1 | // |
2 | // Redistribution and use in source and binary forms, with or without |
3 | // modification, are permitted provided that the following conditions |
4 | // are met: |
5 | // * Redistributions of source code must retain the above copyright |
6 | // notice, this list of conditions and the following disclaimer. |
7 | // * Redistributions in binary form must reproduce the above copyright |
8 | // notice, this list of conditions and the following disclaimer in the |
9 | // documentation and/or other materials provided with the distribution. |
10 | // * Neither the name of NVIDIA CORPORATION nor the names of its |
11 | // contributors may be used to endorse or promote products derived |
12 | // from this software without specific prior written permission. |
13 | // |
14 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ''AS IS'' AND ANY |
15 | // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
16 | // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
17 | // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
18 | // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
19 | // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
20 | // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
21 | // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
22 | // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
23 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
24 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
25 | // |
26 | // Copyright (c) 2008-2021 NVIDIA Corporation. All rights reserved. |
27 | // Copyright (c) 2004-2008 AGEIA Technologies, Inc. All rights reserved. |
28 | // Copyright (c) 2001-2004 NovodeX AG. All rights reserved. |
29 | |
30 | #include "geomutils/GuContactBuffer.h" |
31 | |
32 | #include "GuVecCapsule.h" |
33 | #include "GuGeometryUnion.h" |
34 | #include "GuContactMethodImpl.h" |
35 | #include "GuDistanceSegmentSegmentSIMD.h" |
36 | |
37 | using namespace physx; |
38 | using namespace Gu; |
39 | using namespace Ps; |
40 | using namespace aos; |
41 | |
42 | static Vec4V pcmDistancePointSegmentTValue22( const Vec3VArg a0, const Vec3VArg b0, |
43 | const Vec3VArg a1, const Vec3VArg b1, |
44 | const Vec3VArg p0, const Vec3VArg p1, |
45 | const Vec3VArg p2, const Vec3VArg p3) |
46 | { |
47 | const Vec4V zero = V4Zero(); |
48 | const Vec3V ap00 = V3Sub(a: p0, b: a0); |
49 | const Vec3V ap10 = V3Sub(a: p1, b: a0); |
50 | const Vec3V ap01 = V3Sub(a: p2, b: a1); |
51 | const Vec3V ap11 = V3Sub(a: p3, b: a1); |
52 | |
53 | const Vec3V ab0 = V3Sub(a: b0, b: a0); |
54 | const Vec3V ab1 = V3Sub(a: b1, b: a1); |
55 | |
56 | /* const FloatV nom00 = V3Dot(ap00, ab0); |
57 | const FloatV nom10 = V3Dot(ap10, ab0); |
58 | const FloatV nom01 = V3Dot(ap01, ab1); |
59 | const FloatV nom11 = V3Dot(ap11, ab1);*/ |
60 | |
61 | const Vec4V combinedDot = V3Dot4(a0: ap00, b0: ab0, a1: ap10, b1: ab0, a2: ap01, b2: ab1, a3: ap11, b3: ab1); |
62 | const FloatV nom00 = V4GetX(f: combinedDot); |
63 | const FloatV nom10 = V4GetY(f: combinedDot); |
64 | const FloatV nom01 = V4GetZ(f: combinedDot); |
65 | const FloatV nom11 = V4GetW(f: combinedDot); |
66 | |
67 | const FloatV denom0 = V3Dot(a: ab0, b: ab0); |
68 | const FloatV denom1 = V3Dot(a: ab1, b: ab1); |
69 | |
70 | const Vec4V nom = V4Merge(x: nom00, y: nom10, z: nom01, w: nom11); |
71 | const Vec4V denom = V4Merge(x: denom0, y: denom0, z: denom1, w: denom1); |
72 | |
73 | const Vec4V tValue = V4Div(a: nom, b: denom); |
74 | return V4Sel(c: V4IsEq(a: denom, b: zero), a: zero, b: tValue); |
75 | } |
76 | |
77 | namespace physx |
78 | { |
79 | namespace Gu |
80 | { |
81 | static void storeContact(const Vec3VArg contact, const Vec3VArg normal, const FloatVArg separation, Gu::ContactBuffer& buffer) |
82 | { |
83 | Gu::ContactPoint& point = buffer.contacts[buffer.count++]; |
84 | |
85 | const Vec4V normalSep = Ps::aos::V4SetW(v: Vec4V_From_Vec3V(f: normal), f: separation); |
86 | |
87 | V4StoreA(a: normalSep, f: &point.normal.x); |
88 | V3StoreA(a: contact, f&: point.point); |
89 | point.internalFaceIndex1 = PXC_CONTACT_NO_FACE_INDEX; |
90 | } |
91 | |
92 | bool pcmContactCapsuleCapsule(GU_CONTACT_METHOD_ARGS) |
93 | { |
94 | PX_UNUSED(renderOutput); |
95 | PX_UNUSED(cache); |
96 | |
97 | // Get actual shape data |
98 | const PxCapsuleGeometry& shapeCapsule0 = shape0.get<const PxCapsuleGeometry>(); |
99 | const PxCapsuleGeometry& shapeCapsule1 = shape1.get<const PxCapsuleGeometry>(); |
100 | |
101 | PX_ASSERT(transform1.q.isSane()); |
102 | PX_ASSERT(transform0.q.isSane()); |
103 | |
104 | const Vec3V _p0 = V3LoadA(f: &transform0.p.x); |
105 | const QuatV q0 = QuatVLoadA(v: &transform0.q.x); |
106 | |
107 | const Vec3V _p1 = V3LoadA(f: &transform1.p.x); |
108 | const QuatV q1 = QuatVLoadA(v: &transform1.q.x); |
109 | |
110 | /*PsTransformV transf0(p0, q0); |
111 | PsTransformV transf1(p1, q1);*/ |
112 | |
113 | const FloatV r0 = FLoad(f: shapeCapsule0.radius); |
114 | const FloatV halfHeight0 = FLoad(f: shapeCapsule0.halfHeight); |
115 | |
116 | const FloatV r1 = FLoad(f: shapeCapsule1.radius); |
117 | const FloatV halfHeight1 = FLoad(f: shapeCapsule1.halfHeight); |
118 | |
119 | const FloatV cDist = FLoad(f: params.mContactDistance); |
120 | |
121 | const Vec3V positionOffset = V3Scale(a: V3Add(a: _p0, b: _p1), b: FHalf()); |
122 | const Vec3V p0 = V3Sub(a: _p0, b: positionOffset); |
123 | const Vec3V p1 = V3Sub(a: _p1, b: positionOffset); |
124 | |
125 | const FloatV zero = FZero(); |
126 | //const FloatV one = FOne(); |
127 | const Vec3V zeroV = V3Zero(); |
128 | |
129 | /*const Vec3V positionOffset = V3Scale(V3Add(transf0.p, transf1.p), FloatV_From_F32(0.5f)); |
130 | transf0.p = V3Sub(transf0.p, positionOffset); |
131 | transf1.p = V3Sub(transf1.p, positionOffset);*/ |
132 | |
133 | const Vec3V basisVector0 = QuatGetBasisVector0(q: q0); |
134 | const Vec3V tmp0 = V3Scale(a: basisVector0, b: halfHeight0); |
135 | const Vec3V s0 = V3Add(a: p0, b: tmp0); |
136 | const Vec3V e0 = V3Sub(a: p0, b: tmp0); |
137 | const Vec3V d0 = V3Sub(a: e0, b: s0); |
138 | |
139 | const Vec3V basisVector1 = QuatGetBasisVector0(q: q1); |
140 | const Vec3V tmp1 = V3Scale(a: basisVector1, b: halfHeight1); |
141 | const Vec3V s1 = V3Add(a: p1, b: tmp1); |
142 | const Vec3V e1 = V3Sub(a: p1, b: tmp1); |
143 | |
144 | const Vec3V d1 = V3Sub(a: e1, b: s1); |
145 | |
146 | const FloatV sumRadius = FAdd(a: r0, b: r1); |
147 | const FloatV inflatedSum = FAdd(a: sumRadius, b: cDist); |
148 | const FloatV inflatedSumSquared = FMul(a: inflatedSum, b: inflatedSum); |
149 | const FloatV a = V3Dot(a: d0, b: d0);//squared length of segment1 |
150 | const FloatV e = V3Dot(a: d1, b: d1);//squared length of segment2 |
151 | const FloatV eps = FLoad(f: 1e-6f);//FEps(); |
152 | |
153 | FloatV t0, t1; |
154 | const FloatV sqDist0 = distanceSegmentSegmentSquared(p1: s0, d1: d0, p2: s1, d2: d1, param0&: t0, param1&: t1); |
155 | |
156 | if(FAllGrtrOrEq(a: inflatedSumSquared, b: sqDist0)) |
157 | { |
158 | const Vec4V zeroV4 = V4Zero(); |
159 | const Vec4V oneV4 = V4One(); |
160 | //check to see whether these two capsule are paralle |
161 | const FloatV parallelTolerance = FLoad(f: 0.9998f); |
162 | |
163 | const BoolV con0 = FIsGrtr(a: eps, b: a); |
164 | const BoolV con1 = FIsGrtr(a: eps, b: e); |
165 | const Vec3V dir0 = V3Sel(c: con0, a: zeroV, b: V3ScaleInv(a: d0, b: FSqrt(a))); |
166 | const Vec3V dir1 = V3Sel(c: con1, a: zeroV, b: V3ScaleInv(a: d1, b: FSqrt(a: e))); |
167 | |
168 | const FloatV cos = FAbs(a: V3Dot(a: dir0, b: dir1)); |
169 | if(FAllGrtr(a: cos, b: parallelTolerance))//paralle |
170 | { |
171 | //project s, e into s1e1 |
172 | const Vec4V t= pcmDistancePointSegmentTValue22(a0: s0, b0: e0, a1: s1, b1: e1, |
173 | p0: s1, p1: e1, p2: s0, p3: e0); |
174 | |
175 | const BoolV con = BAnd(a: V4IsGrtrOrEq(a: t, b: zeroV4), b: V4IsGrtrOrEq(a: oneV4, b: t)); |
176 | const BoolV con00 = BGetX(f: con); |
177 | const BoolV con01 = BGetY(f: con); |
178 | const BoolV con10 = BGetZ(f: con); |
179 | const BoolV con11 = BGetW(f: con); |
180 | |
181 | /* PX_ALIGN(16, PxU32 conditions[4]); |
182 | F32Array_Aligned_From_Vec4V(con, (PxF32*)conditions);*/ |
183 | |
184 | PxU32 numContact=0; |
185 | |
186 | if(BAllEqTTTT(a: con00)) |
187 | { |
188 | const Vec3V projS1 = V3ScaleAdd(a: d0, b: V4GetX(f: t), c: s0); |
189 | const Vec3V v = V3Sub(a: projS1, b: s1); |
190 | const FloatV sqDist = V3Dot(a: v, b: v); |
191 | const BoolV bCon = BAnd(a: FIsGrtr(a: sqDist, b: eps), b: FIsGrtr(a: inflatedSumSquared, b: sqDist)); |
192 | |
193 | if(BAllEqTTTT(a: bCon)) |
194 | { |
195 | const FloatV dist = FSqrt(a: sqDist); |
196 | const FloatV pen = FSub(a: dist, b: sumRadius); |
197 | const Vec3V normal = V3ScaleInv(a: v, b: dist); |
198 | PX_ASSERT(isFiniteVec3V(normal)); |
199 | const Vec3V _p = V3NegScaleSub(a: normal, b: r0, c: projS1); |
200 | const Vec3V p = V3Add(a: _p, b: positionOffset); |
201 | |
202 | storeContact(contact: p, normal, separation: pen, buffer&: contactBuffer); |
203 | numContact++; |
204 | } |
205 | } |
206 | if(BAllEqTTTT(a: con01)) |
207 | { |
208 | const Vec3V projE1 = V3ScaleAdd(a: d0, b: V4GetY(f: t), c: s0); |
209 | const Vec3V v = V3Sub(a: projE1, b: e1); |
210 | const FloatV sqDist = V3Dot(a: v, b: v); |
211 | const BoolV bCon = BAnd(a: FIsGrtr(a: sqDist, b: eps), b: FIsGrtr(a: inflatedSumSquared, b: sqDist)); |
212 | |
213 | if(BAllEqTTTT(a: bCon)) |
214 | { |
215 | const FloatV dist = FSqrt(a: sqDist); |
216 | const FloatV pen = FSub(a: dist, b: sumRadius); |
217 | const Vec3V normal = V3ScaleInv(a: v, b: dist); |
218 | PX_ASSERT(isFiniteVec3V(normal)); |
219 | const Vec3V _p = V3NegScaleSub(a: normal, b: r0, c: projE1); |
220 | const Vec3V p = V3Add(a: _p, b: positionOffset); |
221 | storeContact(contact: p, normal, separation: pen, buffer&: contactBuffer); |
222 | numContact++; |
223 | } |
224 | } |
225 | |
226 | if(BAllEqTTTT(a: con10)) |
227 | { |
228 | const Vec3V projS0 = V3ScaleAdd(a: d1, b: V4GetZ(f: t), c: s1); |
229 | const Vec3V v = V3Sub(a: s0, b: projS0); |
230 | const FloatV sqDist = V3Dot(a: v, b: v); |
231 | const BoolV bCon = BAnd(a: FIsGrtr(a: sqDist, b: eps), b: FIsGrtr(a: inflatedSumSquared, b: sqDist)); |
232 | |
233 | if(BAllEqTTTT(a: bCon)) |
234 | { |
235 | const FloatV dist = FSqrt(a: sqDist); |
236 | const FloatV pen = FSub(a: dist, b: sumRadius); |
237 | const Vec3V normal = V3ScaleInv(a: v, b: dist); |
238 | PX_ASSERT(isFiniteVec3V(normal)); |
239 | const Vec3V _p = V3NegScaleSub(a: normal, b: r0, c: s0); |
240 | const Vec3V p = V3Add(a: _p, b: positionOffset); |
241 | //const Vec3V p = V3ScaleAdd(normal, r0, s0); |
242 | storeContact(contact: p, normal, separation: pen, buffer&: contactBuffer); |
243 | numContact++; |
244 | } |
245 | } |
246 | |
247 | if(BAllEqTTTT(a: con11)) |
248 | { |
249 | const Vec3V projE0 = V3ScaleAdd(a: d1, b: V4GetW(f: t), c: s1); |
250 | const Vec3V v = V3Sub(a: e0, b: projE0); |
251 | const FloatV sqDist = V3Dot(a: v, b: v); |
252 | const BoolV bCon = BAnd(a: FIsGrtr(a: sqDist, b: eps), b: FIsGrtr(a: inflatedSumSquared, b: sqDist)); |
253 | |
254 | if(BAllEqTTTT(a: bCon)) |
255 | { |
256 | const FloatV dist = FSqrt(a: sqDist); |
257 | const FloatV pen = FSub(a: dist, b: sumRadius); |
258 | const Vec3V normal = V3ScaleInv(a: v, b: dist); |
259 | PX_ASSERT(isFiniteVec3V(normal)); |
260 | const Vec3V _p = V3NegScaleSub(a: normal, b: r0, c: e0); |
261 | const Vec3V p = V3Add(a: _p, b: positionOffset); |
262 | //const Vec3V p = V3ScaleAdd(normal, r0, e0); |
263 | storeContact(contact: p, normal, separation: pen, buffer&: contactBuffer); |
264 | numContact++; |
265 | } |
266 | } |
267 | |
268 | if(numContact) |
269 | return true; |
270 | } |
271 | |
272 | const Vec3V closestA = V3ScaleAdd(a: d0, b: t0, c: s0); |
273 | const Vec3V closestB = V3ScaleAdd(a: d1, b: t1, c: s1); |
274 | |
275 | const BoolV con = FIsGrtr(a: eps, b: sqDist0); |
276 | //const Vec3V normal = V3Sel(FIsEq(dist, zero), V3Sel(FIsGrtr(a, eps), V3Normalise(d0), V3Scale(V3Sub(closestA, closestB), FRecip(dist))); |
277 | const Vec3V _normal = V3Sel(c: con, a: V3Sel(c: FIsGrtr(a, b: eps), a: d0, b: V3UnitX()), b: V3Sub(a: closestA, b: closestB)); |
278 | const Vec3V normal = V3Normalize(a: _normal); |
279 | PX_ASSERT(isFiniteVec3V(normal)); |
280 | const Vec3V _point = V3NegScaleSub(a: normal, b: r0, c: closestA); |
281 | const Vec3V p = V3Add(a: _point, b: positionOffset); |
282 | const FloatV dist = FSel(c: con, a: zero, b: FSqrt(a: sqDist0)); |
283 | const FloatV pen = FSub(a: dist, b: sumRadius); |
284 | //PX_ASSERT(FAllGrtrOrEq(zero, pen)); |
285 | storeContact(contact: p, normal, separation: pen, buffer&: contactBuffer); |
286 | return true; |
287 | } |
288 | return false; |
289 | } |
290 | }//Gu |
291 | }//physx |
292 | |