1 | /*! |
2 | Defines a high-level intermediate (HIR) representation for regular expressions. |
3 | |
4 | The HIR is represented by the [`Hir`] type, and it principally constructed via |
5 | [translation](translate) from an [`Ast`](crate::ast::Ast). Alternatively, users |
6 | may use the smart constructors defined on `Hir` to build their own by hand. The |
7 | smart constructors simultaneously simplify and "optimize" the HIR, and are also |
8 | the same routines used by translation. |
9 | |
10 | Most regex engines only have an HIR like this, and usually construct it |
11 | directly from the concrete syntax. This crate however first parses the |
12 | concrete syntax into an `Ast`, and only then creates the HIR from the `Ast`, |
13 | as mentioned above. It's done this way to facilitate better error reporting, |
14 | and to have a structured representation of a regex that faithfully represents |
15 | its concrete syntax. Namely, while an `Hir` value can be converted back to an |
16 | equivalent regex pattern string, it is unlikely to look like the original due |
17 | to its simplified structure. |
18 | */ |
19 | |
20 | use core::{char, cmp}; |
21 | |
22 | use alloc::{ |
23 | boxed::Box, |
24 | format, |
25 | string::{String, ToString}, |
26 | vec, |
27 | vec::Vec, |
28 | }; |
29 | |
30 | use crate::{ |
31 | ast::Span, |
32 | hir::interval::{Interval, IntervalSet, IntervalSetIter}, |
33 | unicode, |
34 | }; |
35 | |
36 | pub use crate::{ |
37 | hir::visitor::{visit, Visitor}, |
38 | unicode::CaseFoldError, |
39 | }; |
40 | |
41 | mod interval; |
42 | pub mod literal; |
43 | pub mod print; |
44 | pub mod translate; |
45 | mod visitor; |
46 | |
47 | /// An error that can occur while translating an `Ast` to a `Hir`. |
48 | #[derive (Clone, Debug, Eq, PartialEq)] |
49 | pub struct Error { |
50 | /// The kind of error. |
51 | kind: ErrorKind, |
52 | /// The original pattern that the translator's Ast was parsed from. Every |
53 | /// span in an error is a valid range into this string. |
54 | pattern: String, |
55 | /// The span of this error, derived from the Ast given to the translator. |
56 | span: Span, |
57 | } |
58 | |
59 | impl Error { |
60 | /// Return the type of this error. |
61 | pub fn kind(&self) -> &ErrorKind { |
62 | &self.kind |
63 | } |
64 | |
65 | /// The original pattern string in which this error occurred. |
66 | /// |
67 | /// Every span reported by this error is reported in terms of this string. |
68 | pub fn pattern(&self) -> &str { |
69 | &self.pattern |
70 | } |
71 | |
72 | /// Return the span at which this error occurred. |
73 | pub fn span(&self) -> &Span { |
74 | &self.span |
75 | } |
76 | } |
77 | |
78 | /// The type of an error that occurred while building an `Hir`. |
79 | /// |
80 | /// This error type is marked as `non_exhaustive`. This means that adding a |
81 | /// new variant is not considered a breaking change. |
82 | #[non_exhaustive ] |
83 | #[derive (Clone, Debug, Eq, PartialEq)] |
84 | pub enum ErrorKind { |
85 | /// This error occurs when a Unicode feature is used when Unicode |
86 | /// support is disabled. For example `(?-u:\pL)` would trigger this error. |
87 | UnicodeNotAllowed, |
88 | /// This error occurs when translating a pattern that could match a byte |
89 | /// sequence that isn't UTF-8 and `utf8` was enabled. |
90 | InvalidUtf8, |
91 | /// This occurs when an unrecognized Unicode property name could not |
92 | /// be found. |
93 | UnicodePropertyNotFound, |
94 | /// This occurs when an unrecognized Unicode property value could not |
95 | /// be found. |
96 | UnicodePropertyValueNotFound, |
97 | /// This occurs when a Unicode-aware Perl character class (`\w`, `\s` or |
98 | /// `\d`) could not be found. This can occur when the `unicode-perl` |
99 | /// crate feature is not enabled. |
100 | UnicodePerlClassNotFound, |
101 | /// This occurs when the Unicode simple case mapping tables are not |
102 | /// available, and the regular expression required Unicode aware case |
103 | /// insensitivity. |
104 | UnicodeCaseUnavailable, |
105 | } |
106 | |
107 | #[cfg (feature = "std" )] |
108 | impl std::error::Error for Error {} |
109 | |
110 | impl core::fmt::Display for Error { |
111 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
112 | crate::error::Formatter::from(self).fmt(f) |
113 | } |
114 | } |
115 | |
116 | impl core::fmt::Display for ErrorKind { |
117 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
118 | use self::ErrorKind::*; |
119 | |
120 | let msg: &str = match *self { |
121 | UnicodeNotAllowed => "Unicode not allowed here" , |
122 | InvalidUtf8 => "pattern can match invalid UTF-8" , |
123 | UnicodePropertyNotFound => "Unicode property not found" , |
124 | UnicodePropertyValueNotFound => "Unicode property value not found" , |
125 | UnicodePerlClassNotFound => { |
126 | "Unicode-aware Perl class not found \ |
127 | (make sure the unicode-perl feature is enabled)" |
128 | } |
129 | UnicodeCaseUnavailable => { |
130 | "Unicode-aware case insensitivity matching is not available \ |
131 | (make sure the unicode-case feature is enabled)" |
132 | } |
133 | }; |
134 | f.write_str(data:msg) |
135 | } |
136 | } |
137 | |
138 | /// A high-level intermediate representation (HIR) for a regular expression. |
139 | /// |
140 | /// An HIR value is a combination of a [`HirKind`] and a set of [`Properties`]. |
141 | /// An `HirKind` indicates what kind of regular expression it is (a literal, |
142 | /// a repetition, a look-around assertion, etc.), where as a `Properties` |
143 | /// describes various facts about the regular expression. For example, whether |
144 | /// it matches UTF-8 or if it matches the empty string. |
145 | /// |
146 | /// The HIR of a regular expression represents an intermediate step between |
147 | /// its abstract syntax (a structured description of the concrete syntax) and |
148 | /// an actual regex matcher. The purpose of HIR is to make regular expressions |
149 | /// easier to analyze. In particular, the AST is much more complex than the |
150 | /// HIR. For example, while an AST supports arbitrarily nested character |
151 | /// classes, the HIR will flatten all nested classes into a single set. The HIR |
152 | /// will also "compile away" every flag present in the concrete syntax. For |
153 | /// example, users of HIR expressions never need to worry about case folding; |
154 | /// it is handled automatically by the translator (e.g., by translating |
155 | /// `(?i:A)` to `[aA]`). |
156 | /// |
157 | /// The specific type of an HIR expression can be accessed via its `kind` |
158 | /// or `into_kind` methods. This extra level of indirection exists for two |
159 | /// reasons: |
160 | /// |
161 | /// 1. Construction of an HIR expression *must* use the constructor methods on |
162 | /// this `Hir` type instead of building the `HirKind` values directly. This |
163 | /// permits construction to enforce invariants like "concatenations always |
164 | /// consist of two or more sub-expressions." |
165 | /// 2. Every HIR expression contains attributes that are defined inductively, |
166 | /// and can be computed cheaply during the construction process. For example, |
167 | /// one such attribute is whether the expression must match at the beginning of |
168 | /// the haystack. |
169 | /// |
170 | /// In particular, if you have an `HirKind` value, then there is intentionally |
171 | /// no way to build an `Hir` value from it. You instead need to do case |
172 | /// analysis on the `HirKind` value and build the `Hir` value using its smart |
173 | /// constructors. |
174 | /// |
175 | /// # UTF-8 |
176 | /// |
177 | /// If the HIR was produced by a translator with |
178 | /// [`TranslatorBuilder::utf8`](translate::TranslatorBuilder::utf8) enabled, |
179 | /// then the HIR is guaranteed to match UTF-8 exclusively for all non-empty |
180 | /// matches. |
181 | /// |
182 | /// For empty matches, those can occur at any position. It is the |
183 | /// repsonsibility of the regex engine to determine whether empty matches are |
184 | /// permitted between the code units of a single codepoint. |
185 | /// |
186 | /// # Stack space |
187 | /// |
188 | /// This type defines its own destructor that uses constant stack space and |
189 | /// heap space proportional to the size of the HIR. |
190 | /// |
191 | /// Also, an `Hir`'s `fmt::Display` implementation prints an HIR as a regular |
192 | /// expression pattern string, and uses constant stack space and heap space |
193 | /// proportional to the size of the `Hir`. The regex it prints is guaranteed to |
194 | /// be _semantically_ equivalent to the original concrete syntax, but it may |
195 | /// look very different. (And potentially not practically readable by a human.) |
196 | /// |
197 | /// An `Hir`'s `fmt::Debug` implementation currently does not use constant |
198 | /// stack space. The implementation will also suppress some details (such as |
199 | /// the `Properties` inlined into every `Hir` value to make it less noisy). |
200 | #[derive (Clone, Eq, PartialEq)] |
201 | pub struct Hir { |
202 | /// The underlying HIR kind. |
203 | kind: HirKind, |
204 | /// Analysis info about this HIR, computed during construction. |
205 | props: Properties, |
206 | } |
207 | |
208 | /// Methods for accessing the underlying `HirKind` and `Properties`. |
209 | impl Hir { |
210 | /// Returns a reference to the underlying HIR kind. |
211 | pub fn kind(&self) -> &HirKind { |
212 | &self.kind |
213 | } |
214 | |
215 | /// Consumes ownership of this HIR expression and returns its underlying |
216 | /// `HirKind`. |
217 | pub fn into_kind(mut self) -> HirKind { |
218 | core::mem::replace(&mut self.kind, HirKind::Empty) |
219 | } |
220 | |
221 | /// Returns the properties computed for this `Hir`. |
222 | pub fn properties(&self) -> &Properties { |
223 | &self.props |
224 | } |
225 | |
226 | /// Splits this HIR into its constituent parts. |
227 | /// |
228 | /// This is useful because `let Hir { kind, props } = hir;` does not work |
229 | /// because of `Hir`'s custom `Drop` implementation. |
230 | fn into_parts(mut self) -> (HirKind, Properties) { |
231 | ( |
232 | core::mem::replace(&mut self.kind, HirKind::Empty), |
233 | core::mem::replace(&mut self.props, Properties::empty()), |
234 | ) |
235 | } |
236 | } |
237 | |
238 | /// Smart constructors for HIR values. |
239 | /// |
240 | /// These constructors are called "smart" because they do inductive work or |
241 | /// simplifications. For example, calling `Hir::repetition` with a repetition |
242 | /// like `a{0}` will actually return a `Hir` with a `HirKind::Empty` kind |
243 | /// since it is equivalent to an empty regex. Another example is calling |
244 | /// `Hir::concat(vec![expr])`. Instead of getting a `HirKind::Concat`, you'll |
245 | /// just get back the original `expr` since it's precisely equivalent. |
246 | /// |
247 | /// Smart constructors enable maintaining invariants about the HIR data type |
248 | /// while also simulanteously keeping the representation as simple as possible. |
249 | impl Hir { |
250 | /// Returns an empty HIR expression. |
251 | /// |
252 | /// An empty HIR expression always matches, including the empty string. |
253 | #[inline ] |
254 | pub fn empty() -> Hir { |
255 | let props = Properties::empty(); |
256 | Hir { kind: HirKind::Empty, props } |
257 | } |
258 | |
259 | /// Returns an HIR expression that can never match anything. That is, |
260 | /// the size of the set of strings in the language described by the HIR |
261 | /// returned is `0`. |
262 | /// |
263 | /// This is distinct from [`Hir::empty`] in that the empty string matches |
264 | /// the HIR returned by `Hir::empty`. That is, the set of strings in the |
265 | /// language describe described by `Hir::empty` is non-empty. |
266 | /// |
267 | /// Note that currently, the HIR returned uses an empty character class to |
268 | /// indicate that nothing can match. An equivalent expression that cannot |
269 | /// match is an empty alternation, but all such "fail" expressions are |
270 | /// normalized (via smart constructors) to empty character classes. This is |
271 | /// because empty character classes can be spelled in the concrete syntax |
272 | /// of a regex (e.g., `\P{any}` or `(?-u:[^\x00-\xFF])` or `[a&&b]`), but |
273 | /// empty alternations cannot. |
274 | #[inline ] |
275 | pub fn fail() -> Hir { |
276 | let class = Class::Bytes(ClassBytes::empty()); |
277 | let props = Properties::class(&class); |
278 | // We can't just call Hir::class here because it defers to Hir::fail |
279 | // in order to canonicalize the Hir value used to represent "cannot |
280 | // match." |
281 | Hir { kind: HirKind::Class(class), props } |
282 | } |
283 | |
284 | /// Creates a literal HIR expression. |
285 | /// |
286 | /// This accepts anything that can be converted into a `Box<[u8]>`. |
287 | /// |
288 | /// Note that there is no mechanism for storing a `char` or a `Box<str>` |
289 | /// in an HIR. Everything is "just bytes." Whether a `Literal` (or |
290 | /// any HIR node) matches valid UTF-8 exclusively can be queried via |
291 | /// [`Properties::is_utf8`]. |
292 | /// |
293 | /// # Example |
294 | /// |
295 | /// This example shows that concatenations of `Literal` HIR values will |
296 | /// automatically get flattened and combined together. So for example, even |
297 | /// if you concat multiple `Literal` values that are themselves not valid |
298 | /// UTF-8, they might add up to valid UTF-8. This also demonstrates just |
299 | /// how "smart" Hir's smart constructors are. |
300 | /// |
301 | /// ``` |
302 | /// use regex_syntax::hir::{Hir, HirKind, Literal}; |
303 | /// |
304 | /// let literals = vec![ |
305 | /// Hir::literal([0xE2]), |
306 | /// Hir::literal([0x98]), |
307 | /// Hir::literal([0x83]), |
308 | /// ]; |
309 | /// // Each literal, on its own, is invalid UTF-8. |
310 | /// assert!(literals.iter().all(|hir| !hir.properties().is_utf8())); |
311 | /// |
312 | /// let concat = Hir::concat(literals); |
313 | /// // But the concatenation is valid UTF-8! |
314 | /// assert!(concat.properties().is_utf8()); |
315 | /// |
316 | /// // And also notice that the literals have been concatenated into a |
317 | /// // single `Literal`, to the point where there is no explicit `Concat`! |
318 | /// let expected = HirKind::Literal(Literal(Box::from("☃" .as_bytes()))); |
319 | /// assert_eq!(&expected, concat.kind()); |
320 | /// ``` |
321 | #[inline ] |
322 | pub fn literal<B: Into<Box<[u8]>>>(lit: B) -> Hir { |
323 | let bytes = lit.into(); |
324 | if bytes.is_empty() { |
325 | return Hir::empty(); |
326 | } |
327 | |
328 | let lit = Literal(bytes); |
329 | let props = Properties::literal(&lit); |
330 | Hir { kind: HirKind::Literal(lit), props } |
331 | } |
332 | |
333 | /// Creates a class HIR expression. The class may either be defined over |
334 | /// ranges of Unicode codepoints or ranges of raw byte values. |
335 | /// |
336 | /// Note that an empty class is permitted. An empty class is equivalent to |
337 | /// `Hir::fail()`. |
338 | #[inline ] |
339 | pub fn class(class: Class) -> Hir { |
340 | if class.is_empty() { |
341 | return Hir::fail(); |
342 | } else if let Some(bytes) = class.literal() { |
343 | return Hir::literal(bytes); |
344 | } |
345 | let props = Properties::class(&class); |
346 | Hir { kind: HirKind::Class(class), props } |
347 | } |
348 | |
349 | /// Creates a look-around assertion HIR expression. |
350 | #[inline ] |
351 | pub fn look(look: Look) -> Hir { |
352 | let props = Properties::look(look); |
353 | Hir { kind: HirKind::Look(look), props } |
354 | } |
355 | |
356 | /// Creates a repetition HIR expression. |
357 | #[inline ] |
358 | pub fn repetition(rep: Repetition) -> Hir { |
359 | // The regex 'a{0}' is always equivalent to the empty regex. This is |
360 | // true even when 'a' is an expression that never matches anything |
361 | // (like '\P{any}'). |
362 | // |
363 | // Additionally, the regex 'a{1}' is always equivalent to 'a'. |
364 | if rep.min == 0 && rep.max == Some(0) { |
365 | return Hir::empty(); |
366 | } else if rep.min == 1 && rep.max == Some(1) { |
367 | return *rep.sub; |
368 | } |
369 | let props = Properties::repetition(&rep); |
370 | Hir { kind: HirKind::Repetition(rep), props } |
371 | } |
372 | |
373 | /// Creates a capture HIR expression. |
374 | /// |
375 | /// Note that there is no explicit HIR value for a non-capturing group. |
376 | /// Since a non-capturing group only exists to override precedence in the |
377 | /// concrete syntax and since an HIR already does its own grouping based on |
378 | /// what is parsed, there is no need to explicitly represent non-capturing |
379 | /// groups in the HIR. |
380 | #[inline ] |
381 | pub fn capture(capture: Capture) -> Hir { |
382 | let props = Properties::capture(&capture); |
383 | Hir { kind: HirKind::Capture(capture), props } |
384 | } |
385 | |
386 | /// Returns the concatenation of the given expressions. |
387 | /// |
388 | /// This attempts to flatten and simplify the concatenation as appropriate. |
389 | /// |
390 | /// # Example |
391 | /// |
392 | /// This shows a simple example of basic flattening of both concatenations |
393 | /// and literals. |
394 | /// |
395 | /// ``` |
396 | /// use regex_syntax::hir::Hir; |
397 | /// |
398 | /// let hir = Hir::concat(vec![ |
399 | /// Hir::concat(vec![ |
400 | /// Hir::literal([b'a' ]), |
401 | /// Hir::literal([b'b' ]), |
402 | /// Hir::literal([b'c' ]), |
403 | /// ]), |
404 | /// Hir::concat(vec![ |
405 | /// Hir::literal([b'x' ]), |
406 | /// Hir::literal([b'y' ]), |
407 | /// Hir::literal([b'z' ]), |
408 | /// ]), |
409 | /// ]); |
410 | /// let expected = Hir::literal("abcxyz" .as_bytes()); |
411 | /// assert_eq!(expected, hir); |
412 | /// ``` |
413 | pub fn concat(subs: Vec<Hir>) -> Hir { |
414 | // We rebuild the concatenation by simplifying it. Would be nice to do |
415 | // it in place, but that seems a little tricky? |
416 | let mut new = vec![]; |
417 | // This gobbles up any adjacent literals in a concatenation and smushes |
418 | // them together. Basically, when we see a literal, we add its bytes |
419 | // to 'prior_lit', and whenever we see anything else, we first take |
420 | // any bytes in 'prior_lit' and add it to the 'new' concatenation. |
421 | let mut prior_lit: Option<Vec<u8>> = None; |
422 | for sub in subs { |
423 | let (kind, props) = sub.into_parts(); |
424 | match kind { |
425 | HirKind::Literal(Literal(bytes)) => { |
426 | if let Some(ref mut prior_bytes) = prior_lit { |
427 | prior_bytes.extend_from_slice(&bytes); |
428 | } else { |
429 | prior_lit = Some(bytes.to_vec()); |
430 | } |
431 | } |
432 | // We also flatten concats that are direct children of another |
433 | // concat. We only need to do this one level deep since |
434 | // Hir::concat is the only way to build concatenations, and so |
435 | // flattening happens inductively. |
436 | HirKind::Concat(subs2) => { |
437 | for sub2 in subs2 { |
438 | let (kind2, props2) = sub2.into_parts(); |
439 | match kind2 { |
440 | HirKind::Literal(Literal(bytes)) => { |
441 | if let Some(ref mut prior_bytes) = prior_lit { |
442 | prior_bytes.extend_from_slice(&bytes); |
443 | } else { |
444 | prior_lit = Some(bytes.to_vec()); |
445 | } |
446 | } |
447 | kind2 => { |
448 | if let Some(prior_bytes) = prior_lit.take() { |
449 | new.push(Hir::literal(prior_bytes)); |
450 | } |
451 | new.push(Hir { kind: kind2, props: props2 }); |
452 | } |
453 | } |
454 | } |
455 | } |
456 | // We can just skip empty HIRs. |
457 | HirKind::Empty => {} |
458 | kind => { |
459 | if let Some(prior_bytes) = prior_lit.take() { |
460 | new.push(Hir::literal(prior_bytes)); |
461 | } |
462 | new.push(Hir { kind, props }); |
463 | } |
464 | } |
465 | } |
466 | if let Some(prior_bytes) = prior_lit.take() { |
467 | new.push(Hir::literal(prior_bytes)); |
468 | } |
469 | if new.is_empty() { |
470 | return Hir::empty(); |
471 | } else if new.len() == 1 { |
472 | return new.pop().unwrap(); |
473 | } |
474 | let props = Properties::concat(&new); |
475 | Hir { kind: HirKind::Concat(new), props } |
476 | } |
477 | |
478 | /// Returns the alternation of the given expressions. |
479 | /// |
480 | /// This flattens and simplifies the alternation as appropriate. This may |
481 | /// include factoring out common prefixes or even rewriting the alternation |
482 | /// as a character class. |
483 | /// |
484 | /// Note that an empty alternation is equivalent to `Hir::fail()`. (It |
485 | /// is not possible for one to write an empty alternation, or even an |
486 | /// alternation with a single sub-expression, in the concrete syntax of a |
487 | /// regex.) |
488 | /// |
489 | /// # Example |
490 | /// |
491 | /// This is a simple example showing how an alternation might get |
492 | /// simplified. |
493 | /// |
494 | /// ``` |
495 | /// use regex_syntax::hir::{Hir, Class, ClassUnicode, ClassUnicodeRange}; |
496 | /// |
497 | /// let hir = Hir::alternation(vec![ |
498 | /// Hir::literal([b'a' ]), |
499 | /// Hir::literal([b'b' ]), |
500 | /// Hir::literal([b'c' ]), |
501 | /// Hir::literal([b'd' ]), |
502 | /// Hir::literal([b'e' ]), |
503 | /// Hir::literal([b'f' ]), |
504 | /// ]); |
505 | /// let expected = Hir::class(Class::Unicode(ClassUnicode::new([ |
506 | /// ClassUnicodeRange::new('a' , 'f' ), |
507 | /// ]))); |
508 | /// assert_eq!(expected, hir); |
509 | /// ``` |
510 | /// |
511 | /// And another example showing how common prefixes might get factored |
512 | /// out. |
513 | /// |
514 | /// ``` |
515 | /// use regex_syntax::hir::{Hir, Class, ClassUnicode, ClassUnicodeRange}; |
516 | /// |
517 | /// let hir = Hir::alternation(vec![ |
518 | /// Hir::concat(vec![ |
519 | /// Hir::literal("abc" .as_bytes()), |
520 | /// Hir::class(Class::Unicode(ClassUnicode::new([ |
521 | /// ClassUnicodeRange::new('A' , 'Z' ), |
522 | /// ]))), |
523 | /// ]), |
524 | /// Hir::concat(vec![ |
525 | /// Hir::literal("abc" .as_bytes()), |
526 | /// Hir::class(Class::Unicode(ClassUnicode::new([ |
527 | /// ClassUnicodeRange::new('a' , 'z' ), |
528 | /// ]))), |
529 | /// ]), |
530 | /// ]); |
531 | /// let expected = Hir::concat(vec![ |
532 | /// Hir::literal("abc" .as_bytes()), |
533 | /// Hir::alternation(vec![ |
534 | /// Hir::class(Class::Unicode(ClassUnicode::new([ |
535 | /// ClassUnicodeRange::new('A' , 'Z' ), |
536 | /// ]))), |
537 | /// Hir::class(Class::Unicode(ClassUnicode::new([ |
538 | /// ClassUnicodeRange::new('a' , 'z' ), |
539 | /// ]))), |
540 | /// ]), |
541 | /// ]); |
542 | /// assert_eq!(expected, hir); |
543 | /// ``` |
544 | /// |
545 | /// Note that these sorts of simplifications are not guaranteed. |
546 | pub fn alternation(subs: Vec<Hir>) -> Hir { |
547 | // We rebuild the alternation by simplifying it. We proceed similarly |
548 | // as the concatenation case. But in this case, there's no literal |
549 | // simplification happening. We're just flattening alternations. |
550 | let mut new = vec![]; |
551 | for sub in subs { |
552 | let (kind, props) = sub.into_parts(); |
553 | match kind { |
554 | HirKind::Alternation(subs2) => { |
555 | new.extend(subs2); |
556 | } |
557 | kind => { |
558 | new.push(Hir { kind, props }); |
559 | } |
560 | } |
561 | } |
562 | if new.is_empty() { |
563 | return Hir::fail(); |
564 | } else if new.len() == 1 { |
565 | return new.pop().unwrap(); |
566 | } |
567 | // Now that it's completely flattened, look for the special case of |
568 | // 'char1|char2|...|charN' and collapse that into a class. Note that |
569 | // we look for 'char' first and then bytes. The issue here is that if |
570 | // we find both non-ASCII codepoints and non-ASCII singleton bytes, |
571 | // then it isn't actually possible to smush them into a single class. |
572 | // (Because classes are either "all codepoints" or "all bytes." You |
573 | // can have a class that both matches non-ASCII but valid UTF-8 and |
574 | // invalid UTF-8.) So we look for all chars and then all bytes, and |
575 | // don't handle anything else. |
576 | if let Some(singletons) = singleton_chars(&new) { |
577 | let it = singletons |
578 | .into_iter() |
579 | .map(|ch| ClassUnicodeRange { start: ch, end: ch }); |
580 | return Hir::class(Class::Unicode(ClassUnicode::new(it))); |
581 | } |
582 | if let Some(singletons) = singleton_bytes(&new) { |
583 | let it = singletons |
584 | .into_iter() |
585 | .map(|b| ClassBytesRange { start: b, end: b }); |
586 | return Hir::class(Class::Bytes(ClassBytes::new(it))); |
587 | } |
588 | // Similar to singleton chars, we can also look for alternations of |
589 | // classes. Those can be smushed into a single class. |
590 | if let Some(cls) = class_chars(&new) { |
591 | return Hir::class(cls); |
592 | } |
593 | if let Some(cls) = class_bytes(&new) { |
594 | return Hir::class(cls); |
595 | } |
596 | // Factor out a common prefix if we can, which might potentially |
597 | // simplify the expression and unlock other optimizations downstream. |
598 | // It also might generally make NFA matching and DFA construction |
599 | // faster by reducing the scope of branching in the regex. |
600 | new = match lift_common_prefix(new) { |
601 | Ok(hir) => return hir, |
602 | Err(unchanged) => unchanged, |
603 | }; |
604 | let props = Properties::alternation(&new); |
605 | Hir { kind: HirKind::Alternation(new), props } |
606 | } |
607 | |
608 | /// Returns an HIR expression for `.`. |
609 | /// |
610 | /// * [`Dot::AnyChar`] maps to `(?su-R:.)`. |
611 | /// * [`Dot::AnyByte`] maps to `(?s-Ru:.)`. |
612 | /// * [`Dot::AnyCharExceptLF`] maps to `(?u-Rs:.)`. |
613 | /// * [`Dot::AnyCharExceptCRLF`] maps to `(?Ru-s:.)`. |
614 | /// * [`Dot::AnyByteExceptLF`] maps to `(?-Rsu:.)`. |
615 | /// * [`Dot::AnyByteExceptCRLF`] maps to `(?R-su:.)`. |
616 | /// |
617 | /// # Example |
618 | /// |
619 | /// Note that this is a convenience routine for constructing the correct |
620 | /// character class based on the value of `Dot`. There is no explicit "dot" |
621 | /// HIR value. It is just an abbreviation for a common character class. |
622 | /// |
623 | /// ``` |
624 | /// use regex_syntax::hir::{Hir, Dot, Class, ClassBytes, ClassBytesRange}; |
625 | /// |
626 | /// let hir = Hir::dot(Dot::AnyByte); |
627 | /// let expected = Hir::class(Class::Bytes(ClassBytes::new([ |
628 | /// ClassBytesRange::new(0x00, 0xFF), |
629 | /// ]))); |
630 | /// assert_eq!(expected, hir); |
631 | /// ``` |
632 | #[inline ] |
633 | pub fn dot(dot: Dot) -> Hir { |
634 | match dot { |
635 | Dot::AnyChar => { |
636 | let mut cls = ClassUnicode::empty(); |
637 | cls.push(ClassUnicodeRange::new(' \0' , ' \u{10FFFF}' )); |
638 | Hir::class(Class::Unicode(cls)) |
639 | } |
640 | Dot::AnyByte => { |
641 | let mut cls = ClassBytes::empty(); |
642 | cls.push(ClassBytesRange::new(b' \0' , b' \xFF' )); |
643 | Hir::class(Class::Bytes(cls)) |
644 | } |
645 | Dot::AnyCharExceptLF => { |
646 | let mut cls = ClassUnicode::empty(); |
647 | cls.push(ClassUnicodeRange::new(' \0' , ' \x09' )); |
648 | cls.push(ClassUnicodeRange::new(' \x0B' , ' \u{10FFFF}' )); |
649 | Hir::class(Class::Unicode(cls)) |
650 | } |
651 | Dot::AnyCharExceptCRLF => { |
652 | let mut cls = ClassUnicode::empty(); |
653 | cls.push(ClassUnicodeRange::new(' \0' , ' \x09' )); |
654 | cls.push(ClassUnicodeRange::new(' \x0B' , ' \x0C' )); |
655 | cls.push(ClassUnicodeRange::new(' \x0E' , ' \u{10FFFF}' )); |
656 | Hir::class(Class::Unicode(cls)) |
657 | } |
658 | Dot::AnyByteExceptLF => { |
659 | let mut cls = ClassBytes::empty(); |
660 | cls.push(ClassBytesRange::new(b' \0' , b' \x09' )); |
661 | cls.push(ClassBytesRange::new(b' \x0B' , b' \xFF' )); |
662 | Hir::class(Class::Bytes(cls)) |
663 | } |
664 | Dot::AnyByteExceptCRLF => { |
665 | let mut cls = ClassBytes::empty(); |
666 | cls.push(ClassBytesRange::new(b' \0' , b' \x09' )); |
667 | cls.push(ClassBytesRange::new(b' \x0B' , b' \x0C' )); |
668 | cls.push(ClassBytesRange::new(b' \x0E' , b' \xFF' )); |
669 | Hir::class(Class::Bytes(cls)) |
670 | } |
671 | } |
672 | } |
673 | } |
674 | |
675 | /// The underlying kind of an arbitrary [`Hir`] expression. |
676 | /// |
677 | /// An `HirKind` is principally useful for doing case analysis on the type |
678 | /// of a regular expression. If you're looking to build new `Hir` values, |
679 | /// then you _must_ use the smart constructors defined on `Hir`, like |
680 | /// [`Hir::repetition`], to build new `Hir` values. The API intentionally does |
681 | /// not expose any way of building an `Hir` directly from an `HirKind`. |
682 | #[derive (Clone, Debug, Eq, PartialEq)] |
683 | pub enum HirKind { |
684 | /// The empty regular expression, which matches everything, including the |
685 | /// empty string. |
686 | Empty, |
687 | /// A literalstring that matches exactly these bytes. |
688 | Literal(Literal), |
689 | /// A single character class that matches any of the characters in the |
690 | /// class. A class can either consist of Unicode scalar values as |
691 | /// characters, or it can use bytes. |
692 | /// |
693 | /// A class may be empty. In which case, it matches nothing. |
694 | Class(Class), |
695 | /// A look-around assertion. A look-around match always has zero length. |
696 | Look(Look), |
697 | /// A repetition operation applied to a sub-expression. |
698 | Repetition(Repetition), |
699 | /// A capturing group, which contains a sub-expression. |
700 | Capture(Capture), |
701 | /// A concatenation of expressions. |
702 | /// |
703 | /// A concatenation matches only if each of its sub-expressions match one |
704 | /// after the other. |
705 | /// |
706 | /// Concatenations are guaranteed by `Hir`'s smart constructors to always |
707 | /// have at least two sub-expressions. |
708 | Concat(Vec<Hir>), |
709 | /// An alternation of expressions. |
710 | /// |
711 | /// An alternation matches only if at least one of its sub-expressions |
712 | /// match. If multiple sub-expressions match, then the leftmost is |
713 | /// preferred. |
714 | /// |
715 | /// Alternations are guaranteed by `Hir`'s smart constructors to always |
716 | /// have at least two sub-expressions. |
717 | Alternation(Vec<Hir>), |
718 | } |
719 | |
720 | impl HirKind { |
721 | /// Returns a slice of this kind's sub-expressions, if any. |
722 | pub fn subs(&self) -> &[Hir] { |
723 | use core::slice::from_ref; |
724 | |
725 | match *self { |
726 | HirKind::Empty |
727 | | HirKind::Literal(_) |
728 | | HirKind::Class(_) |
729 | | HirKind::Look(_) => &[], |
730 | HirKind::Repetition(Repetition { ref sub: &Box, .. }) => from_ref(sub), |
731 | HirKind::Capture(Capture { ref sub: &Box, .. }) => from_ref(sub), |
732 | HirKind::Concat(ref subs: &Vec) => subs, |
733 | HirKind::Alternation(ref subs: &Vec) => subs, |
734 | } |
735 | } |
736 | } |
737 | |
738 | impl core::fmt::Debug for Hir { |
739 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
740 | self.kind.fmt(f) |
741 | } |
742 | } |
743 | |
744 | /// Print a display representation of this Hir. |
745 | /// |
746 | /// The result of this is a valid regular expression pattern string. |
747 | /// |
748 | /// This implementation uses constant stack space and heap space proportional |
749 | /// to the size of the `Hir`. |
750 | impl core::fmt::Display for Hir { |
751 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
752 | crate::hir::print::Printer::new().print(self, wtr:f) |
753 | } |
754 | } |
755 | |
756 | /// The high-level intermediate representation of a literal. |
757 | /// |
758 | /// A literal corresponds to `0` or more bytes that should be matched |
759 | /// literally. The smart constructors defined on `Hir` will automatically |
760 | /// concatenate adjacent literals into one literal, and will even automatically |
761 | /// replace empty literals with `Hir::empty()`. |
762 | /// |
763 | /// Note that despite a literal being represented by a sequence of bytes, its |
764 | /// `Debug` implementation will attempt to print it as a normal string. (That |
765 | /// is, not a sequence of decimal numbers.) |
766 | #[derive (Clone, Eq, PartialEq)] |
767 | pub struct Literal(pub Box<[u8]>); |
768 | |
769 | impl core::fmt::Debug for Literal { |
770 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
771 | crate::debug::Bytes(&self.0).fmt(f) |
772 | } |
773 | } |
774 | |
775 | /// The high-level intermediate representation of a character class. |
776 | /// |
777 | /// A character class corresponds to a set of characters. A character is either |
778 | /// defined by a Unicode scalar value or a byte. Unicode characters are used |
779 | /// by default, while bytes are used when Unicode mode (via the `u` flag) is |
780 | /// disabled. |
781 | /// |
782 | /// A character class, regardless of its character type, is represented by a |
783 | /// sequence of non-overlapping non-adjacent ranges of characters. |
784 | /// |
785 | /// Note that `Bytes` variant may be produced even when it exclusively matches |
786 | /// valid UTF-8. This is because a `Bytes` variant represents an intention by |
787 | /// the author of the regular expression to disable Unicode mode, which in turn |
788 | /// impacts the semantics of case insensitive matching. For example, `(?i)k` |
789 | /// and `(?i-u)k` will not match the same set of strings. |
790 | #[derive (Clone, Eq, PartialEq)] |
791 | pub enum Class { |
792 | /// A set of characters represented by Unicode scalar values. |
793 | Unicode(ClassUnicode), |
794 | /// A set of characters represented by arbitrary bytes (one byte per |
795 | /// character). |
796 | Bytes(ClassBytes), |
797 | } |
798 | |
799 | impl Class { |
800 | /// Apply Unicode simple case folding to this character class, in place. |
801 | /// The character class will be expanded to include all simple case folded |
802 | /// character variants. |
803 | /// |
804 | /// If this is a byte oriented character class, then this will be limited |
805 | /// to the ASCII ranges `A-Z` and `a-z`. |
806 | /// |
807 | /// # Panics |
808 | /// |
809 | /// This routine panics when the case mapping data necessary for this |
810 | /// routine to complete is unavailable. This occurs when the `unicode-case` |
811 | /// feature is not enabled and the underlying class is Unicode oriented. |
812 | /// |
813 | /// Callers should prefer using `try_case_fold_simple` instead, which will |
814 | /// return an error instead of panicking. |
815 | pub fn case_fold_simple(&mut self) { |
816 | match *self { |
817 | Class::Unicode(ref mut x) => x.case_fold_simple(), |
818 | Class::Bytes(ref mut x) => x.case_fold_simple(), |
819 | } |
820 | } |
821 | |
822 | /// Apply Unicode simple case folding to this character class, in place. |
823 | /// The character class will be expanded to include all simple case folded |
824 | /// character variants. |
825 | /// |
826 | /// If this is a byte oriented character class, then this will be limited |
827 | /// to the ASCII ranges `A-Z` and `a-z`. |
828 | /// |
829 | /// # Error |
830 | /// |
831 | /// This routine returns an error when the case mapping data necessary |
832 | /// for this routine to complete is unavailable. This occurs when the |
833 | /// `unicode-case` feature is not enabled and the underlying class is |
834 | /// Unicode oriented. |
835 | pub fn try_case_fold_simple( |
836 | &mut self, |
837 | ) -> core::result::Result<(), CaseFoldError> { |
838 | match *self { |
839 | Class::Unicode(ref mut x) => x.try_case_fold_simple()?, |
840 | Class::Bytes(ref mut x) => x.case_fold_simple(), |
841 | } |
842 | Ok(()) |
843 | } |
844 | |
845 | /// Negate this character class in place. |
846 | /// |
847 | /// After completion, this character class will contain precisely the |
848 | /// characters that weren't previously in the class. |
849 | pub fn negate(&mut self) { |
850 | match *self { |
851 | Class::Unicode(ref mut x) => x.negate(), |
852 | Class::Bytes(ref mut x) => x.negate(), |
853 | } |
854 | } |
855 | |
856 | /// Returns true if and only if this character class will only ever match |
857 | /// valid UTF-8. |
858 | /// |
859 | /// A character class can match invalid UTF-8 only when the following |
860 | /// conditions are met: |
861 | /// |
862 | /// 1. The translator was configured to permit generating an expression |
863 | /// that can match invalid UTF-8. (By default, this is disabled.) |
864 | /// 2. Unicode mode (via the `u` flag) was disabled either in the concrete |
865 | /// syntax or in the parser builder. By default, Unicode mode is |
866 | /// enabled. |
867 | pub fn is_utf8(&self) -> bool { |
868 | match *self { |
869 | Class::Unicode(_) => true, |
870 | Class::Bytes(ref x) => x.is_ascii(), |
871 | } |
872 | } |
873 | |
874 | /// Returns the length, in bytes, of the smallest string matched by this |
875 | /// character class. |
876 | /// |
877 | /// For non-empty byte oriented classes, this always returns `1`. For |
878 | /// non-empty Unicode oriented classes, this can return `1`, `2`, `3` or |
879 | /// `4`. For empty classes, `None` is returned. It is impossible for `0` to |
880 | /// be returned. |
881 | /// |
882 | /// # Example |
883 | /// |
884 | /// This example shows some examples of regexes and their corresponding |
885 | /// minimum length, if any. |
886 | /// |
887 | /// ``` |
888 | /// use regex_syntax::{hir::Properties, parse}; |
889 | /// |
890 | /// // The empty string has a min length of 0. |
891 | /// let hir = parse(r"" )?; |
892 | /// assert_eq!(Some(0), hir.properties().minimum_len()); |
893 | /// // As do other types of regexes that only match the empty string. |
894 | /// let hir = parse(r"^$\b\B" )?; |
895 | /// assert_eq!(Some(0), hir.properties().minimum_len()); |
896 | /// // A regex that can match the empty string but match more is still 0. |
897 | /// let hir = parse(r"a*" )?; |
898 | /// assert_eq!(Some(0), hir.properties().minimum_len()); |
899 | /// // A regex that matches nothing has no minimum defined. |
900 | /// let hir = parse(r"[a&&b]" )?; |
901 | /// assert_eq!(None, hir.properties().minimum_len()); |
902 | /// // Character classes usually have a minimum length of 1. |
903 | /// let hir = parse(r"\w" )?; |
904 | /// assert_eq!(Some(1), hir.properties().minimum_len()); |
905 | /// // But sometimes Unicode classes might be bigger! |
906 | /// let hir = parse(r"\p{Cyrillic}" )?; |
907 | /// assert_eq!(Some(2), hir.properties().minimum_len()); |
908 | /// |
909 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
910 | /// ``` |
911 | pub fn minimum_len(&self) -> Option<usize> { |
912 | match *self { |
913 | Class::Unicode(ref x) => x.minimum_len(), |
914 | Class::Bytes(ref x) => x.minimum_len(), |
915 | } |
916 | } |
917 | |
918 | /// Returns the length, in bytes, of the longest string matched by this |
919 | /// character class. |
920 | /// |
921 | /// For non-empty byte oriented classes, this always returns `1`. For |
922 | /// non-empty Unicode oriented classes, this can return `1`, `2`, `3` or |
923 | /// `4`. For empty classes, `None` is returned. It is impossible for `0` to |
924 | /// be returned. |
925 | /// |
926 | /// # Example |
927 | /// |
928 | /// This example shows some examples of regexes and their corresponding |
929 | /// maximum length, if any. |
930 | /// |
931 | /// ``` |
932 | /// use regex_syntax::{hir::Properties, parse}; |
933 | /// |
934 | /// // The empty string has a max length of 0. |
935 | /// let hir = parse(r"" )?; |
936 | /// assert_eq!(Some(0), hir.properties().maximum_len()); |
937 | /// // As do other types of regexes that only match the empty string. |
938 | /// let hir = parse(r"^$\b\B" )?; |
939 | /// assert_eq!(Some(0), hir.properties().maximum_len()); |
940 | /// // A regex that matches nothing has no maximum defined. |
941 | /// let hir = parse(r"[a&&b]" )?; |
942 | /// assert_eq!(None, hir.properties().maximum_len()); |
943 | /// // Bounded repeats work as you expect. |
944 | /// let hir = parse(r"x{2,10}" )?; |
945 | /// assert_eq!(Some(10), hir.properties().maximum_len()); |
946 | /// // An unbounded repeat means there is no maximum. |
947 | /// let hir = parse(r"x{2,}" )?; |
948 | /// assert_eq!(None, hir.properties().maximum_len()); |
949 | /// // With Unicode enabled, \w can match up to 4 bytes! |
950 | /// let hir = parse(r"\w" )?; |
951 | /// assert_eq!(Some(4), hir.properties().maximum_len()); |
952 | /// // Without Unicode enabled, \w matches at most 1 byte. |
953 | /// let hir = parse(r"(?-u)\w" )?; |
954 | /// assert_eq!(Some(1), hir.properties().maximum_len()); |
955 | /// |
956 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
957 | /// ``` |
958 | pub fn maximum_len(&self) -> Option<usize> { |
959 | match *self { |
960 | Class::Unicode(ref x) => x.maximum_len(), |
961 | Class::Bytes(ref x) => x.maximum_len(), |
962 | } |
963 | } |
964 | |
965 | /// Returns true if and only if this character class is empty. That is, |
966 | /// it has no elements. |
967 | /// |
968 | /// An empty character can never match anything, including an empty string. |
969 | pub fn is_empty(&self) -> bool { |
970 | match *self { |
971 | Class::Unicode(ref x) => x.ranges().is_empty(), |
972 | Class::Bytes(ref x) => x.ranges().is_empty(), |
973 | } |
974 | } |
975 | |
976 | /// If this class consists of exactly one element (whether a codepoint or a |
977 | /// byte), then return it as a literal byte string. |
978 | /// |
979 | /// If this class is empty or contains more than one element, then `None` |
980 | /// is returned. |
981 | pub fn literal(&self) -> Option<Vec<u8>> { |
982 | match *self { |
983 | Class::Unicode(ref x) => x.literal(), |
984 | Class::Bytes(ref x) => x.literal(), |
985 | } |
986 | } |
987 | } |
988 | |
989 | impl core::fmt::Debug for Class { |
990 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
991 | use crate::debug::Byte; |
992 | |
993 | let mut fmter: DebugSet<'_, '_> = f.debug_set(); |
994 | match *self { |
995 | Class::Unicode(ref cls: &ClassUnicode) => { |
996 | for r: &ClassUnicodeRange in cls.ranges().iter() { |
997 | fmter.entry(&(r.start..=r.end)); |
998 | } |
999 | } |
1000 | Class::Bytes(ref cls: &ClassBytes) => { |
1001 | for r: &ClassBytesRange in cls.ranges().iter() { |
1002 | fmter.entry(&(Byte(r.start)..=Byte(r.end))); |
1003 | } |
1004 | } |
1005 | } |
1006 | fmter.finish() |
1007 | } |
1008 | } |
1009 | |
1010 | /// A set of characters represented by Unicode scalar values. |
1011 | #[derive (Clone, Debug, Eq, PartialEq)] |
1012 | pub struct ClassUnicode { |
1013 | set: IntervalSet<ClassUnicodeRange>, |
1014 | } |
1015 | |
1016 | impl ClassUnicode { |
1017 | /// Create a new class from a sequence of ranges. |
1018 | /// |
1019 | /// The given ranges do not need to be in any specific order, and ranges |
1020 | /// may overlap. Ranges will automatically be sorted into a canonical |
1021 | /// non-overlapping order. |
1022 | pub fn new<I>(ranges: I) -> ClassUnicode |
1023 | where |
1024 | I: IntoIterator<Item = ClassUnicodeRange>, |
1025 | { |
1026 | ClassUnicode { set: IntervalSet::new(ranges) } |
1027 | } |
1028 | |
1029 | /// Create a new class with no ranges. |
1030 | /// |
1031 | /// An empty class matches nothing. That is, it is equivalent to |
1032 | /// [`Hir::fail`]. |
1033 | pub fn empty() -> ClassUnicode { |
1034 | ClassUnicode::new(vec![]) |
1035 | } |
1036 | |
1037 | /// Add a new range to this set. |
1038 | pub fn push(&mut self, range: ClassUnicodeRange) { |
1039 | self.set.push(range); |
1040 | } |
1041 | |
1042 | /// Return an iterator over all ranges in this class. |
1043 | /// |
1044 | /// The iterator yields ranges in ascending order. |
1045 | pub fn iter(&self) -> ClassUnicodeIter<'_> { |
1046 | ClassUnicodeIter(self.set.iter()) |
1047 | } |
1048 | |
1049 | /// Return the underlying ranges as a slice. |
1050 | pub fn ranges(&self) -> &[ClassUnicodeRange] { |
1051 | self.set.intervals() |
1052 | } |
1053 | |
1054 | /// Expand this character class such that it contains all case folded |
1055 | /// characters, according to Unicode's "simple" mapping. For example, if |
1056 | /// this class consists of the range `a-z`, then applying case folding will |
1057 | /// result in the class containing both the ranges `a-z` and `A-Z`. |
1058 | /// |
1059 | /// # Panics |
1060 | /// |
1061 | /// This routine panics when the case mapping data necessary for this |
1062 | /// routine to complete is unavailable. This occurs when the `unicode-case` |
1063 | /// feature is not enabled. |
1064 | /// |
1065 | /// Callers should prefer using `try_case_fold_simple` instead, which will |
1066 | /// return an error instead of panicking. |
1067 | pub fn case_fold_simple(&mut self) { |
1068 | self.set |
1069 | .case_fold_simple() |
1070 | .expect("unicode-case feature must be enabled" ); |
1071 | } |
1072 | |
1073 | /// Expand this character class such that it contains all case folded |
1074 | /// characters, according to Unicode's "simple" mapping. For example, if |
1075 | /// this class consists of the range `a-z`, then applying case folding will |
1076 | /// result in the class containing both the ranges `a-z` and `A-Z`. |
1077 | /// |
1078 | /// # Error |
1079 | /// |
1080 | /// This routine returns an error when the case mapping data necessary |
1081 | /// for this routine to complete is unavailable. This occurs when the |
1082 | /// `unicode-case` feature is not enabled. |
1083 | pub fn try_case_fold_simple( |
1084 | &mut self, |
1085 | ) -> core::result::Result<(), CaseFoldError> { |
1086 | self.set.case_fold_simple() |
1087 | } |
1088 | |
1089 | /// Negate this character class. |
1090 | /// |
1091 | /// For all `c` where `c` is a Unicode scalar value, if `c` was in this |
1092 | /// set, then it will not be in this set after negation. |
1093 | pub fn negate(&mut self) { |
1094 | self.set.negate(); |
1095 | } |
1096 | |
1097 | /// Union this character class with the given character class, in place. |
1098 | pub fn union(&mut self, other: &ClassUnicode) { |
1099 | self.set.union(&other.set); |
1100 | } |
1101 | |
1102 | /// Intersect this character class with the given character class, in |
1103 | /// place. |
1104 | pub fn intersect(&mut self, other: &ClassUnicode) { |
1105 | self.set.intersect(&other.set); |
1106 | } |
1107 | |
1108 | /// Subtract the given character class from this character class, in place. |
1109 | pub fn difference(&mut self, other: &ClassUnicode) { |
1110 | self.set.difference(&other.set); |
1111 | } |
1112 | |
1113 | /// Compute the symmetric difference of the given character classes, in |
1114 | /// place. |
1115 | /// |
1116 | /// This computes the symmetric difference of two character classes. This |
1117 | /// removes all elements in this class that are also in the given class, |
1118 | /// but all adds all elements from the given class that aren't in this |
1119 | /// class. That is, the class will contain all elements in either class, |
1120 | /// but will not contain any elements that are in both classes. |
1121 | pub fn symmetric_difference(&mut self, other: &ClassUnicode) { |
1122 | self.set.symmetric_difference(&other.set); |
1123 | } |
1124 | |
1125 | /// Returns true if and only if this character class will either match |
1126 | /// nothing or only ASCII bytes. Stated differently, this returns false |
1127 | /// if and only if this class contains a non-ASCII codepoint. |
1128 | pub fn is_ascii(&self) -> bool { |
1129 | self.set.intervals().last().map_or(true, |r| r.end <= ' \x7F' ) |
1130 | } |
1131 | |
1132 | /// Returns the length, in bytes, of the smallest string matched by this |
1133 | /// character class. |
1134 | /// |
1135 | /// Returns `None` when the class is empty. |
1136 | pub fn minimum_len(&self) -> Option<usize> { |
1137 | let first = self.ranges().get(0)?; |
1138 | // Correct because c1 < c2 implies c1.len_utf8() < c2.len_utf8(). |
1139 | Some(first.start.len_utf8()) |
1140 | } |
1141 | |
1142 | /// Returns the length, in bytes, of the longest string matched by this |
1143 | /// character class. |
1144 | /// |
1145 | /// Returns `None` when the class is empty. |
1146 | pub fn maximum_len(&self) -> Option<usize> { |
1147 | let last = self.ranges().last()?; |
1148 | // Correct because c1 < c2 implies c1.len_utf8() < c2.len_utf8(). |
1149 | Some(last.end.len_utf8()) |
1150 | } |
1151 | |
1152 | /// If this class consists of exactly one codepoint, then return it as |
1153 | /// a literal byte string. |
1154 | /// |
1155 | /// If this class is empty or contains more than one codepoint, then `None` |
1156 | /// is returned. |
1157 | pub fn literal(&self) -> Option<Vec<u8>> { |
1158 | let rs = self.ranges(); |
1159 | if rs.len() == 1 && rs[0].start == rs[0].end { |
1160 | Some(rs[0].start.encode_utf8(&mut [0; 4]).to_string().into_bytes()) |
1161 | } else { |
1162 | None |
1163 | } |
1164 | } |
1165 | |
1166 | /// If this class consists of only ASCII ranges, then return its |
1167 | /// corresponding and equivalent byte class. |
1168 | pub fn to_byte_class(&self) -> Option<ClassBytes> { |
1169 | if !self.is_ascii() { |
1170 | return None; |
1171 | } |
1172 | Some(ClassBytes::new(self.ranges().iter().map(|r| { |
1173 | // Since we are guaranteed that our codepoint range is ASCII, the |
1174 | // 'u8::try_from' calls below are guaranteed to be correct. |
1175 | ClassBytesRange { |
1176 | start: u8::try_from(r.start).unwrap(), |
1177 | end: u8::try_from(r.end).unwrap(), |
1178 | } |
1179 | }))) |
1180 | } |
1181 | } |
1182 | |
1183 | /// An iterator over all ranges in a Unicode character class. |
1184 | /// |
1185 | /// The lifetime `'a` refers to the lifetime of the underlying class. |
1186 | #[derive (Debug)] |
1187 | pub struct ClassUnicodeIter<'a>(IntervalSetIter<'a, ClassUnicodeRange>); |
1188 | |
1189 | impl<'a> Iterator for ClassUnicodeIter<'a> { |
1190 | type Item = &'a ClassUnicodeRange; |
1191 | |
1192 | fn next(&mut self) -> Option<&'a ClassUnicodeRange> { |
1193 | self.0.next() |
1194 | } |
1195 | } |
1196 | |
1197 | /// A single range of characters represented by Unicode scalar values. |
1198 | /// |
1199 | /// The range is closed. That is, the start and end of the range are included |
1200 | /// in the range. |
1201 | #[derive (Clone, Copy, Default, Eq, PartialEq, PartialOrd, Ord)] |
1202 | pub struct ClassUnicodeRange { |
1203 | start: char, |
1204 | end: char, |
1205 | } |
1206 | |
1207 | impl core::fmt::Debug for ClassUnicodeRange { |
1208 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
1209 | let start: String = if !self.start.is_whitespace() && !self.start.is_control() |
1210 | { |
1211 | self.start.to_string() |
1212 | } else { |
1213 | format!("0x {:X}" , u32::from(self.start)) |
1214 | }; |
1215 | let end: String = if !self.end.is_whitespace() && !self.end.is_control() { |
1216 | self.end.to_string() |
1217 | } else { |
1218 | format!("0x {:X}" , u32::from(self.end)) |
1219 | }; |
1220 | f&mut DebugStruct<'_, '_>.debug_struct("ClassUnicodeRange" ) |
1221 | .field("start" , &start) |
1222 | .field(name:"end" , &end) |
1223 | .finish() |
1224 | } |
1225 | } |
1226 | |
1227 | impl Interval for ClassUnicodeRange { |
1228 | type Bound = char; |
1229 | |
1230 | #[inline ] |
1231 | fn lower(&self) -> char { |
1232 | self.start |
1233 | } |
1234 | #[inline ] |
1235 | fn upper(&self) -> char { |
1236 | self.end |
1237 | } |
1238 | #[inline ] |
1239 | fn set_lower(&mut self, bound: char) { |
1240 | self.start = bound; |
1241 | } |
1242 | #[inline ] |
1243 | fn set_upper(&mut self, bound: char) { |
1244 | self.end = bound; |
1245 | } |
1246 | |
1247 | /// Apply simple case folding to this Unicode scalar value range. |
1248 | /// |
1249 | /// Additional ranges are appended to the given vector. Canonical ordering |
1250 | /// is *not* maintained in the given vector. |
1251 | fn case_fold_simple( |
1252 | &self, |
1253 | ranges: &mut Vec<ClassUnicodeRange>, |
1254 | ) -> Result<(), unicode::CaseFoldError> { |
1255 | let mut folder = unicode::SimpleCaseFolder::new()?; |
1256 | if !folder.overlaps(self.start, self.end) { |
1257 | return Ok(()); |
1258 | } |
1259 | let (start, end) = (u32::from(self.start), u32::from(self.end)); |
1260 | for cp in (start..=end).filter_map(char::from_u32) { |
1261 | for &cp_folded in folder.mapping(cp) { |
1262 | ranges.push(ClassUnicodeRange::new(cp_folded, cp_folded)); |
1263 | } |
1264 | } |
1265 | Ok(()) |
1266 | } |
1267 | } |
1268 | |
1269 | impl ClassUnicodeRange { |
1270 | /// Create a new Unicode scalar value range for a character class. |
1271 | /// |
1272 | /// The returned range is always in a canonical form. That is, the range |
1273 | /// returned always satisfies the invariant that `start <= end`. |
1274 | pub fn new(start: char, end: char) -> ClassUnicodeRange { |
1275 | ClassUnicodeRange::create(start, end) |
1276 | } |
1277 | |
1278 | /// Return the start of this range. |
1279 | /// |
1280 | /// The start of a range is always less than or equal to the end of the |
1281 | /// range. |
1282 | pub fn start(&self) -> char { |
1283 | self.start |
1284 | } |
1285 | |
1286 | /// Return the end of this range. |
1287 | /// |
1288 | /// The end of a range is always greater than or equal to the start of the |
1289 | /// range. |
1290 | pub fn end(&self) -> char { |
1291 | self.end |
1292 | } |
1293 | |
1294 | /// Returns the number of codepoints in this range. |
1295 | pub fn len(&self) -> usize { |
1296 | let diff = 1 + u32::from(self.end) - u32::from(self.start); |
1297 | // This is likely to panic in 16-bit targets since a usize can only fit |
1298 | // 2^16. It's not clear what to do here, other than to return an error |
1299 | // when building a Unicode class that contains a range whose length |
1300 | // overflows usize. (Which, to be honest, is probably quite common on |
1301 | // 16-bit targets. For example, this would imply that '.' and '\p{any}' |
1302 | // would be impossible to build.) |
1303 | usize::try_from(diff).expect("char class len fits in usize" ) |
1304 | } |
1305 | } |
1306 | |
1307 | /// A set of characters represented by arbitrary bytes (where one byte |
1308 | /// corresponds to one character). |
1309 | #[derive (Clone, Debug, Eq, PartialEq)] |
1310 | pub struct ClassBytes { |
1311 | set: IntervalSet<ClassBytesRange>, |
1312 | } |
1313 | |
1314 | impl ClassBytes { |
1315 | /// Create a new class from a sequence of ranges. |
1316 | /// |
1317 | /// The given ranges do not need to be in any specific order, and ranges |
1318 | /// may overlap. Ranges will automatically be sorted into a canonical |
1319 | /// non-overlapping order. |
1320 | pub fn new<I>(ranges: I) -> ClassBytes |
1321 | where |
1322 | I: IntoIterator<Item = ClassBytesRange>, |
1323 | { |
1324 | ClassBytes { set: IntervalSet::new(ranges) } |
1325 | } |
1326 | |
1327 | /// Create a new class with no ranges. |
1328 | /// |
1329 | /// An empty class matches nothing. That is, it is equivalent to |
1330 | /// [`Hir::fail`]. |
1331 | pub fn empty() -> ClassBytes { |
1332 | ClassBytes::new(vec![]) |
1333 | } |
1334 | |
1335 | /// Add a new range to this set. |
1336 | pub fn push(&mut self, range: ClassBytesRange) { |
1337 | self.set.push(range); |
1338 | } |
1339 | |
1340 | /// Return an iterator over all ranges in this class. |
1341 | /// |
1342 | /// The iterator yields ranges in ascending order. |
1343 | pub fn iter(&self) -> ClassBytesIter<'_> { |
1344 | ClassBytesIter(self.set.iter()) |
1345 | } |
1346 | |
1347 | /// Return the underlying ranges as a slice. |
1348 | pub fn ranges(&self) -> &[ClassBytesRange] { |
1349 | self.set.intervals() |
1350 | } |
1351 | |
1352 | /// Expand this character class such that it contains all case folded |
1353 | /// characters. For example, if this class consists of the range `a-z`, |
1354 | /// then applying case folding will result in the class containing both the |
1355 | /// ranges `a-z` and `A-Z`. |
1356 | /// |
1357 | /// Note that this only applies ASCII case folding, which is limited to the |
1358 | /// characters `a-z` and `A-Z`. |
1359 | pub fn case_fold_simple(&mut self) { |
1360 | self.set.case_fold_simple().expect("ASCII case folding never fails" ); |
1361 | } |
1362 | |
1363 | /// Negate this byte class. |
1364 | /// |
1365 | /// For all `b` where `b` is a any byte, if `b` was in this set, then it |
1366 | /// will not be in this set after negation. |
1367 | pub fn negate(&mut self) { |
1368 | self.set.negate(); |
1369 | } |
1370 | |
1371 | /// Union this byte class with the given byte class, in place. |
1372 | pub fn union(&mut self, other: &ClassBytes) { |
1373 | self.set.union(&other.set); |
1374 | } |
1375 | |
1376 | /// Intersect this byte class with the given byte class, in place. |
1377 | pub fn intersect(&mut self, other: &ClassBytes) { |
1378 | self.set.intersect(&other.set); |
1379 | } |
1380 | |
1381 | /// Subtract the given byte class from this byte class, in place. |
1382 | pub fn difference(&mut self, other: &ClassBytes) { |
1383 | self.set.difference(&other.set); |
1384 | } |
1385 | |
1386 | /// Compute the symmetric difference of the given byte classes, in place. |
1387 | /// |
1388 | /// This computes the symmetric difference of two byte classes. This |
1389 | /// removes all elements in this class that are also in the given class, |
1390 | /// but all adds all elements from the given class that aren't in this |
1391 | /// class. That is, the class will contain all elements in either class, |
1392 | /// but will not contain any elements that are in both classes. |
1393 | pub fn symmetric_difference(&mut self, other: &ClassBytes) { |
1394 | self.set.symmetric_difference(&other.set); |
1395 | } |
1396 | |
1397 | /// Returns true if and only if this character class will either match |
1398 | /// nothing or only ASCII bytes. Stated differently, this returns false |
1399 | /// if and only if this class contains a non-ASCII byte. |
1400 | pub fn is_ascii(&self) -> bool { |
1401 | self.set.intervals().last().map_or(true, |r| r.end <= 0x7F) |
1402 | } |
1403 | |
1404 | /// Returns the length, in bytes, of the smallest string matched by this |
1405 | /// character class. |
1406 | /// |
1407 | /// Returns `None` when the class is empty. |
1408 | pub fn minimum_len(&self) -> Option<usize> { |
1409 | if self.ranges().is_empty() { |
1410 | None |
1411 | } else { |
1412 | Some(1) |
1413 | } |
1414 | } |
1415 | |
1416 | /// Returns the length, in bytes, of the longest string matched by this |
1417 | /// character class. |
1418 | /// |
1419 | /// Returns `None` when the class is empty. |
1420 | pub fn maximum_len(&self) -> Option<usize> { |
1421 | if self.ranges().is_empty() { |
1422 | None |
1423 | } else { |
1424 | Some(1) |
1425 | } |
1426 | } |
1427 | |
1428 | /// If this class consists of exactly one byte, then return it as |
1429 | /// a literal byte string. |
1430 | /// |
1431 | /// If this class is empty or contains more than one byte, then `None` |
1432 | /// is returned. |
1433 | pub fn literal(&self) -> Option<Vec<u8>> { |
1434 | let rs = self.ranges(); |
1435 | if rs.len() == 1 && rs[0].start == rs[0].end { |
1436 | Some(vec![rs[0].start]) |
1437 | } else { |
1438 | None |
1439 | } |
1440 | } |
1441 | |
1442 | /// If this class consists of only ASCII ranges, then return its |
1443 | /// corresponding and equivalent Unicode class. |
1444 | pub fn to_unicode_class(&self) -> Option<ClassUnicode> { |
1445 | if !self.is_ascii() { |
1446 | return None; |
1447 | } |
1448 | Some(ClassUnicode::new(self.ranges().iter().map(|r| { |
1449 | // Since we are guaranteed that our byte range is ASCII, the |
1450 | // 'char::from' calls below are correct and will not erroneously |
1451 | // convert a raw byte value into its corresponding codepoint. |
1452 | ClassUnicodeRange { |
1453 | start: char::from(r.start), |
1454 | end: char::from(r.end), |
1455 | } |
1456 | }))) |
1457 | } |
1458 | } |
1459 | |
1460 | /// An iterator over all ranges in a byte character class. |
1461 | /// |
1462 | /// The lifetime `'a` refers to the lifetime of the underlying class. |
1463 | #[derive (Debug)] |
1464 | pub struct ClassBytesIter<'a>(IntervalSetIter<'a, ClassBytesRange>); |
1465 | |
1466 | impl<'a> Iterator for ClassBytesIter<'a> { |
1467 | type Item = &'a ClassBytesRange; |
1468 | |
1469 | fn next(&mut self) -> Option<&'a ClassBytesRange> { |
1470 | self.0.next() |
1471 | } |
1472 | } |
1473 | |
1474 | /// A single range of characters represented by arbitrary bytes. |
1475 | /// |
1476 | /// The range is closed. That is, the start and end of the range are included |
1477 | /// in the range. |
1478 | #[derive (Clone, Copy, Default, Eq, PartialEq, PartialOrd, Ord)] |
1479 | pub struct ClassBytesRange { |
1480 | start: u8, |
1481 | end: u8, |
1482 | } |
1483 | |
1484 | impl Interval for ClassBytesRange { |
1485 | type Bound = u8; |
1486 | |
1487 | #[inline ] |
1488 | fn lower(&self) -> u8 { |
1489 | self.start |
1490 | } |
1491 | #[inline ] |
1492 | fn upper(&self) -> u8 { |
1493 | self.end |
1494 | } |
1495 | #[inline ] |
1496 | fn set_lower(&mut self, bound: u8) { |
1497 | self.start = bound; |
1498 | } |
1499 | #[inline ] |
1500 | fn set_upper(&mut self, bound: u8) { |
1501 | self.end = bound; |
1502 | } |
1503 | |
1504 | /// Apply simple case folding to this byte range. Only ASCII case mappings |
1505 | /// (for a-z) are applied. |
1506 | /// |
1507 | /// Additional ranges are appended to the given vector. Canonical ordering |
1508 | /// is *not* maintained in the given vector. |
1509 | fn case_fold_simple( |
1510 | &self, |
1511 | ranges: &mut Vec<ClassBytesRange>, |
1512 | ) -> Result<(), unicode::CaseFoldError> { |
1513 | if !ClassBytesRange::new(b'a' , b'z' ).is_intersection_empty(self) { |
1514 | let lower = cmp::max(self.start, b'a' ); |
1515 | let upper = cmp::min(self.end, b'z' ); |
1516 | ranges.push(ClassBytesRange::new(lower - 32, upper - 32)); |
1517 | } |
1518 | if !ClassBytesRange::new(b'A' , b'Z' ).is_intersection_empty(self) { |
1519 | let lower = cmp::max(self.start, b'A' ); |
1520 | let upper = cmp::min(self.end, b'Z' ); |
1521 | ranges.push(ClassBytesRange::new(lower + 32, upper + 32)); |
1522 | } |
1523 | Ok(()) |
1524 | } |
1525 | } |
1526 | |
1527 | impl ClassBytesRange { |
1528 | /// Create a new byte range for a character class. |
1529 | /// |
1530 | /// The returned range is always in a canonical form. That is, the range |
1531 | /// returned always satisfies the invariant that `start <= end`. |
1532 | pub fn new(start: u8, end: u8) -> ClassBytesRange { |
1533 | ClassBytesRange::create(start, end) |
1534 | } |
1535 | |
1536 | /// Return the start of this range. |
1537 | /// |
1538 | /// The start of a range is always less than or equal to the end of the |
1539 | /// range. |
1540 | pub fn start(&self) -> u8 { |
1541 | self.start |
1542 | } |
1543 | |
1544 | /// Return the end of this range. |
1545 | /// |
1546 | /// The end of a range is always greater than or equal to the start of the |
1547 | /// range. |
1548 | pub fn end(&self) -> u8 { |
1549 | self.end |
1550 | } |
1551 | |
1552 | /// Returns the number of bytes in this range. |
1553 | pub fn len(&self) -> usize { |
1554 | usize::from(self.end.checked_sub(self.start).unwrap()) |
1555 | .checked_add(1) |
1556 | .unwrap() |
1557 | } |
1558 | } |
1559 | |
1560 | impl core::fmt::Debug for ClassBytesRange { |
1561 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
1562 | f&mut DebugStruct<'_, '_>.debug_struct("ClassBytesRange" ) |
1563 | .field("start" , &crate::debug::Byte(self.start)) |
1564 | .field(name:"end" , &crate::debug::Byte(self.end)) |
1565 | .finish() |
1566 | } |
1567 | } |
1568 | |
1569 | /// The high-level intermediate representation for a look-around assertion. |
1570 | /// |
1571 | /// An assertion match is always zero-length. Also called an "empty match." |
1572 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
1573 | pub enum Look { |
1574 | /// Match the beginning of text. Specifically, this matches at the starting |
1575 | /// position of the input. |
1576 | Start = 1 << 0, |
1577 | /// Match the end of text. Specifically, this matches at the ending |
1578 | /// position of the input. |
1579 | End = 1 << 1, |
1580 | /// Match the beginning of a line or the beginning of text. Specifically, |
1581 | /// this matches at the starting position of the input, or at the position |
1582 | /// immediately following a `\n` character. |
1583 | StartLF = 1 << 2, |
1584 | /// Match the end of a line or the end of text. Specifically, this matches |
1585 | /// at the end position of the input, or at the position immediately |
1586 | /// preceding a `\n` character. |
1587 | EndLF = 1 << 3, |
1588 | /// Match the beginning of a line or the beginning of text. Specifically, |
1589 | /// this matches at the starting position of the input, or at the position |
1590 | /// immediately following either a `\r` or `\n` character, but never after |
1591 | /// a `\r` when a `\n` follows. |
1592 | StartCRLF = 1 << 4, |
1593 | /// Match the end of a line or the end of text. Specifically, this matches |
1594 | /// at the end position of the input, or at the position immediately |
1595 | /// preceding a `\r` or `\n` character, but never before a `\n` when a `\r` |
1596 | /// precedes it. |
1597 | EndCRLF = 1 << 5, |
1598 | /// Match an ASCII-only word boundary. That is, this matches a position |
1599 | /// where the left adjacent character and right adjacent character |
1600 | /// correspond to a word and non-word or a non-word and word character. |
1601 | WordAscii = 1 << 6, |
1602 | /// Match an ASCII-only negation of a word boundary. |
1603 | WordAsciiNegate = 1 << 7, |
1604 | /// Match a Unicode-aware word boundary. That is, this matches a position |
1605 | /// where the left adjacent character and right adjacent character |
1606 | /// correspond to a word and non-word or a non-word and word character. |
1607 | WordUnicode = 1 << 8, |
1608 | /// Match a Unicode-aware negation of a word boundary. |
1609 | WordUnicodeNegate = 1 << 9, |
1610 | } |
1611 | |
1612 | impl Look { |
1613 | /// Flip the look-around assertion to its equivalent for reverse searches. |
1614 | /// For example, `StartLF` gets translated to `EndLF`. |
1615 | /// |
1616 | /// Some assertions, such as `WordUnicode`, remain the same since they |
1617 | /// match the same positions regardless of the direction of the search. |
1618 | #[inline ] |
1619 | pub const fn reversed(self) -> Look { |
1620 | match self { |
1621 | Look::Start => Look::End, |
1622 | Look::End => Look::Start, |
1623 | Look::StartLF => Look::EndLF, |
1624 | Look::EndLF => Look::StartLF, |
1625 | Look::StartCRLF => Look::EndCRLF, |
1626 | Look::EndCRLF => Look::StartCRLF, |
1627 | Look::WordAscii => Look::WordAscii, |
1628 | Look::WordAsciiNegate => Look::WordAsciiNegate, |
1629 | Look::WordUnicode => Look::WordUnicode, |
1630 | Look::WordUnicodeNegate => Look::WordUnicodeNegate, |
1631 | } |
1632 | } |
1633 | |
1634 | /// Return the underlying representation of this look-around enumeration |
1635 | /// as an integer. Giving the return value to the [`Look::from_repr`] |
1636 | /// constructor is guaranteed to return the same look-around variant that |
1637 | /// one started with within a semver compatible release of this crate. |
1638 | #[inline ] |
1639 | pub const fn as_repr(self) -> u16 { |
1640 | // AFAIK, 'as' is the only way to zero-cost convert an int enum to an |
1641 | // actual int. |
1642 | self as u16 |
1643 | } |
1644 | |
1645 | /// Given the underlying representation of a `Look` value, return the |
1646 | /// corresponding `Look` value if the representation is valid. Otherwise |
1647 | /// `None` is returned. |
1648 | #[inline ] |
1649 | pub const fn from_repr(repr: u16) -> Option<Look> { |
1650 | match repr { |
1651 | 0b00_0000_0001 => Some(Look::Start), |
1652 | 0b00_0000_0010 => Some(Look::End), |
1653 | 0b00_0000_0100 => Some(Look::StartLF), |
1654 | 0b00_0000_1000 => Some(Look::EndLF), |
1655 | 0b00_0001_0000 => Some(Look::StartCRLF), |
1656 | 0b00_0010_0000 => Some(Look::EndCRLF), |
1657 | 0b00_0100_0000 => Some(Look::WordAscii), |
1658 | 0b00_1000_0000 => Some(Look::WordAsciiNegate), |
1659 | 0b01_0000_0000 => Some(Look::WordUnicode), |
1660 | 0b10_0000_0000 => Some(Look::WordUnicodeNegate), |
1661 | _ => None, |
1662 | } |
1663 | } |
1664 | |
1665 | /// Returns a convenient single codepoint representation of this |
1666 | /// look-around assertion. Each assertion is guaranteed to be represented |
1667 | /// by a distinct character. |
1668 | /// |
1669 | /// This is useful for succinctly representing a look-around assertion in |
1670 | /// human friendly but succinct output intended for a programmer working on |
1671 | /// regex internals. |
1672 | #[inline ] |
1673 | pub const fn as_char(self) -> char { |
1674 | match self { |
1675 | Look::Start => 'A' , |
1676 | Look::End => 'z' , |
1677 | Look::StartLF => '^' , |
1678 | Look::EndLF => '$' , |
1679 | Look::StartCRLF => 'r' , |
1680 | Look::EndCRLF => 'R' , |
1681 | Look::WordAscii => 'b' , |
1682 | Look::WordAsciiNegate => 'B' , |
1683 | Look::WordUnicode => '𝛃' , |
1684 | Look::WordUnicodeNegate => '𝚩' , |
1685 | } |
1686 | } |
1687 | } |
1688 | |
1689 | /// The high-level intermediate representation for a capturing group. |
1690 | /// |
1691 | /// A capturing group always has an index and a child expression. It may |
1692 | /// also have a name associated with it (e.g., `(?P<foo>\w)`), but it's not |
1693 | /// necessary. |
1694 | /// |
1695 | /// Note that there is no explicit representation of a non-capturing group |
1696 | /// in a `Hir`. Instead, non-capturing grouping is handled automatically by |
1697 | /// the recursive structure of the `Hir` itself. |
1698 | #[derive (Clone, Debug, Eq, PartialEq)] |
1699 | pub struct Capture { |
1700 | /// The capture index of the capture. |
1701 | pub index: u32, |
1702 | /// The name of the capture, if it exists. |
1703 | pub name: Option<Box<str>>, |
1704 | /// The expression inside the capturing group, which may be empty. |
1705 | pub sub: Box<Hir>, |
1706 | } |
1707 | |
1708 | /// The high-level intermediate representation of a repetition operator. |
1709 | /// |
1710 | /// A repetition operator permits the repetition of an arbitrary |
1711 | /// sub-expression. |
1712 | #[derive (Clone, Debug, Eq, PartialEq)] |
1713 | pub struct Repetition { |
1714 | /// The minimum range of the repetition. |
1715 | /// |
1716 | /// Note that special cases like `?`, `+` and `*` all get translated into |
1717 | /// the ranges `{0,1}`, `{1,}` and `{0,}`, respectively. |
1718 | /// |
1719 | /// When `min` is zero, this expression can match the empty string |
1720 | /// regardless of what its sub-expression is. |
1721 | pub min: u32, |
1722 | /// The maximum range of the repetition. |
1723 | /// |
1724 | /// Note that when `max` is `None`, `min` acts as a lower bound but where |
1725 | /// there is no upper bound. For something like `x{5}` where the min and |
1726 | /// max are equivalent, `min` will be set to `5` and `max` will be set to |
1727 | /// `Some(5)`. |
1728 | pub max: Option<u32>, |
1729 | /// Whether this repetition operator is greedy or not. A greedy operator |
1730 | /// will match as much as it can. A non-greedy operator will match as |
1731 | /// little as it can. |
1732 | /// |
1733 | /// Typically, operators are greedy by default and are only non-greedy when |
1734 | /// a `?` suffix is used, e.g., `(expr)*` is greedy while `(expr)*?` is |
1735 | /// not. However, this can be inverted via the `U` "ungreedy" flag. |
1736 | pub greedy: bool, |
1737 | /// The expression being repeated. |
1738 | pub sub: Box<Hir>, |
1739 | } |
1740 | |
1741 | impl Repetition { |
1742 | /// Returns a new repetition with the same `min`, `max` and `greedy` |
1743 | /// values, but with its sub-expression replaced with the one given. |
1744 | pub fn with(&self, sub: Hir) -> Repetition { |
1745 | Repetition { |
1746 | min: self.min, |
1747 | max: self.max, |
1748 | greedy: self.greedy, |
1749 | sub: Box::new(sub), |
1750 | } |
1751 | } |
1752 | } |
1753 | |
1754 | /// A type describing the different flavors of `.`. |
1755 | /// |
1756 | /// This type is meant to be used with [`Hir::dot`], which is a convenience |
1757 | /// routine for building HIR values derived from the `.` regex. |
1758 | #[non_exhaustive ] |
1759 | #[derive (Clone, Copy, Debug, Eq, PartialEq)] |
1760 | pub enum Dot { |
1761 | /// Matches the UTF-8 encoding of any Unicode scalar value. |
1762 | /// |
1763 | /// This is equivalent to `(?su:.)` and also `\p{any}`. |
1764 | AnyChar, |
1765 | /// Matches any byte value. |
1766 | /// |
1767 | /// This is equivalent to `(?s-u:.)` and also `(?-u:[\x00-\xFF])`. |
1768 | AnyByte, |
1769 | /// Matches the UTF-8 encoding of any Unicode scalar value except for `\n`. |
1770 | /// |
1771 | /// This is equivalent to `(?u-s:.)` and also `[\p{any}--\n]`. |
1772 | AnyCharExceptLF, |
1773 | /// Matches the UTF-8 encoding of any Unicode scalar value except for `\r` |
1774 | /// and `\n`. |
1775 | /// |
1776 | /// This is equivalent to `(?uR-s:.)` and also `[\p{any}--\r\n]`. |
1777 | AnyCharExceptCRLF, |
1778 | /// Matches any byte value except for `\n`. |
1779 | /// |
1780 | /// This is equivalent to `(?-su:.)` and also `(?-u:[[\x00-\xFF]--\n])`. |
1781 | AnyByteExceptLF, |
1782 | /// Matches any byte value except for `\r` and `\n`. |
1783 | /// |
1784 | /// This is equivalent to `(?R-su:.)` and also `(?-u:[[\x00-\xFF]--\r\n])`. |
1785 | AnyByteExceptCRLF, |
1786 | } |
1787 | |
1788 | /// A custom `Drop` impl is used for `HirKind` such that it uses constant stack |
1789 | /// space but heap space proportional to the depth of the total `Hir`. |
1790 | impl Drop for Hir { |
1791 | fn drop(&mut self) { |
1792 | use core::mem; |
1793 | |
1794 | match *self.kind() { |
1795 | HirKind::Empty |
1796 | | HirKind::Literal(_) |
1797 | | HirKind::Class(_) |
1798 | | HirKind::Look(_) => return, |
1799 | HirKind::Capture(ref x) if x.sub.kind.subs().is_empty() => return, |
1800 | HirKind::Repetition(ref x) if x.sub.kind.subs().is_empty() => { |
1801 | return |
1802 | } |
1803 | HirKind::Concat(ref x) if x.is_empty() => return, |
1804 | HirKind::Alternation(ref x) if x.is_empty() => return, |
1805 | _ => {} |
1806 | } |
1807 | |
1808 | let mut stack = vec![mem::replace(self, Hir::empty())]; |
1809 | while let Some(mut expr) = stack.pop() { |
1810 | match expr.kind { |
1811 | HirKind::Empty |
1812 | | HirKind::Literal(_) |
1813 | | HirKind::Class(_) |
1814 | | HirKind::Look(_) => {} |
1815 | HirKind::Capture(ref mut x) => { |
1816 | stack.push(mem::replace(&mut x.sub, Hir::empty())); |
1817 | } |
1818 | HirKind::Repetition(ref mut x) => { |
1819 | stack.push(mem::replace(&mut x.sub, Hir::empty())); |
1820 | } |
1821 | HirKind::Concat(ref mut x) => { |
1822 | stack.extend(x.drain(..)); |
1823 | } |
1824 | HirKind::Alternation(ref mut x) => { |
1825 | stack.extend(x.drain(..)); |
1826 | } |
1827 | } |
1828 | } |
1829 | } |
1830 | } |
1831 | |
1832 | /// A type that collects various properties of an HIR value. |
1833 | /// |
1834 | /// Properties are always scalar values and represent meta data that is |
1835 | /// computed inductively on an HIR value. Properties are defined for all |
1836 | /// HIR values. |
1837 | /// |
1838 | /// All methods on a `Properties` value take constant time and are meant to |
1839 | /// be cheap to call. |
1840 | #[derive (Clone, Debug, Eq, PartialEq)] |
1841 | pub struct Properties(Box<PropertiesI>); |
1842 | |
1843 | /// The property definition. It is split out so that we can box it, and |
1844 | /// there by make `Properties` use less stack size. This is kind-of important |
1845 | /// because every HIR value has a `Properties` attached to it. |
1846 | /// |
1847 | /// This does have the unfortunate consequence that creating any HIR value |
1848 | /// always leads to at least one alloc for properties, but this is generally |
1849 | /// true anyway (for pretty much all HirKinds except for look-arounds). |
1850 | #[derive (Clone, Debug, Eq, PartialEq)] |
1851 | struct PropertiesI { |
1852 | minimum_len: Option<usize>, |
1853 | maximum_len: Option<usize>, |
1854 | look_set: LookSet, |
1855 | look_set_prefix: LookSet, |
1856 | look_set_suffix: LookSet, |
1857 | look_set_prefix_any: LookSet, |
1858 | look_set_suffix_any: LookSet, |
1859 | utf8: bool, |
1860 | explicit_captures_len: usize, |
1861 | static_explicit_captures_len: Option<usize>, |
1862 | literal: bool, |
1863 | alternation_literal: bool, |
1864 | } |
1865 | |
1866 | impl Properties { |
1867 | /// Returns the length (in bytes) of the smallest string matched by this |
1868 | /// HIR. |
1869 | /// |
1870 | /// A return value of `0` is possible and occurs when the HIR can match an |
1871 | /// empty string. |
1872 | /// |
1873 | /// `None` is returned when there is no minimum length. This occurs in |
1874 | /// precisely the cases where the HIR matches nothing. i.e., The language |
1875 | /// the regex matches is empty. An example of such a regex is `\P{any}`. |
1876 | #[inline ] |
1877 | pub fn minimum_len(&self) -> Option<usize> { |
1878 | self.0.minimum_len |
1879 | } |
1880 | |
1881 | /// Returns the length (in bytes) of the longest string matched by this |
1882 | /// HIR. |
1883 | /// |
1884 | /// A return value of `0` is possible and occurs when nothing longer than |
1885 | /// the empty string is in the language described by this HIR. |
1886 | /// |
1887 | /// `None` is returned when there is no longest matching string. This |
1888 | /// occurs when the HIR matches nothing or when there is no upper bound on |
1889 | /// the length of matching strings. Example of such regexes are `\P{any}` |
1890 | /// (matches nothing) and `a+` (has no upper bound). |
1891 | #[inline ] |
1892 | pub fn maximum_len(&self) -> Option<usize> { |
1893 | self.0.maximum_len |
1894 | } |
1895 | |
1896 | /// Returns a set of all look-around assertions that appear at least once |
1897 | /// in this HIR value. |
1898 | #[inline ] |
1899 | pub fn look_set(&self) -> LookSet { |
1900 | self.0.look_set |
1901 | } |
1902 | |
1903 | /// Returns a set of all look-around assertions that appear as a prefix for |
1904 | /// this HIR value. That is, the set returned corresponds to the set of |
1905 | /// assertions that must be passed before matching any bytes in a haystack. |
1906 | /// |
1907 | /// For example, `hir.look_set_prefix().contains(Look::Start)` returns true |
1908 | /// if and only if the HIR is fully anchored at the start. |
1909 | #[inline ] |
1910 | pub fn look_set_prefix(&self) -> LookSet { |
1911 | self.0.look_set_prefix |
1912 | } |
1913 | |
1914 | /// Returns a set of all look-around assertions that appear as a _possible_ |
1915 | /// prefix for this HIR value. That is, the set returned corresponds to the |
1916 | /// set of assertions that _may_ be passed before matching any bytes in a |
1917 | /// haystack. |
1918 | /// |
1919 | /// For example, `hir.look_set_prefix_any().contains(Look::Start)` returns |
1920 | /// true if and only if it's possible for the regex to match through a |
1921 | /// anchored assertion before consuming any input. |
1922 | #[inline ] |
1923 | pub fn look_set_prefix_any(&self) -> LookSet { |
1924 | self.0.look_set_prefix_any |
1925 | } |
1926 | |
1927 | /// Returns a set of all look-around assertions that appear as a suffix for |
1928 | /// this HIR value. That is, the set returned corresponds to the set of |
1929 | /// assertions that must be passed in order to be considered a match after |
1930 | /// all other consuming HIR expressions. |
1931 | /// |
1932 | /// For example, `hir.look_set_suffix().contains(Look::End)` returns true |
1933 | /// if and only if the HIR is fully anchored at the end. |
1934 | #[inline ] |
1935 | pub fn look_set_suffix(&self) -> LookSet { |
1936 | self.0.look_set_suffix |
1937 | } |
1938 | |
1939 | /// Returns a set of all look-around assertions that appear as a _possible_ |
1940 | /// suffix for this HIR value. That is, the set returned corresponds to the |
1941 | /// set of assertions that _may_ be passed before matching any bytes in a |
1942 | /// haystack. |
1943 | /// |
1944 | /// For example, `hir.look_set_suffix_any().contains(Look::End)` returns |
1945 | /// true if and only if it's possible for the regex to match through a |
1946 | /// anchored assertion at the end of a match without consuming any input. |
1947 | #[inline ] |
1948 | pub fn look_set_suffix_any(&self) -> LookSet { |
1949 | self.0.look_set_suffix_any |
1950 | } |
1951 | |
1952 | /// Return true if and only if the corresponding HIR will always match |
1953 | /// valid UTF-8. |
1954 | /// |
1955 | /// When this returns false, then it is possible for this HIR expression to |
1956 | /// match invalid UTF-8, including by matching between the code units of |
1957 | /// a single UTF-8 encoded codepoint. |
1958 | /// |
1959 | /// Note that this returns true even when the corresponding HIR can match |
1960 | /// the empty string. Since an empty string can technically appear between |
1961 | /// UTF-8 code units, it is possible for a match to be reported that splits |
1962 | /// a codepoint which could in turn be considered matching invalid UTF-8. |
1963 | /// However, it is generally assumed that such empty matches are handled |
1964 | /// specially by the search routine if it is absolutely required that |
1965 | /// matches not split a codepoint. |
1966 | /// |
1967 | /// # Example |
1968 | /// |
1969 | /// This code example shows the UTF-8 property of a variety of patterns. |
1970 | /// |
1971 | /// ``` |
1972 | /// use regex_syntax::{ParserBuilder, parse}; |
1973 | /// |
1974 | /// // Examples of 'is_utf8() == true'. |
1975 | /// assert!(parse(r"a" )?.properties().is_utf8()); |
1976 | /// assert!(parse(r"[^a]" )?.properties().is_utf8()); |
1977 | /// assert!(parse(r"." )?.properties().is_utf8()); |
1978 | /// assert!(parse(r"\W" )?.properties().is_utf8()); |
1979 | /// assert!(parse(r"\b" )?.properties().is_utf8()); |
1980 | /// assert!(parse(r"\B" )?.properties().is_utf8()); |
1981 | /// assert!(parse(r"(?-u)\b" )?.properties().is_utf8()); |
1982 | /// assert!(parse(r"(?-u)\B" )?.properties().is_utf8()); |
1983 | /// // Unicode mode is enabled by default, and in |
1984 | /// // that mode, all \x hex escapes are treated as |
1985 | /// // codepoints. So this actually matches the UTF-8 |
1986 | /// // encoding of U+00FF. |
1987 | /// assert!(parse(r"\xFF" )?.properties().is_utf8()); |
1988 | /// |
1989 | /// // Now we show examples of 'is_utf8() == false'. |
1990 | /// // The only way to do this is to force the parser |
1991 | /// // to permit invalid UTF-8, otherwise all of these |
1992 | /// // would fail to parse! |
1993 | /// let parse = |pattern| { |
1994 | /// ParserBuilder::new().utf8(false).build().parse(pattern) |
1995 | /// }; |
1996 | /// assert!(!parse(r"(?-u)[^a]" )?.properties().is_utf8()); |
1997 | /// assert!(!parse(r"(?-u)." )?.properties().is_utf8()); |
1998 | /// assert!(!parse(r"(?-u)\W" )?.properties().is_utf8()); |
1999 | /// // Conversely to the equivalent example above, |
2000 | /// // when Unicode mode is disabled, \x hex escapes |
2001 | /// // are treated as their raw byte values. |
2002 | /// assert!(!parse(r"(?-u)\xFF" )?.properties().is_utf8()); |
2003 | /// // Note that just because we disabled UTF-8 in the |
2004 | /// // parser doesn't mean we still can't use Unicode. |
2005 | /// // It is enabled by default, so \xFF is still |
2006 | /// // equivalent to matching the UTF-8 encoding of |
2007 | /// // U+00FF by default. |
2008 | /// assert!(parse(r"\xFF" )?.properties().is_utf8()); |
2009 | /// // Even though we use raw bytes that individually |
2010 | /// // are not valid UTF-8, when combined together, the |
2011 | /// // overall expression *does* match valid UTF-8! |
2012 | /// assert!(parse(r"(?-u)\xE2\x98\x83" )?.properties().is_utf8()); |
2013 | /// |
2014 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2015 | /// ``` |
2016 | #[inline ] |
2017 | pub fn is_utf8(&self) -> bool { |
2018 | self.0.utf8 |
2019 | } |
2020 | |
2021 | /// Returns the total number of explicit capturing groups in the |
2022 | /// corresponding HIR. |
2023 | /// |
2024 | /// Note that this does not include the implicit capturing group |
2025 | /// corresponding to the entire match that is typically included by regex |
2026 | /// engines. |
2027 | /// |
2028 | /// # Example |
2029 | /// |
2030 | /// This method will return `0` for `a` and `1` for `(a)`: |
2031 | /// |
2032 | /// ``` |
2033 | /// use regex_syntax::parse; |
2034 | /// |
2035 | /// assert_eq!(0, parse("a" )?.properties().explicit_captures_len()); |
2036 | /// assert_eq!(1, parse("(a)" )?.properties().explicit_captures_len()); |
2037 | /// |
2038 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2039 | /// ``` |
2040 | #[inline ] |
2041 | pub fn explicit_captures_len(&self) -> usize { |
2042 | self.0.explicit_captures_len |
2043 | } |
2044 | |
2045 | /// Returns the total number of explicit capturing groups that appear in |
2046 | /// every possible match. |
2047 | /// |
2048 | /// If the number of capture groups can vary depending on the match, then |
2049 | /// this returns `None`. That is, a value is only returned when the number |
2050 | /// of matching groups is invariant or "static." |
2051 | /// |
2052 | /// Note that this does not include the implicit capturing group |
2053 | /// corresponding to the entire match. |
2054 | /// |
2055 | /// # Example |
2056 | /// |
2057 | /// This shows a few cases where a static number of capture groups is |
2058 | /// available and a few cases where it is not. |
2059 | /// |
2060 | /// ``` |
2061 | /// use regex_syntax::parse; |
2062 | /// |
2063 | /// let len = |pattern| { |
2064 | /// parse(pattern).map(|h| { |
2065 | /// h.properties().static_explicit_captures_len() |
2066 | /// }) |
2067 | /// }; |
2068 | /// |
2069 | /// assert_eq!(Some(0), len("a" )?); |
2070 | /// assert_eq!(Some(1), len("(a)" )?); |
2071 | /// assert_eq!(Some(1), len("(a)|(b)" )?); |
2072 | /// assert_eq!(Some(2), len("(a)(b)|(c)(d)" )?); |
2073 | /// assert_eq!(None, len("(a)|b" )?); |
2074 | /// assert_eq!(None, len("a|(b)" )?); |
2075 | /// assert_eq!(None, len("(b)*" )?); |
2076 | /// assert_eq!(Some(1), len("(b)+" )?); |
2077 | /// |
2078 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2079 | /// ``` |
2080 | #[inline ] |
2081 | pub fn static_explicit_captures_len(&self) -> Option<usize> { |
2082 | self.0.static_explicit_captures_len |
2083 | } |
2084 | |
2085 | /// Return true if and only if this HIR is a simple literal. This is |
2086 | /// only true when this HIR expression is either itself a `Literal` or a |
2087 | /// concatenation of only `Literal`s. |
2088 | /// |
2089 | /// For example, `f` and `foo` are literals, but `f+`, `(foo)`, `foo()` and |
2090 | /// the empty string are not (even though they contain sub-expressions that |
2091 | /// are literals). |
2092 | #[inline ] |
2093 | pub fn is_literal(&self) -> bool { |
2094 | self.0.literal |
2095 | } |
2096 | |
2097 | /// Return true if and only if this HIR is either a simple literal or an |
2098 | /// alternation of simple literals. This is only |
2099 | /// true when this HIR expression is either itself a `Literal` or a |
2100 | /// concatenation of only `Literal`s or an alternation of only `Literal`s. |
2101 | /// |
2102 | /// For example, `f`, `foo`, `a|b|c`, and `foo|bar|baz` are alternation |
2103 | /// literals, but `f+`, `(foo)`, `foo()`, and the empty pattern are not |
2104 | /// (even though that contain sub-expressions that are literals). |
2105 | #[inline ] |
2106 | pub fn is_alternation_literal(&self) -> bool { |
2107 | self.0.alternation_literal |
2108 | } |
2109 | |
2110 | /// Returns the total amount of heap memory usage, in bytes, used by this |
2111 | /// `Properties` value. |
2112 | #[inline ] |
2113 | pub fn memory_usage(&self) -> usize { |
2114 | core::mem::size_of::<PropertiesI>() |
2115 | } |
2116 | |
2117 | /// Returns a new set of properties that corresponds to the union of the |
2118 | /// iterator of properties given. |
2119 | /// |
2120 | /// This is useful when one has multiple `Hir` expressions and wants |
2121 | /// to combine them into a single alternation without constructing the |
2122 | /// corresponding `Hir`. This routine provides a way of combining the |
2123 | /// properties of each `Hir` expression into one set of properties |
2124 | /// representing the union of those expressions. |
2125 | /// |
2126 | /// # Example: union with HIRs that never match |
2127 | /// |
2128 | /// This example shows that unioning properties together with one that |
2129 | /// represents a regex that never matches will "poison" certain attributes, |
2130 | /// like the minimum and maximum lengths. |
2131 | /// |
2132 | /// ``` |
2133 | /// use regex_syntax::{hir::Properties, parse}; |
2134 | /// |
2135 | /// let hir1 = parse("ab?c?" )?; |
2136 | /// assert_eq!(Some(1), hir1.properties().minimum_len()); |
2137 | /// assert_eq!(Some(3), hir1.properties().maximum_len()); |
2138 | /// |
2139 | /// let hir2 = parse(r"[a&&b]" )?; |
2140 | /// assert_eq!(None, hir2.properties().minimum_len()); |
2141 | /// assert_eq!(None, hir2.properties().maximum_len()); |
2142 | /// |
2143 | /// let hir3 = parse(r"wxy?z?" )?; |
2144 | /// assert_eq!(Some(2), hir3.properties().minimum_len()); |
2145 | /// assert_eq!(Some(4), hir3.properties().maximum_len()); |
2146 | /// |
2147 | /// let unioned = Properties::union([ |
2148 | /// hir1.properties(), |
2149 | /// hir2.properties(), |
2150 | /// hir3.properties(), |
2151 | /// ]); |
2152 | /// assert_eq!(None, unioned.minimum_len()); |
2153 | /// assert_eq!(None, unioned.maximum_len()); |
2154 | /// |
2155 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2156 | /// ``` |
2157 | /// |
2158 | /// The maximum length can also be "poisoned" by a pattern that has no |
2159 | /// upper bound on the length of a match. The minimum length remains |
2160 | /// unaffected: |
2161 | /// |
2162 | /// ``` |
2163 | /// use regex_syntax::{hir::Properties, parse}; |
2164 | /// |
2165 | /// let hir1 = parse("ab?c?" )?; |
2166 | /// assert_eq!(Some(1), hir1.properties().minimum_len()); |
2167 | /// assert_eq!(Some(3), hir1.properties().maximum_len()); |
2168 | /// |
2169 | /// let hir2 = parse(r"a+" )?; |
2170 | /// assert_eq!(Some(1), hir2.properties().minimum_len()); |
2171 | /// assert_eq!(None, hir2.properties().maximum_len()); |
2172 | /// |
2173 | /// let hir3 = parse(r"wxy?z?" )?; |
2174 | /// assert_eq!(Some(2), hir3.properties().minimum_len()); |
2175 | /// assert_eq!(Some(4), hir3.properties().maximum_len()); |
2176 | /// |
2177 | /// let unioned = Properties::union([ |
2178 | /// hir1.properties(), |
2179 | /// hir2.properties(), |
2180 | /// hir3.properties(), |
2181 | /// ]); |
2182 | /// assert_eq!(Some(1), unioned.minimum_len()); |
2183 | /// assert_eq!(None, unioned.maximum_len()); |
2184 | /// |
2185 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2186 | /// ``` |
2187 | pub fn union<I, P>(props: I) -> Properties |
2188 | where |
2189 | I: IntoIterator<Item = P>, |
2190 | P: core::borrow::Borrow<Properties>, |
2191 | { |
2192 | let mut it = props.into_iter().peekable(); |
2193 | // While empty alternations aren't possible, we still behave as if they |
2194 | // are. When we have an empty alternate, then clearly the look-around |
2195 | // prefix and suffix is empty. Otherwise, it is the intersection of all |
2196 | // prefixes and suffixes (respectively) of the branches. |
2197 | let fix = if it.peek().is_none() { |
2198 | LookSet::empty() |
2199 | } else { |
2200 | LookSet::full() |
2201 | }; |
2202 | // And also, an empty alternate means we have 0 static capture groups, |
2203 | // but we otherwise start with the number corresponding to the first |
2204 | // alternate. If any subsequent alternate has a different number of |
2205 | // static capture groups, then we overall have a variation and not a |
2206 | // static number of groups. |
2207 | let static_explicit_captures_len = |
2208 | it.peek().and_then(|p| p.borrow().static_explicit_captures_len()); |
2209 | // The base case is an empty alternation, which matches nothing. |
2210 | // Note though that empty alternations aren't possible, because the |
2211 | // Hir::alternation smart constructor rewrites those as empty character |
2212 | // classes. |
2213 | let mut props = PropertiesI { |
2214 | minimum_len: None, |
2215 | maximum_len: None, |
2216 | look_set: LookSet::empty(), |
2217 | look_set_prefix: fix, |
2218 | look_set_suffix: fix, |
2219 | look_set_prefix_any: LookSet::empty(), |
2220 | look_set_suffix_any: LookSet::empty(), |
2221 | utf8: true, |
2222 | explicit_captures_len: 0, |
2223 | static_explicit_captures_len, |
2224 | literal: false, |
2225 | alternation_literal: true, |
2226 | }; |
2227 | let (mut min_poisoned, mut max_poisoned) = (false, false); |
2228 | // Handle properties that need to visit every child hir. |
2229 | for prop in it { |
2230 | let p = prop.borrow(); |
2231 | props.look_set.set_union(p.look_set()); |
2232 | props.look_set_prefix.set_intersect(p.look_set_prefix()); |
2233 | props.look_set_suffix.set_intersect(p.look_set_suffix()); |
2234 | props.look_set_prefix_any.set_union(p.look_set_prefix_any()); |
2235 | props.look_set_suffix_any.set_union(p.look_set_suffix_any()); |
2236 | props.utf8 = props.utf8 && p.is_utf8(); |
2237 | props.explicit_captures_len = props |
2238 | .explicit_captures_len |
2239 | .saturating_add(p.explicit_captures_len()); |
2240 | if props.static_explicit_captures_len |
2241 | != p.static_explicit_captures_len() |
2242 | { |
2243 | props.static_explicit_captures_len = None; |
2244 | } |
2245 | props.alternation_literal = |
2246 | props.alternation_literal && p.is_literal(); |
2247 | if !min_poisoned { |
2248 | if let Some(xmin) = p.minimum_len() { |
2249 | if props.minimum_len.map_or(true, |pmin| xmin < pmin) { |
2250 | props.minimum_len = Some(xmin); |
2251 | } |
2252 | } else { |
2253 | props.minimum_len = None; |
2254 | min_poisoned = true; |
2255 | } |
2256 | } |
2257 | if !max_poisoned { |
2258 | if let Some(xmax) = p.maximum_len() { |
2259 | if props.maximum_len.map_or(true, |pmax| xmax > pmax) { |
2260 | props.maximum_len = Some(xmax); |
2261 | } |
2262 | } else { |
2263 | props.maximum_len = None; |
2264 | max_poisoned = true; |
2265 | } |
2266 | } |
2267 | } |
2268 | Properties(Box::new(props)) |
2269 | } |
2270 | } |
2271 | |
2272 | impl Properties { |
2273 | /// Create a new set of HIR properties for an empty regex. |
2274 | fn empty() -> Properties { |
2275 | let inner = PropertiesI { |
2276 | minimum_len: Some(0), |
2277 | maximum_len: Some(0), |
2278 | look_set: LookSet::empty(), |
2279 | look_set_prefix: LookSet::empty(), |
2280 | look_set_suffix: LookSet::empty(), |
2281 | look_set_prefix_any: LookSet::empty(), |
2282 | look_set_suffix_any: LookSet::empty(), |
2283 | // It is debatable whether an empty regex always matches at valid |
2284 | // UTF-8 boundaries. Strictly speaking, at a byte oriented view, |
2285 | // it is clearly false. There are, for example, many empty strings |
2286 | // between the bytes encoding a '☃'. |
2287 | // |
2288 | // However, when Unicode mode is enabled, the fundamental atom |
2289 | // of matching is really a codepoint. And in that scenario, an |
2290 | // empty regex is defined to only match at valid UTF-8 boundaries |
2291 | // and to never split a codepoint. It just so happens that this |
2292 | // enforcement is somewhat tricky to do for regexes that match |
2293 | // the empty string inside regex engines themselves. It usually |
2294 | // requires some layer above the regex engine to filter out such |
2295 | // matches. |
2296 | // |
2297 | // In any case, 'true' is really the only coherent option. If it |
2298 | // were false, for example, then 'a*' would also need to be false |
2299 | // since it too can match the empty string. |
2300 | utf8: true, |
2301 | explicit_captures_len: 0, |
2302 | static_explicit_captures_len: Some(0), |
2303 | literal: false, |
2304 | alternation_literal: false, |
2305 | }; |
2306 | Properties(Box::new(inner)) |
2307 | } |
2308 | |
2309 | /// Create a new set of HIR properties for a literal regex. |
2310 | fn literal(lit: &Literal) -> Properties { |
2311 | let inner = PropertiesI { |
2312 | minimum_len: Some(lit.0.len()), |
2313 | maximum_len: Some(lit.0.len()), |
2314 | look_set: LookSet::empty(), |
2315 | look_set_prefix: LookSet::empty(), |
2316 | look_set_suffix: LookSet::empty(), |
2317 | look_set_prefix_any: LookSet::empty(), |
2318 | look_set_suffix_any: LookSet::empty(), |
2319 | utf8: core::str::from_utf8(&lit.0).is_ok(), |
2320 | explicit_captures_len: 0, |
2321 | static_explicit_captures_len: Some(0), |
2322 | literal: true, |
2323 | alternation_literal: true, |
2324 | }; |
2325 | Properties(Box::new(inner)) |
2326 | } |
2327 | |
2328 | /// Create a new set of HIR properties for a character class. |
2329 | fn class(class: &Class) -> Properties { |
2330 | let inner = PropertiesI { |
2331 | minimum_len: class.minimum_len(), |
2332 | maximum_len: class.maximum_len(), |
2333 | look_set: LookSet::empty(), |
2334 | look_set_prefix: LookSet::empty(), |
2335 | look_set_suffix: LookSet::empty(), |
2336 | look_set_prefix_any: LookSet::empty(), |
2337 | look_set_suffix_any: LookSet::empty(), |
2338 | utf8: class.is_utf8(), |
2339 | explicit_captures_len: 0, |
2340 | static_explicit_captures_len: Some(0), |
2341 | literal: false, |
2342 | alternation_literal: false, |
2343 | }; |
2344 | Properties(Box::new(inner)) |
2345 | } |
2346 | |
2347 | /// Create a new set of HIR properties for a look-around assertion. |
2348 | fn look(look: Look) -> Properties { |
2349 | let inner = PropertiesI { |
2350 | minimum_len: Some(0), |
2351 | maximum_len: Some(0), |
2352 | look_set: LookSet::singleton(look), |
2353 | look_set_prefix: LookSet::singleton(look), |
2354 | look_set_suffix: LookSet::singleton(look), |
2355 | look_set_prefix_any: LookSet::singleton(look), |
2356 | look_set_suffix_any: LookSet::singleton(look), |
2357 | // This requires a little explanation. Basically, we don't consider |
2358 | // matching an empty string to be equivalent to matching invalid |
2359 | // UTF-8, even though technically matching every empty string will |
2360 | // split the UTF-8 encoding of a single codepoint when treating a |
2361 | // UTF-8 encoded string as a sequence of bytes. Our defense here is |
2362 | // that in such a case, a codepoint should logically be treated as |
2363 | // the fundamental atom for matching, and thus the only valid match |
2364 | // points are between codepoints and not bytes. |
2365 | // |
2366 | // More practically, this is true here because it's also true |
2367 | // for 'Hir::empty()', otherwise something like 'a*' would be |
2368 | // considered to match invalid UTF-8. That in turn makes this |
2369 | // property borderline useless. |
2370 | utf8: true, |
2371 | explicit_captures_len: 0, |
2372 | static_explicit_captures_len: Some(0), |
2373 | literal: false, |
2374 | alternation_literal: false, |
2375 | }; |
2376 | Properties(Box::new(inner)) |
2377 | } |
2378 | |
2379 | /// Create a new set of HIR properties for a repetition. |
2380 | fn repetition(rep: &Repetition) -> Properties { |
2381 | let p = rep.sub.properties(); |
2382 | let minimum_len = p.minimum_len().map(|child_min| { |
2383 | let rep_min = usize::try_from(rep.min).unwrap_or(usize::MAX); |
2384 | child_min.saturating_mul(rep_min) |
2385 | }); |
2386 | let maximum_len = rep.max.and_then(|rep_max| { |
2387 | let rep_max = usize::try_from(rep_max).ok()?; |
2388 | let child_max = p.maximum_len()?; |
2389 | child_max.checked_mul(rep_max) |
2390 | }); |
2391 | |
2392 | let mut inner = PropertiesI { |
2393 | minimum_len, |
2394 | maximum_len, |
2395 | look_set: p.look_set(), |
2396 | look_set_prefix: LookSet::empty(), |
2397 | look_set_suffix: LookSet::empty(), |
2398 | look_set_prefix_any: p.look_set_prefix_any(), |
2399 | look_set_suffix_any: p.look_set_suffix_any(), |
2400 | utf8: p.is_utf8(), |
2401 | explicit_captures_len: p.explicit_captures_len(), |
2402 | static_explicit_captures_len: p.static_explicit_captures_len(), |
2403 | literal: false, |
2404 | alternation_literal: false, |
2405 | }; |
2406 | // If the repetition operator can match the empty string, then its |
2407 | // lookset prefix and suffixes themselves remain empty since they are |
2408 | // no longer required to match. |
2409 | if rep.min > 0 { |
2410 | inner.look_set_prefix = p.look_set_prefix(); |
2411 | inner.look_set_suffix = p.look_set_suffix(); |
2412 | } |
2413 | // If the static captures len of the sub-expression is not known or is |
2414 | // zero, then it automatically propagates to the repetition, regardless |
2415 | // of the repetition. Otherwise, it might change, but only when the |
2416 | // repetition can match 0 times. |
2417 | if rep.min == 0 |
2418 | && inner.static_explicit_captures_len.map_or(false, |len| len > 0) |
2419 | { |
2420 | // If we require a match 0 times, then our captures len is |
2421 | // guaranteed to be zero. Otherwise, if we *can* match the empty |
2422 | // string, then it's impossible to know how many captures will be |
2423 | // in the resulting match. |
2424 | if rep.max == Some(0) { |
2425 | inner.static_explicit_captures_len = Some(0); |
2426 | } else { |
2427 | inner.static_explicit_captures_len = None; |
2428 | } |
2429 | } |
2430 | Properties(Box::new(inner)) |
2431 | } |
2432 | |
2433 | /// Create a new set of HIR properties for a capture. |
2434 | fn capture(capture: &Capture) -> Properties { |
2435 | let p = capture.sub.properties(); |
2436 | Properties(Box::new(PropertiesI { |
2437 | explicit_captures_len: p.explicit_captures_len().saturating_add(1), |
2438 | static_explicit_captures_len: p |
2439 | .static_explicit_captures_len() |
2440 | .map(|len| len.saturating_add(1)), |
2441 | literal: false, |
2442 | alternation_literal: false, |
2443 | ..*p.0.clone() |
2444 | })) |
2445 | } |
2446 | |
2447 | /// Create a new set of HIR properties for a concatenation. |
2448 | fn concat(concat: &[Hir]) -> Properties { |
2449 | // The base case is an empty concatenation, which matches the empty |
2450 | // string. Note though that empty concatenations aren't possible, |
2451 | // because the Hir::concat smart constructor rewrites those as |
2452 | // Hir::empty. |
2453 | let mut props = PropertiesI { |
2454 | minimum_len: Some(0), |
2455 | maximum_len: Some(0), |
2456 | look_set: LookSet::empty(), |
2457 | look_set_prefix: LookSet::empty(), |
2458 | look_set_suffix: LookSet::empty(), |
2459 | look_set_prefix_any: LookSet::empty(), |
2460 | look_set_suffix_any: LookSet::empty(), |
2461 | utf8: true, |
2462 | explicit_captures_len: 0, |
2463 | static_explicit_captures_len: Some(0), |
2464 | literal: true, |
2465 | alternation_literal: true, |
2466 | }; |
2467 | // Handle properties that need to visit every child hir. |
2468 | for x in concat.iter() { |
2469 | let p = x.properties(); |
2470 | props.look_set.set_union(p.look_set()); |
2471 | props.utf8 = props.utf8 && p.is_utf8(); |
2472 | props.explicit_captures_len = props |
2473 | .explicit_captures_len |
2474 | .saturating_add(p.explicit_captures_len()); |
2475 | props.static_explicit_captures_len = p |
2476 | .static_explicit_captures_len() |
2477 | .and_then(|len1| { |
2478 | Some((len1, props.static_explicit_captures_len?)) |
2479 | }) |
2480 | .and_then(|(len1, len2)| Some(len1.saturating_add(len2))); |
2481 | props.literal = props.literal && p.is_literal(); |
2482 | props.alternation_literal = |
2483 | props.alternation_literal && p.is_alternation_literal(); |
2484 | if let Some(minimum_len) = props.minimum_len { |
2485 | match p.minimum_len() { |
2486 | None => props.minimum_len = None, |
2487 | Some(len) => { |
2488 | // We use saturating arithmetic here because the |
2489 | // minimum is just a lower bound. We can't go any |
2490 | // higher than what our number types permit. |
2491 | props.minimum_len = |
2492 | Some(minimum_len.saturating_add(len)); |
2493 | } |
2494 | } |
2495 | } |
2496 | if let Some(maximum_len) = props.maximum_len { |
2497 | match p.maximum_len() { |
2498 | None => props.maximum_len = None, |
2499 | Some(len) => { |
2500 | props.maximum_len = maximum_len.checked_add(len) |
2501 | } |
2502 | } |
2503 | } |
2504 | } |
2505 | // Handle the prefix properties, which only requires visiting |
2506 | // child exprs until one matches more than the empty string. |
2507 | let mut it = concat.iter(); |
2508 | while let Some(x) = it.next() { |
2509 | props.look_set_prefix.set_union(x.properties().look_set_prefix()); |
2510 | props |
2511 | .look_set_prefix_any |
2512 | .set_union(x.properties().look_set_prefix_any()); |
2513 | if x.properties().maximum_len().map_or(true, |x| x > 0) { |
2514 | break; |
2515 | } |
2516 | } |
2517 | // Same thing for the suffix properties, but in reverse. |
2518 | let mut it = concat.iter().rev(); |
2519 | while let Some(x) = it.next() { |
2520 | props.look_set_suffix.set_union(x.properties().look_set_suffix()); |
2521 | props |
2522 | .look_set_suffix_any |
2523 | .set_union(x.properties().look_set_suffix_any()); |
2524 | if x.properties().maximum_len().map_or(true, |x| x > 0) { |
2525 | break; |
2526 | } |
2527 | } |
2528 | Properties(Box::new(props)) |
2529 | } |
2530 | |
2531 | /// Create a new set of HIR properties for a concatenation. |
2532 | fn alternation(alts: &[Hir]) -> Properties { |
2533 | Properties::union(alts.iter().map(|hir| hir.properties())) |
2534 | } |
2535 | } |
2536 | |
2537 | /// A set of look-around assertions. |
2538 | /// |
2539 | /// This is useful for efficiently tracking look-around assertions. For |
2540 | /// example, an [`Hir`] provides properties that return `LookSet`s. |
2541 | #[derive (Clone, Copy, Default, Eq, PartialEq)] |
2542 | pub struct LookSet { |
2543 | /// The underlying representation this set is exposed to make it possible |
2544 | /// to store it somewhere efficiently. The representation is that |
2545 | /// of a bitset, where each assertion occupies bit `i` where `i = |
2546 | /// Look::as_repr()`. |
2547 | /// |
2548 | /// Note that users of this internal representation must permit the full |
2549 | /// range of `u16` values to be represented. For example, even if the |
2550 | /// current implementation only makes use of the 10 least significant bits, |
2551 | /// it may use more bits in a future semver compatible release. |
2552 | pub bits: u16, |
2553 | } |
2554 | |
2555 | impl LookSet { |
2556 | /// Create an empty set of look-around assertions. |
2557 | #[inline ] |
2558 | pub fn empty() -> LookSet { |
2559 | LookSet { bits: 0 } |
2560 | } |
2561 | |
2562 | /// Create a full set of look-around assertions. |
2563 | /// |
2564 | /// This set contains all possible look-around assertions. |
2565 | #[inline ] |
2566 | pub fn full() -> LookSet { |
2567 | LookSet { bits: !0 } |
2568 | } |
2569 | |
2570 | /// Create a look-around set containing the look-around assertion given. |
2571 | /// |
2572 | /// This is a convenience routine for creating an empty set and inserting |
2573 | /// one look-around assertions. |
2574 | #[inline ] |
2575 | pub fn singleton(look: Look) -> LookSet { |
2576 | LookSet::empty().insert(look) |
2577 | } |
2578 | |
2579 | /// Returns the total number of look-around assertions in this set. |
2580 | #[inline ] |
2581 | pub fn len(self) -> usize { |
2582 | // OK because max value always fits in a u8, which in turn always |
2583 | // fits in a usize, regardless of target. |
2584 | usize::try_from(self.bits.count_ones()).unwrap() |
2585 | } |
2586 | |
2587 | /// Returns true if and only if this set is empty. |
2588 | #[inline ] |
2589 | pub fn is_empty(self) -> bool { |
2590 | self.len() == 0 |
2591 | } |
2592 | |
2593 | /// Returns true if and only if the given look-around assertion is in this |
2594 | /// set. |
2595 | #[inline ] |
2596 | pub fn contains(self, look: Look) -> bool { |
2597 | self.bits & look.as_repr() != 0 |
2598 | } |
2599 | |
2600 | /// Returns true if and only if this set contains any anchor assertions. |
2601 | /// This includes both "start/end of haystack" and "start/end of line." |
2602 | #[inline ] |
2603 | pub fn contains_anchor(&self) -> bool { |
2604 | self.contains_anchor_haystack() || self.contains_anchor_line() |
2605 | } |
2606 | |
2607 | /// Returns true if and only if this set contains any "start/end of |
2608 | /// haystack" anchors. This doesn't include "start/end of line" anchors. |
2609 | #[inline ] |
2610 | pub fn contains_anchor_haystack(&self) -> bool { |
2611 | self.contains(Look::Start) || self.contains(Look::End) |
2612 | } |
2613 | |
2614 | /// Returns true if and only if this set contains any "start/end of line" |
2615 | /// anchors. This doesn't include "start/end of haystack" anchors. This |
2616 | /// includes both `\n` line anchors and CRLF (`\r\n`) aware line anchors. |
2617 | #[inline ] |
2618 | pub fn contains_anchor_line(&self) -> bool { |
2619 | self.contains(Look::StartLF) |
2620 | || self.contains(Look::EndLF) |
2621 | || self.contains(Look::StartCRLF) |
2622 | || self.contains(Look::EndCRLF) |
2623 | } |
2624 | |
2625 | /// Returns true if and only if this set contains any "start/end of line" |
2626 | /// anchors that only treat `\n` as line terminators. This does not include |
2627 | /// haystack anchors or CRLF aware line anchors. |
2628 | #[inline ] |
2629 | pub fn contains_anchor_lf(&self) -> bool { |
2630 | self.contains(Look::StartLF) || self.contains(Look::EndLF) |
2631 | } |
2632 | |
2633 | /// Returns true if and only if this set contains any "start/end of line" |
2634 | /// anchors that are CRLF-aware. This doesn't include "start/end of |
2635 | /// haystack" or "start/end of line-feed" anchors. |
2636 | #[inline ] |
2637 | pub fn contains_anchor_crlf(&self) -> bool { |
2638 | self.contains(Look::StartCRLF) || self.contains(Look::EndCRLF) |
2639 | } |
2640 | |
2641 | /// Returns true if and only if this set contains any word boundary or |
2642 | /// negated word boundary assertions. This include both Unicode and ASCII |
2643 | /// word boundaries. |
2644 | #[inline ] |
2645 | pub fn contains_word(self) -> bool { |
2646 | self.contains_word_unicode() || self.contains_word_ascii() |
2647 | } |
2648 | |
2649 | /// Returns true if and only if this set contains any Unicode word boundary |
2650 | /// or negated Unicode word boundary assertions. |
2651 | #[inline ] |
2652 | pub fn contains_word_unicode(self) -> bool { |
2653 | self.contains(Look::WordUnicode) |
2654 | || self.contains(Look::WordUnicodeNegate) |
2655 | } |
2656 | |
2657 | /// Returns true if and only if this set contains any ASCII word boundary |
2658 | /// or negated ASCII word boundary assertions. |
2659 | #[inline ] |
2660 | pub fn contains_word_ascii(self) -> bool { |
2661 | self.contains(Look::WordAscii) || self.contains(Look::WordAsciiNegate) |
2662 | } |
2663 | |
2664 | /// Returns an iterator over all of the look-around assertions in this set. |
2665 | #[inline ] |
2666 | pub fn iter(self) -> LookSetIter { |
2667 | LookSetIter { set: self } |
2668 | } |
2669 | |
2670 | /// Return a new set that is equivalent to the original, but with the given |
2671 | /// assertion added to it. If the assertion is already in the set, then the |
2672 | /// returned set is equivalent to the original. |
2673 | #[inline ] |
2674 | pub fn insert(self, look: Look) -> LookSet { |
2675 | LookSet { bits: self.bits | look.as_repr() } |
2676 | } |
2677 | |
2678 | /// Updates this set in place with the result of inserting the given |
2679 | /// assertion into this set. |
2680 | #[inline ] |
2681 | pub fn set_insert(&mut self, look: Look) { |
2682 | *self = self.insert(look); |
2683 | } |
2684 | |
2685 | /// Return a new set that is equivalent to the original, but with the given |
2686 | /// assertion removed from it. If the assertion is not in the set, then the |
2687 | /// returned set is equivalent to the original. |
2688 | #[inline ] |
2689 | pub fn remove(self, look: Look) -> LookSet { |
2690 | LookSet { bits: self.bits & !look.as_repr() } |
2691 | } |
2692 | |
2693 | /// Updates this set in place with the result of removing the given |
2694 | /// assertion from this set. |
2695 | #[inline ] |
2696 | pub fn set_remove(&mut self, look: Look) { |
2697 | *self = self.remove(look); |
2698 | } |
2699 | |
2700 | /// Returns a new set that is the result of subtracting the given set from |
2701 | /// this set. |
2702 | #[inline ] |
2703 | pub fn subtract(self, other: LookSet) -> LookSet { |
2704 | LookSet { bits: self.bits & !other.bits } |
2705 | } |
2706 | |
2707 | /// Updates this set in place with the result of subtracting the given set |
2708 | /// from this set. |
2709 | #[inline ] |
2710 | pub fn set_subtract(&mut self, other: LookSet) { |
2711 | *self = self.subtract(other); |
2712 | } |
2713 | |
2714 | /// Returns a new set that is the union of this and the one given. |
2715 | #[inline ] |
2716 | pub fn union(self, other: LookSet) -> LookSet { |
2717 | LookSet { bits: self.bits | other.bits } |
2718 | } |
2719 | |
2720 | /// Updates this set in place with the result of unioning it with the one |
2721 | /// given. |
2722 | #[inline ] |
2723 | pub fn set_union(&mut self, other: LookSet) { |
2724 | *self = self.union(other); |
2725 | } |
2726 | |
2727 | /// Returns a new set that is the intersection of this and the one given. |
2728 | #[inline ] |
2729 | pub fn intersect(self, other: LookSet) -> LookSet { |
2730 | LookSet { bits: self.bits & other.bits } |
2731 | } |
2732 | |
2733 | /// Updates this set in place with the result of intersecting it with the |
2734 | /// one given. |
2735 | #[inline ] |
2736 | pub fn set_intersect(&mut self, other: LookSet) { |
2737 | *self = self.intersect(other); |
2738 | } |
2739 | |
2740 | /// Return a `LookSet` from the slice given as a native endian 16-bit |
2741 | /// integer. |
2742 | /// |
2743 | /// # Panics |
2744 | /// |
2745 | /// This panics if `slice.len() < 2`. |
2746 | #[inline ] |
2747 | pub fn read_repr(slice: &[u8]) -> LookSet { |
2748 | let bits = u16::from_ne_bytes(slice[..2].try_into().unwrap()); |
2749 | LookSet { bits } |
2750 | } |
2751 | |
2752 | /// Write a `LookSet` as a native endian 16-bit integer to the beginning |
2753 | /// of the slice given. |
2754 | /// |
2755 | /// # Panics |
2756 | /// |
2757 | /// This panics if `slice.len() < 2`. |
2758 | #[inline ] |
2759 | pub fn write_repr(self, slice: &mut [u8]) { |
2760 | let raw = self.bits.to_ne_bytes(); |
2761 | slice[0] = raw[0]; |
2762 | slice[1] = raw[1]; |
2763 | } |
2764 | } |
2765 | |
2766 | impl core::fmt::Debug for LookSet { |
2767 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2768 | if self.is_empty() { |
2769 | return write!(f, "∅" ); |
2770 | } |
2771 | for look: Look in self.iter() { |
2772 | write!(f, " {}" , look.as_char())?; |
2773 | } |
2774 | Ok(()) |
2775 | } |
2776 | } |
2777 | |
2778 | /// An iterator over all look-around assertions in a [`LookSet`]. |
2779 | /// |
2780 | /// This iterator is created by [`LookSet::iter`]. |
2781 | #[derive (Clone, Debug)] |
2782 | pub struct LookSetIter { |
2783 | set: LookSet, |
2784 | } |
2785 | |
2786 | impl Iterator for LookSetIter { |
2787 | type Item = Look; |
2788 | |
2789 | #[inline ] |
2790 | fn next(&mut self) -> Option<Look> { |
2791 | if self.set.is_empty() { |
2792 | return None; |
2793 | } |
2794 | // We'll never have more than u8::MAX distinct look-around assertions, |
2795 | // so 'repr' will always fit into a u16. |
2796 | let repr: u16 = u16::try_from(self.set.bits.trailing_zeros()).unwrap(); |
2797 | let look: Look = Look::from_repr(1 << repr)?; |
2798 | self.set = self.set.remove(look); |
2799 | Some(look) |
2800 | } |
2801 | } |
2802 | |
2803 | /// Given a sequence of HIR values where each value corresponds to a Unicode |
2804 | /// class (or an all-ASCII byte class), return a single Unicode class |
2805 | /// corresponding to the union of the classes found. |
2806 | fn class_chars(hirs: &[Hir]) -> Option<Class> { |
2807 | let mut cls: ClassUnicode = ClassUnicode::new(ranges:vec![]); |
2808 | for hir: &Hir in hirs.iter() { |
2809 | match *hir.kind() { |
2810 | HirKind::Class(Class::Unicode(ref cls2: &ClassUnicode)) => { |
2811 | cls.union(cls2); |
2812 | } |
2813 | HirKind::Class(Class::Bytes(ref cls2: &ClassBytes)) => { |
2814 | cls.union(&cls2.to_unicode_class()?); |
2815 | } |
2816 | _ => return None, |
2817 | }; |
2818 | } |
2819 | Some(Class::Unicode(cls)) |
2820 | } |
2821 | |
2822 | /// Given a sequence of HIR values where each value corresponds to a byte class |
2823 | /// (or an all-ASCII Unicode class), return a single byte class corresponding |
2824 | /// to the union of the classes found. |
2825 | fn class_bytes(hirs: &[Hir]) -> Option<Class> { |
2826 | let mut cls: ClassBytes = ClassBytes::new(ranges:vec![]); |
2827 | for hir: &Hir in hirs.iter() { |
2828 | match *hir.kind() { |
2829 | HirKind::Class(Class::Unicode(ref cls2: &ClassUnicode)) => { |
2830 | cls.union(&cls2.to_byte_class()?); |
2831 | } |
2832 | HirKind::Class(Class::Bytes(ref cls2: &ClassBytes)) => { |
2833 | cls.union(cls2); |
2834 | } |
2835 | _ => return None, |
2836 | }; |
2837 | } |
2838 | Some(Class::Bytes(cls)) |
2839 | } |
2840 | |
2841 | /// Given a sequence of HIR values where each value corresponds to a literal |
2842 | /// that is a single `char`, return that sequence of `char`s. Otherwise return |
2843 | /// None. No deduplication is done. |
2844 | fn singleton_chars(hirs: &[Hir]) -> Option<Vec<char>> { |
2845 | let mut singletons: Vec = vec![]; |
2846 | for hir: &Hir in hirs.iter() { |
2847 | let literal: &Box<[u8]> = match *hir.kind() { |
2848 | HirKind::Literal(Literal(ref bytes: &Box<[u8]>)) => bytes, |
2849 | _ => return None, |
2850 | }; |
2851 | let ch: char = match crate::debug::utf8_decode(bytes:literal) { |
2852 | None => return None, |
2853 | Some(Err(_)) => return None, |
2854 | Some(Ok(ch: char)) => ch, |
2855 | }; |
2856 | if literal.len() != ch.len_utf8() { |
2857 | return None; |
2858 | } |
2859 | singletons.push(ch); |
2860 | } |
2861 | Some(singletons) |
2862 | } |
2863 | |
2864 | /// Given a sequence of HIR values where each value corresponds to a literal |
2865 | /// that is a single byte, return that sequence of bytes. Otherwise return |
2866 | /// None. No deduplication is done. |
2867 | fn singleton_bytes(hirs: &[Hir]) -> Option<Vec<u8>> { |
2868 | let mut singletons: Vec = vec![]; |
2869 | for hir: &Hir in hirs.iter() { |
2870 | let literal: &Box<[u8]> = match *hir.kind() { |
2871 | HirKind::Literal(Literal(ref bytes: &Box<[u8]>)) => bytes, |
2872 | _ => return None, |
2873 | }; |
2874 | if literal.len() != 1 { |
2875 | return None; |
2876 | } |
2877 | singletons.push(literal[0]); |
2878 | } |
2879 | Some(singletons) |
2880 | } |
2881 | |
2882 | /// Looks for a common prefix in the list of alternation branches given. If one |
2883 | /// is found, then an equivalent but (hopefully) simplified Hir is returned. |
2884 | /// Otherwise, the original given list of branches is returned unmodified. |
2885 | /// |
2886 | /// This is not quite as good as it could be. Right now, it requires that |
2887 | /// all branches are 'Concat' expressions. It also doesn't do well with |
2888 | /// literals. For example, given 'foofoo|foobar', it will not refactor it to |
2889 | /// 'foo(?:foo|bar)' because literals are flattened into their own special |
2890 | /// concatenation. (One wonders if perhaps 'Literal' should be a single atom |
2891 | /// instead of a string of bytes because of this. Otherwise, handling the |
2892 | /// current representation in this routine will be pretty gnarly. Sigh.) |
2893 | fn lift_common_prefix(hirs: Vec<Hir>) -> Result<Hir, Vec<Hir>> { |
2894 | if hirs.len() <= 1 { |
2895 | return Err(hirs); |
2896 | } |
2897 | let mut prefix = match hirs[0].kind() { |
2898 | HirKind::Concat(ref xs) => &**xs, |
2899 | _ => return Err(hirs), |
2900 | }; |
2901 | if prefix.is_empty() { |
2902 | return Err(hirs); |
2903 | } |
2904 | for h in hirs.iter().skip(1) { |
2905 | let concat = match h.kind() { |
2906 | HirKind::Concat(ref xs) => xs, |
2907 | _ => return Err(hirs), |
2908 | }; |
2909 | let common_len = prefix |
2910 | .iter() |
2911 | .zip(concat.iter()) |
2912 | .take_while(|(x, y)| x == y) |
2913 | .count(); |
2914 | prefix = &prefix[..common_len]; |
2915 | if prefix.is_empty() { |
2916 | return Err(hirs); |
2917 | } |
2918 | } |
2919 | let len = prefix.len(); |
2920 | assert_ne!(0, len); |
2921 | let mut prefix_concat = vec![]; |
2922 | let mut suffix_alts = vec![]; |
2923 | for h in hirs { |
2924 | let mut concat = match h.into_kind() { |
2925 | HirKind::Concat(xs) => xs, |
2926 | // We required all sub-expressions to be |
2927 | // concats above, so we're only here if we |
2928 | // have a concat. |
2929 | _ => unreachable!(), |
2930 | }; |
2931 | suffix_alts.push(Hir::concat(concat.split_off(len))); |
2932 | if prefix_concat.is_empty() { |
2933 | prefix_concat = concat; |
2934 | } |
2935 | } |
2936 | let mut concat = prefix_concat; |
2937 | concat.push(Hir::alternation(suffix_alts)); |
2938 | Ok(Hir::concat(concat)) |
2939 | } |
2940 | |
2941 | #[cfg (test)] |
2942 | mod tests { |
2943 | use super::*; |
2944 | |
2945 | fn uclass(ranges: &[(char, char)]) -> ClassUnicode { |
2946 | let ranges: Vec<ClassUnicodeRange> = ranges |
2947 | .iter() |
2948 | .map(|&(s, e)| ClassUnicodeRange::new(s, e)) |
2949 | .collect(); |
2950 | ClassUnicode::new(ranges) |
2951 | } |
2952 | |
2953 | fn bclass(ranges: &[(u8, u8)]) -> ClassBytes { |
2954 | let ranges: Vec<ClassBytesRange> = |
2955 | ranges.iter().map(|&(s, e)| ClassBytesRange::new(s, e)).collect(); |
2956 | ClassBytes::new(ranges) |
2957 | } |
2958 | |
2959 | fn uranges(cls: &ClassUnicode) -> Vec<(char, char)> { |
2960 | cls.iter().map(|x| (x.start(), x.end())).collect() |
2961 | } |
2962 | |
2963 | #[cfg (feature = "unicode-case" )] |
2964 | fn ucasefold(cls: &ClassUnicode) -> ClassUnicode { |
2965 | let mut cls_ = cls.clone(); |
2966 | cls_.case_fold_simple(); |
2967 | cls_ |
2968 | } |
2969 | |
2970 | fn uunion(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
2971 | let mut cls_ = cls1.clone(); |
2972 | cls_.union(cls2); |
2973 | cls_ |
2974 | } |
2975 | |
2976 | fn uintersect(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
2977 | let mut cls_ = cls1.clone(); |
2978 | cls_.intersect(cls2); |
2979 | cls_ |
2980 | } |
2981 | |
2982 | fn udifference(cls1: &ClassUnicode, cls2: &ClassUnicode) -> ClassUnicode { |
2983 | let mut cls_ = cls1.clone(); |
2984 | cls_.difference(cls2); |
2985 | cls_ |
2986 | } |
2987 | |
2988 | fn usymdifference( |
2989 | cls1: &ClassUnicode, |
2990 | cls2: &ClassUnicode, |
2991 | ) -> ClassUnicode { |
2992 | let mut cls_ = cls1.clone(); |
2993 | cls_.symmetric_difference(cls2); |
2994 | cls_ |
2995 | } |
2996 | |
2997 | fn unegate(cls: &ClassUnicode) -> ClassUnicode { |
2998 | let mut cls_ = cls.clone(); |
2999 | cls_.negate(); |
3000 | cls_ |
3001 | } |
3002 | |
3003 | fn branges(cls: &ClassBytes) -> Vec<(u8, u8)> { |
3004 | cls.iter().map(|x| (x.start(), x.end())).collect() |
3005 | } |
3006 | |
3007 | fn bcasefold(cls: &ClassBytes) -> ClassBytes { |
3008 | let mut cls_ = cls.clone(); |
3009 | cls_.case_fold_simple(); |
3010 | cls_ |
3011 | } |
3012 | |
3013 | fn bunion(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
3014 | let mut cls_ = cls1.clone(); |
3015 | cls_.union(cls2); |
3016 | cls_ |
3017 | } |
3018 | |
3019 | fn bintersect(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
3020 | let mut cls_ = cls1.clone(); |
3021 | cls_.intersect(cls2); |
3022 | cls_ |
3023 | } |
3024 | |
3025 | fn bdifference(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
3026 | let mut cls_ = cls1.clone(); |
3027 | cls_.difference(cls2); |
3028 | cls_ |
3029 | } |
3030 | |
3031 | fn bsymdifference(cls1: &ClassBytes, cls2: &ClassBytes) -> ClassBytes { |
3032 | let mut cls_ = cls1.clone(); |
3033 | cls_.symmetric_difference(cls2); |
3034 | cls_ |
3035 | } |
3036 | |
3037 | fn bnegate(cls: &ClassBytes) -> ClassBytes { |
3038 | let mut cls_ = cls.clone(); |
3039 | cls_.negate(); |
3040 | cls_ |
3041 | } |
3042 | |
3043 | #[test ] |
3044 | fn class_range_canonical_unicode() { |
3045 | let range = ClassUnicodeRange::new(' \u{00FF}' , ' \0' ); |
3046 | assert_eq!(' \0' , range.start()); |
3047 | assert_eq!(' \u{00FF}' , range.end()); |
3048 | } |
3049 | |
3050 | #[test ] |
3051 | fn class_range_canonical_bytes() { |
3052 | let range = ClassBytesRange::new(b' \xFF' , b' \0' ); |
3053 | assert_eq!(b' \0' , range.start()); |
3054 | assert_eq!(b' \xFF' , range.end()); |
3055 | } |
3056 | |
3057 | #[test ] |
3058 | fn class_canonicalize_unicode() { |
3059 | let cls = uclass(&[('a' , 'c' ), ('x' , 'z' )]); |
3060 | let expected = vec![('a' , 'c' ), ('x' , 'z' )]; |
3061 | assert_eq!(expected, uranges(&cls)); |
3062 | |
3063 | let cls = uclass(&[('x' , 'z' ), ('a' , 'c' )]); |
3064 | let expected = vec![('a' , 'c' ), ('x' , 'z' )]; |
3065 | assert_eq!(expected, uranges(&cls)); |
3066 | |
3067 | let cls = uclass(&[('x' , 'z' ), ('w' , 'y' )]); |
3068 | let expected = vec![('w' , 'z' )]; |
3069 | assert_eq!(expected, uranges(&cls)); |
3070 | |
3071 | let cls = uclass(&[ |
3072 | ('c' , 'f' ), |
3073 | ('a' , 'g' ), |
3074 | ('d' , 'j' ), |
3075 | ('a' , 'c' ), |
3076 | ('m' , 'p' ), |
3077 | ('l' , 's' ), |
3078 | ]); |
3079 | let expected = vec![('a' , 'j' ), ('l' , 's' )]; |
3080 | assert_eq!(expected, uranges(&cls)); |
3081 | |
3082 | let cls = uclass(&[('x' , 'z' ), ('u' , 'w' )]); |
3083 | let expected = vec![('u' , 'z' )]; |
3084 | assert_eq!(expected, uranges(&cls)); |
3085 | |
3086 | let cls = uclass(&[(' \x00' , ' \u{10FFFF}' ), (' \x00' , ' \u{10FFFF}' )]); |
3087 | let expected = vec![(' \x00' , ' \u{10FFFF}' )]; |
3088 | assert_eq!(expected, uranges(&cls)); |
3089 | |
3090 | let cls = uclass(&[('a' , 'a' ), ('b' , 'b' )]); |
3091 | let expected = vec![('a' , 'b' )]; |
3092 | assert_eq!(expected, uranges(&cls)); |
3093 | } |
3094 | |
3095 | #[test ] |
3096 | fn class_canonicalize_bytes() { |
3097 | let cls = bclass(&[(b'a' , b'c' ), (b'x' , b'z' )]); |
3098 | let expected = vec![(b'a' , b'c' ), (b'x' , b'z' )]; |
3099 | assert_eq!(expected, branges(&cls)); |
3100 | |
3101 | let cls = bclass(&[(b'x' , b'z' ), (b'a' , b'c' )]); |
3102 | let expected = vec![(b'a' , b'c' ), (b'x' , b'z' )]; |
3103 | assert_eq!(expected, branges(&cls)); |
3104 | |
3105 | let cls = bclass(&[(b'x' , b'z' ), (b'w' , b'y' )]); |
3106 | let expected = vec![(b'w' , b'z' )]; |
3107 | assert_eq!(expected, branges(&cls)); |
3108 | |
3109 | let cls = bclass(&[ |
3110 | (b'c' , b'f' ), |
3111 | (b'a' , b'g' ), |
3112 | (b'd' , b'j' ), |
3113 | (b'a' , b'c' ), |
3114 | (b'm' , b'p' ), |
3115 | (b'l' , b's' ), |
3116 | ]); |
3117 | let expected = vec![(b'a' , b'j' ), (b'l' , b's' )]; |
3118 | assert_eq!(expected, branges(&cls)); |
3119 | |
3120 | let cls = bclass(&[(b'x' , b'z' ), (b'u' , b'w' )]); |
3121 | let expected = vec![(b'u' , b'z' )]; |
3122 | assert_eq!(expected, branges(&cls)); |
3123 | |
3124 | let cls = bclass(&[(b' \x00' , b' \xFF' ), (b' \x00' , b' \xFF' )]); |
3125 | let expected = vec![(b' \x00' , b' \xFF' )]; |
3126 | assert_eq!(expected, branges(&cls)); |
3127 | |
3128 | let cls = bclass(&[(b'a' , b'a' ), (b'b' , b'b' )]); |
3129 | let expected = vec![(b'a' , b'b' )]; |
3130 | assert_eq!(expected, branges(&cls)); |
3131 | } |
3132 | |
3133 | #[test ] |
3134 | #[cfg (feature = "unicode-case" )] |
3135 | fn class_case_fold_unicode() { |
3136 | let cls = uclass(&[ |
3137 | ('C' , 'F' ), |
3138 | ('A' , 'G' ), |
3139 | ('D' , 'J' ), |
3140 | ('A' , 'C' ), |
3141 | ('M' , 'P' ), |
3142 | ('L' , 'S' ), |
3143 | ('c' , 'f' ), |
3144 | ]); |
3145 | let expected = uclass(&[ |
3146 | ('A' , 'J' ), |
3147 | ('L' , 'S' ), |
3148 | ('a' , 'j' ), |
3149 | ('l' , 's' ), |
3150 | (' \u{17F}' , ' \u{17F}' ), |
3151 | ]); |
3152 | assert_eq!(expected, ucasefold(&cls)); |
3153 | |
3154 | let cls = uclass(&[('A' , 'Z' )]); |
3155 | let expected = uclass(&[ |
3156 | ('A' , 'Z' ), |
3157 | ('a' , 'z' ), |
3158 | (' \u{17F}' , ' \u{17F}' ), |
3159 | (' \u{212A}' , ' \u{212A}' ), |
3160 | ]); |
3161 | assert_eq!(expected, ucasefold(&cls)); |
3162 | |
3163 | let cls = uclass(&[('a' , 'z' )]); |
3164 | let expected = uclass(&[ |
3165 | ('A' , 'Z' ), |
3166 | ('a' , 'z' ), |
3167 | (' \u{17F}' , ' \u{17F}' ), |
3168 | (' \u{212A}' , ' \u{212A}' ), |
3169 | ]); |
3170 | assert_eq!(expected, ucasefold(&cls)); |
3171 | |
3172 | let cls = uclass(&[('A' , 'A' ), ('_' , '_' )]); |
3173 | let expected = uclass(&[('A' , 'A' ), ('_' , '_' ), ('a' , 'a' )]); |
3174 | assert_eq!(expected, ucasefold(&cls)); |
3175 | |
3176 | let cls = uclass(&[('A' , 'A' ), ('=' , '=' )]); |
3177 | let expected = uclass(&[('=' , '=' ), ('A' , 'A' ), ('a' , 'a' )]); |
3178 | assert_eq!(expected, ucasefold(&cls)); |
3179 | |
3180 | let cls = uclass(&[(' \x00' , ' \x10' )]); |
3181 | assert_eq!(cls, ucasefold(&cls)); |
3182 | |
3183 | let cls = uclass(&[('k' , 'k' )]); |
3184 | let expected = |
3185 | uclass(&[('K' , 'K' ), ('k' , 'k' ), (' \u{212A}' , ' \u{212A}' )]); |
3186 | assert_eq!(expected, ucasefold(&cls)); |
3187 | |
3188 | let cls = uclass(&[('@' , '@' )]); |
3189 | assert_eq!(cls, ucasefold(&cls)); |
3190 | } |
3191 | |
3192 | #[test ] |
3193 | #[cfg (not(feature = "unicode-case" ))] |
3194 | fn class_case_fold_unicode_disabled() { |
3195 | let mut cls = uclass(&[ |
3196 | ('C' , 'F' ), |
3197 | ('A' , 'G' ), |
3198 | ('D' , 'J' ), |
3199 | ('A' , 'C' ), |
3200 | ('M' , 'P' ), |
3201 | ('L' , 'S' ), |
3202 | ('c' , 'f' ), |
3203 | ]); |
3204 | assert!(cls.try_case_fold_simple().is_err()); |
3205 | } |
3206 | |
3207 | #[test ] |
3208 | #[should_panic ] |
3209 | #[cfg (not(feature = "unicode-case" ))] |
3210 | fn class_case_fold_unicode_disabled_panics() { |
3211 | let mut cls = uclass(&[ |
3212 | ('C' , 'F' ), |
3213 | ('A' , 'G' ), |
3214 | ('D' , 'J' ), |
3215 | ('A' , 'C' ), |
3216 | ('M' , 'P' ), |
3217 | ('L' , 'S' ), |
3218 | ('c' , 'f' ), |
3219 | ]); |
3220 | cls.case_fold_simple(); |
3221 | } |
3222 | |
3223 | #[test ] |
3224 | fn class_case_fold_bytes() { |
3225 | let cls = bclass(&[ |
3226 | (b'C' , b'F' ), |
3227 | (b'A' , b'G' ), |
3228 | (b'D' , b'J' ), |
3229 | (b'A' , b'C' ), |
3230 | (b'M' , b'P' ), |
3231 | (b'L' , b'S' ), |
3232 | (b'c' , b'f' ), |
3233 | ]); |
3234 | let expected = |
3235 | bclass(&[(b'A' , b'J' ), (b'L' , b'S' ), (b'a' , b'j' ), (b'l' , b's' )]); |
3236 | assert_eq!(expected, bcasefold(&cls)); |
3237 | |
3238 | let cls = bclass(&[(b'A' , b'Z' )]); |
3239 | let expected = bclass(&[(b'A' , b'Z' ), (b'a' , b'z' )]); |
3240 | assert_eq!(expected, bcasefold(&cls)); |
3241 | |
3242 | let cls = bclass(&[(b'a' , b'z' )]); |
3243 | let expected = bclass(&[(b'A' , b'Z' ), (b'a' , b'z' )]); |
3244 | assert_eq!(expected, bcasefold(&cls)); |
3245 | |
3246 | let cls = bclass(&[(b'A' , b'A' ), (b'_' , b'_' )]); |
3247 | let expected = bclass(&[(b'A' , b'A' ), (b'_' , b'_' ), (b'a' , b'a' )]); |
3248 | assert_eq!(expected, bcasefold(&cls)); |
3249 | |
3250 | let cls = bclass(&[(b'A' , b'A' ), (b'=' , b'=' )]); |
3251 | let expected = bclass(&[(b'=' , b'=' ), (b'A' , b'A' ), (b'a' , b'a' )]); |
3252 | assert_eq!(expected, bcasefold(&cls)); |
3253 | |
3254 | let cls = bclass(&[(b' \x00' , b' \x10' )]); |
3255 | assert_eq!(cls, bcasefold(&cls)); |
3256 | |
3257 | let cls = bclass(&[(b'k' , b'k' )]); |
3258 | let expected = bclass(&[(b'K' , b'K' ), (b'k' , b'k' )]); |
3259 | assert_eq!(expected, bcasefold(&cls)); |
3260 | |
3261 | let cls = bclass(&[(b'@' , b'@' )]); |
3262 | assert_eq!(cls, bcasefold(&cls)); |
3263 | } |
3264 | |
3265 | #[test ] |
3266 | fn class_negate_unicode() { |
3267 | let cls = uclass(&[('a' , 'a' )]); |
3268 | let expected = uclass(&[(' \x00' , ' \x60' ), (' \x62' , ' \u{10FFFF}' )]); |
3269 | assert_eq!(expected, unegate(&cls)); |
3270 | |
3271 | let cls = uclass(&[('a' , 'a' ), ('b' , 'b' )]); |
3272 | let expected = uclass(&[(' \x00' , ' \x60' ), (' \x63' , ' \u{10FFFF}' )]); |
3273 | assert_eq!(expected, unegate(&cls)); |
3274 | |
3275 | let cls = uclass(&[('a' , 'c' ), ('x' , 'z' )]); |
3276 | let expected = uclass(&[ |
3277 | (' \x00' , ' \x60' ), |
3278 | (' \x64' , ' \x77' ), |
3279 | (' \x7B' , ' \u{10FFFF}' ), |
3280 | ]); |
3281 | assert_eq!(expected, unegate(&cls)); |
3282 | |
3283 | let cls = uclass(&[(' \x00' , 'a' )]); |
3284 | let expected = uclass(&[(' \x62' , ' \u{10FFFF}' )]); |
3285 | assert_eq!(expected, unegate(&cls)); |
3286 | |
3287 | let cls = uclass(&[('a' , ' \u{10FFFF}' )]); |
3288 | let expected = uclass(&[(' \x00' , ' \x60' )]); |
3289 | assert_eq!(expected, unegate(&cls)); |
3290 | |
3291 | let cls = uclass(&[(' \x00' , ' \u{10FFFF}' )]); |
3292 | let expected = uclass(&[]); |
3293 | assert_eq!(expected, unegate(&cls)); |
3294 | |
3295 | let cls = uclass(&[]); |
3296 | let expected = uclass(&[(' \x00' , ' \u{10FFFF}' )]); |
3297 | assert_eq!(expected, unegate(&cls)); |
3298 | |
3299 | let cls = |
3300 | uclass(&[(' \x00' , ' \u{10FFFD}' ), (' \u{10FFFF}' , ' \u{10FFFF}' )]); |
3301 | let expected = uclass(&[(' \u{10FFFE}' , ' \u{10FFFE}' )]); |
3302 | assert_eq!(expected, unegate(&cls)); |
3303 | |
3304 | let cls = uclass(&[(' \x00' , ' \u{D7FF}' )]); |
3305 | let expected = uclass(&[(' \u{E000}' , ' \u{10FFFF}' )]); |
3306 | assert_eq!(expected, unegate(&cls)); |
3307 | |
3308 | let cls = uclass(&[(' \x00' , ' \u{D7FE}' )]); |
3309 | let expected = uclass(&[(' \u{D7FF}' , ' \u{10FFFF}' )]); |
3310 | assert_eq!(expected, unegate(&cls)); |
3311 | |
3312 | let cls = uclass(&[(' \u{E000}' , ' \u{10FFFF}' )]); |
3313 | let expected = uclass(&[(' \x00' , ' \u{D7FF}' )]); |
3314 | assert_eq!(expected, unegate(&cls)); |
3315 | |
3316 | let cls = uclass(&[(' \u{E001}' , ' \u{10FFFF}' )]); |
3317 | let expected = uclass(&[(' \x00' , ' \u{E000}' )]); |
3318 | assert_eq!(expected, unegate(&cls)); |
3319 | } |
3320 | |
3321 | #[test ] |
3322 | fn class_negate_bytes() { |
3323 | let cls = bclass(&[(b'a' , b'a' )]); |
3324 | let expected = bclass(&[(b' \x00' , b' \x60' ), (b' \x62' , b' \xFF' )]); |
3325 | assert_eq!(expected, bnegate(&cls)); |
3326 | |
3327 | let cls = bclass(&[(b'a' , b'a' ), (b'b' , b'b' )]); |
3328 | let expected = bclass(&[(b' \x00' , b' \x60' ), (b' \x63' , b' \xFF' )]); |
3329 | assert_eq!(expected, bnegate(&cls)); |
3330 | |
3331 | let cls = bclass(&[(b'a' , b'c' ), (b'x' , b'z' )]); |
3332 | let expected = bclass(&[ |
3333 | (b' \x00' , b' \x60' ), |
3334 | (b' \x64' , b' \x77' ), |
3335 | (b' \x7B' , b' \xFF' ), |
3336 | ]); |
3337 | assert_eq!(expected, bnegate(&cls)); |
3338 | |
3339 | let cls = bclass(&[(b' \x00' , b'a' )]); |
3340 | let expected = bclass(&[(b' \x62' , b' \xFF' )]); |
3341 | assert_eq!(expected, bnegate(&cls)); |
3342 | |
3343 | let cls = bclass(&[(b'a' , b' \xFF' )]); |
3344 | let expected = bclass(&[(b' \x00' , b' \x60' )]); |
3345 | assert_eq!(expected, bnegate(&cls)); |
3346 | |
3347 | let cls = bclass(&[(b' \x00' , b' \xFF' )]); |
3348 | let expected = bclass(&[]); |
3349 | assert_eq!(expected, bnegate(&cls)); |
3350 | |
3351 | let cls = bclass(&[]); |
3352 | let expected = bclass(&[(b' \x00' , b' \xFF' )]); |
3353 | assert_eq!(expected, bnegate(&cls)); |
3354 | |
3355 | let cls = bclass(&[(b' \x00' , b' \xFD' ), (b' \xFF' , b' \xFF' )]); |
3356 | let expected = bclass(&[(b' \xFE' , b' \xFE' )]); |
3357 | assert_eq!(expected, bnegate(&cls)); |
3358 | } |
3359 | |
3360 | #[test ] |
3361 | fn class_union_unicode() { |
3362 | let cls1 = uclass(&[('a' , 'g' ), ('m' , 't' ), ('A' , 'C' )]); |
3363 | let cls2 = uclass(&[('a' , 'z' )]); |
3364 | let expected = uclass(&[('a' , 'z' ), ('A' , 'C' )]); |
3365 | assert_eq!(expected, uunion(&cls1, &cls2)); |
3366 | } |
3367 | |
3368 | #[test ] |
3369 | fn class_union_bytes() { |
3370 | let cls1 = bclass(&[(b'a' , b'g' ), (b'm' , b't' ), (b'A' , b'C' )]); |
3371 | let cls2 = bclass(&[(b'a' , b'z' )]); |
3372 | let expected = bclass(&[(b'a' , b'z' ), (b'A' , b'C' )]); |
3373 | assert_eq!(expected, bunion(&cls1, &cls2)); |
3374 | } |
3375 | |
3376 | #[test ] |
3377 | fn class_intersect_unicode() { |
3378 | let cls1 = uclass(&[]); |
3379 | let cls2 = uclass(&[('a' , 'a' )]); |
3380 | let expected = uclass(&[]); |
3381 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3382 | |
3383 | let cls1 = uclass(&[('a' , 'a' )]); |
3384 | let cls2 = uclass(&[('a' , 'a' )]); |
3385 | let expected = uclass(&[('a' , 'a' )]); |
3386 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3387 | |
3388 | let cls1 = uclass(&[('a' , 'a' )]); |
3389 | let cls2 = uclass(&[('b' , 'b' )]); |
3390 | let expected = uclass(&[]); |
3391 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3392 | |
3393 | let cls1 = uclass(&[('a' , 'a' )]); |
3394 | let cls2 = uclass(&[('a' , 'c' )]); |
3395 | let expected = uclass(&[('a' , 'a' )]); |
3396 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3397 | |
3398 | let cls1 = uclass(&[('a' , 'b' )]); |
3399 | let cls2 = uclass(&[('a' , 'c' )]); |
3400 | let expected = uclass(&[('a' , 'b' )]); |
3401 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3402 | |
3403 | let cls1 = uclass(&[('a' , 'b' )]); |
3404 | let cls2 = uclass(&[('b' , 'c' )]); |
3405 | let expected = uclass(&[('b' , 'b' )]); |
3406 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3407 | |
3408 | let cls1 = uclass(&[('a' , 'b' )]); |
3409 | let cls2 = uclass(&[('c' , 'd' )]); |
3410 | let expected = uclass(&[]); |
3411 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3412 | |
3413 | let cls1 = uclass(&[('b' , 'c' )]); |
3414 | let cls2 = uclass(&[('a' , 'd' )]); |
3415 | let expected = uclass(&[('b' , 'c' )]); |
3416 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3417 | |
3418 | let cls1 = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3419 | let cls2 = uclass(&[('a' , 'h' )]); |
3420 | let expected = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3421 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3422 | |
3423 | let cls1 = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3424 | let cls2 = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3425 | let expected = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3426 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3427 | |
3428 | let cls1 = uclass(&[('a' , 'b' ), ('g' , 'h' )]); |
3429 | let cls2 = uclass(&[('d' , 'e' ), ('k' , 'l' )]); |
3430 | let expected = uclass(&[]); |
3431 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3432 | |
3433 | let cls1 = uclass(&[('a' , 'b' ), ('d' , 'e' ), ('g' , 'h' )]); |
3434 | let cls2 = uclass(&[('h' , 'h' )]); |
3435 | let expected = uclass(&[('h' , 'h' )]); |
3436 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3437 | |
3438 | let cls1 = uclass(&[('a' , 'b' ), ('e' , 'f' ), ('i' , 'j' )]); |
3439 | let cls2 = uclass(&[('c' , 'd' ), ('g' , 'h' ), ('k' , 'l' )]); |
3440 | let expected = uclass(&[]); |
3441 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3442 | |
3443 | let cls1 = uclass(&[('a' , 'b' ), ('c' , 'd' ), ('e' , 'f' )]); |
3444 | let cls2 = uclass(&[('b' , 'c' ), ('d' , 'e' ), ('f' , 'g' )]); |
3445 | let expected = uclass(&[('b' , 'f' )]); |
3446 | assert_eq!(expected, uintersect(&cls1, &cls2)); |
3447 | } |
3448 | |
3449 | #[test ] |
3450 | fn class_intersect_bytes() { |
3451 | let cls1 = bclass(&[]); |
3452 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3453 | let expected = bclass(&[]); |
3454 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3455 | |
3456 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3457 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3458 | let expected = bclass(&[(b'a' , b'a' )]); |
3459 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3460 | |
3461 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3462 | let cls2 = bclass(&[(b'b' , b'b' )]); |
3463 | let expected = bclass(&[]); |
3464 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3465 | |
3466 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3467 | let cls2 = bclass(&[(b'a' , b'c' )]); |
3468 | let expected = bclass(&[(b'a' , b'a' )]); |
3469 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3470 | |
3471 | let cls1 = bclass(&[(b'a' , b'b' )]); |
3472 | let cls2 = bclass(&[(b'a' , b'c' )]); |
3473 | let expected = bclass(&[(b'a' , b'b' )]); |
3474 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3475 | |
3476 | let cls1 = bclass(&[(b'a' , b'b' )]); |
3477 | let cls2 = bclass(&[(b'b' , b'c' )]); |
3478 | let expected = bclass(&[(b'b' , b'b' )]); |
3479 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3480 | |
3481 | let cls1 = bclass(&[(b'a' , b'b' )]); |
3482 | let cls2 = bclass(&[(b'c' , b'd' )]); |
3483 | let expected = bclass(&[]); |
3484 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3485 | |
3486 | let cls1 = bclass(&[(b'b' , b'c' )]); |
3487 | let cls2 = bclass(&[(b'a' , b'd' )]); |
3488 | let expected = bclass(&[(b'b' , b'c' )]); |
3489 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3490 | |
3491 | let cls1 = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3492 | let cls2 = bclass(&[(b'a' , b'h' )]); |
3493 | let expected = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3494 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3495 | |
3496 | let cls1 = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3497 | let cls2 = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3498 | let expected = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3499 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3500 | |
3501 | let cls1 = bclass(&[(b'a' , b'b' ), (b'g' , b'h' )]); |
3502 | let cls2 = bclass(&[(b'd' , b'e' ), (b'k' , b'l' )]); |
3503 | let expected = bclass(&[]); |
3504 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3505 | |
3506 | let cls1 = bclass(&[(b'a' , b'b' ), (b'd' , b'e' ), (b'g' , b'h' )]); |
3507 | let cls2 = bclass(&[(b'h' , b'h' )]); |
3508 | let expected = bclass(&[(b'h' , b'h' )]); |
3509 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3510 | |
3511 | let cls1 = bclass(&[(b'a' , b'b' ), (b'e' , b'f' ), (b'i' , b'j' )]); |
3512 | let cls2 = bclass(&[(b'c' , b'd' ), (b'g' , b'h' ), (b'k' , b'l' )]); |
3513 | let expected = bclass(&[]); |
3514 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3515 | |
3516 | let cls1 = bclass(&[(b'a' , b'b' ), (b'c' , b'd' ), (b'e' , b'f' )]); |
3517 | let cls2 = bclass(&[(b'b' , b'c' ), (b'd' , b'e' ), (b'f' , b'g' )]); |
3518 | let expected = bclass(&[(b'b' , b'f' )]); |
3519 | assert_eq!(expected, bintersect(&cls1, &cls2)); |
3520 | } |
3521 | |
3522 | #[test ] |
3523 | fn class_difference_unicode() { |
3524 | let cls1 = uclass(&[('a' , 'a' )]); |
3525 | let cls2 = uclass(&[('a' , 'a' )]); |
3526 | let expected = uclass(&[]); |
3527 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3528 | |
3529 | let cls1 = uclass(&[('a' , 'a' )]); |
3530 | let cls2 = uclass(&[]); |
3531 | let expected = uclass(&[('a' , 'a' )]); |
3532 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3533 | |
3534 | let cls1 = uclass(&[]); |
3535 | let cls2 = uclass(&[('a' , 'a' )]); |
3536 | let expected = uclass(&[]); |
3537 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3538 | |
3539 | let cls1 = uclass(&[('a' , 'z' )]); |
3540 | let cls2 = uclass(&[('a' , 'a' )]); |
3541 | let expected = uclass(&[('b' , 'z' )]); |
3542 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3543 | |
3544 | let cls1 = uclass(&[('a' , 'z' )]); |
3545 | let cls2 = uclass(&[('z' , 'z' )]); |
3546 | let expected = uclass(&[('a' , 'y' )]); |
3547 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3548 | |
3549 | let cls1 = uclass(&[('a' , 'z' )]); |
3550 | let cls2 = uclass(&[('m' , 'm' )]); |
3551 | let expected = uclass(&[('a' , 'l' ), ('n' , 'z' )]); |
3552 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3553 | |
3554 | let cls1 = uclass(&[('a' , 'c' ), ('g' , 'i' ), ('r' , 't' )]); |
3555 | let cls2 = uclass(&[('a' , 'z' )]); |
3556 | let expected = uclass(&[]); |
3557 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3558 | |
3559 | let cls1 = uclass(&[('a' , 'c' ), ('g' , 'i' ), ('r' , 't' )]); |
3560 | let cls2 = uclass(&[('d' , 'v' )]); |
3561 | let expected = uclass(&[('a' , 'c' )]); |
3562 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3563 | |
3564 | let cls1 = uclass(&[('a' , 'c' ), ('g' , 'i' ), ('r' , 't' )]); |
3565 | let cls2 = uclass(&[('b' , 'g' ), ('s' , 'u' )]); |
3566 | let expected = uclass(&[('a' , 'a' ), ('h' , 'i' ), ('r' , 'r' )]); |
3567 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3568 | |
3569 | let cls1 = uclass(&[('a' , 'c' ), ('g' , 'i' ), ('r' , 't' )]); |
3570 | let cls2 = uclass(&[('b' , 'd' ), ('e' , 'g' ), ('s' , 'u' )]); |
3571 | let expected = uclass(&[('a' , 'a' ), ('h' , 'i' ), ('r' , 'r' )]); |
3572 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3573 | |
3574 | let cls1 = uclass(&[('x' , 'z' )]); |
3575 | let cls2 = uclass(&[('a' , 'c' ), ('e' , 'g' ), ('s' , 'u' )]); |
3576 | let expected = uclass(&[('x' , 'z' )]); |
3577 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3578 | |
3579 | let cls1 = uclass(&[('a' , 'z' )]); |
3580 | let cls2 = uclass(&[('a' , 'c' ), ('e' , 'g' ), ('s' , 'u' )]); |
3581 | let expected = uclass(&[('d' , 'd' ), ('h' , 'r' ), ('v' , 'z' )]); |
3582 | assert_eq!(expected, udifference(&cls1, &cls2)); |
3583 | } |
3584 | |
3585 | #[test ] |
3586 | fn class_difference_bytes() { |
3587 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3588 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3589 | let expected = bclass(&[]); |
3590 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3591 | |
3592 | let cls1 = bclass(&[(b'a' , b'a' )]); |
3593 | let cls2 = bclass(&[]); |
3594 | let expected = bclass(&[(b'a' , b'a' )]); |
3595 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3596 | |
3597 | let cls1 = bclass(&[]); |
3598 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3599 | let expected = bclass(&[]); |
3600 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3601 | |
3602 | let cls1 = bclass(&[(b'a' , b'z' )]); |
3603 | let cls2 = bclass(&[(b'a' , b'a' )]); |
3604 | let expected = bclass(&[(b'b' , b'z' )]); |
3605 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3606 | |
3607 | let cls1 = bclass(&[(b'a' , b'z' )]); |
3608 | let cls2 = bclass(&[(b'z' , b'z' )]); |
3609 | let expected = bclass(&[(b'a' , b'y' )]); |
3610 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3611 | |
3612 | let cls1 = bclass(&[(b'a' , b'z' )]); |
3613 | let cls2 = bclass(&[(b'm' , b'm' )]); |
3614 | let expected = bclass(&[(b'a' , b'l' ), (b'n' , b'z' )]); |
3615 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3616 | |
3617 | let cls1 = bclass(&[(b'a' , b'c' ), (b'g' , b'i' ), (b'r' , b't' )]); |
3618 | let cls2 = bclass(&[(b'a' , b'z' )]); |
3619 | let expected = bclass(&[]); |
3620 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3621 | |
3622 | let cls1 = bclass(&[(b'a' , b'c' ), (b'g' , b'i' ), (b'r' , b't' )]); |
3623 | let cls2 = bclass(&[(b'd' , b'v' )]); |
3624 | let expected = bclass(&[(b'a' , b'c' )]); |
3625 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3626 | |
3627 | let cls1 = bclass(&[(b'a' , b'c' ), (b'g' , b'i' ), (b'r' , b't' )]); |
3628 | let cls2 = bclass(&[(b'b' , b'g' ), (b's' , b'u' )]); |
3629 | let expected = bclass(&[(b'a' , b'a' ), (b'h' , b'i' ), (b'r' , b'r' )]); |
3630 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3631 | |
3632 | let cls1 = bclass(&[(b'a' , b'c' ), (b'g' , b'i' ), (b'r' , b't' )]); |
3633 | let cls2 = bclass(&[(b'b' , b'd' ), (b'e' , b'g' ), (b's' , b'u' )]); |
3634 | let expected = bclass(&[(b'a' , b'a' ), (b'h' , b'i' ), (b'r' , b'r' )]); |
3635 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3636 | |
3637 | let cls1 = bclass(&[(b'x' , b'z' )]); |
3638 | let cls2 = bclass(&[(b'a' , b'c' ), (b'e' , b'g' ), (b's' , b'u' )]); |
3639 | let expected = bclass(&[(b'x' , b'z' )]); |
3640 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3641 | |
3642 | let cls1 = bclass(&[(b'a' , b'z' )]); |
3643 | let cls2 = bclass(&[(b'a' , b'c' ), (b'e' , b'g' ), (b's' , b'u' )]); |
3644 | let expected = bclass(&[(b'd' , b'd' ), (b'h' , b'r' ), (b'v' , b'z' )]); |
3645 | assert_eq!(expected, bdifference(&cls1, &cls2)); |
3646 | } |
3647 | |
3648 | #[test ] |
3649 | fn class_symmetric_difference_unicode() { |
3650 | let cls1 = uclass(&[('a' , 'm' )]); |
3651 | let cls2 = uclass(&[('g' , 't' )]); |
3652 | let expected = uclass(&[('a' , 'f' ), ('n' , 't' )]); |
3653 | assert_eq!(expected, usymdifference(&cls1, &cls2)); |
3654 | } |
3655 | |
3656 | #[test ] |
3657 | fn class_symmetric_difference_bytes() { |
3658 | let cls1 = bclass(&[(b'a' , b'm' )]); |
3659 | let cls2 = bclass(&[(b'g' , b't' )]); |
3660 | let expected = bclass(&[(b'a' , b'f' ), (b'n' , b't' )]); |
3661 | assert_eq!(expected, bsymdifference(&cls1, &cls2)); |
3662 | } |
3663 | |
3664 | // We use a thread with an explicit stack size to test that our destructor |
3665 | // for Hir can handle arbitrarily sized expressions in constant stack |
3666 | // space. In case we run on a platform without threads (WASM?), we limit |
3667 | // this test to Windows/Unix. |
3668 | #[test ] |
3669 | #[cfg (any(unix, windows))] |
3670 | fn no_stack_overflow_on_drop() { |
3671 | use std::thread; |
3672 | |
3673 | let run = || { |
3674 | let mut expr = Hir::empty(); |
3675 | for _ in 0..100 { |
3676 | expr = Hir::capture(Capture { |
3677 | index: 1, |
3678 | name: None, |
3679 | sub: Box::new(expr), |
3680 | }); |
3681 | expr = Hir::repetition(Repetition { |
3682 | min: 0, |
3683 | max: Some(1), |
3684 | greedy: true, |
3685 | sub: Box::new(expr), |
3686 | }); |
3687 | |
3688 | expr = Hir { |
3689 | kind: HirKind::Concat(vec![expr]), |
3690 | props: Properties::empty(), |
3691 | }; |
3692 | expr = Hir { |
3693 | kind: HirKind::Alternation(vec![expr]), |
3694 | props: Properties::empty(), |
3695 | }; |
3696 | } |
3697 | assert!(!matches!(*expr.kind(), HirKind::Empty)); |
3698 | }; |
3699 | |
3700 | // We run our test on a thread with a small stack size so we can |
3701 | // force the issue more easily. |
3702 | // |
3703 | // NOTE(2023-03-21): See the corresponding test in 'crate::ast::tests' |
3704 | // for context on the specific stack size chosen here. |
3705 | thread::Builder::new() |
3706 | .stack_size(16 << 10) |
3707 | .spawn(run) |
3708 | .unwrap() |
3709 | .join() |
3710 | .unwrap(); |
3711 | } |
3712 | |
3713 | #[test ] |
3714 | fn look_set_iter() { |
3715 | let set = LookSet::empty(); |
3716 | assert_eq!(0, set.iter().count()); |
3717 | |
3718 | let set = LookSet::full(); |
3719 | assert_eq!(10, set.iter().count()); |
3720 | |
3721 | let set = |
3722 | LookSet::empty().insert(Look::StartLF).insert(Look::WordUnicode); |
3723 | assert_eq!(2, set.iter().count()); |
3724 | |
3725 | let set = LookSet::empty().insert(Look::StartLF); |
3726 | assert_eq!(1, set.iter().count()); |
3727 | |
3728 | let set = LookSet::empty().insert(Look::WordAsciiNegate); |
3729 | assert_eq!(1, set.iter().count()); |
3730 | } |
3731 | |
3732 | #[test ] |
3733 | fn look_set_debug() { |
3734 | let res = format!(" {:?}" , LookSet::empty()); |
3735 | assert_eq!("∅" , res); |
3736 | let res = format!(" {:?}" , LookSet::full()); |
3737 | assert_eq!("Az^$rRbB𝛃𝚩" , res); |
3738 | } |
3739 | } |
3740 | |