| 1 | //! Streaming decompression functionality. |
| 2 | |
| 3 | use super::*; |
| 4 | use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER}; |
| 5 | use ::core::cell::Cell; |
| 6 | |
| 7 | use ::core::cmp; |
| 8 | use ::core::convert::TryInto; |
| 9 | |
| 10 | use self::output_buffer::{InputWrapper, OutputBuffer}; |
| 11 | |
| 12 | pub const TINFL_LZ_DICT_SIZE: usize = 32_768; |
| 13 | |
| 14 | /// A struct containing huffman code lengths and the huffman code tree used by the decompressor. |
| 15 | #[derive (Clone)] |
| 16 | struct HuffmanTable { |
| 17 | /// Fast lookup table for shorter huffman codes. |
| 18 | /// |
| 19 | /// See `HuffmanTable::fast_lookup`. |
| 20 | pub look_up: [i16; FAST_LOOKUP_SIZE as usize], |
| 21 | /// Full huffman tree. |
| 22 | /// |
| 23 | /// Positive values are edge nodes/symbols, negative values are |
| 24 | /// parent nodes/references to other nodes. |
| 25 | pub tree: [i16; MAX_HUFF_TREE_SIZE], |
| 26 | } |
| 27 | |
| 28 | impl HuffmanTable { |
| 29 | const fn new() -> HuffmanTable { |
| 30 | HuffmanTable { |
| 31 | look_up: [0; FAST_LOOKUP_SIZE as usize], |
| 32 | tree: [0; MAX_HUFF_TREE_SIZE], |
| 33 | } |
| 34 | } |
| 35 | |
| 36 | /// Look for a symbol in the fast lookup table. |
| 37 | /// The symbol is stored in the lower 9 bits, the length in the next 6. |
| 38 | /// If the returned value is negative, the code wasn't found in the |
| 39 | /// fast lookup table and the full tree has to be traversed to find the code. |
| 40 | #[inline ] |
| 41 | fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 { |
| 42 | self.look_up[(bit_buf & BitBuffer::from(FAST_LOOKUP_SIZE - 1)) as usize] |
| 43 | } |
| 44 | |
| 45 | /// Get the symbol and the code length from the huffman tree. |
| 46 | #[inline ] |
| 47 | fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u8) -> (i32, u32) { |
| 48 | let mut symbol = fast_symbol; |
| 49 | // We step through the tree until we encounter a positive value, which indicates a |
| 50 | // symbol. |
| 51 | loop { |
| 52 | // symbol here indicates the position of the left (0) node, if the next bit is 1 |
| 53 | // we add 1 to the lookup position to get the right node. |
| 54 | let tree_index = (!symbol + ((bit_buf >> code_len) & 1) as i32) as usize; |
| 55 | |
| 56 | // Use get here to avoid generatic panic code. |
| 57 | // The init_tree code should prevent this from actually going out of bounds |
| 58 | // but if there were somehow a bug with that |
| 59 | // we would at worst end up with corrupted output in release mode. |
| 60 | debug_assert!(tree_index < self.tree.len()); |
| 61 | symbol = i32::from(self.tree.get(tree_index).copied().unwrap_or(i16::MAX)); |
| 62 | code_len += 1; |
| 63 | if symbol >= 0 { |
| 64 | break; |
| 65 | } |
| 66 | } |
| 67 | // Note: Using a u8 for code_len inside this function seems to improve performance, but changing it |
| 68 | // in localvars seems to worsen things so we convert it to a u32 here. |
| 69 | (symbol, u32::from(code_len)) |
| 70 | } |
| 71 | |
| 72 | #[inline ] |
| 73 | /// Look up a symbol and code length from the bits in the provided bit buffer. |
| 74 | /// |
| 75 | /// Returns Some(symbol, length) on success, |
| 76 | /// None if the length is 0. |
| 77 | /// |
| 78 | /// It's possible we could avoid checking for 0 if we can guarantee a sane table. |
| 79 | /// TODO: Check if a smaller type for code_len helps performance. |
| 80 | fn lookup(&self, bit_buf: BitBuffer) -> (i32, u32) { |
| 81 | let symbol = self.fast_lookup(bit_buf).into(); |
| 82 | if symbol >= 0 { |
| 83 | let length = (symbol >> 9) as u32; |
| 84 | (symbol, length) |
| 85 | } else { |
| 86 | // We didn't get a symbol from the fast lookup table, so check the tree instead. |
| 87 | self.tree_lookup(symbol, bit_buf, FAST_LOOKUP_BITS) |
| 88 | } |
| 89 | } |
| 90 | } |
| 91 | |
| 92 | /// The number of huffman tables used. |
| 93 | const MAX_HUFF_TABLES: usize = 3; |
| 94 | /// The length of the first (literal/length) huffman table. |
| 95 | const MAX_HUFF_SYMBOLS_0: usize = 288; |
| 96 | /// The length of the second (distance) huffman table. |
| 97 | const MAX_HUFF_SYMBOLS_1: usize = 32; |
| 98 | /// The length of the last (huffman code length) huffman table. |
| 99 | const MAX_HUFF_SYMBOLS_2: usize = 19; |
| 100 | /// The maximum length of a code that can be looked up in the fast lookup table. |
| 101 | const FAST_LOOKUP_BITS: u8 = 10; |
| 102 | /// The size of the fast lookup table. |
| 103 | const FAST_LOOKUP_SIZE: u32 = 1 << FAST_LOOKUP_BITS; |
| 104 | const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2; |
| 105 | const LITLEN_TABLE: usize = 0; |
| 106 | const DIST_TABLE: usize = 1; |
| 107 | const HUFFLEN_TABLE: usize = 2; |
| 108 | |
| 109 | /// Flags to [`decompress()`] to control how inflation works. |
| 110 | /// |
| 111 | /// These define bits for a bitmask argument. |
| 112 | pub mod inflate_flags { |
| 113 | /// Should we try to parse a zlib header? |
| 114 | /// |
| 115 | /// If unset, the function will expect an RFC1951 deflate stream. If set, it will expect a |
| 116 | /// RFC1950 zlib wrapper around the deflate stream. |
| 117 | pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1; |
| 118 | |
| 119 | /// There will be more input that hasn't been given to the decompressor yet. |
| 120 | /// |
| 121 | /// This is useful when you want to decompress what you have so far, |
| 122 | /// even if you know there is probably more input that hasn't gotten here yet (_e.g._, over a |
| 123 | /// network connection). When [`decompress()`][super::decompress] reaches the end of the input |
| 124 | /// without finding the end of the compressed stream, it will return |
| 125 | /// [`TINFLStatus::NeedsMoreInput`][super::TINFLStatus::NeedsMoreInput] if this is set, |
| 126 | /// indicating that you should get more data before calling again. If not set, it will return |
| 127 | /// [`TINFLStatus::FailedCannotMakeProgress`][super::TINFLStatus::FailedCannotMakeProgress] |
| 128 | /// suggesting the stream is corrupt, since you claimed it was all there. |
| 129 | pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2; |
| 130 | |
| 131 | /// The output buffer should not wrap around. |
| 132 | pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4; |
| 133 | |
| 134 | /// Calculate the adler32 checksum of the output data even if we're not inflating a zlib stream. |
| 135 | /// |
| 136 | /// If [`TINFL_FLAG_IGNORE_ADLER32`] is specified, it will override this. |
| 137 | /// |
| 138 | /// NOTE: Enabling/disabling this between calls to decompress will result in an incorrect |
| 139 | /// checksum. |
| 140 | pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8; |
| 141 | |
| 142 | /// Ignore adler32 checksum even if we are inflating a zlib stream. |
| 143 | /// |
| 144 | /// Overrides [`TINFL_FLAG_COMPUTE_ADLER32`] if both are enabled. |
| 145 | /// |
| 146 | /// NOTE: This flag does not exist in miniz as it does not support this and is a |
| 147 | /// custom addition for miniz_oxide. |
| 148 | /// |
| 149 | /// NOTE: Should not be changed from enabled to disabled after decompression has started, |
| 150 | /// this will result in checksum failure (outside the unlikely event where the checksum happens |
| 151 | /// to match anyway). |
| 152 | pub const TINFL_FLAG_IGNORE_ADLER32: u32 = 64; |
| 153 | } |
| 154 | |
| 155 | use self::inflate_flags::*; |
| 156 | |
| 157 | const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4]; |
| 158 | |
| 159 | #[cfg (target_pointer_width = "64" )] |
| 160 | type BitBuffer = u64; |
| 161 | |
| 162 | #[cfg (not(target_pointer_width = "64" ))] |
| 163 | type BitBuffer = u32; |
| 164 | |
| 165 | /* |
| 166 | enum HuffmanTableType { |
| 167 | LiteralLength = 0, |
| 168 | Dist = 1, |
| 169 | Huffman = 2, |
| 170 | }*/ |
| 171 | |
| 172 | /// Main decompression struct. |
| 173 | /// |
| 174 | #[derive (Clone)] |
| 175 | pub struct DecompressorOxide { |
| 176 | /// Current state of the decompressor. |
| 177 | state: core::State, |
| 178 | /// Number of bits in the bit buffer. |
| 179 | num_bits: u32, |
| 180 | /// Zlib CMF |
| 181 | z_header0: u32, |
| 182 | /// Zlib FLG |
| 183 | z_header1: u32, |
| 184 | /// Adler32 checksum from the zlib header. |
| 185 | z_adler32: u32, |
| 186 | /// 1 if the current block is the last block, 0 otherwise. |
| 187 | finish: u8, |
| 188 | /// The type of the current block. |
| 189 | /// or if in a dynamic block, which huffman table we are currently |
| 190 | // initializing. |
| 191 | block_type: u8, |
| 192 | /// 1 if the adler32 value should be checked. |
| 193 | check_adler32: u32, |
| 194 | /// Last match distance. |
| 195 | dist: u32, |
| 196 | /// Variable used for match length, symbols, and a number of other things. |
| 197 | counter: u32, |
| 198 | /// Number of extra bits for the last length or distance code. |
| 199 | num_extra: u8, |
| 200 | /// Number of entries in each huffman table. |
| 201 | table_sizes: [u16; MAX_HUFF_TABLES], |
| 202 | /// Buffer of input data. |
| 203 | bit_buf: BitBuffer, |
| 204 | /// Huffman tables. |
| 205 | tables: [HuffmanTable; MAX_HUFF_TABLES], |
| 206 | code_size_literal: [u8; MAX_HUFF_SYMBOLS_0], |
| 207 | code_size_dist: [u8; MAX_HUFF_SYMBOLS_1], |
| 208 | code_size_huffman: [u8; MAX_HUFF_SYMBOLS_2], |
| 209 | /// Raw block header. |
| 210 | raw_header: [u8; 4], |
| 211 | /// Huffman length codes. |
| 212 | len_codes: [u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137], |
| 213 | } |
| 214 | |
| 215 | impl DecompressorOxide { |
| 216 | /// Create a new tinfl_decompressor with all fields set to 0. |
| 217 | pub fn new() -> DecompressorOxide { |
| 218 | DecompressorOxide::default() |
| 219 | } |
| 220 | |
| 221 | /// Set the current state to `Start`. |
| 222 | #[inline ] |
| 223 | pub fn init(&mut self) { |
| 224 | // The rest of the data is reset or overwritten when used. |
| 225 | self.state = core::State::Start; |
| 226 | } |
| 227 | |
| 228 | /// Returns the adler32 checksum of the currently decompressed data. |
| 229 | /// Note: Will return Some(1) if decompressing zlib but ignoring adler32. |
| 230 | #[inline ] |
| 231 | pub fn adler32(&self) -> Option<u32> { |
| 232 | if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 { |
| 233 | Some(self.check_adler32) |
| 234 | } else { |
| 235 | None |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | /// Returns the adler32 that was read from the zlib header if it exists. |
| 240 | #[inline ] |
| 241 | pub fn adler32_header(&self) -> Option<u32> { |
| 242 | if self.state != State::Start && self.state != State::BadZlibHeader && self.z_header0 != 0 { |
| 243 | Some(self.z_adler32) |
| 244 | } else { |
| 245 | None |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | // Get zlib header for tests |
| 250 | // Only for tests for now, may provide a proper function for this for later. |
| 251 | #[cfg (all(test, feature = "with-alloc" ))] |
| 252 | pub(crate) const fn zlib_header(&self) -> (u32, u32) { |
| 253 | (self.z_header0, self.z_header1) |
| 254 | } |
| 255 | |
| 256 | /*fn code_size_table(&mut self, table_num: u8) -> &mut [u8] { |
| 257 | match table_num { |
| 258 | 0 => &mut self.code_size_literal, |
| 259 | 1 => &mut self.code_size_dist, |
| 260 | _ => &mut self.code_size_huffman, |
| 261 | } |
| 262 | }*/ |
| 263 | } |
| 264 | |
| 265 | impl Default for DecompressorOxide { |
| 266 | /// Create a new tinfl_decompressor with all fields set to 0. |
| 267 | #[inline (always)] |
| 268 | fn default() -> Self { |
| 269 | DecompressorOxide { |
| 270 | state: core::State::Start, |
| 271 | num_bits: 0, |
| 272 | z_header0: 0, |
| 273 | z_header1: 0, |
| 274 | z_adler32: 0, |
| 275 | finish: 0, |
| 276 | block_type: 0, |
| 277 | check_adler32: 0, |
| 278 | dist: 0, |
| 279 | counter: 0, |
| 280 | num_extra: 0, |
| 281 | table_sizes: [0; MAX_HUFF_TABLES], |
| 282 | bit_buf: 0, |
| 283 | // TODO:(oyvindln) Check that copies here are optimized out in release mode. |
| 284 | tables: [ |
| 285 | HuffmanTable::new(), |
| 286 | HuffmanTable::new(), |
| 287 | HuffmanTable::new(), |
| 288 | ], |
| 289 | code_size_literal: [0; MAX_HUFF_SYMBOLS_0], |
| 290 | code_size_dist: [0; MAX_HUFF_SYMBOLS_1], |
| 291 | code_size_huffman: [0; MAX_HUFF_SYMBOLS_2], |
| 292 | raw_header: [0; 4], |
| 293 | len_codes: [0; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137], |
| 294 | } |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | #[derive (Copy, Clone, PartialEq, Eq, Debug)] |
| 299 | #[non_exhaustive ] |
| 300 | enum State { |
| 301 | Start = 0, |
| 302 | ReadZlibCmf, |
| 303 | ReadZlibFlg, |
| 304 | ReadBlockHeader, |
| 305 | BlockTypeNoCompression, |
| 306 | RawHeader, |
| 307 | RawMemcpy1, |
| 308 | RawMemcpy2, |
| 309 | ReadTableSizes, |
| 310 | ReadHufflenTableCodeSize, |
| 311 | ReadLitlenDistTablesCodeSize, |
| 312 | ReadExtraBitsCodeSize, |
| 313 | DecodeLitlen, |
| 314 | WriteSymbol, |
| 315 | ReadExtraBitsLitlen, |
| 316 | DecodeDistance, |
| 317 | ReadExtraBitsDistance, |
| 318 | RawReadFirstByte, |
| 319 | RawStoreFirstByte, |
| 320 | WriteLenBytesToEnd, |
| 321 | BlockDone, |
| 322 | HuffDecodeOuterLoop1, |
| 323 | HuffDecodeOuterLoop2, |
| 324 | ReadAdler32, |
| 325 | |
| 326 | DoneForever, |
| 327 | |
| 328 | // Failure states. |
| 329 | BlockTypeUnexpected, |
| 330 | BadCodeSizeSum, |
| 331 | BadDistOrLiteralTableLength, |
| 332 | BadTotalSymbols, |
| 333 | BadZlibHeader, |
| 334 | DistanceOutOfBounds, |
| 335 | BadRawLength, |
| 336 | BadCodeSizeDistPrevLookup, |
| 337 | InvalidLitlen, |
| 338 | InvalidDist, |
| 339 | } |
| 340 | |
| 341 | impl State { |
| 342 | const fn is_failure(self) -> bool { |
| 343 | matches!( |
| 344 | self, |
| 345 | BlockTypeUnexpected |
| 346 | | BadCodeSizeSum |
| 347 | | BadDistOrLiteralTableLength |
| 348 | | BadTotalSymbols |
| 349 | | BadZlibHeader |
| 350 | | DistanceOutOfBounds |
| 351 | | BadRawLength |
| 352 | | BadCodeSizeDistPrevLookup |
| 353 | | InvalidLitlen |
| 354 | | InvalidDist |
| 355 | ) |
| 356 | } |
| 357 | |
| 358 | #[inline ] |
| 359 | fn begin(&mut self, new_state: State) { |
| 360 | *self = new_state; |
| 361 | } |
| 362 | } |
| 363 | |
| 364 | use self::State::*; |
| 365 | |
| 366 | // # Optimization |
| 367 | // We add a extra value at the end and make the tables 32 elements long |
| 368 | // so we can use a mask to avoid bounds checks. |
| 369 | // The invalid values are set to something high enough to avoid underflowing |
| 370 | // the match length. |
| 371 | /// Base length for each length code. |
| 372 | /// |
| 373 | /// The base is used together with the value of the extra bits to decode the actual |
| 374 | /// length/distance values in a match. |
| 375 | #[rustfmt::skip] |
| 376 | const LENGTH_BASE: [u16; 32] = [ |
| 377 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
| 378 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512 |
| 379 | ]; |
| 380 | |
| 381 | /// Number of extra bits for each length code. |
| 382 | #[rustfmt::skip] |
| 383 | const LENGTH_EXTRA: [u8; 32] = [ |
| 384 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
| 385 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0 |
| 386 | ]; |
| 387 | |
| 388 | /// Base length for each distance code. |
| 389 | #[rustfmt::skip] |
| 390 | const DIST_BASE: [u16; 30] = [ |
| 391 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, |
| 392 | 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, |
| 393 | 2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577 |
| 394 | ]; |
| 395 | |
| 396 | /// Get the number of extra bits used for a distance code. |
| 397 | /// (Code numbers above `NUM_DISTANCE_CODES` will give some garbage |
| 398 | /// value.) |
| 399 | #[inline (always)] |
| 400 | const fn num_extra_bits_for_distance_code(code: u8) -> u8 { |
| 401 | // TODO: Need to verify that this is faster on all platforms. |
| 402 | // This can be easily calculated without a lookup. |
| 403 | let c: u8 = code >> 1; |
| 404 | c.saturating_sub(1) |
| 405 | } |
| 406 | |
| 407 | /// The mask used when indexing the base/extra arrays. |
| 408 | const BASE_EXTRA_MASK: usize = 32 - 1; |
| 409 | |
| 410 | /// Read an le u16 value from the slice iterator. |
| 411 | /// |
| 412 | /// # Panics |
| 413 | /// Panics if there are less than two bytes left. |
| 414 | #[inline ] |
| 415 | fn read_u16_le(iter: &mut InputWrapper) -> u16 { |
| 416 | let ret: u16 = { |
| 417 | let two_bytes: [u8; _] = iter.as_slice()[..2].try_into().unwrap_or_default(); |
| 418 | u16::from_le_bytes(two_bytes) |
| 419 | }; |
| 420 | iter.advance(steps:2); |
| 421 | ret |
| 422 | } |
| 423 | |
| 424 | /// Ensure that there is data in the bit buffer. |
| 425 | /// |
| 426 | /// On 64-bit platform, we use a 64-bit value so this will |
| 427 | /// result in there being at least 32 bits in the bit buffer. |
| 428 | /// This function assumes that there is at least 4 bytes left in the input buffer. |
| 429 | #[inline (always)] |
| 430 | #[cfg (target_pointer_width = "64" )] |
| 431 | fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut InputWrapper) { |
| 432 | // Read four bytes into the buffer at once. |
| 433 | if l.num_bits < 30 { |
| 434 | l.bit_buf |= BitBuffer::from(in_iter.read_u32_le()) << l.num_bits; |
| 435 | l.num_bits += 32; |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | /// Same as previous, but for non-64-bit platforms. |
| 440 | /// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer. |
| 441 | #[inline (always)] |
| 442 | #[cfg (not(target_pointer_width = "64" ))] |
| 443 | fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut InputWrapper) { |
| 444 | // If the buffer is 32-bit wide, read 2 bytes instead. |
| 445 | if l.num_bits < 15 { |
| 446 | l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; |
| 447 | l.num_bits += 16; |
| 448 | } |
| 449 | } |
| 450 | |
| 451 | /// Check that the zlib header is correct and that there is enough space in the buffer |
| 452 | /// for the window size specified in the header. |
| 453 | /// |
| 454 | /// See https://tools.ietf.org/html/rfc1950 |
| 455 | #[inline ] |
| 456 | const fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action { |
| 457 | let mut failed = |
| 458 | // cmf + flg should be divisible by 31. |
| 459 | (((cmf * 256) + flg) % 31 != 0) || |
| 460 | // If this flag is set, a dictionary was used for this zlib compressed data. |
| 461 | // This is currently not supported by miniz or miniz-oxide |
| 462 | ((flg & 0b0010_0000) != 0) || |
| 463 | // Compression method. Only 8(DEFLATE) is defined by the standard. |
| 464 | ((cmf & 15) != 8); |
| 465 | |
| 466 | let window_size = 1 << ((cmf >> 4) + 8); |
| 467 | if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 { |
| 468 | // Bail if the buffer is wrapping and the window size is larger than the buffer. |
| 469 | failed |= (mask + 1) < window_size; |
| 470 | } |
| 471 | |
| 472 | // Zlib doesn't allow window sizes above 32 * 1024. |
| 473 | failed |= window_size > 32_768; |
| 474 | |
| 475 | if failed { |
| 476 | Action::Jump(BadZlibHeader) |
| 477 | } else { |
| 478 | Action::Jump(ReadBlockHeader) |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | enum Action { |
| 483 | None, |
| 484 | Jump(State), |
| 485 | End(TINFLStatus), |
| 486 | } |
| 487 | |
| 488 | /// Try to decode the next huffman code, and puts it in the counter field of the decompressor |
| 489 | /// if successful. |
| 490 | /// |
| 491 | /// # Returns |
| 492 | /// The specified action returned from `f` on success, |
| 493 | /// `Action::End` if there are not enough data left to decode a symbol. |
| 494 | fn decode_huffman_code<F>( |
| 495 | r: &mut DecompressorOxide, |
| 496 | l: &mut LocalVars, |
| 497 | table: usize, |
| 498 | flags: u32, |
| 499 | in_iter: &mut InputWrapper, |
| 500 | f: F, |
| 501 | ) -> Action |
| 502 | where |
| 503 | F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action, |
| 504 | { |
| 505 | // As the huffman codes can be up to 15 bits long we need at least 15 bits |
| 506 | // ready in the bit buffer to start decoding the next huffman code. |
| 507 | if l.num_bits < 15 { |
| 508 | // First, make sure there is enough data in the bit buffer to decode a huffman code. |
| 509 | if in_iter.bytes_left() < 2 { |
| 510 | // If there is less than 2 bytes left in the input buffer, we try to look up |
| 511 | // the huffman code with what's available, and return if that doesn't succeed. |
| 512 | // Original explanation in miniz: |
| 513 | // /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes |
| 514 | // * remaining in the input buffer falls below 2. */ |
| 515 | // /* It reads just enough bytes from the input stream that are needed to decode |
| 516 | // * the next Huffman code (and absolutely no more). It works by trying to fully |
| 517 | // * decode a */ |
| 518 | // /* Huffman code by using whatever bits are currently present in the bit buffer. |
| 519 | // * If this fails, it reads another byte, and tries again until it succeeds or |
| 520 | // * until the */ |
| 521 | // /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */ |
| 522 | loop { |
| 523 | let mut temp = i32::from(r.tables[table].fast_lookup(l.bit_buf)); |
| 524 | if temp >= 0 { |
| 525 | let code_len = (temp >> 9) as u32; |
| 526 | // TODO: Is there any point to check for code_len != 0 here still? |
| 527 | if (code_len != 0) && (l.num_bits >= code_len) { |
| 528 | break; |
| 529 | } |
| 530 | } else if l.num_bits > FAST_LOOKUP_BITS.into() { |
| 531 | let mut code_len = u32::from(FAST_LOOKUP_BITS); |
| 532 | loop { |
| 533 | temp = i32::from( |
| 534 | r.tables[table].tree |
| 535 | [(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize], |
| 536 | ); |
| 537 | code_len += 1; |
| 538 | if temp >= 0 || l.num_bits < code_len + 1 { |
| 539 | break; |
| 540 | } |
| 541 | } |
| 542 | if temp >= 0 { |
| 543 | break; |
| 544 | } |
| 545 | } |
| 546 | |
| 547 | // TODO: miniz jumps straight to here after getting here again after failing to read |
| 548 | // a byte. |
| 549 | // Doing that lets miniz avoid re-doing the lookup that that was done in the |
| 550 | // previous call. |
| 551 | let mut byte = 0; |
| 552 | if let a @ Action::End(_) = read_byte(in_iter, flags, |b| { |
| 553 | byte = b; |
| 554 | Action::None |
| 555 | }) { |
| 556 | return a; |
| 557 | }; |
| 558 | |
| 559 | // Do this outside closure for now to avoid borrowing r. |
| 560 | l.bit_buf |= BitBuffer::from(byte) << l.num_bits; |
| 561 | l.num_bits += 8; |
| 562 | |
| 563 | if l.num_bits >= 15 { |
| 564 | break; |
| 565 | } |
| 566 | } |
| 567 | } else { |
| 568 | // There is enough data in the input buffer, so read the next two bytes |
| 569 | // and add them to the bit buffer. |
| 570 | // Unwrapping here is fine since we just checked that there are at least two |
| 571 | // bytes left. |
| 572 | l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; |
| 573 | l.num_bits += 16; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | // We now have at least 15 bits in the input buffer. |
| 578 | let mut symbol = i32::from(r.tables[table].fast_lookup(l.bit_buf)); |
| 579 | let code_len; |
| 580 | // If the symbol was found in the fast lookup table. |
| 581 | if symbol >= 0 { |
| 582 | // Get the length value from the top bits. |
| 583 | // As we shift down the sign bit, converting to an unsigned value |
| 584 | // shouldn't overflow. |
| 585 | code_len = (symbol >> 9) as u32; |
| 586 | // Mask out the length value. |
| 587 | symbol &= 511; |
| 588 | } else { |
| 589 | let res = r.tables[table].tree_lookup(symbol, l.bit_buf, FAST_LOOKUP_BITS); |
| 590 | symbol = res.0; |
| 591 | code_len = res.1; |
| 592 | }; |
| 593 | |
| 594 | l.bit_buf >>= code_len; |
| 595 | l.num_bits -= code_len; |
| 596 | f(r, l, symbol) |
| 597 | } |
| 598 | |
| 599 | /// Try to read one byte from `in_iter` and call `f` with the read byte as an argument, |
| 600 | /// returning the result. |
| 601 | /// If reading fails, `Action::End is returned` |
| 602 | #[inline ] |
| 603 | fn read_byte<F>(in_iter: &mut InputWrapper, flags: u32, f: F) -> Action |
| 604 | where |
| 605 | F: FnOnce(u8) -> Action, |
| 606 | { |
| 607 | match in_iter.read_byte() { |
| 608 | None => end_of_input(flags), |
| 609 | Some(byte: u8) => f(byte), |
| 610 | } |
| 611 | } |
| 612 | |
| 613 | // TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always)) |
| 614 | /// Try to read `amount` number of bits from `in_iter` and call the function `f` with the bits as an |
| 615 | /// an argument after reading, returning the result of that function, or `Action::End` if there are |
| 616 | /// not enough bytes left. |
| 617 | #[inline ] |
| 618 | #[allow (clippy::while_immutable_condition)] |
| 619 | fn read_bits<F>( |
| 620 | l: &mut LocalVars, |
| 621 | amount: u32, |
| 622 | in_iter: &mut InputWrapper, |
| 623 | flags: u32, |
| 624 | f: F, |
| 625 | ) -> Action |
| 626 | where |
| 627 | F: FnOnce(&mut LocalVars, BitBuffer) -> Action, |
| 628 | { |
| 629 | // Clippy gives a false positive warning here due to the closure. |
| 630 | // Read enough bytes from the input iterator to cover the number of bits we want. |
| 631 | while l.num_bits < amount { |
| 632 | let action: Action = read_byte(in_iter, flags, |byte: u8| { |
| 633 | l.bit_buf |= BitBuffer::from(byte) << l.num_bits; |
| 634 | l.num_bits += 8; |
| 635 | Action::None |
| 636 | }); |
| 637 | |
| 638 | // If there are not enough bytes in the input iterator, return and signal that we need more. |
| 639 | if !matches!(action, Action::None) { |
| 640 | return action; |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | let bits: u64 = l.bit_buf & ((1 << amount) - 1); |
| 645 | l.bit_buf >>= amount; |
| 646 | l.num_bits -= amount; |
| 647 | f(l, bits) |
| 648 | } |
| 649 | |
| 650 | #[inline ] |
| 651 | fn pad_to_bytes<F>(l: &mut LocalVars, in_iter: &mut InputWrapper, flags: u32, f: F) -> Action |
| 652 | where |
| 653 | F: FnOnce(&mut LocalVars) -> Action, |
| 654 | { |
| 655 | let num_bits: u32 = l.num_bits & 7; |
| 656 | read_bits(l, amount:num_bits, in_iter, flags, |l: &mut LocalVars, _| f(l)) |
| 657 | } |
| 658 | |
| 659 | #[inline ] |
| 660 | const fn end_of_input(flags: u32) -> Action { |
| 661 | Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 { |
| 662 | TINFLStatus::NeedsMoreInput |
| 663 | } else { |
| 664 | TINFLStatus::FailedCannotMakeProgress |
| 665 | }) |
| 666 | } |
| 667 | |
| 668 | #[inline ] |
| 669 | fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 { |
| 670 | let res: u32 = cmp::min(v1:l.num_bits >> 3, v2:max); |
| 671 | l.num_bits -= res << 3; |
| 672 | res |
| 673 | } |
| 674 | |
| 675 | fn start_static_table(r: &mut DecompressorOxide) { |
| 676 | r.table_sizes[LITLEN_TABLE] = 288; |
| 677 | r.table_sizes[DIST_TABLE] = 32; |
| 678 | r.code_size_literal[0..144].fill(8); |
| 679 | r.code_size_literal[144..256].fill(9); |
| 680 | r.code_size_literal[256..280].fill(7); |
| 681 | r.code_size_literal[280..288].fill(8); |
| 682 | r.code_size_dist[0..32].fill(5); |
| 683 | } |
| 684 | |
| 685 | #[cfg (any( |
| 686 | feature = "rustc-dep-of-std" , |
| 687 | target_arch = "aarch64" , |
| 688 | target_arch = "arm64ec" , |
| 689 | target_arch = "loongarch64" |
| 690 | ))] |
| 691 | fn reverse_bits(n: u32) -> u32 { |
| 692 | // Lookup is not used when building as part of std to avoid wasting space |
| 693 | // for lookup table in every rust binary |
| 694 | // as it's only used for backtraces in the cold path |
| 695 | // - see #152 |
| 696 | |
| 697 | // armv7 and newer, and loongarch have a cpu instruction for bit reversal so |
| 698 | // it's preferable to just use that on those architectures. |
| 699 | n.reverse_bits() |
| 700 | } |
| 701 | |
| 702 | #[cfg (not(any( |
| 703 | feature = "rustc-dep-of-std" , |
| 704 | target_arch = "aarch64" , |
| 705 | target_arch = "arm64ec" , |
| 706 | target_arch = "loongarch64" |
| 707 | )))] |
| 708 | fn reverse_bits(n: u32) -> u32 { |
| 709 | static REVERSED_BITS_LOOKUP: [u32; 512] = { |
| 710 | let mut table: [u32; 512] = [0; 512]; |
| 711 | |
| 712 | let mut i: usize = 0; |
| 713 | while i < 512 { |
| 714 | table[i] = (i as u32).reverse_bits(); |
| 715 | i += 1; |
| 716 | } |
| 717 | |
| 718 | table |
| 719 | }; |
| 720 | REVERSED_BITS_LOOKUP[n as usize] |
| 721 | } |
| 722 | |
| 723 | fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Option<Action> { |
| 724 | loop { |
| 725 | let bt = r.block_type as usize; |
| 726 | |
| 727 | let code_sizes = match bt { |
| 728 | LITLEN_TABLE => &mut r.code_size_literal[..], |
| 729 | DIST_TABLE => &mut r.code_size_dist, |
| 730 | HUFFLEN_TABLE => &mut r.code_size_huffman, |
| 731 | _ => return None, |
| 732 | }; |
| 733 | let table = &mut r.tables[bt]; |
| 734 | |
| 735 | let mut total_symbols = [0u16; 16]; |
| 736 | let mut next_code = [0u32; 17]; |
| 737 | const INVALID_CODE: i16 = 1 << 9 | 286; |
| 738 | // Set the values in the fast table to return a |
| 739 | // non-zero length and an invalid symbol instead of zero |
| 740 | // so that we do not have to have a check for a zero |
| 741 | // code length in the hot code path later |
| 742 | // and can instead error out on the invalid symbol check |
| 743 | // on bogus input. |
| 744 | table.look_up.fill(INVALID_CODE); |
| 745 | // If we are initializing the huffman code length we can skip |
| 746 | // this since these codes can't be longer than 3 bits |
| 747 | // and thus only use the fast table and this table won't be accessed so |
| 748 | // there is no point clearing it. |
| 749 | // TODO: Avoid creating this table at all. |
| 750 | if bt != HUFFLEN_TABLE { |
| 751 | table.tree.fill(0); |
| 752 | } |
| 753 | |
| 754 | let table_size = r.table_sizes[bt] as usize; |
| 755 | if table_size > code_sizes.len() { |
| 756 | return None; |
| 757 | } |
| 758 | for &code_size in &code_sizes[..table_size] { |
| 759 | let cs = code_size as usize; |
| 760 | if cs >= total_symbols.len() { |
| 761 | return None; |
| 762 | } |
| 763 | total_symbols[cs] += 1; |
| 764 | } |
| 765 | |
| 766 | let mut used_symbols = 0; |
| 767 | let mut total = 0u32; |
| 768 | // Count up the total number of used lengths and check that the table is not under or over-subscribed. |
| 769 | for (&ts, next) in total_symbols.iter().zip(next_code[1..].iter_mut()).skip(1) { |
| 770 | used_symbols += ts; |
| 771 | total += u32::from(ts); |
| 772 | total <<= 1; |
| 773 | *next = total; |
| 774 | } |
| 775 | |
| 776 | // |
| 777 | // While it's not explicitly stated in the spec, a hufflen table |
| 778 | // with a single length (or none) would be invalid as there needs to be |
| 779 | // at minimum a length for both a non-zero length huffman code for the end of block symbol |
| 780 | // and one of the codes to represent 0 to make sense - so just reject that here as well. |
| 781 | // |
| 782 | // The distance table is allowed to have a single distance code though according to the spect it is |
| 783 | // supposed to be accompanied by a second dummy code. It can also be empty indicating no used codes. |
| 784 | // |
| 785 | // The literal/length table can not be empty as there has to be an end of block symbol, |
| 786 | // The standard doesn't specify that there should be a dummy code in case of a single |
| 787 | // symbol (i.e an empty block). Normally that's not an issue though the code will have |
| 788 | // to take that into account later on in case of malformed input. |
| 789 | if total != 65_536 && (used_symbols > 1 || bt == HUFFLEN_TABLE) { |
| 790 | return Some(Action::Jump(BadTotalSymbols)); |
| 791 | } |
| 792 | |
| 793 | let mut tree_next = -1; |
| 794 | for symbol_index in 0..table_size { |
| 795 | let code_size = code_sizes[symbol_index]; |
| 796 | if code_size == 0 || usize::from(code_size) >= next_code.len() { |
| 797 | continue; |
| 798 | } |
| 799 | |
| 800 | let cur_code = next_code[code_size as usize]; |
| 801 | next_code[code_size as usize] += 1; |
| 802 | |
| 803 | let n = cur_code & (u32::MAX >> (32 - code_size)); |
| 804 | |
| 805 | let mut rev_code = if n < 512 { |
| 806 | // Using a lookup table |
| 807 | // for a small speedup here, |
| 808 | // Seems to only really make a difference on very short |
| 809 | // inputs however. |
| 810 | // 512 seems to be around a sweet spot. |
| 811 | reverse_bits(n) |
| 812 | } else { |
| 813 | n.reverse_bits() |
| 814 | } >> (32 - code_size); |
| 815 | |
| 816 | if code_size <= FAST_LOOKUP_BITS { |
| 817 | let k = (i16::from(code_size) << 9) | symbol_index as i16; |
| 818 | while rev_code < FAST_LOOKUP_SIZE { |
| 819 | table.look_up[rev_code as usize] = k; |
| 820 | rev_code += 1 << code_size; |
| 821 | } |
| 822 | continue; |
| 823 | } |
| 824 | |
| 825 | let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize]; |
| 826 | if tree_cur == INVALID_CODE { |
| 827 | table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next; |
| 828 | tree_cur = tree_next; |
| 829 | tree_next -= 2; |
| 830 | } |
| 831 | |
| 832 | rev_code >>= FAST_LOOKUP_BITS - 1; |
| 833 | for _ in FAST_LOOKUP_BITS + 1..code_size { |
| 834 | rev_code >>= 1; |
| 835 | tree_cur -= (rev_code & 1) as i16; |
| 836 | let tree_index = (-tree_cur - 1) as usize; |
| 837 | if tree_index >= table.tree.len() { |
| 838 | return None; |
| 839 | } |
| 840 | if table.tree[tree_index] == 0 { |
| 841 | table.tree[tree_index] = tree_next; |
| 842 | tree_cur = tree_next; |
| 843 | tree_next -= 2; |
| 844 | } else { |
| 845 | tree_cur = table.tree[tree_index]; |
| 846 | } |
| 847 | } |
| 848 | |
| 849 | rev_code >>= 1; |
| 850 | tree_cur -= (rev_code & 1) as i16; |
| 851 | let tree_index = (-tree_cur - 1) as usize; |
| 852 | if tree_index >= table.tree.len() { |
| 853 | return None; |
| 854 | } |
| 855 | table.tree[tree_index] = symbol_index as i16; |
| 856 | } |
| 857 | |
| 858 | if r.block_type == HUFFLEN_TABLE as u8 { |
| 859 | l.counter = 0; |
| 860 | return Some(Action::Jump(ReadLitlenDistTablesCodeSize)); |
| 861 | } |
| 862 | |
| 863 | if r.block_type == LITLEN_TABLE as u8 { |
| 864 | break; |
| 865 | } |
| 866 | r.block_type -= 1; |
| 867 | } |
| 868 | |
| 869 | l.counter = 0; |
| 870 | |
| 871 | Some(Action::Jump(DecodeLitlen)) |
| 872 | } |
| 873 | |
| 874 | // A helper macro for generating the state machine. |
| 875 | // |
| 876 | // As Rust doesn't have fallthrough on matches, we have to return to the match statement |
| 877 | // and jump for each state change. (Which would ideally be optimized away, but often isn't.) |
| 878 | macro_rules! generate_state { |
| 879 | ($state: ident, $state_machine: tt, $f: expr) => { |
| 880 | loop { |
| 881 | match $f { |
| 882 | Action::None => continue, |
| 883 | Action::Jump(new_state) => { |
| 884 | $state = new_state; |
| 885 | continue $state_machine; |
| 886 | }, |
| 887 | Action::End(result) => break $state_machine result, |
| 888 | } |
| 889 | } |
| 890 | }; |
| 891 | } |
| 892 | |
| 893 | #[derive (Copy, Clone)] |
| 894 | struct LocalVars { |
| 895 | pub bit_buf: BitBuffer, |
| 896 | pub num_bits: u32, |
| 897 | pub dist: u32, |
| 898 | pub counter: u32, |
| 899 | pub num_extra: u8, |
| 900 | } |
| 901 | |
| 902 | #[inline ] |
| 903 | fn transfer( |
| 904 | out_slice: &mut [u8], |
| 905 | mut source_pos: usize, |
| 906 | mut out_pos: usize, |
| 907 | match_len: usize, |
| 908 | out_buf_size_mask: usize, |
| 909 | ) { |
| 910 | // special case that comes up surprisingly often. in the case that `source_pos` |
| 911 | // is 1 less than `out_pos`, we can say that the entire range will be the same |
| 912 | // value and optimize this to be a simple `memset` |
| 913 | let source_diff = if source_pos > out_pos { |
| 914 | source_pos - out_pos |
| 915 | } else { |
| 916 | out_pos - source_pos |
| 917 | }; |
| 918 | if out_buf_size_mask == usize::MAX && source_diff == 1 && out_pos > source_pos { |
| 919 | let init = out_slice[out_pos - 1]; |
| 920 | let end = (match_len >> 2) * 4 + out_pos; |
| 921 | |
| 922 | out_slice[out_pos..end].fill(init); |
| 923 | out_pos = end; |
| 924 | source_pos = end - 1; |
| 925 | // if the difference between `source_pos` and `out_pos` is greater than 3, we |
| 926 | // can do slightly better than the naive case by copying everything at once |
| 927 | } else if out_buf_size_mask == usize::MAX && source_diff >= 4 && out_pos > source_pos { |
| 928 | for _ in 0..match_len >> 2 { |
| 929 | out_slice.copy_within(source_pos..=source_pos + 3, out_pos); |
| 930 | source_pos += 4; |
| 931 | out_pos += 4; |
| 932 | } |
| 933 | } else { |
| 934 | for _ in 0..match_len >> 2 { |
| 935 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
| 936 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
| 937 | out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; |
| 938 | out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask]; |
| 939 | source_pos += 4; |
| 940 | out_pos += 4; |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | match match_len & 3 { |
| 945 | 0 => (), |
| 946 | 1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask], |
| 947 | 2 => { |
| 948 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
| 949 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
| 950 | } |
| 951 | 3 => { |
| 952 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
| 953 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
| 954 | out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; |
| 955 | } |
| 956 | _ => unreachable!(), |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | /// Presumes that there is at least match_len bytes in output left. |
| 961 | #[inline ] |
| 962 | fn apply_match( |
| 963 | out_slice: &mut [u8], |
| 964 | out_pos: usize, |
| 965 | dist: usize, |
| 966 | match_len: usize, |
| 967 | out_buf_size_mask: usize, |
| 968 | ) { |
| 969 | debug_assert!(out_pos.checked_add(match_len).unwrap() <= out_slice.len()); |
| 970 | |
| 971 | let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask; |
| 972 | |
| 973 | if match_len == 3 { |
| 974 | let out_slice = Cell::from_mut(out_slice).as_slice_of_cells(); |
| 975 | if let Some(dst) = out_slice.get(out_pos..out_pos + 3) { |
| 976 | // Moving bounds checks before any memory mutation allows the optimizer |
| 977 | // combine them together. |
| 978 | let src = out_slice |
| 979 | .get(source_pos) |
| 980 | .zip(out_slice.get((source_pos + 1) & out_buf_size_mask)) |
| 981 | .zip(out_slice.get((source_pos + 2) & out_buf_size_mask)); |
| 982 | if let Some(((a, b), c)) = src { |
| 983 | // For correctness, the memory reads and writes have to be interleaved. |
| 984 | // Cells make it possible for read and write references to overlap. |
| 985 | dst[0].set(a.get()); |
| 986 | dst[1].set(b.get()); |
| 987 | dst[2].set(c.get()); |
| 988 | } |
| 989 | } |
| 990 | return; |
| 991 | } |
| 992 | |
| 993 | if cfg!(not(any(target_arch = "x86" , target_arch = "x86_64" ))) { |
| 994 | // We are not on x86 so copy manually. |
| 995 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
| 996 | return; |
| 997 | } |
| 998 | |
| 999 | if source_pos >= out_pos && (source_pos - out_pos) < match_len { |
| 1000 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
| 1001 | } else if match_len <= dist && source_pos + match_len < out_slice.len() { |
| 1002 | // Destination and source segments does not intersect and source does not wrap. |
| 1003 | if source_pos < out_pos { |
| 1004 | let (from_slice, to_slice) = out_slice.split_at_mut(out_pos); |
| 1005 | to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]); |
| 1006 | } else { |
| 1007 | let (to_slice, from_slice) = out_slice.split_at_mut(source_pos); |
| 1008 | to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]); |
| 1009 | } |
| 1010 | } else { |
| 1011 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
| 1012 | } |
| 1013 | } |
| 1014 | |
| 1015 | /// Fast inner decompression loop which is run while there is at least |
| 1016 | /// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer |
| 1017 | /// (The maximum one match would need + 1). |
| 1018 | /// |
| 1019 | /// This was inspired by a similar optimization in zlib, which uses this info to do |
| 1020 | /// faster unchecked copies of multiple bytes at a time. |
| 1021 | /// Currently we don't do this here, but this function does avoid having to jump through the |
| 1022 | /// big match loop on each state change(as rust does not have fallthrough or gotos at the moment), |
| 1023 | /// and already improves decompression speed a fair bit. |
| 1024 | fn decompress_fast( |
| 1025 | r: &mut DecompressorOxide, |
| 1026 | in_iter: &mut InputWrapper, |
| 1027 | out_buf: &mut OutputBuffer, |
| 1028 | flags: u32, |
| 1029 | local_vars: &mut LocalVars, |
| 1030 | out_buf_size_mask: usize, |
| 1031 | ) -> (TINFLStatus, State) { |
| 1032 | // Make a local copy of the most used variables, to avoid having to update and read from values |
| 1033 | // in a random memory location and to encourage more register use. |
| 1034 | let mut l = *local_vars; |
| 1035 | let mut state; |
| 1036 | |
| 1037 | let status: TINFLStatus = 'o: loop { |
| 1038 | state = State::DecodeLitlen; |
| 1039 | loop { |
| 1040 | // This function assumes that there is at least 259 bytes left in the output buffer, |
| 1041 | // and that there is at least 14 bytes left in the input buffer. 14 input bytes: |
| 1042 | // 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist) |
| 1043 | // + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes |
| 1044 | // We need the one extra byte as we may write one length and one full match |
| 1045 | // before checking again. |
| 1046 | if out_buf.bytes_left() < 259 || in_iter.bytes_left() < 14 { |
| 1047 | state = State::DecodeLitlen; |
| 1048 | break 'o TINFLStatus::Done; |
| 1049 | } |
| 1050 | |
| 1051 | fill_bit_buffer(&mut l, in_iter); |
| 1052 | |
| 1053 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
| 1054 | l.counter = symbol as u32; |
| 1055 | l.bit_buf >>= code_len; |
| 1056 | l.num_bits -= code_len; |
| 1057 | |
| 1058 | if (l.counter & 256) != 0 { |
| 1059 | // The symbol is not a literal. |
| 1060 | break; |
| 1061 | } else { |
| 1062 | // If we have a 32-bit buffer we need to read another two bytes now |
| 1063 | // to have enough bits to keep going. |
| 1064 | if cfg!(not(target_pointer_width = "64" )) { |
| 1065 | fill_bit_buffer(&mut l, in_iter); |
| 1066 | } |
| 1067 | |
| 1068 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
| 1069 | l.bit_buf >>= code_len; |
| 1070 | l.num_bits -= code_len; |
| 1071 | // The previous symbol was a literal, so write it directly and check |
| 1072 | // the next one. |
| 1073 | out_buf.write_byte(l.counter as u8); |
| 1074 | if (symbol & 256) != 0 { |
| 1075 | l.counter = symbol as u32; |
| 1076 | // The symbol is a length value. |
| 1077 | break; |
| 1078 | } else { |
| 1079 | // The symbol is a literal, so write it directly and continue. |
| 1080 | out_buf.write_byte(symbol as u8); |
| 1081 | } |
| 1082 | } |
| 1083 | } |
| 1084 | |
| 1085 | // Mask the top bits since they may contain length info. |
| 1086 | l.counter &= 511; |
| 1087 | if l.counter == 256 { |
| 1088 | // We hit the end of block symbol. |
| 1089 | state.begin(BlockDone); |
| 1090 | break 'o TINFLStatus::Done; |
| 1091 | } else if l.counter > 285 { |
| 1092 | // Invalid code. |
| 1093 | // We already verified earlier that the code is > 256. |
| 1094 | state.begin(InvalidLitlen); |
| 1095 | break 'o TINFLStatus::Failed; |
| 1096 | } else { |
| 1097 | // The symbol was a length code. |
| 1098 | // # Optimization |
| 1099 | // Mask the value to avoid bounds checks |
| 1100 | // While the maximum is checked, the compiler isn't able to know that the |
| 1101 | // value won't wrap around here. |
| 1102 | l.num_extra = LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]; |
| 1103 | l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); |
| 1104 | // Length and distance codes have a number of extra bits depending on |
| 1105 | // the base, which together with the base gives us the exact value. |
| 1106 | |
| 1107 | // We need to make sure we have at least 33 (so min 5 bytes) bits in the buffer at this spot. |
| 1108 | fill_bit_buffer(&mut l, in_iter); |
| 1109 | if l.num_extra != 0 { |
| 1110 | let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); |
| 1111 | l.bit_buf >>= l.num_extra; |
| 1112 | l.num_bits -= u32::from(l.num_extra); |
| 1113 | l.counter += extra_bits as u32; |
| 1114 | } |
| 1115 | |
| 1116 | // We found a length code, so a distance code should follow. |
| 1117 | |
| 1118 | if cfg!(not(target_pointer_width = "64" )) { |
| 1119 | fill_bit_buffer(&mut l, in_iter); |
| 1120 | } |
| 1121 | |
| 1122 | let (mut symbol, code_len) = r.tables[DIST_TABLE].lookup(l.bit_buf); |
| 1123 | symbol &= 511; |
| 1124 | l.bit_buf >>= code_len; |
| 1125 | l.num_bits -= code_len; |
| 1126 | if symbol > 29 { |
| 1127 | state.begin(InvalidDist); |
| 1128 | break 'o TINFLStatus::Failed; |
| 1129 | } |
| 1130 | |
| 1131 | l.num_extra = num_extra_bits_for_distance_code(symbol as u8); |
| 1132 | l.dist = u32::from(DIST_BASE[symbol as usize]); |
| 1133 | |
| 1134 | if l.num_extra != 0 { |
| 1135 | fill_bit_buffer(&mut l, in_iter); |
| 1136 | let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); |
| 1137 | l.bit_buf >>= l.num_extra; |
| 1138 | l.num_bits -= u32::from(l.num_extra); |
| 1139 | l.dist += extra_bits as u32; |
| 1140 | } |
| 1141 | |
| 1142 | let position = out_buf.position(); |
| 1143 | if l.dist as usize > out_buf.position() |
| 1144 | && (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0) |
| 1145 | { |
| 1146 | // We encountered a distance that refers a position before |
| 1147 | // the start of the decoded data, so we can't continue. |
| 1148 | state.begin(DistanceOutOfBounds); |
| 1149 | break TINFLStatus::Failed; |
| 1150 | } |
| 1151 | |
| 1152 | apply_match( |
| 1153 | out_buf.get_mut(), |
| 1154 | position, |
| 1155 | l.dist as usize, |
| 1156 | l.counter as usize, |
| 1157 | out_buf_size_mask, |
| 1158 | ); |
| 1159 | |
| 1160 | out_buf.set_position(position + l.counter as usize); |
| 1161 | } |
| 1162 | }; |
| 1163 | |
| 1164 | *local_vars = l; |
| 1165 | (status, state) |
| 1166 | } |
| 1167 | |
| 1168 | /// Main decompression function. Keeps decompressing data from `in_buf` until the `in_buf` is |
| 1169 | /// empty, `out` is full, the end of the deflate stream is hit, or there is an error in the |
| 1170 | /// deflate stream. |
| 1171 | /// |
| 1172 | /// # Arguments |
| 1173 | /// |
| 1174 | /// `r` is a [`DecompressorOxide`] struct with the state of this stream. |
| 1175 | /// |
| 1176 | /// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will |
| 1177 | /// start at the first byte of this buffer. |
| 1178 | /// |
| 1179 | /// `out` is a reference to the buffer that will store the decompressed data, and that |
| 1180 | /// stores previously decompressed data if any. |
| 1181 | /// |
| 1182 | /// * The offset given by `out_pos` indicates where in the output buffer slice writing should start. |
| 1183 | /// * If [`TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF`] is not set, the output buffer is used in a |
| 1184 | /// wrapping manner, and it's size is required to be a power of 2. |
| 1185 | /// * The decompression function normally needs access to 32KiB of the previously decompressed data |
| 1186 | /// (or to the beginning of the decompressed data if less than 32KiB has been decompressed.) |
| 1187 | /// - If this data is not available, decompression may fail. |
| 1188 | /// - Some deflate compressors allow specifying a window size which limits match distances to |
| 1189 | /// less than this, or alternatively an RLE mode where matches will only refer to the previous byte |
| 1190 | /// and thus allows a smaller output buffer. The window size can be specified in the zlib |
| 1191 | /// header structure, however, the header data should not be relied on to be correct. |
| 1192 | /// |
| 1193 | /// `flags` indicates settings and status to the decompression function. |
| 1194 | /// * The [`TINFL_FLAG_HAS_MORE_INPUT`] has to be specified if more compressed data is to be provided |
| 1195 | /// in a subsequent call to this function. |
| 1196 | /// * See the the [`inflate_flags`] module for details on other flags. |
| 1197 | /// |
| 1198 | /// # Returns |
| 1199 | /// |
| 1200 | /// Returns a tuple containing the status of the compressor, the number of input bytes read, and the |
| 1201 | /// number of bytes output to `out`. |
| 1202 | /// |
| 1203 | /// This function shouldn't panic pending any bugs. |
| 1204 | pub fn decompress( |
| 1205 | r: &mut DecompressorOxide, |
| 1206 | in_buf: &[u8], |
| 1207 | out: &mut [u8], |
| 1208 | out_pos: usize, |
| 1209 | flags: u32, |
| 1210 | ) -> (TINFLStatus, usize, usize) { |
| 1211 | let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 { |
| 1212 | usize::MAX |
| 1213 | } else { |
| 1214 | // In the case of zero len, any attempt to write would produce HasMoreOutput, |
| 1215 | // so to gracefully process the case of there really being no output, |
| 1216 | // set the mask to all zeros. |
| 1217 | out.len().saturating_sub(1) |
| 1218 | }; |
| 1219 | |
| 1220 | // Ensure the output buffer's size is a power of 2, unless the output buffer |
| 1221 | // is large enough to hold the entire output file (in which case it doesn't |
| 1222 | // matter). |
| 1223 | // Also make sure that the output buffer position is not past the end of the output buffer. |
| 1224 | if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0 || out_pos > out.len() { |
| 1225 | return (TINFLStatus::BadParam, 0, 0); |
| 1226 | } |
| 1227 | |
| 1228 | let mut in_iter = InputWrapper::from_slice(in_buf); |
| 1229 | |
| 1230 | let mut state = r.state; |
| 1231 | |
| 1232 | let mut out_buf = OutputBuffer::from_slice_and_pos(out, out_pos); |
| 1233 | |
| 1234 | // Make a local copy of the important variables here so we can work with them on the stack. |
| 1235 | let mut l = LocalVars { |
| 1236 | bit_buf: r.bit_buf, |
| 1237 | num_bits: r.num_bits, |
| 1238 | dist: r.dist, |
| 1239 | counter: r.counter, |
| 1240 | num_extra: r.num_extra, |
| 1241 | }; |
| 1242 | |
| 1243 | let mut status = 'state_machine: loop { |
| 1244 | match state { |
| 1245 | Start => generate_state!(state, 'state_machine, { |
| 1246 | l.bit_buf = 0; |
| 1247 | l.num_bits = 0; |
| 1248 | l.dist = 0; |
| 1249 | l.counter = 0; |
| 1250 | l.num_extra = 0; |
| 1251 | r.z_header0 = 0; |
| 1252 | r.z_header1 = 0; |
| 1253 | r.z_adler32 = 1; |
| 1254 | r.check_adler32 = 1; |
| 1255 | if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { |
| 1256 | Action::Jump(State::ReadZlibCmf) |
| 1257 | } else { |
| 1258 | Action::Jump(State::ReadBlockHeader) |
| 1259 | } |
| 1260 | }), |
| 1261 | |
| 1262 | ReadZlibCmf => generate_state!(state, 'state_machine, { |
| 1263 | read_byte(&mut in_iter, flags, |cmf| { |
| 1264 | r.z_header0 = u32::from(cmf); |
| 1265 | Action::Jump(State::ReadZlibFlg) |
| 1266 | }) |
| 1267 | }), |
| 1268 | |
| 1269 | ReadZlibFlg => generate_state!(state, 'state_machine, { |
| 1270 | read_byte(&mut in_iter, flags, |flg| { |
| 1271 | r.z_header1 = u32::from(flg); |
| 1272 | validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask) |
| 1273 | }) |
| 1274 | }), |
| 1275 | |
| 1276 | // Read the block header and jump to the relevant section depending on the block type. |
| 1277 | ReadBlockHeader => generate_state!(state, 'state_machine, { |
| 1278 | read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { |
| 1279 | r.finish = (bits & 1) as u8; |
| 1280 | r.block_type = ((bits >> 1) & 3) as u8; |
| 1281 | match r.block_type { |
| 1282 | 0 => Action::Jump(BlockTypeNoCompression), |
| 1283 | 1 => { |
| 1284 | start_static_table(r); |
| 1285 | init_tree(r, l).unwrap_or(Action::End(TINFLStatus::Failed)) |
| 1286 | }, |
| 1287 | 2 => { |
| 1288 | l.counter = 0; |
| 1289 | Action::Jump(ReadTableSizes) |
| 1290 | }, |
| 1291 | 3 => Action::Jump(BlockTypeUnexpected), |
| 1292 | _ => unreachable!() |
| 1293 | } |
| 1294 | }) |
| 1295 | }), |
| 1296 | |
| 1297 | // Raw/Stored/uncompressed block. |
| 1298 | BlockTypeNoCompression => generate_state!(state, 'state_machine, { |
| 1299 | pad_to_bytes(&mut l, &mut in_iter, flags, |l| { |
| 1300 | l.counter = 0; |
| 1301 | Action::Jump(RawHeader) |
| 1302 | }) |
| 1303 | }), |
| 1304 | |
| 1305 | // Check that the raw block header is correct. |
| 1306 | RawHeader => generate_state!(state, 'state_machine, { |
| 1307 | if l.counter < 4 { |
| 1308 | // Read block length and block length check. |
| 1309 | if l.num_bits != 0 { |
| 1310 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
| 1311 | r.raw_header[l.counter as usize] = bits as u8; |
| 1312 | l.counter += 1; |
| 1313 | Action::None |
| 1314 | }) |
| 1315 | } else { |
| 1316 | read_byte(&mut in_iter, flags, |byte| { |
| 1317 | r.raw_header[l.counter as usize] = byte; |
| 1318 | l.counter += 1; |
| 1319 | Action::None |
| 1320 | }) |
| 1321 | } |
| 1322 | } else { |
| 1323 | // Check if the length value of a raw block is correct. |
| 1324 | // The 2 first (2-byte) words in a raw header are the length and the |
| 1325 | // ones complement of the length. |
| 1326 | let length = u16::from(r.raw_header[0]) | (u16::from(r.raw_header[1]) << 8); |
| 1327 | let check = u16::from(r.raw_header[2]) | (u16::from(r.raw_header[3]) << 8); |
| 1328 | let valid = length == !check; |
| 1329 | l.counter = length.into(); |
| 1330 | |
| 1331 | if !valid { |
| 1332 | Action::Jump(BadRawLength) |
| 1333 | } else if l.counter == 0 { |
| 1334 | // Empty raw block. Sometimes used for synchronization. |
| 1335 | Action::Jump(BlockDone) |
| 1336 | } else if l.num_bits != 0 { |
| 1337 | // There is some data in the bit buffer, so we need to write that first. |
| 1338 | Action::Jump(RawReadFirstByte) |
| 1339 | } else { |
| 1340 | // The bit buffer is empty, so memcpy the rest of the uncompressed data from |
| 1341 | // the block. |
| 1342 | Action::Jump(RawMemcpy1) |
| 1343 | } |
| 1344 | } |
| 1345 | }), |
| 1346 | |
| 1347 | // Read the byte from the bit buffer. |
| 1348 | RawReadFirstByte => generate_state!(state, 'state_machine, { |
| 1349 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
| 1350 | l.dist = bits as u32; |
| 1351 | Action::Jump(RawStoreFirstByte) |
| 1352 | }) |
| 1353 | }), |
| 1354 | |
| 1355 | // Write the byte we just read to the output buffer. |
| 1356 | RawStoreFirstByte => generate_state!(state, 'state_machine, { |
| 1357 | if out_buf.bytes_left() == 0 { |
| 1358 | Action::End(TINFLStatus::HasMoreOutput) |
| 1359 | } else { |
| 1360 | out_buf.write_byte(l.dist as u8); |
| 1361 | l.counter -= 1; |
| 1362 | if l.counter == 0 || l.num_bits == 0 { |
| 1363 | Action::Jump(RawMemcpy1) |
| 1364 | } else { |
| 1365 | // There is still some data left in the bit buffer that needs to be output. |
| 1366 | // TODO: Changed this to jump to `RawReadfirstbyte` rather than |
| 1367 | // `RawStoreFirstByte` as that seemed to be the correct path, but this |
| 1368 | // needs testing. |
| 1369 | Action::Jump(RawReadFirstByte) |
| 1370 | } |
| 1371 | } |
| 1372 | }), |
| 1373 | |
| 1374 | RawMemcpy1 => generate_state!(state, 'state_machine, { |
| 1375 | if l.counter == 0 { |
| 1376 | Action::Jump(BlockDone) |
| 1377 | } else if out_buf.bytes_left() == 0 { |
| 1378 | Action::End(TINFLStatus::HasMoreOutput) |
| 1379 | } else { |
| 1380 | Action::Jump(RawMemcpy2) |
| 1381 | } |
| 1382 | }), |
| 1383 | |
| 1384 | RawMemcpy2 => generate_state!(state, 'state_machine, { |
| 1385 | if in_iter.bytes_left() > 0 { |
| 1386 | // Copy as many raw bytes as possible from the input to the output using memcpy. |
| 1387 | // Raw block lengths are limited to 64 * 1024, so casting through usize and u32 |
| 1388 | // is not an issue. |
| 1389 | let space_left = out_buf.bytes_left(); |
| 1390 | let bytes_to_copy = cmp::min(cmp::min( |
| 1391 | space_left, |
| 1392 | in_iter.bytes_left()), |
| 1393 | l.counter as usize |
| 1394 | ); |
| 1395 | |
| 1396 | out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]); |
| 1397 | |
| 1398 | in_iter.advance(bytes_to_copy); |
| 1399 | l.counter -= bytes_to_copy as u32; |
| 1400 | Action::Jump(RawMemcpy1) |
| 1401 | } else { |
| 1402 | end_of_input(flags) |
| 1403 | } |
| 1404 | }), |
| 1405 | |
| 1406 | // Read how many huffman codes/symbols are used for each table. |
| 1407 | ReadTableSizes => generate_state!(state, 'state_machine, { |
| 1408 | if l.counter < 3 { |
| 1409 | let num_bits = [5, 5, 4][l.counter as usize]; |
| 1410 | read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| { |
| 1411 | r.table_sizes[l.counter as usize] = |
| 1412 | bits as u16 + MIN_TABLE_SIZES[l.counter as usize]; |
| 1413 | l.counter += 1; |
| 1414 | Action::None |
| 1415 | }) |
| 1416 | } else { |
| 1417 | r.code_size_huffman.fill(0); |
| 1418 | l.counter = 0; |
| 1419 | // Check that the litlen and distance are within spec. |
| 1420 | // litlen table should be <=286 acc to the RFC and |
| 1421 | // additionally zlib rejects dist table sizes larger than 30. |
| 1422 | // NOTE this the final sizes after adding back predefined values, not |
| 1423 | // raw value in the data. |
| 1424 | // See miniz_oxide issue #130 and https://github.com/madler/zlib/issues/82. |
| 1425 | if r.table_sizes[LITLEN_TABLE] <= 286 && r.table_sizes[DIST_TABLE] <= 30 { |
| 1426 | Action::Jump(ReadHufflenTableCodeSize) |
| 1427 | } |
| 1428 | else { |
| 1429 | Action::Jump(BadDistOrLiteralTableLength) |
| 1430 | } |
| 1431 | } |
| 1432 | }), |
| 1433 | |
| 1434 | // Read the 3-bit lengths of the huffman codes describing the huffman code lengths used |
| 1435 | // to decode the lengths of the main tables. |
| 1436 | ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, { |
| 1437 | if l.counter < r.table_sizes[HUFFLEN_TABLE].into() { |
| 1438 | read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { |
| 1439 | // These lengths are not stored in a normal ascending order, but rather one |
| 1440 | // specified by the deflate specification intended to put the most used |
| 1441 | // values at the front as trailing zero lengths do not have to be stored. |
| 1442 | r.code_size_huffman[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] = |
| 1443 | bits as u8; |
| 1444 | l.counter += 1; |
| 1445 | Action::None |
| 1446 | }) |
| 1447 | } else { |
| 1448 | r.table_sizes[HUFFLEN_TABLE] = MAX_HUFF_SYMBOLS_2 as u16; |
| 1449 | init_tree(r, &mut l).unwrap_or(Action::End(TINFLStatus::Failed)) |
| 1450 | } |
| 1451 | }), |
| 1452 | |
| 1453 | ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, { |
| 1454 | if l.counter < u32::from(r.table_sizes[LITLEN_TABLE]) + u32::from(r.table_sizes[DIST_TABLE]) { |
| 1455 | decode_huffman_code( |
| 1456 | r, &mut l, HUFFLEN_TABLE, |
| 1457 | flags, &mut in_iter, |r, l, symbol| { |
| 1458 | l.dist = symbol as u32; |
| 1459 | if l.dist < 16 { |
| 1460 | r.len_codes[l.counter as usize] = l.dist as u8; |
| 1461 | l.counter += 1; |
| 1462 | Action::None |
| 1463 | } else if l.dist == 16 && l.counter == 0 { |
| 1464 | Action::Jump(BadCodeSizeDistPrevLookup) |
| 1465 | } else { |
| 1466 | l.num_extra = [2, 3, 7][l.dist as usize - 16]; |
| 1467 | Action::Jump(ReadExtraBitsCodeSize) |
| 1468 | } |
| 1469 | } |
| 1470 | ) |
| 1471 | } else if l.counter != u32::from(r.table_sizes[LITLEN_TABLE]) + u32::from(r.table_sizes[DIST_TABLE]) { |
| 1472 | Action::Jump(BadCodeSizeSum) |
| 1473 | } else { |
| 1474 | r.code_size_literal[..r.table_sizes[LITLEN_TABLE] as usize] |
| 1475 | .copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize]); |
| 1476 | |
| 1477 | let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize; |
| 1478 | let dist_table_end = (r.table_sizes[LITLEN_TABLE] + |
| 1479 | r.table_sizes[DIST_TABLE]) as usize; |
| 1480 | r.code_size_dist[..r.table_sizes[DIST_TABLE] as usize] |
| 1481 | .copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]); |
| 1482 | |
| 1483 | r.block_type -= 1; |
| 1484 | init_tree(r, &mut l).unwrap_or(Action::End(TINFLStatus::Failed)) |
| 1485 | } |
| 1486 | }), |
| 1487 | |
| 1488 | ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, { |
| 1489 | let num_extra = l.num_extra.into(); |
| 1490 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| { |
| 1491 | // Mask to avoid a bounds check. |
| 1492 | extra_bits += [3, 3, 11][(l.dist as usize - 16) & 3]; |
| 1493 | let val = if l.dist == 16 { |
| 1494 | r.len_codes[l.counter as usize - 1] |
| 1495 | } else { |
| 1496 | 0 |
| 1497 | }; |
| 1498 | |
| 1499 | r.len_codes[ |
| 1500 | l.counter as usize..l.counter as usize + extra_bits as usize |
| 1501 | ].fill(val); |
| 1502 | l.counter += extra_bits as u32; |
| 1503 | Action::Jump(ReadLitlenDistTablesCodeSize) |
| 1504 | }) |
| 1505 | }), |
| 1506 | |
| 1507 | DecodeLitlen => generate_state!(state, 'state_machine, { |
| 1508 | if in_iter.bytes_left() < 4 || out_buf.bytes_left() < 2 { |
| 1509 | // See if we can decode a literal with the data we have left. |
| 1510 | // Jumps to next state (WriteSymbol) if successful. |
| 1511 | decode_huffman_code( |
| 1512 | r, |
| 1513 | &mut l, |
| 1514 | LITLEN_TABLE, |
| 1515 | flags, |
| 1516 | &mut in_iter, |
| 1517 | |_r, l, symbol| { |
| 1518 | l.counter = symbol as u32; |
| 1519 | Action::Jump(WriteSymbol) |
| 1520 | }, |
| 1521 | ) |
| 1522 | } else if |
| 1523 | // If there is enough space, use the fast inner decompression |
| 1524 | // function. |
| 1525 | out_buf.bytes_left() >= 259 && |
| 1526 | in_iter.bytes_left() >= 14 |
| 1527 | { |
| 1528 | let (status, new_state) = decompress_fast( |
| 1529 | r, |
| 1530 | &mut in_iter, |
| 1531 | &mut out_buf, |
| 1532 | flags, |
| 1533 | &mut l, |
| 1534 | out_buf_size_mask, |
| 1535 | ); |
| 1536 | |
| 1537 | state = new_state; |
| 1538 | if status == TINFLStatus::Done { |
| 1539 | Action::Jump(new_state) |
| 1540 | } else { |
| 1541 | Action::End(status) |
| 1542 | } |
| 1543 | } else { |
| 1544 | fill_bit_buffer(&mut l, &mut in_iter); |
| 1545 | |
| 1546 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
| 1547 | |
| 1548 | l.counter = symbol as u32; |
| 1549 | l.bit_buf >>= code_len; |
| 1550 | l.num_bits -= code_len; |
| 1551 | |
| 1552 | if (l.counter & 256) != 0 { |
| 1553 | // The symbol is not a literal. |
| 1554 | Action::Jump(HuffDecodeOuterLoop1) |
| 1555 | } else { |
| 1556 | // If we have a 32-bit buffer we need to read another two bytes now |
| 1557 | // to have enough bits to keep going. |
| 1558 | if cfg!(not(target_pointer_width = "64" )) { |
| 1559 | fill_bit_buffer(&mut l, &mut in_iter); |
| 1560 | } |
| 1561 | |
| 1562 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
| 1563 | |
| 1564 | l.bit_buf >>= code_len; |
| 1565 | l.num_bits -= code_len; |
| 1566 | // The previous symbol was a literal, so write it directly and check |
| 1567 | // the next one. |
| 1568 | out_buf.write_byte(l.counter as u8); |
| 1569 | if (symbol & 256) != 0 { |
| 1570 | l.counter = symbol as u32; |
| 1571 | // The symbol is a length value. |
| 1572 | Action::Jump(HuffDecodeOuterLoop1) |
| 1573 | } else { |
| 1574 | // The symbol is a literal, so write it directly and continue. |
| 1575 | out_buf.write_byte(symbol as u8); |
| 1576 | Action::None |
| 1577 | } |
| 1578 | |
| 1579 | } |
| 1580 | |
| 1581 | } |
| 1582 | }), |
| 1583 | |
| 1584 | WriteSymbol => generate_state!(state, 'state_machine, { |
| 1585 | if l.counter >= 256 { |
| 1586 | Action::Jump(HuffDecodeOuterLoop1) |
| 1587 | } else if out_buf.bytes_left() > 0 { |
| 1588 | out_buf.write_byte(l.counter as u8); |
| 1589 | Action::Jump(DecodeLitlen) |
| 1590 | } else { |
| 1591 | Action::End(TINFLStatus::HasMoreOutput) |
| 1592 | } |
| 1593 | }), |
| 1594 | |
| 1595 | HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, { |
| 1596 | // Mask the top bits since they may contain length info. |
| 1597 | l.counter &= 511; |
| 1598 | |
| 1599 | if l.counter |
| 1600 | == 256 { |
| 1601 | // We hit the end of block symbol. |
| 1602 | Action::Jump(BlockDone) |
| 1603 | } else if l.counter > 285 { |
| 1604 | // Invalid code. |
| 1605 | // We already verified earlier that the code is > 256. |
| 1606 | Action::Jump(InvalidLitlen) |
| 1607 | } else { |
| 1608 | // # Optimization |
| 1609 | // Mask the value to avoid bounds checks |
| 1610 | // We could use get_unchecked later if can statically verify that |
| 1611 | // this will never go out of bounds. |
| 1612 | l.num_extra = |
| 1613 | LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]; |
| 1614 | l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); |
| 1615 | // Length and distance codes have a number of extra bits depending on |
| 1616 | // the base, which together with the base gives us the exact value. |
| 1617 | if l.num_extra != 0 { |
| 1618 | Action::Jump(ReadExtraBitsLitlen) |
| 1619 | } else { |
| 1620 | Action::Jump(DecodeDistance) |
| 1621 | } |
| 1622 | } |
| 1623 | }), |
| 1624 | |
| 1625 | ReadExtraBitsLitlen => generate_state!(state, 'state_machine, { |
| 1626 | let num_extra = l.num_extra.into(); |
| 1627 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { |
| 1628 | l.counter += extra_bits as u32; |
| 1629 | Action::Jump(DecodeDistance) |
| 1630 | }) |
| 1631 | }), |
| 1632 | |
| 1633 | DecodeDistance => generate_state!(state, 'state_machine, { |
| 1634 | // Try to read a huffman code from the input buffer and look up what |
| 1635 | // length code the decoded symbol refers to. |
| 1636 | decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| { |
| 1637 | // # Optimizaton - transform the value into usize here before the check so |
| 1638 | // the compiler can optimize the bounds check later - ideally it should |
| 1639 | // know that the value can't be negative from earlier in the |
| 1640 | // decode_huffman_code function but it seems it may not be able |
| 1641 | // to make the assumption that it can't be negative and thus |
| 1642 | // overflow if it's converted after the check. |
| 1643 | let symbol = symbol as usize; |
| 1644 | if symbol > 29 { |
| 1645 | // Invalid distance code. |
| 1646 | return Action::Jump(InvalidDist) |
| 1647 | } |
| 1648 | l.num_extra = num_extra_bits_for_distance_code(symbol as u8); |
| 1649 | l.dist = u32::from(DIST_BASE[symbol]); |
| 1650 | if l.num_extra != 0 { |
| 1651 | // ReadEXTRA_BITS_DISTACNE |
| 1652 | Action::Jump(ReadExtraBitsDistance) |
| 1653 | } else { |
| 1654 | Action::Jump(HuffDecodeOuterLoop2) |
| 1655 | } |
| 1656 | }) |
| 1657 | }), |
| 1658 | |
| 1659 | ReadExtraBitsDistance => generate_state!(state, 'state_machine, { |
| 1660 | let num_extra = l.num_extra.into(); |
| 1661 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { |
| 1662 | l.dist += extra_bits as u32; |
| 1663 | Action::Jump(HuffDecodeOuterLoop2) |
| 1664 | }) |
| 1665 | }), |
| 1666 | |
| 1667 | HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, { |
| 1668 | if l.dist as usize > out_buf.position() && |
| 1669 | (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0) |
| 1670 | { |
| 1671 | // We encountered a distance that refers a position before |
| 1672 | // the start of the decoded data, so we can't continue. |
| 1673 | Action::Jump(DistanceOutOfBounds) |
| 1674 | } else { |
| 1675 | let out_pos = out_buf.position(); |
| 1676 | let source_pos = out_buf.position() |
| 1677 | .wrapping_sub(l.dist as usize) & out_buf_size_mask; |
| 1678 | |
| 1679 | let out_len = out_buf.get_ref().len(); |
| 1680 | let match_end_pos = out_buf.position() + l.counter as usize; |
| 1681 | |
| 1682 | if match_end_pos > out_len || |
| 1683 | // miniz doesn't do this check here. Not sure how it makes sure |
| 1684 | // that this case doesn't happen. |
| 1685 | (source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize) |
| 1686 | { |
| 1687 | // Not enough space for all of the data in the output buffer, |
| 1688 | // so copy what we have space for. |
| 1689 | if l.counter == 0 { |
| 1690 | Action::Jump(DecodeLitlen) |
| 1691 | } else { |
| 1692 | Action::Jump(WriteLenBytesToEnd) |
| 1693 | } |
| 1694 | } else { |
| 1695 | apply_match( |
| 1696 | out_buf.get_mut(), |
| 1697 | out_pos, |
| 1698 | l.dist as usize, |
| 1699 | l.counter as usize, |
| 1700 | out_buf_size_mask |
| 1701 | ); |
| 1702 | out_buf.set_position(out_pos + l.counter as usize); |
| 1703 | Action::Jump(DecodeLitlen) |
| 1704 | } |
| 1705 | } |
| 1706 | }), |
| 1707 | |
| 1708 | WriteLenBytesToEnd => generate_state!(state, 'state_machine, { |
| 1709 | if out_buf.bytes_left() > 0 { |
| 1710 | let out_pos = out_buf.position(); |
| 1711 | let source_pos = out_buf.position() |
| 1712 | .wrapping_sub(l.dist as usize) & out_buf_size_mask; |
| 1713 | |
| 1714 | |
| 1715 | let len = cmp::min(out_buf.bytes_left(), l.counter as usize); |
| 1716 | |
| 1717 | transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask); |
| 1718 | |
| 1719 | out_buf.set_position(out_pos + len); |
| 1720 | l.counter -= len as u32; |
| 1721 | if l.counter == 0 { |
| 1722 | Action::Jump(DecodeLitlen) |
| 1723 | } else { |
| 1724 | Action::None |
| 1725 | } |
| 1726 | } else { |
| 1727 | Action::End(TINFLStatus::HasMoreOutput) |
| 1728 | } |
| 1729 | }), |
| 1730 | |
| 1731 | BlockDone => generate_state!(state, 'state_machine, { |
| 1732 | // End once we've read the last block. |
| 1733 | if r.finish != 0 { |
| 1734 | pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None); |
| 1735 | |
| 1736 | let in_consumed = in_buf.len() - in_iter.bytes_left(); |
| 1737 | let undo = undo_bytes(&mut l, in_consumed as u32) as usize; |
| 1738 | in_iter = InputWrapper::from_slice(in_buf[in_consumed - undo..].iter().as_slice()); |
| 1739 | |
| 1740 | l.bit_buf &= ((1 as BitBuffer) << l.num_bits) - 1; |
| 1741 | debug_assert_eq!(l.num_bits, 0); |
| 1742 | |
| 1743 | if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { |
| 1744 | l.counter = 0; |
| 1745 | Action::Jump(ReadAdler32) |
| 1746 | } else { |
| 1747 | Action::Jump(DoneForever) |
| 1748 | } |
| 1749 | } else { |
| 1750 | Action::Jump(ReadBlockHeader) |
| 1751 | } |
| 1752 | }), |
| 1753 | |
| 1754 | ReadAdler32 => generate_state!(state, 'state_machine, { |
| 1755 | if l.counter < 4 { |
| 1756 | if l.num_bits != 0 { |
| 1757 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
| 1758 | r.z_adler32 <<= 8; |
| 1759 | r.z_adler32 |= bits as u32; |
| 1760 | l.counter += 1; |
| 1761 | Action::None |
| 1762 | }) |
| 1763 | } else { |
| 1764 | read_byte(&mut in_iter, flags, |byte| { |
| 1765 | r.z_adler32 <<= 8; |
| 1766 | r.z_adler32 |= u32::from(byte); |
| 1767 | l.counter += 1; |
| 1768 | Action::None |
| 1769 | }) |
| 1770 | } |
| 1771 | } else { |
| 1772 | Action::Jump(DoneForever) |
| 1773 | } |
| 1774 | }), |
| 1775 | |
| 1776 | // We are done. |
| 1777 | DoneForever => break TINFLStatus::Done, |
| 1778 | |
| 1779 | // Anything else indicates failure. |
| 1780 | // BadZlibHeader | BadRawLength | BadDistOrLiteralTableLength | BlockTypeUnexpected | |
| 1781 | // DistanceOutOfBounds | |
| 1782 | // BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen | |
| 1783 | // InvalidDist | InvalidCodeLen |
| 1784 | _ => break TINFLStatus::Failed, |
| 1785 | }; |
| 1786 | }; |
| 1787 | |
| 1788 | let in_undo = if status != TINFLStatus::NeedsMoreInput |
| 1789 | && status != TINFLStatus::FailedCannotMakeProgress |
| 1790 | { |
| 1791 | undo_bytes(&mut l, (in_buf.len() - in_iter.bytes_left()) as u32) as usize |
| 1792 | } else { |
| 1793 | 0 |
| 1794 | }; |
| 1795 | |
| 1796 | // Make sure HasMoreOutput overrides NeedsMoreInput if the output buffer is full. |
| 1797 | // (Unless the missing input is the adler32 value in which case we don't need to write anything.) |
| 1798 | // TODO: May want to see if we can do this in a better way. |
| 1799 | if status == TINFLStatus::NeedsMoreInput |
| 1800 | && out_buf.bytes_left() == 0 |
| 1801 | && state != State::ReadAdler32 |
| 1802 | { |
| 1803 | status = TINFLStatus::HasMoreOutput |
| 1804 | } |
| 1805 | |
| 1806 | r.state = state; |
| 1807 | r.bit_buf = l.bit_buf; |
| 1808 | r.num_bits = l.num_bits; |
| 1809 | r.dist = l.dist; |
| 1810 | r.counter = l.counter; |
| 1811 | r.num_extra = l.num_extra; |
| 1812 | |
| 1813 | r.bit_buf &= ((1 as BitBuffer) << r.num_bits) - 1; |
| 1814 | |
| 1815 | // If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if |
| 1816 | // requested. |
| 1817 | let need_adler = if (flags & TINFL_FLAG_IGNORE_ADLER32) == 0 { |
| 1818 | flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0 |
| 1819 | } else { |
| 1820 | // If TINFL_FLAG_IGNORE_ADLER32 is enabled, ignore the checksum. |
| 1821 | false |
| 1822 | }; |
| 1823 | if need_adler && status as i32 >= 0 { |
| 1824 | let out_buf_pos = out_buf.position(); |
| 1825 | r.check_adler32 = update_adler32(r.check_adler32, &out_buf.get_ref()[out_pos..out_buf_pos]); |
| 1826 | |
| 1827 | // disabled so that random input from fuzzer would not be rejected early, |
| 1828 | // before it has a chance to reach interesting parts of code |
| 1829 | if !cfg!(fuzzing) { |
| 1830 | // Once we are done, check if the checksum matches with the one provided in the zlib header. |
| 1831 | if status == TINFLStatus::Done |
| 1832 | && flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 |
| 1833 | && r.check_adler32 != r.z_adler32 |
| 1834 | { |
| 1835 | status = TINFLStatus::Adler32Mismatch; |
| 1836 | } |
| 1837 | } |
| 1838 | } |
| 1839 | |
| 1840 | ( |
| 1841 | status, |
| 1842 | in_buf.len() - in_iter.bytes_left() - in_undo, |
| 1843 | out_buf.position() - out_pos, |
| 1844 | ) |
| 1845 | } |
| 1846 | |
| 1847 | #[cfg (test)] |
| 1848 | mod test { |
| 1849 | use super::*; |
| 1850 | |
| 1851 | //TODO: Fix these. |
| 1852 | |
| 1853 | fn tinfl_decompress_oxide<'i>( |
| 1854 | r: &mut DecompressorOxide, |
| 1855 | input_buffer: &'i [u8], |
| 1856 | output_buffer: &mut [u8], |
| 1857 | flags: u32, |
| 1858 | ) -> (TINFLStatus, &'i [u8], usize) { |
| 1859 | let (status, in_pos, out_pos) = decompress(r, input_buffer, output_buffer, 0, flags); |
| 1860 | (status, &input_buffer[in_pos..], out_pos) |
| 1861 | } |
| 1862 | |
| 1863 | #[test ] |
| 1864 | fn decompress_zlib() { |
| 1865 | let encoded = [ |
| 1866 | 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, |
| 1867 | ]; |
| 1868 | let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER; |
| 1869 | |
| 1870 | let mut b = DecompressorOxide::new(); |
| 1871 | const LEN: usize = 32; |
| 1872 | let mut b_buf = [0; LEN]; |
| 1873 | |
| 1874 | // This should fail with the out buffer being to small. |
| 1875 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
| 1876 | |
| 1877 | assert_eq!(b_status.0, TINFLStatus::Failed); |
| 1878 | |
| 1879 | let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
| 1880 | |
| 1881 | b = DecompressorOxide::new(); |
| 1882 | |
| 1883 | // With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail. |
| 1884 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
| 1885 | |
| 1886 | assert_eq!(b_buf[..b_status.2], b"Hello, zlib!" [..]); |
| 1887 | assert_eq!(b_status.0, TINFLStatus::Done); |
| 1888 | } |
| 1889 | |
| 1890 | #[cfg (feature = "with-alloc" )] |
| 1891 | #[test ] |
| 1892 | fn raw_block() { |
| 1893 | const LEN: usize = 64; |
| 1894 | |
| 1895 | let text = b"Hello, zlib!" ; |
| 1896 | let encoded = { |
| 1897 | let len = text.len(); |
| 1898 | let notlen = !len; |
| 1899 | let mut encoded = vec![ |
| 1900 | 1, |
| 1901 | len as u8, |
| 1902 | (len >> 8) as u8, |
| 1903 | notlen as u8, |
| 1904 | (notlen >> 8) as u8, |
| 1905 | ]; |
| 1906 | encoded.extend_from_slice(&text[..]); |
| 1907 | encoded |
| 1908 | }; |
| 1909 | |
| 1910 | //let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER | |
| 1911 | let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
| 1912 | |
| 1913 | let mut b = DecompressorOxide::new(); |
| 1914 | |
| 1915 | let mut b_buf = [0; LEN]; |
| 1916 | |
| 1917 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
| 1918 | assert_eq!(b_buf[..b_status.2], text[..]); |
| 1919 | assert_eq!(b_status.0, TINFLStatus::Done); |
| 1920 | } |
| 1921 | |
| 1922 | fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) { |
| 1923 | let ret = table.lookup(bit_buf); |
| 1924 | (ret.0 & 511, ret.1) |
| 1925 | } |
| 1926 | |
| 1927 | #[test ] |
| 1928 | fn fixed_table_lookup() { |
| 1929 | let mut d = DecompressorOxide::new(); |
| 1930 | d.block_type = 1; |
| 1931 | start_static_table(&mut d); |
| 1932 | let mut l = LocalVars { |
| 1933 | bit_buf: d.bit_buf, |
| 1934 | num_bits: d.num_bits, |
| 1935 | dist: d.dist, |
| 1936 | counter: d.counter, |
| 1937 | num_extra: d.num_extra, |
| 1938 | }; |
| 1939 | init_tree(&mut d, &mut l).unwrap(); |
| 1940 | let llt = &d.tables[LITLEN_TABLE]; |
| 1941 | let dt = &d.tables[DIST_TABLE]; |
| 1942 | assert_eq!(masked_lookup(llt, 0b00001100), (0, 8)); |
| 1943 | assert_eq!(masked_lookup(llt, 0b00011110), (72, 8)); |
| 1944 | assert_eq!(masked_lookup(llt, 0b01011110), (74, 8)); |
| 1945 | assert_eq!(masked_lookup(llt, 0b11111101), (143, 8)); |
| 1946 | assert_eq!(masked_lookup(llt, 0b000010011), (144, 9)); |
| 1947 | assert_eq!(masked_lookup(llt, 0b111111111), (255, 9)); |
| 1948 | assert_eq!(masked_lookup(llt, 0b00000000), (256, 7)); |
| 1949 | assert_eq!(masked_lookup(llt, 0b1110100), (279, 7)); |
| 1950 | assert_eq!(masked_lookup(llt, 0b00000011), (280, 8)); |
| 1951 | assert_eq!(masked_lookup(llt, 0b11100011), (287, 8)); |
| 1952 | |
| 1953 | assert_eq!(masked_lookup(dt, 0), (0, 5)); |
| 1954 | assert_eq!(masked_lookup(dt, 20), (5, 5)); |
| 1955 | } |
| 1956 | |
| 1957 | // Only run this test with alloc enabled as it uses a larger buffer. |
| 1958 | #[cfg (feature = "with-alloc" )] |
| 1959 | fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) { |
| 1960 | let mut r = DecompressorOxide::default(); |
| 1961 | let mut output_buf = vec![0; 1024 * 32]; |
| 1962 | let flags = if zlib { |
| 1963 | inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER |
| 1964 | } else { |
| 1965 | 0 |
| 1966 | } | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF |
| 1967 | | TINFL_FLAG_HAS_MORE_INPUT; |
| 1968 | let (d_status, _in_bytes, _out_bytes) = |
| 1969 | decompress(&mut r, input, &mut output_buf, 0, flags); |
| 1970 | assert_eq!(expected_status, d_status); |
| 1971 | assert_eq!(expected_state, r.state); |
| 1972 | } |
| 1973 | |
| 1974 | #[cfg (feature = "with-alloc" )] |
| 1975 | #[test ] |
| 1976 | fn bogus_input() { |
| 1977 | use self::check_result as cr; |
| 1978 | const F: TINFLStatus = TINFLStatus::Failed; |
| 1979 | const OK: TINFLStatus = TINFLStatus::Done; |
| 1980 | // Bad CM. |
| 1981 | cr(&[0x77, 0x85], F, State::BadZlibHeader, true); |
| 1982 | // Bad window size (but check is correct). |
| 1983 | cr(&[0x88, 0x98], F, State::BadZlibHeader, true); |
| 1984 | // Bad check bits. |
| 1985 | cr(&[0x78, 0x98], F, State::BadZlibHeader, true); |
| 1986 | |
| 1987 | // Too many code lengths. (From inflate library issues) |
| 1988 | cr( |
| 1989 | b"M \xff\xffM* \xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM" , |
| 1990 | F, |
| 1991 | State::BadDistOrLiteralTableLength, |
| 1992 | false, |
| 1993 | ); |
| 1994 | |
| 1995 | // Bad CLEN (also from inflate library issues) |
| 1996 | cr( |
| 1997 | b" \xdd\xff\xff*M \x94ffffffffff" , |
| 1998 | F, |
| 1999 | State::BadDistOrLiteralTableLength, |
| 2000 | false, |
| 2001 | ); |
| 2002 | |
| 2003 | // Port of inflate coverage tests from zlib-ng |
| 2004 | // https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c |
| 2005 | let c = |a, b, c| cr(a, b, c, false); |
| 2006 | |
| 2007 | // Invalid uncompressed/raw block length. |
| 2008 | c(&[0, 0, 0, 0, 0], F, State::BadRawLength); |
| 2009 | // Ok empty uncompressed block. |
| 2010 | c(&[3, 0], OK, State::DoneForever); |
| 2011 | // Invalid block type. |
| 2012 | c(&[6], F, State::BlockTypeUnexpected); |
| 2013 | // Ok uncompressed block. |
| 2014 | c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever); |
| 2015 | // Too many litlens, we handle this later than zlib, so this test won't |
| 2016 | // give the same result. |
| 2017 | // c(&[0xfc, 0, 0], F, State::BadTotalSymbols); |
| 2018 | // Invalid set of code lengths - TODO Check if this is the correct error for this. |
| 2019 | c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols); |
| 2020 | // Invalid repeat in list of code lengths. |
| 2021 | // (Try to repeat a non-existent code.) |
| 2022 | c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup); |
| 2023 | // Missing end of block code (should we have a separate error for this?) - fails on further input |
| 2024 | // c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols); |
| 2025 | // Invalid set of literals/lengths |
| 2026 | c( |
| 2027 | &[ |
| 2028 | 4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0, |
| 2029 | ], |
| 2030 | F, |
| 2031 | State::BadTotalSymbols, |
| 2032 | ); |
| 2033 | // Invalid set of distances _ needsmoreinput |
| 2034 | // c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols); |
| 2035 | // Invalid distance code |
| 2036 | c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist); |
| 2037 | |
| 2038 | // Distance refers to position before the start |
| 2039 | c( |
| 2040 | &[0x0c, 0xc0, 0x81, 0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0], |
| 2041 | F, |
| 2042 | State::DistanceOutOfBounds, |
| 2043 | ); |
| 2044 | |
| 2045 | // Trailer |
| 2046 | // Bad gzip trailer checksum GZip header not handled by miniz_oxide |
| 2047 | //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) |
| 2048 | // Bad gzip trailer length |
| 2049 | //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) |
| 2050 | } |
| 2051 | |
| 2052 | #[test ] |
| 2053 | fn empty_output_buffer_non_wrapping() { |
| 2054 | let encoded = [ |
| 2055 | 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, |
| 2056 | ]; |
| 2057 | let flags = TINFL_FLAG_COMPUTE_ADLER32 |
| 2058 | | TINFL_FLAG_PARSE_ZLIB_HEADER |
| 2059 | | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
| 2060 | let mut r = DecompressorOxide::new(); |
| 2061 | let mut output_buf: [u8; 0] = []; |
| 2062 | // Check that we handle an empty buffer properly and not panicking. |
| 2063 | // https://github.com/Frommi/miniz_oxide/issues/23 |
| 2064 | let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); |
| 2065 | assert_eq!(res, (TINFLStatus::HasMoreOutput, 4, 0)); |
| 2066 | } |
| 2067 | |
| 2068 | #[test ] |
| 2069 | fn empty_output_buffer_wrapping() { |
| 2070 | let encoded = [ |
| 2071 | 0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00, |
| 2072 | ]; |
| 2073 | let flags = TINFL_FLAG_COMPUTE_ADLER32; |
| 2074 | let mut r = DecompressorOxide::new(); |
| 2075 | let mut output_buf: [u8; 0] = []; |
| 2076 | // Check that we handle an empty buffer properly and not panicking. |
| 2077 | // https://github.com/Frommi/miniz_oxide/issues/23 |
| 2078 | let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); |
| 2079 | assert_eq!(res, (TINFLStatus::HasMoreOutput, 2, 0)); |
| 2080 | } |
| 2081 | |
| 2082 | #[test ] |
| 2083 | fn dist_extra_bits() { |
| 2084 | use self::num_extra_bits_for_distance_code; |
| 2085 | // Number of extra bits for each distance code. |
| 2086 | const DIST_EXTRA: [u8; 29] = [ |
| 2087 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, |
| 2088 | 12, 13, |
| 2089 | ]; |
| 2090 | |
| 2091 | for (i, &dist) in DIST_EXTRA.iter().enumerate() { |
| 2092 | assert_eq!(dist, num_extra_bits_for_distance_code(i as u8)); |
| 2093 | } |
| 2094 | } |
| 2095 | |
| 2096 | #[test ] |
| 2097 | fn check_tree() { |
| 2098 | let mut r = DecompressorOxide::new(); |
| 2099 | let mut l = LocalVars { |
| 2100 | bit_buf: 0, |
| 2101 | num_bits: 0, |
| 2102 | dist: 0, |
| 2103 | counter: 0, |
| 2104 | num_extra: 0, |
| 2105 | }; |
| 2106 | |
| 2107 | r.code_size_huffman[0] = 1; |
| 2108 | r.code_size_huffman[1] = 1; |
| 2109 | //r.code_size_huffman[2] = 3; |
| 2110 | //r.code_size_huffman[3] = 3; |
| 2111 | //r.code_size_huffman[1] = 4; |
| 2112 | r.block_type = HUFFLEN_TABLE as u8; |
| 2113 | r.table_sizes[HUFFLEN_TABLE] = 4; |
| 2114 | let res = init_tree(&mut r, &mut l).unwrap(); |
| 2115 | |
| 2116 | let status = match res { |
| 2117 | Action::Jump(s) => s, |
| 2118 | _ => { |
| 2119 | //println!("issue"); |
| 2120 | return; |
| 2121 | } |
| 2122 | }; |
| 2123 | //println!("status {:?}", status); |
| 2124 | assert!(status != BadTotalSymbols); |
| 2125 | } |
| 2126 | } |
| 2127 | |