1 | //! Streaming decompression functionality. |
2 | |
3 | use super::*; |
4 | use crate::shared::{update_adler32, HUFFMAN_LENGTH_ORDER}; |
5 | use ::core::cell::Cell; |
6 | |
7 | use ::core::cmp; |
8 | use ::core::convert::TryInto; |
9 | |
10 | use self::output_buffer::{InputWrapper, OutputBuffer}; |
11 | |
12 | pub const TINFL_LZ_DICT_SIZE: usize = 32_768; |
13 | |
14 | /// A struct containing huffman code lengths and the huffman code tree used by the decompressor. |
15 | #[derive (Clone)] |
16 | struct HuffmanTable { |
17 | /// Fast lookup table for shorter huffman codes. |
18 | /// |
19 | /// See `HuffmanTable::fast_lookup`. |
20 | pub look_up: [i16; FAST_LOOKUP_SIZE as usize], |
21 | /// Full huffman tree. |
22 | /// |
23 | /// Positive values are edge nodes/symbols, negative values are |
24 | /// parent nodes/references to other nodes. |
25 | pub tree: [i16; MAX_HUFF_TREE_SIZE], |
26 | } |
27 | |
28 | impl HuffmanTable { |
29 | const fn new() -> HuffmanTable { |
30 | HuffmanTable { |
31 | look_up: [0; FAST_LOOKUP_SIZE as usize], |
32 | tree: [0; MAX_HUFF_TREE_SIZE], |
33 | } |
34 | } |
35 | |
36 | /// Look for a symbol in the fast lookup table. |
37 | /// The symbol is stored in the lower 9 bits, the length in the next 6. |
38 | /// If the returned value is negative, the code wasn't found in the |
39 | /// fast lookup table and the full tree has to be traversed to find the code. |
40 | #[inline ] |
41 | fn fast_lookup(&self, bit_buf: BitBuffer) -> i16 { |
42 | self.look_up[(bit_buf & BitBuffer::from(FAST_LOOKUP_SIZE - 1)) as usize] |
43 | } |
44 | |
45 | /// Get the symbol and the code length from the huffman tree. |
46 | #[inline ] |
47 | fn tree_lookup(&self, fast_symbol: i32, bit_buf: BitBuffer, mut code_len: u8) -> (i32, u32) { |
48 | let mut symbol = fast_symbol; |
49 | // We step through the tree until we encounter a positive value, which indicates a |
50 | // symbol. |
51 | loop { |
52 | // symbol here indicates the position of the left (0) node, if the next bit is 1 |
53 | // we add 1 to the lookup position to get the right node. |
54 | let tree_index = (!symbol + ((bit_buf >> code_len) & 1) as i32) as usize; |
55 | |
56 | // Use get here to avoid generatic panic code. |
57 | // The init_tree code should prevent this from actually going out of bounds |
58 | // but if there were somehow a bug with that |
59 | // we would at worst end up with corrupted output in release mode. |
60 | debug_assert!(tree_index < self.tree.len()); |
61 | symbol = i32::from(self.tree.get(tree_index).copied().unwrap_or(i16::MAX)); |
62 | code_len += 1; |
63 | if symbol >= 0 { |
64 | break; |
65 | } |
66 | } |
67 | // Note: Using a u8 for code_len inside this function seems to improve performance, but changing it |
68 | // in localvars seems to worsen things so we convert it to a u32 here. |
69 | (symbol, u32::from(code_len)) |
70 | } |
71 | |
72 | #[inline ] |
73 | /// Look up a symbol and code length from the bits in the provided bit buffer. |
74 | /// |
75 | /// Returns Some(symbol, length) on success, |
76 | /// None if the length is 0. |
77 | /// |
78 | /// It's possible we could avoid checking for 0 if we can guarantee a sane table. |
79 | /// TODO: Check if a smaller type for code_len helps performance. |
80 | fn lookup(&self, bit_buf: BitBuffer) -> (i32, u32) { |
81 | let symbol = self.fast_lookup(bit_buf).into(); |
82 | if symbol >= 0 { |
83 | let length = (symbol >> 9) as u32; |
84 | (symbol, length) |
85 | } else { |
86 | // We didn't get a symbol from the fast lookup table, so check the tree instead. |
87 | self.tree_lookup(symbol, bit_buf, FAST_LOOKUP_BITS) |
88 | } |
89 | } |
90 | } |
91 | |
92 | /// The number of huffman tables used. |
93 | const MAX_HUFF_TABLES: usize = 3; |
94 | /// The length of the first (literal/length) huffman table. |
95 | const MAX_HUFF_SYMBOLS_0: usize = 288; |
96 | /// The length of the second (distance) huffman table. |
97 | const MAX_HUFF_SYMBOLS_1: usize = 32; |
98 | /// The length of the last (huffman code length) huffman table. |
99 | const MAX_HUFF_SYMBOLS_2: usize = 19; |
100 | /// The maximum length of a code that can be looked up in the fast lookup table. |
101 | const FAST_LOOKUP_BITS: u8 = 10; |
102 | /// The size of the fast lookup table. |
103 | const FAST_LOOKUP_SIZE: u32 = 1 << FAST_LOOKUP_BITS; |
104 | const MAX_HUFF_TREE_SIZE: usize = MAX_HUFF_SYMBOLS_0 * 2; |
105 | const LITLEN_TABLE: usize = 0; |
106 | const DIST_TABLE: usize = 1; |
107 | const HUFFLEN_TABLE: usize = 2; |
108 | |
109 | /// Flags to [`decompress()`] to control how inflation works. |
110 | /// |
111 | /// These define bits for a bitmask argument. |
112 | pub mod inflate_flags { |
113 | /// Should we try to parse a zlib header? |
114 | /// |
115 | /// If unset, the function will expect an RFC1951 deflate stream. If set, it will expect a |
116 | /// RFC1950 zlib wrapper around the deflate stream. |
117 | pub const TINFL_FLAG_PARSE_ZLIB_HEADER: u32 = 1; |
118 | |
119 | /// There will be more input that hasn't been given to the decompressor yet. |
120 | /// |
121 | /// This is useful when you want to decompress what you have so far, |
122 | /// even if you know there is probably more input that hasn't gotten here yet (_e.g._, over a |
123 | /// network connection). When [`decompress()`][super::decompress] reaches the end of the input |
124 | /// without finding the end of the compressed stream, it will return |
125 | /// [`TINFLStatus::NeedsMoreInput`][super::TINFLStatus::NeedsMoreInput] if this is set, |
126 | /// indicating that you should get more data before calling again. If not set, it will return |
127 | /// [`TINFLStatus::FailedCannotMakeProgress`][super::TINFLStatus::FailedCannotMakeProgress] |
128 | /// suggesting the stream is corrupt, since you claimed it was all there. |
129 | pub const TINFL_FLAG_HAS_MORE_INPUT: u32 = 2; |
130 | |
131 | /// The output buffer should not wrap around. |
132 | pub const TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: u32 = 4; |
133 | |
134 | /// Calculate the adler32 checksum of the output data even if we're not inflating a zlib stream. |
135 | /// |
136 | /// If [`TINFL_FLAG_IGNORE_ADLER32`] is specified, it will override this. |
137 | /// |
138 | /// NOTE: Enabling/disabling this between calls to decompress will result in an incorrect |
139 | /// checksum. |
140 | pub const TINFL_FLAG_COMPUTE_ADLER32: u32 = 8; |
141 | |
142 | /// Ignore adler32 checksum even if we are inflating a zlib stream. |
143 | /// |
144 | /// Overrides [`TINFL_FLAG_COMPUTE_ADLER32`] if both are enabled. |
145 | /// |
146 | /// NOTE: This flag does not exist in miniz as it does not support this and is a |
147 | /// custom addition for miniz_oxide. |
148 | /// |
149 | /// NOTE: Should not be changed from enabled to disabled after decompression has started, |
150 | /// this will result in checksum failure (outside the unlikely event where the checksum happens |
151 | /// to match anyway). |
152 | pub const TINFL_FLAG_IGNORE_ADLER32: u32 = 64; |
153 | } |
154 | |
155 | use self::inflate_flags::*; |
156 | |
157 | const MIN_TABLE_SIZES: [u16; 3] = [257, 1, 4]; |
158 | |
159 | #[cfg (target_pointer_width = "64" )] |
160 | type BitBuffer = u64; |
161 | |
162 | #[cfg (not(target_pointer_width = "64" ))] |
163 | type BitBuffer = u32; |
164 | |
165 | /* |
166 | enum HuffmanTableType { |
167 | LiteralLength = 0, |
168 | Dist = 1, |
169 | Huffman = 2, |
170 | }*/ |
171 | |
172 | /// Main decompression struct. |
173 | /// |
174 | #[derive (Clone)] |
175 | pub struct DecompressorOxide { |
176 | /// Current state of the decompressor. |
177 | state: core::State, |
178 | /// Number of bits in the bit buffer. |
179 | num_bits: u32, |
180 | /// Zlib CMF |
181 | z_header0: u32, |
182 | /// Zlib FLG |
183 | z_header1: u32, |
184 | /// Adler32 checksum from the zlib header. |
185 | z_adler32: u32, |
186 | /// 1 if the current block is the last block, 0 otherwise. |
187 | finish: u8, |
188 | /// The type of the current block. |
189 | /// or if in a dynamic block, which huffman table we are currently |
190 | // initializing. |
191 | block_type: u8, |
192 | /// 1 if the adler32 value should be checked. |
193 | check_adler32: u32, |
194 | /// Last match distance. |
195 | dist: u32, |
196 | /// Variable used for match length, symbols, and a number of other things. |
197 | counter: u32, |
198 | /// Number of extra bits for the last length or distance code. |
199 | num_extra: u8, |
200 | /// Number of entries in each huffman table. |
201 | table_sizes: [u16; MAX_HUFF_TABLES], |
202 | /// Buffer of input data. |
203 | bit_buf: BitBuffer, |
204 | /// Huffman tables. |
205 | tables: [HuffmanTable; MAX_HUFF_TABLES], |
206 | code_size_literal: [u8; MAX_HUFF_SYMBOLS_0], |
207 | code_size_dist: [u8; MAX_HUFF_SYMBOLS_1], |
208 | code_size_huffman: [u8; MAX_HUFF_SYMBOLS_2], |
209 | /// Raw block header. |
210 | raw_header: [u8; 4], |
211 | /// Huffman length codes. |
212 | len_codes: [u8; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137], |
213 | } |
214 | |
215 | impl DecompressorOxide { |
216 | /// Create a new tinfl_decompressor with all fields set to 0. |
217 | pub fn new() -> DecompressorOxide { |
218 | DecompressorOxide::default() |
219 | } |
220 | |
221 | /// Set the current state to `Start`. |
222 | #[inline ] |
223 | pub fn init(&mut self) { |
224 | // The rest of the data is reset or overwritten when used. |
225 | self.state = core::State::Start; |
226 | } |
227 | |
228 | /// Returns the adler32 checksum of the currently decompressed data. |
229 | /// Note: Will return Some(1) if decompressing zlib but ignoring adler32. |
230 | #[inline ] |
231 | pub fn adler32(&self) -> Option<u32> { |
232 | if self.state != State::Start && !self.state.is_failure() && self.z_header0 != 0 { |
233 | Some(self.check_adler32) |
234 | } else { |
235 | None |
236 | } |
237 | } |
238 | |
239 | /// Returns the adler32 that was read from the zlib header if it exists. |
240 | #[inline ] |
241 | pub fn adler32_header(&self) -> Option<u32> { |
242 | if self.state != State::Start && self.state != State::BadZlibHeader && self.z_header0 != 0 { |
243 | Some(self.z_adler32) |
244 | } else { |
245 | None |
246 | } |
247 | } |
248 | |
249 | // Get zlib header for tests |
250 | // Only for tests for now, may provide a proper function for this for later. |
251 | #[cfg (all(test, feature = "with-alloc" ))] |
252 | pub(crate) const fn zlib_header(&self) -> (u32, u32) { |
253 | (self.z_header0, self.z_header1) |
254 | } |
255 | |
256 | /*fn code_size_table(&mut self, table_num: u8) -> &mut [u8] { |
257 | match table_num { |
258 | 0 => &mut self.code_size_literal, |
259 | 1 => &mut self.code_size_dist, |
260 | _ => &mut self.code_size_huffman, |
261 | } |
262 | }*/ |
263 | } |
264 | |
265 | impl Default for DecompressorOxide { |
266 | /// Create a new tinfl_decompressor with all fields set to 0. |
267 | #[inline (always)] |
268 | fn default() -> Self { |
269 | DecompressorOxide { |
270 | state: core::State::Start, |
271 | num_bits: 0, |
272 | z_header0: 0, |
273 | z_header1: 0, |
274 | z_adler32: 0, |
275 | finish: 0, |
276 | block_type: 0, |
277 | check_adler32: 0, |
278 | dist: 0, |
279 | counter: 0, |
280 | num_extra: 0, |
281 | table_sizes: [0; MAX_HUFF_TABLES], |
282 | bit_buf: 0, |
283 | // TODO:(oyvindln) Check that copies here are optimized out in release mode. |
284 | tables: [ |
285 | HuffmanTable::new(), |
286 | HuffmanTable::new(), |
287 | HuffmanTable::new(), |
288 | ], |
289 | code_size_literal: [0; MAX_HUFF_SYMBOLS_0], |
290 | code_size_dist: [0; MAX_HUFF_SYMBOLS_1], |
291 | code_size_huffman: [0; MAX_HUFF_SYMBOLS_2], |
292 | raw_header: [0; 4], |
293 | len_codes: [0; MAX_HUFF_SYMBOLS_0 + MAX_HUFF_SYMBOLS_1 + 137], |
294 | } |
295 | } |
296 | } |
297 | |
298 | #[derive (Copy, Clone, PartialEq, Eq, Debug)] |
299 | #[non_exhaustive ] |
300 | enum State { |
301 | Start = 0, |
302 | ReadZlibCmf, |
303 | ReadZlibFlg, |
304 | ReadBlockHeader, |
305 | BlockTypeNoCompression, |
306 | RawHeader, |
307 | RawMemcpy1, |
308 | RawMemcpy2, |
309 | ReadTableSizes, |
310 | ReadHufflenTableCodeSize, |
311 | ReadLitlenDistTablesCodeSize, |
312 | ReadExtraBitsCodeSize, |
313 | DecodeLitlen, |
314 | WriteSymbol, |
315 | ReadExtraBitsLitlen, |
316 | DecodeDistance, |
317 | ReadExtraBitsDistance, |
318 | RawReadFirstByte, |
319 | RawStoreFirstByte, |
320 | WriteLenBytesToEnd, |
321 | BlockDone, |
322 | HuffDecodeOuterLoop1, |
323 | HuffDecodeOuterLoop2, |
324 | ReadAdler32, |
325 | |
326 | DoneForever, |
327 | |
328 | // Failure states. |
329 | BlockTypeUnexpected, |
330 | BadCodeSizeSum, |
331 | BadDistOrLiteralTableLength, |
332 | BadTotalSymbols, |
333 | BadZlibHeader, |
334 | DistanceOutOfBounds, |
335 | BadRawLength, |
336 | BadCodeSizeDistPrevLookup, |
337 | InvalidLitlen, |
338 | InvalidDist, |
339 | } |
340 | |
341 | impl State { |
342 | const fn is_failure(self) -> bool { |
343 | matches!( |
344 | self, |
345 | BlockTypeUnexpected |
346 | | BadCodeSizeSum |
347 | | BadDistOrLiteralTableLength |
348 | | BadTotalSymbols |
349 | | BadZlibHeader |
350 | | DistanceOutOfBounds |
351 | | BadRawLength |
352 | | BadCodeSizeDistPrevLookup |
353 | | InvalidLitlen |
354 | | InvalidDist |
355 | ) |
356 | } |
357 | |
358 | #[inline ] |
359 | fn begin(&mut self, new_state: State) { |
360 | *self = new_state; |
361 | } |
362 | } |
363 | |
364 | use self::State::*; |
365 | |
366 | // # Optimization |
367 | // We add a extra value at the end and make the tables 32 elements long |
368 | // so we can use a mask to avoid bounds checks. |
369 | // The invalid values are set to something high enough to avoid underflowing |
370 | // the match length. |
371 | /// Base length for each length code. |
372 | /// |
373 | /// The base is used together with the value of the extra bits to decode the actual |
374 | /// length/distance values in a match. |
375 | #[rustfmt::skip] |
376 | const LENGTH_BASE: [u16; 32] = [ |
377 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, |
378 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 512, 512, 512 |
379 | ]; |
380 | |
381 | /// Number of extra bits for each length code. |
382 | #[rustfmt::skip] |
383 | const LENGTH_EXTRA: [u8; 32] = [ |
384 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, |
385 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0, 0 |
386 | ]; |
387 | |
388 | /// Base length for each distance code. |
389 | #[rustfmt::skip] |
390 | const DIST_BASE: [u16; 30] = [ |
391 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, |
392 | 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, |
393 | 2049, 3073, 4097, 6145, 8193, 12_289, 16_385, 24_577 |
394 | ]; |
395 | |
396 | /// Get the number of extra bits used for a distance code. |
397 | /// (Code numbers above `NUM_DISTANCE_CODES` will give some garbage |
398 | /// value.) |
399 | #[inline (always)] |
400 | const fn num_extra_bits_for_distance_code(code: u8) -> u8 { |
401 | // TODO: Need to verify that this is faster on all platforms. |
402 | // This can be easily calculated without a lookup. |
403 | let c: u8 = code >> 1; |
404 | c.saturating_sub(1) |
405 | } |
406 | |
407 | /// The mask used when indexing the base/extra arrays. |
408 | const BASE_EXTRA_MASK: usize = 32 - 1; |
409 | |
410 | /// Read an le u16 value from the slice iterator. |
411 | /// |
412 | /// # Panics |
413 | /// Panics if there are less than two bytes left. |
414 | #[inline ] |
415 | fn read_u16_le(iter: &mut InputWrapper) -> u16 { |
416 | let ret: u16 = { |
417 | let two_bytes: [u8; _] = iter.as_slice()[..2].try_into().unwrap_or_default(); |
418 | u16::from_le_bytes(two_bytes) |
419 | }; |
420 | iter.advance(steps:2); |
421 | ret |
422 | } |
423 | |
424 | /// Ensure that there is data in the bit buffer. |
425 | /// |
426 | /// On 64-bit platform, we use a 64-bit value so this will |
427 | /// result in there being at least 32 bits in the bit buffer. |
428 | /// This function assumes that there is at least 4 bytes left in the input buffer. |
429 | #[inline (always)] |
430 | #[cfg (target_pointer_width = "64" )] |
431 | fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut InputWrapper) { |
432 | // Read four bytes into the buffer at once. |
433 | if l.num_bits < 30 { |
434 | l.bit_buf |= BitBuffer::from(in_iter.read_u32_le()) << l.num_bits; |
435 | l.num_bits += 32; |
436 | } |
437 | } |
438 | |
439 | /// Same as previous, but for non-64-bit platforms. |
440 | /// Ensures at least 16 bits are present, requires at least 2 bytes in the in buffer. |
441 | #[inline (always)] |
442 | #[cfg (not(target_pointer_width = "64" ))] |
443 | fn fill_bit_buffer(l: &mut LocalVars, in_iter: &mut InputWrapper) { |
444 | // If the buffer is 32-bit wide, read 2 bytes instead. |
445 | if l.num_bits < 15 { |
446 | l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; |
447 | l.num_bits += 16; |
448 | } |
449 | } |
450 | |
451 | /// Check that the zlib header is correct and that there is enough space in the buffer |
452 | /// for the window size specified in the header. |
453 | /// |
454 | /// See https://tools.ietf.org/html/rfc1950 |
455 | #[inline ] |
456 | const fn validate_zlib_header(cmf: u32, flg: u32, flags: u32, mask: usize) -> Action { |
457 | let mut failed = |
458 | // cmf + flg should be divisible by 31. |
459 | (((cmf * 256) + flg) % 31 != 0) || |
460 | // If this flag is set, a dictionary was used for this zlib compressed data. |
461 | // This is currently not supported by miniz or miniz-oxide |
462 | ((flg & 0b0010_0000) != 0) || |
463 | // Compression method. Only 8(DEFLATE) is defined by the standard. |
464 | ((cmf & 15) != 8); |
465 | |
466 | let window_size = 1 << ((cmf >> 4) + 8); |
467 | if (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF) == 0 { |
468 | // Bail if the buffer is wrapping and the window size is larger than the buffer. |
469 | failed |= (mask + 1) < window_size; |
470 | } |
471 | |
472 | // Zlib doesn't allow window sizes above 32 * 1024. |
473 | failed |= window_size > 32_768; |
474 | |
475 | if failed { |
476 | Action::Jump(BadZlibHeader) |
477 | } else { |
478 | Action::Jump(ReadBlockHeader) |
479 | } |
480 | } |
481 | |
482 | enum Action { |
483 | None, |
484 | Jump(State), |
485 | End(TINFLStatus), |
486 | } |
487 | |
488 | /// Try to decode the next huffman code, and puts it in the counter field of the decompressor |
489 | /// if successful. |
490 | /// |
491 | /// # Returns |
492 | /// The specified action returned from `f` on success, |
493 | /// `Action::End` if there are not enough data left to decode a symbol. |
494 | fn decode_huffman_code<F>( |
495 | r: &mut DecompressorOxide, |
496 | l: &mut LocalVars, |
497 | table: usize, |
498 | flags: u32, |
499 | in_iter: &mut InputWrapper, |
500 | f: F, |
501 | ) -> Action |
502 | where |
503 | F: FnOnce(&mut DecompressorOxide, &mut LocalVars, i32) -> Action, |
504 | { |
505 | // As the huffman codes can be up to 15 bits long we need at least 15 bits |
506 | // ready in the bit buffer to start decoding the next huffman code. |
507 | if l.num_bits < 15 { |
508 | // First, make sure there is enough data in the bit buffer to decode a huffman code. |
509 | if in_iter.bytes_left() < 2 { |
510 | // If there is less than 2 bytes left in the input buffer, we try to look up |
511 | // the huffman code with what's available, and return if that doesn't succeed. |
512 | // Original explanation in miniz: |
513 | // /* TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes |
514 | // * remaining in the input buffer falls below 2. */ |
515 | // /* It reads just enough bytes from the input stream that are needed to decode |
516 | // * the next Huffman code (and absolutely no more). It works by trying to fully |
517 | // * decode a */ |
518 | // /* Huffman code by using whatever bits are currently present in the bit buffer. |
519 | // * If this fails, it reads another byte, and tries again until it succeeds or |
520 | // * until the */ |
521 | // /* bit buffer contains >=15 bits (deflate's max. Huffman code size). */ |
522 | loop { |
523 | let mut temp = i32::from(r.tables[table].fast_lookup(l.bit_buf)); |
524 | if temp >= 0 { |
525 | let code_len = (temp >> 9) as u32; |
526 | // TODO: Is there any point to check for code_len != 0 here still? |
527 | if (code_len != 0) && (l.num_bits >= code_len) { |
528 | break; |
529 | } |
530 | } else if l.num_bits > FAST_LOOKUP_BITS.into() { |
531 | let mut code_len = u32::from(FAST_LOOKUP_BITS); |
532 | loop { |
533 | temp = i32::from( |
534 | r.tables[table].tree |
535 | [(!temp + ((l.bit_buf >> code_len) & 1) as i32) as usize], |
536 | ); |
537 | code_len += 1; |
538 | if temp >= 0 || l.num_bits < code_len + 1 { |
539 | break; |
540 | } |
541 | } |
542 | if temp >= 0 { |
543 | break; |
544 | } |
545 | } |
546 | |
547 | // TODO: miniz jumps straight to here after getting here again after failing to read |
548 | // a byte. |
549 | // Doing that lets miniz avoid re-doing the lookup that that was done in the |
550 | // previous call. |
551 | let mut byte = 0; |
552 | if let a @ Action::End(_) = read_byte(in_iter, flags, |b| { |
553 | byte = b; |
554 | Action::None |
555 | }) { |
556 | return a; |
557 | }; |
558 | |
559 | // Do this outside closure for now to avoid borrowing r. |
560 | l.bit_buf |= BitBuffer::from(byte) << l.num_bits; |
561 | l.num_bits += 8; |
562 | |
563 | if l.num_bits >= 15 { |
564 | break; |
565 | } |
566 | } |
567 | } else { |
568 | // There is enough data in the input buffer, so read the next two bytes |
569 | // and add them to the bit buffer. |
570 | // Unwrapping here is fine since we just checked that there are at least two |
571 | // bytes left. |
572 | l.bit_buf |= BitBuffer::from(read_u16_le(in_iter)) << l.num_bits; |
573 | l.num_bits += 16; |
574 | } |
575 | } |
576 | |
577 | // We now have at least 15 bits in the input buffer. |
578 | let mut symbol = i32::from(r.tables[table].fast_lookup(l.bit_buf)); |
579 | let code_len; |
580 | // If the symbol was found in the fast lookup table. |
581 | if symbol >= 0 { |
582 | // Get the length value from the top bits. |
583 | // As we shift down the sign bit, converting to an unsigned value |
584 | // shouldn't overflow. |
585 | code_len = (symbol >> 9) as u32; |
586 | // Mask out the length value. |
587 | symbol &= 511; |
588 | } else { |
589 | let res = r.tables[table].tree_lookup(symbol, l.bit_buf, FAST_LOOKUP_BITS); |
590 | symbol = res.0; |
591 | code_len = res.1; |
592 | }; |
593 | |
594 | l.bit_buf >>= code_len; |
595 | l.num_bits -= code_len; |
596 | f(r, l, symbol) |
597 | } |
598 | |
599 | /// Try to read one byte from `in_iter` and call `f` with the read byte as an argument, |
600 | /// returning the result. |
601 | /// If reading fails, `Action::End is returned` |
602 | #[inline ] |
603 | fn read_byte<F>(in_iter: &mut InputWrapper, flags: u32, f: F) -> Action |
604 | where |
605 | F: FnOnce(u8) -> Action, |
606 | { |
607 | match in_iter.read_byte() { |
608 | None => end_of_input(flags), |
609 | Some(byte: u8) => f(byte), |
610 | } |
611 | } |
612 | |
613 | // TODO: `l: &mut LocalVars` may be slow similar to decompress_fast (even with inline(always)) |
614 | /// Try to read `amount` number of bits from `in_iter` and call the function `f` with the bits as an |
615 | /// an argument after reading, returning the result of that function, or `Action::End` if there are |
616 | /// not enough bytes left. |
617 | #[inline ] |
618 | #[allow (clippy::while_immutable_condition)] |
619 | fn read_bits<F>( |
620 | l: &mut LocalVars, |
621 | amount: u32, |
622 | in_iter: &mut InputWrapper, |
623 | flags: u32, |
624 | f: F, |
625 | ) -> Action |
626 | where |
627 | F: FnOnce(&mut LocalVars, BitBuffer) -> Action, |
628 | { |
629 | // Clippy gives a false positive warning here due to the closure. |
630 | // Read enough bytes from the input iterator to cover the number of bits we want. |
631 | while l.num_bits < amount { |
632 | let action: Action = read_byte(in_iter, flags, |byte: u8| { |
633 | l.bit_buf |= BitBuffer::from(byte) << l.num_bits; |
634 | l.num_bits += 8; |
635 | Action::None |
636 | }); |
637 | |
638 | // If there are not enough bytes in the input iterator, return and signal that we need more. |
639 | if !matches!(action, Action::None) { |
640 | return action; |
641 | } |
642 | } |
643 | |
644 | let bits: u64 = l.bit_buf & ((1 << amount) - 1); |
645 | l.bit_buf >>= amount; |
646 | l.num_bits -= amount; |
647 | f(l, bits) |
648 | } |
649 | |
650 | #[inline ] |
651 | fn pad_to_bytes<F>(l: &mut LocalVars, in_iter: &mut InputWrapper, flags: u32, f: F) -> Action |
652 | where |
653 | F: FnOnce(&mut LocalVars) -> Action, |
654 | { |
655 | let num_bits: u32 = l.num_bits & 7; |
656 | read_bits(l, amount:num_bits, in_iter, flags, |l: &mut LocalVars, _| f(l)) |
657 | } |
658 | |
659 | #[inline ] |
660 | const fn end_of_input(flags: u32) -> Action { |
661 | Action::End(if flags & TINFL_FLAG_HAS_MORE_INPUT != 0 { |
662 | TINFLStatus::NeedsMoreInput |
663 | } else { |
664 | TINFLStatus::FailedCannotMakeProgress |
665 | }) |
666 | } |
667 | |
668 | #[inline ] |
669 | fn undo_bytes(l: &mut LocalVars, max: u32) -> u32 { |
670 | let res: u32 = cmp::min(v1:l.num_bits >> 3, v2:max); |
671 | l.num_bits -= res << 3; |
672 | res |
673 | } |
674 | |
675 | fn start_static_table(r: &mut DecompressorOxide) { |
676 | r.table_sizes[LITLEN_TABLE] = 288; |
677 | r.table_sizes[DIST_TABLE] = 32; |
678 | r.code_size_literal[0..144].fill(8); |
679 | r.code_size_literal[144..256].fill(9); |
680 | r.code_size_literal[256..280].fill(7); |
681 | r.code_size_literal[280..288].fill(8); |
682 | r.code_size_dist[0..32].fill(5); |
683 | } |
684 | |
685 | #[cfg (any( |
686 | feature = "rustc-dep-of-std" , |
687 | target_arch = "aarch64" , |
688 | target_arch = "arm64ec" , |
689 | target_arch = "loongarch64" |
690 | ))] |
691 | fn reverse_bits(n: u32) -> u32 { |
692 | // Lookup is not used when building as part of std to avoid wasting space |
693 | // for lookup table in every rust binary |
694 | // as it's only used for backtraces in the cold path |
695 | // - see #152 |
696 | |
697 | // armv7 and newer, and loongarch have a cpu instruction for bit reversal so |
698 | // it's preferable to just use that on those architectures. |
699 | n.reverse_bits() |
700 | } |
701 | |
702 | #[cfg (not(any( |
703 | feature = "rustc-dep-of-std" , |
704 | target_arch = "aarch64" , |
705 | target_arch = "arm64ec" , |
706 | target_arch = "loongarch64" |
707 | )))] |
708 | fn reverse_bits(n: u32) -> u32 { |
709 | static REVERSED_BITS_LOOKUP: [u32; 512] = { |
710 | let mut table: [u32; 512] = [0; 512]; |
711 | |
712 | let mut i: usize = 0; |
713 | while i < 512 { |
714 | table[i] = (i as u32).reverse_bits(); |
715 | i += 1; |
716 | } |
717 | |
718 | table |
719 | }; |
720 | REVERSED_BITS_LOOKUP[n as usize] |
721 | } |
722 | |
723 | fn init_tree(r: &mut DecompressorOxide, l: &mut LocalVars) -> Option<Action> { |
724 | loop { |
725 | let bt = r.block_type as usize; |
726 | |
727 | let code_sizes = match bt { |
728 | LITLEN_TABLE => &mut r.code_size_literal[..], |
729 | DIST_TABLE => &mut r.code_size_dist, |
730 | HUFFLEN_TABLE => &mut r.code_size_huffman, |
731 | _ => return None, |
732 | }; |
733 | let table = &mut r.tables[bt]; |
734 | |
735 | let mut total_symbols = [0u16; 16]; |
736 | let mut next_code = [0u32; 17]; |
737 | const INVALID_CODE: i16 = 1 << 9 | 286; |
738 | // Set the values in the fast table to return a |
739 | // non-zero length and an invalid symbol instead of zero |
740 | // so that we do not have to have a check for a zero |
741 | // code length in the hot code path later |
742 | // and can instead error out on the invalid symbol check |
743 | // on bogus input. |
744 | table.look_up.fill(INVALID_CODE); |
745 | // If we are initializing the huffman code length we can skip |
746 | // this since these codes can't be longer than 3 bits |
747 | // and thus only use the fast table and this table won't be accessed so |
748 | // there is no point clearing it. |
749 | // TODO: Avoid creating this table at all. |
750 | if bt != HUFFLEN_TABLE { |
751 | table.tree.fill(0); |
752 | } |
753 | |
754 | let table_size = r.table_sizes[bt] as usize; |
755 | if table_size > code_sizes.len() { |
756 | return None; |
757 | } |
758 | for &code_size in &code_sizes[..table_size] { |
759 | let cs = code_size as usize; |
760 | if cs >= total_symbols.len() { |
761 | return None; |
762 | } |
763 | total_symbols[cs] += 1; |
764 | } |
765 | |
766 | let mut used_symbols = 0; |
767 | let mut total = 0u32; |
768 | // Count up the total number of used lengths and check that the table is not under or over-subscribed. |
769 | for (&ts, next) in total_symbols.iter().zip(next_code[1..].iter_mut()).skip(1) { |
770 | used_symbols += ts; |
771 | total += u32::from(ts); |
772 | total <<= 1; |
773 | *next = total; |
774 | } |
775 | |
776 | // |
777 | // While it's not explicitly stated in the spec, a hufflen table |
778 | // with a single length (or none) would be invalid as there needs to be |
779 | // at minimum a length for both a non-zero length huffman code for the end of block symbol |
780 | // and one of the codes to represent 0 to make sense - so just reject that here as well. |
781 | // |
782 | // The distance table is allowed to have a single distance code though according to the spect it is |
783 | // supposed to be accompanied by a second dummy code. It can also be empty indicating no used codes. |
784 | // |
785 | // The literal/length table can not be empty as there has to be an end of block symbol, |
786 | // The standard doesn't specify that there should be a dummy code in case of a single |
787 | // symbol (i.e an empty block). Normally that's not an issue though the code will have |
788 | // to take that into account later on in case of malformed input. |
789 | if total != 65_536 && (used_symbols > 1 || bt == HUFFLEN_TABLE) { |
790 | return Some(Action::Jump(BadTotalSymbols)); |
791 | } |
792 | |
793 | let mut tree_next = -1; |
794 | for symbol_index in 0..table_size { |
795 | let code_size = code_sizes[symbol_index]; |
796 | if code_size == 0 || usize::from(code_size) >= next_code.len() { |
797 | continue; |
798 | } |
799 | |
800 | let cur_code = next_code[code_size as usize]; |
801 | next_code[code_size as usize] += 1; |
802 | |
803 | let n = cur_code & (u32::MAX >> (32 - code_size)); |
804 | |
805 | let mut rev_code = if n < 512 { |
806 | // Using a lookup table |
807 | // for a small speedup here, |
808 | // Seems to only really make a difference on very short |
809 | // inputs however. |
810 | // 512 seems to be around a sweet spot. |
811 | reverse_bits(n) |
812 | } else { |
813 | n.reverse_bits() |
814 | } >> (32 - code_size); |
815 | |
816 | if code_size <= FAST_LOOKUP_BITS { |
817 | let k = (i16::from(code_size) << 9) | symbol_index as i16; |
818 | while rev_code < FAST_LOOKUP_SIZE { |
819 | table.look_up[rev_code as usize] = k; |
820 | rev_code += 1 << code_size; |
821 | } |
822 | continue; |
823 | } |
824 | |
825 | let mut tree_cur = table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize]; |
826 | if tree_cur == INVALID_CODE { |
827 | table.look_up[(rev_code & (FAST_LOOKUP_SIZE - 1)) as usize] = tree_next; |
828 | tree_cur = tree_next; |
829 | tree_next -= 2; |
830 | } |
831 | |
832 | rev_code >>= FAST_LOOKUP_BITS - 1; |
833 | for _ in FAST_LOOKUP_BITS + 1..code_size { |
834 | rev_code >>= 1; |
835 | tree_cur -= (rev_code & 1) as i16; |
836 | let tree_index = (-tree_cur - 1) as usize; |
837 | if tree_index >= table.tree.len() { |
838 | return None; |
839 | } |
840 | if table.tree[tree_index] == 0 { |
841 | table.tree[tree_index] = tree_next; |
842 | tree_cur = tree_next; |
843 | tree_next -= 2; |
844 | } else { |
845 | tree_cur = table.tree[tree_index]; |
846 | } |
847 | } |
848 | |
849 | rev_code >>= 1; |
850 | tree_cur -= (rev_code & 1) as i16; |
851 | let tree_index = (-tree_cur - 1) as usize; |
852 | if tree_index >= table.tree.len() { |
853 | return None; |
854 | } |
855 | table.tree[tree_index] = symbol_index as i16; |
856 | } |
857 | |
858 | if r.block_type == HUFFLEN_TABLE as u8 { |
859 | l.counter = 0; |
860 | return Some(Action::Jump(ReadLitlenDistTablesCodeSize)); |
861 | } |
862 | |
863 | if r.block_type == LITLEN_TABLE as u8 { |
864 | break; |
865 | } |
866 | r.block_type -= 1; |
867 | } |
868 | |
869 | l.counter = 0; |
870 | |
871 | Some(Action::Jump(DecodeLitlen)) |
872 | } |
873 | |
874 | // A helper macro for generating the state machine. |
875 | // |
876 | // As Rust doesn't have fallthrough on matches, we have to return to the match statement |
877 | // and jump for each state change. (Which would ideally be optimized away, but often isn't.) |
878 | macro_rules! generate_state { |
879 | ($state: ident, $state_machine: tt, $f: expr) => { |
880 | loop { |
881 | match $f { |
882 | Action::None => continue, |
883 | Action::Jump(new_state) => { |
884 | $state = new_state; |
885 | continue $state_machine; |
886 | }, |
887 | Action::End(result) => break $state_machine result, |
888 | } |
889 | } |
890 | }; |
891 | } |
892 | |
893 | #[derive (Copy, Clone)] |
894 | struct LocalVars { |
895 | pub bit_buf: BitBuffer, |
896 | pub num_bits: u32, |
897 | pub dist: u32, |
898 | pub counter: u32, |
899 | pub num_extra: u8, |
900 | } |
901 | |
902 | #[inline ] |
903 | fn transfer( |
904 | out_slice: &mut [u8], |
905 | mut source_pos: usize, |
906 | mut out_pos: usize, |
907 | match_len: usize, |
908 | out_buf_size_mask: usize, |
909 | ) { |
910 | // special case that comes up surprisingly often. in the case that `source_pos` |
911 | // is 1 less than `out_pos`, we can say that the entire range will be the same |
912 | // value and optimize this to be a simple `memset` |
913 | let source_diff = if source_pos > out_pos { |
914 | source_pos - out_pos |
915 | } else { |
916 | out_pos - source_pos |
917 | }; |
918 | if out_buf_size_mask == usize::MAX && source_diff == 1 && out_pos > source_pos { |
919 | let init = out_slice[out_pos - 1]; |
920 | let end = (match_len >> 2) * 4 + out_pos; |
921 | |
922 | out_slice[out_pos..end].fill(init); |
923 | out_pos = end; |
924 | source_pos = end - 1; |
925 | // if the difference between `source_pos` and `out_pos` is greater than 3, we |
926 | // can do slightly better than the naive case by copying everything at once |
927 | } else if out_buf_size_mask == usize::MAX && source_diff >= 4 && out_pos > source_pos { |
928 | for _ in 0..match_len >> 2 { |
929 | out_slice.copy_within(source_pos..=source_pos + 3, out_pos); |
930 | source_pos += 4; |
931 | out_pos += 4; |
932 | } |
933 | } else { |
934 | for _ in 0..match_len >> 2 { |
935 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
936 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
937 | out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; |
938 | out_slice[out_pos + 3] = out_slice[(source_pos + 3) & out_buf_size_mask]; |
939 | source_pos += 4; |
940 | out_pos += 4; |
941 | } |
942 | } |
943 | |
944 | match match_len & 3 { |
945 | 0 => (), |
946 | 1 => out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask], |
947 | 2 => { |
948 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
949 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
950 | } |
951 | 3 => { |
952 | out_slice[out_pos] = out_slice[source_pos & out_buf_size_mask]; |
953 | out_slice[out_pos + 1] = out_slice[(source_pos + 1) & out_buf_size_mask]; |
954 | out_slice[out_pos + 2] = out_slice[(source_pos + 2) & out_buf_size_mask]; |
955 | } |
956 | _ => unreachable!(), |
957 | } |
958 | } |
959 | |
960 | /// Presumes that there is at least match_len bytes in output left. |
961 | #[inline ] |
962 | fn apply_match( |
963 | out_slice: &mut [u8], |
964 | out_pos: usize, |
965 | dist: usize, |
966 | match_len: usize, |
967 | out_buf_size_mask: usize, |
968 | ) { |
969 | debug_assert!(out_pos.checked_add(match_len).unwrap() <= out_slice.len()); |
970 | |
971 | let source_pos = out_pos.wrapping_sub(dist) & out_buf_size_mask; |
972 | |
973 | if match_len == 3 { |
974 | let out_slice = Cell::from_mut(out_slice).as_slice_of_cells(); |
975 | if let Some(dst) = out_slice.get(out_pos..out_pos + 3) { |
976 | // Moving bounds checks before any memory mutation allows the optimizer |
977 | // combine them together. |
978 | let src = out_slice |
979 | .get(source_pos) |
980 | .zip(out_slice.get((source_pos + 1) & out_buf_size_mask)) |
981 | .zip(out_slice.get((source_pos + 2) & out_buf_size_mask)); |
982 | if let Some(((a, b), c)) = src { |
983 | // For correctness, the memory reads and writes have to be interleaved. |
984 | // Cells make it possible for read and write references to overlap. |
985 | dst[0].set(a.get()); |
986 | dst[1].set(b.get()); |
987 | dst[2].set(c.get()); |
988 | } |
989 | } |
990 | return; |
991 | } |
992 | |
993 | if cfg!(not(any(target_arch = "x86" , target_arch = "x86_64" ))) { |
994 | // We are not on x86 so copy manually. |
995 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
996 | return; |
997 | } |
998 | |
999 | if source_pos >= out_pos && (source_pos - out_pos) < match_len { |
1000 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
1001 | } else if match_len <= dist && source_pos + match_len < out_slice.len() { |
1002 | // Destination and source segments does not intersect and source does not wrap. |
1003 | if source_pos < out_pos { |
1004 | let (from_slice, to_slice) = out_slice.split_at_mut(out_pos); |
1005 | to_slice[..match_len].copy_from_slice(&from_slice[source_pos..source_pos + match_len]); |
1006 | } else { |
1007 | let (to_slice, from_slice) = out_slice.split_at_mut(source_pos); |
1008 | to_slice[out_pos..out_pos + match_len].copy_from_slice(&from_slice[..match_len]); |
1009 | } |
1010 | } else { |
1011 | transfer(out_slice, source_pos, out_pos, match_len, out_buf_size_mask); |
1012 | } |
1013 | } |
1014 | |
1015 | /// Fast inner decompression loop which is run while there is at least |
1016 | /// 259 bytes left in the output buffer, and at least 6 bytes left in the input buffer |
1017 | /// (The maximum one match would need + 1). |
1018 | /// |
1019 | /// This was inspired by a similar optimization in zlib, which uses this info to do |
1020 | /// faster unchecked copies of multiple bytes at a time. |
1021 | /// Currently we don't do this here, but this function does avoid having to jump through the |
1022 | /// big match loop on each state change(as rust does not have fallthrough or gotos at the moment), |
1023 | /// and already improves decompression speed a fair bit. |
1024 | fn decompress_fast( |
1025 | r: &mut DecompressorOxide, |
1026 | in_iter: &mut InputWrapper, |
1027 | out_buf: &mut OutputBuffer, |
1028 | flags: u32, |
1029 | local_vars: &mut LocalVars, |
1030 | out_buf_size_mask: usize, |
1031 | ) -> (TINFLStatus, State) { |
1032 | // Make a local copy of the most used variables, to avoid having to update and read from values |
1033 | // in a random memory location and to encourage more register use. |
1034 | let mut l = *local_vars; |
1035 | let mut state; |
1036 | |
1037 | let status: TINFLStatus = 'o: loop { |
1038 | state = State::DecodeLitlen; |
1039 | loop { |
1040 | // This function assumes that there is at least 259 bytes left in the output buffer, |
1041 | // and that there is at least 14 bytes left in the input buffer. 14 input bytes: |
1042 | // 15 (prev lit) + 15 (length) + 5 (length extra) + 15 (dist) |
1043 | // + 29 + 32 (left in bit buf, including last 13 dist extra) = 111 bits < 14 bytes |
1044 | // We need the one extra byte as we may write one length and one full match |
1045 | // before checking again. |
1046 | if out_buf.bytes_left() < 259 || in_iter.bytes_left() < 14 { |
1047 | state = State::DecodeLitlen; |
1048 | break 'o TINFLStatus::Done; |
1049 | } |
1050 | |
1051 | fill_bit_buffer(&mut l, in_iter); |
1052 | |
1053 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
1054 | l.counter = symbol as u32; |
1055 | l.bit_buf >>= code_len; |
1056 | l.num_bits -= code_len; |
1057 | |
1058 | if (l.counter & 256) != 0 { |
1059 | // The symbol is not a literal. |
1060 | break; |
1061 | } else { |
1062 | // If we have a 32-bit buffer we need to read another two bytes now |
1063 | // to have enough bits to keep going. |
1064 | if cfg!(not(target_pointer_width = "64" )) { |
1065 | fill_bit_buffer(&mut l, in_iter); |
1066 | } |
1067 | |
1068 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
1069 | l.bit_buf >>= code_len; |
1070 | l.num_bits -= code_len; |
1071 | // The previous symbol was a literal, so write it directly and check |
1072 | // the next one. |
1073 | out_buf.write_byte(l.counter as u8); |
1074 | if (symbol & 256) != 0 { |
1075 | l.counter = symbol as u32; |
1076 | // The symbol is a length value. |
1077 | break; |
1078 | } else { |
1079 | // The symbol is a literal, so write it directly and continue. |
1080 | out_buf.write_byte(symbol as u8); |
1081 | } |
1082 | } |
1083 | } |
1084 | |
1085 | // Mask the top bits since they may contain length info. |
1086 | l.counter &= 511; |
1087 | if l.counter == 256 { |
1088 | // We hit the end of block symbol. |
1089 | state.begin(BlockDone); |
1090 | break 'o TINFLStatus::Done; |
1091 | } else if l.counter > 285 { |
1092 | // Invalid code. |
1093 | // We already verified earlier that the code is > 256. |
1094 | state.begin(InvalidLitlen); |
1095 | break 'o TINFLStatus::Failed; |
1096 | } else { |
1097 | // The symbol was a length code. |
1098 | // # Optimization |
1099 | // Mask the value to avoid bounds checks |
1100 | // While the maximum is checked, the compiler isn't able to know that the |
1101 | // value won't wrap around here. |
1102 | l.num_extra = LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]; |
1103 | l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); |
1104 | // Length and distance codes have a number of extra bits depending on |
1105 | // the base, which together with the base gives us the exact value. |
1106 | |
1107 | // We need to make sure we have at least 33 (so min 5 bytes) bits in the buffer at this spot. |
1108 | fill_bit_buffer(&mut l, in_iter); |
1109 | if l.num_extra != 0 { |
1110 | let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); |
1111 | l.bit_buf >>= l.num_extra; |
1112 | l.num_bits -= u32::from(l.num_extra); |
1113 | l.counter += extra_bits as u32; |
1114 | } |
1115 | |
1116 | // We found a length code, so a distance code should follow. |
1117 | |
1118 | if cfg!(not(target_pointer_width = "64" )) { |
1119 | fill_bit_buffer(&mut l, in_iter); |
1120 | } |
1121 | |
1122 | let (mut symbol, code_len) = r.tables[DIST_TABLE].lookup(l.bit_buf); |
1123 | symbol &= 511; |
1124 | l.bit_buf >>= code_len; |
1125 | l.num_bits -= code_len; |
1126 | if symbol > 29 { |
1127 | state.begin(InvalidDist); |
1128 | break 'o TINFLStatus::Failed; |
1129 | } |
1130 | |
1131 | l.num_extra = num_extra_bits_for_distance_code(symbol as u8); |
1132 | l.dist = u32::from(DIST_BASE[symbol as usize]); |
1133 | |
1134 | if l.num_extra != 0 { |
1135 | fill_bit_buffer(&mut l, in_iter); |
1136 | let extra_bits = l.bit_buf & ((1 << l.num_extra) - 1); |
1137 | l.bit_buf >>= l.num_extra; |
1138 | l.num_bits -= u32::from(l.num_extra); |
1139 | l.dist += extra_bits as u32; |
1140 | } |
1141 | |
1142 | let position = out_buf.position(); |
1143 | if l.dist as usize > out_buf.position() |
1144 | && (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0) |
1145 | { |
1146 | // We encountered a distance that refers a position before |
1147 | // the start of the decoded data, so we can't continue. |
1148 | state.begin(DistanceOutOfBounds); |
1149 | break TINFLStatus::Failed; |
1150 | } |
1151 | |
1152 | apply_match( |
1153 | out_buf.get_mut(), |
1154 | position, |
1155 | l.dist as usize, |
1156 | l.counter as usize, |
1157 | out_buf_size_mask, |
1158 | ); |
1159 | |
1160 | out_buf.set_position(position + l.counter as usize); |
1161 | } |
1162 | }; |
1163 | |
1164 | *local_vars = l; |
1165 | (status, state) |
1166 | } |
1167 | |
1168 | /// Main decompression function. Keeps decompressing data from `in_buf` until the `in_buf` is |
1169 | /// empty, `out` is full, the end of the deflate stream is hit, or there is an error in the |
1170 | /// deflate stream. |
1171 | /// |
1172 | /// # Arguments |
1173 | /// |
1174 | /// `r` is a [`DecompressorOxide`] struct with the state of this stream. |
1175 | /// |
1176 | /// `in_buf` is a reference to the compressed data that is to be decompressed. The decompressor will |
1177 | /// start at the first byte of this buffer. |
1178 | /// |
1179 | /// `out` is a reference to the buffer that will store the decompressed data, and that |
1180 | /// stores previously decompressed data if any. |
1181 | /// |
1182 | /// * The offset given by `out_pos` indicates where in the output buffer slice writing should start. |
1183 | /// * If [`TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF`] is not set, the output buffer is used in a |
1184 | /// wrapping manner, and it's size is required to be a power of 2. |
1185 | /// * The decompression function normally needs access to 32KiB of the previously decompressed data |
1186 | /// (or to the beginning of the decompressed data if less than 32KiB has been decompressed.) |
1187 | /// - If this data is not available, decompression may fail. |
1188 | /// - Some deflate compressors allow specifying a window size which limits match distances to |
1189 | /// less than this, or alternatively an RLE mode where matches will only refer to the previous byte |
1190 | /// and thus allows a smaller output buffer. The window size can be specified in the zlib |
1191 | /// header structure, however, the header data should not be relied on to be correct. |
1192 | /// |
1193 | /// `flags` indicates settings and status to the decompression function. |
1194 | /// * The [`TINFL_FLAG_HAS_MORE_INPUT`] has to be specified if more compressed data is to be provided |
1195 | /// in a subsequent call to this function. |
1196 | /// * See the the [`inflate_flags`] module for details on other flags. |
1197 | /// |
1198 | /// # Returns |
1199 | /// |
1200 | /// Returns a tuple containing the status of the compressor, the number of input bytes read, and the |
1201 | /// number of bytes output to `out`. |
1202 | /// |
1203 | /// This function shouldn't panic pending any bugs. |
1204 | pub fn decompress( |
1205 | r: &mut DecompressorOxide, |
1206 | in_buf: &[u8], |
1207 | out: &mut [u8], |
1208 | out_pos: usize, |
1209 | flags: u32, |
1210 | ) -> (TINFLStatus, usize, usize) { |
1211 | let out_buf_size_mask = if flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0 { |
1212 | usize::MAX |
1213 | } else { |
1214 | // In the case of zero len, any attempt to write would produce HasMoreOutput, |
1215 | // so to gracefully process the case of there really being no output, |
1216 | // set the mask to all zeros. |
1217 | out.len().saturating_sub(1) |
1218 | }; |
1219 | |
1220 | // Ensure the output buffer's size is a power of 2, unless the output buffer |
1221 | // is large enough to hold the entire output file (in which case it doesn't |
1222 | // matter). |
1223 | // Also make sure that the output buffer position is not past the end of the output buffer. |
1224 | if (out_buf_size_mask.wrapping_add(1) & out_buf_size_mask) != 0 || out_pos > out.len() { |
1225 | return (TINFLStatus::BadParam, 0, 0); |
1226 | } |
1227 | |
1228 | let mut in_iter = InputWrapper::from_slice(in_buf); |
1229 | |
1230 | let mut state = r.state; |
1231 | |
1232 | let mut out_buf = OutputBuffer::from_slice_and_pos(out, out_pos); |
1233 | |
1234 | // Make a local copy of the important variables here so we can work with them on the stack. |
1235 | let mut l = LocalVars { |
1236 | bit_buf: r.bit_buf, |
1237 | num_bits: r.num_bits, |
1238 | dist: r.dist, |
1239 | counter: r.counter, |
1240 | num_extra: r.num_extra, |
1241 | }; |
1242 | |
1243 | let mut status = 'state_machine: loop { |
1244 | match state { |
1245 | Start => generate_state!(state, 'state_machine, { |
1246 | l.bit_buf = 0; |
1247 | l.num_bits = 0; |
1248 | l.dist = 0; |
1249 | l.counter = 0; |
1250 | l.num_extra = 0; |
1251 | r.z_header0 = 0; |
1252 | r.z_header1 = 0; |
1253 | r.z_adler32 = 1; |
1254 | r.check_adler32 = 1; |
1255 | if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { |
1256 | Action::Jump(State::ReadZlibCmf) |
1257 | } else { |
1258 | Action::Jump(State::ReadBlockHeader) |
1259 | } |
1260 | }), |
1261 | |
1262 | ReadZlibCmf => generate_state!(state, 'state_machine, { |
1263 | read_byte(&mut in_iter, flags, |cmf| { |
1264 | r.z_header0 = u32::from(cmf); |
1265 | Action::Jump(State::ReadZlibFlg) |
1266 | }) |
1267 | }), |
1268 | |
1269 | ReadZlibFlg => generate_state!(state, 'state_machine, { |
1270 | read_byte(&mut in_iter, flags, |flg| { |
1271 | r.z_header1 = u32::from(flg); |
1272 | validate_zlib_header(r.z_header0, r.z_header1, flags, out_buf_size_mask) |
1273 | }) |
1274 | }), |
1275 | |
1276 | // Read the block header and jump to the relevant section depending on the block type. |
1277 | ReadBlockHeader => generate_state!(state, 'state_machine, { |
1278 | read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { |
1279 | r.finish = (bits & 1) as u8; |
1280 | r.block_type = ((bits >> 1) & 3) as u8; |
1281 | match r.block_type { |
1282 | 0 => Action::Jump(BlockTypeNoCompression), |
1283 | 1 => { |
1284 | start_static_table(r); |
1285 | init_tree(r, l).unwrap_or(Action::End(TINFLStatus::Failed)) |
1286 | }, |
1287 | 2 => { |
1288 | l.counter = 0; |
1289 | Action::Jump(ReadTableSizes) |
1290 | }, |
1291 | 3 => Action::Jump(BlockTypeUnexpected), |
1292 | _ => unreachable!() |
1293 | } |
1294 | }) |
1295 | }), |
1296 | |
1297 | // Raw/Stored/uncompressed block. |
1298 | BlockTypeNoCompression => generate_state!(state, 'state_machine, { |
1299 | pad_to_bytes(&mut l, &mut in_iter, flags, |l| { |
1300 | l.counter = 0; |
1301 | Action::Jump(RawHeader) |
1302 | }) |
1303 | }), |
1304 | |
1305 | // Check that the raw block header is correct. |
1306 | RawHeader => generate_state!(state, 'state_machine, { |
1307 | if l.counter < 4 { |
1308 | // Read block length and block length check. |
1309 | if l.num_bits != 0 { |
1310 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
1311 | r.raw_header[l.counter as usize] = bits as u8; |
1312 | l.counter += 1; |
1313 | Action::None |
1314 | }) |
1315 | } else { |
1316 | read_byte(&mut in_iter, flags, |byte| { |
1317 | r.raw_header[l.counter as usize] = byte; |
1318 | l.counter += 1; |
1319 | Action::None |
1320 | }) |
1321 | } |
1322 | } else { |
1323 | // Check if the length value of a raw block is correct. |
1324 | // The 2 first (2-byte) words in a raw header are the length and the |
1325 | // ones complement of the length. |
1326 | let length = u16::from(r.raw_header[0]) | (u16::from(r.raw_header[1]) << 8); |
1327 | let check = u16::from(r.raw_header[2]) | (u16::from(r.raw_header[3]) << 8); |
1328 | let valid = length == !check; |
1329 | l.counter = length.into(); |
1330 | |
1331 | if !valid { |
1332 | Action::Jump(BadRawLength) |
1333 | } else if l.counter == 0 { |
1334 | // Empty raw block. Sometimes used for synchronization. |
1335 | Action::Jump(BlockDone) |
1336 | } else if l.num_bits != 0 { |
1337 | // There is some data in the bit buffer, so we need to write that first. |
1338 | Action::Jump(RawReadFirstByte) |
1339 | } else { |
1340 | // The bit buffer is empty, so memcpy the rest of the uncompressed data from |
1341 | // the block. |
1342 | Action::Jump(RawMemcpy1) |
1343 | } |
1344 | } |
1345 | }), |
1346 | |
1347 | // Read the byte from the bit buffer. |
1348 | RawReadFirstByte => generate_state!(state, 'state_machine, { |
1349 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
1350 | l.dist = bits as u32; |
1351 | Action::Jump(RawStoreFirstByte) |
1352 | }) |
1353 | }), |
1354 | |
1355 | // Write the byte we just read to the output buffer. |
1356 | RawStoreFirstByte => generate_state!(state, 'state_machine, { |
1357 | if out_buf.bytes_left() == 0 { |
1358 | Action::End(TINFLStatus::HasMoreOutput) |
1359 | } else { |
1360 | out_buf.write_byte(l.dist as u8); |
1361 | l.counter -= 1; |
1362 | if l.counter == 0 || l.num_bits == 0 { |
1363 | Action::Jump(RawMemcpy1) |
1364 | } else { |
1365 | // There is still some data left in the bit buffer that needs to be output. |
1366 | // TODO: Changed this to jump to `RawReadfirstbyte` rather than |
1367 | // `RawStoreFirstByte` as that seemed to be the correct path, but this |
1368 | // needs testing. |
1369 | Action::Jump(RawReadFirstByte) |
1370 | } |
1371 | } |
1372 | }), |
1373 | |
1374 | RawMemcpy1 => generate_state!(state, 'state_machine, { |
1375 | if l.counter == 0 { |
1376 | Action::Jump(BlockDone) |
1377 | } else if out_buf.bytes_left() == 0 { |
1378 | Action::End(TINFLStatus::HasMoreOutput) |
1379 | } else { |
1380 | Action::Jump(RawMemcpy2) |
1381 | } |
1382 | }), |
1383 | |
1384 | RawMemcpy2 => generate_state!(state, 'state_machine, { |
1385 | if in_iter.bytes_left() > 0 { |
1386 | // Copy as many raw bytes as possible from the input to the output using memcpy. |
1387 | // Raw block lengths are limited to 64 * 1024, so casting through usize and u32 |
1388 | // is not an issue. |
1389 | let space_left = out_buf.bytes_left(); |
1390 | let bytes_to_copy = cmp::min(cmp::min( |
1391 | space_left, |
1392 | in_iter.bytes_left()), |
1393 | l.counter as usize |
1394 | ); |
1395 | |
1396 | out_buf.write_slice(&in_iter.as_slice()[..bytes_to_copy]); |
1397 | |
1398 | in_iter.advance(bytes_to_copy); |
1399 | l.counter -= bytes_to_copy as u32; |
1400 | Action::Jump(RawMemcpy1) |
1401 | } else { |
1402 | end_of_input(flags) |
1403 | } |
1404 | }), |
1405 | |
1406 | // Read how many huffman codes/symbols are used for each table. |
1407 | ReadTableSizes => generate_state!(state, 'state_machine, { |
1408 | if l.counter < 3 { |
1409 | let num_bits = [5, 5, 4][l.counter as usize]; |
1410 | read_bits(&mut l, num_bits, &mut in_iter, flags, |l, bits| { |
1411 | r.table_sizes[l.counter as usize] = |
1412 | bits as u16 + MIN_TABLE_SIZES[l.counter as usize]; |
1413 | l.counter += 1; |
1414 | Action::None |
1415 | }) |
1416 | } else { |
1417 | r.code_size_huffman.fill(0); |
1418 | l.counter = 0; |
1419 | // Check that the litlen and distance are within spec. |
1420 | // litlen table should be <=286 acc to the RFC and |
1421 | // additionally zlib rejects dist table sizes larger than 30. |
1422 | // NOTE this the final sizes after adding back predefined values, not |
1423 | // raw value in the data. |
1424 | // See miniz_oxide issue #130 and https://github.com/madler/zlib/issues/82. |
1425 | if r.table_sizes[LITLEN_TABLE] <= 286 && r.table_sizes[DIST_TABLE] <= 30 { |
1426 | Action::Jump(ReadHufflenTableCodeSize) |
1427 | } |
1428 | else { |
1429 | Action::Jump(BadDistOrLiteralTableLength) |
1430 | } |
1431 | } |
1432 | }), |
1433 | |
1434 | // Read the 3-bit lengths of the huffman codes describing the huffman code lengths used |
1435 | // to decode the lengths of the main tables. |
1436 | ReadHufflenTableCodeSize => generate_state!(state, 'state_machine, { |
1437 | if l.counter < r.table_sizes[HUFFLEN_TABLE].into() { |
1438 | read_bits(&mut l, 3, &mut in_iter, flags, |l, bits| { |
1439 | // These lengths are not stored in a normal ascending order, but rather one |
1440 | // specified by the deflate specification intended to put the most used |
1441 | // values at the front as trailing zero lengths do not have to be stored. |
1442 | r.code_size_huffman[HUFFMAN_LENGTH_ORDER[l.counter as usize] as usize] = |
1443 | bits as u8; |
1444 | l.counter += 1; |
1445 | Action::None |
1446 | }) |
1447 | } else { |
1448 | r.table_sizes[HUFFLEN_TABLE] = MAX_HUFF_SYMBOLS_2 as u16; |
1449 | init_tree(r, &mut l).unwrap_or(Action::End(TINFLStatus::Failed)) |
1450 | } |
1451 | }), |
1452 | |
1453 | ReadLitlenDistTablesCodeSize => generate_state!(state, 'state_machine, { |
1454 | if l.counter < u32::from(r.table_sizes[LITLEN_TABLE]) + u32::from(r.table_sizes[DIST_TABLE]) { |
1455 | decode_huffman_code( |
1456 | r, &mut l, HUFFLEN_TABLE, |
1457 | flags, &mut in_iter, |r, l, symbol| { |
1458 | l.dist = symbol as u32; |
1459 | if l.dist < 16 { |
1460 | r.len_codes[l.counter as usize] = l.dist as u8; |
1461 | l.counter += 1; |
1462 | Action::None |
1463 | } else if l.dist == 16 && l.counter == 0 { |
1464 | Action::Jump(BadCodeSizeDistPrevLookup) |
1465 | } else { |
1466 | l.num_extra = [2, 3, 7][l.dist as usize - 16]; |
1467 | Action::Jump(ReadExtraBitsCodeSize) |
1468 | } |
1469 | } |
1470 | ) |
1471 | } else if l.counter != u32::from(r.table_sizes[LITLEN_TABLE]) + u32::from(r.table_sizes[DIST_TABLE]) { |
1472 | Action::Jump(BadCodeSizeSum) |
1473 | } else { |
1474 | r.code_size_literal[..r.table_sizes[LITLEN_TABLE] as usize] |
1475 | .copy_from_slice(&r.len_codes[..r.table_sizes[LITLEN_TABLE] as usize]); |
1476 | |
1477 | let dist_table_start = r.table_sizes[LITLEN_TABLE] as usize; |
1478 | let dist_table_end = (r.table_sizes[LITLEN_TABLE] + |
1479 | r.table_sizes[DIST_TABLE]) as usize; |
1480 | r.code_size_dist[..r.table_sizes[DIST_TABLE] as usize] |
1481 | .copy_from_slice(&r.len_codes[dist_table_start..dist_table_end]); |
1482 | |
1483 | r.block_type -= 1; |
1484 | init_tree(r, &mut l).unwrap_or(Action::End(TINFLStatus::Failed)) |
1485 | } |
1486 | }), |
1487 | |
1488 | ReadExtraBitsCodeSize => generate_state!(state, 'state_machine, { |
1489 | let num_extra = l.num_extra.into(); |
1490 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, mut extra_bits| { |
1491 | // Mask to avoid a bounds check. |
1492 | extra_bits += [3, 3, 11][(l.dist as usize - 16) & 3]; |
1493 | let val = if l.dist == 16 { |
1494 | r.len_codes[l.counter as usize - 1] |
1495 | } else { |
1496 | 0 |
1497 | }; |
1498 | |
1499 | r.len_codes[ |
1500 | l.counter as usize..l.counter as usize + extra_bits as usize |
1501 | ].fill(val); |
1502 | l.counter += extra_bits as u32; |
1503 | Action::Jump(ReadLitlenDistTablesCodeSize) |
1504 | }) |
1505 | }), |
1506 | |
1507 | DecodeLitlen => generate_state!(state, 'state_machine, { |
1508 | if in_iter.bytes_left() < 4 || out_buf.bytes_left() < 2 { |
1509 | // See if we can decode a literal with the data we have left. |
1510 | // Jumps to next state (WriteSymbol) if successful. |
1511 | decode_huffman_code( |
1512 | r, |
1513 | &mut l, |
1514 | LITLEN_TABLE, |
1515 | flags, |
1516 | &mut in_iter, |
1517 | |_r, l, symbol| { |
1518 | l.counter = symbol as u32; |
1519 | Action::Jump(WriteSymbol) |
1520 | }, |
1521 | ) |
1522 | } else if |
1523 | // If there is enough space, use the fast inner decompression |
1524 | // function. |
1525 | out_buf.bytes_left() >= 259 && |
1526 | in_iter.bytes_left() >= 14 |
1527 | { |
1528 | let (status, new_state) = decompress_fast( |
1529 | r, |
1530 | &mut in_iter, |
1531 | &mut out_buf, |
1532 | flags, |
1533 | &mut l, |
1534 | out_buf_size_mask, |
1535 | ); |
1536 | |
1537 | state = new_state; |
1538 | if status == TINFLStatus::Done { |
1539 | Action::Jump(new_state) |
1540 | } else { |
1541 | Action::End(status) |
1542 | } |
1543 | } else { |
1544 | fill_bit_buffer(&mut l, &mut in_iter); |
1545 | |
1546 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
1547 | |
1548 | l.counter = symbol as u32; |
1549 | l.bit_buf >>= code_len; |
1550 | l.num_bits -= code_len; |
1551 | |
1552 | if (l.counter & 256) != 0 { |
1553 | // The symbol is not a literal. |
1554 | Action::Jump(HuffDecodeOuterLoop1) |
1555 | } else { |
1556 | // If we have a 32-bit buffer we need to read another two bytes now |
1557 | // to have enough bits to keep going. |
1558 | if cfg!(not(target_pointer_width = "64" )) { |
1559 | fill_bit_buffer(&mut l, &mut in_iter); |
1560 | } |
1561 | |
1562 | let (symbol, code_len) = r.tables[LITLEN_TABLE].lookup(l.bit_buf); |
1563 | |
1564 | l.bit_buf >>= code_len; |
1565 | l.num_bits -= code_len; |
1566 | // The previous symbol was a literal, so write it directly and check |
1567 | // the next one. |
1568 | out_buf.write_byte(l.counter as u8); |
1569 | if (symbol & 256) != 0 { |
1570 | l.counter = symbol as u32; |
1571 | // The symbol is a length value. |
1572 | Action::Jump(HuffDecodeOuterLoop1) |
1573 | } else { |
1574 | // The symbol is a literal, so write it directly and continue. |
1575 | out_buf.write_byte(symbol as u8); |
1576 | Action::None |
1577 | } |
1578 | |
1579 | } |
1580 | |
1581 | } |
1582 | }), |
1583 | |
1584 | WriteSymbol => generate_state!(state, 'state_machine, { |
1585 | if l.counter >= 256 { |
1586 | Action::Jump(HuffDecodeOuterLoop1) |
1587 | } else if out_buf.bytes_left() > 0 { |
1588 | out_buf.write_byte(l.counter as u8); |
1589 | Action::Jump(DecodeLitlen) |
1590 | } else { |
1591 | Action::End(TINFLStatus::HasMoreOutput) |
1592 | } |
1593 | }), |
1594 | |
1595 | HuffDecodeOuterLoop1 => generate_state!(state, 'state_machine, { |
1596 | // Mask the top bits since they may contain length info. |
1597 | l.counter &= 511; |
1598 | |
1599 | if l.counter |
1600 | == 256 { |
1601 | // We hit the end of block symbol. |
1602 | Action::Jump(BlockDone) |
1603 | } else if l.counter > 285 { |
1604 | // Invalid code. |
1605 | // We already verified earlier that the code is > 256. |
1606 | Action::Jump(InvalidLitlen) |
1607 | } else { |
1608 | // # Optimization |
1609 | // Mask the value to avoid bounds checks |
1610 | // We could use get_unchecked later if can statically verify that |
1611 | // this will never go out of bounds. |
1612 | l.num_extra = |
1613 | LENGTH_EXTRA[(l.counter - 257) as usize & BASE_EXTRA_MASK]; |
1614 | l.counter = u32::from(LENGTH_BASE[(l.counter - 257) as usize & BASE_EXTRA_MASK]); |
1615 | // Length and distance codes have a number of extra bits depending on |
1616 | // the base, which together with the base gives us the exact value. |
1617 | if l.num_extra != 0 { |
1618 | Action::Jump(ReadExtraBitsLitlen) |
1619 | } else { |
1620 | Action::Jump(DecodeDistance) |
1621 | } |
1622 | } |
1623 | }), |
1624 | |
1625 | ReadExtraBitsLitlen => generate_state!(state, 'state_machine, { |
1626 | let num_extra = l.num_extra.into(); |
1627 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { |
1628 | l.counter += extra_bits as u32; |
1629 | Action::Jump(DecodeDistance) |
1630 | }) |
1631 | }), |
1632 | |
1633 | DecodeDistance => generate_state!(state, 'state_machine, { |
1634 | // Try to read a huffman code from the input buffer and look up what |
1635 | // length code the decoded symbol refers to. |
1636 | decode_huffman_code(r, &mut l, DIST_TABLE, flags, &mut in_iter, |_r, l, symbol| { |
1637 | // # Optimizaton - transform the value into usize here before the check so |
1638 | // the compiler can optimize the bounds check later - ideally it should |
1639 | // know that the value can't be negative from earlier in the |
1640 | // decode_huffman_code function but it seems it may not be able |
1641 | // to make the assumption that it can't be negative and thus |
1642 | // overflow if it's converted after the check. |
1643 | let symbol = symbol as usize; |
1644 | if symbol > 29 { |
1645 | // Invalid distance code. |
1646 | return Action::Jump(InvalidDist) |
1647 | } |
1648 | l.num_extra = num_extra_bits_for_distance_code(symbol as u8); |
1649 | l.dist = u32::from(DIST_BASE[symbol]); |
1650 | if l.num_extra != 0 { |
1651 | // ReadEXTRA_BITS_DISTACNE |
1652 | Action::Jump(ReadExtraBitsDistance) |
1653 | } else { |
1654 | Action::Jump(HuffDecodeOuterLoop2) |
1655 | } |
1656 | }) |
1657 | }), |
1658 | |
1659 | ReadExtraBitsDistance => generate_state!(state, 'state_machine, { |
1660 | let num_extra = l.num_extra.into(); |
1661 | read_bits(&mut l, num_extra, &mut in_iter, flags, |l, extra_bits| { |
1662 | l.dist += extra_bits as u32; |
1663 | Action::Jump(HuffDecodeOuterLoop2) |
1664 | }) |
1665 | }), |
1666 | |
1667 | HuffDecodeOuterLoop2 => generate_state!(state, 'state_machine, { |
1668 | if l.dist as usize > out_buf.position() && |
1669 | (flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF != 0) |
1670 | { |
1671 | // We encountered a distance that refers a position before |
1672 | // the start of the decoded data, so we can't continue. |
1673 | Action::Jump(DistanceOutOfBounds) |
1674 | } else { |
1675 | let out_pos = out_buf.position(); |
1676 | let source_pos = out_buf.position() |
1677 | .wrapping_sub(l.dist as usize) & out_buf_size_mask; |
1678 | |
1679 | let out_len = out_buf.get_ref().len(); |
1680 | let match_end_pos = out_buf.position() + l.counter as usize; |
1681 | |
1682 | if match_end_pos > out_len || |
1683 | // miniz doesn't do this check here. Not sure how it makes sure |
1684 | // that this case doesn't happen. |
1685 | (source_pos >= out_pos && (source_pos - out_pos) < l.counter as usize) |
1686 | { |
1687 | // Not enough space for all of the data in the output buffer, |
1688 | // so copy what we have space for. |
1689 | if l.counter == 0 { |
1690 | Action::Jump(DecodeLitlen) |
1691 | } else { |
1692 | Action::Jump(WriteLenBytesToEnd) |
1693 | } |
1694 | } else { |
1695 | apply_match( |
1696 | out_buf.get_mut(), |
1697 | out_pos, |
1698 | l.dist as usize, |
1699 | l.counter as usize, |
1700 | out_buf_size_mask |
1701 | ); |
1702 | out_buf.set_position(out_pos + l.counter as usize); |
1703 | Action::Jump(DecodeLitlen) |
1704 | } |
1705 | } |
1706 | }), |
1707 | |
1708 | WriteLenBytesToEnd => generate_state!(state, 'state_machine, { |
1709 | if out_buf.bytes_left() > 0 { |
1710 | let out_pos = out_buf.position(); |
1711 | let source_pos = out_buf.position() |
1712 | .wrapping_sub(l.dist as usize) & out_buf_size_mask; |
1713 | |
1714 | |
1715 | let len = cmp::min(out_buf.bytes_left(), l.counter as usize); |
1716 | |
1717 | transfer(out_buf.get_mut(), source_pos, out_pos, len, out_buf_size_mask); |
1718 | |
1719 | out_buf.set_position(out_pos + len); |
1720 | l.counter -= len as u32; |
1721 | if l.counter == 0 { |
1722 | Action::Jump(DecodeLitlen) |
1723 | } else { |
1724 | Action::None |
1725 | } |
1726 | } else { |
1727 | Action::End(TINFLStatus::HasMoreOutput) |
1728 | } |
1729 | }), |
1730 | |
1731 | BlockDone => generate_state!(state, 'state_machine, { |
1732 | // End once we've read the last block. |
1733 | if r.finish != 0 { |
1734 | pad_to_bytes(&mut l, &mut in_iter, flags, |_| Action::None); |
1735 | |
1736 | let in_consumed = in_buf.len() - in_iter.bytes_left(); |
1737 | let undo = undo_bytes(&mut l, in_consumed as u32) as usize; |
1738 | in_iter = InputWrapper::from_slice(in_buf[in_consumed - undo..].iter().as_slice()); |
1739 | |
1740 | l.bit_buf &= ((1 as BitBuffer) << l.num_bits) - 1; |
1741 | debug_assert_eq!(l.num_bits, 0); |
1742 | |
1743 | if flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 { |
1744 | l.counter = 0; |
1745 | Action::Jump(ReadAdler32) |
1746 | } else { |
1747 | Action::Jump(DoneForever) |
1748 | } |
1749 | } else { |
1750 | Action::Jump(ReadBlockHeader) |
1751 | } |
1752 | }), |
1753 | |
1754 | ReadAdler32 => generate_state!(state, 'state_machine, { |
1755 | if l.counter < 4 { |
1756 | if l.num_bits != 0 { |
1757 | read_bits(&mut l, 8, &mut in_iter, flags, |l, bits| { |
1758 | r.z_adler32 <<= 8; |
1759 | r.z_adler32 |= bits as u32; |
1760 | l.counter += 1; |
1761 | Action::None |
1762 | }) |
1763 | } else { |
1764 | read_byte(&mut in_iter, flags, |byte| { |
1765 | r.z_adler32 <<= 8; |
1766 | r.z_adler32 |= u32::from(byte); |
1767 | l.counter += 1; |
1768 | Action::None |
1769 | }) |
1770 | } |
1771 | } else { |
1772 | Action::Jump(DoneForever) |
1773 | } |
1774 | }), |
1775 | |
1776 | // We are done. |
1777 | DoneForever => break TINFLStatus::Done, |
1778 | |
1779 | // Anything else indicates failure. |
1780 | // BadZlibHeader | BadRawLength | BadDistOrLiteralTableLength | BlockTypeUnexpected | |
1781 | // DistanceOutOfBounds | |
1782 | // BadTotalSymbols | BadCodeSizeDistPrevLookup | BadCodeSizeSum | InvalidLitlen | |
1783 | // InvalidDist | InvalidCodeLen |
1784 | _ => break TINFLStatus::Failed, |
1785 | }; |
1786 | }; |
1787 | |
1788 | let in_undo = if status != TINFLStatus::NeedsMoreInput |
1789 | && status != TINFLStatus::FailedCannotMakeProgress |
1790 | { |
1791 | undo_bytes(&mut l, (in_buf.len() - in_iter.bytes_left()) as u32) as usize |
1792 | } else { |
1793 | 0 |
1794 | }; |
1795 | |
1796 | // Make sure HasMoreOutput overrides NeedsMoreInput if the output buffer is full. |
1797 | // (Unless the missing input is the adler32 value in which case we don't need to write anything.) |
1798 | // TODO: May want to see if we can do this in a better way. |
1799 | if status == TINFLStatus::NeedsMoreInput |
1800 | && out_buf.bytes_left() == 0 |
1801 | && state != State::ReadAdler32 |
1802 | { |
1803 | status = TINFLStatus::HasMoreOutput |
1804 | } |
1805 | |
1806 | r.state = state; |
1807 | r.bit_buf = l.bit_buf; |
1808 | r.num_bits = l.num_bits; |
1809 | r.dist = l.dist; |
1810 | r.counter = l.counter; |
1811 | r.num_extra = l.num_extra; |
1812 | |
1813 | r.bit_buf &= ((1 as BitBuffer) << r.num_bits) - 1; |
1814 | |
1815 | // If this is a zlib stream, and update the adler32 checksum with the decompressed bytes if |
1816 | // requested. |
1817 | let need_adler = if (flags & TINFL_FLAG_IGNORE_ADLER32) == 0 { |
1818 | flags & (TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32) != 0 |
1819 | } else { |
1820 | // If TINFL_FLAG_IGNORE_ADLER32 is enabled, ignore the checksum. |
1821 | false |
1822 | }; |
1823 | if need_adler && status as i32 >= 0 { |
1824 | let out_buf_pos = out_buf.position(); |
1825 | r.check_adler32 = update_adler32(r.check_adler32, &out_buf.get_ref()[out_pos..out_buf_pos]); |
1826 | |
1827 | // disabled so that random input from fuzzer would not be rejected early, |
1828 | // before it has a chance to reach interesting parts of code |
1829 | if !cfg!(fuzzing) { |
1830 | // Once we are done, check if the checksum matches with the one provided in the zlib header. |
1831 | if status == TINFLStatus::Done |
1832 | && flags & TINFL_FLAG_PARSE_ZLIB_HEADER != 0 |
1833 | && r.check_adler32 != r.z_adler32 |
1834 | { |
1835 | status = TINFLStatus::Adler32Mismatch; |
1836 | } |
1837 | } |
1838 | } |
1839 | |
1840 | ( |
1841 | status, |
1842 | in_buf.len() - in_iter.bytes_left() - in_undo, |
1843 | out_buf.position() - out_pos, |
1844 | ) |
1845 | } |
1846 | |
1847 | #[cfg (test)] |
1848 | mod test { |
1849 | use super::*; |
1850 | |
1851 | //TODO: Fix these. |
1852 | |
1853 | fn tinfl_decompress_oxide<'i>( |
1854 | r: &mut DecompressorOxide, |
1855 | input_buffer: &'i [u8], |
1856 | output_buffer: &mut [u8], |
1857 | flags: u32, |
1858 | ) -> (TINFLStatus, &'i [u8], usize) { |
1859 | let (status, in_pos, out_pos) = decompress(r, input_buffer, output_buffer, 0, flags); |
1860 | (status, &input_buffer[in_pos..], out_pos) |
1861 | } |
1862 | |
1863 | #[test ] |
1864 | fn decompress_zlib() { |
1865 | let encoded = [ |
1866 | 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, |
1867 | ]; |
1868 | let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER; |
1869 | |
1870 | let mut b = DecompressorOxide::new(); |
1871 | const LEN: usize = 32; |
1872 | let mut b_buf = [0; LEN]; |
1873 | |
1874 | // This should fail with the out buffer being to small. |
1875 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
1876 | |
1877 | assert_eq!(b_status.0, TINFLStatus::Failed); |
1878 | |
1879 | let flags = flags | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
1880 | |
1881 | b = DecompressorOxide::new(); |
1882 | |
1883 | // With TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF set this should no longer fail. |
1884 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
1885 | |
1886 | assert_eq!(b_buf[..b_status.2], b"Hello, zlib!" [..]); |
1887 | assert_eq!(b_status.0, TINFLStatus::Done); |
1888 | } |
1889 | |
1890 | #[cfg (feature = "with-alloc" )] |
1891 | #[test ] |
1892 | fn raw_block() { |
1893 | const LEN: usize = 64; |
1894 | |
1895 | let text = b"Hello, zlib!" ; |
1896 | let encoded = { |
1897 | let len = text.len(); |
1898 | let notlen = !len; |
1899 | let mut encoded = vec![ |
1900 | 1, |
1901 | len as u8, |
1902 | (len >> 8) as u8, |
1903 | notlen as u8, |
1904 | (notlen >> 8) as u8, |
1905 | ]; |
1906 | encoded.extend_from_slice(&text[..]); |
1907 | encoded |
1908 | }; |
1909 | |
1910 | //let flags = TINFL_FLAG_COMPUTE_ADLER32 | TINFL_FLAG_PARSE_ZLIB_HEADER | |
1911 | let flags = TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
1912 | |
1913 | let mut b = DecompressorOxide::new(); |
1914 | |
1915 | let mut b_buf = [0; LEN]; |
1916 | |
1917 | let b_status = tinfl_decompress_oxide(&mut b, &encoded[..], &mut b_buf, flags); |
1918 | assert_eq!(b_buf[..b_status.2], text[..]); |
1919 | assert_eq!(b_status.0, TINFLStatus::Done); |
1920 | } |
1921 | |
1922 | fn masked_lookup(table: &HuffmanTable, bit_buf: BitBuffer) -> (i32, u32) { |
1923 | let ret = table.lookup(bit_buf); |
1924 | (ret.0 & 511, ret.1) |
1925 | } |
1926 | |
1927 | #[test ] |
1928 | fn fixed_table_lookup() { |
1929 | let mut d = DecompressorOxide::new(); |
1930 | d.block_type = 1; |
1931 | start_static_table(&mut d); |
1932 | let mut l = LocalVars { |
1933 | bit_buf: d.bit_buf, |
1934 | num_bits: d.num_bits, |
1935 | dist: d.dist, |
1936 | counter: d.counter, |
1937 | num_extra: d.num_extra, |
1938 | }; |
1939 | init_tree(&mut d, &mut l).unwrap(); |
1940 | let llt = &d.tables[LITLEN_TABLE]; |
1941 | let dt = &d.tables[DIST_TABLE]; |
1942 | assert_eq!(masked_lookup(llt, 0b00001100), (0, 8)); |
1943 | assert_eq!(masked_lookup(llt, 0b00011110), (72, 8)); |
1944 | assert_eq!(masked_lookup(llt, 0b01011110), (74, 8)); |
1945 | assert_eq!(masked_lookup(llt, 0b11111101), (143, 8)); |
1946 | assert_eq!(masked_lookup(llt, 0b000010011), (144, 9)); |
1947 | assert_eq!(masked_lookup(llt, 0b111111111), (255, 9)); |
1948 | assert_eq!(masked_lookup(llt, 0b00000000), (256, 7)); |
1949 | assert_eq!(masked_lookup(llt, 0b1110100), (279, 7)); |
1950 | assert_eq!(masked_lookup(llt, 0b00000011), (280, 8)); |
1951 | assert_eq!(masked_lookup(llt, 0b11100011), (287, 8)); |
1952 | |
1953 | assert_eq!(masked_lookup(dt, 0), (0, 5)); |
1954 | assert_eq!(masked_lookup(dt, 20), (5, 5)); |
1955 | } |
1956 | |
1957 | // Only run this test with alloc enabled as it uses a larger buffer. |
1958 | #[cfg (feature = "with-alloc" )] |
1959 | fn check_result(input: &[u8], expected_status: TINFLStatus, expected_state: State, zlib: bool) { |
1960 | let mut r = DecompressorOxide::default(); |
1961 | let mut output_buf = vec![0; 1024 * 32]; |
1962 | let flags = if zlib { |
1963 | inflate_flags::TINFL_FLAG_PARSE_ZLIB_HEADER |
1964 | } else { |
1965 | 0 |
1966 | } | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF |
1967 | | TINFL_FLAG_HAS_MORE_INPUT; |
1968 | let (d_status, _in_bytes, _out_bytes) = |
1969 | decompress(&mut r, input, &mut output_buf, 0, flags); |
1970 | assert_eq!(expected_status, d_status); |
1971 | assert_eq!(expected_state, r.state); |
1972 | } |
1973 | |
1974 | #[cfg (feature = "with-alloc" )] |
1975 | #[test ] |
1976 | fn bogus_input() { |
1977 | use self::check_result as cr; |
1978 | const F: TINFLStatus = TINFLStatus::Failed; |
1979 | const OK: TINFLStatus = TINFLStatus::Done; |
1980 | // Bad CM. |
1981 | cr(&[0x77, 0x85], F, State::BadZlibHeader, true); |
1982 | // Bad window size (but check is correct). |
1983 | cr(&[0x88, 0x98], F, State::BadZlibHeader, true); |
1984 | // Bad check bits. |
1985 | cr(&[0x78, 0x98], F, State::BadZlibHeader, true); |
1986 | |
1987 | // Too many code lengths. (From inflate library issues) |
1988 | cr( |
1989 | b"M \xff\xffM* \xad\xad\xad\xad\xad\xad\xad\xcd\xcd\xcdM" , |
1990 | F, |
1991 | State::BadDistOrLiteralTableLength, |
1992 | false, |
1993 | ); |
1994 | |
1995 | // Bad CLEN (also from inflate library issues) |
1996 | cr( |
1997 | b" \xdd\xff\xff*M \x94ffffffffff" , |
1998 | F, |
1999 | State::BadDistOrLiteralTableLength, |
2000 | false, |
2001 | ); |
2002 | |
2003 | // Port of inflate coverage tests from zlib-ng |
2004 | // https://github.com/Dead2/zlib-ng/blob/develop/test/infcover.c |
2005 | let c = |a, b, c| cr(a, b, c, false); |
2006 | |
2007 | // Invalid uncompressed/raw block length. |
2008 | c(&[0, 0, 0, 0, 0], F, State::BadRawLength); |
2009 | // Ok empty uncompressed block. |
2010 | c(&[3, 0], OK, State::DoneForever); |
2011 | // Invalid block type. |
2012 | c(&[6], F, State::BlockTypeUnexpected); |
2013 | // Ok uncompressed block. |
2014 | c(&[1, 1, 0, 0xfe, 0xff, 0], OK, State::DoneForever); |
2015 | // Too many litlens, we handle this later than zlib, so this test won't |
2016 | // give the same result. |
2017 | // c(&[0xfc, 0, 0], F, State::BadTotalSymbols); |
2018 | // Invalid set of code lengths - TODO Check if this is the correct error for this. |
2019 | c(&[4, 0, 0xfe, 0xff], F, State::BadTotalSymbols); |
2020 | // Invalid repeat in list of code lengths. |
2021 | // (Try to repeat a non-existent code.) |
2022 | c(&[4, 0, 0x24, 0x49, 0], F, State::BadCodeSizeDistPrevLookup); |
2023 | // Missing end of block code (should we have a separate error for this?) - fails on further input |
2024 | // c(&[4, 0, 0x24, 0xe9, 0xff, 0x6d], F, State::BadTotalSymbols); |
2025 | // Invalid set of literals/lengths |
2026 | c( |
2027 | &[ |
2028 | 4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x71, 0xff, 0xff, 0x93, 0x11, 0, |
2029 | ], |
2030 | F, |
2031 | State::BadTotalSymbols, |
2032 | ); |
2033 | // Invalid set of distances _ needsmoreinput |
2034 | // c(&[4, 0x80, 0x49, 0x92, 0x24, 0x49, 0x92, 0x24, 0x0f, 0xb4, 0xff, 0xff, 0xc3, 0x84], F, State::BadTotalSymbols); |
2035 | // Invalid distance code |
2036 | c(&[2, 0x7e, 0xff, 0xff], F, State::InvalidDist); |
2037 | |
2038 | // Distance refers to position before the start |
2039 | c( |
2040 | &[0x0c, 0xc0, 0x81, 0, 0, 0, 0, 0, 0x90, 0xff, 0x6b, 0x4, 0], |
2041 | F, |
2042 | State::DistanceOutOfBounds, |
2043 | ); |
2044 | |
2045 | // Trailer |
2046 | // Bad gzip trailer checksum GZip header not handled by miniz_oxide |
2047 | //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) |
2048 | // Bad gzip trailer length |
2049 | //cr(&[0x1f, 0x8b, 0x08 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0x03, 0, 0, 0, 0, 0, 0, 0, 0, 0x01], F, State::BadCRC, false) |
2050 | } |
2051 | |
2052 | #[test ] |
2053 | fn empty_output_buffer_non_wrapping() { |
2054 | let encoded = [ |
2055 | 120, 156, 243, 72, 205, 201, 201, 215, 81, 168, 202, 201, 76, 82, 4, 0, 27, 101, 4, 19, |
2056 | ]; |
2057 | let flags = TINFL_FLAG_COMPUTE_ADLER32 |
2058 | | TINFL_FLAG_PARSE_ZLIB_HEADER |
2059 | | TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF; |
2060 | let mut r = DecompressorOxide::new(); |
2061 | let mut output_buf: [u8; 0] = []; |
2062 | // Check that we handle an empty buffer properly and not panicking. |
2063 | // https://github.com/Frommi/miniz_oxide/issues/23 |
2064 | let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); |
2065 | assert_eq!(res, (TINFLStatus::HasMoreOutput, 4, 0)); |
2066 | } |
2067 | |
2068 | #[test ] |
2069 | fn empty_output_buffer_wrapping() { |
2070 | let encoded = [ |
2071 | 0x73, 0x49, 0x4d, 0xcb, 0x49, 0x2c, 0x49, 0x55, 0x00, 0x11, 0x00, |
2072 | ]; |
2073 | let flags = TINFL_FLAG_COMPUTE_ADLER32; |
2074 | let mut r = DecompressorOxide::new(); |
2075 | let mut output_buf: [u8; 0] = []; |
2076 | // Check that we handle an empty buffer properly and not panicking. |
2077 | // https://github.com/Frommi/miniz_oxide/issues/23 |
2078 | let res = decompress(&mut r, &encoded, &mut output_buf, 0, flags); |
2079 | assert_eq!(res, (TINFLStatus::HasMoreOutput, 2, 0)); |
2080 | } |
2081 | |
2082 | #[test ] |
2083 | fn dist_extra_bits() { |
2084 | use self::num_extra_bits_for_distance_code; |
2085 | // Number of extra bits for each distance code. |
2086 | const DIST_EXTRA: [u8; 29] = [ |
2087 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, |
2088 | 12, 13, |
2089 | ]; |
2090 | |
2091 | for (i, &dist) in DIST_EXTRA.iter().enumerate() { |
2092 | assert_eq!(dist, num_extra_bits_for_distance_code(i as u8)); |
2093 | } |
2094 | } |
2095 | |
2096 | #[test ] |
2097 | fn check_tree() { |
2098 | let mut r = DecompressorOxide::new(); |
2099 | let mut l = LocalVars { |
2100 | bit_buf: 0, |
2101 | num_bits: 0, |
2102 | dist: 0, |
2103 | counter: 0, |
2104 | num_extra: 0, |
2105 | }; |
2106 | |
2107 | r.code_size_huffman[0] = 1; |
2108 | r.code_size_huffman[1] = 1; |
2109 | //r.code_size_huffman[2] = 3; |
2110 | //r.code_size_huffman[3] = 3; |
2111 | //r.code_size_huffman[1] = 4; |
2112 | r.block_type = HUFFLEN_TABLE as u8; |
2113 | r.table_sizes[HUFFLEN_TABLE] = 4; |
2114 | let res = init_tree(&mut r, &mut l).unwrap(); |
2115 | |
2116 | let status = match res { |
2117 | Action::Jump(s) => s, |
2118 | _ => { |
2119 | //println!("issue"); |
2120 | return; |
2121 | } |
2122 | }; |
2123 | //println!("status {:?}", status); |
2124 | assert!(status != BadTotalSymbols); |
2125 | } |
2126 | } |
2127 | |