| 1 | use crate::alloc::alloc::{handle_alloc_error, Layout}; |
| 2 | use crate::control::{BitMaskIter, Group, Tag, TagSliceExt}; |
| 3 | use crate::scopeguard::{guard, ScopeGuard}; |
| 4 | use crate::util::{invalid_mut, likely, unlikely}; |
| 5 | use crate::TryReserveError; |
| 6 | use core::array; |
| 7 | use core::iter::FusedIterator; |
| 8 | use core::marker::PhantomData; |
| 9 | use core::mem; |
| 10 | use core::ptr::NonNull; |
| 11 | use core::slice; |
| 12 | use core::{hint, ptr}; |
| 13 | |
| 14 | mod alloc; |
| 15 | pub(crate) use self::alloc::{do_alloc, Allocator, Global}; |
| 16 | |
| 17 | #[inline ] |
| 18 | unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize { |
| 19 | to.offset_from(origin:from) as usize |
| 20 | } |
| 21 | |
| 22 | /// Whether memory allocation errors should return an error or abort. |
| 23 | #[derive (Copy, Clone)] |
| 24 | enum Fallibility { |
| 25 | Fallible, |
| 26 | Infallible, |
| 27 | } |
| 28 | |
| 29 | impl Fallibility { |
| 30 | /// Error to return on capacity overflow. |
| 31 | #[cfg_attr (feature = "inline-more" , inline)] |
| 32 | fn capacity_overflow(self) -> TryReserveError { |
| 33 | match self { |
| 34 | Fallibility::Fallible => TryReserveError::CapacityOverflow, |
| 35 | Fallibility::Infallible => panic!("Hash table capacity overflow" ), |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | /// Error to return on allocation error. |
| 40 | #[cfg_attr (feature = "inline-more" , inline)] |
| 41 | fn alloc_err(self, layout: Layout) -> TryReserveError { |
| 42 | match self { |
| 43 | Fallibility::Fallible => TryReserveError::AllocError { layout }, |
| 44 | Fallibility::Infallible => handle_alloc_error(layout), |
| 45 | } |
| 46 | } |
| 47 | } |
| 48 | |
| 49 | trait SizedTypeProperties: Sized { |
| 50 | const IS_ZERO_SIZED: bool = mem::size_of::<Self>() == 0; |
| 51 | const NEEDS_DROP: bool = mem::needs_drop::<Self>(); |
| 52 | } |
| 53 | |
| 54 | impl<T> SizedTypeProperties for T {} |
| 55 | |
| 56 | /// Primary hash function, used to select the initial bucket to probe from. |
| 57 | #[inline ] |
| 58 | #[allow (clippy::cast_possible_truncation)] |
| 59 | fn h1(hash: u64) -> usize { |
| 60 | // On 32-bit platforms we simply ignore the higher hash bits. |
| 61 | hash as usize |
| 62 | } |
| 63 | |
| 64 | /// Probe sequence based on triangular numbers, which is guaranteed (since our |
| 65 | /// table size is a power of two) to visit every group of elements exactly once. |
| 66 | /// |
| 67 | /// A triangular probe has us jump by 1 more group every time. So first we |
| 68 | /// jump by 1 group (meaning we just continue our linear scan), then 2 groups |
| 69 | /// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. |
| 70 | /// |
| 71 | /// Proof that the probe will visit every group in the table: |
| 72 | /// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/> |
| 73 | #[derive (Clone)] |
| 74 | struct ProbeSeq { |
| 75 | pos: usize, |
| 76 | stride: usize, |
| 77 | } |
| 78 | |
| 79 | impl ProbeSeq { |
| 80 | #[inline ] |
| 81 | fn move_next(&mut self, bucket_mask: usize) { |
| 82 | // We should have found an empty bucket by now and ended the probe. |
| 83 | debug_assert!( |
| 84 | self.stride <= bucket_mask, |
| 85 | "Went past end of probe sequence" |
| 86 | ); |
| 87 | |
| 88 | self.stride += Group::WIDTH; |
| 89 | self.pos += self.stride; |
| 90 | self.pos &= bucket_mask; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | /// Returns the number of buckets needed to hold the given number of items, |
| 95 | /// taking the maximum load factor into account. |
| 96 | /// |
| 97 | /// Returns `None` if an overflow occurs. |
| 98 | // Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258 |
| 99 | #[cfg_attr (target_os = "emscripten" , inline(never))] |
| 100 | #[cfg_attr (not(target_os = "emscripten" ), inline)] |
| 101 | fn capacity_to_buckets(cap: usize) -> Option<usize> { |
| 102 | debug_assert_ne!(cap, 0); |
| 103 | |
| 104 | // For small tables we require at least 1 empty bucket so that lookups are |
| 105 | // guaranteed to terminate if an element doesn't exist in the table. |
| 106 | if cap < 8 { |
| 107 | // We don't bother with a table size of 2 buckets since that can only |
| 108 | // hold a single element. Instead we skip directly to a 4 bucket table |
| 109 | // which can hold 3 elements. |
| 110 | return Some(if cap < 4 { 4 } else { 8 }); |
| 111 | } |
| 112 | |
| 113 | // Otherwise require 1/8 buckets to be empty (87.5% load) |
| 114 | // |
| 115 | // Be careful when modifying this, calculate_layout relies on the |
| 116 | // overflow check here. |
| 117 | let adjusted_cap: usize = cap.checked_mul(8)? / 7; |
| 118 | |
| 119 | // Any overflows will have been caught by the checked_mul. Also, any |
| 120 | // rounding errors from the division above will be cleaned up by |
| 121 | // next_power_of_two (which can't overflow because of the previous division). |
| 122 | Some(adjusted_cap.next_power_of_two()) |
| 123 | } |
| 124 | |
| 125 | /// Returns the maximum effective capacity for the given bucket mask, taking |
| 126 | /// the maximum load factor into account. |
| 127 | #[inline ] |
| 128 | fn bucket_mask_to_capacity(bucket_mask: usize) -> usize { |
| 129 | if bucket_mask < 8 { |
| 130 | // For tables with 1/2/4/8 buckets, we always reserve one empty slot. |
| 131 | // Keep in mind that the bucket mask is one less than the bucket count. |
| 132 | bucket_mask |
| 133 | } else { |
| 134 | // For larger tables we reserve 12.5% of the slots as empty. |
| 135 | ((bucket_mask + 1) / 8) * 7 |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | /// Helper which allows the max calculation for `ctrl_align` to be statically computed for each `T` |
| 140 | /// while keeping the rest of `calculate_layout_for` independent of `T` |
| 141 | #[derive (Copy, Clone)] |
| 142 | struct TableLayout { |
| 143 | size: usize, |
| 144 | ctrl_align: usize, |
| 145 | } |
| 146 | |
| 147 | impl TableLayout { |
| 148 | #[inline ] |
| 149 | const fn new<T>() -> Self { |
| 150 | let layout = Layout::new::<T>(); |
| 151 | Self { |
| 152 | size: layout.size(), |
| 153 | ctrl_align: if layout.align() > Group::WIDTH { |
| 154 | layout.align() |
| 155 | } else { |
| 156 | Group::WIDTH |
| 157 | }, |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | #[inline ] |
| 162 | fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> { |
| 163 | debug_assert!(buckets.is_power_of_two()); |
| 164 | |
| 165 | let TableLayout { size, ctrl_align } = self; |
| 166 | // Manual layout calculation since Layout methods are not yet stable. |
| 167 | let ctrl_offset = |
| 168 | size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1); |
| 169 | let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?; |
| 170 | |
| 171 | // We need an additional check to ensure that the allocation doesn't |
| 172 | // exceed `isize::MAX` (https://github.com/rust-lang/rust/pull/95295). |
| 173 | if len > isize::MAX as usize - (ctrl_align - 1) { |
| 174 | return None; |
| 175 | } |
| 176 | |
| 177 | Some(( |
| 178 | unsafe { Layout::from_size_align_unchecked(len, ctrl_align) }, |
| 179 | ctrl_offset, |
| 180 | )) |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | /// A reference to an empty bucket into which an can be inserted. |
| 185 | pub struct InsertSlot { |
| 186 | index: usize, |
| 187 | } |
| 188 | |
| 189 | /// A reference to a hash table bucket containing a `T`. |
| 190 | /// |
| 191 | /// This is usually just a pointer to the element itself. However if the element |
| 192 | /// is a ZST, then we instead track the index of the element in the table so |
| 193 | /// that `erase` works properly. |
| 194 | pub struct Bucket<T> { |
| 195 | // Actually it is pointer to next element than element itself |
| 196 | // this is needed to maintain pointer arithmetic invariants |
| 197 | // keeping direct pointer to element introduces difficulty. |
| 198 | // Using `NonNull` for variance and niche layout |
| 199 | ptr: NonNull<T>, |
| 200 | } |
| 201 | |
| 202 | // This Send impl is needed for rayon support. This is safe since Bucket is |
| 203 | // never exposed in a public API. |
| 204 | unsafe impl<T> Send for Bucket<T> {} |
| 205 | |
| 206 | impl<T> Clone for Bucket<T> { |
| 207 | #[inline ] |
| 208 | fn clone(&self) -> Self { |
| 209 | Self { ptr: self.ptr } |
| 210 | } |
| 211 | } |
| 212 | |
| 213 | impl<T> Bucket<T> { |
| 214 | /// Creates a [`Bucket`] that contain pointer to the data. |
| 215 | /// The pointer calculation is performed by calculating the |
| 216 | /// offset from given `base` pointer (convenience for |
| 217 | /// `base.as_ptr().sub(index)`). |
| 218 | /// |
| 219 | /// `index` is in units of `T`; e.g., an `index` of 3 represents a pointer |
| 220 | /// offset of `3 * size_of::<T>()` bytes. |
| 221 | /// |
| 222 | /// If the `T` is a ZST, then we instead track the index of the element |
| 223 | /// in the table so that `erase` works properly (return |
| 224 | /// `NonNull::new_unchecked((index + 1) as *mut T)`) |
| 225 | /// |
| 226 | /// # Safety |
| 227 | /// |
| 228 | /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived |
| 229 | /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and the safety |
| 230 | /// rules of [`NonNull::new_unchecked`] function. |
| 231 | /// |
| 232 | /// Thus, in order to uphold the safety contracts for the [`<*mut T>::sub`] method |
| 233 | /// and [`NonNull::new_unchecked`] function, as well as for the correct |
| 234 | /// logic of the work of this crate, the following rules are necessary and |
| 235 | /// sufficient: |
| 236 | /// |
| 237 | /// * the `base` pointer must not be `dangling` and must points to the |
| 238 | /// end of the first `value element` from the `data part` of the table, i.e. |
| 239 | /// must be the pointer that returned by [`RawTable::data_end`] or by |
| 240 | /// [`RawTableInner::data_end<T>`]; |
| 241 | /// |
| 242 | /// * `index` must not be greater than `RawTableInner.bucket_mask`, i.e. |
| 243 | /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` |
| 244 | /// must be no greater than the number returned by the function |
| 245 | /// [`RawTable::buckets`] or [`RawTableInner::buckets`]. |
| 246 | /// |
| 247 | /// If `mem::size_of::<T>() == 0`, then the only requirement is that the |
| 248 | /// `index` must not be greater than `RawTableInner.bucket_mask`, i.e. |
| 249 | /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` |
| 250 | /// must be no greater than the number returned by the function |
| 251 | /// [`RawTable::buckets`] or [`RawTableInner::buckets`]. |
| 252 | /// |
| 253 | /// [`Bucket`]: crate::raw::Bucket |
| 254 | /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1 |
| 255 | /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked |
| 256 | /// [`RawTable::data_end`]: crate::raw::RawTable::data_end |
| 257 | /// [`RawTableInner::data_end<T>`]: RawTableInner::data_end<T> |
| 258 | /// [`RawTable::buckets`]: crate::raw::RawTable::buckets |
| 259 | /// [`RawTableInner::buckets`]: RawTableInner::buckets |
| 260 | #[inline ] |
| 261 | unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self { |
| 262 | // If mem::size_of::<T>() != 0 then return a pointer to an `element` in |
| 263 | // the data part of the table (we start counting from "0", so that |
| 264 | // in the expression T[last], the "last" index actually one less than the |
| 265 | // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask"): |
| 266 | // |
| 267 | // `from_base_index(base, 1).as_ptr()` returns a pointer that |
| 268 | // points here in the data part of the table |
| 269 | // (to the start of T1) |
| 270 | // | |
| 271 | // | `base: NonNull<T>` must point here |
| 272 | // | (to the end of T0 or to the start of C0) |
| 273 | // v v |
| 274 | // [Padding], Tlast, ..., |T1|, T0, |C0, C1, ..., Clast |
| 275 | // ^ |
| 276 | // `from_base_index(base, 1)` returns a pointer |
| 277 | // that points here in the data part of the table |
| 278 | // (to the end of T1) |
| 279 | // |
| 280 | // where: T0...Tlast - our stored data; C0...Clast - control bytes |
| 281 | // or metadata for data. |
| 282 | let ptr = if T::IS_ZERO_SIZED { |
| 283 | // won't overflow because index must be less than length (bucket_mask) |
| 284 | // and bucket_mask is guaranteed to be less than `isize::MAX` |
| 285 | // (see TableLayout::calculate_layout_for method) |
| 286 | invalid_mut(index + 1) |
| 287 | } else { |
| 288 | base.as_ptr().sub(index) |
| 289 | }; |
| 290 | Self { |
| 291 | ptr: NonNull::new_unchecked(ptr), |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | /// Calculates the index of a [`Bucket`] as distance between two pointers |
| 296 | /// (convenience for `base.as_ptr().offset_from(self.ptr.as_ptr()) as usize`). |
| 297 | /// The returned value is in units of T: the distance in bytes divided by |
| 298 | /// [`core::mem::size_of::<T>()`]. |
| 299 | /// |
| 300 | /// If the `T` is a ZST, then we return the index of the element in |
| 301 | /// the table so that `erase` works properly (return `self.ptr.as_ptr() as usize - 1`). |
| 302 | /// |
| 303 | /// This function is the inverse of [`from_base_index`]. |
| 304 | /// |
| 305 | /// # Safety |
| 306 | /// |
| 307 | /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived |
| 308 | /// from the safety rules for [`<*const T>::offset_from`] method of `*const T`. |
| 309 | /// |
| 310 | /// Thus, in order to uphold the safety contracts for [`<*const T>::offset_from`] |
| 311 | /// method, as well as for the correct logic of the work of this crate, the |
| 312 | /// following rules are necessary and sufficient: |
| 313 | /// |
| 314 | /// * `base` contained pointer must not be `dangling` and must point to the |
| 315 | /// end of the first `element` from the `data part` of the table, i.e. |
| 316 | /// must be a pointer that returns by [`RawTable::data_end`] or by |
| 317 | /// [`RawTableInner::data_end<T>`]; |
| 318 | /// |
| 319 | /// * `self` also must not contain dangling pointer; |
| 320 | /// |
| 321 | /// * both `self` and `base` must be created from the same [`RawTable`] |
| 322 | /// (or [`RawTableInner`]). |
| 323 | /// |
| 324 | /// If `mem::size_of::<T>() == 0`, this function is always safe. |
| 325 | /// |
| 326 | /// [`Bucket`]: crate::raw::Bucket |
| 327 | /// [`from_base_index`]: crate::raw::Bucket::from_base_index |
| 328 | /// [`RawTable::data_end`]: crate::raw::RawTable::data_end |
| 329 | /// [`RawTableInner::data_end<T>`]: RawTableInner::data_end<T> |
| 330 | /// [`RawTable`]: crate::raw::RawTable |
| 331 | /// [`RawTableInner`]: RawTableInner |
| 332 | /// [`<*const T>::offset_from`]: https://doc.rust-lang.org/nightly/core/primitive.pointer.html#method.offset_from |
| 333 | #[inline ] |
| 334 | unsafe fn to_base_index(&self, base: NonNull<T>) -> usize { |
| 335 | // If mem::size_of::<T>() != 0 then return an index under which we used to store the |
| 336 | // `element` in the data part of the table (we start counting from "0", so |
| 337 | // that in the expression T[last], the "last" index actually is one less than the |
| 338 | // "buckets" number in the table, i.e. "last = RawTableInner.bucket_mask"). |
| 339 | // For example for 5th element in table calculation is performed like this: |
| 340 | // |
| 341 | // mem::size_of::<T>() |
| 342 | // | |
| 343 | // | `self = from_base_index(base, 5)` that returns pointer |
| 344 | // | that points here in the data part of the table |
| 345 | // | (to the end of T5) |
| 346 | // | | `base: NonNull<T>` must point here |
| 347 | // v | (to the end of T0 or to the start of C0) |
| 348 | // /???\ v v |
| 349 | // [Padding], Tlast, ..., |T10|, ..., T5|, T4, T3, T2, T1, T0, |C0, C1, C2, C3, C4, C5, ..., C10, ..., Clast |
| 350 | // \__________ __________/ |
| 351 | // \/ |
| 352 | // `bucket.to_base_index(base)` = 5 |
| 353 | // (base.as_ptr() as usize - self.ptr.as_ptr() as usize) / mem::size_of::<T>() |
| 354 | // |
| 355 | // where: T0...Tlast - our stored data; C0...Clast - control bytes or metadata for data. |
| 356 | if T::IS_ZERO_SIZED { |
| 357 | // this can not be UB |
| 358 | self.ptr.as_ptr() as usize - 1 |
| 359 | } else { |
| 360 | offset_from(base.as_ptr(), self.ptr.as_ptr()) |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | /// Acquires the underlying raw pointer `*mut T` to `data`. |
| 365 | /// |
| 366 | /// # Note |
| 367 | /// |
| 368 | /// If `T` is not [`Copy`], do not use `*mut T` methods that can cause calling the |
| 369 | /// destructor of `T` (for example the [`<*mut T>::drop_in_place`] method), because |
| 370 | /// for properly dropping the data we also need to clear `data` control bytes. If we |
| 371 | /// drop data, but do not clear `data control byte` it leads to double drop when |
| 372 | /// [`RawTable`] goes out of scope. |
| 373 | /// |
| 374 | /// If you modify an already initialized `value`, so [`Hash`] and [`Eq`] on the new |
| 375 | /// `T` value and its borrowed form *must* match those for the old `T` value, as the map |
| 376 | /// will not re-evaluate where the new value should go, meaning the value may become |
| 377 | /// "lost" if their location does not reflect their state. |
| 378 | /// |
| 379 | /// [`RawTable`]: crate::raw::RawTable |
| 380 | /// [`<*mut T>::drop_in_place`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.drop_in_place |
| 381 | /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html |
| 382 | /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html |
| 383 | #[inline ] |
| 384 | pub fn as_ptr(&self) -> *mut T { |
| 385 | if T::IS_ZERO_SIZED { |
| 386 | // Just return an arbitrary ZST pointer which is properly aligned |
| 387 | // invalid pointer is good enough for ZST |
| 388 | invalid_mut(mem::align_of::<T>()) |
| 389 | } else { |
| 390 | unsafe { self.ptr.as_ptr().sub(1) } |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | /// Acquires the underlying non-null pointer `*mut T` to `data`. |
| 395 | #[inline ] |
| 396 | fn as_non_null(&self) -> NonNull<T> { |
| 397 | // SAFETY: `self.ptr` is already a `NonNull` |
| 398 | unsafe { NonNull::new_unchecked(self.as_ptr()) } |
| 399 | } |
| 400 | |
| 401 | /// Create a new [`Bucket`] that is offset from the `self` by the given |
| 402 | /// `offset`. The pointer calculation is performed by calculating the |
| 403 | /// offset from `self` pointer (convenience for `self.ptr.as_ptr().sub(offset)`). |
| 404 | /// This function is used for iterators. |
| 405 | /// |
| 406 | /// `offset` is in units of `T`; e.g., a `offset` of 3 represents a pointer |
| 407 | /// offset of `3 * size_of::<T>()` bytes. |
| 408 | /// |
| 409 | /// # Safety |
| 410 | /// |
| 411 | /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived |
| 412 | /// from the safety rules for [`<*mut T>::sub`] method of `*mut T` and safety |
| 413 | /// rules of [`NonNull::new_unchecked`] function. |
| 414 | /// |
| 415 | /// Thus, in order to uphold the safety contracts for [`<*mut T>::sub`] method |
| 416 | /// and [`NonNull::new_unchecked`] function, as well as for the correct |
| 417 | /// logic of the work of this crate, the following rules are necessary and |
| 418 | /// sufficient: |
| 419 | /// |
| 420 | /// * `self` contained pointer must not be `dangling`; |
| 421 | /// |
| 422 | /// * `self.to_base_index() + offset` must not be greater than `RawTableInner.bucket_mask`, |
| 423 | /// i.e. `(self.to_base_index() + offset) <= RawTableInner.bucket_mask` or, in other |
| 424 | /// words, `self.to_base_index() + offset + 1` must be no greater than the number returned |
| 425 | /// by the function [`RawTable::buckets`] or [`RawTableInner::buckets`]. |
| 426 | /// |
| 427 | /// If `mem::size_of::<T>() == 0`, then the only requirement is that the |
| 428 | /// `self.to_base_index() + offset` must not be greater than `RawTableInner.bucket_mask`, |
| 429 | /// i.e. `(self.to_base_index() + offset) <= RawTableInner.bucket_mask` or, in other words, |
| 430 | /// `self.to_base_index() + offset + 1` must be no greater than the number returned by the |
| 431 | /// function [`RawTable::buckets`] or [`RawTableInner::buckets`]. |
| 432 | /// |
| 433 | /// [`Bucket`]: crate::raw::Bucket |
| 434 | /// [`<*mut T>::sub`]: https://doc.rust-lang.org/core/primitive.pointer.html#method.sub-1 |
| 435 | /// [`NonNull::new_unchecked`]: https://doc.rust-lang.org/stable/std/ptr/struct.NonNull.html#method.new_unchecked |
| 436 | /// [`RawTable::buckets`]: crate::raw::RawTable::buckets |
| 437 | /// [`RawTableInner::buckets`]: RawTableInner::buckets |
| 438 | #[inline ] |
| 439 | unsafe fn next_n(&self, offset: usize) -> Self { |
| 440 | let ptr = if T::IS_ZERO_SIZED { |
| 441 | // invalid pointer is good enough for ZST |
| 442 | invalid_mut(self.ptr.as_ptr() as usize + offset) |
| 443 | } else { |
| 444 | self.ptr.as_ptr().sub(offset) |
| 445 | }; |
| 446 | Self { |
| 447 | ptr: NonNull::new_unchecked(ptr), |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | /// Executes the destructor (if any) of the pointed-to `data`. |
| 452 | /// |
| 453 | /// # Safety |
| 454 | /// |
| 455 | /// See [`ptr::drop_in_place`] for safety concerns. |
| 456 | /// |
| 457 | /// You should use [`RawTable::erase`] instead of this function, |
| 458 | /// or be careful with calling this function directly, because for |
| 459 | /// properly dropping the data we need also clear `data` control bytes. |
| 460 | /// If we drop data, but do not erase `data control byte` it leads to |
| 461 | /// double drop when [`RawTable`] goes out of scope. |
| 462 | /// |
| 463 | /// [`ptr::drop_in_place`]: https://doc.rust-lang.org/core/ptr/fn.drop_in_place.html |
| 464 | /// [`RawTable`]: crate::raw::RawTable |
| 465 | /// [`RawTable::erase`]: crate::raw::RawTable::erase |
| 466 | #[cfg_attr (feature = "inline-more" , inline)] |
| 467 | pub(crate) unsafe fn drop(&self) { |
| 468 | self.as_ptr().drop_in_place(); |
| 469 | } |
| 470 | |
| 471 | /// Reads the `value` from `self` without moving it. This leaves the |
| 472 | /// memory in `self` unchanged. |
| 473 | /// |
| 474 | /// # Safety |
| 475 | /// |
| 476 | /// See [`ptr::read`] for safety concerns. |
| 477 | /// |
| 478 | /// You should use [`RawTable::remove`] instead of this function, |
| 479 | /// or be careful with calling this function directly, because compiler |
| 480 | /// calls its destructor when the read `value` goes out of scope. It |
| 481 | /// can cause double dropping when [`RawTable`] goes out of scope, |
| 482 | /// because of not erased `data control byte`. |
| 483 | /// |
| 484 | /// [`ptr::read`]: https://doc.rust-lang.org/core/ptr/fn.read.html |
| 485 | /// [`RawTable`]: crate::raw::RawTable |
| 486 | /// [`RawTable::remove`]: crate::raw::RawTable::remove |
| 487 | #[inline ] |
| 488 | pub(crate) unsafe fn read(&self) -> T { |
| 489 | self.as_ptr().read() |
| 490 | } |
| 491 | |
| 492 | /// Overwrites a memory location with the given `value` without reading |
| 493 | /// or dropping the old value (like [`ptr::write`] function). |
| 494 | /// |
| 495 | /// # Safety |
| 496 | /// |
| 497 | /// See [`ptr::write`] for safety concerns. |
| 498 | /// |
| 499 | /// # Note |
| 500 | /// |
| 501 | /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match |
| 502 | /// those for the old `T` value, as the map will not re-evaluate where the new |
| 503 | /// value should go, meaning the value may become "lost" if their location |
| 504 | /// does not reflect their state. |
| 505 | /// |
| 506 | /// [`ptr::write`]: https://doc.rust-lang.org/core/ptr/fn.write.html |
| 507 | /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html |
| 508 | /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html |
| 509 | #[inline ] |
| 510 | pub(crate) unsafe fn write(&self, val: T) { |
| 511 | self.as_ptr().write(val); |
| 512 | } |
| 513 | |
| 514 | /// Returns a shared immutable reference to the `value`. |
| 515 | /// |
| 516 | /// # Safety |
| 517 | /// |
| 518 | /// See [`NonNull::as_ref`] for safety concerns. |
| 519 | /// |
| 520 | /// [`NonNull::as_ref`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_ref |
| 521 | #[inline ] |
| 522 | pub unsafe fn as_ref<'a>(&self) -> &'a T { |
| 523 | &*self.as_ptr() |
| 524 | } |
| 525 | |
| 526 | /// Returns a unique mutable reference to the `value`. |
| 527 | /// |
| 528 | /// # Safety |
| 529 | /// |
| 530 | /// See [`NonNull::as_mut`] for safety concerns. |
| 531 | /// |
| 532 | /// # Note |
| 533 | /// |
| 534 | /// [`Hash`] and [`Eq`] on the new `T` value and its borrowed form *must* match |
| 535 | /// those for the old `T` value, as the map will not re-evaluate where the new |
| 536 | /// value should go, meaning the value may become "lost" if their location |
| 537 | /// does not reflect their state. |
| 538 | /// |
| 539 | /// [`NonNull::as_mut`]: https://doc.rust-lang.org/core/ptr/struct.NonNull.html#method.as_mut |
| 540 | /// [`Hash`]: https://doc.rust-lang.org/core/hash/trait.Hash.html |
| 541 | /// [`Eq`]: https://doc.rust-lang.org/core/cmp/trait.Eq.html |
| 542 | #[inline ] |
| 543 | pub unsafe fn as_mut<'a>(&self) -> &'a mut T { |
| 544 | &mut *self.as_ptr() |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | /// A raw hash table with an unsafe API. |
| 549 | pub struct RawTable<T, A: Allocator = Global> { |
| 550 | table: RawTableInner, |
| 551 | alloc: A, |
| 552 | // Tell dropck that we own instances of T. |
| 553 | marker: PhantomData<T>, |
| 554 | } |
| 555 | |
| 556 | /// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless |
| 557 | /// of how many different key-value types are used. |
| 558 | struct RawTableInner { |
| 559 | // Mask to get an index from a hash value. The value is one less than the |
| 560 | // number of buckets in the table. |
| 561 | bucket_mask: usize, |
| 562 | |
| 563 | // [Padding], T_n, ..., T1, T0, C0, C1, ... |
| 564 | // ^ points here |
| 565 | ctrl: NonNull<u8>, |
| 566 | |
| 567 | // Number of elements that can be inserted before we need to grow the table |
| 568 | growth_left: usize, |
| 569 | |
| 570 | // Number of elements in the table, only really used by len() |
| 571 | items: usize, |
| 572 | } |
| 573 | |
| 574 | impl<T> RawTable<T, Global> { |
| 575 | /// Creates a new empty hash table without allocating any memory. |
| 576 | /// |
| 577 | /// In effect this returns a table with exactly 1 bucket. However we can |
| 578 | /// leave the data pointer dangling since that bucket is never written to |
| 579 | /// due to our load factor forcing us to always have at least 1 free bucket. |
| 580 | #[inline ] |
| 581 | #[cfg_attr (feature = "rustc-dep-of-std" , rustc_const_stable_indirect)] |
| 582 | pub const fn new() -> Self { |
| 583 | Self { |
| 584 | table: RawTableInner::NEW, |
| 585 | alloc: Global, |
| 586 | marker: PhantomData, |
| 587 | } |
| 588 | } |
| 589 | |
| 590 | /// Allocates a new hash table with at least enough capacity for inserting |
| 591 | /// the given number of elements without reallocating. |
| 592 | pub fn with_capacity(capacity: usize) -> Self { |
| 593 | Self::with_capacity_in(capacity, alloc:Global) |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | impl<T, A: Allocator> RawTable<T, A> { |
| 598 | const TABLE_LAYOUT: TableLayout = TableLayout::new::<T>(); |
| 599 | |
| 600 | /// Creates a new empty hash table without allocating any memory, using the |
| 601 | /// given allocator. |
| 602 | /// |
| 603 | /// In effect this returns a table with exactly 1 bucket. However we can |
| 604 | /// leave the data pointer dangling since that bucket is never written to |
| 605 | /// due to our load factor forcing us to always have at least 1 free bucket. |
| 606 | #[inline ] |
| 607 | #[cfg_attr (feature = "rustc-dep-of-std" , rustc_const_stable_indirect)] |
| 608 | pub const fn new_in(alloc: A) -> Self { |
| 609 | Self { |
| 610 | table: RawTableInner::NEW, |
| 611 | alloc, |
| 612 | marker: PhantomData, |
| 613 | } |
| 614 | } |
| 615 | |
| 616 | /// Allocates a new hash table with the given number of buckets. |
| 617 | /// |
| 618 | /// The control bytes are left uninitialized. |
| 619 | #[cfg_attr (feature = "inline-more" , inline)] |
| 620 | unsafe fn new_uninitialized( |
| 621 | alloc: A, |
| 622 | buckets: usize, |
| 623 | fallibility: Fallibility, |
| 624 | ) -> Result<Self, TryReserveError> { |
| 625 | debug_assert!(buckets.is_power_of_two()); |
| 626 | |
| 627 | Ok(Self { |
| 628 | table: RawTableInner::new_uninitialized( |
| 629 | &alloc, |
| 630 | Self::TABLE_LAYOUT, |
| 631 | buckets, |
| 632 | fallibility, |
| 633 | )?, |
| 634 | alloc, |
| 635 | marker: PhantomData, |
| 636 | }) |
| 637 | } |
| 638 | |
| 639 | /// Allocates a new hash table using the given allocator, with at least enough capacity for |
| 640 | /// inserting the given number of elements without reallocating. |
| 641 | pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
| 642 | Self { |
| 643 | table: RawTableInner::with_capacity(&alloc, Self::TABLE_LAYOUT, capacity), |
| 644 | alloc, |
| 645 | marker: PhantomData, |
| 646 | } |
| 647 | } |
| 648 | |
| 649 | /// Returns a reference to the underlying allocator. |
| 650 | #[inline ] |
| 651 | pub fn allocator(&self) -> &A { |
| 652 | &self.alloc |
| 653 | } |
| 654 | |
| 655 | /// Returns pointer to one past last `data` element in the table as viewed from |
| 656 | /// the start point of the allocation. |
| 657 | /// |
| 658 | /// The caller must ensure that the `RawTable` outlives the returned [`NonNull<T>`], |
| 659 | /// otherwise using it may result in [`undefined behavior`]. |
| 660 | /// |
| 661 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 662 | #[inline ] |
| 663 | pub fn data_end(&self) -> NonNull<T> { |
| 664 | // `self.table.ctrl.cast()` returns pointer that |
| 665 | // points here (to the end of `T0`) |
| 666 | // ∨ |
| 667 | // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, CTa_0, CTa_1, ..., CTa_m |
| 668 | // \________ ________/ |
| 669 | // \/ |
| 670 | // `n = buckets - 1`, i.e. `RawTable::buckets() - 1` |
| 671 | // |
| 672 | // where: T0...T_n - our stored data; |
| 673 | // CT0...CT_n - control bytes or metadata for `data`. |
| 674 | // CTa_0...CTa_m - additional control bytes, where `m = Group::WIDTH - 1` (so that the search |
| 675 | // with loading `Group` bytes from the heap works properly, even if the result |
| 676 | // of `h1(hash) & self.bucket_mask` is equal to `self.bucket_mask`). See also |
| 677 | // `RawTableInner::set_ctrl` function. |
| 678 | // |
| 679 | // P.S. `h1(hash) & self.bucket_mask` is the same as `hash as usize % self.buckets()` because the number |
| 680 | // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 681 | self.table.ctrl.cast() |
| 682 | } |
| 683 | |
| 684 | /// Returns pointer to start of data table. |
| 685 | #[inline ] |
| 686 | #[cfg (feature = "nightly" )] |
| 687 | pub unsafe fn data_start(&self) -> NonNull<T> { |
| 688 | NonNull::new_unchecked(self.data_end().as_ptr().wrapping_sub(self.buckets())) |
| 689 | } |
| 690 | |
| 691 | /// Returns the total amount of memory allocated internally by the hash |
| 692 | /// table, in bytes. |
| 693 | /// |
| 694 | /// The returned number is informational only. It is intended to be |
| 695 | /// primarily used for memory profiling. |
| 696 | #[inline ] |
| 697 | pub fn allocation_size(&self) -> usize { |
| 698 | // SAFETY: We use the same `table_layout` that was used to allocate |
| 699 | // this table. |
| 700 | unsafe { self.table.allocation_size_or_zero(Self::TABLE_LAYOUT) } |
| 701 | } |
| 702 | |
| 703 | /// Returns the index of a bucket from a `Bucket`. |
| 704 | #[inline ] |
| 705 | pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize { |
| 706 | bucket.to_base_index(self.data_end()) |
| 707 | } |
| 708 | |
| 709 | /// Returns a pointer to an element in the table. |
| 710 | /// |
| 711 | /// The caller must ensure that the `RawTable` outlives the returned [`Bucket<T>`], |
| 712 | /// otherwise using it may result in [`undefined behavior`]. |
| 713 | /// |
| 714 | /// # Safety |
| 715 | /// |
| 716 | /// If `mem::size_of::<T>() != 0`, then the caller of this function must observe the |
| 717 | /// following safety rules: |
| 718 | /// |
| 719 | /// * The table must already be allocated; |
| 720 | /// |
| 721 | /// * The `index` must not be greater than the number returned by the [`RawTable::buckets`] |
| 722 | /// function, i.e. `(index + 1) <= self.buckets()`. |
| 723 | /// |
| 724 | /// It is safe to call this function with index of zero (`index == 0`) on a table that has |
| 725 | /// not been allocated, but using the returned [`Bucket`] results in [`undefined behavior`]. |
| 726 | /// |
| 727 | /// If `mem::size_of::<T>() == 0`, then the only requirement is that the `index` must |
| 728 | /// not be greater than the number returned by the [`RawTable::buckets`] function, i.e. |
| 729 | /// `(index + 1) <= self.buckets()`. |
| 730 | /// |
| 731 | /// [`RawTable::buckets`]: RawTable::buckets |
| 732 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 733 | #[inline ] |
| 734 | pub unsafe fn bucket(&self, index: usize) -> Bucket<T> { |
| 735 | // If mem::size_of::<T>() != 0 then return a pointer to the `element` in the `data part` of the table |
| 736 | // (we start counting from "0", so that in the expression T[n], the "n" index actually one less than |
| 737 | // the "buckets" number of our `RawTable`, i.e. "n = RawTable::buckets() - 1"): |
| 738 | // |
| 739 | // `table.bucket(3).as_ptr()` returns a pointer that points here in the `data` |
| 740 | // part of the `RawTable`, i.e. to the start of T3 (see `Bucket::as_ptr`) |
| 741 | // | |
| 742 | // | `base = self.data_end()` points here |
| 743 | // | (to the start of CT0 or to the end of T0) |
| 744 | // v v |
| 745 | // [Pad], T_n, ..., |T3|, T2, T1, T0, |CT0, CT1, CT2, CT3, ..., CT_n, CTa_0, CTa_1, ..., CTa_m |
| 746 | // ^ \__________ __________/ |
| 747 | // `table.bucket(3)` returns a pointer that points \/ |
| 748 | // here in the `data` part of the `RawTable` (to additional control bytes |
| 749 | // the end of T3) `m = Group::WIDTH - 1` |
| 750 | // |
| 751 | // where: T0...T_n - our stored data; |
| 752 | // CT0...CT_n - control bytes or metadata for `data`; |
| 753 | // CTa_0...CTa_m - additional control bytes (so that the search with loading `Group` bytes from |
| 754 | // the heap works properly, even if the result of `h1(hash) & self.table.bucket_mask` |
| 755 | // is equal to `self.table.bucket_mask`). See also `RawTableInner::set_ctrl` function. |
| 756 | // |
| 757 | // P.S. `h1(hash) & self.table.bucket_mask` is the same as `hash as usize % self.buckets()` because the number |
| 758 | // of buckets is a power of two, and `self.table.bucket_mask = self.buckets() - 1`. |
| 759 | debug_assert_ne!(self.table.bucket_mask, 0); |
| 760 | debug_assert!(index < self.buckets()); |
| 761 | Bucket::from_base_index(self.data_end(), index) |
| 762 | } |
| 763 | |
| 764 | /// Erases an element from the table without dropping it. |
| 765 | #[cfg_attr (feature = "inline-more" , inline)] |
| 766 | unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) { |
| 767 | let index = self.bucket_index(item); |
| 768 | self.table.erase(index); |
| 769 | } |
| 770 | |
| 771 | /// Erases an element from the table, dropping it in place. |
| 772 | #[cfg_attr (feature = "inline-more" , inline)] |
| 773 | #[allow (clippy::needless_pass_by_value)] |
| 774 | pub unsafe fn erase(&mut self, item: Bucket<T>) { |
| 775 | // Erase the element from the table first since drop might panic. |
| 776 | self.erase_no_drop(&item); |
| 777 | item.drop(); |
| 778 | } |
| 779 | |
| 780 | /// Removes an element from the table, returning it. |
| 781 | /// |
| 782 | /// This also returns an `InsertSlot` pointing to the newly free bucket. |
| 783 | #[cfg_attr (feature = "inline-more" , inline)] |
| 784 | #[allow (clippy::needless_pass_by_value)] |
| 785 | pub unsafe fn remove(&mut self, item: Bucket<T>) -> (T, InsertSlot) { |
| 786 | self.erase_no_drop(&item); |
| 787 | ( |
| 788 | item.read(), |
| 789 | InsertSlot { |
| 790 | index: self.bucket_index(&item), |
| 791 | }, |
| 792 | ) |
| 793 | } |
| 794 | |
| 795 | /// Finds and removes an element from the table, returning it. |
| 796 | #[cfg_attr (feature = "inline-more" , inline)] |
| 797 | pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> { |
| 798 | // Avoid `Option::map` because it bloats LLVM IR. |
| 799 | match self.find(hash, eq) { |
| 800 | Some(bucket) => Some(unsafe { self.remove(bucket).0 }), |
| 801 | None => None, |
| 802 | } |
| 803 | } |
| 804 | |
| 805 | /// Marks all table buckets as empty without dropping their contents. |
| 806 | #[cfg_attr (feature = "inline-more" , inline)] |
| 807 | pub fn clear_no_drop(&mut self) { |
| 808 | self.table.clear_no_drop(); |
| 809 | } |
| 810 | |
| 811 | /// Removes all elements from the table without freeing the backing memory. |
| 812 | #[cfg_attr (feature = "inline-more" , inline)] |
| 813 | pub fn clear(&mut self) { |
| 814 | if self.is_empty() { |
| 815 | // Special case empty table to avoid surprising O(capacity) time. |
| 816 | return; |
| 817 | } |
| 818 | // Ensure that the table is reset even if one of the drops panic |
| 819 | let mut self_ = guard(self, |self_| self_.clear_no_drop()); |
| 820 | unsafe { |
| 821 | // SAFETY: ScopeGuard sets to zero the `items` field of the table |
| 822 | // even in case of panic during the dropping of the elements so |
| 823 | // that there will be no double drop of the elements. |
| 824 | self_.table.drop_elements::<T>(); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | /// Shrinks the table to fit `max(self.len(), min_size)` elements. |
| 829 | #[cfg_attr (feature = "inline-more" , inline)] |
| 830 | pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) { |
| 831 | // Calculate the minimal number of elements that we need to reserve |
| 832 | // space for. |
| 833 | let min_size = usize::max(self.table.items, min_size); |
| 834 | if min_size == 0 { |
| 835 | let mut old_inner = mem::replace(&mut self.table, RawTableInner::NEW); |
| 836 | unsafe { |
| 837 | // SAFETY: |
| 838 | // 1. We call the function only once; |
| 839 | // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] |
| 840 | // and [`TableLayout`] that were used to allocate this table. |
| 841 | // 3. If any elements' drop function panics, then there will only be a memory leak, |
| 842 | // because we have replaced the inner table with a new one. |
| 843 | old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); |
| 844 | } |
| 845 | return; |
| 846 | } |
| 847 | |
| 848 | // Calculate the number of buckets that we need for this number of |
| 849 | // elements. If the calculation overflows then the requested bucket |
| 850 | // count must be larger than what we have right and nothing needs to be |
| 851 | // done. |
| 852 | let min_buckets = match capacity_to_buckets(min_size) { |
| 853 | Some(buckets) => buckets, |
| 854 | None => return, |
| 855 | }; |
| 856 | |
| 857 | // If we have more buckets than we need, shrink the table. |
| 858 | if min_buckets < self.buckets() { |
| 859 | // Fast path if the table is empty |
| 860 | if self.table.items == 0 { |
| 861 | let new_inner = |
| 862 | RawTableInner::with_capacity(&self.alloc, Self::TABLE_LAYOUT, min_size); |
| 863 | let mut old_inner = mem::replace(&mut self.table, new_inner); |
| 864 | unsafe { |
| 865 | // SAFETY: |
| 866 | // 1. We call the function only once; |
| 867 | // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] |
| 868 | // and [`TableLayout`] that were used to allocate this table. |
| 869 | // 3. If any elements' drop function panics, then there will only be a memory leak, |
| 870 | // because we have replaced the inner table with a new one. |
| 871 | old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); |
| 872 | } |
| 873 | } else { |
| 874 | // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. |
| 875 | unsafe { |
| 876 | // SAFETY: |
| 877 | // 1. We know for sure that `min_size >= self.table.items`. |
| 878 | // 2. The [`RawTableInner`] must already have properly initialized control bytes since |
| 879 | // we will never expose RawTable::new_uninitialized in a public API. |
| 880 | if self |
| 881 | .resize(min_size, hasher, Fallibility::Infallible) |
| 882 | .is_err() |
| 883 | { |
| 884 | // SAFETY: The result of calling the `resize` function cannot be an error |
| 885 | // because `fallibility == Fallibility::Infallible. |
| 886 | hint::unreachable_unchecked() |
| 887 | } |
| 888 | } |
| 889 | } |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | /// Ensures that at least `additional` items can be inserted into the table |
| 894 | /// without reallocation. |
| 895 | #[cfg_attr (feature = "inline-more" , inline)] |
| 896 | pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) { |
| 897 | if unlikely(additional > self.table.growth_left) { |
| 898 | // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. |
| 899 | unsafe { |
| 900 | // SAFETY: The [`RawTableInner`] must already have properly initialized control |
| 901 | // bytes since we will never expose RawTable::new_uninitialized in a public API. |
| 902 | if self |
| 903 | .reserve_rehash(additional, hasher, Fallibility::Infallible) |
| 904 | .is_err() |
| 905 | { |
| 906 | // SAFETY: All allocation errors will be caught inside `RawTableInner::reserve_rehash`. |
| 907 | hint::unreachable_unchecked() |
| 908 | } |
| 909 | } |
| 910 | } |
| 911 | } |
| 912 | |
| 913 | /// Tries to ensure that at least `additional` items can be inserted into |
| 914 | /// the table without reallocation. |
| 915 | #[cfg_attr (feature = "inline-more" , inline)] |
| 916 | pub fn try_reserve( |
| 917 | &mut self, |
| 918 | additional: usize, |
| 919 | hasher: impl Fn(&T) -> u64, |
| 920 | ) -> Result<(), TryReserveError> { |
| 921 | if additional > self.table.growth_left { |
| 922 | // SAFETY: The [`RawTableInner`] must already have properly initialized control |
| 923 | // bytes since we will never expose RawTable::new_uninitialized in a public API. |
| 924 | unsafe { self.reserve_rehash(additional, hasher, Fallibility::Fallible) } |
| 925 | } else { |
| 926 | Ok(()) |
| 927 | } |
| 928 | } |
| 929 | |
| 930 | /// Out-of-line slow path for `reserve` and `try_reserve`. |
| 931 | /// |
| 932 | /// # Safety |
| 933 | /// |
| 934 | /// The [`RawTableInner`] must have properly initialized control bytes, |
| 935 | /// otherwise calling this function results in [`undefined behavior`] |
| 936 | /// |
| 937 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 938 | #[cold ] |
| 939 | #[inline (never)] |
| 940 | unsafe fn reserve_rehash( |
| 941 | &mut self, |
| 942 | additional: usize, |
| 943 | hasher: impl Fn(&T) -> u64, |
| 944 | fallibility: Fallibility, |
| 945 | ) -> Result<(), TryReserveError> { |
| 946 | unsafe { |
| 947 | // SAFETY: |
| 948 | // 1. We know for sure that `alloc` and `layout` matches the [`Allocator`] and |
| 949 | // [`TableLayout`] that were used to allocate this table. |
| 950 | // 2. The `drop` function is the actual drop function of the elements stored in |
| 951 | // the table. |
| 952 | // 3. The caller ensures that the control bytes of the `RawTableInner` |
| 953 | // are already initialized. |
| 954 | self.table.reserve_rehash_inner( |
| 955 | &self.alloc, |
| 956 | additional, |
| 957 | &|table, index| hasher(table.bucket::<T>(index).as_ref()), |
| 958 | fallibility, |
| 959 | Self::TABLE_LAYOUT, |
| 960 | if T::NEEDS_DROP { |
| 961 | Some(|ptr| ptr::drop_in_place(ptr as *mut T)) |
| 962 | } else { |
| 963 | None |
| 964 | }, |
| 965 | ) |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | /// Allocates a new table of a different size and moves the contents of the |
| 970 | /// current table into it. |
| 971 | /// |
| 972 | /// # Safety |
| 973 | /// |
| 974 | /// The [`RawTableInner`] must have properly initialized control bytes, |
| 975 | /// otherwise calling this function results in [`undefined behavior`] |
| 976 | /// |
| 977 | /// The caller of this function must ensure that `capacity >= self.table.items` |
| 978 | /// otherwise: |
| 979 | /// |
| 980 | /// * If `self.table.items != 0`, calling of this function with `capacity` |
| 981 | /// equal to 0 (`capacity == 0`) results in [`undefined behavior`]. |
| 982 | /// |
| 983 | /// * If `capacity_to_buckets(capacity) < Group::WIDTH` and |
| 984 | /// `self.table.items > capacity_to_buckets(capacity)` |
| 985 | /// calling this function results in [`undefined behavior`]. |
| 986 | /// |
| 987 | /// * If `capacity_to_buckets(capacity) >= Group::WIDTH` and |
| 988 | /// `self.table.items > capacity_to_buckets(capacity)` |
| 989 | /// calling this function are never return (will go into an |
| 990 | /// infinite loop). |
| 991 | /// |
| 992 | /// See [`RawTableInner::find_insert_slot`] for more information. |
| 993 | /// |
| 994 | /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot |
| 995 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 996 | unsafe fn resize( |
| 997 | &mut self, |
| 998 | capacity: usize, |
| 999 | hasher: impl Fn(&T) -> u64, |
| 1000 | fallibility: Fallibility, |
| 1001 | ) -> Result<(), TryReserveError> { |
| 1002 | // SAFETY: |
| 1003 | // 1. The caller of this function guarantees that `capacity >= self.table.items`. |
| 1004 | // 2. We know for sure that `alloc` and `layout` matches the [`Allocator`] and |
| 1005 | // [`TableLayout`] that were used to allocate this table. |
| 1006 | // 3. The caller ensures that the control bytes of the `RawTableInner` |
| 1007 | // are already initialized. |
| 1008 | self.table.resize_inner( |
| 1009 | &self.alloc, |
| 1010 | capacity, |
| 1011 | &|table, index| hasher(table.bucket::<T>(index).as_ref()), |
| 1012 | fallibility, |
| 1013 | Self::TABLE_LAYOUT, |
| 1014 | ) |
| 1015 | } |
| 1016 | |
| 1017 | /// Inserts a new element into the table, and returns its raw bucket. |
| 1018 | /// |
| 1019 | /// This does not check if the given element already exists in the table. |
| 1020 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1021 | pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> { |
| 1022 | unsafe { |
| 1023 | // SAFETY: |
| 1024 | // 1. The [`RawTableInner`] must already have properly initialized control bytes since |
| 1025 | // we will never expose `RawTable::new_uninitialized` in a public API. |
| 1026 | // |
| 1027 | // 2. We reserve additional space (if necessary) right after calling this function. |
| 1028 | let mut slot = self.table.find_insert_slot(hash); |
| 1029 | |
| 1030 | // We can avoid growing the table once we have reached our load factor if we are replacing |
| 1031 | // a tombstone. This works since the number of EMPTY slots does not change in this case. |
| 1032 | // |
| 1033 | // SAFETY: The function is guaranteed to return [`InsertSlot`] that contains an index |
| 1034 | // in the range `0..=self.buckets()`. |
| 1035 | let old_ctrl = *self.table.ctrl(slot.index); |
| 1036 | if unlikely(self.table.growth_left == 0 && old_ctrl.special_is_empty()) { |
| 1037 | self.reserve(1, hasher); |
| 1038 | // SAFETY: We know for sure that `RawTableInner` has control bytes |
| 1039 | // initialized and that there is extra space in the table. |
| 1040 | slot = self.table.find_insert_slot(hash); |
| 1041 | } |
| 1042 | |
| 1043 | self.insert_in_slot(hash, slot, value) |
| 1044 | } |
| 1045 | } |
| 1046 | |
| 1047 | /// Inserts a new element into the table, and returns a mutable reference to it. |
| 1048 | /// |
| 1049 | /// This does not check if the given element already exists in the table. |
| 1050 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1051 | pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T { |
| 1052 | unsafe { self.insert(hash, value, hasher).as_mut() } |
| 1053 | } |
| 1054 | |
| 1055 | /// Inserts a new element into the table, without growing the table. |
| 1056 | /// |
| 1057 | /// There must be enough space in the table to insert the new element. |
| 1058 | /// |
| 1059 | /// This does not check if the given element already exists in the table. |
| 1060 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1061 | #[cfg (feature = "rustc-internal-api" )] |
| 1062 | pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> { |
| 1063 | let (index, old_ctrl) = self.table.prepare_insert_slot(hash); |
| 1064 | let bucket = self.table.bucket(index); |
| 1065 | |
| 1066 | // If we are replacing a DELETED entry then we don't need to update |
| 1067 | // the load counter. |
| 1068 | self.table.growth_left -= old_ctrl.special_is_empty() as usize; |
| 1069 | |
| 1070 | bucket.write(value); |
| 1071 | self.table.items += 1; |
| 1072 | bucket |
| 1073 | } |
| 1074 | |
| 1075 | /// Temporary removes a bucket, applying the given function to the removed |
| 1076 | /// element and optionally put back the returned value in the same bucket. |
| 1077 | /// |
| 1078 | /// Returns `true` if the bucket still contains an element |
| 1079 | /// |
| 1080 | /// This does not check if the given bucket is actually occupied. |
| 1081 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1082 | pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool |
| 1083 | where |
| 1084 | F: FnOnce(T) -> Option<T>, |
| 1085 | { |
| 1086 | let index = self.bucket_index(&bucket); |
| 1087 | let old_ctrl = *self.table.ctrl(index); |
| 1088 | debug_assert!(self.is_bucket_full(index)); |
| 1089 | let old_growth_left = self.table.growth_left; |
| 1090 | let item = self.remove(bucket).0; |
| 1091 | if let Some(new_item) = f(item) { |
| 1092 | self.table.growth_left = old_growth_left; |
| 1093 | self.table.set_ctrl(index, old_ctrl); |
| 1094 | self.table.items += 1; |
| 1095 | self.bucket(index).write(new_item); |
| 1096 | true |
| 1097 | } else { |
| 1098 | false |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | /// Searches for an element in the table. If the element is not found, |
| 1103 | /// returns `Err` with the position of a slot where an element with the |
| 1104 | /// same hash could be inserted. |
| 1105 | /// |
| 1106 | /// This function may resize the table if additional space is required for |
| 1107 | /// inserting an element. |
| 1108 | #[inline ] |
| 1109 | pub fn find_or_find_insert_slot( |
| 1110 | &mut self, |
| 1111 | hash: u64, |
| 1112 | mut eq: impl FnMut(&T) -> bool, |
| 1113 | hasher: impl Fn(&T) -> u64, |
| 1114 | ) -> Result<Bucket<T>, InsertSlot> { |
| 1115 | self.reserve(1, hasher); |
| 1116 | |
| 1117 | unsafe { |
| 1118 | // SAFETY: |
| 1119 | // 1. We know for sure that there is at least one empty `bucket` in the table. |
| 1120 | // 2. The [`RawTableInner`] must already have properly initialized control bytes since we will |
| 1121 | // never expose `RawTable::new_uninitialized` in a public API. |
| 1122 | // 3. The `find_or_find_insert_slot_inner` function returns the `index` of only the full bucket, |
| 1123 | // which is in the range `0..self.buckets()` (since there is at least one empty `bucket` in |
| 1124 | // the table), so calling `self.bucket(index)` and `Bucket::as_ref` is safe. |
| 1125 | match self |
| 1126 | .table |
| 1127 | .find_or_find_insert_slot_inner(hash, &mut |index| eq(self.bucket(index).as_ref())) |
| 1128 | { |
| 1129 | // SAFETY: See explanation above. |
| 1130 | Ok(index) => Ok(self.bucket(index)), |
| 1131 | Err(slot) => Err(slot), |
| 1132 | } |
| 1133 | } |
| 1134 | } |
| 1135 | |
| 1136 | /// Inserts a new element into the table in the given slot, and returns its |
| 1137 | /// raw bucket. |
| 1138 | /// |
| 1139 | /// # Safety |
| 1140 | /// |
| 1141 | /// `slot` must point to a slot previously returned by |
| 1142 | /// `find_or_find_insert_slot`, and no mutation of the table must have |
| 1143 | /// occurred since that call. |
| 1144 | #[inline ] |
| 1145 | pub unsafe fn insert_in_slot(&mut self, hash: u64, slot: InsertSlot, value: T) -> Bucket<T> { |
| 1146 | let old_ctrl = *self.table.ctrl(slot.index); |
| 1147 | self.table.record_item_insert_at(slot.index, old_ctrl, hash); |
| 1148 | |
| 1149 | let bucket = self.bucket(slot.index); |
| 1150 | bucket.write(value); |
| 1151 | bucket |
| 1152 | } |
| 1153 | |
| 1154 | /// Searches for an element in the table. |
| 1155 | #[inline ] |
| 1156 | pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> { |
| 1157 | unsafe { |
| 1158 | // SAFETY: |
| 1159 | // 1. The [`RawTableInner`] must already have properly initialized control bytes since we |
| 1160 | // will never expose `RawTable::new_uninitialized` in a public API. |
| 1161 | // 1. The `find_inner` function returns the `index` of only the full bucket, which is in |
| 1162 | // the range `0..self.buckets()`, so calling `self.bucket(index)` and `Bucket::as_ref` |
| 1163 | // is safe. |
| 1164 | let result = self |
| 1165 | .table |
| 1166 | .find_inner(hash, &mut |index| eq(self.bucket(index).as_ref())); |
| 1167 | |
| 1168 | // Avoid `Option::map` because it bloats LLVM IR. |
| 1169 | match result { |
| 1170 | // SAFETY: See explanation above. |
| 1171 | Some(index) => Some(self.bucket(index)), |
| 1172 | None => None, |
| 1173 | } |
| 1174 | } |
| 1175 | } |
| 1176 | |
| 1177 | /// Gets a reference to an element in the table. |
| 1178 | #[inline ] |
| 1179 | pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> { |
| 1180 | // Avoid `Option::map` because it bloats LLVM IR. |
| 1181 | match self.find(hash, eq) { |
| 1182 | Some(bucket) => Some(unsafe { bucket.as_ref() }), |
| 1183 | None => None, |
| 1184 | } |
| 1185 | } |
| 1186 | |
| 1187 | /// Gets a mutable reference to an element in the table. |
| 1188 | #[inline ] |
| 1189 | pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> { |
| 1190 | // Avoid `Option::map` because it bloats LLVM IR. |
| 1191 | match self.find(hash, eq) { |
| 1192 | Some(bucket) => Some(unsafe { bucket.as_mut() }), |
| 1193 | None => None, |
| 1194 | } |
| 1195 | } |
| 1196 | |
| 1197 | /// Attempts to get mutable references to `N` entries in the table at once. |
| 1198 | /// |
| 1199 | /// Returns an array of length `N` with the results of each query. |
| 1200 | /// |
| 1201 | /// At most one mutable reference will be returned to any entry. `None` will be returned if any |
| 1202 | /// of the hashes are duplicates. `None` will be returned if the hash is not found. |
| 1203 | /// |
| 1204 | /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to |
| 1205 | /// the `i`th key to be looked up. |
| 1206 | pub fn get_many_mut<const N: usize>( |
| 1207 | &mut self, |
| 1208 | hashes: [u64; N], |
| 1209 | eq: impl FnMut(usize, &T) -> bool, |
| 1210 | ) -> [Option<&'_ mut T>; N] { |
| 1211 | unsafe { |
| 1212 | let ptrs = self.get_many_mut_pointers(hashes, eq); |
| 1213 | |
| 1214 | for (i, cur) in ptrs.iter().enumerate() { |
| 1215 | if cur.is_some() && ptrs[..i].contains(cur) { |
| 1216 | panic!("duplicate keys found" ); |
| 1217 | } |
| 1218 | } |
| 1219 | // All bucket are distinct from all previous buckets so we're clear to return the result |
| 1220 | // of the lookup. |
| 1221 | |
| 1222 | ptrs.map(|ptr| ptr.map(|mut ptr| ptr.as_mut())) |
| 1223 | } |
| 1224 | } |
| 1225 | |
| 1226 | pub unsafe fn get_many_unchecked_mut<const N: usize>( |
| 1227 | &mut self, |
| 1228 | hashes: [u64; N], |
| 1229 | eq: impl FnMut(usize, &T) -> bool, |
| 1230 | ) -> [Option<&'_ mut T>; N] { |
| 1231 | let ptrs = self.get_many_mut_pointers(hashes, eq); |
| 1232 | ptrs.map(|ptr| ptr.map(|mut ptr| ptr.as_mut())) |
| 1233 | } |
| 1234 | |
| 1235 | unsafe fn get_many_mut_pointers<const N: usize>( |
| 1236 | &mut self, |
| 1237 | hashes: [u64; N], |
| 1238 | mut eq: impl FnMut(usize, &T) -> bool, |
| 1239 | ) -> [Option<NonNull<T>>; N] { |
| 1240 | array::from_fn(|i| { |
| 1241 | self.find(hashes[i], |k| eq(i, k)) |
| 1242 | .map(|cur| cur.as_non_null()) |
| 1243 | }) |
| 1244 | } |
| 1245 | |
| 1246 | /// Returns the number of elements the map can hold without reallocating. |
| 1247 | /// |
| 1248 | /// This number is a lower bound; the table might be able to hold |
| 1249 | /// more, but is guaranteed to be able to hold at least this many. |
| 1250 | #[inline ] |
| 1251 | pub fn capacity(&self) -> usize { |
| 1252 | self.table.items + self.table.growth_left |
| 1253 | } |
| 1254 | |
| 1255 | /// Returns the number of elements in the table. |
| 1256 | #[inline ] |
| 1257 | pub fn len(&self) -> usize { |
| 1258 | self.table.items |
| 1259 | } |
| 1260 | |
| 1261 | /// Returns `true` if the table contains no elements. |
| 1262 | #[inline ] |
| 1263 | pub fn is_empty(&self) -> bool { |
| 1264 | self.len() == 0 |
| 1265 | } |
| 1266 | |
| 1267 | /// Returns the number of buckets in the table. |
| 1268 | #[inline ] |
| 1269 | pub fn buckets(&self) -> usize { |
| 1270 | self.table.bucket_mask + 1 |
| 1271 | } |
| 1272 | |
| 1273 | /// Checks whether the bucket at `index` is full. |
| 1274 | /// |
| 1275 | /// # Safety |
| 1276 | /// |
| 1277 | /// The caller must ensure `index` is less than the number of buckets. |
| 1278 | #[inline ] |
| 1279 | pub unsafe fn is_bucket_full(&self, index: usize) -> bool { |
| 1280 | self.table.is_bucket_full(index) |
| 1281 | } |
| 1282 | |
| 1283 | /// Returns an iterator over every element in the table. It is up to |
| 1284 | /// the caller to ensure that the `RawTable` outlives the `RawIter`. |
| 1285 | /// Because we cannot make the `next` method unsafe on the `RawIter` |
| 1286 | /// struct, we have to make the `iter` method unsafe. |
| 1287 | #[inline ] |
| 1288 | pub unsafe fn iter(&self) -> RawIter<T> { |
| 1289 | // SAFETY: |
| 1290 | // 1. The caller must uphold the safety contract for `iter` method. |
| 1291 | // 2. The [`RawTableInner`] must already have properly initialized control bytes since |
| 1292 | // we will never expose RawTable::new_uninitialized in a public API. |
| 1293 | self.table.iter() |
| 1294 | } |
| 1295 | |
| 1296 | /// Returns an iterator over occupied buckets that could match a given hash. |
| 1297 | /// |
| 1298 | /// `RawTable` only stores 7 bits of the hash value, so this iterator may |
| 1299 | /// return items that have a hash value different than the one provided. You |
| 1300 | /// should always validate the returned values before using them. |
| 1301 | /// |
| 1302 | /// It is up to the caller to ensure that the `RawTable` outlives the |
| 1303 | /// `RawIterHash`. Because we cannot make the `next` method unsafe on the |
| 1304 | /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe. |
| 1305 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1306 | pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<T> { |
| 1307 | RawIterHash::new(self, hash) |
| 1308 | } |
| 1309 | |
| 1310 | /// Returns an iterator which removes all elements from the table without |
| 1311 | /// freeing the memory. |
| 1312 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1313 | pub fn drain(&mut self) -> RawDrain<'_, T, A> { |
| 1314 | unsafe { |
| 1315 | let iter = self.iter(); |
| 1316 | self.drain_iter_from(iter) |
| 1317 | } |
| 1318 | } |
| 1319 | |
| 1320 | /// Returns an iterator which removes all elements from the table without |
| 1321 | /// freeing the memory. |
| 1322 | /// |
| 1323 | /// Iteration starts at the provided iterator's current location. |
| 1324 | /// |
| 1325 | /// It is up to the caller to ensure that the iterator is valid for this |
| 1326 | /// `RawTable` and covers all items that remain in the table. |
| 1327 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1328 | pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T, A> { |
| 1329 | debug_assert_eq!(iter.len(), self.len()); |
| 1330 | RawDrain { |
| 1331 | iter, |
| 1332 | table: mem::replace(&mut self.table, RawTableInner::NEW), |
| 1333 | orig_table: NonNull::from(&mut self.table), |
| 1334 | marker: PhantomData, |
| 1335 | } |
| 1336 | } |
| 1337 | |
| 1338 | /// Returns an iterator which consumes all elements from the table. |
| 1339 | /// |
| 1340 | /// Iteration starts at the provided iterator's current location. |
| 1341 | /// |
| 1342 | /// It is up to the caller to ensure that the iterator is valid for this |
| 1343 | /// `RawTable` and covers all items that remain in the table. |
| 1344 | pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T, A> { |
| 1345 | debug_assert_eq!(iter.len(), self.len()); |
| 1346 | |
| 1347 | let allocation = self.into_allocation(); |
| 1348 | RawIntoIter { |
| 1349 | iter, |
| 1350 | allocation, |
| 1351 | marker: PhantomData, |
| 1352 | } |
| 1353 | } |
| 1354 | |
| 1355 | /// Converts the table into a raw allocation. The contents of the table |
| 1356 | /// should be dropped using a `RawIter` before freeing the allocation. |
| 1357 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1358 | pub(crate) fn into_allocation(self) -> Option<(NonNull<u8>, Layout, A)> { |
| 1359 | let alloc = if self.table.is_empty_singleton() { |
| 1360 | None |
| 1361 | } else { |
| 1362 | // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. |
| 1363 | let (layout, ctrl_offset) = |
| 1364 | match Self::TABLE_LAYOUT.calculate_layout_for(self.table.buckets()) { |
| 1365 | Some(lco) => lco, |
| 1366 | None => unsafe { hint::unreachable_unchecked() }, |
| 1367 | }; |
| 1368 | Some(( |
| 1369 | unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset).cast()) }, |
| 1370 | layout, |
| 1371 | unsafe { ptr::read(&self.alloc) }, |
| 1372 | )) |
| 1373 | }; |
| 1374 | mem::forget(self); |
| 1375 | alloc |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | unsafe impl<T, A: Allocator> Send for RawTable<T, A> |
| 1380 | where |
| 1381 | T: Send, |
| 1382 | A: Send, |
| 1383 | { |
| 1384 | } |
| 1385 | unsafe impl<T, A: Allocator> Sync for RawTable<T, A> |
| 1386 | where |
| 1387 | T: Sync, |
| 1388 | A: Sync, |
| 1389 | { |
| 1390 | } |
| 1391 | |
| 1392 | impl RawTableInner { |
| 1393 | const NEW: Self = RawTableInner::new(); |
| 1394 | |
| 1395 | /// Creates a new empty hash table without allocating any memory. |
| 1396 | /// |
| 1397 | /// In effect this returns a table with exactly 1 bucket. However we can |
| 1398 | /// leave the data pointer dangling since that bucket is never accessed |
| 1399 | /// due to our load factor forcing us to always have at least 1 free bucket. |
| 1400 | #[inline ] |
| 1401 | const fn new() -> Self { |
| 1402 | Self { |
| 1403 | // Be careful to cast the entire slice to a raw pointer. |
| 1404 | ctrl: unsafe { |
| 1405 | NonNull::new_unchecked(ptr:Group::static_empty().as_ptr().cast_mut().cast()) |
| 1406 | }, |
| 1407 | bucket_mask: 0, |
| 1408 | items: 0, |
| 1409 | growth_left: 0, |
| 1410 | } |
| 1411 | } |
| 1412 | } |
| 1413 | |
| 1414 | impl RawTableInner { |
| 1415 | /// Allocates a new [`RawTableInner`] with the given number of buckets. |
| 1416 | /// The control bytes and buckets are left uninitialized. |
| 1417 | /// |
| 1418 | /// # Safety |
| 1419 | /// |
| 1420 | /// The caller of this function must ensure that the `buckets` is power of two |
| 1421 | /// and also initialize all control bytes of the length `self.bucket_mask + 1 + |
| 1422 | /// Group::WIDTH` with the [`Tag::EMPTY`] bytes. |
| 1423 | /// |
| 1424 | /// See also [`Allocator`] API for other safety concerns. |
| 1425 | /// |
| 1426 | /// [`Allocator`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html |
| 1427 | #[cfg_attr (feature = "inline-more" , inline)] |
| 1428 | unsafe fn new_uninitialized<A>( |
| 1429 | alloc: &A, |
| 1430 | table_layout: TableLayout, |
| 1431 | buckets: usize, |
| 1432 | fallibility: Fallibility, |
| 1433 | ) -> Result<Self, TryReserveError> |
| 1434 | where |
| 1435 | A: Allocator, |
| 1436 | { |
| 1437 | debug_assert!(buckets.is_power_of_two()); |
| 1438 | |
| 1439 | // Avoid `Option::ok_or_else` because it bloats LLVM IR. |
| 1440 | let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) { |
| 1441 | Some(lco) => lco, |
| 1442 | None => return Err(fallibility.capacity_overflow()), |
| 1443 | }; |
| 1444 | |
| 1445 | let ptr: NonNull<u8> = match do_alloc(alloc, layout) { |
| 1446 | Ok(block) => block.cast(), |
| 1447 | Err(_) => return Err(fallibility.alloc_err(layout)), |
| 1448 | }; |
| 1449 | |
| 1450 | // SAFETY: null pointer will be caught in above check |
| 1451 | let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset)); |
| 1452 | Ok(Self { |
| 1453 | ctrl, |
| 1454 | bucket_mask: buckets - 1, |
| 1455 | items: 0, |
| 1456 | growth_left: bucket_mask_to_capacity(buckets - 1), |
| 1457 | }) |
| 1458 | } |
| 1459 | |
| 1460 | /// Attempts to allocate a new [`RawTableInner`] with at least enough |
| 1461 | /// capacity for inserting the given number of elements without reallocating. |
| 1462 | /// |
| 1463 | /// All the control bytes are initialized with the [`Tag::EMPTY`] bytes. |
| 1464 | #[inline ] |
| 1465 | fn fallible_with_capacity<A>( |
| 1466 | alloc: &A, |
| 1467 | table_layout: TableLayout, |
| 1468 | capacity: usize, |
| 1469 | fallibility: Fallibility, |
| 1470 | ) -> Result<Self, TryReserveError> |
| 1471 | where |
| 1472 | A: Allocator, |
| 1473 | { |
| 1474 | if capacity == 0 { |
| 1475 | Ok(Self::NEW) |
| 1476 | } else { |
| 1477 | // SAFETY: We checked that we could successfully allocate the new table, and then |
| 1478 | // initialized all control bytes with the constant `Tag::EMPTY` byte. |
| 1479 | unsafe { |
| 1480 | let buckets = |
| 1481 | capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?; |
| 1482 | |
| 1483 | let mut result = |
| 1484 | Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?; |
| 1485 | // SAFETY: We checked that the table is allocated and therefore the table already has |
| 1486 | // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for) |
| 1487 | // so writing `self.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe. |
| 1488 | result.ctrl_slice().fill_empty(); |
| 1489 | |
| 1490 | Ok(result) |
| 1491 | } |
| 1492 | } |
| 1493 | } |
| 1494 | |
| 1495 | /// Allocates a new [`RawTableInner`] with at least enough capacity for inserting |
| 1496 | /// the given number of elements without reallocating. |
| 1497 | /// |
| 1498 | /// Panics if the new capacity exceeds [`isize::MAX`] bytes and [`abort`] the program |
| 1499 | /// in case of allocation error. Use [`fallible_with_capacity`] instead if you want to |
| 1500 | /// handle memory allocation failure. |
| 1501 | /// |
| 1502 | /// All the control bytes are initialized with the [`Tag::EMPTY`] bytes. |
| 1503 | /// |
| 1504 | /// [`fallible_with_capacity`]: RawTableInner::fallible_with_capacity |
| 1505 | /// [`abort`]: https://doc.rust-lang.org/alloc/alloc/fn.handle_alloc_error.html |
| 1506 | fn with_capacity<A>(alloc: &A, table_layout: TableLayout, capacity: usize) -> Self |
| 1507 | where |
| 1508 | A: Allocator, |
| 1509 | { |
| 1510 | // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. |
| 1511 | match Self::fallible_with_capacity(alloc, table_layout, capacity, Fallibility::Infallible) { |
| 1512 | Ok(table_inner) => table_inner, |
| 1513 | // SAFETY: All allocation errors will be caught inside `RawTableInner::new_uninitialized`. |
| 1514 | Err(_) => unsafe { hint::unreachable_unchecked() }, |
| 1515 | } |
| 1516 | } |
| 1517 | |
| 1518 | /// Fixes up an insertion slot returned by the [`RawTableInner::find_insert_slot_in_group`] method. |
| 1519 | /// |
| 1520 | /// In tables smaller than the group width (`self.buckets() < Group::WIDTH`), trailing control |
| 1521 | /// bytes outside the range of the table are filled with [`Tag::EMPTY`] entries. These will unfortunately |
| 1522 | /// trigger a match of [`RawTableInner::find_insert_slot_in_group`] function. This is because |
| 1523 | /// the `Some(bit)` returned by `group.match_empty_or_deleted().lowest_set_bit()` after masking |
| 1524 | /// (`(probe_seq.pos + bit) & self.bucket_mask`) may point to a full bucket that is already occupied. |
| 1525 | /// We detect this situation here and perform a second scan starting at the beginning of the table. |
| 1526 | /// This second scan is guaranteed to find an empty slot (due to the load factor) before hitting the |
| 1527 | /// trailing control bytes (containing [`Tag::EMPTY`] bytes). |
| 1528 | /// |
| 1529 | /// If this function is called correctly, it is guaranteed to return [`InsertSlot`] with an |
| 1530 | /// index of an empty or deleted bucket in the range `0..self.buckets()` (see `Warning` and |
| 1531 | /// `Safety`). |
| 1532 | /// |
| 1533 | /// # Warning |
| 1534 | /// |
| 1535 | /// The table must have at least 1 empty or deleted `bucket`, otherwise if the table is less than |
| 1536 | /// the group width (`self.buckets() < Group::WIDTH`) this function returns an index outside of the |
| 1537 | /// table indices range `0..self.buckets()` (`0..=self.bucket_mask`). Attempt to write data at that |
| 1538 | /// index will cause immediate [`undefined behavior`]. |
| 1539 | /// |
| 1540 | /// # Safety |
| 1541 | /// |
| 1542 | /// The safety rules are directly derived from the safety rules for [`RawTableInner::ctrl`] method. |
| 1543 | /// Thus, in order to uphold those safety contracts, as well as for the correct logic of the work |
| 1544 | /// of this crate, the following rules are necessary and sufficient: |
| 1545 | /// |
| 1546 | /// * The [`RawTableInner`] must have properly initialized control bytes otherwise calling this |
| 1547 | /// function results in [`undefined behavior`]. |
| 1548 | /// |
| 1549 | /// * This function must only be used on insertion slots found by [`RawTableInner::find_insert_slot_in_group`] |
| 1550 | /// (after the `find_insert_slot_in_group` function, but before insertion into the table). |
| 1551 | /// |
| 1552 | /// * The `index` must not be greater than the `self.bucket_mask`, i.e. `(index + 1) <= self.buckets()` |
| 1553 | /// (this one is provided by the [`RawTableInner::find_insert_slot_in_group`] function). |
| 1554 | /// |
| 1555 | /// Calling this function with an index not provided by [`RawTableInner::find_insert_slot_in_group`] |
| 1556 | /// may result in [`undefined behavior`] even if the index satisfies the safety rules of the |
| 1557 | /// [`RawTableInner::ctrl`] function (`index < self.bucket_mask + 1 + Group::WIDTH`). |
| 1558 | /// |
| 1559 | /// [`RawTableInner::ctrl`]: RawTableInner::ctrl |
| 1560 | /// [`RawTableInner::find_insert_slot_in_group`]: RawTableInner::find_insert_slot_in_group |
| 1561 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 1562 | #[inline ] |
| 1563 | unsafe fn fix_insert_slot(&self, mut index: usize) -> InsertSlot { |
| 1564 | // SAFETY: The caller of this function ensures that `index` is in the range `0..=self.bucket_mask`. |
| 1565 | if unlikely(self.is_bucket_full(index)) { |
| 1566 | debug_assert!(self.bucket_mask < Group::WIDTH); |
| 1567 | // SAFETY: |
| 1568 | // |
| 1569 | // * Since the caller of this function ensures that the control bytes are properly |
| 1570 | // initialized and `ptr = self.ctrl(0)` points to the start of the array of control |
| 1571 | // bytes, therefore: `ctrl` is valid for reads, properly aligned to `Group::WIDTH` |
| 1572 | // and points to the properly initialized control bytes (see also |
| 1573 | // `TableLayout::calculate_layout_for` and `ptr::read`); |
| 1574 | // |
| 1575 | // * Because the caller of this function ensures that the index was provided by the |
| 1576 | // `self.find_insert_slot_in_group()` function, so for for tables larger than the |
| 1577 | // group width (self.buckets() >= Group::WIDTH), we will never end up in the given |
| 1578 | // branch, since `(probe_seq.pos + bit) & self.bucket_mask` in `find_insert_slot_in_group` |
| 1579 | // cannot return a full bucket index. For tables smaller than the group width, calling |
| 1580 | // the `unwrap_unchecked` function is also safe, as the trailing control bytes outside |
| 1581 | // the range of the table are filled with EMPTY bytes (and we know for sure that there |
| 1582 | // is at least one FULL bucket), so this second scan either finds an empty slot (due to |
| 1583 | // the load factor) or hits the trailing control bytes (containing EMPTY). |
| 1584 | index = Group::load_aligned(self.ctrl(0)) |
| 1585 | .match_empty_or_deleted() |
| 1586 | .lowest_set_bit() |
| 1587 | .unwrap_unchecked(); |
| 1588 | } |
| 1589 | InsertSlot { index } |
| 1590 | } |
| 1591 | |
| 1592 | /// Finds the position to insert something in a group. |
| 1593 | /// |
| 1594 | /// **This may have false positives and must be fixed up with `fix_insert_slot` |
| 1595 | /// before it's used.** |
| 1596 | /// |
| 1597 | /// The function is guaranteed to return the index of an empty or deleted [`Bucket`] |
| 1598 | /// in the range `0..self.buckets()` (`0..=self.bucket_mask`). |
| 1599 | #[inline ] |
| 1600 | fn find_insert_slot_in_group(&self, group: &Group, probe_seq: &ProbeSeq) -> Option<usize> { |
| 1601 | let bit = group.match_empty_or_deleted().lowest_set_bit(); |
| 1602 | |
| 1603 | if likely(bit.is_some()) { |
| 1604 | // This is the same as `(probe_seq.pos + bit) % self.buckets()` because the number |
| 1605 | // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 1606 | Some((probe_seq.pos + bit.unwrap()) & self.bucket_mask) |
| 1607 | } else { |
| 1608 | None |
| 1609 | } |
| 1610 | } |
| 1611 | |
| 1612 | /// Searches for an element in the table, or a potential slot where that element could |
| 1613 | /// be inserted (an empty or deleted [`Bucket`] index). |
| 1614 | /// |
| 1615 | /// This uses dynamic dispatch to reduce the amount of code generated, but that is |
| 1616 | /// eliminated by LLVM optimizations. |
| 1617 | /// |
| 1618 | /// This function does not make any changes to the `data` part of the table, or any |
| 1619 | /// changes to the `items` or `growth_left` field of the table. |
| 1620 | /// |
| 1621 | /// The table must have at least 1 empty or deleted `bucket`, otherwise, if the |
| 1622 | /// `eq: &mut dyn FnMut(usize) -> bool` function does not return `true`, this function |
| 1623 | /// will never return (will go into an infinite loop) for tables larger than the group |
| 1624 | /// width, or return an index outside of the table indices range if the table is less |
| 1625 | /// than the group width. |
| 1626 | /// |
| 1627 | /// This function is guaranteed to provide the `eq: &mut dyn FnMut(usize) -> bool` |
| 1628 | /// function with only `FULL` buckets' indices and return the `index` of the found |
| 1629 | /// element (as `Ok(index)`). If the element is not found and there is at least 1 |
| 1630 | /// empty or deleted [`Bucket`] in the table, the function is guaranteed to return |
| 1631 | /// [`InsertSlot`] with an index in the range `0..self.buckets()`, but in any case, |
| 1632 | /// if this function returns [`InsertSlot`], it will contain an index in the range |
| 1633 | /// `0..=self.buckets()`. |
| 1634 | /// |
| 1635 | /// # Safety |
| 1636 | /// |
| 1637 | /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling |
| 1638 | /// this function results in [`undefined behavior`]. |
| 1639 | /// |
| 1640 | /// Attempt to write data at the [`InsertSlot`] returned by this function when the table is |
| 1641 | /// less than the group width and if there was not at least one empty or deleted bucket in |
| 1642 | /// the table will cause immediate [`undefined behavior`]. This is because in this case the |
| 1643 | /// function will return `self.bucket_mask + 1` as an index due to the trailing [`Tag::EMPTY`] |
| 1644 | /// control bytes outside the table range. |
| 1645 | /// |
| 1646 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 1647 | #[inline ] |
| 1648 | unsafe fn find_or_find_insert_slot_inner( |
| 1649 | &self, |
| 1650 | hash: u64, |
| 1651 | eq: &mut dyn FnMut(usize) -> bool, |
| 1652 | ) -> Result<usize, InsertSlot> { |
| 1653 | let mut insert_slot = None; |
| 1654 | |
| 1655 | let tag_hash = Tag::full(hash); |
| 1656 | let mut probe_seq = self.probe_seq(hash); |
| 1657 | |
| 1658 | loop { |
| 1659 | // SAFETY: |
| 1660 | // * Caller of this function ensures that the control bytes are properly initialized. |
| 1661 | // |
| 1662 | // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` |
| 1663 | // of the table due to masking with `self.bucket_mask` and also because the number |
| 1664 | // of buckets is a power of two (see `self.probe_seq` function). |
| 1665 | // |
| 1666 | // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to |
| 1667 | // call `Group::load` due to the extended control bytes range, which is |
| 1668 | // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control |
| 1669 | // byte will never be read for the allocated table); |
| 1670 | // |
| 1671 | // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will |
| 1672 | // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` |
| 1673 | // bytes, which is safe (see RawTableInner::new). |
| 1674 | let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; |
| 1675 | |
| 1676 | for bit in group.match_tag(tag_hash) { |
| 1677 | let index = (probe_seq.pos + bit) & self.bucket_mask; |
| 1678 | |
| 1679 | if likely(eq(index)) { |
| 1680 | return Ok(index); |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | // We didn't find the element we were looking for in the group, try to get an |
| 1685 | // insertion slot from the group if we don't have one yet. |
| 1686 | if likely(insert_slot.is_none()) { |
| 1687 | insert_slot = self.find_insert_slot_in_group(&group, &probe_seq); |
| 1688 | } |
| 1689 | |
| 1690 | // Only stop the search if the group contains at least one empty element. |
| 1691 | // Otherwise, the element that we are looking for might be in a following group. |
| 1692 | if likely(group.match_empty().any_bit_set()) { |
| 1693 | // We must have found a insert slot by now, since the current group contains at |
| 1694 | // least one. For tables smaller than the group width, there will still be an |
| 1695 | // empty element in the current (and only) group due to the load factor. |
| 1696 | unsafe { |
| 1697 | // SAFETY: |
| 1698 | // * Caller of this function ensures that the control bytes are properly initialized. |
| 1699 | // |
| 1700 | // * We use this function with the slot / index found by `self.find_insert_slot_in_group` |
| 1701 | return Err(self.fix_insert_slot(insert_slot.unwrap_unchecked())); |
| 1702 | } |
| 1703 | } |
| 1704 | |
| 1705 | probe_seq.move_next(self.bucket_mask); |
| 1706 | } |
| 1707 | } |
| 1708 | |
| 1709 | /// Searches for an empty or deleted bucket which is suitable for inserting a new |
| 1710 | /// element and sets the hash for that slot. Returns an index of that slot and the |
| 1711 | /// old control byte stored in the found index. |
| 1712 | /// |
| 1713 | /// This function does not check if the given element exists in the table. Also, |
| 1714 | /// this function does not check if there is enough space in the table to insert |
| 1715 | /// a new element. The caller of the function must make sure that the table has at |
| 1716 | /// least 1 empty or deleted `bucket`, otherwise this function will never return |
| 1717 | /// (will go into an infinite loop) for tables larger than the group width, or |
| 1718 | /// return an index outside of the table indices range if the table is less than |
| 1719 | /// the group width. |
| 1720 | /// |
| 1721 | /// If there is at least 1 empty or deleted `bucket` in the table, the function is |
| 1722 | /// guaranteed to return an `index` in the range `0..self.buckets()`, but in any case, |
| 1723 | /// if this function returns an `index` it will be in the range `0..=self.buckets()`. |
| 1724 | /// |
| 1725 | /// This function does not make any changes to the `data` parts of the table, |
| 1726 | /// or any changes to the `items` or `growth_left` field of the table. |
| 1727 | /// |
| 1728 | /// # Safety |
| 1729 | /// |
| 1730 | /// The safety rules are directly derived from the safety rules for the |
| 1731 | /// [`RawTableInner::set_ctrl_hash`] and [`RawTableInner::find_insert_slot`] methods. |
| 1732 | /// Thus, in order to uphold the safety contracts for that methods, as well as for |
| 1733 | /// the correct logic of the work of this crate, you must observe the following rules |
| 1734 | /// when calling this function: |
| 1735 | /// |
| 1736 | /// * The [`RawTableInner`] has already been allocated and has properly initialized |
| 1737 | /// control bytes otherwise calling this function results in [`undefined behavior`]. |
| 1738 | /// |
| 1739 | /// * The caller of this function must ensure that the "data" parts of the table |
| 1740 | /// will have an entry in the returned index (matching the given hash) right |
| 1741 | /// after calling this function. |
| 1742 | /// |
| 1743 | /// Attempt to write data at the `index` returned by this function when the table is |
| 1744 | /// less than the group width and if there was not at least one empty or deleted bucket in |
| 1745 | /// the table will cause immediate [`undefined behavior`]. This is because in this case the |
| 1746 | /// function will return `self.bucket_mask + 1` as an index due to the trailing [`Tag::EMPTY`] |
| 1747 | /// control bytes outside the table range. |
| 1748 | /// |
| 1749 | /// The caller must independently increase the `items` field of the table, and also, |
| 1750 | /// if the old control byte was [`Tag::EMPTY`], then decrease the table's `growth_left` |
| 1751 | /// field, and do not change it if the old control byte was [`Tag::DELETED`]. |
| 1752 | /// |
| 1753 | /// See also [`Bucket::as_ptr`] method, for more information about of properly removing |
| 1754 | /// or saving `element` from / into the [`RawTable`] / [`RawTableInner`]. |
| 1755 | /// |
| 1756 | /// [`Bucket::as_ptr`]: Bucket::as_ptr |
| 1757 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 1758 | /// [`RawTableInner::ctrl`]: RawTableInner::ctrl |
| 1759 | /// [`RawTableInner::set_ctrl_hash`]: RawTableInner::set_ctrl_hash |
| 1760 | /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot |
| 1761 | #[inline ] |
| 1762 | unsafe fn prepare_insert_slot(&mut self, hash: u64) -> (usize, Tag) { |
| 1763 | // SAFETY: Caller of this function ensures that the control bytes are properly initialized. |
| 1764 | let index: usize = self.find_insert_slot(hash).index; |
| 1765 | // SAFETY: |
| 1766 | // 1. The `find_insert_slot` function either returns an `index` less than or |
| 1767 | // equal to `self.buckets() = self.bucket_mask + 1` of the table, or never |
| 1768 | // returns if it cannot find an empty or deleted slot. |
| 1769 | // 2. The caller of this function guarantees that the table has already been |
| 1770 | // allocated |
| 1771 | let old_ctrl = *self.ctrl(index); |
| 1772 | self.set_ctrl_hash(index, hash); |
| 1773 | (index, old_ctrl) |
| 1774 | } |
| 1775 | |
| 1776 | /// Searches for an empty or deleted bucket which is suitable for inserting |
| 1777 | /// a new element, returning the `index` for the new [`Bucket`]. |
| 1778 | /// |
| 1779 | /// This function does not make any changes to the `data` part of the table, or any |
| 1780 | /// changes to the `items` or `growth_left` field of the table. |
| 1781 | /// |
| 1782 | /// The table must have at least 1 empty or deleted `bucket`, otherwise this function |
| 1783 | /// will never return (will go into an infinite loop) for tables larger than the group |
| 1784 | /// width, or return an index outside of the table indices range if the table is less |
| 1785 | /// than the group width. |
| 1786 | /// |
| 1787 | /// If there is at least 1 empty or deleted `bucket` in the table, the function is |
| 1788 | /// guaranteed to return [`InsertSlot`] with an index in the range `0..self.buckets()`, |
| 1789 | /// but in any case, if this function returns [`InsertSlot`], it will contain an index |
| 1790 | /// in the range `0..=self.buckets()`. |
| 1791 | /// |
| 1792 | /// # Safety |
| 1793 | /// |
| 1794 | /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling |
| 1795 | /// this function results in [`undefined behavior`]. |
| 1796 | /// |
| 1797 | /// Attempt to write data at the [`InsertSlot`] returned by this function when the table is |
| 1798 | /// less than the group width and if there was not at least one empty or deleted bucket in |
| 1799 | /// the table will cause immediate [`undefined behavior`]. This is because in this case the |
| 1800 | /// function will return `self.bucket_mask + 1` as an index due to the trailing [`Tag::EMPTY`] |
| 1801 | /// control bytes outside the table range. |
| 1802 | /// |
| 1803 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 1804 | #[inline ] |
| 1805 | unsafe fn find_insert_slot(&self, hash: u64) -> InsertSlot { |
| 1806 | let mut probe_seq = self.probe_seq(hash); |
| 1807 | loop { |
| 1808 | // SAFETY: |
| 1809 | // * Caller of this function ensures that the control bytes are properly initialized. |
| 1810 | // |
| 1811 | // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` |
| 1812 | // of the table due to masking with `self.bucket_mask` and also because the number |
| 1813 | // of buckets is a power of two (see `self.probe_seq` function). |
| 1814 | // |
| 1815 | // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to |
| 1816 | // call `Group::load` due to the extended control bytes range, which is |
| 1817 | // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control |
| 1818 | // byte will never be read for the allocated table); |
| 1819 | // |
| 1820 | // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will |
| 1821 | // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` |
| 1822 | // bytes, which is safe (see RawTableInner::new). |
| 1823 | let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; |
| 1824 | |
| 1825 | let index = self.find_insert_slot_in_group(&group, &probe_seq); |
| 1826 | if likely(index.is_some()) { |
| 1827 | // SAFETY: |
| 1828 | // * Caller of this function ensures that the control bytes are properly initialized. |
| 1829 | // |
| 1830 | // * We use this function with the slot / index found by `self.find_insert_slot_in_group` |
| 1831 | unsafe { |
| 1832 | return self.fix_insert_slot(index.unwrap_unchecked()); |
| 1833 | } |
| 1834 | } |
| 1835 | probe_seq.move_next(self.bucket_mask); |
| 1836 | } |
| 1837 | } |
| 1838 | |
| 1839 | /// Searches for an element in a table, returning the `index` of the found element. |
| 1840 | /// This uses dynamic dispatch to reduce the amount of code generated, but it is |
| 1841 | /// eliminated by LLVM optimizations. |
| 1842 | /// |
| 1843 | /// This function does not make any changes to the `data` part of the table, or any |
| 1844 | /// changes to the `items` or `growth_left` field of the table. |
| 1845 | /// |
| 1846 | /// The table must have at least 1 empty `bucket`, otherwise, if the |
| 1847 | /// `eq: &mut dyn FnMut(usize) -> bool` function does not return `true`, |
| 1848 | /// this function will also never return (will go into an infinite loop). |
| 1849 | /// |
| 1850 | /// This function is guaranteed to provide the `eq: &mut dyn FnMut(usize) -> bool` |
| 1851 | /// function with only `FULL` buckets' indices and return the `index` of the found |
| 1852 | /// element as `Some(index)`, so the index will always be in the range |
| 1853 | /// `0..self.buckets()`. |
| 1854 | /// |
| 1855 | /// # Safety |
| 1856 | /// |
| 1857 | /// The [`RawTableInner`] must have properly initialized control bytes otherwise calling |
| 1858 | /// this function results in [`undefined behavior`]. |
| 1859 | /// |
| 1860 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 1861 | #[inline (always)] |
| 1862 | unsafe fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option<usize> { |
| 1863 | let tag_hash = Tag::full(hash); |
| 1864 | let mut probe_seq = self.probe_seq(hash); |
| 1865 | |
| 1866 | loop { |
| 1867 | // SAFETY: |
| 1868 | // * Caller of this function ensures that the control bytes are properly initialized. |
| 1869 | // |
| 1870 | // * `ProbeSeq.pos` cannot be greater than `self.bucket_mask = self.buckets() - 1` |
| 1871 | // of the table due to masking with `self.bucket_mask`. |
| 1872 | // |
| 1873 | // * Even if `ProbeSeq.pos` returns `position == self.bucket_mask`, it is safe to |
| 1874 | // call `Group::load` due to the extended control bytes range, which is |
| 1875 | // `self.bucket_mask + 1 + Group::WIDTH` (in fact, this means that the last control |
| 1876 | // byte will never be read for the allocated table); |
| 1877 | // |
| 1878 | // * Also, even if `RawTableInner` is not already allocated, `ProbeSeq.pos` will |
| 1879 | // always return "0" (zero), so Group::load will read unaligned `Group::static_empty()` |
| 1880 | // bytes, which is safe (see RawTableInner::new_in). |
| 1881 | let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; |
| 1882 | |
| 1883 | for bit in group.match_tag(tag_hash) { |
| 1884 | // This is the same as `(probe_seq.pos + bit) % self.buckets()` because the number |
| 1885 | // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 1886 | let index = (probe_seq.pos + bit) & self.bucket_mask; |
| 1887 | |
| 1888 | if likely(eq(index)) { |
| 1889 | return Some(index); |
| 1890 | } |
| 1891 | } |
| 1892 | |
| 1893 | if likely(group.match_empty().any_bit_set()) { |
| 1894 | return None; |
| 1895 | } |
| 1896 | |
| 1897 | probe_seq.move_next(self.bucket_mask); |
| 1898 | } |
| 1899 | } |
| 1900 | |
| 1901 | /// Prepares for rehashing data in place (that is, without allocating new memory). |
| 1902 | /// Converts all full index `control bytes` to `Tag::DELETED` and all `Tag::DELETED` control |
| 1903 | /// bytes to `Tag::EMPTY`, i.e. performs the following conversion: |
| 1904 | /// |
| 1905 | /// - `Tag::EMPTY` control bytes -> `Tag::EMPTY`; |
| 1906 | /// - `Tag::DELETED` control bytes -> `Tag::EMPTY`; |
| 1907 | /// - `FULL` control bytes -> `Tag::DELETED`. |
| 1908 | /// |
| 1909 | /// This function does not make any changes to the `data` parts of the table, |
| 1910 | /// or any changes to the `items` or `growth_left` field of the table. |
| 1911 | /// |
| 1912 | /// # Safety |
| 1913 | /// |
| 1914 | /// You must observe the following safety rules when calling this function: |
| 1915 | /// |
| 1916 | /// * The [`RawTableInner`] has already been allocated; |
| 1917 | /// |
| 1918 | /// * The caller of this function must convert the `Tag::DELETED` bytes back to `FULL` |
| 1919 | /// bytes when re-inserting them into their ideal position (which was impossible |
| 1920 | /// to do during the first insert due to tombstones). If the caller does not do |
| 1921 | /// this, then calling this function may result in a memory leak. |
| 1922 | /// |
| 1923 | /// * The [`RawTableInner`] must have properly initialized control bytes otherwise |
| 1924 | /// calling this function results in [`undefined behavior`]. |
| 1925 | /// |
| 1926 | /// Calling this function on a table that has not been allocated results in |
| 1927 | /// [`undefined behavior`]. |
| 1928 | /// |
| 1929 | /// See also [`Bucket::as_ptr`] method, for more information about of properly removing |
| 1930 | /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. |
| 1931 | /// |
| 1932 | /// [`Bucket::as_ptr`]: Bucket::as_ptr |
| 1933 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 1934 | #[allow (clippy::mut_mut)] |
| 1935 | #[inline ] |
| 1936 | unsafe fn prepare_rehash_in_place(&mut self) { |
| 1937 | // Bulk convert all full control bytes to DELETED, and all DELETED control bytes to EMPTY. |
| 1938 | // This effectively frees up all buckets containing a DELETED entry. |
| 1939 | // |
| 1940 | // SAFETY: |
| 1941 | // 1. `i` is guaranteed to be within bounds since we are iterating from zero to `buckets - 1`; |
| 1942 | // 2. Even if `i` will be `i == self.bucket_mask`, it is safe to call `Group::load_aligned` |
| 1943 | // due to the extended control bytes range, which is `self.bucket_mask + 1 + Group::WIDTH`; |
| 1944 | // 3. The caller of this function guarantees that [`RawTableInner`] has already been allocated; |
| 1945 | // 4. We can use `Group::load_aligned` and `Group::store_aligned` here since we start from 0 |
| 1946 | // and go to the end with a step equal to `Group::WIDTH` (see TableLayout::calculate_layout_for). |
| 1947 | for i in (0..self.buckets()).step_by(Group::WIDTH) { |
| 1948 | let group = Group::load_aligned(self.ctrl(i)); |
| 1949 | let group = group.convert_special_to_empty_and_full_to_deleted(); |
| 1950 | group.store_aligned(self.ctrl(i)); |
| 1951 | } |
| 1952 | |
| 1953 | // Fix up the trailing control bytes. See the comments in set_ctrl |
| 1954 | // for the handling of tables smaller than the group width. |
| 1955 | // |
| 1956 | // SAFETY: The caller of this function guarantees that [`RawTableInner`] |
| 1957 | // has already been allocated |
| 1958 | if unlikely(self.buckets() < Group::WIDTH) { |
| 1959 | // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes, |
| 1960 | // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to |
| 1961 | // `Group::WIDTH` is safe |
| 1962 | self.ctrl(0) |
| 1963 | .copy_to(self.ctrl(Group::WIDTH), self.buckets()); |
| 1964 | } else { |
| 1965 | // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of |
| 1966 | // control bytes,so copying `Group::WIDTH` bytes with offset equal |
| 1967 | // to `self.buckets() == self.bucket_mask + 1` is safe |
| 1968 | self.ctrl(0) |
| 1969 | .copy_to(self.ctrl(self.buckets()), Group::WIDTH); |
| 1970 | } |
| 1971 | } |
| 1972 | |
| 1973 | /// Returns an iterator over every element in the table. |
| 1974 | /// |
| 1975 | /// # Safety |
| 1976 | /// |
| 1977 | /// If any of the following conditions are violated, the result |
| 1978 | /// is [`undefined behavior`]: |
| 1979 | /// |
| 1980 | /// * The caller has to ensure that the `RawTableInner` outlives the |
| 1981 | /// `RawIter`. Because we cannot make the `next` method unsafe on |
| 1982 | /// the `RawIter` struct, we have to make the `iter` method unsafe. |
| 1983 | /// |
| 1984 | /// * The [`RawTableInner`] must have properly initialized control bytes. |
| 1985 | /// |
| 1986 | /// The type `T` must be the actual type of the elements stored in the table, |
| 1987 | /// otherwise using the returned [`RawIter`] results in [`undefined behavior`]. |
| 1988 | /// |
| 1989 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 1990 | #[inline ] |
| 1991 | unsafe fn iter<T>(&self) -> RawIter<T> { |
| 1992 | // SAFETY: |
| 1993 | // 1. Since the caller of this function ensures that the control bytes |
| 1994 | // are properly initialized and `self.data_end()` points to the start |
| 1995 | // of the array of control bytes, therefore: `ctrl` is valid for reads, |
| 1996 | // properly aligned to `Group::WIDTH` and points to the properly initialized |
| 1997 | // control bytes. |
| 1998 | // 2. `data` bucket index in the table is equal to the `ctrl` index (i.e. |
| 1999 | // equal to zero). |
| 2000 | // 3. We pass the exact value of buckets of the table to the function. |
| 2001 | // |
| 2002 | // `ctrl` points here (to the start |
| 2003 | // of the first control byte `CT0`) |
| 2004 | // ∨ |
| 2005 | // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, CTa_0, CTa_1, ..., CTa_m |
| 2006 | // \________ ________/ |
| 2007 | // \/ |
| 2008 | // `n = buckets - 1`, i.e. `RawTableInner::buckets() - 1` |
| 2009 | // |
| 2010 | // where: T0...T_n - our stored data; |
| 2011 | // CT0...CT_n - control bytes or metadata for `data`. |
| 2012 | // CTa_0...CTa_m - additional control bytes, where `m = Group::WIDTH - 1` (so that the search |
| 2013 | // with loading `Group` bytes from the heap works properly, even if the result |
| 2014 | // of `h1(hash) & self.bucket_mask` is equal to `self.bucket_mask`). See also |
| 2015 | // `RawTableInner::set_ctrl` function. |
| 2016 | // |
| 2017 | // P.S. `h1(hash) & self.bucket_mask` is the same as `hash as usize % self.buckets()` because the number |
| 2018 | // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 2019 | let data = Bucket::from_base_index(self.data_end(), 0); |
| 2020 | RawIter { |
| 2021 | // SAFETY: See explanation above |
| 2022 | iter: RawIterRange::new(self.ctrl.as_ptr(), data, self.buckets()), |
| 2023 | items: self.items, |
| 2024 | } |
| 2025 | } |
| 2026 | |
| 2027 | /// Executes the destructors (if any) of the values stored in the table. |
| 2028 | /// |
| 2029 | /// # Note |
| 2030 | /// |
| 2031 | /// This function does not erase the control bytes of the table and does |
| 2032 | /// not make any changes to the `items` or `growth_left` fields of the |
| 2033 | /// table. If necessary, the caller of this function must manually set |
| 2034 | /// up these table fields, for example using the [`clear_no_drop`] function. |
| 2035 | /// |
| 2036 | /// Be careful during calling this function, because drop function of |
| 2037 | /// the elements can panic, and this can leave table in an inconsistent |
| 2038 | /// state. |
| 2039 | /// |
| 2040 | /// # Safety |
| 2041 | /// |
| 2042 | /// The type `T` must be the actual type of the elements stored in the table, |
| 2043 | /// otherwise calling this function may result in [`undefined behavior`]. |
| 2044 | /// |
| 2045 | /// If `T` is a type that should be dropped and **the table is not empty**, |
| 2046 | /// calling this function more than once results in [`undefined behavior`]. |
| 2047 | /// |
| 2048 | /// If `T` is not [`Copy`], attempting to use values stored in the table after |
| 2049 | /// calling this function may result in [`undefined behavior`]. |
| 2050 | /// |
| 2051 | /// It is safe to call this function on a table that has not been allocated, |
| 2052 | /// on a table with uninitialized control bytes, and on a table with no actual |
| 2053 | /// data but with `Full` control bytes if `self.items == 0`. |
| 2054 | /// |
| 2055 | /// See also [`Bucket::drop`] / [`Bucket::as_ptr`] methods, for more information |
| 2056 | /// about of properly removing or saving `element` from / into the [`RawTable`] / |
| 2057 | /// [`RawTableInner`]. |
| 2058 | /// |
| 2059 | /// [`Bucket::drop`]: Bucket::drop |
| 2060 | /// [`Bucket::as_ptr`]: Bucket::as_ptr |
| 2061 | /// [`clear_no_drop`]: RawTableInner::clear_no_drop |
| 2062 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2063 | unsafe fn drop_elements<T>(&mut self) { |
| 2064 | // Check that `self.items != 0`. Protects against the possibility |
| 2065 | // of creating an iterator on an table with uninitialized control bytes. |
| 2066 | if T::NEEDS_DROP && self.items != 0 { |
| 2067 | // SAFETY: We know for sure that RawTableInner will outlive the |
| 2068 | // returned `RawIter` iterator, and the caller of this function |
| 2069 | // must uphold the safety contract for `drop_elements` method. |
| 2070 | for item in self.iter::<T>() { |
| 2071 | // SAFETY: The caller must uphold the safety contract for |
| 2072 | // `drop_elements` method. |
| 2073 | item.drop(); |
| 2074 | } |
| 2075 | } |
| 2076 | } |
| 2077 | |
| 2078 | /// Executes the destructors (if any) of the values stored in the table and than |
| 2079 | /// deallocates the table. |
| 2080 | /// |
| 2081 | /// # Note |
| 2082 | /// |
| 2083 | /// Calling this function automatically makes invalid (dangling) all instances of |
| 2084 | /// buckets ([`Bucket`]) and makes invalid (dangling) the `ctrl` field of the table. |
| 2085 | /// |
| 2086 | /// This function does not make any changes to the `bucket_mask`, `items` or `growth_left` |
| 2087 | /// fields of the table. If necessary, the caller of this function must manually set |
| 2088 | /// up these table fields. |
| 2089 | /// |
| 2090 | /// # Safety |
| 2091 | /// |
| 2092 | /// If any of the following conditions are violated, the result is [`undefined behavior`]: |
| 2093 | /// |
| 2094 | /// * Calling this function more than once; |
| 2095 | /// |
| 2096 | /// * The type `T` must be the actual type of the elements stored in the table. |
| 2097 | /// |
| 2098 | /// * The `alloc` must be the same [`Allocator`] as the `Allocator` that was used |
| 2099 | /// to allocate this table. |
| 2100 | /// |
| 2101 | /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` that |
| 2102 | /// was used to allocate this table. |
| 2103 | /// |
| 2104 | /// The caller of this function should pay attention to the possibility of the |
| 2105 | /// elements' drop function panicking, because this: |
| 2106 | /// |
| 2107 | /// * May leave the table in an inconsistent state; |
| 2108 | /// |
| 2109 | /// * Memory is never deallocated, so a memory leak may occur. |
| 2110 | /// |
| 2111 | /// Attempt to use the `ctrl` field of the table (dereference) after calling this |
| 2112 | /// function results in [`undefined behavior`]. |
| 2113 | /// |
| 2114 | /// It is safe to call this function on a table that has not been allocated, |
| 2115 | /// on a table with uninitialized control bytes, and on a table with no actual |
| 2116 | /// data but with `Full` control bytes if `self.items == 0`. |
| 2117 | /// |
| 2118 | /// See also [`RawTableInner::drop_elements`] or [`RawTableInner::free_buckets`] |
| 2119 | /// for more information. |
| 2120 | /// |
| 2121 | /// [`RawTableInner::drop_elements`]: RawTableInner::drop_elements |
| 2122 | /// [`RawTableInner::free_buckets`]: RawTableInner::free_buckets |
| 2123 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2124 | unsafe fn drop_inner_table<T, A: Allocator>(&mut self, alloc: &A, table_layout: TableLayout) { |
| 2125 | if !self.is_empty_singleton() { |
| 2126 | unsafe { |
| 2127 | // SAFETY: The caller must uphold the safety contract for `drop_inner_table` method. |
| 2128 | self.drop_elements::<T>(); |
| 2129 | // SAFETY: |
| 2130 | // 1. We have checked that our table is allocated. |
| 2131 | // 2. The caller must uphold the safety contract for `drop_inner_table` method. |
| 2132 | self.free_buckets(alloc, table_layout); |
| 2133 | } |
| 2134 | } |
| 2135 | } |
| 2136 | |
| 2137 | /// Returns a pointer to an element in the table (convenience for |
| 2138 | /// `Bucket::from_base_index(self.data_end::<T>(), index)`). |
| 2139 | /// |
| 2140 | /// The caller must ensure that the `RawTableInner` outlives the returned [`Bucket<T>`], |
| 2141 | /// otherwise using it may result in [`undefined behavior`]. |
| 2142 | /// |
| 2143 | /// # Safety |
| 2144 | /// |
| 2145 | /// If `mem::size_of::<T>() != 0`, then the safety rules are directly derived from the |
| 2146 | /// safety rules of the [`Bucket::from_base_index`] function. Therefore, when calling |
| 2147 | /// this function, the following safety rules must be observed: |
| 2148 | /// |
| 2149 | /// * The table must already be allocated; |
| 2150 | /// |
| 2151 | /// * The `index` must not be greater than the number returned by the [`RawTableInner::buckets`] |
| 2152 | /// function, i.e. `(index + 1) <= self.buckets()`. |
| 2153 | /// |
| 2154 | /// * The type `T` must be the actual type of the elements stored in the table, otherwise |
| 2155 | /// using the returned [`Bucket`] may result in [`undefined behavior`]. |
| 2156 | /// |
| 2157 | /// It is safe to call this function with index of zero (`index == 0`) on a table that has |
| 2158 | /// not been allocated, but using the returned [`Bucket`] results in [`undefined behavior`]. |
| 2159 | /// |
| 2160 | /// If `mem::size_of::<T>() == 0`, then the only requirement is that the `index` must |
| 2161 | /// not be greater than the number returned by the [`RawTable::buckets`] function, i.e. |
| 2162 | /// `(index + 1) <= self.buckets()`. |
| 2163 | /// |
| 2164 | /// ```none |
| 2165 | /// If mem::size_of::<T>() != 0 then return a pointer to the `element` in the `data part` of the table |
| 2166 | /// (we start counting from "0", so that in the expression T[n], the "n" index actually one less than |
| 2167 | /// the "buckets" number of our `RawTableInner`, i.e. "n = RawTableInner::buckets() - 1"): |
| 2168 | /// |
| 2169 | /// `table.bucket(3).as_ptr()` returns a pointer that points here in the `data` |
| 2170 | /// part of the `RawTableInner`, i.e. to the start of T3 (see [`Bucket::as_ptr`]) |
| 2171 | /// | |
| 2172 | /// | `base = table.data_end::<T>()` points here |
| 2173 | /// | (to the start of CT0 or to the end of T0) |
| 2174 | /// v v |
| 2175 | /// [Pad], T_n, ..., |T3|, T2, T1, T0, |CT0, CT1, CT2, CT3, ..., CT_n, CTa_0, CTa_1, ..., CTa_m |
| 2176 | /// ^ \__________ __________/ |
| 2177 | /// `table.bucket(3)` returns a pointer that points \/ |
| 2178 | /// here in the `data` part of the `RawTableInner` additional control bytes |
| 2179 | /// (to the end of T3) `m = Group::WIDTH - 1` |
| 2180 | /// |
| 2181 | /// where: T0...T_n - our stored data; |
| 2182 | /// CT0...CT_n - control bytes or metadata for `data`; |
| 2183 | /// CTa_0...CTa_m - additional control bytes (so that the search with loading `Group` bytes from |
| 2184 | /// the heap works properly, even if the result of `h1(hash) & self.bucket_mask` |
| 2185 | /// is equal to `self.bucket_mask`). See also `RawTableInner::set_ctrl` function. |
| 2186 | /// |
| 2187 | /// P.S. `h1(hash) & self.bucket_mask` is the same as `hash as usize % self.buckets()` because the number |
| 2188 | /// of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 2189 | /// ``` |
| 2190 | /// |
| 2191 | /// [`Bucket::from_base_index`]: Bucket::from_base_index |
| 2192 | /// [`RawTableInner::buckets`]: RawTableInner::buckets |
| 2193 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2194 | #[inline ] |
| 2195 | unsafe fn bucket<T>(&self, index: usize) -> Bucket<T> { |
| 2196 | debug_assert_ne!(self.bucket_mask, 0); |
| 2197 | debug_assert!(index < self.buckets()); |
| 2198 | Bucket::from_base_index(self.data_end(), index) |
| 2199 | } |
| 2200 | |
| 2201 | /// Returns a raw `*mut u8` pointer to the start of the `data` element in the table |
| 2202 | /// (convenience for `self.data_end::<u8>().as_ptr().sub((index + 1) * size_of)`). |
| 2203 | /// |
| 2204 | /// The caller must ensure that the `RawTableInner` outlives the returned `*mut u8`, |
| 2205 | /// otherwise using it may result in [`undefined behavior`]. |
| 2206 | /// |
| 2207 | /// # Safety |
| 2208 | /// |
| 2209 | /// If any of the following conditions are violated, the result is [`undefined behavior`]: |
| 2210 | /// |
| 2211 | /// * The table must already be allocated; |
| 2212 | /// |
| 2213 | /// * The `index` must not be greater than the number returned by the [`RawTableInner::buckets`] |
| 2214 | /// function, i.e. `(index + 1) <= self.buckets()`; |
| 2215 | /// |
| 2216 | /// * The `size_of` must be equal to the size of the elements stored in the table; |
| 2217 | /// |
| 2218 | /// ```none |
| 2219 | /// If mem::size_of::<T>() != 0 then return a pointer to the `element` in the `data part` of the table |
| 2220 | /// (we start counting from "0", so that in the expression T[n], the "n" index actually one less than |
| 2221 | /// the "buckets" number of our `RawTableInner`, i.e. "n = RawTableInner::buckets() - 1"): |
| 2222 | /// |
| 2223 | /// `table.bucket_ptr(3, mem::size_of::<T>())` returns a pointer that points here in the |
| 2224 | /// `data` part of the `RawTableInner`, i.e. to the start of T3 |
| 2225 | /// | |
| 2226 | /// | `base = table.data_end::<u8>()` points here |
| 2227 | /// | (to the start of CT0 or to the end of T0) |
| 2228 | /// v v |
| 2229 | /// [Pad], T_n, ..., |T3|, T2, T1, T0, |CT0, CT1, CT2, CT3, ..., CT_n, CTa_0, CTa_1, ..., CTa_m |
| 2230 | /// \__________ __________/ |
| 2231 | /// \/ |
| 2232 | /// additional control bytes |
| 2233 | /// `m = Group::WIDTH - 1` |
| 2234 | /// |
| 2235 | /// where: T0...T_n - our stored data; |
| 2236 | /// CT0...CT_n - control bytes or metadata for `data`; |
| 2237 | /// CTa_0...CTa_m - additional control bytes (so that the search with loading `Group` bytes from |
| 2238 | /// the heap works properly, even if the result of `h1(hash) & self.bucket_mask` |
| 2239 | /// is equal to `self.bucket_mask`). See also `RawTableInner::set_ctrl` function. |
| 2240 | /// |
| 2241 | /// P.S. `h1(hash) & self.bucket_mask` is the same as `hash as usize % self.buckets()` because the number |
| 2242 | /// of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 2243 | /// ``` |
| 2244 | /// |
| 2245 | /// [`RawTableInner::buckets`]: RawTableInner::buckets |
| 2246 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2247 | #[inline ] |
| 2248 | unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 { |
| 2249 | debug_assert_ne!(self.bucket_mask, 0); |
| 2250 | debug_assert!(index < self.buckets()); |
| 2251 | let base: *mut u8 = self.data_end().as_ptr(); |
| 2252 | base.sub((index + 1) * size_of) |
| 2253 | } |
| 2254 | |
| 2255 | /// Returns pointer to one past last `data` element in the table as viewed from |
| 2256 | /// the start point of the allocation (convenience for `self.ctrl.cast()`). |
| 2257 | /// |
| 2258 | /// This function actually returns a pointer to the end of the `data element` at |
| 2259 | /// index "0" (zero). |
| 2260 | /// |
| 2261 | /// The caller must ensure that the `RawTableInner` outlives the returned [`NonNull<T>`], |
| 2262 | /// otherwise using it may result in [`undefined behavior`]. |
| 2263 | /// |
| 2264 | /// # Note |
| 2265 | /// |
| 2266 | /// The type `T` must be the actual type of the elements stored in the table, otherwise |
| 2267 | /// using the returned [`NonNull<T>`] may result in [`undefined behavior`]. |
| 2268 | /// |
| 2269 | /// ```none |
| 2270 | /// `table.data_end::<T>()` returns pointer that points here |
| 2271 | /// (to the end of `T0`) |
| 2272 | /// ∨ |
| 2273 | /// [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, CTa_0, CTa_1, ..., CTa_m |
| 2274 | /// \________ ________/ |
| 2275 | /// \/ |
| 2276 | /// `n = buckets - 1`, i.e. `RawTableInner::buckets() - 1` |
| 2277 | /// |
| 2278 | /// where: T0...T_n - our stored data; |
| 2279 | /// CT0...CT_n - control bytes or metadata for `data`. |
| 2280 | /// CTa_0...CTa_m - additional control bytes, where `m = Group::WIDTH - 1` (so that the search |
| 2281 | /// with loading `Group` bytes from the heap works properly, even if the result |
| 2282 | /// of `h1(hash) & self.bucket_mask` is equal to `self.bucket_mask`). See also |
| 2283 | /// `RawTableInner::set_ctrl` function. |
| 2284 | /// |
| 2285 | /// P.S. `h1(hash) & self.bucket_mask` is the same as `hash as usize % self.buckets()` because the number |
| 2286 | /// of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 2287 | /// ``` |
| 2288 | /// |
| 2289 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2290 | #[inline ] |
| 2291 | fn data_end<T>(&self) -> NonNull<T> { |
| 2292 | self.ctrl.cast() |
| 2293 | } |
| 2294 | |
| 2295 | /// Returns an iterator-like object for a probe sequence on the table. |
| 2296 | /// |
| 2297 | /// This iterator never terminates, but is guaranteed to visit each bucket |
| 2298 | /// group exactly once. The loop using `probe_seq` must terminate upon |
| 2299 | /// reaching a group containing an empty bucket. |
| 2300 | #[inline ] |
| 2301 | fn probe_seq(&self, hash: u64) -> ProbeSeq { |
| 2302 | ProbeSeq { |
| 2303 | // This is the same as `hash as usize % self.buckets()` because the number |
| 2304 | // of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 2305 | pos: h1(hash) & self.bucket_mask, |
| 2306 | stride: 0, |
| 2307 | } |
| 2308 | } |
| 2309 | |
| 2310 | #[inline ] |
| 2311 | unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: Tag, hash: u64) { |
| 2312 | self.growth_left -= usize::from(old_ctrl.special_is_empty()); |
| 2313 | self.set_ctrl_hash(index, hash); |
| 2314 | self.items += 1; |
| 2315 | } |
| 2316 | |
| 2317 | #[inline ] |
| 2318 | fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool { |
| 2319 | let probe_seq_pos = self.probe_seq(hash).pos; |
| 2320 | let probe_index = |
| 2321 | |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH; |
| 2322 | probe_index(i) == probe_index(new_i) |
| 2323 | } |
| 2324 | |
| 2325 | /// Sets a control byte to the hash, and possibly also the replicated control byte at |
| 2326 | /// the end of the array. |
| 2327 | /// |
| 2328 | /// This function does not make any changes to the `data` parts of the table, |
| 2329 | /// or any changes to the `items` or `growth_left` field of the table. |
| 2330 | /// |
| 2331 | /// # Safety |
| 2332 | /// |
| 2333 | /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl`] |
| 2334 | /// method. Thus, in order to uphold the safety contracts for the method, you must observe the |
| 2335 | /// following rules when calling this function: |
| 2336 | /// |
| 2337 | /// * The [`RawTableInner`] has already been allocated; |
| 2338 | /// |
| 2339 | /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. |
| 2340 | /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must |
| 2341 | /// be no greater than the number returned by the function [`RawTableInner::buckets`]. |
| 2342 | /// |
| 2343 | /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. |
| 2344 | /// |
| 2345 | /// See also [`Bucket::as_ptr`] method, for more information about of properly removing |
| 2346 | /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. |
| 2347 | /// |
| 2348 | /// [`RawTableInner::set_ctrl`]: RawTableInner::set_ctrl |
| 2349 | /// [`RawTableInner::buckets`]: RawTableInner::buckets |
| 2350 | /// [`Bucket::as_ptr`]: Bucket::as_ptr |
| 2351 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2352 | #[inline ] |
| 2353 | unsafe fn set_ctrl_hash(&mut self, index: usize, hash: u64) { |
| 2354 | // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl_hash`] |
| 2355 | self.set_ctrl(index, Tag::full(hash)); |
| 2356 | } |
| 2357 | |
| 2358 | /// Replaces the hash in the control byte at the given index with the provided one, |
| 2359 | /// and possibly also replicates the new control byte at the end of the array of control |
| 2360 | /// bytes, returning the old control byte. |
| 2361 | /// |
| 2362 | /// This function does not make any changes to the `data` parts of the table, |
| 2363 | /// or any changes to the `items` or `growth_left` field of the table. |
| 2364 | /// |
| 2365 | /// # Safety |
| 2366 | /// |
| 2367 | /// The safety rules are directly derived from the safety rules for [`RawTableInner::set_ctrl_hash`] |
| 2368 | /// and [`RawTableInner::ctrl`] methods. Thus, in order to uphold the safety contracts for both |
| 2369 | /// methods, you must observe the following rules when calling this function: |
| 2370 | /// |
| 2371 | /// * The [`RawTableInner`] has already been allocated; |
| 2372 | /// |
| 2373 | /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. |
| 2374 | /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must |
| 2375 | /// be no greater than the number returned by the function [`RawTableInner::buckets`]. |
| 2376 | /// |
| 2377 | /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. |
| 2378 | /// |
| 2379 | /// See also [`Bucket::as_ptr`] method, for more information about of properly removing |
| 2380 | /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. |
| 2381 | /// |
| 2382 | /// [`RawTableInner::set_ctrl_hash`]: RawTableInner::set_ctrl_hash |
| 2383 | /// [`RawTableInner::buckets`]: RawTableInner::buckets |
| 2384 | /// [`Bucket::as_ptr`]: Bucket::as_ptr |
| 2385 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2386 | #[inline ] |
| 2387 | unsafe fn replace_ctrl_hash(&mut self, index: usize, hash: u64) -> Tag { |
| 2388 | // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::replace_ctrl_hash`] |
| 2389 | let prev_ctrl = *self.ctrl(index); |
| 2390 | self.set_ctrl_hash(index, hash); |
| 2391 | prev_ctrl |
| 2392 | } |
| 2393 | |
| 2394 | /// Sets a control byte, and possibly also the replicated control byte at |
| 2395 | /// the end of the array. |
| 2396 | /// |
| 2397 | /// This function does not make any changes to the `data` parts of the table, |
| 2398 | /// or any changes to the `items` or `growth_left` field of the table. |
| 2399 | /// |
| 2400 | /// # Safety |
| 2401 | /// |
| 2402 | /// You must observe the following safety rules when calling this function: |
| 2403 | /// |
| 2404 | /// * The [`RawTableInner`] has already been allocated; |
| 2405 | /// |
| 2406 | /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. |
| 2407 | /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must |
| 2408 | /// be no greater than the number returned by the function [`RawTableInner::buckets`]. |
| 2409 | /// |
| 2410 | /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. |
| 2411 | /// |
| 2412 | /// See also [`Bucket::as_ptr`] method, for more information about of properly removing |
| 2413 | /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. |
| 2414 | /// |
| 2415 | /// [`RawTableInner::buckets`]: RawTableInner::buckets |
| 2416 | /// [`Bucket::as_ptr`]: Bucket::as_ptr |
| 2417 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2418 | #[inline ] |
| 2419 | unsafe fn set_ctrl(&mut self, index: usize, ctrl: Tag) { |
| 2420 | // Replicate the first Group::WIDTH control bytes at the end of |
| 2421 | // the array without using a branch. If the tables smaller than |
| 2422 | // the group width (self.buckets() < Group::WIDTH), |
| 2423 | // `index2 = Group::WIDTH + index`, otherwise `index2` is: |
| 2424 | // |
| 2425 | // - If index >= Group::WIDTH then index == index2. |
| 2426 | // - Otherwise index2 == self.bucket_mask + 1 + index. |
| 2427 | // |
| 2428 | // The very last replicated control byte is never actually read because |
| 2429 | // we mask the initial index for unaligned loads, but we write it |
| 2430 | // anyways because it makes the set_ctrl implementation simpler. |
| 2431 | // |
| 2432 | // If there are fewer buckets than Group::WIDTH then this code will |
| 2433 | // replicate the buckets at the end of the trailing group. For example |
| 2434 | // with 2 buckets and a group size of 4, the control bytes will look |
| 2435 | // like this: |
| 2436 | // |
| 2437 | // Real | Replicated |
| 2438 | // --------------------------------------------- |
| 2439 | // | [A] | [B] | [Tag::EMPTY] | [EMPTY] | [A] | [B] | |
| 2440 | // --------------------------------------------- |
| 2441 | |
| 2442 | // This is the same as `(index.wrapping_sub(Group::WIDTH)) % self.buckets() + Group::WIDTH` |
| 2443 | // because the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 2444 | let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH; |
| 2445 | |
| 2446 | // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::set_ctrl`] |
| 2447 | *self.ctrl(index) = ctrl; |
| 2448 | *self.ctrl(index2) = ctrl; |
| 2449 | } |
| 2450 | |
| 2451 | /// Returns a pointer to a control byte. |
| 2452 | /// |
| 2453 | /// # Safety |
| 2454 | /// |
| 2455 | /// For the allocated [`RawTableInner`], the result is [`Undefined Behavior`], |
| 2456 | /// if the `index` is greater than the `self.bucket_mask + 1 + Group::WIDTH`. |
| 2457 | /// In that case, calling this function with `index == self.bucket_mask + 1 + Group::WIDTH` |
| 2458 | /// will return a pointer to the end of the allocated table and it is useless on its own. |
| 2459 | /// |
| 2460 | /// Calling this function with `index >= self.bucket_mask + 1 + Group::WIDTH` on a |
| 2461 | /// table that has not been allocated results in [`Undefined Behavior`]. |
| 2462 | /// |
| 2463 | /// So to satisfy both requirements you should always follow the rule that |
| 2464 | /// `index < self.bucket_mask + 1 + Group::WIDTH` |
| 2465 | /// |
| 2466 | /// Calling this function on [`RawTableInner`] that are not already allocated is safe |
| 2467 | /// for read-only purpose. |
| 2468 | /// |
| 2469 | /// See also [`Bucket::as_ptr()`] method, for more information about of properly removing |
| 2470 | /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. |
| 2471 | /// |
| 2472 | /// [`Bucket::as_ptr()`]: Bucket::as_ptr() |
| 2473 | /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2474 | #[inline ] |
| 2475 | unsafe fn ctrl(&self, index: usize) -> *mut Tag { |
| 2476 | debug_assert!(index < self.num_ctrl_bytes()); |
| 2477 | // SAFETY: The caller must uphold the safety rules for the [`RawTableInner::ctrl`] |
| 2478 | self.ctrl.as_ptr().add(index).cast() |
| 2479 | } |
| 2480 | |
| 2481 | /// Gets the slice of all control bytes. |
| 2482 | fn ctrl_slice(&mut self) -> &mut [Tag] { |
| 2483 | // SAFETY: We've intiailized all control bytes, and have the correct number. |
| 2484 | unsafe { slice::from_raw_parts_mut(self.ctrl.as_ptr().cast(), self.num_ctrl_bytes()) } |
| 2485 | } |
| 2486 | |
| 2487 | #[inline ] |
| 2488 | fn buckets(&self) -> usize { |
| 2489 | self.bucket_mask + 1 |
| 2490 | } |
| 2491 | |
| 2492 | /// Checks whether the bucket at `index` is full. |
| 2493 | /// |
| 2494 | /// # Safety |
| 2495 | /// |
| 2496 | /// The caller must ensure `index` is less than the number of buckets. |
| 2497 | #[inline ] |
| 2498 | unsafe fn is_bucket_full(&self, index: usize) -> bool { |
| 2499 | debug_assert!(index < self.buckets()); |
| 2500 | (*self.ctrl(index)).is_full() |
| 2501 | } |
| 2502 | |
| 2503 | #[inline ] |
| 2504 | fn num_ctrl_bytes(&self) -> usize { |
| 2505 | self.bucket_mask + 1 + Group::WIDTH |
| 2506 | } |
| 2507 | |
| 2508 | #[inline ] |
| 2509 | fn is_empty_singleton(&self) -> bool { |
| 2510 | self.bucket_mask == 0 |
| 2511 | } |
| 2512 | |
| 2513 | /// Attempts to allocate a new hash table with at least enough capacity |
| 2514 | /// for inserting the given number of elements without reallocating, |
| 2515 | /// and return it inside `ScopeGuard` to protect against panic in the hash |
| 2516 | /// function. |
| 2517 | /// |
| 2518 | /// # Note |
| 2519 | /// |
| 2520 | /// It is recommended (but not required): |
| 2521 | /// |
| 2522 | /// * That the new table's `capacity` be greater than or equal to `self.items`. |
| 2523 | /// |
| 2524 | /// * The `alloc` is the same [`Allocator`] as the `Allocator` used |
| 2525 | /// to allocate this table. |
| 2526 | /// |
| 2527 | /// * The `table_layout` is the same [`TableLayout`] as the `TableLayout` used |
| 2528 | /// to allocate this table. |
| 2529 | /// |
| 2530 | /// If `table_layout` does not match the `TableLayout` that was used to allocate |
| 2531 | /// this table, then using `mem::swap` with the `self` and the new table returned |
| 2532 | /// by this function results in [`undefined behavior`]. |
| 2533 | /// |
| 2534 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2535 | #[allow (clippy::mut_mut)] |
| 2536 | #[inline ] |
| 2537 | fn prepare_resize<'a, A>( |
| 2538 | &self, |
| 2539 | alloc: &'a A, |
| 2540 | table_layout: TableLayout, |
| 2541 | capacity: usize, |
| 2542 | fallibility: Fallibility, |
| 2543 | ) -> Result<crate::scopeguard::ScopeGuard<Self, impl FnMut(&mut Self) + 'a>, TryReserveError> |
| 2544 | where |
| 2545 | A: Allocator, |
| 2546 | { |
| 2547 | debug_assert!(self.items <= capacity); |
| 2548 | |
| 2549 | // Allocate and initialize the new table. |
| 2550 | let new_table = |
| 2551 | RawTableInner::fallible_with_capacity(alloc, table_layout, capacity, fallibility)?; |
| 2552 | |
| 2553 | // The hash function may panic, in which case we simply free the new |
| 2554 | // table without dropping any elements that may have been copied into |
| 2555 | // it. |
| 2556 | // |
| 2557 | // This guard is also used to free the old table on success, see |
| 2558 | // the comment at the bottom of this function. |
| 2559 | Ok(guard(new_table, move |self_| { |
| 2560 | if !self_.is_empty_singleton() { |
| 2561 | // SAFETY: |
| 2562 | // 1. We have checked that our table is allocated. |
| 2563 | // 2. We know for sure that the `alloc` and `table_layout` matches the |
| 2564 | // [`Allocator`] and [`TableLayout`] used to allocate this table. |
| 2565 | unsafe { self_.free_buckets(alloc, table_layout) }; |
| 2566 | } |
| 2567 | })) |
| 2568 | } |
| 2569 | |
| 2570 | /// Reserves or rehashes to make room for `additional` more elements. |
| 2571 | /// |
| 2572 | /// This uses dynamic dispatch to reduce the amount of |
| 2573 | /// code generated, but it is eliminated by LLVM optimizations when inlined. |
| 2574 | /// |
| 2575 | /// # Safety |
| 2576 | /// |
| 2577 | /// If any of the following conditions are violated, the result is |
| 2578 | /// [`undefined behavior`]: |
| 2579 | /// |
| 2580 | /// * The `alloc` must be the same [`Allocator`] as the `Allocator` used |
| 2581 | /// to allocate this table. |
| 2582 | /// |
| 2583 | /// * The `layout` must be the same [`TableLayout`] as the `TableLayout` |
| 2584 | /// used to allocate this table. |
| 2585 | /// |
| 2586 | /// * The `drop` function (`fn(*mut u8)`) must be the actual drop function of |
| 2587 | /// the elements stored in the table. |
| 2588 | /// |
| 2589 | /// * The [`RawTableInner`] must have properly initialized control bytes. |
| 2590 | /// |
| 2591 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2592 | #[allow (clippy::inline_always)] |
| 2593 | #[inline (always)] |
| 2594 | unsafe fn reserve_rehash_inner<A>( |
| 2595 | &mut self, |
| 2596 | alloc: &A, |
| 2597 | additional: usize, |
| 2598 | hasher: &dyn Fn(&mut Self, usize) -> u64, |
| 2599 | fallibility: Fallibility, |
| 2600 | layout: TableLayout, |
| 2601 | drop: Option<unsafe fn(*mut u8)>, |
| 2602 | ) -> Result<(), TryReserveError> |
| 2603 | where |
| 2604 | A: Allocator, |
| 2605 | { |
| 2606 | // Avoid `Option::ok_or_else` because it bloats LLVM IR. |
| 2607 | let new_items = match self.items.checked_add(additional) { |
| 2608 | Some(new_items) => new_items, |
| 2609 | None => return Err(fallibility.capacity_overflow()), |
| 2610 | }; |
| 2611 | let full_capacity = bucket_mask_to_capacity(self.bucket_mask); |
| 2612 | if new_items <= full_capacity / 2 { |
| 2613 | // Rehash in-place without re-allocating if we have plenty of spare |
| 2614 | // capacity that is locked up due to DELETED entries. |
| 2615 | |
| 2616 | // SAFETY: |
| 2617 | // 1. We know for sure that `[`RawTableInner`]` has already been allocated |
| 2618 | // (since new_items <= full_capacity / 2); |
| 2619 | // 2. The caller ensures that `drop` function is the actual drop function of |
| 2620 | // the elements stored in the table. |
| 2621 | // 3. The caller ensures that `layout` matches the [`TableLayout`] that was |
| 2622 | // used to allocate this table. |
| 2623 | // 4. The caller ensures that the control bytes of the `RawTableInner` |
| 2624 | // are already initialized. |
| 2625 | self.rehash_in_place(hasher, layout.size, drop); |
| 2626 | Ok(()) |
| 2627 | } else { |
| 2628 | // Otherwise, conservatively resize to at least the next size up |
| 2629 | // to avoid churning deletes into frequent rehashes. |
| 2630 | // |
| 2631 | // SAFETY: |
| 2632 | // 1. We know for sure that `capacity >= self.items`. |
| 2633 | // 2. The caller ensures that `alloc` and `layout` matches the [`Allocator`] and |
| 2634 | // [`TableLayout`] that were used to allocate this table. |
| 2635 | // 3. The caller ensures that the control bytes of the `RawTableInner` |
| 2636 | // are already initialized. |
| 2637 | self.resize_inner( |
| 2638 | alloc, |
| 2639 | usize::max(new_items, full_capacity + 1), |
| 2640 | hasher, |
| 2641 | fallibility, |
| 2642 | layout, |
| 2643 | ) |
| 2644 | } |
| 2645 | } |
| 2646 | |
| 2647 | /// Returns an iterator over full buckets indices in the table. |
| 2648 | /// |
| 2649 | /// # Safety |
| 2650 | /// |
| 2651 | /// Behavior is undefined if any of the following conditions are violated: |
| 2652 | /// |
| 2653 | /// * The caller has to ensure that the `RawTableInner` outlives the |
| 2654 | /// `FullBucketsIndices`. Because we cannot make the `next` method |
| 2655 | /// unsafe on the `FullBucketsIndices` struct, we have to make the |
| 2656 | /// `full_buckets_indices` method unsafe. |
| 2657 | /// |
| 2658 | /// * The [`RawTableInner`] must have properly initialized control bytes. |
| 2659 | #[inline (always)] |
| 2660 | unsafe fn full_buckets_indices(&self) -> FullBucketsIndices { |
| 2661 | // SAFETY: |
| 2662 | // 1. Since the caller of this function ensures that the control bytes |
| 2663 | // are properly initialized and `self.ctrl(0)` points to the start |
| 2664 | // of the array of control bytes, therefore: `ctrl` is valid for reads, |
| 2665 | // properly aligned to `Group::WIDTH` and points to the properly initialized |
| 2666 | // control bytes. |
| 2667 | // 2. The value of `items` is equal to the amount of data (values) added |
| 2668 | // to the table. |
| 2669 | // |
| 2670 | // `ctrl` points here (to the start |
| 2671 | // of the first control byte `CT0`) |
| 2672 | // ∨ |
| 2673 | // [Pad], T_n, ..., T1, T0, |CT0, CT1, ..., CT_n|, Group::WIDTH |
| 2674 | // \________ ________/ |
| 2675 | // \/ |
| 2676 | // `n = buckets - 1`, i.e. `RawTableInner::buckets() - 1` |
| 2677 | // |
| 2678 | // where: T0...T_n - our stored data; |
| 2679 | // CT0...CT_n - control bytes or metadata for `data`. |
| 2680 | let ctrl = NonNull::new_unchecked(self.ctrl(0).cast::<u8>()); |
| 2681 | |
| 2682 | FullBucketsIndices { |
| 2683 | // Load the first group |
| 2684 | // SAFETY: See explanation above. |
| 2685 | current_group: Group::load_aligned(ctrl.as_ptr().cast()) |
| 2686 | .match_full() |
| 2687 | .into_iter(), |
| 2688 | group_first_index: 0, |
| 2689 | ctrl, |
| 2690 | items: self.items, |
| 2691 | } |
| 2692 | } |
| 2693 | |
| 2694 | /// Allocates a new table of a different size and moves the contents of the |
| 2695 | /// current table into it. |
| 2696 | /// |
| 2697 | /// This uses dynamic dispatch to reduce the amount of |
| 2698 | /// code generated, but it is eliminated by LLVM optimizations when inlined. |
| 2699 | /// |
| 2700 | /// # Safety |
| 2701 | /// |
| 2702 | /// If any of the following conditions are violated, the result is |
| 2703 | /// [`undefined behavior`]: |
| 2704 | /// |
| 2705 | /// * The `alloc` must be the same [`Allocator`] as the `Allocator` used |
| 2706 | /// to allocate this table; |
| 2707 | /// |
| 2708 | /// * The `layout` must be the same [`TableLayout`] as the `TableLayout` |
| 2709 | /// used to allocate this table; |
| 2710 | /// |
| 2711 | /// * The [`RawTableInner`] must have properly initialized control bytes. |
| 2712 | /// |
| 2713 | /// The caller of this function must ensure that `capacity >= self.items` |
| 2714 | /// otherwise: |
| 2715 | /// |
| 2716 | /// * If `self.items != 0`, calling of this function with `capacity == 0` |
| 2717 | /// results in [`undefined behavior`]. |
| 2718 | /// |
| 2719 | /// * If `capacity_to_buckets(capacity) < Group::WIDTH` and |
| 2720 | /// `self.items > capacity_to_buckets(capacity)` calling this function |
| 2721 | /// results in [`undefined behavior`]. |
| 2722 | /// |
| 2723 | /// * If `capacity_to_buckets(capacity) >= Group::WIDTH` and |
| 2724 | /// `self.items > capacity_to_buckets(capacity)` calling this function |
| 2725 | /// are never return (will go into an infinite loop). |
| 2726 | /// |
| 2727 | /// Note: It is recommended (but not required) that the new table's `capacity` |
| 2728 | /// be greater than or equal to `self.items`. In case if `capacity <= self.items` |
| 2729 | /// this function can never return. See [`RawTableInner::find_insert_slot`] for |
| 2730 | /// more information. |
| 2731 | /// |
| 2732 | /// [`RawTableInner::find_insert_slot`]: RawTableInner::find_insert_slot |
| 2733 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2734 | #[allow (clippy::inline_always)] |
| 2735 | #[inline (always)] |
| 2736 | unsafe fn resize_inner<A>( |
| 2737 | &mut self, |
| 2738 | alloc: &A, |
| 2739 | capacity: usize, |
| 2740 | hasher: &dyn Fn(&mut Self, usize) -> u64, |
| 2741 | fallibility: Fallibility, |
| 2742 | layout: TableLayout, |
| 2743 | ) -> Result<(), TryReserveError> |
| 2744 | where |
| 2745 | A: Allocator, |
| 2746 | { |
| 2747 | // SAFETY: We know for sure that `alloc` and `layout` matches the [`Allocator`] and [`TableLayout`] |
| 2748 | // that were used to allocate this table. |
| 2749 | let mut new_table = self.prepare_resize(alloc, layout, capacity, fallibility)?; |
| 2750 | |
| 2751 | // SAFETY: We know for sure that RawTableInner will outlive the |
| 2752 | // returned `FullBucketsIndices` iterator, and the caller of this |
| 2753 | // function ensures that the control bytes are properly initialized. |
| 2754 | for full_byte_index in self.full_buckets_indices() { |
| 2755 | // This may panic. |
| 2756 | let hash = hasher(self, full_byte_index); |
| 2757 | |
| 2758 | // SAFETY: |
| 2759 | // We can use a simpler version of insert() here since: |
| 2760 | // 1. There are no DELETED entries. |
| 2761 | // 2. We know there is enough space in the table. |
| 2762 | // 3. All elements are unique. |
| 2763 | // 4. The caller of this function guarantees that `capacity > 0` |
| 2764 | // so `new_table` must already have some allocated memory. |
| 2765 | // 5. We set `growth_left` and `items` fields of the new table |
| 2766 | // after the loop. |
| 2767 | // 6. We insert into the table, at the returned index, the data |
| 2768 | // matching the given hash immediately after calling this function. |
| 2769 | let (new_index, _) = new_table.prepare_insert_slot(hash); |
| 2770 | |
| 2771 | // SAFETY: |
| 2772 | // |
| 2773 | // * `src` is valid for reads of `layout.size` bytes, since the |
| 2774 | // table is alive and the `full_byte_index` is guaranteed to be |
| 2775 | // within bounds (see `FullBucketsIndices::next_impl`); |
| 2776 | // |
| 2777 | // * `dst` is valid for writes of `layout.size` bytes, since the |
| 2778 | // caller ensures that `table_layout` matches the [`TableLayout`] |
| 2779 | // that was used to allocate old table and we have the `new_index` |
| 2780 | // returned by `prepare_insert_slot`. |
| 2781 | // |
| 2782 | // * Both `src` and `dst` are properly aligned. |
| 2783 | // |
| 2784 | // * Both `src` and `dst` point to different region of memory. |
| 2785 | ptr::copy_nonoverlapping( |
| 2786 | self.bucket_ptr(full_byte_index, layout.size), |
| 2787 | new_table.bucket_ptr(new_index, layout.size), |
| 2788 | layout.size, |
| 2789 | ); |
| 2790 | } |
| 2791 | |
| 2792 | // The hash function didn't panic, so we can safely set the |
| 2793 | // `growth_left` and `items` fields of the new table. |
| 2794 | new_table.growth_left -= self.items; |
| 2795 | new_table.items = self.items; |
| 2796 | |
| 2797 | // We successfully copied all elements without panicking. Now replace |
| 2798 | // self with the new table. The old table will have its memory freed but |
| 2799 | // the items will not be dropped (since they have been moved into the |
| 2800 | // new table). |
| 2801 | // SAFETY: The caller ensures that `table_layout` matches the [`TableLayout`] |
| 2802 | // that was used to allocate this table. |
| 2803 | mem::swap(self, &mut new_table); |
| 2804 | |
| 2805 | Ok(()) |
| 2806 | } |
| 2807 | |
| 2808 | /// Rehashes the contents of the table in place (i.e. without changing the |
| 2809 | /// allocation). |
| 2810 | /// |
| 2811 | /// If `hasher` panics then some the table's contents may be lost. |
| 2812 | /// |
| 2813 | /// This uses dynamic dispatch to reduce the amount of |
| 2814 | /// code generated, but it is eliminated by LLVM optimizations when inlined. |
| 2815 | /// |
| 2816 | /// # Safety |
| 2817 | /// |
| 2818 | /// If any of the following conditions are violated, the result is [`undefined behavior`]: |
| 2819 | /// |
| 2820 | /// * The `size_of` must be equal to the size of the elements stored in the table; |
| 2821 | /// |
| 2822 | /// * The `drop` function (`fn(*mut u8)`) must be the actual drop function of |
| 2823 | /// the elements stored in the table. |
| 2824 | /// |
| 2825 | /// * The [`RawTableInner`] has already been allocated; |
| 2826 | /// |
| 2827 | /// * The [`RawTableInner`] must have properly initialized control bytes. |
| 2828 | /// |
| 2829 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2830 | #[allow (clippy::inline_always)] |
| 2831 | #[cfg_attr (feature = "inline-more" , inline(always))] |
| 2832 | #[cfg_attr (not(feature = "inline-more" ), inline)] |
| 2833 | unsafe fn rehash_in_place( |
| 2834 | &mut self, |
| 2835 | hasher: &dyn Fn(&mut Self, usize) -> u64, |
| 2836 | size_of: usize, |
| 2837 | drop: Option<unsafe fn(*mut u8)>, |
| 2838 | ) { |
| 2839 | // If the hash function panics then properly clean up any elements |
| 2840 | // that we haven't rehashed yet. We unfortunately can't preserve the |
| 2841 | // element since we lost their hash and have no way of recovering it |
| 2842 | // without risking another panic. |
| 2843 | self.prepare_rehash_in_place(); |
| 2844 | |
| 2845 | let mut guard = guard(self, move |self_| { |
| 2846 | if let Some(drop) = drop { |
| 2847 | for i in 0..self_.buckets() { |
| 2848 | if *self_.ctrl(i) == Tag::DELETED { |
| 2849 | self_.set_ctrl(i, Tag::EMPTY); |
| 2850 | drop(self_.bucket_ptr(i, size_of)); |
| 2851 | self_.items -= 1; |
| 2852 | } |
| 2853 | } |
| 2854 | } |
| 2855 | self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items; |
| 2856 | }); |
| 2857 | |
| 2858 | // At this point, DELETED elements are elements that we haven't |
| 2859 | // rehashed yet. Find them and re-insert them at their ideal |
| 2860 | // position. |
| 2861 | 'outer: for i in 0..guard.buckets() { |
| 2862 | if *guard.ctrl(i) != Tag::DELETED { |
| 2863 | continue; |
| 2864 | } |
| 2865 | |
| 2866 | let i_p = guard.bucket_ptr(i, size_of); |
| 2867 | |
| 2868 | 'inner: loop { |
| 2869 | // Hash the current item |
| 2870 | let hash = hasher(*guard, i); |
| 2871 | |
| 2872 | // Search for a suitable place to put it |
| 2873 | // |
| 2874 | // SAFETY: Caller of this function ensures that the control bytes |
| 2875 | // are properly initialized. |
| 2876 | let new_i = guard.find_insert_slot(hash).index; |
| 2877 | |
| 2878 | // Probing works by scanning through all of the control |
| 2879 | // bytes in groups, which may not be aligned to the group |
| 2880 | // size. If both the new and old position fall within the |
| 2881 | // same unaligned group, then there is no benefit in moving |
| 2882 | // it and we can just continue to the next item. |
| 2883 | if likely(guard.is_in_same_group(i, new_i, hash)) { |
| 2884 | guard.set_ctrl_hash(i, hash); |
| 2885 | continue 'outer; |
| 2886 | } |
| 2887 | |
| 2888 | let new_i_p = guard.bucket_ptr(new_i, size_of); |
| 2889 | |
| 2890 | // We are moving the current item to a new position. Write |
| 2891 | // our H2 to the control byte of the new position. |
| 2892 | let prev_ctrl = guard.replace_ctrl_hash(new_i, hash); |
| 2893 | if prev_ctrl == Tag::EMPTY { |
| 2894 | guard.set_ctrl(i, Tag::EMPTY); |
| 2895 | // If the target slot is empty, simply move the current |
| 2896 | // element into the new slot and clear the old control |
| 2897 | // byte. |
| 2898 | ptr::copy_nonoverlapping(i_p, new_i_p, size_of); |
| 2899 | continue 'outer; |
| 2900 | } else { |
| 2901 | // If the target slot is occupied, swap the two elements |
| 2902 | // and then continue processing the element that we just |
| 2903 | // swapped into the old slot. |
| 2904 | debug_assert_eq!(prev_ctrl, Tag::DELETED); |
| 2905 | ptr::swap_nonoverlapping(i_p, new_i_p, size_of); |
| 2906 | continue 'inner; |
| 2907 | } |
| 2908 | } |
| 2909 | } |
| 2910 | |
| 2911 | guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items; |
| 2912 | |
| 2913 | mem::forget(guard); |
| 2914 | } |
| 2915 | |
| 2916 | /// Deallocates the table without dropping any entries. |
| 2917 | /// |
| 2918 | /// # Note |
| 2919 | /// |
| 2920 | /// This function must be called only after [`drop_elements`](RawTableInner::drop_elements), |
| 2921 | /// else it can lead to leaking of memory. Also calling this function automatically |
| 2922 | /// makes invalid (dangling) all instances of buckets ([`Bucket`]) and makes invalid |
| 2923 | /// (dangling) the `ctrl` field of the table. |
| 2924 | /// |
| 2925 | /// # Safety |
| 2926 | /// |
| 2927 | /// If any of the following conditions are violated, the result is [`Undefined Behavior`]: |
| 2928 | /// |
| 2929 | /// * The [`RawTableInner`] has already been allocated; |
| 2930 | /// |
| 2931 | /// * The `alloc` must be the same [`Allocator`] as the `Allocator` that was used |
| 2932 | /// to allocate this table. |
| 2933 | /// |
| 2934 | /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` that was used |
| 2935 | /// to allocate this table. |
| 2936 | /// |
| 2937 | /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more information. |
| 2938 | /// |
| 2939 | /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2940 | /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc |
| 2941 | /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate |
| 2942 | #[inline ] |
| 2943 | unsafe fn free_buckets<A>(&mut self, alloc: &A, table_layout: TableLayout) |
| 2944 | where |
| 2945 | A: Allocator, |
| 2946 | { |
| 2947 | // SAFETY: The caller must uphold the safety contract for `free_buckets` |
| 2948 | // method. |
| 2949 | let (ptr, layout) = self.allocation_info(table_layout); |
| 2950 | alloc.deallocate(ptr, layout); |
| 2951 | } |
| 2952 | |
| 2953 | /// Returns a pointer to the allocated memory and the layout that was used to |
| 2954 | /// allocate the table. |
| 2955 | /// |
| 2956 | /// # Safety |
| 2957 | /// |
| 2958 | /// Caller of this function must observe the following safety rules: |
| 2959 | /// |
| 2960 | /// * The [`RawTableInner`] has already been allocated, otherwise |
| 2961 | /// calling this function results in [`undefined behavior`] |
| 2962 | /// |
| 2963 | /// * The `table_layout` must be the same [`TableLayout`] as the `TableLayout` |
| 2964 | /// that was used to allocate this table. Failure to comply with this condition |
| 2965 | /// may result in [`undefined behavior`]. |
| 2966 | /// |
| 2967 | /// See also [`GlobalAlloc::dealloc`] or [`Allocator::deallocate`] for more information. |
| 2968 | /// |
| 2969 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 2970 | /// [`GlobalAlloc::dealloc`]: https://doc.rust-lang.org/alloc/alloc/trait.GlobalAlloc.html#tymethod.dealloc |
| 2971 | /// [`Allocator::deallocate`]: https://doc.rust-lang.org/alloc/alloc/trait.Allocator.html#tymethod.deallocate |
| 2972 | #[inline ] |
| 2973 | unsafe fn allocation_info(&self, table_layout: TableLayout) -> (NonNull<u8>, Layout) { |
| 2974 | debug_assert!( |
| 2975 | !self.is_empty_singleton(), |
| 2976 | "this function can only be called on non-empty tables" |
| 2977 | ); |
| 2978 | |
| 2979 | // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. |
| 2980 | let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) { |
| 2981 | Some(lco) => lco, |
| 2982 | None => unsafe { hint::unreachable_unchecked() }, |
| 2983 | }; |
| 2984 | ( |
| 2985 | // SAFETY: The caller must uphold the safety contract for `allocation_info` method. |
| 2986 | unsafe { NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)) }, |
| 2987 | layout, |
| 2988 | ) |
| 2989 | } |
| 2990 | |
| 2991 | /// Returns the total amount of memory allocated internally by the hash |
| 2992 | /// table, in bytes. |
| 2993 | /// |
| 2994 | /// The returned number is informational only. It is intended to be |
| 2995 | /// primarily used for memory profiling. |
| 2996 | /// |
| 2997 | /// # Safety |
| 2998 | /// |
| 2999 | /// The `table_layout` must be the same [`TableLayout`] as the `TableLayout` |
| 3000 | /// that was used to allocate this table. Failure to comply with this condition |
| 3001 | /// may result in [`undefined behavior`]. |
| 3002 | /// |
| 3003 | /// |
| 3004 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 3005 | #[inline ] |
| 3006 | unsafe fn allocation_size_or_zero(&self, table_layout: TableLayout) -> usize { |
| 3007 | if self.is_empty_singleton() { |
| 3008 | 0 |
| 3009 | } else { |
| 3010 | // SAFETY: |
| 3011 | // 1. We have checked that our table is allocated. |
| 3012 | // 2. The caller ensures that `table_layout` matches the [`TableLayout`] |
| 3013 | // that was used to allocate this table. |
| 3014 | unsafe { self.allocation_info(table_layout).1.size() } |
| 3015 | } |
| 3016 | } |
| 3017 | |
| 3018 | /// Marks all table buckets as empty without dropping their contents. |
| 3019 | #[inline ] |
| 3020 | fn clear_no_drop(&mut self) { |
| 3021 | if !self.is_empty_singleton() { |
| 3022 | self.ctrl_slice().fill_empty(); |
| 3023 | } |
| 3024 | self.items = 0; |
| 3025 | self.growth_left = bucket_mask_to_capacity(self.bucket_mask); |
| 3026 | } |
| 3027 | |
| 3028 | /// Erases the [`Bucket`]'s control byte at the given index so that it does not |
| 3029 | /// triggered as full, decreases the `items` of the table and, if it can be done, |
| 3030 | /// increases `self.growth_left`. |
| 3031 | /// |
| 3032 | /// This function does not actually erase / drop the [`Bucket`] itself, i.e. it |
| 3033 | /// does not make any changes to the `data` parts of the table. The caller of this |
| 3034 | /// function must take care to properly drop the `data`, otherwise calling this |
| 3035 | /// function may result in a memory leak. |
| 3036 | /// |
| 3037 | /// # Safety |
| 3038 | /// |
| 3039 | /// You must observe the following safety rules when calling this function: |
| 3040 | /// |
| 3041 | /// * The [`RawTableInner`] has already been allocated; |
| 3042 | /// |
| 3043 | /// * It must be the full control byte at the given position; |
| 3044 | /// |
| 3045 | /// * The `index` must not be greater than the `RawTableInner.bucket_mask`, i.e. |
| 3046 | /// `index <= RawTableInner.bucket_mask` or, in other words, `(index + 1)` must |
| 3047 | /// be no greater than the number returned by the function [`RawTableInner::buckets`]. |
| 3048 | /// |
| 3049 | /// Calling this function on a table that has not been allocated results in [`undefined behavior`]. |
| 3050 | /// |
| 3051 | /// Calling this function on a table with no elements is unspecified, but calling subsequent |
| 3052 | /// functions is likely to result in [`undefined behavior`] due to overflow subtraction |
| 3053 | /// (`self.items -= 1 cause overflow when self.items == 0`). |
| 3054 | /// |
| 3055 | /// See also [`Bucket::as_ptr`] method, for more information about of properly removing |
| 3056 | /// or saving `data element` from / into the [`RawTable`] / [`RawTableInner`]. |
| 3057 | /// |
| 3058 | /// [`RawTableInner::buckets`]: RawTableInner::buckets |
| 3059 | /// [`Bucket::as_ptr`]: Bucket::as_ptr |
| 3060 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 3061 | #[inline ] |
| 3062 | unsafe fn erase(&mut self, index: usize) { |
| 3063 | debug_assert!(self.is_bucket_full(index)); |
| 3064 | |
| 3065 | // This is the same as `index.wrapping_sub(Group::WIDTH) % self.buckets()` because |
| 3066 | // the number of buckets is a power of two, and `self.bucket_mask = self.buckets() - 1`. |
| 3067 | let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask; |
| 3068 | // SAFETY: |
| 3069 | // - The caller must uphold the safety contract for `erase` method; |
| 3070 | // - `index_before` is guaranteed to be in range due to masking with `self.bucket_mask` |
| 3071 | let empty_before = Group::load(self.ctrl(index_before)).match_empty(); |
| 3072 | let empty_after = Group::load(self.ctrl(index)).match_empty(); |
| 3073 | |
| 3074 | // Inserting and searching in the map is performed by two key functions: |
| 3075 | // |
| 3076 | // - The `find_insert_slot` function that looks up the index of any `Tag::EMPTY` or `Tag::DELETED` |
| 3077 | // slot in a group to be able to insert. If it doesn't find an `Tag::EMPTY` or `Tag::DELETED` |
| 3078 | // slot immediately in the first group, it jumps to the next `Group` looking for it, |
| 3079 | // and so on until it has gone through all the groups in the control bytes. |
| 3080 | // |
| 3081 | // - The `find_inner` function that looks for the index of the desired element by looking |
| 3082 | // at all the `FULL` bytes in the group. If it did not find the element right away, and |
| 3083 | // there is no `Tag::EMPTY` byte in the group, then this means that the `find_insert_slot` |
| 3084 | // function may have found a suitable slot in the next group. Therefore, `find_inner` |
| 3085 | // jumps further, and if it does not find the desired element and again there is no `Tag::EMPTY` |
| 3086 | // byte, then it jumps further, and so on. The search stops only if `find_inner` function |
| 3087 | // finds the desired element or hits an `Tag::EMPTY` slot/byte. |
| 3088 | // |
| 3089 | // Accordingly, this leads to two consequences: |
| 3090 | // |
| 3091 | // - The map must have `Tag::EMPTY` slots (bytes); |
| 3092 | // |
| 3093 | // - You can't just mark the byte to be erased as `Tag::EMPTY`, because otherwise the `find_inner` |
| 3094 | // function may stumble upon an `Tag::EMPTY` byte before finding the desired element and stop |
| 3095 | // searching. |
| 3096 | // |
| 3097 | // Thus it is necessary to check all bytes after and before the erased element. If we are in |
| 3098 | // a contiguous `Group` of `FULL` or `Tag::DELETED` bytes (the number of `FULL` or `Tag::DELETED` bytes |
| 3099 | // before and after is greater than or equal to `Group::WIDTH`), then we must mark our byte as |
| 3100 | // `Tag::DELETED` in order for the `find_inner` function to go further. On the other hand, if there |
| 3101 | // is at least one `Tag::EMPTY` slot in the `Group`, then the `find_inner` function will still stumble |
| 3102 | // upon an `Tag::EMPTY` byte, so we can safely mark our erased byte as `Tag::EMPTY` as well. |
| 3103 | // |
| 3104 | // Finally, since `index_before == (index.wrapping_sub(Group::WIDTH) & self.bucket_mask) == index` |
| 3105 | // and given all of the above, tables smaller than the group width (self.buckets() < Group::WIDTH) |
| 3106 | // cannot have `Tag::DELETED` bytes. |
| 3107 | // |
| 3108 | // Note that in this context `leading_zeros` refers to the bytes at the end of a group, while |
| 3109 | // `trailing_zeros` refers to the bytes at the beginning of a group. |
| 3110 | let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH { |
| 3111 | Tag::DELETED |
| 3112 | } else { |
| 3113 | self.growth_left += 1; |
| 3114 | Tag::EMPTY |
| 3115 | }; |
| 3116 | // SAFETY: the caller must uphold the safety contract for `erase` method. |
| 3117 | self.set_ctrl(index, ctrl); |
| 3118 | self.items -= 1; |
| 3119 | } |
| 3120 | } |
| 3121 | |
| 3122 | impl<T: Clone, A: Allocator + Clone> Clone for RawTable<T, A> { |
| 3123 | fn clone(&self) -> Self { |
| 3124 | if self.table.is_empty_singleton() { |
| 3125 | Self::new_in(self.alloc.clone()) |
| 3126 | } else { |
| 3127 | unsafe { |
| 3128 | // Avoid `Result::ok_or_else` because it bloats LLVM IR. |
| 3129 | // |
| 3130 | // SAFETY: This is safe as we are taking the size of an already allocated table |
| 3131 | // and therefore capacity overflow cannot occur, `self.table.buckets()` is power |
| 3132 | // of two and all allocator errors will be caught inside `RawTableInner::new_uninitialized`. |
| 3133 | let mut new_table = match Self::new_uninitialized( |
| 3134 | self.alloc.clone(), |
| 3135 | self.table.buckets(), |
| 3136 | Fallibility::Infallible, |
| 3137 | ) { |
| 3138 | Ok(table) => table, |
| 3139 | Err(_) => hint::unreachable_unchecked(), |
| 3140 | }; |
| 3141 | |
| 3142 | // Cloning elements may fail (the clone function may panic). But we don't |
| 3143 | // need to worry about uninitialized control bits, since: |
| 3144 | // 1. The number of items (elements) in the table is zero, which means that |
| 3145 | // the control bits will not be read by Drop function. |
| 3146 | // 2. The `clone_from_spec` method will first copy all control bits from |
| 3147 | // `self` (thus initializing them). But this will not affect the `Drop` |
| 3148 | // function, since the `clone_from_spec` function sets `items` only after |
| 3149 | // successfully cloning all elements. |
| 3150 | new_table.clone_from_spec(self); |
| 3151 | new_table |
| 3152 | } |
| 3153 | } |
| 3154 | } |
| 3155 | |
| 3156 | fn clone_from(&mut self, source: &Self) { |
| 3157 | if source.table.is_empty_singleton() { |
| 3158 | let mut old_inner = mem::replace(&mut self.table, RawTableInner::NEW); |
| 3159 | unsafe { |
| 3160 | // SAFETY: |
| 3161 | // 1. We call the function only once; |
| 3162 | // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] |
| 3163 | // and [`TableLayout`] that were used to allocate this table. |
| 3164 | // 3. If any elements' drop function panics, then there will only be a memory leak, |
| 3165 | // because we have replaced the inner table with a new one. |
| 3166 | old_inner.drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); |
| 3167 | } |
| 3168 | } else { |
| 3169 | unsafe { |
| 3170 | // Make sure that if any panics occurs, we clear the table and |
| 3171 | // leave it in an empty state. |
| 3172 | let mut self_ = guard(self, |self_| { |
| 3173 | self_.clear_no_drop(); |
| 3174 | }); |
| 3175 | |
| 3176 | // First, drop all our elements without clearing the control |
| 3177 | // bytes. If this panics then the scope guard will clear the |
| 3178 | // table, leaking any elements that were not dropped yet. |
| 3179 | // |
| 3180 | // This leak is unavoidable: we can't try dropping more elements |
| 3181 | // since this could lead to another panic and abort the process. |
| 3182 | // |
| 3183 | // SAFETY: If something gets wrong we clear our table right after |
| 3184 | // dropping the elements, so there is no double drop, since `items` |
| 3185 | // will be equal to zero. |
| 3186 | self_.table.drop_elements::<T>(); |
| 3187 | |
| 3188 | // If necessary, resize our table to match the source. |
| 3189 | if self_.buckets() != source.buckets() { |
| 3190 | let new_inner = match RawTableInner::new_uninitialized( |
| 3191 | &self_.alloc, |
| 3192 | Self::TABLE_LAYOUT, |
| 3193 | source.buckets(), |
| 3194 | Fallibility::Infallible, |
| 3195 | ) { |
| 3196 | Ok(table) => table, |
| 3197 | Err(_) => hint::unreachable_unchecked(), |
| 3198 | }; |
| 3199 | // Replace the old inner with new uninitialized one. It's ok, since if something gets |
| 3200 | // wrong `ScopeGuard` will initialize all control bytes and leave empty table. |
| 3201 | let mut old_inner = mem::replace(&mut self_.table, new_inner); |
| 3202 | if !old_inner.is_empty_singleton() { |
| 3203 | // SAFETY: |
| 3204 | // 1. We have checked that our table is allocated. |
| 3205 | // 2. We know for sure that `alloc` and `table_layout` matches |
| 3206 | // the [`Allocator`] and [`TableLayout`] that were used to allocate this table. |
| 3207 | old_inner.free_buckets(&self_.alloc, Self::TABLE_LAYOUT); |
| 3208 | } |
| 3209 | } |
| 3210 | |
| 3211 | // Cloning elements may fail (the clone function may panic), but the `ScopeGuard` |
| 3212 | // inside the `clone_from_impl` function will take care of that, dropping all |
| 3213 | // cloned elements if necessary. Our `ScopeGuard` will clear the table. |
| 3214 | self_.clone_from_spec(source); |
| 3215 | |
| 3216 | // Disarm the scope guard if cloning was successful. |
| 3217 | ScopeGuard::into_inner(self_); |
| 3218 | } |
| 3219 | } |
| 3220 | } |
| 3221 | } |
| 3222 | |
| 3223 | /// Specialization of `clone_from` for `Copy` types |
| 3224 | trait RawTableClone { |
| 3225 | unsafe fn clone_from_spec(&mut self, source: &Self); |
| 3226 | } |
| 3227 | impl<T: Clone, A: Allocator + Clone> RawTableClone for RawTable<T, A> { |
| 3228 | default_fn! { |
| 3229 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3230 | unsafe fn clone_from_spec(&mut self, source: &Self) { |
| 3231 | self.clone_from_impl(source); |
| 3232 | } |
| 3233 | } |
| 3234 | } |
| 3235 | #[cfg (feature = "nightly" )] |
| 3236 | impl<T: Copy, A: Allocator + Clone> RawTableClone for RawTable<T, A> { |
| 3237 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3238 | unsafe fn clone_from_spec(&mut self, source: &Self) { |
| 3239 | source |
| 3240 | .table |
| 3241 | .ctrl(0) |
| 3242 | .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); |
| 3243 | source |
| 3244 | .data_start() |
| 3245 | .as_ptr() |
| 3246 | .copy_to_nonoverlapping(self.data_start().as_ptr(), self.table.buckets()); |
| 3247 | |
| 3248 | self.table.items = source.table.items; |
| 3249 | self.table.growth_left = source.table.growth_left; |
| 3250 | } |
| 3251 | } |
| 3252 | |
| 3253 | impl<T: Clone, A: Allocator + Clone> RawTable<T, A> { |
| 3254 | /// Common code for `clone` and `clone_from`. Assumes: |
| 3255 | /// - `self.buckets() == source.buckets()`. |
| 3256 | /// - Any existing elements have been dropped. |
| 3257 | /// - The control bytes are not initialized yet. |
| 3258 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3259 | unsafe fn clone_from_impl(&mut self, source: &Self) { |
| 3260 | // Copy the control bytes unchanged. We do this in a single pass |
| 3261 | source |
| 3262 | .table |
| 3263 | .ctrl(0) |
| 3264 | .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); |
| 3265 | |
| 3266 | // The cloning of elements may panic, in which case we need |
| 3267 | // to make sure we drop only the elements that have been |
| 3268 | // cloned so far. |
| 3269 | let mut guard = guard((0, &mut *self), |(index, self_)| { |
| 3270 | if T::NEEDS_DROP { |
| 3271 | for i in 0..*index { |
| 3272 | if self_.is_bucket_full(i) { |
| 3273 | self_.bucket(i).drop(); |
| 3274 | } |
| 3275 | } |
| 3276 | } |
| 3277 | }); |
| 3278 | |
| 3279 | for from in source.iter() { |
| 3280 | let index = source.bucket_index(&from); |
| 3281 | let to = guard.1.bucket(index); |
| 3282 | to.write(from.as_ref().clone()); |
| 3283 | |
| 3284 | // Update the index in case we need to unwind. |
| 3285 | guard.0 = index + 1; |
| 3286 | } |
| 3287 | |
| 3288 | // Successfully cloned all items, no need to clean up. |
| 3289 | mem::forget(guard); |
| 3290 | |
| 3291 | self.table.items = source.table.items; |
| 3292 | self.table.growth_left = source.table.growth_left; |
| 3293 | } |
| 3294 | } |
| 3295 | |
| 3296 | impl<T, A: Allocator + Default> Default for RawTable<T, A> { |
| 3297 | #[inline ] |
| 3298 | fn default() -> Self { |
| 3299 | Self::new_in(alloc:Default::default()) |
| 3300 | } |
| 3301 | } |
| 3302 | |
| 3303 | #[cfg (feature = "nightly" )] |
| 3304 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for RawTable<T, A> { |
| 3305 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3306 | fn drop(&mut self) { |
| 3307 | unsafe { |
| 3308 | // SAFETY: |
| 3309 | // 1. We call the function only once; |
| 3310 | // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] |
| 3311 | // and [`TableLayout`] that were used to allocate this table. |
| 3312 | // 3. If the drop function of any elements fails, then only a memory leak will occur, |
| 3313 | // and we don't care because we are inside the `Drop` function of the `RawTable`, |
| 3314 | // so there won't be any table left in an inconsistent state. |
| 3315 | self.table |
| 3316 | .drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); |
| 3317 | } |
| 3318 | } |
| 3319 | } |
| 3320 | #[cfg (not(feature = "nightly" ))] |
| 3321 | impl<T, A: Allocator> Drop for RawTable<T, A> { |
| 3322 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3323 | fn drop(&mut self) { |
| 3324 | unsafe { |
| 3325 | // SAFETY: |
| 3326 | // 1. We call the function only once; |
| 3327 | // 2. We know for sure that `alloc` and `table_layout` matches the [`Allocator`] |
| 3328 | // and [`TableLayout`] that were used to allocate this table. |
| 3329 | // 3. If the drop function of any elements fails, then only a memory leak will occur, |
| 3330 | // and we don't care because we are inside the `Drop` function of the `RawTable`, |
| 3331 | // so there won't be any table left in an inconsistent state. |
| 3332 | self.table |
| 3333 | .drop_inner_table::<T, _>(&self.alloc, Self::TABLE_LAYOUT); |
| 3334 | } |
| 3335 | } |
| 3336 | } |
| 3337 | |
| 3338 | impl<T, A: Allocator> IntoIterator for RawTable<T, A> { |
| 3339 | type Item = T; |
| 3340 | type IntoIter = RawIntoIter<T, A>; |
| 3341 | |
| 3342 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3343 | fn into_iter(self) -> RawIntoIter<T, A> { |
| 3344 | unsafe { |
| 3345 | let iter: RawIter = self.iter(); |
| 3346 | self.into_iter_from(iter) |
| 3347 | } |
| 3348 | } |
| 3349 | } |
| 3350 | |
| 3351 | /// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does |
| 3352 | /// not track an item count. |
| 3353 | pub(crate) struct RawIterRange<T> { |
| 3354 | // Mask of full buckets in the current group. Bits are cleared from this |
| 3355 | // mask as each element is processed. |
| 3356 | current_group: BitMaskIter, |
| 3357 | |
| 3358 | // Pointer to the buckets for the current group. |
| 3359 | data: Bucket<T>, |
| 3360 | |
| 3361 | // Pointer to the next group of control bytes, |
| 3362 | // Must be aligned to the group size. |
| 3363 | next_ctrl: *const u8, |
| 3364 | |
| 3365 | // Pointer one past the last control byte of this range. |
| 3366 | end: *const u8, |
| 3367 | } |
| 3368 | |
| 3369 | impl<T> RawIterRange<T> { |
| 3370 | /// Returns a `RawIterRange` covering a subset of a table. |
| 3371 | /// |
| 3372 | /// # Safety |
| 3373 | /// |
| 3374 | /// If any of the following conditions are violated, the result is |
| 3375 | /// [`undefined behavior`]: |
| 3376 | /// |
| 3377 | /// * `ctrl` must be [valid] for reads, i.e. table outlives the `RawIterRange`; |
| 3378 | /// |
| 3379 | /// * `ctrl` must be properly aligned to the group size (`Group::WIDTH`); |
| 3380 | /// |
| 3381 | /// * `ctrl` must point to the array of properly initialized control bytes; |
| 3382 | /// |
| 3383 | /// * `data` must be the [`Bucket`] at the `ctrl` index in the table; |
| 3384 | /// |
| 3385 | /// * the value of `len` must be less than or equal to the number of table buckets, |
| 3386 | /// and the returned value of `ctrl.as_ptr().add(len).offset_from(ctrl.as_ptr())` |
| 3387 | /// must be positive. |
| 3388 | /// |
| 3389 | /// * The `ctrl.add(len)` pointer must be either in bounds or one |
| 3390 | /// byte past the end of the same [allocated table]. |
| 3391 | /// |
| 3392 | /// * The `len` must be a power of two. |
| 3393 | /// |
| 3394 | /// [valid]: https://doc.rust-lang.org/std/ptr/index.html#safety |
| 3395 | /// [`undefined behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 3396 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3397 | unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self { |
| 3398 | debug_assert_ne!(len, 0); |
| 3399 | debug_assert_eq!(ctrl as usize % Group::WIDTH, 0); |
| 3400 | // SAFETY: The caller must uphold the safety rules for the [`RawIterRange::new`] |
| 3401 | let end = ctrl.add(len); |
| 3402 | |
| 3403 | // Load the first group and advance ctrl to point to the next group |
| 3404 | // SAFETY: The caller must uphold the safety rules for the [`RawIterRange::new`] |
| 3405 | let current_group = Group::load_aligned(ctrl.cast()).match_full(); |
| 3406 | let next_ctrl = ctrl.add(Group::WIDTH); |
| 3407 | |
| 3408 | Self { |
| 3409 | current_group: current_group.into_iter(), |
| 3410 | data, |
| 3411 | next_ctrl, |
| 3412 | end, |
| 3413 | } |
| 3414 | } |
| 3415 | |
| 3416 | /// Splits a `RawIterRange` into two halves. |
| 3417 | /// |
| 3418 | /// Returns `None` if the remaining range is smaller than or equal to the |
| 3419 | /// group width. |
| 3420 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3421 | #[cfg (feature = "rayon" )] |
| 3422 | pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) { |
| 3423 | unsafe { |
| 3424 | if self.end <= self.next_ctrl { |
| 3425 | // Nothing to split if the group that we are current processing |
| 3426 | // is the last one. |
| 3427 | (self, None) |
| 3428 | } else { |
| 3429 | // len is the remaining number of elements after the group that |
| 3430 | // we are currently processing. It must be a multiple of the |
| 3431 | // group size (small tables are caught by the check above). |
| 3432 | let len = offset_from(self.end, self.next_ctrl); |
| 3433 | debug_assert_eq!(len % Group::WIDTH, 0); |
| 3434 | |
| 3435 | // Split the remaining elements into two halves, but round the |
| 3436 | // midpoint down in case there is an odd number of groups |
| 3437 | // remaining. This ensures that: |
| 3438 | // - The tail is at least 1 group long. |
| 3439 | // - The split is roughly even considering we still have the |
| 3440 | // current group to process. |
| 3441 | let mid = (len / 2) & !(Group::WIDTH - 1); |
| 3442 | |
| 3443 | let tail = Self::new( |
| 3444 | self.next_ctrl.add(mid), |
| 3445 | self.data.next_n(Group::WIDTH).next_n(mid), |
| 3446 | len - mid, |
| 3447 | ); |
| 3448 | debug_assert_eq!( |
| 3449 | self.data.next_n(Group::WIDTH).next_n(mid).ptr, |
| 3450 | tail.data.ptr |
| 3451 | ); |
| 3452 | debug_assert_eq!(self.end, tail.end); |
| 3453 | self.end = self.next_ctrl.add(mid); |
| 3454 | debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl); |
| 3455 | (self, Some(tail)) |
| 3456 | } |
| 3457 | } |
| 3458 | } |
| 3459 | |
| 3460 | /// # Safety |
| 3461 | /// If `DO_CHECK_PTR_RANGE` is false, caller must ensure that we never try to iterate |
| 3462 | /// after yielding all elements. |
| 3463 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3464 | unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> { |
| 3465 | loop { |
| 3466 | if let Some(index) = self.current_group.next() { |
| 3467 | return Some(self.data.next_n(index)); |
| 3468 | } |
| 3469 | |
| 3470 | if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end { |
| 3471 | return None; |
| 3472 | } |
| 3473 | |
| 3474 | // We might read past self.end up to the next group boundary, |
| 3475 | // but this is fine because it only occurs on tables smaller |
| 3476 | // than the group size where the trailing control bytes are all |
| 3477 | // EMPTY. On larger tables self.end is guaranteed to be aligned |
| 3478 | // to the group size (since tables are power-of-two sized). |
| 3479 | self.current_group = Group::load_aligned(self.next_ctrl.cast()) |
| 3480 | .match_full() |
| 3481 | .into_iter(); |
| 3482 | self.data = self.data.next_n(Group::WIDTH); |
| 3483 | self.next_ctrl = self.next_ctrl.add(Group::WIDTH); |
| 3484 | } |
| 3485 | } |
| 3486 | |
| 3487 | /// Folds every element into an accumulator by applying an operation, |
| 3488 | /// returning the final result. |
| 3489 | /// |
| 3490 | /// `fold_impl()` takes three arguments: the number of items remaining in |
| 3491 | /// the iterator, an initial value, and a closure with two arguments: an |
| 3492 | /// 'accumulator', and an element. The closure returns the value that the |
| 3493 | /// accumulator should have for the next iteration. |
| 3494 | /// |
| 3495 | /// The initial value is the value the accumulator will have on the first call. |
| 3496 | /// |
| 3497 | /// After applying this closure to every element of the iterator, `fold_impl()` |
| 3498 | /// returns the accumulator. |
| 3499 | /// |
| 3500 | /// # Safety |
| 3501 | /// |
| 3502 | /// If any of the following conditions are violated, the result is |
| 3503 | /// [`Undefined Behavior`]: |
| 3504 | /// |
| 3505 | /// * The [`RawTableInner`] / [`RawTable`] must be alive and not moved, |
| 3506 | /// i.e. table outlives the `RawIterRange`; |
| 3507 | /// |
| 3508 | /// * The provided `n` value must match the actual number of items |
| 3509 | /// in the table. |
| 3510 | /// |
| 3511 | /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 3512 | #[allow (clippy::while_let_on_iterator)] |
| 3513 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3514 | unsafe fn fold_impl<F, B>(mut self, mut n: usize, mut acc: B, mut f: F) -> B |
| 3515 | where |
| 3516 | F: FnMut(B, Bucket<T>) -> B, |
| 3517 | { |
| 3518 | loop { |
| 3519 | while let Some(index) = self.current_group.next() { |
| 3520 | // The returned `index` will always be in the range `0..Group::WIDTH`, |
| 3521 | // so that calling `self.data.next_n(index)` is safe (see detailed explanation below). |
| 3522 | debug_assert!(n != 0); |
| 3523 | let bucket = self.data.next_n(index); |
| 3524 | acc = f(acc, bucket); |
| 3525 | n -= 1; |
| 3526 | } |
| 3527 | |
| 3528 | if n == 0 { |
| 3529 | return acc; |
| 3530 | } |
| 3531 | |
| 3532 | // SAFETY: The caller of this function ensures that: |
| 3533 | // |
| 3534 | // 1. The provided `n` value matches the actual number of items in the table; |
| 3535 | // 2. The table is alive and did not moved. |
| 3536 | // |
| 3537 | // Taking the above into account, we always stay within the bounds, because: |
| 3538 | // |
| 3539 | // 1. For tables smaller than the group width (self.buckets() <= Group::WIDTH), |
| 3540 | // we will never end up in the given branch, since we should have already |
| 3541 | // yielded all the elements of the table. |
| 3542 | // |
| 3543 | // 2. For tables larger than the group width. The number of buckets is a |
| 3544 | // power of two (2 ^ n), Group::WIDTH is also power of two (2 ^ k). Since |
| 3545 | // `(2 ^ n) > (2 ^ k)`, than `(2 ^ n) % (2 ^ k) = 0`. As we start from the |
| 3546 | // start of the array of control bytes, and never try to iterate after |
| 3547 | // getting all the elements, the last `self.current_group` will read bytes |
| 3548 | // from the `self.buckets() - Group::WIDTH` index. We know also that |
| 3549 | // `self.current_group.next()` will always return indices within the range |
| 3550 | // `0..Group::WIDTH`. |
| 3551 | // |
| 3552 | // Knowing all of the above and taking into account that we are synchronizing |
| 3553 | // the `self.data` index with the index we used to read the `self.current_group`, |
| 3554 | // the subsequent `self.data.next_n(index)` will always return a bucket with |
| 3555 | // an index number less than `self.buckets()`. |
| 3556 | // |
| 3557 | // The last `self.next_ctrl`, whose index would be `self.buckets()`, will never |
| 3558 | // actually be read, since we should have already yielded all the elements of |
| 3559 | // the table. |
| 3560 | self.current_group = Group::load_aligned(self.next_ctrl.cast()) |
| 3561 | .match_full() |
| 3562 | .into_iter(); |
| 3563 | self.data = self.data.next_n(Group::WIDTH); |
| 3564 | self.next_ctrl = self.next_ctrl.add(Group::WIDTH); |
| 3565 | } |
| 3566 | } |
| 3567 | } |
| 3568 | |
| 3569 | // We make raw iterators unconditionally Send and Sync, and let the PhantomData |
| 3570 | // in the actual iterator implementations determine the real Send/Sync bounds. |
| 3571 | unsafe impl<T> Send for RawIterRange<T> {} |
| 3572 | unsafe impl<T> Sync for RawIterRange<T> {} |
| 3573 | |
| 3574 | impl<T> Clone for RawIterRange<T> { |
| 3575 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3576 | fn clone(&self) -> Self { |
| 3577 | Self { |
| 3578 | data: self.data.clone(), |
| 3579 | next_ctrl: self.next_ctrl, |
| 3580 | current_group: self.current_group.clone(), |
| 3581 | end: self.end, |
| 3582 | } |
| 3583 | } |
| 3584 | } |
| 3585 | |
| 3586 | impl<T> Iterator for RawIterRange<T> { |
| 3587 | type Item = Bucket<T>; |
| 3588 | |
| 3589 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3590 | fn next(&mut self) -> Option<Bucket<T>> { |
| 3591 | unsafe { |
| 3592 | // SAFETY: We set checker flag to true. |
| 3593 | self.next_impl::<true>() |
| 3594 | } |
| 3595 | } |
| 3596 | |
| 3597 | #[inline ] |
| 3598 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 3599 | // We don't have an item count, so just guess based on the range size. |
| 3600 | let remaining_buckets: usize = if self.end > self.next_ctrl { |
| 3601 | unsafe { offset_from(self.end, self.next_ctrl) } |
| 3602 | } else { |
| 3603 | 0 |
| 3604 | }; |
| 3605 | |
| 3606 | // Add a group width to include the group we are currently processing. |
| 3607 | (0, Some(Group::WIDTH + remaining_buckets)) |
| 3608 | } |
| 3609 | } |
| 3610 | |
| 3611 | impl<T> FusedIterator for RawIterRange<T> {} |
| 3612 | |
| 3613 | /// Iterator which returns a raw pointer to every full bucket in the table. |
| 3614 | /// |
| 3615 | /// For maximum flexibility this iterator is not bound by a lifetime, but you |
| 3616 | /// must observe several rules when using it: |
| 3617 | /// - You must not free the hash table while iterating (including via growing/shrinking). |
| 3618 | /// - It is fine to erase a bucket that has been yielded by the iterator. |
| 3619 | /// - Erasing a bucket that has not yet been yielded by the iterator may still |
| 3620 | /// result in the iterator yielding that bucket (unless `reflect_remove` is called). |
| 3621 | /// - It is unspecified whether an element inserted after the iterator was |
| 3622 | /// created will be yielded by that iterator (unless `reflect_insert` is called). |
| 3623 | /// - The order in which the iterator yields bucket is unspecified and may |
| 3624 | /// change in the future. |
| 3625 | pub struct RawIter<T> { |
| 3626 | pub(crate) iter: RawIterRange<T>, |
| 3627 | items: usize, |
| 3628 | } |
| 3629 | |
| 3630 | impl<T> RawIter<T> { |
| 3631 | unsafe fn drop_elements(&mut self) { |
| 3632 | if T::NEEDS_DROP && self.items != 0 { |
| 3633 | for item: Bucket in self { |
| 3634 | item.drop(); |
| 3635 | } |
| 3636 | } |
| 3637 | } |
| 3638 | } |
| 3639 | |
| 3640 | impl<T> Clone for RawIter<T> { |
| 3641 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3642 | fn clone(&self) -> Self { |
| 3643 | Self { |
| 3644 | iter: self.iter.clone(), |
| 3645 | items: self.items, |
| 3646 | } |
| 3647 | } |
| 3648 | } |
| 3649 | impl<T> Default for RawIter<T> { |
| 3650 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3651 | fn default() -> Self { |
| 3652 | // SAFETY: Because the table is static, it always outlives the iter. |
| 3653 | unsafe { RawTableInner::NEW.iter() } |
| 3654 | } |
| 3655 | } |
| 3656 | |
| 3657 | impl<T> Iterator for RawIter<T> { |
| 3658 | type Item = Bucket<T>; |
| 3659 | |
| 3660 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3661 | fn next(&mut self) -> Option<Bucket<T>> { |
| 3662 | // Inner iterator iterates over buckets |
| 3663 | // so it can do unnecessary work if we already yielded all items. |
| 3664 | if self.items == 0 { |
| 3665 | return None; |
| 3666 | } |
| 3667 | |
| 3668 | let nxt = unsafe { |
| 3669 | // SAFETY: We check number of items to yield using `items` field. |
| 3670 | self.iter.next_impl::<false>() |
| 3671 | }; |
| 3672 | |
| 3673 | debug_assert!(nxt.is_some()); |
| 3674 | self.items -= 1; |
| 3675 | |
| 3676 | nxt |
| 3677 | } |
| 3678 | |
| 3679 | #[inline ] |
| 3680 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 3681 | (self.items, Some(self.items)) |
| 3682 | } |
| 3683 | |
| 3684 | #[inline ] |
| 3685 | fn fold<B, F>(self, init: B, f: F) -> B |
| 3686 | where |
| 3687 | Self: Sized, |
| 3688 | F: FnMut(B, Self::Item) -> B, |
| 3689 | { |
| 3690 | unsafe { self.iter.fold_impl(self.items, init, f) } |
| 3691 | } |
| 3692 | } |
| 3693 | |
| 3694 | impl<T> ExactSizeIterator for RawIter<T> {} |
| 3695 | impl<T> FusedIterator for RawIter<T> {} |
| 3696 | |
| 3697 | /// Iterator which returns an index of every full bucket in the table. |
| 3698 | /// |
| 3699 | /// For maximum flexibility this iterator is not bound by a lifetime, but you |
| 3700 | /// must observe several rules when using it: |
| 3701 | /// - You must not free the hash table while iterating (including via growing/shrinking). |
| 3702 | /// - It is fine to erase a bucket that has been yielded by the iterator. |
| 3703 | /// - Erasing a bucket that has not yet been yielded by the iterator may still |
| 3704 | /// result in the iterator yielding index of that bucket. |
| 3705 | /// - It is unspecified whether an element inserted after the iterator was |
| 3706 | /// created will be yielded by that iterator. |
| 3707 | /// - The order in which the iterator yields indices of the buckets is unspecified |
| 3708 | /// and may change in the future. |
| 3709 | pub(crate) struct FullBucketsIndices { |
| 3710 | // Mask of full buckets in the current group. Bits are cleared from this |
| 3711 | // mask as each element is processed. |
| 3712 | current_group: BitMaskIter, |
| 3713 | |
| 3714 | // Initial value of the bytes' indices of the current group (relative |
| 3715 | // to the start of the control bytes). |
| 3716 | group_first_index: usize, |
| 3717 | |
| 3718 | // Pointer to the current group of control bytes, |
| 3719 | // Must be aligned to the group size (Group::WIDTH). |
| 3720 | ctrl: NonNull<u8>, |
| 3721 | |
| 3722 | // Number of elements in the table. |
| 3723 | items: usize, |
| 3724 | } |
| 3725 | |
| 3726 | impl FullBucketsIndices { |
| 3727 | /// Advances the iterator and returns the next value. |
| 3728 | /// |
| 3729 | /// # Safety |
| 3730 | /// |
| 3731 | /// If any of the following conditions are violated, the result is |
| 3732 | /// [`Undefined Behavior`]: |
| 3733 | /// |
| 3734 | /// * The [`RawTableInner`] / [`RawTable`] must be alive and not moved, |
| 3735 | /// i.e. table outlives the `FullBucketsIndices`; |
| 3736 | /// |
| 3737 | /// * It never tries to iterate after getting all elements. |
| 3738 | /// |
| 3739 | /// [`Undefined Behavior`]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| 3740 | #[inline (always)] |
| 3741 | unsafe fn next_impl(&mut self) -> Option<usize> { |
| 3742 | loop { |
| 3743 | if let Some(index) = self.current_group.next() { |
| 3744 | // The returned `self.group_first_index + index` will always |
| 3745 | // be in the range `0..self.buckets()`. See explanation below. |
| 3746 | return Some(self.group_first_index + index); |
| 3747 | } |
| 3748 | |
| 3749 | // SAFETY: The caller of this function ensures that: |
| 3750 | // |
| 3751 | // 1. It never tries to iterate after getting all the elements; |
| 3752 | // 2. The table is alive and did not moved; |
| 3753 | // 3. The first `self.ctrl` pointed to the start of the array of control bytes. |
| 3754 | // |
| 3755 | // Taking the above into account, we always stay within the bounds, because: |
| 3756 | // |
| 3757 | // 1. For tables smaller than the group width (self.buckets() <= Group::WIDTH), |
| 3758 | // we will never end up in the given branch, since we should have already |
| 3759 | // yielded all the elements of the table. |
| 3760 | // |
| 3761 | // 2. For tables larger than the group width. The number of buckets is a |
| 3762 | // power of two (2 ^ n), Group::WIDTH is also power of two (2 ^ k). Since |
| 3763 | // `(2 ^ n) > (2 ^ k)`, than `(2 ^ n) % (2 ^ k) = 0`. As we start from the |
| 3764 | // the start of the array of control bytes, and never try to iterate after |
| 3765 | // getting all the elements, the last `self.ctrl` will be equal to |
| 3766 | // the `self.buckets() - Group::WIDTH`, so `self.current_group.next()` |
| 3767 | // will always contains indices within the range `0..Group::WIDTH`, |
| 3768 | // and subsequent `self.group_first_index + index` will always return a |
| 3769 | // number less than `self.buckets()`. |
| 3770 | self.ctrl = NonNull::new_unchecked(self.ctrl.as_ptr().add(Group::WIDTH)); |
| 3771 | |
| 3772 | // SAFETY: See explanation above. |
| 3773 | self.current_group = Group::load_aligned(self.ctrl.as_ptr().cast()) |
| 3774 | .match_full() |
| 3775 | .into_iter(); |
| 3776 | self.group_first_index += Group::WIDTH; |
| 3777 | } |
| 3778 | } |
| 3779 | } |
| 3780 | |
| 3781 | impl Iterator for FullBucketsIndices { |
| 3782 | type Item = usize; |
| 3783 | |
| 3784 | /// Advances the iterator and returns the next value. It is up to |
| 3785 | /// the caller to ensure that the `RawTable` outlives the `FullBucketsIndices`, |
| 3786 | /// because we cannot make the `next` method unsafe. |
| 3787 | #[inline (always)] |
| 3788 | fn next(&mut self) -> Option<usize> { |
| 3789 | // Return if we already yielded all items. |
| 3790 | if self.items == 0 { |
| 3791 | return None; |
| 3792 | } |
| 3793 | |
| 3794 | let nxt = unsafe { |
| 3795 | // SAFETY: |
| 3796 | // 1. We check number of items to yield using `items` field. |
| 3797 | // 2. The caller ensures that the table is alive and has not moved. |
| 3798 | self.next_impl() |
| 3799 | }; |
| 3800 | |
| 3801 | debug_assert!(nxt.is_some()); |
| 3802 | self.items -= 1; |
| 3803 | |
| 3804 | nxt |
| 3805 | } |
| 3806 | |
| 3807 | #[inline (always)] |
| 3808 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 3809 | (self.items, Some(self.items)) |
| 3810 | } |
| 3811 | } |
| 3812 | |
| 3813 | impl ExactSizeIterator for FullBucketsIndices {} |
| 3814 | impl FusedIterator for FullBucketsIndices {} |
| 3815 | |
| 3816 | /// Iterator which consumes a table and returns elements. |
| 3817 | pub struct RawIntoIter<T, A: Allocator = Global> { |
| 3818 | iter: RawIter<T>, |
| 3819 | allocation: Option<(NonNull<u8>, Layout, A)>, |
| 3820 | marker: PhantomData<T>, |
| 3821 | } |
| 3822 | |
| 3823 | impl<T, A: Allocator> RawIntoIter<T, A> { |
| 3824 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3825 | pub fn iter(&self) -> RawIter<T> { |
| 3826 | self.iter.clone() |
| 3827 | } |
| 3828 | } |
| 3829 | |
| 3830 | unsafe impl<T, A: Allocator> Send for RawIntoIter<T, A> |
| 3831 | where |
| 3832 | T: Send, |
| 3833 | A: Send, |
| 3834 | { |
| 3835 | } |
| 3836 | unsafe impl<T, A: Allocator> Sync for RawIntoIter<T, A> |
| 3837 | where |
| 3838 | T: Sync, |
| 3839 | A: Sync, |
| 3840 | { |
| 3841 | } |
| 3842 | |
| 3843 | #[cfg (feature = "nightly" )] |
| 3844 | unsafe impl<#[may_dangle ] T, A: Allocator> Drop for RawIntoIter<T, A> { |
| 3845 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3846 | fn drop(&mut self) { |
| 3847 | unsafe { |
| 3848 | // Drop all remaining elements |
| 3849 | self.iter.drop_elements(); |
| 3850 | |
| 3851 | // Free the table |
| 3852 | if let Some((ptr: NonNull, layout: Layout, ref alloc: &A)) = self.allocation { |
| 3853 | alloc.deallocate(ptr, layout); |
| 3854 | } |
| 3855 | } |
| 3856 | } |
| 3857 | } |
| 3858 | #[cfg (not(feature = "nightly" ))] |
| 3859 | impl<T, A: Allocator> Drop for RawIntoIter<T, A> { |
| 3860 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3861 | fn drop(&mut self) { |
| 3862 | unsafe { |
| 3863 | // Drop all remaining elements |
| 3864 | self.iter.drop_elements(); |
| 3865 | |
| 3866 | // Free the table |
| 3867 | if let Some((ptr, layout, ref alloc)) = self.allocation { |
| 3868 | alloc.deallocate(ptr, layout); |
| 3869 | } |
| 3870 | } |
| 3871 | } |
| 3872 | } |
| 3873 | |
| 3874 | impl<T, A: Allocator> Default for RawIntoIter<T, A> { |
| 3875 | fn default() -> Self { |
| 3876 | Self { |
| 3877 | iter: Default::default(), |
| 3878 | allocation: None, |
| 3879 | marker: PhantomData, |
| 3880 | } |
| 3881 | } |
| 3882 | } |
| 3883 | impl<T, A: Allocator> Iterator for RawIntoIter<T, A> { |
| 3884 | type Item = T; |
| 3885 | |
| 3886 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3887 | fn next(&mut self) -> Option<T> { |
| 3888 | unsafe { Some(self.iter.next()?.read()) } |
| 3889 | } |
| 3890 | |
| 3891 | #[inline ] |
| 3892 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 3893 | self.iter.size_hint() |
| 3894 | } |
| 3895 | } |
| 3896 | |
| 3897 | impl<T, A: Allocator> ExactSizeIterator for RawIntoIter<T, A> {} |
| 3898 | impl<T, A: Allocator> FusedIterator for RawIntoIter<T, A> {} |
| 3899 | |
| 3900 | /// Iterator which consumes elements without freeing the table storage. |
| 3901 | pub struct RawDrain<'a, T, A: Allocator = Global> { |
| 3902 | iter: RawIter<T>, |
| 3903 | |
| 3904 | // The table is moved into the iterator for the duration of the drain. This |
| 3905 | // ensures that an empty table is left if the drain iterator is leaked |
| 3906 | // without dropping. |
| 3907 | table: RawTableInner, |
| 3908 | orig_table: NonNull<RawTableInner>, |
| 3909 | |
| 3910 | // We don't use a &'a mut RawTable<T> because we want RawDrain to be |
| 3911 | // covariant over T. |
| 3912 | marker: PhantomData<&'a RawTable<T, A>>, |
| 3913 | } |
| 3914 | |
| 3915 | impl<T, A: Allocator> RawDrain<'_, T, A> { |
| 3916 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3917 | pub fn iter(&self) -> RawIter<T> { |
| 3918 | self.iter.clone() |
| 3919 | } |
| 3920 | } |
| 3921 | |
| 3922 | unsafe impl<T, A: Allocator> Send for RawDrain<'_, T, A> |
| 3923 | where |
| 3924 | T: Send, |
| 3925 | A: Send, |
| 3926 | { |
| 3927 | } |
| 3928 | unsafe impl<T, A: Allocator> Sync for RawDrain<'_, T, A> |
| 3929 | where |
| 3930 | T: Sync, |
| 3931 | A: Sync, |
| 3932 | { |
| 3933 | } |
| 3934 | |
| 3935 | impl<T, A: Allocator> Drop for RawDrain<'_, T, A> { |
| 3936 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3937 | fn drop(&mut self) { |
| 3938 | unsafe { |
| 3939 | // Drop all remaining elements. Note that this may panic. |
| 3940 | self.iter.drop_elements(); |
| 3941 | |
| 3942 | // Reset the contents of the table now that all elements have been |
| 3943 | // dropped. |
| 3944 | self.table.clear_no_drop(); |
| 3945 | |
| 3946 | // Move the now empty table back to its original location. |
| 3947 | self.orig_table |
| 3948 | .as_ptr() |
| 3949 | .copy_from_nonoverlapping(&self.table, count:1); |
| 3950 | } |
| 3951 | } |
| 3952 | } |
| 3953 | |
| 3954 | impl<T, A: Allocator> Iterator for RawDrain<'_, T, A> { |
| 3955 | type Item = T; |
| 3956 | |
| 3957 | #[cfg_attr (feature = "inline-more" , inline)] |
| 3958 | fn next(&mut self) -> Option<T> { |
| 3959 | unsafe { |
| 3960 | let item: Bucket = self.iter.next()?; |
| 3961 | Some(item.read()) |
| 3962 | } |
| 3963 | } |
| 3964 | |
| 3965 | #[inline ] |
| 3966 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 3967 | self.iter.size_hint() |
| 3968 | } |
| 3969 | } |
| 3970 | |
| 3971 | impl<T, A: Allocator> ExactSizeIterator for RawDrain<'_, T, A> {} |
| 3972 | impl<T, A: Allocator> FusedIterator for RawDrain<'_, T, A> {} |
| 3973 | |
| 3974 | /// Iterator over occupied buckets that could match a given hash. |
| 3975 | /// |
| 3976 | /// `RawTable` only stores 7 bits of the hash value, so this iterator may return |
| 3977 | /// items that have a hash value different than the one provided. You should |
| 3978 | /// always validate the returned values before using them. |
| 3979 | /// |
| 3980 | /// For maximum flexibility this iterator is not bound by a lifetime, but you |
| 3981 | /// must observe several rules when using it: |
| 3982 | /// - You must not free the hash table while iterating (including via growing/shrinking). |
| 3983 | /// - It is fine to erase a bucket that has been yielded by the iterator. |
| 3984 | /// - Erasing a bucket that has not yet been yielded by the iterator may still |
| 3985 | /// result in the iterator yielding that bucket. |
| 3986 | /// - It is unspecified whether an element inserted after the iterator was |
| 3987 | /// created will be yielded by that iterator. |
| 3988 | /// - The order in which the iterator yields buckets is unspecified and may |
| 3989 | /// change in the future. |
| 3990 | pub struct RawIterHash<T> { |
| 3991 | inner: RawIterHashInner, |
| 3992 | _marker: PhantomData<T>, |
| 3993 | } |
| 3994 | |
| 3995 | #[derive (Clone)] |
| 3996 | struct RawIterHashInner { |
| 3997 | // See `RawTableInner`'s corresponding fields for details. |
| 3998 | // We can't store a `*const RawTableInner` as it would get |
| 3999 | // invalidated by the user calling `&mut` methods on `RawTable`. |
| 4000 | bucket_mask: usize, |
| 4001 | ctrl: NonNull<u8>, |
| 4002 | |
| 4003 | // The top 7 bits of the hash. |
| 4004 | tag_hash: Tag, |
| 4005 | |
| 4006 | // The sequence of groups to probe in the search. |
| 4007 | probe_seq: ProbeSeq, |
| 4008 | |
| 4009 | group: Group, |
| 4010 | |
| 4011 | // The elements within the group with a matching tag-hash. |
| 4012 | bitmask: BitMaskIter, |
| 4013 | } |
| 4014 | |
| 4015 | impl<T> RawIterHash<T> { |
| 4016 | #[cfg_attr (feature = "inline-more" , inline)] |
| 4017 | unsafe fn new<A: Allocator>(table: &RawTable<T, A>, hash: u64) -> Self { |
| 4018 | RawIterHash { |
| 4019 | inner: RawIterHashInner::new(&table.table, hash), |
| 4020 | _marker: PhantomData, |
| 4021 | } |
| 4022 | } |
| 4023 | } |
| 4024 | |
| 4025 | impl<T> Clone for RawIterHash<T> { |
| 4026 | #[cfg_attr (feature = "inline-more" , inline)] |
| 4027 | fn clone(&self) -> Self { |
| 4028 | Self { |
| 4029 | inner: self.inner.clone(), |
| 4030 | _marker: PhantomData, |
| 4031 | } |
| 4032 | } |
| 4033 | } |
| 4034 | |
| 4035 | impl<T> Default for RawIterHash<T> { |
| 4036 | #[cfg_attr (feature = "inline-more" , inline)] |
| 4037 | fn default() -> Self { |
| 4038 | Self { |
| 4039 | // SAFETY: Because the table is static, it always outlives the iter. |
| 4040 | inner: unsafe { RawIterHashInner::new(&RawTableInner::NEW, hash:0) }, |
| 4041 | _marker: PhantomData, |
| 4042 | } |
| 4043 | } |
| 4044 | } |
| 4045 | |
| 4046 | impl RawIterHashInner { |
| 4047 | #[cfg_attr (feature = "inline-more" , inline)] |
| 4048 | unsafe fn new(table: &RawTableInner, hash: u64) -> Self { |
| 4049 | let tag_hash: Tag = Tag::full(hash); |
| 4050 | let probe_seq: ProbeSeq = table.probe_seq(hash); |
| 4051 | let group: Group = Group::load(ptr:table.ctrl(index:probe_seq.pos)); |
| 4052 | let bitmask: BitMaskIter = group.match_tag(tag_hash).into_iter(); |
| 4053 | |
| 4054 | RawIterHashInner { |
| 4055 | bucket_mask: table.bucket_mask, |
| 4056 | ctrl: table.ctrl, |
| 4057 | tag_hash, |
| 4058 | probe_seq, |
| 4059 | group, |
| 4060 | bitmask, |
| 4061 | } |
| 4062 | } |
| 4063 | } |
| 4064 | |
| 4065 | impl<T> Iterator for RawIterHash<T> { |
| 4066 | type Item = Bucket<T>; |
| 4067 | |
| 4068 | fn next(&mut self) -> Option<Bucket<T>> { |
| 4069 | unsafe { |
| 4070 | match self.inner.next() { |
| 4071 | Some(index: usize) => { |
| 4072 | // Can't use `RawTable::bucket` here as we don't have |
| 4073 | // an actual `RawTable` reference to use. |
| 4074 | debug_assert!(index <= self.inner.bucket_mask); |
| 4075 | let bucket: Bucket = Bucket::from_base_index(self.inner.ctrl.cast(), index); |
| 4076 | Some(bucket) |
| 4077 | } |
| 4078 | None => None, |
| 4079 | } |
| 4080 | } |
| 4081 | } |
| 4082 | } |
| 4083 | |
| 4084 | impl Iterator for RawIterHashInner { |
| 4085 | type Item = usize; |
| 4086 | |
| 4087 | fn next(&mut self) -> Option<Self::Item> { |
| 4088 | unsafe { |
| 4089 | loop { |
| 4090 | if let Some(bit) = self.bitmask.next() { |
| 4091 | let index = (self.probe_seq.pos + bit) & self.bucket_mask; |
| 4092 | return Some(index); |
| 4093 | } |
| 4094 | if likely(self.group.match_empty().any_bit_set()) { |
| 4095 | return None; |
| 4096 | } |
| 4097 | self.probe_seq.move_next(self.bucket_mask); |
| 4098 | |
| 4099 | // Can't use `RawTableInner::ctrl` here as we don't have |
| 4100 | // an actual `RawTableInner` reference to use. |
| 4101 | let index = self.probe_seq.pos; |
| 4102 | debug_assert!(index < self.bucket_mask + 1 + Group::WIDTH); |
| 4103 | let group_ctrl = self.ctrl.as_ptr().add(index).cast(); |
| 4104 | |
| 4105 | self.group = Group::load(group_ctrl); |
| 4106 | self.bitmask = self.group.match_tag(self.tag_hash).into_iter(); |
| 4107 | } |
| 4108 | } |
| 4109 | } |
| 4110 | } |
| 4111 | |
| 4112 | pub(crate) struct RawExtractIf<'a, T, A: Allocator> { |
| 4113 | pub iter: RawIter<T>, |
| 4114 | pub table: &'a mut RawTable<T, A>, |
| 4115 | } |
| 4116 | |
| 4117 | impl<T, A: Allocator> RawExtractIf<'_, T, A> { |
| 4118 | #[cfg_attr (feature = "inline-more" , inline)] |
| 4119 | pub(crate) fn next<F>(&mut self, mut f: F) -> Option<T> |
| 4120 | where |
| 4121 | F: FnMut(&mut T) -> bool, |
| 4122 | { |
| 4123 | unsafe { |
| 4124 | for item: Bucket in &mut self.iter { |
| 4125 | if f(item.as_mut()) { |
| 4126 | return Some(self.table.remove(item).0); |
| 4127 | } |
| 4128 | } |
| 4129 | } |
| 4130 | None |
| 4131 | } |
| 4132 | } |
| 4133 | |
| 4134 | #[cfg (test)] |
| 4135 | mod test_map { |
| 4136 | use super::*; |
| 4137 | |
| 4138 | fn rehash_in_place<T>(table: &mut RawTable<T>, hasher: impl Fn(&T) -> u64) { |
| 4139 | unsafe { |
| 4140 | table.table.rehash_in_place( |
| 4141 | &|table, index| hasher(table.bucket::<T>(index).as_ref()), |
| 4142 | mem::size_of::<T>(), |
| 4143 | if mem::needs_drop::<T>() { |
| 4144 | Some(|ptr| ptr::drop_in_place(ptr as *mut T)) |
| 4145 | } else { |
| 4146 | None |
| 4147 | }, |
| 4148 | ); |
| 4149 | } |
| 4150 | } |
| 4151 | |
| 4152 | #[test ] |
| 4153 | fn rehash() { |
| 4154 | let mut table = RawTable::new(); |
| 4155 | let hasher = |i: &u64| *i; |
| 4156 | for i in 0..100 { |
| 4157 | table.insert(i, i, hasher); |
| 4158 | } |
| 4159 | |
| 4160 | for i in 0..100 { |
| 4161 | unsafe { |
| 4162 | assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); |
| 4163 | } |
| 4164 | assert!(table.find(i + 100, |x| *x == i + 100).is_none()); |
| 4165 | } |
| 4166 | |
| 4167 | rehash_in_place(&mut table, hasher); |
| 4168 | |
| 4169 | for i in 0..100 { |
| 4170 | unsafe { |
| 4171 | assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); |
| 4172 | } |
| 4173 | assert!(table.find(i + 100, |x| *x == i + 100).is_none()); |
| 4174 | } |
| 4175 | } |
| 4176 | |
| 4177 | /// CHECKING THAT WE ARE NOT TRYING TO READ THE MEMORY OF |
| 4178 | /// AN UNINITIALIZED TABLE DURING THE DROP |
| 4179 | #[test ] |
| 4180 | fn test_drop_uninitialized() { |
| 4181 | use ::alloc::vec::Vec; |
| 4182 | |
| 4183 | let table = unsafe { |
| 4184 | // SAFETY: The `buckets` is power of two and we're not |
| 4185 | // trying to actually use the returned RawTable. |
| 4186 | RawTable::<(u64, Vec<i32>)>::new_uninitialized(Global, 8, Fallibility::Infallible) |
| 4187 | .unwrap() |
| 4188 | }; |
| 4189 | drop(table); |
| 4190 | } |
| 4191 | |
| 4192 | /// CHECKING THAT WE DON'T TRY TO DROP DATA IF THE `ITEMS` |
| 4193 | /// ARE ZERO, EVEN IF WE HAVE `FULL` CONTROL BYTES. |
| 4194 | #[test ] |
| 4195 | fn test_drop_zero_items() { |
| 4196 | use ::alloc::vec::Vec; |
| 4197 | unsafe { |
| 4198 | // SAFETY: The `buckets` is power of two and we're not |
| 4199 | // trying to actually use the returned RawTable. |
| 4200 | let mut table = |
| 4201 | RawTable::<(u64, Vec<i32>)>::new_uninitialized(Global, 8, Fallibility::Infallible) |
| 4202 | .unwrap(); |
| 4203 | |
| 4204 | // WE SIMULATE, AS IT WERE, A FULL TABLE. |
| 4205 | |
| 4206 | // SAFETY: We checked that the table is allocated and therefore the table already has |
| 4207 | // `self.bucket_mask + 1 + Group::WIDTH` number of control bytes (see TableLayout::calculate_layout_for) |
| 4208 | // so writing `table.table.num_ctrl_bytes() == bucket_mask + 1 + Group::WIDTH` bytes is safe. |
| 4209 | table.table.ctrl_slice().fill_empty(); |
| 4210 | |
| 4211 | // SAFETY: table.capacity() is guaranteed to be smaller than table.buckets() |
| 4212 | table.table.ctrl(0).write_bytes(0, table.capacity()); |
| 4213 | |
| 4214 | // Fix up the trailing control bytes. See the comments in set_ctrl |
| 4215 | // for the handling of tables smaller than the group width. |
| 4216 | if table.buckets() < Group::WIDTH { |
| 4217 | // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of control bytes, |
| 4218 | // so copying `self.buckets() == self.bucket_mask + 1` bytes with offset equal to |
| 4219 | // `Group::WIDTH` is safe |
| 4220 | table |
| 4221 | .table |
| 4222 | .ctrl(0) |
| 4223 | .copy_to(table.table.ctrl(Group::WIDTH), table.table.buckets()); |
| 4224 | } else { |
| 4225 | // SAFETY: We have `self.bucket_mask + 1 + Group::WIDTH` number of |
| 4226 | // control bytes,so copying `Group::WIDTH` bytes with offset equal |
| 4227 | // to `self.buckets() == self.bucket_mask + 1` is safe |
| 4228 | table |
| 4229 | .table |
| 4230 | .ctrl(0) |
| 4231 | .copy_to(table.table.ctrl(table.table.buckets()), Group::WIDTH); |
| 4232 | } |
| 4233 | drop(table); |
| 4234 | } |
| 4235 | } |
| 4236 | |
| 4237 | /// CHECKING THAT WE DON'T TRY TO DROP DATA IF THE `ITEMS` |
| 4238 | /// ARE ZERO, EVEN IF WE HAVE `FULL` CONTROL BYTES. |
| 4239 | #[test ] |
| 4240 | fn test_catch_panic_clone_from() { |
| 4241 | use ::alloc::sync::Arc; |
| 4242 | use ::alloc::vec::Vec; |
| 4243 | use allocator_api2::alloc::{AllocError, Allocator, Global}; |
| 4244 | use core::sync::atomic::{AtomicI8, Ordering}; |
| 4245 | use std::thread; |
| 4246 | |
| 4247 | struct MyAllocInner { |
| 4248 | drop_count: Arc<AtomicI8>, |
| 4249 | } |
| 4250 | |
| 4251 | #[derive (Clone)] |
| 4252 | struct MyAlloc { |
| 4253 | _inner: Arc<MyAllocInner>, |
| 4254 | } |
| 4255 | |
| 4256 | impl Drop for MyAllocInner { |
| 4257 | fn drop(&mut self) { |
| 4258 | println!("MyAlloc freed." ); |
| 4259 | self.drop_count.fetch_sub(1, Ordering::SeqCst); |
| 4260 | } |
| 4261 | } |
| 4262 | |
| 4263 | unsafe impl Allocator for MyAlloc { |
| 4264 | fn allocate(&self, layout: Layout) -> std::result::Result<NonNull<[u8]>, AllocError> { |
| 4265 | let g = Global; |
| 4266 | g.allocate(layout) |
| 4267 | } |
| 4268 | |
| 4269 | unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { |
| 4270 | let g = Global; |
| 4271 | g.deallocate(ptr, layout) |
| 4272 | } |
| 4273 | } |
| 4274 | |
| 4275 | const DISARMED: bool = false; |
| 4276 | const ARMED: bool = true; |
| 4277 | |
| 4278 | struct CheckedCloneDrop { |
| 4279 | panic_in_clone: bool, |
| 4280 | dropped: bool, |
| 4281 | need_drop: Vec<u64>, |
| 4282 | } |
| 4283 | |
| 4284 | impl Clone for CheckedCloneDrop { |
| 4285 | fn clone(&self) -> Self { |
| 4286 | if self.panic_in_clone { |
| 4287 | panic!("panic in clone" ) |
| 4288 | } |
| 4289 | Self { |
| 4290 | panic_in_clone: self.panic_in_clone, |
| 4291 | dropped: self.dropped, |
| 4292 | need_drop: self.need_drop.clone(), |
| 4293 | } |
| 4294 | } |
| 4295 | } |
| 4296 | |
| 4297 | impl Drop for CheckedCloneDrop { |
| 4298 | fn drop(&mut self) { |
| 4299 | if self.dropped { |
| 4300 | panic!("double drop" ); |
| 4301 | } |
| 4302 | self.dropped = true; |
| 4303 | } |
| 4304 | } |
| 4305 | |
| 4306 | let dropped: Arc<AtomicI8> = Arc::new(AtomicI8::new(2)); |
| 4307 | |
| 4308 | let mut table = RawTable::new_in(MyAlloc { |
| 4309 | _inner: Arc::new(MyAllocInner { |
| 4310 | drop_count: dropped.clone(), |
| 4311 | }), |
| 4312 | }); |
| 4313 | |
| 4314 | for (idx, panic_in_clone) in core::iter::repeat(DISARMED).take(7).enumerate() { |
| 4315 | let idx = idx as u64; |
| 4316 | table.insert( |
| 4317 | idx, |
| 4318 | ( |
| 4319 | idx, |
| 4320 | CheckedCloneDrop { |
| 4321 | panic_in_clone, |
| 4322 | dropped: false, |
| 4323 | need_drop: vec![idx], |
| 4324 | }, |
| 4325 | ), |
| 4326 | |(k, _)| *k, |
| 4327 | ); |
| 4328 | } |
| 4329 | |
| 4330 | assert_eq!(table.len(), 7); |
| 4331 | |
| 4332 | thread::scope(|s| { |
| 4333 | let result = s.spawn(|| { |
| 4334 | let armed_flags = [ |
| 4335 | DISARMED, DISARMED, ARMED, DISARMED, DISARMED, DISARMED, DISARMED, |
| 4336 | ]; |
| 4337 | let mut scope_table = RawTable::new_in(MyAlloc { |
| 4338 | _inner: Arc::new(MyAllocInner { |
| 4339 | drop_count: dropped.clone(), |
| 4340 | }), |
| 4341 | }); |
| 4342 | for (idx, &panic_in_clone) in armed_flags.iter().enumerate() { |
| 4343 | let idx = idx as u64; |
| 4344 | scope_table.insert( |
| 4345 | idx, |
| 4346 | ( |
| 4347 | idx, |
| 4348 | CheckedCloneDrop { |
| 4349 | panic_in_clone, |
| 4350 | dropped: false, |
| 4351 | need_drop: vec![idx + 100], |
| 4352 | }, |
| 4353 | ), |
| 4354 | |(k, _)| *k, |
| 4355 | ); |
| 4356 | } |
| 4357 | table.clone_from(&scope_table); |
| 4358 | }); |
| 4359 | assert!(result.join().is_err()); |
| 4360 | }); |
| 4361 | |
| 4362 | // Let's check that all iterators work fine and do not return elements |
| 4363 | // (especially `RawIterRange`, which does not depend on the number of |
| 4364 | // elements in the table, but looks directly at the control bytes) |
| 4365 | // |
| 4366 | // SAFETY: We know for sure that `RawTable` will outlive |
| 4367 | // the returned `RawIter / RawIterRange` iterator. |
| 4368 | assert_eq!(table.len(), 0); |
| 4369 | assert_eq!(unsafe { table.iter().count() }, 0); |
| 4370 | assert_eq!(unsafe { table.iter().iter.count() }, 0); |
| 4371 | |
| 4372 | for idx in 0..table.buckets() { |
| 4373 | let idx = idx as u64; |
| 4374 | assert!( |
| 4375 | table.find(idx, |(k, _)| *k == idx).is_none(), |
| 4376 | "Index: {idx}" |
| 4377 | ); |
| 4378 | } |
| 4379 | |
| 4380 | // All allocator clones should already be dropped. |
| 4381 | assert_eq!(dropped.load(Ordering::SeqCst), 1); |
| 4382 | } |
| 4383 | } |
| 4384 | |