1//===- X86ISelDAGToDAG.cpp - A DAG pattern matching inst selector for X86 -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines a DAG pattern matching instruction selector for X86,
10// converting from a legalized dag to a X86 dag.
11//
12//===----------------------------------------------------------------------===//
13
14#include "X86.h"
15#include "X86MachineFunctionInfo.h"
16#include "X86RegisterInfo.h"
17#include "X86Subtarget.h"
18#include "X86TargetMachine.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/CodeGen/MachineModuleInfo.h"
21#include "llvm/CodeGen/SelectionDAGISel.h"
22#include "llvm/Config/llvm-config.h"
23#include "llvm/IR/ConstantRange.h"
24#include "llvm/IR/Function.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/Intrinsics.h"
27#include "llvm/IR/IntrinsicsX86.h"
28#include "llvm/IR/Type.h"
29#include "llvm/Support/Debug.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/KnownBits.h"
32#include "llvm/Support/MathExtras.h"
33#include <cstdint>
34
35using namespace llvm;
36
37#define DEBUG_TYPE "x86-isel"
38#define PASS_NAME "X86 DAG->DAG Instruction Selection"
39
40STATISTIC(NumLoadMoved, "Number of loads moved below TokenFactor");
41
42static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(Val: true),
43 cl::desc("Enable setting constant bits to reduce size of mask immediates"),
44 cl::Hidden);
45
46static cl::opt<bool> EnablePromoteAnyextLoad(
47 "x86-promote-anyext-load", cl::init(Val: true),
48 cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden);
49
50extern cl::opt<bool> IndirectBranchTracking;
51
52//===----------------------------------------------------------------------===//
53// Pattern Matcher Implementation
54//===----------------------------------------------------------------------===//
55
56namespace {
57 /// This corresponds to X86AddressMode, but uses SDValue's instead of register
58 /// numbers for the leaves of the matched tree.
59 struct X86ISelAddressMode {
60 enum {
61 RegBase,
62 FrameIndexBase
63 } BaseType = RegBase;
64
65 // This is really a union, discriminated by BaseType!
66 SDValue Base_Reg;
67 int Base_FrameIndex = 0;
68
69 unsigned Scale = 1;
70 SDValue IndexReg;
71 int32_t Disp = 0;
72 SDValue Segment;
73 const GlobalValue *GV = nullptr;
74 const Constant *CP = nullptr;
75 const BlockAddress *BlockAddr = nullptr;
76 const char *ES = nullptr;
77 MCSymbol *MCSym = nullptr;
78 int JT = -1;
79 Align Alignment; // CP alignment.
80 unsigned char SymbolFlags = X86II::MO_NO_FLAG; // X86II::MO_*
81 bool NegateIndex = false;
82
83 X86ISelAddressMode() = default;
84
85 bool hasSymbolicDisplacement() const {
86 return GV != nullptr || CP != nullptr || ES != nullptr ||
87 MCSym != nullptr || JT != -1 || BlockAddr != nullptr;
88 }
89
90 bool hasBaseOrIndexReg() const {
91 return BaseType == FrameIndexBase ||
92 IndexReg.getNode() != nullptr || Base_Reg.getNode() != nullptr;
93 }
94
95 /// Return true if this addressing mode is already RIP-relative.
96 bool isRIPRelative() const {
97 if (BaseType != RegBase) return false;
98 if (RegisterSDNode *RegNode =
99 dyn_cast_or_null<RegisterSDNode>(Val: Base_Reg.getNode()))
100 return RegNode->getReg() == X86::RIP;
101 return false;
102 }
103
104 void setBaseReg(SDValue Reg) {
105 BaseType = RegBase;
106 Base_Reg = Reg;
107 }
108
109#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
110 void dump(SelectionDAG *DAG = nullptr) {
111 dbgs() << "X86ISelAddressMode " << this << '\n';
112 dbgs() << "Base_Reg ";
113 if (Base_Reg.getNode())
114 Base_Reg.getNode()->dump(G: DAG);
115 else
116 dbgs() << "nul\n";
117 if (BaseType == FrameIndexBase)
118 dbgs() << " Base.FrameIndex " << Base_FrameIndex << '\n';
119 dbgs() << " Scale " << Scale << '\n'
120 << "IndexReg ";
121 if (NegateIndex)
122 dbgs() << "negate ";
123 if (IndexReg.getNode())
124 IndexReg.getNode()->dump(G: DAG);
125 else
126 dbgs() << "nul\n";
127 dbgs() << " Disp " << Disp << '\n'
128 << "GV ";
129 if (GV)
130 GV->dump();
131 else
132 dbgs() << "nul";
133 dbgs() << " CP ";
134 if (CP)
135 CP->dump();
136 else
137 dbgs() << "nul";
138 dbgs() << '\n'
139 << "ES ";
140 if (ES)
141 dbgs() << ES;
142 else
143 dbgs() << "nul";
144 dbgs() << " MCSym ";
145 if (MCSym)
146 dbgs() << MCSym;
147 else
148 dbgs() << "nul";
149 dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n';
150 }
151#endif
152 };
153}
154
155namespace {
156 //===--------------------------------------------------------------------===//
157 /// ISel - X86-specific code to select X86 machine instructions for
158 /// SelectionDAG operations.
159 ///
160 class X86DAGToDAGISel final : public SelectionDAGISel {
161 /// Keep a pointer to the X86Subtarget around so that we can
162 /// make the right decision when generating code for different targets.
163 const X86Subtarget *Subtarget;
164
165 /// If true, selector should try to optimize for minimum code size.
166 bool OptForMinSize;
167
168 /// Disable direct TLS access through segment registers.
169 bool IndirectTlsSegRefs;
170
171 public:
172 static char ID;
173
174 X86DAGToDAGISel() = delete;
175
176 explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOptLevel OptLevel)
177 : SelectionDAGISel(ID, tm, OptLevel), Subtarget(nullptr),
178 OptForMinSize(false), IndirectTlsSegRefs(false) {}
179
180 bool runOnMachineFunction(MachineFunction &MF) override {
181 // Reset the subtarget each time through.
182 Subtarget = &MF.getSubtarget<X86Subtarget>();
183 IndirectTlsSegRefs = MF.getFunction().hasFnAttribute(
184 Kind: "indirect-tls-seg-refs");
185
186 // OptFor[Min]Size are used in pattern predicates that isel is matching.
187 OptForMinSize = MF.getFunction().hasMinSize();
188 assert((!OptForMinSize || MF.getFunction().hasOptSize()) &&
189 "OptForMinSize implies OptForSize");
190
191 SelectionDAGISel::runOnMachineFunction(MF);
192 return true;
193 }
194
195 void emitFunctionEntryCode() override;
196
197 bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override;
198
199 void PreprocessISelDAG() override;
200 void PostprocessISelDAG() override;
201
202// Include the pieces autogenerated from the target description.
203#include "X86GenDAGISel.inc"
204
205 private:
206 void Select(SDNode *N) override;
207
208 bool foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM);
209 bool matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
210 bool AllowSegmentRegForX32 = false);
211 bool matchWrapper(SDValue N, X86ISelAddressMode &AM);
212 bool matchAddress(SDValue N, X86ISelAddressMode &AM);
213 bool matchVectorAddress(SDValue N, X86ISelAddressMode &AM);
214 bool matchAdd(SDValue &N, X86ISelAddressMode &AM, unsigned Depth);
215 SDValue matchIndexRecursively(SDValue N, X86ISelAddressMode &AM,
216 unsigned Depth);
217 bool matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
218 unsigned Depth);
219 bool matchVectorAddressRecursively(SDValue N, X86ISelAddressMode &AM,
220 unsigned Depth);
221 bool matchAddressBase(SDValue N, X86ISelAddressMode &AM);
222 bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
223 SDValue &Scale, SDValue &Index, SDValue &Disp,
224 SDValue &Segment);
225 bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp,
226 SDValue ScaleOp, SDValue &Base, SDValue &Scale,
227 SDValue &Index, SDValue &Disp, SDValue &Segment);
228 bool selectMOV64Imm32(SDValue N, SDValue &Imm);
229 bool selectLEAAddr(SDValue N, SDValue &Base,
230 SDValue &Scale, SDValue &Index, SDValue &Disp,
231 SDValue &Segment);
232 bool selectLEA64_32Addr(SDValue N, SDValue &Base,
233 SDValue &Scale, SDValue &Index, SDValue &Disp,
234 SDValue &Segment);
235 bool selectTLSADDRAddr(SDValue N, SDValue &Base,
236 SDValue &Scale, SDValue &Index, SDValue &Disp,
237 SDValue &Segment);
238 bool selectRelocImm(SDValue N, SDValue &Op);
239
240 bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
241 SDValue &Base, SDValue &Scale,
242 SDValue &Index, SDValue &Disp,
243 SDValue &Segment);
244
245 // Convenience method where P is also root.
246 bool tryFoldLoad(SDNode *P, SDValue N,
247 SDValue &Base, SDValue &Scale,
248 SDValue &Index, SDValue &Disp,
249 SDValue &Segment) {
250 return tryFoldLoad(Root: P, P, N, Base, Scale, Index, Disp, Segment);
251 }
252
253 bool tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
254 SDValue &Base, SDValue &Scale,
255 SDValue &Index, SDValue &Disp,
256 SDValue &Segment);
257
258 bool isProfitableToFormMaskedOp(SDNode *N) const;
259
260 /// Implement addressing mode selection for inline asm expressions.
261 bool SelectInlineAsmMemoryOperand(const SDValue &Op,
262 InlineAsm::ConstraintCode ConstraintID,
263 std::vector<SDValue> &OutOps) override;
264
265 void emitSpecialCodeForMain();
266
267 inline void getAddressOperands(X86ISelAddressMode &AM, const SDLoc &DL,
268 MVT VT, SDValue &Base, SDValue &Scale,
269 SDValue &Index, SDValue &Disp,
270 SDValue &Segment) {
271 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
272 Base = CurDAG->getTargetFrameIndex(
273 FI: AM.Base_FrameIndex, VT: TLI->getPointerTy(DL: CurDAG->getDataLayout()));
274 else if (AM.Base_Reg.getNode())
275 Base = AM.Base_Reg;
276 else
277 Base = CurDAG->getRegister(Reg: 0, VT);
278
279 Scale = getI8Imm(Imm: AM.Scale, DL);
280
281#define GET_ND_IF_ENABLED(OPC) (Subtarget->hasNDD() ? OPC##_ND : OPC)
282 // Negate the index if needed.
283 if (AM.NegateIndex) {
284 unsigned NegOpc = VT == MVT::i64 ? GET_ND_IF_ENABLED(X86::NEG64r)
285 : GET_ND_IF_ENABLED(X86::NEG32r);
286 SDValue Neg = SDValue(CurDAG->getMachineNode(NegOpc, DL, VT, MVT::i32,
287 AM.IndexReg), 0);
288 AM.IndexReg = Neg;
289 }
290
291 if (AM.IndexReg.getNode())
292 Index = AM.IndexReg;
293 else
294 Index = CurDAG->getRegister(Reg: 0, VT);
295
296 // These are 32-bit even in 64-bit mode since RIP-relative offset
297 // is 32-bit.
298 if (AM.GV)
299 Disp = CurDAG->getTargetGlobalAddress(AM.GV, SDLoc(),
300 MVT::i32, AM.Disp,
301 AM.SymbolFlags);
302 else if (AM.CP)
303 Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment,
304 AM.Disp, AM.SymbolFlags);
305 else if (AM.ES) {
306 assert(!AM.Disp && "Non-zero displacement is ignored with ES.");
307 Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags);
308 } else if (AM.MCSym) {
309 assert(!AM.Disp && "Non-zero displacement is ignored with MCSym.");
310 assert(AM.SymbolFlags == 0 && "oo");
311 Disp = CurDAG->getMCSymbol(AM.MCSym, MVT::i32);
312 } else if (AM.JT != -1) {
313 assert(!AM.Disp && "Non-zero displacement is ignored with JT.");
314 Disp = CurDAG->getTargetJumpTable(AM.JT, MVT::i32, AM.SymbolFlags);
315 } else if (AM.BlockAddr)
316 Disp = CurDAG->getTargetBlockAddress(AM.BlockAddr, MVT::i32, AM.Disp,
317 AM.SymbolFlags);
318 else
319 Disp = CurDAG->getTargetConstant(AM.Disp, DL, MVT::i32);
320
321 if (AM.Segment.getNode())
322 Segment = AM.Segment;
323 else
324 Segment = CurDAG->getRegister(0, MVT::i16);
325 }
326
327 // Utility function to determine whether we should avoid selecting
328 // immediate forms of instructions for better code size or not.
329 // At a high level, we'd like to avoid such instructions when
330 // we have similar constants used within the same basic block
331 // that can be kept in a register.
332 //
333 bool shouldAvoidImmediateInstFormsForSize(SDNode *N) const {
334 uint32_t UseCount = 0;
335
336 // Do not want to hoist if we're not optimizing for size.
337 // TODO: We'd like to remove this restriction.
338 // See the comment in X86InstrInfo.td for more info.
339 if (!CurDAG->shouldOptForSize())
340 return false;
341
342 // Walk all the users of the immediate.
343 for (const SDNode *User : N->uses()) {
344 if (UseCount >= 2)
345 break;
346
347 // This user is already selected. Count it as a legitimate use and
348 // move on.
349 if (User->isMachineOpcode()) {
350 UseCount++;
351 continue;
352 }
353
354 // We want to count stores of immediates as real uses.
355 if (User->getOpcode() == ISD::STORE &&
356 User->getOperand(1).getNode() == N) {
357 UseCount++;
358 continue;
359 }
360
361 // We don't currently match users that have > 2 operands (except
362 // for stores, which are handled above)
363 // Those instruction won't match in ISEL, for now, and would
364 // be counted incorrectly.
365 // This may change in the future as we add additional instruction
366 // types.
367 if (User->getNumOperands() != 2)
368 continue;
369
370 // If this is a sign-extended 8-bit integer immediate used in an ALU
371 // instruction, there is probably an opcode encoding to save space.
372 auto *C = dyn_cast<ConstantSDNode>(N);
373 if (C && isInt<8>(C->getSExtValue()))
374 continue;
375
376 // Immediates that are used for offsets as part of stack
377 // manipulation should be left alone. These are typically
378 // used to indicate SP offsets for argument passing and
379 // will get pulled into stores/pushes (implicitly).
380 if (User->getOpcode() == X86ISD::ADD ||
381 User->getOpcode() == ISD::ADD ||
382 User->getOpcode() == X86ISD::SUB ||
383 User->getOpcode() == ISD::SUB) {
384
385 // Find the other operand of the add/sub.
386 SDValue OtherOp = User->getOperand(0);
387 if (OtherOp.getNode() == N)
388 OtherOp = User->getOperand(1);
389
390 // Don't count if the other operand is SP.
391 RegisterSDNode *RegNode;
392 if (OtherOp->getOpcode() == ISD::CopyFromReg &&
393 (RegNode = dyn_cast_or_null<RegisterSDNode>(
394 OtherOp->getOperand(1).getNode())))
395 if ((RegNode->getReg() == X86::ESP) ||
396 (RegNode->getReg() == X86::RSP))
397 continue;
398 }
399
400 // ... otherwise, count this and move on.
401 UseCount++;
402 }
403
404 // If we have more than 1 use, then recommend for hoisting.
405 return (UseCount > 1);
406 }
407
408 /// Return a target constant with the specified value of type i8.
409 inline SDValue getI8Imm(unsigned Imm, const SDLoc &DL) {
410 return CurDAG->getTargetConstant(Imm, DL, MVT::i8);
411 }
412
413 /// Return a target constant with the specified value, of type i32.
414 inline SDValue getI32Imm(unsigned Imm, const SDLoc &DL) {
415 return CurDAG->getTargetConstant(Imm, DL, MVT::i32);
416 }
417
418 /// Return a target constant with the specified value, of type i64.
419 inline SDValue getI64Imm(uint64_t Imm, const SDLoc &DL) {
420 return CurDAG->getTargetConstant(Imm, DL, MVT::i64);
421 }
422
423 SDValue getExtractVEXTRACTImmediate(SDNode *N, unsigned VecWidth,
424 const SDLoc &DL) {
425 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
426 uint64_t Index = N->getConstantOperandVal(Num: 1);
427 MVT VecVT = N->getOperand(Num: 0).getSimpleValueType();
428 return getI8Imm(Imm: (Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
429 }
430
431 SDValue getInsertVINSERTImmediate(SDNode *N, unsigned VecWidth,
432 const SDLoc &DL) {
433 assert((VecWidth == 128 || VecWidth == 256) && "Unexpected vector width");
434 uint64_t Index = N->getConstantOperandVal(Num: 2);
435 MVT VecVT = N->getSimpleValueType(ResNo: 0);
436 return getI8Imm(Imm: (Index * VecVT.getScalarSizeInBits()) / VecWidth, DL);
437 }
438
439 SDValue getPermuteVINSERTCommutedImmediate(SDNode *N, unsigned VecWidth,
440 const SDLoc &DL) {
441 assert(VecWidth == 128 && "Unexpected vector width");
442 uint64_t Index = N->getConstantOperandVal(Num: 2);
443 MVT VecVT = N->getSimpleValueType(ResNo: 0);
444 uint64_t InsertIdx = (Index * VecVT.getScalarSizeInBits()) / VecWidth;
445 assert((InsertIdx == 0 || InsertIdx == 1) && "Bad insertf128 index");
446 // vinsert(0,sub,vec) -> [sub0][vec1] -> vperm2x128(0x30,vec,sub)
447 // vinsert(1,sub,vec) -> [vec0][sub0] -> vperm2x128(0x02,vec,sub)
448 return getI8Imm(Imm: InsertIdx ? 0x02 : 0x30, DL);
449 }
450
451 SDValue getSBBZero(SDNode *N) {
452 SDLoc dl(N);
453 MVT VT = N->getSimpleValueType(ResNo: 0);
454
455 // Create zero.
456 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
457 SDValue Zero = SDValue(
458 CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
459 if (VT == MVT::i64) {
460 Zero = SDValue(
461 CurDAG->getMachineNode(
462 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
463 CurDAG->getTargetConstant(0, dl, MVT::i64), Zero,
464 CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)),
465 0);
466 }
467
468 // Copy flags to the EFLAGS register and glue it to next node.
469 unsigned Opcode = N->getOpcode();
470 assert((Opcode == X86ISD::SBB || Opcode == X86ISD::SETCC_CARRY) &&
471 "Unexpected opcode for SBB materialization");
472 unsigned FlagOpIndex = Opcode == X86ISD::SBB ? 2 : 1;
473 SDValue EFLAGS =
474 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
475 N->getOperand(FlagOpIndex), SDValue());
476
477 // Create a 64-bit instruction if the result is 64-bits otherwise use the
478 // 32-bit version.
479 unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr;
480 MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
481 VTs = CurDAG->getVTList(SBBVT, MVT::i32);
482 return SDValue(
483 CurDAG->getMachineNode(Opc, dl, VTs,
484 {Zero, Zero, EFLAGS, EFLAGS.getValue(R: 1)}),
485 0);
486 }
487
488 // Helper to detect unneeded and instructions on shift amounts. Called
489 // from PatFrags in tablegen.
490 bool isUnneededShiftMask(SDNode *N, unsigned Width) const {
491 assert(N->getOpcode() == ISD::AND && "Unexpected opcode");
492 const APInt &Val = N->getConstantOperandAPInt(Num: 1);
493
494 if (Val.countr_one() >= Width)
495 return true;
496
497 APInt Mask = Val | CurDAG->computeKnownBits(Op: N->getOperand(Num: 0)).Zero;
498 return Mask.countr_one() >= Width;
499 }
500
501 /// Return an SDNode that returns the value of the global base register.
502 /// Output instructions required to initialize the global base register,
503 /// if necessary.
504 SDNode *getGlobalBaseReg();
505
506 /// Return a reference to the TargetMachine, casted to the target-specific
507 /// type.
508 const X86TargetMachine &getTargetMachine() const {
509 return static_cast<const X86TargetMachine &>(TM);
510 }
511
512 /// Return a reference to the TargetInstrInfo, casted to the target-specific
513 /// type.
514 const X86InstrInfo *getInstrInfo() const {
515 return Subtarget->getInstrInfo();
516 }
517
518 /// Return a condition code of the given SDNode
519 X86::CondCode getCondFromNode(SDNode *N) const;
520
521 /// Address-mode matching performs shift-of-and to and-of-shift
522 /// reassociation in order to expose more scaled addressing
523 /// opportunities.
524 bool ComplexPatternFuncMutatesDAG() const override {
525 return true;
526 }
527
528 bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const;
529
530 // Indicates we should prefer to use a non-temporal load for this load.
531 bool useNonTemporalLoad(LoadSDNode *N) const {
532 if (!N->isNonTemporal())
533 return false;
534
535 unsigned StoreSize = N->getMemoryVT().getStoreSize();
536
537 if (N->getAlign().value() < StoreSize)
538 return false;
539
540 switch (StoreSize) {
541 default: llvm_unreachable("Unsupported store size");
542 case 4:
543 case 8:
544 return false;
545 case 16:
546 return Subtarget->hasSSE41();
547 case 32:
548 return Subtarget->hasAVX2();
549 case 64:
550 return Subtarget->hasAVX512();
551 }
552 }
553
554 bool foldLoadStoreIntoMemOperand(SDNode *Node);
555 MachineSDNode *matchBEXTRFromAndImm(SDNode *Node);
556 bool matchBitExtract(SDNode *Node);
557 bool shrinkAndImmediate(SDNode *N);
558 bool isMaskZeroExtended(SDNode *N) const;
559 bool tryShiftAmountMod(SDNode *N);
560 bool tryShrinkShlLogicImm(SDNode *N);
561 bool tryVPTERNLOG(SDNode *N);
562 bool matchVPTERNLOG(SDNode *Root, SDNode *ParentA, SDNode *ParentB,
563 SDNode *ParentC, SDValue A, SDValue B, SDValue C,
564 uint8_t Imm);
565 bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask);
566 bool tryMatchBitSelect(SDNode *N);
567
568 MachineSDNode *emitPCMPISTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
569 const SDLoc &dl, MVT VT, SDNode *Node);
570 MachineSDNode *emitPCMPESTR(unsigned ROpc, unsigned MOpc, bool MayFoldLoad,
571 const SDLoc &dl, MVT VT, SDNode *Node,
572 SDValue &InGlue);
573
574 bool tryOptimizeRem8Extend(SDNode *N);
575
576 bool onlyUsesZeroFlag(SDValue Flags) const;
577 bool hasNoSignFlagUses(SDValue Flags) const;
578 bool hasNoCarryFlagUses(SDValue Flags) const;
579 };
580}
581
582char X86DAGToDAGISel::ID = 0;
583
584INITIALIZE_PASS(X86DAGToDAGISel, DEBUG_TYPE, PASS_NAME, false, false)
585
586// Returns true if this masked compare can be implemented legally with this
587// type.
588static bool isLegalMaskCompare(SDNode *N, const X86Subtarget *Subtarget) {
589 unsigned Opcode = N->getOpcode();
590 if (Opcode == X86ISD::CMPM || Opcode == X86ISD::CMPMM ||
591 Opcode == X86ISD::STRICT_CMPM || Opcode == ISD::SETCC ||
592 Opcode == X86ISD::CMPMM_SAE || Opcode == X86ISD::VFPCLASS) {
593 // We can get 256-bit 8 element types here without VLX being enabled. When
594 // this happens we will use 512-bit operations and the mask will not be
595 // zero extended.
596 EVT OpVT = N->getOperand(Num: 0).getValueType();
597 // The first operand of X86ISD::STRICT_CMPM is chain, so we need to get the
598 // second operand.
599 if (Opcode == X86ISD::STRICT_CMPM)
600 OpVT = N->getOperand(Num: 1).getValueType();
601 if (OpVT.is256BitVector() || OpVT.is128BitVector())
602 return Subtarget->hasVLX();
603
604 return true;
605 }
606 // Scalar opcodes use 128 bit registers, but aren't subject to the VLX check.
607 if (Opcode == X86ISD::VFPCLASSS || Opcode == X86ISD::FSETCCM ||
608 Opcode == X86ISD::FSETCCM_SAE)
609 return true;
610
611 return false;
612}
613
614// Returns true if we can assume the writer of the mask has zero extended it
615// for us.
616bool X86DAGToDAGISel::isMaskZeroExtended(SDNode *N) const {
617 // If this is an AND, check if we have a compare on either side. As long as
618 // one side guarantees the mask is zero extended, the AND will preserve those
619 // zeros.
620 if (N->getOpcode() == ISD::AND)
621 return isLegalMaskCompare(N: N->getOperand(Num: 0).getNode(), Subtarget) ||
622 isLegalMaskCompare(N: N->getOperand(Num: 1).getNode(), Subtarget);
623
624 return isLegalMaskCompare(N, Subtarget);
625}
626
627bool
628X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const {
629 if (OptLevel == CodeGenOptLevel::None)
630 return false;
631
632 if (!N.hasOneUse())
633 return false;
634
635 if (N.getOpcode() != ISD::LOAD)
636 return true;
637
638 // Don't fold non-temporal loads if we have an instruction for them.
639 if (useNonTemporalLoad(N: cast<LoadSDNode>(Val&: N)))
640 return false;
641
642 // If N is a load, do additional profitability checks.
643 if (U == Root) {
644 switch (U->getOpcode()) {
645 default: break;
646 case X86ISD::ADD:
647 case X86ISD::ADC:
648 case X86ISD::SUB:
649 case X86ISD::SBB:
650 case X86ISD::AND:
651 case X86ISD::XOR:
652 case X86ISD::OR:
653 case ISD::ADD:
654 case ISD::UADDO_CARRY:
655 case ISD::AND:
656 case ISD::OR:
657 case ISD::XOR: {
658 SDValue Op1 = U->getOperand(Num: 1);
659
660 // If the other operand is a 8-bit immediate we should fold the immediate
661 // instead. This reduces code size.
662 // e.g.
663 // movl 4(%esp), %eax
664 // addl $4, %eax
665 // vs.
666 // movl $4, %eax
667 // addl 4(%esp), %eax
668 // The former is 2 bytes shorter. In case where the increment is 1, then
669 // the saving can be 4 bytes (by using incl %eax).
670 if (auto *Imm = dyn_cast<ConstantSDNode>(Val&: Op1)) {
671 if (Imm->getAPIntValue().isSignedIntN(N: 8))
672 return false;
673
674 // If this is a 64-bit AND with an immediate that fits in 32-bits,
675 // prefer using the smaller and over folding the load. This is needed to
676 // make sure immediates created by shrinkAndImmediate are always folded.
677 // Ideally we would narrow the load during DAG combine and get the
678 // best of both worlds.
679 if (U->getOpcode() == ISD::AND &&
680 Imm->getAPIntValue().getBitWidth() == 64 &&
681 Imm->getAPIntValue().isIntN(N: 32))
682 return false;
683
684 // If this really a zext_inreg that can be represented with a movzx
685 // instruction, prefer that.
686 // TODO: We could shrink the load and fold if it is non-volatile.
687 if (U->getOpcode() == ISD::AND &&
688 (Imm->getAPIntValue() == UINT8_MAX ||
689 Imm->getAPIntValue() == UINT16_MAX ||
690 Imm->getAPIntValue() == UINT32_MAX))
691 return false;
692
693 // ADD/SUB with can negate the immediate and use the opposite operation
694 // to fit 128 into a sign extended 8 bit immediate.
695 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) &&
696 (-Imm->getAPIntValue()).isSignedIntN(N: 8))
697 return false;
698
699 if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) &&
700 (-Imm->getAPIntValue()).isSignedIntN(N: 8) &&
701 hasNoCarryFlagUses(Flags: SDValue(U, 1)))
702 return false;
703 }
704
705 // If the other operand is a TLS address, we should fold it instead.
706 // This produces
707 // movl %gs:0, %eax
708 // leal i@NTPOFF(%eax), %eax
709 // instead of
710 // movl $i@NTPOFF, %eax
711 // addl %gs:0, %eax
712 // if the block also has an access to a second TLS address this will save
713 // a load.
714 // FIXME: This is probably also true for non-TLS addresses.
715 if (Op1.getOpcode() == X86ISD::Wrapper) {
716 SDValue Val = Op1.getOperand(i: 0);
717 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
718 return false;
719 }
720
721 // Don't fold load if this matches the BTS/BTR/BTC patterns.
722 // BTS: (or X, (shl 1, n))
723 // BTR: (and X, (rotl -2, n))
724 // BTC: (xor X, (shl 1, n))
725 if (U->getOpcode() == ISD::OR || U->getOpcode() == ISD::XOR) {
726 if (U->getOperand(Num: 0).getOpcode() == ISD::SHL &&
727 isOneConstant(V: U->getOperand(Num: 0).getOperand(i: 0)))
728 return false;
729
730 if (U->getOperand(Num: 1).getOpcode() == ISD::SHL &&
731 isOneConstant(V: U->getOperand(Num: 1).getOperand(i: 0)))
732 return false;
733 }
734 if (U->getOpcode() == ISD::AND) {
735 SDValue U0 = U->getOperand(Num: 0);
736 SDValue U1 = U->getOperand(Num: 1);
737 if (U0.getOpcode() == ISD::ROTL) {
738 auto *C = dyn_cast<ConstantSDNode>(Val: U0.getOperand(i: 0));
739 if (C && C->getSExtValue() == -2)
740 return false;
741 }
742
743 if (U1.getOpcode() == ISD::ROTL) {
744 auto *C = dyn_cast<ConstantSDNode>(Val: U1.getOperand(i: 0));
745 if (C && C->getSExtValue() == -2)
746 return false;
747 }
748 }
749
750 break;
751 }
752 case ISD::SHL:
753 case ISD::SRA:
754 case ISD::SRL:
755 // Don't fold a load into a shift by immediate. The BMI2 instructions
756 // support folding a load, but not an immediate. The legacy instructions
757 // support folding an immediate, but can't fold a load. Folding an
758 // immediate is preferable to folding a load.
759 if (isa<ConstantSDNode>(Val: U->getOperand(Num: 1)))
760 return false;
761
762 break;
763 }
764 }
765
766 // Prevent folding a load if this can implemented with an insert_subreg or
767 // a move that implicitly zeroes.
768 if (Root->getOpcode() == ISD::INSERT_SUBVECTOR &&
769 isNullConstant(V: Root->getOperand(Num: 2)) &&
770 (Root->getOperand(Num: 0).isUndef() ||
771 ISD::isBuildVectorAllZeros(N: Root->getOperand(Num: 0).getNode())))
772 return false;
773
774 return true;
775}
776
777// Indicates it is profitable to form an AVX512 masked operation. Returning
778// false will favor a masked register-register masked move or vblendm and the
779// operation will be selected separately.
780bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const {
781 assert(
782 (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) &&
783 "Unexpected opcode!");
784
785 // If the operation has additional users, the operation will be duplicated.
786 // Check the use count to prevent that.
787 // FIXME: Are there cheap opcodes we might want to duplicate?
788 return N->getOperand(Num: 1).hasOneUse();
789}
790
791/// Replace the original chain operand of the call with
792/// load's chain operand and move load below the call's chain operand.
793static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load,
794 SDValue Call, SDValue OrigChain) {
795 SmallVector<SDValue, 8> Ops;
796 SDValue Chain = OrigChain.getOperand(i: 0);
797 if (Chain.getNode() == Load.getNode())
798 Ops.push_back(Elt: Load.getOperand(i: 0));
799 else {
800 assert(Chain.getOpcode() == ISD::TokenFactor &&
801 "Unexpected chain operand");
802 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i)
803 if (Chain.getOperand(i).getNode() == Load.getNode())
804 Ops.push_back(Elt: Load.getOperand(i: 0));
805 else
806 Ops.push_back(Elt: Chain.getOperand(i));
807 SDValue NewChain =
808 CurDAG->getNode(ISD::TokenFactor, SDLoc(Load), MVT::Other, Ops);
809 Ops.clear();
810 Ops.push_back(Elt: NewChain);
811 }
812 Ops.append(in_start: OrigChain->op_begin() + 1, in_end: OrigChain->op_end());
813 CurDAG->UpdateNodeOperands(N: OrigChain.getNode(), Ops);
814 CurDAG->UpdateNodeOperands(N: Load.getNode(), Op1: Call.getOperand(i: 0),
815 Op2: Load.getOperand(i: 1), Op3: Load.getOperand(i: 2));
816
817 Ops.clear();
818 Ops.push_back(Elt: SDValue(Load.getNode(), 1));
819 Ops.append(in_start: Call->op_begin() + 1, in_end: Call->op_end());
820 CurDAG->UpdateNodeOperands(N: Call.getNode(), Ops);
821}
822
823/// Return true if call address is a load and it can be
824/// moved below CALLSEQ_START and the chains leading up to the call.
825/// Return the CALLSEQ_START by reference as a second output.
826/// In the case of a tail call, there isn't a callseq node between the call
827/// chain and the load.
828static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) {
829 // The transformation is somewhat dangerous if the call's chain was glued to
830 // the call. After MoveBelowOrigChain the load is moved between the call and
831 // the chain, this can create a cycle if the load is not folded. So it is
832 // *really* important that we are sure the load will be folded.
833 if (Callee.getNode() == Chain.getNode() || !Callee.hasOneUse())
834 return false;
835 auto *LD = dyn_cast<LoadSDNode>(Val: Callee.getNode());
836 if (!LD ||
837 !LD->isSimple() ||
838 LD->getAddressingMode() != ISD::UNINDEXED ||
839 LD->getExtensionType() != ISD::NON_EXTLOAD)
840 return false;
841
842 // Now let's find the callseq_start.
843 while (HasCallSeq && Chain.getOpcode() != ISD::CALLSEQ_START) {
844 if (!Chain.hasOneUse())
845 return false;
846 Chain = Chain.getOperand(i: 0);
847 }
848
849 if (!Chain.getNumOperands())
850 return false;
851 // Since we are not checking for AA here, conservatively abort if the chain
852 // writes to memory. It's not safe to move the callee (a load) across a store.
853 if (isa<MemSDNode>(Val: Chain.getNode()) &&
854 cast<MemSDNode>(Val: Chain.getNode())->writeMem())
855 return false;
856 if (Chain.getOperand(i: 0).getNode() == Callee.getNode())
857 return true;
858 if (Chain.getOperand(i: 0).getOpcode() == ISD::TokenFactor &&
859 Callee.getValue(R: 1).isOperandOf(N: Chain.getOperand(i: 0).getNode()) &&
860 Callee.getValue(R: 1).hasOneUse())
861 return true;
862 return false;
863}
864
865static bool isEndbrImm64(uint64_t Imm) {
866// There may be some other prefix bytes between 0xF3 and 0x0F1EFA.
867// i.g: 0xF3660F1EFA, 0xF3670F1EFA
868 if ((Imm & 0x00FFFFFF) != 0x0F1EFA)
869 return false;
870
871 uint8_t OptionalPrefixBytes [] = {0x26, 0x2e, 0x36, 0x3e, 0x64,
872 0x65, 0x66, 0x67, 0xf0, 0xf2};
873 int i = 24; // 24bit 0x0F1EFA has matched
874 while (i < 64) {
875 uint8_t Byte = (Imm >> i) & 0xFF;
876 if (Byte == 0xF3)
877 return true;
878 if (!llvm::is_contained(Range&: OptionalPrefixBytes, Element: Byte))
879 return false;
880 i += 8;
881 }
882
883 return false;
884}
885
886static bool needBWI(MVT VT) {
887 return (VT == MVT::v32i16 || VT == MVT::v32f16 || VT == MVT::v64i8);
888}
889
890void X86DAGToDAGISel::PreprocessISelDAG() {
891 bool MadeChange = false;
892 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
893 E = CurDAG->allnodes_end(); I != E; ) {
894 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
895
896 // This is for CET enhancement.
897 //
898 // ENDBR32 and ENDBR64 have specific opcodes:
899 // ENDBR32: F3 0F 1E FB
900 // ENDBR64: F3 0F 1E FA
901 // And we want that attackers won’t find unintended ENDBR32/64
902 // opcode matches in the binary
903 // Here’s an example:
904 // If the compiler had to generate asm for the following code:
905 // a = 0xF30F1EFA
906 // it could, for example, generate:
907 // mov 0xF30F1EFA, dword ptr[a]
908 // In such a case, the binary would include a gadget that starts
909 // with a fake ENDBR64 opcode. Therefore, we split such generation
910 // into multiple operations, let it not shows in the binary
911 if (N->getOpcode() == ISD::Constant) {
912 MVT VT = N->getSimpleValueType(ResNo: 0);
913 int64_t Imm = cast<ConstantSDNode>(Val: N)->getSExtValue();
914 int32_t EndbrImm = Subtarget->is64Bit() ? 0xF30F1EFA : 0xF30F1EFB;
915 if (Imm == EndbrImm || isEndbrImm64(Imm)) {
916 // Check that the cf-protection-branch is enabled.
917 Metadata *CFProtectionBranch =
918 MF->getMMI().getModule()->getModuleFlag(Key: "cf-protection-branch");
919 if (CFProtectionBranch || IndirectBranchTracking) {
920 SDLoc dl(N);
921 SDValue Complement = CurDAG->getConstant(Val: ~Imm, DL: dl, VT, isTarget: false, isOpaque: true);
922 Complement = CurDAG->getNOT(DL: dl, Val: Complement, VT);
923 --I;
924 CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Complement);
925 ++I;
926 MadeChange = true;
927 continue;
928 }
929 }
930 }
931
932 // If this is a target specific AND node with no flag usages, turn it back
933 // into ISD::AND to enable test instruction matching.
934 if (N->getOpcode() == X86ISD::AND && !N->hasAnyUseOfValue(Value: 1)) {
935 SDValue Res = CurDAG->getNode(Opcode: ISD::AND, DL: SDLoc(N), VT: N->getValueType(ResNo: 0),
936 N1: N->getOperand(Num: 0), N2: N->getOperand(Num: 1));
937 --I;
938 CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Res);
939 ++I;
940 MadeChange = true;
941 continue;
942 }
943
944 // Convert vector increment or decrement to sub/add with an all-ones
945 // constant:
946 // add X, <1, 1...> --> sub X, <-1, -1...>
947 // sub X, <1, 1...> --> add X, <-1, -1...>
948 // The all-ones vector constant can be materialized using a pcmpeq
949 // instruction that is commonly recognized as an idiom (has no register
950 // dependency), so that's better/smaller than loading a splat 1 constant.
951 //
952 // But don't do this if it would inhibit a potentially profitable load
953 // folding opportunity for the other operand. That only occurs with the
954 // intersection of:
955 // (1) The other operand (op0) is load foldable.
956 // (2) The op is an add (otherwise, we are *creating* an add and can still
957 // load fold the other op).
958 // (3) The target has AVX (otherwise, we have a destructive add and can't
959 // load fold the other op without killing the constant op).
960 // (4) The constant 1 vector has multiple uses (so it is profitable to load
961 // into a register anyway).
962 auto mayPreventLoadFold = [&]() {
963 return X86::mayFoldLoad(Op: N->getOperand(Num: 0), Subtarget: *Subtarget) &&
964 N->getOpcode() == ISD::ADD && Subtarget->hasAVX() &&
965 !N->getOperand(Num: 1).hasOneUse();
966 };
967 if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
968 N->getSimpleValueType(ResNo: 0).isVector() && !mayPreventLoadFold()) {
969 APInt SplatVal;
970 if (X86::isConstantSplat(Op: N->getOperand(Num: 1), SplatVal) &&
971 SplatVal.isOne()) {
972 SDLoc DL(N);
973
974 MVT VT = N->getSimpleValueType(ResNo: 0);
975 unsigned NumElts = VT.getSizeInBits() / 32;
976 SDValue AllOnes =
977 CurDAG->getAllOnesConstant(DL, VT: MVT::getVectorVT(MVT::i32, NumElts));
978 AllOnes = CurDAG->getBitcast(VT, V: AllOnes);
979
980 unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD;
981 SDValue Res =
982 CurDAG->getNode(Opcode: NewOpcode, DL, VT, N1: N->getOperand(Num: 0), N2: AllOnes);
983 --I;
984 CurDAG->ReplaceAllUsesWith(From: N, To: Res.getNode());
985 ++I;
986 MadeChange = true;
987 continue;
988 }
989 }
990
991 switch (N->getOpcode()) {
992 case X86ISD::VBROADCAST: {
993 MVT VT = N->getSimpleValueType(ResNo: 0);
994 // Emulate v32i16/v64i8 broadcast without BWI.
995 if (!Subtarget->hasBWI() && needBWI(VT)) {
996 MVT NarrowVT = VT.getHalfNumVectorElementsVT();
997 SDLoc dl(N);
998 SDValue NarrowBCast =
999 CurDAG->getNode(Opcode: X86ISD::VBROADCAST, DL: dl, VT: NarrowVT, Operand: N->getOperand(Num: 0));
1000 SDValue Res =
1001 CurDAG->getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT, N1: CurDAG->getUNDEF(VT),
1002 N2: NarrowBCast, N3: CurDAG->getIntPtrConstant(Val: 0, DL: dl));
1003 unsigned Index = NarrowVT.getVectorMinNumElements();
1004 Res = CurDAG->getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT, N1: Res, N2: NarrowBCast,
1005 N3: CurDAG->getIntPtrConstant(Val: Index, DL: dl));
1006
1007 --I;
1008 CurDAG->ReplaceAllUsesWith(From: N, To: Res.getNode());
1009 ++I;
1010 MadeChange = true;
1011 continue;
1012 }
1013
1014 break;
1015 }
1016 case X86ISD::VBROADCAST_LOAD: {
1017 MVT VT = N->getSimpleValueType(ResNo: 0);
1018 // Emulate v32i16/v64i8 broadcast without BWI.
1019 if (!Subtarget->hasBWI() && needBWI(VT)) {
1020 MVT NarrowVT = VT.getHalfNumVectorElementsVT();
1021 auto *MemNode = cast<MemSDNode>(Val: N);
1022 SDLoc dl(N);
1023 SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other);
1024 SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()};
1025 SDValue NarrowBCast = CurDAG->getMemIntrinsicNode(
1026 Opcode: X86ISD::VBROADCAST_LOAD, dl, VTList: VTs, Ops, MemVT: MemNode->getMemoryVT(),
1027 MMO: MemNode->getMemOperand());
1028 SDValue Res =
1029 CurDAG->getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT, N1: CurDAG->getUNDEF(VT),
1030 N2: NarrowBCast, N3: CurDAG->getIntPtrConstant(Val: 0, DL: dl));
1031 unsigned Index = NarrowVT.getVectorMinNumElements();
1032 Res = CurDAG->getNode(Opcode: ISD::INSERT_SUBVECTOR, DL: dl, VT, N1: Res, N2: NarrowBCast,
1033 N3: CurDAG->getIntPtrConstant(Val: Index, DL: dl));
1034
1035 --I;
1036 SDValue To[] = {Res, NarrowBCast.getValue(R: 1)};
1037 CurDAG->ReplaceAllUsesWith(From: N, To);
1038 ++I;
1039 MadeChange = true;
1040 continue;
1041 }
1042
1043 break;
1044 }
1045 case ISD::LOAD: {
1046 // If this is a XMM/YMM load of the same lower bits as another YMM/ZMM
1047 // load, then just extract the lower subvector and avoid the second load.
1048 auto *Ld = cast<LoadSDNode>(Val: N);
1049 MVT VT = N->getSimpleValueType(ResNo: 0);
1050 if (!ISD::isNormalLoad(N: Ld) || !Ld->isSimple() ||
1051 !(VT.is128BitVector() || VT.is256BitVector()))
1052 break;
1053
1054 MVT MaxVT = VT;
1055 SDNode *MaxLd = nullptr;
1056 SDValue Ptr = Ld->getBasePtr();
1057 SDValue Chain = Ld->getChain();
1058 for (SDNode *User : Ptr->uses()) {
1059 auto *UserLd = dyn_cast<LoadSDNode>(Val: User);
1060 MVT UserVT = User->getSimpleValueType(ResNo: 0);
1061 if (User != N && UserLd && ISD::isNormalLoad(N: User) &&
1062 UserLd->getBasePtr() == Ptr && UserLd->getChain() == Chain &&
1063 !User->hasAnyUseOfValue(Value: 1) &&
1064 (UserVT.is256BitVector() || UserVT.is512BitVector()) &&
1065 UserVT.getSizeInBits() > VT.getSizeInBits() &&
1066 (!MaxLd || UserVT.getSizeInBits() > MaxVT.getSizeInBits())) {
1067 MaxLd = User;
1068 MaxVT = UserVT;
1069 }
1070 }
1071 if (MaxLd) {
1072 SDLoc dl(N);
1073 unsigned NumSubElts = VT.getSizeInBits() / MaxVT.getScalarSizeInBits();
1074 MVT SubVT = MVT::getVectorVT(VT: MaxVT.getScalarType(), NumElements: NumSubElts);
1075 SDValue Extract = CurDAG->getNode(Opcode: ISD::EXTRACT_SUBVECTOR, DL: dl, VT: SubVT,
1076 N1: SDValue(MaxLd, 0),
1077 N2: CurDAG->getIntPtrConstant(Val: 0, DL: dl));
1078 SDValue Res = CurDAG->getBitcast(VT, V: Extract);
1079
1080 --I;
1081 SDValue To[] = {Res, SDValue(MaxLd, 1)};
1082 CurDAG->ReplaceAllUsesWith(From: N, To);
1083 ++I;
1084 MadeChange = true;
1085 continue;
1086 }
1087 break;
1088 }
1089 case ISD::VSELECT: {
1090 // Replace VSELECT with non-mask conditions with with BLENDV/VPTERNLOG.
1091 EVT EleVT = N->getOperand(Num: 0).getValueType().getVectorElementType();
1092 if (EleVT == MVT::i1)
1093 break;
1094
1095 assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!");
1096 assert(N->getValueType(0).getVectorElementType() != MVT::i16 &&
1097 "We can't replace VSELECT with BLENDV in vXi16!");
1098 SDValue R;
1099 if (Subtarget->hasVLX() && CurDAG->ComputeNumSignBits(Op: N->getOperand(Num: 0)) ==
1100 EleVT.getSizeInBits()) {
1101 R = CurDAG->getNode(X86ISD::VPTERNLOG, SDLoc(N), N->getValueType(ResNo: 0),
1102 N->getOperand(Num: 0), N->getOperand(Num: 1), N->getOperand(Num: 2),
1103 CurDAG->getTargetConstant(0xCA, SDLoc(N), MVT::i8));
1104 } else {
1105 R = CurDAG->getNode(Opcode: X86ISD::BLENDV, DL: SDLoc(N), VT: N->getValueType(ResNo: 0),
1106 N1: N->getOperand(Num: 0), N2: N->getOperand(Num: 1),
1107 N3: N->getOperand(Num: 2));
1108 }
1109 --I;
1110 CurDAG->ReplaceAllUsesWith(From: N, To: R.getNode());
1111 ++I;
1112 MadeChange = true;
1113 continue;
1114 }
1115 case ISD::FP_ROUND:
1116 case ISD::STRICT_FP_ROUND:
1117 case ISD::FP_TO_SINT:
1118 case ISD::FP_TO_UINT:
1119 case ISD::STRICT_FP_TO_SINT:
1120 case ISD::STRICT_FP_TO_UINT: {
1121 // Replace vector fp_to_s/uint with their X86 specific equivalent so we
1122 // don't need 2 sets of patterns.
1123 if (!N->getSimpleValueType(ResNo: 0).isVector())
1124 break;
1125
1126 unsigned NewOpc;
1127 switch (N->getOpcode()) {
1128 default: llvm_unreachable("Unexpected opcode!");
1129 case ISD::FP_ROUND: NewOpc = X86ISD::VFPROUND; break;
1130 case ISD::STRICT_FP_ROUND: NewOpc = X86ISD::STRICT_VFPROUND; break;
1131 case ISD::STRICT_FP_TO_SINT: NewOpc = X86ISD::STRICT_CVTTP2SI; break;
1132 case ISD::FP_TO_SINT: NewOpc = X86ISD::CVTTP2SI; break;
1133 case ISD::STRICT_FP_TO_UINT: NewOpc = X86ISD::STRICT_CVTTP2UI; break;
1134 case ISD::FP_TO_UINT: NewOpc = X86ISD::CVTTP2UI; break;
1135 }
1136 SDValue Res;
1137 if (N->isStrictFPOpcode())
1138 Res =
1139 CurDAG->getNode(NewOpc, SDLoc(N), {N->getValueType(0), MVT::Other},
1140 {N->getOperand(0), N->getOperand(1)});
1141 else
1142 Res =
1143 CurDAG->getNode(Opcode: NewOpc, DL: SDLoc(N), VT: N->getValueType(ResNo: 0),
1144 Operand: N->getOperand(Num: 0));
1145 --I;
1146 CurDAG->ReplaceAllUsesWith(From: N, To: Res.getNode());
1147 ++I;
1148 MadeChange = true;
1149 continue;
1150 }
1151 case ISD::SHL:
1152 case ISD::SRA:
1153 case ISD::SRL: {
1154 // Replace vector shifts with their X86 specific equivalent so we don't
1155 // need 2 sets of patterns.
1156 if (!N->getValueType(ResNo: 0).isVector())
1157 break;
1158
1159 unsigned NewOpc;
1160 switch (N->getOpcode()) {
1161 default: llvm_unreachable("Unexpected opcode!");
1162 case ISD::SHL: NewOpc = X86ISD::VSHLV; break;
1163 case ISD::SRA: NewOpc = X86ISD::VSRAV; break;
1164 case ISD::SRL: NewOpc = X86ISD::VSRLV; break;
1165 }
1166 SDValue Res = CurDAG->getNode(Opcode: NewOpc, DL: SDLoc(N), VT: N->getValueType(ResNo: 0),
1167 N1: N->getOperand(Num: 0), N2: N->getOperand(Num: 1));
1168 --I;
1169 CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Res);
1170 ++I;
1171 MadeChange = true;
1172 continue;
1173 }
1174 case ISD::ANY_EXTEND:
1175 case ISD::ANY_EXTEND_VECTOR_INREG: {
1176 // Replace vector any extend with the zero extend equivalents so we don't
1177 // need 2 sets of patterns. Ignore vXi1 extensions.
1178 if (!N->getValueType(ResNo: 0).isVector())
1179 break;
1180
1181 unsigned NewOpc;
1182 if (N->getOperand(Num: 0).getScalarValueSizeInBits() == 1) {
1183 assert(N->getOpcode() == ISD::ANY_EXTEND &&
1184 "Unexpected opcode for mask vector!");
1185 NewOpc = ISD::SIGN_EXTEND;
1186 } else {
1187 NewOpc = N->getOpcode() == ISD::ANY_EXTEND
1188 ? ISD::ZERO_EXTEND
1189 : ISD::ZERO_EXTEND_VECTOR_INREG;
1190 }
1191
1192 SDValue Res = CurDAG->getNode(Opcode: NewOpc, DL: SDLoc(N), VT: N->getValueType(ResNo: 0),
1193 Operand: N->getOperand(Num: 0));
1194 --I;
1195 CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Res);
1196 ++I;
1197 MadeChange = true;
1198 continue;
1199 }
1200 case ISD::FCEIL:
1201 case ISD::STRICT_FCEIL:
1202 case ISD::FFLOOR:
1203 case ISD::STRICT_FFLOOR:
1204 case ISD::FTRUNC:
1205 case ISD::STRICT_FTRUNC:
1206 case ISD::FROUNDEVEN:
1207 case ISD::STRICT_FROUNDEVEN:
1208 case ISD::FNEARBYINT:
1209 case ISD::STRICT_FNEARBYINT:
1210 case ISD::FRINT:
1211 case ISD::STRICT_FRINT: {
1212 // Replace fp rounding with their X86 specific equivalent so we don't
1213 // need 2 sets of patterns.
1214 unsigned Imm;
1215 switch (N->getOpcode()) {
1216 default: llvm_unreachable("Unexpected opcode!");
1217 case ISD::STRICT_FCEIL:
1218 case ISD::FCEIL: Imm = 0xA; break;
1219 case ISD::STRICT_FFLOOR:
1220 case ISD::FFLOOR: Imm = 0x9; break;
1221 case ISD::STRICT_FTRUNC:
1222 case ISD::FTRUNC: Imm = 0xB; break;
1223 case ISD::STRICT_FROUNDEVEN:
1224 case ISD::FROUNDEVEN: Imm = 0x8; break;
1225 case ISD::STRICT_FNEARBYINT:
1226 case ISD::FNEARBYINT: Imm = 0xC; break;
1227 case ISD::STRICT_FRINT:
1228 case ISD::FRINT: Imm = 0x4; break;
1229 }
1230 SDLoc dl(N);
1231 bool IsStrict = N->isStrictFPOpcode();
1232 SDValue Res;
1233 if (IsStrict)
1234 Res = CurDAG->getNode(X86ISD::STRICT_VRNDSCALE, dl,
1235 {N->getValueType(0), MVT::Other},
1236 {N->getOperand(0), N->getOperand(1),
1237 CurDAG->getTargetConstant(Imm, dl, MVT::i32)});
1238 else
1239 Res = CurDAG->getNode(X86ISD::VRNDSCALE, dl, N->getValueType(ResNo: 0),
1240 N->getOperand(Num: 0),
1241 CurDAG->getTargetConstant(Imm, dl, MVT::i32));
1242 --I;
1243 CurDAG->ReplaceAllUsesWith(From: N, To: Res.getNode());
1244 ++I;
1245 MadeChange = true;
1246 continue;
1247 }
1248 case X86ISD::FANDN:
1249 case X86ISD::FAND:
1250 case X86ISD::FOR:
1251 case X86ISD::FXOR: {
1252 // Widen scalar fp logic ops to vector to reduce isel patterns.
1253 // FIXME: Can we do this during lowering/combine.
1254 MVT VT = N->getSimpleValueType(ResNo: 0);
1255 if (VT.isVector() || VT == MVT::f128)
1256 break;
1257
1258 MVT VecVT = VT == MVT::f64 ? MVT::v2f64
1259 : VT == MVT::f32 ? MVT::v4f32
1260 : MVT::v8f16;
1261
1262 SDLoc dl(N);
1263 SDValue Op0 = CurDAG->getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL: dl, VT: VecVT,
1264 Operand: N->getOperand(Num: 0));
1265 SDValue Op1 = CurDAG->getNode(Opcode: ISD::SCALAR_TO_VECTOR, DL: dl, VT: VecVT,
1266 Operand: N->getOperand(Num: 1));
1267
1268 SDValue Res;
1269 if (Subtarget->hasSSE2()) {
1270 EVT IntVT = EVT(VecVT).changeVectorElementTypeToInteger();
1271 Op0 = CurDAG->getNode(Opcode: ISD::BITCAST, DL: dl, VT: IntVT, Operand: Op0);
1272 Op1 = CurDAG->getNode(Opcode: ISD::BITCAST, DL: dl, VT: IntVT, Operand: Op1);
1273 unsigned Opc;
1274 switch (N->getOpcode()) {
1275 default: llvm_unreachable("Unexpected opcode!");
1276 case X86ISD::FANDN: Opc = X86ISD::ANDNP; break;
1277 case X86ISD::FAND: Opc = ISD::AND; break;
1278 case X86ISD::FOR: Opc = ISD::OR; break;
1279 case X86ISD::FXOR: Opc = ISD::XOR; break;
1280 }
1281 Res = CurDAG->getNode(Opcode: Opc, DL: dl, VT: IntVT, N1: Op0, N2: Op1);
1282 Res = CurDAG->getNode(Opcode: ISD::BITCAST, DL: dl, VT: VecVT, Operand: Res);
1283 } else {
1284 Res = CurDAG->getNode(Opcode: N->getOpcode(), DL: dl, VT: VecVT, N1: Op0, N2: Op1);
1285 }
1286 Res = CurDAG->getNode(Opcode: ISD::EXTRACT_VECTOR_ELT, DL: dl, VT, N1: Res,
1287 N2: CurDAG->getIntPtrConstant(Val: 0, DL: dl));
1288 --I;
1289 CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Res);
1290 ++I;
1291 MadeChange = true;
1292 continue;
1293 }
1294 }
1295
1296 if (OptLevel != CodeGenOptLevel::None &&
1297 // Only do this when the target can fold the load into the call or
1298 // jmp.
1299 !Subtarget->useIndirectThunkCalls() &&
1300 ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) ||
1301 (N->getOpcode() == X86ISD::TC_RETURN &&
1302 (Subtarget->is64Bit() ||
1303 !getTargetMachine().isPositionIndependent())))) {
1304 /// Also try moving call address load from outside callseq_start to just
1305 /// before the call to allow it to be folded.
1306 ///
1307 /// [Load chain]
1308 /// ^
1309 /// |
1310 /// [Load]
1311 /// ^ ^
1312 /// | |
1313 /// / \--
1314 /// / |
1315 ///[CALLSEQ_START] |
1316 /// ^ |
1317 /// | |
1318 /// [LOAD/C2Reg] |
1319 /// | |
1320 /// \ /
1321 /// \ /
1322 /// [CALL]
1323 bool HasCallSeq = N->getOpcode() == X86ISD::CALL;
1324 SDValue Chain = N->getOperand(Num: 0);
1325 SDValue Load = N->getOperand(Num: 1);
1326 if (!isCalleeLoad(Callee: Load, Chain, HasCallSeq))
1327 continue;
1328 moveBelowOrigChain(CurDAG, Load, Call: SDValue(N, 0), OrigChain: Chain);
1329 ++NumLoadMoved;
1330 MadeChange = true;
1331 continue;
1332 }
1333
1334 // Lower fpround and fpextend nodes that target the FP stack to be store and
1335 // load to the stack. This is a gross hack. We would like to simply mark
1336 // these as being illegal, but when we do that, legalize produces these when
1337 // it expands calls, then expands these in the same legalize pass. We would
1338 // like dag combine to be able to hack on these between the call expansion
1339 // and the node legalization. As such this pass basically does "really
1340 // late" legalization of these inline with the X86 isel pass.
1341 // FIXME: This should only happen when not compiled with -O0.
1342 switch (N->getOpcode()) {
1343 default: continue;
1344 case ISD::FP_ROUND:
1345 case ISD::FP_EXTEND:
1346 {
1347 MVT SrcVT = N->getOperand(Num: 0).getSimpleValueType();
1348 MVT DstVT = N->getSimpleValueType(ResNo: 0);
1349
1350 // If any of the sources are vectors, no fp stack involved.
1351 if (SrcVT.isVector() || DstVT.isVector())
1352 continue;
1353
1354 // If the source and destination are SSE registers, then this is a legal
1355 // conversion that should not be lowered.
1356 const X86TargetLowering *X86Lowering =
1357 static_cast<const X86TargetLowering *>(TLI);
1358 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(VT: SrcVT);
1359 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(VT: DstVT);
1360 if (SrcIsSSE && DstIsSSE)
1361 continue;
1362
1363 if (!SrcIsSSE && !DstIsSSE) {
1364 // If this is an FPStack extension, it is a noop.
1365 if (N->getOpcode() == ISD::FP_EXTEND)
1366 continue;
1367 // If this is a value-preserving FPStack truncation, it is a noop.
1368 if (N->getConstantOperandVal(Num: 1))
1369 continue;
1370 }
1371
1372 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1373 // FPStack has extload and truncstore. SSE can fold direct loads into other
1374 // operations. Based on this, decide what we want to do.
1375 MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT;
1376 SDValue MemTmp = CurDAG->CreateStackTemporary(VT: MemVT);
1377 int SPFI = cast<FrameIndexSDNode>(Val&: MemTmp)->getIndex();
1378 MachinePointerInfo MPI =
1379 MachinePointerInfo::getFixedStack(MF&: CurDAG->getMachineFunction(), FI: SPFI);
1380 SDLoc dl(N);
1381
1382 // FIXME: optimize the case where the src/dest is a load or store?
1383
1384 SDValue Store = CurDAG->getTruncStore(
1385 Chain: CurDAG->getEntryNode(), dl, Val: N->getOperand(Num: 0), Ptr: MemTmp, PtrInfo: MPI, SVT: MemVT);
1386 SDValue Result = CurDAG->getExtLoad(ExtType: ISD::EXTLOAD, dl, VT: DstVT, Chain: Store,
1387 Ptr: MemTmp, PtrInfo: MPI, MemVT);
1388
1389 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1390 // extload we created. This will cause general havok on the dag because
1391 // anything below the conversion could be folded into other existing nodes.
1392 // To avoid invalidating 'I', back it up to the convert node.
1393 --I;
1394 CurDAG->ReplaceAllUsesOfValueWith(From: SDValue(N, 0), To: Result);
1395 break;
1396 }
1397
1398 //The sequence of events for lowering STRICT_FP versions of these nodes requires
1399 //dealing with the chain differently, as there is already a preexisting chain.
1400 case ISD::STRICT_FP_ROUND:
1401 case ISD::STRICT_FP_EXTEND:
1402 {
1403 MVT SrcVT = N->getOperand(Num: 1).getSimpleValueType();
1404 MVT DstVT = N->getSimpleValueType(ResNo: 0);
1405
1406 // If any of the sources are vectors, no fp stack involved.
1407 if (SrcVT.isVector() || DstVT.isVector())
1408 continue;
1409
1410 // If the source and destination are SSE registers, then this is a legal
1411 // conversion that should not be lowered.
1412 const X86TargetLowering *X86Lowering =
1413 static_cast<const X86TargetLowering *>(TLI);
1414 bool SrcIsSSE = X86Lowering->isScalarFPTypeInSSEReg(VT: SrcVT);
1415 bool DstIsSSE = X86Lowering->isScalarFPTypeInSSEReg(VT: DstVT);
1416 if (SrcIsSSE && DstIsSSE)
1417 continue;
1418
1419 if (!SrcIsSSE && !DstIsSSE) {
1420 // If this is an FPStack extension, it is a noop.
1421 if (N->getOpcode() == ISD::STRICT_FP_EXTEND)
1422 continue;
1423 // If this is a value-preserving FPStack truncation, it is a noop.
1424 if (N->getConstantOperandVal(Num: 2))
1425 continue;
1426 }
1427
1428 // Here we could have an FP stack truncation or an FPStack <-> SSE convert.
1429 // FPStack has extload and truncstore. SSE can fold direct loads into other
1430 // operations. Based on this, decide what we want to do.
1431 MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT;
1432 SDValue MemTmp = CurDAG->CreateStackTemporary(VT: MemVT);
1433 int SPFI = cast<FrameIndexSDNode>(Val&: MemTmp)->getIndex();
1434 MachinePointerInfo MPI =
1435 MachinePointerInfo::getFixedStack(MF&: CurDAG->getMachineFunction(), FI: SPFI);
1436 SDLoc dl(N);
1437
1438 // FIXME: optimize the case where the src/dest is a load or store?
1439
1440 //Since the operation is StrictFP, use the preexisting chain.
1441 SDValue Store, Result;
1442 if (!SrcIsSSE) {
1443 SDVTList VTs = CurDAG->getVTList(MVT::Other);
1444 SDValue Ops[] = {N->getOperand(Num: 0), N->getOperand(Num: 1), MemTmp};
1445 Store = CurDAG->getMemIntrinsicNode(Opcode: X86ISD::FST, dl, VTList: VTs, Ops, MemVT,
1446 PtrInfo: MPI, /*Align*/ Alignment: std::nullopt,
1447 Flags: MachineMemOperand::MOStore);
1448 if (N->getFlags().hasNoFPExcept()) {
1449 SDNodeFlags Flags = Store->getFlags();
1450 Flags.setNoFPExcept(true);
1451 Store->setFlags(Flags);
1452 }
1453 } else {
1454 assert(SrcVT == MemVT && "Unexpected VT!");
1455 Store = CurDAG->getStore(Chain: N->getOperand(Num: 0), dl, Val: N->getOperand(Num: 1), Ptr: MemTmp,
1456 PtrInfo: MPI);
1457 }
1458
1459 if (!DstIsSSE) {
1460 SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other);
1461 SDValue Ops[] = {Store, MemTmp};
1462 Result = CurDAG->getMemIntrinsicNode(
1463 Opcode: X86ISD::FLD, dl, VTList: VTs, Ops, MemVT, PtrInfo: MPI,
1464 /*Align*/ Alignment: std::nullopt, Flags: MachineMemOperand::MOLoad);
1465 if (N->getFlags().hasNoFPExcept()) {
1466 SDNodeFlags Flags = Result->getFlags();
1467 Flags.setNoFPExcept(true);
1468 Result->setFlags(Flags);
1469 }
1470 } else {
1471 assert(DstVT == MemVT && "Unexpected VT!");
1472 Result = CurDAG->getLoad(VT: DstVT, dl, Chain: Store, Ptr: MemTmp, PtrInfo: MPI);
1473 }
1474
1475 // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the
1476 // extload we created. This will cause general havok on the dag because
1477 // anything below the conversion could be folded into other existing nodes.
1478 // To avoid invalidating 'I', back it up to the convert node.
1479 --I;
1480 CurDAG->ReplaceAllUsesWith(From: N, To: Result.getNode());
1481 break;
1482 }
1483 }
1484
1485
1486 // Now that we did that, the node is dead. Increment the iterator to the
1487 // next node to process, then delete N.
1488 ++I;
1489 MadeChange = true;
1490 }
1491
1492 // Remove any dead nodes that may have been left behind.
1493 if (MadeChange)
1494 CurDAG->RemoveDeadNodes();
1495}
1496
1497// Look for a redundant movzx/movsx that can occur after an 8-bit divrem.
1498bool X86DAGToDAGISel::tryOptimizeRem8Extend(SDNode *N) {
1499 unsigned Opc = N->getMachineOpcode();
1500 if (Opc != X86::MOVZX32rr8 && Opc != X86::MOVSX32rr8 &&
1501 Opc != X86::MOVSX64rr8)
1502 return false;
1503
1504 SDValue N0 = N->getOperand(Num: 0);
1505
1506 // We need to be extracting the lower bit of an extend.
1507 if (!N0.isMachineOpcode() ||
1508 N0.getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG ||
1509 N0.getConstantOperandVal(i: 1) != X86::sub_8bit)
1510 return false;
1511
1512 // We're looking for either a movsx or movzx to match the original opcode.
1513 unsigned ExpectedOpc = Opc == X86::MOVZX32rr8 ? X86::MOVZX32rr8_NOREX
1514 : X86::MOVSX32rr8_NOREX;
1515 SDValue N00 = N0.getOperand(i: 0);
1516 if (!N00.isMachineOpcode() || N00.getMachineOpcode() != ExpectedOpc)
1517 return false;
1518
1519 if (Opc == X86::MOVSX64rr8) {
1520 // If we had a sign extend from 8 to 64 bits. We still need to go from 32
1521 // to 64.
1522 MachineSDNode *Extend = CurDAG->getMachineNode(X86::MOVSX64rr32, SDLoc(N),
1523 MVT::i64, N00);
1524 ReplaceUses(F: N, T: Extend);
1525 } else {
1526 // Ok we can drop this extend and just use the original extend.
1527 ReplaceUses(F: N, T: N00.getNode());
1528 }
1529
1530 return true;
1531}
1532
1533void X86DAGToDAGISel::PostprocessISelDAG() {
1534 // Skip peepholes at -O0.
1535 if (TM.getOptLevel() == CodeGenOptLevel::None)
1536 return;
1537
1538 SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
1539
1540 bool MadeChange = false;
1541 while (Position != CurDAG->allnodes_begin()) {
1542 SDNode *N = &*--Position;
1543 // Skip dead nodes and any non-machine opcodes.
1544 if (N->use_empty() || !N->isMachineOpcode())
1545 continue;
1546
1547 if (tryOptimizeRem8Extend(N)) {
1548 MadeChange = true;
1549 continue;
1550 }
1551
1552 // Look for a TESTrr+ANDrr pattern where both operands of the test are
1553 // the same. Rewrite to remove the AND.
1554 unsigned Opc = N->getMachineOpcode();
1555 if ((Opc == X86::TEST8rr || Opc == X86::TEST16rr ||
1556 Opc == X86::TEST32rr || Opc == X86::TEST64rr) &&
1557 N->getOperand(Num: 0) == N->getOperand(Num: 1) &&
1558 N->getOperand(Num: 0)->hasNUsesOfValue(NUses: 2, Value: N->getOperand(Num: 0).getResNo()) &&
1559 N->getOperand(Num: 0).isMachineOpcode()) {
1560 SDValue And = N->getOperand(Num: 0);
1561 unsigned N0Opc = And.getMachineOpcode();
1562 if ((N0Opc == X86::AND8rr || N0Opc == X86::AND16rr ||
1563 N0Opc == X86::AND32rr || N0Opc == X86::AND64rr) &&
1564 !And->hasAnyUseOfValue(1)) {
1565 MachineSDNode *Test = CurDAG->getMachineNode(Opc, SDLoc(N),
1566 MVT::i32,
1567 And.getOperand(0),
1568 And.getOperand(1));
1569 ReplaceUses(F: N, T: Test);
1570 MadeChange = true;
1571 continue;
1572 }
1573 if ((N0Opc == X86::AND8rm || N0Opc == X86::AND16rm ||
1574 N0Opc == X86::AND32rm || N0Opc == X86::AND64rm) &&
1575 !And->hasAnyUseOfValue(1)) {
1576 unsigned NewOpc;
1577 switch (N0Opc) {
1578 case X86::AND8rm: NewOpc = X86::TEST8mr; break;
1579 case X86::AND16rm: NewOpc = X86::TEST16mr; break;
1580 case X86::AND32rm: NewOpc = X86::TEST32mr; break;
1581 case X86::AND64rm: NewOpc = X86::TEST64mr; break;
1582 }
1583
1584 // Need to swap the memory and register operand.
1585 SDValue Ops[] = { And.getOperand(i: 1),
1586 And.getOperand(i: 2),
1587 And.getOperand(i: 3),
1588 And.getOperand(i: 4),
1589 And.getOperand(i: 5),
1590 And.getOperand(i: 0),
1591 And.getOperand(i: 6) /* Chain */ };
1592 MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1593 MVT::i32, MVT::Other, Ops);
1594 CurDAG->setNodeMemRefs(
1595 N: Test, NewMemRefs: cast<MachineSDNode>(Val: And.getNode())->memoperands());
1596 ReplaceUses(F: And.getValue(R: 2), T: SDValue(Test, 1));
1597 ReplaceUses(F: SDValue(N, 0), T: SDValue(Test, 0));
1598 MadeChange = true;
1599 continue;
1600 }
1601 }
1602
1603 // Look for a KAND+KORTEST and turn it into KTEST if only the zero flag is
1604 // used. We're doing this late so we can prefer to fold the AND into masked
1605 // comparisons. Doing that can be better for the live range of the mask
1606 // register.
1607 if ((Opc == X86::KORTESTBrr || Opc == X86::KORTESTWrr ||
1608 Opc == X86::KORTESTDrr || Opc == X86::KORTESTQrr) &&
1609 N->getOperand(0) == N->getOperand(1) &&
1610 N->isOnlyUserOf(N->getOperand(0).getNode()) &&
1611 N->getOperand(0).isMachineOpcode() &&
1612 onlyUsesZeroFlag(SDValue(N, 0))) {
1613 SDValue And = N->getOperand(Num: 0);
1614 unsigned N0Opc = And.getMachineOpcode();
1615 // KANDW is legal with AVX512F, but KTESTW requires AVX512DQ. The other
1616 // KAND instructions and KTEST use the same ISA feature.
1617 if (N0Opc == X86::KANDBrr ||
1618 (N0Opc == X86::KANDWrr && Subtarget->hasDQI()) ||
1619 N0Opc == X86::KANDDrr || N0Opc == X86::KANDQrr) {
1620 unsigned NewOpc;
1621 switch (Opc) {
1622 default: llvm_unreachable("Unexpected opcode!");
1623 case X86::KORTESTBrr: NewOpc = X86::KTESTBrr; break;
1624 case X86::KORTESTWrr: NewOpc = X86::KTESTWrr; break;
1625 case X86::KORTESTDrr: NewOpc = X86::KTESTDrr; break;
1626 case X86::KORTESTQrr: NewOpc = X86::KTESTQrr; break;
1627 }
1628 MachineSDNode *KTest = CurDAG->getMachineNode(NewOpc, SDLoc(N),
1629 MVT::i32,
1630 And.getOperand(0),
1631 And.getOperand(1));
1632 ReplaceUses(F: N, T: KTest);
1633 MadeChange = true;
1634 continue;
1635 }
1636 }
1637
1638 // Attempt to remove vectors moves that were inserted to zero upper bits.
1639 if (Opc != TargetOpcode::SUBREG_TO_REG)
1640 continue;
1641
1642 unsigned SubRegIdx = N->getConstantOperandVal(Num: 2);
1643 if (SubRegIdx != X86::sub_xmm && SubRegIdx != X86::sub_ymm)
1644 continue;
1645
1646 SDValue Move = N->getOperand(Num: 1);
1647 if (!Move.isMachineOpcode())
1648 continue;
1649
1650 // Make sure its one of the move opcodes we recognize.
1651 switch (Move.getMachineOpcode()) {
1652 default:
1653 continue;
1654 case X86::VMOVAPDrr: case X86::VMOVUPDrr:
1655 case X86::VMOVAPSrr: case X86::VMOVUPSrr:
1656 case X86::VMOVDQArr: case X86::VMOVDQUrr:
1657 case X86::VMOVAPDYrr: case X86::VMOVUPDYrr:
1658 case X86::VMOVAPSYrr: case X86::VMOVUPSYrr:
1659 case X86::VMOVDQAYrr: case X86::VMOVDQUYrr:
1660 case X86::VMOVAPDZ128rr: case X86::VMOVUPDZ128rr:
1661 case X86::VMOVAPSZ128rr: case X86::VMOVUPSZ128rr:
1662 case X86::VMOVDQA32Z128rr: case X86::VMOVDQU32Z128rr:
1663 case X86::VMOVDQA64Z128rr: case X86::VMOVDQU64Z128rr:
1664 case X86::VMOVAPDZ256rr: case X86::VMOVUPDZ256rr:
1665 case X86::VMOVAPSZ256rr: case X86::VMOVUPSZ256rr:
1666 case X86::VMOVDQA32Z256rr: case X86::VMOVDQU32Z256rr:
1667 case X86::VMOVDQA64Z256rr: case X86::VMOVDQU64Z256rr:
1668 break;
1669 }
1670
1671 SDValue In = Move.getOperand(i: 0);
1672 if (!In.isMachineOpcode() ||
1673 In.getMachineOpcode() <= TargetOpcode::GENERIC_OP_END)
1674 continue;
1675
1676 // Make sure the instruction has a VEX, XOP, or EVEX prefix. This covers
1677 // the SHA instructions which use a legacy encoding.
1678 uint64_t TSFlags = getInstrInfo()->get(In.getMachineOpcode()).TSFlags;
1679 if ((TSFlags & X86II::EncodingMask) != X86II::VEX &&
1680 (TSFlags & X86II::EncodingMask) != X86II::EVEX &&
1681 (TSFlags & X86II::EncodingMask) != X86II::XOP)
1682 continue;
1683
1684 // Producing instruction is another vector instruction. We can drop the
1685 // move.
1686 CurDAG->UpdateNodeOperands(N, Op1: N->getOperand(Num: 0), Op2: In, Op3: N->getOperand(Num: 2));
1687 MadeChange = true;
1688 }
1689
1690 if (MadeChange)
1691 CurDAG->RemoveDeadNodes();
1692}
1693
1694
1695/// Emit any code that needs to be executed only in the main function.
1696void X86DAGToDAGISel::emitSpecialCodeForMain() {
1697 if (Subtarget->isTargetCygMing()) {
1698 TargetLowering::ArgListTy Args;
1699 auto &DL = CurDAG->getDataLayout();
1700
1701 TargetLowering::CallLoweringInfo CLI(*CurDAG);
1702 CLI.setChain(CurDAG->getRoot())
1703 .setCallee(CC: CallingConv::C, ResultType: Type::getVoidTy(C&: *CurDAG->getContext()),
1704 Target: CurDAG->getExternalSymbol(Sym: "__main", VT: TLI->getPointerTy(DL)),
1705 ArgsList: std::move(Args));
1706 const TargetLowering &TLI = CurDAG->getTargetLoweringInfo();
1707 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
1708 CurDAG->setRoot(Result.second);
1709 }
1710}
1711
1712void X86DAGToDAGISel::emitFunctionEntryCode() {
1713 // If this is main, emit special code for main.
1714 const Function &F = MF->getFunction();
1715 if (F.hasExternalLinkage() && F.getName() == "main")
1716 emitSpecialCodeForMain();
1717}
1718
1719static bool isDispSafeForFrameIndex(int64_t Val) {
1720 // On 64-bit platforms, we can run into an issue where a frame index
1721 // includes a displacement that, when added to the explicit displacement,
1722 // will overflow the displacement field. Assuming that the frame index
1723 // displacement fits into a 31-bit integer (which is only slightly more
1724 // aggressive than the current fundamental assumption that it fits into
1725 // a 32-bit integer), a 31-bit disp should always be safe.
1726 return isInt<31>(x: Val);
1727}
1728
1729bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset,
1730 X86ISelAddressMode &AM) {
1731 // We may have already matched a displacement and the caller just added the
1732 // symbolic displacement. So we still need to do the checks even if Offset
1733 // is zero.
1734
1735 int64_t Val = AM.Disp + Offset;
1736
1737 // Cannot combine ExternalSymbol displacements with integer offsets.
1738 if (Val != 0 && (AM.ES || AM.MCSym))
1739 return true;
1740
1741 CodeModel::Model M = TM.getCodeModel();
1742 if (Subtarget->is64Bit()) {
1743 if (Val != 0 &&
1744 !X86::isOffsetSuitableForCodeModel(Offset: Val, M,
1745 hasSymbolicDisplacement: AM.hasSymbolicDisplacement()))
1746 return true;
1747 // In addition to the checks required for a register base, check that
1748 // we do not try to use an unsafe Disp with a frame index.
1749 if (AM.BaseType == X86ISelAddressMode::FrameIndexBase &&
1750 !isDispSafeForFrameIndex(Val))
1751 return true;
1752 // In ILP32 (x32) mode, pointers are 32 bits and need to be zero-extended to
1753 // 64 bits. Instructions with 32-bit register addresses perform this zero
1754 // extension for us and we can safely ignore the high bits of Offset.
1755 // Instructions with only a 32-bit immediate address do not, though: they
1756 // sign extend instead. This means only address the low 2GB of address space
1757 // is directly addressable, we need indirect addressing for the high 2GB of
1758 // address space.
1759 // TODO: Some of the earlier checks may be relaxed for ILP32 mode as the
1760 // implicit zero extension of instructions would cover up any problem.
1761 // However, we have asserts elsewhere that get triggered if we do, so keep
1762 // the checks for now.
1763 // TODO: We would actually be able to accept these, as well as the same
1764 // addresses in LP64 mode, by adding the EIZ pseudo-register as an operand
1765 // to get an address size override to be emitted. However, this
1766 // pseudo-register is not part of any register class and therefore causes
1767 // MIR verification to fail.
1768 if (Subtarget->isTarget64BitILP32() && !isUInt<31>(x: Val) &&
1769 !AM.hasBaseOrIndexReg())
1770 return true;
1771 }
1772 AM.Disp = Val;
1773 return false;
1774}
1775
1776bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM,
1777 bool AllowSegmentRegForX32) {
1778 SDValue Address = N->getOperand(Num: 1);
1779
1780 // load gs:0 -> GS segment register.
1781 // load fs:0 -> FS segment register.
1782 //
1783 // This optimization is generally valid because the GNU TLS model defines that
1784 // gs:0 (or fs:0 on X86-64) contains its own address. However, for X86-64 mode
1785 // with 32-bit registers, as we get in ILP32 mode, those registers are first
1786 // zero-extended to 64 bits and then added it to the base address, which gives
1787 // unwanted results when the register holds a negative value.
1788 // For more information see http://people.redhat.com/drepper/tls.pdf
1789 if (isNullConstant(V: Address) && AM.Segment.getNode() == nullptr &&
1790 !IndirectTlsSegRefs &&
1791 (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() ||
1792 Subtarget->isTargetFuchsia())) {
1793 if (Subtarget->isTarget64BitILP32() && !AllowSegmentRegForX32)
1794 return true;
1795 switch (N->getPointerInfo().getAddrSpace()) {
1796 case X86AS::GS:
1797 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
1798 return false;
1799 case X86AS::FS:
1800 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
1801 return false;
1802 // Address space X86AS::SS is not handled here, because it is not used to
1803 // address TLS areas.
1804 }
1805 }
1806
1807 return true;
1808}
1809
1810/// Try to match X86ISD::Wrapper and X86ISD::WrapperRIP nodes into an addressing
1811/// mode. These wrap things that will resolve down into a symbol reference.
1812/// If no match is possible, this returns true, otherwise it returns false.
1813bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) {
1814 // If the addressing mode already has a symbol as the displacement, we can
1815 // never match another symbol.
1816 if (AM.hasSymbolicDisplacement())
1817 return true;
1818
1819 bool IsRIPRelTLS = false;
1820 bool IsRIPRel = N.getOpcode() == X86ISD::WrapperRIP;
1821 if (IsRIPRel) {
1822 SDValue Val = N.getOperand(i: 0);
1823 if (Val.getOpcode() == ISD::TargetGlobalTLSAddress)
1824 IsRIPRelTLS = true;
1825 }
1826
1827 // We can't use an addressing mode in the 64-bit large code model.
1828 // Global TLS addressing is an exception. In the medium code model,
1829 // we use can use a mode when RIP wrappers are present.
1830 // That signifies access to globals that are known to be "near",
1831 // such as the GOT itself.
1832 CodeModel::Model M = TM.getCodeModel();
1833 if (Subtarget->is64Bit() && M == CodeModel::Large && !IsRIPRelTLS)
1834 return true;
1835
1836 // Base and index reg must be 0 in order to use %rip as base.
1837 if (IsRIPRel && AM.hasBaseOrIndexReg())
1838 return true;
1839
1840 // Make a local copy in case we can't do this fold.
1841 X86ISelAddressMode Backup = AM;
1842
1843 int64_t Offset = 0;
1844 SDValue N0 = N.getOperand(i: 0);
1845 if (auto *G = dyn_cast<GlobalAddressSDNode>(Val&: N0)) {
1846 AM.GV = G->getGlobal();
1847 AM.SymbolFlags = G->getTargetFlags();
1848 Offset = G->getOffset();
1849 } else if (auto *CP = dyn_cast<ConstantPoolSDNode>(Val&: N0)) {
1850 AM.CP = CP->getConstVal();
1851 AM.Alignment = CP->getAlign();
1852 AM.SymbolFlags = CP->getTargetFlags();
1853 Offset = CP->getOffset();
1854 } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Val&: N0)) {
1855 AM.ES = S->getSymbol();
1856 AM.SymbolFlags = S->getTargetFlags();
1857 } else if (auto *S = dyn_cast<MCSymbolSDNode>(Val&: N0)) {
1858 AM.MCSym = S->getMCSymbol();
1859 } else if (auto *J = dyn_cast<JumpTableSDNode>(Val&: N0)) {
1860 AM.JT = J->getIndex();
1861 AM.SymbolFlags = J->getTargetFlags();
1862 } else if (auto *BA = dyn_cast<BlockAddressSDNode>(Val&: N0)) {
1863 AM.BlockAddr = BA->getBlockAddress();
1864 AM.SymbolFlags = BA->getTargetFlags();
1865 Offset = BA->getOffset();
1866 } else
1867 llvm_unreachable("Unhandled symbol reference node.");
1868
1869 // Can't use an addressing mode with large globals.
1870 if (Subtarget->is64Bit() && !IsRIPRel && AM.GV &&
1871 TM.isLargeGlobalValue(GV: AM.GV)) {
1872 AM = Backup;
1873 return true;
1874 }
1875
1876 if (foldOffsetIntoAddress(Offset, AM)) {
1877 AM = Backup;
1878 return true;
1879 }
1880
1881 if (IsRIPRel)
1882 AM.setBaseReg(CurDAG->getRegister(X86::RIP, MVT::i64));
1883
1884 // Commit the changes now that we know this fold is safe.
1885 return false;
1886}
1887
1888/// Add the specified node to the specified addressing mode, returning true if
1889/// it cannot be done. This just pattern matches for the addressing mode.
1890bool X86DAGToDAGISel::matchAddress(SDValue N, X86ISelAddressMode &AM) {
1891 if (matchAddressRecursively(N, AM, Depth: 0))
1892 return true;
1893
1894 // Post-processing: Make a second attempt to fold a load, if we now know
1895 // that there will not be any other register. This is only performed for
1896 // 64-bit ILP32 mode since 32-bit mode and 64-bit LP64 mode will have folded
1897 // any foldable load the first time.
1898 if (Subtarget->isTarget64BitILP32() &&
1899 AM.BaseType == X86ISelAddressMode::RegBase &&
1900 AM.Base_Reg.getNode() != nullptr && AM.IndexReg.getNode() == nullptr) {
1901 SDValue Save_Base_Reg = AM.Base_Reg;
1902 if (auto *LoadN = dyn_cast<LoadSDNode>(Val&: Save_Base_Reg)) {
1903 AM.Base_Reg = SDValue();
1904 if (matchLoadInAddress(N: LoadN, AM, /*AllowSegmentRegForX32=*/true))
1905 AM.Base_Reg = Save_Base_Reg;
1906 }
1907 }
1908
1909 // Post-processing: Convert lea(,%reg,2) to lea(%reg,%reg), which has
1910 // a smaller encoding and avoids a scaled-index.
1911 if (AM.Scale == 2 &&
1912 AM.BaseType == X86ISelAddressMode::RegBase &&
1913 AM.Base_Reg.getNode() == nullptr) {
1914 AM.Base_Reg = AM.IndexReg;
1915 AM.Scale = 1;
1916 }
1917
1918 // Post-processing: Convert foo to foo(%rip), even in non-PIC mode,
1919 // because it has a smaller encoding.
1920 if (TM.getCodeModel() != CodeModel::Large &&
1921 (!AM.GV || !TM.isLargeGlobalValue(GV: AM.GV)) && Subtarget->is64Bit() &&
1922 AM.Scale == 1 && AM.BaseType == X86ISelAddressMode::RegBase &&
1923 AM.Base_Reg.getNode() == nullptr && AM.IndexReg.getNode() == nullptr &&
1924 AM.SymbolFlags == X86II::MO_NO_FLAG && AM.hasSymbolicDisplacement()) {
1925 AM.Base_Reg = CurDAG->getRegister(X86::RIP, MVT::i64);
1926 }
1927
1928 return false;
1929}
1930
1931bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM,
1932 unsigned Depth) {
1933 // Add an artificial use to this node so that we can keep track of
1934 // it if it gets CSE'd with a different node.
1935 HandleSDNode Handle(N);
1936
1937 X86ISelAddressMode Backup = AM;
1938 if (!matchAddressRecursively(N: N.getOperand(i: 0), AM, Depth: Depth+1) &&
1939 !matchAddressRecursively(N: Handle.getValue().getOperand(i: 1), AM, Depth: Depth+1))
1940 return false;
1941 AM = Backup;
1942
1943 // Try again after commutating the operands.
1944 if (!matchAddressRecursively(N: Handle.getValue().getOperand(i: 1), AM,
1945 Depth: Depth + 1) &&
1946 !matchAddressRecursively(N: Handle.getValue().getOperand(i: 0), AM, Depth: Depth + 1))
1947 return false;
1948 AM = Backup;
1949
1950 // If we couldn't fold both operands into the address at the same time,
1951 // see if we can just put each operand into a register and fold at least
1952 // the add.
1953 if (AM.BaseType == X86ISelAddressMode::RegBase &&
1954 !AM.Base_Reg.getNode() &&
1955 !AM.IndexReg.getNode()) {
1956 N = Handle.getValue();
1957 AM.Base_Reg = N.getOperand(i: 0);
1958 AM.IndexReg = N.getOperand(i: 1);
1959 AM.Scale = 1;
1960 return false;
1961 }
1962 N = Handle.getValue();
1963 return true;
1964}
1965
1966// Insert a node into the DAG at least before the Pos node's position. This
1967// will reposition the node as needed, and will assign it a node ID that is <=
1968// the Pos node's ID. Note that this does *not* preserve the uniqueness of node
1969// IDs! The selection DAG must no longer depend on their uniqueness when this
1970// is used.
1971static void insertDAGNode(SelectionDAG &DAG, SDValue Pos, SDValue N) {
1972 if (N->getNodeId() == -1 ||
1973 (SelectionDAGISel::getUninvalidatedNodeId(N: N.getNode()) >
1974 SelectionDAGISel::getUninvalidatedNodeId(N: Pos.getNode()))) {
1975 DAG.RepositionNode(Position: Pos->getIterator(), N: N.getNode());
1976 // Mark Node as invalid for pruning as after this it may be a successor to a
1977 // selected node but otherwise be in the same position of Pos.
1978 // Conservatively mark it with the same -abs(Id) to assure node id
1979 // invariant is preserved.
1980 N->setNodeId(Pos->getNodeId());
1981 SelectionDAGISel::InvalidateNodeId(N: N.getNode());
1982 }
1983}
1984
1985// Transform "(X >> (8-C1)) & (0xff << C1)" to "((X >> 8) & 0xff) << C1" if
1986// safe. This allows us to convert the shift and and into an h-register
1987// extract and a scaled index. Returns false if the simplification is
1988// performed.
1989static bool foldMaskAndShiftToExtract(SelectionDAG &DAG, SDValue N,
1990 uint64_t Mask,
1991 SDValue Shift, SDValue X,
1992 X86ISelAddressMode &AM) {
1993 if (Shift.getOpcode() != ISD::SRL ||
1994 !isa<ConstantSDNode>(Val: Shift.getOperand(i: 1)) ||
1995 !Shift.hasOneUse())
1996 return true;
1997
1998 int ScaleLog = 8 - Shift.getConstantOperandVal(i: 1);
1999 if (ScaleLog <= 0 || ScaleLog >= 4 ||
2000 Mask != (0xffu << ScaleLog))
2001 return true;
2002
2003 MVT XVT = X.getSimpleValueType();
2004 MVT VT = N.getSimpleValueType();
2005 SDLoc DL(N);
2006 SDValue Eight = DAG.getConstant(8, DL, MVT::i8);
2007 SDValue NewMask = DAG.getConstant(Val: 0xff, DL, VT: XVT);
2008 SDValue Srl = DAG.getNode(Opcode: ISD::SRL, DL, VT: XVT, N1: X, N2: Eight);
2009 SDValue And = DAG.getNode(Opcode: ISD::AND, DL, VT: XVT, N1: Srl, N2: NewMask);
2010 SDValue Ext = DAG.getZExtOrTrunc(Op: And, DL, VT);
2011 SDValue ShlCount = DAG.getConstant(ScaleLog, DL, MVT::i8);
2012 SDValue Shl = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: Ext, N2: ShlCount);
2013
2014 // Insert the new nodes into the topological ordering. We must do this in
2015 // a valid topological ordering as nothing is going to go back and re-sort
2016 // these nodes. We continually insert before 'N' in sequence as this is
2017 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2018 // hierarchy left to express.
2019 insertDAGNode(DAG, Pos: N, N: Eight);
2020 insertDAGNode(DAG, Pos: N, N: NewMask);
2021 insertDAGNode(DAG, Pos: N, N: Srl);
2022 insertDAGNode(DAG, Pos: N, N: And);
2023 insertDAGNode(DAG, Pos: N, N: Ext);
2024 insertDAGNode(DAG, Pos: N, N: ShlCount);
2025 insertDAGNode(DAG, Pos: N, N: Shl);
2026 DAG.ReplaceAllUsesWith(From: N, To: Shl);
2027 DAG.RemoveDeadNode(N: N.getNode());
2028 AM.IndexReg = Ext;
2029 AM.Scale = (1 << ScaleLog);
2030 return false;
2031}
2032
2033// Transforms "(X << C1) & C2" to "(X & (C2>>C1)) << C1" if safe and if this
2034// allows us to fold the shift into this addressing mode. Returns false if the
2035// transform succeeded.
2036static bool foldMaskedShiftToScaledMask(SelectionDAG &DAG, SDValue N,
2037 X86ISelAddressMode &AM) {
2038 SDValue Shift = N.getOperand(i: 0);
2039
2040 // Use a signed mask so that shifting right will insert sign bits. These
2041 // bits will be removed when we shift the result left so it doesn't matter
2042 // what we use. This might allow a smaller immediate encoding.
2043 int64_t Mask = cast<ConstantSDNode>(Val: N->getOperand(Num: 1))->getSExtValue();
2044
2045 // If we have an any_extend feeding the AND, look through it to see if there
2046 // is a shift behind it. But only if the AND doesn't use the extended bits.
2047 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
2048 bool FoundAnyExtend = false;
2049 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
2050 Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
2051 isUInt<32>(Mask)) {
2052 FoundAnyExtend = true;
2053 Shift = Shift.getOperand(i: 0);
2054 }
2055
2056 if (Shift.getOpcode() != ISD::SHL ||
2057 !isa<ConstantSDNode>(Val: Shift.getOperand(i: 1)))
2058 return true;
2059
2060 SDValue X = Shift.getOperand(i: 0);
2061
2062 // Not likely to be profitable if either the AND or SHIFT node has more
2063 // than one use (unless all uses are for address computation). Besides,
2064 // isel mechanism requires their node ids to be reused.
2065 if (!N.hasOneUse() || !Shift.hasOneUse())
2066 return true;
2067
2068 // Verify that the shift amount is something we can fold.
2069 unsigned ShiftAmt = Shift.getConstantOperandVal(i: 1);
2070 if (ShiftAmt != 1 && ShiftAmt != 2 && ShiftAmt != 3)
2071 return true;
2072
2073 MVT VT = N.getSimpleValueType();
2074 SDLoc DL(N);
2075 if (FoundAnyExtend) {
2076 SDValue NewX = DAG.getNode(Opcode: ISD::ANY_EXTEND, DL, VT, Operand: X);
2077 insertDAGNode(DAG, Pos: N, N: NewX);
2078 X = NewX;
2079 }
2080
2081 SDValue NewMask = DAG.getConstant(Val: Mask >> ShiftAmt, DL, VT);
2082 SDValue NewAnd = DAG.getNode(Opcode: ISD::AND, DL, VT, N1: X, N2: NewMask);
2083 SDValue NewShift = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: NewAnd, N2: Shift.getOperand(i: 1));
2084
2085 // Insert the new nodes into the topological ordering. We must do this in
2086 // a valid topological ordering as nothing is going to go back and re-sort
2087 // these nodes. We continually insert before 'N' in sequence as this is
2088 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2089 // hierarchy left to express.
2090 insertDAGNode(DAG, Pos: N, N: NewMask);
2091 insertDAGNode(DAG, Pos: N, N: NewAnd);
2092 insertDAGNode(DAG, Pos: N, N: NewShift);
2093 DAG.ReplaceAllUsesWith(From: N, To: NewShift);
2094 DAG.RemoveDeadNode(N: N.getNode());
2095
2096 AM.Scale = 1 << ShiftAmt;
2097 AM.IndexReg = NewAnd;
2098 return false;
2099}
2100
2101// Implement some heroics to detect shifts of masked values where the mask can
2102// be replaced by extending the shift and undoing that in the addressing mode
2103// scale. Patterns such as (shl (srl x, c1), c2) are canonicalized into (and
2104// (srl x, SHIFT), MASK) by DAGCombines that don't know the shl can be done in
2105// the addressing mode. This results in code such as:
2106//
2107// int f(short *y, int *lookup_table) {
2108// ...
2109// return *y + lookup_table[*y >> 11];
2110// }
2111//
2112// Turning into:
2113// movzwl (%rdi), %eax
2114// movl %eax, %ecx
2115// shrl $11, %ecx
2116// addl (%rsi,%rcx,4), %eax
2117//
2118// Instead of:
2119// movzwl (%rdi), %eax
2120// movl %eax, %ecx
2121// shrl $9, %ecx
2122// andl $124, %rcx
2123// addl (%rsi,%rcx), %eax
2124//
2125// Note that this function assumes the mask is provided as a mask *after* the
2126// value is shifted. The input chain may or may not match that, but computing
2127// such a mask is trivial.
2128static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N,
2129 uint64_t Mask,
2130 SDValue Shift, SDValue X,
2131 X86ISelAddressMode &AM) {
2132 if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse() ||
2133 !isa<ConstantSDNode>(Val: Shift.getOperand(i: 1)))
2134 return true;
2135
2136 // We need to ensure that mask is a continuous run of bits.
2137 unsigned MaskIdx, MaskLen;
2138 if (!isShiftedMask_64(Value: Mask, MaskIdx, MaskLen))
2139 return true;
2140 unsigned MaskLZ = 64 - (MaskIdx + MaskLen);
2141
2142 unsigned ShiftAmt = Shift.getConstantOperandVal(i: 1);
2143
2144 // The amount of shift we're trying to fit into the addressing mode is taken
2145 // from the shifted mask index (number of trailing zeros of the mask).
2146 unsigned AMShiftAmt = MaskIdx;
2147
2148 // There is nothing we can do here unless the mask is removing some bits.
2149 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2150 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2151
2152 // Scale the leading zero count down based on the actual size of the value.
2153 // Also scale it down based on the size of the shift.
2154 unsigned ScaleDown = (64 - X.getSimpleValueType().getSizeInBits()) + ShiftAmt;
2155 if (MaskLZ < ScaleDown)
2156 return true;
2157 MaskLZ -= ScaleDown;
2158
2159 // The final check is to ensure that any masked out high bits of X are
2160 // already known to be zero. Otherwise, the mask has a semantic impact
2161 // other than masking out a couple of low bits. Unfortunately, because of
2162 // the mask, zero extensions will be removed from operands in some cases.
2163 // This code works extra hard to look through extensions because we can
2164 // replace them with zero extensions cheaply if necessary.
2165 bool ReplacingAnyExtend = false;
2166 if (X.getOpcode() == ISD::ANY_EXTEND) {
2167 unsigned ExtendBits = X.getSimpleValueType().getSizeInBits() -
2168 X.getOperand(i: 0).getSimpleValueType().getSizeInBits();
2169 // Assume that we'll replace the any-extend with a zero-extend, and
2170 // narrow the search to the extended value.
2171 X = X.getOperand(i: 0);
2172 MaskLZ = ExtendBits > MaskLZ ? 0 : MaskLZ - ExtendBits;
2173 ReplacingAnyExtend = true;
2174 }
2175 APInt MaskedHighBits =
2176 APInt::getHighBitsSet(numBits: X.getSimpleValueType().getSizeInBits(), hiBitsSet: MaskLZ);
2177 if (!DAG.MaskedValueIsZero(Op: X, Mask: MaskedHighBits))
2178 return true;
2179
2180 // We've identified a pattern that can be transformed into a single shift
2181 // and an addressing mode. Make it so.
2182 MVT VT = N.getSimpleValueType();
2183 if (ReplacingAnyExtend) {
2184 assert(X.getValueType() != VT);
2185 // We looked through an ANY_EXTEND node, insert a ZERO_EXTEND.
2186 SDValue NewX = DAG.getNode(Opcode: ISD::ZERO_EXTEND, DL: SDLoc(X), VT, Operand: X);
2187 insertDAGNode(DAG, Pos: N, N: NewX);
2188 X = NewX;
2189 }
2190
2191 MVT XVT = X.getSimpleValueType();
2192 SDLoc DL(N);
2193 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2194 SDValue NewSRL = DAG.getNode(Opcode: ISD::SRL, DL, VT: XVT, N1: X, N2: NewSRLAmt);
2195 SDValue NewExt = DAG.getZExtOrTrunc(Op: NewSRL, DL, VT);
2196 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2197 SDValue NewSHL = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: NewExt, N2: NewSHLAmt);
2198
2199 // Insert the new nodes into the topological ordering. We must do this in
2200 // a valid topological ordering as nothing is going to go back and re-sort
2201 // these nodes. We continually insert before 'N' in sequence as this is
2202 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2203 // hierarchy left to express.
2204 insertDAGNode(DAG, Pos: N, N: NewSRLAmt);
2205 insertDAGNode(DAG, Pos: N, N: NewSRL);
2206 insertDAGNode(DAG, Pos: N, N: NewExt);
2207 insertDAGNode(DAG, Pos: N, N: NewSHLAmt);
2208 insertDAGNode(DAG, Pos: N, N: NewSHL);
2209 DAG.ReplaceAllUsesWith(From: N, To: NewSHL);
2210 DAG.RemoveDeadNode(N: N.getNode());
2211
2212 AM.Scale = 1 << AMShiftAmt;
2213 AM.IndexReg = NewExt;
2214 return false;
2215}
2216
2217// Transform "(X >> SHIFT) & (MASK << C1)" to
2218// "((X >> (SHIFT + C1)) & (MASK)) << C1". Everything before the SHL will be
2219// matched to a BEXTR later. Returns false if the simplification is performed.
2220static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N,
2221 uint64_t Mask,
2222 SDValue Shift, SDValue X,
2223 X86ISelAddressMode &AM,
2224 const X86Subtarget &Subtarget) {
2225 if (Shift.getOpcode() != ISD::SRL ||
2226 !isa<ConstantSDNode>(Val: Shift.getOperand(i: 1)) ||
2227 !Shift.hasOneUse() || !N.hasOneUse())
2228 return true;
2229
2230 // Only do this if BEXTR will be matched by matchBEXTRFromAndImm.
2231 if (!Subtarget.hasTBM() &&
2232 !(Subtarget.hasBMI() && Subtarget.hasFastBEXTR()))
2233 return true;
2234
2235 // We need to ensure that mask is a continuous run of bits.
2236 unsigned MaskIdx, MaskLen;
2237 if (!isShiftedMask_64(Value: Mask, MaskIdx, MaskLen))
2238 return true;
2239
2240 unsigned ShiftAmt = Shift.getConstantOperandVal(i: 1);
2241
2242 // The amount of shift we're trying to fit into the addressing mode is taken
2243 // from the shifted mask index (number of trailing zeros of the mask).
2244 unsigned AMShiftAmt = MaskIdx;
2245
2246 // There is nothing we can do here unless the mask is removing some bits.
2247 // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits.
2248 if (AMShiftAmt == 0 || AMShiftAmt > 3) return true;
2249
2250 MVT XVT = X.getSimpleValueType();
2251 MVT VT = N.getSimpleValueType();
2252 SDLoc DL(N);
2253 SDValue NewSRLAmt = DAG.getConstant(ShiftAmt + AMShiftAmt, DL, MVT::i8);
2254 SDValue NewSRL = DAG.getNode(Opcode: ISD::SRL, DL, VT: XVT, N1: X, N2: NewSRLAmt);
2255 SDValue NewMask = DAG.getConstant(Val: Mask >> AMShiftAmt, DL, VT: XVT);
2256 SDValue NewAnd = DAG.getNode(Opcode: ISD::AND, DL, VT: XVT, N1: NewSRL, N2: NewMask);
2257 SDValue NewExt = DAG.getZExtOrTrunc(Op: NewAnd, DL, VT);
2258 SDValue NewSHLAmt = DAG.getConstant(AMShiftAmt, DL, MVT::i8);
2259 SDValue NewSHL = DAG.getNode(Opcode: ISD::SHL, DL, VT, N1: NewExt, N2: NewSHLAmt);
2260
2261 // Insert the new nodes into the topological ordering. We must do this in
2262 // a valid topological ordering as nothing is going to go back and re-sort
2263 // these nodes. We continually insert before 'N' in sequence as this is
2264 // essentially a pre-flattened and pre-sorted sequence of nodes. There is no
2265 // hierarchy left to express.
2266 insertDAGNode(DAG, Pos: N, N: NewSRLAmt);
2267 insertDAGNode(DAG, Pos: N, N: NewSRL);
2268 insertDAGNode(DAG, Pos: N, N: NewMask);
2269 insertDAGNode(DAG, Pos: N, N: NewAnd);
2270 insertDAGNode(DAG, Pos: N, N: NewExt);
2271 insertDAGNode(DAG, Pos: N, N: NewSHLAmt);
2272 insertDAGNode(DAG, Pos: N, N: NewSHL);
2273 DAG.ReplaceAllUsesWith(From: N, To: NewSHL);
2274 DAG.RemoveDeadNode(N: N.getNode());
2275
2276 AM.Scale = 1 << AMShiftAmt;
2277 AM.IndexReg = NewExt;
2278 return false;
2279}
2280
2281// Attempt to peek further into a scaled index register, collecting additional
2282// extensions / offsets / etc. Returns /p N if we can't peek any further.
2283SDValue X86DAGToDAGISel::matchIndexRecursively(SDValue N,
2284 X86ISelAddressMode &AM,
2285 unsigned Depth) {
2286 assert(AM.IndexReg.getNode() == nullptr && "IndexReg already matched");
2287 assert((AM.Scale == 1 || AM.Scale == 2 || AM.Scale == 4 || AM.Scale == 8) &&
2288 "Illegal index scale");
2289
2290 // Limit recursion.
2291 if (Depth >= SelectionDAG::MaxRecursionDepth)
2292 return N;
2293
2294 EVT VT = N.getValueType();
2295 unsigned Opc = N.getOpcode();
2296
2297 // index: add(x,c) -> index: x, disp + c
2298 if (CurDAG->isBaseWithConstantOffset(Op: N)) {
2299 auto *AddVal = cast<ConstantSDNode>(Val: N.getOperand(i: 1));
2300 uint64_t Offset = (uint64_t)AddVal->getSExtValue() * AM.Scale;
2301 if (!foldOffsetIntoAddress(Offset, AM))
2302 return matchIndexRecursively(N: N.getOperand(i: 0), AM, Depth: Depth + 1);
2303 }
2304
2305 // index: add(x,x) -> index: x, scale * 2
2306 if (Opc == ISD::ADD && N.getOperand(i: 0) == N.getOperand(i: 1)) {
2307 if (AM.Scale <= 4) {
2308 AM.Scale *= 2;
2309 return matchIndexRecursively(N: N.getOperand(i: 0), AM, Depth: Depth + 1);
2310 }
2311 }
2312
2313 // index: shl(x,i) -> index: x, scale * (1 << i)
2314 if (Opc == X86ISD::VSHLI) {
2315 uint64_t ShiftAmt = N.getConstantOperandVal(i: 1);
2316 uint64_t ScaleAmt = 1ULL << ShiftAmt;
2317 if ((AM.Scale * ScaleAmt) <= 8) {
2318 AM.Scale *= ScaleAmt;
2319 return matchIndexRecursively(N: N.getOperand(i: 0), AM, Depth: Depth + 1);
2320 }
2321 }
2322
2323 // index: sext(add_nsw(x,c)) -> index: sext(x), disp + sext(c)
2324 // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2325 if (Opc == ISD::SIGN_EXTEND && !VT.isVector() && N.hasOneUse()) {
2326 SDValue Src = N.getOperand(i: 0);
2327 if (Src.getOpcode() == ISD::ADD && Src->getFlags().hasNoSignedWrap() &&
2328 Src.hasOneUse()) {
2329 if (CurDAG->isBaseWithConstantOffset(Op: Src)) {
2330 SDValue AddSrc = Src.getOperand(i: 0);
2331 auto *AddVal = cast<ConstantSDNode>(Val: Src.getOperand(i: 1));
2332 uint64_t Offset = (uint64_t)AddVal->getSExtValue();
2333 if (!foldOffsetIntoAddress(Offset: Offset * AM.Scale, AM)) {
2334 SDLoc DL(N);
2335 SDValue ExtSrc = CurDAG->getNode(Opcode: Opc, DL, VT, Operand: AddSrc);
2336 SDValue ExtVal = CurDAG->getConstant(Val: Offset, DL, VT);
2337 SDValue ExtAdd = CurDAG->getNode(Opcode: ISD::ADD, DL, VT, N1: ExtSrc, N2: ExtVal);
2338 insertDAGNode(DAG&: *CurDAG, Pos: N, N: ExtSrc);
2339 insertDAGNode(DAG&: *CurDAG, Pos: N, N: ExtVal);
2340 insertDAGNode(DAG&: *CurDAG, Pos: N, N: ExtAdd);
2341 CurDAG->ReplaceAllUsesWith(From: N, To: ExtAdd);
2342 CurDAG->RemoveDeadNode(N: N.getNode());
2343 return ExtSrc;
2344 }
2345 }
2346 }
2347 }
2348
2349 // index: zext(add_nuw(x,c)) -> index: zext(x), disp + zext(c)
2350 // index: zext(addlike(x,c)) -> index: zext(x), disp + zext(c)
2351 // TODO: call matchIndexRecursively(AddSrc) if we won't corrupt sext?
2352 if (Opc == ISD::ZERO_EXTEND && !VT.isVector() && N.hasOneUse()) {
2353 SDValue Src = N.getOperand(i: 0);
2354 unsigned SrcOpc = Src.getOpcode();
2355 if (((SrcOpc == ISD::ADD && Src->getFlags().hasNoUnsignedWrap()) ||
2356 CurDAG->isADDLike(Op: Src)) &&
2357 Src.hasOneUse()) {
2358 if (CurDAG->isBaseWithConstantOffset(Op: Src)) {
2359 SDValue AddSrc = Src.getOperand(i: 0);
2360 uint64_t Offset = Src.getConstantOperandVal(i: 1);
2361 if (!foldOffsetIntoAddress(Offset: Offset * AM.Scale, AM)) {
2362 SDLoc DL(N);
2363 SDValue Res;
2364 // If we're also scaling, see if we can use that as well.
2365 if (AddSrc.getOpcode() == ISD::SHL &&
2366 isa<ConstantSDNode>(Val: AddSrc.getOperand(i: 1))) {
2367 SDValue ShVal = AddSrc.getOperand(i: 0);
2368 uint64_t ShAmt = AddSrc.getConstantOperandVal(i: 1);
2369 APInt HiBits =
2370 APInt::getHighBitsSet(numBits: AddSrc.getScalarValueSizeInBits(), hiBitsSet: ShAmt);
2371 uint64_t ScaleAmt = 1ULL << ShAmt;
2372 if ((AM.Scale * ScaleAmt) <= 8 &&
2373 (AddSrc->getFlags().hasNoUnsignedWrap() ||
2374 CurDAG->MaskedValueIsZero(Op: ShVal, Mask: HiBits))) {
2375 AM.Scale *= ScaleAmt;
2376 SDValue ExtShVal = CurDAG->getNode(Opcode: Opc, DL, VT, Operand: ShVal);
2377 SDValue ExtShift = CurDAG->getNode(Opcode: ISD::SHL, DL, VT, N1: ExtShVal,
2378 N2: AddSrc.getOperand(i: 1));
2379 insertDAGNode(DAG&: *CurDAG, Pos: N, N: ExtShVal);
2380 insertDAGNode(DAG&: *CurDAG, Pos: N, N: ExtShift);
2381 AddSrc = ExtShift;
2382 Res = ExtShVal;
2383 }
2384 }
2385 SDValue ExtSrc = CurDAG->getNode(Opcode: Opc, DL, VT, Operand: AddSrc);
2386 SDValue ExtVal = CurDAG->getConstant(Val: Offset, DL, VT);
2387 SDValue ExtAdd = CurDAG->getNode(Opcode: SrcOpc, DL, VT, N1: ExtSrc, N2: ExtVal);
2388 insertDAGNode(DAG&: *CurDAG, Pos: N, N: ExtSrc);
2389 insertDAGNode(DAG&: *CurDAG, Pos: N, N: ExtVal);
2390 insertDAGNode(DAG&: *CurDAG, Pos: N, N: ExtAdd);
2391 CurDAG->ReplaceAllUsesWith(From: N, To: ExtAdd);
2392 CurDAG->RemoveDeadNode(N: N.getNode());
2393 return Res ? Res : ExtSrc;
2394 }
2395 }
2396 }
2397 }
2398
2399 // TODO: Handle extensions, shifted masks etc.
2400 return N;
2401}
2402
2403bool X86DAGToDAGISel::matchAddressRecursively(SDValue N, X86ISelAddressMode &AM,
2404 unsigned Depth) {
2405 SDLoc dl(N);
2406 LLVM_DEBUG({
2407 dbgs() << "MatchAddress: ";
2408 AM.dump(CurDAG);
2409 });
2410 // Limit recursion.
2411 if (Depth >= SelectionDAG::MaxRecursionDepth)
2412 return matchAddressBase(N, AM);
2413
2414 // If this is already a %rip relative address, we can only merge immediates
2415 // into it. Instead of handling this in every case, we handle it here.
2416 // RIP relative addressing: %rip + 32-bit displacement!
2417 if (AM.isRIPRelative()) {
2418 // FIXME: JumpTable and ExternalSymbol address currently don't like
2419 // displacements. It isn't very important, but this should be fixed for
2420 // consistency.
2421 if (!(AM.ES || AM.MCSym) && AM.JT != -1)
2422 return true;
2423
2424 if (auto *Cst = dyn_cast<ConstantSDNode>(Val&: N))
2425 if (!foldOffsetIntoAddress(Offset: Cst->getSExtValue(), AM))
2426 return false;
2427 return true;
2428 }
2429
2430 switch (N.getOpcode()) {
2431 default: break;
2432 case ISD::LOCAL_RECOVER: {
2433 if (!AM.hasSymbolicDisplacement() && AM.Disp == 0)
2434 if (const auto *ESNode = dyn_cast<MCSymbolSDNode>(Val: N.getOperand(i: 0))) {
2435 // Use the symbol and don't prefix it.
2436 AM.MCSym = ESNode->getMCSymbol();
2437 return false;
2438 }
2439 break;
2440 }
2441 case ISD::Constant: {
2442 uint64_t Val = cast<ConstantSDNode>(Val&: N)->getSExtValue();
2443 if (!foldOffsetIntoAddress(Offset: Val, AM))
2444 return false;
2445 break;
2446 }
2447
2448 case X86ISD::Wrapper:
2449 case X86ISD::WrapperRIP:
2450 if (!matchWrapper(N, AM))
2451 return false;
2452 break;
2453
2454 case ISD::LOAD:
2455 if (!matchLoadInAddress(N: cast<LoadSDNode>(Val&: N), AM))
2456 return false;
2457 break;
2458
2459 case ISD::FrameIndex:
2460 if (AM.BaseType == X86ISelAddressMode::RegBase &&
2461 AM.Base_Reg.getNode() == nullptr &&
2462 (!Subtarget->is64Bit() || isDispSafeForFrameIndex(Val: AM.Disp))) {
2463 AM.BaseType = X86ISelAddressMode::FrameIndexBase;
2464 AM.Base_FrameIndex = cast<FrameIndexSDNode>(Val&: N)->getIndex();
2465 return false;
2466 }
2467 break;
2468
2469 case ISD::SHL:
2470 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2471 break;
2472
2473 if (auto *CN = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1))) {
2474 unsigned Val = CN->getZExtValue();
2475 // Note that we handle x<<1 as (,x,2) rather than (x,x) here so
2476 // that the base operand remains free for further matching. If
2477 // the base doesn't end up getting used, a post-processing step
2478 // in MatchAddress turns (,x,2) into (x,x), which is cheaper.
2479 if (Val == 1 || Val == 2 || Val == 3) {
2480 SDValue ShVal = N.getOperand(i: 0);
2481 AM.Scale = 1 << Val;
2482 AM.IndexReg = matchIndexRecursively(N: ShVal, AM, Depth: Depth + 1);
2483 return false;
2484 }
2485 }
2486 break;
2487
2488 case ISD::SRL: {
2489 // Scale must not be used already.
2490 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2491
2492 // We only handle up to 64-bit values here as those are what matter for
2493 // addressing mode optimizations.
2494 assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2495 "Unexpected value size!");
2496
2497 SDValue And = N.getOperand(i: 0);
2498 if (And.getOpcode() != ISD::AND) break;
2499 SDValue X = And.getOperand(i: 0);
2500
2501 // The mask used for the transform is expected to be post-shift, but we
2502 // found the shift first so just apply the shift to the mask before passing
2503 // it down.
2504 if (!isa<ConstantSDNode>(Val: N.getOperand(i: 1)) ||
2505 !isa<ConstantSDNode>(Val: And.getOperand(i: 1)))
2506 break;
2507 uint64_t Mask = And.getConstantOperandVal(i: 1) >> N.getConstantOperandVal(i: 1);
2508
2509 // Try to fold the mask and shift into the scale, and return false if we
2510 // succeed.
2511 if (!foldMaskAndShiftToScale(DAG&: *CurDAG, N, Mask, Shift: N, X, AM))
2512 return false;
2513 break;
2514 }
2515
2516 case ISD::SMUL_LOHI:
2517 case ISD::UMUL_LOHI:
2518 // A mul_lohi where we need the low part can be folded as a plain multiply.
2519 if (N.getResNo() != 0) break;
2520 [[fallthrough]];
2521 case ISD::MUL:
2522 case X86ISD::MUL_IMM:
2523 // X*[3,5,9] -> X+X*[2,4,8]
2524 if (AM.BaseType == X86ISelAddressMode::RegBase &&
2525 AM.Base_Reg.getNode() == nullptr &&
2526 AM.IndexReg.getNode() == nullptr) {
2527 if (auto *CN = dyn_cast<ConstantSDNode>(Val: N.getOperand(i: 1)))
2528 if (CN->getZExtValue() == 3 || CN->getZExtValue() == 5 ||
2529 CN->getZExtValue() == 9) {
2530 AM.Scale = unsigned(CN->getZExtValue())-1;
2531
2532 SDValue MulVal = N.getOperand(i: 0);
2533 SDValue Reg;
2534
2535 // Okay, we know that we have a scale by now. However, if the scaled
2536 // value is an add of something and a constant, we can fold the
2537 // constant into the disp field here.
2538 if (MulVal.getNode()->getOpcode() == ISD::ADD && MulVal.hasOneUse() &&
2539 isa<ConstantSDNode>(Val: MulVal.getOperand(i: 1))) {
2540 Reg = MulVal.getOperand(i: 0);
2541 auto *AddVal = cast<ConstantSDNode>(Val: MulVal.getOperand(i: 1));
2542 uint64_t Disp = AddVal->getSExtValue() * CN->getZExtValue();
2543 if (foldOffsetIntoAddress(Offset: Disp, AM))
2544 Reg = N.getOperand(i: 0);
2545 } else {
2546 Reg = N.getOperand(i: 0);
2547 }
2548
2549 AM.IndexReg = AM.Base_Reg = Reg;
2550 return false;
2551 }
2552 }
2553 break;
2554
2555 case ISD::SUB: {
2556 // Given A-B, if A can be completely folded into the address and
2557 // the index field with the index field unused, use -B as the index.
2558 // This is a win if a has multiple parts that can be folded into
2559 // the address. Also, this saves a mov if the base register has
2560 // other uses, since it avoids a two-address sub instruction, however
2561 // it costs an additional mov if the index register has other uses.
2562
2563 // Add an artificial use to this node so that we can keep track of
2564 // it if it gets CSE'd with a different node.
2565 HandleSDNode Handle(N);
2566
2567 // Test if the LHS of the sub can be folded.
2568 X86ISelAddressMode Backup = AM;
2569 if (matchAddressRecursively(N: N.getOperand(i: 0), AM, Depth: Depth+1)) {
2570 N = Handle.getValue();
2571 AM = Backup;
2572 break;
2573 }
2574 N = Handle.getValue();
2575 // Test if the index field is free for use.
2576 if (AM.IndexReg.getNode() || AM.isRIPRelative()) {
2577 AM = Backup;
2578 break;
2579 }
2580
2581 int Cost = 0;
2582 SDValue RHS = N.getOperand(i: 1);
2583 // If the RHS involves a register with multiple uses, this
2584 // transformation incurs an extra mov, due to the neg instruction
2585 // clobbering its operand.
2586 if (!RHS.getNode()->hasOneUse() ||
2587 RHS.getNode()->getOpcode() == ISD::CopyFromReg ||
2588 RHS.getNode()->getOpcode() == ISD::TRUNCATE ||
2589 RHS.getNode()->getOpcode() == ISD::ANY_EXTEND ||
2590 (RHS.getNode()->getOpcode() == ISD::ZERO_EXTEND &&
2591 RHS.getOperand(0).getValueType() == MVT::i32))
2592 ++Cost;
2593 // If the base is a register with multiple uses, this
2594 // transformation may save a mov.
2595 if ((AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode() &&
2596 !AM.Base_Reg.getNode()->hasOneUse()) ||
2597 AM.BaseType == X86ISelAddressMode::FrameIndexBase)
2598 --Cost;
2599 // If the folded LHS was interesting, this transformation saves
2600 // address arithmetic.
2601 if ((AM.hasSymbolicDisplacement() && !Backup.hasSymbolicDisplacement()) +
2602 ((AM.Disp != 0) && (Backup.Disp == 0)) +
2603 (AM.Segment.getNode() && !Backup.Segment.getNode()) >= 2)
2604 --Cost;
2605 // If it doesn't look like it may be an overall win, don't do it.
2606 if (Cost >= 0) {
2607 AM = Backup;
2608 break;
2609 }
2610
2611 // Ok, the transformation is legal and appears profitable. Go for it.
2612 // Negation will be emitted later to avoid creating dangling nodes if this
2613 // was an unprofitable LEA.
2614 AM.IndexReg = RHS;
2615 AM.NegateIndex = true;
2616 AM.Scale = 1;
2617 return false;
2618 }
2619
2620 case ISD::OR:
2621 case ISD::XOR:
2622 // See if we can treat the OR/XOR node as an ADD node.
2623 if (!CurDAG->isADDLike(Op: N))
2624 break;
2625 [[fallthrough]];
2626 case ISD::ADD:
2627 if (!matchAdd(N, AM, Depth))
2628 return false;
2629 break;
2630
2631 case ISD::AND: {
2632 // Perform some heroic transforms on an and of a constant-count shift
2633 // with a constant to enable use of the scaled offset field.
2634
2635 // Scale must not be used already.
2636 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1) break;
2637
2638 // We only handle up to 64-bit values here as those are what matter for
2639 // addressing mode optimizations.
2640 assert(N.getSimpleValueType().getSizeInBits() <= 64 &&
2641 "Unexpected value size!");
2642
2643 if (!isa<ConstantSDNode>(Val: N.getOperand(i: 1)))
2644 break;
2645
2646 if (N.getOperand(i: 0).getOpcode() == ISD::SRL) {
2647 SDValue Shift = N.getOperand(i: 0);
2648 SDValue X = Shift.getOperand(i: 0);
2649
2650 uint64_t Mask = N.getConstantOperandVal(i: 1);
2651
2652 // Try to fold the mask and shift into an extract and scale.
2653 if (!foldMaskAndShiftToExtract(DAG&: *CurDAG, N, Mask, Shift, X, AM))
2654 return false;
2655
2656 // Try to fold the mask and shift directly into the scale.
2657 if (!foldMaskAndShiftToScale(DAG&: *CurDAG, N, Mask, Shift, X, AM))
2658 return false;
2659
2660 // Try to fold the mask and shift into BEXTR and scale.
2661 if (!foldMaskedShiftToBEXTR(DAG&: *CurDAG, N, Mask, Shift, X, AM, Subtarget: *Subtarget))
2662 return false;
2663 }
2664
2665 // Try to swap the mask and shift to place shifts which can be done as
2666 // a scale on the outside of the mask.
2667 if (!foldMaskedShiftToScaledMask(DAG&: *CurDAG, N, AM))
2668 return false;
2669
2670 break;
2671 }
2672 case ISD::ZERO_EXTEND: {
2673 // Try to widen a zexted shift left to the same size as its use, so we can
2674 // match the shift as a scale factor.
2675 if (AM.IndexReg.getNode() != nullptr || AM.Scale != 1)
2676 break;
2677
2678 SDValue Src = N.getOperand(i: 0);
2679
2680 // See if we can match a zext(addlike(x,c)).
2681 // TODO: Move more ZERO_EXTEND patterns into matchIndexRecursively.
2682 if (Src.getOpcode() == ISD::ADD || Src.getOpcode() == ISD::OR)
2683 if (SDValue Index = matchIndexRecursively(N, AM, Depth: Depth + 1))
2684 if (Index != N) {
2685 AM.IndexReg = Index;
2686 return false;
2687 }
2688
2689 // Peek through mask: zext(and(shl(x,c1),c2))
2690 APInt Mask = APInt::getAllOnes(numBits: Src.getScalarValueSizeInBits());
2691 if (Src.getOpcode() == ISD::AND && Src.hasOneUse())
2692 if (auto *MaskC = dyn_cast<ConstantSDNode>(Val: Src.getOperand(i: 1))) {
2693 Mask = MaskC->getAPIntValue();
2694 Src = Src.getOperand(i: 0);
2695 }
2696
2697 if (Src.getOpcode() == ISD::SHL && Src.hasOneUse()) {
2698 // Give up if the shift is not a valid scale factor [1,2,3].
2699 SDValue ShlSrc = Src.getOperand(i: 0);
2700 SDValue ShlAmt = Src.getOperand(i: 1);
2701 auto *ShAmtC = dyn_cast<ConstantSDNode>(Val&: ShlAmt);
2702 if (!ShAmtC)
2703 break;
2704 unsigned ShAmtV = ShAmtC->getZExtValue();
2705 if (ShAmtV > 3)
2706 break;
2707
2708 // The narrow shift must only shift out zero bits (it must be 'nuw').
2709 // That makes it safe to widen to the destination type.
2710 APInt HighZeros =
2711 APInt::getHighBitsSet(numBits: ShlSrc.getValueSizeInBits(), hiBitsSet: ShAmtV);
2712 if (!Src->getFlags().hasNoUnsignedWrap() &&
2713 !CurDAG->MaskedValueIsZero(Op: ShlSrc, Mask: HighZeros & Mask))
2714 break;
2715
2716 // zext (shl nuw i8 %x, C1) to i32
2717 // --> shl (zext i8 %x to i32), (zext C1)
2718 // zext (and (shl nuw i8 %x, C1), C2) to i32
2719 // --> shl (zext i8 (and %x, C2 >> C1) to i32), (zext C1)
2720 MVT SrcVT = ShlSrc.getSimpleValueType();
2721 MVT VT = N.getSimpleValueType();
2722 SDLoc DL(N);
2723
2724 SDValue Res = ShlSrc;
2725 if (!Mask.isAllOnes()) {
2726 Res = CurDAG->getConstant(Val: Mask.lshr(shiftAmt: ShAmtV), DL, VT: SrcVT);
2727 insertDAGNode(DAG&: *CurDAG, Pos: N, N: Res);
2728 Res = CurDAG->getNode(Opcode: ISD::AND, DL, VT: SrcVT, N1: ShlSrc, N2: Res);
2729 insertDAGNode(DAG&: *CurDAG, Pos: N, N: Res);
2730 }
2731 SDValue Zext = CurDAG->getNode(Opcode: ISD::ZERO_EXTEND, DL, VT, Operand: Res);
2732 insertDAGNode(DAG&: *CurDAG, Pos: N, N: Zext);
2733 SDValue NewShl = CurDAG->getNode(Opcode: ISD::SHL, DL, VT, N1: Zext, N2: ShlAmt);
2734 insertDAGNode(DAG&: *CurDAG, Pos: N, N: NewShl);
2735 CurDAG->ReplaceAllUsesWith(From: N, To: NewShl);
2736 CurDAG->RemoveDeadNode(N: N.getNode());
2737
2738 // Convert the shift to scale factor.
2739 AM.Scale = 1 << ShAmtV;
2740 // If matchIndexRecursively is not called here,
2741 // Zext may be replaced by other nodes but later used to call a builder
2742 // method
2743 AM.IndexReg = matchIndexRecursively(N: Zext, AM, Depth: Depth + 1);
2744 return false;
2745 }
2746
2747 if (Src.getOpcode() == ISD::SRL && !Mask.isAllOnes()) {
2748 // Try to fold the mask and shift into an extract and scale.
2749 if (!foldMaskAndShiftToExtract(DAG&: *CurDAG, N, Mask: Mask.getZExtValue(), Shift: Src,
2750 X: Src.getOperand(i: 0), AM))
2751 return false;
2752
2753 // Try to fold the mask and shift directly into the scale.
2754 if (!foldMaskAndShiftToScale(DAG&: *CurDAG, N, Mask: Mask.getZExtValue(), Shift: Src,
2755 X: Src.getOperand(i: 0), AM))
2756 return false;
2757
2758 // Try to fold the mask and shift into BEXTR and scale.
2759 if (!foldMaskedShiftToBEXTR(DAG&: *CurDAG, N, Mask: Mask.getZExtValue(), Shift: Src,
2760 X: Src.getOperand(i: 0), AM, Subtarget: *Subtarget))
2761 return false;
2762 }
2763
2764 break;
2765 }
2766 }
2767
2768 return matchAddressBase(N, AM);
2769}
2770
2771/// Helper for MatchAddress. Add the specified node to the
2772/// specified addressing mode without any further recursion.
2773bool X86DAGToDAGISel::matchAddressBase(SDValue N, X86ISelAddressMode &AM) {
2774 // Is the base register already occupied?
2775 if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base_Reg.getNode()) {
2776 // If so, check to see if the scale index register is set.
2777 if (!AM.IndexReg.getNode()) {
2778 AM.IndexReg = N;
2779 AM.Scale = 1;
2780 return false;
2781 }
2782
2783 // Otherwise, we cannot select it.
2784 return true;
2785 }
2786
2787 // Default, generate it as a register.
2788 AM.BaseType = X86ISelAddressMode::RegBase;
2789 AM.Base_Reg = N;
2790 return false;
2791}
2792
2793bool X86DAGToDAGISel::matchVectorAddressRecursively(SDValue N,
2794 X86ISelAddressMode &AM,
2795 unsigned Depth) {
2796 SDLoc dl(N);
2797 LLVM_DEBUG({
2798 dbgs() << "MatchVectorAddress: ";
2799 AM.dump(CurDAG);
2800 });
2801 // Limit recursion.
2802 if (Depth >= SelectionDAG::MaxRecursionDepth)
2803 return matchAddressBase(N, AM);
2804
2805 // TODO: Support other operations.
2806 switch (N.getOpcode()) {
2807 case ISD::Constant: {
2808 uint64_t Val = cast<ConstantSDNode>(Val&: N)->getSExtValue();
2809 if (!foldOffsetIntoAddress(Offset: Val, AM))
2810 return false;
2811 break;
2812 }
2813 case X86ISD::Wrapper:
2814 if (!matchWrapper(N, AM))
2815 return false;
2816 break;
2817 case ISD::ADD: {
2818 // Add an artificial use to this node so that we can keep track of
2819 // it if it gets CSE'd with a different node.
2820 HandleSDNode Handle(N);
2821
2822 X86ISelAddressMode Backup = AM;
2823 if (!matchVectorAddressRecursively(N: N.getOperand(i: 0), AM, Depth: Depth + 1) &&
2824 !matchVectorAddressRecursively(N: Handle.getValue().getOperand(i: 1), AM,
2825 Depth: Depth + 1))
2826 return false;
2827 AM = Backup;
2828
2829 // Try again after commuting the operands.
2830 if (!matchVectorAddressRecursively(N: Handle.getValue().getOperand(i: 1), AM,
2831 Depth: Depth + 1) &&
2832 !matchVectorAddressRecursively(N: Handle.getValue().getOperand(i: 0), AM,
2833 Depth: Depth + 1))
2834 return false;
2835 AM = Backup;
2836
2837 N = Handle.getValue();
2838 break;
2839 }
2840 }
2841
2842 return matchAddressBase(N, AM);
2843}
2844
2845/// Helper for selectVectorAddr. Handles things that can be folded into a
2846/// gather/scatter address. The index register and scale should have already
2847/// been handled.
2848bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) {
2849 return matchVectorAddressRecursively(N, AM, Depth: 0);
2850}
2851
2852bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr,
2853 SDValue IndexOp, SDValue ScaleOp,
2854 SDValue &Base, SDValue &Scale,
2855 SDValue &Index, SDValue &Disp,
2856 SDValue &Segment) {
2857 X86ISelAddressMode AM;
2858 AM.Scale = ScaleOp->getAsZExtVal();
2859
2860 // Attempt to match index patterns, as long as we're not relying on implicit
2861 // sign-extension, which is performed BEFORE scale.
2862 if (IndexOp.getScalarValueSizeInBits() == BasePtr.getScalarValueSizeInBits())
2863 AM.IndexReg = matchIndexRecursively(N: IndexOp, AM, Depth: 0);
2864 else
2865 AM.IndexReg = IndexOp;
2866
2867 unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace();
2868 if (AddrSpace == X86AS::GS)
2869 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2870 if (AddrSpace == X86AS::FS)
2871 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2872 if (AddrSpace == X86AS::SS)
2873 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2874
2875 SDLoc DL(BasePtr);
2876 MVT VT = BasePtr.getSimpleValueType();
2877
2878 // Try to match into the base and displacement fields.
2879 if (matchVectorAddress(N: BasePtr, AM))
2880 return false;
2881
2882 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2883 return true;
2884}
2885
2886/// Returns true if it is able to pattern match an addressing mode.
2887/// It returns the operands which make up the maximal addressing mode it can
2888/// match by reference.
2889///
2890/// Parent is the parent node of the addr operand that is being matched. It
2891/// is always a load, store, atomic node, or null. It is only null when
2892/// checking memory operands for inline asm nodes.
2893bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base,
2894 SDValue &Scale, SDValue &Index,
2895 SDValue &Disp, SDValue &Segment) {
2896 X86ISelAddressMode AM;
2897
2898 if (Parent &&
2899 // This list of opcodes are all the nodes that have an "addr:$ptr" operand
2900 // that are not a MemSDNode, and thus don't have proper addrspace info.
2901 Parent->getOpcode() != ISD::INTRINSIC_W_CHAIN && // unaligned loads, fixme
2902 Parent->getOpcode() != ISD::INTRINSIC_VOID && // nontemporal stores
2903 Parent->getOpcode() != X86ISD::TLSCALL && // Fixme
2904 Parent->getOpcode() != X86ISD::ENQCMD && // Fixme
2905 Parent->getOpcode() != X86ISD::ENQCMDS && // Fixme
2906 Parent->getOpcode() != X86ISD::EH_SJLJ_SETJMP && // setjmp
2907 Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp
2908 unsigned AddrSpace =
2909 cast<MemSDNode>(Val: Parent)->getPointerInfo().getAddrSpace();
2910 if (AddrSpace == X86AS::GS)
2911 AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16);
2912 if (AddrSpace == X86AS::FS)
2913 AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16);
2914 if (AddrSpace == X86AS::SS)
2915 AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16);
2916 }
2917
2918 // Save the DL and VT before calling matchAddress, it can invalidate N.
2919 SDLoc DL(N);
2920 MVT VT = N.getSimpleValueType();
2921
2922 if (matchAddress(N, AM))
2923 return false;
2924
2925 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
2926 return true;
2927}
2928
2929bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) {
2930 // Cannot use 32 bit constants to reference objects in kernel/large code
2931 // model.
2932 if (TM.getCodeModel() == CodeModel::Kernel ||
2933 TM.getCodeModel() == CodeModel::Large)
2934 return false;
2935
2936 // In static codegen with small code model, we can get the address of a label
2937 // into a register with 'movl'
2938 if (N->getOpcode() != X86ISD::Wrapper)
2939 return false;
2940
2941 N = N.getOperand(i: 0);
2942
2943 // At least GNU as does not accept 'movl' for TPOFF relocations.
2944 // FIXME: We could use 'movl' when we know we are targeting MC.
2945 if (N->getOpcode() == ISD::TargetGlobalTLSAddress)
2946 return false;
2947
2948 Imm = N;
2949 // Small/medium code model can reference non-TargetGlobalAddress objects with
2950 // 32 bit constants.
2951 if (N->getOpcode() != ISD::TargetGlobalAddress) {
2952 return TM.getCodeModel() == CodeModel::Small ||
2953 TM.getCodeModel() == CodeModel::Medium;
2954 }
2955
2956 const GlobalValue *GV = cast<GlobalAddressSDNode>(Val&: N)->getGlobal();
2957 if (std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange())
2958 return CR->getUnsignedMax().ult(RHS: 1ull << 32);
2959
2960 return !TM.isLargeGlobalValue(GV);
2961}
2962
2963bool X86DAGToDAGISel::selectLEA64_32Addr(SDValue N, SDValue &Base,
2964 SDValue &Scale, SDValue &Index,
2965 SDValue &Disp, SDValue &Segment) {
2966 // Save the debug loc before calling selectLEAAddr, in case it invalidates N.
2967 SDLoc DL(N);
2968
2969 if (!selectLEAAddr(N, Base, Scale, Index, Disp, Segment))
2970 return false;
2971
2972 auto *RN = dyn_cast<RegisterSDNode>(Val&: Base);
2973 if (RN && RN->getReg() == 0)
2974 Base = CurDAG->getRegister(0, MVT::i64);
2975 else if (Base.getValueType() == MVT::i32 && !isa<FrameIndexSDNode>(Base)) {
2976 // Base could already be %rip, particularly in the x32 ABI.
2977 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2978 MVT::i64), 0);
2979 Base = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2980 Base);
2981 }
2982
2983 RN = dyn_cast<RegisterSDNode>(Val&: Index);
2984 if (RN && RN->getReg() == 0)
2985 Index = CurDAG->getRegister(0, MVT::i64);
2986 else {
2987 assert(Index.getValueType() == MVT::i32 &&
2988 "Expect to be extending 32-bit registers for use in LEA");
2989 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, DL,
2990 MVT::i64), 0);
2991 Index = CurDAG->getTargetInsertSubreg(X86::sub_32bit, DL, MVT::i64, ImplDef,
2992 Index);
2993 }
2994
2995 return true;
2996}
2997
2998/// Calls SelectAddr and determines if the maximal addressing
2999/// mode it matches can be cost effectively emitted as an LEA instruction.
3000bool X86DAGToDAGISel::selectLEAAddr(SDValue N,
3001 SDValue &Base, SDValue &Scale,
3002 SDValue &Index, SDValue &Disp,
3003 SDValue &Segment) {
3004 X86ISelAddressMode AM;
3005
3006 // Save the DL and VT before calling matchAddress, it can invalidate N.
3007 SDLoc DL(N);
3008 MVT VT = N.getSimpleValueType();
3009
3010 // Set AM.Segment to prevent MatchAddress from using one. LEA doesn't support
3011 // segments.
3012 SDValue Copy = AM.Segment;
3013 SDValue T = CurDAG->getRegister(0, MVT::i32);
3014 AM.Segment = T;
3015 if (matchAddress(N, AM))
3016 return false;
3017 assert (T == AM.Segment);
3018 AM.Segment = Copy;
3019
3020 unsigned Complexity = 0;
3021 if (AM.BaseType == X86ISelAddressMode::RegBase && AM.Base_Reg.getNode())
3022 Complexity = 1;
3023 else if (AM.BaseType == X86ISelAddressMode::FrameIndexBase)
3024 Complexity = 4;
3025
3026 if (AM.IndexReg.getNode())
3027 Complexity++;
3028
3029 // Don't match just leal(,%reg,2). It's cheaper to do addl %reg, %reg, or with
3030 // a simple shift.
3031 if (AM.Scale > 1)
3032 Complexity++;
3033
3034 // FIXME: We are artificially lowering the criteria to turn ADD %reg, $GA
3035 // to a LEA. This is determined with some experimentation but is by no means
3036 // optimal (especially for code size consideration). LEA is nice because of
3037 // its three-address nature. Tweak the cost function again when we can run
3038 // convertToThreeAddress() at register allocation time.
3039 if (AM.hasSymbolicDisplacement()) {
3040 // For X86-64, always use LEA to materialize RIP-relative addresses.
3041 if (Subtarget->is64Bit())
3042 Complexity = 4;
3043 else
3044 Complexity += 2;
3045 }
3046
3047 // Heuristic: try harder to form an LEA from ADD if the operands set flags.
3048 // Unlike ADD, LEA does not affect flags, so we will be less likely to require
3049 // duplicating flag-producing instructions later in the pipeline.
3050 if (N.getOpcode() == ISD::ADD) {
3051 auto isMathWithFlags = [](SDValue V) {
3052 switch (V.getOpcode()) {
3053 case X86ISD::ADD:
3054 case X86ISD::SUB:
3055 case X86ISD::ADC:
3056 case X86ISD::SBB:
3057 case X86ISD::SMUL:
3058 case X86ISD::UMUL:
3059 /* TODO: These opcodes can be added safely, but we may want to justify
3060 their inclusion for different reasons (better for reg-alloc).
3061 case X86ISD::OR:
3062 case X86ISD::XOR:
3063 case X86ISD::AND:
3064 */
3065 // Value 1 is the flag output of the node - verify it's not dead.
3066 return !SDValue(V.getNode(), 1).use_empty();
3067 default:
3068 return false;
3069 }
3070 };
3071 // TODO: We might want to factor in whether there's a load folding
3072 // opportunity for the math op that disappears with LEA.
3073 if (isMathWithFlags(N.getOperand(i: 0)) || isMathWithFlags(N.getOperand(i: 1)))
3074 Complexity++;
3075 }
3076
3077 if (AM.Disp)
3078 Complexity++;
3079
3080 // If it isn't worth using an LEA, reject it.
3081 if (Complexity <= 2)
3082 return false;
3083
3084 getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment);
3085 return true;
3086}
3087
3088/// This is only run on TargetGlobalTLSAddress nodes.
3089bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base,
3090 SDValue &Scale, SDValue &Index,
3091 SDValue &Disp, SDValue &Segment) {
3092 assert(N.getOpcode() == ISD::TargetGlobalTLSAddress ||
3093 N.getOpcode() == ISD::TargetExternalSymbol);
3094
3095 X86ISelAddressMode AM;
3096 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Val&: N)) {
3097 AM.GV = GA->getGlobal();
3098 AM.Disp += GA->getOffset();
3099 AM.SymbolFlags = GA->getTargetFlags();
3100 } else {
3101 auto *SA = cast<ExternalSymbolSDNode>(Val&: N);
3102 AM.ES = SA->getSymbol();
3103 AM.SymbolFlags = SA->getTargetFlags();
3104 }
3105
3106 if (Subtarget->is32Bit()) {
3107 AM.Scale = 1;
3108 AM.IndexReg = CurDAG->getRegister(X86::EBX, MVT::i32);
3109 }
3110
3111 MVT VT = N.getSimpleValueType();
3112 getAddressOperands(AM, DL: SDLoc(N), VT, Base, Scale, Index, Disp, Segment);
3113 return true;
3114}
3115
3116bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) {
3117 // Keep track of the original value type and whether this value was
3118 // truncated. If we see a truncation from pointer type to VT that truncates
3119 // bits that are known to be zero, we can use a narrow reference.
3120 EVT VT = N.getValueType();
3121 bool WasTruncated = false;
3122 if (N.getOpcode() == ISD::TRUNCATE) {
3123 WasTruncated = true;
3124 N = N.getOperand(i: 0);
3125 }
3126
3127 if (N.getOpcode() != X86ISD::Wrapper)
3128 return false;
3129
3130 // We can only use non-GlobalValues as immediates if they were not truncated,
3131 // as we do not have any range information. If we have a GlobalValue and the
3132 // address was not truncated, we can select it as an operand directly.
3133 unsigned Opc = N.getOperand(i: 0)->getOpcode();
3134 if (Opc != ISD::TargetGlobalAddress || !WasTruncated) {
3135 Op = N.getOperand(i: 0);
3136 // We can only select the operand directly if we didn't have to look past a
3137 // truncate.
3138 return !WasTruncated;
3139 }
3140
3141 // Check that the global's range fits into VT.
3142 auto *GA = cast<GlobalAddressSDNode>(Val: N.getOperand(i: 0));
3143 std::optional<ConstantRange> CR = GA->getGlobal()->getAbsoluteSymbolRange();
3144 if (!CR || CR->getUnsignedMax().uge(RHS: 1ull << VT.getSizeInBits()))
3145 return false;
3146
3147 // Okay, we can use a narrow reference.
3148 Op = CurDAG->getTargetGlobalAddress(GV: GA->getGlobal(), DL: SDLoc(N), VT,
3149 offset: GA->getOffset(), TargetFlags: GA->getTargetFlags());
3150 return true;
3151}
3152
3153bool X86DAGToDAGISel::tryFoldLoad(SDNode *Root, SDNode *P, SDValue N,
3154 SDValue &Base, SDValue &Scale,
3155 SDValue &Index, SDValue &Disp,
3156 SDValue &Segment) {
3157 assert(Root && P && "Unknown root/parent nodes");
3158 if (!ISD::isNON_EXTLoad(N: N.getNode()) ||
3159 !IsProfitableToFold(N, U: P, Root) ||
3160 !IsLegalToFold(N, U: P, Root, OptLevel))
3161 return false;
3162
3163 return selectAddr(Parent: N.getNode(),
3164 N: N.getOperand(i: 1), Base, Scale, Index, Disp, Segment);
3165}
3166
3167bool X86DAGToDAGISel::tryFoldBroadcast(SDNode *Root, SDNode *P, SDValue N,
3168 SDValue &Base, SDValue &Scale,
3169 SDValue &Index, SDValue &Disp,
3170 SDValue &Segment) {
3171 assert(Root && P && "Unknown root/parent nodes");
3172 if (N->getOpcode() != X86ISD::VBROADCAST_LOAD ||
3173 !IsProfitableToFold(N, U: P, Root) ||
3174 !IsLegalToFold(N, U: P, Root, OptLevel))
3175 return false;
3176
3177 return selectAddr(Parent: N.getNode(),
3178 N: N.getOperand(i: 1), Base, Scale, Index, Disp, Segment);
3179}
3180
3181/// Return an SDNode that returns the value of the global base register.
3182/// Output instructions required to initialize the global base register,
3183/// if necessary.
3184SDNode *X86DAGToDAGISel::getGlobalBaseReg() {
3185 unsigned GlobalBaseReg = getInstrInfo()->getGlobalBaseReg(MF);
3186 auto &DL = MF->getDataLayout();
3187 return CurDAG->getRegister(Reg: GlobalBaseReg, VT: TLI->getPointerTy(DL)).getNode();
3188}
3189
3190bool X86DAGToDAGISel::isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const {
3191 if (N->getOpcode() == ISD::TRUNCATE)
3192 N = N->getOperand(Num: 0).getNode();
3193 if (N->getOpcode() != X86ISD::Wrapper)
3194 return false;
3195
3196 auto *GA = dyn_cast<GlobalAddressSDNode>(Val: N->getOperand(Num: 0));
3197 if (!GA)
3198 return false;
3199
3200 auto *GV = GA->getGlobal();
3201 std::optional<ConstantRange> CR = GV->getAbsoluteSymbolRange();
3202 if (CR)
3203 return CR->getSignedMin().sge(RHS: -1ull << Width) &&
3204 CR->getSignedMax().slt(RHS: 1ull << Width);
3205 // In the kernel code model, globals are in the negative 2GB of the address
3206 // space, so globals can be a sign extended 32-bit immediate.
3207 // In other code models, small globals are in the low 2GB of the address
3208 // space, so sign extending them is equivalent to zero extending them.
3209 return Width == 32 && !TM.isLargeGlobalValue(GV);
3210}
3211
3212X86::CondCode X86DAGToDAGISel::getCondFromNode(SDNode *N) const {
3213 assert(N->isMachineOpcode() && "Unexpected node");
3214 unsigned Opc = N->getMachineOpcode();
3215 const MCInstrDesc &MCID = getInstrInfo()->get(Opc);
3216 int CondNo = X86::getCondSrcNoFromDesc(MCID);
3217 if (CondNo < 0)
3218 return X86::COND_INVALID;
3219
3220 return static_cast<X86::CondCode>(N->getConstantOperandVal(Num: CondNo));
3221}
3222
3223/// Test whether the given X86ISD::CMP node has any users that use a flag
3224/// other than ZF.
3225bool X86DAGToDAGISel::onlyUsesZeroFlag(SDValue Flags) const {
3226 // Examine each user of the node.
3227 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3228 UI != UE; ++UI) {
3229 // Only check things that use the flags.
3230 if (UI.getUse().getResNo() != Flags.getResNo())
3231 continue;
3232 // Only examine CopyToReg uses that copy to EFLAGS.
3233 if (UI->getOpcode() != ISD::CopyToReg ||
3234 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3235 return false;
3236 // Examine each user of the CopyToReg use.
3237 for (SDNode::use_iterator FlagUI = UI->use_begin(),
3238 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3239 // Only examine the Flag result.
3240 if (FlagUI.getUse().getResNo() != 1) continue;
3241 // Anything unusual: assume conservatively.
3242 if (!FlagUI->isMachineOpcode()) return false;
3243 // Examine the condition code of the user.
3244 X86::CondCode CC = getCondFromNode(N: *FlagUI);
3245
3246 switch (CC) {
3247 // Comparisons which only use the zero flag.
3248 case X86::COND_E: case X86::COND_NE:
3249 continue;
3250 // Anything else: assume conservatively.
3251 default:
3252 return false;
3253 }
3254 }
3255 }
3256 return true;
3257}
3258
3259/// Test whether the given X86ISD::CMP node has any uses which require the SF
3260/// flag to be accurate.
3261bool X86DAGToDAGISel::hasNoSignFlagUses(SDValue Flags) const {
3262 // Examine each user of the node.
3263 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3264 UI != UE; ++UI) {
3265 // Only check things that use the flags.
3266 if (UI.getUse().getResNo() != Flags.getResNo())
3267 continue;
3268 // Only examine CopyToReg uses that copy to EFLAGS.
3269 if (UI->getOpcode() != ISD::CopyToReg ||
3270 cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3271 return false;
3272 // Examine each user of the CopyToReg use.
3273 for (SDNode::use_iterator FlagUI = UI->use_begin(),
3274 FlagUE = UI->use_end(); FlagUI != FlagUE; ++FlagUI) {
3275 // Only examine the Flag result.
3276 if (FlagUI.getUse().getResNo() != 1) continue;
3277 // Anything unusual: assume conservatively.
3278 if (!FlagUI->isMachineOpcode()) return false;
3279 // Examine the condition code of the user.
3280 X86::CondCode CC = getCondFromNode(N: *FlagUI);
3281
3282 switch (CC) {
3283 // Comparisons which don't examine the SF flag.
3284 case X86::COND_A: case X86::COND_AE:
3285 case X86::COND_B: case X86::COND_BE:
3286 case X86::COND_E: case X86::COND_NE:
3287 case X86::COND_O: case X86::COND_NO:
3288 case X86::COND_P: case X86::COND_NP:
3289 continue;
3290 // Anything else: assume conservatively.
3291 default:
3292 return false;
3293 }
3294 }
3295 }
3296 return true;
3297}
3298
3299static bool mayUseCarryFlag(X86::CondCode CC) {
3300 switch (CC) {
3301 // Comparisons which don't examine the CF flag.
3302 case X86::COND_O: case X86::COND_NO:
3303 case X86::COND_E: case X86::COND_NE:
3304 case X86::COND_S: case X86::COND_NS:
3305 case X86::COND_P: case X86::COND_NP:
3306 case X86::COND_L: case X86::COND_GE:
3307 case X86::COND_G: case X86::COND_LE:
3308 return false;
3309 // Anything else: assume conservatively.
3310 default:
3311 return true;
3312 }
3313}
3314
3315/// Test whether the given node which sets flags has any uses which require the
3316/// CF flag to be accurate.
3317 bool X86DAGToDAGISel::hasNoCarryFlagUses(SDValue Flags) const {
3318 // Examine each user of the node.
3319 for (SDNode::use_iterator UI = Flags->use_begin(), UE = Flags->use_end();
3320 UI != UE; ++UI) {
3321 // Only check things that use the flags.
3322 if (UI.getUse().getResNo() != Flags.getResNo())
3323 continue;
3324
3325 unsigned UIOpc = UI->getOpcode();
3326
3327 if (UIOpc == ISD::CopyToReg) {
3328 // Only examine CopyToReg uses that copy to EFLAGS.
3329 if (cast<RegisterSDNode>(UI->getOperand(1))->getReg() != X86::EFLAGS)
3330 return false;
3331 // Examine each user of the CopyToReg use.
3332 for (SDNode::use_iterator FlagUI = UI->use_begin(), FlagUE = UI->use_end();
3333 FlagUI != FlagUE; ++FlagUI) {
3334 // Only examine the Flag result.
3335 if (FlagUI.getUse().getResNo() != 1)
3336 continue;
3337 // Anything unusual: assume conservatively.
3338 if (!FlagUI->isMachineOpcode())
3339 return false;
3340 // Examine the condition code of the user.
3341 X86::CondCode CC = getCondFromNode(N: *FlagUI);
3342
3343 if (mayUseCarryFlag(CC))
3344 return false;
3345 }
3346
3347 // This CopyToReg is ok. Move on to the next user.
3348 continue;
3349 }
3350
3351 // This might be an unselected node. So look for the pre-isel opcodes that
3352 // use flags.
3353 unsigned CCOpNo;
3354 switch (UIOpc) {
3355 default:
3356 // Something unusual. Be conservative.
3357 return false;
3358 case X86ISD::SETCC: CCOpNo = 0; break;
3359 case X86ISD::SETCC_CARRY: CCOpNo = 0; break;
3360 case X86ISD::CMOV: CCOpNo = 2; break;
3361 case X86ISD::BRCOND: CCOpNo = 2; break;
3362 }
3363
3364 X86::CondCode CC = (X86::CondCode)UI->getConstantOperandVal(Num: CCOpNo);
3365 if (mayUseCarryFlag(CC))
3366 return false;
3367 }
3368 return true;
3369}
3370
3371/// Check whether or not the chain ending in StoreNode is suitable for doing
3372/// the {load; op; store} to modify transformation.
3373static bool isFusableLoadOpStorePattern(StoreSDNode *StoreNode,
3374 SDValue StoredVal, SelectionDAG *CurDAG,
3375 unsigned LoadOpNo,
3376 LoadSDNode *&LoadNode,
3377 SDValue &InputChain) {
3378 // Is the stored value result 0 of the operation?
3379 if (StoredVal.getResNo() != 0) return false;
3380
3381 // Are there other uses of the operation other than the store?
3382 if (!StoredVal.getNode()->hasNUsesOfValue(NUses: 1, Value: 0)) return false;
3383
3384 // Is the store non-extending and non-indexed?
3385 if (!ISD::isNormalStore(N: StoreNode) || StoreNode->isNonTemporal())
3386 return false;
3387
3388 SDValue Load = StoredVal->getOperand(Num: LoadOpNo);
3389 // Is the stored value a non-extending and non-indexed load?
3390 if (!ISD::isNormalLoad(N: Load.getNode())) return false;
3391
3392 // Return LoadNode by reference.
3393 LoadNode = cast<LoadSDNode>(Val&: Load);
3394
3395 // Is store the only read of the loaded value?
3396 if (!Load.hasOneUse())
3397 return false;
3398
3399 // Is the address of the store the same as the load?
3400 if (LoadNode->getBasePtr() != StoreNode->getBasePtr() ||
3401 LoadNode->getOffset() != StoreNode->getOffset())
3402 return false;
3403
3404 bool FoundLoad = false;
3405 SmallVector<SDValue, 4> ChainOps;
3406 SmallVector<const SDNode *, 4> LoopWorklist;
3407 SmallPtrSet<const SDNode *, 16> Visited;
3408 const unsigned int Max = 1024;
3409
3410 // Visualization of Load-Op-Store fusion:
3411 // -------------------------
3412 // Legend:
3413 // *-lines = Chain operand dependencies.
3414 // |-lines = Normal operand dependencies.
3415 // Dependencies flow down and right. n-suffix references multiple nodes.
3416 //
3417 // C Xn C
3418 // * * *
3419 // * * *
3420 // Xn A-LD Yn TF Yn
3421 // * * \ | * |
3422 // * * \ | * |
3423 // * * \ | => A--LD_OP_ST
3424 // * * \| \
3425 // TF OP \
3426 // * | \ Zn
3427 // * | \
3428 // A-ST Zn
3429 //
3430
3431 // This merge induced dependences from: #1: Xn -> LD, OP, Zn
3432 // #2: Yn -> LD
3433 // #3: ST -> Zn
3434
3435 // Ensure the transform is safe by checking for the dual
3436 // dependencies to make sure we do not induce a loop.
3437
3438 // As LD is a predecessor to both OP and ST we can do this by checking:
3439 // a). if LD is a predecessor to a member of Xn or Yn.
3440 // b). if a Zn is a predecessor to ST.
3441
3442 // However, (b) can only occur through being a chain predecessor to
3443 // ST, which is the same as Zn being a member or predecessor of Xn,
3444 // which is a subset of LD being a predecessor of Xn. So it's
3445 // subsumed by check (a).
3446
3447 SDValue Chain = StoreNode->getChain();
3448
3449 // Gather X elements in ChainOps.
3450 if (Chain == Load.getValue(R: 1)) {
3451 FoundLoad = true;
3452 ChainOps.push_back(Elt: Load.getOperand(i: 0));
3453 } else if (Chain.getOpcode() == ISD::TokenFactor) {
3454 for (unsigned i = 0, e = Chain.getNumOperands(); i != e; ++i) {
3455 SDValue Op = Chain.getOperand(i);
3456 if (Op == Load.getValue(R: 1)) {
3457 FoundLoad = true;
3458 // Drop Load, but keep its chain. No cycle check necessary.
3459 ChainOps.push_back(Elt: Load.getOperand(i: 0));
3460 continue;
3461 }
3462 LoopWorklist.push_back(Elt: Op.getNode());
3463 ChainOps.push_back(Elt: Op);
3464 }
3465 }
3466
3467 if (!FoundLoad)
3468 return false;
3469
3470 // Worklist is currently Xn. Add Yn to worklist.
3471 for (SDValue Op : StoredVal->ops())
3472 if (Op.getNode() != LoadNode)
3473 LoopWorklist.push_back(Elt: Op.getNode());
3474
3475 // Check (a) if Load is a predecessor to Xn + Yn
3476 if (SDNode::hasPredecessorHelper(N: Load.getNode(), Visited, Worklist&: LoopWorklist, MaxSteps: Max,
3477 TopologicalPrune: true))
3478 return false;
3479
3480 InputChain =
3481 CurDAG->getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ChainOps);
3482 return true;
3483}
3484
3485// Change a chain of {load; op; store} of the same value into a simple op
3486// through memory of that value, if the uses of the modified value and its
3487// address are suitable.
3488//
3489// The tablegen pattern memory operand pattern is currently not able to match
3490// the case where the EFLAGS on the original operation are used.
3491//
3492// To move this to tablegen, we'll need to improve tablegen to allow flags to
3493// be transferred from a node in the pattern to the result node, probably with
3494// a new keyword. For example, we have this
3495// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3496// [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3497// (implicit EFLAGS)]>;
3498// but maybe need something like this
3499// def DEC64m : RI<0xFF, MRM1m, (outs), (ins i64mem:$dst), "dec{q}\t$dst",
3500// [(store (add (loadi64 addr:$dst), -1), addr:$dst),
3501// (transferrable EFLAGS)]>;
3502//
3503// Until then, we manually fold these and instruction select the operation
3504// here.
3505bool X86DAGToDAGISel::foldLoadStoreIntoMemOperand(SDNode *Node) {
3506 auto *StoreNode = cast<StoreSDNode>(Val: Node);
3507 SDValue StoredVal = StoreNode->getOperand(Num: 1);
3508 unsigned Opc = StoredVal->getOpcode();
3509
3510 // Before we try to select anything, make sure this is memory operand size
3511 // and opcode we can handle. Note that this must match the code below that
3512 // actually lowers the opcodes.
3513 EVT MemVT = StoreNode->getMemoryVT();
3514 if (MemVT != MVT::i64 && MemVT != MVT::i32 && MemVT != MVT::i16 &&
3515 MemVT != MVT::i8)
3516 return false;
3517
3518 bool IsCommutable = false;
3519 bool IsNegate = false;
3520 switch (Opc) {
3521 default:
3522 return false;
3523 case X86ISD::SUB:
3524 IsNegate = isNullConstant(V: StoredVal.getOperand(i: 0));
3525 break;
3526 case X86ISD::SBB:
3527 break;
3528 case X86ISD::ADD:
3529 case X86ISD::ADC:
3530 case X86ISD::AND:
3531 case X86ISD::OR:
3532 case X86ISD::XOR:
3533 IsCommutable = true;
3534 break;
3535 }
3536
3537 unsigned LoadOpNo = IsNegate ? 1 : 0;
3538 LoadSDNode *LoadNode = nullptr;
3539 SDValue InputChain;
3540 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3541 LoadNode, InputChain)) {
3542 if (!IsCommutable)
3543 return false;
3544
3545 // This operation is commutable, try the other operand.
3546 LoadOpNo = 1;
3547 if (!isFusableLoadOpStorePattern(StoreNode, StoredVal, CurDAG, LoadOpNo,
3548 LoadNode, InputChain))
3549 return false;
3550 }
3551
3552 SDValue Base, Scale, Index, Disp, Segment;
3553 if (!selectAddr(Parent: LoadNode, N: LoadNode->getBasePtr(), Base, Scale, Index, Disp,
3554 Segment))
3555 return false;
3556
3557 auto SelectOpcode = [&](unsigned Opc64, unsigned Opc32, unsigned Opc16,
3558 unsigned Opc8) {
3559 switch (MemVT.getSimpleVT().SimpleTy) {
3560 case MVT::i64:
3561 return Opc64;
3562 case MVT::i32:
3563 return Opc32;
3564 case MVT::i16:
3565 return Opc16;
3566 case MVT::i8:
3567 return Opc8;
3568 default:
3569 llvm_unreachable("Invalid size!");
3570 }
3571 };
3572
3573 MachineSDNode *Result;
3574 switch (Opc) {
3575 case X86ISD::SUB:
3576 // Handle negate.
3577 if (IsNegate) {
3578 unsigned NewOpc = SelectOpcode(X86::NEG64m, X86::NEG32m, X86::NEG16m,
3579 X86::NEG8m);
3580 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3581 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3582 MVT::Other, Ops);
3583 break;
3584 }
3585 [[fallthrough]];
3586 case X86ISD::ADD:
3587 // Try to match inc/dec.
3588 if (!Subtarget->slowIncDec() || CurDAG->shouldOptForSize()) {
3589 bool IsOne = isOneConstant(V: StoredVal.getOperand(i: 1));
3590 bool IsNegOne = isAllOnesConstant(V: StoredVal.getOperand(i: 1));
3591 // ADD/SUB with 1/-1 and carry flag isn't used can use inc/dec.
3592 if ((IsOne || IsNegOne) && hasNoCarryFlagUses(Flags: StoredVal.getValue(R: 1))) {
3593 unsigned NewOpc =
3594 ((Opc == X86ISD::ADD) == IsOne)
3595 ? SelectOpcode(X86::INC64m, X86::INC32m, X86::INC16m, X86::INC8m)
3596 : SelectOpcode(X86::DEC64m, X86::DEC32m, X86::DEC16m, X86::DEC8m);
3597 const SDValue Ops[] = {Base, Scale, Index, Disp, Segment, InputChain};
3598 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32,
3599 MVT::Other, Ops);
3600 break;
3601 }
3602 }
3603 [[fallthrough]];
3604 case X86ISD::ADC:
3605 case X86ISD::SBB:
3606 case X86ISD::AND:
3607 case X86ISD::OR:
3608 case X86ISD::XOR: {
3609 auto SelectRegOpcode = [SelectOpcode](unsigned Opc) {
3610 switch (Opc) {
3611 case X86ISD::ADD:
3612 return SelectOpcode(X86::ADD64mr, X86::ADD32mr, X86::ADD16mr,
3613 X86::ADD8mr);
3614 case X86ISD::ADC:
3615 return SelectOpcode(X86::ADC64mr, X86::ADC32mr, X86::ADC16mr,
3616 X86::ADC8mr);
3617 case X86ISD::SUB:
3618 return SelectOpcode(X86::SUB64mr, X86::SUB32mr, X86::SUB16mr,
3619 X86::SUB8mr);
3620 case X86ISD::SBB:
3621 return SelectOpcode(X86::SBB64mr, X86::SBB32mr, X86::SBB16mr,
3622 X86::SBB8mr);
3623 case X86ISD::AND:
3624 return SelectOpcode(X86::AND64mr, X86::AND32mr, X86::AND16mr,
3625 X86::AND8mr);
3626 case X86ISD::OR:
3627 return SelectOpcode(X86::OR64mr, X86::OR32mr, X86::OR16mr, X86::OR8mr);
3628 case X86ISD::XOR:
3629 return SelectOpcode(X86::XOR64mr, X86::XOR32mr, X86::XOR16mr,
3630 X86::XOR8mr);
3631 default:
3632 llvm_unreachable("Invalid opcode!");
3633 }
3634 };
3635 auto SelectImmOpcode = [SelectOpcode](unsigned Opc) {
3636 switch (Opc) {
3637 case X86ISD::ADD:
3638 return SelectOpcode(X86::ADD64mi32, X86::ADD32mi, X86::ADD16mi,
3639 X86::ADD8mi);
3640 case X86ISD::ADC:
3641 return SelectOpcode(X86::ADC64mi32, X86::ADC32mi, X86::ADC16mi,
3642 X86::ADC8mi);
3643 case X86ISD::SUB:
3644 return SelectOpcode(X86::SUB64mi32, X86::SUB32mi, X86::SUB16mi,
3645 X86::SUB8mi);
3646 case X86ISD::SBB:
3647 return SelectOpcode(X86::SBB64mi32, X86::SBB32mi, X86::SBB16mi,
3648 X86::SBB8mi);
3649 case X86ISD::AND:
3650 return SelectOpcode(X86::AND64mi32, X86::AND32mi, X86::AND16mi,
3651 X86::AND8mi);
3652 case X86ISD::OR:
3653 return SelectOpcode(X86::OR64mi32, X86::OR32mi, X86::OR16mi,
3654 X86::OR8mi);
3655 case X86ISD::XOR:
3656 return SelectOpcode(X86::XOR64mi32, X86::XOR32mi, X86::XOR16mi,
3657 X86::XOR8mi);
3658 default:
3659 llvm_unreachable("Invalid opcode!");
3660 }
3661 };
3662
3663 unsigned NewOpc = SelectRegOpcode(Opc);
3664 SDValue Operand = StoredVal->getOperand(Num: 1-LoadOpNo);
3665
3666 // See if the operand is a constant that we can fold into an immediate
3667 // operand.
3668 if (auto *OperandC = dyn_cast<ConstantSDNode>(Val&: Operand)) {
3669 int64_t OperandV = OperandC->getSExtValue();
3670
3671 // Check if we can shrink the operand enough to fit in an immediate (or
3672 // fit into a smaller immediate) by negating it and switching the
3673 // operation.
3674 if ((Opc == X86ISD::ADD || Opc == X86ISD::SUB) &&
3675 ((MemVT != MVT::i8 && !isInt<8>(OperandV) && isInt<8>(-OperandV)) ||
3676 (MemVT == MVT::i64 && !isInt<32>(OperandV) &&
3677 isInt<32>(-OperandV))) &&
3678 hasNoCarryFlagUses(StoredVal.getValue(1))) {
3679 OperandV = -OperandV;
3680 Opc = Opc == X86ISD::ADD ? X86ISD::SUB : X86ISD::ADD;
3681 }
3682
3683 if (MemVT != MVT::i64 || isInt<32>(OperandV)) {
3684 Operand = CurDAG->getTargetConstant(Val: OperandV, DL: SDLoc(Node), VT: MemVT);
3685 NewOpc = SelectImmOpcode(Opc);
3686 }
3687 }
3688
3689 if (Opc == X86ISD::ADC || Opc == X86ISD::SBB) {
3690 SDValue CopyTo =
3691 CurDAG->getCopyToReg(InputChain, SDLoc(Node), X86::EFLAGS,
3692 StoredVal.getOperand(2), SDValue());
3693
3694 const SDValue Ops[] = {Base, Scale, Index, Disp,
3695 Segment, Operand, CopyTo, CopyTo.getValue(R: 1)};
3696 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3697 Ops);
3698 } else {
3699 const SDValue Ops[] = {Base, Scale, Index, Disp,
3700 Segment, Operand, InputChain};
3701 Result = CurDAG->getMachineNode(NewOpc, SDLoc(Node), MVT::i32, MVT::Other,
3702 Ops);
3703 }
3704 break;
3705 }
3706 default:
3707 llvm_unreachable("Invalid opcode!");
3708 }
3709
3710 MachineMemOperand *MemOps[] = {StoreNode->getMemOperand(),
3711 LoadNode->getMemOperand()};
3712 CurDAG->setNodeMemRefs(N: Result, NewMemRefs: MemOps);
3713
3714 // Update Load Chain uses as well.
3715 ReplaceUses(F: SDValue(LoadNode, 1), T: SDValue(Result, 1));
3716 ReplaceUses(F: SDValue(StoreNode, 0), T: SDValue(Result, 1));
3717 ReplaceUses(F: SDValue(StoredVal.getNode(), 1), T: SDValue(Result, 0));
3718 CurDAG->RemoveDeadNode(N: Node);
3719 return true;
3720}
3721
3722// See if this is an X & Mask that we can match to BEXTR/BZHI.
3723// Where Mask is one of the following patterns:
3724// a) x & (1 << nbits) - 1
3725// b) x & ~(-1 << nbits)
3726// c) x & (-1 >> (32 - y))
3727// d) x << (32 - y) >> (32 - y)
3728// e) (1 << nbits) - 1
3729bool X86DAGToDAGISel::matchBitExtract(SDNode *Node) {
3730 assert(
3731 (Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::AND ||
3732 Node->getOpcode() == ISD::SRL) &&
3733 "Should be either an and-mask, or right-shift after clearing high bits.");
3734
3735 // BEXTR is BMI instruction, BZHI is BMI2 instruction. We need at least one.
3736 if (!Subtarget->hasBMI() && !Subtarget->hasBMI2())
3737 return false;
3738
3739 MVT NVT = Node->getSimpleValueType(ResNo: 0);
3740
3741 // Only supported for 32 and 64 bits.
3742 if (NVT != MVT::i32 && NVT != MVT::i64)
3743 return false;
3744
3745 SDValue NBits;
3746 bool NegateNBits;
3747
3748 // If we have BMI2's BZHI, we are ok with muti-use patterns.
3749 // Else, if we only have BMI1's BEXTR, we require one-use.
3750 const bool AllowExtraUsesByDefault = Subtarget->hasBMI2();
3751 auto checkUses = [AllowExtraUsesByDefault](
3752 SDValue Op, unsigned NUses,
3753 std::optional<bool> AllowExtraUses) {
3754 return AllowExtraUses.value_or(AllowExtraUsesByDefault) ||
3755 Op.getNode()->hasNUsesOfValue(NUses, Op.getResNo());
3756 };
3757 auto checkOneUse = [checkUses](SDValue Op,
3758 std::optional<bool> AllowExtraUses =
3759 std::nullopt) {
3760 return checkUses(Op, 1, AllowExtraUses);
3761 };
3762 auto checkTwoUse = [checkUses](SDValue Op,
3763 std::optional<bool> AllowExtraUses =
3764 std::nullopt) {
3765 return checkUses(Op, 2, AllowExtraUses);
3766 };
3767
3768 auto peekThroughOneUseTruncation = [checkOneUse](SDValue V) {
3769 if (V->getOpcode() == ISD::TRUNCATE && checkOneUse(V)) {
3770 assert(V.getSimpleValueType() == MVT::i32 &&
3771 V.getOperand(0).getSimpleValueType() == MVT::i64 &&
3772 "Expected i64 -> i32 truncation");
3773 V = V.getOperand(i: 0);
3774 }
3775 return V;
3776 };
3777
3778 // a) x & ((1 << nbits) + (-1))
3779 auto matchPatternA = [checkOneUse, peekThroughOneUseTruncation, &NBits,
3780 &NegateNBits](SDValue Mask) -> bool {
3781 // Match `add`. Must only have one use!
3782 if (Mask->getOpcode() != ISD::ADD || !checkOneUse(Mask))
3783 return false;
3784 // We should be adding all-ones constant (i.e. subtracting one.)
3785 if (!isAllOnesConstant(V: Mask->getOperand(Num: 1)))
3786 return false;
3787 // Match `1 << nbits`. Might be truncated. Must only have one use!
3788 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(Num: 0));
3789 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3790 return false;
3791 if (!isOneConstant(V: M0->getOperand(Num: 0)))
3792 return false;
3793 NBits = M0->getOperand(Num: 1);
3794 NegateNBits = false;
3795 return true;
3796 };
3797
3798 auto isAllOnes = [this, peekThroughOneUseTruncation, NVT](SDValue V) {
3799 V = peekThroughOneUseTruncation(V);
3800 return CurDAG->MaskedValueIsAllOnes(
3801 Op: V, Mask: APInt::getLowBitsSet(numBits: V.getSimpleValueType().getSizeInBits(),
3802 loBitsSet: NVT.getSizeInBits()));
3803 };
3804
3805 // b) x & ~(-1 << nbits)
3806 auto matchPatternB = [checkOneUse, isAllOnes, peekThroughOneUseTruncation,
3807 &NBits, &NegateNBits](SDValue Mask) -> bool {
3808 // Match `~()`. Must only have one use!
3809 if (Mask.getOpcode() != ISD::XOR || !checkOneUse(Mask))
3810 return false;
3811 // The -1 only has to be all-ones for the final Node's NVT.
3812 if (!isAllOnes(Mask->getOperand(Num: 1)))
3813 return false;
3814 // Match `-1 << nbits`. Might be truncated. Must only have one use!
3815 SDValue M0 = peekThroughOneUseTruncation(Mask->getOperand(Num: 0));
3816 if (M0->getOpcode() != ISD::SHL || !checkOneUse(M0))
3817 return false;
3818 // The -1 only has to be all-ones for the final Node's NVT.
3819 if (!isAllOnes(M0->getOperand(Num: 0)))
3820 return false;
3821 NBits = M0->getOperand(Num: 1);
3822 NegateNBits = false;
3823 return true;
3824 };
3825
3826 // Try to match potentially-truncated shift amount as `(bitwidth - y)`,
3827 // or leave the shift amount as-is, but then we'll have to negate it.
3828 auto canonicalizeShiftAmt = [&NBits, &NegateNBits](SDValue ShiftAmt,
3829 unsigned Bitwidth) {
3830 NBits = ShiftAmt;
3831 NegateNBits = true;
3832 // Skip over a truncate of the shift amount, if any.
3833 if (NBits.getOpcode() == ISD::TRUNCATE)
3834 NBits = NBits.getOperand(i: 0);
3835 // Try to match the shift amount as (bitwidth - y). It should go away, too.
3836 // If it doesn't match, that's fine, we'll just negate it ourselves.
3837 if (NBits.getOpcode() != ISD::SUB)
3838 return;
3839 auto *V0 = dyn_cast<ConstantSDNode>(Val: NBits.getOperand(i: 0));
3840 if (!V0 || V0->getZExtValue() != Bitwidth)
3841 return;
3842 NBits = NBits.getOperand(i: 1);
3843 NegateNBits = false;
3844 };
3845
3846 // c) x & (-1 >> z) but then we'll have to subtract z from bitwidth
3847 // or
3848 // c) x & (-1 >> (32 - y))
3849 auto matchPatternC = [checkOneUse, peekThroughOneUseTruncation, &NegateNBits,
3850 canonicalizeShiftAmt](SDValue Mask) -> bool {
3851 // The mask itself may be truncated.
3852 Mask = peekThroughOneUseTruncation(Mask);
3853 unsigned Bitwidth = Mask.getSimpleValueType().getSizeInBits();
3854 // Match `l>>`. Must only have one use!
3855 if (Mask.getOpcode() != ISD::SRL || !checkOneUse(Mask))
3856 return false;
3857 // We should be shifting truly all-ones constant.
3858 if (!isAllOnesConstant(V: Mask.getOperand(i: 0)))
3859 return false;
3860 SDValue M1 = Mask.getOperand(i: 1);
3861 // The shift amount should not be used externally.
3862 if (!checkOneUse(M1))
3863 return false;
3864 canonicalizeShiftAmt(M1, Bitwidth);
3865 // Pattern c. is non-canonical, and is expanded into pattern d. iff there
3866 // is no extra use of the mask. Clearly, there was one since we are here.
3867 // But at the same time, if we need to negate the shift amount,
3868 // then we don't want the mask to stick around, else it's unprofitable.
3869 return !NegateNBits;
3870 };
3871
3872 SDValue X;
3873
3874 // d) x << z >> z but then we'll have to subtract z from bitwidth
3875 // or
3876 // d) x << (32 - y) >> (32 - y)
3877 auto matchPatternD = [checkOneUse, checkTwoUse, canonicalizeShiftAmt,
3878 AllowExtraUsesByDefault, &NegateNBits,
3879 &X](SDNode *Node) -> bool {
3880 if (Node->getOpcode() != ISD::SRL)
3881 return false;
3882 SDValue N0 = Node->getOperand(Num: 0);
3883 if (N0->getOpcode() != ISD::SHL)
3884 return false;
3885 unsigned Bitwidth = N0.getSimpleValueType().getSizeInBits();
3886 SDValue N1 = Node->getOperand(Num: 1);
3887 SDValue N01 = N0->getOperand(Num: 1);
3888 // Both of the shifts must be by the exact same value.
3889 if (N1 != N01)
3890 return false;
3891 canonicalizeShiftAmt(N1, Bitwidth);
3892 // There should not be any external uses of the inner shift / shift amount.
3893 // Note that while we are generally okay with external uses given BMI2,
3894 // iff we need to negate the shift amount, we are not okay with extra uses.
3895 const bool AllowExtraUses = AllowExtraUsesByDefault && !NegateNBits;
3896 if (!checkOneUse(N0, AllowExtraUses) || !checkTwoUse(N1, AllowExtraUses))
3897 return false;
3898 X = N0->getOperand(Num: 0);
3899 return true;
3900 };
3901
3902 auto matchLowBitMask = [matchPatternA, matchPatternB,
3903 matchPatternC](SDValue Mask) -> bool {
3904 return matchPatternA(Mask) || matchPatternB(Mask) || matchPatternC(Mask);
3905 };
3906
3907 if (Node->getOpcode() == ISD::AND) {
3908 X = Node->getOperand(Num: 0);
3909 SDValue Mask = Node->getOperand(Num: 1);
3910
3911 if (matchLowBitMask(Mask)) {
3912 // Great.
3913 } else {
3914 std::swap(a&: X, b&: Mask);
3915 if (!matchLowBitMask(Mask))
3916 return false;
3917 }
3918 } else if (matchLowBitMask(SDValue(Node, 0))) {
3919 X = CurDAG->getAllOnesConstant(DL: SDLoc(Node), VT: NVT);
3920 } else if (!matchPatternD(Node))
3921 return false;
3922
3923 // If we need to negate the shift amount, require BMI2 BZHI support.
3924 // It's just too unprofitable for BMI1 BEXTR.
3925 if (NegateNBits && !Subtarget->hasBMI2())
3926 return false;
3927
3928 SDLoc DL(Node);
3929
3930 // Truncate the shift amount.
3931 NBits = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NBits);
3932 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: NBits);
3933
3934 // Insert 8-bit NBits into lowest 8 bits of 32-bit register.
3935 // All the other bits are undefined, we do not care about them.
3936 SDValue ImplDef = SDValue(
3937 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::i32), 0);
3938 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: ImplDef);
3939
3940 SDValue SRIdxVal = CurDAG->getTargetConstant(X86::sub_8bit, DL, MVT::i32);
3941 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: SRIdxVal);
3942 NBits = SDValue(CurDAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
3943 MVT::i32, ImplDef, NBits, SRIdxVal),
3944 0);
3945 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: NBits);
3946
3947 // We might have matched the amount of high bits to be cleared,
3948 // but we want the amount of low bits to be kept, so negate it then.
3949 if (NegateNBits) {
3950 SDValue BitWidthC = CurDAG->getConstant(NVT.getSizeInBits(), DL, MVT::i32);
3951 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: BitWidthC);
3952
3953 NBits = CurDAG->getNode(ISD::SUB, DL, MVT::i32, BitWidthC, NBits);
3954 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: NBits);
3955 }
3956
3957 if (Subtarget->hasBMI2()) {
3958 // Great, just emit the BZHI..
3959 if (NVT != MVT::i32) {
3960 // But have to place the bit count into the wide-enough register first.
3961 NBits = CurDAG->getNode(Opcode: ISD::ANY_EXTEND, DL, VT: NVT, Operand: NBits);
3962 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: NBits);
3963 }
3964
3965 SDValue Extract = CurDAG->getNode(Opcode: X86ISD::BZHI, DL, VT: NVT, N1: X, N2: NBits);
3966 ReplaceNode(F: Node, T: Extract.getNode());
3967 SelectCode(Extract.getNode());
3968 return true;
3969 }
3970
3971 // Else, if we do *NOT* have BMI2, let's find out if the if the 'X' is
3972 // *logically* shifted (potentially with one-use trunc inbetween),
3973 // and the truncation was the only use of the shift,
3974 // and if so look past one-use truncation.
3975 {
3976 SDValue RealX = peekThroughOneUseTruncation(X);
3977 // FIXME: only if the shift is one-use?
3978 if (RealX != X && RealX.getOpcode() == ISD::SRL)
3979 X = RealX;
3980 }
3981
3982 MVT XVT = X.getSimpleValueType();
3983
3984 // Else, emitting BEXTR requires one more step.
3985 // The 'control' of BEXTR has the pattern of:
3986 // [15...8 bit][ 7...0 bit] location
3987 // [ bit count][ shift] name
3988 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
3989
3990 // Shift NBits left by 8 bits, thus producing 'control'.
3991 // This makes the low 8 bits to be zero.
3992 SDValue C8 = CurDAG->getConstant(8, DL, MVT::i8);
3993 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: C8);
3994 SDValue Control = CurDAG->getNode(ISD::SHL, DL, MVT::i32, NBits, C8);
3995 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: Control);
3996
3997 // If the 'X' is *logically* shifted, we can fold that shift into 'control'.
3998 // FIXME: only if the shift is one-use?
3999 if (X.getOpcode() == ISD::SRL) {
4000 SDValue ShiftAmt = X.getOperand(i: 1);
4001 X = X.getOperand(i: 0);
4002
4003 assert(ShiftAmt.getValueType() == MVT::i8 &&
4004 "Expected shift amount to be i8");
4005
4006 // Now, *zero*-extend the shift amount. The bits 8...15 *must* be zero!
4007 // We could zext to i16 in some form, but we intentionally don't do that.
4008 SDValue OrigShiftAmt = ShiftAmt;
4009 ShiftAmt = CurDAG->getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShiftAmt);
4010 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: ShiftAmt);
4011
4012 // And now 'or' these low 8 bits of shift amount into the 'control'.
4013 Control = CurDAG->getNode(ISD::OR, DL, MVT::i32, Control, ShiftAmt);
4014 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: Control);
4015 }
4016
4017 // But have to place the 'control' into the wide-enough register first.
4018 if (XVT != MVT::i32) {
4019 Control = CurDAG->getNode(Opcode: ISD::ANY_EXTEND, DL, VT: XVT, Operand: Control);
4020 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: Control);
4021 }
4022
4023 // And finally, form the BEXTR itself.
4024 SDValue Extract = CurDAG->getNode(Opcode: X86ISD::BEXTR, DL, VT: XVT, N1: X, N2: Control);
4025
4026 // The 'X' was originally truncated. Do that now.
4027 if (XVT != NVT) {
4028 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(Node, 0), N: Extract);
4029 Extract = CurDAG->getNode(Opcode: ISD::TRUNCATE, DL, VT: NVT, Operand: Extract);
4030 }
4031
4032 ReplaceNode(F: Node, T: Extract.getNode());
4033 SelectCode(Extract.getNode());
4034
4035 return true;
4036}
4037
4038// See if this is an (X >> C1) & C2 that we can match to BEXTR/BEXTRI.
4039MachineSDNode *X86DAGToDAGISel::matchBEXTRFromAndImm(SDNode *Node) {
4040 MVT NVT = Node->getSimpleValueType(ResNo: 0);
4041 SDLoc dl(Node);
4042
4043 SDValue N0 = Node->getOperand(Num: 0);
4044 SDValue N1 = Node->getOperand(Num: 1);
4045
4046 // If we have TBM we can use an immediate for the control. If we have BMI
4047 // we should only do this if the BEXTR instruction is implemented well.
4048 // Otherwise moving the control into a register makes this more costly.
4049 // TODO: Maybe load folding, greater than 32-bit masks, or a guarantee of LICM
4050 // hoisting the move immediate would make it worthwhile with a less optimal
4051 // BEXTR?
4052 bool PreferBEXTR =
4053 Subtarget->hasTBM() || (Subtarget->hasBMI() && Subtarget->hasFastBEXTR());
4054 if (!PreferBEXTR && !Subtarget->hasBMI2())
4055 return nullptr;
4056
4057 // Must have a shift right.
4058 if (N0->getOpcode() != ISD::SRL && N0->getOpcode() != ISD::SRA)
4059 return nullptr;
4060
4061 // Shift can't have additional users.
4062 if (!N0->hasOneUse())
4063 return nullptr;
4064
4065 // Only supported for 32 and 64 bits.
4066 if (NVT != MVT::i32 && NVT != MVT::i64)
4067 return nullptr;
4068
4069 // Shift amount and RHS of and must be constant.
4070 auto *MaskCst = dyn_cast<ConstantSDNode>(Val&: N1);
4071 auto *ShiftCst = dyn_cast<ConstantSDNode>(Val: N0->getOperand(Num: 1));
4072 if (!MaskCst || !ShiftCst)
4073 return nullptr;
4074
4075 // And RHS must be a mask.
4076 uint64_t Mask = MaskCst->getZExtValue();
4077 if (!isMask_64(Value: Mask))
4078 return nullptr;
4079
4080 uint64_t Shift = ShiftCst->getZExtValue();
4081 uint64_t MaskSize = llvm::popcount(Value: Mask);
4082
4083 // Don't interfere with something that can be handled by extracting AH.
4084 // TODO: If we are able to fold a load, BEXTR might still be better than AH.
4085 if (Shift == 8 && MaskSize == 8)
4086 return nullptr;
4087
4088 // Make sure we are only using bits that were in the original value, not
4089 // shifted in.
4090 if (Shift + MaskSize > NVT.getSizeInBits())
4091 return nullptr;
4092
4093 // BZHI, if available, is always fast, unlike BEXTR. But even if we decide
4094 // that we can't use BEXTR, it is only worthwhile using BZHI if the mask
4095 // does not fit into 32 bits. Load folding is not a sufficient reason.
4096 if (!PreferBEXTR && MaskSize <= 32)
4097 return nullptr;
4098
4099 SDValue Control;
4100 unsigned ROpc, MOpc;
4101
4102#define GET_EGPR_IF_ENABLED(OPC) (Subtarget->hasEGPR() ? OPC##_EVEX : OPC)
4103 if (!PreferBEXTR) {
4104 assert(Subtarget->hasBMI2() && "We must have BMI2's BZHI then.");
4105 // If we can't make use of BEXTR then we can't fuse shift+mask stages.
4106 // Let's perform the mask first, and apply shift later. Note that we need to
4107 // widen the mask to account for the fact that we'll apply shift afterwards!
4108 Control = CurDAG->getTargetConstant(Val: Shift + MaskSize, DL: dl, VT: NVT);
4109 ROpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BZHI64rr)
4110 : GET_EGPR_IF_ENABLED(X86::BZHI32rr);
4111 MOpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BZHI64rm)
4112 : GET_EGPR_IF_ENABLED(X86::BZHI32rm);
4113 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4114 Control = SDValue(CurDAG->getMachineNode(Opcode: NewOpc, dl, VT: NVT, Op1: Control), 0);
4115 } else {
4116 // The 'control' of BEXTR has the pattern of:
4117 // [15...8 bit][ 7...0 bit] location
4118 // [ bit count][ shift] name
4119 // I.e. 0b000000011'00000001 means (x >> 0b1) & 0b11
4120 Control = CurDAG->getTargetConstant(Val: Shift | (MaskSize << 8), DL: dl, VT: NVT);
4121 if (Subtarget->hasTBM()) {
4122 ROpc = NVT == MVT::i64 ? X86::BEXTRI64ri : X86::BEXTRI32ri;
4123 MOpc = NVT == MVT::i64 ? X86::BEXTRI64mi : X86::BEXTRI32mi;
4124 } else {
4125 assert(Subtarget->hasBMI() && "We must have BMI1's BEXTR then.");
4126 // BMI requires the immediate to placed in a register.
4127 ROpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BEXTR64rr)
4128 : GET_EGPR_IF_ENABLED(X86::BEXTR32rr);
4129 MOpc = NVT == MVT::i64 ? GET_EGPR_IF_ENABLED(X86::BEXTR64rm)
4130 : GET_EGPR_IF_ENABLED(X86::BEXTR32rm);
4131 unsigned NewOpc = NVT == MVT::i64 ? X86::MOV32ri64 : X86::MOV32ri;
4132 Control = SDValue(CurDAG->getMachineNode(Opcode: NewOpc, dl, VT: NVT, Op1: Control), 0);
4133 }
4134 }
4135
4136 MachineSDNode *NewNode;
4137 SDValue Input = N0->getOperand(Num: 0);
4138 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4139 if (tryFoldLoad(Root: Node, P: N0.getNode(), N: Input, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4)) {
4140 SDValue Ops[] = {
4141 Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Control, Input.getOperand(i: 0)};
4142 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
4143 NewNode = CurDAG->getMachineNode(Opcode: MOpc, dl, VTs, Ops);
4144 // Update the chain.
4145 ReplaceUses(F: Input.getValue(R: 1), T: SDValue(NewNode, 2));
4146 // Record the mem-refs
4147 CurDAG->setNodeMemRefs(N: NewNode, NewMemRefs: {cast<LoadSDNode>(Val&: Input)->getMemOperand()});
4148 } else {
4149 NewNode = CurDAG->getMachineNode(ROpc, dl, NVT, MVT::i32, Input, Control);
4150 }
4151
4152 if (!PreferBEXTR) {
4153 // We still need to apply the shift.
4154 SDValue ShAmt = CurDAG->getTargetConstant(Val: Shift, DL: dl, VT: NVT);
4155 unsigned NewOpc = NVT == MVT::i64 ? GET_ND_IF_ENABLED(X86::SHR64ri)
4156 : GET_ND_IF_ENABLED(X86::SHR32ri);
4157 NewNode =
4158 CurDAG->getMachineNode(Opcode: NewOpc, dl, VT: NVT, Op1: SDValue(NewNode, 0), Op2: ShAmt);
4159 }
4160
4161 return NewNode;
4162}
4163
4164// Emit a PCMISTR(I/M) instruction.
4165MachineSDNode *X86DAGToDAGISel::emitPCMPISTR(unsigned ROpc, unsigned MOpc,
4166 bool MayFoldLoad, const SDLoc &dl,
4167 MVT VT, SDNode *Node) {
4168 SDValue N0 = Node->getOperand(Num: 0);
4169 SDValue N1 = Node->getOperand(Num: 1);
4170 SDValue Imm = Node->getOperand(Num: 2);
4171 auto *Val = cast<ConstantSDNode>(Val&: Imm)->getConstantIntValue();
4172 Imm = CurDAG->getTargetConstant(Val: *Val, DL: SDLoc(Node), VT: Imm.getValueType());
4173
4174 // Try to fold a load. No need to check alignment.
4175 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4176 if (MayFoldLoad && tryFoldLoad(P: Node, N: N1, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4)) {
4177 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4178 N1.getOperand(i: 0) };
4179 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other);
4180 MachineSDNode *CNode = CurDAG->getMachineNode(Opcode: MOpc, dl, VTs, Ops);
4181 // Update the chain.
4182 ReplaceUses(F: N1.getValue(R: 1), T: SDValue(CNode, 2));
4183 // Record the mem-refs
4184 CurDAG->setNodeMemRefs(N: CNode, NewMemRefs: {cast<LoadSDNode>(Val&: N1)->getMemOperand()});
4185 return CNode;
4186 }
4187
4188 SDValue Ops[] = { N0, N1, Imm };
4189 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32);
4190 MachineSDNode *CNode = CurDAG->getMachineNode(Opcode: ROpc, dl, VTs, Ops);
4191 return CNode;
4192}
4193
4194// Emit a PCMESTR(I/M) instruction. Also return the Glue result in case we need
4195// to emit a second instruction after this one. This is needed since we have two
4196// copyToReg nodes glued before this and we need to continue that glue through.
4197MachineSDNode *X86DAGToDAGISel::emitPCMPESTR(unsigned ROpc, unsigned MOpc,
4198 bool MayFoldLoad, const SDLoc &dl,
4199 MVT VT, SDNode *Node,
4200 SDValue &InGlue) {
4201 SDValue N0 = Node->getOperand(Num: 0);
4202 SDValue N2 = Node->getOperand(Num: 2);
4203 SDValue Imm = Node->getOperand(Num: 4);
4204 auto *Val = cast<ConstantSDNode>(Val&: Imm)->getConstantIntValue();
4205 Imm = CurDAG->getTargetConstant(Val: *Val, DL: SDLoc(Node), VT: Imm.getValueType());
4206
4207 // Try to fold a load. No need to check alignment.
4208 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4209 if (MayFoldLoad && tryFoldLoad(P: Node, N: N2, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4)) {
4210 SDValue Ops[] = { N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
4211 N2.getOperand(i: 0), InGlue };
4212 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Other, MVT::Glue);
4213 MachineSDNode *CNode = CurDAG->getMachineNode(Opcode: MOpc, dl, VTs, Ops);
4214 InGlue = SDValue(CNode, 3);
4215 // Update the chain.
4216 ReplaceUses(F: N2.getValue(R: 1), T: SDValue(CNode, 2));
4217 // Record the mem-refs
4218 CurDAG->setNodeMemRefs(N: CNode, NewMemRefs: {cast<LoadSDNode>(Val&: N2)->getMemOperand()});
4219 return CNode;
4220 }
4221
4222 SDValue Ops[] = { N0, N2, Imm, InGlue };
4223 SDVTList VTs = CurDAG->getVTList(VT, MVT::i32, MVT::Glue);
4224 MachineSDNode *CNode = CurDAG->getMachineNode(Opcode: ROpc, dl, VTs, Ops);
4225 InGlue = SDValue(CNode, 2);
4226 return CNode;
4227}
4228
4229bool X86DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
4230 EVT VT = N->getValueType(ResNo: 0);
4231
4232 // Only handle scalar shifts.
4233 if (VT.isVector())
4234 return false;
4235
4236 // Narrower shifts only mask to 5 bits in hardware.
4237 unsigned Size = VT == MVT::i64 ? 64 : 32;
4238
4239 SDValue OrigShiftAmt = N->getOperand(Num: 1);
4240 SDValue ShiftAmt = OrigShiftAmt;
4241 SDLoc DL(N);
4242
4243 // Skip over a truncate of the shift amount.
4244 if (ShiftAmt->getOpcode() == ISD::TRUNCATE)
4245 ShiftAmt = ShiftAmt->getOperand(Num: 0);
4246
4247 // This function is called after X86DAGToDAGISel::matchBitExtract(),
4248 // so we are not afraid that we might mess up BZHI/BEXTR pattern.
4249
4250 SDValue NewShiftAmt;
4251 if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB ||
4252 ShiftAmt->getOpcode() == ISD::XOR) {
4253 SDValue Add0 = ShiftAmt->getOperand(Num: 0);
4254 SDValue Add1 = ShiftAmt->getOperand(Num: 1);
4255 auto *Add0C = dyn_cast<ConstantSDNode>(Val&: Add0);
4256 auto *Add1C = dyn_cast<ConstantSDNode>(Val&: Add1);
4257 // If we are shifting by X+/-/^N where N == 0 mod Size, then just shift by X
4258 // to avoid the ADD/SUB/XOR.
4259 if (Add1C && Add1C->getAPIntValue().urem(RHS: Size) == 0) {
4260 NewShiftAmt = Add0;
4261
4262 } else if (ShiftAmt->getOpcode() != ISD::ADD && ShiftAmt.hasOneUse() &&
4263 ((Add0C && Add0C->getAPIntValue().urem(RHS: Size) == Size - 1) ||
4264 (Add1C && Add1C->getAPIntValue().urem(RHS: Size) == Size - 1))) {
4265 // If we are doing a NOT on just the lower bits with (Size*N-1) -/^ X
4266 // we can replace it with a NOT. In the XOR case it may save some code
4267 // size, in the SUB case it also may save a move.
4268 assert(Add0C == nullptr || Add1C == nullptr);
4269
4270 // We can only do N-X, not X-N
4271 if (ShiftAmt->getOpcode() == ISD::SUB && Add0C == nullptr)
4272 return false;
4273
4274 EVT OpVT = ShiftAmt.getValueType();
4275
4276 SDValue AllOnes = CurDAG->getAllOnesConstant(DL, VT: OpVT);
4277 NewShiftAmt = CurDAG->getNode(Opcode: ISD::XOR, DL, VT: OpVT,
4278 N1: Add0C == nullptr ? Add0 : Add1, N2: AllOnes);
4279 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: AllOnes);
4280 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: NewShiftAmt);
4281 // If we are shifting by N-X where N == 0 mod Size, then just shift by
4282 // -X to generate a NEG instead of a SUB of a constant.
4283 } else if (ShiftAmt->getOpcode() == ISD::SUB && Add0C &&
4284 Add0C->getZExtValue() != 0) {
4285 EVT SubVT = ShiftAmt.getValueType();
4286 SDValue X;
4287 if (Add0C->getZExtValue() % Size == 0)
4288 X = Add1;
4289 else if (ShiftAmt.hasOneUse() && Size == 64 &&
4290 Add0C->getZExtValue() % 32 == 0) {
4291 // We have a 64-bit shift by (n*32-x), turn it into -(x+n*32).
4292 // This is mainly beneficial if we already compute (x+n*32).
4293 if (Add1.getOpcode() == ISD::TRUNCATE) {
4294 Add1 = Add1.getOperand(i: 0);
4295 SubVT = Add1.getValueType();
4296 }
4297 if (Add0.getValueType() != SubVT) {
4298 Add0 = CurDAG->getZExtOrTrunc(Op: Add0, DL, VT: SubVT);
4299 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: Add0);
4300 }
4301
4302 X = CurDAG->getNode(Opcode: ISD::ADD, DL, VT: SubVT, N1: Add1, N2: Add0);
4303 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: X);
4304 } else
4305 return false;
4306 // Insert a negate op.
4307 // TODO: This isn't guaranteed to replace the sub if there is a logic cone
4308 // that uses it that's not a shift.
4309 SDValue Zero = CurDAG->getConstant(Val: 0, DL, VT: SubVT);
4310 SDValue Neg = CurDAG->getNode(Opcode: ISD::SUB, DL, VT: SubVT, N1: Zero, N2: X);
4311 NewShiftAmt = Neg;
4312
4313 // Insert these operands into a valid topological order so they can
4314 // get selected independently.
4315 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: Zero);
4316 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: Neg);
4317 } else
4318 return false;
4319 } else
4320 return false;
4321
4322 if (NewShiftAmt.getValueType() != MVT::i8) {
4323 // Need to truncate the shift amount.
4324 NewShiftAmt = CurDAG->getNode(ISD::TRUNCATE, DL, MVT::i8, NewShiftAmt);
4325 // Add to a correct topological ordering.
4326 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: NewShiftAmt);
4327 }
4328
4329 // Insert a new mask to keep the shift amount legal. This should be removed
4330 // by isel patterns.
4331 NewShiftAmt = CurDAG->getNode(ISD::AND, DL, MVT::i8, NewShiftAmt,
4332 CurDAG->getConstant(Size - 1, DL, MVT::i8));
4333 // Place in a correct topological ordering.
4334 insertDAGNode(DAG&: *CurDAG, Pos: OrigShiftAmt, N: NewShiftAmt);
4335
4336 SDNode *UpdatedNode = CurDAG->UpdateNodeOperands(N, Op1: N->getOperand(Num: 0),
4337 Op2: NewShiftAmt);
4338 if (UpdatedNode != N) {
4339 // If we found an existing node, we should replace ourselves with that node
4340 // and wait for it to be selected after its other users.
4341 ReplaceNode(F: N, T: UpdatedNode);
4342 return true;
4343 }
4344
4345 // If the original shift amount is now dead, delete it so that we don't run
4346 // it through isel.
4347 if (OrigShiftAmt.getNode()->use_empty())
4348 CurDAG->RemoveDeadNode(N: OrigShiftAmt.getNode());
4349
4350 // Now that we've optimized the shift amount, defer to normal isel to get
4351 // load folding and legacy vs BMI2 selection without repeating it here.
4352 SelectCode(N);
4353 return true;
4354}
4355
4356bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) {
4357 MVT NVT = N->getSimpleValueType(ResNo: 0);
4358 unsigned Opcode = N->getOpcode();
4359 SDLoc dl(N);
4360
4361 // For operations of the form (x << C1) op C2, check if we can use a smaller
4362 // encoding for C2 by transforming it into (x op (C2>>C1)) << C1.
4363 SDValue Shift = N->getOperand(Num: 0);
4364 SDValue N1 = N->getOperand(Num: 1);
4365
4366 auto *Cst = dyn_cast<ConstantSDNode>(Val&: N1);
4367 if (!Cst)
4368 return false;
4369
4370 int64_t Val = Cst->getSExtValue();
4371
4372 // If we have an any_extend feeding the AND, look through it to see if there
4373 // is a shift behind it. But only if the AND doesn't use the extended bits.
4374 // FIXME: Generalize this to other ANY_EXTEND than i32 to i64?
4375 bool FoundAnyExtend = false;
4376 if (Shift.getOpcode() == ISD::ANY_EXTEND && Shift.hasOneUse() &&
4377 Shift.getOperand(0).getSimpleValueType() == MVT::i32 &&
4378 isUInt<32>(Val)) {
4379 FoundAnyExtend = true;
4380 Shift = Shift.getOperand(i: 0);
4381 }
4382
4383 if (Shift.getOpcode() != ISD::SHL || !Shift.hasOneUse())
4384 return false;
4385
4386 // i8 is unshrinkable, i16 should be promoted to i32.
4387 if (NVT != MVT::i32 && NVT != MVT::i64)
4388 return false;
4389
4390 auto *ShlCst = dyn_cast<ConstantSDNode>(Val: Shift.getOperand(i: 1));
4391 if (!ShlCst)
4392 return false;
4393
4394 uint64_t ShAmt = ShlCst->getZExtValue();
4395
4396 // Make sure that we don't change the operation by removing bits.
4397 // This only matters for OR and XOR, AND is unaffected.
4398 uint64_t RemovedBitsMask = (1ULL << ShAmt) - 1;
4399 if (Opcode != ISD::AND && (Val & RemovedBitsMask) != 0)
4400 return false;
4401
4402 // Check the minimum bitwidth for the new constant.
4403 // TODO: Using 16 and 8 bit operations is also possible for or32 & xor32.
4404 auto CanShrinkImmediate = [&](int64_t &ShiftedVal) {
4405 if (Opcode == ISD::AND) {
4406 // AND32ri is the same as AND64ri32 with zext imm.
4407 // Try this before sign extended immediates below.
4408 ShiftedVal = (uint64_t)Val >> ShAmt;
4409 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4410 return true;
4411 // Also swap order when the AND can become MOVZX.
4412 if (ShiftedVal == UINT8_MAX || ShiftedVal == UINT16_MAX)
4413 return true;
4414 }
4415 ShiftedVal = Val >> ShAmt;
4416 if ((!isInt<8>(x: Val) && isInt<8>(x: ShiftedVal)) ||
4417 (!isInt<32>(x: Val) && isInt<32>(x: ShiftedVal)))
4418 return true;
4419 if (Opcode != ISD::AND) {
4420 // MOV32ri+OR64r/XOR64r is cheaper than MOV64ri64+OR64rr/XOR64rr
4421 ShiftedVal = (uint64_t)Val >> ShAmt;
4422 if (NVT == MVT::i64 && !isUInt<32>(Val) && isUInt<32>(ShiftedVal))
4423 return true;
4424 }
4425 return false;
4426 };
4427
4428 int64_t ShiftedVal;
4429 if (!CanShrinkImmediate(ShiftedVal))
4430 return false;
4431
4432 // Ok, we can reorder to get a smaller immediate.
4433
4434 // But, its possible the original immediate allowed an AND to become MOVZX.
4435 // Doing this late due to avoid the MakedValueIsZero call as late as
4436 // possible.
4437 if (Opcode == ISD::AND) {
4438 // Find the smallest zext this could possibly be.
4439 unsigned ZExtWidth = Cst->getAPIntValue().getActiveBits();
4440 ZExtWidth = llvm::bit_ceil(Value: std::max(a: ZExtWidth, b: 8U));
4441
4442 // Figure out which bits need to be zero to achieve that mask.
4443 APInt NeededMask = APInt::getLowBitsSet(numBits: NVT.getSizeInBits(),
4444 loBitsSet: ZExtWidth);
4445 NeededMask &= ~Cst->getAPIntValue();
4446
4447 if (CurDAG->MaskedValueIsZero(Op: N->getOperand(Num: 0), Mask: NeededMask))
4448 return false;
4449 }
4450
4451 SDValue X = Shift.getOperand(i: 0);
4452 if (FoundAnyExtend) {
4453 SDValue NewX = CurDAG->getNode(Opcode: ISD::ANY_EXTEND, DL: dl, VT: NVT, Operand: X);
4454 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(N, 0), N: NewX);
4455 X = NewX;
4456 }
4457
4458 SDValue NewCst = CurDAG->getConstant(Val: ShiftedVal, DL: dl, VT: NVT);
4459 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(N, 0), N: NewCst);
4460 SDValue NewBinOp = CurDAG->getNode(Opcode, DL: dl, VT: NVT, N1: X, N2: NewCst);
4461 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(N, 0), N: NewBinOp);
4462 SDValue NewSHL = CurDAG->getNode(Opcode: ISD::SHL, DL: dl, VT: NVT, N1: NewBinOp,
4463 N2: Shift.getOperand(i: 1));
4464 ReplaceNode(F: N, T: NewSHL.getNode());
4465 SelectCode(NewSHL.getNode());
4466 return true;
4467}
4468
4469bool X86DAGToDAGISel::matchVPTERNLOG(SDNode *Root, SDNode *ParentA,
4470 SDNode *ParentB, SDNode *ParentC,
4471 SDValue A, SDValue B, SDValue C,
4472 uint8_t Imm) {
4473 assert(A.isOperandOf(ParentA) && B.isOperandOf(ParentB) &&
4474 C.isOperandOf(ParentC) && "Incorrect parent node");
4475
4476 auto tryFoldLoadOrBCast =
4477 [this](SDNode *Root, SDNode *P, SDValue &L, SDValue &Base, SDValue &Scale,
4478 SDValue &Index, SDValue &Disp, SDValue &Segment) {
4479 if (tryFoldLoad(Root, P, N: L, Base, Scale, Index, Disp, Segment))
4480 return true;
4481
4482 // Not a load, check for broadcast which may be behind a bitcast.
4483 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4484 P = L.getNode();
4485 L = L.getOperand(i: 0);
4486 }
4487
4488 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4489 return false;
4490
4491 // Only 32 and 64 bit broadcasts are supported.
4492 auto *MemIntr = cast<MemIntrinsicSDNode>(Val&: L);
4493 unsigned Size = MemIntr->getMemoryVT().getSizeInBits();
4494 if (Size != 32 && Size != 64)
4495 return false;
4496
4497 return tryFoldBroadcast(Root, P, N: L, Base, Scale, Index, Disp, Segment);
4498 };
4499
4500 bool FoldedLoad = false;
4501 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4502 if (tryFoldLoadOrBCast(Root, ParentC, C, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4)) {
4503 FoldedLoad = true;
4504 } else if (tryFoldLoadOrBCast(Root, ParentA, A, Tmp0, Tmp1, Tmp2, Tmp3,
4505 Tmp4)) {
4506 FoldedLoad = true;
4507 std::swap(a&: A, b&: C);
4508 // Swap bits 1/4 and 3/6.
4509 uint8_t OldImm = Imm;
4510 Imm = OldImm & 0xa5;
4511 if (OldImm & 0x02) Imm |= 0x10;
4512 if (OldImm & 0x10) Imm |= 0x02;
4513 if (OldImm & 0x08) Imm |= 0x40;
4514 if (OldImm & 0x40) Imm |= 0x08;
4515 } else if (tryFoldLoadOrBCast(Root, ParentB, B, Tmp0, Tmp1, Tmp2, Tmp3,
4516 Tmp4)) {
4517 FoldedLoad = true;
4518 std::swap(a&: B, b&: C);
4519 // Swap bits 1/2 and 5/6.
4520 uint8_t OldImm = Imm;
4521 Imm = OldImm & 0x99;
4522 if (OldImm & 0x02) Imm |= 0x04;
4523 if (OldImm & 0x04) Imm |= 0x02;
4524 if (OldImm & 0x20) Imm |= 0x40;
4525 if (OldImm & 0x40) Imm |= 0x20;
4526 }
4527
4528 SDLoc DL(Root);
4529
4530 SDValue TImm = CurDAG->getTargetConstant(Imm, DL, MVT::i8);
4531
4532 MVT NVT = Root->getSimpleValueType(ResNo: 0);
4533
4534 MachineSDNode *MNode;
4535 if (FoldedLoad) {
4536 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
4537
4538 unsigned Opc;
4539 if (C.getOpcode() == X86ISD::VBROADCAST_LOAD) {
4540 auto *MemIntr = cast<MemIntrinsicSDNode>(Val&: C);
4541 unsigned EltSize = MemIntr->getMemoryVT().getSizeInBits();
4542 assert((EltSize == 32 || EltSize == 64) && "Unexpected broadcast size!");
4543
4544 bool UseD = EltSize == 32;
4545 if (NVT.is128BitVector())
4546 Opc = UseD ? X86::VPTERNLOGDZ128rmbi : X86::VPTERNLOGQZ128rmbi;
4547 else if (NVT.is256BitVector())
4548 Opc = UseD ? X86::VPTERNLOGDZ256rmbi : X86::VPTERNLOGQZ256rmbi;
4549 else if (NVT.is512BitVector())
4550 Opc = UseD ? X86::VPTERNLOGDZrmbi : X86::VPTERNLOGQZrmbi;
4551 else
4552 llvm_unreachable("Unexpected vector size!");
4553 } else {
4554 bool UseD = NVT.getVectorElementType() == MVT::i32;
4555 if (NVT.is128BitVector())
4556 Opc = UseD ? X86::VPTERNLOGDZ128rmi : X86::VPTERNLOGQZ128rmi;
4557 else if (NVT.is256BitVector())
4558 Opc = UseD ? X86::VPTERNLOGDZ256rmi : X86::VPTERNLOGQZ256rmi;
4559 else if (NVT.is512BitVector())
4560 Opc = UseD ? X86::VPTERNLOGDZrmi : X86::VPTERNLOGQZrmi;
4561 else
4562 llvm_unreachable("Unexpected vector size!");
4563 }
4564
4565 SDValue Ops[] = {A, B, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, TImm, C.getOperand(i: 0)};
4566 MNode = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VTs, Ops);
4567
4568 // Update the chain.
4569 ReplaceUses(F: C.getValue(R: 1), T: SDValue(MNode, 1));
4570 // Record the mem-refs
4571 CurDAG->setNodeMemRefs(N: MNode, NewMemRefs: {cast<MemSDNode>(Val&: C)->getMemOperand()});
4572 } else {
4573 bool UseD = NVT.getVectorElementType() == MVT::i32;
4574 unsigned Opc;
4575 if (NVT.is128BitVector())
4576 Opc = UseD ? X86::VPTERNLOGDZ128rri : X86::VPTERNLOGQZ128rri;
4577 else if (NVT.is256BitVector())
4578 Opc = UseD ? X86::VPTERNLOGDZ256rri : X86::VPTERNLOGQZ256rri;
4579 else if (NVT.is512BitVector())
4580 Opc = UseD ? X86::VPTERNLOGDZrri : X86::VPTERNLOGQZrri;
4581 else
4582 llvm_unreachable("Unexpected vector size!");
4583
4584 MNode = CurDAG->getMachineNode(Opcode: Opc, dl: DL, VT: NVT, Ops: {A, B, C, TImm});
4585 }
4586
4587 ReplaceUses(F: SDValue(Root, 0), T: SDValue(MNode, 0));
4588 CurDAG->RemoveDeadNode(N: Root);
4589 return true;
4590}
4591
4592// Try to match two logic ops to a VPTERNLOG.
4593// FIXME: Handle more complex patterns that use an operand more than once?
4594bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) {
4595 MVT NVT = N->getSimpleValueType(ResNo: 0);
4596
4597 // Make sure we support VPTERNLOG.
4598 if (!NVT.isVector() || !Subtarget->hasAVX512() ||
4599 NVT.getVectorElementType() == MVT::i1)
4600 return false;
4601
4602 // We need VLX for 128/256-bit.
4603 if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4604 return false;
4605
4606 SDValue N0 = N->getOperand(Num: 0);
4607 SDValue N1 = N->getOperand(Num: 1);
4608
4609 auto getFoldableLogicOp = [](SDValue Op) {
4610 // Peek through single use bitcast.
4611 if (Op.getOpcode() == ISD::BITCAST && Op.hasOneUse())
4612 Op = Op.getOperand(i: 0);
4613
4614 if (!Op.hasOneUse())
4615 return SDValue();
4616
4617 unsigned Opc = Op.getOpcode();
4618 if (Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR ||
4619 Opc == X86ISD::ANDNP)
4620 return Op;
4621
4622 return SDValue();
4623 };
4624
4625 SDValue A, FoldableOp;
4626 if ((FoldableOp = getFoldableLogicOp(N1))) {
4627 A = N0;
4628 } else if ((FoldableOp = getFoldableLogicOp(N0))) {
4629 A = N1;
4630 } else
4631 return false;
4632
4633 SDValue B = FoldableOp.getOperand(i: 0);
4634 SDValue C = FoldableOp.getOperand(i: 1);
4635 SDNode *ParentA = N;
4636 SDNode *ParentB = FoldableOp.getNode();
4637 SDNode *ParentC = FoldableOp.getNode();
4638
4639 // We can build the appropriate control immediate by performing the logic
4640 // operation we're matching using these constants for A, B, and C.
4641 uint8_t TernlogMagicA = 0xf0;
4642 uint8_t TernlogMagicB = 0xcc;
4643 uint8_t TernlogMagicC = 0xaa;
4644
4645 // Some of the inputs may be inverted, peek through them and invert the
4646 // magic values accordingly.
4647 // TODO: There may be a bitcast before the xor that we should peek through.
4648 auto PeekThroughNot = [](SDValue &Op, SDNode *&Parent, uint8_t &Magic) {
4649 if (Op.getOpcode() == ISD::XOR && Op.hasOneUse() &&
4650 ISD::isBuildVectorAllOnes(N: Op.getOperand(i: 1).getNode())) {
4651 Magic = ~Magic;
4652 Parent = Op.getNode();
4653 Op = Op.getOperand(i: 0);
4654 }
4655 };
4656
4657 PeekThroughNot(A, ParentA, TernlogMagicA);
4658 PeekThroughNot(B, ParentB, TernlogMagicB);
4659 PeekThroughNot(C, ParentC, TernlogMagicC);
4660
4661 uint8_t Imm;
4662 switch (FoldableOp.getOpcode()) {
4663 default: llvm_unreachable("Unexpected opcode!");
4664 case ISD::AND: Imm = TernlogMagicB & TernlogMagicC; break;
4665 case ISD::OR: Imm = TernlogMagicB | TernlogMagicC; break;
4666 case ISD::XOR: Imm = TernlogMagicB ^ TernlogMagicC; break;
4667 case X86ISD::ANDNP: Imm = ~(TernlogMagicB) & TernlogMagicC; break;
4668 }
4669
4670 switch (N->getOpcode()) {
4671 default: llvm_unreachable("Unexpected opcode!");
4672 case X86ISD::ANDNP:
4673 if (A == N0)
4674 Imm &= ~TernlogMagicA;
4675 else
4676 Imm = ~(Imm) & TernlogMagicA;
4677 break;
4678 case ISD::AND: Imm &= TernlogMagicA; break;
4679 case ISD::OR: Imm |= TernlogMagicA; break;
4680 case ISD::XOR: Imm ^= TernlogMagicA; break;
4681 }
4682
4683 return matchVPTERNLOG(Root: N, ParentA, ParentB, ParentC, A, B, C, Imm);
4684}
4685
4686/// If the high bits of an 'and' operand are known zero, try setting the
4687/// high bits of an 'and' constant operand to produce a smaller encoding by
4688/// creating a small, sign-extended negative immediate rather than a large
4689/// positive one. This reverses a transform in SimplifyDemandedBits that
4690/// shrinks mask constants by clearing bits. There is also a possibility that
4691/// the 'and' mask can be made -1, so the 'and' itself is unnecessary. In that
4692/// case, just replace the 'and'. Return 'true' if the node is replaced.
4693bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) {
4694 // i8 is unshrinkable, i16 should be promoted to i32, and vector ops don't
4695 // have immediate operands.
4696 MVT VT = And->getSimpleValueType(ResNo: 0);
4697 if (VT != MVT::i32 && VT != MVT::i64)
4698 return false;
4699
4700 auto *And1C = dyn_cast<ConstantSDNode>(Val: And->getOperand(Num: 1));
4701 if (!And1C)
4702 return false;
4703
4704 // Bail out if the mask constant is already negative. It's can't shrink more.
4705 // If the upper 32 bits of a 64 bit mask are all zeros, we have special isel
4706 // patterns to use a 32-bit and instead of a 64-bit and by relying on the
4707 // implicit zeroing of 32 bit ops. So we should check if the lower 32 bits
4708 // are negative too.
4709 APInt MaskVal = And1C->getAPIntValue();
4710 unsigned MaskLZ = MaskVal.countl_zero();
4711 if (!MaskLZ || (VT == MVT::i64 && MaskLZ == 32))
4712 return false;
4713
4714 // Don't extend into the upper 32 bits of a 64 bit mask.
4715 if (VT == MVT::i64 && MaskLZ >= 32) {
4716 MaskLZ -= 32;
4717 MaskVal = MaskVal.trunc(width: 32);
4718 }
4719
4720 SDValue And0 = And->getOperand(Num: 0);
4721 APInt HighZeros = APInt::getHighBitsSet(numBits: MaskVal.getBitWidth(), hiBitsSet: MaskLZ);
4722 APInt NegMaskVal = MaskVal | HighZeros;
4723
4724 // If a negative constant would not allow a smaller encoding, there's no need
4725 // to continue. Only change the constant when we know it's a win.
4726 unsigned MinWidth = NegMaskVal.getSignificantBits();
4727 if (MinWidth > 32 || (MinWidth > 8 && MaskVal.getSignificantBits() <= 32))
4728 return false;
4729
4730 // Extend masks if we truncated above.
4731 if (VT == MVT::i64 && MaskVal.getBitWidth() < 64) {
4732 NegMaskVal = NegMaskVal.zext(width: 64);
4733 HighZeros = HighZeros.zext(width: 64);
4734 }
4735
4736 // The variable operand must be all zeros in the top bits to allow using the
4737 // new, negative constant as the mask.
4738 if (!CurDAG->MaskedValueIsZero(Op: And0, Mask: HighZeros))
4739 return false;
4740
4741 // Check if the mask is -1. In that case, this is an unnecessary instruction
4742 // that escaped earlier analysis.
4743 if (NegMaskVal.isAllOnes()) {
4744 ReplaceNode(F: And, T: And0.getNode());
4745 return true;
4746 }
4747
4748 // A negative mask allows a smaller encoding. Create a new 'and' node.
4749 SDValue NewMask = CurDAG->getConstant(Val: NegMaskVal, DL: SDLoc(And), VT);
4750 insertDAGNode(DAG&: *CurDAG, Pos: SDValue(And, 0), N: NewMask);
4751 SDValue NewAnd = CurDAG->getNode(Opcode: ISD::AND, DL: SDLoc(And), VT, N1: And0, N2: NewMask);
4752 ReplaceNode(F: And, T: NewAnd.getNode());
4753 SelectCode(NewAnd.getNode());
4754 return true;
4755}
4756
4757static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad,
4758 bool FoldedBCast, bool Masked) {
4759#define VPTESTM_CASE(VT, SUFFIX) \
4760case MVT::VT: \
4761 if (Masked) \
4762 return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \
4763 return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX;
4764
4765
4766#define VPTESTM_BROADCAST_CASES(SUFFIX) \
4767default: llvm_unreachable("Unexpected VT!"); \
4768VPTESTM_CASE(v4i32, DZ128##SUFFIX) \
4769VPTESTM_CASE(v2i64, QZ128##SUFFIX) \
4770VPTESTM_CASE(v8i32, DZ256##SUFFIX) \
4771VPTESTM_CASE(v4i64, QZ256##SUFFIX) \
4772VPTESTM_CASE(v16i32, DZ##SUFFIX) \
4773VPTESTM_CASE(v8i64, QZ##SUFFIX)
4774
4775#define VPTESTM_FULL_CASES(SUFFIX) \
4776VPTESTM_BROADCAST_CASES(SUFFIX) \
4777VPTESTM_CASE(v16i8, BZ128##SUFFIX) \
4778VPTESTM_CASE(v8i16, WZ128##SUFFIX) \
4779VPTESTM_CASE(v32i8, BZ256##SUFFIX) \
4780VPTESTM_CASE(v16i16, WZ256##SUFFIX) \
4781VPTESTM_CASE(v64i8, BZ##SUFFIX) \
4782VPTESTM_CASE(v32i16, WZ##SUFFIX)
4783
4784 if (FoldedBCast) {
4785 switch (TestVT.SimpleTy) {
4786 VPTESTM_BROADCAST_CASES(rmb)
4787 }
4788 }
4789
4790 if (FoldedLoad) {
4791 switch (TestVT.SimpleTy) {
4792 VPTESTM_FULL_CASES(rm)
4793 }
4794 }
4795
4796 switch (TestVT.SimpleTy) {
4797 VPTESTM_FULL_CASES(rr)
4798 }
4799
4800#undef VPTESTM_FULL_CASES
4801#undef VPTESTM_BROADCAST_CASES
4802#undef VPTESTM_CASE
4803}
4804
4805// Try to create VPTESTM instruction. If InMask is not null, it will be used
4806// to form a masked operation.
4807bool X86DAGToDAGISel::tryVPTESTM(SDNode *Root, SDValue Setcc,
4808 SDValue InMask) {
4809 assert(Subtarget->hasAVX512() && "Expected AVX512!");
4810 assert(Setcc.getSimpleValueType().getVectorElementType() == MVT::i1 &&
4811 "Unexpected VT!");
4812
4813 // Look for equal and not equal compares.
4814 ISD::CondCode CC = cast<CondCodeSDNode>(Val: Setcc.getOperand(i: 2))->get();
4815 if (CC != ISD::SETEQ && CC != ISD::SETNE)
4816 return false;
4817
4818 SDValue SetccOp0 = Setcc.getOperand(i: 0);
4819 SDValue SetccOp1 = Setcc.getOperand(i: 1);
4820
4821 // Canonicalize the all zero vector to the RHS.
4822 if (ISD::isBuildVectorAllZeros(N: SetccOp0.getNode()))
4823 std::swap(a&: SetccOp0, b&: SetccOp1);
4824
4825 // See if we're comparing against zero.
4826 if (!ISD::isBuildVectorAllZeros(N: SetccOp1.getNode()))
4827 return false;
4828
4829 SDValue N0 = SetccOp0;
4830
4831 MVT CmpVT = N0.getSimpleValueType();
4832 MVT CmpSVT = CmpVT.getVectorElementType();
4833
4834 // Start with both operands the same. We'll try to refine this.
4835 SDValue Src0 = N0;
4836 SDValue Src1 = N0;
4837
4838 {
4839 // Look through single use bitcasts.
4840 SDValue N0Temp = N0;
4841 if (N0Temp.getOpcode() == ISD::BITCAST && N0Temp.hasOneUse())
4842 N0Temp = N0.getOperand(i: 0);
4843
4844 // Look for single use AND.
4845 if (N0Temp.getOpcode() == ISD::AND && N0Temp.hasOneUse()) {
4846 Src0 = N0Temp.getOperand(i: 0);
4847 Src1 = N0Temp.getOperand(i: 1);
4848 }
4849 }
4850
4851 // Without VLX we need to widen the operation.
4852 bool Widen = !Subtarget->hasVLX() && !CmpVT.is512BitVector();
4853
4854 auto tryFoldLoadOrBCast = [&](SDNode *Root, SDNode *P, SDValue &L,
4855 SDValue &Base, SDValue &Scale, SDValue &Index,
4856 SDValue &Disp, SDValue &Segment) {
4857 // If we need to widen, we can't fold the load.
4858 if (!Widen)
4859 if (tryFoldLoad(Root, P, N: L, Base, Scale, Index, Disp, Segment))
4860 return true;
4861
4862 // If we didn't fold a load, try to match broadcast. No widening limitation
4863 // for this. But only 32 and 64 bit types are supported.
4864 if (CmpSVT != MVT::i32 && CmpSVT != MVT::i64)
4865 return false;
4866
4867 // Look through single use bitcasts.
4868 if (L.getOpcode() == ISD::BITCAST && L.hasOneUse()) {
4869 P = L.getNode();
4870 L = L.getOperand(i: 0);
4871 }
4872
4873 if (L.getOpcode() != X86ISD::VBROADCAST_LOAD)
4874 return false;
4875
4876 auto *MemIntr = cast<MemIntrinsicSDNode>(Val&: L);
4877 if (MemIntr->getMemoryVT().getSizeInBits() != CmpSVT.getSizeInBits())
4878 return false;
4879
4880 return tryFoldBroadcast(Root, P, N: L, Base, Scale, Index, Disp, Segment);
4881 };
4882
4883 // We can only fold loads if the sources are unique.
4884 bool CanFoldLoads = Src0 != Src1;
4885
4886 bool FoldedLoad = false;
4887 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
4888 if (CanFoldLoads) {
4889 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src1, Tmp0, Tmp1, Tmp2,
4890 Tmp3, Tmp4);
4891 if (!FoldedLoad) {
4892 // And is commutative.
4893 FoldedLoad = tryFoldLoadOrBCast(Root, N0.getNode(), Src0, Tmp0, Tmp1,
4894 Tmp2, Tmp3, Tmp4);
4895 if (FoldedLoad)
4896 std::swap(a&: Src0, b&: Src1);
4897 }
4898 }
4899
4900 bool FoldedBCast = FoldedLoad && Src1.getOpcode() == X86ISD::VBROADCAST_LOAD;
4901
4902 bool IsMasked = InMask.getNode() != nullptr;
4903
4904 SDLoc dl(Root);
4905
4906 MVT ResVT = Setcc.getSimpleValueType();
4907 MVT MaskVT = ResVT;
4908 if (Widen) {
4909 // Widen the inputs using insert_subreg or copy_to_regclass.
4910 unsigned Scale = CmpVT.is128BitVector() ? 4 : 2;
4911 unsigned SubReg = CmpVT.is128BitVector() ? X86::sub_xmm : X86::sub_ymm;
4912 unsigned NumElts = CmpVT.getVectorNumElements() * Scale;
4913 CmpVT = MVT::getVectorVT(VT: CmpSVT, NumElements: NumElts);
4914 MaskVT = MVT::getVectorVT(MVT::i1, NumElts);
4915 SDValue ImplDef = SDValue(CurDAG->getMachineNode(X86::IMPLICIT_DEF, dl,
4916 CmpVT), 0);
4917 Src0 = CurDAG->getTargetInsertSubreg(SRIdx: SubReg, DL: dl, VT: CmpVT, Operand: ImplDef, Subreg: Src0);
4918
4919 if (!FoldedBCast)
4920 Src1 = CurDAG->getTargetInsertSubreg(SRIdx: SubReg, DL: dl, VT: CmpVT, Operand: ImplDef, Subreg: Src1);
4921
4922 if (IsMasked) {
4923 // Widen the mask.
4924 unsigned RegClass = TLI->getRegClassFor(VT: MaskVT)->getID();
4925 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4926 InMask = SDValue(CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS,
4927 dl, VT: MaskVT, Op1: InMask, Op2: RC), 0);
4928 }
4929 }
4930
4931 bool IsTestN = CC == ISD::SETEQ;
4932 unsigned Opc = getVPTESTMOpc(TestVT: CmpVT, IsTestN, FoldedLoad, FoldedBCast,
4933 Masked: IsMasked);
4934
4935 MachineSDNode *CNode;
4936 if (FoldedLoad) {
4937 SDVTList VTs = CurDAG->getVTList(MaskVT, MVT::Other);
4938
4939 if (IsMasked) {
4940 SDValue Ops[] = { InMask, Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4941 Src1.getOperand(i: 0) };
4942 CNode = CurDAG->getMachineNode(Opcode: Opc, dl, VTs, Ops);
4943 } else {
4944 SDValue Ops[] = { Src0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4,
4945 Src1.getOperand(i: 0) };
4946 CNode = CurDAG->getMachineNode(Opcode: Opc, dl, VTs, Ops);
4947 }
4948
4949 // Update the chain.
4950 ReplaceUses(F: Src1.getValue(R: 1), T: SDValue(CNode, 1));
4951 // Record the mem-refs
4952 CurDAG->setNodeMemRefs(N: CNode, NewMemRefs: {cast<MemSDNode>(Val&: Src1)->getMemOperand()});
4953 } else {
4954 if (IsMasked)
4955 CNode = CurDAG->getMachineNode(Opcode: Opc, dl, VT: MaskVT, Op1: InMask, Op2: Src0, Op3: Src1);
4956 else
4957 CNode = CurDAG->getMachineNode(Opcode: Opc, dl, VT: MaskVT, Op1: Src0, Op2: Src1);
4958 }
4959
4960 // If we widened, we need to shrink the mask VT.
4961 if (Widen) {
4962 unsigned RegClass = TLI->getRegClassFor(VT: ResVT)->getID();
4963 SDValue RC = CurDAG->getTargetConstant(RegClass, dl, MVT::i32);
4964 CNode = CurDAG->getMachineNode(Opcode: TargetOpcode::COPY_TO_REGCLASS,
4965 dl, VT: ResVT, Op1: SDValue(CNode, 0), Op2: RC);
4966 }
4967
4968 ReplaceUses(F: SDValue(Root, 0), T: SDValue(CNode, 0));
4969 CurDAG->RemoveDeadNode(N: Root);
4970 return true;
4971}
4972
4973// Try to match the bitselect pattern (or (and A, B), (andn A, C)). Turn it
4974// into vpternlog.
4975bool X86DAGToDAGISel::tryMatchBitSelect(SDNode *N) {
4976 assert(N->getOpcode() == ISD::OR && "Unexpected opcode!");
4977
4978 MVT NVT = N->getSimpleValueType(ResNo: 0);
4979
4980 // Make sure we support VPTERNLOG.
4981 if (!NVT.isVector() || !Subtarget->hasAVX512())
4982 return false;
4983
4984 // We need VLX for 128/256-bit.
4985 if (!(Subtarget->hasVLX() || NVT.is512BitVector()))
4986 return false;
4987
4988 SDValue N0 = N->getOperand(Num: 0);
4989 SDValue N1 = N->getOperand(Num: 1);
4990
4991 // Canonicalize AND to LHS.
4992 if (N1.getOpcode() == ISD::AND)
4993 std::swap(a&: N0, b&: N1);
4994
4995 if (N0.getOpcode() != ISD::AND ||
4996 N1.getOpcode() != X86ISD::ANDNP ||
4997 !N0.hasOneUse() || !N1.hasOneUse())
4998 return false;
4999
5000 // ANDN is not commutable, use it to pick down A and C.
5001 SDValue A = N1.getOperand(i: 0);
5002 SDValue C = N1.getOperand(i: 1);
5003
5004 // AND is commutable, if one operand matches A, the other operand is B.
5005 // Otherwise this isn't a match.
5006 SDValue B;
5007 if (N0.getOperand(i: 0) == A)
5008 B = N0.getOperand(i: 1);
5009 else if (N0.getOperand(i: 1) == A)
5010 B = N0.getOperand(i: 0);
5011 else
5012 return false;
5013
5014 SDLoc dl(N);
5015 SDValue Imm = CurDAG->getTargetConstant(0xCA, dl, MVT::i8);
5016 SDValue Ternlog = CurDAG->getNode(Opcode: X86ISD::VPTERNLOG, DL: dl, VT: NVT, N1: A, N2: B, N3: C, N4: Imm);
5017 ReplaceNode(F: N, T: Ternlog.getNode());
5018
5019 return matchVPTERNLOG(Root: Ternlog.getNode(), ParentA: Ternlog.getNode(), ParentB: Ternlog.getNode(),
5020 ParentC: Ternlog.getNode(), A, B, C, Imm: 0xCA);
5021}
5022
5023void X86DAGToDAGISel::Select(SDNode *Node) {
5024 MVT NVT = Node->getSimpleValueType(ResNo: 0);
5025 unsigned Opcode = Node->getOpcode();
5026 SDLoc dl(Node);
5027
5028 if (Node->isMachineOpcode()) {
5029 LLVM_DEBUG(dbgs() << "== "; Node->dump(CurDAG); dbgs() << '\n');
5030 Node->setNodeId(-1);
5031 return; // Already selected.
5032 }
5033
5034 switch (Opcode) {
5035 default: break;
5036 case ISD::INTRINSIC_W_CHAIN: {
5037 unsigned IntNo = Node->getConstantOperandVal(Num: 1);
5038 switch (IntNo) {
5039 default: break;
5040 case Intrinsic::x86_encodekey128:
5041 case Intrinsic::x86_encodekey256: {
5042 if (!Subtarget->hasKL())
5043 break;
5044
5045 unsigned Opcode;
5046 switch (IntNo) {
5047 default: llvm_unreachable("Impossible intrinsic");
5048 case Intrinsic::x86_encodekey128:
5049 Opcode = X86::ENCODEKEY128;
5050 break;
5051 case Intrinsic::x86_encodekey256:
5052 Opcode = X86::ENCODEKEY256;
5053 break;
5054 }
5055
5056 SDValue Chain = Node->getOperand(Num: 0);
5057 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(3),
5058 SDValue());
5059 if (Opcode == X86::ENCODEKEY256)
5060 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(4),
5061 Chain.getValue(1));
5062
5063 MachineSDNode *Res = CurDAG->getMachineNode(
5064 Opcode, dl, VTs: Node->getVTList(),
5065 Ops: {Node->getOperand(Num: 2), Chain, Chain.getValue(R: 1)});
5066 ReplaceNode(F: Node, T: Res);
5067 return;
5068 }
5069 case Intrinsic::x86_tileloadd64_internal:
5070 case Intrinsic::x86_tileloaddt164_internal: {
5071 if (!Subtarget->hasAMXTILE())
5072 break;
5073 unsigned Opc = IntNo == Intrinsic::x86_tileloadd64_internal
5074 ? X86::PTILELOADDV
5075 : X86::PTILELOADDT1V;
5076 // _tile_loadd_internal(row, col, buf, STRIDE)
5077 SDValue Base = Node->getOperand(Num: 4);
5078 SDValue Scale = getI8Imm(Imm: 1, DL: dl);
5079 SDValue Index = Node->getOperand(Num: 5);
5080 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5081 SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5082 SDValue Chain = Node->getOperand(Num: 0);
5083 MachineSDNode *CNode;
5084 SDValue Ops[] = {Node->getOperand(Num: 2),
5085 Node->getOperand(Num: 3),
5086 Base,
5087 Scale,
5088 Index,
5089 Disp,
5090 Segment,
5091 Chain};
5092 CNode = CurDAG->getMachineNode(Opc, dl, {MVT::x86amx, MVT::Other}, Ops);
5093 ReplaceNode(F: Node, T: CNode);
5094 return;
5095 }
5096 }
5097 break;
5098 }
5099 case ISD::INTRINSIC_VOID: {
5100 unsigned IntNo = Node->getConstantOperandVal(Num: 1);
5101 switch (IntNo) {
5102 default: break;
5103 case Intrinsic::x86_sse3_monitor:
5104 case Intrinsic::x86_monitorx:
5105 case Intrinsic::x86_clzero: {
5106 bool Use64BitPtr = Node->getOperand(2).getValueType() == MVT::i64;
5107
5108 unsigned Opc = 0;
5109 switch (IntNo) {
5110 default: llvm_unreachable("Unexpected intrinsic!");
5111 case Intrinsic::x86_sse3_monitor:
5112 if (!Subtarget->hasSSE3())
5113 break;
5114 Opc = Use64BitPtr ? X86::MONITOR64rrr : X86::MONITOR32rrr;
5115 break;
5116 case Intrinsic::x86_monitorx:
5117 if (!Subtarget->hasMWAITX())
5118 break;
5119 Opc = Use64BitPtr ? X86::MONITORX64rrr : X86::MONITORX32rrr;
5120 break;
5121 case Intrinsic::x86_clzero:
5122 if (!Subtarget->hasCLZERO())
5123 break;
5124 Opc = Use64BitPtr ? X86::CLZERO64r : X86::CLZERO32r;
5125 break;
5126 }
5127
5128 if (Opc) {
5129 unsigned PtrReg = Use64BitPtr ? X86::RAX : X86::EAX;
5130 SDValue Chain = CurDAG->getCopyToReg(Chain: Node->getOperand(Num: 0), dl, Reg: PtrReg,
5131 N: Node->getOperand(Num: 2), Glue: SDValue());
5132 SDValue InGlue = Chain.getValue(R: 1);
5133
5134 if (IntNo == Intrinsic::x86_sse3_monitor ||
5135 IntNo == Intrinsic::x86_monitorx) {
5136 // Copy the other two operands to ECX and EDX.
5137 Chain = CurDAG->getCopyToReg(Chain, dl, X86::ECX, Node->getOperand(3),
5138 InGlue);
5139 InGlue = Chain.getValue(R: 1);
5140 Chain = CurDAG->getCopyToReg(Chain, dl, X86::EDX, Node->getOperand(4),
5141 InGlue);
5142 InGlue = Chain.getValue(R: 1);
5143 }
5144
5145 MachineSDNode *CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
5146 { Chain, InGlue});
5147 ReplaceNode(F: Node, T: CNode);
5148 return;
5149 }
5150
5151 break;
5152 }
5153 case Intrinsic::x86_tilestored64_internal: {
5154 unsigned Opc = X86::PTILESTOREDV;
5155 // _tile_stored_internal(row, col, buf, STRIDE, c)
5156 SDValue Base = Node->getOperand(Num: 4);
5157 SDValue Scale = getI8Imm(Imm: 1, DL: dl);
5158 SDValue Index = Node->getOperand(Num: 5);
5159 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5160 SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5161 SDValue Chain = Node->getOperand(Num: 0);
5162 MachineSDNode *CNode;
5163 SDValue Ops[] = {Node->getOperand(Num: 2),
5164 Node->getOperand(Num: 3),
5165 Base,
5166 Scale,
5167 Index,
5168 Disp,
5169 Segment,
5170 Node->getOperand(Num: 6),
5171 Chain};
5172 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5173 ReplaceNode(F: Node, T: CNode);
5174 return;
5175 }
5176 case Intrinsic::x86_tileloadd64:
5177 case Intrinsic::x86_tileloaddt164:
5178 case Intrinsic::x86_tilestored64: {
5179 if (!Subtarget->hasAMXTILE())
5180 break;
5181 unsigned Opc;
5182 switch (IntNo) {
5183 default: llvm_unreachable("Unexpected intrinsic!");
5184 case Intrinsic::x86_tileloadd64: Opc = X86::PTILELOADD; break;
5185 case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break;
5186 case Intrinsic::x86_tilestored64: Opc = X86::PTILESTORED; break;
5187 }
5188 // FIXME: Match displacement and scale.
5189 unsigned TIndex = Node->getConstantOperandVal(Num: 2);
5190 SDValue TReg = getI8Imm(Imm: TIndex, DL: dl);
5191 SDValue Base = Node->getOperand(Num: 3);
5192 SDValue Scale = getI8Imm(Imm: 1, DL: dl);
5193 SDValue Index = Node->getOperand(Num: 4);
5194 SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32);
5195 SDValue Segment = CurDAG->getRegister(0, MVT::i16);
5196 SDValue Chain = Node->getOperand(Num: 0);
5197 MachineSDNode *CNode;
5198 if (Opc == X86::PTILESTORED) {
5199 SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain };
5200 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5201 } else {
5202 SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain };
5203 CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
5204 }
5205 ReplaceNode(F: Node, T: CNode);
5206 return;
5207 }
5208 }
5209 break;
5210 }
5211 case ISD::BRIND:
5212 case X86ISD::NT_BRIND: {
5213 if (Subtarget->isTargetNaCl())
5214 // NaCl has its own pass where jmp %r32 are converted to jmp %r64. We
5215 // leave the instruction alone.
5216 break;
5217 if (Subtarget->isTarget64BitILP32()) {
5218 // Converts a 32-bit register to a 64-bit, zero-extended version of
5219 // it. This is needed because x86-64 can do many things, but jmp %r32
5220 // ain't one of them.
5221 SDValue Target = Node->getOperand(Num: 1);
5222 assert(Target.getValueType() == MVT::i32 && "Unexpected VT!");
5223 SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64);
5224 SDValue Brind = CurDAG->getNode(Opcode, dl, MVT::Other,
5225 Node->getOperand(0), ZextTarget);
5226 ReplaceNode(F: Node, T: Brind.getNode());
5227 SelectCode(ZextTarget.getNode());
5228 SelectCode(Brind.getNode());
5229 return;
5230 }
5231 break;
5232 }
5233 case X86ISD::GlobalBaseReg:
5234 ReplaceNode(F: Node, T: getGlobalBaseReg());
5235 return;
5236
5237 case ISD::BITCAST:
5238 // Just drop all 128/256/512-bit bitcasts.
5239 if (NVT.is512BitVector() || NVT.is256BitVector() || NVT.is128BitVector() ||
5240 NVT == MVT::f128) {
5241 ReplaceUses(F: SDValue(Node, 0), T: Node->getOperand(Num: 0));
5242 CurDAG->RemoveDeadNode(N: Node);
5243 return;
5244 }
5245 break;
5246
5247 case ISD::SRL:
5248 if (matchBitExtract(Node))
5249 return;
5250 [[fallthrough]];
5251 case ISD::SRA:
5252 case ISD::SHL:
5253 if (tryShiftAmountMod(N: Node))
5254 return;
5255 break;
5256
5257 case X86ISD::VPTERNLOG: {
5258 uint8_t Imm = Node->getConstantOperandVal(Num: 3);
5259 if (matchVPTERNLOG(Root: Node, ParentA: Node, ParentB: Node, ParentC: Node, A: Node->getOperand(Num: 0),
5260 B: Node->getOperand(Num: 1), C: Node->getOperand(Num: 2), Imm))
5261 return;
5262 break;
5263 }
5264
5265 case X86ISD::ANDNP:
5266 if (tryVPTERNLOG(N: Node))
5267 return;
5268 break;
5269
5270 case ISD::AND:
5271 if (NVT.isVector() && NVT.getVectorElementType() == MVT::i1) {
5272 // Try to form a masked VPTESTM. Operands can be in either order.
5273 SDValue N0 = Node->getOperand(Num: 0);
5274 SDValue N1 = Node->getOperand(Num: 1);
5275 if (N0.getOpcode() == ISD::SETCC && N0.hasOneUse() &&
5276 tryVPTESTM(Root: Node, Setcc: N0, InMask: N1))
5277 return;
5278 if (N1.getOpcode() == ISD::SETCC && N1.hasOneUse() &&
5279 tryVPTESTM(Root: Node, Setcc: N1, InMask: N0))
5280 return;
5281 }
5282
5283 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node)) {
5284 ReplaceUses(F: SDValue(Node, 0), T: SDValue(NewNode, 0));
5285 CurDAG->RemoveDeadNode(N: Node);
5286 return;
5287 }
5288 if (matchBitExtract(Node))
5289 return;
5290 if (AndImmShrink && shrinkAndImmediate(And: Node))
5291 return;
5292
5293 [[fallthrough]];
5294 case ISD::OR:
5295 case ISD::XOR:
5296 if (tryShrinkShlLogicImm(N: Node))
5297 return;
5298 if (Opcode == ISD::OR && tryMatchBitSelect(N: Node))
5299 return;
5300 if (tryVPTERNLOG(N: Node))
5301 return;
5302
5303 [[fallthrough]];
5304 case ISD::ADD:
5305 if (Opcode == ISD::ADD && matchBitExtract(Node))
5306 return;
5307 [[fallthrough]];
5308 case ISD::SUB: {
5309 // Try to avoid folding immediates with multiple uses for optsize.
5310 // This code tries to select to register form directly to avoid going
5311 // through the isel table which might fold the immediate. We can't change
5312 // the patterns on the add/sub/and/or/xor with immediate paterns in the
5313 // tablegen files to check immediate use count without making the patterns
5314 // unavailable to the fast-isel table.
5315 if (!CurDAG->shouldOptForSize())
5316 break;
5317
5318 // Only handle i8/i16/i32/i64.
5319 if (NVT != MVT::i8 && NVT != MVT::i16 && NVT != MVT::i32 && NVT != MVT::i64)
5320 break;
5321
5322 SDValue N0 = Node->getOperand(Num: 0);
5323 SDValue N1 = Node->getOperand(Num: 1);
5324
5325 auto *Cst = dyn_cast<ConstantSDNode>(Val&: N1);
5326 if (!Cst)
5327 break;
5328
5329 int64_t Val = Cst->getSExtValue();
5330
5331 // Make sure its an immediate that is considered foldable.
5332 // FIXME: Handle unsigned 32 bit immediates for 64-bit AND.
5333 if (!isInt<8>(x: Val) && !isInt<32>(x: Val))
5334 break;
5335
5336 // If this can match to INC/DEC, let it go.
5337 if (Opcode == ISD::ADD && (Val == 1 || Val == -1))
5338 break;
5339
5340 // Check if we should avoid folding this immediate.
5341 if (!shouldAvoidImmediateInstFormsForSize(N: N1.getNode()))
5342 break;
5343
5344 // We should not fold the immediate. So we need a register form instead.
5345 unsigned ROpc, MOpc;
5346 switch (NVT.SimpleTy) {
5347 default: llvm_unreachable("Unexpected VT!");
5348 case MVT::i8:
5349 switch (Opcode) {
5350 default: llvm_unreachable("Unexpected opcode!");
5351 case ISD::ADD:
5352 ROpc = GET_ND_IF_ENABLED(X86::ADD8rr);
5353 MOpc = GET_ND_IF_ENABLED(X86::ADD8rm);
5354 break;
5355 case ISD::SUB:
5356 ROpc = GET_ND_IF_ENABLED(X86::SUB8rr);
5357 MOpc = GET_ND_IF_ENABLED(X86::SUB8rm);
5358 break;
5359 case ISD::AND:
5360 ROpc = GET_ND_IF_ENABLED(X86::AND8rr);
5361 MOpc = GET_ND_IF_ENABLED(X86::AND8rm);
5362 break;
5363 case ISD::OR:
5364 ROpc = GET_ND_IF_ENABLED(X86::OR8rr);
5365 MOpc = GET_ND_IF_ENABLED(X86::OR8rm);
5366 break;
5367 case ISD::XOR:
5368 ROpc = GET_ND_IF_ENABLED(X86::XOR8rr);
5369 MOpc = GET_ND_IF_ENABLED(X86::XOR8rm);
5370 break;
5371 }
5372 break;
5373 case MVT::i16:
5374 switch (Opcode) {
5375 default: llvm_unreachable("Unexpected opcode!");
5376 case ISD::ADD:
5377 ROpc = GET_ND_IF_ENABLED(X86::ADD16rr);
5378 MOpc = GET_ND_IF_ENABLED(X86::ADD16rm);
5379 break;
5380 case ISD::SUB:
5381 ROpc = GET_ND_IF_ENABLED(X86::SUB16rr);
5382 MOpc = GET_ND_IF_ENABLED(X86::SUB16rm);
5383 break;
5384 case ISD::AND:
5385 ROpc = GET_ND_IF_ENABLED(X86::AND16rr);
5386 MOpc = GET_ND_IF_ENABLED(X86::AND16rm);
5387 break;
5388 case ISD::OR:
5389 ROpc = GET_ND_IF_ENABLED(X86::OR16rr);
5390 MOpc = GET_ND_IF_ENABLED(X86::OR16rm);
5391 break;
5392 case ISD::XOR:
5393 ROpc = GET_ND_IF_ENABLED(X86::XOR16rr);
5394 MOpc = GET_ND_IF_ENABLED(X86::XOR16rm);
5395 break;
5396 }
5397 break;
5398 case MVT::i32:
5399 switch (Opcode) {
5400 default: llvm_unreachable("Unexpected opcode!");
5401 case ISD::ADD:
5402 ROpc = GET_ND_IF_ENABLED(X86::ADD32rr);
5403 MOpc = GET_ND_IF_ENABLED(X86::ADD32rm);
5404 break;
5405 case ISD::SUB:
5406 ROpc = GET_ND_IF_ENABLED(X86::SUB32rr);
5407 MOpc = GET_ND_IF_ENABLED(X86::SUB32rm);
5408 break;
5409 case ISD::AND:
5410 ROpc = GET_ND_IF_ENABLED(X86::AND32rr);
5411 MOpc = GET_ND_IF_ENABLED(X86::AND32rm);
5412 break;
5413 case ISD::OR:
5414 ROpc = GET_ND_IF_ENABLED(X86::OR32rr);
5415 MOpc = GET_ND_IF_ENABLED(X86::OR32rm);
5416 break;
5417 case ISD::XOR:
5418 ROpc = GET_ND_IF_ENABLED(X86::XOR32rr);
5419 MOpc = GET_ND_IF_ENABLED(X86::XOR32rm);
5420 break;
5421 }
5422 break;
5423 case MVT::i64:
5424 switch (Opcode) {
5425 default: llvm_unreachable("Unexpected opcode!");
5426 case ISD::ADD:
5427 ROpc = GET_ND_IF_ENABLED(X86::ADD64rr);
5428 MOpc = GET_ND_IF_ENABLED(X86::ADD64rm);
5429 break;
5430 case ISD::SUB:
5431 ROpc = GET_ND_IF_ENABLED(X86::SUB64rr);
5432 MOpc = GET_ND_IF_ENABLED(X86::SUB64rm);
5433 break;
5434 case ISD::AND:
5435 ROpc = GET_ND_IF_ENABLED(X86::AND64rr);
5436 MOpc = GET_ND_IF_ENABLED(X86::AND64rm);
5437 break;
5438 case ISD::OR:
5439 ROpc = GET_ND_IF_ENABLED(X86::OR64rr);
5440 MOpc = GET_ND_IF_ENABLED(X86::OR64rm);
5441 break;
5442 case ISD::XOR:
5443 ROpc = GET_ND_IF_ENABLED(X86::XOR64rr);
5444 MOpc = GET_ND_IF_ENABLED(X86::XOR64rm);
5445 break;
5446 }
5447 break;
5448 }
5449
5450 // Ok this is a AND/OR/XOR/ADD/SUB with constant.
5451
5452 // If this is a not a subtract, we can still try to fold a load.
5453 if (Opcode != ISD::SUB) {
5454 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5455 if (tryFoldLoad(P: Node, N: N0, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4)) {
5456 SDValue Ops[] = { N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(i: 0) };
5457 SDVTList VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5458 MachineSDNode *CNode = CurDAG->getMachineNode(Opcode: MOpc, dl, VTs, Ops);
5459 // Update the chain.
5460 ReplaceUses(F: N0.getValue(R: 1), T: SDValue(CNode, 2));
5461 // Record the mem-refs
5462 CurDAG->setNodeMemRefs(N: CNode, NewMemRefs: {cast<LoadSDNode>(Val&: N0)->getMemOperand()});
5463 ReplaceUses(F: SDValue(Node, 0), T: SDValue(CNode, 0));
5464 CurDAG->RemoveDeadNode(N: Node);
5465 return;
5466 }
5467 }
5468
5469 CurDAG->SelectNodeTo(Node, ROpc, NVT, MVT::i32, N0, N1);
5470 return;
5471 }
5472
5473 case X86ISD::SMUL:
5474 // i16/i32/i64 are handled with isel patterns.
5475 if (NVT != MVT::i8)
5476 break;
5477 [[fallthrough]];
5478 case X86ISD::UMUL: {
5479 SDValue N0 = Node->getOperand(Num: 0);
5480 SDValue N1 = Node->getOperand(Num: 1);
5481
5482 unsigned LoReg, ROpc, MOpc;
5483 switch (NVT.SimpleTy) {
5484 default: llvm_unreachable("Unsupported VT!");
5485 case MVT::i8:
5486 LoReg = X86::AL;
5487 ROpc = Opcode == X86ISD::SMUL ? X86::IMUL8r : X86::MUL8r;
5488 MOpc = Opcode == X86ISD::SMUL ? X86::IMUL8m : X86::MUL8m;
5489 break;
5490 case MVT::i16:
5491 LoReg = X86::AX;
5492 ROpc = X86::MUL16r;
5493 MOpc = X86::MUL16m;
5494 break;
5495 case MVT::i32:
5496 LoReg = X86::EAX;
5497 ROpc = X86::MUL32r;
5498 MOpc = X86::MUL32m;
5499 break;
5500 case MVT::i64:
5501 LoReg = X86::RAX;
5502 ROpc = X86::MUL64r;
5503 MOpc = X86::MUL64m;
5504 break;
5505 }
5506
5507 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5508 bool FoldedLoad = tryFoldLoad(P: Node, N: N1, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4);
5509 // Multiply is commutative.
5510 if (!FoldedLoad) {
5511 FoldedLoad = tryFoldLoad(P: Node, N: N0, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4);
5512 if (FoldedLoad)
5513 std::swap(a&: N0, b&: N1);
5514 }
5515
5516 SDValue InGlue = CurDAG->getCopyToReg(Chain: CurDAG->getEntryNode(), dl, Reg: LoReg,
5517 N: N0, Glue: SDValue()).getValue(R: 1);
5518
5519 MachineSDNode *CNode;
5520 if (FoldedLoad) {
5521 // i16/i32/i64 use an instruction that produces a low and high result even
5522 // though only the low result is used.
5523 SDVTList VTs;
5524 if (NVT == MVT::i8)
5525 VTs = CurDAG->getVTList(NVT, MVT::i32, MVT::Other);
5526 else
5527 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32, MVT::Other);
5528
5529 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(i: 0),
5530 InGlue };
5531 CNode = CurDAG->getMachineNode(Opcode: MOpc, dl, VTs, Ops);
5532
5533 // Update the chain.
5534 ReplaceUses(N1.getValue(1), SDValue(CNode, NVT == MVT::i8 ? 2 : 3));
5535 // Record the mem-refs
5536 CurDAG->setNodeMemRefs(N: CNode, NewMemRefs: {cast<LoadSDNode>(Val&: N1)->getMemOperand()});
5537 } else {
5538 // i16/i32/i64 use an instruction that produces a low and high result even
5539 // though only the low result is used.
5540 SDVTList VTs;
5541 if (NVT == MVT::i8)
5542 VTs = CurDAG->getVTList(NVT, MVT::i32);
5543 else
5544 VTs = CurDAG->getVTList(NVT, NVT, MVT::i32);
5545
5546 CNode = CurDAG->getMachineNode(Opcode: ROpc, dl, VTs, Ops: {N1, InGlue});
5547 }
5548
5549 ReplaceUses(F: SDValue(Node, 0), T: SDValue(CNode, 0));
5550 ReplaceUses(SDValue(Node, 1), SDValue(CNode, NVT == MVT::i8 ? 1 : 2));
5551 CurDAG->RemoveDeadNode(N: Node);
5552 return;
5553 }
5554
5555 case ISD::SMUL_LOHI:
5556 case ISD::UMUL_LOHI: {
5557 SDValue N0 = Node->getOperand(Num: 0);
5558 SDValue N1 = Node->getOperand(Num: 1);
5559
5560 unsigned Opc, MOpc;
5561 unsigned LoReg, HiReg;
5562 bool IsSigned = Opcode == ISD::SMUL_LOHI;
5563 bool UseMULX = !IsSigned && Subtarget->hasBMI2();
5564 bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty();
5565 switch (NVT.SimpleTy) {
5566 default: llvm_unreachable("Unsupported VT!");
5567 case MVT::i32:
5568 Opc = UseMULXHi ? X86::MULX32Hrr
5569 : UseMULX ? GET_EGPR_IF_ENABLED(X86::MULX32rr)
5570 : IsSigned ? X86::IMUL32r
5571 : X86::MUL32r;
5572 MOpc = UseMULXHi ? X86::MULX32Hrm
5573 : UseMULX ? GET_EGPR_IF_ENABLED(X86::MULX32rm)
5574 : IsSigned ? X86::IMUL32m
5575 : X86::MUL32m;
5576 LoReg = UseMULX ? X86::EDX : X86::EAX;
5577 HiReg = X86::EDX;
5578 break;
5579 case MVT::i64:
5580 Opc = UseMULXHi ? X86::MULX64Hrr
5581 : UseMULX ? GET_EGPR_IF_ENABLED(X86::MULX64rr)
5582 : IsSigned ? X86::IMUL64r
5583 : X86::MUL64r;
5584 MOpc = UseMULXHi ? X86::MULX64Hrm
5585 : UseMULX ? GET_EGPR_IF_ENABLED(X86::MULX64rm)
5586 : IsSigned ? X86::IMUL64m
5587 : X86::MUL64m;
5588 LoReg = UseMULX ? X86::RDX : X86::RAX;
5589 HiReg = X86::RDX;
5590 break;
5591 }
5592
5593 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5594 bool foldedLoad = tryFoldLoad(P: Node, N: N1, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4);
5595 // Multiply is commutative.
5596 if (!foldedLoad) {
5597 foldedLoad = tryFoldLoad(P: Node, N: N0, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4);
5598 if (foldedLoad)
5599 std::swap(a&: N0, b&: N1);
5600 }
5601
5602 SDValue InGlue = CurDAG->getCopyToReg(Chain: CurDAG->getEntryNode(), dl, Reg: LoReg,
5603 N: N0, Glue: SDValue()).getValue(R: 1);
5604 SDValue ResHi, ResLo;
5605 if (foldedLoad) {
5606 SDValue Chain;
5607 MachineSDNode *CNode = nullptr;
5608 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(i: 0),
5609 InGlue };
5610 if (UseMULXHi) {
5611 SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other);
5612 CNode = CurDAG->getMachineNode(Opcode: MOpc, dl, VTs, Ops);
5613 ResHi = SDValue(CNode, 0);
5614 Chain = SDValue(CNode, 1);
5615 } else if (UseMULX) {
5616 SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other);
5617 CNode = CurDAG->getMachineNode(Opcode: MOpc, dl, VTs, Ops);
5618 ResHi = SDValue(CNode, 0);
5619 ResLo = SDValue(CNode, 1);
5620 Chain = SDValue(CNode, 2);
5621 } else {
5622 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5623 CNode = CurDAG->getMachineNode(Opcode: MOpc, dl, VTs, Ops);
5624 Chain = SDValue(CNode, 0);
5625 InGlue = SDValue(CNode, 1);
5626 }
5627
5628 // Update the chain.
5629 ReplaceUses(F: N1.getValue(R: 1), T: Chain);
5630 // Record the mem-refs
5631 CurDAG->setNodeMemRefs(N: CNode, NewMemRefs: {cast<LoadSDNode>(Val&: N1)->getMemOperand()});
5632 } else {
5633 SDValue Ops[] = { N1, InGlue };
5634 if (UseMULXHi) {
5635 SDVTList VTs = CurDAG->getVTList(VT: NVT);
5636 SDNode *CNode = CurDAG->getMachineNode(Opcode: Opc, dl, VTs, Ops);
5637 ResHi = SDValue(CNode, 0);
5638 } else if (UseMULX) {
5639 SDVTList VTs = CurDAG->getVTList(VT1: NVT, VT2: NVT);
5640 SDNode *CNode = CurDAG->getMachineNode(Opcode: Opc, dl, VTs, Ops);
5641 ResHi = SDValue(CNode, 0);
5642 ResLo = SDValue(CNode, 1);
5643 } else {
5644 SDVTList VTs = CurDAG->getVTList(MVT::Glue);
5645 SDNode *CNode = CurDAG->getMachineNode(Opcode: Opc, dl, VTs, Ops);
5646 InGlue = SDValue(CNode, 0);
5647 }
5648 }
5649
5650 // Copy the low half of the result, if it is needed.
5651 if (!SDValue(Node, 0).use_empty()) {
5652 if (!ResLo) {
5653 assert(LoReg && "Register for low half is not defined!");
5654 ResLo = CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl, Reg: LoReg,
5655 VT: NVT, Glue: InGlue);
5656 InGlue = ResLo.getValue(R: 2);
5657 }
5658 ReplaceUses(F: SDValue(Node, 0), T: ResLo);
5659 LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG);
5660 dbgs() << '\n');
5661 }
5662 // Copy the high half of the result, if it is needed.
5663 if (!SDValue(Node, 1).use_empty()) {
5664 if (!ResHi) {
5665 assert(HiReg && "Register for high half is not defined!");
5666 ResHi = CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl, Reg: HiReg,
5667 VT: NVT, Glue: InGlue);
5668 InGlue = ResHi.getValue(R: 2);
5669 }
5670 ReplaceUses(F: SDValue(Node, 1), T: ResHi);
5671 LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG);
5672 dbgs() << '\n');
5673 }
5674
5675 CurDAG->RemoveDeadNode(N: Node);
5676 return;
5677 }
5678
5679 case ISD::SDIVREM:
5680 case ISD::UDIVREM: {
5681 SDValue N0 = Node->getOperand(Num: 0);
5682 SDValue N1 = Node->getOperand(Num: 1);
5683
5684 unsigned ROpc, MOpc;
5685 bool isSigned = Opcode == ISD::SDIVREM;
5686 if (!isSigned) {
5687 switch (NVT.SimpleTy) {
5688 default: llvm_unreachable("Unsupported VT!");
5689 case MVT::i8: ROpc = X86::DIV8r; MOpc = X86::DIV8m; break;
5690 case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break;
5691 case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break;
5692 case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break;
5693 }
5694 } else {
5695 switch (NVT.SimpleTy) {
5696 default: llvm_unreachable("Unsupported VT!");
5697 case MVT::i8: ROpc = X86::IDIV8r; MOpc = X86::IDIV8m; break;
5698 case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break;
5699 case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break;
5700 case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break;
5701 }
5702 }
5703
5704 unsigned LoReg, HiReg, ClrReg;
5705 unsigned SExtOpcode;
5706 switch (NVT.SimpleTy) {
5707 default: llvm_unreachable("Unsupported VT!");
5708 case MVT::i8:
5709 LoReg = X86::AL; ClrReg = HiReg = X86::AH;
5710 SExtOpcode = 0; // Not used.
5711 break;
5712 case MVT::i16:
5713 LoReg = X86::AX; HiReg = X86::DX;
5714 ClrReg = X86::DX;
5715 SExtOpcode = X86::CWD;
5716 break;
5717 case MVT::i32:
5718 LoReg = X86::EAX; ClrReg = HiReg = X86::EDX;
5719 SExtOpcode = X86::CDQ;
5720 break;
5721 case MVT::i64:
5722 LoReg = X86::RAX; ClrReg = HiReg = X86::RDX;
5723 SExtOpcode = X86::CQO;
5724 break;
5725 }
5726
5727 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
5728 bool foldedLoad = tryFoldLoad(P: Node, N: N1, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4);
5729 bool signBitIsZero = CurDAG->SignBitIsZero(Op: N0);
5730
5731 SDValue InGlue;
5732 if (NVT == MVT::i8) {
5733 // Special case for div8, just use a move with zero extension to AX to
5734 // clear the upper 8 bits (AH).
5735 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Chain;
5736 MachineSDNode *Move;
5737 if (tryFoldLoad(P: Node, N: N0, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4)) {
5738 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N0.getOperand(i: 0) };
5739 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rm8
5740 : X86::MOVZX16rm8;
5741 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, MVT::Other, Ops);
5742 Chain = SDValue(Move, 1);
5743 ReplaceUses(F: N0.getValue(R: 1), T: Chain);
5744 // Record the mem-refs
5745 CurDAG->setNodeMemRefs(N: Move, NewMemRefs: {cast<LoadSDNode>(Val&: N0)->getMemOperand()});
5746 } else {
5747 unsigned Opc = (isSigned && !signBitIsZero) ? X86::MOVSX16rr8
5748 : X86::MOVZX16rr8;
5749 Move = CurDAG->getMachineNode(Opc, dl, MVT::i16, N0);
5750 Chain = CurDAG->getEntryNode();
5751 }
5752 Chain = CurDAG->getCopyToReg(Chain, dl, X86::AX, SDValue(Move, 0),
5753 SDValue());
5754 InGlue = Chain.getValue(R: 1);
5755 } else {
5756 InGlue =
5757 CurDAG->getCopyToReg(Chain: CurDAG->getEntryNode(), dl,
5758 Reg: LoReg, N: N0, Glue: SDValue()).getValue(R: 1);
5759 if (isSigned && !signBitIsZero) {
5760 // Sign extend the low part into the high part.
5761 InGlue =
5762 SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InGlue),0);
5763 } else {
5764 // Zero out the high part, effectively zero extending the input.
5765 SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32);
5766 SDValue ClrNode = SDValue(
5767 CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, std::nullopt), 0);
5768 switch (NVT.SimpleTy) {
5769 case MVT::i16:
5770 ClrNode =
5771 SDValue(CurDAG->getMachineNode(
5772 TargetOpcode::EXTRACT_SUBREG, dl, MVT::i16, ClrNode,
5773 CurDAG->getTargetConstant(X86::sub_16bit, dl,
5774 MVT::i32)),
5775 0);
5776 break;
5777 case MVT::i32:
5778 break;
5779 case MVT::i64:
5780 ClrNode =
5781 SDValue(CurDAG->getMachineNode(
5782 TargetOpcode::SUBREG_TO_REG, dl, MVT::i64,
5783 CurDAG->getTargetConstant(0, dl, MVT::i64), ClrNode,
5784 CurDAG->getTargetConstant(X86::sub_32bit, dl,
5785 MVT::i32)),
5786 0);
5787 break;
5788 default:
5789 llvm_unreachable("Unexpected division source");
5790 }
5791
5792 InGlue = CurDAG->getCopyToReg(Chain: CurDAG->getEntryNode(), dl, Reg: ClrReg,
5793 N: ClrNode, Glue: InGlue).getValue(R: 1);
5794 }
5795 }
5796
5797 if (foldedLoad) {
5798 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(i: 0),
5799 InGlue };
5800 MachineSDNode *CNode =
5801 CurDAG->getMachineNode(MOpc, dl, MVT::Other, MVT::Glue, Ops);
5802 InGlue = SDValue(CNode, 1);
5803 // Update the chain.
5804 ReplaceUses(F: N1.getValue(R: 1), T: SDValue(CNode, 0));
5805 // Record the mem-refs
5806 CurDAG->setNodeMemRefs(N: CNode, NewMemRefs: {cast<LoadSDNode>(Val&: N1)->getMemOperand()});
5807 } else {
5808 InGlue =
5809 SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InGlue), 0);
5810 }
5811
5812 // Prevent use of AH in a REX instruction by explicitly copying it to
5813 // an ABCD_L register.
5814 //
5815 // The current assumption of the register allocator is that isel
5816 // won't generate explicit references to the GR8_ABCD_H registers. If
5817 // the allocator and/or the backend get enhanced to be more robust in
5818 // that regard, this can be, and should be, removed.
5819 if (HiReg == X86::AH && !SDValue(Node, 1).use_empty()) {
5820 SDValue AHCopy = CurDAG->getRegister(X86::AH, MVT::i8);
5821 unsigned AHExtOpcode =
5822 isSigned ? X86::MOVSX32rr8_NOREX : X86::MOVZX32rr8_NOREX;
5823
5824 SDNode *RNode = CurDAG->getMachineNode(AHExtOpcode, dl, MVT::i32,
5825 MVT::Glue, AHCopy, InGlue);
5826 SDValue Result(RNode, 0);
5827 InGlue = SDValue(RNode, 1);
5828
5829 Result =
5830 CurDAG->getTargetExtractSubreg(X86::sub_8bit, dl, MVT::i8, Result);
5831
5832 ReplaceUses(F: SDValue(Node, 1), T: Result);
5833 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5834 dbgs() << '\n');
5835 }
5836 // Copy the division (low) result, if it is needed.
5837 if (!SDValue(Node, 0).use_empty()) {
5838 SDValue Result = CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl,
5839 Reg: LoReg, VT: NVT, Glue: InGlue);
5840 InGlue = Result.getValue(R: 2);
5841 ReplaceUses(F: SDValue(Node, 0), T: Result);
5842 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5843 dbgs() << '\n');
5844 }
5845 // Copy the remainder (high) result, if it is needed.
5846 if (!SDValue(Node, 1).use_empty()) {
5847 SDValue Result = CurDAG->getCopyFromReg(Chain: CurDAG->getEntryNode(), dl,
5848 Reg: HiReg, VT: NVT, Glue: InGlue);
5849 InGlue = Result.getValue(R: 2);
5850 ReplaceUses(F: SDValue(Node, 1), T: Result);
5851 LLVM_DEBUG(dbgs() << "=> "; Result.getNode()->dump(CurDAG);
5852 dbgs() << '\n');
5853 }
5854 CurDAG->RemoveDeadNode(N: Node);
5855 return;
5856 }
5857
5858 case X86ISD::FCMP:
5859 case X86ISD::STRICT_FCMP:
5860 case X86ISD::STRICT_FCMPS: {
5861 bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP ||
5862 Node->getOpcode() == X86ISD::STRICT_FCMPS;
5863 SDValue N0 = Node->getOperand(Num: IsStrictCmp ? 1 : 0);
5864 SDValue N1 = Node->getOperand(Num: IsStrictCmp ? 2 : 1);
5865
5866 // Save the original VT of the compare.
5867 MVT CmpVT = N0.getSimpleValueType();
5868
5869 // Floating point needs special handling if we don't have FCOMI.
5870 if (Subtarget->canUseCMOV())
5871 break;
5872
5873 bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS;
5874
5875 unsigned Opc;
5876 switch (CmpVT.SimpleTy) {
5877 default: llvm_unreachable("Unexpected type!");
5878 case MVT::f32:
5879 Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32;
5880 break;
5881 case MVT::f64:
5882 Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64;
5883 break;
5884 case MVT::f80:
5885 Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80;
5886 break;
5887 }
5888
5889 SDValue Chain =
5890 IsStrictCmp ? Node->getOperand(Num: 0) : CurDAG->getEntryNode();
5891 SDValue Glue;
5892 if (IsStrictCmp) {
5893 SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue);
5894 Chain = SDValue(CurDAG->getMachineNode(Opcode: Opc, dl, VTs, Ops: {N0, N1, Chain}), 0);
5895 Glue = Chain.getValue(R: 1);
5896 } else {
5897 Glue = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N0, N1), 0);
5898 }
5899
5900 // Move FPSW to AX.
5901 SDValue FNSTSW =
5902 SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, Glue), 0);
5903
5904 // Extract upper 8-bits of AX.
5905 SDValue Extract =
5906 CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW);
5907
5908 // Move AH into flags.
5909 // Some 64-bit targets lack SAHF support, but they do support FCOMI.
5910 assert(Subtarget->canUseLAHFSAHF() &&
5911 "Target doesn't support SAHF or FCOMI?");
5912 SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue());
5913 Chain = AH;
5914 SDValue SAHF = SDValue(
5915 CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0);
5916
5917 if (IsStrictCmp)
5918 ReplaceUses(F: SDValue(Node, 1), T: Chain);
5919
5920 ReplaceUses(F: SDValue(Node, 0), T: SAHF);
5921 CurDAG->RemoveDeadNode(N: Node);
5922 return;
5923 }
5924
5925 case X86ISD::CMP: {
5926 SDValue N0 = Node->getOperand(Num: 0);
5927 SDValue N1 = Node->getOperand(Num: 1);
5928
5929 // Optimizations for TEST compares.
5930 if (!isNullConstant(V: N1))
5931 break;
5932
5933 // Save the original VT of the compare.
5934 MVT CmpVT = N0.getSimpleValueType();
5935
5936 // If we are comparing (and (shr X, C, Mask) with 0, emit a BEXTR followed
5937 // by a test instruction. The test should be removed later by
5938 // analyzeCompare if we are using only the zero flag.
5939 // TODO: Should we check the users and use the BEXTR flags directly?
5940 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
5941 if (MachineSDNode *NewNode = matchBEXTRFromAndImm(Node: N0.getNode())) {
5942 unsigned TestOpc = CmpVT == MVT::i64 ? X86::TEST64rr
5943 : X86::TEST32rr;
5944 SDValue BEXTR = SDValue(NewNode, 0);
5945 NewNode = CurDAG->getMachineNode(TestOpc, dl, MVT::i32, BEXTR, BEXTR);
5946 ReplaceUses(F: SDValue(Node, 0), T: SDValue(NewNode, 0));
5947 CurDAG->RemoveDeadNode(N: Node);
5948 return;
5949 }
5950 }
5951
5952 // We can peek through truncates, but we need to be careful below.
5953 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse())
5954 N0 = N0.getOperand(i: 0);
5955
5956 // Look for (X86cmp (and $op, $imm), 0) and see if we can convert it to
5957 // use a smaller encoding.
5958 // Look past the truncate if CMP is the only use of it.
5959 if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
5960 N0.getValueType() != MVT::i8) {
5961 auto *MaskC = dyn_cast<ConstantSDNode>(Val: N0.getOperand(i: 1));
5962 if (!MaskC)
5963 break;
5964
5965 // We may have looked through a truncate so mask off any bits that
5966 // shouldn't be part of the compare.
5967 uint64_t Mask = MaskC->getZExtValue();
5968 Mask &= maskTrailingOnes<uint64_t>(N: CmpVT.getScalarSizeInBits());
5969
5970 // Check if we can replace AND+IMM{32,64} with a shift. This is possible
5971 // for masks like 0xFF000000 or 0x00FFFFFF and if we care only about the
5972 // zero flag.
5973 if (CmpVT == MVT::i64 && !isInt<8>(Mask) && isShiftedMask_64(Mask) &&
5974 onlyUsesZeroFlag(SDValue(Node, 0))) {
5975 unsigned ShiftOpcode = ISD::DELETED_NODE;
5976 unsigned ShiftAmt;
5977 unsigned SubRegIdx;
5978 MVT SubRegVT;
5979 unsigned TestOpcode;
5980 unsigned LeadingZeros = llvm::countl_zero(Val: Mask);
5981 unsigned TrailingZeros = llvm::countr_zero(Val: Mask);
5982
5983 // With leading/trailing zeros, the transform is profitable if we can
5984 // eliminate a movabsq or shrink a 32-bit immediate to 8-bit without
5985 // incurring any extra register moves.
5986 bool SavesBytes = !isInt<32>(x: Mask) || N0.getOperand(i: 0).hasOneUse();
5987 if (LeadingZeros == 0 && SavesBytes) {
5988 // If the mask covers the most significant bit, then we can replace
5989 // TEST+AND with a SHR and check eflags.
5990 // This emits a redundant TEST which is subsequently eliminated.
5991 ShiftOpcode = GET_ND_IF_ENABLED(X86::SHR64ri);
5992 ShiftAmt = TrailingZeros;
5993 SubRegIdx = 0;
5994 TestOpcode = X86::TEST64rr;
5995 } else if (TrailingZeros == 0 && SavesBytes) {
5996 // If the mask covers the least significant bit, then we can replace
5997 // TEST+AND with a SHL and check eflags.
5998 // This emits a redundant TEST which is subsequently eliminated.
5999 ShiftOpcode = GET_ND_IF_ENABLED(X86::SHL64ri);
6000 ShiftAmt = LeadingZeros;
6001 SubRegIdx = 0;
6002 TestOpcode = X86::TEST64rr;
6003 } else if (MaskC->hasOneUse() && !isInt<32>(x: Mask)) {
6004 // If the shifted mask extends into the high half and is 8/16/32 bits
6005 // wide, then replace it with a SHR and a TEST8rr/TEST16rr/TEST32rr.
6006 unsigned PopCount = 64 - LeadingZeros - TrailingZeros;
6007 if (PopCount == 8) {
6008 ShiftOpcode = GET_ND_IF_ENABLED(X86::SHR64ri);
6009 ShiftAmt = TrailingZeros;
6010 SubRegIdx = X86::sub_8bit;
6011 SubRegVT = MVT::i8;
6012 TestOpcode = X86::TEST8rr;
6013 } else if (PopCount == 16) {
6014 ShiftOpcode = GET_ND_IF_ENABLED(X86::SHR64ri);
6015 ShiftAmt = TrailingZeros;
6016 SubRegIdx = X86::sub_16bit;
6017 SubRegVT = MVT::i16;
6018 TestOpcode = X86::TEST16rr;
6019 } else if (PopCount == 32) {
6020 ShiftOpcode = GET_ND_IF_ENABLED(X86::SHR64ri);
6021 ShiftAmt = TrailingZeros;
6022 SubRegIdx = X86::sub_32bit;
6023 SubRegVT = MVT::i32;
6024 TestOpcode = X86::TEST32rr;
6025 }
6026 }
6027 if (ShiftOpcode != ISD::DELETED_NODE) {
6028 SDValue ShiftC = CurDAG->getTargetConstant(ShiftAmt, dl, MVT::i64);
6029 SDValue Shift = SDValue(
6030 CurDAG->getMachineNode(ShiftOpcode, dl, MVT::i64, MVT::i32,
6031 N0.getOperand(0), ShiftC),
6032 0);
6033 if (SubRegIdx != 0) {
6034 Shift =
6035 CurDAG->getTargetExtractSubreg(SRIdx: SubRegIdx, DL: dl, VT: SubRegVT, Operand: Shift);
6036 }
6037 MachineSDNode *Test =
6038 CurDAG->getMachineNode(TestOpcode, dl, MVT::i32, Shift, Shift);
6039 ReplaceNode(F: Node, T: Test);
6040 return;
6041 }
6042 }
6043
6044 MVT VT;
6045 int SubRegOp;
6046 unsigned ROpc, MOpc;
6047
6048 // For each of these checks we need to be careful if the sign flag is
6049 // being used. It is only safe to use the sign flag in two conditions,
6050 // either the sign bit in the shrunken mask is zero or the final test
6051 // size is equal to the original compare size.
6052
6053 if (isUInt<8>(Mask) &&
6054 (!(Mask & 0x80) || CmpVT == MVT::i8 ||
6055 hasNoSignFlagUses(SDValue(Node, 0)))) {
6056 // For example, convert "testl %eax, $8" to "testb %al, $8"
6057 VT = MVT::i8;
6058 SubRegOp = X86::sub_8bit;
6059 ROpc = X86::TEST8ri;
6060 MOpc = X86::TEST8mi;
6061 } else if (OptForMinSize && isUInt<16>(Mask) &&
6062 (!(Mask & 0x8000) || CmpVT == MVT::i16 ||
6063 hasNoSignFlagUses(SDValue(Node, 0)))) {
6064 // For example, "testl %eax, $32776" to "testw %ax, $32776".
6065 // NOTE: We only want to form TESTW instructions if optimizing for
6066 // min size. Otherwise we only save one byte and possibly get a length
6067 // changing prefix penalty in the decoders.
6068 VT = MVT::i16;
6069 SubRegOp = X86::sub_16bit;
6070 ROpc = X86::TEST16ri;
6071 MOpc = X86::TEST16mi;
6072 } else if (isUInt<32>(Mask) && N0.getValueType() != MVT::i16 &&
6073 ((!(Mask & 0x80000000) &&
6074 // Without minsize 16-bit Cmps can get here so we need to
6075 // be sure we calculate the correct sign flag if needed.
6076 (CmpVT != MVT::i16 || !(Mask & 0x8000))) ||
6077 CmpVT == MVT::i32 ||
6078 hasNoSignFlagUses(SDValue(Node, 0)))) {
6079 // For example, "testq %rax, $268468232" to "testl %eax, $268468232".
6080 // NOTE: We only want to run that transform if N0 is 32 or 64 bits.
6081 // Otherwize, we find ourselves in a position where we have to do
6082 // promotion. If previous passes did not promote the and, we assume
6083 // they had a good reason not to and do not promote here.
6084 VT = MVT::i32;
6085 SubRegOp = X86::sub_32bit;
6086 ROpc = X86::TEST32ri;
6087 MOpc = X86::TEST32mi;
6088 } else {
6089 // No eligible transformation was found.
6090 break;
6091 }
6092
6093 SDValue Imm = CurDAG->getTargetConstant(Val: Mask, DL: dl, VT);
6094 SDValue Reg = N0.getOperand(i: 0);
6095
6096 // Emit a testl or testw.
6097 MachineSDNode *NewNode;
6098 SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4;
6099 if (tryFoldLoad(Root: Node, P: N0.getNode(), N: Reg, Base&: Tmp0, Scale&: Tmp1, Index&: Tmp2, Disp&: Tmp3, Segment&: Tmp4)) {
6100 if (auto *LoadN = dyn_cast<LoadSDNode>(Val: N0.getOperand(i: 0).getNode())) {
6101 if (!LoadN->isSimple()) {
6102 unsigned NumVolBits = LoadN->getValueType(ResNo: 0).getSizeInBits();
6103 if ((MOpc == X86::TEST8mi && NumVolBits != 8) ||
6104 (MOpc == X86::TEST16mi && NumVolBits != 16) ||
6105 (MOpc == X86::TEST32mi && NumVolBits != 32))
6106 break;
6107 }
6108 }
6109 SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, Imm,
6110 Reg.getOperand(i: 0) };
6111 NewNode = CurDAG->getMachineNode(MOpc, dl, MVT::i32, MVT::Other, Ops);
6112 // Update the chain.
6113 ReplaceUses(F: Reg.getValue(R: 1), T: SDValue(NewNode, 1));
6114 // Record the mem-refs
6115 CurDAG->setNodeMemRefs(N: NewNode,
6116 NewMemRefs: {cast<LoadSDNode>(Val&: Reg)->getMemOperand()});
6117 } else {
6118 // Extract the subregister if necessary.
6119 if (N0.getValueType() != VT)
6120 Reg = CurDAG->getTargetExtractSubreg(SRIdx: SubRegOp, DL: dl, VT, Operand: Reg);
6121
6122 NewNode = CurDAG->getMachineNode(ROpc, dl, MVT::i32, Reg, Imm);
6123 }
6124 // Replace CMP with TEST.
6125 ReplaceNode(F: Node, T: NewNode);
6126 return;
6127 }
6128 break;
6129 }
6130 case X86ISD::PCMPISTR: {
6131 if (!Subtarget->hasSSE42())
6132 break;
6133
6134 bool NeedIndex = !SDValue(Node, 0).use_empty();
6135 bool NeedMask = !SDValue(Node, 1).use_empty();
6136 // We can't fold a load if we are going to make two instructions.
6137 bool MayFoldLoad = !NeedIndex || !NeedMask;
6138
6139 MachineSDNode *CNode;
6140 if (NeedMask) {
6141 unsigned ROpc =
6142 Subtarget->hasAVX() ? X86::VPCMPISTRMrri : X86::PCMPISTRMrri;
6143 unsigned MOpc =
6144 Subtarget->hasAVX() ? X86::VPCMPISTRMrmi : X86::PCMPISTRMrmi;
6145 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node);
6146 ReplaceUses(F: SDValue(Node, 1), T: SDValue(CNode, 0));
6147 }
6148 if (NeedIndex || !NeedMask) {
6149 unsigned ROpc =
6150 Subtarget->hasAVX() ? X86::VPCMPISTRIrri : X86::PCMPISTRIrri;
6151 unsigned MOpc =
6152 Subtarget->hasAVX() ? X86::VPCMPISTRIrmi : X86::PCMPISTRIrmi;
6153 CNode = emitPCMPISTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node);
6154 ReplaceUses(F: SDValue(Node, 0), T: SDValue(CNode, 0));
6155 }
6156
6157 // Connect the flag usage to the last instruction created.
6158 ReplaceUses(F: SDValue(Node, 2), T: SDValue(CNode, 1));
6159 CurDAG->RemoveDeadNode(N: Node);
6160 return;
6161 }
6162 case X86ISD::PCMPESTR: {
6163 if (!Subtarget->hasSSE42())
6164 break;
6165
6166 // Copy the two implicit register inputs.
6167 SDValue InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EAX,
6168 Node->getOperand(1),
6169 SDValue()).getValue(1);
6170 InGlue = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EDX,
6171 Node->getOperand(3), InGlue).getValue(1);
6172
6173 bool NeedIndex = !SDValue(Node, 0).use_empty();
6174 bool NeedMask = !SDValue(Node, 1).use_empty();
6175 // We can't fold a load if we are going to make two instructions.
6176 bool MayFoldLoad = !NeedIndex || !NeedMask;
6177
6178 MachineSDNode *CNode;
6179 if (NeedMask) {
6180 unsigned ROpc =
6181 Subtarget->hasAVX() ? X86::VPCMPESTRMrri : X86::PCMPESTRMrri;
6182 unsigned MOpc =
6183 Subtarget->hasAVX() ? X86::VPCMPESTRMrmi : X86::PCMPESTRMrmi;
6184 CNode =
6185 emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::v16i8, Node, InGlue);
6186 ReplaceUses(F: SDValue(Node, 1), T: SDValue(CNode, 0));
6187 }
6188 if (NeedIndex || !NeedMask) {
6189 unsigned ROpc =
6190 Subtarget->hasAVX() ? X86::VPCMPESTRIrri : X86::PCMPESTRIrri;
6191 unsigned MOpc =
6192 Subtarget->hasAVX() ? X86::VPCMPESTRIrmi : X86::PCMPESTRIrmi;
6193 CNode = emitPCMPESTR(ROpc, MOpc, MayFoldLoad, dl, MVT::i32, Node, InGlue);
6194 ReplaceUses(F: SDValue(Node, 0), T: SDValue(CNode, 0));
6195 }
6196 // Connect the flag usage to the last instruction created.
6197 ReplaceUses(F: SDValue(Node, 2), T: SDValue(CNode, 1));
6198 CurDAG->RemoveDeadNode(N: Node);
6199 return;
6200 }
6201
6202 case ISD::SETCC: {
6203 if (NVT.isVector() && tryVPTESTM(Root: Node, Setcc: SDValue(Node, 0), InMask: SDValue()))
6204 return;
6205
6206 break;
6207 }
6208
6209 case ISD::STORE:
6210 if (foldLoadStoreIntoMemOperand(Node))
6211 return;
6212 break;
6213
6214 case X86ISD::SETCC_CARRY: {
6215 MVT VT = Node->getSimpleValueType(ResNo: 0);
6216 SDValue Result;
6217 if (Subtarget->hasSBBDepBreaking()) {
6218 // We have to do this manually because tblgen will put the eflags copy in
6219 // the wrong place if we use an extract_subreg in the pattern.
6220 // Copy flags to the EFLAGS register and glue it to next node.
6221 SDValue EFLAGS =
6222 CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS,
6223 Node->getOperand(1), SDValue());
6224
6225 // Create a 64-bit instruction if the result is 64-bits otherwise use the
6226 // 32-bit version.
6227 unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r;
6228 MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32;
6229 Result = SDValue(
6230 CurDAG->getMachineNode(Opcode: Opc, dl, VT: SetVT, Op1: EFLAGS, Op2: EFLAGS.getValue(R: 1)),
6231 0);
6232 } else {
6233 // The target does not recognize sbb with the same reg operand as a
6234 // no-source idiom, so we explicitly zero the input values.
6235 Result = getSBBZero(N: Node);
6236 }
6237
6238 // For less than 32-bits we need to extract from the 32-bit node.
6239 if (VT == MVT::i8 || VT == MVT::i16) {
6240 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6241 Result = CurDAG->getTargetExtractSubreg(SRIdx: SubIndex, DL: dl, VT, Operand: Result);
6242 }
6243
6244 ReplaceUses(F: SDValue(Node, 0), T: Result);
6245 CurDAG->RemoveDeadNode(N: Node);
6246 return;
6247 }
6248 case X86ISD::SBB: {
6249 if (isNullConstant(V: Node->getOperand(Num: 0)) &&
6250 isNullConstant(V: Node->getOperand(Num: 1))) {
6251 SDValue Result = getSBBZero(N: Node);
6252
6253 // Replace the flag use.
6254 ReplaceUses(F: SDValue(Node, 1), T: Result.getValue(R: 1));
6255
6256 // Replace the result use.
6257 if (!SDValue(Node, 0).use_empty()) {
6258 // For less than 32-bits we need to extract from the 32-bit node.
6259 MVT VT = Node->getSimpleValueType(ResNo: 0);
6260 if (VT == MVT::i8 || VT == MVT::i16) {
6261 int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit;
6262 Result = CurDAG->getTargetExtractSubreg(SRIdx: SubIndex, DL: dl, VT, Operand: Result);
6263 }
6264 ReplaceUses(F: SDValue(Node, 0), T: Result);
6265 }
6266
6267 CurDAG->RemoveDeadNode(N: Node);
6268 return;
6269 }
6270 break;
6271 }
6272 case X86ISD::MGATHER: {
6273 auto *Mgt = cast<X86MaskedGatherSDNode>(Val: Node);
6274 SDValue IndexOp = Mgt->getIndex();
6275 SDValue Mask = Mgt->getMask();
6276 MVT IndexVT = IndexOp.getSimpleValueType();
6277 MVT ValueVT = Node->getSimpleValueType(ResNo: 0);
6278 MVT MaskVT = Mask.getSimpleValueType();
6279
6280 // This is just to prevent crashes if the nodes are malformed somehow. We're
6281 // otherwise only doing loose type checking in here based on type what
6282 // a type constraint would say just like table based isel.
6283 if (!ValueVT.isVector() || !MaskVT.isVector())
6284 break;
6285
6286 unsigned NumElts = ValueVT.getVectorNumElements();
6287 MVT ValueSVT = ValueVT.getVectorElementType();
6288
6289 bool IsFP = ValueSVT.isFloatingPoint();
6290 unsigned EltSize = ValueSVT.getSizeInBits();
6291
6292 unsigned Opc = 0;
6293 bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1;
6294 if (AVX512Gather) {
6295 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6296 Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm;
6297 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6298 Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm;
6299 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6300 Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm;
6301 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6302 Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm;
6303 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6304 Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm;
6305 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6306 Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm;
6307 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6308 Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm;
6309 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6310 Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm;
6311 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6312 Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm;
6313 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6314 Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm;
6315 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6316 Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm;
6317 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6318 Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm;
6319 } else {
6320 assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() &&
6321 "Unexpected mask VT!");
6322 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6323 Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm;
6324 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6325 Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm;
6326 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6327 Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm;
6328 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6329 Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm;
6330 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6331 Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm;
6332 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6333 Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm;
6334 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6335 Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm;
6336 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6337 Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm;
6338 }
6339
6340 if (!Opc)
6341 break;
6342
6343 SDValue Base, Scale, Index, Disp, Segment;
6344 if (!selectVectorAddr(Parent: Mgt, BasePtr: Mgt->getBasePtr(), IndexOp, ScaleOp: Mgt->getScale(),
6345 Base, Scale, Index, Disp, Segment))
6346 break;
6347
6348 SDValue PassThru = Mgt->getPassThru();
6349 SDValue Chain = Mgt->getChain();
6350 // Gather instructions have a mask output not in the ISD node.
6351 SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other);
6352
6353 MachineSDNode *NewNode;
6354 if (AVX512Gather) {
6355 SDValue Ops[] = {PassThru, Mask, Base, Scale,
6356 Index, Disp, Segment, Chain};
6357 NewNode = CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(dl), VTs, Ops);
6358 } else {
6359 SDValue Ops[] = {PassThru, Base, Scale, Index,
6360 Disp, Segment, Mask, Chain};
6361 NewNode = CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(dl), VTs, Ops);
6362 }
6363 CurDAG->setNodeMemRefs(N: NewNode, NewMemRefs: {Mgt->getMemOperand()});
6364 ReplaceUses(F: SDValue(Node, 0), T: SDValue(NewNode, 0));
6365 ReplaceUses(F: SDValue(Node, 1), T: SDValue(NewNode, 2));
6366 CurDAG->RemoveDeadNode(N: Node);
6367 return;
6368 }
6369 case X86ISD::MSCATTER: {
6370 auto *Sc = cast<X86MaskedScatterSDNode>(Val: Node);
6371 SDValue Value = Sc->getValue();
6372 SDValue IndexOp = Sc->getIndex();
6373 MVT IndexVT = IndexOp.getSimpleValueType();
6374 MVT ValueVT = Value.getSimpleValueType();
6375
6376 // This is just to prevent crashes if the nodes are malformed somehow. We're
6377 // otherwise only doing loose type checking in here based on type what
6378 // a type constraint would say just like table based isel.
6379 if (!ValueVT.isVector())
6380 break;
6381
6382 unsigned NumElts = ValueVT.getVectorNumElements();
6383 MVT ValueSVT = ValueVT.getVectorElementType();
6384
6385 bool IsFP = ValueSVT.isFloatingPoint();
6386 unsigned EltSize = ValueSVT.getSizeInBits();
6387
6388 unsigned Opc;
6389 if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32)
6390 Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr;
6391 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32)
6392 Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr;
6393 else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32)
6394 Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr;
6395 else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64)
6396 Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr;
6397 else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64)
6398 Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr;
6399 else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64)
6400 Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr;
6401 else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32)
6402 Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr;
6403 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32)
6404 Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr;
6405 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32)
6406 Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr;
6407 else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64)
6408 Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr;
6409 else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64)
6410 Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr;
6411 else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64)
6412 Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr;
6413 else
6414 break;
6415
6416 SDValue Base, Scale, Index, Disp, Segment;
6417 if (!selectVectorAddr(Parent: Sc, BasePtr: Sc->getBasePtr(), IndexOp, ScaleOp: Sc->getScale(),
6418 Base, Scale, Index, Disp, Segment))
6419 break;
6420
6421 SDValue Mask = Sc->getMask();
6422 SDValue Chain = Sc->getChain();
6423 // Scatter instructions have a mask output not in the ISD node.
6424 SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other);
6425 SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain};
6426
6427 MachineSDNode *NewNode = CurDAG->getMachineNode(Opcode: Opc, dl: SDLoc(dl), VTs, Ops);
6428 CurDAG->setNodeMemRefs(N: NewNode, NewMemRefs: {Sc->getMemOperand()});
6429 ReplaceUses(F: SDValue(Node, 0), T: SDValue(NewNode, 1));
6430 CurDAG->RemoveDeadNode(N: Node);
6431 return;
6432 }
6433 case ISD::PREALLOCATED_SETUP: {
6434 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6435 auto CallId = MFI->getPreallocatedIdForCallSite(
6436 CS: cast<SrcValueSDNode>(Val: Node->getOperand(Num: 1))->getValue());
6437 SDValue Chain = Node->getOperand(Num: 0);
6438 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6439 MachineSDNode *New = CurDAG->getMachineNode(
6440 TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain);
6441 ReplaceUses(F: SDValue(Node, 0), T: SDValue(New, 0)); // Chain
6442 CurDAG->RemoveDeadNode(N: Node);
6443 return;
6444 }
6445 case ISD::PREALLOCATED_ARG: {
6446 auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>();
6447 auto CallId = MFI->getPreallocatedIdForCallSite(
6448 CS: cast<SrcValueSDNode>(Val: Node->getOperand(Num: 1))->getValue());
6449 SDValue Chain = Node->getOperand(Num: 0);
6450 SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32);
6451 SDValue ArgIndex = Node->getOperand(Num: 2);
6452 SDValue Ops[3];
6453 Ops[0] = CallIdValue;
6454 Ops[1] = ArgIndex;
6455 Ops[2] = Chain;
6456 MachineSDNode *New = CurDAG->getMachineNode(
6457 TargetOpcode::PREALLOCATED_ARG, dl,
6458 CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()),
6459 MVT::Other),
6460 Ops);
6461 ReplaceUses(F: SDValue(Node, 0), T: SDValue(New, 0)); // Arg pointer
6462 ReplaceUses(F: SDValue(Node, 1), T: SDValue(New, 1)); // Chain
6463 CurDAG->RemoveDeadNode(N: Node);
6464 return;
6465 }
6466 case X86ISD::AESENCWIDE128KL:
6467 case X86ISD::AESDECWIDE128KL:
6468 case X86ISD::AESENCWIDE256KL:
6469 case X86ISD::AESDECWIDE256KL: {
6470 if (!Subtarget->hasWIDEKL())
6471 break;
6472
6473 unsigned Opcode;
6474 switch (Node->getOpcode()) {
6475 default:
6476 llvm_unreachable("Unexpected opcode!");
6477 case X86ISD::AESENCWIDE128KL:
6478 Opcode = X86::AESENCWIDE128KL;
6479 break;
6480 case X86ISD::AESDECWIDE128KL:
6481 Opcode = X86::AESDECWIDE128KL;
6482 break;
6483 case X86ISD::AESENCWIDE256KL:
6484 Opcode = X86::AESENCWIDE256KL;
6485 break;
6486 case X86ISD::AESDECWIDE256KL:
6487 Opcode = X86::AESDECWIDE256KL;
6488 break;
6489 }
6490
6491 SDValue Chain = Node->getOperand(Num: 0);
6492 SDValue Addr = Node->getOperand(Num: 1);
6493
6494 SDValue Base, Scale, Index, Disp, Segment;
6495 if (!selectAddr(Parent: Node, N: Addr, Base, Scale, Index, Disp, Segment))
6496 break;
6497
6498 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM0, Node->getOperand(2),
6499 SDValue());
6500 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM1, Node->getOperand(3),
6501 Chain.getValue(1));
6502 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM2, Node->getOperand(4),
6503 Chain.getValue(1));
6504 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM3, Node->getOperand(5),
6505 Chain.getValue(1));
6506 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM4, Node->getOperand(6),
6507 Chain.getValue(1));
6508 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM5, Node->getOperand(7),
6509 Chain.getValue(1));
6510 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM6, Node->getOperand(8),
6511 Chain.getValue(1));
6512 Chain = CurDAG->getCopyToReg(Chain, dl, X86::XMM7, Node->getOperand(9),
6513 Chain.getValue(1));
6514
6515 MachineSDNode *Res = CurDAG->getMachineNode(
6516 Opcode, dl, VTs: Node->getVTList(),
6517 Ops: {Base, Scale, Index, Disp, Segment, Chain, Chain.getValue(R: 1)});
6518 CurDAG->setNodeMemRefs(N: Res, NewMemRefs: cast<MemSDNode>(Val: Node)->getMemOperand());
6519 ReplaceNode(F: Node, T: Res);
6520 return;
6521 }
6522 }
6523
6524 SelectCode(Node);
6525}
6526
6527bool X86DAGToDAGISel::SelectInlineAsmMemoryOperand(
6528 const SDValue &Op, InlineAsm::ConstraintCode ConstraintID,
6529 std::vector<SDValue> &OutOps) {
6530 SDValue Op0, Op1, Op2, Op3, Op4;
6531 switch (ConstraintID) {
6532 default:
6533 llvm_unreachable("Unexpected asm memory constraint");
6534 case InlineAsm::ConstraintCode::o: // offsetable ??
6535 case InlineAsm::ConstraintCode::v: // not offsetable ??
6536 case InlineAsm::ConstraintCode::m: // memory
6537 case InlineAsm::ConstraintCode::X:
6538 case InlineAsm::ConstraintCode::p: // address
6539 if (!selectAddr(Parent: nullptr, N: Op, Base&: Op0, Scale&: Op1, Index&: Op2, Disp&: Op3, Segment&: Op4))
6540 return true;
6541 break;
6542 }
6543
6544 OutOps.push_back(x: Op0);
6545 OutOps.push_back(x: Op1);
6546 OutOps.push_back(x: Op2);
6547 OutOps.push_back(x: Op3);
6548 OutOps.push_back(x: Op4);
6549 return false;
6550}
6551
6552/// This pass converts a legalized DAG into a X86-specific DAG,
6553/// ready for instruction scheduling.
6554FunctionPass *llvm::createX86ISelDag(X86TargetMachine &TM,
6555 CodeGenOptLevel OptLevel) {
6556 return new X86DAGToDAGISel(TM, OptLevel);
6557}
6558

source code of llvm/lib/Target/X86/X86ISelDAGToDAG.cpp