| 1 | // This file is part of OpenCV project. |
| 2 | // It is subject to the license terms in the LICENSE file found in the top-level directory |
| 3 | // of this distribution and at http://opencv.org/license.html |
| 4 | |
| 5 | #include "../precomp.hpp" |
| 6 | #include <opencv2/calib3d.hpp> |
| 7 | |
| 8 | #include "opencv2/objdetect/aruco_detector.hpp" |
| 9 | #include "opencv2/objdetect/aruco_board.hpp" |
| 10 | #include "apriltag/apriltag_quad_thresh.hpp" |
| 11 | #include "aruco_utils.hpp" |
| 12 | #include <cmath> |
| 13 | #include <map> |
| 14 | |
| 15 | namespace cv { |
| 16 | namespace aruco { |
| 17 | |
| 18 | using namespace std; |
| 19 | |
| 20 | static inline bool readWrite(DetectorParameters ¶ms, const FileNode* readNode, |
| 21 | FileStorage* writeStorage = nullptr) |
| 22 | { |
| 23 | CV_Assert(readNode || writeStorage); |
| 24 | bool check = false; |
| 25 | |
| 26 | check |= readWriteParameter(name: "adaptiveThreshWinSizeMin" , parameter&: params.adaptiveThreshWinSizeMin, readNode, writeStorage); |
| 27 | check |= readWriteParameter(name: "adaptiveThreshWinSizeMax" , parameter&: params.adaptiveThreshWinSizeMax, readNode, writeStorage); |
| 28 | check |= readWriteParameter(name: "adaptiveThreshWinSizeStep" , parameter&: params.adaptiveThreshWinSizeStep, readNode, writeStorage); |
| 29 | check |= readWriteParameter(name: "adaptiveThreshConstant" , parameter&: params.adaptiveThreshConstant, readNode, writeStorage); |
| 30 | check |= readWriteParameter(name: "minMarkerPerimeterRate" , parameter&: params.minMarkerPerimeterRate, readNode, writeStorage); |
| 31 | check |= readWriteParameter(name: "maxMarkerPerimeterRate" , parameter&: params.maxMarkerPerimeterRate, readNode, writeStorage); |
| 32 | check |= readWriteParameter(name: "polygonalApproxAccuracyRate" , parameter&: params.polygonalApproxAccuracyRate, |
| 33 | readNode, writeStorage); |
| 34 | check |= readWriteParameter(name: "minCornerDistanceRate" , parameter&: params.minCornerDistanceRate, readNode, writeStorage); |
| 35 | check |= readWriteParameter(name: "minDistanceToBorder" , parameter&: params.minDistanceToBorder, readNode, writeStorage); |
| 36 | check |= readWriteParameter(name: "minMarkerDistanceRate" , parameter&: params.minMarkerDistanceRate, readNode, writeStorage); |
| 37 | check |= readWriteParameter(name: "cornerRefinementMethod" , parameter&: params.cornerRefinementMethod, readNode, writeStorage); |
| 38 | check |= readWriteParameter(name: "cornerRefinementWinSize" , parameter&: params.cornerRefinementWinSize, readNode, writeStorage); |
| 39 | check |= readWriteParameter(name: "relativeCornerRefinmentWinSize" , parameter&: params.relativeCornerRefinmentWinSize, readNode, |
| 40 | writeStorage); |
| 41 | check |= readWriteParameter(name: "cornerRefinementMaxIterations" , parameter&: params.cornerRefinementMaxIterations, |
| 42 | readNode, writeStorage); |
| 43 | check |= readWriteParameter(name: "cornerRefinementMinAccuracy" , parameter&: params.cornerRefinementMinAccuracy, |
| 44 | readNode, writeStorage); |
| 45 | check |= readWriteParameter(name: "markerBorderBits" , parameter&: params.markerBorderBits, readNode, writeStorage); |
| 46 | check |= readWriteParameter(name: "perspectiveRemovePixelPerCell" , parameter&: params.perspectiveRemovePixelPerCell, |
| 47 | readNode, writeStorage); |
| 48 | check |= readWriteParameter(name: "perspectiveRemoveIgnoredMarginPerCell" , parameter&: params.perspectiveRemoveIgnoredMarginPerCell, |
| 49 | readNode, writeStorage); |
| 50 | check |= readWriteParameter(name: "maxErroneousBitsInBorderRate" , parameter&: params.maxErroneousBitsInBorderRate, |
| 51 | readNode, writeStorage); |
| 52 | check |= readWriteParameter(name: "minOtsuStdDev" , parameter&: params.minOtsuStdDev, readNode, writeStorage); |
| 53 | check |= readWriteParameter(name: "errorCorrectionRate" , parameter&: params.errorCorrectionRate, readNode, writeStorage); |
| 54 | check |= readWriteParameter(name: "minGroupDistance" , parameter&: params.minGroupDistance, readNode, writeStorage); |
| 55 | // new aruco 3 functionality |
| 56 | check |= readWriteParameter(name: "useAruco3Detection" , parameter&: params.useAruco3Detection, readNode, writeStorage); |
| 57 | check |= readWriteParameter(name: "minSideLengthCanonicalImg" , parameter&: params.minSideLengthCanonicalImg, readNode, writeStorage); |
| 58 | check |= readWriteParameter(name: "minMarkerLengthRatioOriginalImg" , parameter&: params.minMarkerLengthRatioOriginalImg, |
| 59 | readNode, writeStorage); |
| 60 | return check; |
| 61 | } |
| 62 | |
| 63 | bool DetectorParameters::readDetectorParameters(const FileNode& fn) |
| 64 | { |
| 65 | if (fn.empty()) |
| 66 | return false; |
| 67 | return readWrite(params&: *this, readNode: &fn); |
| 68 | } |
| 69 | |
| 70 | bool DetectorParameters::writeDetectorParameters(FileStorage& fs, const String& name) |
| 71 | { |
| 72 | CV_Assert(fs.isOpened()); |
| 73 | if (!name.empty()) |
| 74 | fs << name << "{" ; |
| 75 | bool res = readWrite(params&: *this, readNode: nullptr, writeStorage: &fs); |
| 76 | if (!name.empty()) |
| 77 | fs << "}" ; |
| 78 | return res; |
| 79 | } |
| 80 | |
| 81 | static inline bool readWrite(RefineParameters& refineParameters, const FileNode* readNode, |
| 82 | FileStorage* writeStorage = nullptr) |
| 83 | { |
| 84 | CV_Assert(readNode || writeStorage); |
| 85 | bool check = false; |
| 86 | |
| 87 | check |= readWriteParameter(name: "minRepDistance" , parameter&: refineParameters.minRepDistance, readNode, writeStorage); |
| 88 | check |= readWriteParameter(name: "errorCorrectionRate" , parameter&: refineParameters.errorCorrectionRate, readNode, writeStorage); |
| 89 | check |= readWriteParameter(name: "checkAllOrders" , parameter&: refineParameters.checkAllOrders, readNode, writeStorage); |
| 90 | return check; |
| 91 | } |
| 92 | |
| 93 | RefineParameters::RefineParameters(float _minRepDistance, float _errorCorrectionRate, bool _checkAllOrders): |
| 94 | minRepDistance(_minRepDistance), errorCorrectionRate(_errorCorrectionRate), |
| 95 | checkAllOrders(_checkAllOrders){} |
| 96 | |
| 97 | bool RefineParameters::readRefineParameters(const FileNode &fn) |
| 98 | { |
| 99 | if (fn.empty()) |
| 100 | return false; |
| 101 | return readWrite(refineParameters&: *this, readNode: &fn); |
| 102 | } |
| 103 | |
| 104 | bool RefineParameters::writeRefineParameters(FileStorage& fs, const String& name) |
| 105 | { |
| 106 | CV_Assert(fs.isOpened()); |
| 107 | if (!name.empty()) |
| 108 | fs << name << "{" ; |
| 109 | bool res = readWrite(refineParameters&: *this, readNode: nullptr, writeStorage: &fs); |
| 110 | if (!name.empty()) |
| 111 | fs << "}" ; |
| 112 | return res; |
| 113 | } |
| 114 | |
| 115 | /** |
| 116 | * @brief Threshold input image using adaptive thresholding |
| 117 | */ |
| 118 | static void _threshold(InputArray _in, OutputArray _out, int winSize, double constant) { |
| 119 | |
| 120 | CV_Assert(winSize >= 3); |
| 121 | if(winSize % 2 == 0) winSize++; // win size must be odd |
| 122 | adaptiveThreshold(src: _in, dst: _out, maxValue: 255, adaptiveMethod: ADAPTIVE_THRESH_MEAN_C, thresholdType: THRESH_BINARY_INV, blockSize: winSize, C: constant); |
| 123 | } |
| 124 | |
| 125 | |
| 126 | /** |
| 127 | * @brief Given a tresholded image, find the contours, calculate their polygonal approximation |
| 128 | * and take those that accomplish some conditions |
| 129 | */ |
| 130 | static void _findMarkerContours(const Mat &in, vector<vector<Point2f> > &candidates, |
| 131 | vector<vector<Point> > &contoursOut, double minPerimeterRate, |
| 132 | double maxPerimeterRate, double accuracyRate, |
| 133 | double minCornerDistanceRate, int minSize) { |
| 134 | |
| 135 | CV_Assert(minPerimeterRate > 0 && maxPerimeterRate > 0 && accuracyRate > 0 && |
| 136 | minCornerDistanceRate >= 0); |
| 137 | |
| 138 | // calculate maximum and minimum sizes in pixels |
| 139 | unsigned int minPerimeterPixels = |
| 140 | (unsigned int)(minPerimeterRate * max(a: in.cols, b: in.rows)); |
| 141 | unsigned int maxPerimeterPixels = |
| 142 | (unsigned int)(maxPerimeterRate * max(a: in.cols, b: in.rows)); |
| 143 | |
| 144 | // for aruco3 functionality |
| 145 | if (minSize != 0) { |
| 146 | minPerimeterPixels = 4*minSize; |
| 147 | } |
| 148 | |
| 149 | vector<vector<Point> > contours; |
| 150 | findContours(image: in, contours, mode: RETR_LIST, method: CHAIN_APPROX_NONE); |
| 151 | // now filter list of contours |
| 152 | for(unsigned int i = 0; i < contours.size(); i++) { |
| 153 | // check perimeter |
| 154 | if(contours[i].size() < minPerimeterPixels || contours[i].size() > maxPerimeterPixels) |
| 155 | continue; |
| 156 | |
| 157 | // check is square and is convex |
| 158 | vector<Point> approxCurve; |
| 159 | approxPolyDP(curve: contours[i], approxCurve, epsilon: double(contours[i].size()) * accuracyRate, closed: true); |
| 160 | if(approxCurve.size() != 4 || !isContourConvex(contour: approxCurve)) continue; |
| 161 | |
| 162 | // check min distance between corners |
| 163 | double minDistSq = max(a: in.cols, b: in.rows) * max(a: in.cols, b: in.rows); |
| 164 | for(int j = 0; j < 4; j++) { |
| 165 | double d = (double)(approxCurve[j].x - approxCurve[(j + 1) % 4].x) * |
| 166 | (double)(approxCurve[j].x - approxCurve[(j + 1) % 4].x) + |
| 167 | (double)(approxCurve[j].y - approxCurve[(j + 1) % 4].y) * |
| 168 | (double)(approxCurve[j].y - approxCurve[(j + 1) % 4].y); |
| 169 | minDistSq = min(a: minDistSq, b: d); |
| 170 | } |
| 171 | double minCornerDistancePixels = double(contours[i].size()) * minCornerDistanceRate; |
| 172 | if(minDistSq < minCornerDistancePixels * minCornerDistancePixels) continue; |
| 173 | |
| 174 | // if it passes all the test, add to candidates vector |
| 175 | vector<Point2f> currentCandidate; |
| 176 | currentCandidate.resize(new_size: 4); |
| 177 | for(int j = 0; j < 4; j++) { |
| 178 | currentCandidate[j] = Point2f((float)approxCurve[j].x, (float)approxCurve[j].y); |
| 179 | } |
| 180 | candidates.push_back(x: currentCandidate); |
| 181 | contoursOut.push_back(x: contours[i]); |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | |
| 186 | /** |
| 187 | * @brief Assure order of candidate corners is clockwise direction |
| 188 | */ |
| 189 | static void _reorderCandidatesCorners(vector<vector<Point2f> > &candidates) { |
| 190 | |
| 191 | for(unsigned int i = 0; i < candidates.size(); i++) { |
| 192 | double dx1 = candidates[i][1].x - candidates[i][0].x; |
| 193 | double dy1 = candidates[i][1].y - candidates[i][0].y; |
| 194 | double dx2 = candidates[i][2].x - candidates[i][0].x; |
| 195 | double dy2 = candidates[i][2].y - candidates[i][0].y; |
| 196 | double crossProduct = (dx1 * dy2) - (dy1 * dx2); |
| 197 | |
| 198 | if(crossProduct < 0.0) { // not clockwise direction |
| 199 | swap(a&: candidates[i][1], b&: candidates[i][3]); |
| 200 | } |
| 201 | } |
| 202 | } |
| 203 | |
| 204 | static float getAverageModuleSize(const vector<Point2f>& markerCorners, int markerSize, int markerBorderBits) { |
| 205 | float averageArucoModuleSize = 0.f; |
| 206 | for (size_t i = 0ull; i < 4ull; i++) { |
| 207 | averageArucoModuleSize += sqrt(x: normL2Sqr<float>(pt: Point2f(markerCorners[i] - markerCorners[(i+1ull) % 4ull]))); |
| 208 | } |
| 209 | int numModules = markerSize + markerBorderBits * 2; |
| 210 | averageArucoModuleSize /= ((float)markerCorners.size()*numModules); |
| 211 | return averageArucoModuleSize; |
| 212 | } |
| 213 | |
| 214 | static bool checkMarker1InMarker2(const vector<Point2f>& marker1, const vector<Point2f>& marker2) { |
| 215 | return pointPolygonTest(contour: marker2, pt: marker1[0], measureDist: false) >= 0 && pointPolygonTest(contour: marker2, pt: marker1[1], measureDist: false) >= 0 && |
| 216 | pointPolygonTest(contour: marker2, pt: marker1[2], measureDist: false) >= 0 && pointPolygonTest(contour: marker2, pt: marker1[3], measureDist: false) >= 0; |
| 217 | } |
| 218 | |
| 219 | struct MarkerCandidate { |
| 220 | vector<Point2f> corners; |
| 221 | vector<Point> contour; |
| 222 | float perimeter = 0.f; |
| 223 | }; |
| 224 | |
| 225 | struct MarkerCandidateTree : MarkerCandidate{ |
| 226 | int parent = -1; |
| 227 | int depth = 0; |
| 228 | vector<MarkerCandidate> closeContours; |
| 229 | |
| 230 | MarkerCandidateTree() {} |
| 231 | |
| 232 | MarkerCandidateTree(vector<Point2f>&& corners_, vector<Point>&& contour_) { |
| 233 | corners = std::move(corners_); |
| 234 | contour = std::move(contour_); |
| 235 | perimeter = 0.f; |
| 236 | for (size_t i = 0ull; i < 4ull; i++) { |
| 237 | perimeter += sqrt(x: normL2Sqr<float>(pt: Point2f(corners[i] - corners[(i+1ull) % 4ull]))); |
| 238 | } |
| 239 | } |
| 240 | |
| 241 | bool operator<(const MarkerCandidateTree& m) const { |
| 242 | // sorting the contors in descending order |
| 243 | return perimeter > m.perimeter; |
| 244 | } |
| 245 | }; |
| 246 | |
| 247 | |
| 248 | // returns the average distance between the marker points |
| 249 | float static inline getAverageDistance(const std::vector<Point2f>& marker1, const std::vector<Point2f>& marker2) { |
| 250 | float minDistSq = std::numeric_limits<float>::max(); |
| 251 | // fc is the first corner considered on one of the markers, 4 combinations are possible |
| 252 | for(int fc = 0; fc < 4; fc++) { |
| 253 | float distSq = 0; |
| 254 | for(int c = 0; c < 4; c++) { |
| 255 | // modC is the corner considering first corner is fc |
| 256 | int modC = (c + fc) % 4; |
| 257 | distSq += normL2Sqr<float>(pt: marker1[modC] - marker2[c]); |
| 258 | } |
| 259 | distSq /= 4.f; |
| 260 | minDistSq = min(a: minDistSq, b: distSq); |
| 261 | } |
| 262 | return sqrt(x: minDistSq); |
| 263 | } |
| 264 | |
| 265 | /** |
| 266 | * @brief Initial steps on finding square candidates |
| 267 | */ |
| 268 | static void _detectInitialCandidates(const Mat &grey, vector<vector<Point2f> > &candidates, |
| 269 | vector<vector<Point> > &contours, |
| 270 | const DetectorParameters ¶ms) { |
| 271 | |
| 272 | CV_Assert(params.adaptiveThreshWinSizeMin >= 3 && params.adaptiveThreshWinSizeMax >= 3); |
| 273 | CV_Assert(params.adaptiveThreshWinSizeMax >= params.adaptiveThreshWinSizeMin); |
| 274 | CV_Assert(params.adaptiveThreshWinSizeStep > 0); |
| 275 | |
| 276 | // number of window sizes (scales) to apply adaptive thresholding |
| 277 | int nScales = (params.adaptiveThreshWinSizeMax - params.adaptiveThreshWinSizeMin) / |
| 278 | params.adaptiveThreshWinSizeStep + 1; |
| 279 | |
| 280 | vector<vector<vector<Point2f> > > candidatesArrays((size_t) nScales); |
| 281 | vector<vector<vector<Point> > > contoursArrays((size_t) nScales); |
| 282 | |
| 283 | ////for each value in the interval of thresholding window sizes |
| 284 | parallel_for_(range: Range(0, nScales), functor: [&](const Range& range) { |
| 285 | const int begin = range.start; |
| 286 | const int end = range.end; |
| 287 | |
| 288 | for (int i = begin; i < end; i++) { |
| 289 | int currScale = params.adaptiveThreshWinSizeMin + i * params.adaptiveThreshWinSizeStep; |
| 290 | // threshold |
| 291 | Mat thresh; |
| 292 | _threshold(in: grey, out: thresh, winSize: currScale, constant: params.adaptiveThreshConstant); |
| 293 | |
| 294 | // detect rectangles |
| 295 | _findMarkerContours(in: thresh, candidates&: candidatesArrays[i], contoursOut&: contoursArrays[i], |
| 296 | minPerimeterRate: params.minMarkerPerimeterRate, maxPerimeterRate: params.maxMarkerPerimeterRate, |
| 297 | accuracyRate: params.polygonalApproxAccuracyRate, minCornerDistanceRate: params.minCornerDistanceRate, |
| 298 | minSize: params.minSideLengthCanonicalImg); |
| 299 | } |
| 300 | }); |
| 301 | // join candidates |
| 302 | for(int i = 0; i < nScales; i++) { |
| 303 | for(unsigned int j = 0; j < candidatesArrays[i].size(); j++) { |
| 304 | candidates.push_back(x: candidatesArrays[i][j]); |
| 305 | contours.push_back(x: contoursArrays[i][j]); |
| 306 | } |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | |
| 311 | /** |
| 312 | * @brief Given an input image and candidate corners, extract the bits of the candidate, including |
| 313 | * the border bits |
| 314 | */ |
| 315 | static Mat (InputArray _image, const vector<Point2f>& corners, int markerSize, |
| 316 | int markerBorderBits, int cellSize, double cellMarginRate, double minStdDevOtsu) { |
| 317 | CV_Assert(_image.getMat().channels() == 1); |
| 318 | CV_Assert(corners.size() == 4ull); |
| 319 | CV_Assert(markerBorderBits > 0 && cellSize > 0 && cellMarginRate >= 0 && cellMarginRate <= 1); |
| 320 | CV_Assert(minStdDevOtsu >= 0); |
| 321 | |
| 322 | // number of bits in the marker |
| 323 | int markerSizeWithBorders = markerSize + 2 * markerBorderBits; |
| 324 | int cellMarginPixels = int(cellMarginRate * cellSize); |
| 325 | |
| 326 | Mat resultImg; // marker image after removing perspective |
| 327 | int resultImgSize = markerSizeWithBorders * cellSize; |
| 328 | Mat resultImgCorners(4, 1, CV_32FC2); |
| 329 | resultImgCorners.ptr<Point2f>(y: 0)[0] = Point2f(0, 0); |
| 330 | resultImgCorners.ptr<Point2f>(y: 0)[1] = Point2f((float)resultImgSize - 1, 0); |
| 331 | resultImgCorners.ptr<Point2f>(y: 0)[2] = |
| 332 | Point2f((float)resultImgSize - 1, (float)resultImgSize - 1); |
| 333 | resultImgCorners.ptr<Point2f>(y: 0)[3] = Point2f(0, (float)resultImgSize - 1); |
| 334 | |
| 335 | // remove perspective |
| 336 | Mat transformation = getPerspectiveTransform(src: corners, dst: resultImgCorners); |
| 337 | warpPerspective(src: _image, dst: resultImg, M: transformation, dsize: Size(resultImgSize, resultImgSize), |
| 338 | flags: INTER_NEAREST); |
| 339 | |
| 340 | // output image containing the bits |
| 341 | Mat bits(markerSizeWithBorders, markerSizeWithBorders, CV_8UC1, Scalar::all(v0: 0)); |
| 342 | |
| 343 | // check if standard deviation is enough to apply Otsu |
| 344 | // if not enough, it probably means all bits are the same color (black or white) |
| 345 | Mat mean, stddev; |
| 346 | // Remove some border just to avoid border noise from perspective transformation |
| 347 | Mat innerRegion = resultImg.colRange(startcol: cellSize / 2, endcol: resultImg.cols - cellSize / 2) |
| 348 | .rowRange(startrow: cellSize / 2, endrow: resultImg.rows - cellSize / 2); |
| 349 | meanStdDev(src: innerRegion, mean, stddev); |
| 350 | if(stddev.ptr< double >(y: 0)[0] < minStdDevOtsu) { |
| 351 | // all black or all white, depending on mean value |
| 352 | if(mean.ptr< double >(y: 0)[0] > 127) |
| 353 | bits.setTo(value: 1); |
| 354 | else |
| 355 | bits.setTo(value: 0); |
| 356 | return bits; |
| 357 | } |
| 358 | |
| 359 | // now extract code, first threshold using Otsu |
| 360 | threshold(src: resultImg, dst: resultImg, thresh: 125, maxval: 255, type: THRESH_BINARY | THRESH_OTSU); |
| 361 | |
| 362 | // for each cell |
| 363 | for(int y = 0; y < markerSizeWithBorders; y++) { |
| 364 | for(int x = 0; x < markerSizeWithBorders; x++) { |
| 365 | int Xstart = x * (cellSize) + cellMarginPixels; |
| 366 | int Ystart = y * (cellSize) + cellMarginPixels; |
| 367 | Mat square = resultImg(Rect(Xstart, Ystart, cellSize - 2 * cellMarginPixels, |
| 368 | cellSize - 2 * cellMarginPixels)); |
| 369 | // count white pixels on each cell to assign its value |
| 370 | size_t nZ = (size_t) countNonZero(src: square); |
| 371 | if(nZ > square.total() / 2) bits.at<unsigned char>(i0: y, i1: x) = 1; |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | return bits; |
| 376 | } |
| 377 | |
| 378 | |
| 379 | |
| 380 | /** |
| 381 | * @brief Return number of erroneous bits in border, i.e. number of white bits in border. |
| 382 | */ |
| 383 | static int _getBorderErrors(const Mat &bits, int markerSize, int borderSize) { |
| 384 | |
| 385 | int sizeWithBorders = markerSize + 2 * borderSize; |
| 386 | |
| 387 | CV_Assert(markerSize > 0 && bits.cols == sizeWithBorders && bits.rows == sizeWithBorders); |
| 388 | |
| 389 | int totalErrors = 0; |
| 390 | for(int y = 0; y < sizeWithBorders; y++) { |
| 391 | for(int k = 0; k < borderSize; k++) { |
| 392 | if(bits.ptr<unsigned char>(y)[k] != 0) totalErrors++; |
| 393 | if(bits.ptr<unsigned char>(y)[sizeWithBorders - 1 - k] != 0) totalErrors++; |
| 394 | } |
| 395 | } |
| 396 | for(int x = borderSize; x < sizeWithBorders - borderSize; x++) { |
| 397 | for(int k = 0; k < borderSize; k++) { |
| 398 | if(bits.ptr<unsigned char>(y: k)[x] != 0) totalErrors++; |
| 399 | if(bits.ptr<unsigned char>(y: sizeWithBorders - 1 - k)[x] != 0) totalErrors++; |
| 400 | } |
| 401 | } |
| 402 | return totalErrors; |
| 403 | } |
| 404 | |
| 405 | |
| 406 | /** |
| 407 | * @brief Tries to identify one candidate given the dictionary |
| 408 | * @return candidate typ. zero if the candidate is not valid, |
| 409 | * 1 if the candidate is a black candidate (default candidate) |
| 410 | * 2 if the candidate is a white candidate |
| 411 | */ |
| 412 | static uint8_t _identifyOneCandidate(const Dictionary& dictionary, const Mat& _image, |
| 413 | const vector<Point2f>& _corners, int& idx, |
| 414 | const DetectorParameters& params, int& rotation, |
| 415 | const float scale = 1.f) { |
| 416 | CV_DbgAssert(params.markerBorderBits > 0); |
| 417 | uint8_t typ=1; |
| 418 | // get bits |
| 419 | // scale corners to the correct size to search on the corresponding image pyramid |
| 420 | vector<Point2f> scaled_corners(4); |
| 421 | for (int i = 0; i < 4; ++i) { |
| 422 | scaled_corners[i].x = _corners[i].x * scale; |
| 423 | scaled_corners[i].y = _corners[i].y * scale; |
| 424 | } |
| 425 | |
| 426 | Mat candidateBits = |
| 427 | _extractBits(_image, corners: scaled_corners, markerSize: dictionary.markerSize, markerBorderBits: params.markerBorderBits, |
| 428 | cellSize: params.perspectiveRemovePixelPerCell, |
| 429 | cellMarginRate: params.perspectiveRemoveIgnoredMarginPerCell, minStdDevOtsu: params.minOtsuStdDev); |
| 430 | |
| 431 | // analyze border bits |
| 432 | int maximumErrorsInBorder = |
| 433 | int(dictionary.markerSize * dictionary.markerSize * params.maxErroneousBitsInBorderRate); |
| 434 | int borderErrors = |
| 435 | _getBorderErrors(bits: candidateBits, markerSize: dictionary.markerSize, borderSize: params.markerBorderBits); |
| 436 | |
| 437 | // check if it is a white marker |
| 438 | if(params.detectInvertedMarker){ |
| 439 | // to get from 255 to 1 |
| 440 | Mat invertedImg = ~candidateBits-254; |
| 441 | int invBError = _getBorderErrors(bits: invertedImg, markerSize: dictionary.markerSize, borderSize: params.markerBorderBits); |
| 442 | // white marker |
| 443 | if(invBError<borderErrors){ |
| 444 | borderErrors = invBError; |
| 445 | invertedImg.copyTo(m: candidateBits); |
| 446 | typ=2; |
| 447 | } |
| 448 | } |
| 449 | if(borderErrors > maximumErrorsInBorder) return 0; // border is wrong |
| 450 | |
| 451 | // take only inner bits |
| 452 | Mat onlyBits = |
| 453 | candidateBits.rowRange(startrow: params.markerBorderBits, |
| 454 | endrow: candidateBits.rows - params.markerBorderBits) |
| 455 | .colRange(startcol: params.markerBorderBits, endcol: candidateBits.cols - params.markerBorderBits); |
| 456 | |
| 457 | // try to indentify the marker |
| 458 | if(!dictionary.identify(onlyBits, idx, rotation, maxCorrectionRate: params.errorCorrectionRate)) |
| 459 | return 0; |
| 460 | |
| 461 | return typ; |
| 462 | } |
| 463 | |
| 464 | /** |
| 465 | * @brief rotate the initial corner to get to the right position |
| 466 | */ |
| 467 | static void correctCornerPosition(vector<Point2f>& _candidate, int rotate){ |
| 468 | std::rotate(first: _candidate.begin(), middle: _candidate.begin() + 4 - rotate, last: _candidate.end()); |
| 469 | } |
| 470 | |
| 471 | static size_t _findOptPyrImageForCanonicalImg( |
| 472 | const vector<Mat>& img_pyr, |
| 473 | const int scaled_width, |
| 474 | const int cur_perimeter, |
| 475 | const int min_perimeter) { |
| 476 | CV_Assert(scaled_width > 0); |
| 477 | size_t optLevel = 0; |
| 478 | float dist = std::numeric_limits<float>::max(); |
| 479 | for (size_t i = 0; i < img_pyr.size(); ++i) { |
| 480 | const float scale = img_pyr[i].cols / static_cast<float>(scaled_width); |
| 481 | const float perimeter_scaled = cur_perimeter * scale; |
| 482 | // instead of std::abs() favor the larger pyramid level by checking if the distance is postive |
| 483 | // will slow down the algorithm but find more corners in the end |
| 484 | const float new_dist = perimeter_scaled - min_perimeter; |
| 485 | if (new_dist < dist && new_dist > 0.f) { |
| 486 | dist = new_dist; |
| 487 | optLevel = i; |
| 488 | } |
| 489 | } |
| 490 | return optLevel; |
| 491 | } |
| 492 | |
| 493 | |
| 494 | /** |
| 495 | * Line fitting A * B = C :: Called from function refineCandidateLines |
| 496 | * @param nContours contour-container |
| 497 | */ |
| 498 | static Point3f _interpolate2Dline(const vector<Point2f>& nContours){ |
| 499 | CV_Assert(nContours.size() >= 2); |
| 500 | float minX, minY, maxX, maxY; |
| 501 | minX = maxX = nContours[0].x; |
| 502 | minY = maxY = nContours[0].y; |
| 503 | |
| 504 | for(unsigned int i = 0; i< nContours.size(); i++){ |
| 505 | minX = nContours[i].x < minX ? nContours[i].x : minX; |
| 506 | minY = nContours[i].y < minY ? nContours[i].y : minY; |
| 507 | maxX = nContours[i].x > maxX ? nContours[i].x : maxX; |
| 508 | maxY = nContours[i].y > maxY ? nContours[i].y : maxY; |
| 509 | } |
| 510 | |
| 511 | Mat A = Mat::ones(rows: (int)nContours.size(), cols: 2, CV_32F); // Coefficient Matrix (N x 2) |
| 512 | Mat B((int)nContours.size(), 1, CV_32F); // Variables Matrix (N x 1) |
| 513 | Mat C; // Constant |
| 514 | |
| 515 | if(maxX - minX > maxY - minY){ |
| 516 | for(unsigned int i =0; i < nContours.size(); i++){ |
| 517 | A.at<float>(i0: i,i1: 0)= nContours[i].x; |
| 518 | B.at<float>(i0: i,i1: 0)= nContours[i].y; |
| 519 | } |
| 520 | |
| 521 | solve(src1: A, src2: B, dst: C, flags: DECOMP_NORMAL); |
| 522 | |
| 523 | return Point3f(C.at<float>(i0: 0, i1: 0), -1., C.at<float>(i0: 1, i1: 0)); |
| 524 | } |
| 525 | else{ |
| 526 | for(unsigned int i =0; i < nContours.size(); i++){ |
| 527 | A.at<float>(i0: i,i1: 0)= nContours[i].y; |
| 528 | B.at<float>(i0: i,i1: 0)= nContours[i].x; |
| 529 | } |
| 530 | |
| 531 | solve(src1: A, src2: B, dst: C, flags: DECOMP_NORMAL); |
| 532 | |
| 533 | return Point3f(-1., C.at<float>(i0: 0, i1: 0), C.at<float>(i0: 1, i1: 0)); |
| 534 | } |
| 535 | |
| 536 | } |
| 537 | |
| 538 | /** |
| 539 | * Find the Point where the lines crosses :: Called from function refineCandidateLines |
| 540 | * @param nLine1 |
| 541 | * @param nLine2 |
| 542 | * @return Crossed Point |
| 543 | */ |
| 544 | static Point2f _getCrossPoint(Point3f nLine1, Point3f nLine2){ |
| 545 | Matx22f A(nLine1.x, nLine1.y, nLine2.x, nLine2.y); |
| 546 | Vec2f B(-nLine1.z, -nLine2.z); |
| 547 | return Vec2f(A.solve(rhs: B).val); |
| 548 | } |
| 549 | |
| 550 | /** |
| 551 | * Refine Corners using the contour vector :: Called from function detectMarkers |
| 552 | * @param nContours contour-container |
| 553 | * @param nCorners candidate Corners |
| 554 | */ |
| 555 | static void _refineCandidateLines(vector<Point>& nContours, vector<Point2f>& nCorners){ |
| 556 | vector<Point2f> contour2f(nContours.begin(), nContours.end()); |
| 557 | /* 5 groups :: to group the edges |
| 558 | * 4 - classified by its corner |
| 559 | * extra group - (temporary) if contours do not begin with a corner |
| 560 | */ |
| 561 | vector<Point2f> cntPts[5]; |
| 562 | int cornerIndex[4]={-1}; |
| 563 | int group=4; |
| 564 | |
| 565 | for ( unsigned int i =0; i < nContours.size(); i++ ) { |
| 566 | for(unsigned int j=0; j<4; j++){ |
| 567 | if ( nCorners[j] == contour2f[i] ){ |
| 568 | cornerIndex[j] = i; |
| 569 | group=j; |
| 570 | } |
| 571 | } |
| 572 | cntPts[group].push_back(x: contour2f[i]); |
| 573 | } |
| 574 | for (int i = 0; i < 4; i++) |
| 575 | { |
| 576 | CV_Assert(cornerIndex[i] != -1); |
| 577 | } |
| 578 | // saves extra group into corresponding |
| 579 | if( !cntPts[4].empty() ){ |
| 580 | for( unsigned int i=0; i < cntPts[4].size() ; i++ ) |
| 581 | cntPts[group].push_back(x: cntPts[4].at(n: i)); |
| 582 | cntPts[4].clear(); |
| 583 | } |
| 584 | |
| 585 | //Evaluate contour direction :: using the position of the detected corners |
| 586 | int inc=1; |
| 587 | |
| 588 | inc = ( (cornerIndex[0] > cornerIndex[1]) && (cornerIndex[3] > cornerIndex[0]) ) ? -1:inc; |
| 589 | inc = ( (cornerIndex[2] > cornerIndex[3]) && (cornerIndex[1] > cornerIndex[2]) ) ? -1:inc; |
| 590 | |
| 591 | // calculate the line :: who passes through the grouped points |
| 592 | Point3f lines[4]; |
| 593 | for(int i=0; i<4; i++){ |
| 594 | lines[i]=_interpolate2Dline(nContours: cntPts[i]); |
| 595 | } |
| 596 | |
| 597 | /* |
| 598 | * calculate the corner :: where the lines crosses to each other |
| 599 | * clockwise direction no clockwise direction |
| 600 | * 0 1 |
| 601 | * .---. 1 .---. 2 |
| 602 | * | | | | |
| 603 | * 3 .___. 0 .___. |
| 604 | * 2 3 |
| 605 | */ |
| 606 | for(int i=0; i < 4; i++){ |
| 607 | if(inc<0) |
| 608 | nCorners[i] = _getCrossPoint(nLine1: lines[ i ], nLine2: lines[ (i+1)%4 ]); // 01 12 23 30 |
| 609 | else |
| 610 | nCorners[i] = _getCrossPoint(nLine1: lines[ i ], nLine2: lines[ (i+3)%4 ]); // 30 01 12 23 |
| 611 | } |
| 612 | } |
| 613 | |
| 614 | static inline void findCornerInPyrImage(const float scale_init, const int closest_pyr_image_idx, |
| 615 | const vector<Mat>& grey_pyramid, Mat corners, |
| 616 | const DetectorParameters& params) { |
| 617 | // scale them to the closest pyramid level |
| 618 | if (scale_init != 1.f) |
| 619 | corners *= scale_init; // scale_init * scale_pyr |
| 620 | for (int idx = closest_pyr_image_idx - 1; idx >= 0; --idx) { |
| 621 | // scale them to new pyramid level |
| 622 | corners *= 2.f; // *= scale_pyr; |
| 623 | // use larger win size for larger images |
| 624 | const int subpix_win_size = std::max(a: grey_pyramid[idx].cols, b: grey_pyramid[idx].rows) > 1080 ? 5 : 3; |
| 625 | cornerSubPix(image: grey_pyramid[idx], corners, |
| 626 | winSize: Size(subpix_win_size, subpix_win_size), |
| 627 | zeroZone: Size(-1, -1), |
| 628 | criteria: TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS, |
| 629 | params.cornerRefinementMaxIterations, |
| 630 | params.cornerRefinementMinAccuracy)); |
| 631 | } |
| 632 | } |
| 633 | |
| 634 | enum class DictionaryMode { |
| 635 | Single, |
| 636 | Multi |
| 637 | }; |
| 638 | |
| 639 | struct ArucoDetector::ArucoDetectorImpl { |
| 640 | /// dictionaries indicates the types of markers that will be searched |
| 641 | vector<Dictionary> dictionaries; |
| 642 | |
| 643 | /// marker detection parameters, check DetectorParameters docs to see available settings |
| 644 | DetectorParameters detectorParams; |
| 645 | |
| 646 | /// marker refine parameters |
| 647 | RefineParameters refineParams; |
| 648 | ArucoDetectorImpl() {} |
| 649 | |
| 650 | ArucoDetectorImpl(const vector<Dictionary>&_dictionaries, const DetectorParameters &_detectorParams, |
| 651 | const RefineParameters& _refineParams): dictionaries(_dictionaries), |
| 652 | detectorParams(_detectorParams), refineParams(_refineParams) { |
| 653 | CV_Assert(!dictionaries.empty()); |
| 654 | } |
| 655 | |
| 656 | /* |
| 657 | * @brief Detect markers either using multiple or just first dictionary |
| 658 | */ |
| 659 | void detectMarkers(InputArray _image, OutputArrayOfArrays _corners, OutputArray _ids, |
| 660 | OutputArrayOfArrays _rejectedImgPoints, OutputArray _dictIndices, DictionaryMode dictMode) { |
| 661 | CV_Assert(!_image.empty()); |
| 662 | |
| 663 | CV_Assert(detectorParams.markerBorderBits > 0); |
| 664 | // check that the parameters are set correctly if Aruco3 is used |
| 665 | CV_Assert(!(detectorParams.useAruco3Detection == true && |
| 666 | detectorParams.minSideLengthCanonicalImg == 0 && |
| 667 | detectorParams.minMarkerLengthRatioOriginalImg == 0.0)); |
| 668 | |
| 669 | Mat grey; |
| 670 | _convertToGrey(in: _image, out&: grey); |
| 671 | |
| 672 | // Aruco3 functionality is the extension of Aruco. |
| 673 | // The description can be found in: |
| 674 | // [1] Speeded up detection of squared fiducial markers, 2018, FJ Romera-Ramirez et al. |
| 675 | // if Aruco3 functionality if not wanted |
| 676 | // change some parameters to be sure to turn it off |
| 677 | if (!detectorParams.useAruco3Detection) { |
| 678 | detectorParams.minMarkerLengthRatioOriginalImg = 0.0; |
| 679 | detectorParams.minSideLengthCanonicalImg = 0; |
| 680 | } |
| 681 | else { |
| 682 | // always turn on corner refinement in case of Aruco3, due to upsampling |
| 683 | detectorParams.cornerRefinementMethod = (int)CORNER_REFINE_SUBPIX; |
| 684 | // only CORNER_REFINE_SUBPIX implement correctly for useAruco3Detection |
| 685 | // Todo: update other CORNER_REFINE methods |
| 686 | } |
| 687 | |
| 688 | /// Step 0: equation (2) from paper [1] |
| 689 | const float fxfy = (!detectorParams.useAruco3Detection ? 1.f : detectorParams.minSideLengthCanonicalImg / |
| 690 | (detectorParams.minSideLengthCanonicalImg + std::max(a: grey.cols, b: grey.rows)* |
| 691 | detectorParams.minMarkerLengthRatioOriginalImg)); |
| 692 | |
| 693 | /// Step 1: create image pyramid. Section 3.4. in [1] |
| 694 | vector<Mat> grey_pyramid; |
| 695 | int closest_pyr_image_idx = 0, num_levels = 0; |
| 696 | //// Step 1.1: resize image with equation (1) from paper [1] |
| 697 | if (detectorParams.useAruco3Detection) { |
| 698 | const float scale_pyr = 2.f; |
| 699 | const float img_area = static_cast<float>(grey.rows*grey.cols); |
| 700 | const float min_area_marker = static_cast<float>(detectorParams.minSideLengthCanonicalImg* |
| 701 | detectorParams.minSideLengthCanonicalImg); |
| 702 | // find max level |
| 703 | num_levels = static_cast<int>(log2(x: img_area / min_area_marker)/scale_pyr); |
| 704 | // the closest pyramid image to the downsampled segmentation image |
| 705 | // will later be used as start index for corner upsampling |
| 706 | const float scale_img_area = img_area * fxfy * fxfy; |
| 707 | closest_pyr_image_idx = cvRound(value: log2(x: img_area / scale_img_area)/scale_pyr); |
| 708 | } |
| 709 | buildPyramid(src: grey, dst: grey_pyramid, maxlevel: num_levels); |
| 710 | |
| 711 | // resize to segmentation image |
| 712 | // in this reduces size the contours will be detected |
| 713 | if (fxfy != 1.f) |
| 714 | resize(src: grey, dst: grey, dsize: Size(cvRound(value: fxfy * grey.cols), cvRound(value: fxfy * grey.rows))); |
| 715 | |
| 716 | /// STEP 2: Detect marker candidates |
| 717 | vector<vector<Point2f> > candidates; |
| 718 | vector<vector<Point> > contours; |
| 719 | vector<int> ids; |
| 720 | |
| 721 | /// STEP 2.a Detect marker candidates :: using AprilTag |
| 722 | if(detectorParams.cornerRefinementMethod == (int)CORNER_REFINE_APRILTAG){ |
| 723 | _apriltag(im_orig: grey, params: detectorParams, candidates, contours); |
| 724 | } |
| 725 | /// STEP 2.b Detect marker candidates :: traditional way |
| 726 | else { |
| 727 | detectCandidates(grey, candidates, contours); |
| 728 | } |
| 729 | |
| 730 | /// STEP 2.c FILTER OUT NEAR CANDIDATE PAIRS |
| 731 | vector<int> dictIndices; |
| 732 | vector<vector<Point2f>> rejectedImgPoints; |
| 733 | if (DictionaryMode::Single == dictMode) { |
| 734 | Dictionary& dictionary = dictionaries.at(n: 0); |
| 735 | auto selectedCandidates = filterTooCloseCandidates(imageSize: grey.size(), candidates, contours, markerSize: dictionary.markerSize); |
| 736 | candidates.clear(); |
| 737 | contours.clear(); |
| 738 | |
| 739 | /// STEP 2: Check candidate codification (identify markers) |
| 740 | identifyCandidates(grey, image_pyr: grey_pyramid, selectedContours&: selectedCandidates, accepted&: candidates, contours, |
| 741 | ids, currentDictionary: dictionary, rejected&: rejectedImgPoints); |
| 742 | |
| 743 | /// STEP 3: Corner refinement :: use corner subpix |
| 744 | if (detectorParams.cornerRefinementMethod == (int)CORNER_REFINE_SUBPIX) { |
| 745 | performCornerSubpixRefinement(grey, grey_pyramid, closest_pyr_image_idx, candidates, dictionary); |
| 746 | } |
| 747 | } else if (DictionaryMode::Multi == dictMode) { |
| 748 | map<int, vector<MarkerCandidateTree>> candidatesPerDictionarySize; |
| 749 | for (const Dictionary& dictionary : dictionaries) { |
| 750 | candidatesPerDictionarySize.emplace(args: dictionary.markerSize, args: vector<MarkerCandidateTree>()); |
| 751 | } |
| 752 | |
| 753 | // create candidate trees for each dictionary size |
| 754 | for (auto& candidatesTreeEntry : candidatesPerDictionarySize) { |
| 755 | // copy candidates |
| 756 | vector<vector<Point2f>> candidatesCopy = candidates; |
| 757 | vector<vector<Point> > contoursCopy = contours; |
| 758 | candidatesTreeEntry.second = filterTooCloseCandidates(imageSize: grey.size(), candidates&: candidatesCopy, contours&: contoursCopy, markerSize: candidatesTreeEntry.first); |
| 759 | } |
| 760 | candidates.clear(); |
| 761 | contours.clear(); |
| 762 | |
| 763 | /// STEP 2: Check candidate codification (identify markers) |
| 764 | int dictIndex = 0; |
| 765 | for (const Dictionary& currentDictionary : dictionaries) { |
| 766 | // temporary variable to store the current candidates |
| 767 | vector<vector<Point2f>> currentCandidates; |
| 768 | identifyCandidates(grey, image_pyr: grey_pyramid, selectedContours&: candidatesPerDictionarySize.at(k: currentDictionary.markerSize), accepted&: currentCandidates, contours, |
| 769 | ids, currentDictionary, rejected&: rejectedImgPoints); |
| 770 | if (_dictIndices.needed()) { |
| 771 | dictIndices.insert(position: dictIndices.end(), n: currentCandidates.size(), x: dictIndex); |
| 772 | } |
| 773 | |
| 774 | /// STEP 3: Corner refinement :: use corner subpix |
| 775 | if (detectorParams.cornerRefinementMethod == (int)CORNER_REFINE_SUBPIX) { |
| 776 | performCornerSubpixRefinement(grey, grey_pyramid, closest_pyr_image_idx, candidates: currentCandidates, dictionary: currentDictionary); |
| 777 | } |
| 778 | candidates.insert(position: candidates.end(), first: currentCandidates.begin(), last: currentCandidates.end()); |
| 779 | dictIndex++; |
| 780 | } |
| 781 | |
| 782 | // Clean up rejectedImgPoints by comparing to itself and all candidates |
| 783 | const float epsilon = 0.000001f; |
| 784 | auto compareCandidates = [epsilon](vector<Point2f> a, vector<Point2f> b) { |
| 785 | for (int i = 0; i < 4; i++) { |
| 786 | if (std::abs(x: a[i].x - b[i].x) > epsilon || std::abs(x: a[i].y - b[i].y) > epsilon) { |
| 787 | return false; |
| 788 | } |
| 789 | } |
| 790 | return true; |
| 791 | }; |
| 792 | std::sort(first: rejectedImgPoints.begin(), last: rejectedImgPoints.end(), comp: [](const vector<Point2f>& a, const vector<Point2f>&b){ |
| 793 | float avgX = (a[0].x + a[1].x + a[2].x + a[3].x)*.25f; |
| 794 | float avgY = (a[0].y + a[1].y + a[2].y + a[3].y)*.25f; |
| 795 | float aDist = avgX*avgX + avgY*avgY; |
| 796 | avgX = (b[0].x + b[1].x + b[2].x + b[3].x)*.25f; |
| 797 | avgY = (b[0].y + b[1].y + b[2].y + b[3].y)*.25f; |
| 798 | float bDist = avgX*avgX + avgY*avgY; |
| 799 | return aDist < bDist; |
| 800 | }); |
| 801 | auto last = std::unique(first: rejectedImgPoints.begin(), last: rejectedImgPoints.end(), binary_pred: compareCandidates); |
| 802 | rejectedImgPoints.erase(first: last, last: rejectedImgPoints.end()); |
| 803 | |
| 804 | for (auto it = rejectedImgPoints.begin(); it != rejectedImgPoints.end();) { |
| 805 | bool erased = false; |
| 806 | for (const auto& candidate : candidates) { |
| 807 | if (compareCandidates(candidate, *it)) { |
| 808 | it = rejectedImgPoints.erase(position: it); |
| 809 | erased = true; |
| 810 | break; |
| 811 | } |
| 812 | } |
| 813 | if (!erased) { |
| 814 | it++; |
| 815 | } |
| 816 | } |
| 817 | } |
| 818 | |
| 819 | /// STEP 3, Optional : Corner refinement :: use contour container |
| 820 | if (detectorParams.cornerRefinementMethod == (int)CORNER_REFINE_CONTOUR){ |
| 821 | |
| 822 | if (!ids.empty()) { |
| 823 | |
| 824 | // do corner refinement using the contours for each detected markers |
| 825 | parallel_for_(range: Range(0, (int)candidates.size()), functor: [&](const Range& range) { |
| 826 | for (int i = range.start; i < range.end; i++) { |
| 827 | _refineCandidateLines(nContours&: contours[i], nCorners&: candidates[i]); |
| 828 | } |
| 829 | }); |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | if (detectorParams.cornerRefinementMethod != (int)CORNER_REFINE_SUBPIX && fxfy != 1.f) { |
| 834 | // only CORNER_REFINE_SUBPIX implement correctly for useAruco3Detection |
| 835 | // Todo: update other CORNER_REFINE methods |
| 836 | |
| 837 | // scale to orignal size, this however will lead to inaccurate detections! |
| 838 | for (auto &vecPoints : candidates) |
| 839 | for (auto &point : vecPoints) |
| 840 | point *= 1.f/fxfy; |
| 841 | } |
| 842 | |
| 843 | // copy to output arrays |
| 844 | _copyVector2Output(vec&: candidates, out: _corners); |
| 845 | Mat(ids).copyTo(m: _ids); |
| 846 | if(_rejectedImgPoints.needed()) { |
| 847 | _copyVector2Output(vec&: rejectedImgPoints, out: _rejectedImgPoints); |
| 848 | } |
| 849 | if (_dictIndices.needed()) { |
| 850 | Mat(dictIndices).copyTo(m: _dictIndices); |
| 851 | } |
| 852 | } |
| 853 | |
| 854 | /** |
| 855 | * @brief Detect square candidates in the input image |
| 856 | */ |
| 857 | void detectCandidates(const Mat& grey, vector<vector<Point2f> >& candidates, vector<vector<Point> >& contours) { |
| 858 | /// 1. DETECT FIRST SET OF CANDIDATES |
| 859 | _detectInitialCandidates(grey, candidates, contours, params: detectorParams); |
| 860 | /// 2. SORT CORNERS |
| 861 | _reorderCandidatesCorners(candidates); |
| 862 | } |
| 863 | |
| 864 | /** |
| 865 | * @brief FILTER OUT NEAR CANDIDATES PAIRS AND TOO NEAR CANDIDATES TO IMAGE BORDER |
| 866 | * |
| 867 | * save the outer/inner border (i.e. potential candidates) to vector<MarkerCandidateTree>, |
| 868 | * clear candidates and contours |
| 869 | */ |
| 870 | vector<MarkerCandidateTree> |
| 871 | filterTooCloseCandidates(const Size &imageSize, vector<vector<Point2f> > &candidates, vector<vector<Point> > &contours, int markerSize) { |
| 872 | CV_Assert(detectorParams.minMarkerDistanceRate >= 0. && detectorParams.minDistanceToBorder >= 0); |
| 873 | vector<MarkerCandidateTree> candidateTree(candidates.size()); |
| 874 | for(size_t i = 0ull; i < candidates.size(); i++) { |
| 875 | candidateTree[i] = MarkerCandidateTree(std::move(candidates[i]), std::move(contours[i])); |
| 876 | } |
| 877 | |
| 878 | // sort candidates from big to small |
| 879 | std::stable_sort(first: candidateTree.begin(), last: candidateTree.end()); |
| 880 | // group index for each candidate |
| 881 | vector<int> groupId(candidateTree.size(), -1); |
| 882 | vector<vector<size_t> > groupedCandidates; |
| 883 | vector<bool> isSelectedContours(candidateTree.size(), true); |
| 884 | |
| 885 | for (size_t i = 0ull; i < candidateTree.size(); i++) { |
| 886 | for (size_t j = i + 1ull; j < candidateTree.size(); j++) { |
| 887 | float minDist = getAverageDistance(marker1: candidateTree[i].corners, marker2: candidateTree[j].corners); |
| 888 | // if mean distance is too low, group markers |
| 889 | // the distance between the points of two independent markers should be more than half the side of the marker |
| 890 | // half the side of the marker = (perimeter / 4) * 0.5 = perimeter * 0.125 |
| 891 | if(minDist < candidateTree[j].perimeter*(float)detectorParams.minMarkerDistanceRate) { |
| 892 | isSelectedContours[i] = false; |
| 893 | isSelectedContours[j] = false; |
| 894 | // i and j are not related to a group |
| 895 | if(groupId[i] < 0 && groupId[j] < 0){ |
| 896 | // mark candidates with their corresponding group number |
| 897 | groupId[i] = groupId[j] = (int)groupedCandidates.size(); |
| 898 | // create group |
| 899 | groupedCandidates.push_back(x: {i, j}); |
| 900 | } |
| 901 | // i is related to a group |
| 902 | else if(groupId[i] > -1 && groupId[j] == -1) { |
| 903 | int group = groupId[i]; |
| 904 | groupId[j] = group; |
| 905 | // add to group |
| 906 | groupedCandidates[group].push_back(x: j); |
| 907 | } |
| 908 | // j is related to a group |
| 909 | else if(groupId[j] > -1 && groupId[i] == -1) { |
| 910 | int group = groupId[j]; |
| 911 | groupId[i] = group; |
| 912 | // add to group |
| 913 | groupedCandidates[group].push_back(x: i); |
| 914 | } |
| 915 | } |
| 916 | } |
| 917 | // group of one candidate |
| 918 | if(isSelectedContours[i]) { |
| 919 | isSelectedContours[i] = false; |
| 920 | groupId[i] = (int)groupedCandidates.size(); |
| 921 | groupedCandidates.push_back(x: {i}); |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | for (vector<size_t>& grouped : groupedCandidates) { |
| 926 | if (detectorParams.detectInvertedMarker) // if detectInvertedMarker choose smallest contours |
| 927 | std::stable_sort(first: grouped.begin(), last: grouped.end(), comp: [](const size_t &a, const size_t &b) { |
| 928 | return a > b; |
| 929 | }); |
| 930 | else // if detectInvertedMarker==false choose largest contours |
| 931 | std::stable_sort(first: grouped.begin(), last: grouped.end()); |
| 932 | size_t currId = grouped[0]; |
| 933 | // check if it is too near to the image border |
| 934 | bool tooNearBorder = false; |
| 935 | for (const auto& corner : candidateTree[currId].corners) { |
| 936 | if (corner.x < detectorParams.minDistanceToBorder || |
| 937 | corner.y < detectorParams.minDistanceToBorder || |
| 938 | corner.x > imageSize.width - 1 - detectorParams.minDistanceToBorder || |
| 939 | corner.y > imageSize.height - 1 - detectorParams.minDistanceToBorder) { |
| 940 | tooNearBorder = true; |
| 941 | break; |
| 942 | } |
| 943 | } |
| 944 | if (tooNearBorder) { |
| 945 | continue; |
| 946 | } |
| 947 | isSelectedContours[currId] = true; |
| 948 | for (size_t i = 1ull; i < grouped.size(); i++) { |
| 949 | size_t id = grouped[i]; |
| 950 | float dist = getAverageDistance(marker1: candidateTree[id].corners, marker2: candidateTree[currId].corners); |
| 951 | float moduleSize = getAverageModuleSize(markerCorners: candidateTree[id].corners, markerSize, markerBorderBits: detectorParams.markerBorderBits); |
| 952 | if (dist > detectorParams.minGroupDistance*moduleSize) { |
| 953 | currId = id; |
| 954 | candidateTree[grouped[0]].closeContours.push_back(x: candidateTree[id]); |
| 955 | } |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | vector<MarkerCandidateTree> selectedCandidates; |
| 960 | selectedCandidates.reserve(n: groupedCandidates.size()); |
| 961 | for (size_t i = 0ull; i < candidateTree.size(); i++) { |
| 962 | if (isSelectedContours[i]) { |
| 963 | selectedCandidates.push_back(x: std::move(candidateTree[i])); |
| 964 | } |
| 965 | } |
| 966 | |
| 967 | // find hierarchy in the candidate tree |
| 968 | for (int i = (int)selectedCandidates.size()-1; i >= 0; i--) { |
| 969 | for (int j = i - 1; j >= 0; j--) { |
| 970 | if (checkMarker1InMarker2(marker1: selectedCandidates[i].corners, marker2: selectedCandidates[j].corners)) { |
| 971 | selectedCandidates[i].parent = j; |
| 972 | selectedCandidates[j].depth = max(a: selectedCandidates[j].depth, b: selectedCandidates[i].depth + 1); |
| 973 | break; |
| 974 | } |
| 975 | } |
| 976 | } |
| 977 | return selectedCandidates; |
| 978 | } |
| 979 | |
| 980 | /** |
| 981 | * @brief Identify square candidates according to a marker dictionary |
| 982 | */ |
| 983 | void identifyCandidates(const Mat& grey, const vector<Mat>& image_pyr, vector<MarkerCandidateTree>& selectedContours, |
| 984 | vector<vector<Point2f> >& accepted, vector<vector<Point> >& contours, |
| 985 | vector<int>& ids, const Dictionary& currentDictionary, vector<vector<Point2f>>& rejected) const { |
| 986 | size_t ncandidates = selectedContours.size(); |
| 987 | |
| 988 | vector<int> idsTmp(ncandidates, -1); |
| 989 | vector<int> rotated(ncandidates, 0); |
| 990 | vector<uint8_t> validCandidates(ncandidates, 0); |
| 991 | vector<uint8_t> was(ncandidates, false); |
| 992 | bool checkCloseContours = true; |
| 993 | |
| 994 | int maxDepth = 0; |
| 995 | for (size_t i = 0ull; i < selectedContours.size(); i++) |
| 996 | maxDepth = max(a: selectedContours[i].depth, b: maxDepth); |
| 997 | vector<vector<size_t>> depths(maxDepth+1); |
| 998 | for (size_t i = 0ull; i < selectedContours.size(); i++) { |
| 999 | depths[selectedContours[i].depth].push_back(x: i); |
| 1000 | } |
| 1001 | |
| 1002 | //// Analyze each of the candidates |
| 1003 | int depth = 0; |
| 1004 | size_t counter = 0; |
| 1005 | while (counter < ncandidates) { |
| 1006 | parallel_for_(range: Range(0, (int)depths[depth].size()), functor: [&](const Range& range) { |
| 1007 | const int begin = range.start; |
| 1008 | const int end = range.end; |
| 1009 | for (int i = begin; i < end; i++) { |
| 1010 | size_t v = depths[depth][i]; |
| 1011 | was[v] = true; |
| 1012 | Mat img = grey; |
| 1013 | // implements equation (4) |
| 1014 | if (detectorParams.useAruco3Detection) { |
| 1015 | const int minPerimeter = detectorParams.minSideLengthCanonicalImg * 4; |
| 1016 | const size_t nearestImgId = _findOptPyrImageForCanonicalImg(img_pyr: image_pyr, scaled_width: grey.cols, cur_perimeter: static_cast<int>(selectedContours[v].contour.size()), min_perimeter: minPerimeter); |
| 1017 | img = image_pyr[nearestImgId]; |
| 1018 | } |
| 1019 | const float scale = detectorParams.useAruco3Detection ? img.cols / static_cast<float>(grey.cols) : 1.f; |
| 1020 | |
| 1021 | validCandidates[v] = _identifyOneCandidate(dictionary: currentDictionary, image: img, corners: selectedContours[v].corners, idx&: idsTmp[v], params: detectorParams, rotation&: rotated[v], scale); |
| 1022 | |
| 1023 | if (validCandidates[v] == 0 && checkCloseContours) { |
| 1024 | for (const MarkerCandidate& closeMarkerCandidate: selectedContours[v].closeContours) { |
| 1025 | validCandidates[v] = _identifyOneCandidate(dictionary: currentDictionary, image: img, corners: closeMarkerCandidate.corners, idx&: idsTmp[v], params: detectorParams, rotation&: rotated[v], scale); |
| 1026 | if (validCandidates[v] > 0) { |
| 1027 | selectedContours[v].corners = closeMarkerCandidate.corners; |
| 1028 | selectedContours[v].contour = closeMarkerCandidate.contour; |
| 1029 | break; |
| 1030 | } |
| 1031 | } |
| 1032 | } |
| 1033 | } |
| 1034 | }); |
| 1035 | |
| 1036 | // visit the parent vertices of the detected markers to skip identify parent contours |
| 1037 | for(size_t v : depths[depth]) { |
| 1038 | if(validCandidates[v] > 0) { |
| 1039 | int parent = selectedContours[v].parent; |
| 1040 | while (parent != -1) { |
| 1041 | if (!was[parent]) { |
| 1042 | was[parent] = true; |
| 1043 | counter++; |
| 1044 | } |
| 1045 | parent = selectedContours[parent].parent; |
| 1046 | } |
| 1047 | } |
| 1048 | counter++; |
| 1049 | } |
| 1050 | depth++; |
| 1051 | } |
| 1052 | |
| 1053 | for (size_t i = 0ull; i < selectedContours.size(); i++) { |
| 1054 | if (validCandidates[i] > 0) { |
| 1055 | // shift corner positions to the correct rotation |
| 1056 | correctCornerPosition(candidate&: selectedContours[i].corners, rotate: rotated[i]); |
| 1057 | |
| 1058 | accepted.push_back(x: selectedContours[i].corners); |
| 1059 | contours.push_back(x: selectedContours[i].contour); |
| 1060 | ids.push_back(x: idsTmp[i]); |
| 1061 | } |
| 1062 | else { |
| 1063 | rejected.push_back(x: selectedContours[i].corners); |
| 1064 | } |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | void performCornerSubpixRefinement(const Mat& grey, const vector<Mat>& grey_pyramid, int closest_pyr_image_idx, const vector<vector<Point2f>>& candidates, const Dictionary& dictionary) const { |
| 1069 | CV_Assert(detectorParams.cornerRefinementWinSize > 0 && detectorParams.cornerRefinementMaxIterations > 0 && |
| 1070 | detectorParams.cornerRefinementMinAccuracy > 0); |
| 1071 | // Do subpixel estimation. In Aruco3 start on the lowest pyramid level and upscale the corners |
| 1072 | parallel_for_(range: Range(0, (int)candidates.size()), functor: [&](const Range& range) { |
| 1073 | const int begin = range.start; |
| 1074 | const int end = range.end; |
| 1075 | |
| 1076 | for (int i = begin; i < end; i++) { |
| 1077 | if (detectorParams.useAruco3Detection) { |
| 1078 | const float scale_init = (float) grey_pyramid[closest_pyr_image_idx].cols / grey.cols; |
| 1079 | findCornerInPyrImage(scale_init, closest_pyr_image_idx, grey_pyramid, corners: Mat(candidates[i]), params: detectorParams); |
| 1080 | } else { |
| 1081 | int cornerRefinementWinSize = std::max(a: 1, b: cvRound(value: detectorParams.relativeCornerRefinmentWinSize* |
| 1082 | getAverageModuleSize(markerCorners: candidates[i], markerSize: dictionary.markerSize, markerBorderBits: detectorParams.markerBorderBits))); |
| 1083 | cornerRefinementWinSize = min(a: cornerRefinementWinSize, b: detectorParams.cornerRefinementWinSize); |
| 1084 | cornerSubPix(image: grey, corners: Mat(candidates[i]), winSize: Size(cornerRefinementWinSize, cornerRefinementWinSize), zeroZone: Size(-1, -1), |
| 1085 | criteria: TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS, |
| 1086 | detectorParams.cornerRefinementMaxIterations, |
| 1087 | detectorParams.cornerRefinementMinAccuracy)); |
| 1088 | } |
| 1089 | } |
| 1090 | }); |
| 1091 | } |
| 1092 | }; |
| 1093 | |
| 1094 | ArucoDetector::ArucoDetector(const Dictionary &_dictionary, |
| 1095 | const DetectorParameters &_detectorParams, |
| 1096 | const RefineParameters& _refineParams) { |
| 1097 | arucoDetectorImpl = makePtr<ArucoDetectorImpl>(a1: vector<Dictionary>{_dictionary}, a1: _detectorParams, a1: _refineParams); |
| 1098 | } |
| 1099 | |
| 1100 | ArucoDetector::ArucoDetector(const vector<Dictionary> &_dictionaries, |
| 1101 | const DetectorParameters &_detectorParams, |
| 1102 | const RefineParameters& _refineParams) { |
| 1103 | arucoDetectorImpl = makePtr<ArucoDetectorImpl>(a1: _dictionaries, a1: _detectorParams, a1: _refineParams); |
| 1104 | } |
| 1105 | |
| 1106 | void ArucoDetector::detectMarkers(InputArray _image, OutputArrayOfArrays _corners, OutputArray _ids, |
| 1107 | OutputArrayOfArrays _rejectedImgPoints) const { |
| 1108 | arucoDetectorImpl->detectMarkers(_image, _corners, _ids, _rejectedImgPoints, dictIndices: noArray(), dictMode: DictionaryMode::Single); |
| 1109 | } |
| 1110 | |
| 1111 | void ArucoDetector::detectMarkersMultiDict(InputArray _image, OutputArrayOfArrays _corners, OutputArray _ids, |
| 1112 | OutputArrayOfArrays _rejectedImgPoints, OutputArray _dictIndices) const { |
| 1113 | arucoDetectorImpl->detectMarkers(_image, _corners, _ids, _rejectedImgPoints, _dictIndices, dictMode: DictionaryMode::Multi); |
| 1114 | } |
| 1115 | |
| 1116 | /** |
| 1117 | * Project board markers that are not included in the list of detected markers |
| 1118 | */ |
| 1119 | static inline void _projectUndetectedMarkers(const Board &board, InputOutputArrayOfArrays detectedCorners, |
| 1120 | InputOutputArray detectedIds, InputArray cameraMatrix, InputArray distCoeffs, |
| 1121 | vector<vector<Point2f> >& undetectedMarkersProjectedCorners, |
| 1122 | OutputArray undetectedMarkersIds) { |
| 1123 | Mat rvec, tvec; // first estimate board pose with the current avaible markers |
| 1124 | Mat objPoints, imgPoints; // object and image points for the solvePnP function |
| 1125 | // To refine corners of ArUco markers the function refineDetectedMarkers() find an aruco markers pose from 3D-2D point correspondences. |
| 1126 | // To find 3D-2D point correspondences uses matchImagePoints(). |
| 1127 | // The method matchImagePoints() works with ArUco corners (in Board/GridBoard cases) or with ChArUco corners (in CharucoBoard case). |
| 1128 | // To refine corners of ArUco markers we need work with ArUco corners only in all boards. |
| 1129 | // To call matchImagePoints() with ArUco corners for all boards we need to call matchImagePoints() from base class Board. |
| 1130 | // The method matchImagePoints() implemented in Pimpl and we need to create temp Board object to call the base method. |
| 1131 | Board(board.getObjPoints(), board.getDictionary(), board.getIds()).matchImagePoints(detectedCorners, detectedIds, objPoints, imgPoints); |
| 1132 | if (objPoints.total() < 4ull) // at least one marker from board so rvec and tvec are valid |
| 1133 | return; |
| 1134 | solvePnP(objectPoints: objPoints, imagePoints: imgPoints, cameraMatrix, distCoeffs, rvec, tvec); |
| 1135 | |
| 1136 | // search undetected markers and project them using the previous pose |
| 1137 | vector<vector<Point2f> > undetectedCorners; |
| 1138 | const std::vector<int>& ids = board.getIds(); |
| 1139 | vector<int> undetectedIds; |
| 1140 | for(unsigned int i = 0; i < ids.size(); i++) { |
| 1141 | int foundIdx = -1; |
| 1142 | for(unsigned int j = 0; j < detectedIds.total(); j++) { |
| 1143 | if(ids[i] == detectedIds.getMat().ptr<int>()[j]) { |
| 1144 | foundIdx = j; |
| 1145 | break; |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | // not detected |
| 1150 | if(foundIdx == -1) { |
| 1151 | undetectedCorners.push_back(x: vector<Point2f>()); |
| 1152 | undetectedIds.push_back(x: ids[i]); |
| 1153 | projectPoints(objectPoints: board.getObjPoints()[i], rvec, tvec, cameraMatrix, distCoeffs, |
| 1154 | imagePoints: undetectedCorners.back()); |
| 1155 | } |
| 1156 | } |
| 1157 | // parse output |
| 1158 | Mat(undetectedIds).copyTo(m: undetectedMarkersIds); |
| 1159 | undetectedMarkersProjectedCorners = undetectedCorners; |
| 1160 | } |
| 1161 | |
| 1162 | /** |
| 1163 | * Interpolate board markers that are not included in the list of detected markers using |
| 1164 | * global homography |
| 1165 | */ |
| 1166 | static void _projectUndetectedMarkers(const Board &_board, InputOutputArrayOfArrays _detectedCorners, |
| 1167 | InputOutputArray _detectedIds, |
| 1168 | vector<vector<Point2f> >& _undetectedMarkersProjectedCorners, |
| 1169 | OutputArray _undetectedMarkersIds) { |
| 1170 | // check board points are in the same plane, if not, global homography cannot be applied |
| 1171 | CV_Assert(_board.getObjPoints().size() > 0); |
| 1172 | CV_Assert(_board.getObjPoints()[0].size() > 0); |
| 1173 | float boardZ = _board.getObjPoints()[0][0].z; |
| 1174 | for(unsigned int i = 0; i < _board.getObjPoints().size(); i++) { |
| 1175 | for(unsigned int j = 0; j < _board.getObjPoints()[i].size(); j++) |
| 1176 | CV_Assert(boardZ == _board.getObjPoints()[i][j].z); |
| 1177 | } |
| 1178 | |
| 1179 | vector<Point2f> detectedMarkersObj2DAll; // Object coordinates (without Z) of all the detected |
| 1180 | // marker corners in a single vector |
| 1181 | vector<Point2f> imageCornersAll; // Image corners of all detected markers in a single vector |
| 1182 | vector<vector<Point2f> > undetectedMarkersObj2D; // Object coordinates (without Z) of all |
| 1183 | // missing markers in different vectors |
| 1184 | vector<int> undetectedMarkersIds; // ids of missing markers |
| 1185 | // find markers included in board, and missing markers from board. Fill the previous vectors |
| 1186 | for(unsigned int j = 0; j < _board.getIds().size(); j++) { |
| 1187 | bool found = false; |
| 1188 | for(unsigned int i = 0; i < _detectedIds.total(); i++) { |
| 1189 | if(_detectedIds.getMat().ptr<int>()[i] == _board.getIds()[j]) { |
| 1190 | for(int c = 0; c < 4; c++) { |
| 1191 | imageCornersAll.push_back(x: _detectedCorners.getMat(i).ptr<Point2f>()[c]); |
| 1192 | detectedMarkersObj2DAll.push_back( |
| 1193 | x: Point2f(_board.getObjPoints()[j][c].x, _board.getObjPoints()[j][c].y)); |
| 1194 | } |
| 1195 | found = true; |
| 1196 | break; |
| 1197 | } |
| 1198 | } |
| 1199 | if(!found) { |
| 1200 | undetectedMarkersObj2D.push_back(x: vector<Point2f>()); |
| 1201 | for(int c = 0; c < 4; c++) { |
| 1202 | undetectedMarkersObj2D.back().push_back( |
| 1203 | x: Point2f(_board.getObjPoints()[j][c].x, _board.getObjPoints()[j][c].y)); |
| 1204 | } |
| 1205 | undetectedMarkersIds.push_back(x: _board.getIds()[j]); |
| 1206 | } |
| 1207 | } |
| 1208 | if(imageCornersAll.size() == 0) return; |
| 1209 | |
| 1210 | // get homography from detected markers |
| 1211 | Mat transformation = findHomography(srcPoints: detectedMarkersObj2DAll, dstPoints: imageCornersAll); |
| 1212 | |
| 1213 | _undetectedMarkersProjectedCorners.resize(new_size: undetectedMarkersIds.size()); |
| 1214 | |
| 1215 | // for each undetected marker, apply transformation |
| 1216 | for(unsigned int i = 0; i < undetectedMarkersObj2D.size(); i++) { |
| 1217 | perspectiveTransform(src: undetectedMarkersObj2D[i], dst: _undetectedMarkersProjectedCorners[i], m: transformation); |
| 1218 | } |
| 1219 | Mat(undetectedMarkersIds).copyTo(m: _undetectedMarkersIds); |
| 1220 | } |
| 1221 | |
| 1222 | void ArucoDetector::refineDetectedMarkers(InputArray _image, const Board& _board, |
| 1223 | InputOutputArrayOfArrays _detectedCorners, InputOutputArray _detectedIds, |
| 1224 | InputOutputArrayOfArrays _rejectedCorners, InputArray _cameraMatrix, |
| 1225 | InputArray _distCoeffs, OutputArray _recoveredIdxs) const { |
| 1226 | DetectorParameters& detectorParams = arucoDetectorImpl->detectorParams; |
| 1227 | const Dictionary& dictionary = arucoDetectorImpl->dictionaries.at(n: 0); |
| 1228 | RefineParameters& refineParams = arucoDetectorImpl->refineParams; |
| 1229 | CV_Assert(refineParams.minRepDistance > 0); |
| 1230 | |
| 1231 | if(_detectedIds.total() == 0 || _rejectedCorners.total() == 0) return; |
| 1232 | |
| 1233 | // get projections of missing markers in the board |
| 1234 | vector<vector<Point2f> > undetectedMarkersCorners; |
| 1235 | vector<int> undetectedMarkersIds; |
| 1236 | if(_cameraMatrix.total() != 0) { |
| 1237 | // reproject based on camera projection model |
| 1238 | _projectUndetectedMarkers(board: _board, detectedCorners: _detectedCorners, detectedIds: _detectedIds, cameraMatrix: _cameraMatrix, distCoeffs: _distCoeffs, |
| 1239 | undetectedMarkersProjectedCorners&: undetectedMarkersCorners, undetectedMarkersIds); |
| 1240 | |
| 1241 | } else { |
| 1242 | // reproject based on global homography |
| 1243 | _projectUndetectedMarkers(_board, _detectedCorners, _detectedIds, undetectedMarkersProjectedCorners&: undetectedMarkersCorners, |
| 1244 | undetectedMarkersIds: undetectedMarkersIds); |
| 1245 | } |
| 1246 | |
| 1247 | // list of missing markers indicating if they have been assigned to a candidate |
| 1248 | vector<bool > alreadyIdentified(_rejectedCorners.total(), false); |
| 1249 | |
| 1250 | // maximum bits that can be corrected |
| 1251 | int maxCorrectionRecalculated = |
| 1252 | int(double(dictionary.maxCorrectionBits) * refineParams.errorCorrectionRate); |
| 1253 | |
| 1254 | Mat grey; |
| 1255 | _convertToGrey(in: _image, out&: grey); |
| 1256 | |
| 1257 | // vector of final detected marker corners and ids |
| 1258 | vector<vector<Point2f> > finalAcceptedCorners; |
| 1259 | vector<int> finalAcceptedIds; |
| 1260 | // fill with the current markers |
| 1261 | finalAcceptedCorners.resize(new_size: _detectedCorners.total()); |
| 1262 | finalAcceptedIds.resize(new_size: _detectedIds.total()); |
| 1263 | for(unsigned int i = 0; i < _detectedIds.total(); i++) { |
| 1264 | finalAcceptedCorners[i] = _detectedCorners.getMat(i).clone(); |
| 1265 | finalAcceptedIds[i] = _detectedIds.getMat().ptr<int>()[i]; |
| 1266 | } |
| 1267 | vector<int> recoveredIdxs; // original indexes of accepted markers in _rejectedCorners |
| 1268 | |
| 1269 | // for each missing marker, try to find a correspondence |
| 1270 | for(unsigned int i = 0; i < undetectedMarkersIds.size(); i++) { |
| 1271 | |
| 1272 | // best match at the moment |
| 1273 | int closestCandidateIdx = -1; |
| 1274 | double closestCandidateDistance = refineParams.minRepDistance * refineParams.minRepDistance + 1; |
| 1275 | Mat closestRotatedMarker; |
| 1276 | |
| 1277 | for(unsigned int j = 0; j < _rejectedCorners.total(); j++) { |
| 1278 | if(alreadyIdentified[j]) continue; |
| 1279 | |
| 1280 | // check distance |
| 1281 | double minDistance = closestCandidateDistance + 1; |
| 1282 | bool valid = false; |
| 1283 | int validRot = 0; |
| 1284 | for(int c = 0; c < 4; c++) { // first corner in rejected candidate |
| 1285 | double currentMaxDistance = 0; |
| 1286 | for(int k = 0; k < 4; k++) { |
| 1287 | Point2f rejCorner = _rejectedCorners.getMat(i: j).ptr<Point2f>()[(c + k) % 4]; |
| 1288 | Point2f distVector = undetectedMarkersCorners[i][k] - rejCorner; |
| 1289 | double cornerDist = distVector.x * distVector.x + distVector.y * distVector.y; |
| 1290 | currentMaxDistance = max(a: currentMaxDistance, b: cornerDist); |
| 1291 | } |
| 1292 | // if distance is better than current best distance |
| 1293 | if(currentMaxDistance < closestCandidateDistance) { |
| 1294 | valid = true; |
| 1295 | validRot = c; |
| 1296 | minDistance = currentMaxDistance; |
| 1297 | } |
| 1298 | if(!refineParams.checkAllOrders) break; |
| 1299 | } |
| 1300 | |
| 1301 | if(!valid) continue; |
| 1302 | |
| 1303 | // apply rotation |
| 1304 | Mat rotatedMarker; |
| 1305 | if(refineParams.checkAllOrders) { |
| 1306 | rotatedMarker = Mat(4, 1, CV_32FC2); |
| 1307 | for(int c = 0; c < 4; c++) |
| 1308 | rotatedMarker.ptr<Point2f>()[c] = |
| 1309 | _rejectedCorners.getMat(i: j).ptr<Point2f>()[(c + 4 + validRot) % 4]; |
| 1310 | } |
| 1311 | else rotatedMarker = _rejectedCorners.getMat(i: j); |
| 1312 | |
| 1313 | // last filter, check if inner code is close enough to the assigned marker code |
| 1314 | int codeDistance = 0; |
| 1315 | // if errorCorrectionRate, dont check code |
| 1316 | if(refineParams.errorCorrectionRate >= 0) { |
| 1317 | |
| 1318 | // extract bits |
| 1319 | Mat bits = _extractBits( |
| 1320 | image: grey, corners: rotatedMarker, markerSize: dictionary.markerSize, markerBorderBits: detectorParams.markerBorderBits, |
| 1321 | cellSize: detectorParams.perspectiveRemovePixelPerCell, |
| 1322 | cellMarginRate: detectorParams.perspectiveRemoveIgnoredMarginPerCell, minStdDevOtsu: detectorParams.minOtsuStdDev); |
| 1323 | |
| 1324 | Mat onlyBits = |
| 1325 | bits.rowRange(startrow: detectorParams.markerBorderBits, endrow: bits.rows - detectorParams.markerBorderBits) |
| 1326 | .colRange(startcol: detectorParams.markerBorderBits, endcol: bits.rows - detectorParams.markerBorderBits); |
| 1327 | |
| 1328 | codeDistance = |
| 1329 | dictionary.getDistanceToId(bits: onlyBits, id: undetectedMarkersIds[i], allRotations: false); |
| 1330 | } |
| 1331 | |
| 1332 | // if everythin is ok, assign values to current best match |
| 1333 | if(refineParams.errorCorrectionRate < 0 || codeDistance < maxCorrectionRecalculated) { |
| 1334 | closestCandidateIdx = j; |
| 1335 | closestCandidateDistance = minDistance; |
| 1336 | closestRotatedMarker = rotatedMarker; |
| 1337 | } |
| 1338 | } |
| 1339 | |
| 1340 | // if at least one good match, we have rescue the missing marker |
| 1341 | if(closestCandidateIdx >= 0) { |
| 1342 | |
| 1343 | // subpixel refinement |
| 1344 | if(detectorParams.cornerRefinementMethod == (int)CORNER_REFINE_SUBPIX) { |
| 1345 | CV_Assert(detectorParams.cornerRefinementWinSize > 0 && |
| 1346 | detectorParams.cornerRefinementMaxIterations > 0 && |
| 1347 | detectorParams.cornerRefinementMinAccuracy > 0); |
| 1348 | |
| 1349 | std::vector<Point2f> marker(closestRotatedMarker.begin<Point2f>(), closestRotatedMarker.end<Point2f>()); |
| 1350 | int cornerRefinementWinSize = std::max(a: 1, b: cvRound(value: detectorParams.relativeCornerRefinmentWinSize* |
| 1351 | getAverageModuleSize(markerCorners: marker, markerSize: dictionary.markerSize, markerBorderBits: detectorParams.markerBorderBits))); |
| 1352 | cornerRefinementWinSize = min(a: cornerRefinementWinSize, b: detectorParams.cornerRefinementWinSize); |
| 1353 | cornerSubPix(image: grey, corners: closestRotatedMarker, |
| 1354 | winSize: Size(cornerRefinementWinSize, cornerRefinementWinSize), |
| 1355 | zeroZone: Size(-1, -1), criteria: TermCriteria(TermCriteria::MAX_ITER | TermCriteria::EPS, |
| 1356 | detectorParams.cornerRefinementMaxIterations, |
| 1357 | detectorParams.cornerRefinementMinAccuracy)); |
| 1358 | } |
| 1359 | |
| 1360 | // remove from rejected |
| 1361 | alreadyIdentified[closestCandidateIdx] = true; |
| 1362 | |
| 1363 | // add to detected |
| 1364 | finalAcceptedCorners.push_back(x: closestRotatedMarker); |
| 1365 | finalAcceptedIds.push_back(x: undetectedMarkersIds[i]); |
| 1366 | |
| 1367 | // add the original index of the candidate |
| 1368 | recoveredIdxs.push_back(x: closestCandidateIdx); |
| 1369 | } |
| 1370 | } |
| 1371 | |
| 1372 | // parse output |
| 1373 | if(finalAcceptedIds.size() != _detectedIds.total()) { |
| 1374 | // parse output |
| 1375 | Mat(finalAcceptedIds).copyTo(m: _detectedIds); |
| 1376 | _copyVector2Output(vec&: finalAcceptedCorners, out: _detectedCorners); |
| 1377 | |
| 1378 | // recalculate _rejectedCorners based on alreadyIdentified |
| 1379 | vector<vector<Point2f> > finalRejected; |
| 1380 | for(unsigned int i = 0; i < alreadyIdentified.size(); i++) { |
| 1381 | if(!alreadyIdentified[i]) { |
| 1382 | finalRejected.push_back(x: _rejectedCorners.getMat(i).clone()); |
| 1383 | } |
| 1384 | } |
| 1385 | _copyVector2Output(vec&: finalRejected, out: _rejectedCorners); |
| 1386 | |
| 1387 | if(_recoveredIdxs.needed()) { |
| 1388 | Mat(recoveredIdxs).copyTo(m: _recoveredIdxs); |
| 1389 | } |
| 1390 | } |
| 1391 | } |
| 1392 | |
| 1393 | void ArucoDetector::write(FileStorage &fs) const { |
| 1394 | // preserve old format for single dictionary case |
| 1395 | if (1 == arucoDetectorImpl->dictionaries.size()) { |
| 1396 | arucoDetectorImpl->dictionaries[0].writeDictionary(fs); |
| 1397 | } else { |
| 1398 | fs << "dictionaries" << "[" ; |
| 1399 | for (auto& dictionary : arucoDetectorImpl->dictionaries) { |
| 1400 | fs << "{" ; |
| 1401 | dictionary.writeDictionary(fs); |
| 1402 | fs << "}" ; |
| 1403 | } |
| 1404 | fs << "]" ; |
| 1405 | } |
| 1406 | arucoDetectorImpl->detectorParams.writeDetectorParameters(fs); |
| 1407 | arucoDetectorImpl->refineParams.writeRefineParameters(fs); |
| 1408 | } |
| 1409 | |
| 1410 | void ArucoDetector::read(const FileNode &fn) { |
| 1411 | arucoDetectorImpl->dictionaries.clear(); |
| 1412 | if (!fn.empty() && !fn["dictionaries" ].empty() && fn["dictionaries" ].isSeq()) { |
| 1413 | for (const auto& dictionaryNode : fn["dictionaries" ]) { |
| 1414 | arucoDetectorImpl->dictionaries.emplace_back(); |
| 1415 | arucoDetectorImpl->dictionaries.back().readDictionary(fn: dictionaryNode); |
| 1416 | } |
| 1417 | } else { |
| 1418 | // backward compatibility |
| 1419 | arucoDetectorImpl->dictionaries.emplace_back(); |
| 1420 | arucoDetectorImpl->dictionaries.back().readDictionary(fn); |
| 1421 | } |
| 1422 | arucoDetectorImpl->detectorParams.readDetectorParameters(fn); |
| 1423 | arucoDetectorImpl->refineParams.readRefineParameters(fn); |
| 1424 | } |
| 1425 | |
| 1426 | const Dictionary& ArucoDetector::getDictionary() const { |
| 1427 | return arucoDetectorImpl->dictionaries[0]; |
| 1428 | } |
| 1429 | |
| 1430 | void ArucoDetector::setDictionary(const Dictionary& dictionary) { |
| 1431 | if (arucoDetectorImpl->dictionaries.empty()) { |
| 1432 | arucoDetectorImpl->dictionaries.push_back(x: dictionary); |
| 1433 | } else { |
| 1434 | arucoDetectorImpl->dictionaries[0] = dictionary; |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | vector<Dictionary> ArucoDetector::getDictionaries() const { |
| 1439 | return arucoDetectorImpl->dictionaries; |
| 1440 | } |
| 1441 | |
| 1442 | void ArucoDetector::setDictionaries(const vector<Dictionary>& dictionaries) { |
| 1443 | CV_Assert(!dictionaries.empty()); |
| 1444 | arucoDetectorImpl->dictionaries = dictionaries; |
| 1445 | } |
| 1446 | |
| 1447 | const DetectorParameters& ArucoDetector::getDetectorParameters() const { |
| 1448 | return arucoDetectorImpl->detectorParams; |
| 1449 | } |
| 1450 | |
| 1451 | void ArucoDetector::setDetectorParameters(const DetectorParameters& detectorParameters) { |
| 1452 | arucoDetectorImpl->detectorParams = detectorParameters; |
| 1453 | } |
| 1454 | |
| 1455 | const RefineParameters& ArucoDetector::getRefineParameters() const { |
| 1456 | return arucoDetectorImpl->refineParams; |
| 1457 | } |
| 1458 | |
| 1459 | void ArucoDetector::setRefineParameters(const RefineParameters& refineParameters) { |
| 1460 | arucoDetectorImpl->refineParams = refineParameters; |
| 1461 | } |
| 1462 | |
| 1463 | void drawDetectedMarkers(InputOutputArray _image, InputArrayOfArrays _corners, |
| 1464 | InputArray _ids, Scalar borderColor) { |
| 1465 | CV_Assert(_image.getMat().total() != 0 && |
| 1466 | (_image.getMat().channels() == 1 || _image.getMat().channels() == 3)); |
| 1467 | CV_Assert((_corners.total() == _ids.total()) || _ids.total() == 0); |
| 1468 | |
| 1469 | // calculate colors |
| 1470 | Scalar textColor, cornerColor; |
| 1471 | textColor = cornerColor = borderColor; |
| 1472 | swap(a&: textColor.val[0], b&: textColor.val[1]); // text color just sawp G and R |
| 1473 | swap(a&: cornerColor.val[1], b&: cornerColor.val[2]); // corner color just sawp G and B |
| 1474 | |
| 1475 | int nMarkers = (int)_corners.total(); |
| 1476 | for(int i = 0; i < nMarkers; i++) { |
| 1477 | Mat currentMarker = _corners.getMat(i); |
| 1478 | CV_Assert(currentMarker.total() == 4 && currentMarker.channels() == 2); |
| 1479 | if (currentMarker.type() != CV_32SC2) |
| 1480 | currentMarker.convertTo(m: currentMarker, CV_32SC2); |
| 1481 | |
| 1482 | // draw marker sides |
| 1483 | for(int j = 0; j < 4; j++) { |
| 1484 | Point p0, p1; |
| 1485 | p0 = currentMarker.ptr<Point>(y: 0)[j]; |
| 1486 | p1 = currentMarker.ptr<Point>(y: 0)[(j + 1) % 4]; |
| 1487 | line(img: _image, pt1: p0, pt2: p1, color: borderColor, thickness: 1); |
| 1488 | } |
| 1489 | // draw first corner mark |
| 1490 | rectangle(img: _image, pt1: currentMarker.ptr<Point>(y: 0)[0] - Point(3, 3), |
| 1491 | pt2: currentMarker.ptr<Point>(y: 0)[0] + Point(3, 3), color: cornerColor, thickness: 1, lineType: LINE_AA); |
| 1492 | |
| 1493 | // draw ID |
| 1494 | if(_ids.total() != 0) { |
| 1495 | Point cent(0, 0); |
| 1496 | for(int p = 0; p < 4; p++) |
| 1497 | cent += currentMarker.ptr<Point>(y: 0)[p]; |
| 1498 | cent = cent / 4.; |
| 1499 | stringstream s; |
| 1500 | s << "id=" << _ids.getMat().ptr<int>(y: 0)[i]; |
| 1501 | putText(img: _image, text: s.str(), org: cent, fontFace: FONT_HERSHEY_SIMPLEX, fontScale: 0.5, color: textColor, thickness: 2); |
| 1502 | } |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | void generateImageMarker(const Dictionary &dictionary, int id, int sidePixels, OutputArray _img, int borderBits) { |
| 1507 | dictionary.generateImageMarker(id, sidePixels, _img, borderBits); |
| 1508 | } |
| 1509 | |
| 1510 | } |
| 1511 | } |
| 1512 | |