| 1 | // Copyright 2018-2023 Developers of the Rand project. |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 4 | // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 5 | // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| 6 | // option. This file may not be copied, modified, or distributed |
| 7 | // except according to those terms. |
| 8 | |
| 9 | //! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom` |
| 10 | |
| 11 | use super::increasing_uniform::IncreasingUniform; |
| 12 | use super::index; |
| 13 | #[cfg (feature = "alloc" )] |
| 14 | use crate::distr::uniform::{SampleBorrow, SampleUniform}; |
| 15 | #[cfg (feature = "alloc" )] |
| 16 | use crate::distr::weighted::{Error as WeightError, Weight}; |
| 17 | use crate::Rng; |
| 18 | use core::ops::{Index, IndexMut}; |
| 19 | |
| 20 | /// Extension trait on indexable lists, providing random sampling methods. |
| 21 | /// |
| 22 | /// This trait is implemented on `[T]` slice types. Other types supporting |
| 23 | /// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be |
| 24 | /// specified). |
| 25 | pub trait IndexedRandom: Index<usize> { |
| 26 | /// The length |
| 27 | fn len(&self) -> usize; |
| 28 | |
| 29 | /// True when the length is zero |
| 30 | #[inline ] |
| 31 | fn is_empty(&self) -> bool { |
| 32 | self.len() == 0 |
| 33 | } |
| 34 | |
| 35 | /// Uniformly sample one element |
| 36 | /// |
| 37 | /// Returns a reference to one uniformly-sampled random element of |
| 38 | /// the slice, or `None` if the slice is empty. |
| 39 | /// |
| 40 | /// For slices, complexity is `O(1)`. |
| 41 | /// |
| 42 | /// # Example |
| 43 | /// |
| 44 | /// ``` |
| 45 | /// use rand::seq::IndexedRandom; |
| 46 | /// |
| 47 | /// let choices = [1, 2, 4, 8, 16, 32]; |
| 48 | /// let mut rng = rand::rng(); |
| 49 | /// println!("{:?}" , choices.choose(&mut rng)); |
| 50 | /// assert_eq!(choices[..0].choose(&mut rng), None); |
| 51 | /// ``` |
| 52 | fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output> |
| 53 | where |
| 54 | R: Rng + ?Sized, |
| 55 | { |
| 56 | if self.is_empty() { |
| 57 | None |
| 58 | } else { |
| 59 | Some(&self[rng.random_range(..self.len())]) |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | /// Uniformly sample `amount` distinct elements from self |
| 64 | /// |
| 65 | /// Chooses `amount` elements from the slice at random, without repetition, |
| 66 | /// and in random order. The returned iterator is appropriate both for |
| 67 | /// collection into a `Vec` and filling an existing buffer (see example). |
| 68 | /// |
| 69 | /// In case this API is not sufficiently flexible, use [`index::sample`]. |
| 70 | /// |
| 71 | /// For slices, complexity is the same as [`index::sample`]. |
| 72 | /// |
| 73 | /// # Example |
| 74 | /// ``` |
| 75 | /// use rand::seq::IndexedRandom; |
| 76 | /// |
| 77 | /// let mut rng = &mut rand::rng(); |
| 78 | /// let sample = "Hello, audience!" .as_bytes(); |
| 79 | /// |
| 80 | /// // collect the results into a vector: |
| 81 | /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect(); |
| 82 | /// |
| 83 | /// // store in a buffer: |
| 84 | /// let mut buf = [0u8; 5]; |
| 85 | /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) { |
| 86 | /// *slot = *b; |
| 87 | /// } |
| 88 | /// ``` |
| 89 | #[cfg (feature = "alloc" )] |
| 90 | fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output> |
| 91 | where |
| 92 | Self::Output: Sized, |
| 93 | R: Rng + ?Sized, |
| 94 | { |
| 95 | let amount = core::cmp::min(amount, self.len()); |
| 96 | SliceChooseIter { |
| 97 | slice: self, |
| 98 | _phantom: Default::default(), |
| 99 | indices: index::sample(rng, self.len(), amount).into_iter(), |
| 100 | } |
| 101 | } |
| 102 | |
| 103 | /// Uniformly sample a fixed-size array of distinct elements from self |
| 104 | /// |
| 105 | /// Chooses `N` elements from the slice at random, without repetition, |
| 106 | /// and in random order. |
| 107 | /// |
| 108 | /// For slices, complexity is the same as [`index::sample_array`]. |
| 109 | /// |
| 110 | /// # Example |
| 111 | /// ``` |
| 112 | /// use rand::seq::IndexedRandom; |
| 113 | /// |
| 114 | /// let mut rng = &mut rand::rng(); |
| 115 | /// let sample = "Hello, audience!" .as_bytes(); |
| 116 | /// |
| 117 | /// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap(); |
| 118 | /// ``` |
| 119 | fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]> |
| 120 | where |
| 121 | Self::Output: Clone + Sized, |
| 122 | R: Rng + ?Sized, |
| 123 | { |
| 124 | let indices = index::sample_array(rng, self.len())?; |
| 125 | Some(indices.map(|index| self[index].clone())) |
| 126 | } |
| 127 | |
| 128 | /// Biased sampling for one element |
| 129 | /// |
| 130 | /// Returns a reference to one element of the slice, sampled according |
| 131 | /// to the provided weights. Returns `None` only if the slice is empty. |
| 132 | /// |
| 133 | /// The specified function `weight` maps each item `x` to a relative |
| 134 | /// likelihood `weight(x)`. The probability of each item being selected is |
| 135 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| 136 | /// |
| 137 | /// For slices of length `n`, complexity is `O(n)`. |
| 138 | /// For more information about the underlying algorithm, |
| 139 | /// see the [`WeightedIndex`] distribution. |
| 140 | /// |
| 141 | /// See also [`choose_weighted_mut`]. |
| 142 | /// |
| 143 | /// # Example |
| 144 | /// |
| 145 | /// ``` |
| 146 | /// use rand::prelude::*; |
| 147 | /// |
| 148 | /// let choices = [('a' , 2), ('b' , 1), ('c' , 1), ('d' , 0)]; |
| 149 | /// let mut rng = rand::rng(); |
| 150 | /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c', |
| 151 | /// // and 'd' will never be printed |
| 152 | /// println!("{:?}" , choices.choose_weighted(&mut rng, |item| item.1).unwrap().0); |
| 153 | /// ``` |
| 154 | /// [`choose`]: IndexedRandom::choose |
| 155 | /// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut |
| 156 | /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex |
| 157 | #[cfg (feature = "alloc" )] |
| 158 | fn choose_weighted<R, F, B, X>( |
| 159 | &self, |
| 160 | rng: &mut R, |
| 161 | weight: F, |
| 162 | ) -> Result<&Self::Output, WeightError> |
| 163 | where |
| 164 | R: Rng + ?Sized, |
| 165 | F: Fn(&Self::Output) -> B, |
| 166 | B: SampleBorrow<X>, |
| 167 | X: SampleUniform + Weight + PartialOrd<X>, |
| 168 | { |
| 169 | use crate::distr::{weighted::WeightedIndex, Distribution}; |
| 170 | let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?; |
| 171 | Ok(&self[distr.sample(rng)]) |
| 172 | } |
| 173 | |
| 174 | /// Biased sampling of `amount` distinct elements |
| 175 | /// |
| 176 | /// Similar to [`choose_multiple`], but where the likelihood of each element's |
| 177 | /// inclusion in the output may be specified. The elements are returned in an |
| 178 | /// arbitrary, unspecified order. |
| 179 | /// |
| 180 | /// The specified function `weight` maps each item `x` to a relative |
| 181 | /// likelihood `weight(x)`. The probability of each item being selected is |
| 182 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| 183 | /// |
| 184 | /// If all of the weights are equal, even if they are all zero, each element has |
| 185 | /// an equal likelihood of being selected. |
| 186 | /// |
| 187 | /// This implementation uses `O(length + amount)` space and `O(length)` time |
| 188 | /// if the "nightly" feature is enabled, or `O(length)` space and |
| 189 | /// `O(length + amount * log length)` time otherwise. |
| 190 | /// |
| 191 | /// # Known issues |
| 192 | /// |
| 193 | /// The algorithm currently used to implement this method loses accuracy |
| 194 | /// when small values are used for weights. |
| 195 | /// See [#1476](https://github.com/rust-random/rand/issues/1476). |
| 196 | /// |
| 197 | /// # Example |
| 198 | /// |
| 199 | /// ``` |
| 200 | /// use rand::prelude::*; |
| 201 | /// |
| 202 | /// let choices = [('a' , 2), ('b' , 1), ('c' , 1)]; |
| 203 | /// let mut rng = rand::rng(); |
| 204 | /// // First Draw * Second Draw = total odds |
| 205 | /// // ----------------------- |
| 206 | /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order. |
| 207 | /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order. |
| 208 | /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order. |
| 209 | /// println!("{:?}" , choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>()); |
| 210 | /// ``` |
| 211 | /// [`choose_multiple`]: IndexedRandom::choose_multiple |
| 212 | // Note: this is feature-gated on std due to usage of f64::powf. |
| 213 | // If necessary, we may use alloc+libm as an alternative (see PR #1089). |
| 214 | #[cfg (feature = "std" )] |
| 215 | fn choose_multiple_weighted<R, F, X>( |
| 216 | &self, |
| 217 | rng: &mut R, |
| 218 | amount: usize, |
| 219 | weight: F, |
| 220 | ) -> Result<SliceChooseIter<Self, Self::Output>, WeightError> |
| 221 | where |
| 222 | Self::Output: Sized, |
| 223 | R: Rng + ?Sized, |
| 224 | F: Fn(&Self::Output) -> X, |
| 225 | X: Into<f64>, |
| 226 | { |
| 227 | let amount = core::cmp::min(amount, self.len()); |
| 228 | Ok(SliceChooseIter { |
| 229 | slice: self, |
| 230 | _phantom: Default::default(), |
| 231 | indices: index::sample_weighted( |
| 232 | rng, |
| 233 | self.len(), |
| 234 | |idx| weight(&self[idx]).into(), |
| 235 | amount, |
| 236 | )? |
| 237 | .into_iter(), |
| 238 | }) |
| 239 | } |
| 240 | } |
| 241 | |
| 242 | /// Extension trait on indexable lists, providing random sampling methods. |
| 243 | /// |
| 244 | /// This trait is implemented automatically for every type implementing |
| 245 | /// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`]. |
| 246 | pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> { |
| 247 | /// Uniformly sample one element (mut) |
| 248 | /// |
| 249 | /// Returns a mutable reference to one uniformly-sampled random element of |
| 250 | /// the slice, or `None` if the slice is empty. |
| 251 | /// |
| 252 | /// For slices, complexity is `O(1)`. |
| 253 | fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output> |
| 254 | where |
| 255 | R: Rng + ?Sized, |
| 256 | { |
| 257 | if self.is_empty() { |
| 258 | None |
| 259 | } else { |
| 260 | let len = self.len(); |
| 261 | Some(&mut self[rng.random_range(..len)]) |
| 262 | } |
| 263 | } |
| 264 | |
| 265 | /// Biased sampling for one element (mut) |
| 266 | /// |
| 267 | /// Returns a mutable reference to one element of the slice, sampled according |
| 268 | /// to the provided weights. Returns `None` only if the slice is empty. |
| 269 | /// |
| 270 | /// The specified function `weight` maps each item `x` to a relative |
| 271 | /// likelihood `weight(x)`. The probability of each item being selected is |
| 272 | /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`. |
| 273 | /// |
| 274 | /// For slices of length `n`, complexity is `O(n)`. |
| 275 | /// For more information about the underlying algorithm, |
| 276 | /// see the [`WeightedIndex`] distribution. |
| 277 | /// |
| 278 | /// See also [`choose_weighted`]. |
| 279 | /// |
| 280 | /// [`choose_mut`]: IndexedMutRandom::choose_mut |
| 281 | /// [`choose_weighted`]: IndexedRandom::choose_weighted |
| 282 | /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex |
| 283 | #[cfg (feature = "alloc" )] |
| 284 | fn choose_weighted_mut<R, F, B, X>( |
| 285 | &mut self, |
| 286 | rng: &mut R, |
| 287 | weight: F, |
| 288 | ) -> Result<&mut Self::Output, WeightError> |
| 289 | where |
| 290 | R: Rng + ?Sized, |
| 291 | F: Fn(&Self::Output) -> B, |
| 292 | B: SampleBorrow<X>, |
| 293 | X: SampleUniform + Weight + PartialOrd<X>, |
| 294 | { |
| 295 | use crate::distr::{weighted::WeightedIndex, Distribution}; |
| 296 | let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?; |
| 297 | let index = distr.sample(rng); |
| 298 | Ok(&mut self[index]) |
| 299 | } |
| 300 | } |
| 301 | |
| 302 | /// Extension trait on slices, providing shuffling methods. |
| 303 | /// |
| 304 | /// This trait is implemented on all `[T]` slice types, providing several |
| 305 | /// methods for choosing and shuffling elements. You must `use` this trait: |
| 306 | /// |
| 307 | /// ``` |
| 308 | /// use rand::seq::SliceRandom; |
| 309 | /// |
| 310 | /// let mut rng = rand::rng(); |
| 311 | /// let mut bytes = "Hello, random!" .to_string().into_bytes(); |
| 312 | /// bytes.shuffle(&mut rng); |
| 313 | /// let str = String::from_utf8(bytes).unwrap(); |
| 314 | /// println!("{}" , str); |
| 315 | /// ``` |
| 316 | /// Example output (non-deterministic): |
| 317 | /// ```none |
| 318 | /// l,nmroHado !le |
| 319 | /// ``` |
| 320 | pub trait SliceRandom: IndexedMutRandom { |
| 321 | /// Shuffle a mutable slice in place. |
| 322 | /// |
| 323 | /// For slices of length `n`, complexity is `O(n)`. |
| 324 | /// The resulting permutation is picked uniformly from the set of all possible permutations. |
| 325 | /// |
| 326 | /// # Example |
| 327 | /// |
| 328 | /// ``` |
| 329 | /// use rand::seq::SliceRandom; |
| 330 | /// |
| 331 | /// let mut rng = rand::rng(); |
| 332 | /// let mut y = [1, 2, 3, 4, 5]; |
| 333 | /// println!("Unshuffled: {:?}" , y); |
| 334 | /// y.shuffle(&mut rng); |
| 335 | /// println!("Shuffled: {:?}" , y); |
| 336 | /// ``` |
| 337 | fn shuffle<R>(&mut self, rng: &mut R) |
| 338 | where |
| 339 | R: Rng + ?Sized; |
| 340 | |
| 341 | /// Shuffle a slice in place, but exit early. |
| 342 | /// |
| 343 | /// Returns two mutable slices from the source slice. The first contains |
| 344 | /// `amount` elements randomly permuted. The second has the remaining |
| 345 | /// elements that are not fully shuffled. |
| 346 | /// |
| 347 | /// This is an efficient method to select `amount` elements at random from |
| 348 | /// the slice, provided the slice may be mutated. |
| 349 | /// |
| 350 | /// If you only need to choose elements randomly and `amount > self.len()/2` |
| 351 | /// then you may improve performance by taking |
| 352 | /// `amount = self.len() - amount` and using only the second slice. |
| 353 | /// |
| 354 | /// If `amount` is greater than the number of elements in the slice, this |
| 355 | /// will perform a full shuffle. |
| 356 | /// |
| 357 | /// For slices, complexity is `O(m)` where `m = amount`. |
| 358 | fn partial_shuffle<R>( |
| 359 | &mut self, |
| 360 | rng: &mut R, |
| 361 | amount: usize, |
| 362 | ) -> (&mut [Self::Output], &mut [Self::Output]) |
| 363 | where |
| 364 | Self::Output: Sized, |
| 365 | R: Rng + ?Sized; |
| 366 | } |
| 367 | |
| 368 | impl<T> IndexedRandom for [T] { |
| 369 | fn len(&self) -> usize { |
| 370 | self.len() |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {} |
| 375 | |
| 376 | impl<T> SliceRandom for [T] { |
| 377 | fn shuffle<R>(&mut self, rng: &mut R) |
| 378 | where |
| 379 | R: Rng + ?Sized, |
| 380 | { |
| 381 | if self.len() <= 1 { |
| 382 | // There is no need to shuffle an empty or single element slice |
| 383 | return; |
| 384 | } |
| 385 | self.partial_shuffle(rng, self.len()); |
| 386 | } |
| 387 | |
| 388 | fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T]) |
| 389 | where |
| 390 | R: Rng + ?Sized, |
| 391 | { |
| 392 | let m = self.len().saturating_sub(amount); |
| 393 | |
| 394 | // The algorithm below is based on Durstenfeld's algorithm for the |
| 395 | // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) |
| 396 | // for an unbiased permutation. |
| 397 | // It ensures that the last `amount` elements of the slice |
| 398 | // are randomly selected from the whole slice. |
| 399 | |
| 400 | // `IncreasingUniform::next_index()` is faster than `Rng::random_range` |
| 401 | // but only works for 32 bit integers |
| 402 | // So we must use the slow method if the slice is longer than that. |
| 403 | if self.len() < (u32::MAX as usize) { |
| 404 | let mut chooser = IncreasingUniform::new(rng, m as u32); |
| 405 | for i in m..self.len() { |
| 406 | let index = chooser.next_index(); |
| 407 | self.swap(i, index); |
| 408 | } |
| 409 | } else { |
| 410 | for i in m..self.len() { |
| 411 | let index = rng.random_range(..i + 1); |
| 412 | self.swap(i, index); |
| 413 | } |
| 414 | } |
| 415 | let r = self.split_at_mut(m); |
| 416 | (r.1, r.0) |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | /// An iterator over multiple slice elements. |
| 421 | /// |
| 422 | /// This struct is created by |
| 423 | /// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple). |
| 424 | #[cfg (feature = "alloc" )] |
| 425 | #[derive (Debug)] |
| 426 | pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> { |
| 427 | slice: &'a S, |
| 428 | _phantom: core::marker::PhantomData<T>, |
| 429 | indices: index::IndexVecIntoIter, |
| 430 | } |
| 431 | |
| 432 | #[cfg (feature = "alloc" )] |
| 433 | impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> { |
| 434 | type Item = &'a T; |
| 435 | |
| 436 | fn next(&mut self) -> Option<Self::Item> { |
| 437 | // TODO: investigate using SliceIndex::get_unchecked when stable |
| 438 | self.indices.next().map(|i: usize| &self.slice[i]) |
| 439 | } |
| 440 | |
| 441 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 442 | (self.indices.len(), Some(self.indices.len())) |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | #[cfg (feature = "alloc" )] |
| 447 | impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator |
| 448 | for SliceChooseIter<'a, S, T> |
| 449 | { |
| 450 | fn len(&self) -> usize { |
| 451 | self.indices.len() |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | #[cfg (test)] |
| 456 | mod test { |
| 457 | use super::*; |
| 458 | #[cfg (feature = "alloc" )] |
| 459 | use alloc::vec::Vec; |
| 460 | |
| 461 | #[test ] |
| 462 | fn test_slice_choose() { |
| 463 | let mut r = crate::test::rng(107); |
| 464 | let chars = [ |
| 465 | 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , |
| 466 | ]; |
| 467 | let mut chosen = [0i32; 14]; |
| 468 | // The below all use a binomial distribution with n=1000, p=1/14. |
| 469 | // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5 |
| 470 | for _ in 0..1000 { |
| 471 | let picked = *chars.choose(&mut r).unwrap(); |
| 472 | chosen[(picked as usize) - ('a' as usize)] += 1; |
| 473 | } |
| 474 | for count in chosen.iter() { |
| 475 | assert!(40 < *count && *count < 106); |
| 476 | } |
| 477 | |
| 478 | chosen.iter_mut().for_each(|x| *x = 0); |
| 479 | for _ in 0..1000 { |
| 480 | *chosen.choose_mut(&mut r).unwrap() += 1; |
| 481 | } |
| 482 | for count in chosen.iter() { |
| 483 | assert!(40 < *count && *count < 106); |
| 484 | } |
| 485 | |
| 486 | let mut v: [isize; 0] = []; |
| 487 | assert_eq!(v.choose(&mut r), None); |
| 488 | assert_eq!(v.choose_mut(&mut r), None); |
| 489 | } |
| 490 | |
| 491 | #[test ] |
| 492 | fn value_stability_slice() { |
| 493 | let mut r = crate::test::rng(413); |
| 494 | let chars = [ |
| 495 | 'a' , 'b' , 'c' , 'd' , 'e' , 'f' , 'g' , 'h' , 'i' , 'j' , 'k' , 'l' , 'm' , 'n' , |
| 496 | ]; |
| 497 | let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; |
| 498 | |
| 499 | assert_eq!(chars.choose(&mut r), Some(&'l' )); |
| 500 | assert_eq!(nums.choose_mut(&mut r), Some(&mut 3)); |
| 501 | |
| 502 | assert_eq!( |
| 503 | &chars.choose_multiple_array(&mut r), |
| 504 | &Some(['f' , 'i' , 'd' , 'b' , 'c' , 'm' , 'j' , 'k' ]) |
| 505 | ); |
| 506 | |
| 507 | #[cfg (feature = "alloc" )] |
| 508 | assert_eq!( |
| 509 | &chars |
| 510 | .choose_multiple(&mut r, 8) |
| 511 | .cloned() |
| 512 | .collect::<Vec<char>>(), |
| 513 | &['h' , 'm' , 'd' , 'b' , 'c' , 'e' , 'n' , 'f' ] |
| 514 | ); |
| 515 | |
| 516 | #[cfg (feature = "alloc" )] |
| 517 | assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i' )); |
| 518 | #[cfg (feature = "alloc" )] |
| 519 | assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2)); |
| 520 | |
| 521 | let mut r = crate::test::rng(414); |
| 522 | nums.shuffle(&mut r); |
| 523 | assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]); |
| 524 | nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; |
| 525 | let res = nums.partial_shuffle(&mut r, 6); |
| 526 | assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]); |
| 527 | assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]); |
| 528 | } |
| 529 | |
| 530 | #[test ] |
| 531 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 532 | fn test_shuffle() { |
| 533 | let mut r = crate::test::rng(108); |
| 534 | let empty: &mut [isize] = &mut []; |
| 535 | empty.shuffle(&mut r); |
| 536 | let mut one = [1]; |
| 537 | one.shuffle(&mut r); |
| 538 | let b: &[_] = &[1]; |
| 539 | assert_eq!(one, b); |
| 540 | |
| 541 | let mut two = [1, 2]; |
| 542 | two.shuffle(&mut r); |
| 543 | assert!(two == [1, 2] || two == [2, 1]); |
| 544 | |
| 545 | fn move_last(slice: &mut [usize], pos: usize) { |
| 546 | // use slice[pos..].rotate_left(1); once we can use that |
| 547 | let last_val = slice[pos]; |
| 548 | for i in pos..slice.len() - 1 { |
| 549 | slice[i] = slice[i + 1]; |
| 550 | } |
| 551 | *slice.last_mut().unwrap() = last_val; |
| 552 | } |
| 553 | let mut counts = [0i32; 24]; |
| 554 | for _ in 0..10000 { |
| 555 | let mut arr: [usize; 4] = [0, 1, 2, 3]; |
| 556 | arr.shuffle(&mut r); |
| 557 | let mut permutation = 0usize; |
| 558 | let mut pos_value = counts.len(); |
| 559 | for i in 0..4 { |
| 560 | pos_value /= 4 - i; |
| 561 | let pos = arr.iter().position(|&x| x == i).unwrap(); |
| 562 | assert!(pos < (4 - i)); |
| 563 | permutation += pos * pos_value; |
| 564 | move_last(&mut arr, pos); |
| 565 | assert_eq!(arr[3], i); |
| 566 | } |
| 567 | for (i, &a) in arr.iter().enumerate() { |
| 568 | assert_eq!(a, i); |
| 569 | } |
| 570 | counts[permutation] += 1; |
| 571 | } |
| 572 | for count in counts.iter() { |
| 573 | // Binomial(10000, 1/24) with average 416.667 |
| 574 | // Octave: binocdf(n, 10000, 1/24) |
| 575 | // 99.9% chance samples lie within this range: |
| 576 | assert!(352 <= *count && *count <= 483, "count: {}" , count); |
| 577 | } |
| 578 | } |
| 579 | |
| 580 | #[test ] |
| 581 | fn test_partial_shuffle() { |
| 582 | let mut r = crate::test::rng(118); |
| 583 | |
| 584 | let mut empty: [u32; 0] = []; |
| 585 | let res = empty.partial_shuffle(&mut r, 10); |
| 586 | assert_eq!((res.0.len(), res.1.len()), (0, 0)); |
| 587 | |
| 588 | let mut v = [1, 2, 3, 4, 5]; |
| 589 | let res = v.partial_shuffle(&mut r, 2); |
| 590 | assert_eq!((res.0.len(), res.1.len()), (2, 3)); |
| 591 | assert!(res.0[0] != res.0[1]); |
| 592 | // First elements are only modified if selected, so at least one isn't modified: |
| 593 | assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3); |
| 594 | } |
| 595 | |
| 596 | #[test ] |
| 597 | #[cfg (feature = "alloc" )] |
| 598 | #[cfg_attr (miri, ignore)] // Miri is too slow |
| 599 | fn test_weighted() { |
| 600 | let mut r = crate::test::rng(406); |
| 601 | const N_REPS: u32 = 3000; |
| 602 | let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7]; |
| 603 | let total_weight = weights.iter().sum::<u32>() as f32; |
| 604 | |
| 605 | let verify = |result: [i32; 14]| { |
| 606 | for (i, count) in result.iter().enumerate() { |
| 607 | let exp = (weights[i] * N_REPS) as f32 / total_weight; |
| 608 | let mut err = (*count as f32 - exp).abs(); |
| 609 | if err != 0.0 { |
| 610 | err /= exp; |
| 611 | } |
| 612 | assert!(err <= 0.25); |
| 613 | } |
| 614 | }; |
| 615 | |
| 616 | // choose_weighted |
| 617 | fn get_weight<T>(item: &(u32, T)) -> u32 { |
| 618 | item.0 |
| 619 | } |
| 620 | let mut chosen = [0i32; 14]; |
| 621 | let mut items = [(0u32, 0usize); 14]; // (weight, index) |
| 622 | for (i, item) in items.iter_mut().enumerate() { |
| 623 | *item = (weights[i], i); |
| 624 | } |
| 625 | for _ in 0..N_REPS { |
| 626 | let item = items.choose_weighted(&mut r, get_weight).unwrap(); |
| 627 | chosen[item.1] += 1; |
| 628 | } |
| 629 | verify(chosen); |
| 630 | |
| 631 | // choose_weighted_mut |
| 632 | let mut items = [(0u32, 0i32); 14]; // (weight, count) |
| 633 | for (i, item) in items.iter_mut().enumerate() { |
| 634 | *item = (weights[i], 0); |
| 635 | } |
| 636 | for _ in 0..N_REPS { |
| 637 | items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1; |
| 638 | } |
| 639 | for (ch, item) in chosen.iter_mut().zip(items.iter()) { |
| 640 | *ch = item.1; |
| 641 | } |
| 642 | verify(chosen); |
| 643 | |
| 644 | // Check error cases |
| 645 | let empty_slice = &mut [10][0..0]; |
| 646 | assert_eq!( |
| 647 | empty_slice.choose_weighted(&mut r, |_| 1), |
| 648 | Err(WeightError::InvalidInput) |
| 649 | ); |
| 650 | assert_eq!( |
| 651 | empty_slice.choose_weighted_mut(&mut r, |_| 1), |
| 652 | Err(WeightError::InvalidInput) |
| 653 | ); |
| 654 | assert_eq!( |
| 655 | ['x' ].choose_weighted_mut(&mut r, |_| 0), |
| 656 | Err(WeightError::InsufficientNonZero) |
| 657 | ); |
| 658 | assert_eq!( |
| 659 | [0, -1].choose_weighted_mut(&mut r, |x| *x), |
| 660 | Err(WeightError::InvalidWeight) |
| 661 | ); |
| 662 | assert_eq!( |
| 663 | [-1, 0].choose_weighted_mut(&mut r, |x| *x), |
| 664 | Err(WeightError::InvalidWeight) |
| 665 | ); |
| 666 | } |
| 667 | |
| 668 | #[test ] |
| 669 | #[cfg (feature = "std" )] |
| 670 | fn test_multiple_weighted_edge_cases() { |
| 671 | use super::*; |
| 672 | |
| 673 | let mut rng = crate::test::rng(413); |
| 674 | |
| 675 | // Case 1: One of the weights is 0 |
| 676 | let choices = [('a' , 2), ('b' , 1), ('c' , 0)]; |
| 677 | for _ in 0..100 { |
| 678 | let result = choices |
| 679 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 680 | .unwrap() |
| 681 | .collect::<Vec<_>>(); |
| 682 | |
| 683 | assert_eq!(result.len(), 2); |
| 684 | assert!(!result.iter().any(|val| val.0 == 'c' )); |
| 685 | } |
| 686 | |
| 687 | // Case 2: All of the weights are 0 |
| 688 | let choices = [('a' , 0), ('b' , 0), ('c' , 0)]; |
| 689 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| 690 | assert_eq!(r.unwrap_err(), WeightError::InsufficientNonZero); |
| 691 | |
| 692 | // Case 3: Negative weights |
| 693 | let choices = [('a' , -1), ('b' , 1), ('c' , 1)]; |
| 694 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| 695 | assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
| 696 | |
| 697 | // Case 4: Empty list |
| 698 | let choices = []; |
| 699 | let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0); |
| 700 | assert_eq!(r.unwrap().count(), 0); |
| 701 | |
| 702 | // Case 5: NaN weights |
| 703 | let choices = [('a' , f64::NAN), ('b' , 1.0), ('c' , 1.0)]; |
| 704 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| 705 | assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
| 706 | |
| 707 | // Case 6: +infinity weights |
| 708 | let choices = [('a' , f64::INFINITY), ('b' , 1.0), ('c' , 1.0)]; |
| 709 | for _ in 0..100 { |
| 710 | let result = choices |
| 711 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 712 | .unwrap() |
| 713 | .collect::<Vec<_>>(); |
| 714 | assert_eq!(result.len(), 2); |
| 715 | assert!(result.iter().any(|val| val.0 == 'a' )); |
| 716 | } |
| 717 | |
| 718 | // Case 7: -infinity weights |
| 719 | let choices = [('a' , f64::NEG_INFINITY), ('b' , 1.0), ('c' , 1.0)]; |
| 720 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| 721 | assert_eq!(r.unwrap_err(), WeightError::InvalidWeight); |
| 722 | |
| 723 | // Case 8: -0 weights |
| 724 | let choices = [('a' , -0.0), ('b' , 1.0), ('c' , 1.0)]; |
| 725 | let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1); |
| 726 | assert!(r.is_ok()); |
| 727 | } |
| 728 | |
| 729 | #[test ] |
| 730 | #[cfg (feature = "std" )] |
| 731 | fn test_multiple_weighted_distributions() { |
| 732 | use super::*; |
| 733 | |
| 734 | // The theoretical probabilities of the different outcomes are: |
| 735 | // AB: 0.5 * 0.667 = 0.3333 |
| 736 | // AC: 0.5 * 0.333 = 0.1667 |
| 737 | // BA: 0.333 * 0.75 = 0.25 |
| 738 | // BC: 0.333 * 0.25 = 0.0833 |
| 739 | // CA: 0.167 * 0.6 = 0.1 |
| 740 | // CB: 0.167 * 0.4 = 0.0667 |
| 741 | let choices = [('a' , 3), ('b' , 2), ('c' , 1)]; |
| 742 | let mut rng = crate::test::rng(414); |
| 743 | |
| 744 | let mut results = [0i32; 3]; |
| 745 | let expected_results = [5833, 2667, 1500]; |
| 746 | for _ in 0..10000 { |
| 747 | let result = choices |
| 748 | .choose_multiple_weighted(&mut rng, 2, |item| item.1) |
| 749 | .unwrap() |
| 750 | .collect::<Vec<_>>(); |
| 751 | |
| 752 | assert_eq!(result.len(), 2); |
| 753 | |
| 754 | match (result[0].0, result[1].0) { |
| 755 | ('a' , 'b' ) | ('b' , 'a' ) => { |
| 756 | results[0] += 1; |
| 757 | } |
| 758 | ('a' , 'c' ) | ('c' , 'a' ) => { |
| 759 | results[1] += 1; |
| 760 | } |
| 761 | ('b' , 'c' ) | ('c' , 'b' ) => { |
| 762 | results[2] += 1; |
| 763 | } |
| 764 | (_, _) => panic!("unexpected result" ), |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | let mut diffs = results |
| 769 | .iter() |
| 770 | .zip(&expected_results) |
| 771 | .map(|(a, b)| (a - b).abs()); |
| 772 | assert!(!diffs.any(|deviation| deviation > 100)); |
| 773 | } |
| 774 | } |
| 775 | |