1///===- SimpleLoopUnswitch.cpp - Hoist loop-invariant control flow ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
10#include "llvm/ADT/DenseMap.h"
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/ADT/Sequence.h"
13#include "llvm/ADT/SetVector.h"
14#include "llvm/ADT/SmallPtrSet.h"
15#include "llvm/ADT/SmallVector.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/ADT/Twine.h"
18#include "llvm/Analysis/AssumptionCache.h"
19#include "llvm/Analysis/BlockFrequencyInfo.h"
20#include "llvm/Analysis/CFG.h"
21#include "llvm/Analysis/CodeMetrics.h"
22#include "llvm/Analysis/DomTreeUpdater.h"
23#include "llvm/Analysis/GuardUtils.h"
24#include "llvm/Analysis/LoopAnalysisManager.h"
25#include "llvm/Analysis/LoopInfo.h"
26#include "llvm/Analysis/LoopIterator.h"
27#include "llvm/Analysis/MemorySSA.h"
28#include "llvm/Analysis/MemorySSAUpdater.h"
29#include "llvm/Analysis/MustExecute.h"
30#include "llvm/Analysis/ProfileSummaryInfo.h"
31#include "llvm/Analysis/ScalarEvolution.h"
32#include "llvm/Analysis/TargetTransformInfo.h"
33#include "llvm/Analysis/ValueTracking.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Constant.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/Dominators.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/IRBuilder.h"
40#include "llvm/IR/InstrTypes.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/IntrinsicInst.h"
44#include "llvm/IR/PatternMatch.h"
45#include "llvm/IR/ProfDataUtils.h"
46#include "llvm/IR/Use.h"
47#include "llvm/IR/Value.h"
48#include "llvm/Support/Casting.h"
49#include "llvm/Support/CommandLine.h"
50#include "llvm/Support/Debug.h"
51#include "llvm/Support/ErrorHandling.h"
52#include "llvm/Support/GenericDomTree.h"
53#include "llvm/Support/InstructionCost.h"
54#include "llvm/Support/raw_ostream.h"
55#include "llvm/Transforms/Scalar/LoopPassManager.h"
56#include "llvm/Transforms/Utils/BasicBlockUtils.h"
57#include "llvm/Transforms/Utils/Cloning.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include "llvm/Transforms/Utils/LoopUtils.h"
60#include "llvm/Transforms/Utils/ValueMapper.h"
61#include <algorithm>
62#include <cassert>
63#include <iterator>
64#include <numeric>
65#include <optional>
66#include <utility>
67
68#define DEBUG_TYPE "simple-loop-unswitch"
69
70using namespace llvm;
71using namespace llvm::PatternMatch;
72
73STATISTIC(NumBranches, "Number of branches unswitched");
74STATISTIC(NumSwitches, "Number of switches unswitched");
75STATISTIC(NumSelects, "Number of selects turned into branches for unswitching");
76STATISTIC(NumGuards, "Number of guards turned into branches for unswitching");
77STATISTIC(NumTrivial, "Number of unswitches that are trivial");
78STATISTIC(
79 NumCostMultiplierSkipped,
80 "Number of unswitch candidates that had their cost multiplier skipped");
81STATISTIC(NumInvariantConditionsInjected,
82 "Number of invariant conditions injected and unswitched");
83
84static cl::opt<bool> EnableNonTrivialUnswitch(
85 "enable-nontrivial-unswitch", cl::init(Val: false), cl::Hidden,
86 cl::desc("Forcibly enables non-trivial loop unswitching rather than "
87 "following the configuration passed into the pass."));
88
89static cl::opt<int>
90 UnswitchThreshold("unswitch-threshold", cl::init(Val: 50), cl::Hidden,
91 cl::desc("The cost threshold for unswitching a loop."));
92
93static cl::opt<bool> EnableUnswitchCostMultiplier(
94 "enable-unswitch-cost-multiplier", cl::init(Val: true), cl::Hidden,
95 cl::desc("Enable unswitch cost multiplier that prohibits exponential "
96 "explosion in nontrivial unswitch."));
97static cl::opt<int> UnswitchSiblingsToplevelDiv(
98 "unswitch-siblings-toplevel-div", cl::init(Val: 2), cl::Hidden,
99 cl::desc("Toplevel siblings divisor for cost multiplier."));
100static cl::opt<int> UnswitchNumInitialUnscaledCandidates(
101 "unswitch-num-initial-unscaled-candidates", cl::init(Val: 8), cl::Hidden,
102 cl::desc("Number of unswitch candidates that are ignored when calculating "
103 "cost multiplier."));
104static cl::opt<bool> UnswitchGuards(
105 "simple-loop-unswitch-guards", cl::init(Val: true), cl::Hidden,
106 cl::desc("If enabled, simple loop unswitching will also consider "
107 "llvm.experimental.guard intrinsics as unswitch candidates."));
108static cl::opt<bool> DropNonTrivialImplicitNullChecks(
109 "simple-loop-unswitch-drop-non-trivial-implicit-null-checks",
110 cl::init(Val: false), cl::Hidden,
111 cl::desc("If enabled, drop make.implicit metadata in unswitched implicit "
112 "null checks to save time analyzing if we can keep it."));
113static cl::opt<unsigned>
114 MSSAThreshold("simple-loop-unswitch-memoryssa-threshold",
115 cl::desc("Max number of memory uses to explore during "
116 "partial unswitching analysis"),
117 cl::init(Val: 100), cl::Hidden);
118static cl::opt<bool> FreezeLoopUnswitchCond(
119 "freeze-loop-unswitch-cond", cl::init(Val: true), cl::Hidden,
120 cl::desc("If enabled, the freeze instruction will be added to condition "
121 "of loop unswitch to prevent miscompilation."));
122
123static cl::opt<bool> InjectInvariantConditions(
124 "simple-loop-unswitch-inject-invariant-conditions", cl::Hidden,
125 cl::desc("Whether we should inject new invariants and unswitch them to "
126 "eliminate some existing (non-invariant) conditions."),
127 cl::init(Val: true));
128
129static cl::opt<unsigned> InjectInvariantConditionHotnesThreshold(
130 "simple-loop-unswitch-inject-invariant-condition-hotness-threshold",
131 cl::Hidden, cl::desc("Only try to inject loop invariant conditions and "
132 "unswitch on them to eliminate branches that are "
133 "not-taken 1/<this option> times or less."),
134 cl::init(Val: 16));
135
136AnalysisKey ShouldRunExtraSimpleLoopUnswitch::Key;
137namespace {
138struct CompareDesc {
139 BranchInst *Term;
140 Value *Invariant;
141 BasicBlock *InLoopSucc;
142
143 CompareDesc(BranchInst *Term, Value *Invariant, BasicBlock *InLoopSucc)
144 : Term(Term), Invariant(Invariant), InLoopSucc(InLoopSucc) {}
145};
146
147struct InjectedInvariant {
148 ICmpInst::Predicate Pred;
149 Value *LHS;
150 Value *RHS;
151 BasicBlock *InLoopSucc;
152
153 InjectedInvariant(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
154 BasicBlock *InLoopSucc)
155 : Pred(Pred), LHS(LHS), RHS(RHS), InLoopSucc(InLoopSucc) {}
156};
157
158struct NonTrivialUnswitchCandidate {
159 Instruction *TI = nullptr;
160 TinyPtrVector<Value *> Invariants;
161 std::optional<InstructionCost> Cost;
162 std::optional<InjectedInvariant> PendingInjection;
163 NonTrivialUnswitchCandidate(
164 Instruction *TI, ArrayRef<Value *> Invariants,
165 std::optional<InstructionCost> Cost = std::nullopt,
166 std::optional<InjectedInvariant> PendingInjection = std::nullopt)
167 : TI(TI), Invariants(Invariants), Cost(Cost),
168 PendingInjection(PendingInjection) {};
169
170 bool hasPendingInjection() const { return PendingInjection.has_value(); }
171};
172} // end anonymous namespace.
173
174// Helper to skip (select x, true, false), which matches both a logical AND and
175// OR and can confuse code that tries to determine if \p Cond is either a
176// logical AND or OR but not both.
177static Value *skipTrivialSelect(Value *Cond) {
178 Value *CondNext;
179 while (match(V: Cond, P: m_Select(C: m_Value(V&: CondNext), L: m_One(), R: m_Zero())))
180 Cond = CondNext;
181 return Cond;
182}
183
184/// Collect all of the loop invariant input values transitively used by the
185/// homogeneous instruction graph from a given root.
186///
187/// This essentially walks from a root recursively through loop variant operands
188/// which have perform the same logical operation (AND or OR) and finds all
189/// inputs which are loop invariant. For some operations these can be
190/// re-associated and unswitched out of the loop entirely.
191static TinyPtrVector<Value *>
192collectHomogenousInstGraphLoopInvariants(const Loop &L, Instruction &Root,
193 const LoopInfo &LI) {
194 assert(!L.isLoopInvariant(&Root) &&
195 "Only need to walk the graph if root itself is not invariant.");
196 TinyPtrVector<Value *> Invariants;
197
198 bool IsRootAnd = match(V: &Root, P: m_LogicalAnd());
199 bool IsRootOr = match(V: &Root, P: m_LogicalOr());
200
201 // Build a worklist and recurse through operators collecting invariants.
202 SmallVector<Instruction *, 4> Worklist;
203 SmallPtrSet<Instruction *, 8> Visited;
204 Worklist.push_back(Elt: &Root);
205 Visited.insert(Ptr: &Root);
206 do {
207 Instruction &I = *Worklist.pop_back_val();
208 for (Value *OpV : I.operand_values()) {
209 // Skip constants as unswitching isn't interesting for them.
210 if (isa<Constant>(Val: OpV))
211 continue;
212
213 // Add it to our result if loop invariant.
214 if (L.isLoopInvariant(V: OpV)) {
215 Invariants.push_back(NewVal: OpV);
216 continue;
217 }
218
219 // If not an instruction with the same opcode, nothing we can do.
220 Instruction *OpI = dyn_cast<Instruction>(Val: skipTrivialSelect(Cond: OpV));
221
222 if (OpI && ((IsRootAnd && match(V: OpI, P: m_LogicalAnd())) ||
223 (IsRootOr && match(V: OpI, P: m_LogicalOr())))) {
224 // Visit this operand.
225 if (Visited.insert(Ptr: OpI).second)
226 Worklist.push_back(Elt: OpI);
227 }
228 }
229 } while (!Worklist.empty());
230
231 return Invariants;
232}
233
234static void replaceLoopInvariantUses(const Loop &L, Value *Invariant,
235 Constant &Replacement) {
236 assert(!isa<Constant>(Invariant) && "Why are we unswitching on a constant?");
237
238 // Replace uses of LIC in the loop with the given constant.
239 // We use make_early_inc_range as set invalidates the iterator.
240 for (Use &U : llvm::make_early_inc_range(Range: Invariant->uses())) {
241 Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser());
242
243 // Replace this use within the loop body.
244 if (UserI && L.contains(Inst: UserI))
245 U.set(&Replacement);
246 }
247}
248
249/// Check that all the LCSSA PHI nodes in the loop exit block have trivial
250/// incoming values along this edge.
251static bool areLoopExitPHIsLoopInvariant(const Loop &L,
252 const BasicBlock &ExitingBB,
253 const BasicBlock &ExitBB) {
254 for (const Instruction &I : ExitBB) {
255 auto *PN = dyn_cast<PHINode>(Val: &I);
256 if (!PN)
257 // No more PHIs to check.
258 return true;
259
260 // If the incoming value for this edge isn't loop invariant the unswitch
261 // won't be trivial.
262 if (!L.isLoopInvariant(V: PN->getIncomingValueForBlock(BB: &ExitingBB)))
263 return false;
264 }
265 llvm_unreachable("Basic blocks should never be empty!");
266}
267
268/// Copy a set of loop invariant values \p ToDuplicate and insert them at the
269/// end of \p BB and conditionally branch on the copied condition. We only
270/// branch on a single value.
271static void buildPartialUnswitchConditionalBranch(
272 BasicBlock &BB, ArrayRef<Value *> Invariants, bool Direction,
273 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, bool InsertFreeze,
274 const Instruction *I, AssumptionCache *AC, const DominatorTree &DT) {
275 IRBuilder<> IRB(&BB);
276
277 SmallVector<Value *> FrozenInvariants;
278 for (Value *Inv : Invariants) {
279 if (InsertFreeze && !isGuaranteedNotToBeUndefOrPoison(V: Inv, AC, CtxI: I, DT: &DT))
280 Inv = IRB.CreateFreeze(V: Inv, Name: Inv->getName() + ".fr");
281 FrozenInvariants.push_back(Elt: Inv);
282 }
283
284 Value *Cond = Direction ? IRB.CreateOr(Ops: FrozenInvariants)
285 : IRB.CreateAnd(Ops: FrozenInvariants);
286 IRB.CreateCondBr(Cond, True: Direction ? &UnswitchedSucc : &NormalSucc,
287 False: Direction ? &NormalSucc : &UnswitchedSucc);
288}
289
290/// Copy a set of loop invariant values, and conditionally branch on them.
291static void buildPartialInvariantUnswitchConditionalBranch(
292 BasicBlock &BB, ArrayRef<Value *> ToDuplicate, bool Direction,
293 BasicBlock &UnswitchedSucc, BasicBlock &NormalSucc, Loop &L,
294 MemorySSAUpdater *MSSAU) {
295 ValueToValueMapTy VMap;
296 for (auto *Val : reverse(C&: ToDuplicate)) {
297 Instruction *Inst = cast<Instruction>(Val);
298 Instruction *NewInst = Inst->clone();
299 NewInst->insertInto(ParentBB: &BB, It: BB.end());
300 RemapInstruction(I: NewInst, VM&: VMap,
301 Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
302 VMap[Val] = NewInst;
303
304 if (!MSSAU)
305 continue;
306
307 MemorySSA *MSSA = MSSAU->getMemorySSA();
308 if (auto *MemUse =
309 dyn_cast_or_null<MemoryUse>(Val: MSSA->getMemoryAccess(I: Inst))) {
310 auto *DefiningAccess = MemUse->getDefiningAccess();
311 // Get the first defining access before the loop.
312 while (L.contains(BB: DefiningAccess->getBlock())) {
313 // If the defining access is a MemoryPhi, get the incoming
314 // value for the pre-header as defining access.
315 if (auto *MemPhi = dyn_cast<MemoryPhi>(Val: DefiningAccess))
316 DefiningAccess =
317 MemPhi->getIncomingValueForBlock(BB: L.getLoopPreheader());
318 else
319 DefiningAccess = cast<MemoryDef>(Val: DefiningAccess)->getDefiningAccess();
320 }
321 MSSAU->createMemoryAccessInBB(I: NewInst, Definition: DefiningAccess,
322 BB: NewInst->getParent(),
323 Point: MemorySSA::BeforeTerminator);
324 }
325 }
326
327 IRBuilder<> IRB(&BB);
328 Value *Cond = VMap[ToDuplicate[0]];
329 IRB.CreateCondBr(Cond, True: Direction ? &UnswitchedSucc : &NormalSucc,
330 False: Direction ? &NormalSucc : &UnswitchedSucc);
331}
332
333/// Rewrite the PHI nodes in an unswitched loop exit basic block.
334///
335/// Requires that the loop exit and unswitched basic block are the same, and
336/// that the exiting block was a unique predecessor of that block. Rewrites the
337/// PHI nodes in that block such that what were LCSSA PHI nodes become trivial
338/// PHI nodes from the old preheader that now contains the unswitched
339/// terminator.
340static void rewritePHINodesForUnswitchedExitBlock(BasicBlock &UnswitchedBB,
341 BasicBlock &OldExitingBB,
342 BasicBlock &OldPH) {
343 for (PHINode &PN : UnswitchedBB.phis()) {
344 // When the loop exit is directly unswitched we just need to update the
345 // incoming basic block. We loop to handle weird cases with repeated
346 // incoming blocks, but expect to typically only have one operand here.
347 for (auto i : seq<int>(Begin: 0, End: PN.getNumOperands())) {
348 assert(PN.getIncomingBlock(i) == &OldExitingBB &&
349 "Found incoming block different from unique predecessor!");
350 PN.setIncomingBlock(i, BB: &OldPH);
351 }
352 }
353}
354
355/// Rewrite the PHI nodes in the loop exit basic block and the split off
356/// unswitched block.
357///
358/// Because the exit block remains an exit from the loop, this rewrites the
359/// LCSSA PHI nodes in it to remove the unswitched edge and introduces PHI
360/// nodes into the unswitched basic block to select between the value in the
361/// old preheader and the loop exit.
362static void rewritePHINodesForExitAndUnswitchedBlocks(BasicBlock &ExitBB,
363 BasicBlock &UnswitchedBB,
364 BasicBlock &OldExitingBB,
365 BasicBlock &OldPH,
366 bool FullUnswitch) {
367 assert(&ExitBB != &UnswitchedBB &&
368 "Must have different loop exit and unswitched blocks!");
369 BasicBlock::iterator InsertPt = UnswitchedBB.begin();
370 for (PHINode &PN : ExitBB.phis()) {
371 auto *NewPN = PHINode::Create(Ty: PN.getType(), /*NumReservedValues*/ 2,
372 NameStr: PN.getName() + ".split");
373 NewPN->insertBefore(InsertPos: InsertPt);
374
375 // Walk backwards over the old PHI node's inputs to minimize the cost of
376 // removing each one. We have to do this weird loop manually so that we
377 // create the same number of new incoming edges in the new PHI as we expect
378 // each case-based edge to be included in the unswitched switch in some
379 // cases.
380 // FIXME: This is really, really gross. It would be much cleaner if LLVM
381 // allowed us to create a single entry for a predecessor block without
382 // having separate entries for each "edge" even though these edges are
383 // required to produce identical results.
384 for (int i = PN.getNumIncomingValues() - 1; i >= 0; --i) {
385 if (PN.getIncomingBlock(i) != &OldExitingBB)
386 continue;
387
388 Value *Incoming = PN.getIncomingValue(i);
389 if (FullUnswitch)
390 // No more edge from the old exiting block to the exit block.
391 PN.removeIncomingValue(Idx: i);
392
393 NewPN->addIncoming(V: Incoming, BB: &OldPH);
394 }
395
396 // Now replace the old PHI with the new one and wire the old one in as an
397 // input to the new one.
398 PN.replaceAllUsesWith(V: NewPN);
399 NewPN->addIncoming(V: &PN, BB: &ExitBB);
400 }
401}
402
403/// Hoist the current loop up to the innermost loop containing a remaining exit.
404///
405/// Because we've removed an exit from the loop, we may have changed the set of
406/// loops reachable and need to move the current loop up the loop nest or even
407/// to an entirely separate nest.
408static void hoistLoopToNewParent(Loop &L, BasicBlock &Preheader,
409 DominatorTree &DT, LoopInfo &LI,
410 MemorySSAUpdater *MSSAU, ScalarEvolution *SE) {
411 // If the loop is already at the top level, we can't hoist it anywhere.
412 Loop *OldParentL = L.getParentLoop();
413 if (!OldParentL)
414 return;
415
416 SmallVector<BasicBlock *, 4> Exits;
417 L.getExitBlocks(ExitBlocks&: Exits);
418 Loop *NewParentL = nullptr;
419 for (auto *ExitBB : Exits)
420 if (Loop *ExitL = LI.getLoopFor(BB: ExitBB))
421 if (!NewParentL || NewParentL->contains(L: ExitL))
422 NewParentL = ExitL;
423
424 if (NewParentL == OldParentL)
425 return;
426
427 // The new parent loop (if different) should always contain the old one.
428 if (NewParentL)
429 assert(NewParentL->contains(OldParentL) &&
430 "Can only hoist this loop up the nest!");
431
432 // The preheader will need to move with the body of this loop. However,
433 // because it isn't in this loop we also need to update the primary loop map.
434 assert(OldParentL == LI.getLoopFor(&Preheader) &&
435 "Parent loop of this loop should contain this loop's preheader!");
436 LI.changeLoopFor(BB: &Preheader, L: NewParentL);
437
438 // Remove this loop from its old parent.
439 OldParentL->removeChildLoop(Child: &L);
440
441 // Add the loop either to the new parent or as a top-level loop.
442 if (NewParentL)
443 NewParentL->addChildLoop(NewChild: &L);
444 else
445 LI.addTopLevelLoop(New: &L);
446
447 // Remove this loops blocks from the old parent and every other loop up the
448 // nest until reaching the new parent. Also update all of these
449 // no-longer-containing loops to reflect the nesting change.
450 for (Loop *OldContainingL = OldParentL; OldContainingL != NewParentL;
451 OldContainingL = OldContainingL->getParentLoop()) {
452 llvm::erase_if(C&: OldContainingL->getBlocksVector(),
453 P: [&](const BasicBlock *BB) {
454 return BB == &Preheader || L.contains(BB);
455 });
456
457 OldContainingL->getBlocksSet().erase(Ptr: &Preheader);
458 for (BasicBlock *BB : L.blocks())
459 OldContainingL->getBlocksSet().erase(Ptr: BB);
460
461 // Because we just hoisted a loop out of this one, we have essentially
462 // created new exit paths from it. That means we need to form LCSSA PHI
463 // nodes for values used in the no-longer-nested loop.
464 formLCSSA(L&: *OldContainingL, DT, LI: &LI, SE);
465
466 // We shouldn't need to form dedicated exits because the exit introduced
467 // here is the (just split by unswitching) preheader. However, after trivial
468 // unswitching it is possible to get new non-dedicated exits out of parent
469 // loop so let's conservatively form dedicated exit blocks and figure out
470 // if we can optimize later.
471 formDedicatedExitBlocks(L: OldContainingL, DT: &DT, LI: &LI, MSSAU,
472 /*PreserveLCSSA*/ true);
473 }
474}
475
476// Return the top-most loop containing ExitBB and having ExitBB as exiting block
477// or the loop containing ExitBB, if there is no parent loop containing ExitBB
478// as exiting block.
479static Loop *getTopMostExitingLoop(const BasicBlock *ExitBB,
480 const LoopInfo &LI) {
481 Loop *TopMost = LI.getLoopFor(BB: ExitBB);
482 Loop *Current = TopMost;
483 while (Current) {
484 if (Current->isLoopExiting(BB: ExitBB))
485 TopMost = Current;
486 Current = Current->getParentLoop();
487 }
488 return TopMost;
489}
490
491/// Unswitch a trivial branch if the condition is loop invariant.
492///
493/// This routine should only be called when loop code leading to the branch has
494/// been validated as trivial (no side effects). This routine checks if the
495/// condition is invariant and one of the successors is a loop exit. This
496/// allows us to unswitch without duplicating the loop, making it trivial.
497///
498/// If this routine fails to unswitch the branch it returns false.
499///
500/// If the branch can be unswitched, this routine splits the preheader and
501/// hoists the branch above that split. Preserves loop simplified form
502/// (splitting the exit block as necessary). It simplifies the branch within
503/// the loop to an unconditional branch but doesn't remove it entirely. Further
504/// cleanup can be done with some simplifycfg like pass.
505///
506/// If `SE` is not null, it will be updated based on the potential loop SCEVs
507/// invalidated by this.
508static bool unswitchTrivialBranch(Loop &L, BranchInst &BI, DominatorTree &DT,
509 LoopInfo &LI, ScalarEvolution *SE,
510 MemorySSAUpdater *MSSAU) {
511 assert(BI.isConditional() && "Can only unswitch a conditional branch!");
512 LLVM_DEBUG(dbgs() << " Trying to unswitch branch: " << BI << "\n");
513
514 // The loop invariant values that we want to unswitch.
515 TinyPtrVector<Value *> Invariants;
516
517 // When true, we're fully unswitching the branch rather than just unswitching
518 // some input conditions to the branch.
519 bool FullUnswitch = false;
520
521 Value *Cond = skipTrivialSelect(Cond: BI.getCondition());
522 if (L.isLoopInvariant(V: Cond)) {
523 Invariants.push_back(NewVal: Cond);
524 FullUnswitch = true;
525 } else {
526 if (auto *CondInst = dyn_cast<Instruction>(Val: Cond))
527 Invariants = collectHomogenousInstGraphLoopInvariants(L, Root&: *CondInst, LI);
528 if (Invariants.empty()) {
529 LLVM_DEBUG(dbgs() << " Couldn't find invariant inputs!\n");
530 return false;
531 }
532 }
533
534 // Check that one of the branch's successors exits, and which one.
535 bool ExitDirection = true;
536 int LoopExitSuccIdx = 0;
537 auto *LoopExitBB = BI.getSuccessor(i: 0);
538 if (L.contains(BB: LoopExitBB)) {
539 ExitDirection = false;
540 LoopExitSuccIdx = 1;
541 LoopExitBB = BI.getSuccessor(i: 1);
542 if (L.contains(BB: LoopExitBB)) {
543 LLVM_DEBUG(dbgs() << " Branch doesn't exit the loop!\n");
544 return false;
545 }
546 }
547 auto *ContinueBB = BI.getSuccessor(i: 1 - LoopExitSuccIdx);
548 auto *ParentBB = BI.getParent();
549 if (!areLoopExitPHIsLoopInvariant(L, ExitingBB: *ParentBB, ExitBB: *LoopExitBB)) {
550 LLVM_DEBUG(dbgs() << " Loop exit PHI's aren't loop-invariant!\n");
551 return false;
552 }
553
554 // When unswitching only part of the branch's condition, we need the exit
555 // block to be reached directly from the partially unswitched input. This can
556 // be done when the exit block is along the true edge and the branch condition
557 // is a graph of `or` operations, or the exit block is along the false edge
558 // and the condition is a graph of `and` operations.
559 if (!FullUnswitch) {
560 if (ExitDirection ? !match(V: Cond, P: m_LogicalOr())
561 : !match(V: Cond, P: m_LogicalAnd())) {
562 LLVM_DEBUG(dbgs() << " Branch condition is in improper form for "
563 "non-full unswitch!\n");
564 return false;
565 }
566 }
567
568 LLVM_DEBUG({
569 dbgs() << " unswitching trivial invariant conditions for: " << BI
570 << "\n";
571 for (Value *Invariant : Invariants) {
572 dbgs() << " " << *Invariant << " == true";
573 if (Invariant != Invariants.back())
574 dbgs() << " ||";
575 dbgs() << "\n";
576 }
577 });
578
579 // If we have scalar evolutions, we need to invalidate them including this
580 // loop, the loop containing the exit block and the topmost parent loop
581 // exiting via LoopExitBB.
582 if (SE) {
583 if (const Loop *ExitL = getTopMostExitingLoop(ExitBB: LoopExitBB, LI))
584 SE->forgetLoop(L: ExitL);
585 else
586 // Forget the entire nest as this exits the entire nest.
587 SE->forgetTopmostLoop(L: &L);
588 SE->forgetBlockAndLoopDispositions();
589 }
590
591 if (MSSAU && VerifyMemorySSA)
592 MSSAU->getMemorySSA()->verifyMemorySSA();
593
594 // Split the preheader, so that we know that there is a safe place to insert
595 // the conditional branch. We will change the preheader to have a conditional
596 // branch on LoopCond.
597 BasicBlock *OldPH = L.getLoopPreheader();
598 BasicBlock *NewPH = SplitEdge(From: OldPH, To: L.getHeader(), DT: &DT, LI: &LI, MSSAU);
599
600 // Now that we have a place to insert the conditional branch, create a place
601 // to branch to: this is the exit block out of the loop that we are
602 // unswitching. We need to split this if there are other loop predecessors.
603 // Because the loop is in simplified form, *any* other predecessor is enough.
604 BasicBlock *UnswitchedBB;
605 if (FullUnswitch && LoopExitBB->getUniquePredecessor()) {
606 assert(LoopExitBB->getUniquePredecessor() == BI.getParent() &&
607 "A branch's parent isn't a predecessor!");
608 UnswitchedBB = LoopExitBB;
609 } else {
610 UnswitchedBB =
611 SplitBlock(Old: LoopExitBB, SplitPt: LoopExitBB->begin(), DT: &DT, LI: &LI, MSSAU, BBName: "", Before: false);
612 }
613
614 if (MSSAU && VerifyMemorySSA)
615 MSSAU->getMemorySSA()->verifyMemorySSA();
616
617 // Actually move the invariant uses into the unswitched position. If possible,
618 // we do this by moving the instructions, but when doing partial unswitching
619 // we do it by building a new merge of the values in the unswitched position.
620 OldPH->getTerminator()->eraseFromParent();
621 if (FullUnswitch) {
622 // If fully unswitching, we can use the existing branch instruction.
623 // Splice it into the old PH to gate reaching the new preheader and re-point
624 // its successors.
625 BI.moveBefore(BB&: *OldPH, I: OldPH->end());
626 BI.setCondition(Cond);
627 if (MSSAU) {
628 // Temporarily clone the terminator, to make MSSA update cheaper by
629 // separating "insert edge" updates from "remove edge" ones.
630 BI.clone()->insertInto(ParentBB, It: ParentBB->end());
631 } else {
632 // Create a new unconditional branch that will continue the loop as a new
633 // terminator.
634 BranchInst::Create(IfTrue: ContinueBB, InsertAtEnd: ParentBB);
635 }
636 BI.setSuccessor(idx: LoopExitSuccIdx, NewSucc: UnswitchedBB);
637 BI.setSuccessor(idx: 1 - LoopExitSuccIdx, NewSucc: NewPH);
638 } else {
639 // Only unswitching a subset of inputs to the condition, so we will need to
640 // build a new branch that merges the invariant inputs.
641 if (ExitDirection)
642 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalOr()) &&
643 "Must have an `or` of `i1`s or `select i1 X, true, Y`s for the "
644 "condition!");
645 else
646 assert(match(skipTrivialSelect(BI.getCondition()), m_LogicalAnd()) &&
647 "Must have an `and` of `i1`s or `select i1 X, Y, false`s for the"
648 " condition!");
649 buildPartialUnswitchConditionalBranch(
650 BB&: *OldPH, Invariants, Direction: ExitDirection, UnswitchedSucc&: *UnswitchedBB, NormalSucc&: *NewPH,
651 InsertFreeze: FreezeLoopUnswitchCond, I: OldPH->getTerminator(), AC: nullptr, DT);
652 }
653
654 // Update the dominator tree with the added edge.
655 DT.insertEdge(From: OldPH, To: UnswitchedBB);
656
657 // After the dominator tree was updated with the added edge, update MemorySSA
658 // if available.
659 if (MSSAU) {
660 SmallVector<CFGUpdate, 1> Updates;
661 Updates.push_back(Elt: {cfg::UpdateKind::Insert, OldPH, UnswitchedBB});
662 MSSAU->applyInsertUpdates(Updates, DT);
663 }
664
665 // Finish updating dominator tree and memory ssa for full unswitch.
666 if (FullUnswitch) {
667 if (MSSAU) {
668 // Remove the cloned branch instruction.
669 ParentBB->getTerminator()->eraseFromParent();
670 // Create unconditional branch now.
671 BranchInst::Create(IfTrue: ContinueBB, InsertAtEnd: ParentBB);
672 MSSAU->removeEdge(From: ParentBB, To: LoopExitBB);
673 }
674 DT.deleteEdge(From: ParentBB, To: LoopExitBB);
675 }
676
677 if (MSSAU && VerifyMemorySSA)
678 MSSAU->getMemorySSA()->verifyMemorySSA();
679
680 // Rewrite the relevant PHI nodes.
681 if (UnswitchedBB == LoopExitBB)
682 rewritePHINodesForUnswitchedExitBlock(UnswitchedBB&: *UnswitchedBB, OldExitingBB&: *ParentBB, OldPH&: *OldPH);
683 else
684 rewritePHINodesForExitAndUnswitchedBlocks(ExitBB&: *LoopExitBB, UnswitchedBB&: *UnswitchedBB,
685 OldExitingBB&: *ParentBB, OldPH&: *OldPH, FullUnswitch);
686
687 // The constant we can replace all of our invariants with inside the loop
688 // body. If any of the invariants have a value other than this the loop won't
689 // be entered.
690 ConstantInt *Replacement = ExitDirection
691 ? ConstantInt::getFalse(Context&: BI.getContext())
692 : ConstantInt::getTrue(Context&: BI.getContext());
693
694 // Since this is an i1 condition we can also trivially replace uses of it
695 // within the loop with a constant.
696 for (Value *Invariant : Invariants)
697 replaceLoopInvariantUses(L, Invariant, Replacement&: *Replacement);
698
699 // If this was full unswitching, we may have changed the nesting relationship
700 // for this loop so hoist it to its correct parent if needed.
701 if (FullUnswitch)
702 hoistLoopToNewParent(L, Preheader&: *NewPH, DT, LI, MSSAU, SE);
703
704 if (MSSAU && VerifyMemorySSA)
705 MSSAU->getMemorySSA()->verifyMemorySSA();
706
707 LLVM_DEBUG(dbgs() << " done: unswitching trivial branch...\n");
708 ++NumTrivial;
709 ++NumBranches;
710 return true;
711}
712
713/// Unswitch a trivial switch if the condition is loop invariant.
714///
715/// This routine should only be called when loop code leading to the switch has
716/// been validated as trivial (no side effects). This routine checks if the
717/// condition is invariant and that at least one of the successors is a loop
718/// exit. This allows us to unswitch without duplicating the loop, making it
719/// trivial.
720///
721/// If this routine fails to unswitch the switch it returns false.
722///
723/// If the switch can be unswitched, this routine splits the preheader and
724/// copies the switch above that split. If the default case is one of the
725/// exiting cases, it copies the non-exiting cases and points them at the new
726/// preheader. If the default case is not exiting, it copies the exiting cases
727/// and points the default at the preheader. It preserves loop simplified form
728/// (splitting the exit blocks as necessary). It simplifies the switch within
729/// the loop by removing now-dead cases. If the default case is one of those
730/// unswitched, it replaces its destination with a new basic block containing
731/// only unreachable. Such basic blocks, while technically loop exits, are not
732/// considered for unswitching so this is a stable transform and the same
733/// switch will not be revisited. If after unswitching there is only a single
734/// in-loop successor, the switch is further simplified to an unconditional
735/// branch. Still more cleanup can be done with some simplifycfg like pass.
736///
737/// If `SE` is not null, it will be updated based on the potential loop SCEVs
738/// invalidated by this.
739static bool unswitchTrivialSwitch(Loop &L, SwitchInst &SI, DominatorTree &DT,
740 LoopInfo &LI, ScalarEvolution *SE,
741 MemorySSAUpdater *MSSAU) {
742 LLVM_DEBUG(dbgs() << " Trying to unswitch switch: " << SI << "\n");
743 Value *LoopCond = SI.getCondition();
744
745 // If this isn't switching on an invariant condition, we can't unswitch it.
746 if (!L.isLoopInvariant(V: LoopCond))
747 return false;
748
749 auto *ParentBB = SI.getParent();
750
751 // The same check must be used both for the default and the exit cases. We
752 // should never leave edges from the switch instruction to a basic block that
753 // we are unswitching, hence the condition used to determine the default case
754 // needs to also be used to populate ExitCaseIndices, which is then used to
755 // remove cases from the switch.
756 auto IsTriviallyUnswitchableExitBlock = [&](BasicBlock &BBToCheck) {
757 // BBToCheck is not an exit block if it is inside loop L.
758 if (L.contains(BB: &BBToCheck))
759 return false;
760 // BBToCheck is not trivial to unswitch if its phis aren't loop invariant.
761 if (!areLoopExitPHIsLoopInvariant(L, ExitingBB: *ParentBB, ExitBB: BBToCheck))
762 return false;
763 // We do not unswitch a block that only has an unreachable statement, as
764 // it's possible this is a previously unswitched block. Only unswitch if
765 // either the terminator is not unreachable, or, if it is, it's not the only
766 // instruction in the block.
767 auto *TI = BBToCheck.getTerminator();
768 bool isUnreachable = isa<UnreachableInst>(Val: TI);
769 return !isUnreachable ||
770 (isUnreachable && (BBToCheck.getFirstNonPHIOrDbg() != TI));
771 };
772
773 SmallVector<int, 4> ExitCaseIndices;
774 for (auto Case : SI.cases())
775 if (IsTriviallyUnswitchableExitBlock(*Case.getCaseSuccessor()))
776 ExitCaseIndices.push_back(Elt: Case.getCaseIndex());
777 BasicBlock *DefaultExitBB = nullptr;
778 SwitchInstProfUpdateWrapper::CaseWeightOpt DefaultCaseWeight =
779 SwitchInstProfUpdateWrapper::getSuccessorWeight(SI, idx: 0);
780 if (IsTriviallyUnswitchableExitBlock(*SI.getDefaultDest())) {
781 DefaultExitBB = SI.getDefaultDest();
782 } else if (ExitCaseIndices.empty())
783 return false;
784
785 LLVM_DEBUG(dbgs() << " unswitching trivial switch...\n");
786
787 if (MSSAU && VerifyMemorySSA)
788 MSSAU->getMemorySSA()->verifyMemorySSA();
789
790 // We may need to invalidate SCEVs for the outermost loop reached by any of
791 // the exits.
792 Loop *OuterL = &L;
793
794 if (DefaultExitBB) {
795 // Check the loop containing this exit.
796 Loop *ExitL = getTopMostExitingLoop(ExitBB: DefaultExitBB, LI);
797 if (!ExitL || ExitL->contains(L: OuterL))
798 OuterL = ExitL;
799 }
800 for (unsigned Index : ExitCaseIndices) {
801 auto CaseI = SI.case_begin() + Index;
802 // Compute the outer loop from this exit.
803 Loop *ExitL = getTopMostExitingLoop(ExitBB: CaseI->getCaseSuccessor(), LI);
804 if (!ExitL || ExitL->contains(L: OuterL))
805 OuterL = ExitL;
806 }
807
808 if (SE) {
809 if (OuterL)
810 SE->forgetLoop(L: OuterL);
811 else
812 SE->forgetTopmostLoop(L: &L);
813 }
814
815 if (DefaultExitBB) {
816 // Clear out the default destination temporarily to allow accurate
817 // predecessor lists to be examined below.
818 SI.setDefaultDest(nullptr);
819 }
820
821 // Store the exit cases into a separate data structure and remove them from
822 // the switch.
823 SmallVector<std::tuple<ConstantInt *, BasicBlock *,
824 SwitchInstProfUpdateWrapper::CaseWeightOpt>,
825 4> ExitCases;
826 ExitCases.reserve(N: ExitCaseIndices.size());
827 SwitchInstProfUpdateWrapper SIW(SI);
828 // We walk the case indices backwards so that we remove the last case first
829 // and don't disrupt the earlier indices.
830 for (unsigned Index : reverse(C&: ExitCaseIndices)) {
831 auto CaseI = SI.case_begin() + Index;
832 // Save the value of this case.
833 auto W = SIW.getSuccessorWeight(idx: CaseI->getSuccessorIndex());
834 ExitCases.emplace_back(Args: CaseI->getCaseValue(), Args: CaseI->getCaseSuccessor(), Args&: W);
835 // Delete the unswitched cases.
836 SIW.removeCase(I: CaseI);
837 }
838
839 // Check if after this all of the remaining cases point at the same
840 // successor.
841 BasicBlock *CommonSuccBB = nullptr;
842 if (SI.getNumCases() > 0 &&
843 all_of(Range: drop_begin(RangeOrContainer: SI.cases()), P: [&SI](const SwitchInst::CaseHandle &Case) {
844 return Case.getCaseSuccessor() == SI.case_begin()->getCaseSuccessor();
845 }))
846 CommonSuccBB = SI.case_begin()->getCaseSuccessor();
847 if (!DefaultExitBB) {
848 // If we're not unswitching the default, we need it to match any cases to
849 // have a common successor or if we have no cases it is the common
850 // successor.
851 if (SI.getNumCases() == 0)
852 CommonSuccBB = SI.getDefaultDest();
853 else if (SI.getDefaultDest() != CommonSuccBB)
854 CommonSuccBB = nullptr;
855 }
856
857 // Split the preheader, so that we know that there is a safe place to insert
858 // the switch.
859 BasicBlock *OldPH = L.getLoopPreheader();
860 BasicBlock *NewPH = SplitEdge(From: OldPH, To: L.getHeader(), DT: &DT, LI: &LI, MSSAU);
861 OldPH->getTerminator()->eraseFromParent();
862
863 // Now add the unswitched switch.
864 auto *NewSI = SwitchInst::Create(Value: LoopCond, Default: NewPH, NumCases: ExitCases.size(), InsertAtEnd: OldPH);
865 SwitchInstProfUpdateWrapper NewSIW(*NewSI);
866
867 // Rewrite the IR for the unswitched basic blocks. This requires two steps.
868 // First, we split any exit blocks with remaining in-loop predecessors. Then
869 // we update the PHIs in one of two ways depending on if there was a split.
870 // We walk in reverse so that we split in the same order as the cases
871 // appeared. This is purely for convenience of reading the resulting IR, but
872 // it doesn't cost anything really.
873 SmallPtrSet<BasicBlock *, 2> UnswitchedExitBBs;
874 SmallDenseMap<BasicBlock *, BasicBlock *, 2> SplitExitBBMap;
875 // Handle the default exit if necessary.
876 // FIXME: It'd be great if we could merge this with the loop below but LLVM's
877 // ranges aren't quite powerful enough yet.
878 if (DefaultExitBB) {
879 if (pred_empty(BB: DefaultExitBB)) {
880 UnswitchedExitBBs.insert(Ptr: DefaultExitBB);
881 rewritePHINodesForUnswitchedExitBlock(UnswitchedBB&: *DefaultExitBB, OldExitingBB&: *ParentBB, OldPH&: *OldPH);
882 } else {
883 auto *SplitBB =
884 SplitBlock(Old: DefaultExitBB, SplitPt: DefaultExitBB->begin(), DT: &DT, LI: &LI, MSSAU);
885 rewritePHINodesForExitAndUnswitchedBlocks(ExitBB&: *DefaultExitBB, UnswitchedBB&: *SplitBB,
886 OldExitingBB&: *ParentBB, OldPH&: *OldPH,
887 /*FullUnswitch*/ true);
888 DefaultExitBB = SplitExitBBMap[DefaultExitBB] = SplitBB;
889 }
890 }
891 // Note that we must use a reference in the for loop so that we update the
892 // container.
893 for (auto &ExitCase : reverse(C&: ExitCases)) {
894 // Grab a reference to the exit block in the pair so that we can update it.
895 BasicBlock *ExitBB = std::get<1>(t&: ExitCase);
896
897 // If this case is the last edge into the exit block, we can simply reuse it
898 // as it will no longer be a loop exit. No mapping necessary.
899 if (pred_empty(BB: ExitBB)) {
900 // Only rewrite once.
901 if (UnswitchedExitBBs.insert(Ptr: ExitBB).second)
902 rewritePHINodesForUnswitchedExitBlock(UnswitchedBB&: *ExitBB, OldExitingBB&: *ParentBB, OldPH&: *OldPH);
903 continue;
904 }
905
906 // Otherwise we need to split the exit block so that we retain an exit
907 // block from the loop and a target for the unswitched condition.
908 BasicBlock *&SplitExitBB = SplitExitBBMap[ExitBB];
909 if (!SplitExitBB) {
910 // If this is the first time we see this, do the split and remember it.
911 SplitExitBB = SplitBlock(Old: ExitBB, SplitPt: ExitBB->begin(), DT: &DT, LI: &LI, MSSAU);
912 rewritePHINodesForExitAndUnswitchedBlocks(ExitBB&: *ExitBB, UnswitchedBB&: *SplitExitBB,
913 OldExitingBB&: *ParentBB, OldPH&: *OldPH,
914 /*FullUnswitch*/ true);
915 }
916 // Update the case pair to point to the split block.
917 std::get<1>(t&: ExitCase) = SplitExitBB;
918 }
919
920 // Now add the unswitched cases. We do this in reverse order as we built them
921 // in reverse order.
922 for (auto &ExitCase : reverse(C&: ExitCases)) {
923 ConstantInt *CaseVal = std::get<0>(t&: ExitCase);
924 BasicBlock *UnswitchedBB = std::get<1>(t&: ExitCase);
925
926 NewSIW.addCase(OnVal: CaseVal, Dest: UnswitchedBB, W: std::get<2>(t&: ExitCase));
927 }
928
929 // If the default was unswitched, re-point it and add explicit cases for
930 // entering the loop.
931 if (DefaultExitBB) {
932 NewSIW->setDefaultDest(DefaultExitBB);
933 NewSIW.setSuccessorWeight(idx: 0, W: DefaultCaseWeight);
934
935 // We removed all the exit cases, so we just copy the cases to the
936 // unswitched switch.
937 for (const auto &Case : SI.cases())
938 NewSIW.addCase(OnVal: Case.getCaseValue(), Dest: NewPH,
939 W: SIW.getSuccessorWeight(idx: Case.getSuccessorIndex()));
940 } else if (DefaultCaseWeight) {
941 // We have to set branch weight of the default case.
942 uint64_t SW = *DefaultCaseWeight;
943 for (const auto &Case : SI.cases()) {
944 auto W = SIW.getSuccessorWeight(idx: Case.getSuccessorIndex());
945 assert(W &&
946 "case weight must be defined as default case weight is defined");
947 SW += *W;
948 }
949 NewSIW.setSuccessorWeight(idx: 0, W: SW);
950 }
951
952 // If we ended up with a common successor for every path through the switch
953 // after unswitching, rewrite it to an unconditional branch to make it easy
954 // to recognize. Otherwise we potentially have to recognize the default case
955 // pointing at unreachable and other complexity.
956 if (CommonSuccBB) {
957 BasicBlock *BB = SI.getParent();
958 // We may have had multiple edges to this common successor block, so remove
959 // them as predecessors. We skip the first one, either the default or the
960 // actual first case.
961 bool SkippedFirst = DefaultExitBB == nullptr;
962 for (auto Case : SI.cases()) {
963 assert(Case.getCaseSuccessor() == CommonSuccBB &&
964 "Non-common successor!");
965 (void)Case;
966 if (!SkippedFirst) {
967 SkippedFirst = true;
968 continue;
969 }
970 CommonSuccBB->removePredecessor(Pred: BB,
971 /*KeepOneInputPHIs*/ true);
972 }
973 // Now nuke the switch and replace it with a direct branch.
974 SIW.eraseFromParent();
975 BranchInst::Create(IfTrue: CommonSuccBB, InsertAtEnd: BB);
976 } else if (DefaultExitBB) {
977 assert(SI.getNumCases() > 0 &&
978 "If we had no cases we'd have a common successor!");
979 // Move the last case to the default successor. This is valid as if the
980 // default got unswitched it cannot be reached. This has the advantage of
981 // being simple and keeping the number of edges from this switch to
982 // successors the same, and avoiding any PHI update complexity.
983 auto LastCaseI = std::prev(x: SI.case_end());
984
985 SI.setDefaultDest(LastCaseI->getCaseSuccessor());
986 SIW.setSuccessorWeight(
987 idx: 0, W: SIW.getSuccessorWeight(idx: LastCaseI->getSuccessorIndex()));
988 SIW.removeCase(I: LastCaseI);
989 }
990
991 // Walk the unswitched exit blocks and the unswitched split blocks and update
992 // the dominator tree based on the CFG edits. While we are walking unordered
993 // containers here, the API for applyUpdates takes an unordered list of
994 // updates and requires them to not contain duplicates.
995 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
996 for (auto *UnswitchedExitBB : UnswitchedExitBBs) {
997 DTUpdates.push_back(Elt: {DT.Delete, ParentBB, UnswitchedExitBB});
998 DTUpdates.push_back(Elt: {DT.Insert, OldPH, UnswitchedExitBB});
999 }
1000 for (auto SplitUnswitchedPair : SplitExitBBMap) {
1001 DTUpdates.push_back(Elt: {DT.Delete, ParentBB, SplitUnswitchedPair.first});
1002 DTUpdates.push_back(Elt: {DT.Insert, OldPH, SplitUnswitchedPair.second});
1003 }
1004
1005 if (MSSAU) {
1006 MSSAU->applyUpdates(Updates: DTUpdates, DT, /*UpdateDT=*/UpdateDTFirst: true);
1007 if (VerifyMemorySSA)
1008 MSSAU->getMemorySSA()->verifyMemorySSA();
1009 } else {
1010 DT.applyUpdates(Updates: DTUpdates);
1011 }
1012
1013 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1014
1015 // We may have changed the nesting relationship for this loop so hoist it to
1016 // its correct parent if needed.
1017 hoistLoopToNewParent(L, Preheader&: *NewPH, DT, LI, MSSAU, SE);
1018
1019 if (MSSAU && VerifyMemorySSA)
1020 MSSAU->getMemorySSA()->verifyMemorySSA();
1021
1022 ++NumTrivial;
1023 ++NumSwitches;
1024 LLVM_DEBUG(dbgs() << " done: unswitching trivial switch...\n");
1025 return true;
1026}
1027
1028/// This routine scans the loop to find a branch or switch which occurs before
1029/// any side effects occur. These can potentially be unswitched without
1030/// duplicating the loop. If a branch or switch is successfully unswitched the
1031/// scanning continues to see if subsequent branches or switches have become
1032/// trivial. Once all trivial candidates have been unswitched, this routine
1033/// returns.
1034///
1035/// The return value indicates whether anything was unswitched (and therefore
1036/// changed).
1037///
1038/// If `SE` is not null, it will be updated based on the potential loop SCEVs
1039/// invalidated by this.
1040static bool unswitchAllTrivialConditions(Loop &L, DominatorTree &DT,
1041 LoopInfo &LI, ScalarEvolution *SE,
1042 MemorySSAUpdater *MSSAU) {
1043 bool Changed = false;
1044
1045 // If loop header has only one reachable successor we should keep looking for
1046 // trivial condition candidates in the successor as well. An alternative is
1047 // to constant fold conditions and merge successors into loop header (then we
1048 // only need to check header's terminator). The reason for not doing this in
1049 // LoopUnswitch pass is that it could potentially break LoopPassManager's
1050 // invariants. Folding dead branches could either eliminate the current loop
1051 // or make other loops unreachable. LCSSA form might also not be preserved
1052 // after deleting branches. The following code keeps traversing loop header's
1053 // successors until it finds the trivial condition candidate (condition that
1054 // is not a constant). Since unswitching generates branches with constant
1055 // conditions, this scenario could be very common in practice.
1056 BasicBlock *CurrentBB = L.getHeader();
1057 SmallPtrSet<BasicBlock *, 8> Visited;
1058 Visited.insert(Ptr: CurrentBB);
1059 do {
1060 // Check if there are any side-effecting instructions (e.g. stores, calls,
1061 // volatile loads) in the part of the loop that the code *would* execute
1062 // without unswitching.
1063 if (MSSAU) // Possible early exit with MSSA
1064 if (auto *Defs = MSSAU->getMemorySSA()->getBlockDefs(BB: CurrentBB))
1065 if (!isa<MemoryPhi>(Val: *Defs->begin()) || (++Defs->begin() != Defs->end()))
1066 return Changed;
1067 if (llvm::any_of(Range&: *CurrentBB,
1068 P: [](Instruction &I) { return I.mayHaveSideEffects(); }))
1069 return Changed;
1070
1071 Instruction *CurrentTerm = CurrentBB->getTerminator();
1072
1073 if (auto *SI = dyn_cast<SwitchInst>(Val: CurrentTerm)) {
1074 // Don't bother trying to unswitch past a switch with a constant
1075 // condition. This should be removed prior to running this pass by
1076 // simplifycfg.
1077 if (isa<Constant>(Val: SI->getCondition()))
1078 return Changed;
1079
1080 if (!unswitchTrivialSwitch(L, SI&: *SI, DT, LI, SE, MSSAU))
1081 // Couldn't unswitch this one so we're done.
1082 return Changed;
1083
1084 // Mark that we managed to unswitch something.
1085 Changed = true;
1086
1087 // If unswitching turned the terminator into an unconditional branch then
1088 // we can continue. The unswitching logic specifically works to fold any
1089 // cases it can into an unconditional branch to make it easier to
1090 // recognize here.
1091 auto *BI = dyn_cast<BranchInst>(Val: CurrentBB->getTerminator());
1092 if (!BI || BI->isConditional())
1093 return Changed;
1094
1095 CurrentBB = BI->getSuccessor(i: 0);
1096 continue;
1097 }
1098
1099 auto *BI = dyn_cast<BranchInst>(Val: CurrentTerm);
1100 if (!BI)
1101 // We do not understand other terminator instructions.
1102 return Changed;
1103
1104 // Don't bother trying to unswitch past an unconditional branch or a branch
1105 // with a constant value. These should be removed by simplifycfg prior to
1106 // running this pass.
1107 if (!BI->isConditional() ||
1108 isa<Constant>(Val: skipTrivialSelect(Cond: BI->getCondition())))
1109 return Changed;
1110
1111 // Found a trivial condition candidate: non-foldable conditional branch. If
1112 // we fail to unswitch this, we can't do anything else that is trivial.
1113 if (!unswitchTrivialBranch(L, BI&: *BI, DT, LI, SE, MSSAU))
1114 return Changed;
1115
1116 // Mark that we managed to unswitch something.
1117 Changed = true;
1118
1119 // If we only unswitched some of the conditions feeding the branch, we won't
1120 // have collapsed it to a single successor.
1121 BI = cast<BranchInst>(Val: CurrentBB->getTerminator());
1122 if (BI->isConditional())
1123 return Changed;
1124
1125 // Follow the newly unconditional branch into its successor.
1126 CurrentBB = BI->getSuccessor(i: 0);
1127
1128 // When continuing, if we exit the loop or reach a previous visited block,
1129 // then we can not reach any trivial condition candidates (unfoldable
1130 // branch instructions or switch instructions) and no unswitch can happen.
1131 } while (L.contains(BB: CurrentBB) && Visited.insert(Ptr: CurrentBB).second);
1132
1133 return Changed;
1134}
1135
1136/// Build the cloned blocks for an unswitched copy of the given loop.
1137///
1138/// The cloned blocks are inserted before the loop preheader (`LoopPH`) and
1139/// after the split block (`SplitBB`) that will be used to select between the
1140/// cloned and original loop.
1141///
1142/// This routine handles cloning all of the necessary loop blocks and exit
1143/// blocks including rewriting their instructions and the relevant PHI nodes.
1144/// Any loop blocks or exit blocks which are dominated by a different successor
1145/// than the one for this clone of the loop blocks can be trivially skipped. We
1146/// use the `DominatingSucc` map to determine whether a block satisfies that
1147/// property with a simple map lookup.
1148///
1149/// It also correctly creates the unconditional branch in the cloned
1150/// unswitched parent block to only point at the unswitched successor.
1151///
1152/// This does not handle most of the necessary updates to `LoopInfo`. Only exit
1153/// block splitting is correctly reflected in `LoopInfo`, essentially all of
1154/// the cloned blocks (and their loops) are left without full `LoopInfo`
1155/// updates. This also doesn't fully update `DominatorTree`. It adds the cloned
1156/// blocks to them but doesn't create the cloned `DominatorTree` structure and
1157/// instead the caller must recompute an accurate DT. It *does* correctly
1158/// update the `AssumptionCache` provided in `AC`.
1159static BasicBlock *buildClonedLoopBlocks(
1160 Loop &L, BasicBlock *LoopPH, BasicBlock *SplitBB,
1161 ArrayRef<BasicBlock *> ExitBlocks, BasicBlock *ParentBB,
1162 BasicBlock *UnswitchedSuccBB, BasicBlock *ContinueSuccBB,
1163 const SmallDenseMap<BasicBlock *, BasicBlock *, 16> &DominatingSucc,
1164 ValueToValueMapTy &VMap,
1165 SmallVectorImpl<DominatorTree::UpdateType> &DTUpdates, AssumptionCache &AC,
1166 DominatorTree &DT, LoopInfo &LI, MemorySSAUpdater *MSSAU,
1167 ScalarEvolution *SE) {
1168 SmallVector<BasicBlock *, 4> NewBlocks;
1169 NewBlocks.reserve(N: L.getNumBlocks() + ExitBlocks.size());
1170
1171 // We will need to clone a bunch of blocks, wrap up the clone operation in
1172 // a helper.
1173 auto CloneBlock = [&](BasicBlock *OldBB) {
1174 // Clone the basic block and insert it before the new preheader.
1175 BasicBlock *NewBB = CloneBasicBlock(BB: OldBB, VMap, NameSuffix: ".us", F: OldBB->getParent());
1176 NewBB->moveBefore(MovePos: LoopPH);
1177
1178 // Record this block and the mapping.
1179 NewBlocks.push_back(Elt: NewBB);
1180 VMap[OldBB] = NewBB;
1181
1182 return NewBB;
1183 };
1184
1185 // We skip cloning blocks when they have a dominating succ that is not the
1186 // succ we are cloning for.
1187 auto SkipBlock = [&](BasicBlock *BB) {
1188 auto It = DominatingSucc.find(Val: BB);
1189 return It != DominatingSucc.end() && It->second != UnswitchedSuccBB;
1190 };
1191
1192 // First, clone the preheader.
1193 auto *ClonedPH = CloneBlock(LoopPH);
1194
1195 // Then clone all the loop blocks, skipping the ones that aren't necessary.
1196 for (auto *LoopBB : L.blocks())
1197 if (!SkipBlock(LoopBB))
1198 CloneBlock(LoopBB);
1199
1200 // Split all the loop exit edges so that when we clone the exit blocks, if
1201 // any of the exit blocks are *also* a preheader for some other loop, we
1202 // don't create multiple predecessors entering the loop header.
1203 for (auto *ExitBB : ExitBlocks) {
1204 if (SkipBlock(ExitBB))
1205 continue;
1206
1207 // When we are going to clone an exit, we don't need to clone all the
1208 // instructions in the exit block and we want to ensure we have an easy
1209 // place to merge the CFG, so split the exit first. This is always safe to
1210 // do because there cannot be any non-loop predecessors of a loop exit in
1211 // loop simplified form.
1212 auto *MergeBB = SplitBlock(Old: ExitBB, SplitPt: ExitBB->begin(), DT: &DT, LI: &LI, MSSAU);
1213
1214 // Rearrange the names to make it easier to write test cases by having the
1215 // exit block carry the suffix rather than the merge block carrying the
1216 // suffix.
1217 MergeBB->takeName(V: ExitBB);
1218 ExitBB->setName(Twine(MergeBB->getName()) + ".split");
1219
1220 // Now clone the original exit block.
1221 auto *ClonedExitBB = CloneBlock(ExitBB);
1222 assert(ClonedExitBB->getTerminator()->getNumSuccessors() == 1 &&
1223 "Exit block should have been split to have one successor!");
1224 assert(ClonedExitBB->getTerminator()->getSuccessor(0) == MergeBB &&
1225 "Cloned exit block has the wrong successor!");
1226
1227 // Remap any cloned instructions and create a merge phi node for them.
1228 for (auto ZippedInsts : llvm::zip_first(
1229 t: llvm::make_range(x: ExitBB->begin(), y: std::prev(x: ExitBB->end())),
1230 u: llvm::make_range(x: ClonedExitBB->begin(),
1231 y: std::prev(x: ClonedExitBB->end())))) {
1232 Instruction &I = std::get<0>(t&: ZippedInsts);
1233 Instruction &ClonedI = std::get<1>(t&: ZippedInsts);
1234
1235 // The only instructions in the exit block should be PHI nodes and
1236 // potentially a landing pad.
1237 assert(
1238 (isa<PHINode>(I) || isa<LandingPadInst>(I) || isa<CatchPadInst>(I)) &&
1239 "Bad instruction in exit block!");
1240 // We should have a value map between the instruction and its clone.
1241 assert(VMap.lookup(&I) == &ClonedI && "Mismatch in the value map!");
1242
1243 // Forget SCEVs based on exit phis in case SCEV looked through the phi.
1244 if (SE && isa<PHINode>(Val: I))
1245 SE->forgetValue(V: &I);
1246
1247 auto *MergePN =
1248 PHINode::Create(Ty: I.getType(), /*NumReservedValues*/ 2, NameStr: ".us-phi");
1249 MergePN->insertBefore(InsertPos: MergeBB->getFirstInsertionPt());
1250 I.replaceAllUsesWith(V: MergePN);
1251 MergePN->addIncoming(V: &I, BB: ExitBB);
1252 MergePN->addIncoming(V: &ClonedI, BB: ClonedExitBB);
1253 }
1254 }
1255
1256 // Rewrite the instructions in the cloned blocks to refer to the instructions
1257 // in the cloned blocks. We have to do this as a second pass so that we have
1258 // everything available. Also, we have inserted new instructions which may
1259 // include assume intrinsics, so we update the assumption cache while
1260 // processing this.
1261 Module *M = ClonedPH->getParent()->getParent();
1262 for (auto *ClonedBB : NewBlocks)
1263 for (Instruction &I : *ClonedBB) {
1264 RemapDbgVariableRecordRange(M, Range: I.getDbgRecordRange(), VM&: VMap,
1265 Flags: RF_NoModuleLevelChanges |
1266 RF_IgnoreMissingLocals);
1267 RemapInstruction(I: &I, VM&: VMap,
1268 Flags: RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1269 if (auto *II = dyn_cast<AssumeInst>(Val: &I))
1270 AC.registerAssumption(CI: II);
1271 }
1272
1273 // Update any PHI nodes in the cloned successors of the skipped blocks to not
1274 // have spurious incoming values.
1275 for (auto *LoopBB : L.blocks())
1276 if (SkipBlock(LoopBB))
1277 for (auto *SuccBB : successors(BB: LoopBB))
1278 if (auto *ClonedSuccBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: SuccBB)))
1279 for (PHINode &PN : ClonedSuccBB->phis())
1280 PN.removeIncomingValue(BB: LoopBB, /*DeletePHIIfEmpty*/ false);
1281
1282 // Remove the cloned parent as a predecessor of any successor we ended up
1283 // cloning other than the unswitched one.
1284 auto *ClonedParentBB = cast<BasicBlock>(Val: VMap.lookup(Val: ParentBB));
1285 for (auto *SuccBB : successors(BB: ParentBB)) {
1286 if (SuccBB == UnswitchedSuccBB)
1287 continue;
1288
1289 auto *ClonedSuccBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: SuccBB));
1290 if (!ClonedSuccBB)
1291 continue;
1292
1293 ClonedSuccBB->removePredecessor(Pred: ClonedParentBB,
1294 /*KeepOneInputPHIs*/ true);
1295 }
1296
1297 // Replace the cloned branch with an unconditional branch to the cloned
1298 // unswitched successor.
1299 auto *ClonedSuccBB = cast<BasicBlock>(Val: VMap.lookup(Val: UnswitchedSuccBB));
1300 Instruction *ClonedTerminator = ClonedParentBB->getTerminator();
1301 // Trivial Simplification. If Terminator is a conditional branch and
1302 // condition becomes dead - erase it.
1303 Value *ClonedConditionToErase = nullptr;
1304 if (auto *BI = dyn_cast<BranchInst>(Val: ClonedTerminator))
1305 ClonedConditionToErase = BI->getCondition();
1306 else if (auto *SI = dyn_cast<SwitchInst>(Val: ClonedTerminator))
1307 ClonedConditionToErase = SI->getCondition();
1308
1309 ClonedTerminator->eraseFromParent();
1310 BranchInst::Create(IfTrue: ClonedSuccBB, InsertAtEnd: ClonedParentBB);
1311
1312 if (ClonedConditionToErase)
1313 RecursivelyDeleteTriviallyDeadInstructions(V: ClonedConditionToErase, TLI: nullptr,
1314 MSSAU);
1315
1316 // If there are duplicate entries in the PHI nodes because of multiple edges
1317 // to the unswitched successor, we need to nuke all but one as we replaced it
1318 // with a direct branch.
1319 for (PHINode &PN : ClonedSuccBB->phis()) {
1320 bool Found = false;
1321 // Loop over the incoming operands backwards so we can easily delete as we
1322 // go without invalidating the index.
1323 for (int i = PN.getNumOperands() - 1; i >= 0; --i) {
1324 if (PN.getIncomingBlock(i) != ClonedParentBB)
1325 continue;
1326 if (!Found) {
1327 Found = true;
1328 continue;
1329 }
1330 PN.removeIncomingValue(Idx: i, /*DeletePHIIfEmpty*/ false);
1331 }
1332 }
1333
1334 // Record the domtree updates for the new blocks.
1335 SmallPtrSet<BasicBlock *, 4> SuccSet;
1336 for (auto *ClonedBB : NewBlocks) {
1337 for (auto *SuccBB : successors(BB: ClonedBB))
1338 if (SuccSet.insert(Ptr: SuccBB).second)
1339 DTUpdates.push_back(Elt: {DominatorTree::Insert, ClonedBB, SuccBB});
1340 SuccSet.clear();
1341 }
1342
1343 return ClonedPH;
1344}
1345
1346/// Recursively clone the specified loop and all of its children.
1347///
1348/// The target parent loop for the clone should be provided, or can be null if
1349/// the clone is a top-level loop. While cloning, all the blocks are mapped
1350/// with the provided value map. The entire original loop must be present in
1351/// the value map. The cloned loop is returned.
1352static Loop *cloneLoopNest(Loop &OrigRootL, Loop *RootParentL,
1353 const ValueToValueMapTy &VMap, LoopInfo &LI) {
1354 auto AddClonedBlocksToLoop = [&](Loop &OrigL, Loop &ClonedL) {
1355 assert(ClonedL.getBlocks().empty() && "Must start with an empty loop!");
1356 ClonedL.reserveBlocks(size: OrigL.getNumBlocks());
1357 for (auto *BB : OrigL.blocks()) {
1358 auto *ClonedBB = cast<BasicBlock>(Val: VMap.lookup(Val: BB));
1359 ClonedL.addBlockEntry(BB: ClonedBB);
1360 if (LI.getLoopFor(BB) == &OrigL)
1361 LI.changeLoopFor(BB: ClonedBB, L: &ClonedL);
1362 }
1363 };
1364
1365 // We specially handle the first loop because it may get cloned into
1366 // a different parent and because we most commonly are cloning leaf loops.
1367 Loop *ClonedRootL = LI.AllocateLoop();
1368 if (RootParentL)
1369 RootParentL->addChildLoop(NewChild: ClonedRootL);
1370 else
1371 LI.addTopLevelLoop(New: ClonedRootL);
1372 AddClonedBlocksToLoop(OrigRootL, *ClonedRootL);
1373
1374 if (OrigRootL.isInnermost())
1375 return ClonedRootL;
1376
1377 // If we have a nest, we can quickly clone the entire loop nest using an
1378 // iterative approach because it is a tree. We keep the cloned parent in the
1379 // data structure to avoid repeatedly querying through a map to find it.
1380 SmallVector<std::pair<Loop *, Loop *>, 16> LoopsToClone;
1381 // Build up the loops to clone in reverse order as we'll clone them from the
1382 // back.
1383 for (Loop *ChildL : llvm::reverse(C&: OrigRootL))
1384 LoopsToClone.push_back(Elt: {ClonedRootL, ChildL});
1385 do {
1386 Loop *ClonedParentL, *L;
1387 std::tie(args&: ClonedParentL, args&: L) = LoopsToClone.pop_back_val();
1388 Loop *ClonedL = LI.AllocateLoop();
1389 ClonedParentL->addChildLoop(NewChild: ClonedL);
1390 AddClonedBlocksToLoop(*L, *ClonedL);
1391 for (Loop *ChildL : llvm::reverse(C&: *L))
1392 LoopsToClone.push_back(Elt: {ClonedL, ChildL});
1393 } while (!LoopsToClone.empty());
1394
1395 return ClonedRootL;
1396}
1397
1398/// Build the cloned loops of an original loop from unswitching.
1399///
1400/// Because unswitching simplifies the CFG of the loop, this isn't a trivial
1401/// operation. We need to re-verify that there even is a loop (as the backedge
1402/// may not have been cloned), and even if there are remaining backedges the
1403/// backedge set may be different. However, we know that each child loop is
1404/// undisturbed, we only need to find where to place each child loop within
1405/// either any parent loop or within a cloned version of the original loop.
1406///
1407/// Because child loops may end up cloned outside of any cloned version of the
1408/// original loop, multiple cloned sibling loops may be created. All of them
1409/// are returned so that the newly introduced loop nest roots can be
1410/// identified.
1411static void buildClonedLoops(Loop &OrigL, ArrayRef<BasicBlock *> ExitBlocks,
1412 const ValueToValueMapTy &VMap, LoopInfo &LI,
1413 SmallVectorImpl<Loop *> &NonChildClonedLoops) {
1414 Loop *ClonedL = nullptr;
1415
1416 auto *OrigPH = OrigL.getLoopPreheader();
1417 auto *OrigHeader = OrigL.getHeader();
1418
1419 auto *ClonedPH = cast<BasicBlock>(Val: VMap.lookup(Val: OrigPH));
1420 auto *ClonedHeader = cast<BasicBlock>(Val: VMap.lookup(Val: OrigHeader));
1421
1422 // We need to know the loops of the cloned exit blocks to even compute the
1423 // accurate parent loop. If we only clone exits to some parent of the
1424 // original parent, we want to clone into that outer loop. We also keep track
1425 // of the loops that our cloned exit blocks participate in.
1426 Loop *ParentL = nullptr;
1427 SmallVector<BasicBlock *, 4> ClonedExitsInLoops;
1428 SmallDenseMap<BasicBlock *, Loop *, 16> ExitLoopMap;
1429 ClonedExitsInLoops.reserve(N: ExitBlocks.size());
1430 for (auto *ExitBB : ExitBlocks)
1431 if (auto *ClonedExitBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: ExitBB)))
1432 if (Loop *ExitL = LI.getLoopFor(BB: ExitBB)) {
1433 ExitLoopMap[ClonedExitBB] = ExitL;
1434 ClonedExitsInLoops.push_back(Elt: ClonedExitBB);
1435 if (!ParentL || (ParentL != ExitL && ParentL->contains(L: ExitL)))
1436 ParentL = ExitL;
1437 }
1438 assert((!ParentL || ParentL == OrigL.getParentLoop() ||
1439 ParentL->contains(OrigL.getParentLoop())) &&
1440 "The computed parent loop should always contain (or be) the parent of "
1441 "the original loop.");
1442
1443 // We build the set of blocks dominated by the cloned header from the set of
1444 // cloned blocks out of the original loop. While not all of these will
1445 // necessarily be in the cloned loop, it is enough to establish that they
1446 // aren't in unreachable cycles, etc.
1447 SmallSetVector<BasicBlock *, 16> ClonedLoopBlocks;
1448 for (auto *BB : OrigL.blocks())
1449 if (auto *ClonedBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: BB)))
1450 ClonedLoopBlocks.insert(X: ClonedBB);
1451
1452 // Rebuild the set of blocks that will end up in the cloned loop. We may have
1453 // skipped cloning some region of this loop which can in turn skip some of
1454 // the backedges so we have to rebuild the blocks in the loop based on the
1455 // backedges that remain after cloning.
1456 SmallVector<BasicBlock *, 16> Worklist;
1457 SmallPtrSet<BasicBlock *, 16> BlocksInClonedLoop;
1458 for (auto *Pred : predecessors(BB: ClonedHeader)) {
1459 // The only possible non-loop header predecessor is the preheader because
1460 // we know we cloned the loop in simplified form.
1461 if (Pred == ClonedPH)
1462 continue;
1463
1464 // Because the loop was in simplified form, the only non-loop predecessor
1465 // should be the preheader.
1466 assert(ClonedLoopBlocks.count(Pred) && "Found a predecessor of the loop "
1467 "header other than the preheader "
1468 "that is not part of the loop!");
1469
1470 // Insert this block into the loop set and on the first visit (and if it
1471 // isn't the header we're currently walking) put it into the worklist to
1472 // recurse through.
1473 if (BlocksInClonedLoop.insert(Ptr: Pred).second && Pred != ClonedHeader)
1474 Worklist.push_back(Elt: Pred);
1475 }
1476
1477 // If we had any backedges then there *is* a cloned loop. Put the header into
1478 // the loop set and then walk the worklist backwards to find all the blocks
1479 // that remain within the loop after cloning.
1480 if (!BlocksInClonedLoop.empty()) {
1481 BlocksInClonedLoop.insert(Ptr: ClonedHeader);
1482
1483 while (!Worklist.empty()) {
1484 BasicBlock *BB = Worklist.pop_back_val();
1485 assert(BlocksInClonedLoop.count(BB) &&
1486 "Didn't put block into the loop set!");
1487
1488 // Insert any predecessors that are in the possible set into the cloned
1489 // set, and if the insert is successful, add them to the worklist. Note
1490 // that we filter on the blocks that are definitely reachable via the
1491 // backedge to the loop header so we may prune out dead code within the
1492 // cloned loop.
1493 for (auto *Pred : predecessors(BB))
1494 if (ClonedLoopBlocks.count(key: Pred) &&
1495 BlocksInClonedLoop.insert(Ptr: Pred).second)
1496 Worklist.push_back(Elt: Pred);
1497 }
1498
1499 ClonedL = LI.AllocateLoop();
1500 if (ParentL) {
1501 ParentL->addBasicBlockToLoop(NewBB: ClonedPH, LI);
1502 ParentL->addChildLoop(NewChild: ClonedL);
1503 } else {
1504 LI.addTopLevelLoop(New: ClonedL);
1505 }
1506 NonChildClonedLoops.push_back(Elt: ClonedL);
1507
1508 ClonedL->reserveBlocks(size: BlocksInClonedLoop.size());
1509 // We don't want to just add the cloned loop blocks based on how we
1510 // discovered them. The original order of blocks was carefully built in
1511 // a way that doesn't rely on predecessor ordering. Rather than re-invent
1512 // that logic, we just re-walk the original blocks (and those of the child
1513 // loops) and filter them as we add them into the cloned loop.
1514 for (auto *BB : OrigL.blocks()) {
1515 auto *ClonedBB = cast_or_null<BasicBlock>(Val: VMap.lookup(Val: BB));
1516 if (!ClonedBB || !BlocksInClonedLoop.count(Ptr: ClonedBB))
1517 continue;
1518
1519 // Directly add the blocks that are only in this loop.
1520 if (LI.getLoopFor(BB) == &OrigL) {
1521 ClonedL->addBasicBlockToLoop(NewBB: ClonedBB, LI);
1522 continue;
1523 }
1524
1525 // We want to manually add it to this loop and parents.
1526 // Registering it with LoopInfo will happen when we clone the top
1527 // loop for this block.
1528 for (Loop *PL = ClonedL; PL; PL = PL->getParentLoop())
1529 PL->addBlockEntry(BB: ClonedBB);
1530 }
1531
1532 // Now add each child loop whose header remains within the cloned loop. All
1533 // of the blocks within the loop must satisfy the same constraints as the
1534 // header so once we pass the header checks we can just clone the entire
1535 // child loop nest.
1536 for (Loop *ChildL : OrigL) {
1537 auto *ClonedChildHeader =
1538 cast_or_null<BasicBlock>(Val: VMap.lookup(Val: ChildL->getHeader()));
1539 if (!ClonedChildHeader || !BlocksInClonedLoop.count(Ptr: ClonedChildHeader))
1540 continue;
1541
1542#ifndef NDEBUG
1543 // We should never have a cloned child loop header but fail to have
1544 // all of the blocks for that child loop.
1545 for (auto *ChildLoopBB : ChildL->blocks())
1546 assert(BlocksInClonedLoop.count(
1547 cast<BasicBlock>(VMap.lookup(ChildLoopBB))) &&
1548 "Child cloned loop has a header within the cloned outer "
1549 "loop but not all of its blocks!");
1550#endif
1551
1552 cloneLoopNest(OrigRootL&: *ChildL, RootParentL: ClonedL, VMap, LI);
1553 }
1554 }
1555
1556 // Now that we've handled all the components of the original loop that were
1557 // cloned into a new loop, we still need to handle anything from the original
1558 // loop that wasn't in a cloned loop.
1559
1560 // Figure out what blocks are left to place within any loop nest containing
1561 // the unswitched loop. If we never formed a loop, the cloned PH is one of
1562 // them.
1563 SmallPtrSet<BasicBlock *, 16> UnloopedBlockSet;
1564 if (BlocksInClonedLoop.empty())
1565 UnloopedBlockSet.insert(Ptr: ClonedPH);
1566 for (auto *ClonedBB : ClonedLoopBlocks)
1567 if (!BlocksInClonedLoop.count(Ptr: ClonedBB))
1568 UnloopedBlockSet.insert(Ptr: ClonedBB);
1569
1570 // Copy the cloned exits and sort them in ascending loop depth, we'll work
1571 // backwards across these to process them inside out. The order shouldn't
1572 // matter as we're just trying to build up the map from inside-out; we use
1573 // the map in a more stably ordered way below.
1574 auto OrderedClonedExitsInLoops = ClonedExitsInLoops;
1575 llvm::sort(C&: OrderedClonedExitsInLoops, Comp: [&](BasicBlock *LHS, BasicBlock *RHS) {
1576 return ExitLoopMap.lookup(Val: LHS)->getLoopDepth() <
1577 ExitLoopMap.lookup(Val: RHS)->getLoopDepth();
1578 });
1579
1580 // Populate the existing ExitLoopMap with everything reachable from each
1581 // exit, starting from the inner most exit.
1582 while (!UnloopedBlockSet.empty() && !OrderedClonedExitsInLoops.empty()) {
1583 assert(Worklist.empty() && "Didn't clear worklist!");
1584
1585 BasicBlock *ExitBB = OrderedClonedExitsInLoops.pop_back_val();
1586 Loop *ExitL = ExitLoopMap.lookup(Val: ExitBB);
1587
1588 // Walk the CFG back until we hit the cloned PH adding everything reachable
1589 // and in the unlooped set to this exit block's loop.
1590 Worklist.push_back(Elt: ExitBB);
1591 do {
1592 BasicBlock *BB = Worklist.pop_back_val();
1593 // We can stop recursing at the cloned preheader (if we get there).
1594 if (BB == ClonedPH)
1595 continue;
1596
1597 for (BasicBlock *PredBB : predecessors(BB)) {
1598 // If this pred has already been moved to our set or is part of some
1599 // (inner) loop, no update needed.
1600 if (!UnloopedBlockSet.erase(Ptr: PredBB)) {
1601 assert(
1602 (BlocksInClonedLoop.count(PredBB) || ExitLoopMap.count(PredBB)) &&
1603 "Predecessor not mapped to a loop!");
1604 continue;
1605 }
1606
1607 // We just insert into the loop set here. We'll add these blocks to the
1608 // exit loop after we build up the set in an order that doesn't rely on
1609 // predecessor order (which in turn relies on use list order).
1610 bool Inserted = ExitLoopMap.insert(KV: {PredBB, ExitL}).second;
1611 (void)Inserted;
1612 assert(Inserted && "Should only visit an unlooped block once!");
1613
1614 // And recurse through to its predecessors.
1615 Worklist.push_back(Elt: PredBB);
1616 }
1617 } while (!Worklist.empty());
1618 }
1619
1620 // Now that the ExitLoopMap gives as mapping for all the non-looping cloned
1621 // blocks to their outer loops, walk the cloned blocks and the cloned exits
1622 // in their original order adding them to the correct loop.
1623
1624 // We need a stable insertion order. We use the order of the original loop
1625 // order and map into the correct parent loop.
1626 for (auto *BB : llvm::concat<BasicBlock *const>(
1627 Ranges: ArrayRef(ClonedPH), Ranges&: ClonedLoopBlocks, Ranges&: ClonedExitsInLoops))
1628 if (Loop *OuterL = ExitLoopMap.lookup(Val: BB))
1629 OuterL->addBasicBlockToLoop(NewBB: BB, LI);
1630
1631#ifndef NDEBUG
1632 for (auto &BBAndL : ExitLoopMap) {
1633 auto *BB = BBAndL.first;
1634 auto *OuterL = BBAndL.second;
1635 assert(LI.getLoopFor(BB) == OuterL &&
1636 "Failed to put all blocks into outer loops!");
1637 }
1638#endif
1639
1640 // Now that all the blocks are placed into the correct containing loop in the
1641 // absence of child loops, find all the potentially cloned child loops and
1642 // clone them into whatever outer loop we placed their header into.
1643 for (Loop *ChildL : OrigL) {
1644 auto *ClonedChildHeader =
1645 cast_or_null<BasicBlock>(Val: VMap.lookup(Val: ChildL->getHeader()));
1646 if (!ClonedChildHeader || BlocksInClonedLoop.count(Ptr: ClonedChildHeader))
1647 continue;
1648
1649#ifndef NDEBUG
1650 for (auto *ChildLoopBB : ChildL->blocks())
1651 assert(VMap.count(ChildLoopBB) &&
1652 "Cloned a child loop header but not all of that loops blocks!");
1653#endif
1654
1655 NonChildClonedLoops.push_back(Elt: cloneLoopNest(
1656 OrigRootL&: *ChildL, RootParentL: ExitLoopMap.lookup(Val: ClonedChildHeader), VMap, LI));
1657 }
1658}
1659
1660static void
1661deleteDeadClonedBlocks(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1662 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps,
1663 DominatorTree &DT, MemorySSAUpdater *MSSAU) {
1664 // Find all the dead clones, and remove them from their successors.
1665 SmallVector<BasicBlock *, 16> DeadBlocks;
1666 for (BasicBlock *BB : llvm::concat<BasicBlock *const>(Ranges: L.blocks(), Ranges&: ExitBlocks))
1667 for (const auto &VMap : VMaps)
1668 if (BasicBlock *ClonedBB = cast_or_null<BasicBlock>(Val: VMap->lookup(Val: BB)))
1669 if (!DT.isReachableFromEntry(A: ClonedBB)) {
1670 for (BasicBlock *SuccBB : successors(BB: ClonedBB))
1671 SuccBB->removePredecessor(Pred: ClonedBB);
1672 DeadBlocks.push_back(Elt: ClonedBB);
1673 }
1674
1675 // Remove all MemorySSA in the dead blocks
1676 if (MSSAU) {
1677 SmallSetVector<BasicBlock *, 8> DeadBlockSet(DeadBlocks.begin(),
1678 DeadBlocks.end());
1679 MSSAU->removeBlocks(DeadBlocks: DeadBlockSet);
1680 }
1681
1682 // Drop any remaining references to break cycles.
1683 for (BasicBlock *BB : DeadBlocks)
1684 BB->dropAllReferences();
1685 // Erase them from the IR.
1686 for (BasicBlock *BB : DeadBlocks)
1687 BB->eraseFromParent();
1688}
1689
1690static void deleteDeadBlocksFromLoop(Loop &L,
1691 SmallVectorImpl<BasicBlock *> &ExitBlocks,
1692 DominatorTree &DT, LoopInfo &LI,
1693 MemorySSAUpdater *MSSAU,
1694 ScalarEvolution *SE,
1695 LPMUpdater &LoopUpdater) {
1696 // Find all the dead blocks tied to this loop, and remove them from their
1697 // successors.
1698 SmallSetVector<BasicBlock *, 8> DeadBlockSet;
1699
1700 // Start with loop/exit blocks and get a transitive closure of reachable dead
1701 // blocks.
1702 SmallVector<BasicBlock *, 16> DeathCandidates(ExitBlocks.begin(),
1703 ExitBlocks.end());
1704 DeathCandidates.append(in_start: L.blocks().begin(), in_end: L.blocks().end());
1705 while (!DeathCandidates.empty()) {
1706 auto *BB = DeathCandidates.pop_back_val();
1707 if (!DeadBlockSet.count(key: BB) && !DT.isReachableFromEntry(A: BB)) {
1708 for (BasicBlock *SuccBB : successors(BB)) {
1709 SuccBB->removePredecessor(Pred: BB);
1710 DeathCandidates.push_back(Elt: SuccBB);
1711 }
1712 DeadBlockSet.insert(X: BB);
1713 }
1714 }
1715
1716 // Remove all MemorySSA in the dead blocks
1717 if (MSSAU)
1718 MSSAU->removeBlocks(DeadBlocks: DeadBlockSet);
1719
1720 // Filter out the dead blocks from the exit blocks list so that it can be
1721 // used in the caller.
1722 llvm::erase_if(C&: ExitBlocks,
1723 P: [&](BasicBlock *BB) { return DeadBlockSet.count(key: BB); });
1724
1725 // Walk from this loop up through its parents removing all of the dead blocks.
1726 for (Loop *ParentL = &L; ParentL; ParentL = ParentL->getParentLoop()) {
1727 for (auto *BB : DeadBlockSet)
1728 ParentL->getBlocksSet().erase(Ptr: BB);
1729 llvm::erase_if(C&: ParentL->getBlocksVector(),
1730 P: [&](BasicBlock *BB) { return DeadBlockSet.count(key: BB); });
1731 }
1732
1733 // Now delete the dead child loops. This raw delete will clear them
1734 // recursively.
1735 llvm::erase_if(C&: L.getSubLoopsVector(), P: [&](Loop *ChildL) {
1736 if (!DeadBlockSet.count(key: ChildL->getHeader()))
1737 return false;
1738
1739 assert(llvm::all_of(ChildL->blocks(),
1740 [&](BasicBlock *ChildBB) {
1741 return DeadBlockSet.count(ChildBB);
1742 }) &&
1743 "If the child loop header is dead all blocks in the child loop must "
1744 "be dead as well!");
1745 LoopUpdater.markLoopAsDeleted(L&: *ChildL, Name: ChildL->getName());
1746 if (SE)
1747 SE->forgetBlockAndLoopDispositions();
1748 LI.destroy(L: ChildL);
1749 return true;
1750 });
1751
1752 // Remove the loop mappings for the dead blocks and drop all the references
1753 // from these blocks to others to handle cyclic references as we start
1754 // deleting the blocks themselves.
1755 for (auto *BB : DeadBlockSet) {
1756 // Check that the dominator tree has already been updated.
1757 assert(!DT.getNode(BB) && "Should already have cleared domtree!");
1758 LI.changeLoopFor(BB, L: nullptr);
1759 // Drop all uses of the instructions to make sure we won't have dangling
1760 // uses in other blocks.
1761 for (auto &I : *BB)
1762 if (!I.use_empty())
1763 I.replaceAllUsesWith(V: PoisonValue::get(T: I.getType()));
1764 BB->dropAllReferences();
1765 }
1766
1767 // Actually delete the blocks now that they've been fully unhooked from the
1768 // IR.
1769 for (auto *BB : DeadBlockSet)
1770 BB->eraseFromParent();
1771}
1772
1773/// Recompute the set of blocks in a loop after unswitching.
1774///
1775/// This walks from the original headers predecessors to rebuild the loop. We
1776/// take advantage of the fact that new blocks can't have been added, and so we
1777/// filter by the original loop's blocks. This also handles potentially
1778/// unreachable code that we don't want to explore but might be found examining
1779/// the predecessors of the header.
1780///
1781/// If the original loop is no longer a loop, this will return an empty set. If
1782/// it remains a loop, all the blocks within it will be added to the set
1783/// (including those blocks in inner loops).
1784static SmallPtrSet<const BasicBlock *, 16> recomputeLoopBlockSet(Loop &L,
1785 LoopInfo &LI) {
1786 SmallPtrSet<const BasicBlock *, 16> LoopBlockSet;
1787
1788 auto *PH = L.getLoopPreheader();
1789 auto *Header = L.getHeader();
1790
1791 // A worklist to use while walking backwards from the header.
1792 SmallVector<BasicBlock *, 16> Worklist;
1793
1794 // First walk the predecessors of the header to find the backedges. This will
1795 // form the basis of our walk.
1796 for (auto *Pred : predecessors(BB: Header)) {
1797 // Skip the preheader.
1798 if (Pred == PH)
1799 continue;
1800
1801 // Because the loop was in simplified form, the only non-loop predecessor
1802 // is the preheader.
1803 assert(L.contains(Pred) && "Found a predecessor of the loop header other "
1804 "than the preheader that is not part of the "
1805 "loop!");
1806
1807 // Insert this block into the loop set and on the first visit and, if it
1808 // isn't the header we're currently walking, put it into the worklist to
1809 // recurse through.
1810 if (LoopBlockSet.insert(Ptr: Pred).second && Pred != Header)
1811 Worklist.push_back(Elt: Pred);
1812 }
1813
1814 // If no backedges were found, we're done.
1815 if (LoopBlockSet.empty())
1816 return LoopBlockSet;
1817
1818 // We found backedges, recurse through them to identify the loop blocks.
1819 while (!Worklist.empty()) {
1820 BasicBlock *BB = Worklist.pop_back_val();
1821 assert(LoopBlockSet.count(BB) && "Didn't put block into the loop set!");
1822
1823 // No need to walk past the header.
1824 if (BB == Header)
1825 continue;
1826
1827 // Because we know the inner loop structure remains valid we can use the
1828 // loop structure to jump immediately across the entire nested loop.
1829 // Further, because it is in loop simplified form, we can directly jump
1830 // to its preheader afterward.
1831 if (Loop *InnerL = LI.getLoopFor(BB))
1832 if (InnerL != &L) {
1833 assert(L.contains(InnerL) &&
1834 "Should not reach a loop *outside* this loop!");
1835 // The preheader is the only possible predecessor of the loop so
1836 // insert it into the set and check whether it was already handled.
1837 auto *InnerPH = InnerL->getLoopPreheader();
1838 assert(L.contains(InnerPH) && "Cannot contain an inner loop block "
1839 "but not contain the inner loop "
1840 "preheader!");
1841 if (!LoopBlockSet.insert(Ptr: InnerPH).second)
1842 // The only way to reach the preheader is through the loop body
1843 // itself so if it has been visited the loop is already handled.
1844 continue;
1845
1846 // Insert all of the blocks (other than those already present) into
1847 // the loop set. We expect at least the block that led us to find the
1848 // inner loop to be in the block set, but we may also have other loop
1849 // blocks if they were already enqueued as predecessors of some other
1850 // outer loop block.
1851 for (auto *InnerBB : InnerL->blocks()) {
1852 if (InnerBB == BB) {
1853 assert(LoopBlockSet.count(InnerBB) &&
1854 "Block should already be in the set!");
1855 continue;
1856 }
1857
1858 LoopBlockSet.insert(Ptr: InnerBB);
1859 }
1860
1861 // Add the preheader to the worklist so we will continue past the
1862 // loop body.
1863 Worklist.push_back(Elt: InnerPH);
1864 continue;
1865 }
1866
1867 // Insert any predecessors that were in the original loop into the new
1868 // set, and if the insert is successful, add them to the worklist.
1869 for (auto *Pred : predecessors(BB))
1870 if (L.contains(BB: Pred) && LoopBlockSet.insert(Ptr: Pred).second)
1871 Worklist.push_back(Elt: Pred);
1872 }
1873
1874 assert(LoopBlockSet.count(Header) && "Cannot fail to add the header!");
1875
1876 // We've found all the blocks participating in the loop, return our completed
1877 // set.
1878 return LoopBlockSet;
1879}
1880
1881/// Rebuild a loop after unswitching removes some subset of blocks and edges.
1882///
1883/// The removal may have removed some child loops entirely but cannot have
1884/// disturbed any remaining child loops. However, they may need to be hoisted
1885/// to the parent loop (or to be top-level loops). The original loop may be
1886/// completely removed.
1887///
1888/// The sibling loops resulting from this update are returned. If the original
1889/// loop remains a valid loop, it will be the first entry in this list with all
1890/// of the newly sibling loops following it.
1891///
1892/// Returns true if the loop remains a loop after unswitching, and false if it
1893/// is no longer a loop after unswitching (and should not continue to be
1894/// referenced).
1895static bool rebuildLoopAfterUnswitch(Loop &L, ArrayRef<BasicBlock *> ExitBlocks,
1896 LoopInfo &LI,
1897 SmallVectorImpl<Loop *> &HoistedLoops,
1898 ScalarEvolution *SE) {
1899 auto *PH = L.getLoopPreheader();
1900
1901 // Compute the actual parent loop from the exit blocks. Because we may have
1902 // pruned some exits the loop may be different from the original parent.
1903 Loop *ParentL = nullptr;
1904 SmallVector<Loop *, 4> ExitLoops;
1905 SmallVector<BasicBlock *, 4> ExitsInLoops;
1906 ExitsInLoops.reserve(N: ExitBlocks.size());
1907 for (auto *ExitBB : ExitBlocks)
1908 if (Loop *ExitL = LI.getLoopFor(BB: ExitBB)) {
1909 ExitLoops.push_back(Elt: ExitL);
1910 ExitsInLoops.push_back(Elt: ExitBB);
1911 if (!ParentL || (ParentL != ExitL && ParentL->contains(L: ExitL)))
1912 ParentL = ExitL;
1913 }
1914
1915 // Recompute the blocks participating in this loop. This may be empty if it
1916 // is no longer a loop.
1917 auto LoopBlockSet = recomputeLoopBlockSet(L, LI);
1918
1919 // If we still have a loop, we need to re-set the loop's parent as the exit
1920 // block set changing may have moved it within the loop nest. Note that this
1921 // can only happen when this loop has a parent as it can only hoist the loop
1922 // *up* the nest.
1923 if (!LoopBlockSet.empty() && L.getParentLoop() != ParentL) {
1924 // Remove this loop's (original) blocks from all of the intervening loops.
1925 for (Loop *IL = L.getParentLoop(); IL != ParentL;
1926 IL = IL->getParentLoop()) {
1927 IL->getBlocksSet().erase(Ptr: PH);
1928 for (auto *BB : L.blocks())
1929 IL->getBlocksSet().erase(Ptr: BB);
1930 llvm::erase_if(C&: IL->getBlocksVector(), P: [&](BasicBlock *BB) {
1931 return BB == PH || L.contains(BB);
1932 });
1933 }
1934
1935 LI.changeLoopFor(BB: PH, L: ParentL);
1936 L.getParentLoop()->removeChildLoop(Child: &L);
1937 if (ParentL)
1938 ParentL->addChildLoop(NewChild: &L);
1939 else
1940 LI.addTopLevelLoop(New: &L);
1941 }
1942
1943 // Now we update all the blocks which are no longer within the loop.
1944 auto &Blocks = L.getBlocksVector();
1945 auto BlocksSplitI =
1946 LoopBlockSet.empty()
1947 ? Blocks.begin()
1948 : std::stable_partition(
1949 first: Blocks.begin(), last: Blocks.end(),
1950 pred: [&](BasicBlock *BB) { return LoopBlockSet.count(Ptr: BB); });
1951
1952 // Before we erase the list of unlooped blocks, build a set of them.
1953 SmallPtrSet<BasicBlock *, 16> UnloopedBlocks(BlocksSplitI, Blocks.end());
1954 if (LoopBlockSet.empty())
1955 UnloopedBlocks.insert(Ptr: PH);
1956
1957 // Now erase these blocks from the loop.
1958 for (auto *BB : make_range(x: BlocksSplitI, y: Blocks.end()))
1959 L.getBlocksSet().erase(Ptr: BB);
1960 Blocks.erase(first: BlocksSplitI, last: Blocks.end());
1961
1962 // Sort the exits in ascending loop depth, we'll work backwards across these
1963 // to process them inside out.
1964 llvm::stable_sort(Range&: ExitsInLoops, C: [&](BasicBlock *LHS, BasicBlock *RHS) {
1965 return LI.getLoopDepth(BB: LHS) < LI.getLoopDepth(BB: RHS);
1966 });
1967
1968 // We'll build up a set for each exit loop.
1969 SmallPtrSet<BasicBlock *, 16> NewExitLoopBlocks;
1970 Loop *PrevExitL = L.getParentLoop(); // The deepest possible exit loop.
1971
1972 auto RemoveUnloopedBlocksFromLoop =
1973 [](Loop &L, SmallPtrSetImpl<BasicBlock *> &UnloopedBlocks) {
1974 for (auto *BB : UnloopedBlocks)
1975 L.getBlocksSet().erase(Ptr: BB);
1976 llvm::erase_if(C&: L.getBlocksVector(), P: [&](BasicBlock *BB) {
1977 return UnloopedBlocks.count(Ptr: BB);
1978 });
1979 };
1980
1981 SmallVector<BasicBlock *, 16> Worklist;
1982 while (!UnloopedBlocks.empty() && !ExitsInLoops.empty()) {
1983 assert(Worklist.empty() && "Didn't clear worklist!");
1984 assert(NewExitLoopBlocks.empty() && "Didn't clear loop set!");
1985
1986 // Grab the next exit block, in decreasing loop depth order.
1987 BasicBlock *ExitBB = ExitsInLoops.pop_back_val();
1988 Loop &ExitL = *LI.getLoopFor(BB: ExitBB);
1989 assert(ExitL.contains(&L) && "Exit loop must contain the inner loop!");
1990
1991 // Erase all of the unlooped blocks from the loops between the previous
1992 // exit loop and this exit loop. This works because the ExitInLoops list is
1993 // sorted in increasing order of loop depth and thus we visit loops in
1994 // decreasing order of loop depth.
1995 for (; PrevExitL != &ExitL; PrevExitL = PrevExitL->getParentLoop())
1996 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
1997
1998 // Walk the CFG back until we hit the cloned PH adding everything reachable
1999 // and in the unlooped set to this exit block's loop.
2000 Worklist.push_back(Elt: ExitBB);
2001 do {
2002 BasicBlock *BB = Worklist.pop_back_val();
2003 // We can stop recursing at the cloned preheader (if we get there).
2004 if (BB == PH)
2005 continue;
2006
2007 for (BasicBlock *PredBB : predecessors(BB)) {
2008 // If this pred has already been moved to our set or is part of some
2009 // (inner) loop, no update needed.
2010 if (!UnloopedBlocks.erase(Ptr: PredBB)) {
2011 assert((NewExitLoopBlocks.count(PredBB) ||
2012 ExitL.contains(LI.getLoopFor(PredBB))) &&
2013 "Predecessor not in a nested loop (or already visited)!");
2014 continue;
2015 }
2016
2017 // We just insert into the loop set here. We'll add these blocks to the
2018 // exit loop after we build up the set in a deterministic order rather
2019 // than the predecessor-influenced visit order.
2020 bool Inserted = NewExitLoopBlocks.insert(Ptr: PredBB).second;
2021 (void)Inserted;
2022 assert(Inserted && "Should only visit an unlooped block once!");
2023
2024 // And recurse through to its predecessors.
2025 Worklist.push_back(Elt: PredBB);
2026 }
2027 } while (!Worklist.empty());
2028
2029 // If blocks in this exit loop were directly part of the original loop (as
2030 // opposed to a child loop) update the map to point to this exit loop. This
2031 // just updates a map and so the fact that the order is unstable is fine.
2032 for (auto *BB : NewExitLoopBlocks)
2033 if (Loop *BBL = LI.getLoopFor(BB))
2034 if (BBL == &L || !L.contains(L: BBL))
2035 LI.changeLoopFor(BB, L: &ExitL);
2036
2037 // We will remove the remaining unlooped blocks from this loop in the next
2038 // iteration or below.
2039 NewExitLoopBlocks.clear();
2040 }
2041
2042 // Any remaining unlooped blocks are no longer part of any loop unless they
2043 // are part of some child loop.
2044 for (; PrevExitL; PrevExitL = PrevExitL->getParentLoop())
2045 RemoveUnloopedBlocksFromLoop(*PrevExitL, UnloopedBlocks);
2046 for (auto *BB : UnloopedBlocks)
2047 if (Loop *BBL = LI.getLoopFor(BB))
2048 if (BBL == &L || !L.contains(L: BBL))
2049 LI.changeLoopFor(BB, L: nullptr);
2050
2051 // Sink all the child loops whose headers are no longer in the loop set to
2052 // the parent (or to be top level loops). We reach into the loop and directly
2053 // update its subloop vector to make this batch update efficient.
2054 auto &SubLoops = L.getSubLoopsVector();
2055 auto SubLoopsSplitI =
2056 LoopBlockSet.empty()
2057 ? SubLoops.begin()
2058 : std::stable_partition(
2059 first: SubLoops.begin(), last: SubLoops.end(), pred: [&](Loop *SubL) {
2060 return LoopBlockSet.count(Ptr: SubL->getHeader());
2061 });
2062 for (auto *HoistedL : make_range(x: SubLoopsSplitI, y: SubLoops.end())) {
2063 HoistedLoops.push_back(Elt: HoistedL);
2064 HoistedL->setParentLoop(nullptr);
2065
2066 // To compute the new parent of this hoisted loop we look at where we
2067 // placed the preheader above. We can't lookup the header itself because we
2068 // retained the mapping from the header to the hoisted loop. But the
2069 // preheader and header should have the exact same new parent computed
2070 // based on the set of exit blocks from the original loop as the preheader
2071 // is a predecessor of the header and so reached in the reverse walk. And
2072 // because the loops were all in simplified form the preheader of the
2073 // hoisted loop can't be part of some *other* loop.
2074 if (auto *NewParentL = LI.getLoopFor(BB: HoistedL->getLoopPreheader()))
2075 NewParentL->addChildLoop(NewChild: HoistedL);
2076 else
2077 LI.addTopLevelLoop(New: HoistedL);
2078 }
2079 SubLoops.erase(first: SubLoopsSplitI, last: SubLoops.end());
2080
2081 // Actually delete the loop if nothing remained within it.
2082 if (Blocks.empty()) {
2083 assert(SubLoops.empty() &&
2084 "Failed to remove all subloops from the original loop!");
2085 if (Loop *ParentL = L.getParentLoop())
2086 ParentL->removeChildLoop(I: llvm::find(Range&: *ParentL, Val: &L));
2087 else
2088 LI.removeLoop(I: llvm::find(Range&: LI, Val: &L));
2089 // markLoopAsDeleted for L should be triggered by the caller (it is
2090 // typically done within postUnswitch).
2091 if (SE)
2092 SE->forgetBlockAndLoopDispositions();
2093 LI.destroy(L: &L);
2094 return false;
2095 }
2096
2097 return true;
2098}
2099
2100/// Helper to visit a dominator subtree, invoking a callable on each node.
2101///
2102/// Returning false at any point will stop walking past that node of the tree.
2103template <typename CallableT>
2104void visitDomSubTree(DominatorTree &DT, BasicBlock *BB, CallableT Callable) {
2105 SmallVector<DomTreeNode *, 4> DomWorklist;
2106 DomWorklist.push_back(Elt: DT[BB]);
2107#ifndef NDEBUG
2108 SmallPtrSet<DomTreeNode *, 4> Visited;
2109 Visited.insert(Ptr: DT[BB]);
2110#endif
2111 do {
2112 DomTreeNode *N = DomWorklist.pop_back_val();
2113
2114 // Visit this node.
2115 if (!Callable(N->getBlock()))
2116 continue;
2117
2118 // Accumulate the child nodes.
2119 for (DomTreeNode *ChildN : *N) {
2120 assert(Visited.insert(ChildN).second &&
2121 "Cannot visit a node twice when walking a tree!");
2122 DomWorklist.push_back(Elt: ChildN);
2123 }
2124 } while (!DomWorklist.empty());
2125}
2126
2127void postUnswitch(Loop &L, LPMUpdater &U, StringRef LoopName,
2128 bool CurrentLoopValid, bool PartiallyInvariant,
2129 bool InjectedCondition, ArrayRef<Loop *> NewLoops) {
2130 // If we did a non-trivial unswitch, we have added new (cloned) loops.
2131 if (!NewLoops.empty())
2132 U.addSiblingLoops(NewSibLoops: NewLoops);
2133
2134 // If the current loop remains valid, we should revisit it to catch any
2135 // other unswitch opportunities. Otherwise, we need to mark it as deleted.
2136 if (CurrentLoopValid) {
2137 if (PartiallyInvariant) {
2138 // Mark the new loop as partially unswitched, to avoid unswitching on
2139 // the same condition again.
2140 auto &Context = L.getHeader()->getContext();
2141 MDNode *DisableUnswitchMD = MDNode::get(
2142 Context,
2143 MDs: MDString::get(Context, Str: "llvm.loop.unswitch.partial.disable"));
2144 MDNode *NewLoopID = makePostTransformationMetadata(
2145 Context, OrigLoopID: L.getLoopID(), RemovePrefixes: {"llvm.loop.unswitch.partial"},
2146 AddAttrs: {DisableUnswitchMD});
2147 L.setLoopID(NewLoopID);
2148 } else if (InjectedCondition) {
2149 // Do the same for injection of invariant conditions.
2150 auto &Context = L.getHeader()->getContext();
2151 MDNode *DisableUnswitchMD = MDNode::get(
2152 Context,
2153 MDs: MDString::get(Context, Str: "llvm.loop.unswitch.injection.disable"));
2154 MDNode *NewLoopID = makePostTransformationMetadata(
2155 Context, OrigLoopID: L.getLoopID(), RemovePrefixes: {"llvm.loop.unswitch.injection"},
2156 AddAttrs: {DisableUnswitchMD});
2157 L.setLoopID(NewLoopID);
2158 } else
2159 U.revisitCurrentLoop();
2160 } else
2161 U.markLoopAsDeleted(L, Name: LoopName);
2162}
2163
2164static void unswitchNontrivialInvariants(
2165 Loop &L, Instruction &TI, ArrayRef<Value *> Invariants,
2166 IVConditionInfo &PartialIVInfo, DominatorTree &DT, LoopInfo &LI,
2167 AssumptionCache &AC, ScalarEvolution *SE, MemorySSAUpdater *MSSAU,
2168 LPMUpdater &LoopUpdater, bool InsertFreeze, bool InjectedCondition) {
2169 auto *ParentBB = TI.getParent();
2170 BranchInst *BI = dyn_cast<BranchInst>(Val: &TI);
2171 SwitchInst *SI = BI ? nullptr : cast<SwitchInst>(Val: &TI);
2172
2173 // Save the current loop name in a variable so that we can report it even
2174 // after it has been deleted.
2175 std::string LoopName(L.getName());
2176
2177 // We can only unswitch switches, conditional branches with an invariant
2178 // condition, or combining invariant conditions with an instruction or
2179 // partially invariant instructions.
2180 assert((SI || (BI && BI->isConditional())) &&
2181 "Can only unswitch switches and conditional branch!");
2182 bool PartiallyInvariant = !PartialIVInfo.InstToDuplicate.empty();
2183 bool FullUnswitch =
2184 SI || (skipTrivialSelect(Cond: BI->getCondition()) == Invariants[0] &&
2185 !PartiallyInvariant);
2186 if (FullUnswitch)
2187 assert(Invariants.size() == 1 &&
2188 "Cannot have other invariants with full unswitching!");
2189 else
2190 assert(isa<Instruction>(skipTrivialSelect(BI->getCondition())) &&
2191 "Partial unswitching requires an instruction as the condition!");
2192
2193 if (MSSAU && VerifyMemorySSA)
2194 MSSAU->getMemorySSA()->verifyMemorySSA();
2195
2196 // Constant and BBs tracking the cloned and continuing successor. When we are
2197 // unswitching the entire condition, this can just be trivially chosen to
2198 // unswitch towards `true`. However, when we are unswitching a set of
2199 // invariants combined with `and` or `or` or partially invariant instructions,
2200 // the combining operation determines the best direction to unswitch: we want
2201 // to unswitch the direction that will collapse the branch.
2202 bool Direction = true;
2203 int ClonedSucc = 0;
2204 if (!FullUnswitch) {
2205 Value *Cond = skipTrivialSelect(Cond: BI->getCondition());
2206 (void)Cond;
2207 assert(((match(Cond, m_LogicalAnd()) ^ match(Cond, m_LogicalOr())) ||
2208 PartiallyInvariant) &&
2209 "Only `or`, `and`, an `select`, partially invariant instructions "
2210 "can combine invariants being unswitched.");
2211 if (!match(V: Cond, P: m_LogicalOr())) {
2212 if (match(V: Cond, P: m_LogicalAnd()) ||
2213 (PartiallyInvariant && !PartialIVInfo.KnownValue->isOneValue())) {
2214 Direction = false;
2215 ClonedSucc = 1;
2216 }
2217 }
2218 }
2219
2220 BasicBlock *RetainedSuccBB =
2221 BI ? BI->getSuccessor(i: 1 - ClonedSucc) : SI->getDefaultDest();
2222 SmallSetVector<BasicBlock *, 4> UnswitchedSuccBBs;
2223 if (BI)
2224 UnswitchedSuccBBs.insert(X: BI->getSuccessor(i: ClonedSucc));
2225 else
2226 for (auto Case : SI->cases())
2227 if (Case.getCaseSuccessor() != RetainedSuccBB)
2228 UnswitchedSuccBBs.insert(X: Case.getCaseSuccessor());
2229
2230 assert(!UnswitchedSuccBBs.count(RetainedSuccBB) &&
2231 "Should not unswitch the same successor we are retaining!");
2232
2233 // The branch should be in this exact loop. Any inner loop's invariant branch
2234 // should be handled by unswitching that inner loop. The caller of this
2235 // routine should filter out any candidates that remain (but were skipped for
2236 // whatever reason).
2237 assert(LI.getLoopFor(ParentBB) == &L && "Branch in an inner loop!");
2238
2239 // Compute the parent loop now before we start hacking on things.
2240 Loop *ParentL = L.getParentLoop();
2241 // Get blocks in RPO order for MSSA update, before changing the CFG.
2242 LoopBlocksRPO LBRPO(&L);
2243 if (MSSAU)
2244 LBRPO.perform(LI: &LI);
2245
2246 // Compute the outer-most loop containing one of our exit blocks. This is the
2247 // furthest up our loopnest which can be mutated, which we will use below to
2248 // update things.
2249 Loop *OuterExitL = &L;
2250 SmallVector<BasicBlock *, 4> ExitBlocks;
2251 L.getUniqueExitBlocks(ExitBlocks);
2252 for (auto *ExitBB : ExitBlocks) {
2253 // ExitBB can be an exit block for several levels in the loop nest. Make
2254 // sure we find the top most.
2255 Loop *NewOuterExitL = getTopMostExitingLoop(ExitBB, LI);
2256 if (!NewOuterExitL) {
2257 // We exited the entire nest with this block, so we're done.
2258 OuterExitL = nullptr;
2259 break;
2260 }
2261 if (NewOuterExitL != OuterExitL && NewOuterExitL->contains(L: OuterExitL))
2262 OuterExitL = NewOuterExitL;
2263 }
2264
2265 // At this point, we're definitely going to unswitch something so invalidate
2266 // any cached information in ScalarEvolution for the outer most loop
2267 // containing an exit block and all nested loops.
2268 if (SE) {
2269 if (OuterExitL)
2270 SE->forgetLoop(L: OuterExitL);
2271 else
2272 SE->forgetTopmostLoop(L: &L);
2273 SE->forgetBlockAndLoopDispositions();
2274 }
2275
2276 // If the edge from this terminator to a successor dominates that successor,
2277 // store a map from each block in its dominator subtree to it. This lets us
2278 // tell when cloning for a particular successor if a block is dominated by
2279 // some *other* successor with a single data structure. We use this to
2280 // significantly reduce cloning.
2281 SmallDenseMap<BasicBlock *, BasicBlock *, 16> DominatingSucc;
2282 for (auto *SuccBB : llvm::concat<BasicBlock *const>(Ranges: ArrayRef(RetainedSuccBB),
2283 Ranges&: UnswitchedSuccBBs))
2284 if (SuccBB->getUniquePredecessor() ||
2285 llvm::all_of(Range: predecessors(BB: SuccBB), P: [&](BasicBlock *PredBB) {
2286 return PredBB == ParentBB || DT.dominates(A: SuccBB, B: PredBB);
2287 }))
2288 visitDomSubTree(DT, BB: SuccBB, Callable: [&](BasicBlock *BB) {
2289 DominatingSucc[BB] = SuccBB;
2290 return true;
2291 });
2292
2293 // Split the preheader, so that we know that there is a safe place to insert
2294 // the conditional branch. We will change the preheader to have a conditional
2295 // branch on LoopCond. The original preheader will become the split point
2296 // between the unswitched versions, and we will have a new preheader for the
2297 // original loop.
2298 BasicBlock *SplitBB = L.getLoopPreheader();
2299 BasicBlock *LoopPH = SplitEdge(From: SplitBB, To: L.getHeader(), DT: &DT, LI: &LI, MSSAU);
2300
2301 // Keep track of the dominator tree updates needed.
2302 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2303
2304 // Clone the loop for each unswitched successor.
2305 SmallVector<std::unique_ptr<ValueToValueMapTy>, 4> VMaps;
2306 VMaps.reserve(N: UnswitchedSuccBBs.size());
2307 SmallDenseMap<BasicBlock *, BasicBlock *, 4> ClonedPHs;
2308 for (auto *SuccBB : UnswitchedSuccBBs) {
2309 VMaps.emplace_back(Args: new ValueToValueMapTy());
2310 ClonedPHs[SuccBB] = buildClonedLoopBlocks(
2311 L, LoopPH, SplitBB, ExitBlocks, ParentBB, UnswitchedSuccBB: SuccBB, ContinueSuccBB: RetainedSuccBB,
2312 DominatingSucc, VMap&: *VMaps.back(), DTUpdates, AC, DT, LI, MSSAU, SE);
2313 }
2314
2315 // Drop metadata if we may break its semantics by moving this instr into the
2316 // split block.
2317 if (TI.getMetadata(KindID: LLVMContext::MD_make_implicit)) {
2318 if (DropNonTrivialImplicitNullChecks)
2319 // Do not spend time trying to understand if we can keep it, just drop it
2320 // to save compile time.
2321 TI.setMetadata(KindID: LLVMContext::MD_make_implicit, Node: nullptr);
2322 else {
2323 // It is only legal to preserve make.implicit metadata if we are
2324 // guaranteed no reach implicit null check after following this branch.
2325 ICFLoopSafetyInfo SafetyInfo;
2326 SafetyInfo.computeLoopSafetyInfo(CurLoop: &L);
2327 if (!SafetyInfo.isGuaranteedToExecute(Inst: TI, DT: &DT, CurLoop: &L))
2328 TI.setMetadata(KindID: LLVMContext::MD_make_implicit, Node: nullptr);
2329 }
2330 }
2331
2332 // The stitching of the branched code back together depends on whether we're
2333 // doing full unswitching or not with the exception that we always want to
2334 // nuke the initial terminator placed in the split block.
2335 SplitBB->getTerminator()->eraseFromParent();
2336 if (FullUnswitch) {
2337 // Splice the terminator from the original loop and rewrite its
2338 // successors.
2339 TI.moveBefore(BB&: *SplitBB, I: SplitBB->end());
2340
2341 // Keep a clone of the terminator for MSSA updates.
2342 Instruction *NewTI = TI.clone();
2343 NewTI->insertInto(ParentBB, It: ParentBB->end());
2344
2345 // First wire up the moved terminator to the preheaders.
2346 if (BI) {
2347 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2348 BI->setSuccessor(idx: ClonedSucc, NewSucc: ClonedPH);
2349 BI->setSuccessor(idx: 1 - ClonedSucc, NewSucc: LoopPH);
2350 Value *Cond = skipTrivialSelect(Cond: BI->getCondition());
2351 if (InsertFreeze)
2352 Cond = new FreezeInst(Cond, Cond->getName() + ".fr", BI->getIterator());
2353 BI->setCondition(Cond);
2354 DTUpdates.push_back(Elt: {DominatorTree::Insert, SplitBB, ClonedPH});
2355 } else {
2356 assert(SI && "Must either be a branch or switch!");
2357
2358 // Walk the cases and directly update their successors.
2359 assert(SI->getDefaultDest() == RetainedSuccBB &&
2360 "Not retaining default successor!");
2361 SI->setDefaultDest(LoopPH);
2362 for (const auto &Case : SI->cases())
2363 if (Case.getCaseSuccessor() == RetainedSuccBB)
2364 Case.setSuccessor(LoopPH);
2365 else
2366 Case.setSuccessor(ClonedPHs.find(Val: Case.getCaseSuccessor())->second);
2367
2368 if (InsertFreeze)
2369 SI->setCondition(new FreezeInst(SI->getCondition(),
2370 SI->getCondition()->getName() + ".fr",
2371 SI->getIterator()));
2372
2373 // We need to use the set to populate domtree updates as even when there
2374 // are multiple cases pointing at the same successor we only want to
2375 // remove and insert one edge in the domtree.
2376 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2377 DTUpdates.push_back(
2378 Elt: {DominatorTree::Insert, SplitBB, ClonedPHs.find(Val: SuccBB)->second});
2379 }
2380
2381 if (MSSAU) {
2382 DT.applyUpdates(Updates: DTUpdates);
2383 DTUpdates.clear();
2384
2385 // Remove all but one edge to the retained block and all unswitched
2386 // blocks. This is to avoid having duplicate entries in the cloned Phis,
2387 // when we know we only keep a single edge for each case.
2388 MSSAU->removeDuplicatePhiEdgesBetween(From: ParentBB, To: RetainedSuccBB);
2389 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2390 MSSAU->removeDuplicatePhiEdgesBetween(From: ParentBB, To: SuccBB);
2391
2392 for (auto &VMap : VMaps)
2393 MSSAU->updateForClonedLoop(LoopBlocks: LBRPO, ExitBlocks, VM: *VMap,
2394 /*IgnoreIncomingWithNoClones=*/true);
2395 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2396
2397 // Remove all edges to unswitched blocks.
2398 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2399 MSSAU->removeEdge(From: ParentBB, To: SuccBB);
2400 }
2401
2402 // Now unhook the successor relationship as we'll be replacing
2403 // the terminator with a direct branch. This is much simpler for branches
2404 // than switches so we handle those first.
2405 if (BI) {
2406 // Remove the parent as a predecessor of the unswitched successor.
2407 assert(UnswitchedSuccBBs.size() == 1 &&
2408 "Only one possible unswitched block for a branch!");
2409 BasicBlock *UnswitchedSuccBB = *UnswitchedSuccBBs.begin();
2410 UnswitchedSuccBB->removePredecessor(Pred: ParentBB,
2411 /*KeepOneInputPHIs*/ true);
2412 DTUpdates.push_back(Elt: {DominatorTree::Delete, ParentBB, UnswitchedSuccBB});
2413 } else {
2414 // Note that we actually want to remove the parent block as a predecessor
2415 // of *every* case successor. The case successor is either unswitched,
2416 // completely eliminating an edge from the parent to that successor, or it
2417 // is a duplicate edge to the retained successor as the retained successor
2418 // is always the default successor and as we'll replace this with a direct
2419 // branch we no longer need the duplicate entries in the PHI nodes.
2420 SwitchInst *NewSI = cast<SwitchInst>(Val: NewTI);
2421 assert(NewSI->getDefaultDest() == RetainedSuccBB &&
2422 "Not retaining default successor!");
2423 for (const auto &Case : NewSI->cases())
2424 Case.getCaseSuccessor()->removePredecessor(
2425 Pred: ParentBB,
2426 /*KeepOneInputPHIs*/ true);
2427
2428 // We need to use the set to populate domtree updates as even when there
2429 // are multiple cases pointing at the same successor we only want to
2430 // remove and insert one edge in the domtree.
2431 for (BasicBlock *SuccBB : UnswitchedSuccBBs)
2432 DTUpdates.push_back(Elt: {DominatorTree::Delete, ParentBB, SuccBB});
2433 }
2434
2435 // After MSSAU update, remove the cloned terminator instruction NewTI.
2436 ParentBB->getTerminator()->eraseFromParent();
2437
2438 // Create a new unconditional branch to the continuing block (as opposed to
2439 // the one cloned).
2440 BranchInst::Create(IfTrue: RetainedSuccBB, InsertAtEnd: ParentBB);
2441 } else {
2442 assert(BI && "Only branches have partial unswitching.");
2443 assert(UnswitchedSuccBBs.size() == 1 &&
2444 "Only one possible unswitched block for a branch!");
2445 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2446 // When doing a partial unswitch, we have to do a bit more work to build up
2447 // the branch in the split block.
2448 if (PartiallyInvariant)
2449 buildPartialInvariantUnswitchConditionalBranch(
2450 BB&: *SplitBB, ToDuplicate: Invariants, Direction, UnswitchedSucc&: *ClonedPH, NormalSucc&: *LoopPH, L, MSSAU);
2451 else {
2452 buildPartialUnswitchConditionalBranch(
2453 BB&: *SplitBB, Invariants, Direction, UnswitchedSucc&: *ClonedPH, NormalSucc&: *LoopPH,
2454 InsertFreeze: FreezeLoopUnswitchCond, I: BI, AC: &AC, DT);
2455 }
2456 DTUpdates.push_back(Elt: {DominatorTree::Insert, SplitBB, ClonedPH});
2457
2458 if (MSSAU) {
2459 DT.applyUpdates(Updates: DTUpdates);
2460 DTUpdates.clear();
2461
2462 // Perform MSSA cloning updates.
2463 for (auto &VMap : VMaps)
2464 MSSAU->updateForClonedLoop(LoopBlocks: LBRPO, ExitBlocks, VM: *VMap,
2465 /*IgnoreIncomingWithNoClones=*/true);
2466 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMaps, DT);
2467 }
2468 }
2469
2470 // Apply the updates accumulated above to get an up-to-date dominator tree.
2471 DT.applyUpdates(Updates: DTUpdates);
2472
2473 // Now that we have an accurate dominator tree, first delete the dead cloned
2474 // blocks so that we can accurately build any cloned loops. It is important to
2475 // not delete the blocks from the original loop yet because we still want to
2476 // reference the original loop to understand the cloned loop's structure.
2477 deleteDeadClonedBlocks(L, ExitBlocks, VMaps, DT, MSSAU);
2478
2479 // Build the cloned loop structure itself. This may be substantially
2480 // different from the original structure due to the simplified CFG. This also
2481 // handles inserting all the cloned blocks into the correct loops.
2482 SmallVector<Loop *, 4> NonChildClonedLoops;
2483 for (std::unique_ptr<ValueToValueMapTy> &VMap : VMaps)
2484 buildClonedLoops(OrigL&: L, ExitBlocks, VMap: *VMap, LI, NonChildClonedLoops);
2485
2486 // Now that our cloned loops have been built, we can update the original loop.
2487 // First we delete the dead blocks from it and then we rebuild the loop
2488 // structure taking these deletions into account.
2489 deleteDeadBlocksFromLoop(L, ExitBlocks, DT, LI, MSSAU, SE, LoopUpdater);
2490
2491 if (MSSAU && VerifyMemorySSA)
2492 MSSAU->getMemorySSA()->verifyMemorySSA();
2493
2494 SmallVector<Loop *, 4> HoistedLoops;
2495 bool IsStillLoop =
2496 rebuildLoopAfterUnswitch(L, ExitBlocks, LI, HoistedLoops, SE);
2497
2498 if (MSSAU && VerifyMemorySSA)
2499 MSSAU->getMemorySSA()->verifyMemorySSA();
2500
2501 // This transformation has a high risk of corrupting the dominator tree, and
2502 // the below steps to rebuild loop structures will result in hard to debug
2503 // errors in that case so verify that the dominator tree is sane first.
2504 // FIXME: Remove this when the bugs stop showing up and rely on existing
2505 // verification steps.
2506 assert(DT.verify(DominatorTree::VerificationLevel::Fast));
2507
2508 if (BI && !PartiallyInvariant) {
2509 // If we unswitched a branch which collapses the condition to a known
2510 // constant we want to replace all the uses of the invariants within both
2511 // the original and cloned blocks. We do this here so that we can use the
2512 // now updated dominator tree to identify which side the users are on.
2513 assert(UnswitchedSuccBBs.size() == 1 &&
2514 "Only one possible unswitched block for a branch!");
2515 BasicBlock *ClonedPH = ClonedPHs.begin()->second;
2516
2517 // When considering multiple partially-unswitched invariants
2518 // we cant just go replace them with constants in both branches.
2519 //
2520 // For 'AND' we infer that true branch ("continue") means true
2521 // for each invariant operand.
2522 // For 'OR' we can infer that false branch ("continue") means false
2523 // for each invariant operand.
2524 // So it happens that for multiple-partial case we dont replace
2525 // in the unswitched branch.
2526 bool ReplaceUnswitched =
2527 FullUnswitch || (Invariants.size() == 1) || PartiallyInvariant;
2528
2529 ConstantInt *UnswitchedReplacement =
2530 Direction ? ConstantInt::getTrue(Context&: BI->getContext())
2531 : ConstantInt::getFalse(Context&: BI->getContext());
2532 ConstantInt *ContinueReplacement =
2533 Direction ? ConstantInt::getFalse(Context&: BI->getContext())
2534 : ConstantInt::getTrue(Context&: BI->getContext());
2535 for (Value *Invariant : Invariants) {
2536 assert(!isa<Constant>(Invariant) &&
2537 "Should not be replacing constant values!");
2538 // Use make_early_inc_range here as set invalidates the iterator.
2539 for (Use &U : llvm::make_early_inc_range(Range: Invariant->uses())) {
2540 Instruction *UserI = dyn_cast<Instruction>(Val: U.getUser());
2541 if (!UserI)
2542 continue;
2543
2544 // Replace it with the 'continue' side if in the main loop body, and the
2545 // unswitched if in the cloned blocks.
2546 if (DT.dominates(A: LoopPH, B: UserI->getParent()))
2547 U.set(ContinueReplacement);
2548 else if (ReplaceUnswitched &&
2549 DT.dominates(A: ClonedPH, B: UserI->getParent()))
2550 U.set(UnswitchedReplacement);
2551 }
2552 }
2553 }
2554
2555 // We can change which blocks are exit blocks of all the cloned sibling
2556 // loops, the current loop, and any parent loops which shared exit blocks
2557 // with the current loop. As a consequence, we need to re-form LCSSA for
2558 // them. But we shouldn't need to re-form LCSSA for any child loops.
2559 // FIXME: This could be made more efficient by tracking which exit blocks are
2560 // new, and focusing on them, but that isn't likely to be necessary.
2561 //
2562 // In order to reasonably rebuild LCSSA we need to walk inside-out across the
2563 // loop nest and update every loop that could have had its exits changed. We
2564 // also need to cover any intervening loops. We add all of these loops to
2565 // a list and sort them by loop depth to achieve this without updating
2566 // unnecessary loops.
2567 auto UpdateLoop = [&](Loop &UpdateL) {
2568#ifndef NDEBUG
2569 UpdateL.verifyLoop();
2570 for (Loop *ChildL : UpdateL) {
2571 ChildL->verifyLoop();
2572 assert(ChildL->isRecursivelyLCSSAForm(DT, LI) &&
2573 "Perturbed a child loop's LCSSA form!");
2574 }
2575#endif
2576 // First build LCSSA for this loop so that we can preserve it when
2577 // forming dedicated exits. We don't want to perturb some other loop's
2578 // LCSSA while doing that CFG edit.
2579 formLCSSA(L&: UpdateL, DT, LI: &LI, SE);
2580
2581 // For loops reached by this loop's original exit blocks we may
2582 // introduced new, non-dedicated exits. At least try to re-form dedicated
2583 // exits for these loops. This may fail if they couldn't have dedicated
2584 // exits to start with.
2585 formDedicatedExitBlocks(L: &UpdateL, DT: &DT, LI: &LI, MSSAU, /*PreserveLCSSA*/ true);
2586 };
2587
2588 // For non-child cloned loops and hoisted loops, we just need to update LCSSA
2589 // and we can do it in any order as they don't nest relative to each other.
2590 //
2591 // Also check if any of the loops we have updated have become top-level loops
2592 // as that will necessitate widening the outer loop scope.
2593 for (Loop *UpdatedL :
2594 llvm::concat<Loop *>(Ranges&: NonChildClonedLoops, Ranges&: HoistedLoops)) {
2595 UpdateLoop(*UpdatedL);
2596 if (UpdatedL->isOutermost())
2597 OuterExitL = nullptr;
2598 }
2599 if (IsStillLoop) {
2600 UpdateLoop(L);
2601 if (L.isOutermost())
2602 OuterExitL = nullptr;
2603 }
2604
2605 // If the original loop had exit blocks, walk up through the outer most loop
2606 // of those exit blocks to update LCSSA and form updated dedicated exits.
2607 if (OuterExitL != &L)
2608 for (Loop *OuterL = ParentL; OuterL != OuterExitL;
2609 OuterL = OuterL->getParentLoop())
2610 UpdateLoop(*OuterL);
2611
2612#ifndef NDEBUG
2613 // Verify the entire loop structure to catch any incorrect updates before we
2614 // progress in the pass pipeline.
2615 LI.verify(DomTree: DT);
2616#endif
2617
2618 // Now that we've unswitched something, make callbacks to report the changes.
2619 // For that we need to merge together the updated loops and the cloned loops
2620 // and check whether the original loop survived.
2621 SmallVector<Loop *, 4> SibLoops;
2622 for (Loop *UpdatedL : llvm::concat<Loop *>(Ranges&: NonChildClonedLoops, Ranges&: HoistedLoops))
2623 if (UpdatedL->getParentLoop() == ParentL)
2624 SibLoops.push_back(Elt: UpdatedL);
2625 postUnswitch(L, U&: LoopUpdater, LoopName, CurrentLoopValid: IsStillLoop, PartiallyInvariant,
2626 InjectedCondition, NewLoops: SibLoops);
2627
2628 if (MSSAU && VerifyMemorySSA)
2629 MSSAU->getMemorySSA()->verifyMemorySSA();
2630
2631 if (BI)
2632 ++NumBranches;
2633 else
2634 ++NumSwitches;
2635}
2636
2637/// Recursively compute the cost of a dominator subtree based on the per-block
2638/// cost map provided.
2639///
2640/// The recursive computation is memozied into the provided DT-indexed cost map
2641/// to allow querying it for most nodes in the domtree without it becoming
2642/// quadratic.
2643static InstructionCost computeDomSubtreeCost(
2644 DomTreeNode &N,
2645 const SmallDenseMap<BasicBlock *, InstructionCost, 4> &BBCostMap,
2646 SmallDenseMap<DomTreeNode *, InstructionCost, 4> &DTCostMap) {
2647 // Don't accumulate cost (or recurse through) blocks not in our block cost
2648 // map and thus not part of the duplication cost being considered.
2649 auto BBCostIt = BBCostMap.find(Val: N.getBlock());
2650 if (BBCostIt == BBCostMap.end())
2651 return 0;
2652
2653 // Lookup this node to see if we already computed its cost.
2654 auto DTCostIt = DTCostMap.find(Val: &N);
2655 if (DTCostIt != DTCostMap.end())
2656 return DTCostIt->second;
2657
2658 // If not, we have to compute it. We can't use insert above and update
2659 // because computing the cost may insert more things into the map.
2660 InstructionCost Cost = std::accumulate(
2661 first: N.begin(), last: N.end(), init: BBCostIt->second,
2662 binary_op: [&](InstructionCost Sum, DomTreeNode *ChildN) -> InstructionCost {
2663 return Sum + computeDomSubtreeCost(N&: *ChildN, BBCostMap, DTCostMap);
2664 });
2665 bool Inserted = DTCostMap.insert(KV: {&N, Cost}).second;
2666 (void)Inserted;
2667 assert(Inserted && "Should not insert a node while visiting children!");
2668 return Cost;
2669}
2670
2671/// Turns a select instruction into implicit control flow branch,
2672/// making the following replacement:
2673///
2674/// head:
2675/// --code before select--
2676/// select %cond, %trueval, %falseval
2677/// --code after select--
2678///
2679/// into
2680///
2681/// head:
2682/// --code before select--
2683/// br i1 %cond, label %then, label %tail
2684///
2685/// then:
2686/// br %tail
2687///
2688/// tail:
2689/// phi [ %trueval, %then ], [ %falseval, %head]
2690/// unreachable
2691///
2692/// It also makes all relevant DT and LI updates, so that all structures are in
2693/// valid state after this transform.
2694static BranchInst *turnSelectIntoBranch(SelectInst *SI, DominatorTree &DT,
2695 LoopInfo &LI, MemorySSAUpdater *MSSAU,
2696 AssumptionCache *AC) {
2697 LLVM_DEBUG(dbgs() << "Turning " << *SI << " into a branch.\n");
2698 BasicBlock *HeadBB = SI->getParent();
2699
2700 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2701 SplitBlockAndInsertIfThen(Cond: SI->getCondition(), SplitBefore: SI, Unreachable: false,
2702 BranchWeights: SI->getMetadata(KindID: LLVMContext::MD_prof), DTU: &DTU, LI: &LI);
2703 auto *CondBr = cast<BranchInst>(Val: HeadBB->getTerminator());
2704 BasicBlock *ThenBB = CondBr->getSuccessor(i: 0),
2705 *TailBB = CondBr->getSuccessor(i: 1);
2706 if (MSSAU)
2707 MSSAU->moveAllAfterSpliceBlocks(From: HeadBB, To: TailBB, Start: SI);
2708
2709 PHINode *Phi =
2710 PHINode::Create(Ty: SI->getType(), NumReservedValues: 2, NameStr: "unswitched.select", InsertBefore: SI->getIterator());
2711 Phi->addIncoming(V: SI->getTrueValue(), BB: ThenBB);
2712 Phi->addIncoming(V: SI->getFalseValue(), BB: HeadBB);
2713 SI->replaceAllUsesWith(V: Phi);
2714 SI->eraseFromParent();
2715
2716 if (MSSAU && VerifyMemorySSA)
2717 MSSAU->getMemorySSA()->verifyMemorySSA();
2718
2719 ++NumSelects;
2720 return CondBr;
2721}
2722
2723/// Turns a llvm.experimental.guard intrinsic into implicit control flow branch,
2724/// making the following replacement:
2725///
2726/// --code before guard--
2727/// call void (i1, ...) @llvm.experimental.guard(i1 %cond) [ "deopt"() ]
2728/// --code after guard--
2729///
2730/// into
2731///
2732/// --code before guard--
2733/// br i1 %cond, label %guarded, label %deopt
2734///
2735/// guarded:
2736/// --code after guard--
2737///
2738/// deopt:
2739/// call void (i1, ...) @llvm.experimental.guard(i1 false) [ "deopt"() ]
2740/// unreachable
2741///
2742/// It also makes all relevant DT and LI updates, so that all structures are in
2743/// valid state after this transform.
2744static BranchInst *turnGuardIntoBranch(IntrinsicInst *GI, Loop &L,
2745 DominatorTree &DT, LoopInfo &LI,
2746 MemorySSAUpdater *MSSAU) {
2747 SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
2748 LLVM_DEBUG(dbgs() << "Turning " << *GI << " into a branch.\n");
2749 BasicBlock *CheckBB = GI->getParent();
2750
2751 if (MSSAU && VerifyMemorySSA)
2752 MSSAU->getMemorySSA()->verifyMemorySSA();
2753
2754 DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
2755 Instruction *DeoptBlockTerm =
2756 SplitBlockAndInsertIfThen(Cond: GI->getArgOperand(i: 0), SplitBefore: GI, Unreachable: true,
2757 BranchWeights: GI->getMetadata(KindID: LLVMContext::MD_prof), DTU: &DTU, LI: &LI);
2758 BranchInst *CheckBI = cast<BranchInst>(Val: CheckBB->getTerminator());
2759 // SplitBlockAndInsertIfThen inserts control flow that branches to
2760 // DeoptBlockTerm if the condition is true. We want the opposite.
2761 CheckBI->swapSuccessors();
2762
2763 BasicBlock *GuardedBlock = CheckBI->getSuccessor(i: 0);
2764 GuardedBlock->setName("guarded");
2765 CheckBI->getSuccessor(i: 1)->setName("deopt");
2766 BasicBlock *DeoptBlock = CheckBI->getSuccessor(i: 1);
2767
2768 if (MSSAU)
2769 MSSAU->moveAllAfterSpliceBlocks(From: CheckBB, To: GuardedBlock, Start: GI);
2770
2771 GI->moveBefore(MovePos: DeoptBlockTerm);
2772 GI->setArgOperand(i: 0, v: ConstantInt::getFalse(Context&: GI->getContext()));
2773
2774 if (MSSAU) {
2775 MemoryDef *MD = cast<MemoryDef>(Val: MSSAU->getMemorySSA()->getMemoryAccess(I: GI));
2776 MSSAU->moveToPlace(What: MD, BB: DeoptBlock, Where: MemorySSA::BeforeTerminator);
2777 if (VerifyMemorySSA)
2778 MSSAU->getMemorySSA()->verifyMemorySSA();
2779 }
2780
2781 if (VerifyLoopInfo)
2782 LI.verify(DomTree: DT);
2783 ++NumGuards;
2784 return CheckBI;
2785}
2786
2787/// Cost multiplier is a way to limit potentially exponential behavior
2788/// of loop-unswitch. Cost is multipied in proportion of 2^number of unswitch
2789/// candidates available. Also accounting for the number of "sibling" loops with
2790/// the idea to account for previous unswitches that already happened on this
2791/// cluster of loops. There was an attempt to keep this formula simple,
2792/// just enough to limit the worst case behavior. Even if it is not that simple
2793/// now it is still not an attempt to provide a detailed heuristic size
2794/// prediction.
2795///
2796/// TODO: Make a proper accounting of "explosion" effect for all kinds of
2797/// unswitch candidates, making adequate predictions instead of wild guesses.
2798/// That requires knowing not just the number of "remaining" candidates but
2799/// also costs of unswitching for each of these candidates.
2800static int CalculateUnswitchCostMultiplier(
2801 const Instruction &TI, const Loop &L, const LoopInfo &LI,
2802 const DominatorTree &DT,
2803 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates) {
2804
2805 // Guards and other exiting conditions do not contribute to exponential
2806 // explosion as soon as they dominate the latch (otherwise there might be
2807 // another path to the latch remaining that does not allow to eliminate the
2808 // loop copy on unswitch).
2809 const BasicBlock *Latch = L.getLoopLatch();
2810 const BasicBlock *CondBlock = TI.getParent();
2811 if (DT.dominates(A: CondBlock, B: Latch) &&
2812 (isGuard(U: &TI) ||
2813 (TI.isTerminator() &&
2814 llvm::count_if(Range: successors(I: &TI), P: [&L](const BasicBlock *SuccBB) {
2815 return L.contains(BB: SuccBB);
2816 }) <= 1))) {
2817 NumCostMultiplierSkipped++;
2818 return 1;
2819 }
2820
2821 auto *ParentL = L.getParentLoop();
2822 int SiblingsCount = (ParentL ? ParentL->getSubLoopsVector().size()
2823 : std::distance(first: LI.begin(), last: LI.end()));
2824 // Count amount of clones that all the candidates might cause during
2825 // unswitching. Branch/guard/select counts as 1, switch counts as log2 of its
2826 // cases.
2827 int UnswitchedClones = 0;
2828 for (const auto &Candidate : UnswitchCandidates) {
2829 const Instruction *CI = Candidate.TI;
2830 const BasicBlock *CondBlock = CI->getParent();
2831 bool SkipExitingSuccessors = DT.dominates(A: CondBlock, B: Latch);
2832 if (isa<SelectInst>(Val: CI)) {
2833 UnswitchedClones++;
2834 continue;
2835 }
2836 if (isGuard(U: CI)) {
2837 if (!SkipExitingSuccessors)
2838 UnswitchedClones++;
2839 continue;
2840 }
2841 int NonExitingSuccessors =
2842 llvm::count_if(Range: successors(BB: CondBlock),
2843 P: [SkipExitingSuccessors, &L](const BasicBlock *SuccBB) {
2844 return !SkipExitingSuccessors || L.contains(BB: SuccBB);
2845 });
2846 UnswitchedClones += Log2_32(Value: NonExitingSuccessors);
2847 }
2848
2849 // Ignore up to the "unscaled candidates" number of unswitch candidates
2850 // when calculating the power-of-two scaling of the cost. The main idea
2851 // with this control is to allow a small number of unswitches to happen
2852 // and rely more on siblings multiplier (see below) when the number
2853 // of candidates is small.
2854 unsigned ClonesPower =
2855 std::max(a: UnswitchedClones - (int)UnswitchNumInitialUnscaledCandidates, b: 0);
2856
2857 // Allowing top-level loops to spread a bit more than nested ones.
2858 int SiblingsMultiplier =
2859 std::max(a: (ParentL ? SiblingsCount
2860 : SiblingsCount / (int)UnswitchSiblingsToplevelDiv),
2861 b: 1);
2862 // Compute the cost multiplier in a way that won't overflow by saturating
2863 // at an upper bound.
2864 int CostMultiplier;
2865 if (ClonesPower > Log2_32(Value: UnswitchThreshold) ||
2866 SiblingsMultiplier > UnswitchThreshold)
2867 CostMultiplier = UnswitchThreshold;
2868 else
2869 CostMultiplier = std::min(a: SiblingsMultiplier * (1 << ClonesPower),
2870 b: (int)UnswitchThreshold);
2871
2872 LLVM_DEBUG(dbgs() << " Computed multiplier " << CostMultiplier
2873 << " (siblings " << SiblingsMultiplier << " * clones "
2874 << (1 << ClonesPower) << ")"
2875 << " for unswitch candidate: " << TI << "\n");
2876 return CostMultiplier;
2877}
2878
2879static bool collectUnswitchCandidates(
2880 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
2881 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch,
2882 const Loop &L, const LoopInfo &LI, AAResults &AA,
2883 const MemorySSAUpdater *MSSAU) {
2884 assert(UnswitchCandidates.empty() && "Should be!");
2885
2886 auto AddUnswitchCandidatesForInst = [&](Instruction *I, Value *Cond) {
2887 Cond = skipTrivialSelect(Cond);
2888 if (isa<Constant>(Val: Cond))
2889 return;
2890 if (L.isLoopInvariant(V: Cond)) {
2891 UnswitchCandidates.push_back(Elt: {I, {Cond}});
2892 return;
2893 }
2894 if (match(V: Cond, P: m_CombineOr(L: m_LogicalAnd(), R: m_LogicalOr()))) {
2895 TinyPtrVector<Value *> Invariants =
2896 collectHomogenousInstGraphLoopInvariants(
2897 L, Root&: *static_cast<Instruction *>(Cond), LI);
2898 if (!Invariants.empty())
2899 UnswitchCandidates.push_back(Elt: {I, std::move(Invariants)});
2900 }
2901 };
2902
2903 // Whether or not we should also collect guards in the loop.
2904 bool CollectGuards = false;
2905 if (UnswitchGuards) {
2906 auto *GuardDecl = L.getHeader()->getParent()->getParent()->getFunction(
2907 Intrinsic::getName(Intrinsic::experimental_guard));
2908 if (GuardDecl && !GuardDecl->use_empty())
2909 CollectGuards = true;
2910 }
2911
2912 for (auto *BB : L.blocks()) {
2913 if (LI.getLoopFor(BB) != &L)
2914 continue;
2915
2916 for (auto &I : *BB) {
2917 if (auto *SI = dyn_cast<SelectInst>(Val: &I)) {
2918 auto *Cond = SI->getCondition();
2919 // Do not unswitch vector selects and logical and/or selects
2920 if (Cond->getType()->isIntegerTy(Bitwidth: 1) && !SI->getType()->isIntegerTy(Bitwidth: 1))
2921 AddUnswitchCandidatesForInst(SI, Cond);
2922 } else if (CollectGuards && isGuard(U: &I)) {
2923 auto *Cond =
2924 skipTrivialSelect(Cond: cast<IntrinsicInst>(Val: &I)->getArgOperand(i: 0));
2925 // TODO: Support AND, OR conditions and partial unswitching.
2926 if (!isa<Constant>(Val: Cond) && L.isLoopInvariant(V: Cond))
2927 UnswitchCandidates.push_back(Elt: {&I, {Cond}});
2928 }
2929 }
2930
2931 if (auto *SI = dyn_cast<SwitchInst>(Val: BB->getTerminator())) {
2932 // We can only consider fully loop-invariant switch conditions as we need
2933 // to completely eliminate the switch after unswitching.
2934 if (!isa<Constant>(Val: SI->getCondition()) &&
2935 L.isLoopInvariant(V: SI->getCondition()) && !BB->getUniqueSuccessor())
2936 UnswitchCandidates.push_back(Elt: {SI, {SI->getCondition()}});
2937 continue;
2938 }
2939
2940 auto *BI = dyn_cast<BranchInst>(Val: BB->getTerminator());
2941 if (!BI || !BI->isConditional() ||
2942 BI->getSuccessor(i: 0) == BI->getSuccessor(i: 1))
2943 continue;
2944
2945 AddUnswitchCandidatesForInst(BI, BI->getCondition());
2946 }
2947
2948 if (MSSAU && !findOptionMDForLoop(TheLoop: &L, Name: "llvm.loop.unswitch.partial.disable") &&
2949 !any_of(Range&: UnswitchCandidates, P: [&L](auto &TerminatorAndInvariants) {
2950 return TerminatorAndInvariants.TI == L.getHeader()->getTerminator();
2951 })) {
2952 MemorySSA *MSSA = MSSAU->getMemorySSA();
2953 if (auto Info = hasPartialIVCondition(L, MSSAThreshold, MSSA: *MSSA, AA)) {
2954 LLVM_DEBUG(
2955 dbgs() << "simple-loop-unswitch: Found partially invariant condition "
2956 << *Info->InstToDuplicate[0] << "\n");
2957 PartialIVInfo = *Info;
2958 PartialIVCondBranch = L.getHeader()->getTerminator();
2959 TinyPtrVector<Value *> ValsToDuplicate;
2960 llvm::append_range(C&: ValsToDuplicate, R&: Info->InstToDuplicate);
2961 UnswitchCandidates.push_back(
2962 Elt: {L.getHeader()->getTerminator(), std::move(ValsToDuplicate)});
2963 }
2964 }
2965 return !UnswitchCandidates.empty();
2966}
2967
2968/// Tries to canonicalize condition described by:
2969///
2970/// br (LHS pred RHS), label IfTrue, label IfFalse
2971///
2972/// into its equivalent where `Pred` is something that we support for injected
2973/// invariants (so far it is limited to ult), LHS in canonicalized form is
2974/// non-invariant and RHS is an invariant.
2975static void canonicalizeForInvariantConditionInjection(
2976 ICmpInst::Predicate &Pred, Value *&LHS, Value *&RHS, BasicBlock *&IfTrue,
2977 BasicBlock *&IfFalse, const Loop &L) {
2978 if (!L.contains(BB: IfTrue)) {
2979 Pred = ICmpInst::getInversePredicate(pred: Pred);
2980 std::swap(a&: IfTrue, b&: IfFalse);
2981 }
2982
2983 // Move loop-invariant argument to RHS position.
2984 if (L.isLoopInvariant(V: LHS)) {
2985 Pred = ICmpInst::getSwappedPredicate(pred: Pred);
2986 std::swap(a&: LHS, b&: RHS);
2987 }
2988
2989 if (Pred == ICmpInst::ICMP_SGE && match(V: RHS, P: m_Zero())) {
2990 // Turn "x >=s 0" into "x <u UMIN_INT"
2991 Pred = ICmpInst::ICMP_ULT;
2992 RHS = ConstantInt::get(
2993 Context&: RHS->getContext(),
2994 V: APInt::getSignedMinValue(numBits: RHS->getType()->getIntegerBitWidth()));
2995 }
2996}
2997
2998/// Returns true, if predicate described by ( \p Pred, \p LHS, \p RHS )
2999/// succeeding into blocks ( \p IfTrue, \p IfFalse) can be optimized by
3000/// injecting a loop-invariant condition.
3001static bool shouldTryInjectInvariantCondition(
3002 const ICmpInst::Predicate Pred, const Value *LHS, const Value *RHS,
3003 const BasicBlock *IfTrue, const BasicBlock *IfFalse, const Loop &L) {
3004 if (L.isLoopInvariant(V: LHS) || !L.isLoopInvariant(V: RHS))
3005 return false;
3006 // TODO: Support other predicates.
3007 if (Pred != ICmpInst::ICMP_ULT)
3008 return false;
3009 // TODO: Support non-loop-exiting branches?
3010 if (!L.contains(BB: IfTrue) || L.contains(BB: IfFalse))
3011 return false;
3012 // FIXME: For some reason this causes problems with MSSA updates, need to
3013 // investigate why. So far, just don't unswitch latch.
3014 if (L.getHeader() == IfTrue)
3015 return false;
3016 return true;
3017}
3018
3019/// Returns true, if metadata on \p BI allows us to optimize branching into \p
3020/// TakenSucc via injection of invariant conditions. The branch should be not
3021/// enough and not previously unswitched, the information about this comes from
3022/// the metadata.
3023bool shouldTryInjectBasingOnMetadata(const BranchInst *BI,
3024 const BasicBlock *TakenSucc) {
3025 SmallVector<uint32_t> Weights;
3026 if (!extractBranchWeights(I: *BI, Weights))
3027 return false;
3028 unsigned T = InjectInvariantConditionHotnesThreshold;
3029 BranchProbability LikelyTaken(T - 1, T);
3030
3031 assert(Weights.size() == 2 && "Unexpected profile data!");
3032 size_t Idx = BI->getSuccessor(i: 0) == TakenSucc ? 0 : 1;
3033 auto Num = Weights[Idx];
3034 auto Denom = Weights[0] + Weights[1];
3035 // Degenerate or overflowed metadata.
3036 if (Denom == 0 || Num > Denom)
3037 return false;
3038 BranchProbability ActualTaken(Num, Denom);
3039 if (LikelyTaken > ActualTaken)
3040 return false;
3041 return true;
3042}
3043
3044/// Materialize pending invariant condition of the given candidate into IR. The
3045/// injected loop-invariant condition implies the original loop-variant branch
3046/// condition, so the materialization turns
3047///
3048/// loop_block:
3049/// ...
3050/// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3051///
3052/// into
3053///
3054/// preheader:
3055/// %invariant_cond = LHS pred RHS
3056/// ...
3057/// loop_block:
3058/// br i1 %invariant_cond, label InLoopSucc, label OriginalCheck
3059/// OriginalCheck:
3060/// br i1 %variant_cond, label InLoopSucc, label OutOfLoopSucc
3061/// ...
3062static NonTrivialUnswitchCandidate
3063injectPendingInvariantConditions(NonTrivialUnswitchCandidate Candidate, Loop &L,
3064 DominatorTree &DT, LoopInfo &LI,
3065 AssumptionCache &AC, MemorySSAUpdater *MSSAU) {
3066 assert(Candidate.hasPendingInjection() && "Nothing to inject!");
3067 BasicBlock *Preheader = L.getLoopPreheader();
3068 assert(Preheader && "Loop is not in simplified form?");
3069 assert(LI.getLoopFor(Candidate.TI->getParent()) == &L &&
3070 "Unswitching branch of inner loop!");
3071
3072 auto Pred = Candidate.PendingInjection->Pred;
3073 auto *LHS = Candidate.PendingInjection->LHS;
3074 auto *RHS = Candidate.PendingInjection->RHS;
3075 auto *InLoopSucc = Candidate.PendingInjection->InLoopSucc;
3076 auto *TI = cast<BranchInst>(Val: Candidate.TI);
3077 auto *BB = Candidate.TI->getParent();
3078 auto *OutOfLoopSucc = InLoopSucc == TI->getSuccessor(i: 0) ? TI->getSuccessor(i: 1)
3079 : TI->getSuccessor(i: 0);
3080 // FIXME: Remove this once limitation on successors is lifted.
3081 assert(L.contains(InLoopSucc) && "Not supported yet!");
3082 assert(!L.contains(OutOfLoopSucc) && "Not supported yet!");
3083 auto &Ctx = BB->getContext();
3084
3085 IRBuilder<> Builder(Preheader->getTerminator());
3086 assert(ICmpInst::isUnsigned(Pred) && "Not supported yet!");
3087 if (LHS->getType() != RHS->getType()) {
3088 if (LHS->getType()->getIntegerBitWidth() <
3089 RHS->getType()->getIntegerBitWidth())
3090 LHS = Builder.CreateZExt(V: LHS, DestTy: RHS->getType(), Name: LHS->getName() + ".wide");
3091 else
3092 RHS = Builder.CreateZExt(V: RHS, DestTy: LHS->getType(), Name: RHS->getName() + ".wide");
3093 }
3094 // Do not use builder here: CreateICmp may simplify this into a constant and
3095 // unswitching will break. Better optimize it away later.
3096 auto *InjectedCond =
3097 ICmpInst::Create(Op: Instruction::ICmp, Pred, S1: LHS, S2: RHS, Name: "injected.cond",
3098 InsertBefore: Preheader->getTerminator()->getIterator());
3099
3100 BasicBlock *CheckBlock = BasicBlock::Create(Context&: Ctx, Name: BB->getName() + ".check",
3101 Parent: BB->getParent(), InsertBefore: InLoopSucc);
3102 Builder.SetInsertPoint(TI);
3103 auto *InvariantBr =
3104 Builder.CreateCondBr(Cond: InjectedCond, True: InLoopSucc, False: CheckBlock);
3105
3106 Builder.SetInsertPoint(CheckBlock);
3107 Builder.CreateCondBr(Cond: TI->getCondition(), True: TI->getSuccessor(i: 0),
3108 False: TI->getSuccessor(i: 1));
3109 TI->eraseFromParent();
3110
3111 // Fixup phis.
3112 for (auto &I : *InLoopSucc) {
3113 auto *PN = dyn_cast<PHINode>(Val: &I);
3114 if (!PN)
3115 break;
3116 auto *Inc = PN->getIncomingValueForBlock(BB);
3117 PN->addIncoming(V: Inc, BB: CheckBlock);
3118 }
3119 OutOfLoopSucc->replacePhiUsesWith(Old: BB, New: CheckBlock);
3120
3121 SmallVector<DominatorTree::UpdateType, 4> DTUpdates = {
3122 { DominatorTree::Insert, BB, CheckBlock },
3123 { DominatorTree::Insert, CheckBlock, InLoopSucc },
3124 { DominatorTree::Insert, CheckBlock, OutOfLoopSucc },
3125 { DominatorTree::Delete, BB, OutOfLoopSucc }
3126 };
3127
3128 DT.applyUpdates(Updates: DTUpdates);
3129 if (MSSAU)
3130 MSSAU->applyUpdates(Updates: DTUpdates, DT);
3131 L.addBasicBlockToLoop(NewBB: CheckBlock, LI);
3132
3133#ifndef NDEBUG
3134 DT.verify();
3135 LI.verify(DomTree: DT);
3136 if (MSSAU && VerifyMemorySSA)
3137 MSSAU->getMemorySSA()->verifyMemorySSA();
3138#endif
3139
3140 // TODO: In fact, cost of unswitching a new invariant candidate is *slightly*
3141 // higher because we have just inserted a new block. Need to think how to
3142 // adjust the cost of injected candidates when it was first computed.
3143 LLVM_DEBUG(dbgs() << "Injected a new loop-invariant branch " << *InvariantBr
3144 << " and considering it for unswitching.");
3145 ++NumInvariantConditionsInjected;
3146 return NonTrivialUnswitchCandidate(InvariantBr, { InjectedCond },
3147 Candidate.Cost);
3148}
3149
3150/// Given chain of loop branch conditions looking like:
3151/// br (Variant < Invariant1)
3152/// br (Variant < Invariant2)
3153/// br (Variant < Invariant3)
3154/// ...
3155/// collect set of invariant conditions on which we want to unswitch, which
3156/// look like:
3157/// Invariant1 <= Invariant2
3158/// Invariant2 <= Invariant3
3159/// ...
3160/// Though they might not immediately exist in the IR, we can still inject them.
3161static bool insertCandidatesWithPendingInjections(
3162 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates, Loop &L,
3163 ICmpInst::Predicate Pred, ArrayRef<CompareDesc> Compares,
3164 const DominatorTree &DT) {
3165
3166 assert(ICmpInst::isRelational(Pred));
3167 assert(ICmpInst::isStrictPredicate(Pred));
3168 if (Compares.size() < 2)
3169 return false;
3170 ICmpInst::Predicate NonStrictPred = ICmpInst::getNonStrictPredicate(pred: Pred);
3171 for (auto Prev = Compares.begin(), Next = Compares.begin() + 1;
3172 Next != Compares.end(); ++Prev, ++Next) {
3173 Value *LHS = Next->Invariant;
3174 Value *RHS = Prev->Invariant;
3175 BasicBlock *InLoopSucc = Prev->InLoopSucc;
3176 InjectedInvariant ToInject(NonStrictPred, LHS, RHS, InLoopSucc);
3177 NonTrivialUnswitchCandidate Candidate(Prev->Term, { LHS, RHS },
3178 std::nullopt, std::move(ToInject));
3179 UnswitchCandidates.push_back(Elt: std::move(Candidate));
3180 }
3181 return true;
3182}
3183
3184/// Collect unswitch candidates by invariant conditions that are not immediately
3185/// present in the loop. However, they can be injected into the code if we
3186/// decide it's profitable.
3187/// An example of such conditions is following:
3188///
3189/// for (...) {
3190/// x = load ...
3191/// if (! x <u C1) break;
3192/// if (! x <u C2) break;
3193/// <do something>
3194/// }
3195///
3196/// We can unswitch by condition "C1 <=u C2". If that is true, then "x <u C1 <=
3197/// C2" automatically implies "x <u C2", so we can get rid of one of
3198/// loop-variant checks in unswitched loop version.
3199static bool collectUnswitchCandidatesWithInjections(
3200 SmallVectorImpl<NonTrivialUnswitchCandidate> &UnswitchCandidates,
3201 IVConditionInfo &PartialIVInfo, Instruction *&PartialIVCondBranch, Loop &L,
3202 const DominatorTree &DT, const LoopInfo &LI, AAResults &AA,
3203 const MemorySSAUpdater *MSSAU) {
3204 if (!InjectInvariantConditions)
3205 return false;
3206
3207 if (!DT.isReachableFromEntry(A: L.getHeader()))
3208 return false;
3209 auto *Latch = L.getLoopLatch();
3210 // Need to have a single latch and a preheader.
3211 if (!Latch)
3212 return false;
3213 assert(L.getLoopPreheader() && "Must have a preheader!");
3214
3215 DenseMap<Value *, SmallVector<CompareDesc, 4> > CandidatesULT;
3216 // Traverse the conditions that dominate latch (and therefore dominate each
3217 // other).
3218 for (auto *DTN = DT.getNode(BB: Latch); L.contains(BB: DTN->getBlock());
3219 DTN = DTN->getIDom()) {
3220 ICmpInst::Predicate Pred;
3221 Value *LHS = nullptr, *RHS = nullptr;
3222 BasicBlock *IfTrue = nullptr, *IfFalse = nullptr;
3223 auto *BB = DTN->getBlock();
3224 // Ignore inner loops.
3225 if (LI.getLoopFor(BB) != &L)
3226 continue;
3227 auto *Term = BB->getTerminator();
3228 if (!match(V: Term, P: m_Br(C: m_ICmp(Pred, L: m_Value(V&: LHS), R: m_Value(V&: RHS)),
3229 T: m_BasicBlock(V&: IfTrue), F: m_BasicBlock(V&: IfFalse))))
3230 continue;
3231 if (!LHS->getType()->isIntegerTy())
3232 continue;
3233 canonicalizeForInvariantConditionInjection(Pred, LHS, RHS, IfTrue, IfFalse,
3234 L);
3235 if (!shouldTryInjectInvariantCondition(Pred, LHS, RHS, IfTrue, IfFalse, L))
3236 continue;
3237 if (!shouldTryInjectBasingOnMetadata(BI: cast<BranchInst>(Val: Term), TakenSucc: IfTrue))
3238 continue;
3239 // Strip ZEXT for unsigned predicate.
3240 // TODO: once signed predicates are supported, also strip SEXT.
3241 CompareDesc Desc(cast<BranchInst>(Val: Term), RHS, IfTrue);
3242 while (auto *Zext = dyn_cast<ZExtInst>(Val: LHS))
3243 LHS = Zext->getOperand(i_nocapture: 0);
3244 CandidatesULT[LHS].push_back(Elt: Desc);
3245 }
3246
3247 bool Found = false;
3248 for (auto &It : CandidatesULT)
3249 Found |= insertCandidatesWithPendingInjections(
3250 UnswitchCandidates, L, Pred: ICmpInst::ICMP_ULT, Compares: It.second, DT);
3251 return Found;
3252}
3253
3254static bool isSafeForNoNTrivialUnswitching(Loop &L, LoopInfo &LI) {
3255 if (!L.isSafeToClone())
3256 return false;
3257 for (auto *BB : L.blocks())
3258 for (auto &I : *BB) {
3259 if (I.getType()->isTokenTy() && I.isUsedOutsideOfBlock(BB))
3260 return false;
3261 if (auto *CB = dyn_cast<CallBase>(Val: &I)) {
3262 assert(!CB->cannotDuplicate() && "Checked by L.isSafeToClone().");
3263 if (CB->isConvergent())
3264 return false;
3265 }
3266 }
3267
3268 // Check if there are irreducible CFG cycles in this loop. If so, we cannot
3269 // easily unswitch non-trivial edges out of the loop. Doing so might turn the
3270 // irreducible control flow into reducible control flow and introduce new
3271 // loops "out of thin air". If we ever discover important use cases for doing
3272 // this, we can add support to loop unswitch, but it is a lot of complexity
3273 // for what seems little or no real world benefit.
3274 LoopBlocksRPO RPOT(&L);
3275 RPOT.perform(LI: &LI);
3276 if (containsIrreducibleCFG<const BasicBlock *>(RPOTraversal&: RPOT, LI))
3277 return false;
3278
3279 SmallVector<BasicBlock *, 4> ExitBlocks;
3280 L.getUniqueExitBlocks(ExitBlocks);
3281 // We cannot unswitch if exit blocks contain a cleanuppad/catchswitch
3282 // instruction as we don't know how to split those exit blocks.
3283 // FIXME: We should teach SplitBlock to handle this and remove this
3284 // restriction.
3285 for (auto *ExitBB : ExitBlocks) {
3286 auto *I = ExitBB->getFirstNonPHI();
3287 if (isa<CleanupPadInst>(Val: I) || isa<CatchSwitchInst>(Val: I)) {
3288 LLVM_DEBUG(dbgs() << "Cannot unswitch because of cleanuppad/catchswitch "
3289 "in exit block\n");
3290 return false;
3291 }
3292 }
3293
3294 return true;
3295}
3296
3297static NonTrivialUnswitchCandidate findBestNonTrivialUnswitchCandidate(
3298 ArrayRef<NonTrivialUnswitchCandidate> UnswitchCandidates, const Loop &L,
3299 const DominatorTree &DT, const LoopInfo &LI, AssumptionCache &AC,
3300 const TargetTransformInfo &TTI, const IVConditionInfo &PartialIVInfo) {
3301 // Given that unswitching these terminators will require duplicating parts of
3302 // the loop, so we need to be able to model that cost. Compute the ephemeral
3303 // values and set up a data structure to hold per-BB costs. We cache each
3304 // block's cost so that we don't recompute this when considering different
3305 // subsets of the loop for duplication during unswitching.
3306 SmallPtrSet<const Value *, 4> EphValues;
3307 CodeMetrics::collectEphemeralValues(L: &L, AC: &AC, EphValues);
3308 SmallDenseMap<BasicBlock *, InstructionCost, 4> BBCostMap;
3309
3310 // Compute the cost of each block, as well as the total loop cost. Also, bail
3311 // out if we see instructions which are incompatible with loop unswitching
3312 // (convergent, noduplicate, or cross-basic-block tokens).
3313 // FIXME: We might be able to safely handle some of these in non-duplicated
3314 // regions.
3315 TargetTransformInfo::TargetCostKind CostKind =
3316 L.getHeader()->getParent()->hasMinSize()
3317 ? TargetTransformInfo::TCK_CodeSize
3318 : TargetTransformInfo::TCK_SizeAndLatency;
3319 InstructionCost LoopCost = 0;
3320 for (auto *BB : L.blocks()) {
3321 InstructionCost Cost = 0;
3322 for (auto &I : *BB) {
3323 if (EphValues.count(Ptr: &I))
3324 continue;
3325 Cost += TTI.getInstructionCost(U: &I, CostKind);
3326 }
3327 assert(Cost >= 0 && "Must not have negative costs!");
3328 LoopCost += Cost;
3329 assert(LoopCost >= 0 && "Must not have negative loop costs!");
3330 BBCostMap[BB] = Cost;
3331 }
3332 LLVM_DEBUG(dbgs() << " Total loop cost: " << LoopCost << "\n");
3333
3334 // Now we find the best candidate by searching for the one with the following
3335 // properties in order:
3336 //
3337 // 1) An unswitching cost below the threshold
3338 // 2) The smallest number of duplicated unswitch candidates (to avoid
3339 // creating redundant subsequent unswitching)
3340 // 3) The smallest cost after unswitching.
3341 //
3342 // We prioritize reducing fanout of unswitch candidates provided the cost
3343 // remains below the threshold because this has a multiplicative effect.
3344 //
3345 // This requires memoizing each dominator subtree to avoid redundant work.
3346 //
3347 // FIXME: Need to actually do the number of candidates part above.
3348 SmallDenseMap<DomTreeNode *, InstructionCost, 4> DTCostMap;
3349 // Given a terminator which might be unswitched, computes the non-duplicated
3350 // cost for that terminator.
3351 auto ComputeUnswitchedCost = [&](Instruction &TI,
3352 bool FullUnswitch) -> InstructionCost {
3353 // Unswitching selects unswitches the entire loop.
3354 if (isa<SelectInst>(Val: TI))
3355 return LoopCost;
3356
3357 BasicBlock &BB = *TI.getParent();
3358 SmallPtrSet<BasicBlock *, 4> Visited;
3359
3360 InstructionCost Cost = 0;
3361 for (BasicBlock *SuccBB : successors(BB: &BB)) {
3362 // Don't count successors more than once.
3363 if (!Visited.insert(Ptr: SuccBB).second)
3364 continue;
3365
3366 // If this is a partial unswitch candidate, then it must be a conditional
3367 // branch with a condition of either `or`, `and`, their corresponding
3368 // select forms or partially invariant instructions. In that case, one of
3369 // the successors is necessarily duplicated, so don't even try to remove
3370 // its cost.
3371 if (!FullUnswitch) {
3372 auto &BI = cast<BranchInst>(Val&: TI);
3373 Value *Cond = skipTrivialSelect(Cond: BI.getCondition());
3374 if (match(V: Cond, P: m_LogicalAnd())) {
3375 if (SuccBB == BI.getSuccessor(i: 1))
3376 continue;
3377 } else if (match(V: Cond, P: m_LogicalOr())) {
3378 if (SuccBB == BI.getSuccessor(i: 0))
3379 continue;
3380 } else if ((PartialIVInfo.KnownValue->isOneValue() &&
3381 SuccBB == BI.getSuccessor(i: 0)) ||
3382 (!PartialIVInfo.KnownValue->isOneValue() &&
3383 SuccBB == BI.getSuccessor(i: 1)))
3384 continue;
3385 }
3386
3387 // This successor's domtree will not need to be duplicated after
3388 // unswitching if the edge to the successor dominates it (and thus the
3389 // entire tree). This essentially means there is no other path into this
3390 // subtree and so it will end up live in only one clone of the loop.
3391 if (SuccBB->getUniquePredecessor() ||
3392 llvm::all_of(Range: predecessors(BB: SuccBB), P: [&](BasicBlock *PredBB) {
3393 return PredBB == &BB || DT.dominates(A: SuccBB, B: PredBB);
3394 })) {
3395 Cost += computeDomSubtreeCost(N&: *DT[SuccBB], BBCostMap, DTCostMap);
3396 assert(Cost <= LoopCost &&
3397 "Non-duplicated cost should never exceed total loop cost!");
3398 }
3399 }
3400
3401 // Now scale the cost by the number of unique successors minus one. We
3402 // subtract one because there is already at least one copy of the entire
3403 // loop. This is computing the new cost of unswitching a condition.
3404 // Note that guards always have 2 unique successors that are implicit and
3405 // will be materialized if we decide to unswitch it.
3406 int SuccessorsCount = isGuard(U: &TI) ? 2 : Visited.size();
3407 assert(SuccessorsCount > 1 &&
3408 "Cannot unswitch a condition without multiple distinct successors!");
3409 return (LoopCost - Cost) * (SuccessorsCount - 1);
3410 };
3411
3412 std::optional<NonTrivialUnswitchCandidate> Best;
3413 for (auto &Candidate : UnswitchCandidates) {
3414 Instruction &TI = *Candidate.TI;
3415 ArrayRef<Value *> Invariants = Candidate.Invariants;
3416 BranchInst *BI = dyn_cast<BranchInst>(Val: &TI);
3417 bool FullUnswitch =
3418 !BI || Candidate.hasPendingInjection() ||
3419 (Invariants.size() == 1 &&
3420 Invariants[0] == skipTrivialSelect(Cond: BI->getCondition()));
3421 InstructionCost CandidateCost = ComputeUnswitchedCost(TI, FullUnswitch);
3422 // Calculate cost multiplier which is a tool to limit potentially
3423 // exponential behavior of loop-unswitch.
3424 if (EnableUnswitchCostMultiplier) {
3425 int CostMultiplier =
3426 CalculateUnswitchCostMultiplier(TI, L, LI, DT, UnswitchCandidates);
3427 assert(
3428 (CostMultiplier > 0 && CostMultiplier <= UnswitchThreshold) &&
3429 "cost multiplier needs to be in the range of 1..UnswitchThreshold");
3430 CandidateCost *= CostMultiplier;
3431 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3432 << " (multiplier: " << CostMultiplier << ")"
3433 << " for unswitch candidate: " << TI << "\n");
3434 } else {
3435 LLVM_DEBUG(dbgs() << " Computed cost of " << CandidateCost
3436 << " for unswitch candidate: " << TI << "\n");
3437 }
3438
3439 if (!Best || CandidateCost < Best->Cost) {
3440 Best = Candidate;
3441 Best->Cost = CandidateCost;
3442 }
3443 }
3444 assert(Best && "Must be!");
3445 return *Best;
3446}
3447
3448// Insert a freeze on an unswitched branch if all is true:
3449// 1. freeze-loop-unswitch-cond option is true
3450// 2. The branch may not execute in the loop pre-transformation. If a branch may
3451// not execute and could cause UB, it would always cause UB if it is hoisted outside
3452// of the loop. Insert a freeze to prevent this case.
3453// 3. The branch condition may be poison or undef
3454static bool shouldInsertFreeze(Loop &L, Instruction &TI, DominatorTree &DT,
3455 AssumptionCache &AC) {
3456 assert(isa<BranchInst>(TI) || isa<SwitchInst>(TI));
3457 if (!FreezeLoopUnswitchCond)
3458 return false;
3459
3460 ICFLoopSafetyInfo SafetyInfo;
3461 SafetyInfo.computeLoopSafetyInfo(CurLoop: &L);
3462 if (SafetyInfo.isGuaranteedToExecute(Inst: TI, DT: &DT, CurLoop: &L))
3463 return false;
3464
3465 Value *Cond;
3466 if (BranchInst *BI = dyn_cast<BranchInst>(Val: &TI))
3467 Cond = skipTrivialSelect(Cond: BI->getCondition());
3468 else
3469 Cond = skipTrivialSelect(Cond: cast<SwitchInst>(Val: &TI)->getCondition());
3470 return !isGuaranteedNotToBeUndefOrPoison(
3471 V: Cond, AC: &AC, CtxI: L.getLoopPreheader()->getTerminator(), DT: &DT);
3472}
3473
3474static bool unswitchBestCondition(Loop &L, DominatorTree &DT, LoopInfo &LI,
3475 AssumptionCache &AC, AAResults &AA,
3476 TargetTransformInfo &TTI, ScalarEvolution *SE,
3477 MemorySSAUpdater *MSSAU,
3478 LPMUpdater &LoopUpdater) {
3479 // Collect all invariant conditions within this loop (as opposed to an inner
3480 // loop which would be handled when visiting that inner loop).
3481 SmallVector<NonTrivialUnswitchCandidate, 4> UnswitchCandidates;
3482 IVConditionInfo PartialIVInfo;
3483 Instruction *PartialIVCondBranch = nullptr;
3484 collectUnswitchCandidates(UnswitchCandidates, PartialIVInfo,
3485 PartialIVCondBranch, L, LI, AA, MSSAU);
3486 if (!findOptionMDForLoop(TheLoop: &L, Name: "llvm.loop.unswitch.injection.disable"))
3487 collectUnswitchCandidatesWithInjections(UnswitchCandidates, PartialIVInfo,
3488 PartialIVCondBranch, L, DT, LI, AA,
3489 MSSAU);
3490 // If we didn't find any candidates, we're done.
3491 if (UnswitchCandidates.empty())
3492 return false;
3493
3494 LLVM_DEBUG(
3495 dbgs() << "Considering " << UnswitchCandidates.size()
3496 << " non-trivial loop invariant conditions for unswitching.\n");
3497
3498 NonTrivialUnswitchCandidate Best = findBestNonTrivialUnswitchCandidate(
3499 UnswitchCandidates, L, DT, LI, AC, TTI, PartialIVInfo);
3500
3501 assert(Best.TI && "Failed to find loop unswitch candidate");
3502 assert(Best.Cost && "Failed to compute cost");
3503
3504 if (*Best.Cost >= UnswitchThreshold) {
3505 LLVM_DEBUG(dbgs() << "Cannot unswitch, lowest cost found: " << *Best.Cost
3506 << "\n");
3507 return false;
3508 }
3509
3510 bool InjectedCondition = false;
3511 if (Best.hasPendingInjection()) {
3512 Best = injectPendingInvariantConditions(Candidate: Best, L, DT, LI, AC, MSSAU);
3513 InjectedCondition = true;
3514 }
3515 assert(!Best.hasPendingInjection() &&
3516 "All injections should have been done by now!");
3517
3518 if (Best.TI != PartialIVCondBranch)
3519 PartialIVInfo.InstToDuplicate.clear();
3520
3521 bool InsertFreeze;
3522 if (auto *SI = dyn_cast<SelectInst>(Val: Best.TI)) {
3523 // If the best candidate is a select, turn it into a branch. Select
3524 // instructions with a poison conditional do not propagate poison, but
3525 // branching on poison causes UB. Insert a freeze on the select
3526 // conditional to prevent UB after turning the select into a branch.
3527 InsertFreeze = !isGuaranteedNotToBeUndefOrPoison(
3528 V: SI->getCondition(), AC: &AC, CtxI: L.getLoopPreheader()->getTerminator(), DT: &DT);
3529 Best.TI = turnSelectIntoBranch(SI, DT, LI, MSSAU, AC: &AC);
3530 } else {
3531 // If the best candidate is a guard, turn it into a branch.
3532 if (isGuard(U: Best.TI))
3533 Best.TI =
3534 turnGuardIntoBranch(GI: cast<IntrinsicInst>(Val: Best.TI), L, DT, LI, MSSAU);
3535 InsertFreeze = shouldInsertFreeze(L, TI&: *Best.TI, DT, AC);
3536 }
3537
3538 LLVM_DEBUG(dbgs() << " Unswitching non-trivial (cost = " << Best.Cost
3539 << ") terminator: " << *Best.TI << "\n");
3540 unswitchNontrivialInvariants(L, TI&: *Best.TI, Invariants: Best.Invariants, PartialIVInfo, DT,
3541 LI, AC, SE, MSSAU, LoopUpdater, InsertFreeze,
3542 InjectedCondition);
3543 return true;
3544}
3545
3546/// Unswitch control flow predicated on loop invariant conditions.
3547///
3548/// This first hoists all branches or switches which are trivial (IE, do not
3549/// require duplicating any part of the loop) out of the loop body. It then
3550/// looks at other loop invariant control flows and tries to unswitch those as
3551/// well by cloning the loop if the result is small enough.
3552///
3553/// The `DT`, `LI`, `AC`, `AA`, `TTI` parameters are required analyses that are
3554/// also updated based on the unswitch. The `MSSA` analysis is also updated if
3555/// valid (i.e. its use is enabled).
3556///
3557/// If either `NonTrivial` is true or the flag `EnableNonTrivialUnswitch` is
3558/// true, we will attempt to do non-trivial unswitching as well as trivial
3559/// unswitching.
3560///
3561/// The `postUnswitch` function will be run after unswitching is complete
3562/// with information on whether or not the provided loop remains a loop and
3563/// a list of new sibling loops created.
3564///
3565/// If `SE` is non-null, we will update that analysis based on the unswitching
3566/// done.
3567static bool unswitchLoop(Loop &L, DominatorTree &DT, LoopInfo &LI,
3568 AssumptionCache &AC, AAResults &AA,
3569 TargetTransformInfo &TTI, bool Trivial,
3570 bool NonTrivial, ScalarEvolution *SE,
3571 MemorySSAUpdater *MSSAU, ProfileSummaryInfo *PSI,
3572 BlockFrequencyInfo *BFI, LPMUpdater &LoopUpdater) {
3573 assert(L.isRecursivelyLCSSAForm(DT, LI) &&
3574 "Loops must be in LCSSA form before unswitching.");
3575
3576 // Must be in loop simplified form: we need a preheader and dedicated exits.
3577 if (!L.isLoopSimplifyForm())
3578 return false;
3579
3580 // Try trivial unswitch first before loop over other basic blocks in the loop.
3581 if (Trivial && unswitchAllTrivialConditions(L, DT, LI, SE, MSSAU)) {
3582 // If we unswitched successfully we will want to clean up the loop before
3583 // processing it further so just mark it as unswitched and return.
3584 postUnswitch(L, U&: LoopUpdater, LoopName: L.getName(),
3585 /*CurrentLoopValid*/ true, /*PartiallyInvariant*/ false,
3586 /*InjectedCondition*/ false, NewLoops: {});
3587 return true;
3588 }
3589
3590 const Function *F = L.getHeader()->getParent();
3591
3592 // Check whether we should continue with non-trivial conditions.
3593 // EnableNonTrivialUnswitch: Global variable that forces non-trivial
3594 // unswitching for testing and debugging.
3595 // NonTrivial: Parameter that enables non-trivial unswitching for this
3596 // invocation of the transform. But this should be allowed only
3597 // for targets without branch divergence.
3598 //
3599 // FIXME: If divergence analysis becomes available to a loop
3600 // transform, we should allow unswitching for non-trivial uniform
3601 // branches even on targets that have divergence.
3602 // https://bugs.llvm.org/show_bug.cgi?id=48819
3603 bool ContinueWithNonTrivial =
3604 EnableNonTrivialUnswitch || (NonTrivial && !TTI.hasBranchDivergence(F));
3605 if (!ContinueWithNonTrivial)
3606 return false;
3607
3608 // Skip non-trivial unswitching for optsize functions.
3609 if (F->hasOptSize())
3610 return false;
3611
3612 // Returns true if Loop L's loop nest is cold, i.e. if the headers of L,
3613 // of the loops L is nested in, and of the loops nested in L are all cold.
3614 auto IsLoopNestCold = [&](const Loop *L) {
3615 // Check L and all of its parent loops.
3616 auto *Parent = L;
3617 while (Parent) {
3618 if (!PSI->isColdBlock(BB: Parent->getHeader(), BFI))
3619 return false;
3620 Parent = Parent->getParentLoop();
3621 }
3622 // Next check all loops nested within L.
3623 SmallVector<const Loop *, 4> Worklist;
3624 Worklist.insert(I: Worklist.end(), From: L->getSubLoops().begin(),
3625 To: L->getSubLoops().end());
3626 while (!Worklist.empty()) {
3627 auto *CurLoop = Worklist.pop_back_val();
3628 if (!PSI->isColdBlock(BB: CurLoop->getHeader(), BFI))
3629 return false;
3630 Worklist.insert(I: Worklist.end(), From: CurLoop->getSubLoops().begin(),
3631 To: CurLoop->getSubLoops().end());
3632 }
3633 return true;
3634 };
3635
3636 // Skip cold loops in cold loop nests, as unswitching them brings little
3637 // benefit but increases the code size
3638 if (PSI && PSI->hasProfileSummary() && BFI && IsLoopNestCold(&L)) {
3639 LLVM_DEBUG(dbgs() << " Skip cold loop: " << L << "\n");
3640 return false;
3641 }
3642
3643 // Perform legality checks.
3644 if (!isSafeForNoNTrivialUnswitching(L, LI))
3645 return false;
3646
3647 // For non-trivial unswitching, because it often creates new loops, we rely on
3648 // the pass manager to iterate on the loops rather than trying to immediately
3649 // reach a fixed point. There is no substantial advantage to iterating
3650 // internally, and if any of the new loops are simplified enough to contain
3651 // trivial unswitching we want to prefer those.
3652
3653 // Try to unswitch the best invariant condition. We prefer this full unswitch to
3654 // a partial unswitch when possible below the threshold.
3655 if (unswitchBestCondition(L, DT, LI, AC, AA, TTI, SE, MSSAU, LoopUpdater))
3656 return true;
3657
3658 // No other opportunities to unswitch.
3659 return false;
3660}
3661
3662PreservedAnalyses SimpleLoopUnswitchPass::run(Loop &L, LoopAnalysisManager &AM,
3663 LoopStandardAnalysisResults &AR,
3664 LPMUpdater &U) {
3665 Function &F = *L.getHeader()->getParent();
3666 (void)F;
3667 ProfileSummaryInfo *PSI = nullptr;
3668 if (auto OuterProxy =
3669 AM.getResult<FunctionAnalysisManagerLoopProxy>(IR&: L, ExtraArgs&: AR)
3670 .getCachedResult<ModuleAnalysisManagerFunctionProxy>(IR&: F))
3671 PSI = OuterProxy->getCachedResult<ProfileSummaryAnalysis>(IR&: *F.getParent());
3672 LLVM_DEBUG(dbgs() << "Unswitching loop in " << F.getName() << ": " << L
3673 << "\n");
3674
3675 std::optional<MemorySSAUpdater> MSSAU;
3676 if (AR.MSSA) {
3677 MSSAU = MemorySSAUpdater(AR.MSSA);
3678 if (VerifyMemorySSA)
3679 AR.MSSA->verifyMemorySSA();
3680 }
3681 if (!unswitchLoop(L, DT&: AR.DT, LI&: AR.LI, AC&: AR.AC, AA&: AR.AA, TTI&: AR.TTI, Trivial, NonTrivial,
3682 SE: &AR.SE, MSSAU: MSSAU ? &*MSSAU : nullptr, PSI, BFI: AR.BFI, LoopUpdater&: U))
3683 return PreservedAnalyses::all();
3684
3685 if (AR.MSSA && VerifyMemorySSA)
3686 AR.MSSA->verifyMemorySSA();
3687
3688 // Historically this pass has had issues with the dominator tree so verify it
3689 // in asserts builds.
3690 assert(AR.DT.verify(DominatorTree::VerificationLevel::Fast));
3691
3692 auto PA = getLoopPassPreservedAnalyses();
3693 if (AR.MSSA)
3694 PA.preserve<MemorySSAAnalysis>();
3695 return PA;
3696}
3697
3698void SimpleLoopUnswitchPass::printPipeline(
3699 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
3700 static_cast<PassInfoMixin<SimpleLoopUnswitchPass> *>(this)->printPipeline(
3701 OS, MapClassName2PassName);
3702
3703 OS << '<';
3704 OS << (NonTrivial ? "" : "no-") << "nontrivial;";
3705 OS << (Trivial ? "" : "no-") << "trivial";
3706 OS << '>';
3707}
3708

source code of llvm/lib/Transforms/Scalar/SimpleLoopUnswitch.cpp