| 1 | #![doc = include_str!("../README.md" )] |
| 2 | #![deny (missing_debug_implementations)] |
| 3 | #![deny (missing_docs)] |
| 4 | #![cfg_attr (not(feature = "std" ), no_std)] |
| 5 | #![cfg_attr (feature = "allocator_api" , feature(allocator_api))] |
| 6 | |
| 7 | #[doc (hidden)] |
| 8 | pub extern crate alloc as core_alloc; |
| 9 | |
| 10 | #[cfg (feature = "boxed" )] |
| 11 | pub mod boxed; |
| 12 | #[cfg (feature = "collections" )] |
| 13 | pub mod collections; |
| 14 | |
| 15 | mod alloc; |
| 16 | |
| 17 | use core::cell::Cell; |
| 18 | use core::fmt::Display; |
| 19 | use core::iter; |
| 20 | use core::marker::PhantomData; |
| 21 | use core::mem; |
| 22 | use core::ptr::{self, NonNull}; |
| 23 | use core::slice; |
| 24 | use core::str; |
| 25 | use core_alloc::alloc::{alloc, dealloc, Layout}; |
| 26 | |
| 27 | #[cfg (feature = "allocator_api" )] |
| 28 | use core_alloc::alloc::{AllocError, Allocator}; |
| 29 | |
| 30 | #[cfg (all(feature = "allocator-api2" , not(feature = "allocator_api" )))] |
| 31 | use allocator_api2::alloc::{AllocError, Allocator}; |
| 32 | |
| 33 | pub use alloc::AllocErr; |
| 34 | |
| 35 | /// An error returned from [`Bump::try_alloc_try_with`]. |
| 36 | #[derive (Clone, PartialEq, Eq, Debug)] |
| 37 | pub enum AllocOrInitError<E> { |
| 38 | /// Indicates that the initial allocation failed. |
| 39 | Alloc(AllocErr), |
| 40 | /// Indicates that the initializer failed with the contained error after |
| 41 | /// allocation. |
| 42 | /// |
| 43 | /// It is possible but not guaranteed that the allocated memory has been |
| 44 | /// released back to the allocator at this point. |
| 45 | Init(E), |
| 46 | } |
| 47 | impl<E> From<AllocErr> for AllocOrInitError<E> { |
| 48 | fn from(e: AllocErr) -> Self { |
| 49 | Self::Alloc(e) |
| 50 | } |
| 51 | } |
| 52 | impl<E: Display> Display for AllocOrInitError<E> { |
| 53 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 54 | match self { |
| 55 | AllocOrInitError::Alloc(err: &AllocErr) => err.fmt(f), |
| 56 | AllocOrInitError::Init(err: &E) => write!(f, "initialization failed: {}" , err), |
| 57 | } |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | /// An arena to bump allocate into. |
| 62 | /// |
| 63 | /// ## No `Drop`s |
| 64 | /// |
| 65 | /// Objects that are bump-allocated will never have their [`Drop`] implementation |
| 66 | /// called — unless you do it manually yourself. This makes it relatively |
| 67 | /// easy to leak memory or other resources. |
| 68 | /// |
| 69 | /// If you have a type which internally manages |
| 70 | /// |
| 71 | /// * an allocation from the global heap (e.g. [`Vec<T>`]), |
| 72 | /// * open file descriptors (e.g. [`std::fs::File`]), or |
| 73 | /// * any other resource that must be cleaned up (e.g. an `mmap`) |
| 74 | /// |
| 75 | /// and relies on its `Drop` implementation to clean up the internal resource, |
| 76 | /// then if you allocate that type with a `Bump`, you need to find a new way to |
| 77 | /// clean up after it yourself. |
| 78 | /// |
| 79 | /// Potential solutions are: |
| 80 | /// |
| 81 | /// * Using [`bumpalo::boxed::Box::new_in`] instead of [`Bump::alloc`], that |
| 82 | /// will drop wrapped values similarly to [`std::boxed::Box`]. Note that this |
| 83 | /// requires enabling the `"boxed"` Cargo feature for this crate. **This is |
| 84 | /// often the easiest solution.** |
| 85 | /// |
| 86 | /// * Calling [`drop_in_place`][drop_in_place] or using |
| 87 | /// [`std::mem::ManuallyDrop`][manuallydrop] to manually drop these types. |
| 88 | /// |
| 89 | /// * Using [`bumpalo::collections::Vec`] instead of [`std::vec::Vec`]. |
| 90 | /// |
| 91 | /// * Avoiding allocating these problematic types within a `Bump`. |
| 92 | /// |
| 93 | /// Note that not calling `Drop` is memory safe! Destructors are never |
| 94 | /// guaranteed to run in Rust, you can't rely on them for enforcing memory |
| 95 | /// safety. |
| 96 | /// |
| 97 | /// [`Drop`]: https://doc.rust-lang.org/std/ops/trait.Drop.html |
| 98 | /// [`Vec<T>`]: https://doc.rust-lang.org/std/vec/struct.Vec.html |
| 99 | /// [`std::fs::File`]: https://doc.rust-lang.org/std/fs/struct.File.html |
| 100 | /// [drop_in_place]: https://doc.rust-lang.org/std/ptr/fn.drop_in_place.html |
| 101 | /// [manuallydrop]: https://doc.rust-lang.org/std/mem/struct.ManuallyDrop.html |
| 102 | /// [`bumpalo::collections::Vec`]: collections/vec/struct.Vec.html |
| 103 | /// [`std::vec::Vec`]: https://doc.rust-lang.org/std/vec/struct.Vec.html |
| 104 | /// [`bumpalo::boxed::Box::new_in`]: boxed/struct.Box.html#method.new_in |
| 105 | /// [`std::boxed::Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html |
| 106 | /// |
| 107 | /// ## Example |
| 108 | /// |
| 109 | /// ``` |
| 110 | /// use bumpalo::Bump; |
| 111 | /// |
| 112 | /// // Create a new bump arena. |
| 113 | /// let bump = Bump::new(); |
| 114 | /// |
| 115 | /// // Allocate values into the arena. |
| 116 | /// let forty_two = bump.alloc(42); |
| 117 | /// assert_eq!(*forty_two, 42); |
| 118 | /// |
| 119 | /// // Mutable references are returned from allocation. |
| 120 | /// let mut s = bump.alloc("bumpalo" ); |
| 121 | /// *s = "the bump allocator; and also is a buffalo" ; |
| 122 | /// ``` |
| 123 | /// |
| 124 | /// ## Allocation Methods Come in Many Flavors |
| 125 | /// |
| 126 | /// There are various allocation methods on `Bump`, the simplest being |
| 127 | /// [`alloc`][Bump::alloc]. The others exist to satisfy some combination of |
| 128 | /// fallible allocation and initialization. The allocation methods are |
| 129 | /// summarized in the following table: |
| 130 | /// |
| 131 | /// <table> |
| 132 | /// <thead> |
| 133 | /// <tr> |
| 134 | /// <th></th> |
| 135 | /// <th>Infallible Allocation</th> |
| 136 | /// <th>Fallible Allocation</th> |
| 137 | /// </tr> |
| 138 | /// </thead> |
| 139 | /// <tr> |
| 140 | /// <th>By Value</th> |
| 141 | /// <td><a href="#method.alloc"><code>alloc</code></a></td> |
| 142 | /// <td><a href="#method.try_alloc"><code>try_alloc</code></a></td> |
| 143 | /// </tr> |
| 144 | /// <tr> |
| 145 | /// <th>Infallible Initializer Function</th> |
| 146 | /// <td><a href="#method.alloc_with"><code>alloc_with</code></a></td> |
| 147 | /// <td><a href="#method.try_alloc_with"><code>try_alloc_with</code></a></td> |
| 148 | /// </tr> |
| 149 | /// <tr> |
| 150 | /// <th>Fallible Initializer Function</th> |
| 151 | /// <td><a href="#method.alloc_try_with"><code>alloc_try_with</code></a></td> |
| 152 | /// <td><a href="#method.try_alloc_try_with"><code>try_alloc_try_with</code></a></td> |
| 153 | /// </tr> |
| 154 | /// <tbody> |
| 155 | /// </tbody> |
| 156 | /// </table> |
| 157 | /// |
| 158 | /// ### Fallible Allocation: The `try_alloc_` Method Prefix |
| 159 | /// |
| 160 | /// These allocation methods let you recover from out-of-memory (OOM) |
| 161 | /// scenarioes, rather than raising a panic on OOM. |
| 162 | /// |
| 163 | /// ``` |
| 164 | /// use bumpalo::Bump; |
| 165 | /// |
| 166 | /// let bump = Bump::new(); |
| 167 | /// |
| 168 | /// match bump.try_alloc(MyStruct { |
| 169 | /// // ... |
| 170 | /// }) { |
| 171 | /// Ok(my_struct) => { |
| 172 | /// // Allocation succeeded. |
| 173 | /// } |
| 174 | /// Err(e) => { |
| 175 | /// // Out of memory. |
| 176 | /// } |
| 177 | /// } |
| 178 | /// |
| 179 | /// struct MyStruct { |
| 180 | /// // ... |
| 181 | /// } |
| 182 | /// ``` |
| 183 | /// |
| 184 | /// ### Initializer Functions: The `_with` Method Suffix |
| 185 | /// |
| 186 | /// Calling one of the generic `…alloc(x)` methods is essentially equivalent to |
| 187 | /// the matching [`…alloc_with(|| x)`](?search=alloc_with). However if you use |
| 188 | /// `…alloc_with`, then the closure will not be invoked until after allocating |
| 189 | /// space for storing `x` on the heap. |
| 190 | /// |
| 191 | /// This can be useful in certain edge-cases related to compiler optimizations. |
| 192 | /// When evaluating for example `bump.alloc(x)`, semantically `x` is first put |
| 193 | /// on the stack and then moved onto the heap. In some cases, the compiler is |
| 194 | /// able to optimize this into constructing `x` directly on the heap, however |
| 195 | /// in many cases it does not. |
| 196 | /// |
| 197 | /// The `…alloc_with` functions try to help the compiler be smarter. In most |
| 198 | /// cases doing for example `bump.try_alloc_with(|| x)` on release mode will be |
| 199 | /// enough to help the compiler realize that this optimization is valid and |
| 200 | /// to construct `x` directly onto the heap. |
| 201 | /// |
| 202 | /// #### Warning |
| 203 | /// |
| 204 | /// These functions critically depend on compiler optimizations to achieve their |
| 205 | /// desired effect. This means that it is not an effective tool when compiling |
| 206 | /// without optimizations on. |
| 207 | /// |
| 208 | /// Even when optimizations are on, these functions do not **guarantee** that |
| 209 | /// the value is constructed on the heap. To the best of our knowledge no such |
| 210 | /// guarantee can be made in stable Rust as of 1.54. |
| 211 | /// |
| 212 | /// ### Fallible Initialization: The `_try_with` Method Suffix |
| 213 | /// |
| 214 | /// The generic [`…alloc_try_with(|| x)`](?search=_try_with) methods behave |
| 215 | /// like the purely `_with` suffixed methods explained above. However, they |
| 216 | /// allow for fallible initialization by accepting a closure that returns a |
| 217 | /// [`Result`] and will attempt to undo the initial allocation if this closure |
| 218 | /// returns [`Err`]. |
| 219 | /// |
| 220 | /// #### Warning |
| 221 | /// |
| 222 | /// If the inner closure returns [`Ok`], space for the entire [`Result`] remains |
| 223 | /// allocated inside `self`. This can be a problem especially if the [`Err`] |
| 224 | /// variant is larger, but even otherwise there may be overhead for the |
| 225 | /// [`Result`]'s discriminant. |
| 226 | /// |
| 227 | /// <p><details><summary>Undoing the allocation in the <code>Err</code> case |
| 228 | /// always fails if <code>f</code> successfully made any additional allocations |
| 229 | /// in <code>self</code>.</summary> |
| 230 | /// |
| 231 | /// For example, the following will always leak also space for the [`Result`] |
| 232 | /// into this `Bump`, even though the inner reference isn't kept and the [`Err`] |
| 233 | /// payload is returned semantically by value: |
| 234 | /// |
| 235 | /// ```rust |
| 236 | /// let bump = bumpalo::Bump::new(); |
| 237 | /// |
| 238 | /// let r: Result<&mut [u8; 1000], ()> = bump.alloc_try_with(|| { |
| 239 | /// let _ = bump.alloc(0_u8); |
| 240 | /// Err(()) |
| 241 | /// }); |
| 242 | /// |
| 243 | /// assert!(r.is_err()); |
| 244 | /// ``` |
| 245 | /// |
| 246 | ///</details></p> |
| 247 | /// |
| 248 | /// Since [`Err`] payloads are first placed on the heap and then moved to the |
| 249 | /// stack, `bump.…alloc_try_with(|| x)?` is likely to execute more slowly than |
| 250 | /// the matching `bump.…alloc(x?)` in case of initialization failure. If this |
| 251 | /// happens frequently, using the plain un-suffixed method may perform better. |
| 252 | /// |
| 253 | /// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html |
| 254 | /// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok |
| 255 | /// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err |
| 256 | /// |
| 257 | /// ### `Bump` Allocation Limits |
| 258 | /// |
| 259 | /// `bumpalo` supports setting a limit on the maximum bytes of memory that can |
| 260 | /// be allocated for use in a particular `Bump` arena. This limit can be set and removed with |
| 261 | /// [`set_allocation_limit`][Bump::set_allocation_limit]. |
| 262 | /// The allocation limit is only enforced when allocating new backing chunks for |
| 263 | /// a `Bump`. Updating the allocation limit will not affect existing allocations |
| 264 | /// or any future allocations within the `Bump`'s current chunk. |
| 265 | /// |
| 266 | /// #### Example |
| 267 | /// |
| 268 | /// ``` |
| 269 | /// let bump = bumpalo::Bump::new(); |
| 270 | /// |
| 271 | /// assert_eq!(bump.allocation_limit(), None); |
| 272 | /// bump.set_allocation_limit(Some(0)); |
| 273 | /// |
| 274 | /// assert!(bump.try_alloc(5).is_err()); |
| 275 | /// |
| 276 | /// bump.set_allocation_limit(Some(6)); |
| 277 | /// |
| 278 | /// assert_eq!(bump.allocation_limit(), Some(6)); |
| 279 | /// |
| 280 | /// bump.set_allocation_limit(None); |
| 281 | /// |
| 282 | /// assert_eq!(bump.allocation_limit(), None); |
| 283 | /// ``` |
| 284 | /// |
| 285 | /// #### Warning |
| 286 | /// |
| 287 | /// Because of backwards compatibility, allocations that fail |
| 288 | /// due to allocation limits will not present differently than |
| 289 | /// errors due to resource exhaustion. |
| 290 | |
| 291 | #[derive (Debug)] |
| 292 | pub struct Bump { |
| 293 | // The current chunk we are bump allocating within. |
| 294 | current_chunk_footer: Cell<NonNull<ChunkFooter>>, |
| 295 | allocation_limit: Cell<Option<usize>>, |
| 296 | } |
| 297 | |
| 298 | #[repr (C)] |
| 299 | #[derive (Debug)] |
| 300 | struct ChunkFooter { |
| 301 | // Pointer to the start of this chunk allocation. This footer is always at |
| 302 | // the end of the chunk. |
| 303 | data: NonNull<u8>, |
| 304 | |
| 305 | // The layout of this chunk's allocation. |
| 306 | layout: Layout, |
| 307 | |
| 308 | // Link to the previous chunk. |
| 309 | // |
| 310 | // Note that the last node in the `prev` linked list is the canonical empty |
| 311 | // chunk, whose `prev` link points to itself. |
| 312 | prev: Cell<NonNull<ChunkFooter>>, |
| 313 | |
| 314 | // Bump allocation finger that is always in the range `self.data..=self`. |
| 315 | ptr: Cell<NonNull<u8>>, |
| 316 | |
| 317 | // The bytes allocated in all chunks so far, the canonical empty chunk has |
| 318 | // a size of 0 and for all other chunks, `allocated_bytes` will be |
| 319 | // the allocated_bytes of the current chunk plus the allocated bytes |
| 320 | // of the `prev` chunk. |
| 321 | allocated_bytes: usize, |
| 322 | } |
| 323 | |
| 324 | /// A wrapper type for the canonical, statically allocated empty chunk. |
| 325 | /// |
| 326 | /// For the canonical empty chunk to be `static`, its type must be `Sync`, which |
| 327 | /// is the purpose of this wrapper type. This is safe because the empty chunk is |
| 328 | /// immutable and never actually modified. |
| 329 | #[repr (transparent)] |
| 330 | struct EmptyChunkFooter(ChunkFooter); |
| 331 | |
| 332 | unsafe impl Sync for EmptyChunkFooter {} |
| 333 | |
| 334 | static EMPTY_CHUNK: EmptyChunkFooter = EmptyChunkFooter(ChunkFooter { |
| 335 | // This chunk is empty (except the foot itself). |
| 336 | layout: Layout::new::<ChunkFooter>(), |
| 337 | |
| 338 | // The start of the (empty) allocatable region for this chunk is itself. |
| 339 | data: unsafe { NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut u8) }, |
| 340 | |
| 341 | // The end of the (empty) allocatable region for this chunk is also itself. |
| 342 | ptr: Cell::new(unsafe { |
| 343 | NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut u8) |
| 344 | }), |
| 345 | |
| 346 | // Invariant: the last chunk footer in all `ChunkFooter::prev` linked lists |
| 347 | // is the empty chunk footer, whose `prev` points to itself. |
| 348 | prev: Cell::new(unsafe { |
| 349 | NonNull::new_unchecked(&EMPTY_CHUNK as *const EmptyChunkFooter as *mut ChunkFooter) |
| 350 | }), |
| 351 | |
| 352 | // Empty chunks count as 0 allocated bytes in an arena. |
| 353 | allocated_bytes: 0, |
| 354 | }); |
| 355 | |
| 356 | impl EmptyChunkFooter { |
| 357 | fn get(&'static self) -> NonNull<ChunkFooter> { |
| 358 | NonNull::from(&self.0) |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | impl ChunkFooter { |
| 363 | // Returns the start and length of the currently allocated region of this |
| 364 | // chunk. |
| 365 | fn as_raw_parts(&self) -> (*const u8, usize) { |
| 366 | let data: *const u8 = self.data.as_ptr() as *const u8; |
| 367 | let ptr: *const u8 = self.ptr.get().as_ptr() as *const u8; |
| 368 | debug_assert!(data <= ptr); |
| 369 | debug_assert!(ptr <= self as *const ChunkFooter as *const u8); |
| 370 | let len: usize = unsafe { (self as *const ChunkFooter as *const u8).offset_from(origin:ptr) as usize }; |
| 371 | (ptr, len) |
| 372 | } |
| 373 | |
| 374 | /// Is this chunk the last empty chunk? |
| 375 | fn is_empty(&self) -> bool { |
| 376 | ptr::eq(self, b:EMPTY_CHUNK.get().as_ptr()) |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | impl Default for Bump { |
| 381 | fn default() -> Bump { |
| 382 | Bump::new() |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | impl Drop for Bump { |
| 387 | fn drop(&mut self) { |
| 388 | unsafe { |
| 389 | dealloc_chunk_list(self.current_chunk_footer.get()); |
| 390 | } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | #[inline ] |
| 395 | unsafe fn dealloc_chunk_list(mut footer: NonNull<ChunkFooter>) { |
| 396 | while !footer.as_ref().is_empty() { |
| 397 | let f: NonNull = footer; |
| 398 | footer = f.as_ref().prev.get(); |
| 399 | dealloc(f.as_ref().data.as_ptr(), f.as_ref().layout); |
| 400 | } |
| 401 | } |
| 402 | |
| 403 | // `Bump`s are safe to send between threads because nothing aliases its owned |
| 404 | // chunks until you start allocating from it. But by the time you allocate from |
| 405 | // it, the returned references to allocations borrow the `Bump` and therefore |
| 406 | // prevent sending the `Bump` across threads until the borrows end. |
| 407 | unsafe impl Send for Bump {} |
| 408 | |
| 409 | #[inline ] |
| 410 | fn is_pointer_aligned_to<T>(pointer: *mut T, align: usize) -> bool { |
| 411 | debug_assert!(align.is_power_of_two()); |
| 412 | |
| 413 | let pointer: usize = pointer as usize; |
| 414 | let pointer_aligned: usize = round_down_to(n:pointer, divisor:align); |
| 415 | pointer == pointer_aligned |
| 416 | } |
| 417 | |
| 418 | #[inline ] |
| 419 | pub(crate) fn round_up_to(n: usize, divisor: usize) -> Option<usize> { |
| 420 | debug_assert!(divisor > 0); |
| 421 | debug_assert!(divisor.is_power_of_two()); |
| 422 | Some(n.checked_add(divisor - 1)? & !(divisor - 1)) |
| 423 | } |
| 424 | |
| 425 | #[inline ] |
| 426 | pub(crate) fn round_down_to(n: usize, divisor: usize) -> usize { |
| 427 | debug_assert!(divisor > 0); |
| 428 | debug_assert!(divisor.is_power_of_two()); |
| 429 | n & !(divisor - 1) |
| 430 | } |
| 431 | |
| 432 | /// Same as `round_down_to` but preserves pointer provenance. |
| 433 | #[inline ] |
| 434 | pub(crate) fn round_mut_ptr_down_to(ptr: *mut u8, divisor: usize) -> *mut u8 { |
| 435 | debug_assert!(divisor > 0); |
| 436 | debug_assert!(divisor.is_power_of_two()); |
| 437 | ptr.wrapping_sub(count:ptr as usize & (divisor - 1)) |
| 438 | } |
| 439 | |
| 440 | // After this point, we try to hit page boundaries instead of powers of 2 |
| 441 | const PAGE_STRATEGY_CUTOFF: usize = 0x1000; |
| 442 | |
| 443 | // We only support alignments of up to 16 bytes for iter_allocated_chunks. |
| 444 | const SUPPORTED_ITER_ALIGNMENT: usize = 16; |
| 445 | const CHUNK_ALIGN: usize = SUPPORTED_ITER_ALIGNMENT; |
| 446 | const FOOTER_SIZE: usize = mem::size_of::<ChunkFooter>(); |
| 447 | |
| 448 | // Assert that ChunkFooter is at most the supported alignment. This will give a compile time error if it is not the case |
| 449 | const _FOOTER_ALIGN_ASSERTION: bool = mem::align_of::<ChunkFooter>() <= CHUNK_ALIGN; |
| 450 | const _: [(); _FOOTER_ALIGN_ASSERTION as usize] = [()]; |
| 451 | |
| 452 | // Maximum typical overhead per allocation imposed by allocators. |
| 453 | const MALLOC_OVERHEAD: usize = 16; |
| 454 | |
| 455 | // This is the overhead from malloc, footer and alignment. For instance, if |
| 456 | // we want to request a chunk of memory that has at least X bytes usable for |
| 457 | // allocations (where X is aligned to CHUNK_ALIGN), then we expect that the |
| 458 | // after adding a footer, malloc overhead and alignment, the chunk of memory |
| 459 | // the allocator actually sets aside for us is X+OVERHEAD rounded up to the |
| 460 | // nearest suitable size boundary. |
| 461 | const OVERHEAD: usize = (MALLOC_OVERHEAD + FOOTER_SIZE + (CHUNK_ALIGN - 1)) & !(CHUNK_ALIGN - 1); |
| 462 | |
| 463 | // Choose a relatively small default initial chunk size, since we double chunk |
| 464 | // sizes as we grow bump arenas to amortize costs of hitting the global |
| 465 | // allocator. |
| 466 | const FIRST_ALLOCATION_GOAL: usize = 1 << 9; |
| 467 | |
| 468 | // The actual size of the first allocation is going to be a bit smaller |
| 469 | // than the goal. We need to make room for the footer, and we also need |
| 470 | // take the alignment into account. |
| 471 | const DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER: usize = FIRST_ALLOCATION_GOAL - OVERHEAD; |
| 472 | |
| 473 | /// The memory size and alignment details for a potential new chunk |
| 474 | /// allocation. |
| 475 | #[derive (Debug, Clone, Copy)] |
| 476 | struct NewChunkMemoryDetails { |
| 477 | new_size_without_footer: usize, |
| 478 | align: usize, |
| 479 | size: usize, |
| 480 | } |
| 481 | |
| 482 | /// Wrapper around `Layout::from_size_align` that adds debug assertions. |
| 483 | #[inline ] |
| 484 | fn layout_from_size_align(size: usize, align: usize) -> Result<Layout, AllocErr> { |
| 485 | Layout::from_size_align(size, align).map_err(|_| AllocErr) |
| 486 | } |
| 487 | |
| 488 | #[inline (never)] |
| 489 | fn allocation_size_overflow<T>() -> T { |
| 490 | panic!("requested allocation size overflowed" ) |
| 491 | } |
| 492 | |
| 493 | impl Bump { |
| 494 | /// Construct a new arena to bump allocate into. |
| 495 | /// |
| 496 | /// ## Example |
| 497 | /// |
| 498 | /// ``` |
| 499 | /// let bump = bumpalo::Bump::new(); |
| 500 | /// # let _ = bump; |
| 501 | /// ``` |
| 502 | pub fn new() -> Bump { |
| 503 | Self::with_capacity(0) |
| 504 | } |
| 505 | |
| 506 | /// Attempt to construct a new arena to bump allocate into. |
| 507 | /// |
| 508 | /// ## Example |
| 509 | /// |
| 510 | /// ``` |
| 511 | /// let bump = bumpalo::Bump::try_new(); |
| 512 | /// # let _ = bump.unwrap(); |
| 513 | /// ``` |
| 514 | pub fn try_new() -> Result<Bump, AllocErr> { |
| 515 | Bump::try_with_capacity(0) |
| 516 | } |
| 517 | |
| 518 | /// Construct a new arena with the specified byte capacity to bump allocate into. |
| 519 | /// |
| 520 | /// ## Example |
| 521 | /// |
| 522 | /// ``` |
| 523 | /// let bump = bumpalo::Bump::with_capacity(100); |
| 524 | /// # let _ = bump; |
| 525 | /// ``` |
| 526 | pub fn with_capacity(capacity: usize) -> Bump { |
| 527 | Bump::try_with_capacity(capacity).unwrap_or_else(|_| oom()) |
| 528 | } |
| 529 | |
| 530 | /// Attempt to construct a new arena with the specified byte capacity to bump allocate into. |
| 531 | /// |
| 532 | /// ## Example |
| 533 | /// |
| 534 | /// ``` |
| 535 | /// let bump = bumpalo::Bump::try_with_capacity(100); |
| 536 | /// # let _ = bump.unwrap(); |
| 537 | /// ``` |
| 538 | pub fn try_with_capacity(capacity: usize) -> Result<Self, AllocErr> { |
| 539 | if capacity == 0 { |
| 540 | return Ok(Bump { |
| 541 | current_chunk_footer: Cell::new(EMPTY_CHUNK.get()), |
| 542 | allocation_limit: Cell::new(None), |
| 543 | }); |
| 544 | } |
| 545 | |
| 546 | let layout = layout_from_size_align(capacity, 1)?; |
| 547 | |
| 548 | let chunk_footer = unsafe { |
| 549 | Self::new_chunk( |
| 550 | Bump::new_chunk_memory_details(None, layout).ok_or(AllocErr)?, |
| 551 | layout, |
| 552 | EMPTY_CHUNK.get(), |
| 553 | ) |
| 554 | .ok_or(AllocErr)? |
| 555 | }; |
| 556 | |
| 557 | Ok(Bump { |
| 558 | current_chunk_footer: Cell::new(chunk_footer), |
| 559 | allocation_limit: Cell::new(None), |
| 560 | }) |
| 561 | } |
| 562 | |
| 563 | /// The allocation limit for this arena in bytes. |
| 564 | /// |
| 565 | /// ## Example |
| 566 | /// |
| 567 | /// ``` |
| 568 | /// let bump = bumpalo::Bump::with_capacity(0); |
| 569 | /// |
| 570 | /// assert_eq!(bump.allocation_limit(), None); |
| 571 | /// |
| 572 | /// bump.set_allocation_limit(Some(6)); |
| 573 | /// |
| 574 | /// assert_eq!(bump.allocation_limit(), Some(6)); |
| 575 | /// |
| 576 | /// bump.set_allocation_limit(None); |
| 577 | /// |
| 578 | /// assert_eq!(bump.allocation_limit(), None); |
| 579 | /// ``` |
| 580 | pub fn allocation_limit(&self) -> Option<usize> { |
| 581 | self.allocation_limit.get() |
| 582 | } |
| 583 | |
| 584 | /// Set the allocation limit in bytes for this arena. |
| 585 | /// |
| 586 | /// The allocation limit is only enforced when allocating new backing chunks for |
| 587 | /// a `Bump`. Updating the allocation limit will not affect existing allocations |
| 588 | /// or any future allocations within the `Bump`'s current chunk. |
| 589 | /// |
| 590 | /// ## Example |
| 591 | /// |
| 592 | /// ``` |
| 593 | /// let bump = bumpalo::Bump::with_capacity(0); |
| 594 | /// |
| 595 | /// bump.set_allocation_limit(Some(0)); |
| 596 | /// |
| 597 | /// assert!(bump.try_alloc(5).is_err()); |
| 598 | /// ``` |
| 599 | pub fn set_allocation_limit(&self, limit: Option<usize>) { |
| 600 | self.allocation_limit.set(limit); |
| 601 | } |
| 602 | |
| 603 | /// How much headroom an arena has before it hits its allocation |
| 604 | /// limit. |
| 605 | fn allocation_limit_remaining(&self) -> Option<usize> { |
| 606 | self.allocation_limit.get().and_then(|allocation_limit| { |
| 607 | let allocated_bytes = self.allocated_bytes(); |
| 608 | if allocated_bytes > allocation_limit { |
| 609 | None |
| 610 | } else { |
| 611 | Some(usize::abs_diff(allocation_limit, allocated_bytes)) |
| 612 | } |
| 613 | }) |
| 614 | } |
| 615 | |
| 616 | /// Whether a request to allocate a new chunk with a given size for a given |
| 617 | /// requested layout will fit under the allocation limit set on a `Bump`. |
| 618 | fn chunk_fits_under_limit( |
| 619 | allocation_limit_remaining: Option<usize>, |
| 620 | new_chunk_memory_details: NewChunkMemoryDetails, |
| 621 | ) -> bool { |
| 622 | allocation_limit_remaining |
| 623 | .map(|allocation_limit_left| { |
| 624 | allocation_limit_left >= new_chunk_memory_details.new_size_without_footer |
| 625 | }) |
| 626 | .unwrap_or(true) |
| 627 | } |
| 628 | |
| 629 | /// Determine the memory details including final size, alignment and |
| 630 | /// final size without footer for a new chunk that would be allocated |
| 631 | /// to fulfill an allocation request. |
| 632 | fn new_chunk_memory_details( |
| 633 | new_size_without_footer: Option<usize>, |
| 634 | requested_layout: Layout, |
| 635 | ) -> Option<NewChunkMemoryDetails> { |
| 636 | let mut new_size_without_footer = |
| 637 | new_size_without_footer.unwrap_or(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER); |
| 638 | |
| 639 | // We want to have CHUNK_ALIGN or better alignment |
| 640 | let mut align = CHUNK_ALIGN; |
| 641 | |
| 642 | // If we already know we need to fulfill some request, |
| 643 | // make sure we allocate at least enough to satisfy it |
| 644 | align = align.max(requested_layout.align()); |
| 645 | let requested_size = |
| 646 | round_up_to(requested_layout.size(), align).unwrap_or_else(allocation_size_overflow); |
| 647 | new_size_without_footer = new_size_without_footer.max(requested_size); |
| 648 | |
| 649 | // We want our allocations to play nice with the memory allocator, |
| 650 | // and waste as little memory as possible. |
| 651 | // For small allocations, this means that the entire allocation |
| 652 | // including the chunk footer and mallocs internal overhead is |
| 653 | // as close to a power of two as we can go without going over. |
| 654 | // For larger allocations, we only need to get close to a page |
| 655 | // boundary without going over. |
| 656 | if new_size_without_footer < PAGE_STRATEGY_CUTOFF { |
| 657 | new_size_without_footer = |
| 658 | (new_size_without_footer + OVERHEAD).next_power_of_two() - OVERHEAD; |
| 659 | } else { |
| 660 | new_size_without_footer = |
| 661 | round_up_to(new_size_without_footer + OVERHEAD, 0x1000)? - OVERHEAD; |
| 662 | } |
| 663 | |
| 664 | debug_assert_eq!(align % CHUNK_ALIGN, 0); |
| 665 | debug_assert_eq!(new_size_without_footer % CHUNK_ALIGN, 0); |
| 666 | let size = new_size_without_footer |
| 667 | .checked_add(FOOTER_SIZE) |
| 668 | .unwrap_or_else(allocation_size_overflow); |
| 669 | |
| 670 | Some(NewChunkMemoryDetails { |
| 671 | new_size_without_footer, |
| 672 | size, |
| 673 | align, |
| 674 | }) |
| 675 | } |
| 676 | |
| 677 | /// Allocate a new chunk and return its initialized footer. |
| 678 | /// |
| 679 | /// If given, `layouts` is a tuple of the current chunk size and the |
| 680 | /// layout of the allocation request that triggered us to fall back to |
| 681 | /// allocating a new chunk of memory. |
| 682 | unsafe fn new_chunk( |
| 683 | new_chunk_memory_details: NewChunkMemoryDetails, |
| 684 | requested_layout: Layout, |
| 685 | prev: NonNull<ChunkFooter>, |
| 686 | ) -> Option<NonNull<ChunkFooter>> { |
| 687 | let NewChunkMemoryDetails { |
| 688 | new_size_without_footer, |
| 689 | align, |
| 690 | size, |
| 691 | } = new_chunk_memory_details; |
| 692 | |
| 693 | let layout = layout_from_size_align(size, align).ok()?; |
| 694 | |
| 695 | debug_assert!(size >= requested_layout.size()); |
| 696 | |
| 697 | let data = alloc(layout); |
| 698 | let data = NonNull::new(data)?; |
| 699 | |
| 700 | // The `ChunkFooter` is at the end of the chunk. |
| 701 | let footer_ptr = data.as_ptr().add(new_size_without_footer); |
| 702 | debug_assert_eq!((data.as_ptr() as usize) % align, 0); |
| 703 | debug_assert_eq!(footer_ptr as usize % CHUNK_ALIGN, 0); |
| 704 | let footer_ptr = footer_ptr as *mut ChunkFooter; |
| 705 | |
| 706 | // The bump pointer is initialized to the end of the range we will |
| 707 | // bump out of. |
| 708 | let ptr = Cell::new(NonNull::new_unchecked(footer_ptr as *mut u8)); |
| 709 | |
| 710 | // The `allocated_bytes` of a new chunk counts the total size |
| 711 | // of the chunks, not how much of the chunks are used. |
| 712 | let allocated_bytes = prev.as_ref().allocated_bytes + new_size_without_footer; |
| 713 | |
| 714 | ptr::write( |
| 715 | footer_ptr, |
| 716 | ChunkFooter { |
| 717 | data, |
| 718 | layout, |
| 719 | prev: Cell::new(prev), |
| 720 | ptr, |
| 721 | allocated_bytes, |
| 722 | }, |
| 723 | ); |
| 724 | |
| 725 | Some(NonNull::new_unchecked(footer_ptr)) |
| 726 | } |
| 727 | |
| 728 | /// Reset this bump allocator. |
| 729 | /// |
| 730 | /// Performs mass deallocation on everything allocated in this arena by |
| 731 | /// resetting the pointer into the underlying chunk of memory to the start |
| 732 | /// of the chunk. Does not run any `Drop` implementations on deallocated |
| 733 | /// objects; see [the top-level documentation](struct.Bump.html) for details. |
| 734 | /// |
| 735 | /// If this arena has allocated multiple chunks to bump allocate into, then |
| 736 | /// the excess chunks are returned to the global allocator. |
| 737 | /// |
| 738 | /// ## Example |
| 739 | /// |
| 740 | /// ``` |
| 741 | /// let mut bump = bumpalo::Bump::new(); |
| 742 | /// |
| 743 | /// // Allocate a bunch of things. |
| 744 | /// { |
| 745 | /// for i in 0..100 { |
| 746 | /// bump.alloc(i); |
| 747 | /// } |
| 748 | /// } |
| 749 | /// |
| 750 | /// // Reset the arena. |
| 751 | /// bump.reset(); |
| 752 | /// |
| 753 | /// // Allocate some new things in the space previously occupied by the |
| 754 | /// // original things. |
| 755 | /// for j in 200..400 { |
| 756 | /// bump.alloc(j); |
| 757 | /// } |
| 758 | ///``` |
| 759 | pub fn reset(&mut self) { |
| 760 | // Takes `&mut self` so `self` must be unique and there can't be any |
| 761 | // borrows active that would get invalidated by resetting. |
| 762 | unsafe { |
| 763 | if self.current_chunk_footer.get().as_ref().is_empty() { |
| 764 | return; |
| 765 | } |
| 766 | |
| 767 | let mut cur_chunk = self.current_chunk_footer.get(); |
| 768 | |
| 769 | // Deallocate all chunks except the current one |
| 770 | let prev_chunk = cur_chunk.as_ref().prev.replace(EMPTY_CHUNK.get()); |
| 771 | dealloc_chunk_list(prev_chunk); |
| 772 | |
| 773 | // Reset the bump finger to the end of the chunk. |
| 774 | cur_chunk.as_ref().ptr.set(cur_chunk.cast()); |
| 775 | |
| 776 | // Reset the allocated size of the chunk. |
| 777 | cur_chunk.as_mut().allocated_bytes = cur_chunk.as_ref().layout.size(); |
| 778 | |
| 779 | debug_assert!( |
| 780 | self.current_chunk_footer |
| 781 | .get() |
| 782 | .as_ref() |
| 783 | .prev |
| 784 | .get() |
| 785 | .as_ref() |
| 786 | .is_empty(), |
| 787 | "We should only have a single chunk" |
| 788 | ); |
| 789 | debug_assert_eq!( |
| 790 | self.current_chunk_footer.get().as_ref().ptr.get(), |
| 791 | self.current_chunk_footer.get().cast(), |
| 792 | "Our chunk's bump finger should be reset to the start of its allocation" |
| 793 | ); |
| 794 | } |
| 795 | } |
| 796 | |
| 797 | /// Allocate an object in this `Bump` and return an exclusive reference to |
| 798 | /// it. |
| 799 | /// |
| 800 | /// ## Panics |
| 801 | /// |
| 802 | /// Panics if reserving space for `T` fails. |
| 803 | /// |
| 804 | /// ## Example |
| 805 | /// |
| 806 | /// ``` |
| 807 | /// let bump = bumpalo::Bump::new(); |
| 808 | /// let x = bump.alloc("hello" ); |
| 809 | /// assert_eq!(*x, "hello" ); |
| 810 | /// ``` |
| 811 | #[inline (always)] |
| 812 | pub fn alloc<T>(&self, val: T) -> &mut T { |
| 813 | self.alloc_with(|| val) |
| 814 | } |
| 815 | |
| 816 | /// Try to allocate an object in this `Bump` and return an exclusive |
| 817 | /// reference to it. |
| 818 | /// |
| 819 | /// ## Errors |
| 820 | /// |
| 821 | /// Errors if reserving space for `T` fails. |
| 822 | /// |
| 823 | /// ## Example |
| 824 | /// |
| 825 | /// ``` |
| 826 | /// let bump = bumpalo::Bump::new(); |
| 827 | /// let x = bump.try_alloc("hello" ); |
| 828 | /// assert_eq!(x, Ok(&mut "hello" )); |
| 829 | /// ``` |
| 830 | #[inline (always)] |
| 831 | pub fn try_alloc<T>(&self, val: T) -> Result<&mut T, AllocErr> { |
| 832 | self.try_alloc_with(|| val) |
| 833 | } |
| 834 | |
| 835 | /// Pre-allocate space for an object in this `Bump`, initializes it using |
| 836 | /// the closure, then returns an exclusive reference to it. |
| 837 | /// |
| 838 | /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a |
| 839 | /// discussion on the differences between the `_with` suffixed methods and |
| 840 | /// those methods without it, their performance characteristics, and when |
| 841 | /// you might or might not choose a `_with` suffixed method. |
| 842 | /// |
| 843 | /// ## Panics |
| 844 | /// |
| 845 | /// Panics if reserving space for `T` fails. |
| 846 | /// |
| 847 | /// ## Example |
| 848 | /// |
| 849 | /// ``` |
| 850 | /// let bump = bumpalo::Bump::new(); |
| 851 | /// let x = bump.alloc_with(|| "hello" ); |
| 852 | /// assert_eq!(*x, "hello" ); |
| 853 | /// ``` |
| 854 | #[inline (always)] |
| 855 | pub fn alloc_with<F, T>(&self, f: F) -> &mut T |
| 856 | where |
| 857 | F: FnOnce() -> T, |
| 858 | { |
| 859 | #[inline (always)] |
| 860 | unsafe fn inner_writer<T, F>(ptr: *mut T, f: F) |
| 861 | where |
| 862 | F: FnOnce() -> T, |
| 863 | { |
| 864 | // This function is translated as: |
| 865 | // - allocate space for a T on the stack |
| 866 | // - call f() with the return value being put onto this stack space |
| 867 | // - memcpy from the stack to the heap |
| 868 | // |
| 869 | // Ideally we want LLVM to always realize that doing a stack |
| 870 | // allocation is unnecessary and optimize the code so it writes |
| 871 | // directly into the heap instead. It seems we get it to realize |
| 872 | // this most consistently if we put this critical line into it's |
| 873 | // own function instead of inlining it into the surrounding code. |
| 874 | ptr::write(ptr, f()); |
| 875 | } |
| 876 | |
| 877 | let layout = Layout::new::<T>(); |
| 878 | |
| 879 | unsafe { |
| 880 | let p = self.alloc_layout(layout); |
| 881 | let p = p.as_ptr() as *mut T; |
| 882 | inner_writer(p, f); |
| 883 | &mut *p |
| 884 | } |
| 885 | } |
| 886 | |
| 887 | /// Tries to pre-allocate space for an object in this `Bump`, initializes |
| 888 | /// it using the closure, then returns an exclusive reference to it. |
| 889 | /// |
| 890 | /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a |
| 891 | /// discussion on the differences between the `_with` suffixed methods and |
| 892 | /// those methods without it, their performance characteristics, and when |
| 893 | /// you might or might not choose a `_with` suffixed method. |
| 894 | /// |
| 895 | /// ## Errors |
| 896 | /// |
| 897 | /// Errors if reserving space for `T` fails. |
| 898 | /// |
| 899 | /// ## Example |
| 900 | /// |
| 901 | /// ``` |
| 902 | /// let bump = bumpalo::Bump::new(); |
| 903 | /// let x = bump.try_alloc_with(|| "hello" ); |
| 904 | /// assert_eq!(x, Ok(&mut "hello" )); |
| 905 | /// ``` |
| 906 | #[inline (always)] |
| 907 | pub fn try_alloc_with<F, T>(&self, f: F) -> Result<&mut T, AllocErr> |
| 908 | where |
| 909 | F: FnOnce() -> T, |
| 910 | { |
| 911 | #[inline (always)] |
| 912 | unsafe fn inner_writer<T, F>(ptr: *mut T, f: F) |
| 913 | where |
| 914 | F: FnOnce() -> T, |
| 915 | { |
| 916 | // This function is translated as: |
| 917 | // - allocate space for a T on the stack |
| 918 | // - call f() with the return value being put onto this stack space |
| 919 | // - memcpy from the stack to the heap |
| 920 | // |
| 921 | // Ideally we want LLVM to always realize that doing a stack |
| 922 | // allocation is unnecessary and optimize the code so it writes |
| 923 | // directly into the heap instead. It seems we get it to realize |
| 924 | // this most consistently if we put this critical line into it's |
| 925 | // own function instead of inlining it into the surrounding code. |
| 926 | ptr::write(ptr, f()); |
| 927 | } |
| 928 | |
| 929 | //SAFETY: Self-contained: |
| 930 | // `p` is allocated for `T` and then a `T` is written. |
| 931 | let layout = Layout::new::<T>(); |
| 932 | let p = self.try_alloc_layout(layout)?; |
| 933 | let p = p.as_ptr() as *mut T; |
| 934 | |
| 935 | unsafe { |
| 936 | inner_writer(p, f); |
| 937 | Ok(&mut *p) |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | /// Pre-allocates space for a [`Result`] in this `Bump`, initializes it using |
| 942 | /// the closure, then returns an exclusive reference to its `T` if [`Ok`]. |
| 943 | /// |
| 944 | /// Iff the allocation fails, the closure is not run. |
| 945 | /// |
| 946 | /// Iff [`Err`], an allocator rewind is *attempted* and the `E` instance is |
| 947 | /// moved out of the allocator to be consumed or dropped as normal. |
| 948 | /// |
| 949 | /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a |
| 950 | /// discussion on the differences between the `_with` suffixed methods and |
| 951 | /// those methods without it, their performance characteristics, and when |
| 952 | /// you might or might not choose a `_with` suffixed method. |
| 953 | /// |
| 954 | /// For caveats specific to fallible initialization, see |
| 955 | /// [The `_try_with` Method Suffix](#fallible-initialization-the-_try_with-method-suffix). |
| 956 | /// |
| 957 | /// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html |
| 958 | /// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok |
| 959 | /// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err |
| 960 | /// |
| 961 | /// ## Errors |
| 962 | /// |
| 963 | /// Iff the allocation succeeds but `f` fails, that error is forwarded by value. |
| 964 | /// |
| 965 | /// ## Panics |
| 966 | /// |
| 967 | /// Panics if reserving space for `Result<T, E>` fails. |
| 968 | /// |
| 969 | /// ## Example |
| 970 | /// |
| 971 | /// ``` |
| 972 | /// let bump = bumpalo::Bump::new(); |
| 973 | /// let x = bump.alloc_try_with(|| Ok("hello" ))?; |
| 974 | /// assert_eq!(*x, "hello" ); |
| 975 | /// # Result::<_, ()>::Ok(()) |
| 976 | /// ``` |
| 977 | #[inline (always)] |
| 978 | pub fn alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, E> |
| 979 | where |
| 980 | F: FnOnce() -> Result<T, E>, |
| 981 | { |
| 982 | let rewind_footer = self.current_chunk_footer.get(); |
| 983 | let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get(); |
| 984 | let mut inner_result_ptr = NonNull::from(self.alloc_with(f)); |
| 985 | match unsafe { inner_result_ptr.as_mut() } { |
| 986 | Ok(t) => Ok(unsafe { |
| 987 | //SAFETY: |
| 988 | // The `&mut Result<T, E>` returned by `alloc_with` may be |
| 989 | // lifetime-limited by `E`, but the derived `&mut T` still has |
| 990 | // the same validity as in `alloc_with` since the error variant |
| 991 | // is already ruled out here. |
| 992 | |
| 993 | // We could conditionally truncate the allocation here, but |
| 994 | // since it grows backwards, it seems unlikely that we'd get |
| 995 | // any more than the `Result`'s discriminant this way, if |
| 996 | // anything at all. |
| 997 | &mut *(t as *mut _) |
| 998 | }), |
| 999 | Err(e) => unsafe { |
| 1000 | // If this result was the last allocation in this arena, we can |
| 1001 | // reclaim its space. In fact, sometimes we can do even better |
| 1002 | // than simply calling `dealloc` on the result pointer: we can |
| 1003 | // reclaim any alignment padding we might have added (which |
| 1004 | // `dealloc` cannot do) if we didn't allocate a new chunk for |
| 1005 | // this result. |
| 1006 | if self.is_last_allocation(inner_result_ptr.cast()) { |
| 1007 | let current_footer_p = self.current_chunk_footer.get(); |
| 1008 | let current_ptr = ¤t_footer_p.as_ref().ptr; |
| 1009 | if current_footer_p == rewind_footer { |
| 1010 | // It's still the same chunk, so reset the bump pointer |
| 1011 | // to its original value upon entry to this method |
| 1012 | // (reclaiming any alignment padding we may have |
| 1013 | // added). |
| 1014 | current_ptr.set(rewind_ptr); |
| 1015 | } else { |
| 1016 | // We allocated a new chunk for this result. |
| 1017 | // |
| 1018 | // We know the result is the only allocation in this |
| 1019 | // chunk: Any additional allocations since the start of |
| 1020 | // this method could only have happened when running |
| 1021 | // the initializer function, which is called *after* |
| 1022 | // reserving space for this result. Therefore, since we |
| 1023 | // already determined via the check above that this |
| 1024 | // result was the last allocation, there must not have |
| 1025 | // been any other allocations, and this result is the |
| 1026 | // only allocation in this chunk. |
| 1027 | // |
| 1028 | // Because this is the only allocation in this chunk, |
| 1029 | // we can reset the chunk's bump finger to the start of |
| 1030 | // the chunk. |
| 1031 | current_ptr.set(current_footer_p.as_ref().data); |
| 1032 | } |
| 1033 | } |
| 1034 | //SAFETY: |
| 1035 | // As we received `E` semantically by value from `f`, we can |
| 1036 | // just copy that value here as long as we avoid a double-drop |
| 1037 | // (which can't happen as any specific references to the `E`'s |
| 1038 | // data in `self` are destroyed when this function returns). |
| 1039 | // |
| 1040 | // The order between this and the deallocation doesn't matter |
| 1041 | // because `Self: !Sync`. |
| 1042 | Err(ptr::read(e as *const _)) |
| 1043 | }, |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | /// Tries to pre-allocates space for a [`Result`] in this `Bump`, |
| 1048 | /// initializes it using the closure, then returns an exclusive reference |
| 1049 | /// to its `T` if all [`Ok`]. |
| 1050 | /// |
| 1051 | /// Iff the allocation fails, the closure is not run. |
| 1052 | /// |
| 1053 | /// Iff the closure returns [`Err`], an allocator rewind is *attempted* and |
| 1054 | /// the `E` instance is moved out of the allocator to be consumed or dropped |
| 1055 | /// as normal. |
| 1056 | /// |
| 1057 | /// See [The `_with` Method Suffix](#initializer-functions-the-_with-method-suffix) for a |
| 1058 | /// discussion on the differences between the `_with` suffixed methods and |
| 1059 | /// those methods without it, their performance characteristics, and when |
| 1060 | /// you might or might not choose a `_with` suffixed method. |
| 1061 | /// |
| 1062 | /// For caveats specific to fallible initialization, see |
| 1063 | /// [The `_try_with` Method Suffix](#fallible-initialization-the-_try_with-method-suffix). |
| 1064 | /// |
| 1065 | /// [`Result`]: https://doc.rust-lang.org/std/result/enum.Result.html |
| 1066 | /// [`Ok`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Ok |
| 1067 | /// [`Err`]: https://doc.rust-lang.org/std/result/enum.Result.html#variant.Err |
| 1068 | /// |
| 1069 | /// ## Errors |
| 1070 | /// |
| 1071 | /// Errors with the [`Alloc`](`AllocOrInitError::Alloc`) variant iff |
| 1072 | /// reserving space for `Result<T, E>` fails. |
| 1073 | /// |
| 1074 | /// Iff the allocation succeeds but `f` fails, that error is forwarded by |
| 1075 | /// value inside the [`Init`](`AllocOrInitError::Init`) variant. |
| 1076 | /// |
| 1077 | /// ## Example |
| 1078 | /// |
| 1079 | /// ``` |
| 1080 | /// let bump = bumpalo::Bump::new(); |
| 1081 | /// let x = bump.try_alloc_try_with(|| Ok("hello" ))?; |
| 1082 | /// assert_eq!(*x, "hello" ); |
| 1083 | /// # Result::<_, bumpalo::AllocOrInitError<()>>::Ok(()) |
| 1084 | /// ``` |
| 1085 | #[inline (always)] |
| 1086 | pub fn try_alloc_try_with<F, T, E>(&self, f: F) -> Result<&mut T, AllocOrInitError<E>> |
| 1087 | where |
| 1088 | F: FnOnce() -> Result<T, E>, |
| 1089 | { |
| 1090 | let rewind_footer = self.current_chunk_footer.get(); |
| 1091 | let rewind_ptr = unsafe { rewind_footer.as_ref() }.ptr.get(); |
| 1092 | let mut inner_result_ptr = NonNull::from(self.try_alloc_with(f)?); |
| 1093 | match unsafe { inner_result_ptr.as_mut() } { |
| 1094 | Ok(t) => Ok(unsafe { |
| 1095 | //SAFETY: |
| 1096 | // The `&mut Result<T, E>` returned by `alloc_with` may be |
| 1097 | // lifetime-limited by `E`, but the derived `&mut T` still has |
| 1098 | // the same validity as in `alloc_with` since the error variant |
| 1099 | // is already ruled out here. |
| 1100 | |
| 1101 | // We could conditionally truncate the allocation here, but |
| 1102 | // since it grows backwards, it seems unlikely that we'd get |
| 1103 | // any more than the `Result`'s discriminant this way, if |
| 1104 | // anything at all. |
| 1105 | &mut *(t as *mut _) |
| 1106 | }), |
| 1107 | Err(e) => unsafe { |
| 1108 | // If this result was the last allocation in this arena, we can |
| 1109 | // reclaim its space. In fact, sometimes we can do even better |
| 1110 | // than simply calling `dealloc` on the result pointer: we can |
| 1111 | // reclaim any alignment padding we might have added (which |
| 1112 | // `dealloc` cannot do) if we didn't allocate a new chunk for |
| 1113 | // this result. |
| 1114 | if self.is_last_allocation(inner_result_ptr.cast()) { |
| 1115 | let current_footer_p = self.current_chunk_footer.get(); |
| 1116 | let current_ptr = ¤t_footer_p.as_ref().ptr; |
| 1117 | if current_footer_p == rewind_footer { |
| 1118 | // It's still the same chunk, so reset the bump pointer |
| 1119 | // to its original value upon entry to this method |
| 1120 | // (reclaiming any alignment padding we may have |
| 1121 | // added). |
| 1122 | current_ptr.set(rewind_ptr); |
| 1123 | } else { |
| 1124 | // We allocated a new chunk for this result. |
| 1125 | // |
| 1126 | // We know the result is the only allocation in this |
| 1127 | // chunk: Any additional allocations since the start of |
| 1128 | // this method could only have happened when running |
| 1129 | // the initializer function, which is called *after* |
| 1130 | // reserving space for this result. Therefore, since we |
| 1131 | // already determined via the check above that this |
| 1132 | // result was the last allocation, there must not have |
| 1133 | // been any other allocations, and this result is the |
| 1134 | // only allocation in this chunk. |
| 1135 | // |
| 1136 | // Because this is the only allocation in this chunk, |
| 1137 | // we can reset the chunk's bump finger to the start of |
| 1138 | // the chunk. |
| 1139 | current_ptr.set(current_footer_p.as_ref().data); |
| 1140 | } |
| 1141 | } |
| 1142 | //SAFETY: |
| 1143 | // As we received `E` semantically by value from `f`, we can |
| 1144 | // just copy that value here as long as we avoid a double-drop |
| 1145 | // (which can't happen as any specific references to the `E`'s |
| 1146 | // data in `self` are destroyed when this function returns). |
| 1147 | // |
| 1148 | // The order between this and the deallocation doesn't matter |
| 1149 | // because `Self: !Sync`. |
| 1150 | Err(AllocOrInitError::Init(ptr::read(e as *const _))) |
| 1151 | }, |
| 1152 | } |
| 1153 | } |
| 1154 | |
| 1155 | /// `Copy` a slice into this `Bump` and return an exclusive reference to |
| 1156 | /// the copy. |
| 1157 | /// |
| 1158 | /// ## Panics |
| 1159 | /// |
| 1160 | /// Panics if reserving space for the slice fails. |
| 1161 | /// |
| 1162 | /// ## Example |
| 1163 | /// |
| 1164 | /// ``` |
| 1165 | /// let bump = bumpalo::Bump::new(); |
| 1166 | /// let x = bump.alloc_slice_copy(&[1, 2, 3]); |
| 1167 | /// assert_eq!(x, &[1, 2, 3]); |
| 1168 | /// ``` |
| 1169 | #[inline (always)] |
| 1170 | pub fn alloc_slice_copy<T>(&self, src: &[T]) -> &mut [T] |
| 1171 | where |
| 1172 | T: Copy, |
| 1173 | { |
| 1174 | let layout = Layout::for_value(src); |
| 1175 | let dst = self.alloc_layout(layout).cast::<T>(); |
| 1176 | |
| 1177 | unsafe { |
| 1178 | ptr::copy_nonoverlapping(src.as_ptr(), dst.as_ptr(), src.len()); |
| 1179 | slice::from_raw_parts_mut(dst.as_ptr(), src.len()) |
| 1180 | } |
| 1181 | } |
| 1182 | |
| 1183 | /// `Clone` a slice into this `Bump` and return an exclusive reference to |
| 1184 | /// the clone. Prefer [`alloc_slice_copy`](#method.alloc_slice_copy) if `T` is `Copy`. |
| 1185 | /// |
| 1186 | /// ## Panics |
| 1187 | /// |
| 1188 | /// Panics if reserving space for the slice fails. |
| 1189 | /// |
| 1190 | /// ## Example |
| 1191 | /// |
| 1192 | /// ``` |
| 1193 | /// #[derive(Clone, Debug, Eq, PartialEq)] |
| 1194 | /// struct Sheep { |
| 1195 | /// name: String, |
| 1196 | /// } |
| 1197 | /// |
| 1198 | /// let originals = [ |
| 1199 | /// Sheep { name: "Alice" .into() }, |
| 1200 | /// Sheep { name: "Bob" .into() }, |
| 1201 | /// Sheep { name: "Cathy" .into() }, |
| 1202 | /// ]; |
| 1203 | /// |
| 1204 | /// let bump = bumpalo::Bump::new(); |
| 1205 | /// let clones = bump.alloc_slice_clone(&originals); |
| 1206 | /// assert_eq!(originals, clones); |
| 1207 | /// ``` |
| 1208 | #[inline (always)] |
| 1209 | pub fn alloc_slice_clone<T>(&self, src: &[T]) -> &mut [T] |
| 1210 | where |
| 1211 | T: Clone, |
| 1212 | { |
| 1213 | let layout = Layout::for_value(src); |
| 1214 | let dst = self.alloc_layout(layout).cast::<T>(); |
| 1215 | |
| 1216 | unsafe { |
| 1217 | for (i, val) in src.iter().cloned().enumerate() { |
| 1218 | ptr::write(dst.as_ptr().add(i), val); |
| 1219 | } |
| 1220 | |
| 1221 | slice::from_raw_parts_mut(dst.as_ptr(), src.len()) |
| 1222 | } |
| 1223 | } |
| 1224 | |
| 1225 | /// `Copy` a string slice into this `Bump` and return an exclusive reference to it. |
| 1226 | /// |
| 1227 | /// ## Panics |
| 1228 | /// |
| 1229 | /// Panics if reserving space for the string fails. |
| 1230 | /// |
| 1231 | /// ## Example |
| 1232 | /// |
| 1233 | /// ``` |
| 1234 | /// let bump = bumpalo::Bump::new(); |
| 1235 | /// let hello = bump.alloc_str("hello world" ); |
| 1236 | /// assert_eq!("hello world" , hello); |
| 1237 | /// ``` |
| 1238 | #[inline (always)] |
| 1239 | pub fn alloc_str(&self, src: &str) -> &mut str { |
| 1240 | let buffer = self.alloc_slice_copy(src.as_bytes()); |
| 1241 | unsafe { |
| 1242 | // This is OK, because it already came in as str, so it is guaranteed to be utf8 |
| 1243 | str::from_utf8_unchecked_mut(buffer) |
| 1244 | } |
| 1245 | } |
| 1246 | |
| 1247 | /// Allocates a new slice of size `len` into this `Bump` and returns an |
| 1248 | /// exclusive reference to the copy. |
| 1249 | /// |
| 1250 | /// The elements of the slice are initialized using the supplied closure. |
| 1251 | /// The closure argument is the position in the slice. |
| 1252 | /// |
| 1253 | /// ## Panics |
| 1254 | /// |
| 1255 | /// Panics if reserving space for the slice fails. |
| 1256 | /// |
| 1257 | /// ## Example |
| 1258 | /// |
| 1259 | /// ``` |
| 1260 | /// let bump = bumpalo::Bump::new(); |
| 1261 | /// let x = bump.alloc_slice_fill_with(5, |i| 5 * (i + 1)); |
| 1262 | /// assert_eq!(x, &[5, 10, 15, 20, 25]); |
| 1263 | /// ``` |
| 1264 | #[inline (always)] |
| 1265 | pub fn alloc_slice_fill_with<T, F>(&self, len: usize, mut f: F) -> &mut [T] |
| 1266 | where |
| 1267 | F: FnMut(usize) -> T, |
| 1268 | { |
| 1269 | let layout = Layout::array::<T>(len).unwrap_or_else(|_| oom()); |
| 1270 | let dst = self.alloc_layout(layout).cast::<T>(); |
| 1271 | |
| 1272 | unsafe { |
| 1273 | for i in 0..len { |
| 1274 | ptr::write(dst.as_ptr().add(i), f(i)); |
| 1275 | } |
| 1276 | |
| 1277 | let result = slice::from_raw_parts_mut(dst.as_ptr(), len); |
| 1278 | debug_assert_eq!(Layout::for_value(result), layout); |
| 1279 | result |
| 1280 | } |
| 1281 | } |
| 1282 | |
| 1283 | /// Allocates a new slice of size `len` into this `Bump` and returns an |
| 1284 | /// exclusive reference to the copy. |
| 1285 | /// |
| 1286 | /// All elements of the slice are initialized to `value`. |
| 1287 | /// |
| 1288 | /// ## Panics |
| 1289 | /// |
| 1290 | /// Panics if reserving space for the slice fails. |
| 1291 | /// |
| 1292 | /// ## Example |
| 1293 | /// |
| 1294 | /// ``` |
| 1295 | /// let bump = bumpalo::Bump::new(); |
| 1296 | /// let x = bump.alloc_slice_fill_copy(5, 42); |
| 1297 | /// assert_eq!(x, &[42, 42, 42, 42, 42]); |
| 1298 | /// ``` |
| 1299 | #[inline (always)] |
| 1300 | pub fn alloc_slice_fill_copy<T: Copy>(&self, len: usize, value: T) -> &mut [T] { |
| 1301 | self.alloc_slice_fill_with(len, |_| value) |
| 1302 | } |
| 1303 | |
| 1304 | /// Allocates a new slice of size `len` slice into this `Bump` and return an |
| 1305 | /// exclusive reference to the copy. |
| 1306 | /// |
| 1307 | /// All elements of the slice are initialized to `value.clone()`. |
| 1308 | /// |
| 1309 | /// ## Panics |
| 1310 | /// |
| 1311 | /// Panics if reserving space for the slice fails. |
| 1312 | /// |
| 1313 | /// ## Example |
| 1314 | /// |
| 1315 | /// ``` |
| 1316 | /// let bump = bumpalo::Bump::new(); |
| 1317 | /// let s: String = "Hello Bump!" .to_string(); |
| 1318 | /// let x: &[String] = bump.alloc_slice_fill_clone(2, &s); |
| 1319 | /// assert_eq!(x.len(), 2); |
| 1320 | /// assert_eq!(&x[0], &s); |
| 1321 | /// assert_eq!(&x[1], &s); |
| 1322 | /// ``` |
| 1323 | #[inline (always)] |
| 1324 | pub fn alloc_slice_fill_clone<T: Clone>(&self, len: usize, value: &T) -> &mut [T] { |
| 1325 | self.alloc_slice_fill_with(len, |_| value.clone()) |
| 1326 | } |
| 1327 | |
| 1328 | /// Allocates a new slice of size `len` slice into this `Bump` and return an |
| 1329 | /// exclusive reference to the copy. |
| 1330 | /// |
| 1331 | /// The elements are initialized using the supplied iterator. |
| 1332 | /// |
| 1333 | /// ## Panics |
| 1334 | /// |
| 1335 | /// Panics if reserving space for the slice fails, or if the supplied |
| 1336 | /// iterator returns fewer elements than it promised. |
| 1337 | /// |
| 1338 | /// ## Example |
| 1339 | /// |
| 1340 | /// ``` |
| 1341 | /// let bump = bumpalo::Bump::new(); |
| 1342 | /// let x: &[i32] = bump.alloc_slice_fill_iter([2, 3, 5].iter().cloned().map(|i| i * i)); |
| 1343 | /// assert_eq!(x, [4, 9, 25]); |
| 1344 | /// ``` |
| 1345 | #[inline (always)] |
| 1346 | pub fn alloc_slice_fill_iter<T, I>(&self, iter: I) -> &mut [T] |
| 1347 | where |
| 1348 | I: IntoIterator<Item = T>, |
| 1349 | I::IntoIter: ExactSizeIterator, |
| 1350 | { |
| 1351 | let mut iter = iter.into_iter(); |
| 1352 | self.alloc_slice_fill_with(iter.len(), |_| { |
| 1353 | iter.next().expect("Iterator supplied too few elements" ) |
| 1354 | }) |
| 1355 | } |
| 1356 | |
| 1357 | /// Allocates a new slice of size `len` slice into this `Bump` and return an |
| 1358 | /// exclusive reference to the copy. |
| 1359 | /// |
| 1360 | /// All elements of the slice are initialized to [`T::default()`]. |
| 1361 | /// |
| 1362 | /// [`T::default()`]: https://doc.rust-lang.org/std/default/trait.Default.html#tymethod.default |
| 1363 | /// |
| 1364 | /// ## Panics |
| 1365 | /// |
| 1366 | /// Panics if reserving space for the slice fails. |
| 1367 | /// |
| 1368 | /// ## Example |
| 1369 | /// |
| 1370 | /// ``` |
| 1371 | /// let bump = bumpalo::Bump::new(); |
| 1372 | /// let x = bump.alloc_slice_fill_default::<u32>(5); |
| 1373 | /// assert_eq!(x, &[0, 0, 0, 0, 0]); |
| 1374 | /// ``` |
| 1375 | #[inline (always)] |
| 1376 | pub fn alloc_slice_fill_default<T: Default>(&self, len: usize) -> &mut [T] { |
| 1377 | self.alloc_slice_fill_with(len, |_| T::default()) |
| 1378 | } |
| 1379 | |
| 1380 | /// Allocate space for an object with the given `Layout`. |
| 1381 | /// |
| 1382 | /// The returned pointer points at uninitialized memory, and should be |
| 1383 | /// initialized with |
| 1384 | /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html). |
| 1385 | /// |
| 1386 | /// # Panics |
| 1387 | /// |
| 1388 | /// Panics if reserving space matching `layout` fails. |
| 1389 | #[inline (always)] |
| 1390 | pub fn alloc_layout(&self, layout: Layout) -> NonNull<u8> { |
| 1391 | self.try_alloc_layout(layout).unwrap_or_else(|_| oom()) |
| 1392 | } |
| 1393 | |
| 1394 | /// Attempts to allocate space for an object with the given `Layout` or else returns |
| 1395 | /// an `Err`. |
| 1396 | /// |
| 1397 | /// The returned pointer points at uninitialized memory, and should be |
| 1398 | /// initialized with |
| 1399 | /// [`std::ptr::write`](https://doc.rust-lang.org/std/ptr/fn.write.html). |
| 1400 | /// |
| 1401 | /// # Errors |
| 1402 | /// |
| 1403 | /// Errors if reserving space matching `layout` fails. |
| 1404 | #[inline (always)] |
| 1405 | pub fn try_alloc_layout(&self, layout: Layout) -> Result<NonNull<u8>, AllocErr> { |
| 1406 | if let Some(p) = self.try_alloc_layout_fast(layout) { |
| 1407 | Ok(p) |
| 1408 | } else { |
| 1409 | self.alloc_layout_slow(layout).ok_or(AllocErr) |
| 1410 | } |
| 1411 | } |
| 1412 | |
| 1413 | #[inline (always)] |
| 1414 | fn try_alloc_layout_fast(&self, layout: Layout) -> Option<NonNull<u8>> { |
| 1415 | // We don't need to check for ZSTs here since they will automatically |
| 1416 | // be handled properly: the pointer will be bumped by zero bytes, |
| 1417 | // modulo alignment. This keeps the fast path optimized for non-ZSTs, |
| 1418 | // which are much more common. |
| 1419 | unsafe { |
| 1420 | let footer = self.current_chunk_footer.get(); |
| 1421 | let footer = footer.as_ref(); |
| 1422 | let ptr = footer.ptr.get().as_ptr(); |
| 1423 | let start = footer.data.as_ptr(); |
| 1424 | debug_assert!(start <= ptr); |
| 1425 | debug_assert!(ptr as *const u8 <= footer as *const _ as *const u8); |
| 1426 | |
| 1427 | if (ptr as usize) < layout.size() { |
| 1428 | return None; |
| 1429 | } |
| 1430 | |
| 1431 | let ptr = ptr.wrapping_sub(layout.size()); |
| 1432 | let aligned_ptr = round_mut_ptr_down_to(ptr, layout.align()); |
| 1433 | |
| 1434 | if aligned_ptr >= start { |
| 1435 | let aligned_ptr = NonNull::new_unchecked(aligned_ptr); |
| 1436 | footer.ptr.set(aligned_ptr); |
| 1437 | Some(aligned_ptr) |
| 1438 | } else { |
| 1439 | None |
| 1440 | } |
| 1441 | } |
| 1442 | } |
| 1443 | |
| 1444 | /// Gets the remaining capacity in the current chunk (in bytes). |
| 1445 | /// |
| 1446 | /// ## Example |
| 1447 | /// |
| 1448 | /// ``` |
| 1449 | /// use bumpalo::Bump; |
| 1450 | /// |
| 1451 | /// let bump = Bump::with_capacity(100); |
| 1452 | /// |
| 1453 | /// let capacity = bump.chunk_capacity(); |
| 1454 | /// assert!(capacity >= 100); |
| 1455 | /// ``` |
| 1456 | pub fn chunk_capacity(&self) -> usize { |
| 1457 | let current_footer = self.current_chunk_footer.get(); |
| 1458 | let current_footer = unsafe { current_footer.as_ref() }; |
| 1459 | |
| 1460 | current_footer.ptr.get().as_ptr() as usize - current_footer.data.as_ptr() as usize |
| 1461 | } |
| 1462 | |
| 1463 | /// Slow path allocation for when we need to allocate a new chunk from the |
| 1464 | /// parent bump set because there isn't enough room in our current chunk. |
| 1465 | #[inline (never)] |
| 1466 | #[cold ] |
| 1467 | fn alloc_layout_slow(&self, layout: Layout) -> Option<NonNull<u8>> { |
| 1468 | unsafe { |
| 1469 | let size = layout.size(); |
| 1470 | let allocation_limit_remaining = self.allocation_limit_remaining(); |
| 1471 | |
| 1472 | // Get a new chunk from the global allocator. |
| 1473 | let current_footer = self.current_chunk_footer.get(); |
| 1474 | let current_layout = current_footer.as_ref().layout; |
| 1475 | |
| 1476 | // By default, we want our new chunk to be about twice as big |
| 1477 | // as the previous chunk. If the global allocator refuses it, |
| 1478 | // we try to divide it by half until it works or the requested |
| 1479 | // size is smaller than the default footer size. |
| 1480 | let min_new_chunk_size = layout.size().max(DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER); |
| 1481 | let mut base_size = (current_layout.size() - FOOTER_SIZE) |
| 1482 | .checked_mul(2)? |
| 1483 | .max(min_new_chunk_size); |
| 1484 | let chunk_memory_details = iter::from_fn(|| { |
| 1485 | let bypass_min_chunk_size_for_small_limits = matches!(self.allocation_limit(), Some(limit) if layout.size() < limit |
| 1486 | && base_size >= layout.size() |
| 1487 | && limit < DEFAULT_CHUNK_SIZE_WITHOUT_FOOTER |
| 1488 | && self.allocated_bytes() == 0); |
| 1489 | |
| 1490 | if base_size >= min_new_chunk_size || bypass_min_chunk_size_for_small_limits { |
| 1491 | let size = base_size; |
| 1492 | base_size /= 2; |
| 1493 | Bump::new_chunk_memory_details(Some(size), layout) |
| 1494 | } else { |
| 1495 | None |
| 1496 | } |
| 1497 | }); |
| 1498 | |
| 1499 | let new_footer = chunk_memory_details |
| 1500 | .filter_map(|chunk_memory_details| { |
| 1501 | if Bump::chunk_fits_under_limit( |
| 1502 | allocation_limit_remaining, |
| 1503 | chunk_memory_details, |
| 1504 | ) { |
| 1505 | Bump::new_chunk(chunk_memory_details, layout, current_footer) |
| 1506 | } else { |
| 1507 | None |
| 1508 | } |
| 1509 | }) |
| 1510 | .next()?; |
| 1511 | |
| 1512 | debug_assert_eq!( |
| 1513 | new_footer.as_ref().data.as_ptr() as usize % layout.align(), |
| 1514 | 0 |
| 1515 | ); |
| 1516 | |
| 1517 | // Set the new chunk as our new current chunk. |
| 1518 | self.current_chunk_footer.set(new_footer); |
| 1519 | |
| 1520 | let new_footer = new_footer.as_ref(); |
| 1521 | |
| 1522 | // Move the bump ptr finger down to allocate room for `val`. We know |
| 1523 | // this can't overflow because we successfully allocated a chunk of |
| 1524 | // at least the requested size. |
| 1525 | let mut ptr = new_footer.ptr.get().as_ptr().sub(size); |
| 1526 | // Round the pointer down to the requested alignment. |
| 1527 | ptr = round_mut_ptr_down_to(ptr, layout.align()); |
| 1528 | debug_assert!( |
| 1529 | ptr as *const _ <= new_footer, |
| 1530 | " {:p} <= {:p}" , |
| 1531 | ptr, |
| 1532 | new_footer |
| 1533 | ); |
| 1534 | let ptr = NonNull::new_unchecked(ptr); |
| 1535 | new_footer.ptr.set(ptr); |
| 1536 | |
| 1537 | // Return a pointer to the freshly allocated region in this chunk. |
| 1538 | Some(ptr) |
| 1539 | } |
| 1540 | } |
| 1541 | |
| 1542 | /// Returns an iterator over each chunk of allocated memory that |
| 1543 | /// this arena has bump allocated into. |
| 1544 | /// |
| 1545 | /// The chunks are returned ordered by allocation time, with the most |
| 1546 | /// recently allocated chunk being returned first, and the least recently |
| 1547 | /// allocated chunk being returned last. |
| 1548 | /// |
| 1549 | /// The values inside each chunk are also ordered by allocation time, with |
| 1550 | /// the most recent allocation being earlier in the slice, and the least |
| 1551 | /// recent allocation being towards the end of the slice. |
| 1552 | /// |
| 1553 | /// ## Safety |
| 1554 | /// |
| 1555 | /// Because this method takes `&mut self`, we know that the bump arena |
| 1556 | /// reference is unique and therefore there aren't any active references to |
| 1557 | /// any of the objects we've allocated in it either. This potential aliasing |
| 1558 | /// of exclusive references is one common footgun for unsafe code that we |
| 1559 | /// don't need to worry about here. |
| 1560 | /// |
| 1561 | /// However, there could be regions of uninitialized memory used as padding |
| 1562 | /// between allocations, which is why this iterator has items of type |
| 1563 | /// `[MaybeUninit<u8>]`, instead of simply `[u8]`. |
| 1564 | /// |
| 1565 | /// The only way to guarantee that there is no padding between allocations |
| 1566 | /// or within allocated objects is if all of these properties hold: |
| 1567 | /// |
| 1568 | /// 1. Every object allocated in this arena has the same alignment, |
| 1569 | /// and that alignment is at most 16. |
| 1570 | /// 2. Every object's size is a multiple of its alignment. |
| 1571 | /// 3. None of the objects allocated in this arena contain any internal |
| 1572 | /// padding. |
| 1573 | /// |
| 1574 | /// If you want to use this `iter_allocated_chunks` method, it is *your* |
| 1575 | /// responsibility to ensure that these properties hold before calling |
| 1576 | /// `MaybeUninit::assume_init` or otherwise reading the returned values. |
| 1577 | /// |
| 1578 | /// Finally, you must also ensure that any values allocated into the bump |
| 1579 | /// arena have not had their `Drop` implementations called on them, |
| 1580 | /// e.g. after dropping a [`bumpalo::boxed::Box<T>`][crate::boxed::Box]. |
| 1581 | /// |
| 1582 | /// ## Example |
| 1583 | /// |
| 1584 | /// ``` |
| 1585 | /// let mut bump = bumpalo::Bump::new(); |
| 1586 | /// |
| 1587 | /// // Allocate a bunch of `i32`s in this bump arena, potentially causing |
| 1588 | /// // additional memory chunks to be reserved. |
| 1589 | /// for i in 0..10000 { |
| 1590 | /// bump.alloc(i); |
| 1591 | /// } |
| 1592 | /// |
| 1593 | /// // Iterate over each chunk we've bump allocated into. This is safe |
| 1594 | /// // because we have only allocated `i32`s in this arena, which fulfills |
| 1595 | /// // the above requirements. |
| 1596 | /// for ch in bump.iter_allocated_chunks() { |
| 1597 | /// println!("Used a chunk that is {} bytes long" , ch.len()); |
| 1598 | /// println!("The first byte is {:?}" , unsafe { |
| 1599 | /// ch[0].assume_init() |
| 1600 | /// }); |
| 1601 | /// } |
| 1602 | /// |
| 1603 | /// // Within a chunk, allocations are ordered from most recent to least |
| 1604 | /// // recent. If we allocated 'a', then 'b', then 'c', when we iterate |
| 1605 | /// // through the chunk's data, we get them in the order 'c', then 'b', |
| 1606 | /// // then 'a'. |
| 1607 | /// |
| 1608 | /// bump.reset(); |
| 1609 | /// bump.alloc(b'a' ); |
| 1610 | /// bump.alloc(b'b' ); |
| 1611 | /// bump.alloc(b'c' ); |
| 1612 | /// |
| 1613 | /// assert_eq!(bump.iter_allocated_chunks().count(), 1); |
| 1614 | /// let chunk = bump.iter_allocated_chunks().nth(0).unwrap(); |
| 1615 | /// assert_eq!(chunk.len(), 3); |
| 1616 | /// |
| 1617 | /// // Safe because we've only allocated `u8`s in this arena, which |
| 1618 | /// // fulfills the above requirements. |
| 1619 | /// unsafe { |
| 1620 | /// assert_eq!(chunk[0].assume_init(), b'c' ); |
| 1621 | /// assert_eq!(chunk[1].assume_init(), b'b' ); |
| 1622 | /// assert_eq!(chunk[2].assume_init(), b'a' ); |
| 1623 | /// } |
| 1624 | /// ``` |
| 1625 | pub fn iter_allocated_chunks(&mut self) -> ChunkIter<'_> { |
| 1626 | // SAFE: Ensured by mutable borrow of `self`. |
| 1627 | let raw = unsafe { self.iter_allocated_chunks_raw() }; |
| 1628 | ChunkIter { |
| 1629 | raw, |
| 1630 | bump: PhantomData, |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | /// Returns an iterator over raw pointers to chunks of allocated memory that |
| 1635 | /// this arena has bump allocated into. |
| 1636 | /// |
| 1637 | /// This is an unsafe version of [`iter_allocated_chunks()`](Bump::iter_allocated_chunks), |
| 1638 | /// with the caller responsible for safe usage of the returned pointers as |
| 1639 | /// well as ensuring that the iterator is not invalidated by new |
| 1640 | /// allocations. |
| 1641 | /// |
| 1642 | /// ## Safety |
| 1643 | /// |
| 1644 | /// Allocations from this arena must not be performed while the returned |
| 1645 | /// iterator is alive. If reading the chunk data (or casting to a reference) |
| 1646 | /// the caller must ensure that there exist no mutable references to |
| 1647 | /// previously allocated data. |
| 1648 | /// |
| 1649 | /// In addition, all of the caveats when reading the chunk data from |
| 1650 | /// [`iter_allocated_chunks()`](Bump::iter_allocated_chunks) still apply. |
| 1651 | pub unsafe fn iter_allocated_chunks_raw(&self) -> ChunkRawIter<'_> { |
| 1652 | ChunkRawIter { |
| 1653 | footer: self.current_chunk_footer.get(), |
| 1654 | bump: PhantomData, |
| 1655 | } |
| 1656 | } |
| 1657 | |
| 1658 | /// Calculates the number of bytes currently allocated across all chunks in |
| 1659 | /// this bump arena. |
| 1660 | /// |
| 1661 | /// If you allocate types of different alignments or types with |
| 1662 | /// larger-than-typical alignment in the same arena, some padding |
| 1663 | /// bytes might get allocated in the bump arena. Note that those padding |
| 1664 | /// bytes will add to this method's resulting sum, so you cannot rely |
| 1665 | /// on it only counting the sum of the sizes of the things |
| 1666 | /// you've allocated in the arena. |
| 1667 | /// |
| 1668 | /// The allocated bytes do not include the size of bumpalo's metadata, |
| 1669 | /// so the amount of memory requested from the Rust allocator is higher |
| 1670 | /// than the returned value. |
| 1671 | /// |
| 1672 | /// ## Example |
| 1673 | /// |
| 1674 | /// ``` |
| 1675 | /// let bump = bumpalo::Bump::new(); |
| 1676 | /// let _x = bump.alloc_slice_fill_default::<u32>(5); |
| 1677 | /// let bytes = bump.allocated_bytes(); |
| 1678 | /// assert!(bytes >= core::mem::size_of::<u32>() * 5); |
| 1679 | /// ``` |
| 1680 | pub fn allocated_bytes(&self) -> usize { |
| 1681 | let footer = self.current_chunk_footer.get(); |
| 1682 | |
| 1683 | unsafe { footer.as_ref().allocated_bytes } |
| 1684 | } |
| 1685 | |
| 1686 | /// Calculates the number of bytes requested from the Rust allocator for this `Bump`. |
| 1687 | /// |
| 1688 | /// This number is equal to the [`allocated_bytes()`](Self::allocated_bytes) plus |
| 1689 | /// the size of the bump metadata. |
| 1690 | pub fn allocated_bytes_including_metadata(&self) -> usize { |
| 1691 | let metadata_size = |
| 1692 | unsafe { self.iter_allocated_chunks_raw().count() * mem::size_of::<ChunkFooter>() }; |
| 1693 | self.allocated_bytes() + metadata_size |
| 1694 | } |
| 1695 | |
| 1696 | #[inline ] |
| 1697 | unsafe fn is_last_allocation(&self, ptr: NonNull<u8>) -> bool { |
| 1698 | let footer = self.current_chunk_footer.get(); |
| 1699 | let footer = footer.as_ref(); |
| 1700 | footer.ptr.get() == ptr |
| 1701 | } |
| 1702 | |
| 1703 | #[inline ] |
| 1704 | unsafe fn dealloc(&self, ptr: NonNull<u8>, layout: Layout) { |
| 1705 | // If the pointer is the last allocation we made, we can reuse the bytes, |
| 1706 | // otherwise they are simply leaked -- at least until somebody calls reset(). |
| 1707 | if self.is_last_allocation(ptr) { |
| 1708 | let ptr = NonNull::new_unchecked(ptr.as_ptr().add(layout.size())); |
| 1709 | self.current_chunk_footer.get().as_ref().ptr.set(ptr); |
| 1710 | } |
| 1711 | } |
| 1712 | |
| 1713 | #[inline ] |
| 1714 | unsafe fn shrink( |
| 1715 | &self, |
| 1716 | ptr: NonNull<u8>, |
| 1717 | old_layout: Layout, |
| 1718 | new_layout: Layout, |
| 1719 | ) -> Result<NonNull<u8>, AllocErr> { |
| 1720 | // If the new layout demands greater alignment than the old layout has, |
| 1721 | // then either |
| 1722 | // |
| 1723 | // 1. the pointer happens to satisfy the new layout's alignment, so we |
| 1724 | // got lucky and can return the pointer as-is, or |
| 1725 | // |
| 1726 | // 2. the pointer is not aligned to the new layout's demanded alignment, |
| 1727 | // and we are unlucky. |
| 1728 | // |
| 1729 | // In the case of (2), to successfully "shrink" the allocation, we would |
| 1730 | // have to allocate a whole new region for the new layout, without being |
| 1731 | // able to free the old region. That is unacceptable, so simply return |
| 1732 | // an allocation failure error instead. |
| 1733 | if old_layout.align() < new_layout.align() { |
| 1734 | if is_pointer_aligned_to(ptr.as_ptr(), new_layout.align()) { |
| 1735 | return Ok(ptr); |
| 1736 | } else { |
| 1737 | return Err(AllocErr); |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | debug_assert!(is_pointer_aligned_to(ptr.as_ptr(), new_layout.align())); |
| 1742 | |
| 1743 | let old_size = old_layout.size(); |
| 1744 | let new_size = new_layout.size(); |
| 1745 | |
| 1746 | // This is how much space we would *actually* reclaim while satisfying |
| 1747 | // the requested alignment. |
| 1748 | let delta = round_down_to(old_size - new_size, new_layout.align()); |
| 1749 | |
| 1750 | if self.is_last_allocation(ptr) |
| 1751 | // Only reclaim the excess space (which requires a copy) if it |
| 1752 | // is worth it: we are actually going to recover "enough" space |
| 1753 | // and we can do a non-overlapping copy. |
| 1754 | // |
| 1755 | // We do `(old_size + 1) / 2` so division rounds up rather than |
| 1756 | // down. Consider when: |
| 1757 | // |
| 1758 | // old_size = 5 |
| 1759 | // new_size = 3 |
| 1760 | // |
| 1761 | // If we do not take care to round up, this will result in: |
| 1762 | // |
| 1763 | // delta = 2 |
| 1764 | // (old_size / 2) = (5 / 2) = 2 |
| 1765 | // |
| 1766 | // And the the check will succeed even though we are have |
| 1767 | // overlapping ranges: |
| 1768 | // |
| 1769 | // |--------old-allocation-------| |
| 1770 | // |------from-------| |
| 1771 | // |-------to--------| |
| 1772 | // +-----+-----+-----+-----+-----+ |
| 1773 | // | a | b | c | . | . | |
| 1774 | // +-----+-----+-----+-----+-----+ |
| 1775 | // |
| 1776 | // But we MUST NOT have overlapping ranges because we use |
| 1777 | // `copy_nonoverlapping` below! Therefore, we round the division |
| 1778 | // up to avoid this issue. |
| 1779 | && delta >= (old_size + 1) / 2 |
| 1780 | { |
| 1781 | let footer = self.current_chunk_footer.get(); |
| 1782 | let footer = footer.as_ref(); |
| 1783 | |
| 1784 | // NB: new_ptr is aligned, because ptr *has to* be aligned, and we |
| 1785 | // made sure delta is aligned. |
| 1786 | let new_ptr = NonNull::new_unchecked(footer.ptr.get().as_ptr().add(delta)); |
| 1787 | footer.ptr.set(new_ptr); |
| 1788 | |
| 1789 | // NB: we know it is non-overlapping because of the size check |
| 1790 | // in the `if` condition. |
| 1791 | ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), new_size); |
| 1792 | |
| 1793 | return Ok(new_ptr); |
| 1794 | } |
| 1795 | |
| 1796 | // If this wasn't the last allocation, or shrinking wasn't worth it, |
| 1797 | // simply return the old pointer as-is. |
| 1798 | Ok(ptr) |
| 1799 | } |
| 1800 | |
| 1801 | #[inline ] |
| 1802 | unsafe fn grow( |
| 1803 | &self, |
| 1804 | ptr: NonNull<u8>, |
| 1805 | old_layout: Layout, |
| 1806 | new_layout: Layout, |
| 1807 | ) -> Result<NonNull<u8>, AllocErr> { |
| 1808 | let old_size = old_layout.size(); |
| 1809 | let new_size = new_layout.size(); |
| 1810 | let align_is_compatible = old_layout.align() >= new_layout.align(); |
| 1811 | |
| 1812 | if align_is_compatible && self.is_last_allocation(ptr) { |
| 1813 | // Try to allocate the delta size within this same block so we can |
| 1814 | // reuse the currently allocated space. |
| 1815 | let delta = new_size - old_size; |
| 1816 | if let Some(p) = |
| 1817 | self.try_alloc_layout_fast(layout_from_size_align(delta, old_layout.align())?) |
| 1818 | { |
| 1819 | ptr::copy(ptr.as_ptr(), p.as_ptr(), old_size); |
| 1820 | return Ok(p); |
| 1821 | } |
| 1822 | } |
| 1823 | |
| 1824 | // Fallback: do a fresh allocation and copy the existing data into it. |
| 1825 | let new_ptr = self.try_alloc_layout(new_layout)?; |
| 1826 | ptr::copy_nonoverlapping(ptr.as_ptr(), new_ptr.as_ptr(), old_size); |
| 1827 | Ok(new_ptr) |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | /// An iterator over each chunk of allocated memory that |
| 1832 | /// an arena has bump allocated into. |
| 1833 | /// |
| 1834 | /// The chunks are returned ordered by allocation time, with the most recently |
| 1835 | /// allocated chunk being returned first. |
| 1836 | /// |
| 1837 | /// The values inside each chunk are also ordered by allocation time, with the most |
| 1838 | /// recent allocation being earlier in the slice. |
| 1839 | /// |
| 1840 | /// This struct is created by the [`iter_allocated_chunks`] method on |
| 1841 | /// [`Bump`]. See that function for a safety description regarding reading from the returned items. |
| 1842 | /// |
| 1843 | /// [`Bump`]: struct.Bump.html |
| 1844 | /// [`iter_allocated_chunks`]: struct.Bump.html#method.iter_allocated_chunks |
| 1845 | #[derive (Debug)] |
| 1846 | pub struct ChunkIter<'a> { |
| 1847 | raw: ChunkRawIter<'a>, |
| 1848 | bump: PhantomData<&'a mut Bump>, |
| 1849 | } |
| 1850 | |
| 1851 | impl<'a> Iterator for ChunkIter<'a> { |
| 1852 | type Item = &'a [mem::MaybeUninit<u8>]; |
| 1853 | fn next(&mut self) -> Option<&'a [mem::MaybeUninit<u8>]> { |
| 1854 | unsafe { |
| 1855 | let (ptr: *mut u8, len: usize) = self.raw.next()?; |
| 1856 | let slice: &[MaybeUninit] = slice::from_raw_parts(data:ptr as *const mem::MaybeUninit<u8>, len); |
| 1857 | Some(slice) |
| 1858 | } |
| 1859 | } |
| 1860 | } |
| 1861 | |
| 1862 | impl<'a> iter::FusedIterator for ChunkIter<'a> {} |
| 1863 | |
| 1864 | /// An iterator over raw pointers to chunks of allocated memory that this |
| 1865 | /// arena has bump allocated into. |
| 1866 | /// |
| 1867 | /// See [`ChunkIter`] for details regarding the returned chunks. |
| 1868 | /// |
| 1869 | /// This struct is created by the [`iter_allocated_chunks_raw`] method on |
| 1870 | /// [`Bump`]. See that function for a safety description regarding reading from |
| 1871 | /// the returned items. |
| 1872 | /// |
| 1873 | /// [`Bump`]: struct.Bump.html |
| 1874 | /// [`iter_allocated_chunks_raw`]: struct.Bump.html#method.iter_allocated_chunks_raw |
| 1875 | #[derive (Debug)] |
| 1876 | pub struct ChunkRawIter<'a> { |
| 1877 | footer: NonNull<ChunkFooter>, |
| 1878 | bump: PhantomData<&'a Bump>, |
| 1879 | } |
| 1880 | |
| 1881 | impl Iterator for ChunkRawIter<'_> { |
| 1882 | type Item = (*mut u8, usize); |
| 1883 | fn next(&mut self) -> Option<(*mut u8, usize)> { |
| 1884 | unsafe { |
| 1885 | let foot: &ChunkFooter = self.footer.as_ref(); |
| 1886 | if foot.is_empty() { |
| 1887 | return None; |
| 1888 | } |
| 1889 | let (ptr: *const u8, len: usize) = foot.as_raw_parts(); |
| 1890 | self.footer = foot.prev.get(); |
| 1891 | Some((ptr as *mut u8, len)) |
| 1892 | } |
| 1893 | } |
| 1894 | } |
| 1895 | |
| 1896 | impl iter::FusedIterator for ChunkRawIter<'_> {} |
| 1897 | |
| 1898 | #[inline (never)] |
| 1899 | #[cold ] |
| 1900 | fn oom() -> ! { |
| 1901 | panic!("out of memory" ) |
| 1902 | } |
| 1903 | |
| 1904 | unsafe impl<'a> alloc::Alloc for &'a Bump { |
| 1905 | #[inline (always)] |
| 1906 | unsafe fn alloc(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocErr> { |
| 1907 | self.try_alloc_layout(layout) |
| 1908 | } |
| 1909 | |
| 1910 | #[inline ] |
| 1911 | unsafe fn dealloc(&mut self, ptr: NonNull<u8>, layout: Layout) { |
| 1912 | Bump::dealloc(self, ptr, layout); |
| 1913 | } |
| 1914 | |
| 1915 | #[inline ] |
| 1916 | unsafe fn realloc( |
| 1917 | &mut self, |
| 1918 | ptr: NonNull<u8>, |
| 1919 | layout: Layout, |
| 1920 | new_size: usize, |
| 1921 | ) -> Result<NonNull<u8>, AllocErr> { |
| 1922 | let old_size = layout.size(); |
| 1923 | |
| 1924 | if old_size == 0 { |
| 1925 | return self.try_alloc_layout(layout); |
| 1926 | } |
| 1927 | |
| 1928 | let new_layout = layout_from_size_align(new_size, layout.align())?; |
| 1929 | if new_size <= old_size { |
| 1930 | self.shrink(ptr, layout, new_layout) |
| 1931 | } else { |
| 1932 | self.grow(ptr, layout, new_layout) |
| 1933 | } |
| 1934 | } |
| 1935 | } |
| 1936 | |
| 1937 | #[cfg (any(feature = "allocator_api" , feature = "allocator-api2" ))] |
| 1938 | unsafe impl<'a> Allocator for &'a Bump { |
| 1939 | #[inline ] |
| 1940 | fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError> { |
| 1941 | self.try_alloc_layout(layout) |
| 1942 | .map(|p| unsafe { |
| 1943 | NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), layout.size())) |
| 1944 | }) |
| 1945 | .map_err(|_| AllocError) |
| 1946 | } |
| 1947 | |
| 1948 | #[inline ] |
| 1949 | unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { |
| 1950 | Bump::dealloc(self, ptr, layout) |
| 1951 | } |
| 1952 | |
| 1953 | #[inline ] |
| 1954 | unsafe fn shrink( |
| 1955 | &self, |
| 1956 | ptr: NonNull<u8>, |
| 1957 | old_layout: Layout, |
| 1958 | new_layout: Layout, |
| 1959 | ) -> Result<NonNull<[u8]>, AllocError> { |
| 1960 | Bump::shrink(self, ptr, old_layout, new_layout) |
| 1961 | .map(|p| unsafe { |
| 1962 | NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size())) |
| 1963 | }) |
| 1964 | .map_err(|_| AllocError) |
| 1965 | } |
| 1966 | |
| 1967 | #[inline ] |
| 1968 | unsafe fn grow( |
| 1969 | &self, |
| 1970 | ptr: NonNull<u8>, |
| 1971 | old_layout: Layout, |
| 1972 | new_layout: Layout, |
| 1973 | ) -> Result<NonNull<[u8]>, AllocError> { |
| 1974 | Bump::grow(self, ptr, old_layout, new_layout) |
| 1975 | .map(|p| unsafe { |
| 1976 | NonNull::new_unchecked(ptr::slice_from_raw_parts_mut(p.as_ptr(), new_layout.size())) |
| 1977 | }) |
| 1978 | .map_err(|_| AllocError) |
| 1979 | } |
| 1980 | |
| 1981 | #[inline ] |
| 1982 | unsafe fn grow_zeroed( |
| 1983 | &self, |
| 1984 | ptr: NonNull<u8>, |
| 1985 | old_layout: Layout, |
| 1986 | new_layout: Layout, |
| 1987 | ) -> Result<NonNull<[u8]>, AllocError> { |
| 1988 | let mut ptr = self.grow(ptr, old_layout, new_layout)?; |
| 1989 | ptr.as_mut()[old_layout.size()..].fill(0); |
| 1990 | Ok(ptr) |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | // NB: Only tests which require private types, fields, or methods should be in |
| 1995 | // here. Anything that can just be tested via public API surface should be in |
| 1996 | // `bumpalo/tests/all/*`. |
| 1997 | #[cfg (test)] |
| 1998 | mod tests { |
| 1999 | use super::*; |
| 2000 | |
| 2001 | // Uses private type `ChunkFooter`. |
| 2002 | #[test ] |
| 2003 | fn chunk_footer_is_five_words() { |
| 2004 | assert_eq!(mem::size_of::<ChunkFooter>(), mem::size_of::<usize>() * 6); |
| 2005 | } |
| 2006 | |
| 2007 | // Uses private `alloc` module. |
| 2008 | #[test ] |
| 2009 | fn test_realloc() { |
| 2010 | use crate::alloc::Alloc; |
| 2011 | |
| 2012 | unsafe { |
| 2013 | const CAPACITY: usize = 1024 - OVERHEAD; |
| 2014 | let mut b = Bump::with_capacity(CAPACITY); |
| 2015 | |
| 2016 | // `realloc` doesn't shrink allocations that aren't "worth it". |
| 2017 | let layout = Layout::from_size_align(100, 1).unwrap(); |
| 2018 | let p = b.alloc_layout(layout); |
| 2019 | let q = (&b).realloc(p, layout, 51).unwrap(); |
| 2020 | assert_eq!(p, q); |
| 2021 | b.reset(); |
| 2022 | |
| 2023 | // `realloc` will shrink allocations that are "worth it". |
| 2024 | let layout = Layout::from_size_align(100, 1).unwrap(); |
| 2025 | let p = b.alloc_layout(layout); |
| 2026 | let q = (&b).realloc(p, layout, 50).unwrap(); |
| 2027 | assert!(p != q); |
| 2028 | b.reset(); |
| 2029 | |
| 2030 | // `realloc` will reuse the last allocation when growing. |
| 2031 | let layout = Layout::from_size_align(10, 1).unwrap(); |
| 2032 | let p = b.alloc_layout(layout); |
| 2033 | let q = (&b).realloc(p, layout, 11).unwrap(); |
| 2034 | assert_eq!(q.as_ptr() as usize, p.as_ptr() as usize - 1); |
| 2035 | b.reset(); |
| 2036 | |
| 2037 | // `realloc` will allocate a new chunk when growing the last |
| 2038 | // allocation, if need be. |
| 2039 | let layout = Layout::from_size_align(1, 1).unwrap(); |
| 2040 | let p = b.alloc_layout(layout); |
| 2041 | let q = (&b).realloc(p, layout, CAPACITY + 1).unwrap(); |
| 2042 | assert!(q.as_ptr() as usize != p.as_ptr() as usize - CAPACITY); |
| 2043 | b = Bump::with_capacity(CAPACITY); |
| 2044 | |
| 2045 | // `realloc` will allocate and copy when reallocating anything that |
| 2046 | // wasn't the last allocation. |
| 2047 | let layout = Layout::from_size_align(1, 1).unwrap(); |
| 2048 | let p = b.alloc_layout(layout); |
| 2049 | let _ = b.alloc_layout(layout); |
| 2050 | let q = (&b).realloc(p, layout, 2).unwrap(); |
| 2051 | assert!(q.as_ptr() as usize != p.as_ptr() as usize - 1); |
| 2052 | b.reset(); |
| 2053 | } |
| 2054 | } |
| 2055 | |
| 2056 | // Uses our private `alloc` module. |
| 2057 | #[test ] |
| 2058 | fn invalid_read() { |
| 2059 | use alloc::Alloc; |
| 2060 | |
| 2061 | let mut b = &Bump::new(); |
| 2062 | |
| 2063 | unsafe { |
| 2064 | let l1 = Layout::from_size_align(12000, 4).unwrap(); |
| 2065 | let p1 = Alloc::alloc(&mut b, l1).unwrap(); |
| 2066 | |
| 2067 | let l2 = Layout::from_size_align(1000, 4).unwrap(); |
| 2068 | Alloc::alloc(&mut b, l2).unwrap(); |
| 2069 | |
| 2070 | let p1 = b.realloc(p1, l1, 24000).unwrap(); |
| 2071 | let l3 = Layout::from_size_align(24000, 4).unwrap(); |
| 2072 | b.realloc(p1, l3, 48000).unwrap(); |
| 2073 | } |
| 2074 | } |
| 2075 | } |
| 2076 | |