1//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "HexagonISelLowering.h"
10#include "HexagonRegisterInfo.h"
11#include "HexagonSubtarget.h"
12#include "llvm/ADT/SetVector.h"
13#include "llvm/ADT/SmallVector.h"
14#include "llvm/Analysis/MemoryLocation.h"
15#include "llvm/CodeGen/MachineBasicBlock.h"
16#include "llvm/CodeGen/MachineFunction.h"
17#include "llvm/CodeGen/MachineInstr.h"
18#include "llvm/CodeGen/MachineOperand.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/TargetInstrInfo.h"
21#include "llvm/IR/IntrinsicsHexagon.h"
22#include "llvm/Support/CommandLine.h"
23
24#include <algorithm>
25#include <string>
26#include <utility>
27
28using namespace llvm;
29
30static cl::opt<unsigned> HvxWidenThreshold("hexagon-hvx-widen",
31 cl::Hidden, cl::init(Val: 16),
32 cl::desc("Lower threshold (in bytes) for widening to HVX vectors"));
33
34static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 };
35static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
36static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
37static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
38
39static std::tuple<unsigned, unsigned, unsigned> getIEEEProperties(MVT Ty) {
40 // For a float scalar type, return (exp-bits, exp-bias, fraction-bits)
41 MVT ElemTy = Ty.getScalarType();
42 switch (ElemTy.SimpleTy) {
43 case MVT::f16:
44 return std::make_tuple(args: 5, args: 15, args: 10);
45 case MVT::f32:
46 return std::make_tuple(args: 8, args: 127, args: 23);
47 case MVT::f64:
48 return std::make_tuple(args: 11, args: 1023, args: 52);
49 default:
50 break;
51 }
52 llvm_unreachable(("Unexpected type: " + EVT(ElemTy).getEVTString()).c_str());
53}
54
55void
56HexagonTargetLowering::initializeHVXLowering() {
57 if (Subtarget.useHVX64BOps()) {
58 addRegisterClass(MVT::VT: v64i8, RC: &Hexagon::HvxVRRegClass);
59 addRegisterClass(MVT::VT: v32i16, RC: &Hexagon::HvxVRRegClass);
60 addRegisterClass(MVT::VT: v16i32, RC: &Hexagon::HvxVRRegClass);
61 addRegisterClass(MVT::VT: v128i8, RC: &Hexagon::HvxWRRegClass);
62 addRegisterClass(MVT::VT: v64i16, RC: &Hexagon::HvxWRRegClass);
63 addRegisterClass(MVT::VT: v32i32, RC: &Hexagon::HvxWRRegClass);
64 // These "short" boolean vector types should be legal because
65 // they will appear as results of vector compares. If they were
66 // not legal, type legalization would try to make them legal
67 // and that would require using operations that do not use or
68 // produce such types. That, in turn, would imply using custom
69 // nodes, which would be unoptimizable by the DAG combiner.
70 // The idea is to rely on target-independent operations as much
71 // as possible.
72 addRegisterClass(MVT::VT: v16i1, RC: &Hexagon::HvxQRRegClass);
73 addRegisterClass(MVT::VT: v32i1, RC: &Hexagon::HvxQRRegClass);
74 addRegisterClass(MVT::VT: v64i1, RC: &Hexagon::HvxQRRegClass);
75 } else if (Subtarget.useHVX128BOps()) {
76 addRegisterClass(MVT::VT: v128i8, RC: &Hexagon::HvxVRRegClass);
77 addRegisterClass(MVT::VT: v64i16, RC: &Hexagon::HvxVRRegClass);
78 addRegisterClass(MVT::VT: v32i32, RC: &Hexagon::HvxVRRegClass);
79 addRegisterClass(MVT::VT: v256i8, RC: &Hexagon::HvxWRRegClass);
80 addRegisterClass(MVT::VT: v128i16, RC: &Hexagon::HvxWRRegClass);
81 addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass);
82 addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
83 addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
84 addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
85 if (Subtarget.useHVXV68Ops() && Subtarget.useHVXFloatingPoint()) {
86 addRegisterClass(MVT::v32f32, &Hexagon::HvxVRRegClass);
87 addRegisterClass(MVT::v64f16, &Hexagon::HvxVRRegClass);
88 addRegisterClass(MVT::v64f32, &Hexagon::HvxWRRegClass);
89 addRegisterClass(MVT::v128f16, &Hexagon::HvxWRRegClass);
90 }
91 }
92
93 // Set up operation actions.
94
95 bool Use64b = Subtarget.useHVX64BOps();
96 ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
97 ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
98 MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8;
99 MVT WordV = Use64b ? MVT::v16i32 : MVT::v32i32;
100 MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
101
102 auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
103 setOperationAction(Op: Opc, VT: FromTy, Action: Promote);
104 AddPromotedToType(Opc, OrigVT: FromTy, DestVT: ToTy);
105 };
106
107 // Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32).
108 // Note: v16i1 -> i16 is handled in type legalization instead of op
109 // legalization.
110 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
111 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
112 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
113 setOperationAction(ISD::BITCAST, MVT::v16i1, Custom);
114 setOperationAction(ISD::BITCAST, MVT::v128i1, Custom);
115 setOperationAction(ISD::BITCAST, MVT::i128, Custom);
116 setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: ByteV, Action: Legal);
117 setOperationAction(Op: ISD::VECTOR_SHUFFLE, VT: ByteW, Action: Legal);
118 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
119
120 if (Subtarget.useHVX128BOps() && Subtarget.useHVXV68Ops() &&
121 Subtarget.useHVXFloatingPoint()) {
122
123 static const MVT FloatV[] = { MVT::v64f16, MVT::v32f32 };
124 static const MVT FloatW[] = { MVT::v128f16, MVT::v64f32 };
125
126 for (MVT T : FloatV) {
127 setOperationAction(ISD::FADD, T, Legal);
128 setOperationAction(ISD::FSUB, T, Legal);
129 setOperationAction(ISD::FMUL, T, Legal);
130 setOperationAction(ISD::FMINNUM, T, Legal);
131 setOperationAction(ISD::FMAXNUM, T, Legal);
132
133 setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom);
134 setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
135
136 setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
137 setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
138
139 setOperationAction(ISD::MLOAD, T, Custom);
140 setOperationAction(ISD::MSTORE, T, Custom);
141 // Custom-lower BUILD_VECTOR. The standard (target-independent)
142 // handling of it would convert it to a load, which is not always
143 // the optimal choice.
144 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
145 }
146
147
148 // BUILD_VECTOR with f16 operands cannot be promoted without
149 // promoting the result, so lower the node to vsplat or constant pool
150 setOperationAction(ISD::BUILD_VECTOR, MVT::f16, Custom);
151 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::f16, Custom);
152 setOperationAction(ISD::SPLAT_VECTOR, MVT::f16, Custom);
153
154 // Vector shuffle is always promoted to ByteV and a bitcast to f16 is
155 // generated.
156 setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v128f16, ByteW);
157 setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f16, ByteV);
158 setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v64f32, ByteW);
159 setPromoteTo(ISD::VECTOR_SHUFFLE, MVT::v32f32, ByteV);
160
161 for (MVT P : FloatW) {
162 setOperationAction(ISD::LOAD, P, Custom);
163 setOperationAction(ISD::STORE, P, Custom);
164 setOperationAction(ISD::FADD, P, Custom);
165 setOperationAction(ISD::FSUB, P, Custom);
166 setOperationAction(ISD::FMUL, P, Custom);
167 setOperationAction(ISD::FMINNUM, P, Custom);
168 setOperationAction(ISD::FMAXNUM, P, Custom);
169 setOperationAction(ISD::SETCC, P, Custom);
170 setOperationAction(ISD::VSELECT, P, Custom);
171
172 // Custom-lower BUILD_VECTOR. The standard (target-independent)
173 // handling of it would convert it to a load, which is not always
174 // the optimal choice.
175 setOperationAction(ISD::BUILD_VECTOR, P, Custom);
176 // Make concat-vectors custom to handle concats of more than 2 vectors.
177 setOperationAction(ISD::CONCAT_VECTORS, P, Custom);
178
179 setOperationAction(ISD::MLOAD, P, Custom);
180 setOperationAction(ISD::MSTORE, P, Custom);
181 }
182
183 if (Subtarget.useHVXQFloatOps()) {
184 setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Custom);
185 setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal);
186 } else if (Subtarget.useHVXIEEEFPOps()) {
187 setOperationAction(ISD::FP_EXTEND, MVT::v64f32, Legal);
188 setOperationAction(ISD::FP_ROUND, MVT::v64f16, Legal);
189 }
190 }
191
192 for (MVT T : LegalV) {
193 setIndexedLoadAction(ISD::POST_INC, T, Legal);
194 setIndexedStoreAction(ISD::POST_INC, T, Legal);
195
196 setOperationAction(ISD::ABS, T, Legal);
197 setOperationAction(ISD::AND, T, Legal);
198 setOperationAction(ISD::OR, T, Legal);
199 setOperationAction(ISD::XOR, T, Legal);
200 setOperationAction(ISD::ADD, T, Legal);
201 setOperationAction(ISD::SUB, T, Legal);
202 setOperationAction(ISD::MUL, T, Legal);
203 setOperationAction(ISD::CTPOP, T, Legal);
204 setOperationAction(ISD::CTLZ, T, Legal);
205 setOperationAction(ISD::SELECT, T, Legal);
206 setOperationAction(ISD::SPLAT_VECTOR, T, Legal);
207 if (T != ByteV) {
208 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
209 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
210 setOperationAction(ISD::BSWAP, T, Legal);
211 }
212
213 setOperationAction(ISD::SMIN, T, Legal);
214 setOperationAction(ISD::SMAX, T, Legal);
215 if (T.getScalarType() != MVT::i32) {
216 setOperationAction(ISD::UMIN, T, Legal);
217 setOperationAction(ISD::UMAX, T, Legal);
218 }
219
220 setOperationAction(ISD::CTTZ, T, Custom);
221 setOperationAction(ISD::LOAD, T, Custom);
222 setOperationAction(ISD::MLOAD, T, Custom);
223 setOperationAction(ISD::MSTORE, T, Custom);
224 if (T.getScalarType() != MVT::i32) {
225 setOperationAction(ISD::MULHS, T, Legal);
226 setOperationAction(ISD::MULHU, T, Legal);
227 }
228
229 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
230 // Make concat-vectors custom to handle concats of more than 2 vectors.
231 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
232 setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom);
233 setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom);
234 setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
235 setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
236 setOperationAction(ISD::ANY_EXTEND, T, Custom);
237 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
238 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
239 setOperationAction(ISD::FSHL, T, Custom);
240 setOperationAction(ISD::FSHR, T, Custom);
241 if (T != ByteV) {
242 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
243 // HVX only has shifts of words and halfwords.
244 setOperationAction(ISD::SRA, T, Custom);
245 setOperationAction(ISD::SHL, T, Custom);
246 setOperationAction(ISD::SRL, T, Custom);
247
248 // Promote all shuffles to operate on vectors of bytes.
249 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
250 }
251
252 if (Subtarget.useHVXFloatingPoint()) {
253 // Same action for both QFloat and IEEE.
254 setOperationAction(ISD::SINT_TO_FP, T, Custom);
255 setOperationAction(ISD::UINT_TO_FP, T, Custom);
256 setOperationAction(ISD::FP_TO_SINT, T, Custom);
257 setOperationAction(ISD::FP_TO_UINT, T, Custom);
258 }
259
260 setCondCodeAction(ISD::SETNE, T, Expand);
261 setCondCodeAction(ISD::SETLE, T, Expand);
262 setCondCodeAction(ISD::SETGE, T, Expand);
263 setCondCodeAction(ISD::SETLT, T, Expand);
264 setCondCodeAction(ISD::SETULE, T, Expand);
265 setCondCodeAction(ISD::SETUGE, T, Expand);
266 setCondCodeAction(ISD::SETULT, T, Expand);
267 }
268
269 for (MVT T : LegalW) {
270 // Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
271 // independent) handling of it would convert it to a load, which is
272 // not always the optimal choice.
273 setOperationAction(ISD::BUILD_VECTOR, T, Custom);
274 // Make concat-vectors custom to handle concats of more than 2 vectors.
275 setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
276
277 // Custom-lower these operations for pairs. Expand them into a concat
278 // of the corresponding operations on individual vectors.
279 setOperationAction(ISD::ANY_EXTEND, T, Custom);
280 setOperationAction(ISD::SIGN_EXTEND, T, Custom);
281 setOperationAction(ISD::ZERO_EXTEND, T, Custom);
282 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom);
283 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
284 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
285 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
286 setOperationAction(ISD::SPLAT_VECTOR, T, Custom);
287
288 setOperationAction(ISD::LOAD, T, Custom);
289 setOperationAction(ISD::STORE, T, Custom);
290 setOperationAction(ISD::MLOAD, T, Custom);
291 setOperationAction(ISD::MSTORE, T, Custom);
292 setOperationAction(ISD::ABS, T, Custom);
293 setOperationAction(ISD::CTLZ, T, Custom);
294 setOperationAction(ISD::CTTZ, T, Custom);
295 setOperationAction(ISD::CTPOP, T, Custom);
296
297 setOperationAction(ISD::ADD, T, Legal);
298 setOperationAction(ISD::SUB, T, Legal);
299 setOperationAction(ISD::MUL, T, Custom);
300 setOperationAction(ISD::MULHS, T, Custom);
301 setOperationAction(ISD::MULHU, T, Custom);
302 setOperationAction(ISD::AND, T, Custom);
303 setOperationAction(ISD::OR, T, Custom);
304 setOperationAction(ISD::XOR, T, Custom);
305 setOperationAction(ISD::SETCC, T, Custom);
306 setOperationAction(ISD::VSELECT, T, Custom);
307 if (T != ByteW) {
308 setOperationAction(ISD::SRA, T, Custom);
309 setOperationAction(ISD::SHL, T, Custom);
310 setOperationAction(ISD::SRL, T, Custom);
311
312 // Promote all shuffles to operate on vectors of bytes.
313 setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
314 }
315 setOperationAction(ISD::FSHL, T, Custom);
316 setOperationAction(ISD::FSHR, T, Custom);
317
318 setOperationAction(ISD::SMIN, T, Custom);
319 setOperationAction(ISD::SMAX, T, Custom);
320 if (T.getScalarType() != MVT::i32) {
321 setOperationAction(ISD::UMIN, T, Custom);
322 setOperationAction(ISD::UMAX, T, Custom);
323 }
324
325 if (Subtarget.useHVXFloatingPoint()) {
326 // Same action for both QFloat and IEEE.
327 setOperationAction(ISD::SINT_TO_FP, T, Custom);
328 setOperationAction(ISD::UINT_TO_FP, T, Custom);
329 setOperationAction(ISD::FP_TO_SINT, T, Custom);
330 setOperationAction(ISD::FP_TO_UINT, T, Custom);
331 }
332 }
333
334 // Legalize all of these to HexagonISD::[SU]MUL_LOHI.
335 setOperationAction(Op: ISD::MULHS, VT: WordV, Action: Custom); // -> _LOHI
336 setOperationAction(Op: ISD::MULHU, VT: WordV, Action: Custom); // -> _LOHI
337 setOperationAction(Op: ISD::SMUL_LOHI, VT: WordV, Action: Custom);
338 setOperationAction(Op: ISD::UMUL_LOHI, VT: WordV, Action: Custom);
339
340 setCondCodeAction(ISD::SETNE, MVT::v64f16, Expand);
341 setCondCodeAction(ISD::SETLE, MVT::v64f16, Expand);
342 setCondCodeAction(ISD::SETGE, MVT::v64f16, Expand);
343 setCondCodeAction(ISD::SETLT, MVT::v64f16, Expand);
344 setCondCodeAction(ISD::SETONE, MVT::v64f16, Expand);
345 setCondCodeAction(ISD::SETOLE, MVT::v64f16, Expand);
346 setCondCodeAction(ISD::SETOGE, MVT::v64f16, Expand);
347 setCondCodeAction(ISD::SETOLT, MVT::v64f16, Expand);
348 setCondCodeAction(ISD::SETUNE, MVT::v64f16, Expand);
349 setCondCodeAction(ISD::SETULE, MVT::v64f16, Expand);
350 setCondCodeAction(ISD::SETUGE, MVT::v64f16, Expand);
351 setCondCodeAction(ISD::SETULT, MVT::v64f16, Expand);
352
353 setCondCodeAction(ISD::SETNE, MVT::v32f32, Expand);
354 setCondCodeAction(ISD::SETLE, MVT::v32f32, Expand);
355 setCondCodeAction(ISD::SETGE, MVT::v32f32, Expand);
356 setCondCodeAction(ISD::SETLT, MVT::v32f32, Expand);
357 setCondCodeAction(ISD::SETONE, MVT::v32f32, Expand);
358 setCondCodeAction(ISD::SETOLE, MVT::v32f32, Expand);
359 setCondCodeAction(ISD::SETOGE, MVT::v32f32, Expand);
360 setCondCodeAction(ISD::SETOLT, MVT::v32f32, Expand);
361 setCondCodeAction(ISD::SETUNE, MVT::v32f32, Expand);
362 setCondCodeAction(ISD::SETULE, MVT::v32f32, Expand);
363 setCondCodeAction(ISD::SETUGE, MVT::v32f32, Expand);
364 setCondCodeAction(ISD::SETULT, MVT::v32f32, Expand);
365
366 // Boolean vectors.
367
368 for (MVT T : LegalW) {
369 // Boolean types for vector pairs will overlap with the boolean
370 // types for single vectors, e.g.
371 // v64i8 -> v64i1 (single)
372 // v64i16 -> v64i1 (pair)
373 // Set these actions first, and allow the single actions to overwrite
374 // any duplicates.
375 MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
376 setOperationAction(ISD::SETCC, BoolW, Custom);
377 setOperationAction(ISD::AND, BoolW, Custom);
378 setOperationAction(ISD::OR, BoolW, Custom);
379 setOperationAction(ISD::XOR, BoolW, Custom);
380 // Masked load/store takes a mask that may need splitting.
381 setOperationAction(ISD::MLOAD, BoolW, Custom);
382 setOperationAction(ISD::MSTORE, BoolW, Custom);
383 }
384
385 for (MVT T : LegalV) {
386 MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
387 setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom);
388 setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom);
389 setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom);
390 setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom);
391 setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom);
392 setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
393 setOperationAction(ISD::SELECT, BoolV, Custom);
394 setOperationAction(ISD::AND, BoolV, Legal);
395 setOperationAction(ISD::OR, BoolV, Legal);
396 setOperationAction(ISD::XOR, BoolV, Legal);
397 }
398
399 if (Use64b) {
400 for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
401 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
402 } else {
403 for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
404 setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
405 }
406
407 // Handle store widening for short vectors.
408 unsigned HwLen = Subtarget.getVectorLength();
409 for (MVT ElemTy : Subtarget.getHVXElementTypes()) {
410 if (ElemTy == MVT::i1)
411 continue;
412 int ElemWidth = ElemTy.getFixedSizeInBits();
413 int MaxElems = (8*HwLen) / ElemWidth;
414 for (int N = 2; N < MaxElems; N *= 2) {
415 MVT VecTy = MVT::getVectorVT(VT: ElemTy, NumElements: N);
416 auto Action = getPreferredVectorAction(VT: VecTy);
417 if (Action == TargetLoweringBase::TypeWidenVector) {
418 setOperationAction(Op: ISD::LOAD, VT: VecTy, Action: Custom);
419 setOperationAction(Op: ISD::STORE, VT: VecTy, Action: Custom);
420 setOperationAction(Op: ISD::SETCC, VT: VecTy, Action: Custom);
421 setOperationAction(Op: ISD::TRUNCATE, VT: VecTy, Action: Custom);
422 setOperationAction(Op: ISD::ANY_EXTEND, VT: VecTy, Action: Custom);
423 setOperationAction(Op: ISD::SIGN_EXTEND, VT: VecTy, Action: Custom);
424 setOperationAction(Op: ISD::ZERO_EXTEND, VT: VecTy, Action: Custom);
425 if (Subtarget.useHVXFloatingPoint()) {
426 setOperationAction(Op: ISD::FP_TO_SINT, VT: VecTy, Action: Custom);
427 setOperationAction(Op: ISD::FP_TO_UINT, VT: VecTy, Action: Custom);
428 setOperationAction(Op: ISD::SINT_TO_FP, VT: VecTy, Action: Custom);
429 setOperationAction(Op: ISD::UINT_TO_FP, VT: VecTy, Action: Custom);
430 }
431
432 MVT BoolTy = MVT::getVectorVT(MVT::i1, N);
433 if (!isTypeLegal(VT: BoolTy))
434 setOperationAction(Op: ISD::SETCC, VT: BoolTy, Action: Custom);
435 }
436 }
437 }
438
439 setTargetDAGCombine({ISD::CONCAT_VECTORS, ISD::TRUNCATE, ISD::VSELECT});
440}
441
442unsigned
443HexagonTargetLowering::getPreferredHvxVectorAction(MVT VecTy) const {
444 MVT ElemTy = VecTy.getVectorElementType();
445 unsigned VecLen = VecTy.getVectorNumElements();
446 unsigned HwLen = Subtarget.getVectorLength();
447
448 // Split vectors of i1 that exceed byte vector length.
449 if (ElemTy == MVT::i1 && VecLen > HwLen)
450 return TargetLoweringBase::TypeSplitVector;
451
452 ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
453 // For shorter vectors of i1, widen them if any of the corresponding
454 // vectors of integers needs to be widened.
455 if (ElemTy == MVT::i1) {
456 for (MVT T : Tys) {
457 assert(T != MVT::i1);
458 auto A = getPreferredHvxVectorAction(VecTy: MVT::getVectorVT(VT: T, NumElements: VecLen));
459 if (A != ~0u)
460 return A;
461 }
462 return ~0u;
463 }
464
465 // If the size of VecTy is at least half of the vector length,
466 // widen the vector. Note: the threshold was not selected in
467 // any scientific way.
468 if (llvm::is_contained(Range&: Tys, Element: ElemTy)) {
469 unsigned VecWidth = VecTy.getSizeInBits();
470 unsigned HwWidth = 8*HwLen;
471 if (VecWidth > 2*HwWidth)
472 return TargetLoweringBase::TypeSplitVector;
473
474 bool HaveThreshold = HvxWidenThreshold.getNumOccurrences() > 0;
475 if (HaveThreshold && 8*HvxWidenThreshold <= VecWidth)
476 return TargetLoweringBase::TypeWidenVector;
477 if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
478 return TargetLoweringBase::TypeWidenVector;
479 }
480
481 // Defer to default.
482 return ~0u;
483}
484
485unsigned
486HexagonTargetLowering::getCustomHvxOperationAction(SDNode &Op) const {
487 unsigned Opc = Op.getOpcode();
488 switch (Opc) {
489 case HexagonISD::SMUL_LOHI:
490 case HexagonISD::UMUL_LOHI:
491 case HexagonISD::USMUL_LOHI:
492 return TargetLoweringBase::Custom;
493 }
494 return TargetLoweringBase::Legal;
495}
496
497SDValue
498HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
499 const SDLoc &dl, SelectionDAG &DAG) const {
500 SmallVector<SDValue,4> IntOps;
501 IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
502 append_range(C&: IntOps, R&: Ops);
503 return DAG.getNode(Opcode: ISD::INTRINSIC_WO_CHAIN, DL: dl, VT: ResTy, Ops: IntOps);
504}
505
506MVT
507HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
508 assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
509
510 MVT ElemTy = Tys.first.getVectorElementType();
511 return MVT::getVectorVT(VT: ElemTy, NumElements: Tys.first.getVectorNumElements() +
512 Tys.second.getVectorNumElements());
513}
514
515HexagonTargetLowering::TypePair
516HexagonTargetLowering::typeSplit(MVT VecTy) const {
517 assert(VecTy.isVector());
518 unsigned NumElem = VecTy.getVectorNumElements();
519 assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
520 MVT HalfTy = MVT::getVectorVT(VT: VecTy.getVectorElementType(), NumElements: NumElem/2);
521 return { HalfTy, HalfTy };
522}
523
524MVT
525HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
526 MVT ElemTy = VecTy.getVectorElementType();
527 MVT NewElemTy = MVT::getIntegerVT(BitWidth: ElemTy.getSizeInBits() * Factor);
528 return MVT::getVectorVT(VT: NewElemTy, NumElements: VecTy.getVectorNumElements());
529}
530
531MVT
532HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
533 MVT ElemTy = VecTy.getVectorElementType();
534 MVT NewElemTy = MVT::getIntegerVT(BitWidth: ElemTy.getSizeInBits() / Factor);
535 return MVT::getVectorVT(VT: NewElemTy, NumElements: VecTy.getVectorNumElements());
536}
537
538SDValue
539HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
540 SelectionDAG &DAG) const {
541 if (ty(Op: Vec).getVectorElementType() == ElemTy)
542 return Vec;
543 MVT CastTy = tyVector(Ty: Vec.getValueType().getSimpleVT(), ElemTy);
544 return DAG.getBitcast(VT: CastTy, V: Vec);
545}
546
547SDValue
548HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
549 SelectionDAG &DAG) const {
550 return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: typeJoin(Tys: ty(Ops)),
551 N1: Ops.first, N2: Ops.second);
552}
553
554HexagonTargetLowering::VectorPair
555HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
556 SelectionDAG &DAG) const {
557 TypePair Tys = typeSplit(VecTy: ty(Op: Vec));
558 if (Vec.getOpcode() == HexagonISD::QCAT)
559 return VectorPair(Vec.getOperand(i: 0), Vec.getOperand(i: 1));
560 return DAG.SplitVector(N: Vec, DL: dl, LoVT: Tys.first, HiVT: Tys.second);
561}
562
563bool
564HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
565 return Subtarget.isHVXVectorType(VecTy: Ty) &&
566 Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
567}
568
569bool
570HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
571 return Subtarget.isHVXVectorType(VecTy: Ty) &&
572 Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
573}
574
575bool
576HexagonTargetLowering::isHvxBoolTy(MVT Ty) const {
577 return Subtarget.isHVXVectorType(Ty, true) &&
578 Ty.getVectorElementType() == MVT::i1;
579}
580
581bool HexagonTargetLowering::allowsHvxMemoryAccess(
582 MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const {
583 // Bool vectors are excluded by default, but make it explicit to
584 // emphasize that bool vectors cannot be loaded or stored.
585 // Also, disallow double vector stores (to prevent unnecessary
586 // store widening in DAG combiner).
587 if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength())
588 return false;
589 if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false))
590 return false;
591 if (Fast)
592 *Fast = 1;
593 return true;
594}
595
596bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses(
597 MVT VecTy, MachineMemOperand::Flags Flags, unsigned *Fast) const {
598 if (!Subtarget.isHVXVectorType(VecTy))
599 return false;
600 // XXX Should this be false? vmemu are a bit slower than vmem.
601 if (Fast)
602 *Fast = 1;
603 return true;
604}
605
606void HexagonTargetLowering::AdjustHvxInstrPostInstrSelection(
607 MachineInstr &MI, SDNode *Node) const {
608 unsigned Opc = MI.getOpcode();
609 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
610 MachineBasicBlock &MB = *MI.getParent();
611 MachineFunction &MF = *MB.getParent();
612 MachineRegisterInfo &MRI = MF.getRegInfo();
613 DebugLoc DL = MI.getDebugLoc();
614 auto At = MI.getIterator();
615
616 switch (Opc) {
617 case Hexagon::PS_vsplatib:
618 if (Subtarget.useHVXV62Ops()) {
619 // SplatV = A2_tfrsi #imm
620 // OutV = V6_lvsplatb SplatV
621 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
622 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
623 .add(MI.getOperand(1));
624 Register OutV = MI.getOperand(i: 0).getReg();
625 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV)
626 .addReg(SplatV);
627 } else {
628 // SplatV = A2_tfrsi #imm:#imm:#imm:#imm
629 // OutV = V6_lvsplatw SplatV
630 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
631 const MachineOperand &InpOp = MI.getOperand(i: 1);
632 assert(InpOp.isImm());
633 uint32_t V = InpOp.getImm() & 0xFF;
634 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
635 .addImm(V << 24 | V << 16 | V << 8 | V);
636 Register OutV = MI.getOperand(i: 0).getReg();
637 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
638 }
639 MB.erase(I: At);
640 break;
641 case Hexagon::PS_vsplatrb:
642 if (Subtarget.useHVXV62Ops()) {
643 // OutV = V6_lvsplatb Inp
644 Register OutV = MI.getOperand(i: 0).getReg();
645 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatb), OutV)
646 .add(MI.getOperand(1));
647 } else {
648 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
649 const MachineOperand &InpOp = MI.getOperand(i: 1);
650 BuildMI(MB, At, DL, TII.get(Hexagon::S2_vsplatrb), SplatV)
651 .addReg(InpOp.getReg(), 0, InpOp.getSubReg());
652 Register OutV = MI.getOperand(i: 0).getReg();
653 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV)
654 .addReg(SplatV);
655 }
656 MB.erase(I: At);
657 break;
658 case Hexagon::PS_vsplatih:
659 if (Subtarget.useHVXV62Ops()) {
660 // SplatV = A2_tfrsi #imm
661 // OutV = V6_lvsplath SplatV
662 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
663 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
664 .add(MI.getOperand(1));
665 Register OutV = MI.getOperand(i: 0).getReg();
666 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV)
667 .addReg(SplatV);
668 } else {
669 // SplatV = A2_tfrsi #imm:#imm
670 // OutV = V6_lvsplatw SplatV
671 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
672 const MachineOperand &InpOp = MI.getOperand(i: 1);
673 assert(InpOp.isImm());
674 uint32_t V = InpOp.getImm() & 0xFFFF;
675 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
676 .addImm(V << 16 | V);
677 Register OutV = MI.getOperand(i: 0).getReg();
678 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
679 }
680 MB.erase(I: At);
681 break;
682 case Hexagon::PS_vsplatrh:
683 if (Subtarget.useHVXV62Ops()) {
684 // OutV = V6_lvsplath Inp
685 Register OutV = MI.getOperand(i: 0).getReg();
686 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplath), OutV)
687 .add(MI.getOperand(1));
688 } else {
689 // SplatV = A2_combine_ll Inp, Inp
690 // OutV = V6_lvsplatw SplatV
691 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
692 const MachineOperand &InpOp = MI.getOperand(i: 1);
693 BuildMI(MB, At, DL, TII.get(Hexagon::A2_combine_ll), SplatV)
694 .addReg(InpOp.getReg(), 0, InpOp.getSubReg())
695 .addReg(InpOp.getReg(), 0, InpOp.getSubReg());
696 Register OutV = MI.getOperand(i: 0).getReg();
697 BuildMI(MB, At, DL, TII.get(Hexagon::V6_lvsplatw), OutV).addReg(SplatV);
698 }
699 MB.erase(I: At);
700 break;
701 case Hexagon::PS_vsplatiw:
702 case Hexagon::PS_vsplatrw:
703 if (Opc == Hexagon::PS_vsplatiw) {
704 // SplatV = A2_tfrsi #imm
705 Register SplatV = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
706 BuildMI(MB, At, DL, TII.get(Hexagon::A2_tfrsi), SplatV)
707 .add(MI.getOperand(1));
708 MI.getOperand(i: 1).ChangeToRegister(Reg: SplatV, isDef: false);
709 }
710 // OutV = V6_lvsplatw SplatV/Inp
711 MI.setDesc(TII.get(Hexagon::V6_lvsplatw));
712 break;
713 }
714}
715
716SDValue
717HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
718 SelectionDAG &DAG) const {
719 if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
720 ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
721
722 unsigned ElemWidth = ElemTy.getSizeInBits();
723 if (ElemWidth == 8)
724 return ElemIdx;
725
726 unsigned L = Log2_32(Value: ElemWidth/8);
727 const SDLoc &dl(ElemIdx);
728 return DAG.getNode(ISD::SHL, dl, MVT::i32,
729 {ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
730}
731
732SDValue
733HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
734 SelectionDAG &DAG) const {
735 unsigned ElemWidth = ElemTy.getSizeInBits();
736 assert(ElemWidth >= 8 && ElemWidth <= 32);
737 if (ElemWidth == 32)
738 return Idx;
739
740 if (ty(Idx) != MVT::i32)
741 Idx = DAG.getBitcast(MVT::i32, Idx);
742 const SDLoc &dl(Idx);
743 SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
744 SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
745 return SubIdx;
746}
747
748SDValue
749HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
750 SDValue Op1, ArrayRef<int> Mask,
751 SelectionDAG &DAG) const {
752 MVT OpTy = ty(Op: Op0);
753 assert(OpTy == ty(Op1));
754
755 MVT ElemTy = OpTy.getVectorElementType();
756 if (ElemTy == MVT::i8)
757 return DAG.getVectorShuffle(VT: OpTy, dl, N1: Op0, N2: Op1, Mask);
758 assert(ElemTy.getSizeInBits() >= 8);
759
760 MVT ResTy = tyVector(OpTy, MVT::i8);
761 unsigned ElemSize = ElemTy.getSizeInBits() / 8;
762
763 SmallVector<int,128> ByteMask;
764 for (int M : Mask) {
765 if (M < 0) {
766 for (unsigned I = 0; I != ElemSize; ++I)
767 ByteMask.push_back(Elt: -1);
768 } else {
769 int NewM = M*ElemSize;
770 for (unsigned I = 0; I != ElemSize; ++I)
771 ByteMask.push_back(Elt: NewM+I);
772 }
773 }
774 assert(ResTy.getVectorNumElements() == ByteMask.size());
775 return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
776 opCastElem(Op1, MVT::i8, DAG), ByteMask);
777}
778
779SDValue
780HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
781 const SDLoc &dl, MVT VecTy,
782 SelectionDAG &DAG) const {
783 unsigned VecLen = Values.size();
784 MachineFunction &MF = DAG.getMachineFunction();
785 MVT ElemTy = VecTy.getVectorElementType();
786 unsigned ElemWidth = ElemTy.getSizeInBits();
787 unsigned HwLen = Subtarget.getVectorLength();
788
789 unsigned ElemSize = ElemWidth / 8;
790 assert(ElemSize*VecLen == HwLen);
791 SmallVector<SDValue,32> Words;
792
793 if (VecTy.getVectorElementType() != MVT::i32 &&
794 !(Subtarget.useHVXFloatingPoint() &&
795 VecTy.getVectorElementType() == MVT::f32)) {
796 assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
797 unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
798 MVT PartVT = MVT::getVectorVT(VT: VecTy.getVectorElementType(), NumElements: OpsPerWord);
799 for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
800 SDValue W = buildVector32(Elem: Values.slice(N: i, M: OpsPerWord), dl, VecTy: PartVT, DAG);
801 Words.push_back(DAG.getBitcast(MVT::i32, W));
802 }
803 } else {
804 for (SDValue V : Values)
805 Words.push_back(DAG.getBitcast(MVT::i32, V));
806 }
807 auto isSplat = [] (ArrayRef<SDValue> Values, SDValue &SplatV) {
808 unsigned NumValues = Values.size();
809 assert(NumValues > 0);
810 bool IsUndef = true;
811 for (unsigned i = 0; i != NumValues; ++i) {
812 if (Values[i].isUndef())
813 continue;
814 IsUndef = false;
815 if (!SplatV.getNode())
816 SplatV = Values[i];
817 else if (SplatV != Values[i])
818 return false;
819 }
820 if (IsUndef)
821 SplatV = Values[0];
822 return true;
823 };
824
825 unsigned NumWords = Words.size();
826 SDValue SplatV;
827 bool IsSplat = isSplat(Words, SplatV);
828 if (IsSplat && isUndef(Op: SplatV))
829 return DAG.getUNDEF(VT: VecTy);
830 if (IsSplat) {
831 assert(SplatV.getNode());
832 if (isNullConstant(V: SplatV))
833 return getZero(dl, Ty: VecTy, DAG);
834 MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
835 SDValue S = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: WordTy, Operand: SplatV);
836 return DAG.getBitcast(VT: VecTy, V: S);
837 }
838
839 // Delay recognizing constant vectors until here, so that we can generate
840 // a vsplat.
841 SmallVector<ConstantInt*, 128> Consts(VecLen);
842 bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
843 if (AllConst) {
844 ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
845 (Constant**)Consts.end());
846 Constant *CV = ConstantVector::get(V: Tmp);
847 Align Alignment(HwLen);
848 SDValue CP =
849 LowerConstantPool(Op: DAG.getConstantPool(C: CV, VT: VecTy, Align: Alignment), DAG);
850 return DAG.getLoad(VT: VecTy, dl, Chain: DAG.getEntryNode(), Ptr: CP,
851 PtrInfo: MachinePointerInfo::getConstantPool(MF), Alignment);
852 }
853
854 // A special case is a situation where the vector is built entirely from
855 // elements extracted from another vector. This could be done via a shuffle
856 // more efficiently, but typically, the size of the source vector will not
857 // match the size of the vector being built (which precludes the use of a
858 // shuffle directly).
859 // This only handles a single source vector, and the vector being built
860 // should be of a sub-vector type of the source vector type.
861 auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
862 SmallVectorImpl<int> &SrcIdx) {
863 SDValue Vec;
864 for (SDValue V : Values) {
865 if (isUndef(Op: V)) {
866 SrcIdx.push_back(Elt: -1);
867 continue;
868 }
869 if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
870 return false;
871 // All extracts should come from the same vector.
872 SDValue T = V.getOperand(i: 0);
873 if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
874 return false;
875 Vec = T;
876 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val: V.getOperand(i: 1));
877 if (C == nullptr)
878 return false;
879 int I = C->getSExtValue();
880 assert(I >= 0 && "Negative element index");
881 SrcIdx.push_back(Elt: I);
882 }
883 SrcVec = Vec;
884 return true;
885 };
886
887 SmallVector<int,128> ExtIdx;
888 SDValue ExtVec;
889 if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
890 MVT ExtTy = ty(Op: ExtVec);
891 unsigned ExtLen = ExtTy.getVectorNumElements();
892 if (ExtLen == VecLen || ExtLen == 2*VecLen) {
893 // Construct a new shuffle mask that will produce a vector with the same
894 // number of elements as the input vector, and such that the vector we
895 // want will be the initial subvector of it.
896 SmallVector<int,128> Mask;
897 BitVector Used(ExtLen);
898
899 for (int M : ExtIdx) {
900 Mask.push_back(Elt: M);
901 if (M >= 0)
902 Used.set(M);
903 }
904 // Fill the rest of the mask with the unused elements of ExtVec in hopes
905 // that it will result in a permutation of ExtVec's elements. It's still
906 // fine if it doesn't (e.g. if undefs are present, or elements are
907 // repeated), but permutations can always be done efficiently via vdelta
908 // and vrdelta.
909 for (unsigned I = 0; I != ExtLen; ++I) {
910 if (Mask.size() == ExtLen)
911 break;
912 if (!Used.test(Idx: I))
913 Mask.push_back(Elt: I);
914 }
915
916 SDValue S = DAG.getVectorShuffle(VT: ExtTy, dl, N1: ExtVec,
917 N2: DAG.getUNDEF(VT: ExtTy), Mask);
918 return ExtLen == VecLen ? S : LoHalf(V: S, DAG);
919 }
920 }
921
922 // Find most common element to initialize vector with. This is to avoid
923 // unnecessary vinsert/valign for cases where the same value is present
924 // many times. Creates a histogram of the vector's elements to find the
925 // most common element n.
926 assert(4*Words.size() == Subtarget.getVectorLength());
927 int VecHist[32];
928 int n = 0;
929 for (unsigned i = 0; i != NumWords; ++i) {
930 VecHist[i] = 0;
931 if (Words[i].isUndef())
932 continue;
933 for (unsigned j = i; j != NumWords; ++j)
934 if (Words[i] == Words[j])
935 VecHist[i]++;
936
937 if (VecHist[i] > VecHist[n])
938 n = i;
939 }
940
941 SDValue HalfV = getZero(dl, Ty: VecTy, DAG);
942 if (VecHist[n] > 1) {
943 SDValue SplatV = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: VecTy, Operand: Words[n]);
944 HalfV = DAG.getNode(HexagonISD::VALIGN, dl, VecTy,
945 {HalfV, SplatV, DAG.getConstant(HwLen/2, dl, MVT::i32)});
946 }
947 SDValue HalfV0 = HalfV;
948 SDValue HalfV1 = HalfV;
949
950 // Construct two halves in parallel, then or them together. Rn and Rm count
951 // number of rotations needed before the next element. One last rotation is
952 // performed post-loop to position the last element.
953 int Rn = 0, Rm = 0;
954 SDValue Sn, Sm;
955 SDValue N = HalfV0;
956 SDValue M = HalfV1;
957 for (unsigned i = 0; i != NumWords/2; ++i) {
958 // Rotate by element count since last insertion.
959 if (Words[i] != Words[n] || VecHist[n] <= 1) {
960 Sn = DAG.getConstant(Rn, dl, MVT::i32);
961 HalfV0 = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {N, Sn});
962 N = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: VecTy,
963 Ops: {HalfV0, Words[i]});
964 Rn = 0;
965 }
966 if (Words[i+NumWords/2] != Words[n] || VecHist[n] <= 1) {
967 Sm = DAG.getConstant(Rm, dl, MVT::i32);
968 HalfV1 = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {M, Sm});
969 M = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: VecTy,
970 Ops: {HalfV1, Words[i+NumWords/2]});
971 Rm = 0;
972 }
973 Rn += 4;
974 Rm += 4;
975 }
976 // Perform last rotation.
977 Sn = DAG.getConstant(Rn+HwLen/2, dl, MVT::i32);
978 Sm = DAG.getConstant(Rm, dl, MVT::i32);
979 HalfV0 = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {N, Sn});
980 HalfV1 = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {M, Sm});
981
982 SDValue T0 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV0);
983 SDValue T1 = DAG.getBitcast(tyVector(VecTy, MVT::i32), HalfV1);
984
985 SDValue DstV = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ty(Op: T0), Ops: {T0, T1});
986
987 SDValue OutV =
988 DAG.getBitcast(VT: tyVector(Ty: ty(Op: DstV), ElemTy: VecTy.getVectorElementType()), V: DstV);
989 return OutV;
990}
991
992SDValue
993HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
994 unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
995 MVT PredTy = ty(Op: PredV);
996 unsigned HwLen = Subtarget.getVectorLength();
997 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
998
999 if (Subtarget.isHVXVectorType(VecTy: PredTy, IncludeBool: true)) {
1000 // Move the vector predicate SubV to a vector register, and scale it
1001 // down to match the representation (bytes per type element) that VecV
1002 // uses. The scaling down will pick every 2nd or 4th (every Scale-th
1003 // in general) element and put them at the front of the resulting
1004 // vector. This subvector will then be inserted into the Q2V of VecV.
1005 // To avoid having an operation that generates an illegal type (short
1006 // vector), generate a full size vector.
1007 //
1008 SDValue T = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: PredV);
1009 SmallVector<int,128> Mask(HwLen);
1010 // Scale = BitBytes(PredV) / Given BitBytes.
1011 unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
1012 unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
1013
1014 for (unsigned i = 0; i != HwLen; ++i) {
1015 unsigned Num = i % Scale;
1016 unsigned Off = i / Scale;
1017 Mask[BlockLen*Num + Off] = i;
1018 }
1019 SDValue S = DAG.getVectorShuffle(VT: ByteTy, dl, N1: T, N2: DAG.getUNDEF(VT: ByteTy), Mask);
1020 if (!ZeroFill)
1021 return S;
1022 // Fill the bytes beyond BlockLen with 0s.
1023 // V6_pred_scalar2 cannot fill the entire predicate, so it only works
1024 // when BlockLen < HwLen.
1025 assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
1026 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1027 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1028 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
1029 SDValue M = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: Q);
1030 return DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ByteTy, N1: S, N2: M);
1031 }
1032
1033 // Make sure that this is a valid scalar predicate.
1034 assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
1035
1036 unsigned Bytes = 8 / PredTy.getVectorNumElements();
1037 SmallVector<SDValue,4> Words[2];
1038 unsigned IdxW = 0;
1039
1040 SDValue W0 = isUndef(PredV)
1041 ? DAG.getUNDEF(MVT::i64)
1042 : DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
1043 Words[IdxW].push_back(Elt: HiHalf(V: W0, DAG));
1044 Words[IdxW].push_back(Elt: LoHalf(V: W0, DAG));
1045
1046 while (Bytes < BitBytes) {
1047 IdxW ^= 1;
1048 Words[IdxW].clear();
1049
1050 if (Bytes < 4) {
1051 for (const SDValue &W : Words[IdxW ^ 1]) {
1052 SDValue T = expandPredicate(Vec32: W, dl, DAG);
1053 Words[IdxW].push_back(Elt: HiHalf(V: T, DAG));
1054 Words[IdxW].push_back(Elt: LoHalf(V: T, DAG));
1055 }
1056 } else {
1057 for (const SDValue &W : Words[IdxW ^ 1]) {
1058 Words[IdxW].push_back(Elt: W);
1059 Words[IdxW].push_back(Elt: W);
1060 }
1061 }
1062 Bytes *= 2;
1063 }
1064
1065 assert(Bytes == BitBytes);
1066
1067 SDValue Vec = ZeroFill ? getZero(dl, Ty: ByteTy, DAG) : DAG.getUNDEF(VT: ByteTy);
1068 SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
1069 for (const SDValue &W : Words[IdxW]) {
1070 Vec = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ByteTy, N1: Vec, N2: S4);
1071 Vec = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: ByteTy, N1: Vec, N2: W);
1072 }
1073
1074 return Vec;
1075}
1076
1077SDValue
1078HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
1079 const SDLoc &dl, MVT VecTy,
1080 SelectionDAG &DAG) const {
1081 // Construct a vector V of bytes, such that a comparison V >u 0 would
1082 // produce the required vector predicate.
1083 unsigned VecLen = Values.size();
1084 unsigned HwLen = Subtarget.getVectorLength();
1085 assert(VecLen <= HwLen || VecLen == 8*HwLen);
1086 SmallVector<SDValue,128> Bytes;
1087 bool AllT = true, AllF = true;
1088
1089 auto IsTrue = [] (SDValue V) {
1090 if (const auto *N = dyn_cast<ConstantSDNode>(Val: V.getNode()))
1091 return !N->isZero();
1092 return false;
1093 };
1094 auto IsFalse = [] (SDValue V) {
1095 if (const auto *N = dyn_cast<ConstantSDNode>(Val: V.getNode()))
1096 return N->isZero();
1097 return false;
1098 };
1099
1100 if (VecLen <= HwLen) {
1101 // In the hardware, each bit of a vector predicate corresponds to a byte
1102 // of a vector register. Calculate how many bytes does a bit of VecTy
1103 // correspond to.
1104 assert(HwLen % VecLen == 0);
1105 unsigned BitBytes = HwLen / VecLen;
1106 for (SDValue V : Values) {
1107 AllT &= IsTrue(V);
1108 AllF &= IsFalse(V);
1109
1110 SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
1111 : DAG.getUNDEF(MVT::i8);
1112 for (unsigned B = 0; B != BitBytes; ++B)
1113 Bytes.push_back(Elt: Ext);
1114 }
1115 } else {
1116 // There are as many i1 values, as there are bits in a vector register.
1117 // Divide the values into groups of 8 and check that each group consists
1118 // of the same value (ignoring undefs).
1119 for (unsigned I = 0; I != VecLen; I += 8) {
1120 unsigned B = 0;
1121 // Find the first non-undef value in this group.
1122 for (; B != 8; ++B) {
1123 if (!Values[I+B].isUndef())
1124 break;
1125 }
1126 SDValue F = Values[I+B];
1127 AllT &= IsTrue(F);
1128 AllF &= IsFalse(F);
1129
1130 SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
1131 : DAG.getUNDEF(MVT::i8);
1132 Bytes.push_back(Elt: Ext);
1133 // Verify that the rest of values in the group are the same as the
1134 // first.
1135 for (; B != 8; ++B)
1136 assert(Values[I+B].isUndef() || Values[I+B] == F);
1137 }
1138 }
1139
1140 if (AllT)
1141 return DAG.getNode(Opcode: HexagonISD::QTRUE, DL: dl, VT: VecTy);
1142 if (AllF)
1143 return DAG.getNode(Opcode: HexagonISD::QFALSE, DL: dl, VT: VecTy);
1144
1145 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1146 SDValue ByteVec = buildHvxVectorReg(Values: Bytes, dl, VecTy: ByteTy, DAG);
1147 return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: VecTy, Operand: ByteVec);
1148}
1149
1150SDValue
1151HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
1152 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1153 MVT ElemTy = ty(Op: VecV).getVectorElementType();
1154
1155 unsigned ElemWidth = ElemTy.getSizeInBits();
1156 assert(ElemWidth >= 8 && ElemWidth <= 32);
1157 (void)ElemWidth;
1158
1159 SDValue ByteIdx = convertToByteIndex(ElemIdx: IdxV, ElemTy, DAG);
1160 SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
1161 {VecV, ByteIdx});
1162 if (ElemTy == MVT::i32)
1163 return ExWord;
1164
1165 // Have an extracted word, need to extract the smaller element out of it.
1166 // 1. Extract the bits of (the original) IdxV that correspond to the index
1167 // of the desired element in the 32-bit word.
1168 SDValue SubIdx = getIndexInWord32(Idx: IdxV, ElemTy, DAG);
1169 // 2. Extract the element from the word.
1170 SDValue ExVec = DAG.getBitcast(VT: tyVector(Ty: ty(Op: ExWord), ElemTy), V: ExWord);
1171 return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
1172}
1173
1174SDValue
1175HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
1176 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1177 // Implement other return types if necessary.
1178 assert(ResTy == MVT::i1);
1179
1180 unsigned HwLen = Subtarget.getVectorLength();
1181 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1182 SDValue ByteVec = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: VecV);
1183
1184 unsigned Scale = HwLen / ty(Op: VecV).getVectorNumElements();
1185 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
1186 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
1187
1188 SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
1189 SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
1190 return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
1191}
1192
1193SDValue
1194HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
1195 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
1196 MVT ElemTy = ty(Op: VecV).getVectorElementType();
1197
1198 unsigned ElemWidth = ElemTy.getSizeInBits();
1199 assert(ElemWidth >= 8 && ElemWidth <= 32);
1200 (void)ElemWidth;
1201
1202 auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
1203 SDValue ByteIdxV) {
1204 MVT VecTy = ty(Op: VecV);
1205 unsigned HwLen = Subtarget.getVectorLength();
1206 SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
1207 {ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
1208 SDValue RotV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {VecV, MaskV});
1209 SDValue InsV = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: VecTy, Ops: {RotV, ValV});
1210 SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1211 {DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
1212 SDValue TorV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: VecTy, Ops: {InsV, SubV});
1213 return TorV;
1214 };
1215
1216 SDValue ByteIdx = convertToByteIndex(ElemIdx: IdxV, ElemTy, DAG);
1217 if (ElemTy == MVT::i32)
1218 return InsertWord(VecV, ValV, ByteIdx);
1219
1220 // If this is not inserting a 32-bit word, convert it into such a thing.
1221 // 1. Extract the existing word from the target vector.
1222 SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
1223 {ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
1224 SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
1225 dl, MVT::i32, DAG);
1226
1227 // 2. Treating the extracted word as a 32-bit vector, insert the given
1228 // value into it.
1229 SDValue SubIdx = getIndexInWord32(Idx: IdxV, ElemTy, DAG);
1230 MVT SubVecTy = tyVector(Ty: ty(Op: Ext), ElemTy);
1231 SDValue Ins = insertVector(VecV: DAG.getBitcast(VT: SubVecTy, V: Ext),
1232 ValV, IdxV: SubIdx, dl, ValTy: ElemTy, DAG);
1233
1234 // 3. Insert the 32-bit word back into the original vector.
1235 return InsertWord(VecV, Ins, ByteIdx);
1236}
1237
1238SDValue
1239HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
1240 SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
1241 unsigned HwLen = Subtarget.getVectorLength();
1242 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1243 SDValue ByteVec = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: VecV);
1244
1245 unsigned Scale = HwLen / ty(Op: VecV).getVectorNumElements();
1246 SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
1247 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
1248 ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
1249
1250 SDValue InsV = insertHvxElementReg(VecV: ByteVec, IdxV, ValV, dl, DAG);
1251 return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: ty(Op: VecV), Operand: InsV);
1252}
1253
1254SDValue
1255HexagonTargetLowering::extractHvxSubvectorReg(SDValue OrigOp, SDValue VecV,
1256 SDValue IdxV, const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1257 MVT VecTy = ty(Op: VecV);
1258 unsigned HwLen = Subtarget.getVectorLength();
1259 unsigned Idx = IdxV.getNode()->getAsZExtVal();
1260 MVT ElemTy = VecTy.getVectorElementType();
1261 unsigned ElemWidth = ElemTy.getSizeInBits();
1262
1263 // If the source vector is a vector pair, get the single vector containing
1264 // the subvector of interest. The subvector will never overlap two single
1265 // vectors.
1266 if (isHvxPairTy(Ty: VecTy)) {
1267 if (Idx * ElemWidth >= 8*HwLen)
1268 Idx -= VecTy.getVectorNumElements() / 2;
1269
1270 VecV = OrigOp;
1271 if (typeSplit(VecTy).first == ResTy)
1272 return VecV;
1273 }
1274
1275 // The only meaningful subvectors of a single HVX vector are those that
1276 // fit in a scalar register.
1277 assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
1278
1279 MVT WordTy = tyVector(VecTy, MVT::i32);
1280 SDValue WordVec = DAG.getBitcast(VT: WordTy, V: VecV);
1281 unsigned WordIdx = (Idx*ElemWidth) / 32;
1282
1283 SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
1284 SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
1285 if (ResTy.getSizeInBits() == 32)
1286 return DAG.getBitcast(VT: ResTy, V: W0);
1287
1288 SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
1289 SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
1290 SDValue WW = getCombine(W1, W0, dl, MVT::i64, DAG);
1291 return DAG.getBitcast(VT: ResTy, V: WW);
1292}
1293
1294SDValue
1295HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
1296 const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
1297 MVT VecTy = ty(Op: VecV);
1298 unsigned HwLen = Subtarget.getVectorLength();
1299 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1300 SDValue ByteVec = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: VecV);
1301 // IdxV is required to be a constant.
1302 unsigned Idx = IdxV.getNode()->getAsZExtVal();
1303
1304 unsigned ResLen = ResTy.getVectorNumElements();
1305 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1306 unsigned Offset = Idx * BitBytes;
1307 SDValue Undef = DAG.getUNDEF(VT: ByteTy);
1308 SmallVector<int,128> Mask;
1309
1310 if (Subtarget.isHVXVectorType(VecTy: ResTy, IncludeBool: true)) {
1311 // Converting between two vector predicates. Since the result is shorter
1312 // than the source, it will correspond to a vector predicate with the
1313 // relevant bits replicated. The replication count is the ratio of the
1314 // source and target vector lengths.
1315 unsigned Rep = VecTy.getVectorNumElements() / ResLen;
1316 assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
1317 for (unsigned i = 0; i != HwLen/Rep; ++i) {
1318 for (unsigned j = 0; j != Rep; ++j)
1319 Mask.push_back(Elt: i + Offset);
1320 }
1321 SDValue ShuffV = DAG.getVectorShuffle(VT: ByteTy, dl, N1: ByteVec, N2: Undef, Mask);
1322 return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: ResTy, Operand: ShuffV);
1323 }
1324
1325 // Converting between a vector predicate and a scalar predicate. In the
1326 // vector predicate, a group of BitBytes bits will correspond to a single
1327 // i1 element of the source vector type. Those bits will all have the same
1328 // value. The same will be true for ByteVec, where each byte corresponds
1329 // to a bit in the vector predicate.
1330 // The algorithm is to traverse the ByteVec, going over the i1 values from
1331 // the source vector, and generate the corresponding representation in an
1332 // 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
1333 // elements so that the interesting 8 bytes will be in the low end of the
1334 // vector.
1335 unsigned Rep = 8 / ResLen;
1336 // Make sure the output fill the entire vector register, so repeat the
1337 // 8-byte groups as many times as necessary.
1338 for (unsigned r = 0; r != HwLen/ResLen; ++r) {
1339 // This will generate the indexes of the 8 interesting bytes.
1340 for (unsigned i = 0; i != ResLen; ++i) {
1341 for (unsigned j = 0; j != Rep; ++j)
1342 Mask.push_back(Elt: Offset + i*BitBytes);
1343 }
1344 }
1345
1346 SDValue Zero = getZero(dl, MVT::i32, DAG);
1347 SDValue ShuffV = DAG.getVectorShuffle(VT: ByteTy, dl, N1: ByteVec, N2: Undef, Mask);
1348 // Combine the two low words from ShuffV into a v8i8, and byte-compare
1349 // them against 0.
1350 SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
1351 SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
1352 {ShuffV, DAG.getConstant(4, dl, MVT::i32)});
1353 SDValue Vec64 = getCombine(W1, W0, dl, MVT::v8i8, DAG);
1354 return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
1355 {Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
1356}
1357
1358SDValue
1359HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
1360 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1361 MVT VecTy = ty(Op: VecV);
1362 MVT SubTy = ty(Op: SubV);
1363 unsigned HwLen = Subtarget.getVectorLength();
1364 MVT ElemTy = VecTy.getVectorElementType();
1365 unsigned ElemWidth = ElemTy.getSizeInBits();
1366
1367 bool IsPair = isHvxPairTy(Ty: VecTy);
1368 MVT SingleTy = MVT::getVectorVT(VT: ElemTy, NumElements: (8*HwLen)/ElemWidth);
1369 // The two single vectors that VecV consists of, if it's a pair.
1370 SDValue V0, V1;
1371 SDValue SingleV = VecV;
1372 SDValue PickHi;
1373
1374 if (IsPair) {
1375 V0 = LoHalf(V: VecV, DAG);
1376 V1 = HiHalf(V: VecV, DAG);
1377
1378 SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
1379 dl, MVT::i32);
1380 PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
1381 if (isHvxSingleTy(Ty: SubTy)) {
1382 if (const auto *CN = dyn_cast<const ConstantSDNode>(Val: IdxV.getNode())) {
1383 unsigned Idx = CN->getZExtValue();
1384 assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
1385 unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
1386 return DAG.getTargetInsertSubreg(SRIdx: SubIdx, DL: dl, VT: VecTy, Operand: VecV, Subreg: SubV);
1387 }
1388 // If IdxV is not a constant, generate the two variants: with the
1389 // SubV as the high and as the low subregister, and select the right
1390 // pair based on the IdxV.
1391 SDValue InLo = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, Ops: {SubV, V1});
1392 SDValue InHi = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, Ops: {V0, SubV});
1393 return DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: VecTy, N1: PickHi, N2: InHi, N3: InLo);
1394 }
1395 // The subvector being inserted must be entirely contained in one of
1396 // the vectors V0 or V1. Set SingleV to the correct one, and update
1397 // IdxV to be the index relative to the beginning of that vector.
1398 SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
1399 IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
1400 SingleV = DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: SingleTy, N1: PickHi, N2: V1, N3: V0);
1401 }
1402
1403 // The only meaningful subvectors of a single HVX vector are those that
1404 // fit in a scalar register.
1405 assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
1406 // Convert IdxV to be index in bytes.
1407 auto *IdxN = dyn_cast<ConstantSDNode>(Val: IdxV.getNode());
1408 if (!IdxN || !IdxN->isZero()) {
1409 IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1410 DAG.getConstant(ElemWidth/8, dl, MVT::i32));
1411 SingleV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: SingleTy, N1: SingleV, N2: IdxV);
1412 }
1413 // When inserting a single word, the rotation back to the original position
1414 // would be by HwLen-Idx, but if two words are inserted, it will need to be
1415 // by (HwLen-4)-Idx.
1416 unsigned RolBase = HwLen;
1417 if (SubTy.getSizeInBits() == 32) {
1418 SDValue V = DAG.getBitcast(MVT::i32, SubV);
1419 SingleV = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: SingleTy, N1: SingleV, N2: V);
1420 } else {
1421 SDValue V = DAG.getBitcast(MVT::i64, SubV);
1422 SDValue R0 = LoHalf(V, DAG);
1423 SDValue R1 = HiHalf(V, DAG);
1424 SingleV = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: SingleTy, N1: SingleV, N2: R0);
1425 SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
1426 DAG.getConstant(4, dl, MVT::i32));
1427 SingleV = DAG.getNode(Opcode: HexagonISD::VINSERTW0, DL: dl, VT: SingleTy, N1: SingleV, N2: R1);
1428 RolBase = HwLen-4;
1429 }
1430 // If the vector wasn't ror'ed, don't ror it back.
1431 if (RolBase != 4 || !IdxN || !IdxN->isZero()) {
1432 SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
1433 DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
1434 SingleV = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: SingleTy, N1: SingleV, N2: RolV);
1435 }
1436
1437 if (IsPair) {
1438 SDValue InLo = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, Ops: {SingleV, V1});
1439 SDValue InHi = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, Ops: {V0, SingleV});
1440 return DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: VecTy, N1: PickHi, N2: InHi, N3: InLo);
1441 }
1442 return SingleV;
1443}
1444
1445SDValue
1446HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
1447 SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
1448 MVT VecTy = ty(Op: VecV);
1449 MVT SubTy = ty(Op: SubV);
1450 assert(Subtarget.isHVXVectorType(VecTy, true));
1451 // VecV is an HVX vector predicate. SubV may be either an HVX vector
1452 // predicate as well, or it can be a scalar predicate.
1453
1454 unsigned VecLen = VecTy.getVectorNumElements();
1455 unsigned HwLen = Subtarget.getVectorLength();
1456 assert(HwLen % VecLen == 0 && "Unexpected vector type");
1457
1458 unsigned Scale = VecLen / SubTy.getVectorNumElements();
1459 unsigned BitBytes = HwLen / VecLen;
1460 unsigned BlockLen = HwLen / Scale;
1461
1462 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1463 SDValue ByteVec = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: VecV);
1464 SDValue ByteSub = createHvxPrefixPred(PredV: SubV, dl, BitBytes, ZeroFill: false, DAG);
1465 SDValue ByteIdx;
1466
1467 auto *IdxN = dyn_cast<ConstantSDNode>(Val: IdxV.getNode());
1468 if (!IdxN || !IdxN->isZero()) {
1469 ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
1470 DAG.getConstant(BitBytes, dl, MVT::i32));
1471 ByteVec = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ByteTy, N1: ByteVec, N2: ByteIdx);
1472 }
1473
1474 // ByteVec is the target vector VecV rotated in such a way that the
1475 // subvector should be inserted at index 0. Generate a predicate mask
1476 // and use vmux to do the insertion.
1477 assert(BlockLen < HwLen && "vsetq(v1) prerequisite");
1478 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
1479 SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
1480 {DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
1481 ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
1482 // Rotate ByteVec back, and convert to a vector predicate.
1483 if (!IdxN || !IdxN->isZero()) {
1484 SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
1485 SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
1486 ByteVec = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ByteTy, N1: ByteVec, N2: ByteXdi);
1487 }
1488 return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: VecTy, Operand: ByteVec);
1489}
1490
1491SDValue
1492HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
1493 MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
1494 // Sign- and any-extending of a vector predicate to a vector register is
1495 // equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
1496 // a vector of 1s (where the 1s are of type matching the vector type).
1497 assert(Subtarget.isHVXVectorType(ResTy));
1498 if (!ZeroExt)
1499 return DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ResTy, Operand: VecV);
1500
1501 assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
1502 SDValue True = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1503 DAG.getConstant(1, dl, MVT::i32));
1504 SDValue False = getZero(dl, Ty: ResTy, DAG);
1505 return DAG.getSelect(DL: dl, VT: ResTy, Cond: VecV, LHS: True, RHS: False);
1506}
1507
1508SDValue
1509HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl,
1510 MVT ResTy, SelectionDAG &DAG) const {
1511 // Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1]
1512 // (i.e. the entire predicate register) to bits [0..HwLen-1] of a
1513 // vector register. The remaining bits of the vector register are
1514 // unspecified.
1515
1516 MachineFunction &MF = DAG.getMachineFunction();
1517 unsigned HwLen = Subtarget.getVectorLength();
1518 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1519 MVT PredTy = ty(Op: VecQ);
1520 unsigned PredLen = PredTy.getVectorNumElements();
1521 assert(HwLen % PredLen == 0);
1522 MVT VecTy = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: 8*HwLen/PredLen), NumElements: PredLen);
1523
1524 Type *Int8Ty = Type::getInt8Ty(C&: *DAG.getContext());
1525 SmallVector<Constant*, 128> Tmp;
1526 // Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,...
1527 // These are bytes with the LSB rotated left with respect to their index.
1528 for (unsigned i = 0; i != HwLen/8; ++i) {
1529 for (unsigned j = 0; j != 8; ++j)
1530 Tmp.push_back(Elt: ConstantInt::get(Ty: Int8Ty, V: 1ull << j));
1531 }
1532 Constant *CV = ConstantVector::get(V: Tmp);
1533 Align Alignment(HwLen);
1534 SDValue CP =
1535 LowerConstantPool(Op: DAG.getConstantPool(C: CV, VT: ByteTy, Align: Alignment), DAG);
1536 SDValue Bytes =
1537 DAG.getLoad(VT: ByteTy, dl, Chain: DAG.getEntryNode(), Ptr: CP,
1538 PtrInfo: MachinePointerInfo::getConstantPool(MF), Alignment);
1539
1540 // Select the bytes that correspond to true bits in the vector predicate.
1541 SDValue Sel = DAG.getSelect(DL: dl, VT: VecTy, Cond: VecQ, LHS: DAG.getBitcast(VT: VecTy, V: Bytes),
1542 RHS: getZero(dl, Ty: VecTy, DAG));
1543 // Calculate the OR of all bytes in each group of 8. That will compress
1544 // all the individual bits into a single byte.
1545 // First, OR groups of 4, via vrmpy with 0x01010101.
1546 SDValue All1 =
1547 DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32));
1548 SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG);
1549 // Then rotate the accumulated vector by 4 bytes, and do the final OR.
1550 SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy,
1551 {Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG);
1552 SDValue Vor = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ByteTy, Ops: {Vrmpy, Rot});
1553
1554 // Pick every 8th byte and coalesce them at the beginning of the output.
1555 // For symmetry, coalesce every 1+8th byte after that, then every 2+8th
1556 // byte and so on.
1557 SmallVector<int,128> Mask;
1558 for (unsigned i = 0; i != HwLen; ++i)
1559 Mask.push_back(Elt: (8*i) % HwLen + i/(HwLen/8));
1560 SDValue Collect =
1561 DAG.getVectorShuffle(VT: ByteTy, dl, N1: Vor, N2: DAG.getUNDEF(VT: ByteTy), Mask);
1562 return DAG.getBitcast(VT: ResTy, V: Collect);
1563}
1564
1565SDValue
1566HexagonTargetLowering::resizeToWidth(SDValue VecV, MVT ResTy, bool Signed,
1567 const SDLoc &dl, SelectionDAG &DAG) const {
1568 // Take a vector and resize the element type to match the given type.
1569 MVT InpTy = ty(Op: VecV);
1570 if (InpTy == ResTy)
1571 return VecV;
1572
1573 unsigned InpWidth = InpTy.getSizeInBits();
1574 unsigned ResWidth = ResTy.getSizeInBits();
1575
1576 if (InpTy.isFloatingPoint()) {
1577 return InpWidth < ResWidth ? DAG.getNode(ISD::FP_EXTEND, dl, ResTy, VecV)
1578 : DAG.getNode(ISD::FP_ROUND, dl, ResTy, VecV,
1579 getZero(dl, MVT::i32, DAG));
1580 }
1581
1582 assert(InpTy.isInteger());
1583
1584 if (InpWidth < ResWidth) {
1585 unsigned ExtOpc = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1586 return DAG.getNode(Opcode: ExtOpc, DL: dl, VT: ResTy, Operand: VecV);
1587 } else {
1588 unsigned NarOpc = Signed ? HexagonISD::SSAT : HexagonISD::USAT;
1589 return DAG.getNode(Opcode: NarOpc, DL: dl, VT: ResTy, N1: VecV, N2: DAG.getValueType(ResTy));
1590 }
1591}
1592
1593SDValue
1594HexagonTargetLowering::extractSubvector(SDValue Vec, MVT SubTy, unsigned SubIdx,
1595 SelectionDAG &DAG) const {
1596 assert(ty(Vec).getSizeInBits() % SubTy.getSizeInBits() == 0);
1597
1598 const SDLoc &dl(Vec);
1599 unsigned ElemIdx = SubIdx * SubTy.getVectorNumElements();
1600 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SubTy,
1601 {Vec, DAG.getConstant(ElemIdx, dl, MVT::i32)});
1602}
1603
1604SDValue
1605HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
1606 const {
1607 const SDLoc &dl(Op);
1608 MVT VecTy = ty(Op);
1609
1610 unsigned Size = Op.getNumOperands();
1611 SmallVector<SDValue,128> Ops;
1612 for (unsigned i = 0; i != Size; ++i)
1613 Ops.push_back(Elt: Op.getOperand(i));
1614
1615 // First, split the BUILD_VECTOR for vector pairs. We could generate
1616 // some pairs directly (via splat), but splats should be generated
1617 // by the combiner prior to getting here.
1618 if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
1619 ArrayRef<SDValue> A(Ops);
1620 MVT SingleTy = typeSplit(VecTy).first;
1621 SDValue V0 = buildHvxVectorReg(Values: A.take_front(N: Size/2), dl, VecTy: SingleTy, DAG);
1622 SDValue V1 = buildHvxVectorReg(Values: A.drop_front(N: Size/2), dl, VecTy: SingleTy, DAG);
1623 return DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: VecTy, N1: V0, N2: V1);
1624 }
1625
1626 if (VecTy.getVectorElementType() == MVT::i1)
1627 return buildHvxVectorPred(Values: Ops, dl, VecTy, DAG);
1628
1629 // In case of MVT::f16 BUILD_VECTOR, since MVT::f16 is
1630 // not a legal type, just bitcast the node to use i16
1631 // types and bitcast the result back to f16
1632 if (VecTy.getVectorElementType() == MVT::f16) {
1633 SmallVector<SDValue,64> NewOps;
1634 for (unsigned i = 0; i != Size; i++)
1635 NewOps.push_back(DAG.getBitcast(MVT::i16, Ops[i]));
1636
1637 SDValue T0 = DAG.getNode(ISD::BUILD_VECTOR, dl,
1638 tyVector(VecTy, MVT::i16), NewOps);
1639 return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0);
1640 }
1641
1642 return buildHvxVectorReg(Values: Ops, dl, VecTy, DAG);
1643}
1644
1645SDValue
1646HexagonTargetLowering::LowerHvxSplatVector(SDValue Op, SelectionDAG &DAG)
1647 const {
1648 const SDLoc &dl(Op);
1649 MVT VecTy = ty(Op);
1650 MVT ArgTy = ty(Op: Op.getOperand(i: 0));
1651
1652 if (ArgTy == MVT::f16) {
1653 MVT SplatTy = MVT::getVectorVT(MVT::i16, VecTy.getVectorNumElements());
1654 SDValue ToInt16 = DAG.getBitcast(MVT::i16, Op.getOperand(0));
1655 SDValue ToInt32 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, ToInt16);
1656 SDValue Splat = DAG.getNode(Opcode: ISD::SPLAT_VECTOR, DL: dl, VT: SplatTy, Operand: ToInt32);
1657 return DAG.getBitcast(VT: VecTy, V: Splat);
1658 }
1659
1660 return SDValue();
1661}
1662
1663SDValue
1664HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
1665 const {
1666 // Vector concatenation of two integer (non-bool) vectors does not need
1667 // special lowering. Custom-lower concats of bool vectors and expand
1668 // concats of more than 2 vectors.
1669 MVT VecTy = ty(Op);
1670 const SDLoc &dl(Op);
1671 unsigned NumOp = Op.getNumOperands();
1672 if (VecTy.getVectorElementType() != MVT::i1) {
1673 if (NumOp == 2)
1674 return Op;
1675 // Expand the other cases into a build-vector.
1676 SmallVector<SDValue,8> Elems;
1677 for (SDValue V : Op.getNode()->ops())
1678 DAG.ExtractVectorElements(Op: V, Args&: Elems);
1679 // A vector of i16 will be broken up into a build_vector of i16's.
1680 // This is a problem, since at the time of operation legalization,
1681 // all operations are expected to be type-legalized, and i16 is not
1682 // a legal type. If any of the extracted elements is not of a valid
1683 // type, sign-extend it to a valid one.
1684 for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
1685 SDValue V = Elems[i];
1686 MVT Ty = ty(Op: V);
1687 if (!isTypeLegal(VT: Ty)) {
1688 MVT NTy = typeLegalize(Ty, DAG);
1689 if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
1690 Elems[i] = DAG.getNode(Opcode: ISD::SIGN_EXTEND_INREG, DL: dl, VT: NTy,
1691 N1: DAG.getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT: NTy,
1692 N1: V.getOperand(i: 0), N2: V.getOperand(i: 1)),
1693 N2: DAG.getValueType(Ty));
1694 continue;
1695 }
1696 // A few less complicated cases.
1697 switch (V.getOpcode()) {
1698 case ISD::Constant:
1699 Elems[i] = DAG.getSExtOrTrunc(Op: V, DL: dl, VT: NTy);
1700 break;
1701 case ISD::UNDEF:
1702 Elems[i] = DAG.getUNDEF(VT: NTy);
1703 break;
1704 case ISD::TRUNCATE:
1705 Elems[i] = V.getOperand(i: 0);
1706 break;
1707 default:
1708 llvm_unreachable("Unexpected vector element");
1709 }
1710 }
1711 }
1712 return DAG.getBuildVector(VT: VecTy, DL: dl, Ops: Elems);
1713 }
1714
1715 assert(VecTy.getVectorElementType() == MVT::i1);
1716 unsigned HwLen = Subtarget.getVectorLength();
1717 assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
1718
1719 SDValue Op0 = Op.getOperand(i: 0);
1720
1721 // If the operands are HVX types (i.e. not scalar predicates), then
1722 // defer the concatenation, and create QCAT instead.
1723 if (Subtarget.isHVXVectorType(VecTy: ty(Op: Op0), IncludeBool: true)) {
1724 if (NumOp == 2)
1725 return DAG.getNode(Opcode: HexagonISD::QCAT, DL: dl, VT: VecTy, N1: Op0, N2: Op.getOperand(i: 1));
1726
1727 ArrayRef<SDUse> U(Op.getNode()->ops());
1728 SmallVector<SDValue,4> SV(U.begin(), U.end());
1729 ArrayRef<SDValue> Ops(SV);
1730
1731 MVT HalfTy = typeSplit(VecTy).first;
1732 SDValue V0 = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: HalfTy,
1733 Ops: Ops.take_front(N: NumOp/2));
1734 SDValue V1 = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: HalfTy,
1735 Ops: Ops.take_back(N: NumOp/2));
1736 return DAG.getNode(Opcode: HexagonISD::QCAT, DL: dl, VT: VecTy, N1: V0, N2: V1);
1737 }
1738
1739 // Count how many bytes (in a vector register) each bit in VecTy
1740 // corresponds to.
1741 unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
1742
1743 SmallVector<SDValue,8> Prefixes;
1744 for (SDValue V : Op.getNode()->op_values()) {
1745 SDValue P = createHvxPrefixPred(PredV: V, dl, BitBytes, ZeroFill: true, DAG);
1746 Prefixes.push_back(Elt: P);
1747 }
1748
1749 unsigned InpLen = ty(Op: Op.getOperand(i: 0)).getVectorNumElements();
1750 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
1751 SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
1752 SDValue Res = getZero(dl, Ty: ByteTy, DAG);
1753 for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
1754 Res = DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ByteTy, N1: Res, N2: S);
1755 Res = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ByteTy, N1: Res, N2: Prefixes[e-i-1]);
1756 }
1757 return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: VecTy, Operand: Res);
1758}
1759
1760SDValue
1761HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
1762 const {
1763 // Change the type of the extracted element to i32.
1764 SDValue VecV = Op.getOperand(i: 0);
1765 MVT ElemTy = ty(Op: VecV).getVectorElementType();
1766 const SDLoc &dl(Op);
1767 SDValue IdxV = Op.getOperand(i: 1);
1768 if (ElemTy == MVT::i1)
1769 return extractHvxElementPred(VecV, IdxV, dl, ResTy: ty(Op), DAG);
1770
1771 return extractHvxElementReg(VecV, IdxV, dl, ResTy: ty(Op), DAG);
1772}
1773
1774SDValue
1775HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
1776 const {
1777 const SDLoc &dl(Op);
1778 MVT VecTy = ty(Op);
1779 SDValue VecV = Op.getOperand(i: 0);
1780 SDValue ValV = Op.getOperand(i: 1);
1781 SDValue IdxV = Op.getOperand(i: 2);
1782 MVT ElemTy = ty(Op: VecV).getVectorElementType();
1783 if (ElemTy == MVT::i1)
1784 return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
1785
1786 if (ElemTy == MVT::f16) {
1787 SDValue T0 = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
1788 tyVector(VecTy, MVT::i16),
1789 DAG.getBitcast(tyVector(VecTy, MVT::i16), VecV),
1790 DAG.getBitcast(MVT::i16, ValV), IdxV);
1791 return DAG.getBitcast(tyVector(VecTy, MVT::f16), T0);
1792 }
1793
1794 return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
1795}
1796
1797SDValue
1798HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
1799 const {
1800 SDValue SrcV = Op.getOperand(i: 0);
1801 MVT SrcTy = ty(Op: SrcV);
1802 MVT DstTy = ty(Op);
1803 SDValue IdxV = Op.getOperand(i: 1);
1804 unsigned Idx = IdxV.getNode()->getAsZExtVal();
1805 assert(Idx % DstTy.getVectorNumElements() == 0);
1806 (void)Idx;
1807 const SDLoc &dl(Op);
1808
1809 MVT ElemTy = SrcTy.getVectorElementType();
1810 if (ElemTy == MVT::i1)
1811 return extractHvxSubvectorPred(VecV: SrcV, IdxV, dl, ResTy: DstTy, DAG);
1812
1813 return extractHvxSubvectorReg(OrigOp: Op, VecV: SrcV, IdxV, dl, ResTy: DstTy, DAG);
1814}
1815
1816SDValue
1817HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
1818 const {
1819 // Idx does not need to be a constant.
1820 SDValue VecV = Op.getOperand(i: 0);
1821 SDValue ValV = Op.getOperand(i: 1);
1822 SDValue IdxV = Op.getOperand(i: 2);
1823
1824 const SDLoc &dl(Op);
1825 MVT VecTy = ty(Op: VecV);
1826 MVT ElemTy = VecTy.getVectorElementType();
1827 if (ElemTy == MVT::i1)
1828 return insertHvxSubvectorPred(VecV, SubV: ValV, IdxV, dl, DAG);
1829
1830 return insertHvxSubvectorReg(VecV, SubV: ValV, IdxV, dl, DAG);
1831}
1832
1833SDValue
1834HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
1835 // Lower any-extends of boolean vectors to sign-extends, since they
1836 // translate directly to Q2V. Zero-extending could also be done equally
1837 // fast, but Q2V is used/recognized in more places.
1838 // For all other vectors, use zero-extend.
1839 MVT ResTy = ty(Op);
1840 SDValue InpV = Op.getOperand(i: 0);
1841 MVT ElemTy = ty(Op: InpV).getVectorElementType();
1842 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1843 return LowerHvxSignExt(Op, DAG);
1844 return DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SDLoc(Op), VT: ResTy, Operand: InpV);
1845}
1846
1847SDValue
1848HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
1849 MVT ResTy = ty(Op);
1850 SDValue InpV = Op.getOperand(i: 0);
1851 MVT ElemTy = ty(Op: InpV).getVectorElementType();
1852 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1853 return extendHvxVectorPred(VecV: InpV, dl: SDLoc(Op), ResTy: ty(Op), ZeroExt: false, DAG);
1854 return Op;
1855}
1856
1857SDValue
1858HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
1859 MVT ResTy = ty(Op);
1860 SDValue InpV = Op.getOperand(i: 0);
1861 MVT ElemTy = ty(Op: InpV).getVectorElementType();
1862 if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
1863 return extendHvxVectorPred(VecV: InpV, dl: SDLoc(Op), ResTy: ty(Op), ZeroExt: true, DAG);
1864 return Op;
1865}
1866
1867SDValue
1868HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
1869 // Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
1870 // cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
1871 const SDLoc &dl(Op);
1872 MVT ResTy = ty(Op);
1873 SDValue InpV = Op.getOperand(i: 0);
1874 assert(ResTy == ty(InpV));
1875
1876 // Calculate the vectors of 1 and bitwidth(x).
1877 MVT ElemTy = ty(Op: InpV).getVectorElementType();
1878 unsigned ElemWidth = ElemTy.getSizeInBits();
1879
1880 SDValue Vec1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1881 DAG.getConstant(1, dl, MVT::i32));
1882 SDValue VecW = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1883 DAG.getConstant(ElemWidth, dl, MVT::i32));
1884 SDValue VecN1 = DAG.getNode(ISD::SPLAT_VECTOR, dl, ResTy,
1885 DAG.getConstant(-1, dl, MVT::i32));
1886
1887 // Do not use DAG.getNOT, because that would create BUILD_VECTOR with
1888 // a BITCAST. Here we can skip the BITCAST (so we don't have to handle
1889 // it separately in custom combine or selection).
1890 SDValue A = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ResTy,
1891 Ops: {DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ResTy, Ops: {InpV, VecN1}),
1892 DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, Ops: {InpV, Vec1})});
1893 return DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy,
1894 Ops: {VecW, DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT: ResTy, Operand: A)});
1895}
1896
1897SDValue
1898HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
1899 const SDLoc &dl(Op);
1900 MVT ResTy = ty(Op);
1901 assert(ResTy.getVectorElementType() == MVT::i32);
1902
1903 SDValue Vs = Op.getOperand(i: 0);
1904 SDValue Vt = Op.getOperand(i: 1);
1905
1906 SDVTList ResTys = DAG.getVTList(VT1: ResTy, VT2: ResTy);
1907 unsigned Opc = Op.getOpcode();
1908
1909 // On HVX v62+ producing the full product is cheap, so legalize MULH to LOHI.
1910 if (Opc == ISD::MULHU)
1911 return DAG.getNode(Opcode: HexagonISD::UMUL_LOHI, DL: dl, VTList: ResTys, Ops: {Vs, Vt}).getValue(R: 1);
1912 if (Opc == ISD::MULHS)
1913 return DAG.getNode(Opcode: HexagonISD::SMUL_LOHI, DL: dl, VTList: ResTys, Ops: {Vs, Vt}).getValue(R: 1);
1914
1915#ifndef NDEBUG
1916 Op.dump(G: &DAG);
1917#endif
1918 llvm_unreachable("Unexpected mulh operation");
1919}
1920
1921SDValue
1922HexagonTargetLowering::LowerHvxMulLoHi(SDValue Op, SelectionDAG &DAG) const {
1923 const SDLoc &dl(Op);
1924 unsigned Opc = Op.getOpcode();
1925 SDValue Vu = Op.getOperand(i: 0);
1926 SDValue Vv = Op.getOperand(i: 1);
1927
1928 // If the HI part is not used, convert it to a regular MUL.
1929 if (auto HiVal = Op.getValue(R: 1); HiVal.use_empty()) {
1930 // Need to preserve the types and the number of values.
1931 SDValue Hi = DAG.getUNDEF(VT: ty(Op: HiVal));
1932 SDValue Lo = DAG.getNode(Opcode: ISD::MUL, DL: dl, VT: ty(Op), Ops: {Vu, Vv});
1933 return DAG.getMergeValues(Ops: {Lo, Hi}, dl);
1934 }
1935
1936 bool SignedVu = Opc == HexagonISD::SMUL_LOHI;
1937 bool SignedVv = Opc == HexagonISD::SMUL_LOHI || Opc == HexagonISD::USMUL_LOHI;
1938
1939 // Legal on HVX v62+, but lower it here because patterns can't handle multi-
1940 // valued nodes.
1941 if (Subtarget.useHVXV62Ops())
1942 return emitHvxMulLoHiV62(A: Vu, SignedA: SignedVu, B: Vv, SignedB: SignedVv, dl, DAG);
1943
1944 if (Opc == HexagonISD::SMUL_LOHI) {
1945 // Direct MULHS expansion is cheaper than doing the whole SMUL_LOHI,
1946 // for other signedness LOHI is cheaper.
1947 if (auto LoVal = Op.getValue(R: 0); LoVal.use_empty()) {
1948 SDValue Hi = emitHvxMulHsV60(A: Vu, B: Vv, dl, DAG);
1949 SDValue Lo = DAG.getUNDEF(VT: ty(Op: LoVal));
1950 return DAG.getMergeValues(Ops: {Lo, Hi}, dl);
1951 }
1952 }
1953
1954 return emitHvxMulLoHiV60(A: Vu, SignedA: SignedVu, B: Vv, SignedB: SignedVv, dl, DAG);
1955}
1956
1957SDValue
1958HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const {
1959 SDValue Val = Op.getOperand(i: 0);
1960 MVT ResTy = ty(Op);
1961 MVT ValTy = ty(Op: Val);
1962 const SDLoc &dl(Op);
1963
1964 if (isHvxBoolTy(Ty: ValTy) && ResTy.isScalarInteger()) {
1965 unsigned HwLen = Subtarget.getVectorLength();
1966 MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
1967 SDValue VQ = compressHvxPred(VecQ: Val, dl, ResTy: WordTy, DAG);
1968 unsigned BitWidth = ResTy.getSizeInBits();
1969
1970 if (BitWidth < 64) {
1971 SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32),
1972 dl, MVT::i32, DAG);
1973 if (BitWidth == 32)
1974 return W0;
1975 assert(BitWidth < 32u);
1976 return DAG.getZExtOrTrunc(Op: W0, DL: dl, VT: ResTy);
1977 }
1978
1979 // The result is >= 64 bits. The only options are 64 or 128.
1980 assert(BitWidth == 64 || BitWidth == 128);
1981 SmallVector<SDValue,4> Words;
1982 for (unsigned i = 0; i != BitWidth/32; ++i) {
1983 SDValue W = extractHvxElementReg(
1984 VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG);
1985 Words.push_back(Elt: W);
1986 }
1987 SmallVector<SDValue,2> Combines;
1988 assert(Words.size() % 2 == 0);
1989 for (unsigned i = 0, e = Words.size(); i < e; i += 2) {
1990 SDValue C = getCombine(Words[i+1], Words[i], dl, MVT::i64, DAG);
1991 Combines.push_back(Elt: C);
1992 }
1993
1994 if (BitWidth == 64)
1995 return Combines[0];
1996
1997 return DAG.getNode(Opcode: ISD::BUILD_PAIR, DL: dl, VT: ResTy, Ops: Combines);
1998 }
1999 if (isHvxBoolTy(Ty: ResTy) && ValTy.isScalarInteger()) {
2000 // Handle bitcast from i128 -> v128i1 and i64 -> v64i1.
2001 unsigned BitWidth = ValTy.getSizeInBits();
2002 unsigned HwLen = Subtarget.getVectorLength();
2003 assert(BitWidth == HwLen);
2004
2005 MVT ValAsVecTy = MVT::getVectorVT(MVT::i8, BitWidth / 8);
2006 SDValue ValAsVec = DAG.getBitcast(VT: ValAsVecTy, V: Val);
2007 // Splat each byte of Val 8 times.
2008 // Bytes = [(b0)x8, (b1)x8, ...., (b15)x8]
2009 // where b0, b1,..., b15 are least to most significant bytes of I.
2010 SmallVector<SDValue, 128> Bytes;
2011 // Tmp: 0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80, 0x01,0x02,0x04,0x08,...
2012 // These are bytes with the LSB rotated left with respect to their index.
2013 SmallVector<SDValue, 128> Tmp;
2014 for (unsigned I = 0; I != HwLen / 8; ++I) {
2015 SDValue Idx = DAG.getConstant(I, dl, MVT::i32);
2016 SDValue Byte =
2017 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i8, ValAsVec, Idx);
2018 for (unsigned J = 0; J != 8; ++J) {
2019 Bytes.push_back(Elt: Byte);
2020 Tmp.push_back(DAG.getConstant(1ull << J, dl, MVT::i8));
2021 }
2022 }
2023
2024 MVT ConstantVecTy = MVT::getVectorVT(MVT::i8, HwLen);
2025 SDValue ConstantVec = DAG.getBuildVector(VT: ConstantVecTy, DL: dl, Ops: Tmp);
2026 SDValue I2V = buildHvxVectorReg(Values: Bytes, dl, VecTy: ConstantVecTy, DAG);
2027
2028 // Each Byte in the I2V will be set iff corresponding bit is set in Val.
2029 I2V = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ConstantVecTy, Ops: {I2V, ConstantVec});
2030 return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: ResTy, Operand: I2V);
2031 }
2032
2033 return Op;
2034}
2035
2036SDValue
2037HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
2038 // Sign- and zero-extends are legal.
2039 assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
2040 return DAG.getNode(Opcode: ISD::ZERO_EXTEND_VECTOR_INREG, DL: SDLoc(Op), VT: ty(Op),
2041 Operand: Op.getOperand(i: 0));
2042}
2043
2044SDValue
2045HexagonTargetLowering::LowerHvxSelect(SDValue Op, SelectionDAG &DAG) const {
2046 MVT ResTy = ty(Op);
2047 if (ResTy.getVectorElementType() != MVT::i1)
2048 return Op;
2049
2050 const SDLoc &dl(Op);
2051 unsigned HwLen = Subtarget.getVectorLength();
2052 unsigned VecLen = ResTy.getVectorNumElements();
2053 assert(HwLen % VecLen == 0);
2054 unsigned ElemSize = HwLen / VecLen;
2055
2056 MVT VecTy = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: ElemSize * 8), NumElements: VecLen);
2057 SDValue S =
2058 DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: VecTy, N1: Op.getOperand(i: 0),
2059 N2: DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: VecTy, Operand: Op.getOperand(i: 1)),
2060 N3: DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: VecTy, Operand: Op.getOperand(i: 2)));
2061 return DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: ResTy, Operand: S);
2062}
2063
2064SDValue
2065HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
2066 if (SDValue S = getVectorShiftByInt(Op, DAG))
2067 return S;
2068 return Op;
2069}
2070
2071SDValue
2072HexagonTargetLowering::LowerHvxFunnelShift(SDValue Op,
2073 SelectionDAG &DAG) const {
2074 unsigned Opc = Op.getOpcode();
2075 assert(Opc == ISD::FSHL || Opc == ISD::FSHR);
2076
2077 // Make sure the shift amount is within the range of the bitwidth
2078 // of the element type.
2079 SDValue A = Op.getOperand(i: 0);
2080 SDValue B = Op.getOperand(i: 1);
2081 SDValue S = Op.getOperand(i: 2);
2082
2083 MVT InpTy = ty(Op: A);
2084 MVT ElemTy = InpTy.getVectorElementType();
2085
2086 const SDLoc &dl(Op);
2087 unsigned ElemWidth = ElemTy.getSizeInBits();
2088 bool IsLeft = Opc == ISD::FSHL;
2089
2090 // The expansion into regular shifts produces worse code for i8 and for
2091 // right shift of i32 on v65+.
2092 bool UseShifts = ElemTy != MVT::i8;
2093 if (Subtarget.useHVXV65Ops() && ElemTy == MVT::i32)
2094 UseShifts = false;
2095
2096 if (SDValue SplatV = getSplatValue(Op: S, DAG); SplatV && UseShifts) {
2097 // If this is a funnel shift by a scalar, lower it into regular shifts.
2098 SDValue Mask = DAG.getConstant(ElemWidth - 1, dl, MVT::i32);
2099 SDValue ModS =
2100 DAG.getNode(ISD::AND, dl, MVT::i32,
2101 {DAG.getZExtOrTrunc(SplatV, dl, MVT::i32), Mask});
2102 SDValue NegS =
2103 DAG.getNode(ISD::SUB, dl, MVT::i32,
2104 {DAG.getConstant(ElemWidth, dl, MVT::i32), ModS});
2105 SDValue IsZero =
2106 DAG.getSetCC(dl, MVT::i1, ModS, getZero(dl, MVT::i32, DAG), ISD::SETEQ);
2107 // FSHL A, B => A << | B >>n
2108 // FSHR A, B => A <<n | B >>
2109 SDValue Part1 =
2110 DAG.getNode(Opcode: HexagonISD::VASL, DL: dl, VT: InpTy, Ops: {A, IsLeft ? ModS : NegS});
2111 SDValue Part2 =
2112 DAG.getNode(Opcode: HexagonISD::VLSR, DL: dl, VT: InpTy, Ops: {B, IsLeft ? NegS : ModS});
2113 SDValue Or = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: InpTy, Ops: {Part1, Part2});
2114 // If the shift amount was 0, pick A or B, depending on the direction.
2115 // The opposite shift will also be by 0, so the "Or" will be incorrect.
2116 return DAG.getNode(Opcode: ISD::SELECT, DL: dl, VT: InpTy, Ops: {IsZero, (IsLeft ? A : B), Or});
2117 }
2118
2119 SDValue Mask = DAG.getSplatBuildVector(
2120 VT: InpTy, DL: dl, Op: DAG.getConstant(Val: ElemWidth - 1, DL: dl, VT: ElemTy));
2121
2122 unsigned MOpc = Opc == ISD::FSHL ? HexagonISD::MFSHL : HexagonISD::MFSHR;
2123 return DAG.getNode(Opcode: MOpc, DL: dl, VT: ty(Op),
2124 Ops: {A, B, DAG.getNode(Opcode: ISD::AND, DL: dl, VT: InpTy, Ops: {S, Mask})});
2125}
2126
2127SDValue
2128HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const {
2129 const SDLoc &dl(Op);
2130 unsigned IntNo = Op.getConstantOperandVal(i: 0);
2131 SmallVector<SDValue> Ops(Op->ops().begin(), Op->ops().end());
2132
2133 auto Swap = [&](SDValue P) {
2134 return DAG.getMergeValues(Ops: {P.getValue(R: 1), P.getValue(R: 0)}, dl);
2135 };
2136
2137 switch (IntNo) {
2138 case Intrinsic::hexagon_V6_pred_typecast:
2139 case Intrinsic::hexagon_V6_pred_typecast_128B: {
2140 MVT ResTy = ty(Op), InpTy = ty(Op: Ops[1]);
2141 if (isHvxBoolTy(Ty: ResTy) && isHvxBoolTy(Ty: InpTy)) {
2142 if (ResTy == InpTy)
2143 return Ops[1];
2144 return DAG.getNode(Opcode: HexagonISD::TYPECAST, DL: dl, VT: ResTy, Operand: Ops[1]);
2145 }
2146 break;
2147 }
2148 case Intrinsic::hexagon_V6_vmpyss_parts:
2149 case Intrinsic::hexagon_V6_vmpyss_parts_128B:
2150 return Swap(DAG.getNode(Opcode: HexagonISD::SMUL_LOHI, DL: dl, VTList: Op->getVTList(),
2151 Ops: {Ops[1], Ops[2]}));
2152 case Intrinsic::hexagon_V6_vmpyuu_parts:
2153 case Intrinsic::hexagon_V6_vmpyuu_parts_128B:
2154 return Swap(DAG.getNode(Opcode: HexagonISD::UMUL_LOHI, DL: dl, VTList: Op->getVTList(),
2155 Ops: {Ops[1], Ops[2]}));
2156 case Intrinsic::hexagon_V6_vmpyus_parts:
2157 case Intrinsic::hexagon_V6_vmpyus_parts_128B: {
2158 return Swap(DAG.getNode(Opcode: HexagonISD::USMUL_LOHI, DL: dl, VTList: Op->getVTList(),
2159 Ops: {Ops[1], Ops[2]}));
2160 }
2161 } // switch
2162
2163 return Op;
2164}
2165
2166SDValue
2167HexagonTargetLowering::LowerHvxMaskedOp(SDValue Op, SelectionDAG &DAG) const {
2168 const SDLoc &dl(Op);
2169 unsigned HwLen = Subtarget.getVectorLength();
2170 MachineFunction &MF = DAG.getMachineFunction();
2171 auto *MaskN = cast<MaskedLoadStoreSDNode>(Val: Op.getNode());
2172 SDValue Mask = MaskN->getMask();
2173 SDValue Chain = MaskN->getChain();
2174 SDValue Base = MaskN->getBasePtr();
2175 auto *MemOp = MF.getMachineMemOperand(MMO: MaskN->getMemOperand(), Offset: 0, Size: HwLen);
2176
2177 unsigned Opc = Op->getOpcode();
2178 assert(Opc == ISD::MLOAD || Opc == ISD::MSTORE);
2179
2180 if (Opc == ISD::MLOAD) {
2181 MVT ValTy = ty(Op);
2182 SDValue Load = DAG.getLoad(VT: ValTy, dl, Chain, Ptr: Base, MMO: MemOp);
2183 SDValue Thru = cast<MaskedLoadSDNode>(Val: MaskN)->getPassThru();
2184 if (isUndef(Op: Thru))
2185 return Load;
2186 SDValue VSel = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ValTy, N1: Mask, N2: Load, N3: Thru);
2187 return DAG.getMergeValues(Ops: {VSel, Load.getValue(R: 1)}, dl);
2188 }
2189
2190 // MSTORE
2191 // HVX only has aligned masked stores.
2192
2193 // TODO: Fold negations of the mask into the store.
2194 unsigned StoreOpc = Hexagon::V6_vS32b_qpred_ai;
2195 SDValue Value = cast<MaskedStoreSDNode>(Val: MaskN)->getValue();
2196 SDValue Offset0 = DAG.getTargetConstant(Val: 0, DL: dl, VT: ty(Op: Base));
2197
2198 if (MaskN->getAlign().value() % HwLen == 0) {
2199 SDValue Store = getInstr(StoreOpc, dl, MVT::Other,
2200 {Mask, Base, Offset0, Value, Chain}, DAG);
2201 DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: Store.getNode()), NewMemRefs: {MemOp});
2202 return Store;
2203 }
2204
2205 // Unaligned case.
2206 auto StoreAlign = [&](SDValue V, SDValue A) {
2207 SDValue Z = getZero(dl, Ty: ty(Op: V), DAG);
2208 // TODO: use funnel shifts?
2209 // vlalign(Vu,Vv,Rt) rotates the pair Vu:Vv left by Rt and takes the
2210 // upper half.
2211 SDValue LoV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {V, Z, A}, DAG);
2212 SDValue HiV = getInstr(Hexagon::V6_vlalignb, dl, ty(V), {Z, V, A}, DAG);
2213 return std::make_pair(x&: LoV, y&: HiV);
2214 };
2215
2216 MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
2217 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
2218 SDValue MaskV = DAG.getNode(Opcode: HexagonISD::Q2V, DL: dl, VT: ByteTy, Operand: Mask);
2219 VectorPair Tmp = StoreAlign(MaskV, Base);
2220 VectorPair MaskU = {DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: BoolTy, Operand: Tmp.first),
2221 DAG.getNode(Opcode: HexagonISD::V2Q, DL: dl, VT: BoolTy, Operand: Tmp.second)};
2222 VectorPair ValueU = StoreAlign(Value, Base);
2223
2224 SDValue Offset1 = DAG.getTargetConstant(HwLen, dl, MVT::i32);
2225 SDValue StoreLo =
2226 getInstr(StoreOpc, dl, MVT::Other,
2227 {MaskU.first, Base, Offset0, ValueU.first, Chain}, DAG);
2228 SDValue StoreHi =
2229 getInstr(StoreOpc, dl, MVT::Other,
2230 {MaskU.second, Base, Offset1, ValueU.second, Chain}, DAG);
2231 DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: StoreLo.getNode()), NewMemRefs: {MemOp});
2232 DAG.setNodeMemRefs(N: cast<MachineSDNode>(Val: StoreHi.getNode()), NewMemRefs: {MemOp});
2233 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, {StoreLo, StoreHi});
2234}
2235
2236SDValue HexagonTargetLowering::LowerHvxFpExtend(SDValue Op,
2237 SelectionDAG &DAG) const {
2238 // This conversion only applies to QFloat. IEEE extension from f16 to f32
2239 // is legal (done via a pattern).
2240 assert(Subtarget.useHVXQFloatOps());
2241
2242 assert(Op->getOpcode() == ISD::FP_EXTEND);
2243
2244 MVT VecTy = ty(Op);
2245 MVT ArgTy = ty(Op: Op.getOperand(i: 0));
2246 const SDLoc &dl(Op);
2247 assert(VecTy == MVT::v64f32 && ArgTy == MVT::v64f16);
2248
2249 SDValue F16Vec = Op.getOperand(i: 0);
2250
2251 APFloat FloatVal = APFloat(1.0f);
2252 bool Ignored;
2253 FloatVal.convert(ToSemantics: APFloat::IEEEhalf(), RM: APFloat::rmNearestTiesToEven, losesInfo: &Ignored);
2254 SDValue Fp16Ones = DAG.getConstantFP(Val: FloatVal, DL: dl, VT: ArgTy);
2255 SDValue VmpyVec =
2256 getInstr(Hexagon::V6_vmpy_qf32_hf, dl, VecTy, {F16Vec, Fp16Ones}, DAG);
2257
2258 MVT HalfTy = typeSplit(VecTy).first;
2259 VectorPair Pair = opSplit(Vec: VmpyVec, dl, DAG);
2260 SDValue LoVec =
2261 getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.first}, DAG);
2262 SDValue HiVec =
2263 getInstr(Hexagon::V6_vconv_sf_qf32, dl, HalfTy, {Pair.second}, DAG);
2264
2265 SDValue ShuffVec =
2266 getInstr(Hexagon::V6_vshuffvdd, dl, VecTy,
2267 {HiVec, LoVec, DAG.getConstant(-4, dl, MVT::i32)}, DAG);
2268
2269 return ShuffVec;
2270}
2271
2272SDValue
2273HexagonTargetLowering::LowerHvxFpToInt(SDValue Op, SelectionDAG &DAG) const {
2274 // Catch invalid conversion ops (just in case).
2275 assert(Op.getOpcode() == ISD::FP_TO_SINT ||
2276 Op.getOpcode() == ISD::FP_TO_UINT);
2277
2278 MVT ResTy = ty(Op);
2279 MVT FpTy = ty(Op: Op.getOperand(i: 0)).getVectorElementType();
2280 MVT IntTy = ResTy.getVectorElementType();
2281
2282 if (Subtarget.useHVXIEEEFPOps()) {
2283 // There are only conversions from f16.
2284 if (FpTy == MVT::f16) {
2285 // Other int types aren't legal in HVX, so we shouldn't see them here.
2286 assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32);
2287 // Conversions to i8 and i16 are legal.
2288 if (IntTy == MVT::i8 || IntTy == MVT::i16)
2289 return Op;
2290 }
2291 }
2292
2293 if (IntTy.getSizeInBits() != FpTy.getSizeInBits())
2294 return EqualizeFpIntConversion(Op, DAG);
2295
2296 return ExpandHvxFpToInt(Op, DAG);
2297}
2298
2299SDValue
2300HexagonTargetLowering::LowerHvxIntToFp(SDValue Op, SelectionDAG &DAG) const {
2301 // Catch invalid conversion ops (just in case).
2302 assert(Op.getOpcode() == ISD::SINT_TO_FP ||
2303 Op.getOpcode() == ISD::UINT_TO_FP);
2304
2305 MVT ResTy = ty(Op);
2306 MVT IntTy = ty(Op: Op.getOperand(i: 0)).getVectorElementType();
2307 MVT FpTy = ResTy.getVectorElementType();
2308
2309 if (Subtarget.useHVXIEEEFPOps()) {
2310 // There are only conversions to f16.
2311 if (FpTy == MVT::f16) {
2312 // Other int types aren't legal in HVX, so we shouldn't see them here.
2313 assert(IntTy == MVT::i8 || IntTy == MVT::i16 || IntTy == MVT::i32);
2314 // i8, i16 -> f16 is legal.
2315 if (IntTy == MVT::i8 || IntTy == MVT::i16)
2316 return Op;
2317 }
2318 }
2319
2320 if (IntTy.getSizeInBits() != FpTy.getSizeInBits())
2321 return EqualizeFpIntConversion(Op, DAG);
2322
2323 return ExpandHvxIntToFp(Op, DAG);
2324}
2325
2326HexagonTargetLowering::TypePair
2327HexagonTargetLowering::typeExtendToWider(MVT Ty0, MVT Ty1) const {
2328 // Compare the widths of elements of the two types, and extend the narrower
2329 // type to match the with of the wider type. For vector types, apply this
2330 // to the element type.
2331 assert(Ty0.isVector() == Ty1.isVector());
2332
2333 MVT ElemTy0 = Ty0.getScalarType();
2334 MVT ElemTy1 = Ty1.getScalarType();
2335
2336 unsigned Width0 = ElemTy0.getSizeInBits();
2337 unsigned Width1 = ElemTy1.getSizeInBits();
2338 unsigned MaxWidth = std::max(a: Width0, b: Width1);
2339
2340 auto getScalarWithWidth = [](MVT ScalarTy, unsigned Width) {
2341 if (ScalarTy.isInteger())
2342 return MVT::getIntegerVT(BitWidth: Width);
2343 assert(ScalarTy.isFloatingPoint());
2344 return MVT::getFloatingPointVT(BitWidth: Width);
2345 };
2346
2347 MVT WideETy0 = getScalarWithWidth(ElemTy0, MaxWidth);
2348 MVT WideETy1 = getScalarWithWidth(ElemTy1, MaxWidth);
2349
2350 if (!Ty0.isVector()) {
2351 // Both types are scalars.
2352 return {WideETy0, WideETy1};
2353 }
2354
2355 // Vector types.
2356 unsigned NumElem = Ty0.getVectorNumElements();
2357 assert(NumElem == Ty1.getVectorNumElements());
2358
2359 return {MVT::getVectorVT(VT: WideETy0, NumElements: NumElem),
2360 MVT::getVectorVT(VT: WideETy1, NumElements: NumElem)};
2361}
2362
2363HexagonTargetLowering::TypePair
2364HexagonTargetLowering::typeWidenToWider(MVT Ty0, MVT Ty1) const {
2365 // Compare the numbers of elements of two vector types, and widen the
2366 // narrower one to match the number of elements in the wider one.
2367 assert(Ty0.isVector() && Ty1.isVector());
2368
2369 unsigned Len0 = Ty0.getVectorNumElements();
2370 unsigned Len1 = Ty1.getVectorNumElements();
2371 if (Len0 == Len1)
2372 return {Ty0, Ty1};
2373
2374 unsigned MaxLen = std::max(a: Len0, b: Len1);
2375 return {MVT::getVectorVT(VT: Ty0.getVectorElementType(), NumElements: MaxLen),
2376 MVT::getVectorVT(VT: Ty1.getVectorElementType(), NumElements: MaxLen)};
2377}
2378
2379MVT
2380HexagonTargetLowering::typeLegalize(MVT Ty, SelectionDAG &DAG) const {
2381 EVT LegalTy = getTypeToTransformTo(Context&: *DAG.getContext(), VT: Ty);
2382 assert(LegalTy.isSimple());
2383 return LegalTy.getSimpleVT();
2384}
2385
2386MVT
2387HexagonTargetLowering::typeWidenToHvx(MVT Ty) const {
2388 unsigned HwWidth = 8 * Subtarget.getVectorLength();
2389 assert(Ty.getSizeInBits() <= HwWidth);
2390 if (Ty.getSizeInBits() == HwWidth)
2391 return Ty;
2392
2393 MVT ElemTy = Ty.getScalarType();
2394 return MVT::getVectorVT(VT: ElemTy, NumElements: HwWidth / ElemTy.getSizeInBits());
2395}
2396
2397HexagonTargetLowering::VectorPair
2398HexagonTargetLowering::emitHvxAddWithOverflow(SDValue A, SDValue B,
2399 const SDLoc &dl, bool Signed, SelectionDAG &DAG) const {
2400 // Compute A+B, return {A+B, O}, where O = vector predicate indicating
2401 // whether an overflow has occured.
2402 MVT ResTy = ty(Op: A);
2403 assert(ResTy == ty(B));
2404 MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorNumElements());
2405
2406 if (!Signed) {
2407 // V62+ has V6_vaddcarry, but it requires input predicate, so it doesn't
2408 // save any instructions.
2409 SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ResTy, Ops: {A, B});
2410 SDValue Ovf = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Add, RHS: A, Cond: ISD::SETULT);
2411 return {Add, Ovf};
2412 }
2413
2414 // Signed overflow has happened, if:
2415 // (A, B have the same sign) and (A+B has a different sign from either)
2416 // i.e. (~A xor B) & ((A+B) xor B), then check the sign bit
2417 SDValue Add = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ResTy, Ops: {A, B});
2418 SDValue NotA =
2419 DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ResTy, Ops: {A, DAG.getConstant(Val: -1, DL: dl, VT: ResTy)});
2420 SDValue Xor0 = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ResTy, Ops: {NotA, B});
2421 SDValue Xor1 = DAG.getNode(Opcode: ISD::XOR, DL: dl, VT: ResTy, Ops: {Add, B});
2422 SDValue And = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: ResTy, Ops: {Xor0, Xor1});
2423 SDValue MSB =
2424 DAG.getSetCC(DL: dl, VT: PredTy, LHS: And, RHS: getZero(dl, Ty: ResTy, DAG), Cond: ISD::SETLT);
2425 return {Add, MSB};
2426}
2427
2428HexagonTargetLowering::VectorPair
2429HexagonTargetLowering::emitHvxShiftRightRnd(SDValue Val, unsigned Amt,
2430 bool Signed, SelectionDAG &DAG) const {
2431 // Shift Val right by Amt bits, round the result to the nearest integer,
2432 // tie-break by rounding halves to even integer.
2433
2434 const SDLoc &dl(Val);
2435 MVT ValTy = ty(Op: Val);
2436
2437 // This should also work for signed integers.
2438 //
2439 // uint tmp0 = inp + ((1 << (Amt-1)) - 1);
2440 // bool ovf = (inp > tmp0);
2441 // uint rup = inp & (1 << (Amt+1));
2442 //
2443 // uint tmp1 = inp >> (Amt-1); // tmp1 == tmp2 iff
2444 // uint tmp2 = tmp0 >> (Amt-1); // the Amt-1 lower bits were all 0
2445 // uint tmp3 = tmp2 + rup;
2446 // uint frac = (tmp1 != tmp2) ? tmp2 >> 1 : tmp3 >> 1;
2447 unsigned ElemWidth = ValTy.getVectorElementType().getSizeInBits();
2448 MVT ElemTy = MVT::getIntegerVT(BitWidth: ElemWidth);
2449 MVT IntTy = tyVector(Ty: ValTy, ElemTy);
2450 MVT PredTy = MVT::getVectorVT(MVT::i1, IntTy.getVectorNumElements());
2451 unsigned ShRight = Signed ? ISD::SRA : ISD::SRL;
2452
2453 SDValue Inp = DAG.getBitcast(VT: IntTy, V: Val);
2454 SDValue LowBits = DAG.getConstant(Val: (1ull << (Amt - 1)) - 1, DL: dl, VT: IntTy);
2455
2456 SDValue AmtP1 = DAG.getConstant(Val: 1ull << Amt, DL: dl, VT: IntTy);
2457 SDValue And = DAG.getNode(Opcode: ISD::AND, DL: dl, VT: IntTy, Ops: {Inp, AmtP1});
2458 SDValue Zero = getZero(dl, Ty: IntTy, DAG);
2459 SDValue Bit = DAG.getSetCC(DL: dl, VT: PredTy, LHS: And, RHS: Zero, Cond: ISD::SETNE);
2460 SDValue Rup = DAG.getZExtOrTrunc(Op: Bit, DL: dl, VT: IntTy);
2461 auto [Tmp0, Ovf] = emitHvxAddWithOverflow(A: Inp, B: LowBits, dl, Signed, DAG);
2462
2463 SDValue AmtM1 = DAG.getConstant(Val: Amt - 1, DL: dl, VT: IntTy);
2464 SDValue Tmp1 = DAG.getNode(Opcode: ShRight, DL: dl, VT: IntTy, N1: Inp, N2: AmtM1);
2465 SDValue Tmp2 = DAG.getNode(Opcode: ShRight, DL: dl, VT: IntTy, N1: Tmp0, N2: AmtM1);
2466 SDValue Tmp3 = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: IntTy, N1: Tmp2, N2: Rup);
2467
2468 SDValue Eq = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Tmp1, RHS: Tmp2, Cond: ISD::SETEQ);
2469 SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: IntTy);
2470 SDValue Tmp4 = DAG.getNode(Opcode: ShRight, DL: dl, VT: IntTy, Ops: {Tmp2, One});
2471 SDValue Tmp5 = DAG.getNode(Opcode: ShRight, DL: dl, VT: IntTy, Ops: {Tmp3, One});
2472 SDValue Mux = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: IntTy, Ops: {Eq, Tmp5, Tmp4});
2473 return {Mux, Ovf};
2474}
2475
2476SDValue
2477HexagonTargetLowering::emitHvxMulHsV60(SDValue A, SDValue B, const SDLoc &dl,
2478 SelectionDAG &DAG) const {
2479 MVT VecTy = ty(Op: A);
2480 MVT PairTy = typeJoin(Tys: {VecTy, VecTy});
2481 assert(VecTy.getVectorElementType() == MVT::i32);
2482
2483 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
2484
2485 // mulhs(A,B) =
2486 // = [(Hi(A)*2^16 + Lo(A)) *s (Hi(B)*2^16 + Lo(B))] >> 32
2487 // = [Hi(A)*2^16 *s Hi(B)*2^16 + Hi(A) *su Lo(B)*2^16
2488 // + Lo(A) *us (Hi(B)*2^16 + Lo(B))] >> 32
2489 // = [Hi(A) *s Hi(B)*2^32 + Hi(A) *su Lo(B)*2^16 + Lo(A) *us B] >> 32
2490 // The low half of Lo(A)*Lo(B) will be discarded (it's not added to
2491 // anything, so it cannot produce any carry over to higher bits),
2492 // so everything in [] can be shifted by 16 without loss of precision.
2493 // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + Lo(A)*B >> 16] >> 16
2494 // = [Hi(A) *s Hi(B)*2^16 + Hi(A)*su Lo(B) + V6_vmpyewuh(A,B)] >> 16
2495 // The final additions need to make sure to properly maintain any carry-
2496 // out bits.
2497 //
2498 // Hi(B) Lo(B)
2499 // Hi(A) Lo(A)
2500 // --------------
2501 // Lo(B)*Lo(A) | T0 = V6_vmpyewuh(B,A) does this,
2502 // Hi(B)*Lo(A) | + dropping the low 16 bits
2503 // Hi(A)*Lo(B) | T2
2504 // Hi(B)*Hi(A)
2505
2506 SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, VecTy, {B, A}, DAG);
2507 // T1 = get Hi(A) into low halves.
2508 SDValue T1 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {A, S16}, DAG);
2509 // P0 = interleaved T1.h*B.uh (full precision product)
2510 SDValue P0 = getInstr(Hexagon::V6_vmpyhus, dl, PairTy, {T1, B}, DAG);
2511 // T2 = T1.even(h) * B.even(uh), i.e. Hi(A)*Lo(B)
2512 SDValue T2 = LoHalf(V: P0, DAG);
2513 // We need to add T0+T2, recording the carry-out, which will be 1<<16
2514 // added to the final sum.
2515 // P1 = interleaved even/odd 32-bit (unsigned) sums of 16-bit halves
2516 SDValue P1 = getInstr(Hexagon::V6_vadduhw, dl, PairTy, {T0, T2}, DAG);
2517 // P2 = interleaved even/odd 32-bit (signed) sums of 16-bit halves
2518 SDValue P2 = getInstr(Hexagon::V6_vaddhw, dl, PairTy, {T0, T2}, DAG);
2519 // T3 = full-precision(T0+T2) >> 16
2520 // The low halves are added-unsigned, the high ones are added-signed.
2521 SDValue T3 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy,
2522 {HiHalf(P2, DAG), LoHalf(P1, DAG), S16}, DAG);
2523 SDValue T4 = getInstr(Hexagon::V6_vasrw, dl, VecTy, {B, S16}, DAG);
2524 // P3 = interleaved Hi(B)*Hi(A) (full precision),
2525 // which is now Lo(T1)*Lo(T4), so we want to keep the even product.
2526 SDValue P3 = getInstr(Hexagon::V6_vmpyhv, dl, PairTy, {T1, T4}, DAG);
2527 SDValue T5 = LoHalf(V: P3, DAG);
2528 // Add:
2529 SDValue T6 = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: VecTy, Ops: {T3, T5});
2530 return T6;
2531}
2532
2533SDValue
2534HexagonTargetLowering::emitHvxMulLoHiV60(SDValue A, bool SignedA, SDValue B,
2535 bool SignedB, const SDLoc &dl,
2536 SelectionDAG &DAG) const {
2537 MVT VecTy = ty(Op: A);
2538 MVT PairTy = typeJoin(Tys: {VecTy, VecTy});
2539 assert(VecTy.getVectorElementType() == MVT::i32);
2540
2541 SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
2542
2543 if (SignedA && !SignedB) {
2544 // Make A:unsigned, B:signed.
2545 std::swap(a&: A, b&: B);
2546 std::swap(a&: SignedA, b&: SignedB);
2547 }
2548
2549 // Do halfword-wise multiplications for unsigned*unsigned product, then
2550 // add corrections for signed and unsigned*signed.
2551
2552 SDValue Lo, Hi;
2553
2554 // P0:lo = (uu) products of low halves of A and B,
2555 // P0:hi = (uu) products of high halves.
2556 SDValue P0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, B}, DAG);
2557
2558 // Swap low/high halves in B
2559 SDValue T0 = getInstr(Hexagon::V6_lvsplatw, dl, VecTy,
2560 {DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
2561 SDValue T1 = getInstr(Hexagon::V6_vdelta, dl, VecTy, {B, T0}, DAG);
2562 // P1 = products of even/odd halfwords.
2563 // P1:lo = (uu) products of even(A.uh) * odd(B.uh)
2564 // P1:hi = (uu) products of odd(A.uh) * even(B.uh)
2565 SDValue P1 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {A, T1}, DAG);
2566
2567 // P2:lo = low halves of P1:lo + P1:hi,
2568 // P2:hi = high halves of P1:lo + P1:hi.
2569 SDValue P2 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
2570 {HiHalf(P1, DAG), LoHalf(P1, DAG)}, DAG);
2571 // Still need to add the high halves of P0:lo to P2:lo
2572 SDValue T2 =
2573 getInstr(Hexagon::V6_vlsrw, dl, VecTy, {LoHalf(P0, DAG), S16}, DAG);
2574 SDValue T3 = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: VecTy, Ops: {LoHalf(V: P2, DAG), T2});
2575
2576 // The high halves of T3 will contribute to the HI part of LOHI.
2577 SDValue T4 = getInstr(Hexagon::V6_vasrw_acc, dl, VecTy,
2578 {HiHalf(P2, DAG), T3, S16}, DAG);
2579
2580 // The low halves of P2 need to be added to high halves of the LO part.
2581 Lo = getInstr(Hexagon::V6_vaslw_acc, dl, VecTy,
2582 {LoHalf(P0, DAG), LoHalf(P2, DAG), S16}, DAG);
2583 Hi = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: VecTy, Ops: {HiHalf(V: P0, DAG), T4});
2584
2585 if (SignedA) {
2586 assert(SignedB && "Signed A and unsigned B should have been inverted");
2587
2588 MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2589 SDValue Zero = getZero(dl, Ty: VecTy, DAG);
2590 SDValue Q0 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: A, RHS: Zero, Cond: ISD::SETLT);
2591 SDValue Q1 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: B, RHS: Zero, Cond: ISD::SETLT);
2592 SDValue X0 = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: VecTy, Ops: {Q0, B, Zero});
2593 SDValue X1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, X0, A}, DAG);
2594 Hi = getInstr(Hexagon::V6_vsubw, dl, VecTy, {Hi, X1}, DAG);
2595 } else if (SignedB) {
2596 // Same correction as for mulhus:
2597 // mulhus(A.uw,B.w) = mulhu(A.uw,B.uw) - (A.w if B < 0)
2598 MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2599 SDValue Zero = getZero(dl, Ty: VecTy, DAG);
2600 SDValue Q1 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: B, RHS: Zero, Cond: ISD::SETLT);
2601 Hi = getInstr(Hexagon::V6_vsubwq, dl, VecTy, {Q1, Hi, A}, DAG);
2602 } else {
2603 assert(!SignedA && !SignedB);
2604 }
2605
2606 return DAG.getMergeValues(Ops: {Lo, Hi}, dl);
2607}
2608
2609SDValue
2610HexagonTargetLowering::emitHvxMulLoHiV62(SDValue A, bool SignedA,
2611 SDValue B, bool SignedB,
2612 const SDLoc &dl,
2613 SelectionDAG &DAG) const {
2614 MVT VecTy = ty(Op: A);
2615 MVT PairTy = typeJoin(Tys: {VecTy, VecTy});
2616 assert(VecTy.getVectorElementType() == MVT::i32);
2617
2618 if (SignedA && !SignedB) {
2619 // Make A:unsigned, B:signed.
2620 std::swap(a&: A, b&: B);
2621 std::swap(a&: SignedA, b&: SignedB);
2622 }
2623
2624 // Do S*S first, then make corrections for U*S or U*U if needed.
2625 SDValue P0 = getInstr(Hexagon::V6_vmpyewuh_64, dl, PairTy, {A, B}, DAG);
2626 SDValue P1 =
2627 getInstr(Hexagon::V6_vmpyowh_64_acc, dl, PairTy, {P0, A, B}, DAG);
2628 SDValue Lo = LoHalf(V: P1, DAG);
2629 SDValue Hi = HiHalf(V: P1, DAG);
2630
2631 if (!SignedB) {
2632 assert(!SignedA && "Signed A and unsigned B should have been inverted");
2633 SDValue Zero = getZero(dl, Ty: VecTy, DAG);
2634 MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2635
2636 // Mulhu(X, Y) = Mulhs(X, Y) + (X, if Y < 0) + (Y, if X < 0).
2637 // def: Pat<(VecI32 (mulhu HVI32:$A, HVI32:$B)),
2638 // (V6_vaddw (HiHalf (Muls64O $A, $B)),
2639 // (V6_vaddwq (V6_vgtw (V6_vd0), $B),
2640 // (V6_vandvqv (V6_vgtw (V6_vd0), $A), $B),
2641 // $A))>;
2642 SDValue Q0 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: A, RHS: Zero, Cond: ISD::SETLT);
2643 SDValue Q1 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: B, RHS: Zero, Cond: ISD::SETLT);
2644 SDValue T0 = getInstr(Hexagon::V6_vandvqv, dl, VecTy, {Q0, B}, DAG);
2645 SDValue T1 = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q1, T0, A}, DAG);
2646 Hi = getInstr(Hexagon::V6_vaddw, dl, VecTy, {Hi, T1}, DAG);
2647 } else if (!SignedA) {
2648 SDValue Zero = getZero(dl, Ty: VecTy, DAG);
2649 MVT PredTy = MVT::getVectorVT(MVT::i1, VecTy.getVectorNumElements());
2650
2651 // Mulhus(unsigned X, signed Y) = Mulhs(X, Y) + (Y, if X < 0).
2652 // def: Pat<(VecI32 (HexagonMULHUS HVI32:$A, HVI32:$B)),
2653 // (V6_vaddwq (V6_vgtw (V6_vd0), $A),
2654 // (HiHalf (Muls64O $A, $B)),
2655 // $B)>;
2656 SDValue Q0 = DAG.getSetCC(DL: dl, VT: PredTy, LHS: A, RHS: Zero, Cond: ISD::SETLT);
2657 Hi = getInstr(Hexagon::V6_vaddwq, dl, VecTy, {Q0, Hi, B}, DAG);
2658 }
2659
2660 return DAG.getMergeValues(Ops: {Lo, Hi}, dl);
2661}
2662
2663SDValue
2664HexagonTargetLowering::EqualizeFpIntConversion(SDValue Op, SelectionDAG &DAG)
2665 const {
2666 // Rewrite conversion between integer and floating-point in such a way that
2667 // the integer type is extended/narrowed to match the bitwidth of the
2668 // floating-point type, combined with additional integer-integer extensions
2669 // or narrowings to match the original input/result types.
2670 // E.g. f32 -> i8 ==> f32 -> i32 -> i8
2671 //
2672 // The input/result types are not required to be legal, but if they are
2673 // legal, this function should not introduce illegal types.
2674
2675 unsigned Opc = Op.getOpcode();
2676 assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT ||
2677 Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP);
2678
2679 SDValue Inp = Op.getOperand(i: 0);
2680 MVT InpTy = ty(Op: Inp);
2681 MVT ResTy = ty(Op);
2682
2683 if (InpTy == ResTy)
2684 return Op;
2685
2686 const SDLoc &dl(Op);
2687 bool Signed = Opc == ISD::FP_TO_SINT || Opc == ISD::SINT_TO_FP;
2688
2689 auto [WInpTy, WResTy] = typeExtendToWider(Ty0: InpTy, Ty1: ResTy);
2690 SDValue WInp = resizeToWidth(VecV: Inp, ResTy: WInpTy, Signed, dl, DAG);
2691 SDValue Conv = DAG.getNode(Opcode: Opc, DL: dl, VT: WResTy, Operand: WInp);
2692 SDValue Res = resizeToWidth(VecV: Conv, ResTy, Signed, dl, DAG);
2693 return Res;
2694}
2695
2696SDValue
2697HexagonTargetLowering::ExpandHvxFpToInt(SDValue Op, SelectionDAG &DAG) const {
2698 unsigned Opc = Op.getOpcode();
2699 assert(Opc == ISD::FP_TO_SINT || Opc == ISD::FP_TO_UINT);
2700
2701 const SDLoc &dl(Op);
2702 SDValue Op0 = Op.getOperand(i: 0);
2703 MVT InpTy = ty(Op: Op0);
2704 MVT ResTy = ty(Op);
2705 assert(InpTy.changeTypeToInteger() == ResTy);
2706
2707 // int32_t conv_f32_to_i32(uint32_t inp) {
2708 // // s | exp8 | frac23
2709 //
2710 // int neg = (int32_t)inp < 0;
2711 //
2712 // // "expm1" is the actual exponent minus 1: instead of "bias", subtract
2713 // // "bias+1". When the encoded exp is "all-1" (i.e. inf/nan), this will
2714 // // produce a large positive "expm1", which will result in max u/int.
2715 // // In all IEEE formats, bias is the largest positive number that can be
2716 // // represented in bias-width bits (i.e. 011..1).
2717 // int32_t expm1 = (inp << 1) - 0x80000000;
2718 // expm1 >>= 24;
2719 //
2720 // // Always insert the "implicit 1". Subnormal numbers will become 0
2721 // // regardless.
2722 // uint32_t frac = (inp << 8) | 0x80000000;
2723 //
2724 // // "frac" is the fraction part represented as Q1.31. If it was
2725 // // interpreted as uint32_t, it would be the fraction part multiplied
2726 // // by 2^31.
2727 //
2728 // // Calculate the amount of right shift, since shifting further to the
2729 // // left would lose significant bits. Limit it to 32, because we want
2730 // // shifts by 32+ to produce 0, whereas V6_vlsrwv treats the shift
2731 // // amount as a 6-bit signed value (so 33 is same as -31, i.e. shift
2732 // // left by 31). "rsh" can be negative.
2733 // int32_t rsh = min(31 - (expm1 + 1), 32);
2734 //
2735 // frac >>= rsh; // rsh == 32 will produce 0
2736 //
2737 // // Everything up to this point is the same for conversion to signed
2738 // // unsigned integer.
2739 //
2740 // if (neg) // Only for signed int
2741 // frac = -frac; //
2742 // if (rsh <= 0 && neg) // bound = neg ? 0x80000000 : 0x7fffffff
2743 // frac = 0x80000000; // frac = rsh <= 0 ? bound : frac
2744 // if (rsh <= 0 && !neg) //
2745 // frac = 0x7fffffff; //
2746 //
2747 // if (neg) // Only for unsigned int
2748 // frac = 0; //
2749 // if (rsh < 0 && !neg) // frac = rsh < 0 ? 0x7fffffff : frac;
2750 // frac = 0x7fffffff; // frac = neg ? 0 : frac;
2751 //
2752 // return frac;
2753 // }
2754
2755 MVT PredTy = MVT::getVectorVT(MVT::i1, ResTy.getVectorElementCount());
2756
2757 // Zero = V6_vd0();
2758 // Neg = V6_vgtw(Zero, Inp);
2759 // One = V6_lvsplatw(1);
2760 // M80 = V6_lvsplatw(0x80000000);
2761 // Exp00 = V6_vaslwv(Inp, One);
2762 // Exp01 = V6_vsubw(Exp00, M80);
2763 // ExpM1 = V6_vasrw(Exp01, 24);
2764 // Frc00 = V6_vaslw(Inp, 8);
2765 // Frc01 = V6_vor(Frc00, M80);
2766 // Rsh00 = V6_vsubw(V6_lvsplatw(30), ExpM1);
2767 // Rsh01 = V6_vminw(Rsh00, V6_lvsplatw(32));
2768 // Frc02 = V6_vlsrwv(Frc01, Rsh01);
2769
2770 // if signed int:
2771 // Bnd = V6_vmux(Neg, M80, V6_lvsplatw(0x7fffffff))
2772 // Pos = V6_vgtw(Rsh01, Zero);
2773 // Frc13 = V6_vsubw(Zero, Frc02);
2774 // Frc14 = V6_vmux(Neg, Frc13, Frc02);
2775 // Int = V6_vmux(Pos, Frc14, Bnd);
2776 //
2777 // if unsigned int:
2778 // Rsn = V6_vgtw(Zero, Rsh01)
2779 // Frc23 = V6_vmux(Rsn, V6_lvsplatw(0x7fffffff), Frc02)
2780 // Int = V6_vmux(Neg, Zero, Frc23)
2781
2782 auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(Ty: InpTy);
2783 unsigned ElemWidth = 1 + ExpWidth + FracWidth;
2784 assert((1ull << (ExpWidth - 1)) == (1 + ExpBias));
2785
2786 SDValue Inp = DAG.getBitcast(VT: ResTy, V: Op0);
2787 SDValue Zero = getZero(dl, Ty: ResTy, DAG);
2788 SDValue Neg = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Inp, RHS: Zero, Cond: ISD::SETLT);
2789 SDValue M80 = DAG.getConstant(Val: 1ull << (ElemWidth - 1), DL: dl, VT: ResTy);
2790 SDValue M7F = DAG.getConstant(Val: (1ull << (ElemWidth - 1)) - 1, DL: dl, VT: ResTy);
2791 SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: ResTy);
2792 SDValue Exp00 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: ResTy, Ops: {Inp, One});
2793 SDValue Exp01 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, Ops: {Exp00, M80});
2794 SDValue MNE = DAG.getConstant(Val: ElemWidth - ExpWidth, DL: dl, VT: ResTy);
2795 SDValue ExpM1 = DAG.getNode(Opcode: ISD::SRA, DL: dl, VT: ResTy, Ops: {Exp01, MNE});
2796
2797 SDValue ExpW = DAG.getConstant(Val: ExpWidth, DL: dl, VT: ResTy);
2798 SDValue Frc00 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: ResTy, Ops: {Inp, ExpW});
2799 SDValue Frc01 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: ResTy, Ops: {Frc00, M80});
2800
2801 SDValue MN2 = DAG.getConstant(Val: ElemWidth - 2, DL: dl, VT: ResTy);
2802 SDValue Rsh00 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, Ops: {MN2, ExpM1});
2803 SDValue MW = DAG.getConstant(Val: ElemWidth, DL: dl, VT: ResTy);
2804 SDValue Rsh01 = DAG.getNode(Opcode: ISD::SMIN, DL: dl, VT: ResTy, Ops: {Rsh00, MW});
2805 SDValue Frc02 = DAG.getNode(Opcode: ISD::SRL, DL: dl, VT: ResTy, Ops: {Frc01, Rsh01});
2806
2807 SDValue Int;
2808
2809 if (Opc == ISD::FP_TO_SINT) {
2810 SDValue Bnd = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, Ops: {Neg, M80, M7F});
2811 SDValue Pos = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Rsh01, RHS: Zero, Cond: ISD::SETGT);
2812 SDValue Frc13 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: ResTy, Ops: {Zero, Frc02});
2813 SDValue Frc14 = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, Ops: {Neg, Frc13, Frc02});
2814 Int = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, Ops: {Pos, Frc14, Bnd});
2815 } else {
2816 assert(Opc == ISD::FP_TO_UINT);
2817 SDValue Rsn = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Rsh01, RHS: Zero, Cond: ISD::SETLT);
2818 SDValue Frc23 = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, N1: Rsn, N2: M7F, N3: Frc02);
2819 Int = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ResTy, N1: Neg, N2: Zero, N3: Frc23);
2820 }
2821
2822 return Int;
2823}
2824
2825SDValue
2826HexagonTargetLowering::ExpandHvxIntToFp(SDValue Op, SelectionDAG &DAG) const {
2827 unsigned Opc = Op.getOpcode();
2828 assert(Opc == ISD::SINT_TO_FP || Opc == ISD::UINT_TO_FP);
2829
2830 const SDLoc &dl(Op);
2831 SDValue Op0 = Op.getOperand(i: 0);
2832 MVT InpTy = ty(Op: Op0);
2833 MVT ResTy = ty(Op);
2834 assert(ResTy.changeTypeToInteger() == InpTy);
2835
2836 // uint32_t vnoc1_rnd(int32_t w) {
2837 // int32_t iszero = w == 0;
2838 // int32_t isneg = w < 0;
2839 // uint32_t u = __builtin_HEXAGON_A2_abs(w);
2840 //
2841 // uint32_t norm_left = __builtin_HEXAGON_S2_cl0(u) + 1;
2842 // uint32_t frac0 = (uint64_t)u << norm_left;
2843 //
2844 // // Rounding:
2845 // uint32_t frac1 = frac0 + ((1 << 8) - 1);
2846 // uint32_t renorm = (frac0 > frac1);
2847 // uint32_t rup = (int)(frac0 << 22) < 0;
2848 //
2849 // uint32_t frac2 = frac0 >> 8;
2850 // uint32_t frac3 = frac1 >> 8;
2851 // uint32_t frac = (frac2 != frac3) ? frac3 >> 1 : (frac3 + rup) >> 1;
2852 //
2853 // int32_t exp = 32 - norm_left + renorm + 127;
2854 // exp <<= 23;
2855 //
2856 // uint32_t sign = 0x80000000 * isneg;
2857 // uint32_t f = sign | exp | frac;
2858 // return iszero ? 0 : f;
2859 // }
2860
2861 MVT PredTy = MVT::getVectorVT(MVT::i1, InpTy.getVectorElementCount());
2862 bool Signed = Opc == ISD::SINT_TO_FP;
2863
2864 auto [ExpWidth, ExpBias, FracWidth] = getIEEEProperties(Ty: ResTy);
2865 unsigned ElemWidth = 1 + ExpWidth + FracWidth;
2866
2867 SDValue Zero = getZero(dl, Ty: InpTy, DAG);
2868 SDValue One = DAG.getConstant(Val: 1, DL: dl, VT: InpTy);
2869 SDValue IsZero = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Op0, RHS: Zero, Cond: ISD::SETEQ);
2870 SDValue Abs = Signed ? DAG.getNode(Opcode: ISD::ABS, DL: dl, VT: InpTy, Operand: Op0) : Op0;
2871 SDValue Clz = DAG.getNode(Opcode: ISD::CTLZ, DL: dl, VT: InpTy, Operand: Abs);
2872 SDValue NLeft = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: InpTy, Ops: {Clz, One});
2873 SDValue Frac0 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: InpTy, Ops: {Abs, NLeft});
2874
2875 auto [Frac, Ovf] = emitHvxShiftRightRnd(Val: Frac0, Amt: ExpWidth + 1, Signed: false, DAG);
2876 if (Signed) {
2877 SDValue IsNeg = DAG.getSetCC(DL: dl, VT: PredTy, LHS: Op0, RHS: Zero, Cond: ISD::SETLT);
2878 SDValue M80 = DAG.getConstant(Val: 1ull << (ElemWidth - 1), DL: dl, VT: InpTy);
2879 SDValue Sign = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: InpTy, Ops: {IsNeg, M80, Zero});
2880 Frac = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: InpTy, Ops: {Sign, Frac});
2881 }
2882
2883 SDValue Rnrm = DAG.getZExtOrTrunc(Op: Ovf, DL: dl, VT: InpTy);
2884 SDValue Exp0 = DAG.getConstant(Val: ElemWidth + ExpBias, DL: dl, VT: InpTy);
2885 SDValue Exp1 = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: InpTy, Ops: {Rnrm, Exp0});
2886 SDValue Exp2 = DAG.getNode(Opcode: ISD::SUB, DL: dl, VT: InpTy, Ops: {Exp1, NLeft});
2887 SDValue Exp3 = DAG.getNode(Opcode: ISD::SHL, DL: dl, VT: InpTy,
2888 Ops: {Exp2, DAG.getConstant(Val: FracWidth, DL: dl, VT: InpTy)});
2889 SDValue Flt0 = DAG.getNode(Opcode: ISD::OR, DL: dl, VT: InpTy, Ops: {Frac, Exp3});
2890 SDValue Flt1 = DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: InpTy, Ops: {IsZero, Zero, Flt0});
2891 SDValue Flt = DAG.getBitcast(VT: ResTy, V: Flt1);
2892
2893 return Flt;
2894}
2895
2896SDValue
2897HexagonTargetLowering::CreateTLWrapper(SDValue Op, SelectionDAG &DAG) const {
2898 unsigned Opc = Op.getOpcode();
2899 unsigned TLOpc;
2900 switch (Opc) {
2901 case ISD::ANY_EXTEND:
2902 case ISD::SIGN_EXTEND:
2903 case ISD::ZERO_EXTEND:
2904 TLOpc = HexagonISD::TL_EXTEND;
2905 break;
2906 case ISD::TRUNCATE:
2907 TLOpc = HexagonISD::TL_TRUNCATE;
2908 break;
2909#ifndef NDEBUG
2910 Op.dump(G: &DAG);
2911#endif
2912 llvm_unreachable("Unepected operator");
2913 }
2914
2915 const SDLoc &dl(Op);
2916 return DAG.getNode(TLOpc, dl, ty(Op), Op.getOperand(0),
2917 DAG.getUNDEF(MVT::i128), // illegal type
2918 DAG.getConstant(Opc, dl, MVT::i32));
2919}
2920
2921SDValue
2922HexagonTargetLowering::RemoveTLWrapper(SDValue Op, SelectionDAG &DAG) const {
2923 assert(Op.getOpcode() == HexagonISD::TL_EXTEND ||
2924 Op.getOpcode() == HexagonISD::TL_TRUNCATE);
2925 unsigned Opc = Op.getConstantOperandVal(i: 2);
2926 return DAG.getNode(Opcode: Opc, DL: SDLoc(Op), VT: ty(Op), Operand: Op.getOperand(i: 0));
2927}
2928
2929HexagonTargetLowering::VectorPair
2930HexagonTargetLowering::SplitVectorOp(SDValue Op, SelectionDAG &DAG) const {
2931 assert(!Op.isMachineOpcode());
2932 SmallVector<SDValue, 2> OpsL, OpsH;
2933 const SDLoc &dl(Op);
2934
2935 auto SplitVTNode = [&DAG, this](const VTSDNode *N) {
2936 MVT Ty = typeSplit(VecTy: N->getVT().getSimpleVT()).first;
2937 SDValue TV = DAG.getValueType(Ty);
2938 return std::make_pair(x&: TV, y&: TV);
2939 };
2940
2941 for (SDValue A : Op.getNode()->ops()) {
2942 auto [Lo, Hi] =
2943 ty(Op: A).isVector() ? opSplit(Vec: A, dl, DAG) : std::make_pair(x&: A, y&: A);
2944 // Special case for type operand.
2945 switch (Op.getOpcode()) {
2946 case ISD::SIGN_EXTEND_INREG:
2947 case HexagonISD::SSAT:
2948 case HexagonISD::USAT:
2949 if (const auto *N = dyn_cast<const VTSDNode>(Val: A.getNode()))
2950 std::tie(args&: Lo, args&: Hi) = SplitVTNode(N);
2951 break;
2952 }
2953 OpsL.push_back(Elt: Lo);
2954 OpsH.push_back(Elt: Hi);
2955 }
2956
2957 MVT ResTy = ty(Op);
2958 MVT HalfTy = typeSplit(VecTy: ResTy).first;
2959 SDValue L = DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT: HalfTy, Ops: OpsL);
2960 SDValue H = DAG.getNode(Opcode: Op.getOpcode(), DL: dl, VT: HalfTy, Ops: OpsH);
2961 return {L, H};
2962}
2963
2964SDValue
2965HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
2966 auto *MemN = cast<MemSDNode>(Val: Op.getNode());
2967
2968 MVT MemTy = MemN->getMemoryVT().getSimpleVT();
2969 if (!isHvxPairTy(Ty: MemTy))
2970 return Op;
2971
2972 const SDLoc &dl(Op);
2973 unsigned HwLen = Subtarget.getVectorLength();
2974 MVT SingleTy = typeSplit(VecTy: MemTy).first;
2975 SDValue Chain = MemN->getChain();
2976 SDValue Base0 = MemN->getBasePtr();
2977 SDValue Base1 =
2978 DAG.getMemBasePlusOffset(Base: Base0, Offset: TypeSize::getFixed(ExactSize: HwLen), DL: dl);
2979 unsigned MemOpc = MemN->getOpcode();
2980
2981 MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
2982 if (MachineMemOperand *MMO = MemN->getMemOperand()) {
2983 MachineFunction &MF = DAG.getMachineFunction();
2984 uint64_t MemSize = (MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE)
2985 ? (uint64_t)MemoryLocation::UnknownSize
2986 : HwLen;
2987 MOp0 = MF.getMachineMemOperand(MMO, Offset: 0, Size: MemSize);
2988 MOp1 = MF.getMachineMemOperand(MMO, Offset: HwLen, Size: MemSize);
2989 }
2990
2991 if (MemOpc == ISD::LOAD) {
2992 assert(cast<LoadSDNode>(Op)->isUnindexed());
2993 SDValue Load0 = DAG.getLoad(VT: SingleTy, dl, Chain, Ptr: Base0, MMO: MOp0);
2994 SDValue Load1 = DAG.getLoad(VT: SingleTy, dl, Chain, Ptr: Base1, MMO: MOp1);
2995 return DAG.getMergeValues(
2996 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
2997 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2998 Load0.getValue(1), Load1.getValue(1)) }, dl);
2999 }
3000 if (MemOpc == ISD::STORE) {
3001 assert(cast<StoreSDNode>(Op)->isUnindexed());
3002 VectorPair Vals = opSplit(Vec: cast<StoreSDNode>(Val&: Op)->getValue(), dl, DAG);
3003 SDValue Store0 = DAG.getStore(Chain, dl, Val: Vals.first, Ptr: Base0, MMO: MOp0);
3004 SDValue Store1 = DAG.getStore(Chain, dl, Val: Vals.second, Ptr: Base1, MMO: MOp1);
3005 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
3006 }
3007
3008 assert(MemOpc == ISD::MLOAD || MemOpc == ISD::MSTORE);
3009
3010 auto MaskN = cast<MaskedLoadStoreSDNode>(Val&: Op);
3011 assert(MaskN->isUnindexed());
3012 VectorPair Masks = opSplit(Vec: MaskN->getMask(), dl, DAG);
3013 SDValue Offset = DAG.getUNDEF(MVT::i32);
3014
3015 if (MemOpc == ISD::MLOAD) {
3016 VectorPair Thru =
3017 opSplit(Vec: cast<MaskedLoadSDNode>(Val&: Op)->getPassThru(), dl, DAG);
3018 SDValue MLoad0 =
3019 DAG.getMaskedLoad(VT: SingleTy, dl, Chain, Base: Base0, Offset, Mask: Masks.first,
3020 Src0: Thru.first, MemVT: SingleTy, MMO: MOp0, AM: ISD::UNINDEXED,
3021 ISD::NON_EXTLOAD, IsExpanding: false);
3022 SDValue MLoad1 =
3023 DAG.getMaskedLoad(VT: SingleTy, dl, Chain, Base: Base1, Offset, Mask: Masks.second,
3024 Src0: Thru.second, MemVT: SingleTy, MMO: MOp1, AM: ISD::UNINDEXED,
3025 ISD::NON_EXTLOAD, IsExpanding: false);
3026 return DAG.getMergeValues(
3027 { DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, MLoad0, MLoad1),
3028 DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3029 MLoad0.getValue(1), MLoad1.getValue(1)) }, dl);
3030 }
3031 if (MemOpc == ISD::MSTORE) {
3032 VectorPair Vals = opSplit(Vec: cast<MaskedStoreSDNode>(Val&: Op)->getValue(), dl, DAG);
3033 SDValue MStore0 = DAG.getMaskedStore(Chain, dl, Val: Vals.first, Base: Base0, Offset,
3034 Mask: Masks.first, MemVT: SingleTy, MMO: MOp0,
3035 AM: ISD::UNINDEXED, IsTruncating: false, IsCompressing: false);
3036 SDValue MStore1 = DAG.getMaskedStore(Chain, dl, Val: Vals.second, Base: Base1, Offset,
3037 Mask: Masks.second, MemVT: SingleTy, MMO: MOp1,
3038 AM: ISD::UNINDEXED, IsTruncating: false, IsCompressing: false);
3039 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MStore0, MStore1);
3040 }
3041
3042 std::string Name = "Unexpected operation: " + Op->getOperationName(G: &DAG);
3043 llvm_unreachable(Name.c_str());
3044}
3045
3046SDValue
3047HexagonTargetLowering::WidenHvxLoad(SDValue Op, SelectionDAG &DAG) const {
3048 const SDLoc &dl(Op);
3049 auto *LoadN = cast<LoadSDNode>(Val: Op.getNode());
3050 assert(LoadN->isUnindexed() && "Not widening indexed loads yet");
3051 assert(LoadN->getMemoryVT().getVectorElementType() != MVT::i1 &&
3052 "Not widening loads of i1 yet");
3053
3054 SDValue Chain = LoadN->getChain();
3055 SDValue Base = LoadN->getBasePtr();
3056 SDValue Offset = DAG.getUNDEF(MVT::i32);
3057
3058 MVT ResTy = ty(Op);
3059 unsigned HwLen = Subtarget.getVectorLength();
3060 unsigned ResLen = ResTy.getStoreSize();
3061 assert(ResLen < HwLen && "vsetq(v1) prerequisite");
3062
3063 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
3064 SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
3065 {DAG.getConstant(ResLen, dl, MVT::i32)}, DAG);
3066
3067 MVT LoadTy = MVT::getVectorVT(MVT::i8, HwLen);
3068 MachineFunction &MF = DAG.getMachineFunction();
3069 auto *MemOp = MF.getMachineMemOperand(MMO: LoadN->getMemOperand(), Offset: 0, Size: HwLen);
3070
3071 SDValue Load = DAG.getMaskedLoad(VT: LoadTy, dl, Chain, Base, Offset, Mask,
3072 Src0: DAG.getUNDEF(VT: LoadTy), MemVT: LoadTy, MMO: MemOp,
3073 AM: ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding: false);
3074 SDValue Value = opCastElem(Vec: Load, ElemTy: ResTy.getVectorElementType(), DAG);
3075 return DAG.getMergeValues(Ops: {Value, Load.getValue(R: 1)}, dl);
3076}
3077
3078SDValue
3079HexagonTargetLowering::WidenHvxStore(SDValue Op, SelectionDAG &DAG) const {
3080 const SDLoc &dl(Op);
3081 auto *StoreN = cast<StoreSDNode>(Val: Op.getNode());
3082 assert(StoreN->isUnindexed() && "Not widening indexed stores yet");
3083 assert(StoreN->getMemoryVT().getVectorElementType() != MVT::i1 &&
3084 "Not widening stores of i1 yet");
3085
3086 SDValue Chain = StoreN->getChain();
3087 SDValue Base = StoreN->getBasePtr();
3088 SDValue Offset = DAG.getUNDEF(MVT::i32);
3089
3090 SDValue Value = opCastElem(StoreN->getValue(), MVT::i8, DAG);
3091 MVT ValueTy = ty(Op: Value);
3092 unsigned ValueLen = ValueTy.getVectorNumElements();
3093 unsigned HwLen = Subtarget.getVectorLength();
3094 assert(isPowerOf2_32(ValueLen));
3095
3096 for (unsigned Len = ValueLen; Len < HwLen; ) {
3097 Value = opJoin(Ops: {Value, DAG.getUNDEF(VT: ty(Op: Value))}, dl, DAG);
3098 Len = ty(Op: Value).getVectorNumElements(); // This is Len *= 2
3099 }
3100 assert(ty(Value).getVectorNumElements() == HwLen); // Paranoia
3101
3102 assert(ValueLen < HwLen && "vsetq(v1) prerequisite");
3103 MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
3104 SDValue Mask = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
3105 {DAG.getConstant(ValueLen, dl, MVT::i32)}, DAG);
3106 MachineFunction &MF = DAG.getMachineFunction();
3107 auto *MemOp = MF.getMachineMemOperand(MMO: StoreN->getMemOperand(), Offset: 0, Size: HwLen);
3108 return DAG.getMaskedStore(Chain, dl, Val: Value, Base, Offset, Mask, MemVT: ty(Op: Value),
3109 MMO: MemOp, AM: ISD::UNINDEXED, IsTruncating: false, IsCompressing: false);
3110}
3111
3112SDValue
3113HexagonTargetLowering::WidenHvxSetCC(SDValue Op, SelectionDAG &DAG) const {
3114 const SDLoc &dl(Op);
3115 SDValue Op0 = Op.getOperand(i: 0), Op1 = Op.getOperand(i: 1);
3116 MVT ElemTy = ty(Op: Op0).getVectorElementType();
3117 unsigned HwLen = Subtarget.getVectorLength();
3118
3119 unsigned WideOpLen = (8 * HwLen) / ElemTy.getSizeInBits();
3120 assert(WideOpLen * ElemTy.getSizeInBits() == 8 * HwLen);
3121 MVT WideOpTy = MVT::getVectorVT(VT: ElemTy, NumElements: WideOpLen);
3122 if (!Subtarget.isHVXVectorType(VecTy: WideOpTy, IncludeBool: true))
3123 return SDValue();
3124
3125 SDValue WideOp0 = appendUndef(Val: Op0, ResTy: WideOpTy, DAG);
3126 SDValue WideOp1 = appendUndef(Val: Op1, ResTy: WideOpTy, DAG);
3127 EVT ResTy =
3128 getSetCCResultType(DAG.getDataLayout(), C&: *DAG.getContext(), VT: WideOpTy);
3129 SDValue SetCC = DAG.getNode(Opcode: ISD::SETCC, DL: dl, VT: ResTy,
3130 Ops: {WideOp0, WideOp1, Op.getOperand(i: 2)});
3131
3132 EVT RetTy = typeLegalize(Ty: ty(Op), DAG);
3133 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, RetTy,
3134 {SetCC, getZero(dl, MVT::i32, DAG)});
3135}
3136
3137SDValue
3138HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
3139 unsigned Opc = Op.getOpcode();
3140 bool IsPairOp = isHvxPairTy(Ty: ty(Op)) ||
3141 llvm::any_of(Range: Op.getNode()->ops(), P: [this] (SDValue V) {
3142 return isHvxPairTy(Ty: ty(Op: V));
3143 });
3144
3145 if (IsPairOp) {
3146 switch (Opc) {
3147 default:
3148 break;
3149 case ISD::LOAD:
3150 case ISD::STORE:
3151 case ISD::MLOAD:
3152 case ISD::MSTORE:
3153 return SplitHvxMemOp(Op, DAG);
3154 case ISD::SINT_TO_FP:
3155 case ISD::UINT_TO_FP:
3156 case ISD::FP_TO_SINT:
3157 case ISD::FP_TO_UINT:
3158 if (ty(Op).getSizeInBits() == ty(Op: Op.getOperand(i: 0)).getSizeInBits())
3159 return opJoin(Ops: SplitVectorOp(Op, DAG), dl: SDLoc(Op), DAG);
3160 break;
3161 case ISD::ABS:
3162 case ISD::CTPOP:
3163 case ISD::CTLZ:
3164 case ISD::CTTZ:
3165 case ISD::MUL:
3166 case ISD::FADD:
3167 case ISD::FSUB:
3168 case ISD::FMUL:
3169 case ISD::FMINNUM:
3170 case ISD::FMAXNUM:
3171 case ISD::MULHS:
3172 case ISD::MULHU:
3173 case ISD::AND:
3174 case ISD::OR:
3175 case ISD::XOR:
3176 case ISD::SRA:
3177 case ISD::SHL:
3178 case ISD::SRL:
3179 case ISD::FSHL:
3180 case ISD::FSHR:
3181 case ISD::SMIN:
3182 case ISD::SMAX:
3183 case ISD::UMIN:
3184 case ISD::UMAX:
3185 case ISD::SETCC:
3186 case ISD::VSELECT:
3187 case ISD::SIGN_EXTEND_INREG:
3188 case ISD::SPLAT_VECTOR:
3189 return opJoin(Ops: SplitVectorOp(Op, DAG), dl: SDLoc(Op), DAG);
3190 case ISD::SIGN_EXTEND:
3191 case ISD::ZERO_EXTEND:
3192 // In general, sign- and zero-extends can't be split and still
3193 // be legal. The only exception is extending bool vectors.
3194 if (ty(Op.getOperand(0)).getVectorElementType() == MVT::i1)
3195 return opJoin(Ops: SplitVectorOp(Op, DAG), dl: SDLoc(Op), DAG);
3196 break;
3197 }
3198 }
3199
3200 switch (Opc) {
3201 default:
3202 break;
3203 case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG);
3204 case ISD::SPLAT_VECTOR: return LowerHvxSplatVector(Op, DAG);
3205 case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG);
3206 case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG);
3207 case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG);
3208 case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG);
3209 case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG);
3210 case ISD::BITCAST: return LowerHvxBitcast(Op, DAG);
3211 case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG);
3212 case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG);
3213 case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG);
3214 case ISD::CTTZ: return LowerHvxCttz(Op, DAG);
3215 case ISD::SELECT: return LowerHvxSelect(Op, DAG);
3216 case ISD::SRA:
3217 case ISD::SHL:
3218 case ISD::SRL: return LowerHvxShift(Op, DAG);
3219 case ISD::FSHL:
3220 case ISD::FSHR: return LowerHvxFunnelShift(Op, DAG);
3221 case ISD::MULHS:
3222 case ISD::MULHU: return LowerHvxMulh(Op, DAG);
3223 case ISD::SMUL_LOHI:
3224 case ISD::UMUL_LOHI: return LowerHvxMulLoHi(Op, DAG);
3225 case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
3226 case ISD::SETCC:
3227 case ISD::INTRINSIC_VOID: return Op;
3228 case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG);
3229 case ISD::MLOAD:
3230 case ISD::MSTORE: return LowerHvxMaskedOp(Op, DAG);
3231 // Unaligned loads will be handled by the default lowering.
3232 case ISD::LOAD: return SDValue();
3233 case ISD::FP_EXTEND: return LowerHvxFpExtend(Op, DAG);
3234 case ISD::FP_TO_SINT:
3235 case ISD::FP_TO_UINT: return LowerHvxFpToInt(Op, DAG);
3236 case ISD::SINT_TO_FP:
3237 case ISD::UINT_TO_FP: return LowerHvxIntToFp(Op, DAG);
3238
3239 // Special nodes:
3240 case HexagonISD::SMUL_LOHI:
3241 case HexagonISD::UMUL_LOHI:
3242 case HexagonISD::USMUL_LOHI: return LowerHvxMulLoHi(Op, DAG);
3243 }
3244#ifndef NDEBUG
3245 Op.dumpr(G: &DAG);
3246#endif
3247 llvm_unreachable("Unhandled HVX operation");
3248}
3249
3250SDValue
3251HexagonTargetLowering::ExpandHvxResizeIntoSteps(SDValue Op, SelectionDAG &DAG)
3252 const {
3253 // Rewrite the extension/truncation/saturation op into steps where each
3254 // step changes the type widths by a factor of 2.
3255 // E.g. i8 -> i16 remains unchanged, but i8 -> i32 ==> i8 -> i16 -> i32.
3256 //
3257 // Some of the vector types in Op may not be legal.
3258
3259 unsigned Opc = Op.getOpcode();
3260 switch (Opc) {
3261 case HexagonISD::SSAT:
3262 case HexagonISD::USAT:
3263 case HexagonISD::TL_EXTEND:
3264 case HexagonISD::TL_TRUNCATE:
3265 break;
3266 case ISD::ANY_EXTEND:
3267 case ISD::ZERO_EXTEND:
3268 case ISD::SIGN_EXTEND:
3269 case ISD::TRUNCATE:
3270 llvm_unreachable("ISD:: ops will be auto-folded");
3271 break;
3272#ifndef NDEBUG
3273 Op.dump(G: &DAG);
3274#endif
3275 llvm_unreachable("Unexpected operation");
3276 }
3277
3278 SDValue Inp = Op.getOperand(i: 0);
3279 MVT InpTy = ty(Op: Inp);
3280 MVT ResTy = ty(Op);
3281
3282 unsigned InpWidth = InpTy.getVectorElementType().getSizeInBits();
3283 unsigned ResWidth = ResTy.getVectorElementType().getSizeInBits();
3284 assert(InpWidth != ResWidth);
3285
3286 if (InpWidth == 2 * ResWidth || ResWidth == 2 * InpWidth)
3287 return Op;
3288
3289 const SDLoc &dl(Op);
3290 unsigned NumElems = InpTy.getVectorNumElements();
3291 assert(NumElems == ResTy.getVectorNumElements());
3292
3293 auto repeatOp = [&](unsigned NewWidth, SDValue Arg) {
3294 MVT Ty = MVT::getVectorVT(VT: MVT::getIntegerVT(BitWidth: NewWidth), NumElements: NumElems);
3295 switch (Opc) {
3296 case HexagonISD::SSAT:
3297 case HexagonISD::USAT:
3298 return DAG.getNode(Opcode: Opc, DL: dl, VT: Ty, Ops: {Arg, DAG.getValueType(Ty)});
3299 case HexagonISD::TL_EXTEND:
3300 case HexagonISD::TL_TRUNCATE:
3301 return DAG.getNode(Opcode: Opc, DL: dl, VT: Ty, Ops: {Arg, Op.getOperand(i: 1), Op.getOperand(i: 2)});
3302 default:
3303 llvm_unreachable("Unexpected opcode");
3304 }
3305 };
3306
3307 SDValue S = Inp;
3308 if (InpWidth < ResWidth) {
3309 assert(ResWidth % InpWidth == 0 && isPowerOf2_32(ResWidth / InpWidth));
3310 while (InpWidth * 2 <= ResWidth)
3311 S = repeatOp(InpWidth *= 2, S);
3312 } else {
3313 // InpWidth > ResWidth
3314 assert(InpWidth % ResWidth == 0 && isPowerOf2_32(InpWidth / ResWidth));
3315 while (InpWidth / 2 >= ResWidth)
3316 S = repeatOp(InpWidth /= 2, S);
3317 }
3318 return S;
3319}
3320
3321SDValue
3322HexagonTargetLowering::LegalizeHvxResize(SDValue Op, SelectionDAG &DAG) const {
3323 SDValue Inp0 = Op.getOperand(i: 0);
3324 MVT InpTy = ty(Op: Inp0);
3325 MVT ResTy = ty(Op);
3326 unsigned InpWidth = InpTy.getSizeInBits();
3327 unsigned ResWidth = ResTy.getSizeInBits();
3328 unsigned Opc = Op.getOpcode();
3329
3330 if (shouldWidenToHvx(Ty: InpTy, DAG) || shouldWidenToHvx(Ty: ResTy, DAG)) {
3331 // First, make sure that the narrower type is widened to HVX.
3332 // This may cause the result to be wider than what the legalizer
3333 // expects, so insert EXTRACT_SUBVECTOR to bring it back to the
3334 // desired type.
3335 auto [WInpTy, WResTy] =
3336 InpWidth < ResWidth ? typeWidenToWider(Ty0: typeWidenToHvx(Ty: InpTy), Ty1: ResTy)
3337 : typeWidenToWider(Ty0: InpTy, Ty1: typeWidenToHvx(Ty: ResTy));
3338 SDValue W = appendUndef(Val: Inp0, ResTy: WInpTy, DAG);
3339 SDValue S;
3340 if (Opc == HexagonISD::TL_EXTEND || Opc == HexagonISD::TL_TRUNCATE) {
3341 S = DAG.getNode(Opcode: Opc, DL: SDLoc(Op), VT: WResTy, N1: W, N2: Op.getOperand(i: 1),
3342 N3: Op.getOperand(i: 2));
3343 } else {
3344 S = DAG.getNode(Opcode: Opc, DL: SDLoc(Op), VT: WResTy, N1: W, N2: DAG.getValueType(WResTy));
3345 }
3346 SDValue T = ExpandHvxResizeIntoSteps(Op: S, DAG);
3347 return extractSubvector(Vec: T, SubTy: typeLegalize(Ty: ResTy, DAG), SubIdx: 0, DAG);
3348 } else if (shouldSplitToHvx(Ty: InpWidth < ResWidth ? ResTy : InpTy, DAG)) {
3349 return opJoin(Ops: SplitVectorOp(Op, DAG), dl: SDLoc(Op), DAG);
3350 } else {
3351 assert(isTypeLegal(InpTy) && isTypeLegal(ResTy));
3352 return RemoveTLWrapper(Op, DAG);
3353 }
3354 llvm_unreachable("Unexpected situation");
3355}
3356
3357void
3358HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N,
3359 SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
3360 unsigned Opc = N->getOpcode();
3361 SDValue Op(N, 0);
3362 SDValue Inp0; // Optional first argument.
3363 if (N->getNumOperands() > 0)
3364 Inp0 = Op.getOperand(i: 0);
3365
3366 switch (Opc) {
3367 case ISD::ANY_EXTEND:
3368 case ISD::SIGN_EXTEND:
3369 case ISD::ZERO_EXTEND:
3370 case ISD::TRUNCATE:
3371 if (Subtarget.isHVXElementType(Ty: ty(Op)) &&
3372 Subtarget.isHVXElementType(Ty: ty(Op: Inp0))) {
3373 Results.push_back(Elt: CreateTLWrapper(Op, DAG));
3374 }
3375 break;
3376 case ISD::SETCC:
3377 if (shouldWidenToHvx(Ty: ty(Op: Inp0), DAG)) {
3378 if (SDValue T = WidenHvxSetCC(Op, DAG))
3379 Results.push_back(Elt: T);
3380 }
3381 break;
3382 case ISD::STORE: {
3383 if (shouldWidenToHvx(Ty: ty(Op: cast<StoreSDNode>(Val: N)->getValue()), DAG)) {
3384 SDValue Store = WidenHvxStore(Op, DAG);
3385 Results.push_back(Elt: Store);
3386 }
3387 break;
3388 }
3389 case ISD::MLOAD:
3390 if (isHvxPairTy(Ty: ty(Op))) {
3391 SDValue S = SplitHvxMemOp(Op, DAG);
3392 assert(S->getOpcode() == ISD::MERGE_VALUES);
3393 Results.push_back(Elt: S.getOperand(i: 0));
3394 Results.push_back(Elt: S.getOperand(i: 1));
3395 }
3396 break;
3397 case ISD::MSTORE:
3398 if (isHvxPairTy(Ty: ty(Op: Op->getOperand(Num: 1)))) { // Stored value
3399 SDValue S = SplitHvxMemOp(Op, DAG);
3400 Results.push_back(Elt: S);
3401 }
3402 break;
3403 case ISD::SINT_TO_FP:
3404 case ISD::UINT_TO_FP:
3405 case ISD::FP_TO_SINT:
3406 case ISD::FP_TO_UINT:
3407 if (ty(Op).getSizeInBits() != ty(Op: Inp0).getSizeInBits()) {
3408 SDValue T = EqualizeFpIntConversion(Op, DAG);
3409 Results.push_back(Elt: T);
3410 }
3411 break;
3412 case HexagonISD::SSAT:
3413 case HexagonISD::USAT:
3414 case HexagonISD::TL_EXTEND:
3415 case HexagonISD::TL_TRUNCATE:
3416 Results.push_back(Elt: LegalizeHvxResize(Op, DAG));
3417 break;
3418 default:
3419 break;
3420 }
3421}
3422
3423void
3424HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N,
3425 SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
3426 unsigned Opc = N->getOpcode();
3427 SDValue Op(N, 0);
3428 SDValue Inp0; // Optional first argument.
3429 if (N->getNumOperands() > 0)
3430 Inp0 = Op.getOperand(i: 0);
3431
3432 switch (Opc) {
3433 case ISD::ANY_EXTEND:
3434 case ISD::SIGN_EXTEND:
3435 case ISD::ZERO_EXTEND:
3436 case ISD::TRUNCATE:
3437 if (Subtarget.isHVXElementType(Ty: ty(Op)) &&
3438 Subtarget.isHVXElementType(Ty: ty(Op: Inp0))) {
3439 Results.push_back(Elt: CreateTLWrapper(Op, DAG));
3440 }
3441 break;
3442 case ISD::SETCC:
3443 if (shouldWidenToHvx(Ty: ty(Op), DAG)) {
3444 if (SDValue T = WidenHvxSetCC(Op, DAG))
3445 Results.push_back(Elt: T);
3446 }
3447 break;
3448 case ISD::LOAD: {
3449 if (shouldWidenToHvx(Ty: ty(Op), DAG)) {
3450 SDValue Load = WidenHvxLoad(Op, DAG);
3451 assert(Load->getOpcode() == ISD::MERGE_VALUES);
3452 Results.push_back(Elt: Load.getOperand(i: 0));
3453 Results.push_back(Elt: Load.getOperand(i: 1));
3454 }
3455 break;
3456 }
3457 case ISD::BITCAST:
3458 if (isHvxBoolTy(Ty: ty(Op: Inp0))) {
3459 SDValue C = LowerHvxBitcast(Op, DAG);
3460 Results.push_back(Elt: C);
3461 }
3462 break;
3463 case ISD::FP_TO_SINT:
3464 case ISD::FP_TO_UINT:
3465 if (ty(Op).getSizeInBits() != ty(Op: Inp0).getSizeInBits()) {
3466 SDValue T = EqualizeFpIntConversion(Op, DAG);
3467 Results.push_back(Elt: T);
3468 }
3469 break;
3470 case HexagonISD::SSAT:
3471 case HexagonISD::USAT:
3472 case HexagonISD::TL_EXTEND:
3473 case HexagonISD::TL_TRUNCATE:
3474 Results.push_back(Elt: LegalizeHvxResize(Op, DAG));
3475 break;
3476 default:
3477 break;
3478 }
3479}
3480
3481SDValue
3482HexagonTargetLowering::combineTruncateBeforeLegal(SDValue Op,
3483 DAGCombinerInfo &DCI) const {
3484 // Simplify V:v2NiB --(bitcast)--> vNi2B --(truncate)--> vNiB
3485 // to extract-subvector (shuffle V, pick even, pick odd)
3486
3487 assert(Op.getOpcode() == ISD::TRUNCATE);
3488 SelectionDAG &DAG = DCI.DAG;
3489 const SDLoc &dl(Op);
3490
3491 if (Op.getOperand(i: 0).getOpcode() == ISD::BITCAST)
3492 return SDValue();
3493 SDValue Cast = Op.getOperand(i: 0);
3494 SDValue Src = Cast.getOperand(i: 0);
3495
3496 EVT TruncTy = Op.getValueType();
3497 EVT CastTy = Cast.getValueType();
3498 EVT SrcTy = Src.getValueType();
3499 if (SrcTy.isSimple())
3500 return SDValue();
3501 if (SrcTy.getVectorElementType() != TruncTy.getVectorElementType())
3502 return SDValue();
3503 unsigned SrcLen = SrcTy.getVectorNumElements();
3504 unsigned CastLen = CastTy.getVectorNumElements();
3505 if (2 * CastLen != SrcLen)
3506 return SDValue();
3507
3508 SmallVector<int, 128> Mask(SrcLen);
3509 for (int i = 0; i != static_cast<int>(CastLen); ++i) {
3510 Mask[i] = 2 * i;
3511 Mask[i + CastLen] = 2 * i + 1;
3512 }
3513 SDValue Deal =
3514 DAG.getVectorShuffle(VT: SrcTy, dl, N1: Src, N2: DAG.getUNDEF(VT: SrcTy), Mask);
3515 return opSplit(Vec: Deal, dl, DAG).first;
3516}
3517
3518SDValue
3519HexagonTargetLowering::combineConcatVectorsBeforeLegal(
3520 SDValue Op, DAGCombinerInfo &DCI) const {
3521 // Fold
3522 // concat (shuffle x, y, m1), (shuffle x, y, m2)
3523 // into
3524 // shuffle (concat x, y), undef, m3
3525 if (Op.getNumOperands() != 2)
3526 return SDValue();
3527
3528 SelectionDAG &DAG = DCI.DAG;
3529 const SDLoc &dl(Op);
3530 SDValue V0 = Op.getOperand(i: 0);
3531 SDValue V1 = Op.getOperand(i: 1);
3532
3533 if (V0.getOpcode() != ISD::VECTOR_SHUFFLE)
3534 return SDValue();
3535 if (V1.getOpcode() != ISD::VECTOR_SHUFFLE)
3536 return SDValue();
3537
3538 SetVector<SDValue> Order;
3539 Order.insert(X: V0.getOperand(i: 0));
3540 Order.insert(X: V0.getOperand(i: 1));
3541 Order.insert(X: V1.getOperand(i: 0));
3542 Order.insert(X: V1.getOperand(i: 1));
3543
3544 if (Order.size() > 2)
3545 return SDValue();
3546
3547 // In ISD::VECTOR_SHUFFLE, the types of each input and the type of the
3548 // result must be the same.
3549 EVT InpTy = V0.getValueType();
3550 assert(InpTy.isVector());
3551 unsigned InpLen = InpTy.getVectorNumElements();
3552
3553 SmallVector<int, 128> LongMask;
3554 auto AppendToMask = [&](SDValue Shuffle) {
3555 auto *SV = cast<ShuffleVectorSDNode>(Val: Shuffle.getNode());
3556 ArrayRef<int> Mask = SV->getMask();
3557 SDValue X = Shuffle.getOperand(i: 0);
3558 SDValue Y = Shuffle.getOperand(i: 1);
3559 for (int M : Mask) {
3560 if (M == -1) {
3561 LongMask.push_back(Elt: M);
3562 continue;
3563 }
3564 SDValue Src = static_cast<unsigned>(M) < InpLen ? X : Y;
3565 if (static_cast<unsigned>(M) >= InpLen)
3566 M -= InpLen;
3567
3568 int OutOffset = Order[0] == Src ? 0 : InpLen;
3569 LongMask.push_back(Elt: M + OutOffset);
3570 }
3571 };
3572
3573 AppendToMask(V0);
3574 AppendToMask(V1);
3575
3576 SDValue C0 = Order.front();
3577 SDValue C1 = Order.back(); // Can be same as front
3578 EVT LongTy = InpTy.getDoubleNumVectorElementsVT(Context&: *DAG.getContext());
3579
3580 SDValue Cat = DAG.getNode(Opcode: ISD::CONCAT_VECTORS, DL: dl, VT: LongTy, Ops: {C0, C1});
3581 return DAG.getVectorShuffle(VT: LongTy, dl, N1: Cat, N2: DAG.getUNDEF(VT: LongTy), Mask: LongMask);
3582}
3583
3584SDValue
3585HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
3586 const {
3587 const SDLoc &dl(N);
3588 SelectionDAG &DAG = DCI.DAG;
3589 SDValue Op(N, 0);
3590 unsigned Opc = Op.getOpcode();
3591
3592 SmallVector<SDValue, 4> Ops(N->ops().begin(), N->ops().end());
3593
3594 if (Opc == ISD::TRUNCATE)
3595 return combineTruncateBeforeLegal(Op, DCI);
3596 if (Opc == ISD::CONCAT_VECTORS)
3597 return combineConcatVectorsBeforeLegal(Op, DCI);
3598
3599 if (DCI.isBeforeLegalizeOps())
3600 return SDValue();
3601
3602 switch (Opc) {
3603 case ISD::VSELECT: {
3604 // (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
3605 SDValue Cond = Ops[0];
3606 if (Cond->getOpcode() == ISD::XOR) {
3607 SDValue C0 = Cond.getOperand(i: 0), C1 = Cond.getOperand(i: 1);
3608 if (C1->getOpcode() == HexagonISD::QTRUE)
3609 return DAG.getNode(Opcode: ISD::VSELECT, DL: dl, VT: ty(Op), N1: C0, N2: Ops[2], N3: Ops[1]);
3610 }
3611 break;
3612 }
3613 case HexagonISD::V2Q:
3614 if (Ops[0].getOpcode() == ISD::SPLAT_VECTOR) {
3615 if (const auto *C = dyn_cast<ConstantSDNode>(Val: Ops[0].getOperand(i: 0)))
3616 return C->isZero() ? DAG.getNode(Opcode: HexagonISD::QFALSE, DL: dl, VT: ty(Op))
3617 : DAG.getNode(Opcode: HexagonISD::QTRUE, DL: dl, VT: ty(Op));
3618 }
3619 break;
3620 case HexagonISD::Q2V:
3621 if (Ops[0].getOpcode() == HexagonISD::QTRUE)
3622 return DAG.getNode(ISD::SPLAT_VECTOR, dl, ty(Op),
3623 DAG.getConstant(-1, dl, MVT::i32));
3624 if (Ops[0].getOpcode() == HexagonISD::QFALSE)
3625 return getZero(dl, Ty: ty(Op), DAG);
3626 break;
3627 case HexagonISD::VINSERTW0:
3628 if (isUndef(Op: Ops[1]))
3629 return Ops[0];
3630 break;
3631 case HexagonISD::VROR: {
3632 if (Ops[0].getOpcode() == HexagonISD::VROR) {
3633 SDValue Vec = Ops[0].getOperand(i: 0);
3634 SDValue Rot0 = Ops[1], Rot1 = Ops[0].getOperand(i: 1);
3635 SDValue Rot = DAG.getNode(Opcode: ISD::ADD, DL: dl, VT: ty(Op: Rot0), Ops: {Rot0, Rot1});
3636 return DAG.getNode(Opcode: HexagonISD::VROR, DL: dl, VT: ty(Op), Ops: {Vec, Rot});
3637 }
3638 break;
3639 }
3640 }
3641
3642 return SDValue();
3643}
3644
3645bool
3646HexagonTargetLowering::shouldSplitToHvx(MVT Ty, SelectionDAG &DAG) const {
3647 if (Subtarget.isHVXVectorType(VecTy: Ty, IncludeBool: true))
3648 return false;
3649 auto Action = getPreferredHvxVectorAction(VecTy: Ty);
3650 if (Action == TargetLoweringBase::TypeSplitVector)
3651 return Subtarget.isHVXVectorType(VecTy: typeLegalize(Ty, DAG), IncludeBool: true);
3652 return false;
3653}
3654
3655bool
3656HexagonTargetLowering::shouldWidenToHvx(MVT Ty, SelectionDAG &DAG) const {
3657 if (Subtarget.isHVXVectorType(VecTy: Ty, IncludeBool: true))
3658 return false;
3659 auto Action = getPreferredHvxVectorAction(VecTy: Ty);
3660 if (Action == TargetLoweringBase::TypeWidenVector)
3661 return Subtarget.isHVXVectorType(VecTy: typeLegalize(Ty, DAG), IncludeBool: true);
3662 return false;
3663}
3664
3665bool
3666HexagonTargetLowering::isHvxOperation(SDNode *N, SelectionDAG &DAG) const {
3667 if (!Subtarget.useHVXOps())
3668 return false;
3669 // If the type of any result, or any operand type are HVX vector types,
3670 // this is an HVX operation.
3671 auto IsHvxTy = [this](EVT Ty) {
3672 return Ty.isSimple() && Subtarget.isHVXVectorType(VecTy: Ty.getSimpleVT(), IncludeBool: true);
3673 };
3674 auto IsHvxOp = [this](SDValue Op) {
3675 return Op.getValueType().isSimple() &&
3676 Subtarget.isHVXVectorType(VecTy: ty(Op), IncludeBool: true);
3677 };
3678 if (llvm::any_of(Range: N->values(), P: IsHvxTy) || llvm::any_of(Range: N->ops(), P: IsHvxOp))
3679 return true;
3680
3681 // Check if this could be an HVX operation after type widening.
3682 auto IsWidenedToHvx = [this, &DAG](SDValue Op) {
3683 if (!Op.getValueType().isSimple())
3684 return false;
3685 MVT ValTy = ty(Op);
3686 return ValTy.isVector() && shouldWidenToHvx(Ty: ValTy, DAG);
3687 };
3688
3689 for (int i = 0, e = N->getNumValues(); i != e; ++i) {
3690 if (IsWidenedToHvx(SDValue(N, i)))
3691 return true;
3692 }
3693 return llvm::any_of(Range: N->ops(), P: IsWidenedToHvx);
3694}
3695

source code of llvm/lib/Target/Hexagon/HexagonISelLoweringHVX.cpp