| 1 | use super::addition::__add2; |
| 2 | use super::{cmp_slice, BigUint}; |
| 3 | |
| 4 | use crate::big_digit::{self, BigDigit, DoubleBigDigit}; |
| 5 | use crate::UsizePromotion; |
| 6 | |
| 7 | use core::cmp::Ordering::{Equal, Greater, Less}; |
| 8 | use core::mem; |
| 9 | use core::ops::{Div, DivAssign, Rem, RemAssign}; |
| 10 | use num_integer::Integer; |
| 11 | use num_traits::{CheckedDiv, CheckedEuclid, Euclid, One, ToPrimitive, Zero}; |
| 12 | |
| 13 | pub(super) const FAST_DIV_WIDE: bool = cfg!(any(target_arch = "x86" , target_arch = "x86_64" )); |
| 14 | |
| 15 | /// Divide a two digit numerator by a one digit divisor, returns quotient and remainder: |
| 16 | /// |
| 17 | /// Note: the caller must ensure that both the quotient and remainder will fit into a single digit. |
| 18 | /// This is _not_ true for an arbitrary numerator/denominator. |
| 19 | /// |
| 20 | /// (This function also matches what the x86 divide instruction does). |
| 21 | #[cfg (any(miri, not(any(target_arch = "x86" , target_arch = "x86_64" ))))] |
| 22 | #[inline ] |
| 23 | fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) { |
| 24 | debug_assert!(hi < divisor); |
| 25 | |
| 26 | let lhs = big_digit::to_doublebigdigit(hi, lo); |
| 27 | let rhs = DoubleBigDigit::from(divisor); |
| 28 | ((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit) |
| 29 | } |
| 30 | |
| 31 | /// x86 and x86_64 can use a real `div` instruction. |
| 32 | #[cfg (all(not(miri), any(target_arch = "x86" , target_arch = "x86_64" )))] |
| 33 | #[inline ] |
| 34 | fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) { |
| 35 | // This debug assertion covers the potential #DE for divisor==0 or a quotient too large for one |
| 36 | // register, otherwise in release mode it will become a target-specific fault like SIGFPE. |
| 37 | // This should never occur with the inputs from our few `div_wide` callers. |
| 38 | debug_assert!(hi < divisor); |
| 39 | |
| 40 | // SAFETY: The `div` instruction only affects registers, reading the explicit operand as the |
| 41 | // divisor, and implicitly reading RDX:RAX or EDX:EAX as the dividend. The result is implicitly |
| 42 | // written back to RAX or EAX for the quotient and RDX or EDX for the remainder. No memory is |
| 43 | // used, and flags are not preserved. |
| 44 | unsafe { |
| 45 | let (div, rem); |
| 46 | |
| 47 | cfg_digit!( |
| 48 | macro_rules! div { |
| 49 | () => { |
| 50 | "div {0:e}" |
| 51 | }; |
| 52 | } |
| 53 | macro_rules! div { |
| 54 | () => { |
| 55 | "div {0:r}" |
| 56 | }; |
| 57 | } |
| 58 | ); |
| 59 | |
| 60 | core::arch::asm!( |
| 61 | div!(), |
| 62 | in(reg) divisor, |
| 63 | inout("dx" ) hi => rem, |
| 64 | inout("ax" ) lo => div, |
| 65 | options(pure, nomem, nostack), |
| 66 | ); |
| 67 | |
| 68 | (div, rem) |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | /// For small divisors, we can divide without promoting to `DoubleBigDigit` by |
| 73 | /// using half-size pieces of digit, like long-division. |
| 74 | #[inline ] |
| 75 | fn div_half(rem: BigDigit, digit: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) { |
| 76 | use crate::big_digit::{HALF, HALF_BITS}; |
| 77 | |
| 78 | debug_assert!(rem < divisor && divisor <= HALF); |
| 79 | let (hi: u64, rem: u64) = ((rem << HALF_BITS) | (digit >> HALF_BITS)).div_rem(&divisor); |
| 80 | let (lo: u64, rem: u64) = ((rem << HALF_BITS) | (digit & HALF)).div_rem(&divisor); |
| 81 | ((hi << HALF_BITS) | lo, rem) |
| 82 | } |
| 83 | |
| 84 | #[inline ] |
| 85 | pub(super) fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) { |
| 86 | if b == 0 { |
| 87 | panic!("attempt to divide by zero" ) |
| 88 | } |
| 89 | |
| 90 | let mut rem: u64 = 0; |
| 91 | |
| 92 | if !FAST_DIV_WIDE && b <= big_digit::HALF { |
| 93 | for d: &mut u64 in a.data.iter_mut().rev() { |
| 94 | let (q: u64, r: u64) = div_half(rem, *d, divisor:b); |
| 95 | *d = q; |
| 96 | rem = r; |
| 97 | } |
| 98 | } else { |
| 99 | for d: &mut u64 in a.data.iter_mut().rev() { |
| 100 | let (q: u64, r: u64) = div_wide(hi:rem, *d, divisor:b); |
| 101 | *d = q; |
| 102 | rem = r; |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | (a.normalized(), rem) |
| 107 | } |
| 108 | |
| 109 | #[inline ] |
| 110 | fn rem_digit(a: &BigUint, b: BigDigit) -> BigDigit { |
| 111 | if b == 0 { |
| 112 | panic!("attempt to divide by zero" ) |
| 113 | } |
| 114 | |
| 115 | let mut rem: u64 = 0; |
| 116 | |
| 117 | if !FAST_DIV_WIDE && b <= big_digit::HALF { |
| 118 | for &digit: u64 in a.data.iter().rev() { |
| 119 | let (_, r: u64) = div_half(rem, digit, divisor:b); |
| 120 | rem = r; |
| 121 | } |
| 122 | } else { |
| 123 | for &digit: u64 in a.data.iter().rev() { |
| 124 | let (_, r: u64) = div_wide(hi:rem, lo:digit, divisor:b); |
| 125 | rem = r; |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | rem |
| 130 | } |
| 131 | |
| 132 | /// Subtract a multiple. |
| 133 | /// a -= b * c |
| 134 | /// Returns a borrow (if a < b then borrow > 0). |
| 135 | fn sub_mul_digit_same_len(a: &mut [BigDigit], b: &[BigDigit], c: BigDigit) -> BigDigit { |
| 136 | debug_assert!(a.len() == b.len()); |
| 137 | |
| 138 | // carry is between -big_digit::MAX and 0, so to avoid overflow we store |
| 139 | // offset_carry = carry + big_digit::MAX |
| 140 | let mut offset_carry = big_digit::MAX; |
| 141 | |
| 142 | for (x, y) in a.iter_mut().zip(b) { |
| 143 | // We want to calculate sum = x - y * c + carry. |
| 144 | // sum >= -(big_digit::MAX * big_digit::MAX) - big_digit::MAX |
| 145 | // sum <= big_digit::MAX |
| 146 | // Offsetting sum by (big_digit::MAX << big_digit::BITS) puts it in DoubleBigDigit range. |
| 147 | let offset_sum = big_digit::to_doublebigdigit(big_digit::MAX, *x) |
| 148 | - big_digit::MAX as DoubleBigDigit |
| 149 | + offset_carry as DoubleBigDigit |
| 150 | - *y as DoubleBigDigit * c as DoubleBigDigit; |
| 151 | |
| 152 | let (new_offset_carry, new_x) = big_digit::from_doublebigdigit(offset_sum); |
| 153 | offset_carry = new_offset_carry; |
| 154 | *x = new_x; |
| 155 | } |
| 156 | |
| 157 | // Return the borrow. |
| 158 | big_digit::MAX - offset_carry |
| 159 | } |
| 160 | |
| 161 | fn div_rem(mut u: BigUint, mut d: BigUint) -> (BigUint, BigUint) { |
| 162 | if d.is_zero() { |
| 163 | panic!("attempt to divide by zero" ) |
| 164 | } |
| 165 | if u.is_zero() { |
| 166 | return (BigUint::ZERO, BigUint::ZERO); |
| 167 | } |
| 168 | |
| 169 | if d.data.len() == 1 { |
| 170 | if d.data == [1] { |
| 171 | return (u, BigUint::ZERO); |
| 172 | } |
| 173 | let (div, rem) = div_rem_digit(u, d.data[0]); |
| 174 | // reuse d |
| 175 | d.data.clear(); |
| 176 | d += rem; |
| 177 | return (div, d); |
| 178 | } |
| 179 | |
| 180 | // Required or the q_len calculation below can underflow: |
| 181 | match u.cmp(&d) { |
| 182 | Less => return (BigUint::ZERO, u), |
| 183 | Equal => { |
| 184 | u.set_one(); |
| 185 | return (u, BigUint::ZERO); |
| 186 | } |
| 187 | Greater => {} // Do nothing |
| 188 | } |
| 189 | |
| 190 | // This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D: |
| 191 | // |
| 192 | // First, normalize the arguments so the highest bit in the highest digit of the divisor is |
| 193 | // set: the main loop uses the highest digit of the divisor for generating guesses, so we |
| 194 | // want it to be the largest number we can efficiently divide by. |
| 195 | // |
| 196 | let shift = d.data.last().unwrap().leading_zeros() as usize; |
| 197 | |
| 198 | if shift == 0 { |
| 199 | // no need to clone d |
| 200 | div_rem_core(u, &d.data) |
| 201 | } else { |
| 202 | let (q, r) = div_rem_core(u << shift, &(d << shift).data); |
| 203 | // renormalize the remainder |
| 204 | (q, r >> shift) |
| 205 | } |
| 206 | } |
| 207 | |
| 208 | pub(super) fn div_rem_ref(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) { |
| 209 | if d.is_zero() { |
| 210 | panic!("attempt to divide by zero" ) |
| 211 | } |
| 212 | if u.is_zero() { |
| 213 | return (BigUint::ZERO, BigUint::ZERO); |
| 214 | } |
| 215 | |
| 216 | if d.data.len() == 1 { |
| 217 | if d.data == [1] { |
| 218 | return (u.clone(), BigUint::ZERO); |
| 219 | } |
| 220 | |
| 221 | let (div, rem) = div_rem_digit(u.clone(), d.data[0]); |
| 222 | return (div, rem.into()); |
| 223 | } |
| 224 | |
| 225 | // Required or the q_len calculation below can underflow: |
| 226 | match u.cmp(d) { |
| 227 | Less => return (BigUint::ZERO, u.clone()), |
| 228 | Equal => return (One::one(), BigUint::ZERO), |
| 229 | Greater => {} // Do nothing |
| 230 | } |
| 231 | |
| 232 | // This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D: |
| 233 | // |
| 234 | // First, normalize the arguments so the highest bit in the highest digit of the divisor is |
| 235 | // set: the main loop uses the highest digit of the divisor for generating guesses, so we |
| 236 | // want it to be the largest number we can efficiently divide by. |
| 237 | // |
| 238 | let shift = d.data.last().unwrap().leading_zeros() as usize; |
| 239 | |
| 240 | if shift == 0 { |
| 241 | // no need to clone d |
| 242 | div_rem_core(u.clone(), &d.data) |
| 243 | } else { |
| 244 | let (q, r) = div_rem_core(u << shift, &(d << shift).data); |
| 245 | // renormalize the remainder |
| 246 | (q, r >> shift) |
| 247 | } |
| 248 | } |
| 249 | |
| 250 | /// An implementation of the base division algorithm. |
| 251 | /// Knuth, TAOCP vol 2 section 4.3.1, algorithm D, with an improvement from exercises 19-21. |
| 252 | fn div_rem_core(mut a: BigUint, b: &[BigDigit]) -> (BigUint, BigUint) { |
| 253 | debug_assert!(a.data.len() >= b.len() && b.len() > 1); |
| 254 | debug_assert!(b.last().unwrap().leading_zeros() == 0); |
| 255 | |
| 256 | // The algorithm works by incrementally calculating "guesses", q0, for the next digit of the |
| 257 | // quotient. Once we have any number q0 such that (q0 << j) * b <= a, we can set |
| 258 | // |
| 259 | // q += q0 << j |
| 260 | // a -= (q0 << j) * b |
| 261 | // |
| 262 | // and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder. |
| 263 | // |
| 264 | // q0, our guess, is calculated by dividing the last three digits of a by the last two digits of |
| 265 | // b - this will give us a guess that is close to the actual quotient, but is possibly greater. |
| 266 | // It can only be greater by 1 and only in rare cases, with probability at most |
| 267 | // 2^-(big_digit::BITS-1) for random a, see TAOCP 4.3.1 exercise 21. |
| 268 | // |
| 269 | // If the quotient turns out to be too large, we adjust it by 1: |
| 270 | // q -= 1 << j |
| 271 | // a += b << j |
| 272 | |
| 273 | // a0 stores an additional extra most significant digit of the dividend, not stored in a. |
| 274 | let mut a0 = 0; |
| 275 | |
| 276 | // [b1, b0] are the two most significant digits of the divisor. They never change. |
| 277 | let b0 = b[b.len() - 1]; |
| 278 | let b1 = b[b.len() - 2]; |
| 279 | |
| 280 | let q_len = a.data.len() - b.len() + 1; |
| 281 | let mut q = BigUint { |
| 282 | data: vec![0; q_len], |
| 283 | }; |
| 284 | |
| 285 | for j in (0..q_len).rev() { |
| 286 | debug_assert!(a.data.len() == b.len() + j); |
| 287 | |
| 288 | let a1 = *a.data.last().unwrap(); |
| 289 | let a2 = a.data[a.data.len() - 2]; |
| 290 | |
| 291 | // The first q0 estimate is [a1,a0] / b0. It will never be too small, it may be too large |
| 292 | // by at most 2. |
| 293 | let (mut q0, mut r) = if a0 < b0 { |
| 294 | let (q0, r) = div_wide(a0, a1, b0); |
| 295 | (q0, r as DoubleBigDigit) |
| 296 | } else { |
| 297 | debug_assert!(a0 == b0); |
| 298 | // Avoid overflowing q0, we know the quotient fits in BigDigit. |
| 299 | // [a1,a0] = b0 * (1<<BITS - 1) + (a0 + a1) |
| 300 | (big_digit::MAX, a0 as DoubleBigDigit + a1 as DoubleBigDigit) |
| 301 | }; |
| 302 | |
| 303 | // r = [a1,a0] - q0 * b0 |
| 304 | // |
| 305 | // Now we want to compute a more precise estimate [a2,a1,a0] / [b1,b0] which can only be |
| 306 | // less or equal to the current q0. |
| 307 | // |
| 308 | // q0 is too large if: |
| 309 | // [a2,a1,a0] < q0 * [b1,b0] |
| 310 | // (r << BITS) + a2 < q0 * b1 |
| 311 | while r <= big_digit::MAX as DoubleBigDigit |
| 312 | && big_digit::to_doublebigdigit(r as BigDigit, a2) |
| 313 | < q0 as DoubleBigDigit * b1 as DoubleBigDigit |
| 314 | { |
| 315 | q0 -= 1; |
| 316 | r += b0 as DoubleBigDigit; |
| 317 | } |
| 318 | |
| 319 | // q0 is now either the correct quotient digit, or in rare cases 1 too large. |
| 320 | // Subtract (q0 << j) from a. This may overflow, in which case we will have to correct. |
| 321 | |
| 322 | let mut borrow = sub_mul_digit_same_len(&mut a.data[j..], b, q0); |
| 323 | if borrow > a0 { |
| 324 | // q0 is too large. We need to add back one multiple of b. |
| 325 | q0 -= 1; |
| 326 | borrow -= __add2(&mut a.data[j..], b); |
| 327 | } |
| 328 | // The top digit of a, stored in a0, has now been zeroed. |
| 329 | debug_assert!(borrow == a0); |
| 330 | |
| 331 | q.data[j] = q0; |
| 332 | |
| 333 | // Pop off the next top digit of a. |
| 334 | a0 = a.data.pop().unwrap(); |
| 335 | } |
| 336 | |
| 337 | a.data.push(a0); |
| 338 | a.normalize(); |
| 339 | |
| 340 | debug_assert_eq!(cmp_slice(&a.data, b), Less); |
| 341 | |
| 342 | (q.normalized(), a) |
| 343 | } |
| 344 | |
| 345 | forward_val_ref_binop!(impl Div for BigUint, div); |
| 346 | forward_ref_val_binop!(impl Div for BigUint, div); |
| 347 | forward_val_assign!(impl DivAssign for BigUint, div_assign); |
| 348 | |
| 349 | impl Div<BigUint> for BigUint { |
| 350 | type Output = BigUint; |
| 351 | |
| 352 | #[inline ] |
| 353 | fn div(self, other: BigUint) -> BigUint { |
| 354 | let (q: BigUint, _) = div_rem(self, d:other); |
| 355 | q |
| 356 | } |
| 357 | } |
| 358 | |
| 359 | impl Div<&BigUint> for &BigUint { |
| 360 | type Output = BigUint; |
| 361 | |
| 362 | #[inline ] |
| 363 | fn div(self, other: &BigUint) -> BigUint { |
| 364 | let (q: BigUint, _) = self.div_rem(other); |
| 365 | q |
| 366 | } |
| 367 | } |
| 368 | impl DivAssign<&BigUint> for BigUint { |
| 369 | #[inline ] |
| 370 | fn div_assign(&mut self, other: &BigUint) { |
| 371 | *self = &*self / other; |
| 372 | } |
| 373 | } |
| 374 | |
| 375 | promote_unsigned_scalars!(impl Div for BigUint, div); |
| 376 | promote_unsigned_scalars_assign!(impl DivAssign for BigUint, div_assign); |
| 377 | forward_all_scalar_binop_to_val_val!(impl Div<u32> for BigUint, div); |
| 378 | forward_all_scalar_binop_to_val_val!(impl Div<u64> for BigUint, div); |
| 379 | forward_all_scalar_binop_to_val_val!(impl Div<u128> for BigUint, div); |
| 380 | |
| 381 | impl Div<u32> for BigUint { |
| 382 | type Output = BigUint; |
| 383 | |
| 384 | #[inline ] |
| 385 | fn div(self, other: u32) -> BigUint { |
| 386 | let (q: BigUint, _) = div_rem_digit(self, b:other as BigDigit); |
| 387 | q |
| 388 | } |
| 389 | } |
| 390 | impl DivAssign<u32> for BigUint { |
| 391 | #[inline ] |
| 392 | fn div_assign(&mut self, other: u32) { |
| 393 | *self = &*self / other; |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | impl Div<BigUint> for u32 { |
| 398 | type Output = BigUint; |
| 399 | |
| 400 | #[inline ] |
| 401 | fn div(self, other: BigUint) -> BigUint { |
| 402 | match other.data.len() { |
| 403 | 0 => panic!("attempt to divide by zero" ), |
| 404 | 1 => From::from(self as BigDigit / other.data[0]), |
| 405 | _ => BigUint::ZERO, |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | impl Div<u64> for BigUint { |
| 411 | type Output = BigUint; |
| 412 | |
| 413 | #[inline ] |
| 414 | fn div(self, other: u64) -> BigUint { |
| 415 | let (q: BigUint, _) = div_rem(self, d:From::from(other)); |
| 416 | q |
| 417 | } |
| 418 | } |
| 419 | impl DivAssign<u64> for BigUint { |
| 420 | #[inline ] |
| 421 | fn div_assign(&mut self, other: u64) { |
| 422 | // a vec of size 0 does not allocate, so this is fairly cheap |
| 423 | let temp: BigUint = mem::replace(self, Self::ZERO); |
| 424 | *self = temp / other; |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | impl Div<BigUint> for u64 { |
| 429 | type Output = BigUint; |
| 430 | |
| 431 | cfg_digit!( |
| 432 | #[inline ] |
| 433 | fn div(self, other: BigUint) -> BigUint { |
| 434 | match other.data.len() { |
| 435 | 0 => panic!("attempt to divide by zero" ), |
| 436 | 1 => From::from(self / u64::from(other.data[0])), |
| 437 | 2 => From::from(self / big_digit::to_doublebigdigit(other.data[1], other.data[0])), |
| 438 | _ => BigUint::ZERO, |
| 439 | } |
| 440 | } |
| 441 | |
| 442 | #[inline ] |
| 443 | fn div(self, other: BigUint) -> BigUint { |
| 444 | match other.data.len() { |
| 445 | 0 => panic!("attempt to divide by zero" ), |
| 446 | 1 => From::from(self / other.data[0]), |
| 447 | _ => BigUint::ZERO, |
| 448 | } |
| 449 | } |
| 450 | ); |
| 451 | } |
| 452 | |
| 453 | impl Div<u128> for BigUint { |
| 454 | type Output = BigUint; |
| 455 | |
| 456 | #[inline ] |
| 457 | fn div(self, other: u128) -> BigUint { |
| 458 | let (q: BigUint, _) = div_rem(self, d:From::from(other)); |
| 459 | q |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | impl DivAssign<u128> for BigUint { |
| 464 | #[inline ] |
| 465 | fn div_assign(&mut self, other: u128) { |
| 466 | *self = &*self / other; |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | impl Div<BigUint> for u128 { |
| 471 | type Output = BigUint; |
| 472 | |
| 473 | cfg_digit!( |
| 474 | #[inline ] |
| 475 | fn div(self, other: BigUint) -> BigUint { |
| 476 | use super::u32_to_u128; |
| 477 | match other.data.len() { |
| 478 | 0 => panic!("attempt to divide by zero" ), |
| 479 | 1 => From::from(self / u128::from(other.data[0])), |
| 480 | 2 => From::from( |
| 481 | self / u128::from(big_digit::to_doublebigdigit(other.data[1], other.data[0])), |
| 482 | ), |
| 483 | 3 => From::from(self / u32_to_u128(0, other.data[2], other.data[1], other.data[0])), |
| 484 | 4 => From::from( |
| 485 | self / u32_to_u128(other.data[3], other.data[2], other.data[1], other.data[0]), |
| 486 | ), |
| 487 | _ => BigUint::ZERO, |
| 488 | } |
| 489 | } |
| 490 | |
| 491 | #[inline ] |
| 492 | fn div(self, other: BigUint) -> BigUint { |
| 493 | match other.data.len() { |
| 494 | 0 => panic!("attempt to divide by zero" ), |
| 495 | 1 => From::from(self / other.data[0] as u128), |
| 496 | 2 => From::from(self / big_digit::to_doublebigdigit(other.data[1], other.data[0])), |
| 497 | _ => BigUint::ZERO, |
| 498 | } |
| 499 | } |
| 500 | ); |
| 501 | } |
| 502 | |
| 503 | forward_val_ref_binop!(impl Rem for BigUint, rem); |
| 504 | forward_ref_val_binop!(impl Rem for BigUint, rem); |
| 505 | forward_val_assign!(impl RemAssign for BigUint, rem_assign); |
| 506 | |
| 507 | impl Rem<BigUint> for BigUint { |
| 508 | type Output = BigUint; |
| 509 | |
| 510 | #[inline ] |
| 511 | fn rem(self, other: BigUint) -> BigUint { |
| 512 | if let Some(other: u32) = other.to_u32() { |
| 513 | &self % other |
| 514 | } else { |
| 515 | let (_, r: BigUint) = div_rem(self, d:other); |
| 516 | r |
| 517 | } |
| 518 | } |
| 519 | } |
| 520 | |
| 521 | impl Rem<&BigUint> for &BigUint { |
| 522 | type Output = BigUint; |
| 523 | |
| 524 | #[inline ] |
| 525 | fn rem(self, other: &BigUint) -> BigUint { |
| 526 | if let Some(other: u32) = other.to_u32() { |
| 527 | self % other |
| 528 | } else { |
| 529 | let (_, r: BigUint) = self.div_rem(other); |
| 530 | r |
| 531 | } |
| 532 | } |
| 533 | } |
| 534 | impl RemAssign<&BigUint> for BigUint { |
| 535 | #[inline ] |
| 536 | fn rem_assign(&mut self, other: &BigUint) { |
| 537 | *self = &*self % other; |
| 538 | } |
| 539 | } |
| 540 | |
| 541 | promote_unsigned_scalars!(impl Rem for BigUint, rem); |
| 542 | promote_unsigned_scalars_assign!(impl RemAssign for BigUint, rem_assign); |
| 543 | forward_all_scalar_binop_to_ref_val!(impl Rem<u32> for BigUint, rem); |
| 544 | forward_all_scalar_binop_to_val_val!(impl Rem<u64> for BigUint, rem); |
| 545 | forward_all_scalar_binop_to_val_val!(impl Rem<u128> for BigUint, rem); |
| 546 | |
| 547 | impl Rem<u32> for &BigUint { |
| 548 | type Output = BigUint; |
| 549 | |
| 550 | #[inline ] |
| 551 | fn rem(self, other: u32) -> BigUint { |
| 552 | rem_digit(self, b:other as BigDigit).into() |
| 553 | } |
| 554 | } |
| 555 | impl RemAssign<u32> for BigUint { |
| 556 | #[inline ] |
| 557 | fn rem_assign(&mut self, other: u32) { |
| 558 | *self = &*self % other; |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | impl Rem<&BigUint> for u32 { |
| 563 | type Output = BigUint; |
| 564 | |
| 565 | #[inline ] |
| 566 | fn rem(mut self, other: &BigUint) -> BigUint { |
| 567 | self %= other; |
| 568 | From::from(self) |
| 569 | } |
| 570 | } |
| 571 | |
| 572 | macro_rules! impl_rem_assign_scalar { |
| 573 | ($scalar:ty, $to_scalar:ident) => { |
| 574 | forward_val_assign_scalar!(impl RemAssign for BigUint, $scalar, rem_assign); |
| 575 | impl RemAssign<&BigUint> for $scalar { |
| 576 | #[inline] |
| 577 | fn rem_assign(&mut self, other: &BigUint) { |
| 578 | *self = match other.$to_scalar() { |
| 579 | None => *self, |
| 580 | Some(0) => panic!("attempt to divide by zero" ), |
| 581 | Some(v) => *self % v |
| 582 | }; |
| 583 | } |
| 584 | } |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | // we can scalar %= BigUint for any scalar, including signed types |
| 589 | impl_rem_assign_scalar!(u128, to_u128); |
| 590 | impl_rem_assign_scalar!(usize, to_usize); |
| 591 | impl_rem_assign_scalar!(u64, to_u64); |
| 592 | impl_rem_assign_scalar!(u32, to_u32); |
| 593 | impl_rem_assign_scalar!(u16, to_u16); |
| 594 | impl_rem_assign_scalar!(u8, to_u8); |
| 595 | impl_rem_assign_scalar!(i128, to_i128); |
| 596 | impl_rem_assign_scalar!(isize, to_isize); |
| 597 | impl_rem_assign_scalar!(i64, to_i64); |
| 598 | impl_rem_assign_scalar!(i32, to_i32); |
| 599 | impl_rem_assign_scalar!(i16, to_i16); |
| 600 | impl_rem_assign_scalar!(i8, to_i8); |
| 601 | |
| 602 | impl Rem<u64> for BigUint { |
| 603 | type Output = BigUint; |
| 604 | |
| 605 | #[inline ] |
| 606 | fn rem(self, other: u64) -> BigUint { |
| 607 | let (_, r: BigUint) = div_rem(self, d:From::from(other)); |
| 608 | r |
| 609 | } |
| 610 | } |
| 611 | impl RemAssign<u64> for BigUint { |
| 612 | #[inline ] |
| 613 | fn rem_assign(&mut self, other: u64) { |
| 614 | *self = &*self % other; |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | impl Rem<BigUint> for u64 { |
| 619 | type Output = BigUint; |
| 620 | |
| 621 | #[inline ] |
| 622 | fn rem(mut self, other: BigUint) -> BigUint { |
| 623 | self %= other; |
| 624 | From::from(self) |
| 625 | } |
| 626 | } |
| 627 | |
| 628 | impl Rem<u128> for BigUint { |
| 629 | type Output = BigUint; |
| 630 | |
| 631 | #[inline ] |
| 632 | fn rem(self, other: u128) -> BigUint { |
| 633 | let (_, r: BigUint) = div_rem(self, d:From::from(other)); |
| 634 | r |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | impl RemAssign<u128> for BigUint { |
| 639 | #[inline ] |
| 640 | fn rem_assign(&mut self, other: u128) { |
| 641 | *self = &*self % other; |
| 642 | } |
| 643 | } |
| 644 | |
| 645 | impl Rem<BigUint> for u128 { |
| 646 | type Output = BigUint; |
| 647 | |
| 648 | #[inline ] |
| 649 | fn rem(mut self, other: BigUint) -> BigUint { |
| 650 | self %= other; |
| 651 | From::from(self) |
| 652 | } |
| 653 | } |
| 654 | |
| 655 | impl CheckedDiv for BigUint { |
| 656 | #[inline ] |
| 657 | fn checked_div(&self, v: &BigUint) -> Option<BigUint> { |
| 658 | if v.is_zero() { |
| 659 | return None; |
| 660 | } |
| 661 | Some(self.div(v)) |
| 662 | } |
| 663 | } |
| 664 | |
| 665 | impl CheckedEuclid for BigUint { |
| 666 | #[inline ] |
| 667 | fn checked_div_euclid(&self, v: &BigUint) -> Option<BigUint> { |
| 668 | if v.is_zero() { |
| 669 | return None; |
| 670 | } |
| 671 | Some(self.div_euclid(v)) |
| 672 | } |
| 673 | |
| 674 | #[inline ] |
| 675 | fn checked_rem_euclid(&self, v: &BigUint) -> Option<BigUint> { |
| 676 | if v.is_zero() { |
| 677 | return None; |
| 678 | } |
| 679 | Some(self.rem_euclid(v)) |
| 680 | } |
| 681 | |
| 682 | fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)> { |
| 683 | Some(self.div_rem_euclid(v)) |
| 684 | } |
| 685 | } |
| 686 | |
| 687 | impl Euclid for BigUint { |
| 688 | #[inline ] |
| 689 | fn div_euclid(&self, v: &BigUint) -> BigUint { |
| 690 | // trivially same as regular division |
| 691 | self / v |
| 692 | } |
| 693 | |
| 694 | #[inline ] |
| 695 | fn rem_euclid(&self, v: &BigUint) -> BigUint { |
| 696 | // trivially same as regular remainder |
| 697 | self % v |
| 698 | } |
| 699 | |
| 700 | fn div_rem_euclid(&self, v: &Self) -> (Self, Self) { |
| 701 | // trivially same as regular division and remainder |
| 702 | self.div_rem(v) |
| 703 | } |
| 704 | } |
| 705 | |