1 | /*! |
2 | This module provides a regular expression printer for `Hir`. |
3 | */ |
4 | |
5 | use core::fmt; |
6 | |
7 | use crate::{ |
8 | hir::{ |
9 | self, |
10 | visitor::{self, Visitor}, |
11 | Hir, HirKind, |
12 | }, |
13 | is_meta_character, |
14 | }; |
15 | |
16 | /// A builder for constructing a printer. |
17 | /// |
18 | /// Note that since a printer doesn't have any configuration knobs, this type |
19 | /// remains unexported. |
20 | #[derive (Clone, Debug)] |
21 | struct PrinterBuilder { |
22 | _priv: (), |
23 | } |
24 | |
25 | impl Default for PrinterBuilder { |
26 | fn default() -> PrinterBuilder { |
27 | PrinterBuilder::new() |
28 | } |
29 | } |
30 | |
31 | impl PrinterBuilder { |
32 | fn new() -> PrinterBuilder { |
33 | PrinterBuilder { _priv: () } |
34 | } |
35 | |
36 | fn build(&self) -> Printer { |
37 | Printer { _priv: () } |
38 | } |
39 | } |
40 | |
41 | /// A printer for a regular expression's high-level intermediate |
42 | /// representation. |
43 | /// |
44 | /// A printer converts a high-level intermediate representation (HIR) to a |
45 | /// regular expression pattern string. This particular printer uses constant |
46 | /// stack space and heap space proportional to the size of the HIR. |
47 | /// |
48 | /// Since this printer is only using the HIR, the pattern it prints will likely |
49 | /// not resemble the original pattern at all. For example, a pattern like |
50 | /// `\pL` will have its entire class written out. |
51 | /// |
52 | /// The purpose of this printer is to provide a means to mutate an HIR and then |
53 | /// build a regular expression from the result of that mutation. (A regex |
54 | /// library could provide a constructor from this HIR explicitly, but that |
55 | /// creates an unnecessary public coupling between the regex library and this |
56 | /// specific HIR representation.) |
57 | #[derive (Debug)] |
58 | pub struct Printer { |
59 | _priv: (), |
60 | } |
61 | |
62 | impl Printer { |
63 | /// Create a new printer. |
64 | pub fn new() -> Printer { |
65 | PrinterBuilder::new().build() |
66 | } |
67 | |
68 | /// Print the given `Ast` to the given writer. The writer must implement |
69 | /// `fmt::Write`. Typical implementations of `fmt::Write` that can be used |
70 | /// here are a `fmt::Formatter` (which is available in `fmt::Display` |
71 | /// implementations) or a `&mut String`. |
72 | pub fn print<W: fmt::Write>(&mut self, hir: &Hir, wtr: W) -> fmt::Result { |
73 | visitor::visit(hir, visitor:Writer { wtr }) |
74 | } |
75 | } |
76 | |
77 | #[derive (Debug)] |
78 | struct Writer<W> { |
79 | wtr: W, |
80 | } |
81 | |
82 | impl<W: fmt::Write> Visitor for Writer<W> { |
83 | type Output = (); |
84 | type Err = fmt::Error; |
85 | |
86 | fn finish(self) -> fmt::Result { |
87 | Ok(()) |
88 | } |
89 | |
90 | fn visit_pre(&mut self, hir: &Hir) -> fmt::Result { |
91 | match *hir.kind() { |
92 | // Empty is represented by nothing in the concrete syntax, and |
93 | // repetition operators are strictly suffix oriented. |
94 | HirKind::Empty | HirKind::Repetition(_) => {} |
95 | HirKind::Literal(hir::Literal(ref bytes)) => { |
96 | // See the comment on the 'Concat' and 'Alternation' case below |
97 | // for why we put parens here. Literals are, conceptually, |
98 | // a special case of concatenation where each element is a |
99 | // character. The HIR flattens this into a Box<[u8]>, but we |
100 | // still need to treat it like a concatenation for correct |
101 | // printing. As a special case, we don't write parens if there |
102 | // is only one character. One character means there is no |
103 | // concat so we don't need parens. Adding parens would still be |
104 | // correct, but we drop them here because it tends to create |
105 | // rather noisy regexes even in simple cases. |
106 | let result = core::str::from_utf8(bytes); |
107 | let len = result.map_or(bytes.len(), |s| s.chars().count()); |
108 | if len > 1 { |
109 | self.wtr.write_str(r"(?:" )?; |
110 | } |
111 | match result { |
112 | Ok(string) => { |
113 | for c in string.chars() { |
114 | self.write_literal_char(c)?; |
115 | } |
116 | } |
117 | Err(_) => { |
118 | for &b in bytes.iter() { |
119 | self.write_literal_byte(b)?; |
120 | } |
121 | } |
122 | } |
123 | if len > 1 { |
124 | self.wtr.write_str(r")" )?; |
125 | } |
126 | } |
127 | HirKind::Class(hir::Class::Unicode(ref cls)) => { |
128 | if cls.ranges().is_empty() { |
129 | return self.wtr.write_str("[a&&b]" ); |
130 | } |
131 | self.wtr.write_str("[" )?; |
132 | for range in cls.iter() { |
133 | if range.start() == range.end() { |
134 | self.write_literal_char(range.start())?; |
135 | } else if u32::from(range.start()) + 1 |
136 | == u32::from(range.end()) |
137 | { |
138 | self.write_literal_char(range.start())?; |
139 | self.write_literal_char(range.end())?; |
140 | } else { |
141 | self.write_literal_char(range.start())?; |
142 | self.wtr.write_str("-" )?; |
143 | self.write_literal_char(range.end())?; |
144 | } |
145 | } |
146 | self.wtr.write_str("]" )?; |
147 | } |
148 | HirKind::Class(hir::Class::Bytes(ref cls)) => { |
149 | if cls.ranges().is_empty() { |
150 | return self.wtr.write_str("[a&&b]" ); |
151 | } |
152 | self.wtr.write_str("(?-u:[" )?; |
153 | for range in cls.iter() { |
154 | if range.start() == range.end() { |
155 | self.write_literal_class_byte(range.start())?; |
156 | } else if range.start() + 1 == range.end() { |
157 | self.write_literal_class_byte(range.start())?; |
158 | self.write_literal_class_byte(range.end())?; |
159 | } else { |
160 | self.write_literal_class_byte(range.start())?; |
161 | self.wtr.write_str("-" )?; |
162 | self.write_literal_class_byte(range.end())?; |
163 | } |
164 | } |
165 | self.wtr.write_str("])" )?; |
166 | } |
167 | HirKind::Look(ref look) => match *look { |
168 | hir::Look::Start => { |
169 | self.wtr.write_str(r"\A" )?; |
170 | } |
171 | hir::Look::End => { |
172 | self.wtr.write_str(r"\z" )?; |
173 | } |
174 | hir::Look::StartLF => { |
175 | self.wtr.write_str("(?m:^)" )?; |
176 | } |
177 | hir::Look::EndLF => { |
178 | self.wtr.write_str("(?m:$)" )?; |
179 | } |
180 | hir::Look::StartCRLF => { |
181 | self.wtr.write_str("(?mR:^)" )?; |
182 | } |
183 | hir::Look::EndCRLF => { |
184 | self.wtr.write_str("(?mR:$)" )?; |
185 | } |
186 | hir::Look::WordAscii => { |
187 | self.wtr.write_str(r"(?-u:\b)" )?; |
188 | } |
189 | hir::Look::WordAsciiNegate => { |
190 | self.wtr.write_str(r"(?-u:\B)" )?; |
191 | } |
192 | hir::Look::WordUnicode => { |
193 | self.wtr.write_str(r"\b" )?; |
194 | } |
195 | hir::Look::WordUnicodeNegate => { |
196 | self.wtr.write_str(r"\B" )?; |
197 | } |
198 | }, |
199 | HirKind::Capture(hir::Capture { ref name, .. }) => { |
200 | self.wtr.write_str("(" )?; |
201 | if let Some(ref name) = *name { |
202 | write!(self.wtr, "?P< {}>" , name)?; |
203 | } |
204 | } |
205 | // Why do this? Wrapping concats and alts in non-capturing groups |
206 | // is not *always* necessary, but is sometimes necessary. For |
207 | // example, 'concat(a, alt(b, c))' should be written as 'a(?:b|c)' |
208 | // and not 'ab|c'. The former is clearly the intended meaning, but |
209 | // the latter is actually 'alt(concat(a, b), c)'. |
210 | // |
211 | // It would be possible to only group these things in cases where |
212 | // it's strictly necessary, but it requires knowing the parent |
213 | // expression. And since this technique is simpler and always |
214 | // correct, we take this route. More to the point, it is a non-goal |
215 | // of an HIR printer to show a nice easy-to-read regex. Indeed, |
216 | // its construction forbids it from doing so. Therefore, inserting |
217 | // extra groups where they aren't necessary is perfectly okay. |
218 | HirKind::Concat(_) | HirKind::Alternation(_) => { |
219 | self.wtr.write_str(r"(?:" )?; |
220 | } |
221 | } |
222 | Ok(()) |
223 | } |
224 | |
225 | fn visit_post(&mut self, hir: &Hir) -> fmt::Result { |
226 | match *hir.kind() { |
227 | // Handled during visit_pre |
228 | HirKind::Empty |
229 | | HirKind::Literal(_) |
230 | | HirKind::Class(_) |
231 | | HirKind::Look(_) => {} |
232 | HirKind::Repetition(ref x) => { |
233 | match (x.min, x.max) { |
234 | (0, Some(1)) => { |
235 | self.wtr.write_str("?" )?; |
236 | } |
237 | (0, None) => { |
238 | self.wtr.write_str("*" )?; |
239 | } |
240 | (1, None) => { |
241 | self.wtr.write_str("+" )?; |
242 | } |
243 | (1, Some(1)) => { |
244 | // 'a{1}' and 'a{1}?' are exactly equivalent to 'a'. |
245 | return Ok(()); |
246 | } |
247 | (m, None) => { |
248 | write!(self.wtr, " {{{}, }}" , m)?; |
249 | } |
250 | (m, Some(n)) if m == n => { |
251 | write!(self.wtr, " {{{}}}" , m)?; |
252 | // a{m} and a{m}? are always exactly equivalent. |
253 | return Ok(()); |
254 | } |
255 | (m, Some(n)) => { |
256 | write!(self.wtr, " {{{}, {}}}" , m, n)?; |
257 | } |
258 | } |
259 | if !x.greedy { |
260 | self.wtr.write_str("?" )?; |
261 | } |
262 | } |
263 | HirKind::Capture(_) |
264 | | HirKind::Concat(_) |
265 | | HirKind::Alternation(_) => { |
266 | self.wtr.write_str(r")" )?; |
267 | } |
268 | } |
269 | Ok(()) |
270 | } |
271 | |
272 | fn visit_alternation_in(&mut self) -> fmt::Result { |
273 | self.wtr.write_str("|" ) |
274 | } |
275 | } |
276 | |
277 | impl<W: fmt::Write> Writer<W> { |
278 | fn write_literal_char(&mut self, c: char) -> fmt::Result { |
279 | if is_meta_character(c) { |
280 | self.wtr.write_str(" \\" )?; |
281 | } |
282 | self.wtr.write_char(c) |
283 | } |
284 | |
285 | fn write_literal_byte(&mut self, b: u8) -> fmt::Result { |
286 | if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() { |
287 | self.write_literal_char(char::try_from(b).unwrap()) |
288 | } else { |
289 | write!(self.wtr, "(?-u: \\x {:02X})" , b) |
290 | } |
291 | } |
292 | |
293 | fn write_literal_class_byte(&mut self, b: u8) -> fmt::Result { |
294 | if b <= 0x7F && !b.is_ascii_control() && !b.is_ascii_whitespace() { |
295 | self.write_literal_char(char::try_from(b).unwrap()) |
296 | } else { |
297 | write!(self.wtr, " \\x {:02X}" , b) |
298 | } |
299 | } |
300 | } |
301 | |
302 | #[cfg (test)] |
303 | mod tests { |
304 | use alloc::{ |
305 | boxed::Box, |
306 | string::{String, ToString}, |
307 | }; |
308 | |
309 | use crate::ParserBuilder; |
310 | |
311 | use super::*; |
312 | |
313 | fn roundtrip(given: &str, expected: &str) { |
314 | roundtrip_with(|b| b, given, expected); |
315 | } |
316 | |
317 | fn roundtrip_bytes(given: &str, expected: &str) { |
318 | roundtrip_with(|b| b.utf8(false), given, expected); |
319 | } |
320 | |
321 | fn roundtrip_with<F>(mut f: F, given: &str, expected: &str) |
322 | where |
323 | F: FnMut(&mut ParserBuilder) -> &mut ParserBuilder, |
324 | { |
325 | let mut builder = ParserBuilder::new(); |
326 | f(&mut builder); |
327 | let hir = builder.build().parse(given).unwrap(); |
328 | |
329 | let mut printer = Printer::new(); |
330 | let mut dst = String::new(); |
331 | printer.print(&hir, &mut dst).unwrap(); |
332 | |
333 | // Check that the result is actually valid. |
334 | builder.build().parse(&dst).unwrap(); |
335 | |
336 | assert_eq!(expected, dst); |
337 | } |
338 | |
339 | #[test ] |
340 | fn print_literal() { |
341 | roundtrip("a" , "a" ); |
342 | roundtrip(r"\xff" , " \u{FF}" ); |
343 | roundtrip_bytes(r"\xff" , " \u{FF}" ); |
344 | roundtrip_bytes(r"(?-u)\xff" , r"(?-u:\xFF)" ); |
345 | roundtrip("☃" , "☃" ); |
346 | } |
347 | |
348 | #[test ] |
349 | fn print_class() { |
350 | roundtrip(r"[a]" , r"a" ); |
351 | roundtrip(r"[ab]" , r"[ab]" ); |
352 | roundtrip(r"[a-z]" , r"[a-z]" ); |
353 | roundtrip(r"[a-z--b-c--x-y]" , r"[ad-wz]" ); |
354 | roundtrip(r"[^\x01-\u{10FFFF}]" , " \u{0}" ); |
355 | roundtrip(r"[-]" , r"\-" ); |
356 | roundtrip(r"[☃-⛄]" , r"[☃-⛄]" ); |
357 | |
358 | roundtrip(r"(?-u)[a]" , r"a" ); |
359 | roundtrip(r"(?-u)[ab]" , r"(?-u:[ab])" ); |
360 | roundtrip(r"(?-u)[a-z]" , r"(?-u:[a-z])" ); |
361 | roundtrip_bytes(r"(?-u)[a-\xFF]" , r"(?-u:[a-\xFF])" ); |
362 | |
363 | // The following test that the printer escapes meta characters |
364 | // in character classes. |
365 | roundtrip(r"[\[]" , r"\[" ); |
366 | roundtrip(r"[Z-_]" , r"[Z-_]" ); |
367 | roundtrip(r"[Z-_--Z]" , r"[\[-_]" ); |
368 | |
369 | // The following test that the printer escapes meta characters |
370 | // in byte oriented character classes. |
371 | roundtrip_bytes(r"(?-u)[\[]" , r"\[" ); |
372 | roundtrip_bytes(r"(?-u)[Z-_]" , r"(?-u:[Z-_])" ); |
373 | roundtrip_bytes(r"(?-u)[Z-_--Z]" , r"(?-u:[\[-_])" ); |
374 | |
375 | // This tests that an empty character class is correctly roundtripped. |
376 | #[cfg (feature = "unicode-gencat" )] |
377 | roundtrip(r"\P{any}" , r"[a&&b]" ); |
378 | roundtrip_bytes(r"(?-u)[^\x00-\xFF]" , r"[a&&b]" ); |
379 | } |
380 | |
381 | #[test ] |
382 | fn print_anchor() { |
383 | roundtrip(r"^" , r"\A" ); |
384 | roundtrip(r"$" , r"\z" ); |
385 | roundtrip(r"(?m)^" , r"(?m:^)" ); |
386 | roundtrip(r"(?m)$" , r"(?m:$)" ); |
387 | } |
388 | |
389 | #[test ] |
390 | fn print_word_boundary() { |
391 | roundtrip(r"\b" , r"\b" ); |
392 | roundtrip(r"\B" , r"\B" ); |
393 | roundtrip(r"(?-u)\b" , r"(?-u:\b)" ); |
394 | roundtrip_bytes(r"(?-u)\B" , r"(?-u:\B)" ); |
395 | } |
396 | |
397 | #[test ] |
398 | fn print_repetition() { |
399 | roundtrip("a?" , "a?" ); |
400 | roundtrip("a??" , "a??" ); |
401 | roundtrip("(?U)a?" , "a??" ); |
402 | |
403 | roundtrip("a*" , "a*" ); |
404 | roundtrip("a*?" , "a*?" ); |
405 | roundtrip("(?U)a*" , "a*?" ); |
406 | |
407 | roundtrip("a+" , "a+" ); |
408 | roundtrip("a+?" , "a+?" ); |
409 | roundtrip("(?U)a+" , "a+?" ); |
410 | |
411 | roundtrip("a{1}" , "a" ); |
412 | roundtrip("a{2}" , "a{2}" ); |
413 | roundtrip("a{1,}" , "a+" ); |
414 | roundtrip("a{1,5}" , "a{1,5}" ); |
415 | roundtrip("a{1}?" , "a" ); |
416 | roundtrip("a{2}?" , "a{2}" ); |
417 | roundtrip("a{1,}?" , "a+?" ); |
418 | roundtrip("a{1,5}?" , "a{1,5}?" ); |
419 | roundtrip("(?U)a{1}" , "a" ); |
420 | roundtrip("(?U)a{2}" , "a{2}" ); |
421 | roundtrip("(?U)a{1,}" , "a+?" ); |
422 | roundtrip("(?U)a{1,5}" , "a{1,5}?" ); |
423 | |
424 | // Test that various zero-length repetitions always translate to an |
425 | // empty regex. This is more a property of HIR's smart constructors |
426 | // than the printer though. |
427 | roundtrip("a{0}" , "" ); |
428 | roundtrip("(?:ab){0}" , "" ); |
429 | #[cfg (feature = "unicode-gencat" )] |
430 | { |
431 | roundtrip(r"\p{any}{0}" , "" ); |
432 | roundtrip(r"\P{any}{0}" , "" ); |
433 | } |
434 | } |
435 | |
436 | #[test ] |
437 | fn print_group() { |
438 | roundtrip("()" , "()" ); |
439 | roundtrip("(?P<foo>)" , "(?P<foo>)" ); |
440 | roundtrip("(?:)" , "" ); |
441 | |
442 | roundtrip("(a)" , "(a)" ); |
443 | roundtrip("(?P<foo>a)" , "(?P<foo>a)" ); |
444 | roundtrip("(?:a)" , "a" ); |
445 | |
446 | roundtrip("((((a))))" , "((((a))))" ); |
447 | } |
448 | |
449 | #[test ] |
450 | fn print_alternation() { |
451 | roundtrip("|" , "(?:|)" ); |
452 | roundtrip("||" , "(?:||)" ); |
453 | |
454 | roundtrip("a|b" , "[ab]" ); |
455 | roundtrip("ab|cd" , "(?:(?:ab)|(?:cd))" ); |
456 | roundtrip("a|b|c" , "[a-c]" ); |
457 | roundtrip("ab|cd|ef" , "(?:(?:ab)|(?:cd)|(?:ef))" ); |
458 | roundtrip("foo|bar|quux" , "(?:(?:foo)|(?:bar)|(?:quux))" ); |
459 | } |
460 | |
461 | // This is a regression test that stresses a peculiarity of how the HIR |
462 | // is both constructed and printed. Namely, it is legal for a repetition |
463 | // to directly contain a concatenation. This particular construct isn't |
464 | // really possible to build from the concrete syntax directly, since you'd |
465 | // be forced to put the concatenation into (at least) a non-capturing |
466 | // group. Concurrently, the printer doesn't consider this case and just |
467 | // kind of naively prints the child expression and tacks on the repetition |
468 | // operator. |
469 | // |
470 | // As a result, if you attached '+' to a 'concat(a, b)', the printer gives |
471 | // you 'ab+', but clearly it really should be '(?:ab)+'. |
472 | // |
473 | // This bug isn't easy to surface because most ways of building an HIR |
474 | // come directly from the concrete syntax, and as mentioned above, it just |
475 | // isn't possible to build this kind of HIR from the concrete syntax. |
476 | // Nevertheless, this is definitely a bug. |
477 | // |
478 | // See: https://github.com/rust-lang/regex/issues/731 |
479 | #[test ] |
480 | fn regression_repetition_concat() { |
481 | let expr = Hir::concat(alloc::vec![ |
482 | Hir::literal("x" .as_bytes()), |
483 | Hir::repetition(hir::Repetition { |
484 | min: 1, |
485 | max: None, |
486 | greedy: true, |
487 | sub: Box::new(Hir::literal("ab" .as_bytes())), |
488 | }), |
489 | Hir::literal("y" .as_bytes()), |
490 | ]); |
491 | assert_eq!(r"(?:x(?:ab)+y)" , expr.to_string()); |
492 | |
493 | let expr = Hir::concat(alloc::vec![ |
494 | Hir::look(hir::Look::Start), |
495 | Hir::repetition(hir::Repetition { |
496 | min: 1, |
497 | max: None, |
498 | greedy: true, |
499 | sub: Box::new(Hir::concat(alloc::vec![ |
500 | Hir::look(hir::Look::Start), |
501 | Hir::look(hir::Look::End), |
502 | ])), |
503 | }), |
504 | Hir::look(hir::Look::End), |
505 | ]); |
506 | assert_eq!(r"(?:\A(?:\A\z)+\z)" , expr.to_string()); |
507 | } |
508 | |
509 | // Just like regression_repetition_concat, but with the repetition using |
510 | // an alternation as a child expression instead. |
511 | // |
512 | // See: https://github.com/rust-lang/regex/issues/731 |
513 | #[test ] |
514 | fn regression_repetition_alternation() { |
515 | let expr = Hir::concat(alloc::vec![ |
516 | Hir::literal("ab" .as_bytes()), |
517 | Hir::repetition(hir::Repetition { |
518 | min: 1, |
519 | max: None, |
520 | greedy: true, |
521 | sub: Box::new(Hir::alternation(alloc::vec![ |
522 | Hir::literal("cd" .as_bytes()), |
523 | Hir::literal("ef" .as_bytes()), |
524 | ])), |
525 | }), |
526 | Hir::literal("gh" .as_bytes()), |
527 | ]); |
528 | assert_eq!(r"(?:(?:ab)(?:(?:cd)|(?:ef))+(?:gh))" , expr.to_string()); |
529 | |
530 | let expr = Hir::concat(alloc::vec![ |
531 | Hir::look(hir::Look::Start), |
532 | Hir::repetition(hir::Repetition { |
533 | min: 1, |
534 | max: None, |
535 | greedy: true, |
536 | sub: Box::new(Hir::alternation(alloc::vec![ |
537 | Hir::look(hir::Look::Start), |
538 | Hir::look(hir::Look::End), |
539 | ])), |
540 | }), |
541 | Hir::look(hir::Look::End), |
542 | ]); |
543 | assert_eq!(r"(?:\A(?:\A|\z)+\z)" , expr.to_string()); |
544 | } |
545 | |
546 | // This regression test is very similar in flavor to |
547 | // regression_repetition_concat in that the root of the issue lies in a |
548 | // peculiarity of how the HIR is represented and how the printer writes it |
549 | // out. Like the other regression, this one is also rooted in the fact that |
550 | // you can't produce the peculiar HIR from the concrete syntax. Namely, you |
551 | // just can't have a 'concat(a, alt(b, c))' because the 'alt' will normally |
552 | // be in (at least) a non-capturing group. Why? Because the '|' has very |
553 | // low precedence (lower that concatenation), and so something like 'ab|c' |
554 | // is actually 'alt(ab, c)'. |
555 | // |
556 | // See: https://github.com/rust-lang/regex/issues/516 |
557 | #[test ] |
558 | fn regression_alternation_concat() { |
559 | let expr = Hir::concat(alloc::vec![ |
560 | Hir::literal("ab" .as_bytes()), |
561 | Hir::alternation(alloc::vec![ |
562 | Hir::literal("mn" .as_bytes()), |
563 | Hir::literal("xy" .as_bytes()), |
564 | ]), |
565 | ]); |
566 | assert_eq!(r"(?:(?:ab)(?:(?:mn)|(?:xy)))" , expr.to_string()); |
567 | |
568 | let expr = Hir::concat(alloc::vec![ |
569 | Hir::look(hir::Look::Start), |
570 | Hir::alternation(alloc::vec![ |
571 | Hir::look(hir::Look::Start), |
572 | Hir::look(hir::Look::End), |
573 | ]), |
574 | ]); |
575 | assert_eq!(r"(?:\A(?:\A|\z))" , expr.to_string()); |
576 | } |
577 | } |
578 | |