970 GlobalValue::LinkageTypes Linkage,
971 StringRef SourceFileName);
972 Error parseValueSymbolTable(
973 uint64_t Offset,
974 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
975 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
976 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
977 bool IsOldProfileFormat,
978 bool HasProfile,
979 bool HasRelBF);
980 Error parseEntireSummary(unsigned ID);
981 Error parseModuleStringTable();
982 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
983 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
984 TypeIdCompatibleVtableInfo &TypeId);
985 std::vector<FunctionSummary::ParamAccess>
986 parseParamAccesses(ArrayRef<uint64_t> Record);
987
988 template <bool AllowNullValueInfo = false>
989 std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
990 getValueInfoFromValueId(unsigned ValueId);
991
992 void addThisModule();
993 ModuleSummaryIndex::ModuleInfo *getThisModule();
994};
995
996} // end anonymous namespace
997
998std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
999 Error Err) {
1000 if (Err) {
1001 std::error_code EC;
1002 handleAllErrors(E: std::move(Err), Handlers: [&](ErrorInfoBase &EIB) {
1003 EC = EIB.convertToErrorCode();
1004 Ctx.emitError(ErrorStr: EIB.message());
1005 });
1006 return EC;
1007 }
1008 return std::error_code();
1009}
1010
1011BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
1012 StringRef ProducerIdentification,
1013 LLVMContext &Context)
1014 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
1015 ValueList(this->Stream.SizeInBytes(),
1016 [this](unsigned ValID, BasicBlock *InsertBB) {
1017 return materializeValue(ValID, InsertBB);
1018 }) {
1019 this->ProducerIdentification = std::string(ProducerIdentification);
1020}
1021
1022Error BitcodeReader::materializeForwardReferencedFunctions() {
1023 if (WillMaterializeAllForwardRefs)
1024 return Error::success();
1025
1026 // Prevent recursion.
1027 WillMaterializeAllForwardRefs = true;
1028
1029 while (!BasicBlockFwdRefQueue.empty()) {
1030 Function *F = BasicBlockFwdRefQueue.front();
1031 BasicBlockFwdRefQueue.pop_front();
1032 assert(F && "Expected valid function");
1033 if (!BasicBlockFwdRefs.count(Val: F))
1034 // Already materialized.
1035 continue;
1036
1037 // Check for a function that isn't materializable to prevent an infinite
1038 // loop. When parsing a blockaddress stored in a global variable, there
1039 // isn't a trivial way to check if a function will have a body without a
1040 // linear search through FunctionsWithBodies, so just check it here.
1041 if (!F->isMaterializable())
1042 return error(Message: "Never resolved function from blockaddress");
1043
1044 // Try to materialize F.
1045 if (Error Err = materialize(GV: F))
1046 return Err;
1047 }
1048 assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
1049
1050 for (Function *F : BackwardRefFunctions)
1051 if (Error Err = materialize(GV: F))
1052 return Err;
1053 BackwardRefFunctions.clear();
1054
1055 // Reset state.
1056 WillMaterializeAllForwardRefs = false;
1057 return Error::success();
1058}
1059
1060//===----------------------------------------------------------------------===//
1061// Helper functions to implement forward reference resolution, etc.
1062//===----------------------------------------------------------------------===//
1063
1064static bool hasImplicitComdat(size_t Val) {
1065 switch (Val) {
1066 default:
1067 return false;
1068 case 1: // Old WeakAnyLinkage
1069 case 4: // Old LinkOnceAnyLinkage
1070 case 10: // Old WeakODRLinkage
1071 case 11: // Old LinkOnceODRLinkage
1072 return true;
1073 }
1074}
1075
1076static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1077 switch (Val) {
1078 default: // Map unknown/new linkages to external
1079 case 0:
1080 return GlobalValue::ExternalLinkage;
1081 case 2:
1082 return GlobalValue::AppendingLinkage;
1083 case 3:
1084 return GlobalValue::InternalLinkage;
1085 case 5:
1086 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1087 case 6:
1088 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1089 case 7:
1090 return GlobalValue::ExternalWeakLinkage;
1091 case 8:
1092 return GlobalValue::CommonLinkage;
1093 case 9:
1094 return GlobalValue::PrivateLinkage;
1095 case 12:
1096 return GlobalValue::AvailableExternallyLinkage;
1097 case 13:
1098 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1099 case 14:
1100 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1101 case 15:
1102 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1103 case 1: // Old value with implicit comdat.
1104 case 16:
1105 return GlobalValue::WeakAnyLinkage;
1106 case 10: // Old value with implicit comdat.
1107 case 17:
1108 return GlobalValue::WeakODRLinkage;
1109 case 4: // Old value with implicit comdat.
1110 case 18:
1111 return GlobalValue::LinkOnceAnyLinkage;
1112 case 11: // Old value with implicit comdat.
1113 case 19:
1114 return GlobalValue::LinkOnceODRLinkage;
1115 }
1116}
1117
1118static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1119 FunctionSummary::FFlags Flags;
1120 Flags.ReadNone = RawFlags & 0x1;
1121 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1122 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1123 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1124 Flags.NoInline = (RawFlags >> 4) & 0x1;
1125 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1126 Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1127 Flags.MayThrow = (RawFlags >> 7) & 0x1;
1128 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1129 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1130 return Flags;
1131}
1132
1133// Decode the flags for GlobalValue in the summary. The bits for each attribute:
1134//
1135// linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1136// visibility: [8, 10).
1137static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1138 uint64_t Version) {
1139 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1140 // like getDecodedLinkage() above. Any future change to the linkage enum and
1141 // to getDecodedLinkage() will need to be taken into account here as above.
1142 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1143 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1144 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit
1145 RawFlags = RawFlags >> 4;
1146 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1147 // The Live flag wasn't introduced until version 3. For dead stripping
1148 // to work correctly on earlier versions, we must conservatively treat all
1149 // values as live.
1150 bool Live = (RawFlags & 0x2) || Version < 3;
1151 bool Local = (RawFlags & 0x4);
1152 bool AutoHide = (RawFlags & 0x8);
1153
1154 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1155 Live, Local, AutoHide, IK);
1156}
1157
1158// Decode the flags for GlobalVariable in the summary
1159static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1160 return GlobalVarSummary::GVarFlags(
1161 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1162 (RawFlags & 0x4) ? true : false,
1163 (GlobalObject::VCallVisibility)(RawFlags >> 3));
1164}
1165
1166static std::pair<CalleeInfo::HotnessType, bool>
1167getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) {
1168 CalleeInfo::HotnessType Hotness =
1169 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits
1170 bool HasTailCall = (RawFlags & 0x8); // 1 bit
1171 return {Hotness, HasTailCall};
1172}
1173
1174static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF,
1175 bool &HasTailCall) {
1176 static constexpr uint64_t RelBlockFreqMask =
1177 (1 << CalleeInfo::RelBlockFreqBits) - 1;
1178 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits
1179 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit
1180}
1181
1182static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1183 switch (Val) {
1184 default: // Map unknown visibilities to default.
1185 case 0: return GlobalValue::DefaultVisibility;
1186 case 1: return GlobalValue::HiddenVisibility;
1187 case 2: return GlobalValue::ProtectedVisibility;
1188 }
1189}
1190
1191static GlobalValue::DLLStorageClassTypes
1192getDecodedDLLStorageClass(unsigned Val) {
1193 switch (Val) {
1194 default: // Map unknown values to default.
1195 case 0: return GlobalValue::DefaultStorageClass;
1196 case 1: return GlobalValue::DLLImportStorageClass;
1197 case 2: return GlobalValue::DLLExportStorageClass;
1198 }
1199}
1200
1201static bool getDecodedDSOLocal(unsigned Val) {
1202 switch(Val) {
1203 default: // Map unknown values to preemptable.
1204 case 0: return false;
1205 case 1: return true;
1206 }
1207}
1208
1209static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) {
1210 switch (Val) {
1211 case 1:
1212 return CodeModel::Tiny;
1213 case 2:
1214 return CodeModel::Small;
1215 case 3:
1216 return CodeModel::Kernel;
1217 case 4:
1218 return CodeModel::Medium;
1219 case 5:
1220 return CodeModel::Large;
1221 }
1222
1223 return {};
1224}
1225
1226static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1227 switch (Val) {
1228 case 0: return GlobalVariable::NotThreadLocal;
1229 default: // Map unknown non-zero value to general dynamic.
1230 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1231 case 2: return GlobalVariable::LocalDynamicTLSModel;
1232 case 3: return GlobalVariable::InitialExecTLSModel;
1233 case 4: return GlobalVariable::LocalExecTLSModel;
1234 }
1235}
1236
1237static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1238 switch (Val) {
1239 default: // Map unknown to UnnamedAddr::None.
1240 case 0: return GlobalVariable::UnnamedAddr::None;
1241 case 1: return GlobalVariable::UnnamedAddr::Global;
1242 case 2: return GlobalVariable::UnnamedAddr::Local;
1243 }
1244}
1245
1246static int getDecodedCastOpcode(unsigned Val) {
1247 switch (Val) {
1248 default: return -1;
1249 case bitc::CAST_TRUNC : return Instruction::Trunc;
1250 case bitc::CAST_ZEXT : return Instruction::ZExt;
1251 case bitc::CAST_SEXT : return Instruction::SExt;
1252 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1253 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1254 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1255 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1256 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1257 case bitc::CAST_FPEXT : return Instruction::FPExt;
1258 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1259 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1260 case bitc::CAST_BITCAST : return Instruction::BitCast;
1261 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1262 }
1263}
1264
1265static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1266 bool IsFP = Ty->isFPOrFPVectorTy();
1267 // UnOps are only valid for int/fp or vector of int/fp types
1268 if (!IsFP && !Ty->isIntOrIntVectorTy())
1269 return -1;
1270
1271 switch (Val) {
1272 default:
1273 return -1;
1274 case bitc::UNOP_FNEG:
1275 return IsFP ? Instruction::FNeg : -1;
1276 }
1277}
1278
1279static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1280 bool IsFP = Ty->isFPOrFPVectorTy();
1281 // BinOps are only valid for int/fp or vector of int/fp types
1282 if (!IsFP && !Ty->isIntOrIntVectorTy())
1283 return -1;
1284
1285 switch (Val) {
1286 default:
1287 return -1;
1288 case bitc::BINOP_ADD:
1289 return IsFP ? Instruction::FAdd : Instruction::Add;
1290 case bitc::BINOP_SUB:
1291 return IsFP ? Instruction::FSub : Instruction::Sub;
1292 case bitc::BINOP_MUL:
1293 return IsFP ? Instruction::FMul : Instruction::Mul;
1294 case bitc::BINOP_UDIV:
1295 return IsFP ? -1 : Instruction::UDiv;
1296 case bitc::BINOP_SDIV:
1297 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1298 case bitc::BINOP_UREM:
1299 return IsFP ? -1 : Instruction::URem;
1300 case bitc::BINOP_SREM:
1301 return IsFP ? Instruction::FRem : Instruction::SRem;
1302 case bitc::BINOP_SHL:
1303 return IsFP ? -1 : Instruction::Shl;
1304 case bitc::BINOP_LSHR:
1305 return IsFP ? -1 : Instruction::LShr;
1306 case bitc::BINOP_ASHR:
1307 return IsFP ? -1 : Instruction::AShr;
1308 case bitc::BINOP_AND:
1309 return IsFP ? -1 : Instruction::And;
1310 case bitc::BINOP_OR:
1311 return IsFP ? -1 : Instruction::Or;
1312 case bitc::BINOP_XOR:
1313 return IsFP ? -1 : Instruction::Xor;
1314 }
1315}
1316
1317static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1318 switch (Val) {
1319 default: return AtomicRMWInst::BAD_BINOP;
1320 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1321 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1322 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1323 case bitc::RMW_AND: return AtomicRMWInst::And;
1324 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1325 case bitc::RMW_OR: return AtomicRMWInst::Or;
1326 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1327 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1328 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1329 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1330 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1331 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1332 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1333 case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1334 case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1335 case bitc::RMW_UINC_WRAP:
1336 return AtomicRMWInst::UIncWrap;
1337 case bitc::RMW_UDEC_WRAP:
1338 return AtomicRMWInst::UDecWrap;
1339 }
1340}
1341
1342static AtomicOrdering getDecodedOrdering(unsigned Val) {
1343 switch (Val) {
1344 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1345 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1346 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1347 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1348 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1349 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1350 default: // Map unknown orderings to sequentially-consistent.
1351 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1352 }
1353}
1354
1355static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1356 switch (Val) {
1357 default: // Map unknown selection kinds to any.
1358 case bitc::COMDAT_SELECTION_KIND_ANY:
1359 return Comdat::Any;
1360 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1361 return Comdat::ExactMatch;
1362 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1363 return Comdat::Largest;
1364 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1365 return Comdat::NoDeduplicate;
1366 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1367 return Comdat::SameSize;
1368 }
1369}
1370
1371static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1372 FastMathFlags FMF;
1373 if (0 != (Val & bitc::UnsafeAlgebra))
1374 FMF.setFast();
1375 if (0 != (Val & bitc::AllowReassoc))
1376 FMF.setAllowReassoc();
1377 if (0 != (Val & bitc::NoNaNs))
1378 FMF.setNoNaNs();
1379 if (0 != (Val & bitc::NoInfs))
1380 FMF.setNoInfs();
1381 if (0 != (Val & bitc::NoSignedZeros))
1382 FMF.setNoSignedZeros();
1383 if (0 != (Val & bitc::AllowReciprocal))
1384 FMF.setAllowReciprocal();
1385 if (0 != (Val & bitc::AllowContract))
1386 FMF.setAllowContract(true);
1387 if (0 != (Val & bitc::ApproxFunc))
1388 FMF.setApproxFunc();
1389 return FMF;
1390}
1391
1392static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1393 // A GlobalValue with local linkage cannot have a DLL storage class.
1394 if (GV->hasLocalLinkage())
1395 return;
1396 switch (Val) {
1397 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1398 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1399 }
1400}
1401
1402Type *BitcodeReader::getTypeByID(unsigned ID) {
1403 // The type table size is always specified correctly.
1404 if (ID >= TypeList.size())
1405 return nullptr;
1406
1407 if (Type *Ty = TypeList[ID])
1408 return Ty;
1409
1410 // If we have a forward reference, the only possible case is when it is to a
1411 // named struct. Just create a placeholder for now.
1412 return TypeList[ID] = createIdentifiedStructType(Context);
1413}
1414
1415unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1416 auto It = ContainedTypeIDs.find(Val: ID);
1417 if (It == ContainedTypeIDs.end())
1418 return InvalidTypeID;
1419
1420 if (Idx >= It->second.size())
1421 return InvalidTypeID;
1422
1423 return It->second[Idx];
1424}
1425
1426Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1427 if (ID >= TypeList.size())
1428 return nullptr;
1429
1430 Type *Ty = TypeList[ID];
1431 if (!Ty->isPointerTy())
1432 return nullptr;
1433
1434 return getTypeByID(ID: getContainedTypeID(ID, Idx: 0));
1435}
1436
1437unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1438 ArrayRef<unsigned> ChildTypeIDs) {
1439 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1440 auto CacheKey = std::make_pair(x&: Ty, y&: ChildTypeID);
1441 auto It = VirtualTypeIDs.find(Val: CacheKey);
1442 if (It != VirtualTypeIDs.end()) {
1443 // The cmpxchg return value is the only place we need more than one
1444 // contained type ID, however the second one will always be the same (i1),
1445 // so we don't need to include it in the cache key. This asserts that the
1446 // contained types are indeed as expected and there are no collisions.
1447 assert((ChildTypeIDs.empty() ||
1448 ContainedTypeIDs[It->second] == ChildTypeIDs) &&
1449 "Incorrect cached contained type IDs");
1450 return It->second;
1451 }
1452
1453 unsigned TypeID = TypeList.size();
1454 TypeList.push_back(x: Ty);
1455 if (!ChildTypeIDs.empty())
1456 append_range(C&: ContainedTypeIDs[TypeID], R&: ChildTypeIDs);
1457 VirtualTypeIDs.insert(KV: {CacheKey, TypeID});
1458 return TypeID;
1459}
1460
1461static bool isConstExprSupported(const BitcodeConstant *BC) {
1462 uint8_t Opcode = BC->Opcode;
1463
1464 // These are not real constant expressions, always consider them supported.
1465 if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1466 return true;
1467
1468 // If -expand-constant-exprs is set, we want to consider all expressions
1469 // as unsupported.
1470 if (ExpandConstantExprs)
1471 return false;
1472
1473 if (Instruction::isBinaryOp(Opcode))
1474 return ConstantExpr::isSupportedBinOp(Opcode);
1475
1476 if (Instruction::isCast(Opcode))
1477 return ConstantExpr::isSupportedCastOp(Opcode);
1478
1479 if (Opcode == Instruction::GetElementPtr)
1480 return ConstantExpr::isSupportedGetElementPtr(SrcElemTy: BC->SrcElemTy);
1481
1482 switch (Opcode) {
1483 case Instruction::FNeg:
1484 case Instruction::Select:
1485 return false;
1486 default:
1487 return true;
1488 }
1489}
1490
1491Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1492 BasicBlock *InsertBB) {
1493 // Quickly handle the case where there is no BitcodeConstant to resolve.
1494 if (StartValID < ValueList.size() && ValueList[StartValID] &&
1495 !isa<BitcodeConstant>(Val: ValueList[StartValID]))
1496 return ValueList[StartValID];
1497
1498 SmallDenseMap<unsigned, Value *> MaterializedValues;
1499 SmallVector<unsigned> Worklist;
1500 Worklist.push_back(Elt: StartValID);
1501 while (!Worklist.empty()) {
1502 unsigned ValID = Worklist.back();
1503 if (MaterializedValues.count(Val: ValID)) {
1504 // Duplicate expression that was already handled.
1505 Worklist.pop_back();
1506 continue;
1507 }
1508
1509 if (ValID >= ValueList.size() || !ValueList[ValID])
1510 return error(Message: "Invalid value ID");
1511
1512 Value *V = ValueList[ValID];
1513 auto *BC = dyn_cast<BitcodeConstant>(Val: V);
1514 if (!BC) {
1515 MaterializedValues.insert(KV: {ValID, V});
1516 Worklist.pop_back();
1517 continue;
1518 }
1519
1520 // Iterate in reverse, so values will get popped from the worklist in
1521 // expected order.
1522 SmallVector<Value *> Ops;
1523 for (unsigned OpID : reverse(C: BC->getOperandIDs())) {
1524 auto It = MaterializedValues.find(Val: OpID);
1525 if (It != MaterializedValues.end())
1526 Ops.push_back(Elt: It->second);
1527 else
1528 Worklist.push_back(Elt: OpID);
1529 }
1530
1531 // Some expressions have not been resolved yet, handle them first and then
1532 // revisit this one.
1533 if (Ops.size() != BC->getOperandIDs().size())
1534 continue;
1535 std::reverse(first: Ops.begin(), last: Ops.end());
1536
1537 SmallVector<Constant *> ConstOps;
1538 for (Value *Op : Ops)
1539 if (auto *C = dyn_cast<Constant>(Val: Op))
1540 ConstOps.push_back(Elt: C);
1541
1542 // Materialize as constant expression if possible.
1543 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) {
1544 Constant *C;
1545 if (Instruction::isCast(Opcode: BC->Opcode)) {
1546 C = UpgradeBitCastExpr(Opc: BC->Opcode, C: ConstOps[0], DestTy: BC->getType());
1547 if (!C)
1548 C = ConstantExpr::getCast(ops: BC->Opcode, C: ConstOps[0], Ty: BC->getType());
1549 } else if (Instruction::isBinaryOp(Opcode: BC->Opcode)) {
1550 C = ConstantExpr::get(Opcode: BC->Opcode, C1: ConstOps[0], C2: ConstOps[1], Flags: BC->Flags);
1551 } else {
1552 switch (BC->Opcode) {
1553 case BitcodeConstant::NoCFIOpcode: {
1554 auto *GV = dyn_cast<GlobalValue>(Val: ConstOps[0]);
1555 if (!GV)
1556 return error(Message: "no_cfi operand must be GlobalValue");
1557 C = NoCFIValue::get(GV);
1558 break;
1559 }
1560 case BitcodeConstant::DSOLocalEquivalentOpcode: {
1561 auto *GV = dyn_cast<GlobalValue>(Val: ConstOps[0]);
1562 if (!GV)
1563 return error(Message: "dso_local operand must be GlobalValue");
1564 C = DSOLocalEquivalent::get(GV);
1565 break;
1566 }
1567 case BitcodeConstant::BlockAddressOpcode: {
1568 Function *Fn = dyn_cast<Function>(Val: ConstOps[0]);
1569 if (!Fn)
1570 return error(Message: "blockaddress operand must be a function");
1571
1572 // If the function is already parsed we can insert the block address
1573 // right away.
1574 BasicBlock *BB;
1575 unsigned BBID = BC->BlockAddressBB;
1576 if (!BBID)
1577 // Invalid reference to entry block.
1578 return error(Message: "Invalid ID");
1579 if (!Fn->empty()) {
1580 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1581 for (size_t I = 0, E = BBID; I != E; ++I) {
1582 if (BBI == BBE)
1583 return error(Message: "Invalid ID");
1584 ++BBI;
1585 }
1586 BB = &*BBI;
1587 } else {
1588 // Otherwise insert a placeholder and remember it so it can be
1589 // inserted when the function is parsed.
1590 auto &FwdBBs = BasicBlockFwdRefs[Fn];
1591 if (FwdBBs.empty())
1592 BasicBlockFwdRefQueue.push_back(x: Fn);
1593 if (FwdBBs.size() < BBID + 1)
1594 FwdBBs.resize(new_size: BBID + 1);
1595 if (!FwdBBs[BBID])
1596 FwdBBs[BBID] = BasicBlock::Create(Context);
1597 BB = FwdBBs[BBID];
1598 }
1599 C = BlockAddress::get(F: Fn, BB);
1600 break;
1601 }
1602 case BitcodeConstant::ConstantStructOpcode:
1603 C = ConstantStruct::get(T: cast<StructType>(Val: BC->getType()), V: ConstOps);
1604 break;
1605 case BitcodeConstant::ConstantArrayOpcode:
1606 C = ConstantArray::get(T: cast<ArrayType>(Val: BC->getType()), V: ConstOps);
1607 break;
1608 case BitcodeConstant::ConstantVectorOpcode:
1609 C = ConstantVector::get(V: ConstOps);
1610 break;
1611 case Instruction::ICmp:
1612 case Instruction::FCmp:
1613 C = ConstantExpr::getCompare(pred: BC->Flags, C1: ConstOps[0], C2: ConstOps[1]);
1614 break;
1615 case Instruction::GetElementPtr:
1616 C = ConstantExpr::getGetElementPtr(Ty: BC->SrcElemTy, C: ConstOps[0],
1617 IdxList: ArrayRef(ConstOps).drop_front(),
1618 InBounds: BC->Flags, InRange: BC->getInRange());
1619 break;
1620 case Instruction::ExtractElement:
1621 C = ConstantExpr::getExtractElement(Vec: ConstOps[0], Idx: ConstOps[1]);
1622 break;
1623 case Instruction::InsertElement:
1624 C = ConstantExpr::getInsertElement(Vec: ConstOps[0], Elt: ConstOps[1],
1625 Idx: ConstOps[2]);
1626 break;
1627 case Instruction::ShuffleVector: {
1628 SmallVector<int, 16> Mask;
1629 ShuffleVectorInst::getShuffleMask(Mask: ConstOps[2], Result&: Mask);
1630 C = ConstantExpr::getShuffleVector(V1: ConstOps[0], V2: ConstOps[1], Mask);
1631 break;
1632 }
1633 default:
1634 llvm_unreachable("Unhandled bitcode constant");
1635 }
1636 }
1637
1638 // Cache resolved constant.
1639 ValueList.replaceValueWithoutRAUW(ValNo: ValID, NewV: C);
1640 MaterializedValues.insert(KV: {ValID, C});
1641 Worklist.pop_back();
1642 continue;
1643 }
1644
1645 if (!InsertBB)
1646 return error(Message: Twine("Value referenced by initializer is an unsupported "
1647 "constant expression of type ") +
1648 BC->getOpcodeName());
1649
1650 // Materialize as instructions if necessary.
1651 Instruction *I;
1652 if (Instruction::isCast(Opcode: BC->Opcode)) {
1653 I = CastInst::Create((Instruction::CastOps)BC->Opcode, S: Ops[0],
1654 Ty: BC->getType(), Name: "constexpr", InsertAtEnd: InsertBB);
1655 } else if (Instruction::isUnaryOp(Opcode: BC->Opcode)) {
1656 I = UnaryOperator::Create(Op: (Instruction::UnaryOps)BC->Opcode, S: Ops[0],
1657 Name: "constexpr", InsertAtEnd: InsertBB);
1658 } else if (Instruction::isBinaryOp(Opcode: BC->Opcode)) {
1659 I = BinaryOperator::Create(Op: (Instruction::BinaryOps)BC->Opcode, S1: Ops[0],
1660 S2: Ops[1], Name: "constexpr", InsertAtEnd: InsertBB);
1661 if (isa<OverflowingBinaryOperator>(Val: I)) {
1662 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1663 I->setHasNoSignedWrap();
1664 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1665 I->setHasNoUnsignedWrap();
1666 }
1667 if (isa<PossiblyExactOperator>(Val: I) &&
1668 (BC->Flags & PossiblyExactOperator::IsExact))
1669 I->setIsExact();
1670 } else {
1671 switch (BC->Opcode) {
1672 case BitcodeConstant::ConstantVectorOpcode: {
1673 Type *IdxTy = Type::getInt32Ty(C&: BC->getContext());
1674 Value *V = PoisonValue::get(T: BC->getType());
1675 for (auto Pair : enumerate(First&: Ops)) {
1676 Value *Idx = ConstantInt::get(Ty: IdxTy, V: Pair.index());
1677 V = InsertElementInst::Create(Vec: V, NewElt: Pair.value(), Idx, NameStr: "constexpr.ins",
1678 InsertAtEnd: InsertBB);
1679 }
1680 I = cast<Instruction>(Val: V);
1681 break;
1682 }
1683 case BitcodeConstant::ConstantStructOpcode:
1684 case BitcodeConstant::ConstantArrayOpcode: {
1685 Value *V = PoisonValue::get(T: BC->getType());
1686 for (auto Pair : enumerate(First&: Ops))
1687 V = InsertValueInst::Create(Agg: V, Val: Pair.value(), Idxs: Pair.index(),
1688 NameStr: "constexpr.ins", InsertAtEnd: InsertBB);
1689 I = cast<Instruction>(Val: V);
1690 break;
1691 }
1692 case Instruction::ICmp:
1693 case Instruction::FCmp:
1694 I = CmpInst::Create(Op: (Instruction::OtherOps)BC->Opcode,
1695 Pred: (CmpInst::Predicate)BC->Flags, S1: Ops[0], S2: Ops[1],
1696 Name: "constexpr", InsertAtEnd: InsertBB);
1697 break;
1698 case Instruction::GetElementPtr:
1699 I = GetElementPtrInst::Create(PointeeType: BC->SrcElemTy, Ptr: Ops[0],
1700 IdxList: ArrayRef(Ops).drop_front(), NameStr: "constexpr",
1701 InsertAtEnd: InsertBB);
1702 if (BC->Flags)
1703 cast<GetElementPtrInst>(Val: I)->setIsInBounds();
1704 break;
1705 case Instruction::Select:
1706 I = SelectInst::Create(C: Ops[0], S1: Ops[1], S2: Ops[2], NameStr: "constexpr", InsertAtEnd: InsertBB);
1707 break;
1708 case Instruction::ExtractElement:
1709 I = ExtractElementInst::Create(Vec: Ops[0], Idx: Ops[1], NameStr: "constexpr", InsertAtEnd: InsertBB);
1710 break;
1711 case Instruction::InsertElement:
1712 I = InsertElementInst::Create(Vec: Ops[0], NewElt: Ops[1], Idx: Ops[2], NameStr: "constexpr",
1713 InsertAtEnd: InsertBB);
1714 break;
1715 case Instruction::ShuffleVector:
1716 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1717 InsertBB);
1718 break;
1719 default:
1720 llvm_unreachable("Unhandled bitcode constant");
1721 }
1722 }
1723
1724 MaterializedValues.insert(KV: {ValID, I});
1725 Worklist.pop_back();
1726 }
1727
1728 return MaterializedValues[StartValID];
1729}
1730
1731Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1732 Expected<Value *> MaybeV = materializeValue(StartValID: ID, /* InsertBB */ nullptr);
1733 if (!MaybeV)
1734 return MaybeV.takeError();
1735
1736 // Result must be Constant if InsertBB is nullptr.
1737 return cast<Constant>(Val: MaybeV.get());
1738}
1739
1740StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1741 StringRef Name) {
1742 auto *Ret = StructType::create(Context, Name);
1743 IdentifiedStructTypes.push_back(x: Ret);
1744 return Ret;
1745}
1746
1747StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1748 auto *Ret = StructType::create(Context);
1749 IdentifiedStructTypes.push_back(x: Ret);
1750 return Ret;
1751}
1752
1753//===----------------------------------------------------------------------===//
1754// Functions for parsing blocks from the bitcode file
1755//===----------------------------------------------------------------------===//
1756
1757static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1758 switch (Val) {
1759 case Attribute::EndAttrKinds:
1760 case Attribute::EmptyKey:
1761 case Attribute::TombstoneKey:
1762 llvm_unreachable("Synthetic enumerators which should never get here");
1763
1764 case Attribute::None: return 0;
1765 case Attribute::ZExt: return 1 << 0;
1766 case Attribute::SExt: return 1 << 1;
1767 case Attribute::NoReturn: return 1 << 2;
1768 case Attribute::InReg: return 1 << 3;
1769 case Attribute::StructRet: return 1 << 4;
1770 case Attribute::NoUnwind: return 1 << 5;
1771 case Attribute::NoAlias: return 1 << 6;
1772 case Attribute::ByVal: return 1 << 7;
1773 case Attribute::Nest: return 1 << 8;
1774 case Attribute::ReadNone: return 1 << 9;
1775 case Attribute::ReadOnly: return 1 << 10;
1776 case Attribute::NoInline: return 1 << 11;
1777 case Attribute::AlwaysInline: return 1 << 12;
1778 case Attribute::OptimizeForSize: return 1 << 13;
1779 case Attribute::StackProtect: return 1 << 14;
1780 case Attribute::StackProtectReq: return 1 << 15;
1781 case Attribute::Alignment: return 31 << 16;
1782 case Attribute::NoCapture: return 1 << 21;
1783 case Attribute::NoRedZone: return 1 << 22;
1784 case Attribute::NoImplicitFloat: return 1 << 23;
1785 case Attribute::Naked: return 1 << 24;
1786 case Attribute::InlineHint: return 1 << 25;
1787 case Attribute::StackAlignment: return 7 << 26;
1788 case Attribute::ReturnsTwice: return 1 << 29;
1789 case Attribute::UWTable: return 1 << 30;
1790 case Attribute::NonLazyBind: return 1U << 31;
1791 case Attribute::SanitizeAddress: return 1ULL << 32;
1792 case Attribute::MinSize: return 1ULL << 33;
1793 case Attribute::NoDuplicate: return 1ULL << 34;
1794 case Attribute::StackProtectStrong: return 1ULL << 35;
1795 case Attribute::SanitizeThread: return 1ULL << 36;
1796 case Attribute::SanitizeMemory: return 1ULL << 37;
1797 case Attribute::NoBuiltin: return 1ULL << 38;
1798 case Attribute::Returned: return 1ULL << 39;
1799 case Attribute::Cold: return 1ULL << 40;
1800 case Attribute::Builtin: return 1ULL << 41;
1801 case Attribute::OptimizeNone: return 1ULL << 42;
1802 case Attribute::InAlloca: return 1ULL << 43;
1803 case Attribute::NonNull: return 1ULL << 44;
1804 case Attribute::JumpTable: return 1ULL << 45;
1805 case Attribute::Convergent: return 1ULL << 46;
1806 case Attribute::SafeStack: return 1ULL << 47;
1807 case Attribute::NoRecurse: return 1ULL << 48;
1808 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately.
1809 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately.
1810 case Attribute::SwiftSelf: return 1ULL << 51;
1811 case Attribute::SwiftError: return 1ULL << 52;
1812 case Attribute::WriteOnly: return 1ULL << 53;
1813 case Attribute::Speculatable: return 1ULL << 54;
1814 case Attribute::StrictFP: return 1ULL << 55;
1815 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1816 case Attribute::NoCfCheck: return 1ULL << 57;
1817 case Attribute::OptForFuzzing: return 1ULL << 58;
1818 case Attribute::ShadowCallStack: return 1ULL << 59;
1819 case Attribute::SpeculativeLoadHardening:
1820 return 1ULL << 60;
1821 case Attribute::ImmArg:
1822 return 1ULL << 61;
1823 case Attribute::WillReturn:
1824 return 1ULL << 62;
1825 case Attribute::NoFree:
1826 return 1ULL << 63;
1827 default:
1828 // Other attributes are not supported in the raw format,
1829 // as we ran out of space.
1830 return 0;
1831 }
1832 llvm_unreachable("Unsupported attribute type");
1833}
1834
1835static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1836 if (!Val) return;
1837
1838 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1839 I = Attribute::AttrKind(I + 1)) {
1840 if (uint64_t A = (Val & getRawAttributeMask(Val: I))) {
1841 if (I == Attribute::Alignment)
1842 B.addAlignmentAttr(Align: 1ULL << ((A >> 16) - 1));
1843 else if (I == Attribute::StackAlignment)
1844 B.addStackAlignmentAttr(Align: 1ULL << ((A >> 26)-1));
1845 else if (Attribute::isTypeAttrKind(Kind: I))
1846 B.addTypeAttr(Kind: I, Ty: nullptr); // Type will be auto-upgraded.
1847 else
1848 B.addAttribute(Val: I);
1849 }
1850 }
1851}
1852
1853/// This fills an AttrBuilder object with the LLVM attributes that have
1854/// been decoded from the given integer. This function must stay in sync with
1855/// 'encodeLLVMAttributesForBitcode'.
1856static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1857 uint64_t EncodedAttrs,
1858 uint64_t AttrIdx) {
1859 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1860 // the bits above 31 down by 11 bits.
1861 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1862 assert((!Alignment || isPowerOf2_32(Alignment)) &&
1863 "Alignment must be a power of two.");
1864
1865 if (Alignment)
1866 B.addAlignmentAttr(Align: Alignment);
1867
1868 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1869 (EncodedAttrs & 0xffff);
1870
1871 if (AttrIdx == AttributeList::FunctionIndex) {
1872 // Upgrade old memory attributes.
1873 MemoryEffects ME = MemoryEffects::unknown();
1874 if (Attrs & (1ULL << 9)) {
1875 // ReadNone
1876 Attrs &= ~(1ULL << 9);
1877 ME &= MemoryEffects::none();
1878 }
1879 if (Attrs & (1ULL << 10)) {
1880 // ReadOnly
1881 Attrs &= ~(1ULL << 10);
1882 ME &= MemoryEffects::readOnly();
1883 }
1884 if (Attrs & (1ULL << 49)) {
1885 // InaccessibleMemOnly
1886 Attrs &= ~(1ULL << 49);
1887 ME &= MemoryEffects::inaccessibleMemOnly();
1888 }
1889 if (Attrs & (1ULL << 50)) {
1890 // InaccessibleMemOrArgMemOnly
1891 Attrs &= ~(1ULL << 50);
1892 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
1893 }
1894 if (Attrs & (1ULL << 53)) {
1895 // WriteOnly
1896 Attrs &= ~(1ULL << 53);
1897 ME &= MemoryEffects::writeOnly();
1898 }
1899 if (ME != MemoryEffects::unknown())
1900 B.addMemoryAttr(ME);
1901 }
1902
1903 addRawAttributeValue(B, Val: Attrs);
1904}
1905
1906Error BitcodeReader::parseAttributeBlock() {
1907 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::PARAMATTR_BLOCK_ID))
1908 return Err;
1909
1910 if (!MAttributes.empty())
1911 return error(Message: "Invalid multiple blocks");
1912
1913 SmallVector<uint64_t, 64> Record;
1914
1915 SmallVector<AttributeList, 8> Attrs;
1916
1917 // Read all the records.
1918 while (true) {
1919 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1920 if (!MaybeEntry)
1921 return MaybeEntry.takeError();
1922 BitstreamEntry Entry = MaybeEntry.get();
1923
1924 switch (Entry.Kind) {
1925 case BitstreamEntry::SubBlock: // Handled for us already.
1926 case BitstreamEntry::Error:
1927 return error(Message: "Malformed block");
1928 case BitstreamEntry::EndBlock:
1929 return Error::success();
1930 case BitstreamEntry::Record:
1931 // The interesting case.
1932 break;
1933 }
1934
1935 // Read a record.
1936 Record.clear();
1937 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
1938 if (!MaybeRecord)
1939 return MaybeRecord.takeError();
1940 switch (MaybeRecord.get()) {
1941 default: // Default behavior: ignore.
1942 break;
1943 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1944 // Deprecated, but still needed to read old bitcode files.
1945 if (Record.size() & 1)
1946 return error(Message: "Invalid parameter attribute record");
1947
1948 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1949 AttrBuilder B(Context);
1950 decodeLLVMAttributesForBitcode(B, EncodedAttrs: Record[i+1], AttrIdx: Record[i]);
1951 Attrs.push_back(Elt: AttributeList::get(C&: Context, Index: Record[i], B));
1952 }
1953
1954 MAttributes.push_back(x: AttributeList::get(C&: Context, Attrs));
1955 Attrs.clear();
1956 break;
1957 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1958 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1959 Attrs.push_back(Elt: MAttributeGroups[Record[i]]);
1960
1961 MAttributes.push_back(x: AttributeList::get(C&: Context, Attrs));
1962 Attrs.clear();
1963 break;
1964 }
1965 }
1966}
1967
1968// Returns Attribute::None on unrecognized codes.
1969static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1970 switch (Code) {
1971 default:
1972 return Attribute::None;
1973 case bitc::ATTR_KIND_ALIGNMENT:
1974 return Attribute::Alignment;
1975 case bitc::ATTR_KIND_ALWAYS_INLINE:
1976 return Attribute::AlwaysInline;
1977 case bitc::ATTR_KIND_BUILTIN:
1978 return Attribute::Builtin;
1979 case bitc::ATTR_KIND_BY_VAL:
1980 return Attribute::ByVal;
1981 case bitc::ATTR_KIND_IN_ALLOCA:
1982 return Attribute::InAlloca;
1983 case bitc::ATTR_KIND_COLD:
1984 return Attribute::Cold;
1985 case bitc::ATTR_KIND_CONVERGENT:
1986 return Attribute::Convergent;
1987 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1988 return Attribute::DisableSanitizerInstrumentation;
1989 case bitc::ATTR_KIND_ELEMENTTYPE:
1990 return Attribute::ElementType;
1991 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1992 return Attribute::FnRetThunkExtern;
1993 case bitc::ATTR_KIND_INLINE_HINT:
1994 return Attribute::InlineHint;
1995 case bitc::ATTR_KIND_IN_REG:
1996 return Attribute::InReg;
1997 case bitc::ATTR_KIND_JUMP_TABLE:
1998 return Attribute::JumpTable;
1999 case bitc::ATTR_KIND_MEMORY:
2000 return Attribute::Memory;
2001 case bitc::ATTR_KIND_NOFPCLASS:
2002 return Attribute::NoFPClass;
2003 case bitc::ATTR_KIND_MIN_SIZE:
2004 return Attribute::MinSize;
2005 case bitc::ATTR_KIND_NAKED:
2006 return Attribute::Naked;
2007 case bitc::ATTR_KIND_NEST:
2008 return Attribute::Nest;
2009 case bitc::ATTR_KIND_NO_ALIAS:
2010 return Attribute::NoAlias;
2011 case bitc::ATTR_KIND_NO_BUILTIN:
2012 return Attribute::NoBuiltin;
2013 case bitc::ATTR_KIND_NO_CALLBACK:
2014 return Attribute::NoCallback;
2015 case bitc::ATTR_KIND_NO_CAPTURE:
2016 return Attribute::NoCapture;
2017 case bitc::ATTR_KIND_NO_DUPLICATE:
2018 return Attribute::NoDuplicate;
2019 case bitc::ATTR_KIND_NOFREE:
2020 return Attribute::NoFree;
2021 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
2022 return Attribute::NoImplicitFloat;
2023 case bitc::ATTR_KIND_NO_INLINE:
2024 return Attribute::NoInline;
2025 case bitc::ATTR_KIND_NO_RECURSE:
2026 return Attribute::NoRecurse;
2027 case bitc::ATTR_KIND_NO_MERGE:
2028 return Attribute::NoMerge;
2029 case bitc::ATTR_KIND_NON_LAZY_BIND:
2030 return Attribute::NonLazyBind;
2031 case bitc::ATTR_KIND_NON_NULL:
2032 return Attribute::NonNull;
2033 case bitc::ATTR_KIND_DEREFERENCEABLE:
2034 return Attribute::Dereferenceable;
2035 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
2036 return Attribute::DereferenceableOrNull;
2037 case bitc::ATTR_KIND_ALLOC_ALIGN:
2038 return Attribute::AllocAlign;
2039 case bitc::ATTR_KIND_ALLOC_KIND:
2040 return Attribute::AllocKind;
2041 case bitc::ATTR_KIND_ALLOC_SIZE:
2042 return Attribute::AllocSize;
2043 case bitc::ATTR_KIND_ALLOCATED_POINTER:
2044 return Attribute::AllocatedPointer;
2045 case bitc::ATTR_KIND_NO_RED_ZONE:
2046 return Attribute::NoRedZone;
2047 case bitc::ATTR_KIND_NO_RETURN:
2048 return Attribute::NoReturn;
2049 case bitc::ATTR_KIND_NOSYNC:
2050 return Attribute::NoSync;
2051 case bitc::ATTR_KIND_NOCF_CHECK:
2052 return Attribute::NoCfCheck;
2053 case bitc::ATTR_KIND_NO_PROFILE:
2054 return Attribute::NoProfile;
2055 case bitc::ATTR_KIND_SKIP_PROFILE:
2056 return Attribute::SkipProfile;
2057 case bitc::ATTR_KIND_NO_UNWIND:
2058 return Attribute::NoUnwind;
2059 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
2060 return Attribute::NoSanitizeBounds;
2061 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
2062 return Attribute::NoSanitizeCoverage;
2063 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
2064 return Attribute::NullPointerIsValid;
2065 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING:
2066 return Attribute::OptimizeForDebugging;
2067 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
2068 return Attribute::OptForFuzzing;
2069 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
2070 return Attribute::OptimizeForSize;
2071 case bitc::ATTR_KIND_OPTIMIZE_NONE:
2072 return Attribute::OptimizeNone;
2073 case bitc::ATTR_KIND_READ_NONE:
2074 return Attribute::ReadNone;
2075 case bitc::ATTR_KIND_READ_ONLY:
2076 return Attribute::ReadOnly;
2077 case bitc::ATTR_KIND_RETURNED:
2078 return Attribute::Returned;
2079 case bitc::ATTR_KIND_RETURNS_TWICE:
2080 return Attribute::ReturnsTwice;
2081 case bitc::ATTR_KIND_S_EXT:
2082 return Attribute::SExt;
2083 case bitc::ATTR_KIND_SPECULATABLE:
2084 return Attribute::Speculatable;
2085 case bitc::ATTR_KIND_STACK_ALIGNMENT:
2086 return Attribute::StackAlignment;
2087 case bitc::ATTR_KIND_STACK_PROTECT:
2088 return Attribute::StackProtect;
2089 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
2090 return Attribute::StackProtectReq;
2091 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
2092 return Attribute::StackProtectStrong;
2093 case bitc::ATTR_KIND_SAFESTACK:
2094 return Attribute::SafeStack;
2095 case bitc::ATTR_KIND_SHADOWCALLSTACK:
2096 return Attribute::ShadowCallStack;
2097 case bitc::ATTR_KIND_STRICT_FP:
2098 return Attribute::StrictFP;
2099 case bitc::ATTR_KIND_STRUCT_RET:
2100 return Attribute::StructRet;
2101 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
2102 return Attribute::SanitizeAddress;
2103 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
2104 return Attribute::SanitizeHWAddress;
2105 case bitc::ATTR_KIND_SANITIZE_THREAD:
2106 return Attribute::SanitizeThread;
2107 case bitc::ATTR_KIND_SANITIZE_MEMORY:
2108 return Attribute::SanitizeMemory;
2109 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
2110 return Attribute::SpeculativeLoadHardening;
2111 case bitc::ATTR_KIND_SWIFT_ERROR:
2112 return Attribute::SwiftError;
2113 case bitc::ATTR_KIND_SWIFT_SELF:
2114 return Attribute::SwiftSelf;
2115 case bitc::ATTR_KIND_SWIFT_ASYNC:
2116 return Attribute::SwiftAsync;
2117 case bitc::ATTR_KIND_UW_TABLE:
2118 return Attribute::UWTable;
2119 case bitc::ATTR_KIND_VSCALE_RANGE:
2120 return Attribute::VScaleRange;
2121 case bitc::ATTR_KIND_WILLRETURN:
2122 return Attribute::WillReturn;
2123 case bitc::ATTR_KIND_WRITEONLY:
2124 return Attribute::WriteOnly;
2125 case bitc::ATTR_KIND_Z_EXT:
2126 return Attribute::ZExt;
2127 case bitc::ATTR_KIND_IMMARG:
2128 return Attribute::ImmArg;
2129 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2130 return Attribute::SanitizeMemTag;
2131 case bitc::ATTR_KIND_PREALLOCATED:
2132 return Attribute::Preallocated;
2133 case bitc::ATTR_KIND_NOUNDEF:
2134 return Attribute::NoUndef;
2135 case bitc::ATTR_KIND_BYREF:
2136 return Attribute::ByRef;
2137 case bitc::ATTR_KIND_MUSTPROGRESS:
2138 return Attribute::MustProgress;
2139 case bitc::ATTR_KIND_HOT:
2140 return Attribute::Hot;
2141 case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2142 return Attribute::PresplitCoroutine;
2143 case bitc::ATTR_KIND_WRITABLE:
2144 return Attribute::Writable;
2145 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE:
2146 return Attribute::CoroDestroyOnlyWhenComplete;
2147 case bitc::ATTR_KIND_DEAD_ON_UNWIND:
2148 return Attribute::DeadOnUnwind;
2149 case bitc::ATTR_KIND_RANGE:
2150 return Attribute::Range;
2151 }
2152}
2153
2154Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2155 MaybeAlign &Alignment) {
2156 // Note: Alignment in bitcode files is incremented by 1, so that zero
2157 // can be used for default alignment.
2158 if (Exponent > Value::MaxAlignmentExponent + 1)
2159 return error(Message: "Invalid alignment value");
2160 Alignment = decodeMaybeAlign(Value: Exponent);
2161 return Error::success();
2162}
2163
2164Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2165 *Kind = getAttrFromCode(Code);
2166 if (*Kind == Attribute::None)
2167 return error(Message: "Unknown attribute kind (" + Twine(Code) + ")");
2168 return Error::success();
2169}
2170
2171static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) {
2172 switch (EncodedKind) {
2173 case bitc::ATTR_KIND_READ_NONE:
2174 ME &= MemoryEffects::none();
2175 return true;
2176 case bitc::ATTR_KIND_READ_ONLY:
2177 ME &= MemoryEffects::readOnly();
2178 return true;
2179 case bitc::ATTR_KIND_WRITEONLY:
2180 ME &= MemoryEffects::writeOnly();
2181 return true;
2182 case bitc::ATTR_KIND_ARGMEMONLY:
2183 ME &= MemoryEffects::argMemOnly();
2184 return true;
2185 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
2186 ME &= MemoryEffects::inaccessibleMemOnly();
2187 return true;
2188 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
2189 ME &= MemoryEffects::inaccessibleOrArgMemOnly();
2190 return true;
2191 default:
2192 return false;
2193 }
2194}
2195
2196Error BitcodeReader::parseAttributeGroupBlock() {
2197 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::PARAMATTR_GROUP_BLOCK_ID))
2198 return Err;
2199
2200 if (!MAttributeGroups.empty())
2201 return error(Message: "Invalid multiple blocks");
2202
2203 SmallVector<uint64_t, 64> Record;
2204
2205 // Read all the records.
2206 while (true) {
2207 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2208 if (!MaybeEntry)
2209 return MaybeEntry.takeError();
2210 BitstreamEntry Entry = MaybeEntry.get();
2211
2212 switch (Entry.Kind) {
2213 case BitstreamEntry::SubBlock: // Handled for us already.
2214 case BitstreamEntry::Error:
2215 return error(Message: "Malformed block");
2216 case BitstreamEntry::EndBlock:
2217 return Error::success();
2218 case BitstreamEntry::Record:
2219 // The interesting case.
2220 break;
2221 }
2222
2223 // Read a record.
2224 Record.clear();
2225 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2226 if (!MaybeRecord)
2227 return MaybeRecord.takeError();
2228 switch (MaybeRecord.get()) {
2229 default: // Default behavior: ignore.
2230 break;
2231 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2232 if (Record.size() < 3)
2233 return error(Message: "Invalid grp record");
2234
2235 uint64_t GrpID = Record[0];
2236 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2237
2238 AttrBuilder B(Context);
2239 MemoryEffects ME = MemoryEffects::unknown();
2240 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2241 if (Record[i] == 0) { // Enum attribute
2242 Attribute::AttrKind Kind;
2243 uint64_t EncodedKind = Record[++i];
2244 if (Idx == AttributeList::FunctionIndex &&
2245 upgradeOldMemoryAttribute(ME, EncodedKind))
2246 continue;
2247
2248 if (Error Err = parseAttrKind(Code: EncodedKind, Kind: &Kind))
2249 return Err;
2250
2251 // Upgrade old-style byval attribute to one with a type, even if it's
2252 // nullptr. We will have to insert the real type when we associate
2253 // this AttributeList with a function.
2254 if (Kind == Attribute::ByVal)
2255 B.addByValAttr(Ty: nullptr);
2256 else if (Kind == Attribute::StructRet)
2257 B.addStructRetAttr(Ty: nullptr);
2258 else if (Kind == Attribute::InAlloca)
2259 B.addInAllocaAttr(Ty: nullptr);
2260 else if (Kind == Attribute::UWTable)
2261 B.addUWTableAttr(Kind: UWTableKind::Default);
2262 else if (Attribute::isEnumAttrKind(Kind))
2263 B.addAttribute(Val: Kind);
2264 else
2265 return error(Message: "Not an enum attribute");
2266 } else if (Record[i] == 1) { // Integer attribute
2267 Attribute::AttrKind Kind;
2268 if (Error Err = parseAttrKind(Code: Record[++i], Kind: &Kind))
2269 return Err;
2270 if (!Attribute::isIntAttrKind(Kind))
2271 return error(Message: "Not an int attribute");
2272 if (Kind == Attribute::Alignment)
2273 B.addAlignmentAttr(Align: Record[++i]);
2274 else if (Kind == Attribute::StackAlignment)
2275 B.addStackAlignmentAttr(Align: Record[++i]);
2276 else if (Kind == Attribute::Dereferenceable)
2277 B.addDereferenceableAttr(Bytes: Record[++i]);
2278 else if (Kind == Attribute::DereferenceableOrNull)
2279 B.addDereferenceableOrNullAttr(Bytes: Record[++i]);
2280 else if (Kind == Attribute::AllocSize)
2281 B.addAllocSizeAttrFromRawRepr(RawAllocSizeRepr: Record[++i]);
2282 else if (Kind == Attribute::VScaleRange)
2283 B.addVScaleRangeAttrFromRawRepr(RawVScaleRangeRepr: Record[++i]);
2284 else if (Kind == Attribute::UWTable)
2285 B.addUWTableAttr(Kind: UWTableKind(Record[++i]));
2286 else if (Kind == Attribute::AllocKind)
2287 B.addAllocKindAttr(Kind: static_cast<AllocFnKind>(Record[++i]));
2288 else if (Kind == Attribute::Memory)
2289 B.addMemoryAttr(ME: MemoryEffects::createFromIntValue(Data: Record[++i]));
2290 else if (Kind == Attribute::NoFPClass)
2291 B.addNoFPClassAttr(
2292 NoFPClassMask: static_cast<FPClassTest>(Record[++i] & fcAllFlags));
2293 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2294 bool HasValue = (Record[i++] == 4);
2295 SmallString<64> KindStr;
2296 SmallString<64> ValStr;
2297
2298 while (Record[i] != 0 && i != e)
2299 KindStr += Record[i++];
2300 assert(Record[i] == 0 && "Kind string not null terminated");
2301
2302 if (HasValue) {
2303 // Has a value associated with it.
2304 ++i; // Skip the '0' that terminates the "kind" string.
2305 while (Record[i] != 0 && i != e)
2306 ValStr += Record[i++];
2307 assert(Record[i] == 0 && "Value string not null terminated");
2308 }
2309
2310 B.addAttribute(A: KindStr.str(), V: ValStr.str());
2311 } else if (Record[i] == 5 || Record[i] == 6) {
2312 bool HasType = Record[i] == 6;
2313 Attribute::AttrKind Kind;
2314 if (Error Err = parseAttrKind(Code: Record[++i], Kind: &Kind))
2315 return Err;
2316 if (!Attribute::isTypeAttrKind(Kind))
2317 return error(Message: "Not a type attribute");
2318
2319 B.addTypeAttr(Kind, Ty: HasType ? getTypeByID(ID: Record[++i]) : nullptr);
2320 } else if (Record[i] == 7) {
2321 Attribute::AttrKind Kind;
2322
2323 i++;
2324 if (Error Err = parseAttrKind(Code: Record[i++], Kind: &Kind))
2325 return Err;
2326 if (!Attribute::isConstantRangeAttrKind(Kind))
2327 return error(Message: "Not a ConstantRange attribute");
2328
2329 Expected<ConstantRange> MaybeCR = readConstantRange(Record, OpNum&: i);
2330 if (!MaybeCR)
2331 return MaybeCR.takeError();
2332 i--;
2333
2334 B.addConstantRangeAttr(Kind, CR: MaybeCR.get());
2335 } else {
2336 return error(Message: "Invalid attribute group entry");
2337 }
2338 }
2339
2340 if (ME != MemoryEffects::unknown())
2341 B.addMemoryAttr(ME);
2342
2343 UpgradeAttributes(B);
2344 MAttributeGroups[GrpID] = AttributeList::get(C&: Context, Index: Idx, B);
2345 break;
2346 }
2347 }
2348 }
2349}
2350
2351Error BitcodeReader::parseTypeTable() {
2352 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::TYPE_BLOCK_ID_NEW))
2353 return Err;
2354
2355 return parseTypeTableBody();
2356}
2357
2358Error BitcodeReader::parseTypeTableBody() {
2359 if (!TypeList.empty())
2360 return error(Message: "Invalid multiple blocks");
2361
2362 SmallVector<uint64_t, 64> Record;
2363 unsigned NumRecords = 0;
2364
2365 SmallString<64> TypeName;
2366
2367 // Read all the records for this type table.
2368 while (true) {
2369 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2370 if (!MaybeEntry)
2371 return MaybeEntry.takeError();
2372 BitstreamEntry Entry = MaybeEntry.get();
2373
2374 switch (Entry.Kind) {
2375 case BitstreamEntry::SubBlock: // Handled for us already.
2376 case BitstreamEntry::Error:
2377 return error(Message: "Malformed block");
2378 case BitstreamEntry::EndBlock:
2379 if (NumRecords != TypeList.size())
2380 return error(Message: "Malformed block");
2381 return Error::success();
2382 case BitstreamEntry::Record:
2383 // The interesting case.
2384 break;
2385 }
2386
2387 // Read a record.
2388 Record.clear();
2389 Type *ResultTy = nullptr;
2390 SmallVector<unsigned> ContainedIDs;
2391 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2392 if (!MaybeRecord)
2393 return MaybeRecord.takeError();
2394 switch (MaybeRecord.get()) {
2395 default:
2396 return error(Message: "Invalid value");
2397 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2398 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2399 // type list. This allows us to reserve space.
2400 if (Record.empty())
2401 return error(Message: "Invalid numentry record");
2402 TypeList.resize(new_size: Record[0]);
2403 continue;
2404 case bitc::TYPE_CODE_VOID: // VOID
2405 ResultTy = Type::getVoidTy(C&: Context);
2406 break;
2407 case bitc::TYPE_CODE_HALF: // HALF
2408 ResultTy = Type::getHalfTy(C&: Context);
2409 break;
2410 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
2411 ResultTy = Type::getBFloatTy(C&: Context);
2412 break;
2413 case bitc::TYPE_CODE_FLOAT: // FLOAT
2414 ResultTy = Type::getFloatTy(C&: Context);
2415 break;
2416 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
2417 ResultTy = Type::getDoubleTy(C&: Context);
2418 break;
2419 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
2420 ResultTy = Type::getX86_FP80Ty(C&: Context);
2421 break;
2422 case bitc::TYPE_CODE_FP128: // FP128
2423 ResultTy = Type::getFP128Ty(C&: Context);
2424 break;
2425 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2426 ResultTy = Type::getPPC_FP128Ty(C&: Context);
2427 break;
2428 case bitc::TYPE_CODE_LABEL: // LABEL
2429 ResultTy = Type::getLabelTy(C&: Context);
2430 break;
2431 case bitc::TYPE_CODE_METADATA: // METADATA
2432 ResultTy = Type::getMetadataTy(C&: Context);
2433 break;
2434 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
2435 ResultTy = Type::getX86_MMXTy(C&: Context);
2436 break;
2437 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
2438 ResultTy = Type::getX86_AMXTy(C&: Context);
2439 break;
2440 case bitc::TYPE_CODE_TOKEN: // TOKEN
2441 ResultTy = Type::getTokenTy(C&: Context);
2442 break;
2443 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2444 if (Record.empty())
2445 return error(Message: "Invalid integer record");
2446
2447 uint64_t NumBits = Record[0];
2448 if (NumBits < IntegerType::MIN_INT_BITS ||
2449 NumBits > IntegerType::MAX_INT_BITS)
2450 return error(Message: "Bitwidth for integer type out of range");
2451 ResultTy = IntegerType::get(C&: Context, NumBits);
2452 break;
2453 }
2454 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2455 // [pointee type, address space]
2456 if (Record.empty())
2457 return error(Message: "Invalid pointer record");
2458 unsigned AddressSpace = 0;
2459 if (Record.size() == 2)
2460 AddressSpace = Record[1];
2461 ResultTy = getTypeByID(ID: Record[0]);
2462 if (!ResultTy ||
2463 !PointerType::isValidElementType(ElemTy: ResultTy))
2464 return error(Message: "Invalid type");
2465 ContainedIDs.push_back(Elt: Record[0]);
2466 ResultTy = PointerType::get(ElementType: ResultTy, AddressSpace);
2467 break;
2468 }
2469 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2470 if (Record.size() != 1)
2471 return error(Message: "Invalid opaque pointer record");
2472 unsigned AddressSpace = Record[0];
2473 ResultTy = PointerType::get(C&: Context, AddressSpace);
2474 break;
2475 }
2476 case bitc::TYPE_CODE_FUNCTION_OLD: {
2477 // Deprecated, but still needed to read old bitcode files.
2478 // FUNCTION: [vararg, attrid, retty, paramty x N]
2479 if (Record.size() < 3)
2480 return error(Message: "Invalid function record");
2481 SmallVector<Type*, 8> ArgTys;
2482 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2483 if (Type *T = getTypeByID(ID: Record[i]))
2484 ArgTys.push_back(Elt: T);
2485 else
2486 break;
2487 }
2488
2489 ResultTy = getTypeByID(ID: Record[2]);
2490 if (!ResultTy || ArgTys.size() < Record.size()-3)
2491 return error(Message: "Invalid type");
2492
2493 ContainedIDs.append(in_start: Record.begin() + 2, in_end: Record.end());
2494 ResultTy = FunctionType::get(Result: ResultTy, Params: ArgTys, isVarArg: Record[0]);
2495 break;
2496 }
2497 case bitc::TYPE_CODE_FUNCTION: {
2498 // FUNCTION: [vararg, retty, paramty x N]
2499 if (Record.size() < 2)
2500 return error(Message: "Invalid function record");
2501 SmallVector<Type*, 8> ArgTys;
2502 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2503 if (Type *T = getTypeByID(ID: Record[i])) {
2504 if (!FunctionType::isValidArgumentType(ArgTy: T))
2505 return error(Message: "Invalid function argument type");
2506 ArgTys.push_back(Elt: T);
2507 }
2508 else
2509 break;
2510 }
2511
2512 ResultTy = getTypeByID(ID: Record[1]);
2513 if (!ResultTy || ArgTys.size() < Record.size()-2)
2514 return error(Message: "Invalid type");
2515
2516 ContainedIDs.append(in_start: Record.begin() + 1, in_end: Record.end());
2517 ResultTy = FunctionType::get(Result: ResultTy, Params: ArgTys, isVarArg: Record[0]);
2518 break;
2519 }
2520 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
2521 if (Record.empty())
2522 return error(Message: "Invalid anon struct record");
2523 SmallVector<Type*, 8> EltTys;
2524 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2525 if (Type *T = getTypeByID(ID: Record[i]))
2526 EltTys.push_back(Elt: T);
2527 else
2528 break;
2529 }
2530 if (EltTys.size() != Record.size()-1)
2531 return error(Message: "Invalid type");
2532 ContainedIDs.append(in_start: Record.begin() + 1, in_end: Record.end());
2533 ResultTy = StructType::get(Context, Elements: EltTys, isPacked: Record[0]);
2534 break;
2535 }
2536 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
2537 if (convertToString(Record, Idx: 0, Result&: TypeName))
2538 return error(Message: "Invalid struct name record");
2539 continue;
2540
2541 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2542 if (Record.empty())
2543 return error(Message: "Invalid named struct record");
2544
2545 if (NumRecords >= TypeList.size())
2546 return error(Message: "Invalid TYPE table");
2547
2548 // Check to see if this was forward referenced, if so fill in the temp.
2549 StructType *Res = cast_or_null<StructType>(Val: TypeList[NumRecords]);
2550 if (Res) {
2551 Res->setName(TypeName);
2552 TypeList[NumRecords] = nullptr;
2553 } else // Otherwise, create a new struct.
2554 Res = createIdentifiedStructType(Context, Name: TypeName);
2555 TypeName.clear();
2556
2557 SmallVector<Type*, 8> EltTys;
2558 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2559 if (Type *T = getTypeByID(ID: Record[i]))
2560 EltTys.push_back(Elt: T);
2561 else
2562 break;
2563 }
2564 if (EltTys.size() != Record.size()-1)
2565 return error(Message: "Invalid named struct record");
2566 Res->setBody(Elements: EltTys, isPacked: Record[0]);
2567 ContainedIDs.append(in_start: Record.begin() + 1, in_end: Record.end());
2568 ResultTy = Res;
2569 break;
2570 }
2571 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
2572 if (Record.size() != 1)
2573 return error(Message: "Invalid opaque type record");
2574
2575 if (NumRecords >= TypeList.size())
2576 return error(Message: "Invalid TYPE table");
2577
2578 // Check to see if this was forward referenced, if so fill in the temp.
2579 StructType *Res = cast_or_null<StructType>(Val: TypeList[NumRecords]);
2580 if (Res) {
2581 Res->setName(TypeName);
2582 TypeList[NumRecords] = nullptr;
2583 } else // Otherwise, create a new struct with no body.
2584 Res = createIdentifiedStructType(Context, Name: TypeName);
2585 TypeName.clear();
2586 ResultTy = Res;
2587 break;
2588 }
2589 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...]
2590 if (Record.size() < 1)
2591 return error(Message: "Invalid target extension type record");
2592
2593 if (NumRecords >= TypeList.size())
2594 return error(Message: "Invalid TYPE table");
2595
2596 if (Record[0] >= Record.size())
2597 return error(Message: "Too many type parameters");
2598
2599 unsigned NumTys = Record[0];
2600 SmallVector<Type *, 4> TypeParams;
2601 SmallVector<unsigned, 8> IntParams;
2602 for (unsigned i = 0; i < NumTys; i++) {
2603 if (Type *T = getTypeByID(ID: Record[i + 1]))
2604 TypeParams.push_back(Elt: T);
2605 else
2606 return error(Message: "Invalid type");
2607 }
2608
2609 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) {
2610 if (Record[i] > UINT_MAX)
2611 return error(Message: "Integer parameter too large");
2612 IntParams.push_back(Elt: Record[i]);
2613 }
2614 ResultTy = TargetExtType::get(Context, Name: TypeName, Types: TypeParams, Ints: IntParams);
2615 TypeName.clear();
2616 break;
2617 }
2618 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
2619 if (Record.size() < 2)
2620 return error(Message: "Invalid array type record");
2621 ResultTy = getTypeByID(ID: Record[1]);
2622 if (!ResultTy || !ArrayType::isValidElementType(ElemTy: ResultTy))
2623 return error(Message: "Invalid type");
2624 ContainedIDs.push_back(Elt: Record[1]);
2625 ResultTy = ArrayType::get(ElementType: ResultTy, NumElements: Record[0]);
2626 break;
2627 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
2628 // [numelts, eltty, scalable]
2629 if (Record.size() < 2)
2630 return error(Message: "Invalid vector type record");
2631 if (Record[0] == 0)
2632 return error(Message: "Invalid vector length");
2633 ResultTy = getTypeByID(ID: Record[1]);
2634 if (!ResultTy || !VectorType::isValidElementType(ElemTy: ResultTy))
2635 return error(Message: "Invalid type");
2636 bool Scalable = Record.size() > 2 ? Record[2] : false;
2637 ContainedIDs.push_back(Elt: Record[1]);
2638 ResultTy = VectorType::get(ElementType: ResultTy, NumElements: Record[0], Scalable);
2639 break;
2640 }
2641
2642 if (NumRecords >= TypeList.size())
2643 return error(Message: "Invalid TYPE table");
2644 if (TypeList[NumRecords])
2645 return error(
2646 Message: "Invalid TYPE table: Only named structs can be forward referenced");
2647 assert(ResultTy && "Didn't read a type?");
2648 TypeList[NumRecords] = ResultTy;
2649 if (!ContainedIDs.empty())
2650 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2651 ++NumRecords;
2652 }
2653}
2654
2655Error BitcodeReader::parseOperandBundleTags() {
2656 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2657 return Err;
2658
2659 if (!BundleTags.empty())
2660 return error(Message: "Invalid multiple blocks");
2661
2662 SmallVector<uint64_t, 64> Record;
2663
2664 while (true) {
2665 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2666 if (!MaybeEntry)
2667 return MaybeEntry.takeError();
2668 BitstreamEntry Entry = MaybeEntry.get();
2669
2670 switch (Entry.Kind) {
2671 case BitstreamEntry::SubBlock: // Handled for us already.
2672 case BitstreamEntry::Error:
2673 return error(Message: "Malformed block");
2674 case BitstreamEntry::EndBlock:
2675 return Error::success();
2676 case BitstreamEntry::Record:
2677 // The interesting case.
2678 break;
2679 }
2680
2681 // Tags are implicitly mapped to integers by their order.
2682
2683 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2684 if (!MaybeRecord)
2685 return MaybeRecord.takeError();
2686 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2687 return error(Message: "Invalid operand bundle record");
2688
2689 // OPERAND_BUNDLE_TAG: [strchr x N]
2690 BundleTags.emplace_back();
2691 if (convertToString(Record, Idx: 0, Result&: BundleTags.back()))
2692 return error(Message: "Invalid operand bundle record");
2693 Record.clear();
2694 }
2695}
2696
2697Error BitcodeReader::parseSyncScopeNames() {
2698 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2699 return Err;
2700
2701 if (!SSIDs.empty())
2702 return error(Message: "Invalid multiple synchronization scope names blocks");
2703
2704 SmallVector<uint64_t, 64> Record;
2705 while (true) {
2706 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2707 if (!MaybeEntry)
2708 return MaybeEntry.takeError();
2709 BitstreamEntry Entry = MaybeEntry.get();
2710
2711 switch (Entry.Kind) {
2712 case BitstreamEntry::SubBlock: // Handled for us already.
2713 case BitstreamEntry::Error:
2714 return error(Message: "Malformed block");
2715 case BitstreamEntry::EndBlock:
2716 if (SSIDs.empty())
2717 return error(Message: "Invalid empty synchronization scope names block");
2718 return Error::success();
2719 case BitstreamEntry::Record:
2720 // The interesting case.
2721 break;
2722 }
2723
2724 // Synchronization scope names are implicitly mapped to synchronization
2725 // scope IDs by their order.
2726
2727 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2728 if (!MaybeRecord)
2729 return MaybeRecord.takeError();
2730 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2731 return error(Message: "Invalid sync scope record");
2732
2733 SmallString<16> SSN;
2734 if (convertToString(Record, Idx: 0, Result&: SSN))
2735 return error(Message: "Invalid sync scope record");
2736
2737 SSIDs.push_back(Elt: Context.getOrInsertSyncScopeID(SSN));
2738 Record.clear();
2739 }
2740}
2741
2742/// Associate a value with its name from the given index in the provided record.
2743Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2744 unsigned NameIndex, Triple &TT) {
2745 SmallString<128> ValueName;
2746 if (convertToString(Record, Idx: NameIndex, Result&: ValueName))
2747 return error(Message: "Invalid record");
2748 unsigned ValueID = Record[0];
2749 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2750 return error(Message: "Invalid record");
2751 Value *V = ValueList[ValueID];
2752
2753 StringRef NameStr(ValueName.data(), ValueName.size());
2754 if (NameStr.contains(C: 0))
2755 return error(Message: "Invalid value name");
2756 V->setName(NameStr);
2757 auto *GO = dyn_cast<GlobalObject>(Val: V);
2758 if (GO && ImplicitComdatObjects.contains(V: GO) && TT.supportsCOMDAT())
2759 GO->setComdat(TheModule->getOrInsertComdat(Name: V->getName()));
2760 return V;
2761}
2762
2763/// Helper to note and return the current location, and jump to the given
2764/// offset.
2765static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2766 BitstreamCursor &Stream) {
2767 // Save the current parsing location so we can jump back at the end
2768 // of the VST read.
2769 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2770 if (Error JumpFailed = Stream.JumpToBit(BitNo: Offset * 32))
2771 return std::move(JumpFailed);
2772 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2773 if (!MaybeEntry)
2774 return MaybeEntry.takeError();
2775 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2776 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2777 return error(Message: "Expected value symbol table subblock");
2778 return CurrentBit;
2779}
2780
2781void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2782 Function *F,
2783 ArrayRef<uint64_t> Record) {
2784 // Note that we subtract 1 here because the offset is relative to one word
2785 // before the start of the identification or module block, which was
2786 // historically always the start of the regular bitcode header.
2787 uint64_t FuncWordOffset = Record[1] - 1;
2788 uint64_t FuncBitOffset = FuncWordOffset * 32;
2789 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2790 // Set the LastFunctionBlockBit to point to the last function block.
2791 // Later when parsing is resumed after function materialization,
2792 // we can simply skip that last function block.
2793 if (FuncBitOffset > LastFunctionBlockBit)
2794 LastFunctionBlockBit = FuncBitOffset;
2795}
2796
2797/// Read a new-style GlobalValue symbol table.
2798Error BitcodeReader::parseGlobalValueSymbolTable() {
2799 unsigned FuncBitcodeOffsetDelta =
2800 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2801
2802 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID))
2803 return Err;
2804
2805 SmallVector<uint64_t, 64> Record;
2806 while (true) {
2807 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2808 if (!MaybeEntry)
2809 return MaybeEntry.takeError();
2810 BitstreamEntry Entry = MaybeEntry.get();
2811
2812 switch (Entry.Kind) {
2813 case BitstreamEntry::SubBlock:
2814 case BitstreamEntry::Error:
2815 return error(Message: "Malformed block");
2816 case BitstreamEntry::EndBlock:
2817 return Error::success();
2818 case BitstreamEntry::Record:
2819 break;
2820 }
2821
2822 Record.clear();
2823 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2824 if (!MaybeRecord)
2825 return MaybeRecord.takeError();
2826 switch (MaybeRecord.get()) {
2827 case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2828 unsigned ValueID = Record[0];
2829 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2830 return error(Message: "Invalid value reference in symbol table");
2831 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2832 F: cast<Function>(Val: ValueList[ValueID]), Record);
2833 break;
2834 }
2835 }
2836 }
2837}
2838
2839/// Parse the value symbol table at either the current parsing location or
2840/// at the given bit offset if provided.
2841Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2842 uint64_t CurrentBit;
2843 // Pass in the Offset to distinguish between calling for the module-level
2844 // VST (where we want to jump to the VST offset) and the function-level
2845 // VST (where we don't).
2846 if (Offset > 0) {
2847 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2848 if (!MaybeCurrentBit)
2849 return MaybeCurrentBit.takeError();
2850 CurrentBit = MaybeCurrentBit.get();
2851 // If this module uses a string table, read this as a module-level VST.
2852 if (UseStrtab) {
2853 if (Error Err = parseGlobalValueSymbolTable())
2854 return Err;
2855 if (Error JumpFailed = Stream.JumpToBit(BitNo: CurrentBit))
2856 return JumpFailed;
2857 return Error::success();
2858 }
2859 // Otherwise, the VST will be in a similar format to a function-level VST,
2860 // and will contain symbol names.
2861 }
2862
2863 // Compute the delta between the bitcode indices in the VST (the word offset
2864 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2865 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2866 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2867 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2868 // just before entering the VST subblock because: 1) the EnterSubBlock
2869 // changes the AbbrevID width; 2) the VST block is nested within the same
2870 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2871 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2872 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2873 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2874 unsigned FuncBitcodeOffsetDelta =
2875 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2876
2877 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID))
2878 return Err;
2879
2880 SmallVector<uint64_t, 64> Record;
2881
2882 Triple TT(TheModule->getTargetTriple());
2883
2884 // Read all the records for this value table.
2885 SmallString<128> ValueName;
2886
2887 while (true) {
2888 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2889 if (!MaybeEntry)
2890 return MaybeEntry.takeError();
2891 BitstreamEntry Entry = MaybeEntry.get();
2892
2893 switch (Entry.Kind) {
2894 case BitstreamEntry::SubBlock: // Handled for us already.
2895 case BitstreamEntry::Error:
2896 return error(Message: "Malformed block");
2897 case BitstreamEntry::EndBlock:
2898 if (Offset > 0)
2899 if (Error JumpFailed = Stream.JumpToBit(BitNo: CurrentBit))
2900 return JumpFailed;
2901 return Error::success();
2902 case BitstreamEntry::Record:
2903 // The interesting case.
2904 break;
2905 }
2906
2907 // Read a record.
2908 Record.clear();
2909 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
2910 if (!MaybeRecord)
2911 return MaybeRecord.takeError();
2912 switch (MaybeRecord.get()) {
2913 default: // Default behavior: unknown type.
2914 break;
2915 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2916 Expected<Value *> ValOrErr = recordValue(Record, NameIndex: 1, TT);
2917 if (Error Err = ValOrErr.takeError())
2918 return Err;
2919 ValOrErr.get();
2920 break;
2921 }
2922 case bitc::VST_CODE_FNENTRY: {
2923 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2924 Expected<Value *> ValOrErr = recordValue(Record, NameIndex: 2, TT);
2925 if (Error Err = ValOrErr.takeError())
2926 return Err;
2927 Value *V = ValOrErr.get();
2928
2929 // Ignore function offsets emitted for aliases of functions in older
2930 // versions of LLVM.
2931 if (auto *F = dyn_cast<Function>(Val: V))
2932 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2933 break;
2934 }
2935 case bitc::VST_CODE_BBENTRY: {
2936 if (convertToString(Record, Idx: 1, Result&: ValueName))
2937 return error(Message: "Invalid bbentry record");
2938 BasicBlock *BB = getBasicBlock(ID: Record[0]);
2939 if (!BB)
2940 return error(Message: "Invalid bbentry record");
2941
2942 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2943 ValueName.clear();
2944 break;
2945 }
2946 }
2947 }
2948}
2949
2950/// Decode a signed value stored with the sign bit in the LSB for dense VBR
2951/// encoding.
2952uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2953 if ((V & 1) == 0)
2954 return V >> 1;
2955 if (V != 1)
2956 return -(V >> 1);
2957 // There is no such thing as -0 with integers. "-0" really means MININT.
2958 return 1ULL << 63;
2959}
2960
2961/// Resolve all of the initializers for global values and aliases that we can.
2962Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2963 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2964 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2965 std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2966
2967 GlobalInitWorklist.swap(x&: GlobalInits);
2968 IndirectSymbolInitWorklist.swap(x&: IndirectSymbolInits);
2969 FunctionOperandWorklist.swap(x&: FunctionOperands);
2970
2971 while (!GlobalInitWorklist.empty()) {
2972 unsigned ValID = GlobalInitWorklist.back().second;
2973 if (ValID >= ValueList.size()) {
2974 // Not ready to resolve this yet, it requires something later in the file.
2975 GlobalInits.push_back(x: GlobalInitWorklist.back());
2976 } else {
2977 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
2978 if (!MaybeC)
2979 return MaybeC.takeError();
2980 GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2981 }
2982 GlobalInitWorklist.pop_back();
2983 }
2984
2985 while (!IndirectSymbolInitWorklist.empty()) {
2986 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2987 if (ValID >= ValueList.size()) {
2988 IndirectSymbolInits.push_back(x: IndirectSymbolInitWorklist.back());
2989 } else {
2990 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
2991 if (!MaybeC)
2992 return MaybeC.takeError();
2993 Constant *C = MaybeC.get();
2994 GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2995 if (auto *GA = dyn_cast<GlobalAlias>(Val: GV)) {
2996 if (C->getType() != GV->getType())
2997 return error(Message: "Alias and aliasee types don't match");
2998 GA->setAliasee(C);
2999 } else if (auto *GI = dyn_cast<GlobalIFunc>(Val: GV)) {
3000 GI->setResolver(C);
3001 } else {
3002 return error(Message: "Expected an alias or an ifunc");
3003 }
3004 }
3005 IndirectSymbolInitWorklist.pop_back();
3006 }
3007
3008 while (!FunctionOperandWorklist.empty()) {
3009 FunctionOperandInfo &Info = FunctionOperandWorklist.back();
3010 if (Info.PersonalityFn) {
3011 unsigned ValID = Info.PersonalityFn - 1;
3012 if (ValID < ValueList.size()) {
3013 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
3014 if (!MaybeC)
3015 return MaybeC.takeError();
3016 Info.F->setPersonalityFn(MaybeC.get());
3017 Info.PersonalityFn = 0;
3018 }
3019 }
3020 if (Info.Prefix) {
3021 unsigned ValID = Info.Prefix - 1;
3022 if (ValID < ValueList.size()) {
3023 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
3024 if (!MaybeC)
3025 return MaybeC.takeError();
3026 Info.F->setPrefixData(MaybeC.get());
3027 Info.Prefix = 0;
3028 }
3029 }
3030 if (Info.Prologue) {
3031 unsigned ValID = Info.Prologue - 1;
3032 if (ValID < ValueList.size()) {
3033 Expected<Constant *> MaybeC = getValueForInitializer(ID: ValID);
3034 if (!MaybeC)
3035 return MaybeC.takeError();
3036 Info.F->setPrologueData(MaybeC.get());
3037 Info.Prologue = 0;
3038 }
3039 }
3040 if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
3041 FunctionOperands.push_back(x: Info);
3042 FunctionOperandWorklist.pop_back();
3043 }
3044
3045 return Error::success();
3046}
3047
3048APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3049 SmallVector<uint64_t, 8> Words(Vals.size());
3050 transform(Range&: Vals, d_first: Words.begin(),
3051 F: BitcodeReader::decodeSignRotatedValue);
3052
3053 return APInt(TypeBits, Words);
3054}
3055
3056Error BitcodeReader::parseConstants() {
3057 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::CONSTANTS_BLOCK_ID))
3058 return Err;
3059
3060 SmallVector<uint64_t, 64> Record;
3061
3062 // Read all the records for this value table.
3063 Type *CurTy = Type::getInt32Ty(C&: Context);
3064 unsigned Int32TyID = getVirtualTypeID(Ty: CurTy);
3065 unsigned CurTyID = Int32TyID;
3066 Type *CurElemTy = nullptr;
3067 unsigned NextCstNo = ValueList.size();
3068
3069 while (true) {
3070 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3071 if (!MaybeEntry)
3072 return MaybeEntry.takeError();
3073 BitstreamEntry Entry = MaybeEntry.get();
3074
3075 switch (Entry.Kind) {
3076 case BitstreamEntry::SubBlock: // Handled for us already.
3077 case BitstreamEntry::Error:
3078 return error(Message: "Malformed block");
3079 case BitstreamEntry::EndBlock:
3080 if (NextCstNo != ValueList.size())
3081 return error(Message: "Invalid constant reference");
3082 return Error::success();
3083 case BitstreamEntry::Record:
3084 // The interesting case.
3085 break;
3086 }
3087
3088 // Read a record.
3089 Record.clear();
3090 Type *VoidType = Type::getVoidTy(C&: Context);
3091 Value *V = nullptr;
3092 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
3093 if (!MaybeBitCode)
3094 return MaybeBitCode.takeError();
3095 switch (unsigned BitCode = MaybeBitCode.get()) {
3096 default: // Default behavior: unknown constant
3097 case bitc::CST_CODE_UNDEF: // UNDEF
3098 V = UndefValue::get(T: CurTy);
3099 break;
3100 case bitc::CST_CODE_POISON: // POISON
3101 V = PoisonValue::get(T: CurTy);
3102 break;
3103 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
3104 if (Record.empty())
3105 return error(Message: "Invalid settype record");
3106 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3107 return error(Message: "Invalid settype record");
3108 if (TypeList[Record[0]] == VoidType)
3109 return error(Message: "Invalid constant type");
3110 CurTyID = Record[0];
3111 CurTy = TypeList[CurTyID];
3112 CurElemTy = getPtrElementTypeByID(ID: CurTyID);
3113 continue; // Skip the ValueList manipulation.
3114 case bitc::CST_CODE_NULL: // NULL
3115 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
3116 return error(Message: "Invalid type for a constant null value");
3117 if (auto *TETy = dyn_cast<TargetExtType>(Val: CurTy))
3118 if (!TETy->hasProperty(Prop: TargetExtType::HasZeroInit))
3119 return error(Message: "Invalid type for a constant null value");
3120 V = Constant::getNullValue(Ty: CurTy);
3121 break;
3122 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
3123 if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3124 return error(Message: "Invalid integer const record");
3125 V = ConstantInt::get(Ty: CurTy, V: decodeSignRotatedValue(V: Record[0]));
3126 break;
3127 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3128 if (!CurTy->isIntOrIntVectorTy() || Record.empty())
3129 return error(Message: "Invalid wide integer const record");
3130
3131 auto *ScalarTy = cast<IntegerType>(Val: CurTy->getScalarType());
3132 APInt VInt = readWideAPInt(Vals: Record, TypeBits: ScalarTy->getBitWidth());
3133 V = ConstantInt::get(Ty: CurTy, V: VInt);
3134 break;
3135 }
3136 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
3137 if (Record.empty())
3138 return error(Message: "Invalid float const record");
3139
3140 auto *ScalarTy = CurTy->getScalarType();
3141 if (ScalarTy->isHalfTy())
3142 V = ConstantFP::get(Ty: CurTy, V: APFloat(APFloat::IEEEhalf(),
3143 APInt(16, (uint16_t)Record[0])));
3144 else if (ScalarTy->isBFloatTy())
3145 V = ConstantFP::get(
3146 Ty: CurTy, V: APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0])));
3147 else if (ScalarTy->isFloatTy())
3148 V = ConstantFP::get(Ty: CurTy, V: APFloat(APFloat::IEEEsingle(),
3149 APInt(32, (uint32_t)Record[0])));
3150 else if (ScalarTy->isDoubleTy())
3151 V = ConstantFP::get(
3152 Ty: CurTy, V: APFloat(APFloat::IEEEdouble(), APInt(64, Record[0])));
3153 else if (ScalarTy->isX86_FP80Ty()) {
3154 // Bits are not stored the same way as a normal i80 APInt, compensate.
3155 uint64_t Rearrange[2];
3156 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3157 Rearrange[1] = Record[0] >> 48;
3158 V = ConstantFP::get(
3159 Ty: CurTy, V: APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange)));
3160 } else if (ScalarTy->isFP128Ty())
3161 V = ConstantFP::get(Ty: CurTy,
3162 V: APFloat(APFloat::IEEEquad(), APInt(128, Record)));
3163 else if (ScalarTy->isPPC_FP128Ty())
3164 V = ConstantFP::get(
3165 Ty: CurTy, V: APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record)));
3166 else
3167 V = UndefValue::get(T: CurTy);
3168 break;
3169 }
3170
3171 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3172 if (Record.empty())
3173 return error(Message: "Invalid aggregate record");
3174
3175 unsigned Size = Record.size();
3176 SmallVector<unsigned, 16> Elts;
3177 for (unsigned i = 0; i != Size; ++i)
3178 Elts.push_back(Elt: Record[i]);
3179
3180 if (isa<StructType>(Val: CurTy)) {
3181 V = BitcodeConstant::create(
3182 A&: Alloc, Ty: CurTy, Info: BitcodeConstant::ConstantStructOpcode, OpIDs: Elts);
3183 } else if (isa<ArrayType>(Val: CurTy)) {
3184 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy,
3185 Info: BitcodeConstant::ConstantArrayOpcode, OpIDs: Elts);
3186 } else if (isa<VectorType>(Val: CurTy)) {
3187 V = BitcodeConstant::create(
3188 A&: Alloc, Ty: CurTy, Info: BitcodeConstant::ConstantVectorOpcode, OpIDs: Elts);
3189 } else {
3190 V = UndefValue::get(T: CurTy);
3191 }
3192 break;
3193 }
3194 case bitc::CST_CODE_STRING: // STRING: [values]
3195 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3196 if (Record.empty())
3197 return error(Message: "Invalid string record");
3198
3199 SmallString<16> Elts(Record.begin(), Record.end());
3200 V = ConstantDataArray::getString(Context, Initializer: Elts,
3201 AddNull: BitCode == bitc::CST_CODE_CSTRING);
3202 break;
3203 }
3204 case bitc::CST_CODE_DATA: {// DATA: [n x value]
3205 if (Record.empty())
3206 return error(Message: "Invalid data record");
3207
3208 Type *EltTy;
3209 if (auto *Array = dyn_cast<ArrayType>(Val: CurTy))
3210 EltTy = Array->getElementType();
3211 else
3212 EltTy = cast<VectorType>(Val: CurTy)->getElementType();
3213 if (EltTy->isIntegerTy(Bitwidth: 8)) {
3214 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3215 if (isa<VectorType>(Val: CurTy))
3216 V = ConstantDataVector::get(Context, Elts);
3217 else
3218 V = ConstantDataArray::get(Context, Elts);
3219 } else if (EltTy->isIntegerTy(Bitwidth: 16)) {
3220 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3221 if (isa<VectorType>(Val: CurTy))
3222 V = ConstantDataVector::get(Context, Elts);
3223 else
3224 V = ConstantDataArray::get(Context, Elts);
3225 } else if (EltTy->isIntegerTy(Bitwidth: 32)) {
3226 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3227 if (isa<VectorType>(Val: CurTy))
3228 V = ConstantDataVector::get(Context, Elts);
3229 else
3230 V = ConstantDataArray::get(Context, Elts);
3231 } else if (EltTy->isIntegerTy(Bitwidth: 64)) {
3232 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3233 if (isa<VectorType>(Val: CurTy))
3234 V = ConstantDataVector::get(Context, Elts);
3235 else
3236 V = ConstantDataArray::get(Context, Elts);
3237 } else if (EltTy->isHalfTy()) {
3238 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3239 if (isa<VectorType>(Val: CurTy))
3240 V = ConstantDataVector::getFP(ElementType: EltTy, Elts);
3241 else
3242 V = ConstantDataArray::getFP(ElementType: EltTy, Elts);
3243 } else if (EltTy->isBFloatTy()) {
3244 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3245 if (isa<VectorType>(Val: CurTy))
3246 V = ConstantDataVector::getFP(ElementType: EltTy, Elts);
3247 else
3248 V = ConstantDataArray::getFP(ElementType: EltTy, Elts);
3249 } else if (EltTy->isFloatTy()) {
3250 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3251 if (isa<VectorType>(Val: CurTy))
3252 V = ConstantDataVector::getFP(ElementType: EltTy, Elts);
3253 else
3254 V = ConstantDataArray::getFP(ElementType: EltTy, Elts);
3255 } else if (EltTy->isDoubleTy()) {
3256 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3257 if (isa<VectorType>(Val: CurTy))
3258 V = ConstantDataVector::getFP(ElementType: EltTy, Elts);
3259 else
3260 V = ConstantDataArray::getFP(ElementType: EltTy, Elts);
3261 } else {
3262 return error(Message: "Invalid type for value");
3263 }
3264 break;
3265 }
3266 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
3267 if (Record.size() < 2)
3268 return error(Message: "Invalid unary op constexpr record");
3269 int Opc = getDecodedUnaryOpcode(Val: Record[0], Ty: CurTy);
3270 if (Opc < 0) {
3271 V = UndefValue::get(T: CurTy); // Unknown unop.
3272 } else {
3273 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: Opc, OpIDs: (unsigned)Record[1]);
3274 }
3275 break;
3276 }
3277 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
3278 if (Record.size() < 3)
3279 return error(Message: "Invalid binary op constexpr record");
3280 int Opc = getDecodedBinaryOpcode(Val: Record[0], Ty: CurTy);
3281 if (Opc < 0) {
3282 V = UndefValue::get(T: CurTy); // Unknown binop.
3283 } else {
3284 uint8_t Flags = 0;
3285 if (Record.size() >= 4) {
3286 if (Opc == Instruction::Add ||
3287 Opc == Instruction::Sub ||
3288 Opc == Instruction::Mul ||
3289 Opc == Instruction::Shl) {
3290 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3291 Flags |= OverflowingBinaryOperator::NoSignedWrap;
3292 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3293 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3294 } else if (Opc == Instruction::SDiv ||
3295 Opc == Instruction::UDiv ||
3296 Opc == Instruction::LShr ||
3297 Opc == Instruction::AShr) {
3298 if (Record[3] & (1 << bitc::PEO_EXACT))
3299 Flags |= PossiblyExactOperator::IsExact;
3300 }
3301 }
3302 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: {(uint8_t)Opc, Flags},
3303 OpIDs: {(unsigned)Record[1], (unsigned)Record[2]});
3304 }
3305 break;
3306 }
3307 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
3308 if (Record.size() < 3)
3309 return error(Message: "Invalid cast constexpr record");
3310 int Opc = getDecodedCastOpcode(Val: Record[0]);
3311 if (Opc < 0) {
3312 V = UndefValue::get(T: CurTy); // Unknown cast.
3313 } else {
3314 unsigned OpTyID = Record[1];
3315 Type *OpTy = getTypeByID(ID: OpTyID);
3316 if (!OpTy)
3317 return error(Message: "Invalid cast constexpr record");
3318 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: Opc, OpIDs: (unsigned)Record[2]);
3319 }
3320 break;
3321 }
3322 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3323 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3324 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x
3325 // operands]
3326 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x
3327 // operands]
3328 if (Record.size() < 2)
3329 return error(Message: "Constant GEP record must have at least two elements");
3330 unsigned OpNum = 0;
3331 Type *PointeeType = nullptr;
3332 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD ||
3333 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || Record.size() % 2)
3334 PointeeType = getTypeByID(ID: Record[OpNum++]);
3335
3336 bool InBounds = false;
3337 std::optional<ConstantRange> InRange;
3338 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) {
3339 uint64_t Op = Record[OpNum++];
3340 InBounds = Op & 1;
3341 unsigned InRangeIndex = Op >> 1;
3342 // "Upgrade" inrange by dropping it. The feature is too niche to
3343 // bother.
3344 (void)InRangeIndex;
3345 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) {
3346 uint64_t Op = Record[OpNum++];
3347 InBounds = Op & 1;
3348 Expected<ConstantRange> MaybeInRange = readConstantRange(Record, OpNum);
3349 if (!MaybeInRange)
3350 return MaybeInRange.takeError();
3351 InRange = MaybeInRange.get();
3352 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3353 InBounds = true;
3354
3355 SmallVector<unsigned, 16> Elts;
3356 unsigned BaseTypeID = Record[OpNum];
3357 while (OpNum != Record.size()) {
3358 unsigned ElTyID = Record[OpNum++];
3359 Type *ElTy = getTypeByID(ID: ElTyID);
3360 if (!ElTy)
3361 return error(Message: "Invalid getelementptr constexpr record");
3362 Elts.push_back(Elt: Record[OpNum++]);
3363 }
3364
3365 if (Elts.size() < 1)
3366 return error(Message: "Invalid gep with no operands");
3367
3368 Type *BaseType = getTypeByID(ID: BaseTypeID);
3369 if (isa<VectorType>(Val: BaseType)) {
3370 BaseTypeID = getContainedTypeID(ID: BaseTypeID, Idx: 0);
3371 BaseType = getTypeByID(ID: BaseTypeID);
3372 }
3373
3374 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(Val: BaseType);
3375 if (!OrigPtrTy)
3376 return error(Message: "GEP base operand must be pointer or vector of pointer");
3377
3378 if (!PointeeType) {
3379 PointeeType = getPtrElementTypeByID(ID: BaseTypeID);
3380 if (!PointeeType)
3381 return error(Message: "Missing element type for old-style constant GEP");
3382 }
3383
3384 V = BitcodeConstant::create(
3385 A&: Alloc, Ty: CurTy,
3386 Info: {Instruction::GetElementPtr, InBounds, PointeeType, InRange}, OpIDs: Elts);
3387 break;
3388 }
3389 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
3390 if (Record.size() < 3)
3391 return error(Message: "Invalid select constexpr record");
3392
3393 V = BitcodeConstant::create(
3394 A&: Alloc, Ty: CurTy, Info: Instruction::Select,
3395 OpIDs: {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3396 break;
3397 }
3398 case bitc::CST_CODE_CE_EXTRACTELT
3399 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3400 if (Record.size() < 3)
3401 return error(Message: "Invalid extractelement constexpr record");
3402 unsigned OpTyID = Record[0];
3403 VectorType *OpTy =
3404 dyn_cast_or_null<VectorType>(Val: getTypeByID(ID: OpTyID));
3405 if (!OpTy)
3406 return error(Message: "Invalid extractelement constexpr record");
3407 unsigned IdxRecord;
3408 if (Record.size() == 4) {
3409 unsigned IdxTyID = Record[2];
3410 Type *IdxTy = getTypeByID(ID: IdxTyID);
3411 if (!IdxTy)
3412 return error(Message: "Invalid extractelement constexpr record");
3413 IdxRecord = Record[3];
3414 } else {
3415 // Deprecated, but still needed to read old bitcode files.
3416 IdxRecord = Record[2];
3417 }
3418 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: Instruction::ExtractElement,
3419 OpIDs: {(unsigned)Record[1], IdxRecord});
3420 break;
3421 }
3422 case bitc::CST_CODE_CE_INSERTELT
3423 : { // CE_INSERTELT: [opval, opval, opty, opval]
3424 VectorType *OpTy = dyn_cast<VectorType>(Val: CurTy);
3425 if (Record.size() < 3 || !OpTy)
3426 return error(Message: "Invalid insertelement constexpr record");
3427 unsigned IdxRecord;
3428 if (Record.size() == 4) {
3429 unsigned IdxTyID = Record[2];
3430 Type *IdxTy = getTypeByID(ID: IdxTyID);
3431 if (!IdxTy)
3432 return error(Message: "Invalid insertelement constexpr record");
3433 IdxRecord = Record[3];
3434 } else {
3435 // Deprecated, but still needed to read old bitcode files.
3436 IdxRecord = Record[2];
3437 }
3438 V = BitcodeConstant::create(
3439 A&: Alloc, Ty: CurTy, Info: Instruction::InsertElement,
3440 OpIDs: {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3441 break;
3442 }
3443 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3444 VectorType *OpTy = dyn_cast<VectorType>(Val: CurTy);
3445 if (Record.size() < 3 || !OpTy)
3446 return error(Message: "Invalid shufflevector constexpr record");
3447 V = BitcodeConstant::create(
3448 A&: Alloc, Ty: CurTy, Info: Instruction::ShuffleVector,
3449 OpIDs: {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3450 break;
3451 }
3452 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3453 VectorType *RTy = dyn_cast<VectorType>(Val: CurTy);
3454 VectorType *OpTy =
3455 dyn_cast_or_null<VectorType>(Val: getTypeByID(ID: Record[0]));
3456 if (Record.size() < 4 || !RTy || !OpTy)
3457 return error(Message: "Invalid shufflevector constexpr record");
3458 V = BitcodeConstant::create(
3459 A&: Alloc, Ty: CurTy, Info: Instruction::ShuffleVector,
3460 OpIDs: {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3461 break;
3462 }
3463 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
3464 if (Record.size() < 4)
3465 return error(Message: "Invalid cmp constexpt record");
3466 unsigned OpTyID = Record[0];
3467 Type *OpTy = getTypeByID(ID: OpTyID);
3468 if (!OpTy)
3469 return error(Message: "Invalid cmp constexpr record");
3470 V = BitcodeConstant::create(
3471 A&: Alloc, Ty: CurTy,
3472 Info: {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3473 : Instruction::ICmp),
3474 (uint8_t)Record[3]},
3475 OpIDs: {(unsigned)Record[1], (unsigned)Record[2]});
3476 break;
3477 }
3478 // This maintains backward compatibility, pre-asm dialect keywords.
3479 // Deprecated, but still needed to read old bitcode files.
3480 case bitc::CST_CODE_INLINEASM_OLD: {
3481 if (Record.size() < 2)
3482 return error(Message: "Invalid inlineasm record");
3483 std::string AsmStr, ConstrStr;
3484 bool HasSideEffects = Record[0] & 1;
3485 bool IsAlignStack = Record[0] >> 1;
3486 unsigned AsmStrSize = Record[1];
3487 if (2+AsmStrSize >= Record.size())
3488 return error(Message: "Invalid inlineasm record");
3489 unsigned ConstStrSize = Record[2+AsmStrSize];
3490 if (3+AsmStrSize+ConstStrSize > Record.size())
3491 return error(Message: "Invalid inlineasm record");
3492
3493 for (unsigned i = 0; i != AsmStrSize; ++i)
3494 AsmStr += (char)Record[2+i];
3495 for (unsigned i = 0; i != ConstStrSize; ++i)
3496 ConstrStr += (char)Record[3+AsmStrSize+i];
3497 UpgradeInlineAsmString(AsmStr: &AsmStr);
3498 if (!CurElemTy)
3499 return error(Message: "Missing element type for old-style inlineasm");
3500 V = InlineAsm::get(Ty: cast<FunctionType>(Val: CurElemTy), AsmString: AsmStr, Constraints: ConstrStr,
3501 hasSideEffects: HasSideEffects, isAlignStack: IsAlignStack);
3502 break;
3503 }
3504 // This version adds support for the asm dialect keywords (e.g.,
3505 // inteldialect).
3506 case bitc::CST_CODE_INLINEASM_OLD2: {
3507 if (Record.size() < 2)
3508 return error(Message: "Invalid inlineasm record");
3509 std::string AsmStr, ConstrStr;
3510 bool HasSideEffects = Record[0] & 1;
3511 bool IsAlignStack = (Record[0] >> 1) & 1;
3512 unsigned AsmDialect = Record[0] >> 2;
3513 unsigned AsmStrSize = Record[1];
3514 if (2+AsmStrSize >= Record.size())
3515 return error(Message: "Invalid inlineasm record");
3516 unsigned ConstStrSize = Record[2+AsmStrSize];
3517 if (3+AsmStrSize+ConstStrSize > Record.size())
3518 return error(Message: "Invalid inlineasm record");
3519
3520 for (unsigned i = 0; i != AsmStrSize; ++i)
3521 AsmStr += (char)Record[2+i];
3522 for (unsigned i = 0; i != ConstStrSize; ++i)
3523 ConstrStr += (char)Record[3+AsmStrSize+i];
3524 UpgradeInlineAsmString(AsmStr: &AsmStr);
3525 if (!CurElemTy)
3526 return error(Message: "Missing element type for old-style inlineasm");
3527 V = InlineAsm::get(Ty: cast<FunctionType>(Val: CurElemTy), AsmString: AsmStr, Constraints: ConstrStr,
3528 hasSideEffects: HasSideEffects, isAlignStack: IsAlignStack,
3529 asmDialect: InlineAsm::AsmDialect(AsmDialect));
3530 break;
3531 }
3532 // This version adds support for the unwind keyword.
3533 case bitc::CST_CODE_INLINEASM_OLD3: {
3534 if (Record.size() < 2)
3535 return error(Message: "Invalid inlineasm record");
3536 unsigned OpNum = 0;
3537 std::string AsmStr, ConstrStr;
3538 bool HasSideEffects = Record[OpNum] & 1;
3539 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3540 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3541 bool CanThrow = (Record[OpNum] >> 3) & 1;
3542 ++OpNum;
3543 unsigned AsmStrSize = Record[OpNum];
3544 ++OpNum;
3545 if (OpNum + AsmStrSize >= Record.size())
3546 return error(Message: "Invalid inlineasm record");
3547 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3548 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3549 return error(Message: "Invalid inlineasm record");
3550
3551 for (unsigned i = 0; i != AsmStrSize; ++i)
3552 AsmStr += (char)Record[OpNum + i];
3553 ++OpNum;
3554 for (unsigned i = 0; i != ConstStrSize; ++i)
3555 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3556 UpgradeInlineAsmString(AsmStr: &AsmStr);
3557 if (!CurElemTy)
3558 return error(Message: "Missing element type for old-style inlineasm");
3559 V = InlineAsm::get(Ty: cast<FunctionType>(Val: CurElemTy), AsmString: AsmStr, Constraints: ConstrStr,
3560 hasSideEffects: HasSideEffects, isAlignStack: IsAlignStack,
3561 asmDialect: InlineAsm::AsmDialect(AsmDialect), canThrow: CanThrow);
3562 break;
3563 }
3564 // This version adds explicit function type.
3565 case bitc::CST_CODE_INLINEASM: {
3566 if (Record.size() < 3)
3567 return error(Message: "Invalid inlineasm record");
3568 unsigned OpNum = 0;
3569 auto *FnTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: Record[OpNum]));
3570 ++OpNum;
3571 if (!FnTy)
3572 return error(Message: "Invalid inlineasm record");
3573 std::string AsmStr, ConstrStr;
3574 bool HasSideEffects = Record[OpNum] & 1;
3575 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3576 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3577 bool CanThrow = (Record[OpNum] >> 3) & 1;
3578 ++OpNum;
3579 unsigned AsmStrSize = Record[OpNum];
3580 ++OpNum;
3581 if (OpNum + AsmStrSize >= Record.size())
3582 return error(Message: "Invalid inlineasm record");
3583 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3584 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3585 return error(Message: "Invalid inlineasm record");
3586
3587 for (unsigned i = 0; i != AsmStrSize; ++i)
3588 AsmStr += (char)Record[OpNum + i];
3589 ++OpNum;
3590 for (unsigned i = 0; i != ConstStrSize; ++i)
3591 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3592 UpgradeInlineAsmString(AsmStr: &AsmStr);
3593 V = InlineAsm::get(Ty: FnTy, AsmString: AsmStr, Constraints: ConstrStr, hasSideEffects: HasSideEffects, isAlignStack: IsAlignStack,
3594 asmDialect: InlineAsm::AsmDialect(AsmDialect), canThrow: CanThrow);
3595 break;
3596 }
3597 case bitc::CST_CODE_BLOCKADDRESS:{
3598 if (Record.size() < 3)
3599 return error(Message: "Invalid blockaddress record");
3600 unsigned FnTyID = Record[0];
3601 Type *FnTy = getTypeByID(ID: FnTyID);
3602 if (!FnTy)
3603 return error(Message: "Invalid blockaddress record");
3604 V = BitcodeConstant::create(
3605 A&: Alloc, Ty: CurTy,
3606 Info: {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3607 OpIDs: Record[1]);
3608 break;
3609 }
3610 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3611 if (Record.size() < 2)
3612 return error(Message: "Invalid dso_local record");
3613 unsigned GVTyID = Record[0];
3614 Type *GVTy = getTypeByID(ID: GVTyID);
3615 if (!GVTy)
3616 return error(Message: "Invalid dso_local record");
3617 V = BitcodeConstant::create(
3618 A&: Alloc, Ty: CurTy, Info: BitcodeConstant::DSOLocalEquivalentOpcode, OpIDs: Record[1]);
3619 break;
3620 }
3621 case bitc::CST_CODE_NO_CFI_VALUE: {
3622 if (Record.size() < 2)
3623 return error(Message: "Invalid no_cfi record");
3624 unsigned GVTyID = Record[0];
3625 Type *GVTy = getTypeByID(ID: GVTyID);
3626 if (!GVTy)
3627 return error(Message: "Invalid no_cfi record");
3628 V = BitcodeConstant::create(A&: Alloc, Ty: CurTy, Info: BitcodeConstant::NoCFIOpcode,
3629 OpIDs: Record[1]);
3630 break;
3631 }
3632 }
3633
3634 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID");
3635 if (Error Err = ValueList.assignValue(Idx: NextCstNo, V, TypeID: CurTyID))
3636 return Err;
3637 ++NextCstNo;
3638 }
3639}
3640
3641Error BitcodeReader::parseUseLists() {
3642 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::USELIST_BLOCK_ID))
3643 return Err;
3644
3645 // Read all the records.
3646 SmallVector<uint64_t, 64> Record;
3647
3648 while (true) {
3649 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3650 if (!MaybeEntry)
3651 return MaybeEntry.takeError();
3652 BitstreamEntry Entry = MaybeEntry.get();
3653
3654 switch (Entry.Kind) {
3655 case BitstreamEntry::SubBlock: // Handled for us already.
3656 case BitstreamEntry::Error:
3657 return error(Message: "Malformed block");
3658 case BitstreamEntry::EndBlock:
3659 return Error::success();
3660 case BitstreamEntry::Record:
3661 // The interesting case.
3662 break;
3663 }
3664
3665 // Read a use list record.
3666 Record.clear();
3667 bool IsBB = false;
3668 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
3669 if (!MaybeRecord)
3670 return MaybeRecord.takeError();
3671 switch (MaybeRecord.get()) {
3672 default: // Default behavior: unknown type.
3673 break;
3674 case bitc::USELIST_CODE_BB:
3675 IsBB = true;
3676 [[fallthrough]];
3677 case bitc::USELIST_CODE_DEFAULT: {
3678 unsigned RecordLength = Record.size();
3679 if (RecordLength < 3)
3680 // Records should have at least an ID and two indexes.
3681 return error(Message: "Invalid record");
3682 unsigned ID = Record.pop_back_val();
3683
3684 Value *V;
3685 if (IsBB) {
3686 assert(ID < FunctionBBs.size() && "Basic block not found");
3687 V = FunctionBBs[ID];
3688 } else
3689 V = ValueList[ID];
3690 unsigned NumUses = 0;
3691 SmallDenseMap<const Use *, unsigned, 16> Order;
3692 for (const Use &U : V->materialized_uses()) {
3693 if (++NumUses > Record.size())
3694 break;
3695 Order[&U] = Record[NumUses - 1];
3696 }
3697 if (Order.size() != Record.size() || NumUses > Record.size())
3698 // Mismatches can happen if the functions are being materialized lazily
3699 // (out-of-order), or a value has been upgraded.
3700 break;
3701
3702 V->sortUseList(Cmp: [&](const Use &L, const Use &R) {
3703 return Order.lookup(Val: &L) < Order.lookup(Val: &R);
3704 });
3705 break;
3706 }
3707 }
3708 }
3709}
3710
3711/// When we see the block for metadata, remember where it is and then skip it.
3712/// This lets us lazily deserialize the metadata.
3713Error BitcodeReader::rememberAndSkipMetadata() {
3714 // Save the current stream state.
3715 uint64_t CurBit = Stream.GetCurrentBitNo();
3716 DeferredMetadataInfo.push_back(x: CurBit);
3717
3718 // Skip over the block for now.
3719 if (Error Err = Stream.SkipBlock())
3720 return Err;
3721 return Error::success();
3722}
3723
3724Error BitcodeReader::materializeMetadata() {
3725 for (uint64_t BitPos : DeferredMetadataInfo) {
3726 // Move the bit stream to the saved position.
3727 if (Error JumpFailed = Stream.JumpToBit(BitNo: BitPos))
3728 return JumpFailed;
3729 if (Error Err = MDLoader->parseModuleMetadata())
3730 return Err;
3731 }
3732
3733 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3734 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3735 // multiple times.
3736 if (!TheModule->getNamedMetadata(Name: "llvm.linker.options")) {
3737 if (Metadata *Val = TheModule->getModuleFlag(Key: "Linker Options")) {
3738 NamedMDNode *LinkerOpts =
3739 TheModule->getOrInsertNamedMetadata(Name: "llvm.linker.options");
3740 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3741 LinkerOpts->addOperand(M: cast<MDNode>(Val: MDOptions));
3742 }
3743 }
3744
3745 DeferredMetadataInfo.clear();
3746 return Error::success();
3747}
3748
3749void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3750
3751/// When we see the block for a function body, remember where it is and then
3752/// skip it. This lets us lazily deserialize the functions.
3753Error BitcodeReader::rememberAndSkipFunctionBody() {
3754 // Get the function we are talking about.
3755 if (FunctionsWithBodies.empty())
3756 return error(Message: "Insufficient function protos");
3757
3758 Function *Fn = FunctionsWithBodies.back();
3759 FunctionsWithBodies.pop_back();
3760
3761 // Save the current stream state.
3762 uint64_t CurBit = Stream.GetCurrentBitNo();
3763 assert(
3764 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3765 "Mismatch between VST and scanned function offsets");
3766 DeferredFunctionInfo[Fn] = CurBit;
3767
3768 // Skip over the function block for now.
3769 if (Error Err = Stream.SkipBlock())
3770 return Err;
3771 return Error::success();
3772}
3773
3774Error BitcodeReader::globalCleanup() {
3775 // Patch the initializers for globals and aliases up.
3776 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3777 return Err;
3778 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3779 return error(Message: "Malformed global initializer set");
3780
3781 // Look for intrinsic functions which need to be upgraded at some point
3782 // and functions that need to have their function attributes upgraded.
3783 for (Function &F : *TheModule) {
3784 MDLoader->upgradeDebugIntrinsics(F);
3785 Function *NewFn;
3786 // If PreserveInputDbgFormat=true, then we don't know whether we want
3787 // intrinsics or records, and we won't perform any conversions in either
3788 // case, so don't upgrade intrinsics to records.
3789 if (UpgradeIntrinsicFunction(
3790 F: &F, NewFn, CanUpgradeDebugIntrinsicsToRecords: PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE))
3791 UpgradedIntrinsics[&F] = NewFn;
3792 // Look for functions that rely on old function attribute behavior.
3793 UpgradeFunctionAttributes(F);
3794 }
3795
3796 // Look for global variables which need to be renamed.
3797 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3798 for (GlobalVariable &GV : TheModule->globals())
3799 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(GV: &GV))
3800 UpgradedVariables.emplace_back(args: &GV, args&: Upgraded);
3801 for (auto &Pair : UpgradedVariables) {
3802 Pair.first->eraseFromParent();
3803 TheModule->insertGlobalVariable(GV: Pair.second);
3804 }
3805
3806 // Force deallocation of memory for these vectors to favor the client that
3807 // want lazy deserialization.
3808 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(x&: GlobalInits);
3809 std::vector<std::pair<GlobalValue *, unsigned>>().swap(x&: IndirectSymbolInits);
3810 return Error::success();
3811}
3812
3813/// Support for lazy parsing of function bodies. This is required if we
3814/// either have an old bitcode file without a VST forward declaration record,
3815/// or if we have an anonymous function being materialized, since anonymous
3816/// functions do not have a name and are therefore not in the VST.
3817Error BitcodeReader::rememberAndSkipFunctionBodies() {
3818 if (Error JumpFailed = Stream.JumpToBit(BitNo: NextUnreadBit))
3819 return JumpFailed;
3820
3821 if (Stream.AtEndOfStream())
3822 return error(Message: "Could not find function in stream");
3823
3824 if (!SeenFirstFunctionBody)
3825 return error(Message: "Trying to materialize functions before seeing function blocks");
3826
3827 // An old bitcode file with the symbol table at the end would have
3828 // finished the parse greedily.
3829 assert(SeenValueSymbolTable);
3830
3831 SmallVector<uint64_t, 64> Record;
3832
3833 while (true) {
3834 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3835 if (!MaybeEntry)
3836 return MaybeEntry.takeError();
3837 llvm::BitstreamEntry Entry = MaybeEntry.get();
3838
3839 switch (Entry.Kind) {
3840 default:
3841 return error(Message: "Expect SubBlock");
3842 case BitstreamEntry::SubBlock:
3843 switch (Entry.ID) {
3844 default:
3845 return error(Message: "Expect function block");
3846 case bitc::FUNCTION_BLOCK_ID:
3847 if (Error Err = rememberAndSkipFunctionBody())
3848 return Err;
3849 NextUnreadBit = Stream.GetCurrentBitNo();
3850 return Error::success();
3851 }
3852 }
3853 }
3854}
3855
3856Error BitcodeReaderBase::readBlockInfo() {
3857 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3858 Stream.ReadBlockInfoBlock();
3859 if (!MaybeNewBlockInfo)
3860 return MaybeNewBlockInfo.takeError();
3861 std::optional<BitstreamBlockInfo> NewBlockInfo =
3862 std::move(MaybeNewBlockInfo.get());
3863 if (!NewBlockInfo)
3864 return error(Message: "Malformed block");
3865 BlockInfo = std::move(*NewBlockInfo);
3866 return Error::success();
3867}
3868
3869Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3870 // v1: [selection_kind, name]
3871 // v2: [strtab_offset, strtab_size, selection_kind]
3872 StringRef Name;
3873 std::tie(args&: Name, args&: Record) = readNameFromStrtab(Record);
3874
3875 if (Record.empty())
3876 return error(Message: "Invalid record");
3877 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Val: Record[0]);
3878 std::string OldFormatName;
3879 if (!UseStrtab) {
3880 if (Record.size() < 2)
3881 return error(Message: "Invalid record");
3882 unsigned ComdatNameSize = Record[1];
3883 if (ComdatNameSize > Record.size() - 2)
3884 return error(Message: "Comdat name size too large");
3885 OldFormatName.reserve(res: ComdatNameSize);
3886 for (unsigned i = 0; i != ComdatNameSize; ++i)
3887 OldFormatName += (char)Record[2 + i];
3888 Name = OldFormatName;
3889 }
3890 Comdat *C = TheModule->getOrInsertComdat(Name);
3891 C->setSelectionKind(SK);
3892 ComdatList.push_back(x: C);
3893 return Error::success();
3894}
3895
3896static void inferDSOLocal(GlobalValue *GV) {
3897 // infer dso_local from linkage and visibility if it is not encoded.
3898 if (GV->hasLocalLinkage() ||
3899 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3900 GV->setDSOLocal(true);
3901}
3902
3903GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3904 GlobalValue::SanitizerMetadata Meta;
3905 if (V & (1 << 0))
3906 Meta.NoAddress = true;
3907 if (V & (1 << 1))
3908 Meta.NoHWAddress = true;
3909 if (V & (1 << 2))
3910 Meta.Memtag = true;
3911 if (V & (1 << 3))
3912 Meta.IsDynInit = true;
3913 return Meta;
3914}
3915
3916Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3917 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3918 // visibility, threadlocal, unnamed_addr, externally_initialized,
3919 // dllstorageclass, comdat, attributes, preemption specifier,
3920 // partition strtab offset, partition strtab size] (name in VST)
3921 // v2: [strtab_offset, strtab_size, v1]
3922 // v3: [v2, code_model]
3923 StringRef Name;
3924 std::tie(args&: Name, args&: Record) = readNameFromStrtab(Record);
3925
3926 if (Record.size() < 6)
3927 return error(Message: "Invalid record");
3928 unsigned TyID = Record[0];
3929 Type *Ty = getTypeByID(ID: TyID);
3930 if (!Ty)
3931 return error(Message: "Invalid record");
3932 bool isConstant = Record[1] & 1;
3933 bool explicitType = Record[1] & 2;
3934 unsigned AddressSpace;
3935 if (explicitType) {
3936 AddressSpace = Record[1] >> 2;
3937 } else {
3938 if (!Ty->isPointerTy())
3939 return error(Message: "Invalid type for value");
3940 AddressSpace = cast<PointerType>(Val: Ty)->getAddressSpace();
3941 TyID = getContainedTypeID(ID: TyID);
3942 Ty = getTypeByID(ID: TyID);
3943 if (!Ty)
3944 return error(Message: "Missing element type for old-style global");
3945 }
3946
3947 uint64_t RawLinkage = Record[3];
3948 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Val: RawLinkage);
3949 MaybeAlign Alignment;
3950 if (Error Err = parseAlignmentValue(Exponent: Record[4], Alignment))
3951 return Err;
3952 std::string Section;
3953 if (Record[5]) {
3954 if (Record[5] - 1 >= SectionTable.size())
3955 return error(Message: "Invalid ID");
3956 Section = SectionTable[Record[5] - 1];
3957 }
3958 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3959 // Local linkage must have default visibility.
3960 // auto-upgrade `hidden` and `protected` for old bitcode.
3961 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3962 Visibility = getDecodedVisibility(Val: Record[6]);
3963
3964 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3965 if (Record.size() > 7)
3966 TLM = getDecodedThreadLocalMode(Val: Record[7]);
3967
3968 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3969 if (Record.size() > 8)
3970 UnnamedAddr = getDecodedUnnamedAddrType(Val: Record[8]);
3971
3972 bool ExternallyInitialized = false;
3973 if (Record.size() > 9)
3974 ExternallyInitialized = Record[9];
3975
3976 GlobalVariable *NewGV =
3977 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3978 nullptr, TLM, AddressSpace, ExternallyInitialized);
3979 if (Alignment)
3980 NewGV->setAlignment(*Alignment);
3981 if (!Section.empty())
3982 NewGV->setSection(Section);
3983 NewGV->setVisibility(Visibility);
3984 NewGV->setUnnamedAddr(UnnamedAddr);
3985
3986 if (Record.size() > 10) {
3987 // A GlobalValue with local linkage cannot have a DLL storage class.
3988 if (!NewGV->hasLocalLinkage()) {
3989 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Val: Record[10]));
3990 }
3991 } else {
3992 upgradeDLLImportExportLinkage(GV: NewGV, Val: RawLinkage);
3993 }
3994
3995 ValueList.push_back(V: NewGV, TypeID: getVirtualTypeID(Ty: NewGV->getType(), ChildTypeIDs: TyID));
3996
3997 // Remember which value to use for the global initializer.
3998 if (unsigned InitID = Record[2])
3999 GlobalInits.push_back(x: std::make_pair(x&: NewGV, y: InitID - 1));
4000
4001 if (Record.size() > 11) {
4002 if (unsigned ComdatID = Record[11]) {
4003 if (ComdatID > ComdatList.size())
4004 return error(Message: "Invalid global variable comdat ID");
4005 NewGV->setComdat(ComdatList[ComdatID - 1]);
4006 }
4007 } else if (hasImplicitComdat(Val: RawLinkage)) {
4008 ImplicitComdatObjects.insert(V: NewGV);
4009 }
4010
4011 if (Record.size() > 12) {
4012 auto AS = getAttributes(i: Record[12]).getFnAttrs();
4013 NewGV->setAttributes(AS);
4014 }
4015
4016 if (Record.size() > 13) {
4017 NewGV->setDSOLocal(getDecodedDSOLocal(Val: Record[13]));
4018 }
4019 inferDSOLocal(GV: NewGV);
4020
4021 // Check whether we have enough values to read a partition name.
4022 if (Record.size() > 15)
4023 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
4024
4025 if (Record.size() > 16 && Record[16]) {
4026 llvm::GlobalValue::SanitizerMetadata Meta =
4027 deserializeSanitizerMetadata(V: Record[16]);
4028 NewGV->setSanitizerMetadata(Meta);
4029 }
4030
4031 if (Record.size() > 17 && Record[17]) {
4032 if (auto CM = getDecodedCodeModel(Val: Record[17]))
4033 NewGV->setCodeModel(*CM);
4034 else
4035 return error(Message: "Invalid global variable code model");
4036 }
4037
4038 return Error::success();
4039}
4040
4041void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) {
4042 if (ValueTypeCallback) {
4043 (*ValueTypeCallback)(
4044 F, TypeID, [this](unsigned I) { return getTypeByID(ID: I); },
4045 [this](unsigned I, unsigned J) { return getContainedTypeID(ID: I, Idx: J); });
4046 }
4047}
4048
4049Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
4050 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
4051 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
4052 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
4053 // v2: [strtab_offset, strtab_size, v1]
4054 StringRef Name;
4055 std::tie(args&: Name, args&: Record) = readNameFromStrtab(Record);
4056
4057 if (Record.size() < 8)
4058 return error(Message: "Invalid record");
4059 unsigned FTyID = Record[0];
4060 Type *FTy = getTypeByID(ID: FTyID);
4061 if (!FTy)
4062 return error(Message: "Invalid record");
4063 if (isa<PointerType>(Val: FTy)) {
4064 FTyID = getContainedTypeID(ID: FTyID, Idx: 0);
4065 FTy = getTypeByID(ID: FTyID);
4066 if (!FTy)
4067 return error(Message: "Missing element type for old-style function");
4068 }
4069
4070 if (!isa<FunctionType>(Val: FTy))
4071 return error(Message: "Invalid type for value");
4072 auto CC = static_cast<CallingConv::ID>(Record[1]);
4073 if (CC & ~CallingConv::MaxID)
4074 return error(Message: "Invalid calling convention ID");
4075
4076 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
4077 if (Record.size() > 16)
4078 AddrSpace = Record[16];
4079
4080 Function *Func =
4081 Function::Create(Ty: cast<FunctionType>(Val: FTy), Linkage: GlobalValue::ExternalLinkage,
4082 AddrSpace, N: Name, M: TheModule);
4083
4084 assert(Func->getFunctionType() == FTy &&
4085 "Incorrect fully specified type provided for function");
4086 FunctionTypeIDs[Func] = FTyID;
4087
4088 Func->setCallingConv(CC);
4089 bool isProto = Record[2];
4090 uint64_t RawLinkage = Record[3];
4091 Func->setLinkage(getDecodedLinkage(Val: RawLinkage));
4092 Func->setAttributes(getAttributes(i: Record[4]));
4093 callValueTypeCallback(F: Func, TypeID: FTyID);
4094
4095 // Upgrade any old-style byval or sret without a type by propagating the
4096 // argument's pointee type. There should be no opaque pointers where the byval
4097 // type is implicit.
4098 for (unsigned i = 0; i != Func->arg_size(); ++i) {
4099 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4100 Attribute::InAlloca}) {
4101 if (!Func->hasParamAttribute(i, Kind))
4102 continue;
4103
4104 if (Func->getParamAttribute(i, Kind).getValueAsType())
4105 continue;
4106
4107 Func->removeParamAttr(i, Kind);
4108
4109 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
4110 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
4111 if (!PtrEltTy)
4112 return error("Missing param element type for attribute upgrade");
4113
4114 Attribute NewAttr;
4115 switch (Kind) {
4116 case Attribute::ByVal:
4117 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4118 break;
4119 case Attribute::StructRet:
4120 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4121 break;
4122 case Attribute::InAlloca:
4123 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4124 break;
4125 default:
4126 llvm_unreachable("not an upgraded type attribute");
4127 }
4128
4129 Func->addParamAttr(i, NewAttr);
4130 }
4131 }
4132
4133 if (Func->getCallingConv() == CallingConv::X86_INTR &&
4134 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
4135 unsigned ParamTypeID = getContainedTypeID(ID: FTyID, Idx: 1);
4136 Type *ByValTy = getPtrElementTypeByID(ID: ParamTypeID);
4137 if (!ByValTy)
4138 return error(Message: "Missing param element type for x86_intrcc upgrade");
4139 Attribute NewAttr = Attribute::getWithByValType(Context, Ty: ByValTy);
4140 Func->addParamAttr(ArgNo: 0, Attr: NewAttr);
4141 }
4142
4143 MaybeAlign Alignment;
4144 if (Error Err = parseAlignmentValue(Exponent: Record[5], Alignment))
4145 return Err;
4146 if (Alignment)
4147 Func->setAlignment(*Alignment);
4148 if (Record[6]) {
4149 if (Record[6] - 1 >= SectionTable.size())
4150 return error(Message: "Invalid ID");
4151 Func->setSection(SectionTable[Record[6] - 1]);
4152 }
4153 // Local linkage must have default visibility.
4154 // auto-upgrade `hidden` and `protected` for old bitcode.
4155 if (!Func->hasLocalLinkage())
4156 Func->setVisibility(getDecodedVisibility(Val: Record[7]));
4157 if (Record.size() > 8 && Record[8]) {
4158 if (Record[8] - 1 >= GCTable.size())
4159 return error(Message: "Invalid ID");
4160 Func->setGC(GCTable[Record[8] - 1]);
4161 }
4162 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4163 if (Record.size() > 9)
4164 UnnamedAddr = getDecodedUnnamedAddrType(Val: Record[9]);
4165 Func->setUnnamedAddr(UnnamedAddr);
4166
4167 FunctionOperandInfo OperandInfo = {.F: Func, .PersonalityFn: 0, .Prefix: 0, .Prologue: 0};
4168 if (Record.size() > 10)
4169 OperandInfo.Prologue = Record[10];
4170
4171 if (Record.size() > 11) {
4172 // A GlobalValue with local linkage cannot have a DLL storage class.
4173 if (!Func->hasLocalLinkage()) {
4174 Func->setDLLStorageClass(getDecodedDLLStorageClass(Val: Record[11]));
4175 }
4176 } else {
4177 upgradeDLLImportExportLinkage(GV: Func, Val: RawLinkage);
4178 }
4179
4180 if (Record.size() > 12) {
4181 if (unsigned ComdatID = Record[12]) {
4182 if (ComdatID > ComdatList.size())
4183 return error(Message: "Invalid function comdat ID");
4184 Func->setComdat(ComdatList[ComdatID - 1]);
4185 }
4186 } else if (hasImplicitComdat(Val: RawLinkage)) {
4187 ImplicitComdatObjects.insert(V: Func);
4188 }
4189
4190 if (Record.size() > 13)
4191 OperandInfo.Prefix = Record[13];
4192
4193 if (Record.size() > 14)
4194 OperandInfo.PersonalityFn = Record[14];
4195
4196 if (Record.size() > 15) {
4197 Func->setDSOLocal(getDecodedDSOLocal(Val: Record[15]));
4198 }
4199 inferDSOLocal(GV: Func);
4200
4201 // Record[16] is the address space number.
4202
4203 // Check whether we have enough values to read a partition name. Also make
4204 // sure Strtab has enough values.
4205 if (Record.size() > 18 && Strtab.data() &&
4206 Record[17] + Record[18] <= Strtab.size()) {
4207 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
4208 }
4209
4210 ValueList.push_back(V: Func, TypeID: getVirtualTypeID(Ty: Func->getType(), ChildTypeIDs: FTyID));
4211
4212 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
4213 FunctionOperands.push_back(x: OperandInfo);
4214
4215 // If this is a function with a body, remember the prototype we are
4216 // creating now, so that we can match up the body with them later.
4217 if (!isProto) {
4218 Func->setIsMaterializable(true);
4219 FunctionsWithBodies.push_back(x: Func);
4220 DeferredFunctionInfo[Func] = 0;
4221 }
4222 return Error::success();
4223}
4224
4225Error BitcodeReader::parseGlobalIndirectSymbolRecord(
4226 unsigned BitCode, ArrayRef<uint64_t> Record) {
4227 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
4228 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
4229 // dllstorageclass, threadlocal, unnamed_addr,
4230 // preemption specifier] (name in VST)
4231 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
4232 // visibility, dllstorageclass, threadlocal, unnamed_addr,
4233 // preemption specifier] (name in VST)
4234 // v2: [strtab_offset, strtab_size, v1]
4235 StringRef Name;
4236 std::tie(args&: Name, args&: Record) = readNameFromStrtab(Record);
4237
4238 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4239 if (Record.size() < (3 + (unsigned)NewRecord))
4240 return error(Message: "Invalid record");
4241 unsigned OpNum = 0;
4242 unsigned TypeID = Record[OpNum++];
4243 Type *Ty = getTypeByID(ID: TypeID);
4244 if (!Ty)
4245 return error(Message: "Invalid record");
4246
4247 unsigned AddrSpace;
4248 if (!NewRecord) {
4249 auto *PTy = dyn_cast<PointerType>(Val: Ty);
4250 if (!PTy)
4251 return error(Message: "Invalid type for value");
4252 AddrSpace = PTy->getAddressSpace();
4253 TypeID = getContainedTypeID(ID: TypeID);
4254 Ty = getTypeByID(ID: TypeID);
4255 if (!Ty)
4256 return error(Message: "Missing element type for old-style indirect symbol");
4257 } else {
4258 AddrSpace = Record[OpNum++];
4259 }
4260
4261 auto Val = Record[OpNum++];
4262 auto Linkage = Record[OpNum++];
4263 GlobalValue *NewGA;
4264 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4265 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4266 NewGA = GlobalAlias::create(Ty, AddressSpace: AddrSpace, Linkage: getDecodedLinkage(Val: Linkage), Name,
4267 Parent: TheModule);
4268 else
4269 NewGA = GlobalIFunc::create(Ty, AddressSpace: AddrSpace, Linkage: getDecodedLinkage(Val: Linkage), Name,
4270 Resolver: nullptr, Parent: TheModule);
4271
4272 // Local linkage must have default visibility.
4273 // auto-upgrade `hidden` and `protected` for old bitcode.
4274 if (OpNum != Record.size()) {
4275 auto VisInd = OpNum++;
4276 if (!NewGA->hasLocalLinkage())
4277 NewGA->setVisibility(getDecodedVisibility(Val: Record[VisInd]));
4278 }
4279 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4280 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4281 if (OpNum != Record.size()) {
4282 auto S = Record[OpNum++];
4283 // A GlobalValue with local linkage cannot have a DLL storage class.
4284 if (!NewGA->hasLocalLinkage())
4285 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Val: S));
4286 }
4287 else
4288 upgradeDLLImportExportLinkage(GV: NewGA, Val: Linkage);
4289 if (OpNum != Record.size())
4290 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Val: Record[OpNum++]));
4291 if (OpNum != Record.size())
4292 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Val: Record[OpNum++]));
4293 }
4294 if (OpNum != Record.size())
4295 NewGA->setDSOLocal(getDecodedDSOLocal(Val: Record[OpNum++]));
4296 inferDSOLocal(GV: NewGA);
4297
4298 // Check whether we have enough values to read a partition name.
4299 if (OpNum + 1 < Record.size()) {
4300 // Check Strtab has enough values for the partition.
4301 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size())
4302 return error(Message: "Malformed partition, too large.");
4303 NewGA->setPartition(
4304 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4305 OpNum += 2;
4306 }
4307
4308 ValueList.push_back(V: NewGA, TypeID: getVirtualTypeID(Ty: NewGA->getType(), ChildTypeIDs: TypeID));
4309 IndirectSymbolInits.push_back(x: std::make_pair(x&: NewGA, y&: Val));
4310 return Error::success();
4311}
4312
4313Error BitcodeReader::parseModule(uint64_t ResumeBit,
4314 bool ShouldLazyLoadMetadata,
4315 ParserCallbacks Callbacks) {
4316 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat
4317 // has been set to true and we aren't attempting to preserve the existing
4318 // format in the bitcode (default action: load into the old debug format).
4319 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) {
4320 TheModule->IsNewDbgInfoFormat =
4321 UseNewDbgInfoFormat &&
4322 LoadBitcodeIntoNewDbgInfoFormat == cl::boolOrDefault::BOU_TRUE;
4323 }
4324
4325 this->ValueTypeCallback = std::move(Callbacks.ValueType);
4326 if (ResumeBit) {
4327 if (Error JumpFailed = Stream.JumpToBit(BitNo: ResumeBit))
4328 return JumpFailed;
4329 } else if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
4330 return Err;
4331
4332 SmallVector<uint64_t, 64> Record;
4333
4334 // Parts of bitcode parsing depend on the datalayout. Make sure we
4335 // finalize the datalayout before we run any of that code.
4336 bool ResolvedDataLayout = false;
4337 // In order to support importing modules with illegal data layout strings,
4338 // delay parsing the data layout string until after upgrades and overrides
4339 // have been applied, allowing to fix illegal data layout strings.
4340 // Initialize to the current module's layout string in case none is specified.
4341 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr();
4342
4343 auto ResolveDataLayout = [&]() -> Error {
4344 if (ResolvedDataLayout)
4345 return Error::success();
4346
4347 // Datalayout and triple can't be parsed after this point.
4348 ResolvedDataLayout = true;
4349
4350 // Auto-upgrade the layout string
4351 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString(
4352 DL: TentativeDataLayoutStr, Triple: TheModule->getTargetTriple());
4353
4354 // Apply override
4355 if (Callbacks.DataLayout) {
4356 if (auto LayoutOverride = (*Callbacks.DataLayout)(
4357 TheModule->getTargetTriple(), TentativeDataLayoutStr))
4358 TentativeDataLayoutStr = *LayoutOverride;
4359 }
4360
4361 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it.
4362 Expected<DataLayout> MaybeDL = DataLayout::parse(LayoutDescription: TentativeDataLayoutStr);
4363 if (!MaybeDL)
4364 return MaybeDL.takeError();
4365
4366 TheModule->setDataLayout(MaybeDL.get());
4367 return Error::success();
4368 };
4369
4370 // Read all the records for this module.
4371 while (true) {
4372 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4373 if (!MaybeEntry)
4374 return MaybeEntry.takeError();
4375 llvm::BitstreamEntry Entry = MaybeEntry.get();
4376
4377 switch (Entry.Kind) {
4378 case BitstreamEntry::Error:
4379 return error(Message: "Malformed block");
4380 case BitstreamEntry::EndBlock:
4381 if (Error Err = ResolveDataLayout())
4382 return Err;
4383 return globalCleanup();
4384
4385 case BitstreamEntry::SubBlock:
4386 switch (Entry.ID) {
4387 default: // Skip unknown content.
4388 if (Error Err = Stream.SkipBlock())
4389 return Err;
4390 break;
4391 case bitc::BLOCKINFO_BLOCK_ID:
4392 if (Error Err = readBlockInfo())
4393 return Err;
4394 break;
4395 case bitc::PARAMATTR_BLOCK_ID:
4396 if (Error Err = parseAttributeBlock())
4397 return Err;
4398 break;
4399 case bitc::PARAMATTR_GROUP_BLOCK_ID:
4400 if (Error Err = parseAttributeGroupBlock())
4401 return Err;
4402 break;
4403 case bitc::TYPE_BLOCK_ID_NEW:
4404 if (Error Err = parseTypeTable())
4405 return Err;
4406 break;
4407 case bitc::VALUE_SYMTAB_BLOCK_ID:
4408 if (!SeenValueSymbolTable) {
4409 // Either this is an old form VST without function index and an
4410 // associated VST forward declaration record (which would have caused
4411 // the VST to be jumped to and parsed before it was encountered
4412 // normally in the stream), or there were no function blocks to
4413 // trigger an earlier parsing of the VST.
4414 assert(VSTOffset == 0 || FunctionsWithBodies.empty());
4415 if (Error Err = parseValueSymbolTable())
4416 return Err;
4417 SeenValueSymbolTable = true;
4418 } else {
4419 // We must have had a VST forward declaration record, which caused
4420 // the parser to jump to and parse the VST earlier.
4421 assert(VSTOffset > 0);
4422 if (Error Err = Stream.SkipBlock())
4423 return Err;
4424 }
4425 break;
4426 case bitc::CONSTANTS_BLOCK_ID:
4427 if (Error Err = parseConstants())
4428 return Err;
4429 if (Error Err = resolveGlobalAndIndirectSymbolInits())
4430 return Err;
4431 break;
4432 case bitc::METADATA_BLOCK_ID:
4433 if (ShouldLazyLoadMetadata) {
4434 if (Error Err = rememberAndSkipMetadata())
4435 return Err;
4436 break;
4437 }
4438 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
4439 if (Error Err = MDLoader->parseModuleMetadata())
4440 return Err;
4441 break;
4442 case bitc::METADATA_KIND_BLOCK_ID:
4443 if (Error Err = MDLoader->parseMetadataKinds())
4444 return Err;
4445 break;
4446 case bitc::FUNCTION_BLOCK_ID:
4447 if (Error Err = ResolveDataLayout())
4448 return Err;
4449
4450 // If this is the first function body we've seen, reverse the
4451 // FunctionsWithBodies list.
4452 if (!SeenFirstFunctionBody) {
4453 std::reverse(first: FunctionsWithBodies.begin(), last: FunctionsWithBodies.end());
4454 if (Error Err = globalCleanup())
4455 return Err;
4456 SeenFirstFunctionBody = true;
4457 }
4458
4459 if (VSTOffset > 0) {
4460 // If we have a VST forward declaration record, make sure we
4461 // parse the VST now if we haven't already. It is needed to
4462 // set up the DeferredFunctionInfo vector for lazy reading.
4463 if (!SeenValueSymbolTable) {
4464 if (Error Err = BitcodeReader::parseValueSymbolTable(Offset: VSTOffset))
4465 return Err;
4466 SeenValueSymbolTable = true;
4467 // Fall through so that we record the NextUnreadBit below.
4468 // This is necessary in case we have an anonymous function that
4469 // is later materialized. Since it will not have a VST entry we
4470 // need to fall back to the lazy parse to find its offset.
4471 } else {
4472 // If we have a VST forward declaration record, but have already
4473 // parsed the VST (just above, when the first function body was
4474 // encountered here), then we are resuming the parse after
4475 // materializing functions. The ResumeBit points to the
4476 // start of the last function block recorded in the
4477 // DeferredFunctionInfo map. Skip it.
4478 if (Error Err = Stream.SkipBlock())
4479 return Err;
4480 continue;
4481 }
4482 }
4483
4484 // Support older bitcode files that did not have the function
4485 // index in the VST, nor a VST forward declaration record, as
4486 // well as anonymous functions that do not have VST entries.
4487 // Build the DeferredFunctionInfo vector on the fly.
4488 if (Error Err = rememberAndSkipFunctionBody())
4489 return Err;
4490
4491 // Suspend parsing when we reach the function bodies. Subsequent
4492 // materialization calls will resume it when necessary. If the bitcode
4493 // file is old, the symbol table will be at the end instead and will not
4494 // have been seen yet. In this case, just finish the parse now.
4495 if (SeenValueSymbolTable) {
4496 NextUnreadBit = Stream.GetCurrentBitNo();
4497 // After the VST has been parsed, we need to make sure intrinsic name
4498 // are auto-upgraded.
4499 return globalCleanup();
4500 }
4501 break;
4502 case bitc::USELIST_BLOCK_ID:
4503 if (Error Err = parseUseLists())
4504 return Err;
4505 break;
4506 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4507 if (Error Err = parseOperandBundleTags())
4508 return Err;
4509 break;
4510 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4511 if (Error Err = parseSyncScopeNames())
4512 return Err;
4513 break;
4514 }
4515 continue;
4516
4517 case BitstreamEntry::Record:
4518 // The interesting case.
4519 break;
4520 }
4521
4522 // Read a record.
4523 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
4524 if (!MaybeBitCode)
4525 return MaybeBitCode.takeError();
4526 switch (unsigned BitCode = MaybeBitCode.get()) {
4527 default: break; // Default behavior, ignore unknown content.
4528 case bitc::MODULE_CODE_VERSION: {
4529 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4530 if (!VersionOrErr)
4531 return VersionOrErr.takeError();
4532 UseRelativeIDs = *VersionOrErr >= 1;
4533 break;
4534 }
4535 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
4536 if (ResolvedDataLayout)
4537 return error(Message: "target triple too late in module");
4538 std::string S;
4539 if (convertToString(Record, Idx: 0, Result&: S))
4540 return error(Message: "Invalid record");
4541 TheModule->setTargetTriple(S);
4542 break;
4543 }
4544 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
4545 if (ResolvedDataLayout)
4546 return error(Message: "datalayout too late in module");
4547 if (convertToString(Record, Idx: 0, Result&: TentativeDataLayoutStr))
4548 return error(Message: "Invalid record");
4549 break;
4550 }
4551 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
4552 std::string S;
4553 if (convertToString(Record, Idx: 0, Result&: S))
4554 return error(Message: "Invalid record");
4555 TheModule->setModuleInlineAsm(S);
4556 break;
4557 }
4558 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
4559 // Deprecated, but still needed to read old bitcode files.
4560 std::string S;
4561 if (convertToString(Record, Idx: 0, Result&: S))
4562 return error(Message: "Invalid record");
4563 // Ignore value.
4564 break;
4565 }
4566 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4567 std::string S;
4568 if (convertToString(Record, Idx: 0, Result&: S))
4569 return error(Message: "Invalid record");
4570 SectionTable.push_back(x: S);
4571 break;
4572 }
4573 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
4574 std::string S;
4575 if (convertToString(Record, Idx: 0, Result&: S))
4576 return error(Message: "Invalid record");
4577 GCTable.push_back(x: S);
4578 break;
4579 }
4580 case bitc::MODULE_CODE_COMDAT:
4581 if (Error Err = parseComdatRecord(Record))
4582 return Err;
4583 break;
4584 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4585 // written by ThinLinkBitcodeWriter. See
4586 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4587 // record
4588 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4589 case bitc::MODULE_CODE_GLOBALVAR:
4590 if (Error Err = parseGlobalVarRecord(Record))
4591 return Err;
4592 break;
4593 case bitc::MODULE_CODE_FUNCTION:
4594 if (Error Err = ResolveDataLayout())
4595 return Err;
4596 if (Error Err = parseFunctionRecord(Record))
4597 return Err;
4598 break;
4599 case bitc::MODULE_CODE_IFUNC:
4600 case bitc::MODULE_CODE_ALIAS:
4601 case bitc::MODULE_CODE_ALIAS_OLD:
4602 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4603 return Err;
4604 break;
4605 /// MODULE_CODE_VSTOFFSET: [offset]
4606 case bitc::MODULE_CODE_VSTOFFSET:
4607 if (Record.empty())
4608 return error(Message: "Invalid record");
4609 // Note that we subtract 1 here because the offset is relative to one word
4610 // before the start of the identification or module block, which was
4611 // historically always the start of the regular bitcode header.
4612 VSTOffset = Record[0] - 1;
4613 break;
4614 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4615 case bitc::MODULE_CODE_SOURCE_FILENAME:
4616 SmallString<128> ValueName;
4617 if (convertToString(Record, Idx: 0, Result&: ValueName))
4618 return error(Message: "Invalid record");
4619 TheModule->setSourceFileName(ValueName);
4620 break;
4621 }
4622 Record.clear();
4623 }
4624 this->ValueTypeCallback = std::nullopt;
4625 return Error::success();
4626}
4627
4628Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4629 bool IsImporting,
4630 ParserCallbacks Callbacks) {
4631 TheModule = M;
4632 MetadataLoaderCallbacks MDCallbacks;
4633 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); };
4634 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) {
4635 return getContainedTypeID(ID: I, Idx: J);
4636 };
4637 MDCallbacks.MDType = Callbacks.MDType;
4638 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks);
4639 return parseModule(ResumeBit: 0, ShouldLazyLoadMetadata, Callbacks);
4640}
4641
4642Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4643 if (!isa<PointerType>(Val: PtrType))
4644 return error(Message: "Load/Store operand is not a pointer type");
4645 if (!PointerType::isLoadableOrStorableType(ElemTy: ValType))
4646 return error(Message: "Cannot load/store from pointer");
4647 return Error::success();
4648}
4649
4650Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4651 ArrayRef<unsigned> ArgTyIDs) {
4652 AttributeList Attrs = CB->getAttributes();
4653 for (unsigned i = 0; i != CB->arg_size(); ++i) {
4654 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4655 Attribute::InAlloca}) {
4656 if (!Attrs.hasParamAttr(i, Kind) ||
4657 Attrs.getParamAttr(i, Kind).getValueAsType())
4658 continue;
4659
4660 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4661 if (!PtrEltTy)
4662 return error("Missing element type for typed attribute upgrade");
4663
4664 Attribute NewAttr;
4665 switch (Kind) {
4666 case Attribute::ByVal:
4667 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4668 break;
4669 case Attribute::StructRet:
4670 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4671 break;
4672 case Attribute::InAlloca:
4673 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4674 break;
4675 default:
4676 llvm_unreachable("not an upgraded type attribute");
4677 }
4678
4679 Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4680 }
4681 }
4682
4683 if (CB->isInlineAsm()) {
4684 const InlineAsm *IA = cast<InlineAsm>(Val: CB->getCalledOperand());
4685 unsigned ArgNo = 0;
4686 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4687 if (!CI.hasArg())
4688 continue;
4689
4690 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4691 Type *ElemTy = getPtrElementTypeByID(ID: ArgTyIDs[ArgNo]);
4692 if (!ElemTy)
4693 return error(Message: "Missing element type for inline asm upgrade");
4694 Attrs = Attrs.addParamAttribute(
4695 Context, ArgNo,
4696 Attribute::get(Context, Attribute::ElementType, ElemTy));
4697 }
4698
4699 ArgNo++;
4700 }
4701 }
4702
4703 switch (CB->getIntrinsicID()) {
4704 case Intrinsic::preserve_array_access_index:
4705 case Intrinsic::preserve_struct_access_index:
4706 case Intrinsic::aarch64_ldaxr:
4707 case Intrinsic::aarch64_ldxr:
4708 case Intrinsic::aarch64_stlxr:
4709 case Intrinsic::aarch64_stxr:
4710 case Intrinsic::arm_ldaex:
4711 case Intrinsic::arm_ldrex:
4712 case Intrinsic::arm_stlex:
4713 case Intrinsic::arm_strex: {
4714 unsigned ArgNo;
4715 switch (CB->getIntrinsicID()) {
4716 case Intrinsic::aarch64_stlxr:
4717 case Intrinsic::aarch64_stxr:
4718 case Intrinsic::arm_stlex:
4719 case Intrinsic::arm_strex:
4720 ArgNo = 1;
4721 break;
4722 default:
4723 ArgNo = 0;
4724 break;
4725 }
4726 if (!Attrs.getParamElementType(ArgNo)) {
4727 Type *ElTy = getPtrElementTypeByID(ID: ArgTyIDs[ArgNo]);
4728 if (!ElTy)
4729 return error(Message: "Missing element type for elementtype upgrade");
4730 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4731 Attrs = Attrs.addParamAttribute(C&: Context, ArgNos: ArgNo, A: NewAttr);
4732 }
4733 break;
4734 }
4735 default:
4736 break;
4737 }
4738
4739 CB->setAttributes(Attrs);
4740 return Error::success();
4741}
4742
4743/// Lazily parse the specified function body block.
4744Error BitcodeReader::parseFunctionBody(Function *F) {
4745 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::FUNCTION_BLOCK_ID))
4746 return Err;
4747
4748 // Unexpected unresolved metadata when parsing function.
4749 if (MDLoader->hasFwdRefs())
4750 return error(Message: "Invalid function metadata: incoming forward references");
4751
4752 InstructionList.clear();
4753 unsigned ModuleValueListSize = ValueList.size();
4754 unsigned ModuleMDLoaderSize = MDLoader->size();
4755
4756 // Add all the function arguments to the value table.
4757 unsigned ArgNo = 0;
4758 unsigned FTyID = FunctionTypeIDs[F];
4759 for (Argument &I : F->args()) {
4760 unsigned ArgTyID = getContainedTypeID(ID: FTyID, Idx: ArgNo + 1);
4761 assert(I.getType() == getTypeByID(ArgTyID) &&
4762 "Incorrect fully specified type for Function Argument");
4763 ValueList.push_back(V: &I, TypeID: ArgTyID);
4764 ++ArgNo;
4765 }
4766 unsigned NextValueNo = ValueList.size();
4767 BasicBlock *CurBB = nullptr;
4768 unsigned CurBBNo = 0;
4769 // Block into which constant expressions from phi nodes are materialized.
4770 BasicBlock *PhiConstExprBB = nullptr;
4771 // Edge blocks for phi nodes into which constant expressions have been
4772 // expanded.
4773 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4774 ConstExprEdgeBBs;
4775
4776 DebugLoc LastLoc;
4777 auto getLastInstruction = [&]() -> Instruction * {
4778 if (CurBB && !CurBB->empty())
4779 return &CurBB->back();
4780 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4781 !FunctionBBs[CurBBNo - 1]->empty())
4782 return &FunctionBBs[CurBBNo - 1]->back();
4783 return nullptr;
4784 };
4785
4786 std::vector<OperandBundleDef> OperandBundles;
4787
4788 // Read all the records.
4789 SmallVector<uint64_t, 64> Record;
4790
4791 while (true) {
4792 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4793 if (!MaybeEntry)
4794 return MaybeEntry.takeError();
4795 llvm::BitstreamEntry Entry = MaybeEntry.get();
4796
4797 switch (Entry.Kind) {
4798 case BitstreamEntry::Error:
4799 return error(Message: "Malformed block");
4800 case BitstreamEntry::EndBlock:
4801 goto OutOfRecordLoop;
4802
4803 case BitstreamEntry::SubBlock:
4804 switch (Entry.ID) {
4805 default: // Skip unknown content.
4806 if (Error Err = Stream.SkipBlock())
4807 return Err;
4808 break;
4809 case bitc::CONSTANTS_BLOCK_ID:
4810 if (Error Err = parseConstants())
4811 return Err;
4812 NextValueNo = ValueList.size();
4813 break;
4814 case bitc::VALUE_SYMTAB_BLOCK_ID:
4815 if (Error Err = parseValueSymbolTable())
4816 return Err;
4817 break;
4818 case bitc::METADATA_ATTACHMENT_ID:
4819 if (Error Err = MDLoader->parseMetadataAttachment(F&: *F, InstructionList))
4820 return Err;
4821 break;
4822 case bitc::METADATA_BLOCK_ID:
4823 assert(DeferredMetadataInfo.empty() &&
4824 "Must read all module-level metadata before function-level");
4825 if (Error Err = MDLoader->parseFunctionMetadata())
4826 return Err;
4827 break;
4828 case bitc::USELIST_BLOCK_ID:
4829 if (Error Err = parseUseLists())
4830 return Err;
4831 break;
4832 }
4833 continue;
4834
4835 case BitstreamEntry::Record:
4836 // The interesting case.
4837 break;
4838 }
4839
4840 // Read a record.
4841 Record.clear();
4842 Instruction *I = nullptr;
4843 unsigned ResTypeID = InvalidTypeID;
4844 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
4845 if (!MaybeBitCode)
4846 return MaybeBitCode.takeError();
4847 switch (unsigned BitCode = MaybeBitCode.get()) {
4848 default: // Default behavior: reject
4849 return error(Message: "Invalid value");
4850 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
4851 if (Record.empty() || Record[0] == 0)
4852 return error(Message: "Invalid record");
4853 // Create all the basic blocks for the function.
4854 FunctionBBs.resize(new_size: Record[0]);
4855
4856 // See if anything took the address of blocks in this function.
4857 auto BBFRI = BasicBlockFwdRefs.find(Val: F);
4858 if (BBFRI == BasicBlockFwdRefs.end()) {
4859 for (BasicBlock *&BB : FunctionBBs)
4860 BB = BasicBlock::Create(Context, Name: "", Parent: F);
4861 } else {
4862 auto &BBRefs = BBFRI->second;
4863 // Check for invalid basic block references.
4864 if (BBRefs.size() > FunctionBBs.size())
4865 return error(Message: "Invalid ID");
4866 assert(!BBRefs.empty() && "Unexpected empty array");
4867 assert(!BBRefs.front() && "Invalid reference to entry block");
4868 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4869 ++I)
4870 if (I < RE && BBRefs[I]) {
4871 BBRefs[I]->insertInto(Parent: F);
4872 FunctionBBs[I] = BBRefs[I];
4873 } else {
4874 FunctionBBs[I] = BasicBlock::Create(Context, Name: "", Parent: F);
4875 }
4876
4877 // Erase from the table.
4878 BasicBlockFwdRefs.erase(I: BBFRI);
4879 }
4880
4881 CurBB = FunctionBBs[0];
4882 continue;
4883 }
4884
4885 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4886 // The record should not be emitted if it's an empty list.
4887 if (Record.empty())
4888 return error(Message: "Invalid record");
4889 // When we have the RARE case of a BlockAddress Constant that is not
4890 // scoped to the Function it refers to, we need to conservatively
4891 // materialize the referred to Function, regardless of whether or not
4892 // that Function will ultimately be linked, otherwise users of
4893 // BitcodeReader might start splicing out Function bodies such that we
4894 // might no longer be able to materialize the BlockAddress since the
4895 // BasicBlock (and entire body of the Function) the BlockAddress refers
4896 // to may have been moved. In the case that the user of BitcodeReader
4897 // decides ultimately not to link the Function body, materializing here
4898 // could be considered wasteful, but it's better than a deserialization
4899 // failure as described. This keeps BitcodeReader unaware of complex
4900 // linkage policy decisions such as those use by LTO, leaving those
4901 // decisions "one layer up."
4902 for (uint64_t ValID : Record)
4903 if (auto *F = dyn_cast<Function>(Val: ValueList[ValID]))
4904 BackwardRefFunctions.push_back(x: F);
4905 else
4906 return error(Message: "Invalid record");
4907
4908 continue;
4909
4910 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4911 // This record indicates that the last instruction is at the same
4912 // location as the previous instruction with a location.
4913 I = getLastInstruction();
4914
4915 if (!I)
4916 return error(Message: "Invalid record");
4917 I->setDebugLoc(LastLoc);
4918 I = nullptr;
4919 continue;
4920
4921 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4922 I = getLastInstruction();
4923 if (!I || Record.size() < 4)
4924 return error(Message: "Invalid record");
4925
4926 unsigned Line = Record[0], Col = Record[1];
4927 unsigned ScopeID = Record[2], IAID = Record[3];
4928 bool isImplicitCode = Record.size() == 5 && Record[4];
4929
4930 MDNode *Scope = nullptr, *IA = nullptr;
4931 if (ScopeID) {
4932 Scope = dyn_cast_or_null<MDNode>(
4933 Val: MDLoader->getMetadataFwdRefOrLoad(Idx: ScopeID - 1));
4934 if (!Scope)
4935 return error(Message: "Invalid record");
4936 }
4937 if (IAID) {
4938 IA = dyn_cast_or_null<MDNode>(
4939 Val: MDLoader->getMetadataFwdRefOrLoad(Idx: IAID - 1));
4940 if (!IA)
4941 return error(Message: "Invalid record");
4942 }
4943 LastLoc = DILocation::get(Context&: Scope->getContext(), Line, Column: Col, Scope, InlinedAt: IA,
4944 ImplicitCode: isImplicitCode);
4945 I->setDebugLoc(LastLoc);
4946 I = nullptr;
4947 continue;
4948 }
4949 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4950 unsigned OpNum = 0;
4951 Value *LHS;
4952 unsigned TypeID;
4953 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: LHS, TypeID, ConstExprInsertBB: CurBB) ||
4954 OpNum+1 > Record.size())
4955 return error(Message: "Invalid record");
4956
4957 int Opc = getDecodedUnaryOpcode(Val: Record[OpNum++], Ty: LHS->getType());
4958 if (Opc == -1)
4959 return error(Message: "Invalid record");
4960 I = UnaryOperator::Create(Op: (Instruction::UnaryOps)Opc, S: LHS);
4961 ResTypeID = TypeID;
4962 InstructionList.push_back(Elt: I);
4963 if (OpNum < Record.size()) {
4964 if (isa<FPMathOperator>(Val: I)) {
4965 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[OpNum]);
4966 if (FMF.any())
4967 I->setFastMathFlags(FMF);
4968 }
4969 }
4970 break;
4971 }
4972 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4973 unsigned OpNum = 0;
4974 Value *LHS, *RHS;
4975 unsigned TypeID;
4976 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: LHS, TypeID, ConstExprInsertBB: CurBB) ||
4977 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: LHS->getType(), TyID: TypeID, ResVal&: RHS,
4978 ConstExprInsertBB: CurBB) ||
4979 OpNum+1 > Record.size())
4980 return error(Message: "Invalid record");
4981
4982 int Opc = getDecodedBinaryOpcode(Val: Record[OpNum++], Ty: LHS->getType());
4983 if (Opc == -1)
4984 return error(Message: "Invalid record");
4985 I = BinaryOperator::Create(Op: (Instruction::BinaryOps)Opc, S1: LHS, S2: RHS);
4986 ResTypeID = TypeID;
4987 InstructionList.push_back(Elt: I);
4988 if (OpNum < Record.size()) {
4989 if (Opc == Instruction::Add ||
4990 Opc == Instruction::Sub ||
4991 Opc == Instruction::Mul ||
4992 Opc == Instruction::Shl) {
4993 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4994 cast<BinaryOperator>(Val: I)->setHasNoSignedWrap(true);
4995 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4996 cast<BinaryOperator>(Val: I)->setHasNoUnsignedWrap(true);
4997 } else if (Opc == Instruction::SDiv ||
4998 Opc == Instruction::UDiv ||
4999 Opc == Instruction::LShr ||
5000 Opc == Instruction::AShr) {
5001 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
5002 cast<BinaryOperator>(Val: I)->setIsExact(true);
5003 } else if (Opc == Instruction::Or) {
5004 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT))
5005 cast<PossiblyDisjointInst>(Val: I)->setIsDisjoint(true);
5006 } else if (isa<FPMathOperator>(Val: I)) {
5007 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[OpNum]);
5008 if (FMF.any())
5009 I->setFastMathFlags(FMF);
5010 }
5011 }
5012 break;
5013 }
5014 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
5015 unsigned OpNum = 0;
5016 Value *Op;
5017 unsigned OpTypeID;
5018 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB) ||
5019 OpNum + 1 > Record.size())
5020 return error(Message: "Invalid record");
5021
5022 ResTypeID = Record[OpNum++];
5023 Type *ResTy = getTypeByID(ID: ResTypeID);
5024 int Opc = getDecodedCastOpcode(Val: Record[OpNum++]);
5025
5026 if (Opc == -1 || !ResTy)
5027 return error(Message: "Invalid record");
5028 Instruction *Temp = nullptr;
5029 if ((I = UpgradeBitCastInst(Opc, V: Op, DestTy: ResTy, Temp))) {
5030 if (Temp) {
5031 InstructionList.push_back(Elt: Temp);
5032 assert(CurBB && "No current BB?");
5033 Temp->insertInto(ParentBB: CurBB, It: CurBB->end());
5034 }
5035 } else {
5036 auto CastOp = (Instruction::CastOps)Opc;
5037 if (!CastInst::castIsValid(op: CastOp, S: Op, DstTy: ResTy))
5038 return error(Message: "Invalid cast");
5039 I = CastInst::Create(CastOp, S: Op, Ty: ResTy);
5040 }
5041
5042 if (OpNum < Record.size()) {
5043 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) {
5044 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG))
5045 cast<PossiblyNonNegInst>(Val: I)->setNonNeg(true);
5046 } else if (Opc == Instruction::Trunc) {
5047 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP))
5048 cast<TruncInst>(Val: I)->setHasNoUnsignedWrap(true);
5049 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP))
5050 cast<TruncInst>(Val: I)->setHasNoSignedWrap(true);
5051 }
5052 }
5053
5054 InstructionList.push_back(Elt: I);
5055 break;
5056 }
5057 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
5058 case bitc::FUNC_CODE_INST_GEP_OLD:
5059 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
5060 unsigned OpNum = 0;
5061
5062 unsigned TyID;
5063 Type *Ty;
5064 bool InBounds;
5065
5066 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
5067 InBounds = Record[OpNum++];
5068 TyID = Record[OpNum++];
5069 Ty = getTypeByID(ID: TyID);
5070 } else {
5071 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
5072 TyID = InvalidTypeID;
5073 Ty = nullptr;
5074 }
5075
5076 Value *BasePtr;
5077 unsigned BasePtrTypeID;
5078 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: BasePtr, TypeID&: BasePtrTypeID,
5079 ConstExprInsertBB: CurBB))
5080 return error(Message: "Invalid record");
5081
5082 if (!Ty) {
5083 TyID = getContainedTypeID(ID: BasePtrTypeID);
5084 if (BasePtr->getType()->isVectorTy())
5085 TyID = getContainedTypeID(ID: TyID);
5086 Ty = getTypeByID(ID: TyID);
5087 }
5088
5089 SmallVector<Value*, 16> GEPIdx;
5090 while (OpNum != Record.size()) {
5091 Value *Op;
5092 unsigned OpTypeID;
5093 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
5094 return error(Message: "Invalid record");
5095 GEPIdx.push_back(Elt: Op);
5096 }
5097
5098 I = GetElementPtrInst::Create(PointeeType: Ty, Ptr: BasePtr, IdxList: GEPIdx);
5099
5100 ResTypeID = TyID;
5101 if (cast<GEPOperator>(Val: I)->getNumIndices() != 0) {
5102 auto GTI = std::next(x: gep_type_begin(GEP: I));
5103 for (Value *Idx : drop_begin(RangeOrContainer: cast<GEPOperator>(Val: I)->indices())) {
5104 unsigned SubType = 0;
5105 if (GTI.isStruct()) {
5106 ConstantInt *IdxC =
5107 Idx->getType()->isVectorTy()
5108 ? cast<ConstantInt>(Val: cast<Constant>(Val: Idx)->getSplatValue())
5109 : cast<ConstantInt>(Val: Idx);
5110 SubType = IdxC->getZExtValue();
5111 }
5112 ResTypeID = getContainedTypeID(ID: ResTypeID, Idx: SubType);
5113 ++GTI;
5114 }
5115 }
5116
5117 // At this point ResTypeID is the result element type. We need a pointer
5118 // or vector of pointer to it.
5119 ResTypeID = getVirtualTypeID(Ty: I->getType()->getScalarType(), ChildTypeIDs: ResTypeID);
5120 if (I->getType()->isVectorTy())
5121 ResTypeID = getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: ResTypeID);
5122
5123 InstructionList.push_back(Elt: I);
5124 if (InBounds)
5125 cast<GetElementPtrInst>(Val: I)->setIsInBounds(true);
5126 break;
5127 }
5128
5129 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
5130 // EXTRACTVAL: [opty, opval, n x indices]
5131 unsigned OpNum = 0;
5132 Value *Agg;
5133 unsigned AggTypeID;
5134 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Agg, TypeID&: AggTypeID, ConstExprInsertBB: CurBB))
5135 return error(Message: "Invalid record");
5136 Type *Ty = Agg->getType();
5137
5138 unsigned RecSize = Record.size();
5139 if (OpNum == RecSize)
5140 return error(Message: "EXTRACTVAL: Invalid instruction with 0 indices");
5141
5142 SmallVector<unsigned, 4> EXTRACTVALIdx;
5143 ResTypeID = AggTypeID;
5144 for (; OpNum != RecSize; ++OpNum) {
5145 bool IsArray = Ty->isArrayTy();
5146 bool IsStruct = Ty->isStructTy();
5147 uint64_t Index = Record[OpNum];
5148
5149 if (!IsStruct && !IsArray)
5150 return error(Message: "EXTRACTVAL: Invalid type");
5151 if ((unsigned)Index != Index)
5152 return error(Message: "Invalid value");
5153 if (IsStruct && Index >= Ty->getStructNumElements())
5154 return error(Message: "EXTRACTVAL: Invalid struct index");
5155 if (IsArray && Index >= Ty->getArrayNumElements())
5156 return error(Message: "EXTRACTVAL: Invalid array index");
5157 EXTRACTVALIdx.push_back(Elt: (unsigned)Index);
5158
5159 if (IsStruct) {
5160 Ty = Ty->getStructElementType(N: Index);
5161 ResTypeID = getContainedTypeID(ID: ResTypeID, Idx: Index);
5162 } else {
5163 Ty = Ty->getArrayElementType();
5164 ResTypeID = getContainedTypeID(ID: ResTypeID);
5165 }
5166 }
5167
5168 I = ExtractValueInst::Create(Agg, Idxs: EXTRACTVALIdx);
5169 InstructionList.push_back(Elt: I);
5170 break;
5171 }
5172
5173 case bitc::FUNC_CODE_INST_INSERTVAL: {
5174 // INSERTVAL: [opty, opval, opty, opval, n x indices]
5175 unsigned OpNum = 0;
5176 Value *Agg;
5177 unsigned AggTypeID;
5178 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Agg, TypeID&: AggTypeID, ConstExprInsertBB: CurBB))
5179 return error(Message: "Invalid record");
5180 Value *Val;
5181 unsigned ValTypeID;
5182 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
5183 return error(Message: "Invalid record");
5184
5185 unsigned RecSize = Record.size();
5186 if (OpNum == RecSize)
5187 return error(Message: "INSERTVAL: Invalid instruction with 0 indices");
5188
5189 SmallVector<unsigned, 4> INSERTVALIdx;
5190 Type *CurTy = Agg->getType();
5191 for (; OpNum != RecSize; ++OpNum) {
5192 bool IsArray = CurTy->isArrayTy();
5193 bool IsStruct = CurTy->isStructTy();
5194 uint64_t Index = Record[OpNum];
5195
5196 if (!IsStruct && !IsArray)
5197 return error(Message: "INSERTVAL: Invalid type");
5198 if ((unsigned)Index != Index)
5199 return error(Message: "Invalid value");
5200 if (IsStruct && Index >= CurTy->getStructNumElements())
5201 return error(Message: "INSERTVAL: Invalid struct index");
5202 if (IsArray && Index >= CurTy->getArrayNumElements())
5203 return error(Message: "INSERTVAL: Invalid array index");
5204
5205 INSERTVALIdx.push_back(Elt: (unsigned)Index);
5206 if (IsStruct)
5207 CurTy = CurTy->getStructElementType(N: Index);
5208 else
5209 CurTy = CurTy->getArrayElementType();
5210 }
5211
5212 if (CurTy != Val->getType())
5213 return error(Message: "Inserted value type doesn't match aggregate type");
5214
5215 I = InsertValueInst::Create(Agg, Val, Idxs: INSERTVALIdx);
5216 ResTypeID = AggTypeID;
5217 InstructionList.push_back(Elt: I);
5218 break;
5219 }
5220
5221 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
5222 // obsolete form of select
5223 // handles select i1 ... in old bitcode
5224 unsigned OpNum = 0;
5225 Value *TrueVal, *FalseVal, *Cond;
5226 unsigned TypeID;
5227 Type *CondType = Type::getInt1Ty(C&: Context);
5228 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: TrueVal, TypeID,
5229 ConstExprInsertBB: CurBB) ||
5230 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: TrueVal->getType(), TyID: TypeID,
5231 ResVal&: FalseVal, ConstExprInsertBB: CurBB) ||
5232 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: CondType,
5233 TyID: getVirtualTypeID(Ty: CondType), ResVal&: Cond, ConstExprInsertBB: CurBB))
5234 return error(Message: "Invalid record");
5235
5236 I = SelectInst::Create(C: Cond, S1: TrueVal, S2: FalseVal);
5237 ResTypeID = TypeID;
5238 InstructionList.push_back(Elt: I);
5239 break;
5240 }
5241
5242 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
5243 // new form of select
5244 // handles select i1 or select [N x i1]
5245 unsigned OpNum = 0;
5246 Value *TrueVal, *FalseVal, *Cond;
5247 unsigned ValTypeID, CondTypeID;
5248 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: TrueVal, TypeID&: ValTypeID,
5249 ConstExprInsertBB: CurBB) ||
5250 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: TrueVal->getType(), TyID: ValTypeID,
5251 ResVal&: FalseVal, ConstExprInsertBB: CurBB) ||
5252 getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Cond, TypeID&: CondTypeID, ConstExprInsertBB: CurBB))
5253 return error(Message: "Invalid record");
5254
5255 // select condition can be either i1 or [N x i1]
5256 if (VectorType* vector_type =
5257 dyn_cast<VectorType>(Val: Cond->getType())) {
5258 // expect <n x i1>
5259 if (vector_type->getElementType() != Type::getInt1Ty(C&: Context))
5260 return error(Message: "Invalid type for value");
5261 } else {
5262 // expect i1
5263 if (Cond->getType() != Type::getInt1Ty(C&: Context))
5264 return error(Message: "Invalid type for value");
5265 }
5266
5267 I = SelectInst::Create(C: Cond, S1: TrueVal, S2: FalseVal);
5268 ResTypeID = ValTypeID;
5269 InstructionList.push_back(Elt: I);
5270 if (OpNum < Record.size() && isa<FPMathOperator>(Val: I)) {
5271 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[OpNum]);
5272 if (FMF.any())
5273 I->setFastMathFlags(FMF);
5274 }
5275 break;
5276 }
5277
5278 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
5279 unsigned OpNum = 0;
5280 Value *Vec, *Idx;
5281 unsigned VecTypeID, IdxTypeID;
5282 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Vec, TypeID&: VecTypeID, ConstExprInsertBB: CurBB) ||
5283 getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Idx, TypeID&: IdxTypeID, ConstExprInsertBB: CurBB))
5284 return error(Message: "Invalid record");
5285 if (!Vec->getType()->isVectorTy())
5286 return error(Message: "Invalid type for value");
5287 I = ExtractElementInst::Create(Vec, Idx);
5288 ResTypeID = getContainedTypeID(ID: VecTypeID);
5289 InstructionList.push_back(Elt: I);
5290 break;
5291 }
5292
5293 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5294 unsigned OpNum = 0;
5295 Value *Vec, *Elt, *Idx;
5296 unsigned VecTypeID, IdxTypeID;
5297 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Vec, TypeID&: VecTypeID, ConstExprInsertBB: CurBB))
5298 return error(Message: "Invalid record");
5299 if (!Vec->getType()->isVectorTy())
5300 return error(Message: "Invalid type for value");
5301 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo,
5302 Ty: cast<VectorType>(Val: Vec->getType())->getElementType(),
5303 TyID: getContainedTypeID(ID: VecTypeID), ResVal&: Elt, ConstExprInsertBB: CurBB) ||
5304 getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Idx, TypeID&: IdxTypeID, ConstExprInsertBB: CurBB))
5305 return error(Message: "Invalid record");
5306 I = InsertElementInst::Create(Vec, NewElt: Elt, Idx);
5307 ResTypeID = VecTypeID;
5308 InstructionList.push_back(Elt: I);
5309 break;
5310 }
5311
5312 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5313 unsigned OpNum = 0;
5314 Value *Vec1, *Vec2, *Mask;
5315 unsigned Vec1TypeID;
5316 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Vec1, TypeID&: Vec1TypeID,
5317 ConstExprInsertBB: CurBB) ||
5318 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: Vec1->getType(), TyID: Vec1TypeID,
5319 ResVal&: Vec2, ConstExprInsertBB: CurBB))
5320 return error(Message: "Invalid record");
5321
5322 unsigned MaskTypeID;
5323 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Mask, TypeID&: MaskTypeID, ConstExprInsertBB: CurBB))
5324 return error(Message: "Invalid record");
5325 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5326 return error(Message: "Invalid type for value");
5327
5328 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5329 ResTypeID =
5330 getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: getContainedTypeID(ID: Vec1TypeID));
5331 InstructionList.push_back(Elt: I);
5332 break;
5333 }
5334
5335 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
5336 // Old form of ICmp/FCmp returning bool
5337 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5338 // both legal on vectors but had different behaviour.
5339 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5340 // FCmp/ICmp returning bool or vector of bool
5341
5342 unsigned OpNum = 0;
5343 Value *LHS, *RHS;
5344 unsigned LHSTypeID;
5345 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: LHS, TypeID&: LHSTypeID, ConstExprInsertBB: CurBB) ||
5346 popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: LHS->getType(), TyID: LHSTypeID, ResVal&: RHS,
5347 ConstExprInsertBB: CurBB))
5348 return error(Message: "Invalid record");
5349
5350 if (OpNum >= Record.size())
5351 return error(
5352 Message: "Invalid record: operand number exceeded available operands");
5353
5354 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]);
5355 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5356 FastMathFlags FMF;
5357 if (IsFP && Record.size() > OpNum+1)
5358 FMF = getDecodedFastMathFlags(Val: Record[++OpNum]);
5359
5360 if (OpNum+1 != Record.size())
5361 return error(Message: "Invalid record");
5362
5363 if (IsFP) {
5364 if (!CmpInst::isFPPredicate(P: PredVal))
5365 return error(Message: "Invalid fcmp predicate");
5366 I = new FCmpInst(PredVal, LHS, RHS);
5367 } else {
5368 if (!CmpInst::isIntPredicate(P: PredVal))
5369 return error(Message: "Invalid icmp predicate");
5370 I = new ICmpInst(PredVal, LHS, RHS);
5371 }
5372
5373 ResTypeID = getVirtualTypeID(Ty: I->getType()->getScalarType());
5374 if (LHS->getType()->isVectorTy())
5375 ResTypeID = getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: ResTypeID);
5376
5377 if (FMF.any())
5378 I->setFastMathFlags(FMF);
5379 InstructionList.push_back(Elt: I);
5380 break;
5381 }
5382
5383 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5384 {
5385 unsigned Size = Record.size();
5386 if (Size == 0) {
5387 I = ReturnInst::Create(C&: Context);
5388 InstructionList.push_back(Elt: I);
5389 break;
5390 }
5391
5392 unsigned OpNum = 0;
5393 Value *Op = nullptr;
5394 unsigned OpTypeID;
5395 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
5396 return error(Message: "Invalid record");
5397 if (OpNum != Record.size())
5398 return error(Message: "Invalid record");
5399
5400 I = ReturnInst::Create(C&: Context, retVal: Op);
5401 InstructionList.push_back(Elt: I);
5402 break;
5403 }
5404 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5405 if (Record.size() != 1 && Record.size() != 3)
5406 return error(Message: "Invalid record");
5407 BasicBlock *TrueDest = getBasicBlock(ID: Record[0]);
5408 if (!TrueDest)
5409 return error(Message: "Invalid record");
5410
5411 if (Record.size() == 1) {
5412 I = BranchInst::Create(IfTrue: TrueDest);
5413 InstructionList.push_back(Elt: I);
5414 }
5415 else {
5416 BasicBlock *FalseDest = getBasicBlock(ID: Record[1]);
5417 Type *CondType = Type::getInt1Ty(C&: Context);
5418 Value *Cond = getValue(Record, Slot: 2, InstNum: NextValueNo, Ty: CondType,
5419 TyID: getVirtualTypeID(Ty: CondType), ConstExprInsertBB: CurBB);
5420 if (!FalseDest || !Cond)
5421 return error(Message: "Invalid record");
5422 I = BranchInst::Create(IfTrue: TrueDest, IfFalse: FalseDest, Cond);
5423 InstructionList.push_back(Elt: I);
5424 }
5425 break;
5426 }
5427 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5428 if (Record.size() != 1 && Record.size() != 2)
5429 return error(Message: "Invalid record");
5430 unsigned Idx = 0;
5431 Type *TokenTy = Type::getTokenTy(C&: Context);
5432 Value *CleanupPad = getValue(Record, Slot: Idx++, InstNum: NextValueNo, Ty: TokenTy,
5433 TyID: getVirtualTypeID(Ty: TokenTy), ConstExprInsertBB: CurBB);
5434 if (!CleanupPad)
5435 return error(Message: "Invalid record");
5436 BasicBlock *UnwindDest = nullptr;
5437 if (Record.size() == 2) {
5438 UnwindDest = getBasicBlock(ID: Record[Idx++]);
5439 if (!UnwindDest)
5440 return error(Message: "Invalid record");
5441 }
5442
5443 I = CleanupReturnInst::Create(CleanupPad, UnwindBB: UnwindDest);
5444 InstructionList.push_back(Elt: I);
5445 break;
5446 }
5447 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5448 if (Record.size() != 2)
5449 return error(Message: "Invalid record");
5450 unsigned Idx = 0;
5451 Type *TokenTy = Type::getTokenTy(C&: Context);
5452 Value *CatchPad = getValue(Record, Slot: Idx++, InstNum: NextValueNo, Ty: TokenTy,
5453 TyID: getVirtualTypeID(Ty: TokenTy), ConstExprInsertBB: CurBB);
5454 if (!CatchPad)
5455 return error(Message: "Invalid record");
5456 BasicBlock *BB = getBasicBlock(ID: Record[Idx++]);
5457 if (!BB)
5458 return error(Message: "Invalid record");
5459
5460 I = CatchReturnInst::Create(CatchPad, BB);
5461 InstructionList.push_back(Elt: I);
5462 break;
5463 }
5464 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5465 // We must have, at minimum, the outer scope and the number of arguments.
5466 if (Record.size() < 2)
5467 return error(Message: "Invalid record");
5468
5469 unsigned Idx = 0;
5470
5471 Type *TokenTy = Type::getTokenTy(C&: Context);
5472 Value *ParentPad = getValue(Record, Slot: Idx++, InstNum: NextValueNo, Ty: TokenTy,
5473 TyID: getVirtualTypeID(Ty: TokenTy), ConstExprInsertBB: CurBB);
5474 if (!ParentPad)
5475 return error(Message: "Invalid record");
5476
5477 unsigned NumHandlers = Record[Idx++];
5478
5479 SmallVector<BasicBlock *, 2> Handlers;
5480 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5481 BasicBlock *BB = getBasicBlock(ID: Record[Idx++]);
5482 if (!BB)
5483 return error(Message: "Invalid record");
5484 Handlers.push_back(Elt: BB);
5485 }
5486
5487 BasicBlock *UnwindDest = nullptr;
5488 if (Idx + 1 == Record.size()) {
5489 UnwindDest = getBasicBlock(ID: Record[Idx++]);
5490 if (!UnwindDest)
5491 return error(Message: "Invalid record");
5492 }
5493
5494 if (Record.size() != Idx)
5495 return error(Message: "Invalid record");
5496
5497 auto *CatchSwitch =
5498 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5499 for (BasicBlock *Handler : Handlers)
5500 CatchSwitch->addHandler(Dest: Handler);
5501 I = CatchSwitch;
5502 ResTypeID = getVirtualTypeID(Ty: I->getType());
5503 InstructionList.push_back(Elt: I);
5504 break;
5505 }
5506 case bitc::FUNC_CODE_INST_CATCHPAD:
5507 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5508 // We must have, at minimum, the outer scope and the number of arguments.
5509 if (Record.size() < 2)
5510 return error(Message: "Invalid record");
5511
5512 unsigned Idx = 0;
5513
5514 Type *TokenTy = Type::getTokenTy(C&: Context);
5515 Value *ParentPad = getValue(Record, Slot: Idx++, InstNum: NextValueNo, Ty: TokenTy,
5516 TyID: getVirtualTypeID(Ty: TokenTy), ConstExprInsertBB: CurBB);
5517 if (!ParentPad)
5518 return error(Message: "Invald record");
5519
5520 unsigned NumArgOperands = Record[Idx++];
5521
5522 SmallVector<Value *, 2> Args;
5523 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5524 Value *Val;
5525 unsigned ValTypeID;
5526 if (getValueTypePair(Record, Slot&: Idx, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: nullptr))
5527 return error(Message: "Invalid record");
5528 Args.push_back(Elt: Val);
5529 }
5530
5531 if (Record.size() != Idx)
5532 return error(Message: "Invalid record");
5533
5534 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5535 I = CleanupPadInst::Create(ParentPad, Args);
5536 else
5537 I = CatchPadInst::Create(CatchSwitch: ParentPad, Args);
5538 ResTypeID = getVirtualTypeID(Ty: I->getType());
5539 InstructionList.push_back(Elt: I);
5540 break;
5541 }
5542 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5543 // Check magic
5544 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5545 // "New" SwitchInst format with case ranges. The changes to write this
5546 // format were reverted but we still recognize bitcode that uses it.
5547 // Hopefully someday we will have support for case ranges and can use
5548 // this format again.
5549
5550 unsigned OpTyID = Record[1];
5551 Type *OpTy = getTypeByID(ID: OpTyID);
5552 unsigned ValueBitWidth = cast<IntegerType>(Val: OpTy)->getBitWidth();
5553
5554 Value *Cond = getValue(Record, Slot: 2, InstNum: NextValueNo, Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
5555 BasicBlock *Default = getBasicBlock(ID: Record[3]);
5556 if (!OpTy || !Cond || !Default)
5557 return error(Message: "Invalid record");
5558
5559 unsigned NumCases = Record[4];
5560
5561 SwitchInst *SI = SwitchInst::Create(Value: Cond, Default, NumCases);
5562 InstructionList.push_back(Elt: SI);
5563
5564 unsigned CurIdx = 5;
5565 for (unsigned i = 0; i != NumCases; ++i) {
5566 SmallVector<ConstantInt*, 1> CaseVals;
5567 unsigned NumItems = Record[CurIdx++];
5568 for (unsigned ci = 0; ci != NumItems; ++ci) {
5569 bool isSingleNumber = Record[CurIdx++];
5570
5571 APInt Low;
5572 unsigned ActiveWords = 1;
5573 if (ValueBitWidth > 64)
5574 ActiveWords = Record[CurIdx++];
5575 Low = readWideAPInt(Vals: ArrayRef(&Record[CurIdx], ActiveWords),
5576 TypeBits: ValueBitWidth);
5577 CurIdx += ActiveWords;
5578
5579 if (!isSingleNumber) {
5580 ActiveWords = 1;
5581 if (ValueBitWidth > 64)
5582 ActiveWords = Record[CurIdx++];
5583 APInt High = readWideAPInt(Vals: ArrayRef(&Record[CurIdx], ActiveWords),
5584 TypeBits: ValueBitWidth);
5585 CurIdx += ActiveWords;
5586
5587 // FIXME: It is not clear whether values in the range should be
5588 // compared as signed or unsigned values. The partially
5589 // implemented changes that used this format in the past used
5590 // unsigned comparisons.
5591 for ( ; Low.ule(RHS: High); ++Low)
5592 CaseVals.push_back(Elt: ConstantInt::get(Context, V: Low));
5593 } else
5594 CaseVals.push_back(Elt: ConstantInt::get(Context, V: Low));
5595 }
5596 BasicBlock *DestBB = getBasicBlock(ID: Record[CurIdx++]);
5597 for (ConstantInt *Cst : CaseVals)
5598 SI->addCase(OnVal: Cst, Dest: DestBB);
5599 }
5600 I = SI;
5601 break;
5602 }
5603
5604 // Old SwitchInst format without case ranges.
5605
5606 if (Record.size() < 3 || (Record.size() & 1) == 0)
5607 return error(Message: "Invalid record");
5608 unsigned OpTyID = Record[0];
5609 Type *OpTy = getTypeByID(ID: OpTyID);
5610 Value *Cond = getValue(Record, Slot: 1, InstNum: NextValueNo, Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
5611 BasicBlock *Default = getBasicBlock(ID: Record[2]);
5612 if (!OpTy || !Cond || !Default)
5613 return error(Message: "Invalid record");
5614 unsigned NumCases = (Record.size()-3)/2;
5615 SwitchInst *SI = SwitchInst::Create(Value: Cond, Default, NumCases);
5616 InstructionList.push_back(Elt: SI);
5617 for (unsigned i = 0, e = NumCases; i != e; ++i) {
5618 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5619 Val: getFnValueByID(ID: Record[3+i*2], Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: nullptr));
5620 BasicBlock *DestBB = getBasicBlock(ID: Record[1+3+i*2]);
5621 if (!CaseVal || !DestBB) {
5622 delete SI;
5623 return error(Message: "Invalid record");
5624 }
5625 SI->addCase(OnVal: CaseVal, Dest: DestBB);
5626 }
5627 I = SI;
5628 break;
5629 }
5630 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5631 if (Record.size() < 2)
5632 return error(Message: "Invalid record");
5633 unsigned OpTyID = Record[0];
5634 Type *OpTy = getTypeByID(ID: OpTyID);
5635 Value *Address = getValue(Record, Slot: 1, InstNum: NextValueNo, Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
5636 if (!OpTy || !Address)
5637 return error(Message: "Invalid record");
5638 unsigned NumDests = Record.size()-2;
5639 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5640 InstructionList.push_back(Elt: IBI);
5641 for (unsigned i = 0, e = NumDests; i != e; ++i) {
5642 if (BasicBlock *DestBB = getBasicBlock(ID: Record[2+i])) {
5643 IBI->addDestination(Dest: DestBB);
5644 } else {
5645 delete IBI;
5646 return error(Message: "Invalid record");
5647 }
5648 }
5649 I = IBI;
5650 break;
5651 }
5652
5653 case bitc::FUNC_CODE_INST_INVOKE: {
5654 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5655 if (Record.size() < 4)
5656 return error(Message: "Invalid record");
5657 unsigned OpNum = 0;
5658 AttributeList PAL = getAttributes(i: Record[OpNum++]);
5659 unsigned CCInfo = Record[OpNum++];
5660 BasicBlock *NormalBB = getBasicBlock(ID: Record[OpNum++]);
5661 BasicBlock *UnwindBB = getBasicBlock(ID: Record[OpNum++]);
5662
5663 unsigned FTyID = InvalidTypeID;
5664 FunctionType *FTy = nullptr;
5665 if ((CCInfo >> 13) & 1) {
5666 FTyID = Record[OpNum++];
5667 FTy = dyn_cast<FunctionType>(Val: getTypeByID(ID: FTyID));
5668 if (!FTy)
5669 return error(Message: "Explicit invoke type is not a function type");
5670 }
5671
5672 Value *Callee;
5673 unsigned CalleeTypeID;
5674 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Callee, TypeID&: CalleeTypeID,
5675 ConstExprInsertBB: CurBB))
5676 return error(Message: "Invalid record");
5677
5678 PointerType *CalleeTy = dyn_cast<PointerType>(Val: Callee->getType());
5679 if (!CalleeTy)
5680 return error(Message: "Callee is not a pointer");
5681 if (!FTy) {
5682 FTyID = getContainedTypeID(ID: CalleeTypeID);
5683 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
5684 if (!FTy)
5685 return error(Message: "Callee is not of pointer to function type");
5686 }
5687 if (Record.size() < FTy->getNumParams() + OpNum)
5688 return error(Message: "Insufficient operands to call");
5689
5690 SmallVector<Value*, 16> Ops;
5691 SmallVector<unsigned, 16> ArgTyIDs;
5692 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5693 unsigned ArgTyID = getContainedTypeID(ID: FTyID, Idx: i + 1);
5694 Ops.push_back(Elt: getValue(Record, Slot: OpNum, InstNum: NextValueNo, Ty: FTy->getParamType(i),
5695 TyID: ArgTyID, ConstExprInsertBB: CurBB));
5696 ArgTyIDs.push_back(Elt: ArgTyID);
5697 if (!Ops.back())
5698 return error(Message: "Invalid record");
5699 }
5700
5701 if (!FTy->isVarArg()) {
5702 if (Record.size() != OpNum)
5703 return error(Message: "Invalid record");
5704 } else {
5705 // Read type/value pairs for varargs params.
5706 while (OpNum != Record.size()) {
5707 Value *Op;
5708 unsigned OpTypeID;
5709 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
5710 return error(Message: "Invalid record");
5711 Ops.push_back(Elt: Op);
5712 ArgTyIDs.push_back(Elt: OpTypeID);
5713 }
5714 }
5715
5716 // Upgrade the bundles if needed.
5717 if (!OperandBundles.empty())
5718 UpgradeOperandBundles(OperandBundles);
5719
5720 I = InvokeInst::Create(Ty: FTy, Func: Callee, IfNormal: NormalBB, IfException: UnwindBB, Args: Ops,
5721 Bundles: OperandBundles);
5722 ResTypeID = getContainedTypeID(ID: FTyID);
5723 OperandBundles.clear();
5724 InstructionList.push_back(Elt: I);
5725 cast<InvokeInst>(Val: I)->setCallingConv(
5726 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5727 cast<InvokeInst>(Val: I)->setAttributes(PAL);
5728 if (Error Err = propagateAttributeTypes(CB: cast<CallBase>(Val: I), ArgTyIDs)) {
5729 I->deleteValue();
5730 return Err;
5731 }
5732
5733 break;
5734 }
5735 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5736 unsigned Idx = 0;
5737 Value *Val = nullptr;
5738 unsigned ValTypeID;
5739 if (getValueTypePair(Record, Slot&: Idx, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
5740 return error(Message: "Invalid record");
5741 I = ResumeInst::Create(Exn: Val);
5742 InstructionList.push_back(Elt: I);
5743 break;
5744 }
5745 case bitc::FUNC_CODE_INST_CALLBR: {
5746 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5747 unsigned OpNum = 0;
5748 AttributeList PAL = getAttributes(i: Record[OpNum++]);
5749 unsigned CCInfo = Record[OpNum++];
5750
5751 BasicBlock *DefaultDest = getBasicBlock(ID: Record[OpNum++]);
5752 unsigned NumIndirectDests = Record[OpNum++];
5753 SmallVector<BasicBlock *, 16> IndirectDests;
5754 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5755 IndirectDests.push_back(Elt: getBasicBlock(ID: Record[OpNum++]));
5756
5757 unsigned FTyID = InvalidTypeID;
5758 FunctionType *FTy = nullptr;
5759 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5760 FTyID = Record[OpNum++];
5761 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
5762 if (!FTy)
5763 return error(Message: "Explicit call type is not a function type");
5764 }
5765
5766 Value *Callee;
5767 unsigned CalleeTypeID;
5768 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Callee, TypeID&: CalleeTypeID,
5769 ConstExprInsertBB: CurBB))
5770 return error(Message: "Invalid record");
5771
5772 PointerType *OpTy = dyn_cast<PointerType>(Val: Callee->getType());
5773 if (!OpTy)
5774 return error(Message: "Callee is not a pointer type");
5775 if (!FTy) {
5776 FTyID = getContainedTypeID(ID: CalleeTypeID);
5777 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
5778 if (!FTy)
5779 return error(Message: "Callee is not of pointer to function type");
5780 }
5781 if (Record.size() < FTy->getNumParams() + OpNum)
5782 return error(Message: "Insufficient operands to call");
5783
5784 SmallVector<Value*, 16> Args;
5785 SmallVector<unsigned, 16> ArgTyIDs;
5786 // Read the fixed params.
5787 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5788 Value *Arg;
5789 unsigned ArgTyID = getContainedTypeID(ID: FTyID, Idx: i + 1);
5790 if (FTy->getParamType(i)->isLabelTy())
5791 Arg = getBasicBlock(ID: Record[OpNum]);
5792 else
5793 Arg = getValue(Record, Slot: OpNum, InstNum: NextValueNo, Ty: FTy->getParamType(i),
5794 TyID: ArgTyID, ConstExprInsertBB: CurBB);
5795 if (!Arg)
5796 return error(Message: "Invalid record");
5797 Args.push_back(Elt: Arg);
5798 ArgTyIDs.push_back(Elt: ArgTyID);
5799 }
5800
5801 // Read type/value pairs for varargs params.
5802 if (!FTy->isVarArg()) {
5803 if (OpNum != Record.size())
5804 return error(Message: "Invalid record");
5805 } else {
5806 while (OpNum != Record.size()) {
5807 Value *Op;
5808 unsigned OpTypeID;
5809 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
5810 return error(Message: "Invalid record");
5811 Args.push_back(Elt: Op);
5812 ArgTyIDs.push_back(Elt: OpTypeID);
5813 }
5814 }
5815
5816 // Upgrade the bundles if needed.
5817 if (!OperandBundles.empty())
5818 UpgradeOperandBundles(OperandBundles);
5819
5820 if (auto *IA = dyn_cast<InlineAsm>(Val: Callee)) {
5821 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5822 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5823 return CI.Type == InlineAsm::isLabel;
5824 };
5825 if (none_of(Range&: ConstraintInfo, P: IsLabelConstraint)) {
5826 // Upgrade explicit blockaddress arguments to label constraints.
5827 // Verify that the last arguments are blockaddress arguments that
5828 // match the indirect destinations. Clang always generates callbr
5829 // in this form. We could support reordering with more effort.
5830 unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5831 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5832 unsigned LabelNo = ArgNo - FirstBlockArg;
5833 auto *BA = dyn_cast<BlockAddress>(Val: Args[ArgNo]);
5834 if (!BA || BA->getFunction() != F ||
5835 LabelNo > IndirectDests.size() ||
5836 BA->getBasicBlock() != IndirectDests[LabelNo])
5837 return error(Message: "callbr argument does not match indirect dest");
5838 }
5839
5840 // Remove blockaddress arguments.
5841 Args.erase(CS: Args.begin() + FirstBlockArg, CE: Args.end());
5842 ArgTyIDs.erase(CS: ArgTyIDs.begin() + FirstBlockArg, CE: ArgTyIDs.end());
5843
5844 // Recreate the function type with less arguments.
5845 SmallVector<Type *> ArgTys;
5846 for (Value *Arg : Args)
5847 ArgTys.push_back(Elt: Arg->getType());
5848 FTy =
5849 FunctionType::get(Result: FTy->getReturnType(), Params: ArgTys, isVarArg: FTy->isVarArg());
5850
5851 // Update constraint string to use label constraints.
5852 std::string Constraints = IA->getConstraintString();
5853 unsigned ArgNo = 0;
5854 size_t Pos = 0;
5855 for (const auto &CI : ConstraintInfo) {
5856 if (CI.hasArg()) {
5857 if (ArgNo >= FirstBlockArg)
5858 Constraints.insert(pos: Pos, s: "!");
5859 ++ArgNo;
5860 }
5861
5862 // Go to next constraint in string.
5863 Pos = Constraints.find(c: ',', pos: Pos);
5864 if (Pos == std::string::npos)
5865 break;
5866 ++Pos;
5867 }
5868
5869 Callee = InlineAsm::get(Ty: FTy, AsmString: IA->getAsmString(), Constraints,
5870 hasSideEffects: IA->hasSideEffects(), isAlignStack: IA->isAlignStack(),
5871 asmDialect: IA->getDialect(), canThrow: IA->canThrow());
5872 }
5873 }
5874
5875 I = CallBrInst::Create(Ty: FTy, Func: Callee, DefaultDest, IndirectDests, Args,
5876 Bundles: OperandBundles);
5877 ResTypeID = getContainedTypeID(ID: FTyID);
5878 OperandBundles.clear();
5879 InstructionList.push_back(Elt: I);
5880 cast<CallBrInst>(Val: I)->setCallingConv(
5881 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5882 cast<CallBrInst>(Val: I)->setAttributes(PAL);
5883 if (Error Err = propagateAttributeTypes(CB: cast<CallBase>(Val: I), ArgTyIDs)) {
5884 I->deleteValue();
5885 return Err;
5886 }
5887 break;
5888 }
5889 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5890 I = new UnreachableInst(Context);
5891 InstructionList.push_back(Elt: I);
5892 break;
5893 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5894 if (Record.empty())
5895 return error(Message: "Invalid phi record");
5896 // The first record specifies the type.
5897 unsigned TyID = Record[0];
5898 Type *Ty = getTypeByID(ID: TyID);
5899 if (!Ty)
5900 return error(Message: "Invalid phi record");
5901
5902 // Phi arguments are pairs of records of [value, basic block].
5903 // There is an optional final record for fast-math-flags if this phi has a
5904 // floating-point type.
5905 size_t NumArgs = (Record.size() - 1) / 2;
5906 PHINode *PN = PHINode::Create(Ty, NumReservedValues: NumArgs);
5907 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(Val: PN)) {
5908 PN->deleteValue();
5909 return error(Message: "Invalid phi record");
5910 }
5911 InstructionList.push_back(Elt: PN);
5912
5913 SmallDenseMap<BasicBlock *, Value *> Args;
5914 for (unsigned i = 0; i != NumArgs; i++) {
5915 BasicBlock *BB = getBasicBlock(ID: Record[i * 2 + 2]);
5916 if (!BB) {
5917 PN->deleteValue();
5918 return error(Message: "Invalid phi BB");
5919 }
5920
5921 // Phi nodes may contain the same predecessor multiple times, in which
5922 // case the incoming value must be identical. Directly reuse the already
5923 // seen value here, to avoid expanding a constant expression multiple
5924 // times.
5925 auto It = Args.find(Val: BB);
5926 if (It != Args.end()) {
5927 PN->addIncoming(V: It->second, BB);
5928 continue;
5929 }
5930
5931 // If there already is a block for this edge (from a different phi),
5932 // use it.
5933 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup(Key: {BB, CurBB});
5934 if (!EdgeBB) {
5935 // Otherwise, use a temporary block (that we will discard if it
5936 // turns out to be unnecessary).
5937 if (!PhiConstExprBB)
5938 PhiConstExprBB = BasicBlock::Create(Context, Name: "phi.constexpr", Parent: F);
5939 EdgeBB = PhiConstExprBB;
5940 }
5941
5942 // With the new function encoding, it is possible that operands have
5943 // negative IDs (for forward references). Use a signed VBR
5944 // representation to keep the encoding small.
5945 Value *V;
5946 if (UseRelativeIDs)
5947 V = getValueSigned(Record, Slot: i * 2 + 1, InstNum: NextValueNo, Ty, TyID, ConstExprInsertBB: EdgeBB);
5948 else
5949 V = getValue(Record, Slot: i * 2 + 1, InstNum: NextValueNo, Ty, TyID, ConstExprInsertBB: EdgeBB);
5950 if (!V) {
5951 PN->deleteValue();
5952 PhiConstExprBB->eraseFromParent();
5953 return error(Message: "Invalid phi record");
5954 }
5955
5956 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5957 ConstExprEdgeBBs.insert(KV: {{BB, CurBB}, EdgeBB});
5958 PhiConstExprBB = nullptr;
5959 }
5960 PN->addIncoming(V, BB);
5961 Args.insert(KV: {BB, V});
5962 }
5963 I = PN;
5964 ResTypeID = TyID;
5965
5966 // If there are an even number of records, the final record must be FMF.
5967 if (Record.size() % 2 == 0) {
5968 assert(isa<FPMathOperator>(I) && "Unexpected phi type");
5969 FastMathFlags FMF = getDecodedFastMathFlags(Val: Record[Record.size() - 1]);
5970 if (FMF.any())
5971 I->setFastMathFlags(FMF);
5972 }
5973
5974 break;
5975 }
5976
5977 case bitc::FUNC_CODE_INST_LANDINGPAD:
5978 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5979 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5980 unsigned Idx = 0;
5981 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5982 if (Record.size() < 3)
5983 return error(Message: "Invalid record");
5984 } else {
5985 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5986 if (Record.size() < 4)
5987 return error(Message: "Invalid record");
5988 }
5989 ResTypeID = Record[Idx++];
5990 Type *Ty = getTypeByID(ID: ResTypeID);
5991 if (!Ty)
5992 return error(Message: "Invalid record");
5993 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5994 Value *PersFn = nullptr;
5995 unsigned PersFnTypeID;
5996 if (getValueTypePair(Record, Slot&: Idx, InstNum: NextValueNo, ResVal&: PersFn, TypeID&: PersFnTypeID,
5997 ConstExprInsertBB: nullptr))
5998 return error(Message: "Invalid record");
5999
6000 if (!F->hasPersonalityFn())
6001 F->setPersonalityFn(cast<Constant>(Val: PersFn));
6002 else if (F->getPersonalityFn() != cast<Constant>(Val: PersFn))
6003 return error(Message: "Personality function mismatch");
6004 }
6005
6006 bool IsCleanup = !!Record[Idx++];
6007 unsigned NumClauses = Record[Idx++];
6008 LandingPadInst *LP = LandingPadInst::Create(RetTy: Ty, NumReservedClauses: NumClauses);
6009 LP->setCleanup(IsCleanup);
6010 for (unsigned J = 0; J != NumClauses; ++J) {
6011 LandingPadInst::ClauseType CT =
6012 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
6013 Value *Val;
6014 unsigned ValTypeID;
6015
6016 if (getValueTypePair(Record, Slot&: Idx, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID,
6017 ConstExprInsertBB: nullptr)) {
6018 delete LP;
6019 return error(Message: "Invalid record");
6020 }
6021
6022 assert((CT != LandingPadInst::Catch ||
6023 !isa<ArrayType>(Val->getType())) &&
6024 "Catch clause has a invalid type!");
6025 assert((CT != LandingPadInst::Filter ||
6026 isa<ArrayType>(Val->getType())) &&
6027 "Filter clause has invalid type!");
6028 LP->addClause(ClauseVal: cast<Constant>(Val));
6029 }
6030
6031 I = LP;
6032 InstructionList.push_back(Elt: I);
6033 break;
6034 }
6035
6036 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
6037 if (Record.size() != 4 && Record.size() != 5)
6038 return error(Message: "Invalid record");
6039 using APV = AllocaPackedValues;
6040 const uint64_t Rec = Record[3];
6041 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Packed: Rec);
6042 const bool SwiftError = Bitfield::get<APV::SwiftError>(Packed: Rec);
6043 unsigned TyID = Record[0];
6044 Type *Ty = getTypeByID(ID: TyID);
6045 if (!Bitfield::get<APV::ExplicitType>(Packed: Rec)) {
6046 TyID = getContainedTypeID(ID: TyID);
6047 Ty = getTypeByID(ID: TyID);
6048 if (!Ty)
6049 return error(Message: "Missing element type for old-style alloca");
6050 }
6051 unsigned OpTyID = Record[1];
6052 Type *OpTy = getTypeByID(ID: OpTyID);
6053 Value *Size = getFnValueByID(ID: Record[2], Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
6054 MaybeAlign Align;
6055 uint64_t AlignExp =
6056 Bitfield::get<APV::AlignLower>(Packed: Rec) |
6057 (Bitfield::get<APV::AlignUpper>(Packed: Rec) << APV::AlignLower::Bits);
6058 if (Error Err = parseAlignmentValue(Exponent: AlignExp, Alignment&: Align)) {
6059 return Err;
6060 }
6061 if (!Ty || !Size)
6062 return error(Message: "Invalid record");
6063
6064 const DataLayout &DL = TheModule->getDataLayout();
6065 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
6066
6067 SmallPtrSet<Type *, 4> Visited;
6068 if (!Align && !Ty->isSized(Visited: &Visited))
6069 return error(Message: "alloca of unsized type");
6070 if (!Align)
6071 Align = DL.getPrefTypeAlign(Ty);
6072
6073 if (!Size->getType()->isIntegerTy())
6074 return error(Message: "alloca element count must have integer type");
6075
6076 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
6077 AI->setUsedWithInAlloca(InAlloca);
6078 AI->setSwiftError(SwiftError);
6079 I = AI;
6080 ResTypeID = getVirtualTypeID(Ty: AI->getType(), ChildTypeIDs: TyID);
6081 InstructionList.push_back(Elt: I);
6082 break;
6083 }
6084 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
6085 unsigned OpNum = 0;
6086 Value *Op;
6087 unsigned OpTypeID;
6088 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB) ||
6089 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
6090 return error(Message: "Invalid record");
6091
6092 if (!isa<PointerType>(Val: Op->getType()))
6093 return error(Message: "Load operand is not a pointer type");
6094
6095 Type *Ty = nullptr;
6096 if (OpNum + 3 == Record.size()) {
6097 ResTypeID = Record[OpNum++];
6098 Ty = getTypeByID(ID: ResTypeID);
6099 } else {
6100 ResTypeID = getContainedTypeID(ID: OpTypeID);
6101 Ty = getTypeByID(ID: ResTypeID);
6102 }
6103
6104 if (!Ty)
6105 return error(Message: "Missing load type");
6106
6107 if (Error Err = typeCheckLoadStoreInst(ValType: Ty, PtrType: Op->getType()))
6108 return Err;
6109
6110 MaybeAlign Align;
6111 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum], Alignment&: Align))
6112 return Err;
6113 SmallPtrSet<Type *, 4> Visited;
6114 if (!Align && !Ty->isSized(Visited: &Visited))
6115 return error(Message: "load of unsized type");
6116 if (!Align)
6117 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
6118 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
6119 InstructionList.push_back(Elt: I);
6120 break;
6121 }
6122 case bitc::FUNC_CODE_INST_LOADATOMIC: {
6123 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
6124 unsigned OpNum = 0;
6125 Value *Op;
6126 unsigned OpTypeID;
6127 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB) ||
6128 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
6129 return error(Message: "Invalid record");
6130
6131 if (!isa<PointerType>(Val: Op->getType()))
6132 return error(Message: "Load operand is not a pointer type");
6133
6134 Type *Ty = nullptr;
6135 if (OpNum + 5 == Record.size()) {
6136 ResTypeID = Record[OpNum++];
6137 Ty = getTypeByID(ID: ResTypeID);
6138 } else {
6139 ResTypeID = getContainedTypeID(ID: OpTypeID);
6140 Ty = getTypeByID(ID: ResTypeID);
6141 }
6142
6143 if (!Ty)
6144 return error(Message: "Missing atomic load type");
6145
6146 if (Error Err = typeCheckLoadStoreInst(ValType: Ty, PtrType: Op->getType()))
6147 return Err;
6148
6149 AtomicOrdering Ordering = getDecodedOrdering(Val: Record[OpNum + 2]);
6150 if (Ordering == AtomicOrdering::NotAtomic ||
6151 Ordering == AtomicOrdering::Release ||
6152 Ordering == AtomicOrdering::AcquireRelease)
6153 return error(Message: "Invalid record");
6154 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6155 return error(Message: "Invalid record");
6156 SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 3]);
6157
6158 MaybeAlign Align;
6159 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum], Alignment&: Align))
6160 return Err;
6161 if (!Align)
6162 return error(Message: "Alignment missing from atomic load");
6163 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
6164 InstructionList.push_back(Elt: I);
6165 break;
6166 }
6167 case bitc::FUNC_CODE_INST_STORE:
6168 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
6169 unsigned OpNum = 0;
6170 Value *Val, *Ptr;
6171 unsigned PtrTypeID, ValTypeID;
6172 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB))
6173 return error(Message: "Invalid record");
6174
6175 if (BitCode == bitc::FUNC_CODE_INST_STORE) {
6176 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
6177 return error(Message: "Invalid record");
6178 } else {
6179 ValTypeID = getContainedTypeID(ID: PtrTypeID);
6180 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: getTypeByID(ID: ValTypeID),
6181 TyID: ValTypeID, ResVal&: Val, ConstExprInsertBB: CurBB))
6182 return error(Message: "Invalid record");
6183 }
6184
6185 if (OpNum + 2 != Record.size())
6186 return error(Message: "Invalid record");
6187
6188 if (Error Err = typeCheckLoadStoreInst(ValType: Val->getType(), PtrType: Ptr->getType()))
6189 return Err;
6190 MaybeAlign Align;
6191 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum], Alignment&: Align))
6192 return Err;
6193 SmallPtrSet<Type *, 4> Visited;
6194 if (!Align && !Val->getType()->isSized(Visited: &Visited))
6195 return error(Message: "store of unsized type");
6196 if (!Align)
6197 Align = TheModule->getDataLayout().getABITypeAlign(Ty: Val->getType());
6198 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
6199 InstructionList.push_back(Elt: I);
6200 break;
6201 }
6202 case bitc::FUNC_CODE_INST_STOREATOMIC:
6203 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
6204 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
6205 unsigned OpNum = 0;
6206 Value *Val, *Ptr;
6207 unsigned PtrTypeID, ValTypeID;
6208 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB) ||
6209 !isa<PointerType>(Val: Ptr->getType()))
6210 return error(Message: "Invalid record");
6211 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
6212 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
6213 return error(Message: "Invalid record");
6214 } else {
6215 ValTypeID = getContainedTypeID(ID: PtrTypeID);
6216 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: getTypeByID(ID: ValTypeID),
6217 TyID: ValTypeID, ResVal&: Val, ConstExprInsertBB: CurBB))
6218 return error(Message: "Invalid record");
6219 }
6220
6221 if (OpNum + 4 != Record.size())
6222 return error(Message: "Invalid record");
6223
6224 if (Error Err = typeCheckLoadStoreInst(ValType: Val->getType(), PtrType: Ptr->getType()))
6225 return Err;
6226 AtomicOrdering Ordering = getDecodedOrdering(Val: Record[OpNum + 2]);
6227 if (Ordering == AtomicOrdering::NotAtomic ||
6228 Ordering == AtomicOrdering::Acquire ||
6229 Ordering == AtomicOrdering::AcquireRelease)
6230 return error(Message: "Invalid record");
6231 SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 3]);
6232 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
6233 return error(Message: "Invalid record");
6234
6235 MaybeAlign Align;
6236 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum], Alignment&: Align))
6237 return Err;
6238 if (!Align)
6239 return error(Message: "Alignment missing from atomic store");
6240 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
6241 InstructionList.push_back(Elt: I);
6242 break;
6243 }
6244 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
6245 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
6246 // failure_ordering?, weak?]
6247 const size_t NumRecords = Record.size();
6248 unsigned OpNum = 0;
6249 Value *Ptr = nullptr;
6250 unsigned PtrTypeID;
6251 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB))
6252 return error(Message: "Invalid record");
6253
6254 if (!isa<PointerType>(Val: Ptr->getType()))
6255 return error(Message: "Cmpxchg operand is not a pointer type");
6256
6257 Value *Cmp = nullptr;
6258 unsigned CmpTypeID = getContainedTypeID(ID: PtrTypeID);
6259 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: getTypeByID(ID: CmpTypeID),
6260 TyID: CmpTypeID, ResVal&: Cmp, ConstExprInsertBB: CurBB))
6261 return error(Message: "Invalid record");
6262
6263 Value *New = nullptr;
6264 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: Cmp->getType(), TyID: CmpTypeID,
6265 ResVal&: New, ConstExprInsertBB: CurBB) ||
6266 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
6267 return error(Message: "Invalid record");
6268
6269 const AtomicOrdering SuccessOrdering =
6270 getDecodedOrdering(Val: Record[OpNum + 1]);
6271 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
6272 SuccessOrdering == AtomicOrdering::Unordered)
6273 return error(Message: "Invalid record");
6274
6275 const SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 2]);
6276
6277 if (Error Err = typeCheckLoadStoreInst(ValType: Cmp->getType(), PtrType: Ptr->getType()))
6278 return Err;
6279
6280 const AtomicOrdering FailureOrdering =
6281 NumRecords < 7
6282 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
6283 : getDecodedOrdering(Val: Record[OpNum + 3]);
6284
6285 if (FailureOrdering == AtomicOrdering::NotAtomic ||
6286 FailureOrdering == AtomicOrdering::Unordered)
6287 return error(Message: "Invalid record");
6288
6289 const Align Alignment(
6290 TheModule->getDataLayout().getTypeStoreSize(Ty: Cmp->getType()));
6291
6292 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
6293 FailureOrdering, SSID);
6294 cast<AtomicCmpXchgInst>(Val: I)->setVolatile(Record[OpNum]);
6295
6296 if (NumRecords < 8) {
6297 // Before weak cmpxchgs existed, the instruction simply returned the
6298 // value loaded from memory, so bitcode files from that era will be
6299 // expecting the first component of a modern cmpxchg.
6300 I->insertInto(ParentBB: CurBB, It: CurBB->end());
6301 I = ExtractValueInst::Create(Agg: I, Idxs: 0);
6302 ResTypeID = CmpTypeID;
6303 } else {
6304 cast<AtomicCmpXchgInst>(Val: I)->setWeak(Record[OpNum + 4]);
6305 unsigned I1TypeID = getVirtualTypeID(Ty: Type::getInt1Ty(C&: Context));
6306 ResTypeID = getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: {CmpTypeID, I1TypeID});
6307 }
6308
6309 InstructionList.push_back(Elt: I);
6310 break;
6311 }
6312 case bitc::FUNC_CODE_INST_CMPXCHG: {
6313 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
6314 // failure_ordering, weak, align?]
6315 const size_t NumRecords = Record.size();
6316 unsigned OpNum = 0;
6317 Value *Ptr = nullptr;
6318 unsigned PtrTypeID;
6319 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB))
6320 return error(Message: "Invalid record");
6321
6322 if (!isa<PointerType>(Val: Ptr->getType()))
6323 return error(Message: "Cmpxchg operand is not a pointer type");
6324
6325 Value *Cmp = nullptr;
6326 unsigned CmpTypeID;
6327 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Cmp, TypeID&: CmpTypeID, ConstExprInsertBB: CurBB))
6328 return error(Message: "Invalid record");
6329
6330 Value *Val = nullptr;
6331 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo, Ty: Cmp->getType(), TyID: CmpTypeID, ResVal&: Val,
6332 ConstExprInsertBB: CurBB))
6333 return error(Message: "Invalid record");
6334
6335 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
6336 return error(Message: "Invalid record");
6337
6338 const bool IsVol = Record[OpNum];
6339
6340 const AtomicOrdering SuccessOrdering =
6341 getDecodedOrdering(Val: Record[OpNum + 1]);
6342 if (!AtomicCmpXchgInst::isValidSuccessOrdering(Ordering: SuccessOrdering))
6343 return error(Message: "Invalid cmpxchg success ordering");
6344
6345 const SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 2]);
6346
6347 if (Error Err = typeCheckLoadStoreInst(ValType: Cmp->getType(), PtrType: Ptr->getType()))
6348 return Err;
6349
6350 const AtomicOrdering FailureOrdering =
6351 getDecodedOrdering(Val: Record[OpNum + 3]);
6352 if (!AtomicCmpXchgInst::isValidFailureOrdering(Ordering: FailureOrdering))
6353 return error(Message: "Invalid cmpxchg failure ordering");
6354
6355 const bool IsWeak = Record[OpNum + 4];
6356
6357 MaybeAlign Alignment;
6358
6359 if (NumRecords == (OpNum + 6)) {
6360 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum + 5], Alignment))
6361 return Err;
6362 }
6363 if (!Alignment)
6364 Alignment =
6365 Align(TheModule->getDataLayout().getTypeStoreSize(Ty: Cmp->getType()));
6366
6367 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
6368 FailureOrdering, SSID);
6369 cast<AtomicCmpXchgInst>(Val: I)->setVolatile(IsVol);
6370 cast<AtomicCmpXchgInst>(Val: I)->setWeak(IsWeak);
6371
6372 unsigned I1TypeID = getVirtualTypeID(Ty: Type::getInt1Ty(C&: Context));
6373 ResTypeID = getVirtualTypeID(Ty: I->getType(), ChildTypeIDs: {CmpTypeID, I1TypeID});
6374
6375 InstructionList.push_back(Elt: I);
6376 break;
6377 }
6378 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
6379 case bitc::FUNC_CODE_INST_ATOMICRMW: {
6380 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
6381 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
6382 const size_t NumRecords = Record.size();
6383 unsigned OpNum = 0;
6384
6385 Value *Ptr = nullptr;
6386 unsigned PtrTypeID;
6387 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Ptr, TypeID&: PtrTypeID, ConstExprInsertBB: CurBB))
6388 return error(Message: "Invalid record");
6389
6390 if (!isa<PointerType>(Val: Ptr->getType()))
6391 return error(Message: "Invalid record");
6392
6393 Value *Val = nullptr;
6394 unsigned ValTypeID = InvalidTypeID;
6395 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
6396 ValTypeID = getContainedTypeID(ID: PtrTypeID);
6397 if (popValue(Record, Slot&: OpNum, InstNum: NextValueNo,
6398 Ty: getTypeByID(ID: ValTypeID), TyID: ValTypeID, ResVal&: Val, ConstExprInsertBB: CurBB))
6399 return error(Message: "Invalid record");
6400 } else {
6401 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Val, TypeID&: ValTypeID, ConstExprInsertBB: CurBB))
6402 return error(Message: "Invalid record");
6403 }
6404
6405 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
6406 return error(Message: "Invalid record");
6407
6408 const AtomicRMWInst::BinOp Operation =
6409 getDecodedRMWOperation(Val: Record[OpNum]);
6410 if (Operation < AtomicRMWInst::FIRST_BINOP ||
6411 Operation > AtomicRMWInst::LAST_BINOP)
6412 return error(Message: "Invalid record");
6413
6414 const bool IsVol = Record[OpNum + 1];
6415
6416 const AtomicOrdering Ordering = getDecodedOrdering(Val: Record[OpNum + 2]);
6417 if (Ordering == AtomicOrdering::NotAtomic ||
6418 Ordering == AtomicOrdering::Unordered)
6419 return error(Message: "Invalid record");
6420
6421 const SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[OpNum + 3]);
6422
6423 MaybeAlign Alignment;
6424
6425 if (NumRecords == (OpNum + 5)) {
6426 if (Error Err = parseAlignmentValue(Exponent: Record[OpNum + 4], Alignment))
6427 return Err;
6428 }
6429
6430 if (!Alignment)
6431 Alignment =
6432 Align(TheModule->getDataLayout().getTypeStoreSize(Ty: Val->getType()));
6433
6434 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
6435 ResTypeID = ValTypeID;
6436 cast<AtomicRMWInst>(Val: I)->setVolatile(IsVol);
6437
6438 InstructionList.push_back(Elt: I);
6439 break;
6440 }
6441 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
6442 if (2 != Record.size())
6443 return error(Message: "Invalid record");
6444 AtomicOrdering Ordering = getDecodedOrdering(Val: Record[0]);
6445 if (Ordering == AtomicOrdering::NotAtomic ||
6446 Ordering == AtomicOrdering::Unordered ||
6447 Ordering == AtomicOrdering::Monotonic)
6448 return error(Message: "Invalid record");
6449 SyncScope::ID SSID = getDecodedSyncScopeID(Val: Record[1]);
6450 I = new FenceInst(Context, Ordering, SSID);
6451 InstructionList.push_back(Elt: I);
6452 break;
6453 }
6454 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: {
6455 // DbgLabelRecords are placed after the Instructions that they are
6456 // attached to.
6457 SeenDebugRecord = true;
6458 Instruction *Inst = getLastInstruction();
6459 if (!Inst)
6460 return error(Message: "Invalid dbg record: missing instruction");
6461 DILocation *DIL = cast<DILocation>(Val: getFnMetadataByID(ID: Record[0]));
6462 DILabel *Label = cast<DILabel>(Val: getFnMetadataByID(ID: Record[1]));
6463 Inst->getParent()->insertDbgRecordBefore(
6464 DR: new DbgLabelRecord(Label, DebugLoc(DIL)), Here: Inst->getIterator());
6465 continue; // This isn't an instruction.
6466 }
6467 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6468 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6469 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6470 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6471 // DbgVariableRecords are placed after the Instructions that they are
6472 // attached to.
6473 SeenDebugRecord = true;
6474 Instruction *Inst = getLastInstruction();
6475 if (!Inst)
6476 return error(Message: "Invalid dbg record: missing instruction");
6477
6478 // First 3 fields are common to all kinds:
6479 // DILocation, DILocalVariable, DIExpression
6480 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE)
6481 // ..., LocationMetadata
6482 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd)
6483 // ..., Value
6484 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE)
6485 // ..., LocationMetadata
6486 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN)
6487 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata
6488 unsigned Slot = 0;
6489 // Common fields (0-2).
6490 DILocation *DIL = cast<DILocation>(Val: getFnMetadataByID(ID: Record[Slot++]));
6491 DILocalVariable *Var =
6492 cast<DILocalVariable>(Val: getFnMetadataByID(ID: Record[Slot++]));
6493 DIExpression *Expr =
6494 cast<DIExpression>(Val: getFnMetadataByID(ID: Record[Slot++]));
6495
6496 // Union field (3: LocationMetadata | Value).
6497 Metadata *RawLocation = nullptr;
6498 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) {
6499 Value *V = nullptr;
6500 unsigned TyID = 0;
6501 // We never expect to see a fwd reference value here because
6502 // use-before-defs are encoded with the standard non-abbrev record
6503 // type (they'd require encoding the type too, and they're rare). As a
6504 // result, getValueTypePair only ever increments Slot by one here (once
6505 // for the value, never twice for value and type).
6506 unsigned SlotBefore = Slot;
6507 if (getValueTypePair(Record, Slot, InstNum: NextValueNo, ResVal&: V, TypeID&: TyID, ConstExprInsertBB: CurBB))
6508 return error(Message: "Invalid dbg record: invalid value");
6509 (void)SlotBefore;
6510 assert((SlotBefore == Slot - 1) && "unexpected fwd ref");
6511 RawLocation = ValueAsMetadata::get(V);
6512 } else {
6513 RawLocation = getFnMetadataByID(ID: Record[Slot++]);
6514 }
6515
6516 DbgVariableRecord *DVR = nullptr;
6517 switch (BitCode) {
6518 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE:
6519 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE:
6520 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6521 DbgVariableRecord::LocationType::Value);
6522 break;
6523 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE:
6524 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL,
6525 DbgVariableRecord::LocationType::Declare);
6526 break;
6527 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: {
6528 DIAssignID *ID = cast<DIAssignID>(Val: getFnMetadataByID(ID: Record[Slot++]));
6529 DIExpression *AddrExpr =
6530 cast<DIExpression>(Val: getFnMetadataByID(ID: Record[Slot++]));
6531 Metadata *Addr = getFnMetadataByID(ID: Record[Slot++]);
6532 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr,
6533 DIL);
6534 break;
6535 }
6536 default:
6537 llvm_unreachable("Unknown DbgVariableRecord bitcode");
6538 }
6539 Inst->getParent()->insertDbgRecordBefore(DR: DVR, Here: Inst->getIterator());
6540 continue; // This isn't an instruction.
6541 }
6542 case bitc::FUNC_CODE_INST_CALL: {
6543 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
6544 if (Record.size() < 3)
6545 return error(Message: "Invalid record");
6546
6547 unsigned OpNum = 0;
6548 AttributeList PAL = getAttributes(i: Record[OpNum++]);
6549 unsigned CCInfo = Record[OpNum++];
6550
6551 FastMathFlags FMF;
6552 if ((CCInfo >> bitc::CALL_FMF) & 1) {
6553 FMF = getDecodedFastMathFlags(Val: Record[OpNum++]);
6554 if (!FMF.any())
6555 return error(Message: "Fast math flags indicator set for call with no FMF");
6556 }
6557
6558 unsigned FTyID = InvalidTypeID;
6559 FunctionType *FTy = nullptr;
6560 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
6561 FTyID = Record[OpNum++];
6562 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
6563 if (!FTy)
6564 return error(Message: "Explicit call type is not a function type");
6565 }
6566
6567 Value *Callee;
6568 unsigned CalleeTypeID;
6569 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Callee, TypeID&: CalleeTypeID,
6570 ConstExprInsertBB: CurBB))
6571 return error(Message: "Invalid record");
6572
6573 PointerType *OpTy = dyn_cast<PointerType>(Val: Callee->getType());
6574 if (!OpTy)
6575 return error(Message: "Callee is not a pointer type");
6576 if (!FTy) {
6577 FTyID = getContainedTypeID(ID: CalleeTypeID);
6578 FTy = dyn_cast_or_null<FunctionType>(Val: getTypeByID(ID: FTyID));
6579 if (!FTy)
6580 return error(Message: "Callee is not of pointer to function type");
6581 }
6582 if (Record.size() < FTy->getNumParams() + OpNum)
6583 return error(Message: "Insufficient operands to call");
6584
6585 SmallVector<Value*, 16> Args;
6586 SmallVector<unsigned, 16> ArgTyIDs;
6587 // Read the fixed params.
6588 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
6589 unsigned ArgTyID = getContainedTypeID(ID: FTyID, Idx: i + 1);
6590 if (FTy->getParamType(i)->isLabelTy())
6591 Args.push_back(Elt: getBasicBlock(ID: Record[OpNum]));
6592 else
6593 Args.push_back(Elt: getValue(Record, Slot: OpNum, InstNum: NextValueNo,
6594 Ty: FTy->getParamType(i), TyID: ArgTyID, ConstExprInsertBB: CurBB));
6595 ArgTyIDs.push_back(Elt: ArgTyID);
6596 if (!Args.back())
6597 return error(Message: "Invalid record");
6598 }
6599
6600 // Read type/value pairs for varargs params.
6601 if (!FTy->isVarArg()) {
6602 if (OpNum != Record.size())
6603 return error(Message: "Invalid record");
6604 } else {
6605 while (OpNum != Record.size()) {
6606 Value *Op;
6607 unsigned OpTypeID;
6608 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
6609 return error(Message: "Invalid record");
6610 Args.push_back(Elt: Op);
6611 ArgTyIDs.push_back(Elt: OpTypeID);
6612 }
6613 }
6614
6615 // Upgrade the bundles if needed.
6616 if (!OperandBundles.empty())
6617 UpgradeOperandBundles(OperandBundles);
6618
6619 I = CallInst::Create(Ty: FTy, Func: Callee, Args, Bundles: OperandBundles);
6620 ResTypeID = getContainedTypeID(ID: FTyID);
6621 OperandBundles.clear();
6622 InstructionList.push_back(Elt: I);
6623 cast<CallInst>(Val: I)->setCallingConv(
6624 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
6625 CallInst::TailCallKind TCK = CallInst::TCK_None;
6626 if (CCInfo & (1 << bitc::CALL_TAIL))
6627 TCK = CallInst::TCK_Tail;
6628 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
6629 TCK = CallInst::TCK_MustTail;
6630 if (CCInfo & (1 << bitc::CALL_NOTAIL))
6631 TCK = CallInst::TCK_NoTail;
6632 cast<CallInst>(Val: I)->setTailCallKind(TCK);
6633 cast<CallInst>(Val: I)->setAttributes(PAL);
6634 if (isa<DbgInfoIntrinsic>(Val: I))
6635 SeenDebugIntrinsic = true;
6636 if (Error Err = propagateAttributeTypes(CB: cast<CallBase>(Val: I), ArgTyIDs)) {
6637 I->deleteValue();
6638 return Err;
6639 }
6640 if (FMF.any()) {
6641 if (!isa<FPMathOperator>(Val: I))
6642 return error(Message: "Fast-math-flags specified for call without "
6643 "floating-point scalar or vector return type");
6644 I->setFastMathFlags(FMF);
6645 }
6646 break;
6647 }
6648 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
6649 if (Record.size() < 3)
6650 return error(Message: "Invalid record");
6651 unsigned OpTyID = Record[0];
6652 Type *OpTy = getTypeByID(ID: OpTyID);
6653 Value *Op = getValue(Record, Slot: 1, InstNum: NextValueNo, Ty: OpTy, TyID: OpTyID, ConstExprInsertBB: CurBB);
6654 ResTypeID = Record[2];
6655 Type *ResTy = getTypeByID(ID: ResTypeID);
6656 if (!OpTy || !Op || !ResTy)
6657 return error(Message: "Invalid record");
6658 I = new VAArgInst(Op, ResTy);
6659 InstructionList.push_back(Elt: I);
6660 break;
6661 }
6662
6663 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
6664 // A call or an invoke can be optionally prefixed with some variable
6665 // number of operand bundle blocks. These blocks are read into
6666 // OperandBundles and consumed at the next call or invoke instruction.
6667
6668 if (Record.empty() || Record[0] >= BundleTags.size())
6669 return error(Message: "Invalid record");
6670
6671 std::vector<Value *> Inputs;
6672
6673 unsigned OpNum = 1;
6674 while (OpNum != Record.size()) {
6675 Value *Op;
6676 unsigned OpTypeID;
6677 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
6678 return error(Message: "Invalid record");
6679 Inputs.push_back(x: Op);
6680 }
6681
6682 OperandBundles.emplace_back(args&: BundleTags[Record[0]], args: std::move(Inputs));
6683 continue;
6684 }
6685
6686 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
6687 unsigned OpNum = 0;
6688 Value *Op = nullptr;
6689 unsigned OpTypeID;
6690 if (getValueTypePair(Record, Slot&: OpNum, InstNum: NextValueNo, ResVal&: Op, TypeID&: OpTypeID, ConstExprInsertBB: CurBB))
6691 return error(Message: "Invalid record");
6692 if (OpNum != Record.size())
6693 return error(Message: "Invalid record");
6694
6695 I = new FreezeInst(Op);
6696 ResTypeID = OpTypeID;
6697 InstructionList.push_back(Elt: I);
6698 break;
6699 }
6700 }
6701
6702 // Add instruction to end of current BB. If there is no current BB, reject
6703 // this file.
6704 if (!CurBB) {
6705 I->deleteValue();
6706 return error(Message: "Invalid instruction with no BB");
6707 }
6708 if (!OperandBundles.empty()) {
6709 I->deleteValue();
6710 return error(Message: "Operand bundles found with no consumer");
6711 }
6712 I->insertInto(ParentBB: CurBB, It: CurBB->end());
6713
6714 // If this was a terminator instruction, move to the next block.
6715 if (I->isTerminator()) {
6716 ++CurBBNo;
6717 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
6718 }
6719
6720 // Non-void values get registered in the value table for future use.
6721 if (!I->getType()->isVoidTy()) {
6722 assert(I->getType() == getTypeByID(ResTypeID) &&
6723 "Incorrect result type ID");
6724 if (Error Err = ValueList.assignValue(Idx: NextValueNo++, V: I, TypeID: ResTypeID))
6725 return Err;
6726 }
6727 }
6728
6729OutOfRecordLoop:
6730
6731 if (!OperandBundles.empty())
6732 return error(Message: "Operand bundles found with no consumer");
6733
6734 // Check the function list for unresolved values.
6735 if (Argument *A = dyn_cast<Argument>(Val: ValueList.back())) {
6736 if (!A->getParent()) {
6737 // We found at least one unresolved value. Nuke them all to avoid leaks.
6738 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
6739 if ((A = dyn_cast_or_null<Argument>(Val: ValueList[i])) && !A->getParent()) {
6740 A->replaceAllUsesWith(V: PoisonValue::get(T: A->getType()));
6741 delete A;
6742 }
6743 }
6744 return error(Message: "Never resolved value found in function");
6745 }
6746 }
6747
6748 // Unexpected unresolved metadata about to be dropped.
6749 if (MDLoader->hasFwdRefs())
6750 return error(Message: "Invalid function metadata: outgoing forward refs");
6751
6752 if (PhiConstExprBB)
6753 PhiConstExprBB->eraseFromParent();
6754
6755 for (const auto &Pair : ConstExprEdgeBBs) {
6756 BasicBlock *From = Pair.first.first;
6757 BasicBlock *To = Pair.first.second;
6758 BasicBlock *EdgeBB = Pair.second;
6759 BranchInst::Create(IfTrue: To, InsertAtEnd: EdgeBB);
6760 From->getTerminator()->replaceSuccessorWith(OldBB: To, NewBB: EdgeBB);
6761 To->replacePhiUsesWith(Old: From, New: EdgeBB);
6762 EdgeBB->moveBefore(MovePos: To);
6763 }
6764
6765 // Trim the value list down to the size it was before we parsed this function.
6766 ValueList.shrinkTo(N: ModuleValueListSize);
6767 MDLoader->shrinkTo(N: ModuleMDLoaderSize);
6768 std::vector<BasicBlock*>().swap(x&: FunctionBBs);
6769 return Error::success();
6770}
6771
6772/// Find the function body in the bitcode stream
6773Error BitcodeReader::findFunctionInStream(
6774 Function *F,
6775 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
6776 while (DeferredFunctionInfoIterator->second == 0) {
6777 // This is the fallback handling for the old format bitcode that
6778 // didn't contain the function index in the VST, or when we have
6779 // an anonymous function which would not have a VST entry.
6780 // Assert that we have one of those two cases.
6781 assert(VSTOffset == 0 || !F->hasName());
6782 // Parse the next body in the stream and set its position in the
6783 // DeferredFunctionInfo map.
6784 if (Error Err = rememberAndSkipFunctionBodies())
6785 return Err;
6786 }
6787 return Error::success();
6788}
6789
6790SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
6791 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
6792 return SyncScope::ID(Val);
6793 if (Val >= SSIDs.size())
6794 return SyncScope::System; // Map unknown synchronization scopes to system.
6795 return SSIDs[Val];
6796}
6797
6798//===----------------------------------------------------------------------===//
6799// GVMaterializer implementation
6800//===----------------------------------------------------------------------===//
6801
6802Error BitcodeReader::materialize(GlobalValue *GV) {
6803 Function *F = dyn_cast<Function>(Val: GV);
6804 // If it's not a function or is already material, ignore the request.
6805 if (!F || !F->isMaterializable())
6806 return Error::success();
6807
6808 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(Val: F);
6809 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
6810 // If its position is recorded as 0, its body is somewhere in the stream
6811 // but we haven't seen it yet.
6812 if (DFII->second == 0)
6813 if (Error Err = findFunctionInStream(F, DeferredFunctionInfoIterator: DFII))
6814 return Err;
6815
6816 // Materialize metadata before parsing any function bodies.
6817 if (Error Err = materializeMetadata())
6818 return Err;
6819
6820 // Move the bit stream to the saved position of the deferred function body.
6821 if (Error JumpFailed = Stream.JumpToBit(BitNo: DFII->second))
6822 return JumpFailed;
6823
6824 // Regardless of the debug info format we want to end up in, we need
6825 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode.
6826 F->IsNewDbgInfoFormat = true;
6827
6828 if (Error Err = parseFunctionBody(F))
6829 return Err;
6830 F->setIsMaterializable(false);
6831
6832 // All parsed Functions should load into the debug info format dictated by the
6833 // Module, unless we're attempting to preserve the input debug info format.
6834 if (SeenDebugIntrinsic && SeenDebugRecord)
6835 return error(Message: "Mixed debug intrinsics and debug records in bitcode module!");
6836 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) {
6837 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord;
6838 bool NewDbgInfoFormatDesired =
6839 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat;
6840 if (SeenAnyDebugInfo) {
6841 UseNewDbgInfoFormat = SeenDebugRecord;
6842 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord;
6843 WriteNewDbgInfoFormat = SeenDebugRecord;
6844 }
6845 // If the module's debug info format doesn't match the observed input
6846 // format, then set its format now; we don't need to call the conversion
6847 // function because there must be no existing intrinsics to convert.
6848 // Otherwise, just set the format on this function now.
6849 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat)
6850 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6851 else
6852 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired);
6853 } else {
6854 // If we aren't preserving formats, we use the Module flag to get our
6855 // desired format instead of reading flags, in case we are lazy-loading and
6856 // the format of the module has been changed since it was set by the flags.
6857 // We only need to convert debug info here if we have debug records but
6858 // desire the intrinsic format; everything else is a no-op or handled by the
6859 // autoupgrader.
6860 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat;
6861 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord)
6862 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat);
6863 else
6864 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat);
6865 }
6866
6867 if (StripDebugInfo)
6868 stripDebugInfo(F&: *F);
6869
6870 // Upgrade any old intrinsic calls in the function.
6871 for (auto &I : UpgradedIntrinsics) {
6872 for (User *U : llvm::make_early_inc_range(Range: I.first->materialized_users()))
6873 if (CallInst *CI = dyn_cast<CallInst>(Val: U))
6874 UpgradeIntrinsicCall(CB: CI, NewFn: I.second);
6875 }
6876
6877 // Finish fn->subprogram upgrade for materialized functions.
6878 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
6879 F->setSubprogram(SP);
6880
6881 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
6882 if (!MDLoader->isStrippingTBAA()) {
6883 for (auto &I : instructions(F)) {
6884 MDNode *TBAA = I.getMetadata(KindID: LLVMContext::MD_tbaa);
6885 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, MD: TBAA))
6886 continue;
6887 MDLoader->setStripTBAA(true);
6888 stripTBAA(M: F->getParent());
6889 }
6890 }
6891
6892 for (auto &I : instructions(F)) {
6893 // "Upgrade" older incorrect branch weights by dropping them.
6894 if (auto *MD = I.getMetadata(KindID: LLVMContext::MD_prof)) {
6895 if (MD->getOperand(I: 0) != nullptr && isa<MDString>(Val: MD->getOperand(I: 0))) {
6896 MDString *MDS = cast<MDString>(Val: MD->getOperand(I: 0));
6897 StringRef ProfName = MDS->getString();
6898 // Check consistency of !prof branch_weights metadata.
6899 if (!ProfName.equals(RHS: "branch_weights"))
6900 continue;
6901 unsigned ExpectedNumOperands = 0;
6902 if (BranchInst *BI = dyn_cast<BranchInst>(Val: &I))
6903 ExpectedNumOperands = BI->getNumSuccessors();
6904 else if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: &I))
6905 ExpectedNumOperands = SI->getNumSuccessors();
6906 else if (isa<CallInst>(Val: &I))
6907 ExpectedNumOperands = 1;
6908 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(Val: &I))
6909 ExpectedNumOperands = IBI->getNumDestinations();
6910 else if (isa<SelectInst>(Val: &I))
6911 ExpectedNumOperands = 2;
6912 else
6913 continue; // ignore and continue.
6914
6915 // If branch weight doesn't match, just strip branch weight.
6916 if (MD->getNumOperands() != 1 + ExpectedNumOperands)
6917 I.setMetadata(KindID: LLVMContext::MD_prof, Node: nullptr);
6918 }
6919 }
6920
6921 // Remove incompatible attributes on function calls.
6922 if (auto *CI = dyn_cast<CallBase>(Val: &I)) {
6923 CI->removeRetAttrs(AttrsToRemove: AttributeFuncs::typeIncompatible(
6924 Ty: CI->getFunctionType()->getReturnType()));
6925
6926 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
6927 CI->removeParamAttrs(ArgNo, AttrsToRemove: AttributeFuncs::typeIncompatible(
6928 Ty: CI->getArgOperand(i: ArgNo)->getType()));
6929 }
6930 }
6931
6932 // Look for functions that rely on old function attribute behavior.
6933 UpgradeFunctionAttributes(F&: *F);
6934
6935 // Bring in any functions that this function forward-referenced via
6936 // blockaddresses.
6937 return materializeForwardReferencedFunctions();
6938}
6939
6940Error BitcodeReader::materializeModule() {
6941 if (Error Err = materializeMetadata())
6942 return Err;
6943
6944 // Promise to materialize all forward references.
6945 WillMaterializeAllForwardRefs = true;
6946
6947 // Iterate over the module, deserializing any functions that are still on
6948 // disk.
6949 for (Function &F : *TheModule) {
6950 if (Error Err = materialize(GV: &F))
6951 return Err;
6952 }
6953 // At this point, if there are any function bodies, parse the rest of
6954 // the bits in the module past the last function block we have recorded
6955 // through either lazy scanning or the VST.
6956 if (LastFunctionBlockBit || NextUnreadBit)
6957 if (Error Err = parseModule(ResumeBit: LastFunctionBlockBit > NextUnreadBit
6958 ? LastFunctionBlockBit
6959 : NextUnreadBit))
6960 return Err;
6961
6962 // Check that all block address forward references got resolved (as we
6963 // promised above).
6964 if (!BasicBlockFwdRefs.empty())
6965 return error(Message: "Never resolved function from blockaddress");
6966
6967 // Upgrade any intrinsic calls that slipped through (should not happen!) and
6968 // delete the old functions to clean up. We can't do this unless the entire
6969 // module is materialized because there could always be another function body
6970 // with calls to the old function.
6971 for (auto &I : UpgradedIntrinsics) {
6972 for (auto *U : I.first->users()) {
6973 if (CallInst *CI = dyn_cast<CallInst>(Val: U))
6974 UpgradeIntrinsicCall(CB: CI, NewFn: I.second);
6975 }
6976 if (!I.first->use_empty())
6977 I.first->replaceAllUsesWith(V: I.second);
6978 I.first->eraseFromParent();
6979 }
6980 UpgradedIntrinsics.clear();
6981
6982 UpgradeDebugInfo(M&: *TheModule);
6983
6984 UpgradeModuleFlags(M&: *TheModule);
6985
6986 UpgradeARCRuntime(M&: *TheModule);
6987
6988 return Error::success();
6989}
6990
6991std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
6992 return IdentifiedStructTypes;
6993}
6994
6995ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
6996 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
6997 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing)
6998 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
6999 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {}
7000
7001void ModuleSummaryIndexBitcodeReader::addThisModule() {
7002 TheIndex.addModule(ModPath: ModulePath);
7003}
7004
7005ModuleSummaryIndex::ModuleInfo *
7006ModuleSummaryIndexBitcodeReader::getThisModule() {
7007 return TheIndex.getModule(ModPath: ModulePath);
7008}
7009
7010template <bool AllowNullValueInfo>
7011std::tuple<ValueInfo, GlobalValue::GUID, GlobalValue::GUID>
7012ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
7013 auto VGI = ValueIdToValueInfoMap[ValueId];
7014 // We can have a null value info for memprof callsite info records in
7015 // distributed ThinLTO index files when the callee function summary is not
7016 // included in the index. The bitcode writer records 0 in that case,
7017 // and the caller of this helper will set AllowNullValueInfo to true.
7018 assert(AllowNullValueInfo || std::get<0>(VGI));
7019 return VGI;
7020}
7021
7022void ModuleSummaryIndexBitcodeReader::setValueGUID(
7023 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
7024 StringRef SourceFileName) {
7025 std::string GlobalId =
7026 GlobalValue::getGlobalIdentifier(Name: ValueName, Linkage, FileName: SourceFileName);
7027 auto ValueGUID = GlobalValue::getGUID(GlobalName: GlobalId);
7028 auto OriginalNameID = ValueGUID;
7029 if (GlobalValue::isLocalLinkage(Linkage))
7030 OriginalNameID = GlobalValue::getGUID(GlobalName: ValueName);
7031 if (PrintSummaryGUIDs)
7032 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
7033 << ValueName << "\n";
7034
7035 // UseStrtab is false for legacy summary formats and value names are
7036 // created on stack. In that case we save the name in a string saver in
7037 // the index so that the value name can be recorded.
7038 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7039 args: TheIndex.getOrInsertValueInfo(
7040 GUID: ValueGUID, Name: UseStrtab ? ValueName : TheIndex.saveString(String: ValueName)),
7041 args&: OriginalNameID, args&: ValueGUID);
7042}
7043
7044// Specialized value symbol table parser used when reading module index
7045// blocks where we don't actually create global values. The parsed information
7046// is saved in the bitcode reader for use when later parsing summaries.
7047Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
7048 uint64_t Offset,
7049 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
7050 // With a strtab the VST is not required to parse the summary.
7051 if (UseStrtab)
7052 return Error::success();
7053
7054 assert(Offset > 0 && "Expected non-zero VST offset");
7055 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
7056 if (!MaybeCurrentBit)
7057 return MaybeCurrentBit.takeError();
7058 uint64_t CurrentBit = MaybeCurrentBit.get();
7059
7060 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::VALUE_SYMTAB_BLOCK_ID))
7061 return Err;
7062
7063 SmallVector<uint64_t, 64> Record;
7064
7065 // Read all the records for this value table.
7066 SmallString<128> ValueName;
7067
7068 while (true) {
7069 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7070 if (!MaybeEntry)
7071 return MaybeEntry.takeError();
7072 BitstreamEntry Entry = MaybeEntry.get();
7073
7074 switch (Entry.Kind) {
7075 case BitstreamEntry::SubBlock: // Handled for us already.
7076 case BitstreamEntry::Error:
7077 return error(Message: "Malformed block");
7078 case BitstreamEntry::EndBlock:
7079 // Done parsing VST, jump back to wherever we came from.
7080 if (Error JumpFailed = Stream.JumpToBit(BitNo: CurrentBit))
7081 return JumpFailed;
7082 return Error::success();
7083 case BitstreamEntry::Record:
7084 // The interesting case.
7085 break;
7086 }
7087
7088 // Read a record.
7089 Record.clear();
7090 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7091 if (!MaybeRecord)
7092 return MaybeRecord.takeError();
7093 switch (MaybeRecord.get()) {
7094 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
7095 break;
7096 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
7097 if (convertToString(Record, Idx: 1, Result&: ValueName))
7098 return error(Message: "Invalid record");
7099 unsigned ValueID = Record[0];
7100 assert(!SourceFileName.empty());
7101 auto VLI = ValueIdToLinkageMap.find(Val: ValueID);
7102 assert(VLI != ValueIdToLinkageMap.end() &&
7103 "No linkage found for VST entry?");
7104 auto Linkage = VLI->second;
7105 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7106 ValueName.clear();
7107 break;
7108 }
7109 case bitc::VST_CODE_FNENTRY: {
7110 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
7111 if (convertToString(Record, Idx: 2, Result&: ValueName))
7112 return error(Message: "Invalid record");
7113 unsigned ValueID = Record[0];
7114 assert(!SourceFileName.empty());
7115 auto VLI = ValueIdToLinkageMap.find(Val: ValueID);
7116 assert(VLI != ValueIdToLinkageMap.end() &&
7117 "No linkage found for VST entry?");
7118 auto Linkage = VLI->second;
7119 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
7120 ValueName.clear();
7121 break;
7122 }
7123 case bitc::VST_CODE_COMBINED_ENTRY: {
7124 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
7125 unsigned ValueID = Record[0];
7126 GlobalValue::GUID RefGUID = Record[1];
7127 // The "original name", which is the second value of the pair will be
7128 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
7129 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7130 args: TheIndex.getOrInsertValueInfo(GUID: RefGUID), args&: RefGUID, args&: RefGUID);
7131 break;
7132 }
7133 }
7134 }
7135}
7136
7137// Parse just the blocks needed for building the index out of the module.
7138// At the end of this routine the module Index is populated with a map
7139// from global value id to GlobalValueSummary objects.
7140Error ModuleSummaryIndexBitcodeReader::parseModule() {
7141 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
7142 return Err;
7143
7144 SmallVector<uint64_t, 64> Record;
7145 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
7146 unsigned ValueId = 0;
7147
7148 // Read the index for this module.
7149 while (true) {
7150 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
7151 if (!MaybeEntry)
7152 return MaybeEntry.takeError();
7153 llvm::BitstreamEntry Entry = MaybeEntry.get();
7154
7155 switch (Entry.Kind) {
7156 case BitstreamEntry::Error:
7157 return error(Message: "Malformed block");
7158 case BitstreamEntry::EndBlock:
7159 return Error::success();
7160
7161 case BitstreamEntry::SubBlock:
7162 switch (Entry.ID) {
7163 default: // Skip unknown content.
7164 if (Error Err = Stream.SkipBlock())
7165 return Err;
7166 break;
7167 case bitc::BLOCKINFO_BLOCK_ID:
7168 // Need to parse these to get abbrev ids (e.g. for VST)
7169 if (Error Err = readBlockInfo())
7170 return Err;
7171 break;
7172 case bitc::VALUE_SYMTAB_BLOCK_ID:
7173 // Should have been parsed earlier via VSTOffset, unless there
7174 // is no summary section.
7175 assert(((SeenValueSymbolTable && VSTOffset > 0) ||
7176 !SeenGlobalValSummary) &&
7177 "Expected early VST parse via VSTOffset record");
7178 if (Error Err = Stream.SkipBlock())
7179 return Err;
7180 break;
7181 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
7182 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
7183 // Add the module if it is a per-module index (has a source file name).
7184 if (!SourceFileName.empty())
7185 addThisModule();
7186 assert(!SeenValueSymbolTable &&
7187 "Already read VST when parsing summary block?");
7188 // We might not have a VST if there were no values in the
7189 // summary. An empty summary block generated when we are
7190 // performing ThinLTO compiles so we don't later invoke
7191 // the regular LTO process on them.
7192 if (VSTOffset > 0) {
7193 if (Error Err = parseValueSymbolTable(Offset: VSTOffset, ValueIdToLinkageMap))
7194 return Err;
7195 SeenValueSymbolTable = true;
7196 }
7197 SeenGlobalValSummary = true;
7198 if (Error Err = parseEntireSummary(ID: Entry.ID))
7199 return Err;
7200 break;
7201 case bitc::MODULE_STRTAB_BLOCK_ID:
7202 if (Error Err = parseModuleStringTable())
7203 return Err;
7204 break;
7205 }
7206 continue;
7207
7208 case BitstreamEntry::Record: {
7209 Record.clear();
7210 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7211 if (!MaybeBitCode)
7212 return MaybeBitCode.takeError();
7213 switch (MaybeBitCode.get()) {
7214 default:
7215 break; // Default behavior, ignore unknown content.
7216 case bitc::MODULE_CODE_VERSION: {
7217 if (Error Err = parseVersionRecord(Record).takeError())
7218 return Err;
7219 break;
7220 }
7221 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
7222 case bitc::MODULE_CODE_SOURCE_FILENAME: {
7223 SmallString<128> ValueName;
7224 if (convertToString(Record, Idx: 0, Result&: ValueName))
7225 return error(Message: "Invalid record");
7226 SourceFileName = ValueName.c_str();
7227 break;
7228 }
7229 /// MODULE_CODE_HASH: [5*i32]
7230 case bitc::MODULE_CODE_HASH: {
7231 if (Record.size() != 5)
7232 return error(Message: "Invalid hash length " + Twine(Record.size()).str());
7233 auto &Hash = getThisModule()->second;
7234 int Pos = 0;
7235 for (auto &Val : Record) {
7236 assert(!(Val >> 32) && "Unexpected high bits set");
7237 Hash[Pos++] = Val;
7238 }
7239 break;
7240 }
7241 /// MODULE_CODE_VSTOFFSET: [offset]
7242 case bitc::MODULE_CODE_VSTOFFSET:
7243 if (Record.empty())
7244 return error(Message: "Invalid record");
7245 // Note that we subtract 1 here because the offset is relative to one
7246 // word before the start of the identification or module block, which
7247 // was historically always the start of the regular bitcode header.
7248 VSTOffset = Record[0] - 1;
7249 break;
7250 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
7251 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
7252 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
7253 // v2: [strtab offset, strtab size, v1]
7254 case bitc::MODULE_CODE_GLOBALVAR:
7255 case bitc::MODULE_CODE_FUNCTION:
7256 case bitc::MODULE_CODE_ALIAS: {
7257 StringRef Name;
7258 ArrayRef<uint64_t> GVRecord;
7259 std::tie(args&: Name, args&: GVRecord) = readNameFromStrtab(Record);
7260 if (GVRecord.size() <= 3)
7261 return error(Message: "Invalid record");
7262 uint64_t RawLinkage = GVRecord[3];
7263 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(Val: RawLinkage);
7264 if (!UseStrtab) {
7265 ValueIdToLinkageMap[ValueId++] = Linkage;
7266 break;
7267 }
7268
7269 setValueGUID(ValueID: ValueId++, ValueName: Name, Linkage, SourceFileName);
7270 break;
7271 }
7272 }
7273 }
7274 continue;
7275 }
7276 }
7277}
7278
7279std::vector<ValueInfo>
7280ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
7281 std::vector<ValueInfo> Ret;
7282 Ret.reserve(n: Record.size());
7283 for (uint64_t RefValueId : Record)
7284 Ret.push_back(x: std::get<0>(t: getValueInfoFromValueId(ValueId: RefValueId)));
7285 return Ret;
7286}
7287
7288std::vector<FunctionSummary::EdgeTy>
7289ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
7290 bool IsOldProfileFormat,
7291 bool HasProfile, bool HasRelBF) {
7292 std::vector<FunctionSummary::EdgeTy> Ret;
7293 Ret.reserve(n: Record.size());
7294 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
7295 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7296 bool HasTailCall = false;
7297 uint64_t RelBF = 0;
7298 ValueInfo Callee = std::get<0>(t: getValueInfoFromValueId(ValueId: Record[I]));
7299 if (IsOldProfileFormat) {
7300 I += 1; // Skip old callsitecount field
7301 if (HasProfile)
7302 I += 1; // Skip old profilecount field
7303 } else if (HasProfile)
7304 std::tie(args&: Hotness, args&: HasTailCall) =
7305 getDecodedHotnessCallEdgeInfo(RawFlags: Record[++I]);
7306 else if (HasRelBF)
7307 getDecodedRelBFCallEdgeInfo(RawFlags: Record[++I], RelBF, HasTailCall);
7308 Ret.push_back(x: FunctionSummary::EdgeTy{
7309 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)});
7310 }
7311 return Ret;
7312}
7313
7314static void
7315parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
7316 WholeProgramDevirtResolution &Wpd) {
7317 uint64_t ArgNum = Record[Slot++];
7318 WholeProgramDevirtResolution::ByArg &B =
7319 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
7320 Slot += ArgNum;
7321
7322 B.TheKind =
7323 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
7324 B.Info = Record[Slot++];
7325 B.Byte = Record[Slot++];
7326 B.Bit = Record[Slot++];
7327}
7328
7329static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
7330 StringRef Strtab, size_t &Slot,
7331 TypeIdSummary &TypeId) {
7332 uint64_t Id = Record[Slot++];
7333 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
7334
7335 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
7336 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
7337 static_cast<size_t>(Record[Slot + 1])};
7338 Slot += 2;
7339
7340 uint64_t ResByArgNum = Record[Slot++];
7341 for (uint64_t I = 0; I != ResByArgNum; ++I)
7342 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
7343}
7344
7345static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
7346 StringRef Strtab,
7347 ModuleSummaryIndex &TheIndex) {
7348 size_t Slot = 0;
7349 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
7350 TypeId: {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
7351 Slot += 2;
7352
7353 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
7354 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
7355 TypeId.TTRes.AlignLog2 = Record[Slot++];
7356 TypeId.TTRes.SizeM1 = Record[Slot++];
7357 TypeId.TTRes.BitMask = Record[Slot++];
7358 TypeId.TTRes.InlineBits = Record[Slot++];
7359
7360 while (Slot < Record.size())
7361 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
7362}
7363
7364std::vector<FunctionSummary::ParamAccess>
7365ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
7366 auto ReadRange = [&]() {
7367 APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
7368 BitcodeReader::decodeSignRotatedValue(V: Record.front()));
7369 Record = Record.drop_front();
7370 APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
7371 BitcodeReader::decodeSignRotatedValue(V: Record.front()));
7372 Record = Record.drop_front();
7373 ConstantRange Range{Lower, Upper};
7374 assert(!Range.isFullSet());
7375 assert(!Range.isUpperSignWrapped());
7376 return Range;
7377 };
7378
7379 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7380 while (!Record.empty()) {
7381 PendingParamAccesses.emplace_back();
7382 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
7383 ParamAccess.ParamNo = Record.front();
7384 Record = Record.drop_front();
7385 ParamAccess.Use = ReadRange();
7386 ParamAccess.Calls.resize(new_size: Record.front());
7387 Record = Record.drop_front();
7388 for (auto &Call : ParamAccess.Calls) {
7389 Call.ParamNo = Record.front();
7390 Record = Record.drop_front();
7391 Call.Callee = std::get<0>(t: getValueInfoFromValueId(ValueId: Record.front()));
7392 Record = Record.drop_front();
7393 Call.Offsets = ReadRange();
7394 }
7395 }
7396 return PendingParamAccesses;
7397}
7398
7399void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
7400 ArrayRef<uint64_t> Record, size_t &Slot,
7401 TypeIdCompatibleVtableInfo &TypeId) {
7402 uint64_t Offset = Record[Slot++];
7403 ValueInfo Callee = std::get<0>(t: getValueInfoFromValueId(ValueId: Record[Slot++]));
7404 TypeId.push_back(x: {Offset, Callee});
7405}
7406
7407void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
7408 ArrayRef<uint64_t> Record) {
7409 size_t Slot = 0;
7410 TypeIdCompatibleVtableInfo &TypeId =
7411 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
7412 TypeId: {Strtab.data() + Record[Slot],
7413 static_cast<size_t>(Record[Slot + 1])});
7414 Slot += 2;
7415
7416 while (Slot < Record.size())
7417 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
7418}
7419
7420static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
7421 unsigned WOCnt) {
7422 // Readonly and writeonly refs are in the end of the refs list.
7423 assert(ROCnt + WOCnt <= Refs.size());
7424 unsigned FirstWORef = Refs.size() - WOCnt;
7425 unsigned RefNo = FirstWORef - ROCnt;
7426 for (; RefNo < FirstWORef; ++RefNo)
7427 Refs[RefNo].setReadOnly();
7428 for (; RefNo < Refs.size(); ++RefNo)
7429 Refs[RefNo].setWriteOnly();
7430}
7431
7432// Eagerly parse the entire summary block. This populates the GlobalValueSummary
7433// objects in the index.
7434Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
7435 if (Error Err = Stream.EnterSubBlock(BlockID: ID))
7436 return Err;
7437 SmallVector<uint64_t, 64> Record;
7438
7439 // Parse version
7440 {
7441 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7442 if (!MaybeEntry)
7443 return MaybeEntry.takeError();
7444 BitstreamEntry Entry = MaybeEntry.get();
7445
7446 if (Entry.Kind != BitstreamEntry::Record)
7447 return error(Message: "Invalid Summary Block: record for version expected");
7448 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7449 if (!MaybeRecord)
7450 return MaybeRecord.takeError();
7451 if (MaybeRecord.get() != bitc::FS_VERSION)
7452 return error(Message: "Invalid Summary Block: version expected");
7453 }
7454 const uint64_t Version = Record[0];
7455 const bool IsOldProfileFormat = Version == 1;
7456 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
7457 return error(Message: "Invalid summary version " + Twine(Version) +
7458 ". Version should be in the range [1-" +
7459 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
7460 "].");
7461 Record.clear();
7462
7463 // Keep around the last seen summary to be used when we see an optional
7464 // "OriginalName" attachement.
7465 GlobalValueSummary *LastSeenSummary = nullptr;
7466 GlobalValue::GUID LastSeenGUID = 0;
7467
7468 // We can expect to see any number of type ID information records before
7469 // each function summary records; these variables store the information
7470 // collected so far so that it can be used to create the summary object.
7471 std::vector<GlobalValue::GUID> PendingTypeTests;
7472 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
7473 PendingTypeCheckedLoadVCalls;
7474 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
7475 PendingTypeCheckedLoadConstVCalls;
7476 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
7477
7478 std::vector<CallsiteInfo> PendingCallsites;
7479 std::vector<AllocInfo> PendingAllocs;
7480
7481 while (true) {
7482 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7483 if (!MaybeEntry)
7484 return MaybeEntry.takeError();
7485 BitstreamEntry Entry = MaybeEntry.get();
7486
7487 switch (Entry.Kind) {
7488 case BitstreamEntry::SubBlock: // Handled for us already.
7489 case BitstreamEntry::Error:
7490 return error(Message: "Malformed block");
7491 case BitstreamEntry::EndBlock:
7492 return Error::success();
7493 case BitstreamEntry::Record:
7494 // The interesting case.
7495 break;
7496 }
7497
7498 // Read a record. The record format depends on whether this
7499 // is a per-module index or a combined index file. In the per-module
7500 // case the records contain the associated value's ID for correlation
7501 // with VST entries. In the combined index the correlation is done
7502 // via the bitcode offset of the summary records (which were saved
7503 // in the combined index VST entries). The records also contain
7504 // information used for ThinLTO renaming and importing.
7505 Record.clear();
7506 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7507 if (!MaybeBitCode)
7508 return MaybeBitCode.takeError();
7509 switch (unsigned BitCode = MaybeBitCode.get()) {
7510 default: // Default behavior: ignore.
7511 break;
7512 case bitc::FS_FLAGS: { // [flags]
7513 TheIndex.setFlags(Record[0]);
7514 break;
7515 }
7516 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
7517 uint64_t ValueID = Record[0];
7518 GlobalValue::GUID RefGUID = Record[1];
7519 ValueIdToValueInfoMap[ValueID] = std::make_tuple(
7520 args: TheIndex.getOrInsertValueInfo(GUID: RefGUID), args&: RefGUID, args&: RefGUID);
7521 break;
7522 }
7523 // FS_PERMODULE is legacy and does not have support for the tail call flag.
7524 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
7525 // numrefs x valueid, n x (valueid)]
7526 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
7527 // numrefs x valueid,
7528 // n x (valueid, hotness+tailcall flags)]
7529 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
7530 // numrefs x valueid,
7531 // n x (valueid, relblockfreq+tailcall)]
7532 case bitc::FS_PERMODULE:
7533 case bitc::FS_PERMODULE_RELBF:
7534 case bitc::FS_PERMODULE_PROFILE: {
7535 unsigned ValueID = Record[0];
7536 uint64_t RawFlags = Record[1];
7537 unsigned InstCount = Record[2];
7538 uint64_t RawFunFlags = 0;
7539 unsigned NumRefs = Record[3];
7540 unsigned NumRORefs = 0, NumWORefs = 0;
7541 int RefListStartIndex = 4;
7542 if (Version >= 4) {
7543 RawFunFlags = Record[3];
7544 NumRefs = Record[4];
7545 RefListStartIndex = 5;
7546 if (Version >= 5) {
7547 NumRORefs = Record[5];
7548 RefListStartIndex = 6;
7549 if (Version >= 7) {
7550 NumWORefs = Record[6];
7551 RefListStartIndex = 7;
7552 }
7553 }
7554 }
7555
7556 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7557 // The module path string ref set in the summary must be owned by the
7558 // index's module string table. Since we don't have a module path
7559 // string table section in the per-module index, we create a single
7560 // module path string table entry with an empty (0) ID to take
7561 // ownership.
7562 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7563 assert(Record.size() >= RefListStartIndex + NumRefs &&
7564 "Record size inconsistent with number of references");
7565 std::vector<ValueInfo> Refs = makeRefList(
7566 Record: ArrayRef<uint64_t>(Record).slice(N: RefListStartIndex, M: NumRefs));
7567 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
7568 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
7569 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
7570 Record: ArrayRef<uint64_t>(Record).slice(N: CallGraphEdgeStartIndex),
7571 IsOldProfileFormat, HasProfile, HasRelBF);
7572 setSpecialRefs(Refs, ROCnt: NumRORefs, WOCnt: NumWORefs);
7573 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueId: ValueID);
7574 // In order to save memory, only record the memprof summaries if this is
7575 // the prevailing copy of a symbol. The linker doesn't resolve local
7576 // linkage values so don't check whether those are prevailing.
7577 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage;
7578 if (IsPrevailing &&
7579 !GlobalValue::isLocalLinkage(Linkage: LT) &&
7580 !IsPrevailing(std::get<2>(t&: VIAndOriginalGUID))) {
7581 PendingCallsites.clear();
7582 PendingAllocs.clear();
7583 }
7584 auto FS = std::make_unique<FunctionSummary>(
7585 args&: Flags, args&: InstCount, args: getDecodedFFlags(RawFlags: RawFunFlags), /*EntryCount=*/args: 0,
7586 args: std::move(Refs), args: std::move(Calls), args: std::move(PendingTypeTests),
7587 args: std::move(PendingTypeTestAssumeVCalls),
7588 args: std::move(PendingTypeCheckedLoadVCalls),
7589 args: std::move(PendingTypeTestAssumeConstVCalls),
7590 args: std::move(PendingTypeCheckedLoadConstVCalls),
7591 args: std::move(PendingParamAccesses), args: std::move(PendingCallsites),
7592 args: std::move(PendingAllocs));
7593 FS->setModulePath(getThisModule()->first());
7594 FS->setOriginalName(std::get<1>(t&: VIAndOriginalGUID));
7595 TheIndex.addGlobalValueSummary(VI: std::get<0>(t&: VIAndOriginalGUID),
7596 Summary: std::move(FS));
7597 break;
7598 }
7599 // FS_ALIAS: [valueid, flags, valueid]
7600 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
7601 // they expect all aliasee summaries to be available.
7602 case bitc::FS_ALIAS: {
7603 unsigned ValueID = Record[0];
7604 uint64_t RawFlags = Record[1];
7605 unsigned AliaseeID = Record[2];
7606 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7607 auto AS = std::make_unique<AliasSummary>(args&: Flags);
7608 // The module path string ref set in the summary must be owned by the
7609 // index's module string table. Since we don't have a module path
7610 // string table section in the per-module index, we create a single
7611 // module path string table entry with an empty (0) ID to take
7612 // ownership.
7613 AS->setModulePath(getThisModule()->first());
7614
7615 auto AliaseeVI = std::get<0>(t: getValueInfoFromValueId(ValueId: AliaseeID));
7616 auto AliaseeInModule = TheIndex.findSummaryInModule(VI: AliaseeVI, ModuleId: ModulePath);
7617 if (!AliaseeInModule)
7618 return error(Message: "Alias expects aliasee summary to be parsed");
7619 AS->setAliasee(AliaseeVI, Aliasee: AliaseeInModule);
7620
7621 auto GUID = getValueInfoFromValueId(ValueId: ValueID);
7622 AS->setOriginalName(std::get<1>(t&: GUID));
7623 TheIndex.addGlobalValueSummary(VI: std::get<0>(t&: GUID), Summary: std::move(AS));
7624 break;
7625 }
7626 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
7627 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
7628 unsigned ValueID = Record[0];
7629 uint64_t RawFlags = Record[1];
7630 unsigned RefArrayStart = 2;
7631 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7632 /* WriteOnly */ false,
7633 /* Constant */ false,
7634 GlobalObject::VCallVisibilityPublic);
7635 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7636 if (Version >= 5) {
7637 GVF = getDecodedGVarFlags(RawFlags: Record[2]);
7638 RefArrayStart = 3;
7639 }
7640 std::vector<ValueInfo> Refs =
7641 makeRefList(Record: ArrayRef<uint64_t>(Record).slice(N: RefArrayStart));
7642 auto FS =
7643 std::make_unique<GlobalVarSummary>(args&: Flags, args&: GVF, args: std::move(Refs));
7644 FS->setModulePath(getThisModule()->first());
7645 auto GUID = getValueInfoFromValueId(ValueId: ValueID);
7646 FS->setOriginalName(std::get<1>(t&: GUID));
7647 TheIndex.addGlobalValueSummary(VI: std::get<0>(t&: GUID), Summary: std::move(FS));
7648 break;
7649 }
7650 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
7651 // numrefs, numrefs x valueid,
7652 // n x (valueid, offset)]
7653 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
7654 unsigned ValueID = Record[0];
7655 uint64_t RawFlags = Record[1];
7656 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(RawFlags: Record[2]);
7657 unsigned NumRefs = Record[3];
7658 unsigned RefListStartIndex = 4;
7659 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
7660 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7661 std::vector<ValueInfo> Refs = makeRefList(
7662 Record: ArrayRef<uint64_t>(Record).slice(N: RefListStartIndex, M: NumRefs));
7663 VTableFuncList VTableFuncs;
7664 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
7665 ValueInfo Callee = std::get<0>(t: getValueInfoFromValueId(ValueId: Record[I]));
7666 uint64_t Offset = Record[++I];
7667 VTableFuncs.push_back(x: {Callee, Offset});
7668 }
7669 auto VS =
7670 std::make_unique<GlobalVarSummary>(args&: Flags, args&: GVF, args: std::move(Refs));
7671 VS->setModulePath(getThisModule()->first());
7672 VS->setVTableFuncs(VTableFuncs);
7673 auto GUID = getValueInfoFromValueId(ValueId: ValueID);
7674 VS->setOriginalName(std::get<1>(t&: GUID));
7675 TheIndex.addGlobalValueSummary(VI: std::get<0>(t&: GUID), Summary: std::move(VS));
7676 break;
7677 }
7678 // FS_COMBINED is legacy and does not have support for the tail call flag.
7679 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
7680 // numrefs x valueid, n x (valueid)]
7681 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
7682 // numrefs x valueid,
7683 // n x (valueid, hotness+tailcall flags)]
7684 case bitc::FS_COMBINED:
7685 case bitc::FS_COMBINED_PROFILE: {
7686 unsigned ValueID = Record[0];
7687 uint64_t ModuleId = Record[1];
7688 uint64_t RawFlags = Record[2];
7689 unsigned InstCount = Record[3];
7690 uint64_t RawFunFlags = 0;
7691 uint64_t EntryCount = 0;
7692 unsigned NumRefs = Record[4];
7693 unsigned NumRORefs = 0, NumWORefs = 0;
7694 int RefListStartIndex = 5;
7695
7696 if (Version >= 4) {
7697 RawFunFlags = Record[4];
7698 RefListStartIndex = 6;
7699 size_t NumRefsIndex = 5;
7700 if (Version >= 5) {
7701 unsigned NumRORefsOffset = 1;
7702 RefListStartIndex = 7;
7703 if (Version >= 6) {
7704 NumRefsIndex = 6;
7705 EntryCount = Record[5];
7706 RefListStartIndex = 8;
7707 if (Version >= 7) {
7708 RefListStartIndex = 9;
7709 NumWORefs = Record[8];
7710 NumRORefsOffset = 2;
7711 }
7712 }
7713 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
7714 }
7715 NumRefs = Record[NumRefsIndex];
7716 }
7717
7718 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7719 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
7720 assert(Record.size() >= RefListStartIndex + NumRefs &&
7721 "Record size inconsistent with number of references");
7722 std::vector<ValueInfo> Refs = makeRefList(
7723 Record: ArrayRef<uint64_t>(Record).slice(N: RefListStartIndex, M: NumRefs));
7724 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
7725 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
7726 Record: ArrayRef<uint64_t>(Record).slice(N: CallGraphEdgeStartIndex),
7727 IsOldProfileFormat, HasProfile, HasRelBF: false);
7728 ValueInfo VI = std::get<0>(t: getValueInfoFromValueId(ValueId: ValueID));
7729 setSpecialRefs(Refs, ROCnt: NumRORefs, WOCnt: NumWORefs);
7730 auto FS = std::make_unique<FunctionSummary>(
7731 args&: Flags, args&: InstCount, args: getDecodedFFlags(RawFlags: RawFunFlags), args&: EntryCount,
7732 args: std::move(Refs), args: std::move(Edges), args: std::move(PendingTypeTests),
7733 args: std::move(PendingTypeTestAssumeVCalls),
7734 args: std::move(PendingTypeCheckedLoadVCalls),
7735 args: std::move(PendingTypeTestAssumeConstVCalls),
7736 args: std::move(PendingTypeCheckedLoadConstVCalls),
7737 args: std::move(PendingParamAccesses), args: std::move(PendingCallsites),
7738 args: std::move(PendingAllocs));
7739 LastSeenSummary = FS.get();
7740 LastSeenGUID = VI.getGUID();
7741 FS->setModulePath(ModuleIdMap[ModuleId]);
7742 TheIndex.addGlobalValueSummary(VI, Summary: std::move(FS));
7743 break;
7744 }
7745 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
7746 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
7747 // they expect all aliasee summaries to be available.
7748 case bitc::FS_COMBINED_ALIAS: {
7749 unsigned ValueID = Record[0];
7750 uint64_t ModuleId = Record[1];
7751 uint64_t RawFlags = Record[2];
7752 unsigned AliaseeValueId = Record[3];
7753 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7754 auto AS = std::make_unique<AliasSummary>(args&: Flags);
7755 LastSeenSummary = AS.get();
7756 AS->setModulePath(ModuleIdMap[ModuleId]);
7757
7758 auto AliaseeVI = std::get<0>(t: getValueInfoFromValueId(ValueId: AliaseeValueId));
7759 auto AliaseeInModule = TheIndex.findSummaryInModule(VI: AliaseeVI, ModuleId: AS->modulePath());
7760 AS->setAliasee(AliaseeVI, Aliasee: AliaseeInModule);
7761
7762 ValueInfo VI = std::get<0>(t: getValueInfoFromValueId(ValueId: ValueID));
7763 LastSeenGUID = VI.getGUID();
7764 TheIndex.addGlobalValueSummary(VI, Summary: std::move(AS));
7765 break;
7766 }
7767 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
7768 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
7769 unsigned ValueID = Record[0];
7770 uint64_t ModuleId = Record[1];
7771 uint64_t RawFlags = Record[2];
7772 unsigned RefArrayStart = 3;
7773 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
7774 /* WriteOnly */ false,
7775 /* Constant */ false,
7776 GlobalObject::VCallVisibilityPublic);
7777 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
7778 if (Version >= 5) {
7779 GVF = getDecodedGVarFlags(RawFlags: Record[3]);
7780 RefArrayStart = 4;
7781 }
7782 std::vector<ValueInfo> Refs =
7783 makeRefList(Record: ArrayRef<uint64_t>(Record).slice(N: RefArrayStart));
7784 auto FS =
7785 std::make_unique<GlobalVarSummary>(args&: Flags, args&: GVF, args: std::move(Refs));
7786 LastSeenSummary = FS.get();
7787 FS->setModulePath(ModuleIdMap[ModuleId]);
7788 ValueInfo VI = std::get<0>(t: getValueInfoFromValueId(ValueId: ValueID));
7789 LastSeenGUID = VI.getGUID();
7790 TheIndex.addGlobalValueSummary(VI, Summary: std::move(FS));
7791 break;
7792 }
7793 // FS_COMBINED_ORIGINAL_NAME: [original_name]
7794 case bitc::FS_COMBINED_ORIGINAL_NAME: {
7795 uint64_t OriginalName = Record[0];
7796 if (!LastSeenSummary)
7797 return error(Message: "Name attachment that does not follow a combined record");
7798 LastSeenSummary->setOriginalName(OriginalName);
7799 TheIndex.addOriginalName(ValueGUID: LastSeenGUID, OrigGUID: OriginalName);
7800 // Reset the LastSeenSummary
7801 LastSeenSummary = nullptr;
7802 LastSeenGUID = 0;
7803 break;
7804 }
7805 case bitc::FS_TYPE_TESTS:
7806 assert(PendingTypeTests.empty());
7807 llvm::append_range(C&: PendingTypeTests, R&: Record);
7808 break;
7809
7810 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
7811 assert(PendingTypeTestAssumeVCalls.empty());
7812 for (unsigned I = 0; I != Record.size(); I += 2)
7813 PendingTypeTestAssumeVCalls.push_back(x: {.GUID: Record[I], .Offset: Record[I+1]});
7814 break;
7815
7816 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
7817 assert(PendingTypeCheckedLoadVCalls.empty());
7818 for (unsigned I = 0; I != Record.size(); I += 2)
7819 PendingTypeCheckedLoadVCalls.push_back(x: {.GUID: Record[I], .Offset: Record[I+1]});
7820 break;
7821
7822 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
7823 PendingTypeTestAssumeConstVCalls.push_back(
7824 x: {.VFunc: {.GUID: Record[0], .Offset: Record[1]}, .Args: {Record.begin() + 2, Record.end()}});
7825 break;
7826
7827 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
7828 PendingTypeCheckedLoadConstVCalls.push_back(
7829 x: {.VFunc: {.GUID: Record[0], .Offset: Record[1]}, .Args: {Record.begin() + 2, Record.end()}});
7830 break;
7831
7832 case bitc::FS_CFI_FUNCTION_DEFS: {
7833 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
7834 for (unsigned I = 0; I != Record.size(); I += 2)
7835 CfiFunctionDefs.insert(
7836 x: {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7837 break;
7838 }
7839
7840 case bitc::FS_CFI_FUNCTION_DECLS: {
7841 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
7842 for (unsigned I = 0; I != Record.size(); I += 2)
7843 CfiFunctionDecls.insert(
7844 x: {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
7845 break;
7846 }
7847
7848 case bitc::FS_TYPE_ID:
7849 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
7850 break;
7851
7852 case bitc::FS_TYPE_ID_METADATA:
7853 parseTypeIdCompatibleVtableSummaryRecord(Record);
7854 break;
7855
7856 case bitc::FS_BLOCK_COUNT:
7857 TheIndex.addBlockCount(C: Record[0]);
7858 break;
7859
7860 case bitc::FS_PARAM_ACCESS: {
7861 PendingParamAccesses = parseParamAccesses(Record);
7862 break;
7863 }
7864
7865 case bitc::FS_STACK_IDS: { // [n x stackid]
7866 // Save stack ids in the reader to consult when adding stack ids from the
7867 // lists in the stack node and alloc node entries.
7868 StackIds = ArrayRef<uint64_t>(Record);
7869 break;
7870 }
7871
7872 case bitc::FS_PERMODULE_CALLSITE_INFO: {
7873 unsigned ValueID = Record[0];
7874 SmallVector<unsigned> StackIdList;
7875 for (auto R = Record.begin() + 1; R != Record.end(); R++) {
7876 assert(*R < StackIds.size());
7877 StackIdList.push_back(Elt: TheIndex.addOrGetStackIdIndex(StackId: StackIds[*R]));
7878 }
7879 ValueInfo VI = std::get<0>(t: getValueInfoFromValueId(ValueId: ValueID));
7880 PendingCallsites.push_back(x: CallsiteInfo({VI, std::move(StackIdList)}));
7881 break;
7882 }
7883
7884 case bitc::FS_COMBINED_CALLSITE_INFO: {
7885 auto RecordIter = Record.begin();
7886 unsigned ValueID = *RecordIter++;
7887 unsigned NumStackIds = *RecordIter++;
7888 unsigned NumVersions = *RecordIter++;
7889 assert(Record.size() == 3 + NumStackIds + NumVersions);
7890 SmallVector<unsigned> StackIdList;
7891 for (unsigned J = 0; J < NumStackIds; J++) {
7892 assert(*RecordIter < StackIds.size());
7893 StackIdList.push_back(
7894 Elt: TheIndex.addOrGetStackIdIndex(StackId: StackIds[*RecordIter++]));
7895 }
7896 SmallVector<unsigned> Versions;
7897 for (unsigned J = 0; J < NumVersions; J++)
7898 Versions.push_back(Elt: *RecordIter++);
7899 ValueInfo VI = std::get<0>(
7900 t: getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueId: ValueID));
7901 PendingCallsites.push_back(
7902 x: CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)}));
7903 break;
7904 }
7905
7906 case bitc::FS_PERMODULE_ALLOC_INFO: {
7907 unsigned I = 0;
7908 std::vector<MIBInfo> MIBs;
7909 while (I < Record.size()) {
7910 assert(Record.size() - I >= 2);
7911 AllocationType AllocType = (AllocationType)Record[I++];
7912 unsigned NumStackEntries = Record[I++];
7913 assert(Record.size() - I >= NumStackEntries);
7914 SmallVector<unsigned> StackIdList;
7915 for (unsigned J = 0; J < NumStackEntries; J++) {
7916 assert(Record[I] < StackIds.size());
7917 StackIdList.push_back(
7918 Elt: TheIndex.addOrGetStackIdIndex(StackId: StackIds[Record[I++]]));
7919 }
7920 MIBs.push_back(x: MIBInfo(AllocType, std::move(StackIdList)));
7921 }
7922 PendingAllocs.push_back(x: AllocInfo(std::move(MIBs)));
7923 break;
7924 }
7925
7926 case bitc::FS_COMBINED_ALLOC_INFO: {
7927 unsigned I = 0;
7928 std::vector<MIBInfo> MIBs;
7929 unsigned NumMIBs = Record[I++];
7930 unsigned NumVersions = Record[I++];
7931 unsigned MIBsRead = 0;
7932 while (MIBsRead++ < NumMIBs) {
7933 assert(Record.size() - I >= 2);
7934 AllocationType AllocType = (AllocationType)Record[I++];
7935 unsigned NumStackEntries = Record[I++];
7936 assert(Record.size() - I >= NumStackEntries);
7937 SmallVector<unsigned> StackIdList;
7938 for (unsigned J = 0; J < NumStackEntries; J++) {
7939 assert(Record[I] < StackIds.size());
7940 StackIdList.push_back(
7941 Elt: TheIndex.addOrGetStackIdIndex(StackId: StackIds[Record[I++]]));
7942 }
7943 MIBs.push_back(x: MIBInfo(AllocType, std::move(StackIdList)));
7944 }
7945 assert(Record.size() - I >= NumVersions);
7946 SmallVector<uint8_t> Versions;
7947 for (unsigned J = 0; J < NumVersions; J++)
7948 Versions.push_back(Elt: Record[I++]);
7949 PendingAllocs.push_back(
7950 x: AllocInfo(std::move(Versions), std::move(MIBs)));
7951 break;
7952 }
7953 }
7954 }
7955 llvm_unreachable("Exit infinite loop");
7956}
7957
7958// Parse the module string table block into the Index.
7959// This populates the ModulePathStringTable map in the index.
7960Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
7961 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_STRTAB_BLOCK_ID))
7962 return Err;
7963
7964 SmallVector<uint64_t, 64> Record;
7965
7966 SmallString<128> ModulePath;
7967 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
7968
7969 while (true) {
7970 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
7971 if (!MaybeEntry)
7972 return MaybeEntry.takeError();
7973 BitstreamEntry Entry = MaybeEntry.get();
7974
7975 switch (Entry.Kind) {
7976 case BitstreamEntry::SubBlock: // Handled for us already.
7977 case BitstreamEntry::Error:
7978 return error(Message: "Malformed block");
7979 case BitstreamEntry::EndBlock:
7980 return Error::success();
7981 case BitstreamEntry::Record:
7982 // The interesting case.
7983 break;
7984 }
7985
7986 Record.clear();
7987 Expected<unsigned> MaybeRecord = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
7988 if (!MaybeRecord)
7989 return MaybeRecord.takeError();
7990 switch (MaybeRecord.get()) {
7991 default: // Default behavior: ignore.
7992 break;
7993 case bitc::MST_CODE_ENTRY: {
7994 // MST_ENTRY: [modid, namechar x N]
7995 uint64_t ModuleId = Record[0];
7996
7997 if (convertToString(Record, Idx: 1, Result&: ModulePath))
7998 return error(Message: "Invalid record");
7999
8000 LastSeenModule = TheIndex.addModule(ModPath: ModulePath);
8001 ModuleIdMap[ModuleId] = LastSeenModule->first();
8002
8003 ModulePath.clear();
8004 break;
8005 }
8006 /// MST_CODE_HASH: [5*i32]
8007 case bitc::MST_CODE_HASH: {
8008 if (Record.size() != 5)
8009 return error(Message: "Invalid hash length " + Twine(Record.size()).str());
8010 if (!LastSeenModule)
8011 return error(Message: "Invalid hash that does not follow a module path");
8012 int Pos = 0;
8013 for (auto &Val : Record) {
8014 assert(!(Val >> 32) && "Unexpected high bits set");
8015 LastSeenModule->second[Pos++] = Val;
8016 }
8017 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
8018 LastSeenModule = nullptr;
8019 break;
8020 }
8021 }
8022 }
8023 llvm_unreachable("Exit infinite loop");
8024}
8025
8026namespace {
8027
8028// FIXME: This class is only here to support the transition to llvm::Error. It
8029// will be removed once this transition is complete. Clients should prefer to
8030// deal with the Error value directly, rather than converting to error_code.
8031class BitcodeErrorCategoryType : public std::error_category {
8032 const char *name() const noexcept override {
8033 return "llvm.bitcode";
8034 }
8035
8036 std::string message(int IE) const override {
8037 BitcodeError E = static_cast<BitcodeError>(IE);
8038 switch (E) {
8039 case BitcodeError::CorruptedBitcode:
8040 return "Corrupted bitcode";
8041 }
8042 llvm_unreachable("Unknown error type!");
8043 }
8044};
8045
8046} // end anonymous namespace
8047
8048const std::error_category &llvm::BitcodeErrorCategory() {
8049 static BitcodeErrorCategoryType ErrorCategory;
8050 return ErrorCategory;
8051}
8052
8053static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
8054 unsigned Block, unsigned RecordID) {
8055 if (Error Err = Stream.EnterSubBlock(BlockID: Block))
8056 return std::move(Err);
8057
8058 StringRef Strtab;
8059 while (true) {
8060 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8061 if (!MaybeEntry)
8062 return MaybeEntry.takeError();
8063 llvm::BitstreamEntry Entry = MaybeEntry.get();
8064
8065 switch (Entry.Kind) {
8066 case BitstreamEntry::EndBlock:
8067 return Strtab;
8068
8069 case BitstreamEntry::Error:
8070 return error(Message: "Malformed block");
8071
8072 case BitstreamEntry::SubBlock:
8073 if (Error Err = Stream.SkipBlock())
8074 return std::move(Err);
8075 break;
8076
8077 case BitstreamEntry::Record:
8078 StringRef Blob;
8079 SmallVector<uint64_t, 1> Record;
8080 Expected<unsigned> MaybeRecord =
8081 Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record, Blob: &Blob);
8082 if (!MaybeRecord)
8083 return MaybeRecord.takeError();
8084 if (MaybeRecord.get() == RecordID)
8085 Strtab = Blob;
8086 break;
8087 }
8088 }
8089}
8090
8091//===----------------------------------------------------------------------===//
8092// External interface
8093//===----------------------------------------------------------------------===//
8094
8095Expected<std::vector<BitcodeModule>>
8096llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
8097 auto FOrErr = getBitcodeFileContents(Buffer);
8098 if (!FOrErr)
8099 return FOrErr.takeError();
8100 return std::move(FOrErr->Mods);
8101}
8102
8103Expected<BitcodeFileContents>
8104llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
8105 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8106 if (!StreamOrErr)
8107 return StreamOrErr.takeError();
8108 BitstreamCursor &Stream = *StreamOrErr;
8109
8110 BitcodeFileContents F;
8111 while (true) {
8112 uint64_t BCBegin = Stream.getCurrentByteNo();
8113
8114 // We may be consuming bitcode from a client that leaves garbage at the end
8115 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
8116 // the end that there cannot possibly be another module, stop looking.
8117 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
8118 return F;
8119
8120 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8121 if (!MaybeEntry)
8122 return MaybeEntry.takeError();
8123 llvm::BitstreamEntry Entry = MaybeEntry.get();
8124
8125 switch (Entry.Kind) {
8126 case BitstreamEntry::EndBlock:
8127 case BitstreamEntry::Error:
8128 return error(Message: "Malformed block");
8129
8130 case BitstreamEntry::SubBlock: {
8131 uint64_t IdentificationBit = -1ull;
8132 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
8133 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8134 if (Error Err = Stream.SkipBlock())
8135 return std::move(Err);
8136
8137 {
8138 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
8139 if (!MaybeEntry)
8140 return MaybeEntry.takeError();
8141 Entry = MaybeEntry.get();
8142 }
8143
8144 if (Entry.Kind != BitstreamEntry::SubBlock ||
8145 Entry.ID != bitc::MODULE_BLOCK_ID)
8146 return error(Message: "Malformed block");
8147 }
8148
8149 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
8150 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
8151 if (Error Err = Stream.SkipBlock())
8152 return std::move(Err);
8153
8154 F.Mods.push_back(x: {Stream.getBitcodeBytes().slice(
8155 N: BCBegin, M: Stream.getCurrentByteNo() - BCBegin),
8156 Buffer.getBufferIdentifier(), IdentificationBit,
8157 ModuleBit});
8158 continue;
8159 }
8160
8161 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
8162 Expected<StringRef> Strtab =
8163 readBlobInRecord(Stream, Block: bitc::STRTAB_BLOCK_ID, RecordID: bitc::STRTAB_BLOB);
8164 if (!Strtab)
8165 return Strtab.takeError();
8166 // This string table is used by every preceding bitcode module that does
8167 // not have its own string table. A bitcode file may have multiple
8168 // string tables if it was created by binary concatenation, for example
8169 // with "llvm-cat -b".
8170 for (BitcodeModule &I : llvm::reverse(C&: F.Mods)) {
8171 if (!I.Strtab.empty())
8172 break;
8173 I.Strtab = *Strtab;
8174 }
8175 // Similarly, the string table is used by every preceding symbol table;
8176 // normally there will be just one unless the bitcode file was created
8177 // by binary concatenation.
8178 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
8179 F.StrtabForSymtab = *Strtab;
8180 continue;
8181 }
8182
8183 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
8184 Expected<StringRef> SymtabOrErr =
8185 readBlobInRecord(Stream, Block: bitc::SYMTAB_BLOCK_ID, RecordID: bitc::SYMTAB_BLOB);
8186 if (!SymtabOrErr)
8187 return SymtabOrErr.takeError();
8188
8189 // We can expect the bitcode file to have multiple symbol tables if it
8190 // was created by binary concatenation. In that case we silently
8191 // ignore any subsequent symbol tables, which is fine because this is a
8192 // low level function. The client is expected to notice that the number
8193 // of modules in the symbol table does not match the number of modules
8194 // in the input file and regenerate the symbol table.
8195 if (F.Symtab.empty())
8196 F.Symtab = *SymtabOrErr;
8197 continue;
8198 }
8199
8200 if (Error Err = Stream.SkipBlock())
8201 return std::move(Err);
8202 continue;
8203 }
8204 case BitstreamEntry::Record:
8205 if (Error E = Stream.skipRecord(AbbrevID: Entry.ID).takeError())
8206 return std::move(E);
8207 continue;
8208 }
8209 }
8210}
8211
8212/// Get a lazy one-at-time loading module from bitcode.
8213///
8214/// This isn't always used in a lazy context. In particular, it's also used by
8215/// \a parseModule(). If this is truly lazy, then we need to eagerly pull
8216/// in forward-referenced functions from block address references.
8217///
8218/// \param[in] MaterializeAll Set to \c true if we should materialize
8219/// everything.
8220Expected<std::unique_ptr<Module>>
8221BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
8222 bool ShouldLazyLoadMetadata, bool IsImporting,
8223 ParserCallbacks Callbacks) {
8224 BitstreamCursor Stream(Buffer);
8225
8226 std::string ProducerIdentification;
8227 if (IdentificationBit != -1ull) {
8228 if (Error JumpFailed = Stream.JumpToBit(BitNo: IdentificationBit))
8229 return std::move(JumpFailed);
8230 if (Error E =
8231 readIdentificationBlock(Stream).moveInto(Value&: ProducerIdentification))
8232 return std::move(E);
8233 }
8234
8235 if (Error JumpFailed = Stream.JumpToBit(BitNo: ModuleBit))
8236 return std::move(JumpFailed);
8237 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
8238 Context);
8239
8240 std::unique_ptr<Module> M =
8241 std::make_unique<Module>(args&: ModuleIdentifier, args&: Context);
8242 M->setMaterializer(R);
8243
8244 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
8245 if (Error Err = R->parseBitcodeInto(M: M.get(), ShouldLazyLoadMetadata,
8246 IsImporting, Callbacks))
8247 return std::move(Err);
8248
8249 if (MaterializeAll) {
8250 // Read in the entire module, and destroy the BitcodeReader.
8251 if (Error Err = M->materializeAll())
8252 return std::move(Err);
8253 } else {
8254 // Resolve forward references from blockaddresses.
8255 if (Error Err = R->materializeForwardReferencedFunctions())
8256 return std::move(Err);
8257 }
8258
8259 return std::move(M);
8260}
8261
8262Expected<std::unique_ptr<Module>>
8263BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
8264 bool IsImporting, ParserCallbacks Callbacks) {
8265 return getModuleImpl(Context, MaterializeAll: false, ShouldLazyLoadMetadata, IsImporting,
8266 Callbacks);
8267}
8268
8269// Parse the specified bitcode buffer and merge the index into CombinedIndex.
8270// We don't use ModuleIdentifier here because the client may need to control the
8271// module path used in the combined summary (e.g. when reading summaries for
8272// regular LTO modules).
8273Error BitcodeModule::readSummary(
8274 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath,
8275 std::function<bool(GlobalValue::GUID)> IsPrevailing) {
8276 BitstreamCursor Stream(Buffer);
8277 if (Error JumpFailed = Stream.JumpToBit(BitNo: ModuleBit))
8278 return JumpFailed;
8279
8280 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
8281 ModulePath, IsPrevailing);
8282 return R.parseModule();
8283}
8284
8285// Parse the specified bitcode buffer, returning the function info index.
8286Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
8287 BitstreamCursor Stream(Buffer);
8288 if (Error JumpFailed = Stream.JumpToBit(BitNo: ModuleBit))
8289 return std::move(JumpFailed);
8290
8291 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/args: false);
8292 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
8293 ModuleIdentifier, 0);
8294
8295 if (Error Err = R.parseModule())
8296 return std::move(Err);
8297
8298 return std::move(Index);
8299}
8300
8301static Expected<std::pair<bool, bool>>
8302getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream,
8303 unsigned ID,
8304 BitcodeLTOInfo &LTOInfo) {
8305 if (Error Err = Stream.EnterSubBlock(BlockID: ID))
8306 return std::move(Err);
8307 SmallVector<uint64_t, 64> Record;
8308
8309 while (true) {
8310 BitstreamEntry Entry;
8311 std::pair<bool, bool> Result = {false,false};
8312 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Value&: Entry))
8313 return std::move(E);
8314
8315 switch (Entry.Kind) {
8316 case BitstreamEntry::SubBlock: // Handled for us already.
8317 case BitstreamEntry::Error:
8318 return error(Message: "Malformed block");
8319 case BitstreamEntry::EndBlock: {
8320 // If no flags record found, set both flags to false.
8321 return Result;
8322 }
8323 case BitstreamEntry::Record:
8324 // The interesting case.
8325 break;
8326 }
8327
8328 // Look for the FS_FLAGS record.
8329 Record.clear();
8330 Expected<unsigned> MaybeBitCode = Stream.readRecord(AbbrevID: Entry.ID, Vals&: Record);
8331 if (!MaybeBitCode)
8332 return MaybeBitCode.takeError();
8333 switch (MaybeBitCode.get()) {
8334 default: // Default behavior: ignore.
8335 break;
8336 case bitc::FS_FLAGS: { // [flags]
8337 uint64_t Flags = Record[0];
8338 // Scan flags.
8339 assert(Flags <= 0x2ff && "Unexpected bits in flag");
8340
8341 bool EnableSplitLTOUnit = Flags & 0x8;
8342 bool UnifiedLTO = Flags & 0x200;
8343 Result = {EnableSplitLTOUnit, UnifiedLTO};
8344
8345 return Result;
8346 }
8347 }
8348 }
8349 llvm_unreachable("Exit infinite loop");
8350}
8351
8352// Check if the given bitcode buffer contains a global value summary block.
8353Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
8354 BitstreamCursor Stream(Buffer);
8355 if (Error JumpFailed = Stream.JumpToBit(BitNo: ModuleBit))
8356 return std::move(JumpFailed);
8357
8358 if (Error Err = Stream.EnterSubBlock(BlockID: bitc::MODULE_BLOCK_ID))
8359 return std::move(Err);
8360
8361 while (true) {
8362 llvm::BitstreamEntry Entry;
8363 if (Error E = Stream.advance().moveInto(Value&: Entry))
8364 return std::move(E);
8365
8366 switch (Entry.Kind) {
8367 case BitstreamEntry::Error:
8368 return error(Message: "Malformed block");
8369 case BitstreamEntry::EndBlock:
8370 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
8371 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false};
8372
8373 case BitstreamEntry::SubBlock:
8374 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
8375 BitcodeLTOInfo LTOInfo;
8376 Expected<std::pair<bool, bool>> Flags =
8377 getEnableSplitLTOUnitAndUnifiedFlag(Stream, ID: Entry.ID, LTOInfo);
8378 if (!Flags)
8379 return Flags.takeError();
8380 std::tie(args&: LTOInfo.EnableSplitLTOUnit, args&: LTOInfo.UnifiedLTO) = Flags.get();
8381 LTOInfo.IsThinLTO = true;
8382 LTOInfo.HasSummary = true;
8383 return LTOInfo;
8384 }
8385
8386 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
8387 BitcodeLTOInfo LTOInfo;
8388 Expected<std::pair<bool, bool>> Flags =
8389 getEnableSplitLTOUnitAndUnifiedFlag(Stream, ID: Entry.ID, LTOInfo);
8390 if (!Flags)
8391 return Flags.takeError();
8392 std::tie(args&: LTOInfo.EnableSplitLTOUnit, args&: LTOInfo.UnifiedLTO) = Flags.get();
8393 LTOInfo.IsThinLTO = false;
8394 LTOInfo.HasSummary = true;
8395 return LTOInfo;
8396 }
8397
8398 // Ignore other sub-blocks.
8399 if (Error Err = Stream.SkipBlock())
8400 return std::move(Err);
8401 continue;
8402
8403 case BitstreamEntry::Record:
8404 if (Expected<unsigned> StreamFailed = Stream.skipRecord(AbbrevID: Entry.ID))
8405 continue;
8406 else
8407 return StreamFailed.takeError();
8408 }
8409 }
8410}
8411
8412static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
8413 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
8414 if (!MsOrErr)
8415 return MsOrErr.takeError();
8416
8417 if (MsOrErr->size() != 1)
8418 return error(Message: "Expected a single module");
8419
8420 return (*MsOrErr)[0];
8421}
8422
8423Expected<std::unique_ptr<Module>>
8424llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
8425 bool ShouldLazyLoadMetadata, bool IsImporting,
8426 ParserCallbacks Callbacks) {
8427 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8428 if (!BM)
8429 return BM.takeError();
8430
8431 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting,
8432 Callbacks);
8433}
8434
8435Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
8436 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
8437 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) {
8438 auto MOrErr = getLazyBitcodeModule(Buffer: *Buffer, Context, ShouldLazyLoadMetadata,
8439 IsImporting, Callbacks);
8440 if (MOrErr)
8441 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
8442 return MOrErr;
8443}
8444
8445Expected<std::unique_ptr<Module>>
8446BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) {
8447 return getModuleImpl(Context, MaterializeAll: true, ShouldLazyLoadMetadata: false, IsImporting: false, Callbacks);
8448 // TODO: Restore the use-lists to the in-memory state when the bitcode was
8449 // written. We must defer until the Module has been fully materialized.
8450}
8451
8452Expected<std::unique_ptr<Module>>
8453llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
8454 ParserCallbacks Callbacks) {
8455 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8456 if (!BM)
8457 return BM.takeError();
8458
8459 return BM->parseModule(Context, Callbacks);
8460}
8461
8462Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
8463 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8464 if (!StreamOrErr)
8465 return StreamOrErr.takeError();
8466
8467 return readTriple(Stream&: *StreamOrErr);
8468}
8469
8470Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
8471 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8472 if (!StreamOrErr)
8473 return StreamOrErr.takeError();
8474
8475 return hasObjCCategory(Stream&: *StreamOrErr);
8476}
8477
8478Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
8479 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
8480 if (!StreamOrErr)
8481 return StreamOrErr.takeError();
8482
8483 return readIdentificationCode(Stream&: *StreamOrErr);
8484}
8485
8486Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
8487 ModuleSummaryIndex &CombinedIndex) {
8488 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8489 if (!BM)
8490 return BM.takeError();
8491
8492 return BM->readSummary(CombinedIndex, ModulePath: BM->getModuleIdentifier());
8493}
8494
8495Expected<std::unique_ptr<ModuleSummaryIndex>>
8496llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
8497 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8498 if (!BM)
8499 return BM.takeError();
8500
8501 return BM->getSummary();
8502}
8503
8504Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
8505 Expected<BitcodeModule> BM = getSingleModule(Buffer);
8506 if (!BM)
8507 return BM.takeError();
8508
8509 return BM->getLTOInfo();
8510}
8511
8512Expected<std::unique_ptr<ModuleSummaryIndex>>
8513llvm::getModuleSummaryIndexForFile(StringRef Path,
8514 bool IgnoreEmptyThinLTOIndexFile) {
8515 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
8516 MemoryBuffer::getFileOrSTDIN(Filename: Path);
8517 if (!FileOrErr)
8518 return errorCodeToError(EC: FileOrErr.getError());
8519 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
8520 return nullptr;
8521 return getModuleSummaryIndex(Buffer: **FileOrErr);
8522}
8523

source code of llvm/lib/Bitcode/Reader/BitcodeReader.cpp