1 | //! A priority queue implemented with a binary heap. |
---|---|
2 | //! |
3 | //! Insertion and popping the largest element have *O*(log(*n*)) time complexity. |
4 | //! Checking the largest element is *O*(1). Converting a vector to a binary heap |
5 | //! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be |
6 | //! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*)) |
7 | //! in-place heapsort. |
8 | //! |
9 | //! # Examples |
10 | //! |
11 | //! This is a larger example that implements [Dijkstra's algorithm][dijkstra] |
12 | //! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph]. |
13 | //! It shows how to use [`BinaryHeap`] with custom types. |
14 | //! |
15 | //! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm |
16 | //! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem |
17 | //! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph |
18 | //! |
19 | //! ``` |
20 | //! use std::cmp::Ordering; |
21 | //! use std::collections::BinaryHeap; |
22 | //! |
23 | //! #[derive(Copy, Clone, Eq, PartialEq)] |
24 | //! struct State { |
25 | //! cost: usize, |
26 | //! position: usize, |
27 | //! } |
28 | //! |
29 | //! // The priority queue depends on `Ord`. |
30 | //! // Explicitly implement the trait so the queue becomes a min-heap |
31 | //! // instead of a max-heap. |
32 | //! impl Ord for State { |
33 | //! fn cmp(&self, other: &Self) -> Ordering { |
34 | //! // Notice that we flip the ordering on costs. |
35 | //! // In case of a tie we compare positions - this step is necessary |
36 | //! // to make implementations of `PartialEq` and `Ord` consistent. |
37 | //! other.cost.cmp(&self.cost) |
38 | //! .then_with(|| self.position.cmp(&other.position)) |
39 | //! } |
40 | //! } |
41 | //! |
42 | //! // `PartialOrd` needs to be implemented as well. |
43 | //! impl PartialOrd for State { |
44 | //! fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
45 | //! Some(self.cmp(other)) |
46 | //! } |
47 | //! } |
48 | //! |
49 | //! // Each node is represented as a `usize`, for a shorter implementation. |
50 | //! struct Edge { |
51 | //! node: usize, |
52 | //! cost: usize, |
53 | //! } |
54 | //! |
55 | //! // Dijkstra's shortest path algorithm. |
56 | //! |
57 | //! // Start at `start` and use `dist` to track the current shortest distance |
58 | //! // to each node. This implementation isn't memory-efficient as it may leave duplicate |
59 | //! // nodes in the queue. It also uses `usize::MAX` as a sentinel value, |
60 | //! // for a simpler implementation. |
61 | //! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> { |
62 | //! // dist[node] = current shortest distance from `start` to `node` |
63 | //! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect(); |
64 | //! |
65 | //! let mut heap = BinaryHeap::new(); |
66 | //! |
67 | //! // We're at `start`, with a zero cost |
68 | //! dist[start] = 0; |
69 | //! heap.push(State { cost: 0, position: start }); |
70 | //! |
71 | //! // Examine the frontier with lower cost nodes first (min-heap) |
72 | //! while let Some(State { cost, position }) = heap.pop() { |
73 | //! // Alternatively we could have continued to find all shortest paths |
74 | //! if position == goal { return Some(cost); } |
75 | //! |
76 | //! // Important as we may have already found a better way |
77 | //! if cost > dist[position] { continue; } |
78 | //! |
79 | //! // For each node we can reach, see if we can find a way with |
80 | //! // a lower cost going through this node |
81 | //! for edge in &adj_list[position] { |
82 | //! let next = State { cost: cost + edge.cost, position: edge.node }; |
83 | //! |
84 | //! // If so, add it to the frontier and continue |
85 | //! if next.cost < dist[next.position] { |
86 | //! heap.push(next); |
87 | //! // Relaxation, we have now found a better way |
88 | //! dist[next.position] = next.cost; |
89 | //! } |
90 | //! } |
91 | //! } |
92 | //! |
93 | //! // Goal not reachable |
94 | //! None |
95 | //! } |
96 | //! |
97 | //! fn main() { |
98 | //! // This is the directed graph we're going to use. |
99 | //! // The node numbers correspond to the different states, |
100 | //! // and the edge weights symbolize the cost of moving |
101 | //! // from one node to another. |
102 | //! // Note that the edges are one-way. |
103 | //! // |
104 | //! // 7 |
105 | //! // +-----------------+ |
106 | //! // | | |
107 | //! // v 1 2 | 2 |
108 | //! // 0 -----> 1 -----> 3 ---> 4 |
109 | //! // | ^ ^ ^ |
110 | //! // | | 1 | | |
111 | //! // | | | 3 | 1 |
112 | //! // +------> 2 -------+ | |
113 | //! // 10 | | |
114 | //! // +---------------+ |
115 | //! // |
116 | //! // The graph is represented as an adjacency list where each index, |
117 | //! // corresponding to a node value, has a list of outgoing edges. |
118 | //! // Chosen for its efficiency. |
119 | //! let graph = vec![ |
120 | //! // Node 0 |
121 | //! vec![Edge { node: 2, cost: 10 }, |
122 | //! Edge { node: 1, cost: 1 }], |
123 | //! // Node 1 |
124 | //! vec![Edge { node: 3, cost: 2 }], |
125 | //! // Node 2 |
126 | //! vec![Edge { node: 1, cost: 1 }, |
127 | //! Edge { node: 3, cost: 3 }, |
128 | //! Edge { node: 4, cost: 1 }], |
129 | //! // Node 3 |
130 | //! vec![Edge { node: 0, cost: 7 }, |
131 | //! Edge { node: 4, cost: 2 }], |
132 | //! // Node 4 |
133 | //! vec![]]; |
134 | //! |
135 | //! assert_eq!(shortest_path(&graph, 0, 1), Some(1)); |
136 | //! assert_eq!(shortest_path(&graph, 0, 3), Some(3)); |
137 | //! assert_eq!(shortest_path(&graph, 3, 0), Some(7)); |
138 | //! assert_eq!(shortest_path(&graph, 0, 4), Some(5)); |
139 | //! assert_eq!(shortest_path(&graph, 4, 0), None); |
140 | //! } |
141 | //! ``` |
142 | |
143 | #![allow(missing_docs)] |
144 | #![stable(feature = "rust1", since = "1.0.0")] |
145 | |
146 | use core::alloc::Allocator; |
147 | use core::iter::{FusedIterator, InPlaceIterable, SourceIter, TrustedFused, TrustedLen}; |
148 | use core::mem::{self, ManuallyDrop, swap}; |
149 | use core::num::NonZero; |
150 | use core::ops::{Deref, DerefMut}; |
151 | use core::{fmt, ptr}; |
152 | |
153 | use crate::alloc::Global; |
154 | use crate::collections::TryReserveError; |
155 | use crate::slice; |
156 | #[cfg(not(test))] |
157 | use crate::vec::AsVecIntoIter; |
158 | use crate::vec::{self, Vec}; |
159 | |
160 | /// A priority queue implemented with a binary heap. |
161 | /// |
162 | /// This will be a max-heap. |
163 | /// |
164 | /// It is a logic error for an item to be modified in such a way that the |
165 | /// item's ordering relative to any other item, as determined by the [`Ord`] |
166 | /// trait, changes while it is in the heap. This is normally only possible |
167 | /// through interior mutability, global state, I/O, or unsafe code. The |
168 | /// behavior resulting from such a logic error is not specified, but will |
169 | /// be encapsulated to the `BinaryHeap` that observed the logic error and not |
170 | /// result in undefined behavior. This could include panics, incorrect results, |
171 | /// aborts, memory leaks, and non-termination. |
172 | /// |
173 | /// As long as no elements change their relative order while being in the heap |
174 | /// as described above, the API of `BinaryHeap` guarantees that the heap |
175 | /// invariant remains intact i.e. its methods all behave as documented. For |
176 | /// example if a method is documented as iterating in sorted order, that's |
177 | /// guaranteed to work as long as elements in the heap have not changed order, |
178 | /// even in the presence of closures getting unwinded out of, iterators getting |
179 | /// leaked, and similar foolishness. |
180 | /// |
181 | /// # Examples |
182 | /// |
183 | /// ``` |
184 | /// use std::collections::BinaryHeap; |
185 | /// |
186 | /// // Type inference lets us omit an explicit type signature (which |
187 | /// // would be `BinaryHeap<i32>` in this example). |
188 | /// let mut heap = BinaryHeap::new(); |
189 | /// |
190 | /// // We can use peek to look at the next item in the heap. In this case, |
191 | /// // there's no items in there yet so we get None. |
192 | /// assert_eq!(heap.peek(), None); |
193 | /// |
194 | /// // Let's add some scores... |
195 | /// heap.push(1); |
196 | /// heap.push(5); |
197 | /// heap.push(2); |
198 | /// |
199 | /// // Now peek shows the most important item in the heap. |
200 | /// assert_eq!(heap.peek(), Some(&5)); |
201 | /// |
202 | /// // We can check the length of a heap. |
203 | /// assert_eq!(heap.len(), 3); |
204 | /// |
205 | /// // We can iterate over the items in the heap, although they are returned in |
206 | /// // a random order. |
207 | /// for x in &heap { |
208 | /// println!("{x}"); |
209 | /// } |
210 | /// |
211 | /// // If we instead pop these scores, they should come back in order. |
212 | /// assert_eq!(heap.pop(), Some(5)); |
213 | /// assert_eq!(heap.pop(), Some(2)); |
214 | /// assert_eq!(heap.pop(), Some(1)); |
215 | /// assert_eq!(heap.pop(), None); |
216 | /// |
217 | /// // We can clear the heap of any remaining items. |
218 | /// heap.clear(); |
219 | /// |
220 | /// // The heap should now be empty. |
221 | /// assert!(heap.is_empty()) |
222 | /// ``` |
223 | /// |
224 | /// A `BinaryHeap` with a known list of items can be initialized from an array: |
225 | /// |
226 | /// ``` |
227 | /// use std::collections::BinaryHeap; |
228 | /// |
229 | /// let heap = BinaryHeap::from([1, 5, 2]); |
230 | /// ``` |
231 | /// |
232 | /// ## Min-heap |
233 | /// |
234 | /// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to |
235 | /// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest |
236 | /// value instead of the greatest one. |
237 | /// |
238 | /// ``` |
239 | /// use std::collections::BinaryHeap; |
240 | /// use std::cmp::Reverse; |
241 | /// |
242 | /// let mut heap = BinaryHeap::new(); |
243 | /// |
244 | /// // Wrap values in `Reverse` |
245 | /// heap.push(Reverse(1)); |
246 | /// heap.push(Reverse(5)); |
247 | /// heap.push(Reverse(2)); |
248 | /// |
249 | /// // If we pop these scores now, they should come back in the reverse order. |
250 | /// assert_eq!(heap.pop(), Some(Reverse(1))); |
251 | /// assert_eq!(heap.pop(), Some(Reverse(2))); |
252 | /// assert_eq!(heap.pop(), Some(Reverse(5))); |
253 | /// assert_eq!(heap.pop(), None); |
254 | /// ``` |
255 | /// |
256 | /// # Time complexity |
257 | /// |
258 | /// | [push] | [pop] | [peek]/[peek\_mut] | |
259 | /// |---------|---------------|--------------------| |
260 | /// | *O*(1)~ | *O*(log(*n*)) | *O*(1) | |
261 | /// |
262 | /// The value for `push` is an expected cost; the method documentation gives a |
263 | /// more detailed analysis. |
264 | /// |
265 | /// [`core::cmp::Reverse`]: core::cmp::Reverse |
266 | /// [`Cell`]: core::cell::Cell |
267 | /// [`RefCell`]: core::cell::RefCell |
268 | /// [push]: BinaryHeap::push |
269 | /// [pop]: BinaryHeap::pop |
270 | /// [peek]: BinaryHeap::peek |
271 | /// [peek\_mut]: BinaryHeap::peek_mut |
272 | #[stable(feature = "rust1", since = "1.0.0")] |
273 | #[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")] |
274 | pub struct BinaryHeap< |
275 | T, |
276 | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
277 | > { |
278 | data: Vec<T, A>, |
279 | } |
280 | |
281 | /// Structure wrapping a mutable reference to the greatest item on a |
282 | /// `BinaryHeap`. |
283 | /// |
284 | /// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See |
285 | /// its documentation for more. |
286 | /// |
287 | /// [`peek_mut`]: BinaryHeap::peek_mut |
288 | #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] |
289 | pub struct PeekMut< |
290 | 'a, |
291 | T: 'a + Ord, |
292 | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
293 | > { |
294 | heap: &'a mut BinaryHeap<T, A>, |
295 | // If a set_len + sift_down are required, this is Some. If a &mut T has not |
296 | // yet been exposed to peek_mut()'s caller, it's None. |
297 | original_len: Option<NonZero<usize>>, |
298 | } |
299 | |
300 | #[stable(feature = "collection_debug", since = "1.17.0")] |
301 | impl<T: Ord + fmt::Debug, A: Allocator> fmt::Debug for PeekMut<'_, T, A> { |
302 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
303 | f.debug_tuple(name:"PeekMut").field(&self.heap.data[0]).finish() |
304 | } |
305 | } |
306 | |
307 | #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] |
308 | impl<T: Ord, A: Allocator> Drop for PeekMut<'_, T, A> { |
309 | fn drop(&mut self) { |
310 | if let Some(original_len: NonZero |
311 | // SAFETY: That's how many elements were in the Vec at the time of |
312 | // the PeekMut::deref_mut call, and therefore also at the time of |
313 | // the BinaryHeap::peek_mut call. Since the PeekMut did not end up |
314 | // getting leaked, we are now undoing the leak amplification that |
315 | // the DerefMut prepared for. |
316 | unsafe { self.heap.data.set_len(new_len:original_len.get()) }; |
317 | |
318 | // SAFETY: PeekMut is only instantiated for non-empty heaps. |
319 | unsafe { self.heap.sift_down(pos:0) }; |
320 | } |
321 | } |
322 | } |
323 | |
324 | #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] |
325 | impl<T: Ord, A: Allocator> Deref for PeekMut<'_, T, A> { |
326 | type Target = T; |
327 | fn deref(&self) -> &T { |
328 | debug_assert!(!self.heap.is_empty()); |
329 | // SAFE: PeekMut is only instantiated for non-empty heaps |
330 | unsafe { self.heap.data.get_unchecked(index:0) } |
331 | } |
332 | } |
333 | |
334 | #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] |
335 | impl<T: Ord, A: Allocator> DerefMut for PeekMut<'_, T, A> { |
336 | fn deref_mut(&mut self) -> &mut T { |
337 | debug_assert!(!self.heap.is_empty()); |
338 | |
339 | let len = self.heap.len(); |
340 | if len > 1 { |
341 | // Here we preemptively leak all the rest of the underlying vector |
342 | // after the currently max element. If the caller mutates the &mut T |
343 | // we're about to give them, and then leaks the PeekMut, all these |
344 | // elements will remain leaked. If they don't leak the PeekMut, then |
345 | // either Drop or PeekMut::pop will un-leak the vector elements. |
346 | // |
347 | // This is technique is described throughout several other places in |
348 | // the standard library as "leak amplification". |
349 | unsafe { |
350 | // SAFETY: len > 1 so len != 0. |
351 | self.original_len = Some(NonZero::new_unchecked(len)); |
352 | // SAFETY: len > 1 so all this does for now is leak elements, |
353 | // which is safe. |
354 | self.heap.data.set_len(1); |
355 | } |
356 | } |
357 | |
358 | // SAFE: PeekMut is only instantiated for non-empty heaps |
359 | unsafe { self.heap.data.get_unchecked_mut(0) } |
360 | } |
361 | } |
362 | |
363 | impl<'a, T: Ord, A: Allocator> PeekMut<'a, T, A> { |
364 | /// Sifts the current element to its new position. |
365 | /// |
366 | /// Afterwards refers to the new element. Returns if the element changed. |
367 | /// |
368 | /// ## Examples |
369 | /// |
370 | /// The condition can be used to upper bound all elements in the heap. When only few elements |
371 | /// are affected, the heap's sort ensures this is faster than a reconstruction from the raw |
372 | /// element list and requires no additional allocation. |
373 | /// |
374 | /// ``` |
375 | /// #![feature(binary_heap_peek_mut_refresh)] |
376 | /// use std::collections::BinaryHeap; |
377 | /// |
378 | /// let mut heap: BinaryHeap<u32> = (0..128).collect(); |
379 | /// let mut peek = heap.peek_mut().unwrap(); |
380 | /// |
381 | /// loop { |
382 | /// *peek = 99; |
383 | /// |
384 | /// if !peek.refresh() { |
385 | /// break; |
386 | /// } |
387 | /// } |
388 | /// |
389 | /// // Post condition, this is now an upper bound. |
390 | /// assert!(*peek < 100); |
391 | /// ``` |
392 | /// |
393 | /// When the element remains the maximum after modification, the peek remains unchanged: |
394 | /// |
395 | /// ``` |
396 | /// #![feature(binary_heap_peek_mut_refresh)] |
397 | /// use std::collections::BinaryHeap; |
398 | /// |
399 | /// let mut heap: BinaryHeap<u32> = [1, 2, 3].into(); |
400 | /// let mut peek = heap.peek_mut().unwrap(); |
401 | /// |
402 | /// assert_eq!(*peek, 3); |
403 | /// *peek = 42; |
404 | /// |
405 | /// // When we refresh, the peek is updated to the new maximum. |
406 | /// assert!(!peek.refresh(), "42 is even larger than 3"); |
407 | /// assert_eq!(*peek, 42); |
408 | /// ``` |
409 | #[unstable(feature = "binary_heap_peek_mut_refresh", issue = "138355")] |
410 | #[must_use= "is equivalent to dropping and getting a new PeekMut except for return information"] |
411 | pub fn refresh(&mut self) -> bool { |
412 | // The length of the underlying heap is unchanged by sifting down. The value stored for leak |
413 | // amplification thus remains accurate. We erase the leak amplification firstly because the |
414 | // operation is then equivalent to constructing a new PeekMut and secondly this avoids any |
415 | // future complication where original_len being non-empty would be interpreted as the heap |
416 | // having been leak amplified instead of checking the heap itself. |
417 | if let Some(original_len) = self.original_len.take() { |
418 | // SAFETY: This is how many elements were in the Vec at the time of |
419 | // the BinaryHeap::peek_mut call. |
420 | unsafe { self.heap.data.set_len(original_len.get()) }; |
421 | |
422 | // The length of the heap did not change by sifting, upholding our own invariants. |
423 | |
424 | // SAFETY: PeekMut is only instantiated for non-empty heaps. |
425 | (unsafe { self.heap.sift_down(0) }) != 0 |
426 | } else { |
427 | // The element was not modified. |
428 | false |
429 | } |
430 | } |
431 | |
432 | /// Removes the peeked value from the heap and returns it. |
433 | #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")] |
434 | pub fn pop(mut this: PeekMut<'a, T, A>) -> T { |
435 | if let Some(original_len) = this.original_len.take() { |
436 | // SAFETY: This is how many elements were in the Vec at the time of |
437 | // the BinaryHeap::peek_mut call. |
438 | unsafe { this.heap.data.set_len(original_len.get()) }; |
439 | |
440 | // Unlike in Drop, here we don't also need to do a sift_down even if |
441 | // the caller could've mutated the element. It is removed from the |
442 | // heap on the next line and pop() is not sensitive to its value. |
443 | } |
444 | |
445 | // SAFETY: Have a `PeekMut` element proves that the associated binary heap being non-empty, |
446 | // so the `pop` operation will not fail. |
447 | unsafe { this.heap.pop().unwrap_unchecked() } |
448 | } |
449 | } |
450 | |
451 | #[stable(feature = "rust1", since = "1.0.0")] |
452 | impl<T: Clone, A: Allocator + Clone> Clone for BinaryHeap<T, A> { |
453 | fn clone(&self) -> Self { |
454 | BinaryHeap { data: self.data.clone() } |
455 | } |
456 | |
457 | /// Overwrites the contents of `self` with a clone of the contents of `source`. |
458 | /// |
459 | /// This method is preferred over simply assigning `source.clone()` to `self`, |
460 | /// as it avoids reallocation if possible. |
461 | /// |
462 | /// See [`Vec::clone_from()`] for more details. |
463 | fn clone_from(&mut self, source: &Self) { |
464 | self.data.clone_from(&source.data); |
465 | } |
466 | } |
467 | |
468 | #[stable(feature = "rust1", since = "1.0.0")] |
469 | impl<T: Ord> Default for BinaryHeap<T> { |
470 | /// Creates an empty `BinaryHeap<T>`. |
471 | #[inline] |
472 | fn default() -> BinaryHeap<T> { |
473 | BinaryHeap::new() |
474 | } |
475 | } |
476 | |
477 | #[stable(feature = "binaryheap_debug", since = "1.4.0")] |
478 | impl<T: fmt::Debug, A: Allocator> fmt::Debug for BinaryHeap<T, A> { |
479 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
480 | f.debug_list().entries(self.iter()).finish() |
481 | } |
482 | } |
483 | |
484 | struct RebuildOnDrop< |
485 | 'a, |
486 | T: Ord, |
487 | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
488 | > { |
489 | heap: &'a mut BinaryHeap<T, A>, |
490 | rebuild_from: usize, |
491 | } |
492 | |
493 | impl<T: Ord, A: Allocator> Drop for RebuildOnDrop<'_, T, A> { |
494 | fn drop(&mut self) { |
495 | self.heap.rebuild_tail(self.rebuild_from); |
496 | } |
497 | } |
498 | |
499 | impl<T: Ord> BinaryHeap<T> { |
500 | /// Creates an empty `BinaryHeap` as a max-heap. |
501 | /// |
502 | /// # Examples |
503 | /// |
504 | /// Basic usage: |
505 | /// |
506 | /// ``` |
507 | /// use std::collections::BinaryHeap; |
508 | /// let mut heap = BinaryHeap::new(); |
509 | /// heap.push(4); |
510 | /// ``` |
511 | #[stable(feature = "rust1", since = "1.0.0")] |
512 | #[rustc_const_stable(feature = "const_binary_heap_constructor", since = "1.80.0")] |
513 | #[must_use] |
514 | pub const fn new() -> BinaryHeap<T> { |
515 | BinaryHeap { data: vec![] } |
516 | } |
517 | |
518 | /// Creates an empty `BinaryHeap` with at least the specified capacity. |
519 | /// |
520 | /// The binary heap will be able to hold at least `capacity` elements without |
521 | /// reallocating. This method is allowed to allocate for more elements than |
522 | /// `capacity`. If `capacity` is zero, the binary heap will not allocate. |
523 | /// |
524 | /// # Examples |
525 | /// |
526 | /// Basic usage: |
527 | /// |
528 | /// ``` |
529 | /// use std::collections::BinaryHeap; |
530 | /// let mut heap = BinaryHeap::with_capacity(10); |
531 | /// heap.push(4); |
532 | /// ``` |
533 | #[stable(feature = "rust1", since = "1.0.0")] |
534 | #[must_use] |
535 | pub fn with_capacity(capacity: usize) -> BinaryHeap<T> { |
536 | BinaryHeap { data: Vec::with_capacity(capacity) } |
537 | } |
538 | } |
539 | |
540 | impl<T: Ord, A: Allocator> BinaryHeap<T, A> { |
541 | /// Creates an empty `BinaryHeap` as a max-heap, using `A` as allocator. |
542 | /// |
543 | /// # Examples |
544 | /// |
545 | /// Basic usage: |
546 | /// |
547 | /// ``` |
548 | /// #![feature(allocator_api)] |
549 | /// |
550 | /// use std::alloc::System; |
551 | /// use std::collections::BinaryHeap; |
552 | /// let mut heap = BinaryHeap::new_in(System); |
553 | /// heap.push(4); |
554 | /// ``` |
555 | #[unstable(feature = "allocator_api", issue = "32838")] |
556 | #[must_use] |
557 | pub const fn new_in(alloc: A) -> BinaryHeap<T, A> { |
558 | BinaryHeap { data: Vec::new_in(alloc) } |
559 | } |
560 | |
561 | /// Creates an empty `BinaryHeap` with at least the specified capacity, using `A` as allocator. |
562 | /// |
563 | /// The binary heap will be able to hold at least `capacity` elements without |
564 | /// reallocating. This method is allowed to allocate for more elements than |
565 | /// `capacity`. If `capacity` is zero, the binary heap will not allocate. |
566 | /// |
567 | /// # Examples |
568 | /// |
569 | /// Basic usage: |
570 | /// |
571 | /// ``` |
572 | /// #![feature(allocator_api)] |
573 | /// |
574 | /// use std::alloc::System; |
575 | /// use std::collections::BinaryHeap; |
576 | /// let mut heap = BinaryHeap::with_capacity_in(10, System); |
577 | /// heap.push(4); |
578 | /// ``` |
579 | #[unstable(feature = "allocator_api", issue = "32838")] |
580 | #[must_use] |
581 | pub fn with_capacity_in(capacity: usize, alloc: A) -> BinaryHeap<T, A> { |
582 | BinaryHeap { data: Vec::with_capacity_in(capacity, alloc) } |
583 | } |
584 | |
585 | /// Returns a mutable reference to the greatest item in the binary heap, or |
586 | /// `None` if it is empty. |
587 | /// |
588 | /// Note: If the `PeekMut` value is leaked, some heap elements might get |
589 | /// leaked along with it, but the remaining elements will remain a valid |
590 | /// heap. |
591 | /// |
592 | /// # Examples |
593 | /// |
594 | /// Basic usage: |
595 | /// |
596 | /// ``` |
597 | /// use std::collections::BinaryHeap; |
598 | /// let mut heap = BinaryHeap::new(); |
599 | /// assert!(heap.peek_mut().is_none()); |
600 | /// |
601 | /// heap.push(1); |
602 | /// heap.push(5); |
603 | /// heap.push(2); |
604 | /// if let Some(mut val) = heap.peek_mut() { |
605 | /// *val = 0; |
606 | /// } |
607 | /// assert_eq!(heap.peek(), Some(&2)); |
608 | /// ``` |
609 | /// |
610 | /// # Time complexity |
611 | /// |
612 | /// If the item is modified then the worst case time complexity is *O*(log(*n*)), |
613 | /// otherwise it's *O*(1). |
614 | #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] |
615 | pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, A>> { |
616 | if self.is_empty() { None } else { Some(PeekMut { heap: self, original_len: None }) } |
617 | } |
618 | |
619 | /// Removes the greatest item from the binary heap and returns it, or `None` if it |
620 | /// is empty. |
621 | /// |
622 | /// # Examples |
623 | /// |
624 | /// Basic usage: |
625 | /// |
626 | /// ``` |
627 | /// use std::collections::BinaryHeap; |
628 | /// let mut heap = BinaryHeap::from([1, 3]); |
629 | /// |
630 | /// assert_eq!(heap.pop(), Some(3)); |
631 | /// assert_eq!(heap.pop(), Some(1)); |
632 | /// assert_eq!(heap.pop(), None); |
633 | /// ``` |
634 | /// |
635 | /// # Time complexity |
636 | /// |
637 | /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)). |
638 | #[stable(feature = "rust1", since = "1.0.0")] |
639 | pub fn pop(&mut self) -> Option<T> { |
640 | self.data.pop().map(|mut item| { |
641 | if !self.is_empty() { |
642 | swap(&mut item, &mut self.data[0]); |
643 | // SAFETY: !self.is_empty() means that self.len() > 0 |
644 | unsafe { self.sift_down_to_bottom(0) }; |
645 | } |
646 | item |
647 | }) |
648 | } |
649 | |
650 | /// Pushes an item onto the binary heap. |
651 | /// |
652 | /// # Examples |
653 | /// |
654 | /// Basic usage: |
655 | /// |
656 | /// ``` |
657 | /// use std::collections::BinaryHeap; |
658 | /// let mut heap = BinaryHeap::new(); |
659 | /// heap.push(3); |
660 | /// heap.push(5); |
661 | /// heap.push(1); |
662 | /// |
663 | /// assert_eq!(heap.len(), 3); |
664 | /// assert_eq!(heap.peek(), Some(&5)); |
665 | /// ``` |
666 | /// |
667 | /// # Time complexity |
668 | /// |
669 | /// The expected cost of `push`, averaged over every possible ordering of |
670 | /// the elements being pushed, and over a sufficiently large number of |
671 | /// pushes, is *O*(1). This is the most meaningful cost metric when pushing |
672 | /// elements that are *not* already in any sorted pattern. |
673 | /// |
674 | /// The time complexity degrades if elements are pushed in predominantly |
675 | /// ascending order. In the worst case, elements are pushed in ascending |
676 | /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap |
677 | /// containing *n* elements. |
678 | /// |
679 | /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case |
680 | /// occurs when capacity is exhausted and needs a resize. The resize cost |
681 | /// has been amortized in the previous figures. |
682 | #[stable(feature = "rust1", since = "1.0.0")] |
683 | #[rustc_confusables( "append", "put")] |
684 | pub fn push(&mut self, item: T) { |
685 | let old_len = self.len(); |
686 | self.data.push(item); |
687 | // SAFETY: Since we pushed a new item it means that |
688 | // old_len = self.len() - 1 < self.len() |
689 | unsafe { self.sift_up(0, old_len) }; |
690 | } |
691 | |
692 | /// Consumes the `BinaryHeap` and returns a vector in sorted |
693 | /// (ascending) order. |
694 | /// |
695 | /// # Examples |
696 | /// |
697 | /// Basic usage: |
698 | /// |
699 | /// ``` |
700 | /// use std::collections::BinaryHeap; |
701 | /// |
702 | /// let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]); |
703 | /// heap.push(6); |
704 | /// heap.push(3); |
705 | /// |
706 | /// let vec = heap.into_sorted_vec(); |
707 | /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]); |
708 | /// ``` |
709 | #[must_use= "`self` will be dropped if the result is not used"] |
710 | #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] |
711 | pub fn into_sorted_vec(mut self) -> Vec<T, A> { |
712 | let mut end = self.len(); |
713 | while end > 1 { |
714 | end -= 1; |
715 | // SAFETY: `end` goes from `self.len() - 1` to 1 (both included), |
716 | // so it's always a valid index to access. |
717 | // It is safe to access index 0 (i.e. `ptr`), because |
718 | // 1 <= end < self.len(), which means self.len() >= 2. |
719 | unsafe { |
720 | let ptr = self.data.as_mut_ptr(); |
721 | ptr::swap(ptr, ptr.add(end)); |
722 | } |
723 | // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so: |
724 | // 0 < 1 <= end <= self.len() - 1 < self.len() |
725 | // Which means 0 < end and end < self.len(). |
726 | unsafe { self.sift_down_range(0, end) }; |
727 | } |
728 | self.into_vec() |
729 | } |
730 | |
731 | // The implementations of sift_up and sift_down use unsafe blocks in |
732 | // order to move an element out of the vector (leaving behind a |
733 | // hole), shift along the others and move the removed element back into the |
734 | // vector at the final location of the hole. |
735 | // The `Hole` type is used to represent this, and make sure |
736 | // the hole is filled back at the end of its scope, even on panic. |
737 | // Using a hole reduces the constant factor compared to using swaps, |
738 | // which involves twice as many moves. |
739 | |
740 | /// # Safety |
741 | /// |
742 | /// The caller must guarantee that `pos < self.len()`. |
743 | /// |
744 | /// Returns the new position of the element. |
745 | unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize { |
746 | // Take out the value at `pos` and create a hole. |
747 | // SAFETY: The caller guarantees that pos < self.len() |
748 | let mut hole = unsafe { Hole::new(&mut self.data, pos) }; |
749 | |
750 | while hole.pos() > start { |
751 | let parent = (hole.pos() - 1) / 2; |
752 | |
753 | // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0 |
754 | // and so hole.pos() - 1 can't underflow. |
755 | // This guarantees that parent < hole.pos() so |
756 | // it's a valid index and also != hole.pos(). |
757 | if hole.element() <= unsafe { hole.get(parent) } { |
758 | break; |
759 | } |
760 | |
761 | // SAFETY: Same as above |
762 | unsafe { hole.move_to(parent) }; |
763 | } |
764 | |
765 | hole.pos() |
766 | } |
767 | |
768 | /// Take an element at `pos` and move it down the heap, |
769 | /// while its children are larger. |
770 | /// |
771 | /// Returns the new position of the element. |
772 | /// |
773 | /// # Safety |
774 | /// |
775 | /// The caller must guarantee that `pos < end <= self.len()`. |
776 | unsafe fn sift_down_range(&mut self, pos: usize, end: usize) -> usize { |
777 | // SAFETY: The caller guarantees that pos < end <= self.len(). |
778 | let mut hole = unsafe { Hole::new(&mut self.data, pos) }; |
779 | let mut child = 2 * hole.pos() + 1; |
780 | |
781 | // Loop invariant: child == 2 * hole.pos() + 1. |
782 | while child <= end.saturating_sub(2) { |
783 | // compare with the greater of the two children |
784 | // SAFETY: child < end - 1 < self.len() and |
785 | // child + 1 < end <= self.len(), so they're valid indexes. |
786 | // child == 2 * hole.pos() + 1 != hole.pos() and |
787 | // child + 1 == 2 * hole.pos() + 2 != hole.pos(). |
788 | // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow |
789 | // if T is a ZST |
790 | child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize; |
791 | |
792 | // if we are already in order, stop. |
793 | // SAFETY: child is now either the old child or the old child+1 |
794 | // We already proven that both are < self.len() and != hole.pos() |
795 | if hole.element() >= unsafe { hole.get(child) } { |
796 | return hole.pos(); |
797 | } |
798 | |
799 | // SAFETY: same as above. |
800 | unsafe { hole.move_to(child) }; |
801 | child = 2 * hole.pos() + 1; |
802 | } |
803 | |
804 | // SAFETY: && short circuit, which means that in the |
805 | // second condition it's already true that child == end - 1 < self.len(). |
806 | if child == end - 1 && hole.element() < unsafe { hole.get(child) } { |
807 | // SAFETY: child is already proven to be a valid index and |
808 | // child == 2 * hole.pos() + 1 != hole.pos(). |
809 | unsafe { hole.move_to(child) }; |
810 | } |
811 | |
812 | hole.pos() |
813 | } |
814 | |
815 | /// # Safety |
816 | /// |
817 | /// The caller must guarantee that `pos < self.len()`. |
818 | unsafe fn sift_down(&mut self, pos: usize) -> usize { |
819 | let len = self.len(); |
820 | // SAFETY: pos < len is guaranteed by the caller and |
821 | // obviously len = self.len() <= self.len(). |
822 | unsafe { self.sift_down_range(pos, len) } |
823 | } |
824 | |
825 | /// Take an element at `pos` and move it all the way down the heap, |
826 | /// then sift it up to its position. |
827 | /// |
828 | /// Note: This is faster when the element is known to be large / should |
829 | /// be closer to the bottom. |
830 | /// |
831 | /// # Safety |
832 | /// |
833 | /// The caller must guarantee that `pos < self.len()`. |
834 | unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) { |
835 | let end = self.len(); |
836 | let start = pos; |
837 | |
838 | // SAFETY: The caller guarantees that pos < self.len(). |
839 | let mut hole = unsafe { Hole::new(&mut self.data, pos) }; |
840 | let mut child = 2 * hole.pos() + 1; |
841 | |
842 | // Loop invariant: child == 2 * hole.pos() + 1. |
843 | while child <= end.saturating_sub(2) { |
844 | // SAFETY: child < end - 1 < self.len() and |
845 | // child + 1 < end <= self.len(), so they're valid indexes. |
846 | // child == 2 * hole.pos() + 1 != hole.pos() and |
847 | // child + 1 == 2 * hole.pos() + 2 != hole.pos(). |
848 | // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow |
849 | // if T is a ZST |
850 | child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize; |
851 | |
852 | // SAFETY: Same as above |
853 | unsafe { hole.move_to(child) }; |
854 | child = 2 * hole.pos() + 1; |
855 | } |
856 | |
857 | if child == end - 1 { |
858 | // SAFETY: child == end - 1 < self.len(), so it's a valid index |
859 | // and child == 2 * hole.pos() + 1 != hole.pos(). |
860 | unsafe { hole.move_to(child) }; |
861 | } |
862 | pos = hole.pos(); |
863 | drop(hole); |
864 | |
865 | // SAFETY: pos is the position in the hole and was already proven |
866 | // to be a valid index. |
867 | unsafe { self.sift_up(start, pos) }; |
868 | } |
869 | |
870 | /// Rebuild assuming data[0..start] is still a proper heap. |
871 | fn rebuild_tail(&mut self, start: usize) { |
872 | if start == self.len() { |
873 | return; |
874 | } |
875 | |
876 | let tail_len = self.len() - start; |
877 | |
878 | #[inline(always)] |
879 | fn log2_fast(x: usize) -> usize { |
880 | (usize::BITS - x.leading_zeros() - 1) as usize |
881 | } |
882 | |
883 | // `rebuild` takes O(self.len()) operations |
884 | // and about 2 * self.len() comparisons in the worst case |
885 | // while repeating `sift_up` takes O(tail_len * log(start)) operations |
886 | // and about 1 * tail_len * log_2(start) comparisons in the worst case, |
887 | // assuming start >= tail_len. For larger heaps, the crossover point |
888 | // no longer follows this reasoning and was determined empirically. |
889 | let better_to_rebuild = if start < tail_len { |
890 | true |
891 | } else if self.len() <= 2048 { |
892 | 2 * self.len() < tail_len * log2_fast(start) |
893 | } else { |
894 | 2 * self.len() < tail_len * 11 |
895 | }; |
896 | |
897 | if better_to_rebuild { |
898 | self.rebuild(); |
899 | } else { |
900 | for i in start..self.len() { |
901 | // SAFETY: The index `i` is always less than self.len(). |
902 | unsafe { self.sift_up(0, i) }; |
903 | } |
904 | } |
905 | } |
906 | |
907 | fn rebuild(&mut self) { |
908 | let mut n = self.len() / 2; |
909 | while n > 0 { |
910 | n -= 1; |
911 | // SAFETY: n starts from self.len() / 2 and goes down to 0. |
912 | // The only case when !(n < self.len()) is if |
913 | // self.len() == 0, but it's ruled out by the loop condition. |
914 | unsafe { self.sift_down(n) }; |
915 | } |
916 | } |
917 | |
918 | /// Moves all the elements of `other` into `self`, leaving `other` empty. |
919 | /// |
920 | /// # Examples |
921 | /// |
922 | /// Basic usage: |
923 | /// |
924 | /// ``` |
925 | /// use std::collections::BinaryHeap; |
926 | /// |
927 | /// let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]); |
928 | /// let mut b = BinaryHeap::from([-20, 5, 43]); |
929 | /// |
930 | /// a.append(&mut b); |
931 | /// |
932 | /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); |
933 | /// assert!(b.is_empty()); |
934 | /// ``` |
935 | #[stable(feature = "binary_heap_append", since = "1.11.0")] |
936 | pub fn append(&mut self, other: &mut Self) { |
937 | if self.len() < other.len() { |
938 | swap(self, other); |
939 | } |
940 | |
941 | let start = self.data.len(); |
942 | |
943 | self.data.append(&mut other.data); |
944 | |
945 | self.rebuild_tail(start); |
946 | } |
947 | |
948 | /// Clears the binary heap, returning an iterator over the removed elements |
949 | /// in heap order. If the iterator is dropped before being fully consumed, |
950 | /// it drops the remaining elements in heap order. |
951 | /// |
952 | /// The returned iterator keeps a mutable borrow on the heap to optimize |
953 | /// its implementation. |
954 | /// |
955 | /// Note: |
956 | /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`. |
957 | /// You should use the latter for most cases. |
958 | /// |
959 | /// # Examples |
960 | /// |
961 | /// Basic usage: |
962 | /// |
963 | /// ``` |
964 | /// #![feature(binary_heap_drain_sorted)] |
965 | /// use std::collections::BinaryHeap; |
966 | /// |
967 | /// let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]); |
968 | /// assert_eq!(heap.len(), 5); |
969 | /// |
970 | /// drop(heap.drain_sorted()); // removes all elements in heap order |
971 | /// assert_eq!(heap.len(), 0); |
972 | /// ``` |
973 | #[inline] |
974 | #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] |
975 | pub fn drain_sorted(&mut self) -> DrainSorted<'_, T, A> { |
976 | DrainSorted { inner: self } |
977 | } |
978 | |
979 | /// Retains only the elements specified by the predicate. |
980 | /// |
981 | /// In other words, remove all elements `e` for which `f(&e)` returns |
982 | /// `false`. The elements are visited in unsorted (and unspecified) order. |
983 | /// |
984 | /// # Examples |
985 | /// |
986 | /// Basic usage: |
987 | /// |
988 | /// ``` |
989 | /// use std::collections::BinaryHeap; |
990 | /// |
991 | /// let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]); |
992 | /// |
993 | /// heap.retain(|x| x % 2 == 0); // only keep even numbers |
994 | /// |
995 | /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4]) |
996 | /// ``` |
997 | #[stable(feature = "binary_heap_retain", since = "1.70.0")] |
998 | pub fn retain<F>(&mut self, mut f: F) |
999 | where |
1000 | F: FnMut(&T) -> bool, |
1001 | { |
1002 | // rebuild_start will be updated to the first touched element below, and the rebuild will |
1003 | // only be done for the tail. |
1004 | let mut guard = RebuildOnDrop { rebuild_from: self.len(), heap: self }; |
1005 | let mut i = 0; |
1006 | |
1007 | guard.heap.data.retain(|e| { |
1008 | let keep = f(e); |
1009 | if !keep && i < guard.rebuild_from { |
1010 | guard.rebuild_from = i; |
1011 | } |
1012 | i += 1; |
1013 | keep |
1014 | }); |
1015 | } |
1016 | } |
1017 | |
1018 | impl<T, A: Allocator> BinaryHeap<T, A> { |
1019 | /// Returns an iterator visiting all values in the underlying vector, in |
1020 | /// arbitrary order. |
1021 | /// |
1022 | /// # Examples |
1023 | /// |
1024 | /// Basic usage: |
1025 | /// |
1026 | /// ``` |
1027 | /// use std::collections::BinaryHeap; |
1028 | /// let heap = BinaryHeap::from([1, 2, 3, 4]); |
1029 | /// |
1030 | /// // Print 1, 2, 3, 4 in arbitrary order |
1031 | /// for x in heap.iter() { |
1032 | /// println!("{x}"); |
1033 | /// } |
1034 | /// ``` |
1035 | #[stable(feature = "rust1", since = "1.0.0")] |
1036 | #[cfg_attr(not(test), rustc_diagnostic_item = "binaryheap_iter")] |
1037 | pub fn iter(&self) -> Iter<'_, T> { |
1038 | Iter { iter: self.data.iter() } |
1039 | } |
1040 | |
1041 | /// Returns an iterator which retrieves elements in heap order. |
1042 | /// |
1043 | /// This method consumes the original heap. |
1044 | /// |
1045 | /// # Examples |
1046 | /// |
1047 | /// Basic usage: |
1048 | /// |
1049 | /// ``` |
1050 | /// #![feature(binary_heap_into_iter_sorted)] |
1051 | /// use std::collections::BinaryHeap; |
1052 | /// let heap = BinaryHeap::from([1, 2, 3, 4, 5]); |
1053 | /// |
1054 | /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), [5, 4]); |
1055 | /// ``` |
1056 | #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] |
1057 | pub fn into_iter_sorted(self) -> IntoIterSorted<T, A> { |
1058 | IntoIterSorted { inner: self } |
1059 | } |
1060 | |
1061 | /// Returns the greatest item in the binary heap, or `None` if it is empty. |
1062 | /// |
1063 | /// # Examples |
1064 | /// |
1065 | /// Basic usage: |
1066 | /// |
1067 | /// ``` |
1068 | /// use std::collections::BinaryHeap; |
1069 | /// let mut heap = BinaryHeap::new(); |
1070 | /// assert_eq!(heap.peek(), None); |
1071 | /// |
1072 | /// heap.push(1); |
1073 | /// heap.push(5); |
1074 | /// heap.push(2); |
1075 | /// assert_eq!(heap.peek(), Some(&5)); |
1076 | /// |
1077 | /// ``` |
1078 | /// |
1079 | /// # Time complexity |
1080 | /// |
1081 | /// Cost is *O*(1) in the worst case. |
1082 | #[must_use] |
1083 | #[stable(feature = "rust1", since = "1.0.0")] |
1084 | pub fn peek(&self) -> Option<&T> { |
1085 | self.data.get(0) |
1086 | } |
1087 | |
1088 | /// Returns the number of elements the binary heap can hold without reallocating. |
1089 | /// |
1090 | /// # Examples |
1091 | /// |
1092 | /// Basic usage: |
1093 | /// |
1094 | /// ``` |
1095 | /// use std::collections::BinaryHeap; |
1096 | /// let mut heap = BinaryHeap::with_capacity(100); |
1097 | /// assert!(heap.capacity() >= 100); |
1098 | /// heap.push(4); |
1099 | /// ``` |
1100 | #[must_use] |
1101 | #[stable(feature = "rust1", since = "1.0.0")] |
1102 | pub fn capacity(&self) -> usize { |
1103 | self.data.capacity() |
1104 | } |
1105 | |
1106 | /// Reserves the minimum capacity for at least `additional` elements more than |
1107 | /// the current length. Unlike [`reserve`], this will not |
1108 | /// deliberately over-allocate to speculatively avoid frequent allocations. |
1109 | /// After calling `reserve_exact`, capacity will be greater than or equal to |
1110 | /// `self.len() + additional`. Does nothing if the capacity is already |
1111 | /// sufficient. |
1112 | /// |
1113 | /// [`reserve`]: BinaryHeap::reserve |
1114 | /// |
1115 | /// # Panics |
1116 | /// |
1117 | /// Panics if the new capacity overflows [`usize`]. |
1118 | /// |
1119 | /// # Examples |
1120 | /// |
1121 | /// Basic usage: |
1122 | /// |
1123 | /// ``` |
1124 | /// use std::collections::BinaryHeap; |
1125 | /// let mut heap = BinaryHeap::new(); |
1126 | /// heap.reserve_exact(100); |
1127 | /// assert!(heap.capacity() >= 100); |
1128 | /// heap.push(4); |
1129 | /// ``` |
1130 | /// |
1131 | /// [`reserve`]: BinaryHeap::reserve |
1132 | #[stable(feature = "rust1", since = "1.0.0")] |
1133 | pub fn reserve_exact(&mut self, additional: usize) { |
1134 | self.data.reserve_exact(additional); |
1135 | } |
1136 | |
1137 | /// Reserves capacity for at least `additional` elements more than the |
1138 | /// current length. The allocator may reserve more space to speculatively |
1139 | /// avoid frequent allocations. After calling `reserve`, |
1140 | /// capacity will be greater than or equal to `self.len() + additional`. |
1141 | /// Does nothing if capacity is already sufficient. |
1142 | /// |
1143 | /// # Panics |
1144 | /// |
1145 | /// Panics if the new capacity overflows [`usize`]. |
1146 | /// |
1147 | /// # Examples |
1148 | /// |
1149 | /// Basic usage: |
1150 | /// |
1151 | /// ``` |
1152 | /// use std::collections::BinaryHeap; |
1153 | /// let mut heap = BinaryHeap::new(); |
1154 | /// heap.reserve(100); |
1155 | /// assert!(heap.capacity() >= 100); |
1156 | /// heap.push(4); |
1157 | /// ``` |
1158 | #[stable(feature = "rust1", since = "1.0.0")] |
1159 | pub fn reserve(&mut self, additional: usize) { |
1160 | self.data.reserve(additional); |
1161 | } |
1162 | |
1163 | /// Tries to reserve the minimum capacity for at least `additional` elements |
1164 | /// more than the current length. Unlike [`try_reserve`], this will not |
1165 | /// deliberately over-allocate to speculatively avoid frequent allocations. |
1166 | /// After calling `try_reserve_exact`, capacity will be greater than or |
1167 | /// equal to `self.len() + additional` if it returns `Ok(())`. |
1168 | /// Does nothing if the capacity is already sufficient. |
1169 | /// |
1170 | /// Note that the allocator may give the collection more space than it |
1171 | /// requests. Therefore, capacity can not be relied upon to be precisely |
1172 | /// minimal. Prefer [`try_reserve`] if future insertions are expected. |
1173 | /// |
1174 | /// [`try_reserve`]: BinaryHeap::try_reserve |
1175 | /// |
1176 | /// # Errors |
1177 | /// |
1178 | /// If the capacity overflows, or the allocator reports a failure, then an error |
1179 | /// is returned. |
1180 | /// |
1181 | /// # Examples |
1182 | /// |
1183 | /// ``` |
1184 | /// use std::collections::BinaryHeap; |
1185 | /// use std::collections::TryReserveError; |
1186 | /// |
1187 | /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> { |
1188 | /// let mut heap = BinaryHeap::new(); |
1189 | /// |
1190 | /// // Pre-reserve the memory, exiting if we can't |
1191 | /// heap.try_reserve_exact(data.len())?; |
1192 | /// |
1193 | /// // Now we know this can't OOM in the middle of our complex work |
1194 | /// heap.extend(data.iter()); |
1195 | /// |
1196 | /// Ok(heap.pop()) |
1197 | /// } |
1198 | /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); |
1199 | /// ``` |
1200 | #[stable(feature = "try_reserve_2", since = "1.63.0")] |
1201 | pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { |
1202 | self.data.try_reserve_exact(additional) |
1203 | } |
1204 | |
1205 | /// Tries to reserve capacity for at least `additional` elements more than the |
1206 | /// current length. The allocator may reserve more space to speculatively |
1207 | /// avoid frequent allocations. After calling `try_reserve`, capacity will be |
1208 | /// greater than or equal to `self.len() + additional` if it returns |
1209 | /// `Ok(())`. Does nothing if capacity is already sufficient. This method |
1210 | /// preserves the contents even if an error occurs. |
1211 | /// |
1212 | /// # Errors |
1213 | /// |
1214 | /// If the capacity overflows, or the allocator reports a failure, then an error |
1215 | /// is returned. |
1216 | /// |
1217 | /// # Examples |
1218 | /// |
1219 | /// ``` |
1220 | /// use std::collections::BinaryHeap; |
1221 | /// use std::collections::TryReserveError; |
1222 | /// |
1223 | /// fn find_max_slow(data: &[u32]) -> Result<Option<u32>, TryReserveError> { |
1224 | /// let mut heap = BinaryHeap::new(); |
1225 | /// |
1226 | /// // Pre-reserve the memory, exiting if we can't |
1227 | /// heap.try_reserve(data.len())?; |
1228 | /// |
1229 | /// // Now we know this can't OOM in the middle of our complex work |
1230 | /// heap.extend(data.iter()); |
1231 | /// |
1232 | /// Ok(heap.pop()) |
1233 | /// } |
1234 | /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); |
1235 | /// ``` |
1236 | #[stable(feature = "try_reserve_2", since = "1.63.0")] |
1237 | pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
1238 | self.data.try_reserve(additional) |
1239 | } |
1240 | |
1241 | /// Discards as much additional capacity as possible. |
1242 | /// |
1243 | /// # Examples |
1244 | /// |
1245 | /// Basic usage: |
1246 | /// |
1247 | /// ``` |
1248 | /// use std::collections::BinaryHeap; |
1249 | /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); |
1250 | /// |
1251 | /// assert!(heap.capacity() >= 100); |
1252 | /// heap.shrink_to_fit(); |
1253 | /// assert!(heap.capacity() == 0); |
1254 | /// ``` |
1255 | #[stable(feature = "rust1", since = "1.0.0")] |
1256 | pub fn shrink_to_fit(&mut self) { |
1257 | self.data.shrink_to_fit(); |
1258 | } |
1259 | |
1260 | /// Discards capacity with a lower bound. |
1261 | /// |
1262 | /// The capacity will remain at least as large as both the length |
1263 | /// and the supplied value. |
1264 | /// |
1265 | /// If the current capacity is less than the lower limit, this is a no-op. |
1266 | /// |
1267 | /// # Examples |
1268 | /// |
1269 | /// ``` |
1270 | /// use std::collections::BinaryHeap; |
1271 | /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); |
1272 | /// |
1273 | /// assert!(heap.capacity() >= 100); |
1274 | /// heap.shrink_to(10); |
1275 | /// assert!(heap.capacity() >= 10); |
1276 | /// ``` |
1277 | #[inline] |
1278 | #[stable(feature = "shrink_to", since = "1.56.0")] |
1279 | pub fn shrink_to(&mut self, min_capacity: usize) { |
1280 | self.data.shrink_to(min_capacity) |
1281 | } |
1282 | |
1283 | /// Returns a slice of all values in the underlying vector, in arbitrary |
1284 | /// order. |
1285 | /// |
1286 | /// # Examples |
1287 | /// |
1288 | /// Basic usage: |
1289 | /// |
1290 | /// ``` |
1291 | /// use std::collections::BinaryHeap; |
1292 | /// use std::io::{self, Write}; |
1293 | /// |
1294 | /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]); |
1295 | /// |
1296 | /// io::sink().write(heap.as_slice()).unwrap(); |
1297 | /// ``` |
1298 | #[must_use] |
1299 | #[stable(feature = "binary_heap_as_slice", since = "1.80.0")] |
1300 | pub fn as_slice(&self) -> &[T] { |
1301 | self.data.as_slice() |
1302 | } |
1303 | |
1304 | /// Consumes the `BinaryHeap` and returns the underlying vector |
1305 | /// in arbitrary order. |
1306 | /// |
1307 | /// # Examples |
1308 | /// |
1309 | /// Basic usage: |
1310 | /// |
1311 | /// ``` |
1312 | /// use std::collections::BinaryHeap; |
1313 | /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]); |
1314 | /// let vec = heap.into_vec(); |
1315 | /// |
1316 | /// // Will print in some order |
1317 | /// for x in vec { |
1318 | /// println!("{x}"); |
1319 | /// } |
1320 | /// ``` |
1321 | #[must_use= "`self` will be dropped if the result is not used"] |
1322 | #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] |
1323 | pub fn into_vec(self) -> Vec<T, A> { |
1324 | self.into() |
1325 | } |
1326 | |
1327 | /// Returns a reference to the underlying allocator. |
1328 | #[unstable(feature = "allocator_api", issue = "32838")] |
1329 | #[inline] |
1330 | pub fn allocator(&self) -> &A { |
1331 | self.data.allocator() |
1332 | } |
1333 | |
1334 | /// Returns the length of the binary heap. |
1335 | /// |
1336 | /// # Examples |
1337 | /// |
1338 | /// Basic usage: |
1339 | /// |
1340 | /// ``` |
1341 | /// use std::collections::BinaryHeap; |
1342 | /// let heap = BinaryHeap::from([1, 3]); |
1343 | /// |
1344 | /// assert_eq!(heap.len(), 2); |
1345 | /// ``` |
1346 | #[must_use] |
1347 | #[stable(feature = "rust1", since = "1.0.0")] |
1348 | #[rustc_confusables( "length", "size")] |
1349 | pub fn len(&self) -> usize { |
1350 | self.data.len() |
1351 | } |
1352 | |
1353 | /// Checks if the binary heap is empty. |
1354 | /// |
1355 | /// # Examples |
1356 | /// |
1357 | /// Basic usage: |
1358 | /// |
1359 | /// ``` |
1360 | /// use std::collections::BinaryHeap; |
1361 | /// let mut heap = BinaryHeap::new(); |
1362 | /// |
1363 | /// assert!(heap.is_empty()); |
1364 | /// |
1365 | /// heap.push(3); |
1366 | /// heap.push(5); |
1367 | /// heap.push(1); |
1368 | /// |
1369 | /// assert!(!heap.is_empty()); |
1370 | /// ``` |
1371 | #[must_use] |
1372 | #[stable(feature = "rust1", since = "1.0.0")] |
1373 | pub fn is_empty(&self) -> bool { |
1374 | self.len() == 0 |
1375 | } |
1376 | |
1377 | /// Clears the binary heap, returning an iterator over the removed elements |
1378 | /// in arbitrary order. If the iterator is dropped before being fully |
1379 | /// consumed, it drops the remaining elements in arbitrary order. |
1380 | /// |
1381 | /// The returned iterator keeps a mutable borrow on the heap to optimize |
1382 | /// its implementation. |
1383 | /// |
1384 | /// # Examples |
1385 | /// |
1386 | /// Basic usage: |
1387 | /// |
1388 | /// ``` |
1389 | /// use std::collections::BinaryHeap; |
1390 | /// let mut heap = BinaryHeap::from([1, 3]); |
1391 | /// |
1392 | /// assert!(!heap.is_empty()); |
1393 | /// |
1394 | /// for x in heap.drain() { |
1395 | /// println!("{x}"); |
1396 | /// } |
1397 | /// |
1398 | /// assert!(heap.is_empty()); |
1399 | /// ``` |
1400 | #[inline] |
1401 | #[stable(feature = "drain", since = "1.6.0")] |
1402 | pub fn drain(&mut self) -> Drain<'_, T, A> { |
1403 | Drain { iter: self.data.drain(..) } |
1404 | } |
1405 | |
1406 | /// Drops all items from the binary heap. |
1407 | /// |
1408 | /// # Examples |
1409 | /// |
1410 | /// Basic usage: |
1411 | /// |
1412 | /// ``` |
1413 | /// use std::collections::BinaryHeap; |
1414 | /// let mut heap = BinaryHeap::from([1, 3]); |
1415 | /// |
1416 | /// assert!(!heap.is_empty()); |
1417 | /// |
1418 | /// heap.clear(); |
1419 | /// |
1420 | /// assert!(heap.is_empty()); |
1421 | /// ``` |
1422 | #[stable(feature = "rust1", since = "1.0.0")] |
1423 | pub fn clear(&mut self) { |
1424 | self.drain(); |
1425 | } |
1426 | } |
1427 | |
1428 | /// Hole represents a hole in a slice i.e., an index without valid value |
1429 | /// (because it was moved from or duplicated). |
1430 | /// In drop, `Hole` will restore the slice by filling the hole |
1431 | /// position with the value that was originally removed. |
1432 | struct Hole<'a, T: 'a> { |
1433 | data: &'a mut [T], |
1434 | elt: ManuallyDrop<T>, |
1435 | pos: usize, |
1436 | } |
1437 | |
1438 | impl<'a, T> Hole<'a, T> { |
1439 | /// Creates a new `Hole` at index `pos`. |
1440 | /// |
1441 | /// Unsafe because pos must be within the data slice. |
1442 | #[inline] |
1443 | unsafe fn new(data: &'a mut [T], pos: usize) -> Self { |
1444 | debug_assert!(pos < data.len()); |
1445 | // SAFE: pos should be inside the slice |
1446 | let elt = unsafe { ptr::read(data.get_unchecked(pos)) }; |
1447 | Hole { data, elt: ManuallyDrop::new(elt), pos } |
1448 | } |
1449 | |
1450 | #[inline] |
1451 | fn pos(&self) -> usize { |
1452 | self.pos |
1453 | } |
1454 | |
1455 | /// Returns a reference to the element removed. |
1456 | #[inline] |
1457 | fn element(&self) -> &T { |
1458 | &self.elt |
1459 | } |
1460 | |
1461 | /// Returns a reference to the element at `index`. |
1462 | /// |
1463 | /// Unsafe because index must be within the data slice and not equal to pos. |
1464 | #[inline] |
1465 | unsafe fn get(&self, index: usize) -> &T { |
1466 | debug_assert!(index != self.pos); |
1467 | debug_assert!(index < self.data.len()); |
1468 | unsafe { self.data.get_unchecked(index) } |
1469 | } |
1470 | |
1471 | /// Move hole to new location |
1472 | /// |
1473 | /// Unsafe because index must be within the data slice and not equal to pos. |
1474 | #[inline] |
1475 | unsafe fn move_to(&mut self, index: usize) { |
1476 | debug_assert!(index != self.pos); |
1477 | debug_assert!(index < self.data.len()); |
1478 | unsafe { |
1479 | let ptr = self.data.as_mut_ptr(); |
1480 | let index_ptr: *const _ = ptr.add(index); |
1481 | let hole_ptr = ptr.add(self.pos); |
1482 | ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); |
1483 | } |
1484 | self.pos = index; |
1485 | } |
1486 | } |
1487 | |
1488 | impl<T> Drop for Hole<'_, T> { |
1489 | #[inline] |
1490 | fn drop(&mut self) { |
1491 | // fill the hole again |
1492 | unsafe { |
1493 | let pos: usize = self.pos; |
1494 | ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), count:1); |
1495 | } |
1496 | } |
1497 | } |
1498 | |
1499 | /// An iterator over the elements of a `BinaryHeap`. |
1500 | /// |
1501 | /// This `struct` is created by [`BinaryHeap::iter()`]. See its |
1502 | /// documentation for more. |
1503 | /// |
1504 | /// [`iter`]: BinaryHeap::iter |
1505 | #[must_use= "iterators are lazy and do nothing unless consumed"] |
1506 | #[stable(feature = "rust1", since = "1.0.0")] |
1507 | pub struct Iter<'a, T: 'a> { |
1508 | iter: slice::Iter<'a, T>, |
1509 | } |
1510 | |
1511 | #[stable(feature = "default_iters_sequel", since = "1.82.0")] |
1512 | impl<T> Default for Iter<'_, T> { |
1513 | /// Creates an empty `binary_heap::Iter`. |
1514 | /// |
1515 | /// ``` |
1516 | /// # use std::collections::binary_heap; |
1517 | /// let iter: binary_heap::Iter<'_, u8> = Default::default(); |
1518 | /// assert_eq!(iter.len(), 0); |
1519 | /// ``` |
1520 | fn default() -> Self { |
1521 | Iter { iter: Default::default() } |
1522 | } |
1523 | } |
1524 | |
1525 | #[stable(feature = "collection_debug", since = "1.17.0")] |
1526 | impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> { |
1527 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1528 | f.debug_tuple(name:"Iter").field(&self.iter.as_slice()).finish() |
1529 | } |
1530 | } |
1531 | |
1532 | // FIXME(#26925) Remove in favor of `#[derive(Clone)]` |
1533 | #[stable(feature = "rust1", since = "1.0.0")] |
1534 | impl<T> Clone for Iter<'_, T> { |
1535 | fn clone(&self) -> Self { |
1536 | Iter { iter: self.iter.clone() } |
1537 | } |
1538 | } |
1539 | |
1540 | #[stable(feature = "rust1", since = "1.0.0")] |
1541 | impl<'a, T> Iterator for Iter<'a, T> { |
1542 | type Item = &'a T; |
1543 | |
1544 | #[inline] |
1545 | fn next(&mut self) -> Option<&'a T> { |
1546 | self.iter.next() |
1547 | } |
1548 | |
1549 | #[inline] |
1550 | fn size_hint(&self) -> (usize, Option<usize>) { |
1551 | self.iter.size_hint() |
1552 | } |
1553 | |
1554 | #[inline] |
1555 | fn last(self) -> Option<&'a T> { |
1556 | self.iter.last() |
1557 | } |
1558 | } |
1559 | |
1560 | #[stable(feature = "rust1", since = "1.0.0")] |
1561 | impl<'a, T> DoubleEndedIterator for Iter<'a, T> { |
1562 | #[inline] |
1563 | fn next_back(&mut self) -> Option<&'a T> { |
1564 | self.iter.next_back() |
1565 | } |
1566 | } |
1567 | |
1568 | #[stable(feature = "rust1", since = "1.0.0")] |
1569 | impl<T> ExactSizeIterator for Iter<'_, T> { |
1570 | fn is_empty(&self) -> bool { |
1571 | self.iter.is_empty() |
1572 | } |
1573 | } |
1574 | |
1575 | #[stable(feature = "fused", since = "1.26.0")] |
1576 | impl<T> FusedIterator for Iter<'_, T> {} |
1577 | |
1578 | /// An owning iterator over the elements of a `BinaryHeap`. |
1579 | /// |
1580 | /// This `struct` is created by [`BinaryHeap::into_iter()`] |
1581 | /// (provided by the [`IntoIterator`] trait). See its documentation for more. |
1582 | /// |
1583 | /// [`into_iter`]: BinaryHeap::into_iter |
1584 | #[stable(feature = "rust1", since = "1.0.0")] |
1585 | #[derive(Clone)] |
1586 | pub struct IntoIter< |
1587 | T, |
1588 | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
1589 | > { |
1590 | iter: vec::IntoIter<T, A>, |
1591 | } |
1592 | |
1593 | impl<T, A: Allocator> IntoIter<T, A> { |
1594 | /// Returns a reference to the underlying allocator. |
1595 | #[unstable(feature = "allocator_api", issue = "32838")] |
1596 | pub fn allocator(&self) -> &A { |
1597 | self.iter.allocator() |
1598 | } |
1599 | } |
1600 | |
1601 | #[stable(feature = "collection_debug", since = "1.17.0")] |
1602 | impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> { |
1603 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1604 | f.debug_tuple(name:"IntoIter").field(&self.iter.as_slice()).finish() |
1605 | } |
1606 | } |
1607 | |
1608 | #[stable(feature = "rust1", since = "1.0.0")] |
1609 | impl<T, A: Allocator> Iterator for IntoIter<T, A> { |
1610 | type Item = T; |
1611 | |
1612 | #[inline] |
1613 | fn next(&mut self) -> Option<T> { |
1614 | self.iter.next() |
1615 | } |
1616 | |
1617 | #[inline] |
1618 | fn size_hint(&self) -> (usize, Option<usize>) { |
1619 | self.iter.size_hint() |
1620 | } |
1621 | } |
1622 | |
1623 | #[stable(feature = "rust1", since = "1.0.0")] |
1624 | impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> { |
1625 | #[inline] |
1626 | fn next_back(&mut self) -> Option<T> { |
1627 | self.iter.next_back() |
1628 | } |
1629 | } |
1630 | |
1631 | #[stable(feature = "rust1", since = "1.0.0")] |
1632 | impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> { |
1633 | fn is_empty(&self) -> bool { |
1634 | self.iter.is_empty() |
1635 | } |
1636 | } |
1637 | |
1638 | #[stable(feature = "fused", since = "1.26.0")] |
1639 | impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {} |
1640 | |
1641 | #[doc(hidden)] |
1642 | #[unstable(issue = "none", feature = "trusted_fused")] |
1643 | unsafe impl<T, A: Allocator> TrustedFused for IntoIter<T, A> {} |
1644 | |
1645 | #[stable(feature = "default_iters", since = "1.70.0")] |
1646 | impl<T> Default for IntoIter<T> { |
1647 | /// Creates an empty `binary_heap::IntoIter`. |
1648 | /// |
1649 | /// ``` |
1650 | /// # use std::collections::binary_heap; |
1651 | /// let iter: binary_heap::IntoIter<u8> = Default::default(); |
1652 | /// assert_eq!(iter.len(), 0); |
1653 | /// ``` |
1654 | fn default() -> Self { |
1655 | IntoIter { iter: Default::default() } |
1656 | } |
1657 | } |
1658 | |
1659 | // In addition to the SAFETY invariants of the following three unsafe traits |
1660 | // also refer to the vec::in_place_collect module documentation to get an overview |
1661 | #[unstable(issue = "none", feature = "inplace_iteration")] |
1662 | #[doc(hidden)] |
1663 | unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> { |
1664 | type Source = IntoIter<T, A>; |
1665 | |
1666 | #[inline] |
1667 | unsafe fn as_inner(&mut self) -> &mut Self::Source { |
1668 | self |
1669 | } |
1670 | } |
1671 | |
1672 | #[unstable(issue = "none", feature = "inplace_iteration")] |
1673 | #[doc(hidden)] |
1674 | unsafe impl<I, A: Allocator> InPlaceIterable for IntoIter<I, A> { |
1675 | const EXPAND_BY: Option<NonZero<usize>> = NonZero::new(1); |
1676 | const MERGE_BY: Option<NonZero<usize>> = NonZero::new(1); |
1677 | } |
1678 | |
1679 | #[cfg(not(test))] |
1680 | unsafe impl<I> AsVecIntoIter for IntoIter<I> { |
1681 | type Item = I; |
1682 | |
1683 | fn as_into_iter(&mut self) -> &mut vec::IntoIter<Self::Item> { |
1684 | &mut self.iter |
1685 | } |
1686 | } |
1687 | |
1688 | #[must_use= "iterators are lazy and do nothing unless consumed"] |
1689 | #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] |
1690 | #[derive(Clone, Debug)] |
1691 | pub struct IntoIterSorted< |
1692 | T, |
1693 | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
1694 | > { |
1695 | inner: BinaryHeap<T, A>, |
1696 | } |
1697 | |
1698 | impl<T, A: Allocator> IntoIterSorted<T, A> { |
1699 | /// Returns a reference to the underlying allocator. |
1700 | #[unstable(feature = "allocator_api", issue = "32838")] |
1701 | pub fn allocator(&self) -> &A { |
1702 | self.inner.allocator() |
1703 | } |
1704 | } |
1705 | |
1706 | #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] |
1707 | impl<T: Ord, A: Allocator> Iterator for IntoIterSorted<T, A> { |
1708 | type Item = T; |
1709 | |
1710 | #[inline] |
1711 | fn next(&mut self) -> Option<T> { |
1712 | self.inner.pop() |
1713 | } |
1714 | |
1715 | #[inline] |
1716 | fn size_hint(&self) -> (usize, Option<usize>) { |
1717 | let exact: usize = self.inner.len(); |
1718 | (exact, Some(exact)) |
1719 | } |
1720 | } |
1721 | |
1722 | #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] |
1723 | impl<T: Ord, A: Allocator> ExactSizeIterator for IntoIterSorted<T, A> {} |
1724 | |
1725 | #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] |
1726 | impl<T: Ord, A: Allocator> FusedIterator for IntoIterSorted<T, A> {} |
1727 | |
1728 | #[unstable(feature = "trusted_len", issue = "37572")] |
1729 | unsafe impl<T: Ord, A: Allocator> TrustedLen for IntoIterSorted<T, A> {} |
1730 | |
1731 | /// A draining iterator over the elements of a `BinaryHeap`. |
1732 | /// |
1733 | /// This `struct` is created by [`BinaryHeap::drain()`]. See its |
1734 | /// documentation for more. |
1735 | /// |
1736 | /// [`drain`]: BinaryHeap::drain |
1737 | #[stable(feature = "drain", since = "1.6.0")] |
1738 | #[derive(Debug)] |
1739 | pub struct Drain< |
1740 | 'a, |
1741 | T: 'a, |
1742 | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
1743 | > { |
1744 | iter: vec::Drain<'a, T, A>, |
1745 | } |
1746 | |
1747 | impl<T, A: Allocator> Drain<'_, T, A> { |
1748 | /// Returns a reference to the underlying allocator. |
1749 | #[unstable(feature = "allocator_api", issue = "32838")] |
1750 | pub fn allocator(&self) -> &A { |
1751 | self.iter.allocator() |
1752 | } |
1753 | } |
1754 | |
1755 | #[stable(feature = "drain", since = "1.6.0")] |
1756 | impl<T, A: Allocator> Iterator for Drain<'_, T, A> { |
1757 | type Item = T; |
1758 | |
1759 | #[inline] |
1760 | fn next(&mut self) -> Option<T> { |
1761 | self.iter.next() |
1762 | } |
1763 | |
1764 | #[inline] |
1765 | fn size_hint(&self) -> (usize, Option<usize>) { |
1766 | self.iter.size_hint() |
1767 | } |
1768 | } |
1769 | |
1770 | #[stable(feature = "drain", since = "1.6.0")] |
1771 | impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> { |
1772 | #[inline] |
1773 | fn next_back(&mut self) -> Option<T> { |
1774 | self.iter.next_back() |
1775 | } |
1776 | } |
1777 | |
1778 | #[stable(feature = "drain", since = "1.6.0")] |
1779 | impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> { |
1780 | fn is_empty(&self) -> bool { |
1781 | self.iter.is_empty() |
1782 | } |
1783 | } |
1784 | |
1785 | #[stable(feature = "fused", since = "1.26.0")] |
1786 | impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {} |
1787 | |
1788 | /// A draining iterator over the elements of a `BinaryHeap`. |
1789 | /// |
1790 | /// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its |
1791 | /// documentation for more. |
1792 | /// |
1793 | /// [`drain_sorted`]: BinaryHeap::drain_sorted |
1794 | #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] |
1795 | #[derive(Debug)] |
1796 | pub struct DrainSorted< |
1797 | 'a, |
1798 | T: Ord, |
1799 | #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, |
1800 | > { |
1801 | inner: &'a mut BinaryHeap<T, A>, |
1802 | } |
1803 | |
1804 | impl<'a, T: Ord, A: Allocator> DrainSorted<'a, T, A> { |
1805 | /// Returns a reference to the underlying allocator. |
1806 | #[unstable(feature = "allocator_api", issue = "32838")] |
1807 | pub fn allocator(&self) -> &A { |
1808 | self.inner.allocator() |
1809 | } |
1810 | } |
1811 | |
1812 | #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] |
1813 | impl<'a, T: Ord, A: Allocator> Drop for DrainSorted<'a, T, A> { |
1814 | /// Removes heap elements in heap order. |
1815 | fn drop(&mut self) { |
1816 | struct DropGuard<'r, 'a, T: Ord, A: Allocator>(&'r mut DrainSorted<'a, T, A>); |
1817 | |
1818 | impl<'r, 'a, T: Ord, A: Allocator> Drop for DropGuard<'r, 'a, T, A> { |
1819 | fn drop(&mut self) { |
1820 | while self.0.inner.pop().is_some() {} |
1821 | } |
1822 | } |
1823 | |
1824 | while let Some(item: T) = self.inner.pop() { |
1825 | let guard: DropGuard<'_, '_, T, A> = DropGuard(self); |
1826 | drop(item); |
1827 | mem::forget(guard); |
1828 | } |
1829 | } |
1830 | } |
1831 | |
1832 | #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] |
1833 | impl<T: Ord, A: Allocator> Iterator for DrainSorted<'_, T, A> { |
1834 | type Item = T; |
1835 | |
1836 | #[inline] |
1837 | fn next(&mut self) -> Option<T> { |
1838 | self.inner.pop() |
1839 | } |
1840 | |
1841 | #[inline] |
1842 | fn size_hint(&self) -> (usize, Option<usize>) { |
1843 | let exact: usize = self.inner.len(); |
1844 | (exact, Some(exact)) |
1845 | } |
1846 | } |
1847 | |
1848 | #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] |
1849 | impl<T: Ord, A: Allocator> ExactSizeIterator for DrainSorted<'_, T, A> {} |
1850 | |
1851 | #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] |
1852 | impl<T: Ord, A: Allocator> FusedIterator for DrainSorted<'_, T, A> {} |
1853 | |
1854 | #[unstable(feature = "trusted_len", issue = "37572")] |
1855 | unsafe impl<T: Ord, A: Allocator> TrustedLen for DrainSorted<'_, T, A> {} |
1856 | |
1857 | #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] |
1858 | impl<T: Ord, A: Allocator> From<Vec<T, A>> for BinaryHeap<T, A> { |
1859 | /// Converts a `Vec<T>` into a `BinaryHeap<T>`. |
1860 | /// |
1861 | /// This conversion happens in-place, and has *O*(*n*) time complexity. |
1862 | fn from(vec: Vec<T, A>) -> BinaryHeap<T, A> { |
1863 | let mut heap: BinaryHeap |
1864 | heap.rebuild(); |
1865 | heap |
1866 | } |
1867 | } |
1868 | |
1869 | #[stable(feature = "std_collections_from_array", since = "1.56.0")] |
1870 | impl<T: Ord, const N: usize> From<[T; N]> for BinaryHeap<T> { |
1871 | /// ``` |
1872 | /// use std::collections::BinaryHeap; |
1873 | /// |
1874 | /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]); |
1875 | /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into(); |
1876 | /// while let Some((a, b)) = h1.pop().zip(h2.pop()) { |
1877 | /// assert_eq!(a, b); |
1878 | /// } |
1879 | /// ``` |
1880 | fn from(arr: [T; N]) -> Self { |
1881 | Self::from_iter(arr) |
1882 | } |
1883 | } |
1884 | |
1885 | #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] |
1886 | impl<T, A: Allocator> From<BinaryHeap<T, A>> for Vec<T, A> { |
1887 | /// Converts a `BinaryHeap<T>` into a `Vec<T>`. |
1888 | /// |
1889 | /// This conversion requires no data movement or allocation, and has |
1890 | /// constant time complexity. |
1891 | fn from(heap: BinaryHeap<T, A>) -> Vec<T, A> { |
1892 | heap.data |
1893 | } |
1894 | } |
1895 | |
1896 | #[stable(feature = "rust1", since = "1.0.0")] |
1897 | impl<T: Ord> FromIterator<T> for BinaryHeap<T> { |
1898 | fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> { |
1899 | BinaryHeap::from(iter.into_iter().collect::<Vec<_>>()) |
1900 | } |
1901 | } |
1902 | |
1903 | #[stable(feature = "rust1", since = "1.0.0")] |
1904 | impl<T, A: Allocator> IntoIterator for BinaryHeap<T, A> { |
1905 | type Item = T; |
1906 | type IntoIter = IntoIter<T, A>; |
1907 | |
1908 | /// Creates a consuming iterator, that is, one that moves each value out of |
1909 | /// the binary heap in arbitrary order. The binary heap cannot be used |
1910 | /// after calling this. |
1911 | /// |
1912 | /// # Examples |
1913 | /// |
1914 | /// Basic usage: |
1915 | /// |
1916 | /// ``` |
1917 | /// use std::collections::BinaryHeap; |
1918 | /// let heap = BinaryHeap::from([1, 2, 3, 4]); |
1919 | /// |
1920 | /// // Print 1, 2, 3, 4 in arbitrary order |
1921 | /// for x in heap.into_iter() { |
1922 | /// // x has type i32, not &i32 |
1923 | /// println!("{x}"); |
1924 | /// } |
1925 | /// ``` |
1926 | fn into_iter(self) -> IntoIter<T, A> { |
1927 | IntoIter { iter: self.data.into_iter() } |
1928 | } |
1929 | } |
1930 | |
1931 | #[stable(feature = "rust1", since = "1.0.0")] |
1932 | impl<'a, T, A: Allocator> IntoIterator for &'a BinaryHeap<T, A> { |
1933 | type Item = &'a T; |
1934 | type IntoIter = Iter<'a, T>; |
1935 | |
1936 | fn into_iter(self) -> Iter<'a, T> { |
1937 | self.iter() |
1938 | } |
1939 | } |
1940 | |
1941 | #[stable(feature = "rust1", since = "1.0.0")] |
1942 | impl<T: Ord, A: Allocator> Extend<T> for BinaryHeap<T, A> { |
1943 | #[inline] |
1944 | fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) { |
1945 | let guard: RebuildOnDrop<'_, T, A> = RebuildOnDrop { rebuild_from: self.len(), heap: self }; |
1946 | guard.heap.data.extend(iter); |
1947 | } |
1948 | |
1949 | #[inline] |
1950 | fn extend_one(&mut self, item: T) { |
1951 | self.push(item); |
1952 | } |
1953 | |
1954 | #[inline] |
1955 | fn extend_reserve(&mut self, additional: usize) { |
1956 | self.reserve(additional); |
1957 | } |
1958 | } |
1959 | |
1960 | #[stable(feature = "extend_ref", since = "1.2.0")] |
1961 | impl<'a, T: 'a + Ord + Copy, A: Allocator> Extend<&'a T> for BinaryHeap<T, A> { |
1962 | fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) { |
1963 | self.extend(iter.into_iter().cloned()); |
1964 | } |
1965 | |
1966 | #[inline] |
1967 | fn extend_one(&mut self, &item: T: &'a T) { |
1968 | self.push(item); |
1969 | } |
1970 | |
1971 | #[inline] |
1972 | fn extend_reserve(&mut self, additional: usize) { |
1973 | self.reserve(additional); |
1974 | } |
1975 | } |
1976 |
Definitions
- BinaryHeap
- data
- PeekMut
- heap
- original_len
- fmt
- drop
- Target
- deref
- deref_mut
- refresh
- pop
- clone
- clone_from
- default
- fmt
- RebuildOnDrop
- heap
- rebuild_from
- drop
- new
- with_capacity
- new_in
- with_capacity_in
- peek_mut
- pop
- push
- into_sorted_vec
- sift_up
- sift_down_range
- sift_down
- sift_down_to_bottom
- rebuild_tail
- log2_fast
- rebuild
- append
- drain_sorted
- retain
- iter
- into_iter_sorted
- peek
- capacity
- reserve_exact
- reserve
- try_reserve_exact
- try_reserve
- shrink_to_fit
- shrink_to
- as_slice
- into_vec
- allocator
- len
- is_empty
- drain
- clear
- Hole
- data
- elt
- pos
- new
- pos
- element
- get
- move_to
- drop
- Iter
- iter
- default
- fmt
- clone
- Item
- next
- size_hint
- last
- next_back
- is_empty
- IntoIter
- iter
- allocator
- fmt
- Item
- next
- size_hint
- next_back
- is_empty
- default
- Source
- as_inner
- Item
- as_into_iter
- IntoIterSorted
- inner
- allocator
- Item
- next
- size_hint
- Drain
- iter
- allocator
- Item
- next
- size_hint
- next_back
- is_empty
- DrainSorted
- inner
- allocator
- drop
- DropGuard
- drop
- Item
- next
- size_hint
- from
- from
- from
- from_iter
- Item
- IntoIter
- into_iter
- Item
- IntoIter
- into_iter
- extend
- extend_one
- extend_reserve
- extend
- extend_one
Learn Rust with the experts
Find out more