| 1 | //! Middle layer providing a somewhat safer (but still quite unsafe) |
| 2 | //! API. |
| 3 | //! |
| 4 | //! The main idea of the middle layer is to wrap types [`low::ffi_cif`] |
| 5 | //! and [`low::ffi_closure`] as [`Cif`] and [`Closure`], respectively, |
| 6 | //! so that their resources are managed properly. However, calling a |
| 7 | //! function via a CIF or closure is still unsafe because argument types |
| 8 | //! aren’t checked. See the [`high`](crate::high) layer for closures |
| 9 | //! with type-checked arguments. |
| 10 | |
| 11 | use std::any::Any; |
| 12 | use std::marker::PhantomData; |
| 13 | use std::os::raw::c_void; |
| 14 | |
| 15 | use crate::low; |
| 16 | pub use crate::low::{ffi_abi as FfiAbi, ffi_abi_FFI_DEFAULT_ABI, Callback, CallbackMut, CodePtr}; |
| 17 | |
| 18 | mod util; |
| 19 | |
| 20 | mod types; |
| 21 | pub use types::Type; |
| 22 | |
| 23 | mod builder; |
| 24 | pub use builder::Builder; |
| 25 | |
| 26 | /// Contains an untyped pointer to a function argument. |
| 27 | /// |
| 28 | /// When calling a function via a [CIF](Cif), each argument |
| 29 | /// must be passed as a C `void*`. Wrapping the argument in the [`Arg`] |
| 30 | /// struct accomplishes the necessary coercion. |
| 31 | #[derive (Clone, Debug)] |
| 32 | #[repr (C)] |
| 33 | pub struct Arg(*mut c_void); |
| 34 | |
| 35 | impl Arg { |
| 36 | /// Coerces an argument reference into the [`Arg`] type. |
| 37 | /// |
| 38 | /// This is used to wrap each argument pointer before passing them |
| 39 | /// to [`Cif::call`]. |
| 40 | pub fn new<T>(r: &T) -> Self { |
| 41 | Arg(r as *const T as *mut c_void) |
| 42 | } |
| 43 | } |
| 44 | |
| 45 | /// Coerces an argument reference into the [`Arg`] type. |
| 46 | /// |
| 47 | /// This is used to wrap each argument pointer before passing them |
| 48 | /// to [`Cif::call`]. (This is the same as [`Arg::new`]). |
| 49 | pub fn arg<T>(r: &T) -> Arg { |
| 50 | Arg::new(r) |
| 51 | } |
| 52 | |
| 53 | /// Describes the calling convention and types for calling a function. |
| 54 | /// |
| 55 | /// This is the middle layer’s wrapping of the [`low`](crate::low) and |
| 56 | /// [`raw`](crate::raw) layers’ [`low::ffi_cif`]. An initialized CIF |
| 57 | /// contains references to an array of argument types and a result type, |
| 58 | /// each of which may be allocated on the heap. `Cif` manages the memory |
| 59 | /// of those referenced objects. |
| 60 | /// |
| 61 | /// Construct with [`Cif::new`]. |
| 62 | /// |
| 63 | /// # Examples |
| 64 | /// |
| 65 | /// ``` |
| 66 | /// extern "C" fn add(x: f64, y: &f64) -> f64 { |
| 67 | /// return x + y; |
| 68 | /// } |
| 69 | /// |
| 70 | /// use libffi::middle::*; |
| 71 | /// |
| 72 | /// let args = vec![Type::f64(), Type::pointer()]; |
| 73 | /// let cif = Cif::new(args.into_iter(), Type::f64()); |
| 74 | /// |
| 75 | /// let n = unsafe { cif.call(CodePtr(add as *mut _), &[arg(&5f64), arg(&&6f64)]) }; |
| 76 | /// assert_eq!(11f64, n); |
| 77 | /// ``` |
| 78 | #[derive (Debug)] |
| 79 | pub struct Cif { |
| 80 | cif: low::ffi_cif, |
| 81 | args: types::TypeArray, |
| 82 | result: Type, |
| 83 | } |
| 84 | |
| 85 | // To clone a Cif we need to clone the types and then make sure the new |
| 86 | // ffi_cif refers to the clones of the types. |
| 87 | impl Clone for Cif { |
| 88 | fn clone(&self) -> Self { |
| 89 | let mut copy: Cif = Cif { |
| 90 | cif: self.cif, |
| 91 | args: self.args.clone(), |
| 92 | result: self.result.clone(), |
| 93 | }; |
| 94 | |
| 95 | copy.cif.arg_types = copy.args.as_raw_ptr(); |
| 96 | copy.cif.rtype = copy.result.as_raw_ptr(); |
| 97 | |
| 98 | copy |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | impl Cif { |
| 103 | /// Creates a new [CIF](Cif) for the given argument and result |
| 104 | /// types. |
| 105 | /// |
| 106 | /// Takes ownership of the argument and result [`Type`]s, because |
| 107 | /// the resulting [`Cif`] retains references to them. Defaults to |
| 108 | /// the platform’s default calling convention; this can be adjusted |
| 109 | /// using [`Cif::set_abi`]. |
| 110 | pub fn new<I>(args: I, result: Type) -> Self |
| 111 | where |
| 112 | I: IntoIterator<Item = Type>, |
| 113 | I::IntoIter: ExactSizeIterator<Item = Type>, |
| 114 | { |
| 115 | let args = args.into_iter(); |
| 116 | let nargs = args.len(); |
| 117 | let args = types::TypeArray::new(args); |
| 118 | let mut cif: low::ffi_cif = Default::default(); |
| 119 | |
| 120 | unsafe { |
| 121 | low::prep_cif( |
| 122 | &mut cif, |
| 123 | low::ffi_abi_FFI_DEFAULT_ABI, |
| 124 | nargs, |
| 125 | result.as_raw_ptr(), |
| 126 | args.as_raw_ptr(), |
| 127 | ) |
| 128 | } |
| 129 | .expect("low::prep_cif" ); |
| 130 | |
| 131 | // Note that cif retains references to args and result, |
| 132 | // which is why we hold onto them here. |
| 133 | Cif { cif, args, result } |
| 134 | } |
| 135 | |
| 136 | /// Calls a function with the given arguments. |
| 137 | /// |
| 138 | /// In particular, this method invokes function `fun` passing it |
| 139 | /// arguments `args`, and returns the result. |
| 140 | /// |
| 141 | /// # Safety |
| 142 | /// |
| 143 | /// There is no checking that the calling convention and types |
| 144 | /// in the `Cif` match the actual calling convention and types of |
| 145 | /// `fun`, nor that they match the types of `args`. |
| 146 | pub unsafe fn call<R>(&self, fun: CodePtr, args: &[Arg]) -> R { |
| 147 | assert_eq!( |
| 148 | self.cif.nargs as usize, |
| 149 | args.len(), |
| 150 | "Cif::call: passed wrong number of arguments" |
| 151 | ); |
| 152 | |
| 153 | low::call::<R>( |
| 154 | &self.cif as *const _ as *mut _, |
| 155 | fun, |
| 156 | args.as_ptr() as *mut *mut c_void, |
| 157 | ) |
| 158 | } |
| 159 | |
| 160 | /// Sets the CIF to use the given calling convention. |
| 161 | pub fn set_abi(&mut self, abi: FfiAbi) { |
| 162 | self.cif.abi = abi; |
| 163 | } |
| 164 | |
| 165 | /// Gets a raw pointer to the underlying [`low::ffi_cif`]. |
| 166 | /// |
| 167 | /// This can be used for passing a `middle::Cif` to functions from the |
| 168 | /// [`low`](crate::low) and [`raw`](crate::raw) modules. |
| 169 | pub fn as_raw_ptr(&self) -> *mut low::ffi_cif { |
| 170 | &self.cif as *const _ as *mut _ |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | /// Represents a closure callable from C. |
| 175 | /// |
| 176 | /// A libffi closure captures a `void*` (“userdata”) and passes it to a |
| 177 | /// callback when the code pointer (obtained via [`Closure::code_ptr`]) |
| 178 | /// is invoked. Lifetype parameter `'a` ensures that the closure does |
| 179 | /// not outlive the userdata. |
| 180 | /// |
| 181 | /// Construct with [`Closure::new`] and [`Closure::new_mut`]. |
| 182 | /// |
| 183 | /// # Examples |
| 184 | /// |
| 185 | /// In this example we turn a Rust lambda into a C function. We first |
| 186 | /// define function `lambda_callback`, which will be called by libffi |
| 187 | /// when the closure is called. The callback function takes four |
| 188 | /// arguments: a CIF describing its arguments, a pointer for where to |
| 189 | /// store its result, a pointer to an array of pointers to its |
| 190 | /// arguments, and a userdata pointer. In this ase, the Rust closure |
| 191 | /// value `lambda` is passed as userdata to `lambda_callback`, which |
| 192 | /// then invokes it. |
| 193 | /// |
| 194 | /// ``` |
| 195 | /// use std::mem; |
| 196 | /// use std::os::raw::c_void; |
| 197 | /// |
| 198 | /// use libffi::middle::*; |
| 199 | /// use libffi::low; |
| 200 | /// |
| 201 | /// unsafe extern "C" fn lambda_callback<F: Fn(u64, u64) -> u64>( |
| 202 | /// _cif: &low::ffi_cif, |
| 203 | /// result: &mut u64, |
| 204 | /// args: *const *const c_void, |
| 205 | /// userdata: &F) |
| 206 | /// { |
| 207 | /// let args = args as *const &u64; |
| 208 | /// let arg1 = **args.offset(0); |
| 209 | /// let arg2 = **args.offset(1); |
| 210 | /// |
| 211 | /// *result = userdata(arg1, arg2); |
| 212 | /// } |
| 213 | /// |
| 214 | /// let cif = Cif::new(vec![Type::u64(), Type::u64()].into_iter(), |
| 215 | /// Type::u64()); |
| 216 | /// let lambda = |x: u64, y: u64| x + y; |
| 217 | /// let closure = Closure::new(cif, lambda_callback, &lambda); |
| 218 | /// |
| 219 | /// let fun: &extern "C" fn(u64, u64) -> u64 = unsafe { |
| 220 | /// closure.instantiate_code_ptr() |
| 221 | /// }; |
| 222 | /// |
| 223 | /// assert_eq!(11, fun(5, 6)); |
| 224 | /// assert_eq!(12, fun(5, 7)); |
| 225 | /// ``` |
| 226 | #[derive (Debug)] |
| 227 | pub struct Closure<'a> { |
| 228 | _cif: Box<Cif>, |
| 229 | alloc: *mut low::ffi_closure, |
| 230 | code: CodePtr, |
| 231 | _marker: PhantomData<&'a ()>, |
| 232 | } |
| 233 | |
| 234 | impl<'a> Drop for Closure<'a> { |
| 235 | fn drop(&mut self) { |
| 236 | unsafe { |
| 237 | low::closure_free(self.alloc); |
| 238 | } |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | impl<'a> Closure<'a> { |
| 243 | /// Creates a new closure with immutable userdata. |
| 244 | /// |
| 245 | /// # Arguments |
| 246 | /// |
| 247 | /// - `cif` — describes the calling convention and argument and |
| 248 | /// result types |
| 249 | /// - `callback` — the function to call when the closure is invoked |
| 250 | /// - `userdata` — the pointer to pass to `callback` along with the |
| 251 | /// arguments when the closure is called |
| 252 | /// |
| 253 | /// # Result |
| 254 | /// |
| 255 | /// The new closure. |
| 256 | pub fn new<U, R>(cif: Cif, callback: Callback<U, R>, userdata: &'a U) -> Self { |
| 257 | let cif = Box::new(cif); |
| 258 | let (alloc, code) = low::closure_alloc(); |
| 259 | |
| 260 | unsafe { |
| 261 | low::prep_closure( |
| 262 | alloc, |
| 263 | cif.as_raw_ptr(), |
| 264 | callback, |
| 265 | userdata as *const U, |
| 266 | code, |
| 267 | ) |
| 268 | .unwrap(); |
| 269 | } |
| 270 | |
| 271 | Closure { |
| 272 | _cif: cif, |
| 273 | alloc, |
| 274 | code, |
| 275 | _marker: PhantomData, |
| 276 | } |
| 277 | } |
| 278 | |
| 279 | /// Creates a new closure with mutable userdata. |
| 280 | /// |
| 281 | /// # Arguments |
| 282 | /// |
| 283 | /// - `cif` — describes the calling convention and argument and |
| 284 | /// result types |
| 285 | /// - `callback` — the function to call when the closure is invoked |
| 286 | /// - `userdata` — the pointer to pass to `callback` along with the |
| 287 | /// arguments when the closure is called |
| 288 | /// |
| 289 | /// # Result |
| 290 | /// |
| 291 | /// The new closure. |
| 292 | pub fn new_mut<U, R>(cif: Cif, callback: CallbackMut<U, R>, userdata: &'a mut U) -> Self { |
| 293 | let cif = Box::new(cif); |
| 294 | let (alloc, code) = low::closure_alloc(); |
| 295 | |
| 296 | unsafe { |
| 297 | low::prep_closure_mut(alloc, cif.as_raw_ptr(), callback, userdata as *mut U, code) |
| 298 | .unwrap(); |
| 299 | } |
| 300 | |
| 301 | Closure { |
| 302 | _cif: cif, |
| 303 | alloc, |
| 304 | code, |
| 305 | _marker: PhantomData, |
| 306 | } |
| 307 | } |
| 308 | |
| 309 | /// Obtains the callable code pointer for a closure. |
| 310 | /// |
| 311 | /// # Safety |
| 312 | /// |
| 313 | /// The result needs to be transmuted to the correct type before |
| 314 | /// it can be called. If the type is wrong then undefined behavior |
| 315 | /// will result. |
| 316 | pub fn code_ptr(&self) -> &unsafe extern "C" fn() { |
| 317 | self.code.as_fun() |
| 318 | } |
| 319 | |
| 320 | /// Transmutes the callable code pointer for a closure to a reference |
| 321 | /// to any type. This is intended to be used to transmute it to its |
| 322 | /// correct function type in order to call it. |
| 323 | /// |
| 324 | /// # Safety |
| 325 | /// |
| 326 | /// This method allows transmuting to a reference to *any* sized type, |
| 327 | /// and cannot check whether the code pointer actually has that type. |
| 328 | /// If the type is wrong then undefined behavior will result. |
| 329 | pub unsafe fn instantiate_code_ptr<T>(&self) -> &T { |
| 330 | self.code.as_any_ref_() |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | /// The type of callback invoked by a [`ClosureOnce`]. |
| 335 | pub type CallbackOnce<U, R> = CallbackMut<Option<U>, R>; |
| 336 | |
| 337 | /// A closure that owns needs-drop data. |
| 338 | /// |
| 339 | /// This allows the closure’s callback to take ownership of the data, in |
| 340 | /// which case the userdata will be gone if called again. |
| 341 | #[derive (Debug)] |
| 342 | pub struct ClosureOnce { |
| 343 | alloc: *mut low::ffi_closure, |
| 344 | code: CodePtr, |
| 345 | _cif: Box<Cif>, |
| 346 | _userdata: Box<dyn Any>, |
| 347 | } |
| 348 | |
| 349 | impl Drop for ClosureOnce { |
| 350 | fn drop(&mut self) { |
| 351 | unsafe { |
| 352 | low::closure_free(self.alloc); |
| 353 | } |
| 354 | } |
| 355 | } |
| 356 | |
| 357 | impl ClosureOnce { |
| 358 | /// Creates a new closure with owned userdata. |
| 359 | /// |
| 360 | /// # Arguments |
| 361 | /// |
| 362 | /// - `cif` — describes the calling convention and argument and |
| 363 | /// result types |
| 364 | /// - `callback` — the function to call when the closure is invoked |
| 365 | /// - `userdata` — the value to pass to `callback` along with the |
| 366 | /// arguments when the closure is called |
| 367 | /// |
| 368 | /// # Result |
| 369 | /// |
| 370 | /// The new closure. |
| 371 | pub fn new<U: Any, R>(cif: Cif, callback: CallbackOnce<U, R>, userdata: U) -> Self { |
| 372 | let _cif = Box::new(cif); |
| 373 | let _userdata = Box::new(Some(userdata)) as Box<dyn Any>; |
| 374 | let (alloc, code) = low::closure_alloc(); |
| 375 | |
| 376 | assert!(!alloc.is_null(), "closure_alloc: returned null" ); |
| 377 | |
| 378 | { |
| 379 | let borrow = _userdata.downcast_ref::<Option<U>>().unwrap(); |
| 380 | unsafe { |
| 381 | low::prep_closure_mut( |
| 382 | alloc, |
| 383 | _cif.as_raw_ptr(), |
| 384 | callback, |
| 385 | borrow as *const _ as *mut _, |
| 386 | code, |
| 387 | ) |
| 388 | .unwrap(); |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | ClosureOnce { |
| 393 | alloc, |
| 394 | code, |
| 395 | _cif, |
| 396 | _userdata, |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | /// Obtains the callable code pointer for a closure. |
| 401 | /// |
| 402 | /// # Safety |
| 403 | /// |
| 404 | /// The result needs to be transmuted to the correct type before |
| 405 | /// it can be called. If the type is wrong then undefined behavior |
| 406 | /// will result. |
| 407 | pub fn code_ptr(&self) -> &unsafe extern "C" fn() { |
| 408 | self.code.as_fun() |
| 409 | } |
| 410 | |
| 411 | /// Transmutes the callable code pointer for a closure to a reference |
| 412 | /// to any type. This is intended to be used to transmute it to its |
| 413 | /// correct function type in order to call it. |
| 414 | /// |
| 415 | /// # Safety |
| 416 | /// |
| 417 | /// This method allows transmuting to a reference to *any* sized type, |
| 418 | /// and cannot check whether the code pointer actually has that type. |
| 419 | /// If the type is wrong then undefined behavior will result. |
| 420 | pub unsafe fn instantiate_code_ptr<T>(&self) -> &T { |
| 421 | self.code.as_any_ref_() |
| 422 | } |
| 423 | } |
| 424 | |
| 425 | #[cfg (test)] |
| 426 | mod test { |
| 427 | use super::*; |
| 428 | use crate::low; |
| 429 | use std::os::raw::c_void; |
| 430 | |
| 431 | #[test ] |
| 432 | fn call() { |
| 433 | let cif = Cif::new(vec![Type::i64(), Type::i64()].into_iter(), Type::i64()); |
| 434 | let f = |m: i64, n: i64| -> i64 { |
| 435 | unsafe { cif.call(CodePtr(add_it as *mut c_void), &[arg(&m), arg(&n)]) } |
| 436 | }; |
| 437 | |
| 438 | assert_eq!(12, f(5, 7)); |
| 439 | assert_eq!(13, f(6, 7)); |
| 440 | assert_eq!(15, f(8, 7)); |
| 441 | } |
| 442 | |
| 443 | extern "C" fn add_it(n: i64, m: i64) -> i64 { |
| 444 | n + m |
| 445 | } |
| 446 | |
| 447 | #[test ] |
| 448 | fn closure() { |
| 449 | let cif = Cif::new(vec![Type::u64()].into_iter(), Type::u64()); |
| 450 | let env: u64 = 5; |
| 451 | let closure = Closure::new(cif, callback, &env); |
| 452 | |
| 453 | let fun: &extern "C" fn(u64) -> u64 = unsafe { closure.instantiate_code_ptr() }; |
| 454 | |
| 455 | assert_eq!(11, fun(6)); |
| 456 | assert_eq!(12, fun(7)); |
| 457 | } |
| 458 | |
| 459 | unsafe extern "C" fn callback( |
| 460 | _cif: &low::ffi_cif, |
| 461 | result: &mut u64, |
| 462 | args: *const *const c_void, |
| 463 | userdata: &u64, |
| 464 | ) { |
| 465 | let args = args as *const &u64; |
| 466 | *result = **args + *userdata; |
| 467 | } |
| 468 | |
| 469 | #[test ] |
| 470 | fn rust_lambda() { |
| 471 | let cif = Cif::new(vec![Type::u64(), Type::u64()].into_iter(), Type::u64()); |
| 472 | let env = |x: u64, y: u64| x + y; |
| 473 | let closure = Closure::new(cif, callback2, &env); |
| 474 | |
| 475 | let fun: &extern "C" fn(u64, u64) -> u64 = unsafe { closure.instantiate_code_ptr() }; |
| 476 | |
| 477 | assert_eq!(11, fun(5, 6)); |
| 478 | } |
| 479 | |
| 480 | unsafe extern "C" fn callback2<F: Fn(u64, u64) -> u64>( |
| 481 | _cif: &low::ffi_cif, |
| 482 | result: &mut u64, |
| 483 | args: *const *const c_void, |
| 484 | userdata: &F, |
| 485 | ) { |
| 486 | let args = args as *const &u64; |
| 487 | let arg1 = **args.offset(0); |
| 488 | let arg2 = **args.offset(1); |
| 489 | |
| 490 | *result = userdata(arg1, arg2); |
| 491 | } |
| 492 | |
| 493 | #[test ] |
| 494 | fn clone_cif() { |
| 495 | let cif = Cif::new( |
| 496 | vec![ |
| 497 | Type::structure(vec![ |
| 498 | Type::structure(vec![Type::u64(), Type::u8(), Type::f64()]), |
| 499 | Type::i8(), |
| 500 | Type::i64(), |
| 501 | ]), |
| 502 | Type::u64(), |
| 503 | ] |
| 504 | .into_iter(), |
| 505 | Type::u64(), |
| 506 | ); |
| 507 | let clone_cif = cif.clone(); |
| 508 | |
| 509 | unsafe { |
| 510 | let args = std::slice::from_raw_parts(cif.cif.arg_types, cif.cif.nargs as usize); |
| 511 | let struct_arg = args |
| 512 | .first() |
| 513 | .expect("CIF arguments slice was empty" ) |
| 514 | .as_ref() |
| 515 | .expect("CIF first argument was null" ); |
| 516 | // Get slice of length 1 to get the first element |
| 517 | let struct_size = struct_arg.size; |
| 518 | let struct_parts = std::slice::from_raw_parts(struct_arg.elements, 1); |
| 519 | let substruct_size = struct_parts |
| 520 | .first() |
| 521 | .expect("CIF struct argument's elements slice was empty" ) |
| 522 | .as_ref() |
| 523 | .expect("CIF struct argument's first element was null" ) |
| 524 | .size; |
| 525 | |
| 526 | let clone_args = |
| 527 | std::slice::from_raw_parts(clone_cif.cif.arg_types, clone_cif.cif.nargs as usize); |
| 528 | let clone_struct_arg = clone_args |
| 529 | .first() |
| 530 | .expect("CIF arguments slice was empty" ) |
| 531 | .as_ref() |
| 532 | .expect("CIF first argument was null" ); |
| 533 | // Get slice of length 1 to get the first element |
| 534 | let clone_struct_size = clone_struct_arg.size; |
| 535 | let clone_struct_parts = std::slice::from_raw_parts(clone_struct_arg.elements, 1); |
| 536 | let clone_substruct_size = clone_struct_parts |
| 537 | .first() |
| 538 | .expect("Cloned CIF struct argument's elements slice was empty" ) |
| 539 | .as_ref() |
| 540 | .expect("Cloned CIF struct argument's first element was null" ) |
| 541 | .size; |
| 542 | |
| 543 | assert_eq!(struct_size, clone_struct_size); |
| 544 | assert_eq!(substruct_size, clone_substruct_size); |
| 545 | } |
| 546 | } |
| 547 | } |
| 548 | |