| 1 | use alloc::{ |
| 2 | borrow::Cow, boxed::Box, string::String, string::ToString, sync::Arc, vec, |
| 3 | vec::Vec, |
| 4 | }; |
| 5 | |
| 6 | use crate::{ |
| 7 | error::Error, |
| 8 | hir::{self, Hir}, |
| 9 | int::NonMaxUsize, |
| 10 | interpolate, |
| 11 | nfa::{self, NFA}, |
| 12 | pikevm::{self, Cache, PikeVM}, |
| 13 | pool::CachePool, |
| 14 | }; |
| 15 | |
| 16 | /// A compiled regular expression for searching Unicode haystacks. |
| 17 | /// |
| 18 | /// A `Regex` can be used to search haystacks, split haystacks into substrings |
| 19 | /// or replace substrings in a haystack with a different substring. All |
| 20 | /// searching is done with an implicit `(?s:.)*?` at the beginning and end of |
| 21 | /// an pattern. To force an expression to match the whole string (or a prefix |
| 22 | /// or a suffix), you must use an anchor like `^` or `$` (or `\A` and `\z`). |
| 23 | /// |
| 24 | /// While this crate will handle Unicode strings (whether in the regular |
| 25 | /// expression or in the haystack), all positions returned are **byte |
| 26 | /// offsets**. Every byte offset is guaranteed to be at a Unicode code point |
| 27 | /// boundary. That is, all offsets returned by the `Regex` API are guaranteed |
| 28 | /// to be ranges that can slice a `&str` without panicking. |
| 29 | /// |
| 30 | /// The only methods that allocate new strings are the string replacement |
| 31 | /// methods. All other methods (searching and splitting) return borrowed |
| 32 | /// references into the haystack given. |
| 33 | /// |
| 34 | /// # Example |
| 35 | /// |
| 36 | /// Find the offsets of a US phone number: |
| 37 | /// |
| 38 | /// ``` |
| 39 | /// use regex_lite::Regex; |
| 40 | /// |
| 41 | /// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}" ).unwrap(); |
| 42 | /// let m = re.find("phone: 111-222-3333" ).unwrap(); |
| 43 | /// assert_eq!(7..19, m.range()); |
| 44 | /// ``` |
| 45 | /// |
| 46 | /// # Example: extracting capture groups |
| 47 | /// |
| 48 | /// A common way to use regexes is with capture groups. That is, instead of |
| 49 | /// just looking for matches of an entire regex, parentheses are used to create |
| 50 | /// groups that represent part of the match. |
| 51 | /// |
| 52 | /// For example, consider a haystack with multiple lines, and each line has |
| 53 | /// three whitespace delimited fields where the second field is expected to be |
| 54 | /// a number and the third field a boolean. To make this convenient, we use |
| 55 | /// the [`Captures::extract`] API to put the strings that match each group |
| 56 | /// into a fixed size array: |
| 57 | /// |
| 58 | /// ``` |
| 59 | /// use regex_lite::Regex; |
| 60 | /// |
| 61 | /// let hay = " |
| 62 | /// rabbit 54 true |
| 63 | /// groundhog 2 true |
| 64 | /// does not match |
| 65 | /// fox 109 false |
| 66 | /// " ; |
| 67 | /// let re = Regex::new(r"(?m)^\s*(\S+)\s+([0-9]+)\s+(true|false)\s*$" ).unwrap(); |
| 68 | /// let mut fields: Vec<(&str, i64, bool)> = vec![]; |
| 69 | /// for (_, [f1, f2, f3]) in re.captures_iter(hay).map(|caps| caps.extract()) { |
| 70 | /// fields.push((f1, f2.parse()?, f3.parse()?)); |
| 71 | /// } |
| 72 | /// assert_eq!(fields, vec![ |
| 73 | /// ("rabbit" , 54, true), |
| 74 | /// ("groundhog" , 2, true), |
| 75 | /// ("fox" , 109, false), |
| 76 | /// ]); |
| 77 | /// |
| 78 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 79 | /// ``` |
| 80 | pub struct Regex { |
| 81 | pikevm: Arc<PikeVM>, |
| 82 | pool: CachePool, |
| 83 | } |
| 84 | |
| 85 | impl Clone for Regex { |
| 86 | fn clone(&self) -> Regex { |
| 87 | let pikevm: Arc = Arc::clone(&self.pikevm); |
| 88 | let pool: Pool … + Send + Sync + UnwindSafe + RefUnwindSafe + 'static>> = { |
| 89 | let pikevm: Arc = Arc::clone(&self.pikevm); |
| 90 | let create: Box Cache> = Box::new(move || Cache::new(&pikevm)); |
| 91 | CachePool::new(create) |
| 92 | }; |
| 93 | Regex { pikevm, pool } |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | impl core::fmt::Display for Regex { |
| 98 | /// Shows the original regular expression. |
| 99 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 100 | write!(f, " {}" , self.as_str()) |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | impl core::fmt::Debug for Regex { |
| 105 | /// Shows the original regular expression. |
| 106 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 107 | f.debug_tuple(name:"Regex" ).field(&self.as_str()).finish() |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | impl core::str::FromStr for Regex { |
| 112 | type Err = Error; |
| 113 | |
| 114 | /// Attempts to parse a string into a regular expression |
| 115 | fn from_str(s: &str) -> Result<Regex, Error> { |
| 116 | Regex::new(pattern:s) |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | impl TryFrom<&str> for Regex { |
| 121 | type Error = Error; |
| 122 | |
| 123 | /// Attempts to parse a string into a regular expression |
| 124 | fn try_from(s: &str) -> Result<Regex, Error> { |
| 125 | Regex::new(pattern:s) |
| 126 | } |
| 127 | } |
| 128 | |
| 129 | impl TryFrom<String> for Regex { |
| 130 | type Error = Error; |
| 131 | |
| 132 | /// Attempts to parse a string into a regular expression |
| 133 | fn try_from(s: String) -> Result<Regex, Error> { |
| 134 | Regex::new(&s) |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | /// Core regular expression methods. |
| 139 | impl Regex { |
| 140 | /// Compiles a regular expression. Once compiled, it can be used repeatedly |
| 141 | /// to search, split or replace substrings in a haystack. |
| 142 | /// |
| 143 | /// Note that regex compilation tends to be a somewhat expensive process, |
| 144 | /// and unlike higher level environments, compilation is not automatically |
| 145 | /// cached for you. One should endeavor to compile a regex once and then |
| 146 | /// reuse it. For example, it's a bad idea to compile the same regex |
| 147 | /// repeatedly in a loop. |
| 148 | /// |
| 149 | /// # Errors |
| 150 | /// |
| 151 | /// If an invalid pattern is given, then an error is returned. |
| 152 | /// An error is also returned if the pattern is valid, but would |
| 153 | /// produce a regex that is bigger than the configured size limit via |
| 154 | /// [`RegexBuilder::size_limit`]. (A reasonable size limit is enabled by |
| 155 | /// default.) |
| 156 | /// |
| 157 | /// # Example |
| 158 | /// |
| 159 | /// ``` |
| 160 | /// use regex_lite::Regex; |
| 161 | /// |
| 162 | /// // An Invalid pattern because of an unclosed parenthesis |
| 163 | /// assert!(Regex::new(r"foo(bar" ).is_err()); |
| 164 | /// // An invalid pattern because the regex would be too big |
| 165 | /// // because Unicode tends to inflate things. |
| 166 | /// assert!(Regex::new(r"\w{1000000}" ).is_err()); |
| 167 | /// ``` |
| 168 | pub fn new(pattern: &str) -> Result<Regex, Error> { |
| 169 | RegexBuilder::new(pattern).build() |
| 170 | } |
| 171 | |
| 172 | /// Returns true if and only if there is a match for the regex anywhere |
| 173 | /// in the haystack given. |
| 174 | /// |
| 175 | /// It is recommended to use this method if all you need to do is test |
| 176 | /// whether a match exists, since the underlying matching engine may be |
| 177 | /// able to do less work. |
| 178 | /// |
| 179 | /// # Example |
| 180 | /// |
| 181 | /// Test if some haystack contains at least one word with exactly 13 |
| 182 | /// word characters: |
| 183 | /// |
| 184 | /// ``` |
| 185 | /// use regex_lite::Regex; |
| 186 | /// |
| 187 | /// let re = Regex::new(r"\b\w{13}\b" ).unwrap(); |
| 188 | /// let hay = "I categorically deny having triskaidekaphobia." ; |
| 189 | /// assert!(re.is_match(hay)); |
| 190 | /// ``` |
| 191 | #[inline ] |
| 192 | pub fn is_match(&self, haystack: &str) -> bool { |
| 193 | self.is_match_at(haystack, 0) |
| 194 | } |
| 195 | |
| 196 | /// This routine searches for the first match of this regex in the |
| 197 | /// haystack given, and if found, returns a [`Match`]. The `Match` |
| 198 | /// provides access to both the byte offsets of the match and the actual |
| 199 | /// substring that matched. |
| 200 | /// |
| 201 | /// Note that this should only be used if you want to find the entire |
| 202 | /// match. If instead you just want to test the existence of a match, |
| 203 | /// it's potentially faster to use `Regex::is_match(hay)` instead of |
| 204 | /// `Regex::find(hay).is_some()`. |
| 205 | /// |
| 206 | /// # Example |
| 207 | /// |
| 208 | /// Find the first word with exactly 13 word characters: |
| 209 | /// |
| 210 | /// ``` |
| 211 | /// use regex_lite::Regex; |
| 212 | /// |
| 213 | /// let re = Regex::new(r"\b\w{13}\b" ).unwrap(); |
| 214 | /// let hay = "I categorically deny having triskaidekaphobia." ; |
| 215 | /// let mat = re.find(hay).unwrap(); |
| 216 | /// assert_eq!(2..15, mat.range()); |
| 217 | /// assert_eq!("categorically" , mat.as_str()); |
| 218 | /// ``` |
| 219 | #[inline ] |
| 220 | pub fn find<'h>(&self, haystack: &'h str) -> Option<Match<'h>> { |
| 221 | self.find_at(haystack, 0) |
| 222 | } |
| 223 | |
| 224 | /// Returns an iterator that yields successive non-overlapping matches in |
| 225 | /// the given haystack. The iterator yields values of type [`Match`]. |
| 226 | /// |
| 227 | /// # Time complexity |
| 228 | /// |
| 229 | /// Note that since `find_iter` runs potentially many searches on the |
| 230 | /// haystack and since each search has worst case `O(m * n)` time |
| 231 | /// complexity, the overall worst case time complexity for iteration is |
| 232 | /// `O(m * n^2)`. |
| 233 | /// |
| 234 | /// # Example |
| 235 | /// |
| 236 | /// Find every word with exactly 13 word characters: |
| 237 | /// |
| 238 | /// ``` |
| 239 | /// use regex_lite::Regex; |
| 240 | /// |
| 241 | /// let re = Regex::new(r"\b\w{13}\b" ).unwrap(); |
| 242 | /// let hay = "Retroactively relinquishing remunerations is reprehensible." ; |
| 243 | /// let matches: Vec<_> = re.find_iter(hay).map(|m| m.as_str()).collect(); |
| 244 | /// assert_eq!(matches, vec![ |
| 245 | /// "Retroactively" , |
| 246 | /// "relinquishing" , |
| 247 | /// "remunerations" , |
| 248 | /// "reprehensible" , |
| 249 | /// ]); |
| 250 | /// ``` |
| 251 | #[inline ] |
| 252 | pub fn find_iter<'r, 'h>(&'r self, haystack: &'h str) -> Matches<'r, 'h> { |
| 253 | Matches { |
| 254 | haystack, |
| 255 | it: self.pikevm.find_iter(self.pool.get(), haystack.as_bytes()), |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | /// This routine searches for the first match of this regex in the haystack |
| 260 | /// given, and if found, returns not only the overall match but also the |
| 261 | /// matches of each capture group in the regex. If no match is found, then |
| 262 | /// `None` is returned. |
| 263 | /// |
| 264 | /// Capture group `0` always corresponds to an implicit unnamed group that |
| 265 | /// includes the entire match. If a match is found, this group is always |
| 266 | /// present. Subsequent groups may be named and are numbered, starting |
| 267 | /// at 1, by the order in which the opening parenthesis appears in the |
| 268 | /// pattern. For example, in the pattern `(?<a>.(?<b>.))(?<c>.)`, `a`, |
| 269 | /// `b` and `c` correspond to capture group indices `1`, `2` and `3`, |
| 270 | /// respectively. |
| 271 | /// |
| 272 | /// You should only use `captures` if you need access to the capture group |
| 273 | /// matches. Otherwise, [`Regex::find`] is generally faster for discovering |
| 274 | /// just the overall match. |
| 275 | /// |
| 276 | /// # Example |
| 277 | /// |
| 278 | /// Say you have some haystack with movie names and their release years, |
| 279 | /// like "'Citizen Kane' (1941)". It'd be nice if we could search for |
| 280 | /// substrings looking like that, while also extracting the movie name and |
| 281 | /// its release year separately. The example below shows how to do that. |
| 282 | /// |
| 283 | /// ``` |
| 284 | /// use regex_lite::Regex; |
| 285 | /// |
| 286 | /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)" ).unwrap(); |
| 287 | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)." ; |
| 288 | /// let caps = re.captures(hay).unwrap(); |
| 289 | /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)" ); |
| 290 | /// assert_eq!(caps.get(1).unwrap().as_str(), "Citizen Kane" ); |
| 291 | /// assert_eq!(caps.get(2).unwrap().as_str(), "1941" ); |
| 292 | /// // You can also access the groups by index using the Index notation. |
| 293 | /// // Note that this will panic on an invalid index. In this case, these |
| 294 | /// // accesses are always correct because the overall regex will only |
| 295 | /// // match when these capture groups match. |
| 296 | /// assert_eq!(&caps[0], "'Citizen Kane' (1941)" ); |
| 297 | /// assert_eq!(&caps[1], "Citizen Kane" ); |
| 298 | /// assert_eq!(&caps[2], "1941" ); |
| 299 | /// ``` |
| 300 | /// |
| 301 | /// Note that the full match is at capture group `0`. Each subsequent |
| 302 | /// capture group is indexed by the order of its opening `(`. |
| 303 | /// |
| 304 | /// We can make this example a bit clearer by using *named* capture groups: |
| 305 | /// |
| 306 | /// ``` |
| 307 | /// use regex_lite::Regex; |
| 308 | /// |
| 309 | /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>\d{4})\)" ).unwrap(); |
| 310 | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)." ; |
| 311 | /// let caps = re.captures(hay).unwrap(); |
| 312 | /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)" ); |
| 313 | /// assert_eq!(caps.name("title" ).unwrap().as_str(), "Citizen Kane" ); |
| 314 | /// assert_eq!(caps.name("year" ).unwrap().as_str(), "1941" ); |
| 315 | /// // You can also access the groups by name using the Index notation. |
| 316 | /// // Note that this will panic on an invalid group name. In this case, |
| 317 | /// // these accesses are always correct because the overall regex will |
| 318 | /// // only match when these capture groups match. |
| 319 | /// assert_eq!(&caps[0], "'Citizen Kane' (1941)" ); |
| 320 | /// assert_eq!(&caps["title" ], "Citizen Kane" ); |
| 321 | /// assert_eq!(&caps["year" ], "1941" ); |
| 322 | /// ``` |
| 323 | /// |
| 324 | /// Here we name the capture groups, which we can access with the `name` |
| 325 | /// method or the `Index` notation with a `&str`. Note that the named |
| 326 | /// capture groups are still accessible with `get` or the `Index` notation |
| 327 | /// with a `usize`. |
| 328 | /// |
| 329 | /// The `0`th capture group is always unnamed, so it must always be |
| 330 | /// accessed with `get(0)` or `[0]`. |
| 331 | /// |
| 332 | /// Finally, one other way to to get the matched substrings is with the |
| 333 | /// [`Captures::extract`] API: |
| 334 | /// |
| 335 | /// ``` |
| 336 | /// use regex_lite::Regex; |
| 337 | /// |
| 338 | /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)" ).unwrap(); |
| 339 | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)." ; |
| 340 | /// let (full, [title, year]) = re.captures(hay).unwrap().extract(); |
| 341 | /// assert_eq!(full, "'Citizen Kane' (1941)" ); |
| 342 | /// assert_eq!(title, "Citizen Kane" ); |
| 343 | /// assert_eq!(year, "1941" ); |
| 344 | /// ``` |
| 345 | #[inline ] |
| 346 | pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> { |
| 347 | self.captures_at(haystack, 0) |
| 348 | } |
| 349 | |
| 350 | /// Returns an iterator that yields successive non-overlapping matches in |
| 351 | /// the given haystack. The iterator yields values of type [`Captures`]. |
| 352 | /// |
| 353 | /// This is the same as [`Regex::find_iter`], but instead of only providing |
| 354 | /// access to the overall match, each value yield includes access to the |
| 355 | /// matches of all capture groups in the regex. Reporting this extra match |
| 356 | /// data is potentially costly, so callers should only use `captures_iter` |
| 357 | /// over `find_iter` when they actually need access to the capture group |
| 358 | /// matches. |
| 359 | /// |
| 360 | /// # Time complexity |
| 361 | /// |
| 362 | /// Note that since `captures_iter` runs potentially many searches on the |
| 363 | /// haystack and since each search has worst case `O(m * n)` time |
| 364 | /// complexity, the overall worst case time complexity for iteration is |
| 365 | /// `O(m * n^2)`. |
| 366 | /// |
| 367 | /// # Example |
| 368 | /// |
| 369 | /// We can use this to find all movie titles and their release years in |
| 370 | /// some haystack, where the movie is formatted like "'Title' (xxxx)": |
| 371 | /// |
| 372 | /// ``` |
| 373 | /// use regex_lite::Regex; |
| 374 | /// |
| 375 | /// let re = Regex::new(r"'([^']+)'\s+\(([0-9]{4})\)" ).unwrap(); |
| 376 | /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)." ; |
| 377 | /// let mut movies = vec![]; |
| 378 | /// for (_, [title, year]) in re.captures_iter(hay).map(|c| c.extract()) { |
| 379 | /// movies.push((title, year.parse::<i64>()?)); |
| 380 | /// } |
| 381 | /// assert_eq!(movies, vec![ |
| 382 | /// ("Citizen Kane" , 1941), |
| 383 | /// ("The Wizard of Oz" , 1939), |
| 384 | /// ("M" , 1931), |
| 385 | /// ]); |
| 386 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 387 | /// ``` |
| 388 | /// |
| 389 | /// Or with named groups: |
| 390 | /// |
| 391 | /// ``` |
| 392 | /// use regex_lite::Regex; |
| 393 | /// |
| 394 | /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>[0-9]{4})\)" ).unwrap(); |
| 395 | /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)." ; |
| 396 | /// let mut it = re.captures_iter(hay); |
| 397 | /// |
| 398 | /// let caps = it.next().unwrap(); |
| 399 | /// assert_eq!(&caps["title" ], "Citizen Kane" ); |
| 400 | /// assert_eq!(&caps["year" ], "1941" ); |
| 401 | /// |
| 402 | /// let caps = it.next().unwrap(); |
| 403 | /// assert_eq!(&caps["title" ], "The Wizard of Oz" ); |
| 404 | /// assert_eq!(&caps["year" ], "1939" ); |
| 405 | /// |
| 406 | /// let caps = it.next().unwrap(); |
| 407 | /// assert_eq!(&caps["title" ], "M" ); |
| 408 | /// assert_eq!(&caps["year" ], "1931" ); |
| 409 | /// ``` |
| 410 | #[inline ] |
| 411 | pub fn captures_iter<'r, 'h>( |
| 412 | &'r self, |
| 413 | haystack: &'h str, |
| 414 | ) -> CaptureMatches<'r, 'h> { |
| 415 | CaptureMatches { |
| 416 | haystack, |
| 417 | re: self, |
| 418 | it: self |
| 419 | .pikevm |
| 420 | .captures_iter(self.pool.get(), haystack.as_bytes()), |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | /// Returns an iterator of substrings of the haystack given, delimited by a |
| 425 | /// match of the regex. Namely, each element of the iterator corresponds to |
| 426 | /// a part of the haystack that *isn't* matched by the regular expression. |
| 427 | /// |
| 428 | /// # Time complexity |
| 429 | /// |
| 430 | /// Since iterators over all matches requires running potentially many |
| 431 | /// searches on the haystack, and since each search has worst case |
| 432 | /// `O(m * n)` time complexity, the overall worst case time complexity for |
| 433 | /// this routine is `O(m * n^2)`. |
| 434 | /// |
| 435 | /// # Example |
| 436 | /// |
| 437 | /// To split a string delimited by arbitrary amounts of spaces or tabs: |
| 438 | /// |
| 439 | /// ``` |
| 440 | /// use regex_lite::Regex; |
| 441 | /// |
| 442 | /// let re = Regex::new(r"[ \t]+" ).unwrap(); |
| 443 | /// let hay = "a b \t c \td e" ; |
| 444 | /// let fields: Vec<&str> = re.split(hay).collect(); |
| 445 | /// assert_eq!(fields, vec!["a" , "b" , "c" , "d" , "e" ]); |
| 446 | /// ``` |
| 447 | /// |
| 448 | /// # Example: more cases |
| 449 | /// |
| 450 | /// Basic usage: |
| 451 | /// |
| 452 | /// ``` |
| 453 | /// use regex_lite::Regex; |
| 454 | /// |
| 455 | /// let re = Regex::new(r" " ).unwrap(); |
| 456 | /// let hay = "Mary had a little lamb" ; |
| 457 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 458 | /// assert_eq!(got, vec!["Mary" , "had" , "a" , "little" , "lamb" ]); |
| 459 | /// |
| 460 | /// let re = Regex::new(r"X" ).unwrap(); |
| 461 | /// let hay = "" ; |
| 462 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 463 | /// assert_eq!(got, vec!["" ]); |
| 464 | /// |
| 465 | /// let re = Regex::new(r"X" ).unwrap(); |
| 466 | /// let hay = "lionXXtigerXleopard" ; |
| 467 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 468 | /// assert_eq!(got, vec!["lion" , "" , "tiger" , "leopard" ]); |
| 469 | /// |
| 470 | /// let re = Regex::new(r"::" ).unwrap(); |
| 471 | /// let hay = "lion::tiger::leopard" ; |
| 472 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 473 | /// assert_eq!(got, vec!["lion" , "tiger" , "leopard" ]); |
| 474 | /// ``` |
| 475 | /// |
| 476 | /// If a haystack contains multiple contiguous matches, you will end up |
| 477 | /// with empty spans yielded by the iterator: |
| 478 | /// |
| 479 | /// ``` |
| 480 | /// use regex_lite::Regex; |
| 481 | /// |
| 482 | /// let re = Regex::new(r"X" ).unwrap(); |
| 483 | /// let hay = "XXXXaXXbXc" ; |
| 484 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 485 | /// assert_eq!(got, vec!["" , "" , "" , "" , "a" , "" , "b" , "c" ]); |
| 486 | /// |
| 487 | /// let re = Regex::new(r"/" ).unwrap(); |
| 488 | /// let hay = "(///)" ; |
| 489 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 490 | /// assert_eq!(got, vec!["(" , "" , "" , ")" ]); |
| 491 | /// ``` |
| 492 | /// |
| 493 | /// Separators at the start or end of a haystack are neighbored by empty |
| 494 | /// substring. |
| 495 | /// |
| 496 | /// ``` |
| 497 | /// use regex_lite::Regex; |
| 498 | /// |
| 499 | /// let re = Regex::new(r"0" ).unwrap(); |
| 500 | /// let hay = "010" ; |
| 501 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 502 | /// assert_eq!(got, vec!["" , "1" , "" ]); |
| 503 | /// ``` |
| 504 | /// |
| 505 | /// When the empty string is used as a regex, it splits at every valid |
| 506 | /// UTF-8 boundary by default (which includes the beginning and end of the |
| 507 | /// haystack): |
| 508 | /// |
| 509 | /// ``` |
| 510 | /// use regex_lite::Regex; |
| 511 | /// |
| 512 | /// let re = Regex::new(r"" ).unwrap(); |
| 513 | /// let hay = "rust" ; |
| 514 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 515 | /// assert_eq!(got, vec!["" , "r" , "u" , "s" , "t" , "" ]); |
| 516 | /// |
| 517 | /// // Splitting by an empty string is UTF-8 aware by default! |
| 518 | /// let re = Regex::new(r"" ).unwrap(); |
| 519 | /// let hay = "☃" ; |
| 520 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 521 | /// assert_eq!(got, vec!["" , "☃" , "" ]); |
| 522 | /// ``` |
| 523 | /// |
| 524 | /// Contiguous separators (commonly shows up with whitespace), can lead to |
| 525 | /// possibly surprising behavior. For example, this code is correct: |
| 526 | /// |
| 527 | /// ``` |
| 528 | /// use regex_lite::Regex; |
| 529 | /// |
| 530 | /// let re = Regex::new(r" " ).unwrap(); |
| 531 | /// let hay = " a b c" ; |
| 532 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 533 | /// assert_eq!(got, vec!["" , "" , "" , "" , "a" , "" , "b" , "c" ]); |
| 534 | /// ``` |
| 535 | /// |
| 536 | /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want |
| 537 | /// to match contiguous space characters: |
| 538 | /// |
| 539 | /// ``` |
| 540 | /// use regex_lite::Regex; |
| 541 | /// |
| 542 | /// let re = Regex::new(r" +" ).unwrap(); |
| 543 | /// let hay = " a b c" ; |
| 544 | /// let got: Vec<&str> = re.split(hay).collect(); |
| 545 | /// // N.B. This does still include a leading empty span because ' +' |
| 546 | /// // matches at the beginning of the haystack. |
| 547 | /// assert_eq!(got, vec!["" , "a" , "b" , "c" ]); |
| 548 | /// ``` |
| 549 | #[inline ] |
| 550 | pub fn split<'r, 'h>(&'r self, haystack: &'h str) -> Split<'r, 'h> { |
| 551 | Split { haystack, finder: self.find_iter(haystack), last: 0 } |
| 552 | } |
| 553 | |
| 554 | /// Returns an iterator of at most `limit` substrings of the haystack |
| 555 | /// given, delimited by a match of the regex. (A `limit` of `0` will return |
| 556 | /// no substrings.) Namely, each element of the iterator corresponds to a |
| 557 | /// part of the haystack that *isn't* matched by the regular expression. |
| 558 | /// The remainder of the haystack that is not split will be the last |
| 559 | /// element in the iterator. |
| 560 | /// |
| 561 | /// # Time complexity |
| 562 | /// |
| 563 | /// Since iterators over all matches requires running potentially many |
| 564 | /// searches on the haystack, and since each search has worst case |
| 565 | /// `O(m * n)` time complexity, the overall worst case time complexity for |
| 566 | /// this routine is `O(m * n^2)`. |
| 567 | /// |
| 568 | /// Although note that the worst case time here has an upper bound given |
| 569 | /// by the `limit` parameter. |
| 570 | /// |
| 571 | /// # Example |
| 572 | /// |
| 573 | /// Get the first two words in some haystack: |
| 574 | /// |
| 575 | /// ``` |
| 576 | /// use regex_lite::Regex; |
| 577 | /// |
| 578 | /// let re = Regex::new(r"\W+" ).unwrap(); |
| 579 | /// let hay = "Hey! How are you?" ; |
| 580 | /// let fields: Vec<&str> = re.splitn(hay, 3).collect(); |
| 581 | /// assert_eq!(fields, vec!["Hey" , "How" , "are you?" ]); |
| 582 | /// ``` |
| 583 | /// |
| 584 | /// # Examples: more cases |
| 585 | /// |
| 586 | /// ``` |
| 587 | /// use regex_lite::Regex; |
| 588 | /// |
| 589 | /// let re = Regex::new(r" " ).unwrap(); |
| 590 | /// let hay = "Mary had a little lamb" ; |
| 591 | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
| 592 | /// assert_eq!(got, vec!["Mary" , "had" , "a little lamb" ]); |
| 593 | /// |
| 594 | /// let re = Regex::new(r"X" ).unwrap(); |
| 595 | /// let hay = "" ; |
| 596 | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
| 597 | /// assert_eq!(got, vec!["" ]); |
| 598 | /// |
| 599 | /// let re = Regex::new(r"X" ).unwrap(); |
| 600 | /// let hay = "lionXXtigerXleopard" ; |
| 601 | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
| 602 | /// assert_eq!(got, vec!["lion" , "" , "tigerXleopard" ]); |
| 603 | /// |
| 604 | /// let re = Regex::new(r"::" ).unwrap(); |
| 605 | /// let hay = "lion::tiger::leopard" ; |
| 606 | /// let got: Vec<&str> = re.splitn(hay, 2).collect(); |
| 607 | /// assert_eq!(got, vec!["lion" , "tiger::leopard" ]); |
| 608 | /// |
| 609 | /// let re = Regex::new(r"X" ).unwrap(); |
| 610 | /// let hay = "abcXdef" ; |
| 611 | /// let got: Vec<&str> = re.splitn(hay, 1).collect(); |
| 612 | /// assert_eq!(got, vec!["abcXdef" ]); |
| 613 | /// |
| 614 | /// let re = Regex::new(r"X" ).unwrap(); |
| 615 | /// let hay = "abcdef" ; |
| 616 | /// let got: Vec<&str> = re.splitn(hay, 2).collect(); |
| 617 | /// assert_eq!(got, vec!["abcdef" ]); |
| 618 | /// |
| 619 | /// let re = Regex::new(r"X" ).unwrap(); |
| 620 | /// let hay = "abcXdef" ; |
| 621 | /// let got: Vec<&str> = re.splitn(hay, 0).collect(); |
| 622 | /// assert!(got.is_empty()); |
| 623 | /// ``` |
| 624 | #[inline ] |
| 625 | pub fn splitn<'r, 'h>( |
| 626 | &'r self, |
| 627 | haystack: &'h str, |
| 628 | limit: usize, |
| 629 | ) -> SplitN<'r, 'h> { |
| 630 | SplitN { splits: self.split(haystack), limit } |
| 631 | } |
| 632 | |
| 633 | /// Replaces the leftmost-first match in the given haystack with the |
| 634 | /// replacement provided. The replacement can be a regular string (where |
| 635 | /// `$N` and `$name` are expanded to match capture groups) or a function |
| 636 | /// that takes a [`Captures`] and returns the replaced string. |
| 637 | /// |
| 638 | /// If no match is found, then the haystack is returned unchanged. In that |
| 639 | /// case, this implementation will likely return a `Cow::Borrowed` value |
| 640 | /// such that no allocation is performed. |
| 641 | /// |
| 642 | /// # Replacement string syntax |
| 643 | /// |
| 644 | /// All instances of `$ref` in the replacement string are replaced with |
| 645 | /// the substring corresponding to the capture group identified by `ref`. |
| 646 | /// |
| 647 | /// `ref` may be an integer corresponding to the index of the capture group |
| 648 | /// (counted by order of opening parenthesis where `0` is the entire match) |
| 649 | /// or it can be a name (consisting of letters, digits or underscores) |
| 650 | /// corresponding to a named capture group. |
| 651 | /// |
| 652 | /// If `ref` isn't a valid capture group (whether the name doesn't exist or |
| 653 | /// isn't a valid index), then it is replaced with the empty string. |
| 654 | /// |
| 655 | /// The longest possible name is used. For example, `$1a` looks up the |
| 656 | /// capture group named `1a` and not the capture group at index `1`. To |
| 657 | /// exert more precise control over the name, use braces, e.g., `${1}a`. |
| 658 | /// |
| 659 | /// To write a literal `$` use `$$`. |
| 660 | /// |
| 661 | /// # Example |
| 662 | /// |
| 663 | /// Note that this function is polymorphic with respect to the replacement. |
| 664 | /// In typical usage, this can just be a normal string: |
| 665 | /// |
| 666 | /// ``` |
| 667 | /// use regex_lite::Regex; |
| 668 | /// |
| 669 | /// let re = Regex::new(r"[^01]+" ).unwrap(); |
| 670 | /// assert_eq!(re.replace("1078910" , "" ), "1010" ); |
| 671 | /// ``` |
| 672 | /// |
| 673 | /// But anything satisfying the [`Replacer`] trait will work. For example, |
| 674 | /// a closure of type `|&Captures| -> String` provides direct access to the |
| 675 | /// captures corresponding to a match. This allows one to access capturing |
| 676 | /// group matches easily: |
| 677 | /// |
| 678 | /// ``` |
| 679 | /// use regex_lite::{Captures, Regex}; |
| 680 | /// |
| 681 | /// let re = Regex::new(r"([^,\s]+),\s+(\S+)" ).unwrap(); |
| 682 | /// let result = re.replace("Springsteen, Bruce" , |caps: &Captures| { |
| 683 | /// format!("{} {}" , &caps[2], &caps[1]) |
| 684 | /// }); |
| 685 | /// assert_eq!(result, "Bruce Springsteen" ); |
| 686 | /// ``` |
| 687 | /// |
| 688 | /// But this is a bit cumbersome to use all the time. Instead, a simple |
| 689 | /// syntax is supported (as described above) that expands `$name` into the |
| 690 | /// corresponding capture group. Here's the last example, but using this |
| 691 | /// expansion technique with named capture groups: |
| 692 | /// |
| 693 | /// ``` |
| 694 | /// use regex_lite::Regex; |
| 695 | /// |
| 696 | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)" ).unwrap(); |
| 697 | /// let result = re.replace("Springsteen, Bruce" , "$first $last" ); |
| 698 | /// assert_eq!(result, "Bruce Springsteen" ); |
| 699 | /// ``` |
| 700 | /// |
| 701 | /// Note that using `$2` instead of `$first` or `$1` instead of `$last` |
| 702 | /// would produce the same result. To write a literal `$` use `$$`. |
| 703 | /// |
| 704 | /// Sometimes the replacement string requires use of curly braces to |
| 705 | /// delineate a capture group replacement when it is adjacent to some other |
| 706 | /// literal text. For example, if we wanted to join two words together with |
| 707 | /// an underscore: |
| 708 | /// |
| 709 | /// ``` |
| 710 | /// use regex_lite::Regex; |
| 711 | /// |
| 712 | /// let re = Regex::new(r"(?<first>\w+)\s+(?<second>\w+)" ).unwrap(); |
| 713 | /// let result = re.replace("deep fried" , "${first}_$second" ); |
| 714 | /// assert_eq!(result, "deep_fried" ); |
| 715 | /// ``` |
| 716 | /// |
| 717 | /// Without the curly braces, the capture group name `first_` would be |
| 718 | /// used, and since it doesn't exist, it would be replaced with the empty |
| 719 | /// string. |
| 720 | /// |
| 721 | /// Finally, sometimes you just want to replace a literal string with no |
| 722 | /// regard for capturing group expansion. This can be done by wrapping a |
| 723 | /// string with [`NoExpand`]: |
| 724 | /// |
| 725 | /// ``` |
| 726 | /// use regex_lite::{NoExpand, Regex}; |
| 727 | /// |
| 728 | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)" ).unwrap(); |
| 729 | /// let result = re.replace("Springsteen, Bruce" , NoExpand("$2 $last" )); |
| 730 | /// assert_eq!(result, "$2 $last" ); |
| 731 | /// ``` |
| 732 | /// |
| 733 | /// Using `NoExpand` may also be faster, since the replacement string won't |
| 734 | /// need to be parsed for the `$` syntax. |
| 735 | #[inline ] |
| 736 | pub fn replace<'h, R: Replacer>( |
| 737 | &self, |
| 738 | haystack: &'h str, |
| 739 | rep: R, |
| 740 | ) -> Cow<'h, str> { |
| 741 | self.replacen(haystack, 1, rep) |
| 742 | } |
| 743 | |
| 744 | /// Replaces all non-overlapping matches in the haystack with the |
| 745 | /// replacement provided. This is the same as calling `replacen` with |
| 746 | /// `limit` set to `0`. |
| 747 | /// |
| 748 | /// The documentation for [`Regex::replace`] goes into more detail about |
| 749 | /// what kinds of replacement strings are supported. |
| 750 | /// |
| 751 | /// # Time complexity |
| 752 | /// |
| 753 | /// Since iterators over all matches requires running potentially many |
| 754 | /// searches on the haystack, and since each search has worst case |
| 755 | /// `O(m * n)` time complexity, the overall worst case time complexity for |
| 756 | /// this routine is `O(m * n^2)`. |
| 757 | /// |
| 758 | /// # Fallibility |
| 759 | /// |
| 760 | /// If you need to write a replacement routine where any individual |
| 761 | /// replacement might "fail," doing so with this API isn't really feasible |
| 762 | /// because there's no way to stop the search process if a replacement |
| 763 | /// fails. Instead, if you need this functionality, you should consider |
| 764 | /// implementing your own replacement routine: |
| 765 | /// |
| 766 | /// ``` |
| 767 | /// use regex_lite::{Captures, Regex}; |
| 768 | /// |
| 769 | /// fn replace_all<E>( |
| 770 | /// re: &Regex, |
| 771 | /// haystack: &str, |
| 772 | /// replacement: impl Fn(&Captures) -> Result<String, E>, |
| 773 | /// ) -> Result<String, E> { |
| 774 | /// let mut new = String::with_capacity(haystack.len()); |
| 775 | /// let mut last_match = 0; |
| 776 | /// for caps in re.captures_iter(haystack) { |
| 777 | /// let m = caps.get(0).unwrap(); |
| 778 | /// new.push_str(&haystack[last_match..m.start()]); |
| 779 | /// new.push_str(&replacement(&caps)?); |
| 780 | /// last_match = m.end(); |
| 781 | /// } |
| 782 | /// new.push_str(&haystack[last_match..]); |
| 783 | /// Ok(new) |
| 784 | /// } |
| 785 | /// |
| 786 | /// // Let's replace each word with the number of bytes in that word. |
| 787 | /// // But if we see a word that is "too long," we'll give up. |
| 788 | /// let re = Regex::new(r"\w+" ).unwrap(); |
| 789 | /// let replacement = |caps: &Captures| -> Result<String, &'static str> { |
| 790 | /// if caps[0].len() >= 5 { |
| 791 | /// return Err("word too long" ); |
| 792 | /// } |
| 793 | /// Ok(caps[0].len().to_string()) |
| 794 | /// }; |
| 795 | /// assert_eq!( |
| 796 | /// Ok("2 3 3 3?" .to_string()), |
| 797 | /// replace_all(&re, "hi how are you?" , &replacement), |
| 798 | /// ); |
| 799 | /// assert!(replace_all(&re, "hi there" , &replacement).is_err()); |
| 800 | /// ``` |
| 801 | /// |
| 802 | /// # Example |
| 803 | /// |
| 804 | /// This example shows how to flip the order of whitespace delimited |
| 805 | /// fields, and normalizes the whitespace that delimits the fields: |
| 806 | /// |
| 807 | /// ``` |
| 808 | /// use regex_lite::Regex; |
| 809 | /// |
| 810 | /// let re = Regex::new(r"(?m)^(\S+)\s+(\S+)$" ).unwrap(); |
| 811 | /// let hay = " |
| 812 | /// Greetings 1973 |
| 813 | /// Wild \t1973 |
| 814 | /// BornToRun \t\t\t\t1975 |
| 815 | /// Darkness 1978 |
| 816 | /// TheRiver 1980 |
| 817 | /// " ; |
| 818 | /// let new = re.replace_all(hay, "$2 $1" ); |
| 819 | /// assert_eq!(new, " |
| 820 | /// 1973 Greetings |
| 821 | /// 1973 Wild |
| 822 | /// 1975 BornToRun |
| 823 | /// 1978 Darkness |
| 824 | /// 1980 TheRiver |
| 825 | /// " ); |
| 826 | /// ``` |
| 827 | #[inline ] |
| 828 | pub fn replace_all<'h, R: Replacer>( |
| 829 | &self, |
| 830 | haystack: &'h str, |
| 831 | rep: R, |
| 832 | ) -> Cow<'h, str> { |
| 833 | self.replacen(haystack, 0, rep) |
| 834 | } |
| 835 | |
| 836 | /// Replaces at most `limit` non-overlapping matches in the haystack with |
| 837 | /// the replacement provided. If `limit` is `0`, then all non-overlapping |
| 838 | /// matches are replaced. That is, `Regex::replace_all(hay, rep)` is |
| 839 | /// equivalent to `Regex::replacen(hay, 0, rep)`. |
| 840 | /// |
| 841 | /// The documentation for [`Regex::replace`] goes into more detail about |
| 842 | /// what kinds of replacement strings are supported. |
| 843 | /// |
| 844 | /// # Time complexity |
| 845 | /// |
| 846 | /// Since iterators over all matches requires running potentially many |
| 847 | /// searches on the haystack, and since each search has worst case |
| 848 | /// `O(m * n)` time complexity, the overall worst case time complexity for |
| 849 | /// this routine is `O(m * n^2)`. |
| 850 | /// |
| 851 | /// Although note that the worst case time here has an upper bound given |
| 852 | /// by the `limit` parameter. |
| 853 | /// |
| 854 | /// # Fallibility |
| 855 | /// |
| 856 | /// See the corresponding section in the docs for [`Regex::replace_all`] |
| 857 | /// for tips on how to deal with a replacement routine that can fail. |
| 858 | /// |
| 859 | /// # Example |
| 860 | /// |
| 861 | /// This example shows how to flip the order of whitespace delimited |
| 862 | /// fields, and normalizes the whitespace that delimits the fields. But we |
| 863 | /// only do it for the first two matches. |
| 864 | /// |
| 865 | /// ``` |
| 866 | /// use regex_lite::Regex; |
| 867 | /// |
| 868 | /// let re = Regex::new(r"(?m)^(\S+)\s+(\S+)$" ).unwrap(); |
| 869 | /// let hay = " |
| 870 | /// Greetings 1973 |
| 871 | /// Wild \t1973 |
| 872 | /// BornToRun \t\t\t\t1975 |
| 873 | /// Darkness 1978 |
| 874 | /// TheRiver 1980 |
| 875 | /// " ; |
| 876 | /// let new = re.replacen(hay, 2, "$2 $1" ); |
| 877 | /// assert_eq!(new, " |
| 878 | /// 1973 Greetings |
| 879 | /// 1973 Wild |
| 880 | /// BornToRun \t\t\t\t1975 |
| 881 | /// Darkness 1978 |
| 882 | /// TheRiver 1980 |
| 883 | /// " ); |
| 884 | /// ``` |
| 885 | #[inline ] |
| 886 | pub fn replacen<'h, R: Replacer>( |
| 887 | &self, |
| 888 | haystack: &'h str, |
| 889 | limit: usize, |
| 890 | mut rep: R, |
| 891 | ) -> Cow<'h, str> { |
| 892 | // If we know that the replacement doesn't have any capture expansions, |
| 893 | // then we can use the fast path. The fast path can make a tremendous |
| 894 | // difference: |
| 895 | // |
| 896 | // 1) We use `find_iter` instead of `captures_iter`. Not asking for |
| 897 | // captures generally makes the regex engines faster. |
| 898 | // 2) We don't need to look up all of the capture groups and do |
| 899 | // replacements inside the replacement string. We just push it |
| 900 | // at each match and be done with it. |
| 901 | if let Some(rep) = rep.no_expansion() { |
| 902 | let mut it = self.find_iter(haystack).enumerate().peekable(); |
| 903 | if it.peek().is_none() { |
| 904 | return Cow::Borrowed(haystack); |
| 905 | } |
| 906 | let mut new = String::with_capacity(haystack.len()); |
| 907 | let mut last_match = 0; |
| 908 | for (i, m) in it { |
| 909 | new.push_str(&haystack[last_match..m.start()]); |
| 910 | new.push_str(&rep); |
| 911 | last_match = m.end(); |
| 912 | if limit > 0 && i >= limit - 1 { |
| 913 | break; |
| 914 | } |
| 915 | } |
| 916 | new.push_str(&haystack[last_match..]); |
| 917 | return Cow::Owned(new); |
| 918 | } |
| 919 | |
| 920 | // The slower path, which we use if the replacement needs access to |
| 921 | // capture groups. |
| 922 | let mut it = self.captures_iter(haystack).enumerate().peekable(); |
| 923 | if it.peek().is_none() { |
| 924 | return Cow::Borrowed(haystack); |
| 925 | } |
| 926 | let mut new = String::with_capacity(haystack.len()); |
| 927 | let mut last_match = 0; |
| 928 | for (i, cap) in it { |
| 929 | // unwrap on 0 is OK because captures only reports matches |
| 930 | let m = cap.get(0).unwrap(); |
| 931 | new.push_str(&haystack[last_match..m.start()]); |
| 932 | rep.replace_append(&cap, &mut new); |
| 933 | last_match = m.end(); |
| 934 | if limit > 0 && i >= limit - 1 { |
| 935 | break; |
| 936 | } |
| 937 | } |
| 938 | new.push_str(&haystack[last_match..]); |
| 939 | Cow::Owned(new) |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | /// A group of advanced or "lower level" search methods. Some methods permit |
| 944 | /// starting the search at a position greater than `0` in the haystack. Other |
| 945 | /// methods permit reusing allocations, for example, when extracting the |
| 946 | /// matches for capture groups. |
| 947 | impl Regex { |
| 948 | /// Returns the end byte offset of the first match in the haystack given. |
| 949 | /// |
| 950 | /// This method may have the same performance characteristics as |
| 951 | /// `is_match`. Behaviorlly, it doesn't just report whether it match |
| 952 | /// occurs, but also the end offset for a match. In particular, the offset |
| 953 | /// returned *may be shorter* than the proper end of the leftmost-first |
| 954 | /// match that you would find via [`Regex::find`]. |
| 955 | /// |
| 956 | /// Note that it is not guaranteed that this routine finds the shortest or |
| 957 | /// "earliest" possible match. Instead, the main idea of this API is that |
| 958 | /// it returns the offset at the point at which the internal regex engine |
| 959 | /// has determined that a match has occurred. This may vary depending on |
| 960 | /// which internal regex engine is used, and thus, the offset itself may |
| 961 | /// change based on internal heuristics. |
| 962 | /// |
| 963 | /// # Example |
| 964 | /// |
| 965 | /// Typically, `a+` would match the entire first sequence of `a` in some |
| 966 | /// haystack, but `shortest_match` *may* give up as soon as it sees the |
| 967 | /// first `a`. |
| 968 | /// |
| 969 | /// ``` |
| 970 | /// use regex_lite::Regex; |
| 971 | /// |
| 972 | /// let re = Regex::new(r"a+" ).unwrap(); |
| 973 | /// let offset = re.shortest_match("aaaaa" ).unwrap(); |
| 974 | /// assert_eq!(offset, 1); |
| 975 | /// ``` |
| 976 | #[inline ] |
| 977 | pub fn shortest_match(&self, haystack: &str) -> Option<usize> { |
| 978 | self.shortest_match_at(haystack, 0) |
| 979 | } |
| 980 | |
| 981 | /// Returns the same as [`Regex::shortest_match`], but starts the search at |
| 982 | /// the given offset. |
| 983 | /// |
| 984 | /// The significance of the starting point is that it takes the surrounding |
| 985 | /// context into consideration. For example, the `\A` anchor can only match |
| 986 | /// when `start == 0`. |
| 987 | /// |
| 988 | /// If a match is found, the offset returned is relative to the beginning |
| 989 | /// of the haystack, not the beginning of the search. |
| 990 | /// |
| 991 | /// # Panics |
| 992 | /// |
| 993 | /// This panics when `start >= haystack.len() + 1`. |
| 994 | /// |
| 995 | /// # Example |
| 996 | /// |
| 997 | /// This example shows the significance of `start` by demonstrating how it |
| 998 | /// can be used to permit look-around assertions in a regex to take the |
| 999 | /// surrounding context into account. |
| 1000 | /// |
| 1001 | /// ``` |
| 1002 | /// use regex_lite::Regex; |
| 1003 | /// |
| 1004 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
| 1005 | /// let hay = "eschew" ; |
| 1006 | /// // We get a match here, but it's probably not intended. |
| 1007 | /// assert_eq!(re.shortest_match(&hay[2..]), Some(4)); |
| 1008 | /// // No match because the assertions take the context into account. |
| 1009 | /// assert_eq!(re.shortest_match_at(hay, 2), None); |
| 1010 | /// ``` |
| 1011 | #[inline ] |
| 1012 | pub fn shortest_match_at( |
| 1013 | &self, |
| 1014 | haystack: &str, |
| 1015 | start: usize, |
| 1016 | ) -> Option<usize> { |
| 1017 | let mut cache = self.pool.get(); |
| 1018 | let mut slots = [None, None]; |
| 1019 | let matched = self.pikevm.search( |
| 1020 | &mut cache, |
| 1021 | haystack.as_bytes(), |
| 1022 | start, |
| 1023 | haystack.len(), |
| 1024 | true, |
| 1025 | &mut slots, |
| 1026 | ); |
| 1027 | if !matched { |
| 1028 | return None; |
| 1029 | } |
| 1030 | Some(slots[1].unwrap().get()) |
| 1031 | } |
| 1032 | |
| 1033 | /// Returns the same as [`Regex::is_match`], but starts the search at the |
| 1034 | /// given offset. |
| 1035 | /// |
| 1036 | /// The significance of the starting point is that it takes the surrounding |
| 1037 | /// context into consideration. For example, the `\A` anchor can only |
| 1038 | /// match when `start == 0`. |
| 1039 | /// |
| 1040 | /// # Panics |
| 1041 | /// |
| 1042 | /// This panics when `start >= haystack.len() + 1`. |
| 1043 | /// |
| 1044 | /// # Example |
| 1045 | /// |
| 1046 | /// This example shows the significance of `start` by demonstrating how it |
| 1047 | /// can be used to permit look-around assertions in a regex to take the |
| 1048 | /// surrounding context into account. |
| 1049 | /// |
| 1050 | /// ``` |
| 1051 | /// use regex_lite::Regex; |
| 1052 | /// |
| 1053 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
| 1054 | /// let hay = "eschew" ; |
| 1055 | /// // We get a match here, but it's probably not intended. |
| 1056 | /// assert!(re.is_match(&hay[2..])); |
| 1057 | /// // No match because the assertions take the context into account. |
| 1058 | /// assert!(!re.is_match_at(hay, 2)); |
| 1059 | /// ``` |
| 1060 | #[inline ] |
| 1061 | pub fn is_match_at(&self, haystack: &str, start: usize) -> bool { |
| 1062 | let mut cache = self.pool.get(); |
| 1063 | self.pikevm.search( |
| 1064 | &mut cache, |
| 1065 | haystack.as_bytes(), |
| 1066 | start, |
| 1067 | haystack.len(), |
| 1068 | true, |
| 1069 | &mut [], |
| 1070 | ) |
| 1071 | } |
| 1072 | |
| 1073 | /// Returns the same as [`Regex::find`], but starts the search at the given |
| 1074 | /// offset. |
| 1075 | /// |
| 1076 | /// The significance of the starting point is that it takes the surrounding |
| 1077 | /// context into consideration. For example, the `\A` anchor can only |
| 1078 | /// match when `start == 0`. |
| 1079 | /// |
| 1080 | /// # Panics |
| 1081 | /// |
| 1082 | /// This panics when `start >= haystack.len() + 1`. |
| 1083 | /// |
| 1084 | /// # Example |
| 1085 | /// |
| 1086 | /// This example shows the significance of `start` by demonstrating how it |
| 1087 | /// can be used to permit look-around assertions in a regex to take the |
| 1088 | /// surrounding context into account. |
| 1089 | /// |
| 1090 | /// ``` |
| 1091 | /// use regex_lite::Regex; |
| 1092 | /// |
| 1093 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
| 1094 | /// let hay = "eschew" ; |
| 1095 | /// // We get a match here, but it's probably not intended. |
| 1096 | /// assert_eq!(re.find(&hay[2..]).map(|m| m.range()), Some(0..4)); |
| 1097 | /// // No match because the assertions take the context into account. |
| 1098 | /// assert_eq!(re.find_at(hay, 2), None); |
| 1099 | /// ``` |
| 1100 | #[inline ] |
| 1101 | pub fn find_at<'h>( |
| 1102 | &self, |
| 1103 | haystack: &'h str, |
| 1104 | start: usize, |
| 1105 | ) -> Option<Match<'h>> { |
| 1106 | let mut cache = self.pool.get(); |
| 1107 | let mut slots = [None, None]; |
| 1108 | let matched = self.pikevm.search( |
| 1109 | &mut cache, |
| 1110 | haystack.as_bytes(), |
| 1111 | start, |
| 1112 | haystack.len(), |
| 1113 | false, |
| 1114 | &mut slots, |
| 1115 | ); |
| 1116 | if !matched { |
| 1117 | return None; |
| 1118 | } |
| 1119 | let (start, end) = (slots[0].unwrap().get(), slots[1].unwrap().get()); |
| 1120 | Some(Match::new(haystack, start, end)) |
| 1121 | } |
| 1122 | |
| 1123 | /// Returns the same as [`Regex::captures`], but starts the search at the |
| 1124 | /// given offset. |
| 1125 | /// |
| 1126 | /// The significance of the starting point is that it takes the surrounding |
| 1127 | /// context into consideration. For example, the `\A` anchor can only |
| 1128 | /// match when `start == 0`. |
| 1129 | /// |
| 1130 | /// # Panics |
| 1131 | /// |
| 1132 | /// This panics when `start >= haystack.len() + 1`. |
| 1133 | /// |
| 1134 | /// # Example |
| 1135 | /// |
| 1136 | /// This example shows the significance of `start` by demonstrating how it |
| 1137 | /// can be used to permit look-around assertions in a regex to take the |
| 1138 | /// surrounding context into account. |
| 1139 | /// |
| 1140 | /// ``` |
| 1141 | /// use regex_lite::Regex; |
| 1142 | /// |
| 1143 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
| 1144 | /// let hay = "eschew" ; |
| 1145 | /// // We get a match here, but it's probably not intended. |
| 1146 | /// assert_eq!(&re.captures(&hay[2..]).unwrap()[0], "chew" ); |
| 1147 | /// // No match because the assertions take the context into account. |
| 1148 | /// assert!(re.captures_at(hay, 2).is_none()); |
| 1149 | /// ``` |
| 1150 | #[inline ] |
| 1151 | pub fn captures_at<'h>( |
| 1152 | &self, |
| 1153 | haystack: &'h str, |
| 1154 | start: usize, |
| 1155 | ) -> Option<Captures<'h>> { |
| 1156 | let mut caps = Captures { |
| 1157 | haystack, |
| 1158 | slots: self.capture_locations(), |
| 1159 | pikevm: Arc::clone(&self.pikevm), |
| 1160 | }; |
| 1161 | let mut cache = self.pool.get(); |
| 1162 | let matched = self.pikevm.search( |
| 1163 | &mut cache, |
| 1164 | haystack.as_bytes(), |
| 1165 | start, |
| 1166 | haystack.len(), |
| 1167 | false, |
| 1168 | &mut caps.slots.0, |
| 1169 | ); |
| 1170 | if !matched { |
| 1171 | return None; |
| 1172 | } |
| 1173 | Some(caps) |
| 1174 | } |
| 1175 | |
| 1176 | /// This is like [`Regex::captures`], but writes the byte offsets of each |
| 1177 | /// capture group match into the locations given. |
| 1178 | /// |
| 1179 | /// A [`CaptureLocations`] stores the same byte offsets as a [`Captures`], |
| 1180 | /// but does *not* store a reference to the haystack. This makes its API |
| 1181 | /// a bit lower level and less convenience. But in exchange, callers |
| 1182 | /// may allocate their own `CaptureLocations` and reuse it for multiple |
| 1183 | /// searches. This may be helpful if allocating a `Captures` shows up in a |
| 1184 | /// profile as too costly. |
| 1185 | /// |
| 1186 | /// To create a `CaptureLocations` value, use the |
| 1187 | /// [`Regex::capture_locations`] method. |
| 1188 | /// |
| 1189 | /// This also returns the overall match if one was found. When a match is |
| 1190 | /// found, its offsets are also always stored in `locs` at index `0`. |
| 1191 | /// |
| 1192 | /// # Panics |
| 1193 | /// |
| 1194 | /// This routine may panic if the given `CaptureLocations` was not created |
| 1195 | /// by this regex. |
| 1196 | /// |
| 1197 | /// # Example |
| 1198 | /// |
| 1199 | /// ``` |
| 1200 | /// use regex_lite::Regex; |
| 1201 | /// |
| 1202 | /// let re = Regex::new(r"^([a-z]+)=(\S*)$" ).unwrap(); |
| 1203 | /// let mut locs = re.capture_locations(); |
| 1204 | /// assert!(re.captures_read(&mut locs, "id=foo123" ).is_some()); |
| 1205 | /// assert_eq!(Some((0, 9)), locs.get(0)); |
| 1206 | /// assert_eq!(Some((0, 2)), locs.get(1)); |
| 1207 | /// assert_eq!(Some((3, 9)), locs.get(2)); |
| 1208 | /// ``` |
| 1209 | #[inline ] |
| 1210 | pub fn captures_read<'h>( |
| 1211 | &self, |
| 1212 | locs: &mut CaptureLocations, |
| 1213 | haystack: &'h str, |
| 1214 | ) -> Option<Match<'h>> { |
| 1215 | self.captures_read_at(locs, haystack, 0) |
| 1216 | } |
| 1217 | |
| 1218 | /// Returns the same as [`Regex::captures_read`], but starts the search at |
| 1219 | /// the given offset. |
| 1220 | /// |
| 1221 | /// The significance of the starting point is that it takes the surrounding |
| 1222 | /// context into consideration. For example, the `\A` anchor can only |
| 1223 | /// match when `start == 0`. |
| 1224 | /// |
| 1225 | /// # Panics |
| 1226 | /// |
| 1227 | /// This panics when `start >= haystack.len() + 1`. |
| 1228 | /// |
| 1229 | /// This routine may also panic if the given `CaptureLocations` was not |
| 1230 | /// created by this regex. |
| 1231 | /// |
| 1232 | /// # Example |
| 1233 | /// |
| 1234 | /// This example shows the significance of `start` by demonstrating how it |
| 1235 | /// can be used to permit look-around assertions in a regex to take the |
| 1236 | /// surrounding context into account. |
| 1237 | /// |
| 1238 | /// ``` |
| 1239 | /// use regex_lite::Regex; |
| 1240 | /// |
| 1241 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
| 1242 | /// let hay = "eschew" ; |
| 1243 | /// let mut locs = re.capture_locations(); |
| 1244 | /// // We get a match here, but it's probably not intended. |
| 1245 | /// assert!(re.captures_read(&mut locs, &hay[2..]).is_some()); |
| 1246 | /// // No match because the assertions take the context into account. |
| 1247 | /// assert!(re.captures_read_at(&mut locs, hay, 2).is_none()); |
| 1248 | /// ``` |
| 1249 | #[inline ] |
| 1250 | pub fn captures_read_at<'h>( |
| 1251 | &self, |
| 1252 | locs: &mut CaptureLocations, |
| 1253 | haystack: &'h str, |
| 1254 | start: usize, |
| 1255 | ) -> Option<Match<'h>> { |
| 1256 | let mut cache = self.pool.get(); |
| 1257 | let matched = self.pikevm.search( |
| 1258 | &mut cache, |
| 1259 | haystack.as_bytes(), |
| 1260 | start, |
| 1261 | haystack.len(), |
| 1262 | false, |
| 1263 | &mut locs.0, |
| 1264 | ); |
| 1265 | if !matched { |
| 1266 | return None; |
| 1267 | } |
| 1268 | let (start, end) = locs.get(0).unwrap(); |
| 1269 | Some(Match::new(haystack, start, end)) |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | /// Auxiliary methods. |
| 1274 | impl Regex { |
| 1275 | /// Returns the original string of this regex. |
| 1276 | /// |
| 1277 | /// # Example |
| 1278 | /// |
| 1279 | /// ``` |
| 1280 | /// use regex_lite::Regex; |
| 1281 | /// |
| 1282 | /// let re = Regex::new(r"foo\w+bar" ).unwrap(); |
| 1283 | /// assert_eq!(re.as_str(), r"foo\w+bar" ); |
| 1284 | /// ``` |
| 1285 | #[inline ] |
| 1286 | pub fn as_str(&self) -> &str { |
| 1287 | &self.pikevm.nfa().pattern() |
| 1288 | } |
| 1289 | |
| 1290 | /// Returns an iterator over the capture names in this regex. |
| 1291 | /// |
| 1292 | /// The iterator returned yields elements of type `Option<&str>`. That is, |
| 1293 | /// the iterator yields values for all capture groups, even ones that are |
| 1294 | /// unnamed. The order of the groups corresponds to the order of the group's |
| 1295 | /// corresponding opening parenthesis. |
| 1296 | /// |
| 1297 | /// The first element of the iterator always yields the group corresponding |
| 1298 | /// to the overall match, and this group is always unnamed. Therefore, the |
| 1299 | /// iterator always yields at least one group. |
| 1300 | /// |
| 1301 | /// # Example |
| 1302 | /// |
| 1303 | /// This shows basic usage with a mix of named and unnamed capture groups: |
| 1304 | /// |
| 1305 | /// ``` |
| 1306 | /// use regex_lite::Regex; |
| 1307 | /// |
| 1308 | /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)" ).unwrap(); |
| 1309 | /// let mut names = re.capture_names(); |
| 1310 | /// assert_eq!(names.next(), Some(None)); |
| 1311 | /// assert_eq!(names.next(), Some(Some("a" ))); |
| 1312 | /// assert_eq!(names.next(), Some(Some("b" ))); |
| 1313 | /// assert_eq!(names.next(), Some(None)); |
| 1314 | /// // the '(?:.)' group is non-capturing and so doesn't appear here! |
| 1315 | /// assert_eq!(names.next(), Some(Some("c" ))); |
| 1316 | /// assert_eq!(names.next(), None); |
| 1317 | /// ``` |
| 1318 | /// |
| 1319 | /// The iterator always yields at least one element, even for regexes with |
| 1320 | /// no capture groups and even for regexes that can never match: |
| 1321 | /// |
| 1322 | /// ``` |
| 1323 | /// use regex_lite::Regex; |
| 1324 | /// |
| 1325 | /// let re = Regex::new(r"" ).unwrap(); |
| 1326 | /// let mut names = re.capture_names(); |
| 1327 | /// assert_eq!(names.next(), Some(None)); |
| 1328 | /// assert_eq!(names.next(), None); |
| 1329 | /// |
| 1330 | /// let re = Regex::new(r"[^\s\S]" ).unwrap(); |
| 1331 | /// let mut names = re.capture_names(); |
| 1332 | /// assert_eq!(names.next(), Some(None)); |
| 1333 | /// assert_eq!(names.next(), None); |
| 1334 | /// ``` |
| 1335 | #[inline ] |
| 1336 | pub fn capture_names(&self) -> CaptureNames<'_> { |
| 1337 | CaptureNames(self.pikevm.nfa().capture_names()) |
| 1338 | } |
| 1339 | |
| 1340 | /// Returns the number of captures groups in this regex. |
| 1341 | /// |
| 1342 | /// This includes all named and unnamed groups, including the implicit |
| 1343 | /// unnamed group that is always present and corresponds to the entire |
| 1344 | /// match. |
| 1345 | /// |
| 1346 | /// Since the implicit unnamed group is always included in this length, the |
| 1347 | /// length returned is guaranteed to be greater than zero. |
| 1348 | /// |
| 1349 | /// # Example |
| 1350 | /// |
| 1351 | /// ``` |
| 1352 | /// use regex_lite::Regex; |
| 1353 | /// |
| 1354 | /// let re = Regex::new(r"foo" ).unwrap(); |
| 1355 | /// assert_eq!(1, re.captures_len()); |
| 1356 | /// |
| 1357 | /// let re = Regex::new(r"(foo)" ).unwrap(); |
| 1358 | /// assert_eq!(2, re.captures_len()); |
| 1359 | /// |
| 1360 | /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)" ).unwrap(); |
| 1361 | /// assert_eq!(5, re.captures_len()); |
| 1362 | /// |
| 1363 | /// let re = Regex::new(r"[^\s\S]" ).unwrap(); |
| 1364 | /// assert_eq!(1, re.captures_len()); |
| 1365 | /// ``` |
| 1366 | #[inline ] |
| 1367 | pub fn captures_len(&self) -> usize { |
| 1368 | self.pikevm.nfa().group_len() |
| 1369 | } |
| 1370 | |
| 1371 | /// Returns the total number of capturing groups that appear in every |
| 1372 | /// possible match. |
| 1373 | /// |
| 1374 | /// If the number of capture groups can vary depending on the match, then |
| 1375 | /// this returns `None`. That is, a value is only returned when the number |
| 1376 | /// of matching groups is invariant or "static." |
| 1377 | /// |
| 1378 | /// Note that like [`Regex::captures_len`], this **does** include the |
| 1379 | /// implicit capturing group corresponding to the entire match. Therefore, |
| 1380 | /// when a non-None value is returned, it is guaranteed to be at least `1`. |
| 1381 | /// Stated differently, a return value of `Some(0)` is impossible. |
| 1382 | /// |
| 1383 | /// # Example |
| 1384 | /// |
| 1385 | /// This shows a few cases where a static number of capture groups is |
| 1386 | /// available and a few cases where it is not. |
| 1387 | /// |
| 1388 | /// ``` |
| 1389 | /// use regex_lite::Regex; |
| 1390 | /// |
| 1391 | /// let len = |pattern| { |
| 1392 | /// Regex::new(pattern).map(|re| re.static_captures_len()) |
| 1393 | /// }; |
| 1394 | /// |
| 1395 | /// assert_eq!(Some(1), len("a" )?); |
| 1396 | /// assert_eq!(Some(2), len("(a)" )?); |
| 1397 | /// assert_eq!(Some(2), len("(a)|(b)" )?); |
| 1398 | /// assert_eq!(Some(3), len("(a)(b)|(c)(d)" )?); |
| 1399 | /// assert_eq!(None, len("(a)|b" )?); |
| 1400 | /// assert_eq!(None, len("a|(b)" )?); |
| 1401 | /// assert_eq!(None, len("(b)*" )?); |
| 1402 | /// assert_eq!(Some(2), len("(b)+" )?); |
| 1403 | /// |
| 1404 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1405 | /// ``` |
| 1406 | #[inline ] |
| 1407 | pub fn static_captures_len(&self) -> Option<usize> { |
| 1408 | self.pikevm |
| 1409 | .nfa() |
| 1410 | .static_explicit_captures_len() |
| 1411 | .map(|len| len.saturating_add(1)) |
| 1412 | } |
| 1413 | |
| 1414 | /// Returns a fresh allocated set of capture locations that can |
| 1415 | /// be reused in multiple calls to [`Regex::captures_read`] or |
| 1416 | /// [`Regex::captures_read_at`]. |
| 1417 | /// |
| 1418 | /// The returned locations can be used for any subsequent search for this |
| 1419 | /// particular regex. There is no guarantee that it is correct to use for |
| 1420 | /// other regexes, even if they have the same number of capture groups. |
| 1421 | /// |
| 1422 | /// # Example |
| 1423 | /// |
| 1424 | /// ``` |
| 1425 | /// use regex_lite::Regex; |
| 1426 | /// |
| 1427 | /// let re = Regex::new(r"(.)(.)(\w+)" ).unwrap(); |
| 1428 | /// let mut locs = re.capture_locations(); |
| 1429 | /// assert!(re.captures_read(&mut locs, "Padron" ).is_some()); |
| 1430 | /// assert_eq!(locs.get(0), Some((0, 6))); |
| 1431 | /// assert_eq!(locs.get(1), Some((0, 1))); |
| 1432 | /// assert_eq!(locs.get(2), Some((1, 2))); |
| 1433 | /// assert_eq!(locs.get(3), Some((2, 6))); |
| 1434 | /// ``` |
| 1435 | #[inline ] |
| 1436 | pub fn capture_locations(&self) -> CaptureLocations { |
| 1437 | // OK because NFA construction would have failed if this overflowed. |
| 1438 | let len = self.pikevm.nfa().group_len().checked_mul(2).unwrap(); |
| 1439 | CaptureLocations(vec![None; len]) |
| 1440 | } |
| 1441 | } |
| 1442 | |
| 1443 | /// Represents a single match of a regex in a haystack. |
| 1444 | /// |
| 1445 | /// A `Match` contains both the start and end byte offsets of the match and the |
| 1446 | /// actual substring corresponding to the range of those byte offsets. It is |
| 1447 | /// guaranteed that `start <= end`. When `start == end`, the match is empty. |
| 1448 | /// |
| 1449 | /// Since this `Match` can only be produced by the top-level `Regex` APIs |
| 1450 | /// that only support searching UTF-8 encoded strings, the byte offsets for a |
| 1451 | /// `Match` are guaranteed to fall on valid UTF-8 codepoint boundaries. That |
| 1452 | /// is, slicing a `&str` with [`Match::range`] is guaranteed to never panic. |
| 1453 | /// |
| 1454 | /// Values with this type are created by [`Regex::find`] or |
| 1455 | /// [`Regex::find_iter`]. Other APIs can create `Match` values too. For |
| 1456 | /// example, [`Captures::get`]. |
| 1457 | /// |
| 1458 | /// The lifetime parameter `'h` refers to the lifetime of the matched of the |
| 1459 | /// haystack that this match was produced from. |
| 1460 | /// |
| 1461 | /// # Numbering |
| 1462 | /// |
| 1463 | /// The byte offsets in a `Match` form a half-open interval. That is, the |
| 1464 | /// start of the range is inclusive and the end of the range is exclusive. |
| 1465 | /// For example, given a haystack `abcFOOxyz` and a match of `FOO`, its byte |
| 1466 | /// offset range starts at `3` and ends at `6`. `3` corresponds to `F` and |
| 1467 | /// `6` corresponds to `x`, which is one past the end of the match. This |
| 1468 | /// corresponds to the same kind of slicing that Rust uses. |
| 1469 | /// |
| 1470 | /// For more on why this was chosen over other schemes (aside from being |
| 1471 | /// consistent with how Rust the language works), see [this discussion] and |
| 1472 | /// [Dijkstra's note on a related topic][note]. |
| 1473 | /// |
| 1474 | /// [this discussion]: https://github.com/rust-lang/regex/discussions/866 |
| 1475 | /// [note]: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html |
| 1476 | /// |
| 1477 | /// # Example |
| 1478 | /// |
| 1479 | /// This example shows the value of each of the methods on `Match` for a |
| 1480 | /// particular search. |
| 1481 | /// |
| 1482 | /// ``` |
| 1483 | /// use regex_lite::Regex; |
| 1484 | /// |
| 1485 | /// let re = Regex::new(r"\d+" ).unwrap(); |
| 1486 | /// let hay = "numbers: 1234" ; |
| 1487 | /// let m = re.find(hay).unwrap(); |
| 1488 | /// assert_eq!(9, m.start()); |
| 1489 | /// assert_eq!(13, m.end()); |
| 1490 | /// assert!(!m.is_empty()); |
| 1491 | /// assert_eq!(4, m.len()); |
| 1492 | /// assert_eq!(9..13, m.range()); |
| 1493 | /// assert_eq!("1234" , m.as_str()); |
| 1494 | /// ``` |
| 1495 | #[derive (Copy, Clone, Eq, PartialEq)] |
| 1496 | pub struct Match<'h> { |
| 1497 | haystack: &'h str, |
| 1498 | start: usize, |
| 1499 | end: usize, |
| 1500 | } |
| 1501 | |
| 1502 | impl<'h> Match<'h> { |
| 1503 | /// Creates a new match from the given haystack and byte offsets. |
| 1504 | #[inline ] |
| 1505 | fn new(haystack: &'h str, start: usize, end: usize) -> Match<'h> { |
| 1506 | Match { haystack, start, end } |
| 1507 | } |
| 1508 | |
| 1509 | /// Returns the byte offset of the start of the match in the haystack. The |
| 1510 | /// start of the match corresponds to the position where the match begins |
| 1511 | /// and includes the first byte in the match. |
| 1512 | /// |
| 1513 | /// It is guaranteed that `Match::start() <= Match::end()`. |
| 1514 | /// |
| 1515 | /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That |
| 1516 | /// is, it will never be an offset that appears between the UTF-8 code |
| 1517 | /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is |
| 1518 | /// always safe to slice the corresponding haystack using this offset. |
| 1519 | #[inline ] |
| 1520 | pub fn start(&self) -> usize { |
| 1521 | self.start |
| 1522 | } |
| 1523 | |
| 1524 | /// Returns the byte offset of the end of the match in the haystack. The |
| 1525 | /// end of the match corresponds to the byte immediately following the last |
| 1526 | /// byte in the match. This means that `&slice[start..end]` works as one |
| 1527 | /// would expect. |
| 1528 | /// |
| 1529 | /// It is guaranteed that `Match::start() <= Match::end()`. |
| 1530 | /// |
| 1531 | /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That |
| 1532 | /// is, it will never be an offset that appears between the UTF-8 code |
| 1533 | /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is |
| 1534 | /// always safe to slice the corresponding haystack using this offset. |
| 1535 | #[inline ] |
| 1536 | pub fn end(&self) -> usize { |
| 1537 | self.end |
| 1538 | } |
| 1539 | |
| 1540 | /// Returns true if and only if this match has a length of zero. |
| 1541 | /// |
| 1542 | /// Note that an empty match can only occur when the regex itself can |
| 1543 | /// match the empty string. Here are some examples of regexes that can |
| 1544 | /// all match the empty string: `^`, `^$`, `\b`, `a?`, `a*`, `a{0}`, |
| 1545 | /// `(foo|\d+|quux)?`. |
| 1546 | #[inline ] |
| 1547 | pub fn is_empty(&self) -> bool { |
| 1548 | self.start == self.end |
| 1549 | } |
| 1550 | |
| 1551 | /// Returns the length, in bytes, of this match. |
| 1552 | #[inline ] |
| 1553 | pub fn len(&self) -> usize { |
| 1554 | self.end - self.start |
| 1555 | } |
| 1556 | |
| 1557 | /// Returns the range over the starting and ending byte offsets of the |
| 1558 | /// match in the haystack. |
| 1559 | /// |
| 1560 | /// It is always correct to slice the original haystack searched with this |
| 1561 | /// range. That is, because the offsets are guaranteed to fall on valid |
| 1562 | /// UTF-8 boundaries, the range returned is always valid. |
| 1563 | #[inline ] |
| 1564 | pub fn range(&self) -> core::ops::Range<usize> { |
| 1565 | self.start..self.end |
| 1566 | } |
| 1567 | |
| 1568 | /// Returns the substring of the haystack that matched. |
| 1569 | #[inline ] |
| 1570 | pub fn as_str(&self) -> &'h str { |
| 1571 | &self.haystack[self.range()] |
| 1572 | } |
| 1573 | } |
| 1574 | |
| 1575 | impl<'h> core::fmt::Debug for Match<'h> { |
| 1576 | fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { |
| 1577 | f&mut DebugStruct<'_, '_>.debug_struct("Match" ) |
| 1578 | .field("start" , &self.start) |
| 1579 | .field("end" , &self.end) |
| 1580 | .field(name:"string" , &self.as_str()) |
| 1581 | .finish() |
| 1582 | } |
| 1583 | } |
| 1584 | |
| 1585 | impl<'h> From<Match<'h>> for &'h str { |
| 1586 | fn from(m: Match<'h>) -> &'h str { |
| 1587 | m.as_str() |
| 1588 | } |
| 1589 | } |
| 1590 | |
| 1591 | impl<'h> From<Match<'h>> for core::ops::Range<usize> { |
| 1592 | fn from(m: Match<'h>) -> core::ops::Range<usize> { |
| 1593 | m.range() |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | /// Represents the capture groups for a single match. |
| 1598 | /// |
| 1599 | /// Capture groups refer to parts of a regex enclosed in parentheses. They can |
| 1600 | /// be optionally named. The purpose of capture groups is to be able to |
| 1601 | /// reference different parts of a match based on the original pattern. For |
| 1602 | /// example, say you want to match the individual letters in a 5-letter word: |
| 1603 | /// |
| 1604 | /// ```text |
| 1605 | /// (?<first>\w)(\w)(?:\w)\w(?<last>\w) |
| 1606 | /// ``` |
| 1607 | /// |
| 1608 | /// This regex has 4 capture groups: |
| 1609 | /// |
| 1610 | /// * The group at index `0` corresponds to the overall match. It is always |
| 1611 | /// present in every match and never has a name. |
| 1612 | /// * The group at index `1` with name `first` corresponding to the first |
| 1613 | /// letter. |
| 1614 | /// * The group at index `2` with no name corresponding to the second letter. |
| 1615 | /// * The group at index `3` with name `last` corresponding to the fifth and |
| 1616 | /// last letter. |
| 1617 | /// |
| 1618 | /// Notice that `(?:\w)` was not listed above as a capture group despite it |
| 1619 | /// being enclosed in parentheses. That's because `(?:pattern)` is a special |
| 1620 | /// syntax that permits grouping but *without* capturing. The reason for not |
| 1621 | /// treating it as a capture is that tracking and reporting capture groups |
| 1622 | /// requires additional state that may lead to slower searches. So using as few |
| 1623 | /// capture groups as possible can help performance. (Although the difference |
| 1624 | /// in performance of a couple of capture groups is likely immaterial.) |
| 1625 | /// |
| 1626 | /// Values with this type are created by [`Regex::captures`] or |
| 1627 | /// [`Regex::captures_iter`]. |
| 1628 | /// |
| 1629 | /// `'h` is the lifetime of the haystack that these captures were matched from. |
| 1630 | /// |
| 1631 | /// # Example |
| 1632 | /// |
| 1633 | /// ``` |
| 1634 | /// use regex_lite::Regex; |
| 1635 | /// |
| 1636 | /// let re = Regex::new(r"(?<first>\w)(\w)(?:\w)\w(?<last>\w)" ).unwrap(); |
| 1637 | /// let caps = re.captures("toady" ).unwrap(); |
| 1638 | /// assert_eq!("toady" , &caps[0]); |
| 1639 | /// assert_eq!("t" , &caps["first" ]); |
| 1640 | /// assert_eq!("o" , &caps[2]); |
| 1641 | /// assert_eq!("y" , &caps["last" ]); |
| 1642 | /// ``` |
| 1643 | pub struct Captures<'h> { |
| 1644 | haystack: &'h str, |
| 1645 | slots: CaptureLocations, |
| 1646 | // It's a little weird to put the PikeVM in our Captures, but it's the |
| 1647 | // simplest thing to do and is cheap. The PikeVM gives us access to the |
| 1648 | // NFA and the NFA gives us access to the capture name<->index mapping. |
| 1649 | pikevm: Arc<PikeVM>, |
| 1650 | } |
| 1651 | |
| 1652 | impl<'h> Captures<'h> { |
| 1653 | /// Returns the `Match` associated with the capture group at index `i`. If |
| 1654 | /// `i` does not correspond to a capture group, or if the capture group did |
| 1655 | /// not participate in the match, then `None` is returned. |
| 1656 | /// |
| 1657 | /// When `i == 0`, this is guaranteed to return a non-`None` value. |
| 1658 | /// |
| 1659 | /// # Examples |
| 1660 | /// |
| 1661 | /// Get the substring that matched with a default of an empty string if the |
| 1662 | /// group didn't participate in the match: |
| 1663 | /// |
| 1664 | /// ``` |
| 1665 | /// use regex_lite::Regex; |
| 1666 | /// |
| 1667 | /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))" ).unwrap(); |
| 1668 | /// let caps = re.captures("abc123" ).unwrap(); |
| 1669 | /// |
| 1670 | /// let substr1 = caps.get(1).map_or("" , |m| m.as_str()); |
| 1671 | /// let substr2 = caps.get(2).map_or("" , |m| m.as_str()); |
| 1672 | /// assert_eq!(substr1, "123" ); |
| 1673 | /// assert_eq!(substr2, "" ); |
| 1674 | /// ``` |
| 1675 | #[inline ] |
| 1676 | pub fn get(&self, i: usize) -> Option<Match<'h>> { |
| 1677 | self.slots.get(i).map(|(s, e)| Match::new(self.haystack, s, e)) |
| 1678 | } |
| 1679 | |
| 1680 | /// Returns the `Match` associated with the capture group named `name`. If |
| 1681 | /// `name` isn't a valid capture group or it refers to a group that didn't |
| 1682 | /// match, then `None` is returned. |
| 1683 | /// |
| 1684 | /// Note that unlike `caps["name"]`, this returns a `Match` whose lifetime |
| 1685 | /// matches the lifetime of the haystack in this `Captures` value. |
| 1686 | /// Conversely, the substring returned by `caps["name"]` has a lifetime |
| 1687 | /// of the `Captures` value, which is likely shorter than the lifetime of |
| 1688 | /// the haystack. In some cases, it may be necessary to use this method to |
| 1689 | /// access the matching substring instead of the `caps["name"]` notation. |
| 1690 | /// |
| 1691 | /// # Examples |
| 1692 | /// |
| 1693 | /// Get the substring that matched with a default of an empty string if the |
| 1694 | /// group didn't participate in the match: |
| 1695 | /// |
| 1696 | /// ``` |
| 1697 | /// use regex_lite::Regex; |
| 1698 | /// |
| 1699 | /// let re = Regex::new( |
| 1700 | /// r"[a-z]+(?:(?<numbers>[0-9]+)|(?<letters>[A-Z]+))" , |
| 1701 | /// ).unwrap(); |
| 1702 | /// let caps = re.captures("abc123" ).unwrap(); |
| 1703 | /// |
| 1704 | /// let numbers = caps.name("numbers" ).map_or("" , |m| m.as_str()); |
| 1705 | /// let letters = caps.name("letters" ).map_or("" , |m| m.as_str()); |
| 1706 | /// assert_eq!(numbers, "123" ); |
| 1707 | /// assert_eq!(letters, "" ); |
| 1708 | /// ``` |
| 1709 | #[inline ] |
| 1710 | pub fn name(&self, name: &str) -> Option<Match<'h>> { |
| 1711 | let i = self.pikevm.nfa().to_index(name)?; |
| 1712 | self.get(i) |
| 1713 | } |
| 1714 | |
| 1715 | /// This is a convenience routine for extracting the substrings |
| 1716 | /// corresponding to matching capture groups. |
| 1717 | /// |
| 1718 | /// This returns a tuple where the first element corresponds to the full |
| 1719 | /// substring of the haystack that matched the regex. The second element is |
| 1720 | /// an array of substrings, with each corresponding to the substring that |
| 1721 | /// matched for a particular capture group. |
| 1722 | /// |
| 1723 | /// # Panics |
| 1724 | /// |
| 1725 | /// This panics if the number of possible matching groups in this |
| 1726 | /// `Captures` value is not fixed to `N` in all circumstances. |
| 1727 | /// More precisely, this routine only works when `N` is equivalent to |
| 1728 | /// [`Regex::static_captures_len`]. |
| 1729 | /// |
| 1730 | /// Stated more plainly, if the number of matching capture groups in a |
| 1731 | /// regex can vary from match to match, then this function always panics. |
| 1732 | /// |
| 1733 | /// For example, `(a)(b)|(c)` could produce two matching capture groups |
| 1734 | /// or one matching capture group for any given match. Therefore, one |
| 1735 | /// cannot use `extract` with such a pattern. |
| 1736 | /// |
| 1737 | /// But a pattern like `(a)(b)|(c)(d)` can be used with `extract` because |
| 1738 | /// the number of capture groups in every match is always equivalent, |
| 1739 | /// even if the capture _indices_ in each match are not. |
| 1740 | /// |
| 1741 | /// # Example |
| 1742 | /// |
| 1743 | /// ``` |
| 1744 | /// use regex_lite::Regex; |
| 1745 | /// |
| 1746 | /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})" ).unwrap(); |
| 1747 | /// let hay = "On 2010-03-14, I became a Tenneessee lamb." ; |
| 1748 | /// let Some((full, [year, month, day])) = |
| 1749 | /// re.captures(hay).map(|caps| caps.extract()) else { return }; |
| 1750 | /// assert_eq!("2010-03-14" , full); |
| 1751 | /// assert_eq!("2010" , year); |
| 1752 | /// assert_eq!("03" , month); |
| 1753 | /// assert_eq!("14" , day); |
| 1754 | /// ``` |
| 1755 | /// |
| 1756 | /// # Example: iteration |
| 1757 | /// |
| 1758 | /// This example shows how to use this method when iterating over all |
| 1759 | /// `Captures` matches in a haystack. |
| 1760 | /// |
| 1761 | /// ``` |
| 1762 | /// use regex_lite::Regex; |
| 1763 | /// |
| 1764 | /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})" ).unwrap(); |
| 1765 | /// let hay = "1973-01-05, 1975-08-25 and 1980-10-18" ; |
| 1766 | /// |
| 1767 | /// let mut dates: Vec<(&str, &str, &str)> = vec![]; |
| 1768 | /// for (_, [y, m, d]) in re.captures_iter(hay).map(|c| c.extract()) { |
| 1769 | /// dates.push((y, m, d)); |
| 1770 | /// } |
| 1771 | /// assert_eq!(dates, vec![ |
| 1772 | /// ("1973" , "01" , "05" ), |
| 1773 | /// ("1975" , "08" , "25" ), |
| 1774 | /// ("1980" , "10" , "18" ), |
| 1775 | /// ]); |
| 1776 | /// ``` |
| 1777 | /// |
| 1778 | /// # Example: parsing different formats |
| 1779 | /// |
| 1780 | /// This API is particularly useful when you need to extract a particular |
| 1781 | /// value that might occur in a different format. Consider, for example, |
| 1782 | /// an identifier that might be in double quotes or single quotes: |
| 1783 | /// |
| 1784 | /// ``` |
| 1785 | /// use regex_lite::Regex; |
| 1786 | /// |
| 1787 | /// let re = Regex::new(r#"id:(?:"([^"]+)"|'([^']+)')"# ).unwrap(); |
| 1788 | /// let hay = r#"The first is id:"foo" and the second is id:'bar'."# ; |
| 1789 | /// let mut ids = vec![]; |
| 1790 | /// for (_, [id]) in re.captures_iter(hay).map(|c| c.extract()) { |
| 1791 | /// ids.push(id); |
| 1792 | /// } |
| 1793 | /// assert_eq!(ids, vec!["foo" , "bar" ]); |
| 1794 | /// ``` |
| 1795 | pub fn extract<const N: usize>(&self) -> (&'h str, [&'h str; N]) { |
| 1796 | let len = self |
| 1797 | .pikevm |
| 1798 | .nfa() |
| 1799 | .static_explicit_captures_len() |
| 1800 | .expect("number of capture groups can vary in a match" ); |
| 1801 | assert_eq!(N, len, "asked for {} groups, but must ask for {}" , N, len); |
| 1802 | let mut matched = self.iter().flatten(); |
| 1803 | let whole_match = matched.next().expect("a match" ).as_str(); |
| 1804 | let group_matches = [0; N].map(|_| { |
| 1805 | matched.next().expect("too few matching groups" ).as_str() |
| 1806 | }); |
| 1807 | (whole_match, group_matches) |
| 1808 | } |
| 1809 | |
| 1810 | /// Expands all instances of `$ref` in `replacement` to the corresponding |
| 1811 | /// capture group, and writes them to the `dst` buffer given. A `ref` can |
| 1812 | /// be a capture group index or a name. If `ref` doesn't refer to a capture |
| 1813 | /// group that participated in the match, then it is replaced with the |
| 1814 | /// empty string. |
| 1815 | /// |
| 1816 | /// # Format |
| 1817 | /// |
| 1818 | /// The format of the replacement string supports two different kinds of |
| 1819 | /// capture references: unbraced and braced. |
| 1820 | /// |
| 1821 | /// For the unbraced format, the format supported is `$ref` where `name` |
| 1822 | /// can be any character in the class `[0-9A-Za-z_]`. `ref` is always |
| 1823 | /// the longest possible parse. So for example, `$1a` corresponds to the |
| 1824 | /// capture group named `1a` and not the capture group at index `1`. If |
| 1825 | /// `ref` matches `^[0-9]+$`, then it is treated as a capture group index |
| 1826 | /// itself and not a name. |
| 1827 | /// |
| 1828 | /// For the braced format, the format supported is `${ref}` where `ref` can |
| 1829 | /// be any sequence of bytes except for `}`. If no closing brace occurs, |
| 1830 | /// then it is not considered a capture reference. As with the unbraced |
| 1831 | /// format, if `ref` matches `^[0-9]+$`, then it is treated as a capture |
| 1832 | /// group index and not a name. |
| 1833 | /// |
| 1834 | /// The braced format is useful for exerting precise control over the name |
| 1835 | /// of the capture reference. For example, `${1}a` corresponds to the |
| 1836 | /// capture group reference `1` followed by the letter `a`, where as `$1a` |
| 1837 | /// (as mentioned above) corresponds to the capture group reference `1a`. |
| 1838 | /// The braced format is also useful for expressing capture group names |
| 1839 | /// that use characters not supported by the unbraced format. For example, |
| 1840 | /// `${foo[bar].baz}` refers to the capture group named `foo[bar].baz`. |
| 1841 | /// |
| 1842 | /// If a capture group reference is found and it does not refer to a valid |
| 1843 | /// capture group, then it will be replaced with the empty string. |
| 1844 | /// |
| 1845 | /// To write a literal `$`, use `$$`. |
| 1846 | /// |
| 1847 | /// # Example |
| 1848 | /// |
| 1849 | /// ``` |
| 1850 | /// use regex_lite::Regex; |
| 1851 | /// |
| 1852 | /// let re = Regex::new( |
| 1853 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
| 1854 | /// ).unwrap(); |
| 1855 | /// let hay = "On 14-03-2010, I became a Tenneessee lamb." ; |
| 1856 | /// let caps = re.captures(hay).unwrap(); |
| 1857 | /// |
| 1858 | /// let mut dst = String::new(); |
| 1859 | /// caps.expand("year=$year, month=$month, day=$day" , &mut dst); |
| 1860 | /// assert_eq!(dst, "year=2010, month=03, day=14" ); |
| 1861 | /// ``` |
| 1862 | #[inline ] |
| 1863 | pub fn expand(&self, replacement: &str, dst: &mut String) { |
| 1864 | interpolate::string( |
| 1865 | replacement, |
| 1866 | |index, dst| { |
| 1867 | let m = match self.get(index) { |
| 1868 | None => return, |
| 1869 | Some(m) => m, |
| 1870 | }; |
| 1871 | dst.push_str(&self.haystack[m.range()]); |
| 1872 | }, |
| 1873 | |name| self.pikevm.nfa().to_index(name), |
| 1874 | dst, |
| 1875 | ); |
| 1876 | } |
| 1877 | |
| 1878 | /// Returns an iterator over all capture groups. This includes both |
| 1879 | /// matching and non-matching groups. |
| 1880 | /// |
| 1881 | /// The iterator always yields at least one matching group: the first group |
| 1882 | /// (at index `0`) with no name. Subsequent groups are returned in the order |
| 1883 | /// of their opening parenthesis in the regex. |
| 1884 | /// |
| 1885 | /// The elements yielded have type `Option<Match<'h>>`, where a non-`None` |
| 1886 | /// value is present if the capture group matches. |
| 1887 | /// |
| 1888 | /// # Example |
| 1889 | /// |
| 1890 | /// ``` |
| 1891 | /// use regex_lite::Regex; |
| 1892 | /// |
| 1893 | /// let re = Regex::new(r"(\w)(\d)?(\w)" ).unwrap(); |
| 1894 | /// let caps = re.captures("AZ" ).unwrap(); |
| 1895 | /// |
| 1896 | /// let mut it = caps.iter(); |
| 1897 | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("AZ" )); |
| 1898 | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("A" )); |
| 1899 | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), None); |
| 1900 | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("Z" )); |
| 1901 | /// assert_eq!(it.next(), None); |
| 1902 | /// ``` |
| 1903 | #[inline ] |
| 1904 | pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h> { |
| 1905 | SubCaptureMatches { |
| 1906 | caps: self, |
| 1907 | it: self.pikevm.nfa().capture_names().enumerate(), |
| 1908 | } |
| 1909 | } |
| 1910 | |
| 1911 | /// Returns the total number of capture groups. This includes both |
| 1912 | /// matching and non-matching groups. |
| 1913 | /// |
| 1914 | /// The length returned is always equivalent to the number of elements |
| 1915 | /// yielded by [`Captures::iter`]. Consequently, the length is always |
| 1916 | /// greater than zero since every `Captures` value always includes the |
| 1917 | /// match for the entire regex. |
| 1918 | /// |
| 1919 | /// # Example |
| 1920 | /// |
| 1921 | /// ``` |
| 1922 | /// use regex_lite::Regex; |
| 1923 | /// |
| 1924 | /// let re = Regex::new(r"(\w)(\d)?(\w)" ).unwrap(); |
| 1925 | /// let caps = re.captures("AZ" ).unwrap(); |
| 1926 | /// assert_eq!(caps.len(), 4); |
| 1927 | /// ``` |
| 1928 | #[inline ] |
| 1929 | pub fn len(&self) -> usize { |
| 1930 | self.pikevm.nfa().group_len() |
| 1931 | } |
| 1932 | } |
| 1933 | |
| 1934 | impl<'h> core::fmt::Debug for Captures<'h> { |
| 1935 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
| 1936 | /// A little helper type to provide a nice map-like debug |
| 1937 | /// representation for our capturing group spans. |
| 1938 | /// |
| 1939 | /// regex-automata has something similar, but it includes the pattern |
| 1940 | /// ID in its debug output, which is confusing. It also doesn't include |
| 1941 | /// that strings that match because a regex-automata `Captures` doesn't |
| 1942 | /// borrow the haystack. |
| 1943 | struct CapturesDebugMap<'a> { |
| 1944 | caps: &'a Captures<'a>, |
| 1945 | } |
| 1946 | |
| 1947 | impl<'a> core::fmt::Debug for CapturesDebugMap<'a> { |
| 1948 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1949 | let mut map = f.debug_map(); |
| 1950 | let names = self.caps.pikevm.nfa().capture_names(); |
| 1951 | for (group_index, maybe_name) in names.enumerate() { |
| 1952 | let key = Key(group_index, maybe_name); |
| 1953 | match self.caps.get(group_index) { |
| 1954 | None => map.entry(&key, &None::<()>), |
| 1955 | Some(mat) => map.entry(&key, &Value(mat)), |
| 1956 | }; |
| 1957 | } |
| 1958 | map.finish() |
| 1959 | } |
| 1960 | } |
| 1961 | |
| 1962 | struct Key<'a>(usize, Option<&'a str>); |
| 1963 | |
| 1964 | impl<'a> core::fmt::Debug for Key<'a> { |
| 1965 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1966 | write!(f, " {}" , self.0)?; |
| 1967 | if let Some(name) = self.1 { |
| 1968 | write!(f, "/ {:?}" , name)?; |
| 1969 | } |
| 1970 | Ok(()) |
| 1971 | } |
| 1972 | } |
| 1973 | |
| 1974 | struct Value<'a>(Match<'a>); |
| 1975 | |
| 1976 | impl<'a> core::fmt::Debug for Value<'a> { |
| 1977 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 1978 | write!( |
| 1979 | f, |
| 1980 | " {}.. {}/ {:?}" , |
| 1981 | self.0.start(), |
| 1982 | self.0.end(), |
| 1983 | self.0.as_str() |
| 1984 | ) |
| 1985 | } |
| 1986 | } |
| 1987 | |
| 1988 | f.debug_tuple("Captures" ) |
| 1989 | .field(&CapturesDebugMap { caps: self }) |
| 1990 | .finish() |
| 1991 | } |
| 1992 | } |
| 1993 | |
| 1994 | /// Get a matching capture group's haystack substring by index. |
| 1995 | /// |
| 1996 | /// The haystack substring returned can't outlive the `Captures` object if this |
| 1997 | /// method is used, because of how `Index` is defined (normally `a[i]` is part |
| 1998 | /// of `a` and can't outlive it). To work around this limitation, do that, use |
| 1999 | /// [`Captures::get`] instead. |
| 2000 | /// |
| 2001 | /// `'h` is the lifetime of the matched haystack, but the lifetime of the |
| 2002 | /// `&str` returned by this implementation is the lifetime of the `Captures` |
| 2003 | /// value itself. |
| 2004 | /// |
| 2005 | /// # Panics |
| 2006 | /// |
| 2007 | /// If there is no matching group at the given index. |
| 2008 | impl<'h> core::ops::Index<usize> for Captures<'h> { |
| 2009 | type Output = str; |
| 2010 | |
| 2011 | // The lifetime is written out to make it clear that the &str returned |
| 2012 | // does NOT have a lifetime equivalent to 'h. |
| 2013 | fn index(&self, i: usize) -> &str { |
| 2014 | self.get(i) |
| 2015 | .map(|m: Match<'h>| m.as_str()) |
| 2016 | .unwrap_or_else(|| panic!("no group at index ' {}'" , i)) |
| 2017 | } |
| 2018 | } |
| 2019 | |
| 2020 | /// Get a matching capture group's haystack substring by name. |
| 2021 | /// |
| 2022 | /// The haystack substring returned can't outlive the `Captures` object if this |
| 2023 | /// method is used, because of how `Index` is defined (normally `a[i]` is part |
| 2024 | /// of `a` and can't outlive it). To work around this limitation, do that, use |
| 2025 | /// [`Captures::get`] instead. |
| 2026 | /// |
| 2027 | /// `'h` is the lifetime of the matched haystack, but the lifetime of the |
| 2028 | /// `&str` returned by this implementation is the lifetime of the `Captures` |
| 2029 | /// value itself. |
| 2030 | /// |
| 2031 | /// `'n` is the lifetime of the group name used to index the `Captures` value. |
| 2032 | /// |
| 2033 | /// # Panics |
| 2034 | /// |
| 2035 | /// If there is no matching group at the given name. |
| 2036 | impl<'h, 'n> core::ops::Index<&'n str> for Captures<'h> { |
| 2037 | type Output = str; |
| 2038 | |
| 2039 | fn index<'a>(&'a self, name: &'n str) -> &'a str { |
| 2040 | self.name(name) |
| 2041 | .map(|m: Match<'h>| m.as_str()) |
| 2042 | .unwrap_or_else(|| panic!("no group named ' {}'" , name)) |
| 2043 | } |
| 2044 | } |
| 2045 | |
| 2046 | /// A low level representation of the byte offsets of each capture group. |
| 2047 | /// |
| 2048 | /// You can think of this as a lower level [`Captures`], where this type does |
| 2049 | /// not support named capturing groups directly and it does not borrow the |
| 2050 | /// haystack that these offsets were matched on. |
| 2051 | /// |
| 2052 | /// Primarily, this type is useful when using the lower level `Regex` APIs such |
| 2053 | /// as [`Regex::captures_read`], which permits amortizing the allocation in |
| 2054 | /// which capture match offsets are stored. |
| 2055 | /// |
| 2056 | /// In order to build a value of this type, you'll need to call the |
| 2057 | /// [`Regex::capture_locations`] method. The value returned can then be reused |
| 2058 | /// in subsequent searches for that regex. Using it for other regexes may |
| 2059 | /// result in a panic or otherwise incorrect results. |
| 2060 | /// |
| 2061 | /// # Example |
| 2062 | /// |
| 2063 | /// This example shows how to create and use `CaptureLocations` in a search. |
| 2064 | /// |
| 2065 | /// ``` |
| 2066 | /// use regex_lite::Regex; |
| 2067 | /// |
| 2068 | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)" ).unwrap(); |
| 2069 | /// let mut locs = re.capture_locations(); |
| 2070 | /// let m = re.captures_read(&mut locs, "Bruce Springsteen" ).unwrap(); |
| 2071 | /// assert_eq!(0..17, m.range()); |
| 2072 | /// assert_eq!(Some((0, 17)), locs.get(0)); |
| 2073 | /// assert_eq!(Some((0, 5)), locs.get(1)); |
| 2074 | /// assert_eq!(Some((6, 17)), locs.get(2)); |
| 2075 | /// |
| 2076 | /// // Asking for an invalid capture group always returns None. |
| 2077 | /// assert_eq!(None, locs.get(3)); |
| 2078 | /// # // literals are too big for 32-bit usize: #1041 |
| 2079 | /// # #[cfg (target_pointer_width = "64" )] |
| 2080 | /// assert_eq!(None, locs.get(34973498648)); |
| 2081 | /// # #[cfg (target_pointer_width = "64" )] |
| 2082 | /// assert_eq!(None, locs.get(9944060567225171988)); |
| 2083 | /// ``` |
| 2084 | #[derive (Clone, Debug)] |
| 2085 | pub struct CaptureLocations(Vec<Option<NonMaxUsize>>); |
| 2086 | |
| 2087 | impl CaptureLocations { |
| 2088 | /// Returns the start and end byte offsets of the capture group at index |
| 2089 | /// `i`. This returns `None` if `i` is not a valid capture group or if the |
| 2090 | /// capture group did not match. |
| 2091 | /// |
| 2092 | /// # Example |
| 2093 | /// |
| 2094 | /// ``` |
| 2095 | /// use regex_lite::Regex; |
| 2096 | /// |
| 2097 | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)" ).unwrap(); |
| 2098 | /// let mut locs = re.capture_locations(); |
| 2099 | /// re.captures_read(&mut locs, "Bruce Springsteen" ).unwrap(); |
| 2100 | /// assert_eq!(Some((0, 17)), locs.get(0)); |
| 2101 | /// assert_eq!(Some((0, 5)), locs.get(1)); |
| 2102 | /// assert_eq!(Some((6, 17)), locs.get(2)); |
| 2103 | /// ``` |
| 2104 | #[inline ] |
| 2105 | pub fn get(&self, i: usize) -> Option<(usize, usize)> { |
| 2106 | let slot = i.checked_mul(2)?; |
| 2107 | let start = self.0.get(slot).copied()??.get(); |
| 2108 | let slot = slot.checked_add(1)?; |
| 2109 | let end = self.0.get(slot).copied()??.get(); |
| 2110 | Some((start, end)) |
| 2111 | } |
| 2112 | |
| 2113 | /// Returns the total number of capture groups (even if they didn't match). |
| 2114 | /// That is, the length returned is unaffected by the result of a search. |
| 2115 | /// |
| 2116 | /// This is always at least `1` since every regex has at least `1` |
| 2117 | /// capturing group that corresponds to the entire match. |
| 2118 | /// |
| 2119 | /// # Example |
| 2120 | /// |
| 2121 | /// ``` |
| 2122 | /// use regex_lite::Regex; |
| 2123 | /// |
| 2124 | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)" ).unwrap(); |
| 2125 | /// let mut locs = re.capture_locations(); |
| 2126 | /// assert_eq!(3, locs.len()); |
| 2127 | /// re.captures_read(&mut locs, "Bruce Springsteen" ).unwrap(); |
| 2128 | /// assert_eq!(3, locs.len()); |
| 2129 | /// ``` |
| 2130 | /// |
| 2131 | /// Notice that the length is always at least `1`, regardless of the regex: |
| 2132 | /// |
| 2133 | /// ``` |
| 2134 | /// use regex_lite::Regex; |
| 2135 | /// |
| 2136 | /// let re = Regex::new(r"" ).unwrap(); |
| 2137 | /// let locs = re.capture_locations(); |
| 2138 | /// assert_eq!(1, locs.len()); |
| 2139 | /// |
| 2140 | /// // [a&&b] is a regex that never matches anything. |
| 2141 | /// let re = Regex::new(r"[^\s\S]" ).unwrap(); |
| 2142 | /// let locs = re.capture_locations(); |
| 2143 | /// assert_eq!(1, locs.len()); |
| 2144 | /// ``` |
| 2145 | #[inline ] |
| 2146 | pub fn len(&self) -> usize { |
| 2147 | // We always have twice as many slots as groups. |
| 2148 | self.0.len().checked_shr(1).unwrap() |
| 2149 | } |
| 2150 | } |
| 2151 | |
| 2152 | /// An iterator over all non-overlapping matches in a haystack. |
| 2153 | /// |
| 2154 | /// This iterator yields [`Match`] values. The iterator stops when no more |
| 2155 | /// matches can be found. |
| 2156 | /// |
| 2157 | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
| 2158 | /// lifetime of the haystack. |
| 2159 | /// |
| 2160 | /// This iterator is created by [`Regex::find_iter`]. |
| 2161 | /// |
| 2162 | /// # Time complexity |
| 2163 | /// |
| 2164 | /// Note that since an iterator runs potentially many searches on the haystack |
| 2165 | /// and since each search has worst case `O(m * n)` time complexity, the |
| 2166 | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
| 2167 | #[derive (Debug)] |
| 2168 | pub struct Matches<'r, 'h> { |
| 2169 | haystack: &'h str, |
| 2170 | it: pikevm::FindMatches<'r, 'h>, |
| 2171 | } |
| 2172 | |
| 2173 | impl<'r, 'h> Iterator for Matches<'r, 'h> { |
| 2174 | type Item = Match<'h>; |
| 2175 | |
| 2176 | #[inline ] |
| 2177 | fn next(&mut self) -> Option<Match<'h>> { |
| 2178 | self.it.next().map(|(s: usize, e: usize)| Match::new(self.haystack, start:s, end:e)) |
| 2179 | } |
| 2180 | |
| 2181 | #[inline ] |
| 2182 | fn count(self) -> usize { |
| 2183 | self.it.count() |
| 2184 | } |
| 2185 | } |
| 2186 | |
| 2187 | impl<'r, 'h> core::iter::FusedIterator for Matches<'r, 'h> {} |
| 2188 | |
| 2189 | /// An iterator over all non-overlapping capture matches in a haystack. |
| 2190 | /// |
| 2191 | /// This iterator yields [`Captures`] values. The iterator stops when no more |
| 2192 | /// matches can be found. |
| 2193 | /// |
| 2194 | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
| 2195 | /// lifetime of the matched string. |
| 2196 | /// |
| 2197 | /// This iterator is created by [`Regex::captures_iter`]. |
| 2198 | /// |
| 2199 | /// # Time complexity |
| 2200 | /// |
| 2201 | /// Note that since an iterator runs potentially many searches on the haystack |
| 2202 | /// and since each search has worst case `O(m * n)` time complexity, the |
| 2203 | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
| 2204 | #[derive (Debug)] |
| 2205 | pub struct CaptureMatches<'r, 'h> { |
| 2206 | haystack: &'h str, |
| 2207 | re: &'r Regex, |
| 2208 | it: pikevm::CapturesMatches<'r, 'h>, |
| 2209 | } |
| 2210 | |
| 2211 | impl<'r, 'h> Iterator for CaptureMatches<'r, 'h> { |
| 2212 | type Item = Captures<'h>; |
| 2213 | |
| 2214 | #[inline ] |
| 2215 | fn next(&mut self) -> Option<Captures<'h>> { |
| 2216 | self.it.next().map(|slots: Vec| Captures { |
| 2217 | haystack: self.haystack, |
| 2218 | slots: CaptureLocations(slots), |
| 2219 | pikevm: Arc::clone(&self.re.pikevm), |
| 2220 | }) |
| 2221 | } |
| 2222 | |
| 2223 | #[inline ] |
| 2224 | fn count(self) -> usize { |
| 2225 | self.it.count() |
| 2226 | } |
| 2227 | } |
| 2228 | |
| 2229 | impl<'r, 'h> core::iter::FusedIterator for CaptureMatches<'r, 'h> {} |
| 2230 | |
| 2231 | /// An iterator over all substrings delimited by a regex match. |
| 2232 | /// |
| 2233 | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
| 2234 | /// lifetime of the byte string being split. |
| 2235 | /// |
| 2236 | /// This iterator is created by [`Regex::split`]. |
| 2237 | /// |
| 2238 | /// # Time complexity |
| 2239 | /// |
| 2240 | /// Note that since an iterator runs potentially many searches on the haystack |
| 2241 | /// and since each search has worst case `O(m * n)` time complexity, the |
| 2242 | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
| 2243 | #[derive (Debug)] |
| 2244 | pub struct Split<'r, 'h> { |
| 2245 | haystack: &'h str, |
| 2246 | finder: Matches<'r, 'h>, |
| 2247 | last: usize, |
| 2248 | } |
| 2249 | |
| 2250 | impl<'r, 'h> Iterator for Split<'r, 'h> { |
| 2251 | type Item = &'h str; |
| 2252 | |
| 2253 | #[inline ] |
| 2254 | fn next(&mut self) -> Option<&'h str> { |
| 2255 | match self.finder.next() { |
| 2256 | None => { |
| 2257 | let len: usize = self.haystack.len(); |
| 2258 | if self.last > len { |
| 2259 | None |
| 2260 | } else { |
| 2261 | let range: Range = self.last..len; |
| 2262 | self.last = len + 1; // Next call will return None |
| 2263 | Some(&self.haystack[range]) |
| 2264 | } |
| 2265 | } |
| 2266 | Some(m: Match<'h>) => { |
| 2267 | let range: Range = self.last..m.start(); |
| 2268 | self.last = m.end(); |
| 2269 | Some(&self.haystack[range]) |
| 2270 | } |
| 2271 | } |
| 2272 | } |
| 2273 | } |
| 2274 | |
| 2275 | impl<'r, 't> core::iter::FusedIterator for Split<'r, 't> {} |
| 2276 | |
| 2277 | /// An iterator over at most `N` substrings delimited by a regex match. |
| 2278 | /// |
| 2279 | /// The last substring yielded by this iterator will be whatever remains after |
| 2280 | /// `N-1` splits. |
| 2281 | /// |
| 2282 | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
| 2283 | /// lifetime of the byte string being split. |
| 2284 | /// |
| 2285 | /// This iterator is created by [`Regex::splitn`]. |
| 2286 | /// |
| 2287 | /// # Time complexity |
| 2288 | /// |
| 2289 | /// Note that since an iterator runs potentially many searches on the haystack |
| 2290 | /// and since each search has worst case `O(m * n)` time complexity, the |
| 2291 | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
| 2292 | /// |
| 2293 | /// Although note that the worst case time here has an upper bound given |
| 2294 | /// by the `limit` parameter to [`Regex::splitn`]. |
| 2295 | #[derive (Debug)] |
| 2296 | pub struct SplitN<'r, 'h> { |
| 2297 | splits: Split<'r, 'h>, |
| 2298 | limit: usize, |
| 2299 | } |
| 2300 | |
| 2301 | impl<'r, 'h> Iterator for SplitN<'r, 'h> { |
| 2302 | type Item = &'h str; |
| 2303 | |
| 2304 | #[inline ] |
| 2305 | fn next(&mut self) -> Option<&'h str> { |
| 2306 | if self.limit == 0 { |
| 2307 | return None; |
| 2308 | } |
| 2309 | |
| 2310 | self.limit -= 1; |
| 2311 | if self.limit > 0 { |
| 2312 | return self.splits.next(); |
| 2313 | } |
| 2314 | |
| 2315 | let len = self.splits.haystack.len(); |
| 2316 | if self.splits.last > len { |
| 2317 | // We've already returned all substrings. |
| 2318 | None |
| 2319 | } else { |
| 2320 | // self.n == 0, so future calls will return None immediately |
| 2321 | Some(&self.splits.haystack[self.splits.last..len]) |
| 2322 | } |
| 2323 | } |
| 2324 | |
| 2325 | #[inline ] |
| 2326 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 2327 | self.splits.size_hint() |
| 2328 | } |
| 2329 | } |
| 2330 | |
| 2331 | impl<'r, 't> core::iter::FusedIterator for SplitN<'r, 't> {} |
| 2332 | |
| 2333 | /// An iterator over the names of all capture groups in a regex. |
| 2334 | /// |
| 2335 | /// This iterator yields values of type `Option<&str>` in order of the opening |
| 2336 | /// capture group parenthesis in the regex pattern. `None` is yielded for |
| 2337 | /// groups with no name. The first element always corresponds to the implicit |
| 2338 | /// and unnamed group for the overall match. |
| 2339 | /// |
| 2340 | /// `'r` is the lifetime of the compiled regular expression. |
| 2341 | /// |
| 2342 | /// This iterator is created by [`Regex::capture_names`]. |
| 2343 | #[derive (Clone, Debug)] |
| 2344 | pub struct CaptureNames<'r>(nfa::CaptureNames<'r>); |
| 2345 | |
| 2346 | impl<'r> Iterator for CaptureNames<'r> { |
| 2347 | type Item = Option<&'r str>; |
| 2348 | |
| 2349 | #[inline ] |
| 2350 | fn next(&mut self) -> Option<Option<&'r str>> { |
| 2351 | self.0.next() |
| 2352 | } |
| 2353 | |
| 2354 | #[inline ] |
| 2355 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 2356 | self.0.size_hint() |
| 2357 | } |
| 2358 | |
| 2359 | #[inline ] |
| 2360 | fn count(self) -> usize { |
| 2361 | self.0.count() |
| 2362 | } |
| 2363 | } |
| 2364 | |
| 2365 | impl<'r> ExactSizeIterator for CaptureNames<'r> {} |
| 2366 | |
| 2367 | impl<'r> core::iter::FusedIterator for CaptureNames<'r> {} |
| 2368 | |
| 2369 | /// An iterator over all group matches in a [`Captures`] value. |
| 2370 | /// |
| 2371 | /// This iterator yields values of type `Option<Match<'h>>`, where `'h` is the |
| 2372 | /// lifetime of the haystack that the matches are for. The order of elements |
| 2373 | /// yielded corresponds to the order of the opening parenthesis for the group |
| 2374 | /// in the regex pattern. `None` is yielded for groups that did not participate |
| 2375 | /// in the match. |
| 2376 | /// |
| 2377 | /// The first element always corresponds to the implicit group for the overall |
| 2378 | /// match. Since this iterator is created by a [`Captures`] value, and a |
| 2379 | /// `Captures` value is only created when a match occurs, it follows that the |
| 2380 | /// first element yielded by this iterator is guaranteed to be non-`None`. |
| 2381 | /// |
| 2382 | /// The lifetime `'c` corresponds to the lifetime of the `Captures` value that |
| 2383 | /// created this iterator, and the lifetime `'h` corresponds to the originally |
| 2384 | /// matched haystack. |
| 2385 | #[derive (Clone, Debug)] |
| 2386 | pub struct SubCaptureMatches<'c, 'h> { |
| 2387 | caps: &'c Captures<'h>, |
| 2388 | it: core::iter::Enumerate<nfa::CaptureNames<'c>>, |
| 2389 | } |
| 2390 | |
| 2391 | impl<'c, 'h> Iterator for SubCaptureMatches<'c, 'h> { |
| 2392 | type Item = Option<Match<'h>>; |
| 2393 | |
| 2394 | #[inline ] |
| 2395 | fn next(&mut self) -> Option<Option<Match<'h>>> { |
| 2396 | let (group_index: usize, _) = self.it.next()?; |
| 2397 | Some(self.caps.get(group_index)) |
| 2398 | } |
| 2399 | |
| 2400 | #[inline ] |
| 2401 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 2402 | self.it.size_hint() |
| 2403 | } |
| 2404 | |
| 2405 | #[inline ] |
| 2406 | fn count(self) -> usize { |
| 2407 | self.it.count() |
| 2408 | } |
| 2409 | } |
| 2410 | |
| 2411 | impl<'c, 'h> ExactSizeIterator for SubCaptureMatches<'c, 'h> {} |
| 2412 | |
| 2413 | impl<'c, 'h> core::iter::FusedIterator for SubCaptureMatches<'c, 'h> {} |
| 2414 | |
| 2415 | /// A trait for types that can be used to replace matches in a haystack. |
| 2416 | /// |
| 2417 | /// In general, users of this crate shouldn't need to implement this trait, |
| 2418 | /// since implementations are already provided for `&str` along with other |
| 2419 | /// variants of string types, as well as `FnMut(&Captures) -> String` (or any |
| 2420 | /// `FnMut(&Captures) -> T` where `T: AsRef<str>`). Those cover most use cases, |
| 2421 | /// but callers can implement this trait directly if necessary. |
| 2422 | /// |
| 2423 | /// # Example |
| 2424 | /// |
| 2425 | /// This example shows a basic implementation of the `Replacer` trait. This |
| 2426 | /// can be done much more simply using the replacement string interpolation |
| 2427 | /// support (e.g., `$first $last`), but this approach avoids needing to parse |
| 2428 | /// the replacement string at all. |
| 2429 | /// |
| 2430 | /// ``` |
| 2431 | /// use regex_lite::{Captures, Regex, Replacer}; |
| 2432 | /// |
| 2433 | /// struct NameSwapper; |
| 2434 | /// |
| 2435 | /// impl Replacer for NameSwapper { |
| 2436 | /// fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
| 2437 | /// dst.push_str(&caps["first" ]); |
| 2438 | /// dst.push_str(" " ); |
| 2439 | /// dst.push_str(&caps["last" ]); |
| 2440 | /// } |
| 2441 | /// } |
| 2442 | /// |
| 2443 | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)" ).unwrap(); |
| 2444 | /// let result = re.replace("Springsteen, Bruce" , NameSwapper); |
| 2445 | /// assert_eq!(result, "Bruce Springsteen" ); |
| 2446 | /// ``` |
| 2447 | pub trait Replacer { |
| 2448 | /// Appends possibly empty data to `dst` to replace the current match. |
| 2449 | /// |
| 2450 | /// The current match is represented by `caps`, which is guaranteed to |
| 2451 | /// have a match at capture group `0`. |
| 2452 | /// |
| 2453 | /// For example, a no-op replacement would be `dst.push_str(&caps[0])`. |
| 2454 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String); |
| 2455 | |
| 2456 | /// Return a fixed unchanging replacement string. |
| 2457 | /// |
| 2458 | /// When doing replacements, if access to [`Captures`] is not needed (e.g., |
| 2459 | /// the replacement string does not need `$` expansion), then it can be |
| 2460 | /// beneficial to avoid finding sub-captures. |
| 2461 | /// |
| 2462 | /// In general, this is called once for every call to a replacement routine |
| 2463 | /// such as [`Regex::replace_all`]. |
| 2464 | fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>> { |
| 2465 | None |
| 2466 | } |
| 2467 | |
| 2468 | /// Returns a type that implements `Replacer`, but that borrows and wraps |
| 2469 | /// this `Replacer`. |
| 2470 | /// |
| 2471 | /// This is useful when you want to take a generic `Replacer` (which might |
| 2472 | /// not be cloneable) and use it without consuming it, so it can be used |
| 2473 | /// more than once. |
| 2474 | /// |
| 2475 | /// # Example |
| 2476 | /// |
| 2477 | /// ``` |
| 2478 | /// use regex_lite::{Regex, Replacer}; |
| 2479 | /// |
| 2480 | /// fn replace_all_twice<R: Replacer>( |
| 2481 | /// re: Regex, |
| 2482 | /// src: &str, |
| 2483 | /// mut rep: R, |
| 2484 | /// ) -> String { |
| 2485 | /// let dst = re.replace_all(src, rep.by_ref()); |
| 2486 | /// let dst = re.replace_all(&dst, rep.by_ref()); |
| 2487 | /// dst.into_owned() |
| 2488 | /// } |
| 2489 | /// ``` |
| 2490 | fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> { |
| 2491 | ReplacerRef(self) |
| 2492 | } |
| 2493 | } |
| 2494 | |
| 2495 | impl<'a> Replacer for &'a str { |
| 2496 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
| 2497 | caps.expand(*self, dst); |
| 2498 | } |
| 2499 | |
| 2500 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
| 2501 | no_expansion(self) |
| 2502 | } |
| 2503 | } |
| 2504 | |
| 2505 | impl<'a> Replacer for &'a String { |
| 2506 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
| 2507 | self.as_str().replace_append(caps, dst) |
| 2508 | } |
| 2509 | |
| 2510 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
| 2511 | no_expansion(self) |
| 2512 | } |
| 2513 | } |
| 2514 | |
| 2515 | impl Replacer for String { |
| 2516 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
| 2517 | self.as_str().replace_append(caps, dst) |
| 2518 | } |
| 2519 | |
| 2520 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
| 2521 | no_expansion(self) |
| 2522 | } |
| 2523 | } |
| 2524 | |
| 2525 | impl<'a> Replacer for Cow<'a, str> { |
| 2526 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
| 2527 | self.as_ref().replace_append(caps, dst) |
| 2528 | } |
| 2529 | |
| 2530 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
| 2531 | no_expansion(self) |
| 2532 | } |
| 2533 | } |
| 2534 | |
| 2535 | impl<'a> Replacer for &'a Cow<'a, str> { |
| 2536 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
| 2537 | self.as_ref().replace_append(caps, dst) |
| 2538 | } |
| 2539 | |
| 2540 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
| 2541 | no_expansion(self) |
| 2542 | } |
| 2543 | } |
| 2544 | |
| 2545 | impl<F, T> Replacer for F |
| 2546 | where |
| 2547 | F: FnMut(&Captures<'_>) -> T, |
| 2548 | T: AsRef<str>, |
| 2549 | { |
| 2550 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
| 2551 | dst.push_str((*self)(caps).as_ref()); |
| 2552 | } |
| 2553 | } |
| 2554 | |
| 2555 | /// A by-reference adaptor for a [`Replacer`]. |
| 2556 | /// |
| 2557 | /// This permits reusing the same `Replacer` value in multiple calls to a |
| 2558 | /// replacement routine like [`Regex::replace_all`]. |
| 2559 | /// |
| 2560 | /// This type is created by [`Replacer::by_ref`]. |
| 2561 | #[derive (Debug)] |
| 2562 | pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R); |
| 2563 | |
| 2564 | impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> { |
| 2565 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
| 2566 | self.0.replace_append(caps, dst) |
| 2567 | } |
| 2568 | |
| 2569 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
| 2570 | self.0.no_expansion() |
| 2571 | } |
| 2572 | } |
| 2573 | |
| 2574 | /// A helper type for forcing literal string replacement. |
| 2575 | /// |
| 2576 | /// It can be used with routines like [`Regex::replace`] and |
| 2577 | /// [`Regex::replace_all`] to do a literal string replacement without expanding |
| 2578 | /// `$name` to their corresponding capture groups. This can be both convenient |
| 2579 | /// (to avoid escaping `$`, for example) and faster (since capture groups |
| 2580 | /// don't need to be found). |
| 2581 | /// |
| 2582 | /// `'s` is the lifetime of the literal string to use. |
| 2583 | /// |
| 2584 | /// # Example |
| 2585 | /// |
| 2586 | /// ``` |
| 2587 | /// use regex_lite::{NoExpand, Regex}; |
| 2588 | /// |
| 2589 | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)" ).unwrap(); |
| 2590 | /// let result = re.replace("Springsteen, Bruce" , NoExpand("$2 $last" )); |
| 2591 | /// assert_eq!(result, "$2 $last" ); |
| 2592 | /// ``` |
| 2593 | #[derive (Clone, Debug)] |
| 2594 | pub struct NoExpand<'t>(pub &'t str); |
| 2595 | |
| 2596 | impl<'t> Replacer for NoExpand<'t> { |
| 2597 | fn replace_append(&mut self, _: &Captures<'_>, dst: &mut String) { |
| 2598 | dst.push_str(self.0); |
| 2599 | } |
| 2600 | |
| 2601 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
| 2602 | Some(Cow::Borrowed(self.0)) |
| 2603 | } |
| 2604 | } |
| 2605 | |
| 2606 | /// Quickly checks the given replacement string for whether interpolation |
| 2607 | /// should be done on it. It returns `None` if a `$` was found anywhere in the |
| 2608 | /// given string, which suggests interpolation needs to be done. But if there's |
| 2609 | /// no `$` anywhere, then interpolation definitely does not need to be done. In |
| 2610 | /// that case, the given string is returned as a borrowed `Cow`. |
| 2611 | /// |
| 2612 | /// This is meant to be used to implement the `Replacer::no_expandsion` method |
| 2613 | /// in its various trait impls. |
| 2614 | fn no_expansion<T: AsRef<str>>(t: &T) -> Option<Cow<'_, str>> { |
| 2615 | let s: &str = t.as_ref(); |
| 2616 | match s.find('$' ) { |
| 2617 | Some(_) => None, |
| 2618 | None => Some(Cow::Borrowed(s)), |
| 2619 | } |
| 2620 | } |
| 2621 | |
| 2622 | /// A configurable builder for a [`Regex`]. |
| 2623 | /// |
| 2624 | /// This builder can be used to programmatically set flags such as `i` (case |
| 2625 | /// insensitive) and `x` (for verbose mode). This builder can also be used to |
| 2626 | /// configure things like a size limit on the compiled regular expression. |
| 2627 | #[derive (Debug)] |
| 2628 | pub struct RegexBuilder { |
| 2629 | pattern: String, |
| 2630 | hir_config: hir::Config, |
| 2631 | nfa_config: nfa::Config, |
| 2632 | } |
| 2633 | |
| 2634 | impl RegexBuilder { |
| 2635 | /// Create a new builder with a default configuration for the given |
| 2636 | /// pattern. |
| 2637 | /// |
| 2638 | /// If the pattern is invalid or exceeds the configured size limits, then |
| 2639 | /// an error will be returned when [`RegexBuilder::build`] is called. |
| 2640 | pub fn new(pattern: &str) -> RegexBuilder { |
| 2641 | RegexBuilder { |
| 2642 | pattern: pattern.to_string(), |
| 2643 | hir_config: hir::Config::default(), |
| 2644 | nfa_config: nfa::Config::default(), |
| 2645 | } |
| 2646 | } |
| 2647 | |
| 2648 | /// Compiles the pattern given to `RegexBuilder::new` with the |
| 2649 | /// configuration set on this builder. |
| 2650 | /// |
| 2651 | /// If the pattern isn't a valid regex or if a configured size limit was |
| 2652 | /// exceeded, then an error is returned. |
| 2653 | pub fn build(&self) -> Result<Regex, Error> { |
| 2654 | let hir = Hir::parse(self.hir_config, &self.pattern)?; |
| 2655 | let nfa = NFA::new(self.nfa_config, self.pattern.clone(), &hir)?; |
| 2656 | let pikevm = Arc::new(PikeVM::new(nfa)); |
| 2657 | let pool = { |
| 2658 | let pikevm = Arc::clone(&pikevm); |
| 2659 | let create = Box::new(move || Cache::new(&pikevm)); |
| 2660 | CachePool::new(create) |
| 2661 | }; |
| 2662 | Ok(Regex { pikevm, pool }) |
| 2663 | } |
| 2664 | |
| 2665 | /// This configures whether to enable ASCII case insensitive matching for |
| 2666 | /// the entire pattern. |
| 2667 | /// |
| 2668 | /// This setting can also be configured using the inline flag `i` |
| 2669 | /// in the pattern. For example, `(?i:foo)` matches `foo` case |
| 2670 | /// insensitively while `(?-i:foo)` matches `foo` case sensitively. |
| 2671 | /// |
| 2672 | /// The default for this is `false`. |
| 2673 | /// |
| 2674 | /// # Example |
| 2675 | /// |
| 2676 | /// ``` |
| 2677 | /// use regex_lite::RegexBuilder; |
| 2678 | /// |
| 2679 | /// let re = RegexBuilder::new(r"foo(?-i:bar)quux" ) |
| 2680 | /// .case_insensitive(true) |
| 2681 | /// .build() |
| 2682 | /// .unwrap(); |
| 2683 | /// assert!(re.is_match("FoObarQuUx" )); |
| 2684 | /// // Even though case insensitive matching is enabled in the builder, |
| 2685 | /// // it can be locally disabled within the pattern. In this case, |
| 2686 | /// // `bar` is matched case sensitively. |
| 2687 | /// assert!(!re.is_match("fooBARquux" )); |
| 2688 | /// ``` |
| 2689 | pub fn case_insensitive(&mut self, yes: bool) -> &mut RegexBuilder { |
| 2690 | self.hir_config.flags.case_insensitive = yes; |
| 2691 | self |
| 2692 | } |
| 2693 | |
| 2694 | /// This configures multi-line mode for the entire pattern. |
| 2695 | /// |
| 2696 | /// Enabling multi-line mode changes the behavior of the `^` and `$` anchor |
| 2697 | /// assertions. Instead of only matching at the beginning and end of a |
| 2698 | /// haystack, respectively, multi-line mode causes them to match at the |
| 2699 | /// beginning and end of a line *in addition* to the beginning and end of |
| 2700 | /// a haystack. More precisely, `^` will match at the position immediately |
| 2701 | /// following a `\n` and `$` will match at the position immediately |
| 2702 | /// preceding a `\n`. |
| 2703 | /// |
| 2704 | /// The behavior of this option is impacted by the [`RegexBuilder::crlf`] |
| 2705 | /// setting. Namely, CRLF mode changes the line terminator to be either |
| 2706 | /// `\r` or `\n`, but never at the position between a `\r` and `\`n. |
| 2707 | /// |
| 2708 | /// This setting can also be configured using the inline flag `m` in the |
| 2709 | /// pattern. |
| 2710 | /// |
| 2711 | /// The default for this is `false`. |
| 2712 | /// |
| 2713 | /// # Example |
| 2714 | /// |
| 2715 | /// ``` |
| 2716 | /// use regex_lite::RegexBuilder; |
| 2717 | /// |
| 2718 | /// let re = RegexBuilder::new(r"^foo$" ) |
| 2719 | /// .multi_line(true) |
| 2720 | /// .build() |
| 2721 | /// .unwrap(); |
| 2722 | /// assert_eq!(Some(1..4), re.find(" \nfoo \n" ).map(|m| m.range())); |
| 2723 | /// ``` |
| 2724 | pub fn multi_line(&mut self, yes: bool) -> &mut RegexBuilder { |
| 2725 | self.hir_config.flags.multi_line = yes; |
| 2726 | self |
| 2727 | } |
| 2728 | |
| 2729 | /// This configures dot-matches-new-line mode for the entire pattern. |
| 2730 | /// |
| 2731 | /// Perhaps surprisingly, the default behavior for `.` is not to match |
| 2732 | /// any character, but rather, to match any character except for the line |
| 2733 | /// terminator (which is `\n` by default). When this mode is enabled, the |
| 2734 | /// behavior changes such that `.` truly matches any character. |
| 2735 | /// |
| 2736 | /// This setting can also be configured using the inline flag `s` in the |
| 2737 | /// pattern. |
| 2738 | /// |
| 2739 | /// The default for this is `false`. |
| 2740 | /// |
| 2741 | /// # Example |
| 2742 | /// |
| 2743 | /// ``` |
| 2744 | /// use regex_lite::RegexBuilder; |
| 2745 | /// |
| 2746 | /// let re = RegexBuilder::new(r"foo.bar" ) |
| 2747 | /// .dot_matches_new_line(true) |
| 2748 | /// .build() |
| 2749 | /// .unwrap(); |
| 2750 | /// let hay = "foo \nbar" ; |
| 2751 | /// assert_eq!(Some("foo \nbar" ), re.find(hay).map(|m| m.as_str())); |
| 2752 | /// ``` |
| 2753 | pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut RegexBuilder { |
| 2754 | self.hir_config.flags.dot_matches_new_line = yes; |
| 2755 | self |
| 2756 | } |
| 2757 | |
| 2758 | /// This configures CRLF mode for the entire pattern. |
| 2759 | /// |
| 2760 | /// When CRLF mode is enabled, both `\r` ("carriage return" or CR for |
| 2761 | /// short) and `\n` ("line feed" or LF for short) are treated as line |
| 2762 | /// terminators. This results in the following: |
| 2763 | /// |
| 2764 | /// * Unless dot-matches-new-line mode is enabled, `.` will now match any |
| 2765 | /// character except for `\n` and `\r`. |
| 2766 | /// * When multi-line mode is enabled, `^` will match immediately |
| 2767 | /// following a `\n` or a `\r`. Similarly, `$` will match immediately |
| 2768 | /// preceding a `\n` or a `\r`. Neither `^` nor `$` will ever match between |
| 2769 | /// `\r` and `\n`. |
| 2770 | /// |
| 2771 | /// This setting can also be configured using the inline flag `R` in |
| 2772 | /// the pattern. |
| 2773 | /// |
| 2774 | /// The default for this is `false`. |
| 2775 | /// |
| 2776 | /// # Example |
| 2777 | /// |
| 2778 | /// ``` |
| 2779 | /// use regex_lite::RegexBuilder; |
| 2780 | /// |
| 2781 | /// let re = RegexBuilder::new(r"^foo$" ) |
| 2782 | /// .multi_line(true) |
| 2783 | /// .crlf(true) |
| 2784 | /// .build() |
| 2785 | /// .unwrap(); |
| 2786 | /// let hay = " \r\nfoo \r\n" ; |
| 2787 | /// // If CRLF mode weren't enabled here, then '$' wouldn't match |
| 2788 | /// // immediately after 'foo', and thus no match would be found. |
| 2789 | /// assert_eq!(Some("foo" ), re.find(hay).map(|m| m.as_str())); |
| 2790 | /// ``` |
| 2791 | /// |
| 2792 | /// This example demonstrates that `^` will never match at a position |
| 2793 | /// between `\r` and `\n`. (`$` will similarly not match between a `\r` |
| 2794 | /// and a `\n`.) |
| 2795 | /// |
| 2796 | /// ``` |
| 2797 | /// use regex_lite::RegexBuilder; |
| 2798 | /// |
| 2799 | /// let re = RegexBuilder::new(r"^" ) |
| 2800 | /// .multi_line(true) |
| 2801 | /// .crlf(true) |
| 2802 | /// .build() |
| 2803 | /// .unwrap(); |
| 2804 | /// let hay = " \r\n\r\n" ; |
| 2805 | /// let ranges: Vec<_> = re.find_iter(hay).map(|m| m.range()).collect(); |
| 2806 | /// assert_eq!(ranges, vec![0..0, 2..2, 4..4]); |
| 2807 | /// ``` |
| 2808 | pub fn crlf(&mut self, yes: bool) -> &mut RegexBuilder { |
| 2809 | self.hir_config.flags.crlf = yes; |
| 2810 | self |
| 2811 | } |
| 2812 | |
| 2813 | /// This configures swap-greed mode for the entire pattern. |
| 2814 | /// |
| 2815 | /// When swap-greed mode is enabled, patterns like `a+` will become |
| 2816 | /// non-greedy and patterns like `a+?` will become greedy. In other words, |
| 2817 | /// the meanings of `a+` and `a+?` are switched. |
| 2818 | /// |
| 2819 | /// This setting can also be configured using the inline flag `U` in the |
| 2820 | /// pattern. |
| 2821 | /// |
| 2822 | /// The default for this is `false`. |
| 2823 | /// |
| 2824 | /// # Example |
| 2825 | /// |
| 2826 | /// ``` |
| 2827 | /// use regex_lite::RegexBuilder; |
| 2828 | /// |
| 2829 | /// let re = RegexBuilder::new(r"a+" ) |
| 2830 | /// .swap_greed(true) |
| 2831 | /// .build() |
| 2832 | /// .unwrap(); |
| 2833 | /// assert_eq!(Some("a" ), re.find("aaa" ).map(|m| m.as_str())); |
| 2834 | /// ``` |
| 2835 | pub fn swap_greed(&mut self, yes: bool) -> &mut RegexBuilder { |
| 2836 | self.hir_config.flags.swap_greed = yes; |
| 2837 | self |
| 2838 | } |
| 2839 | |
| 2840 | /// This configures verbose mode for the entire pattern. |
| 2841 | /// |
| 2842 | /// When enabled, whitespace will treated as insignifcant in the pattern |
| 2843 | /// and `#` can be used to start a comment until the next new line. |
| 2844 | /// |
| 2845 | /// Normally, in most places in a pattern, whitespace is treated literally. |
| 2846 | /// For example ` +` will match one or more ASCII whitespace characters. |
| 2847 | /// |
| 2848 | /// When verbose mode is enabled, `\#` can be used to match a literal `#` |
| 2849 | /// and `\ ` can be used to match a literal ASCII whitespace character. |
| 2850 | /// |
| 2851 | /// Verbose mode is useful for permitting regexes to be formatted and |
| 2852 | /// broken up more nicely. This may make them more easily readable. |
| 2853 | /// |
| 2854 | /// This setting can also be configured using the inline flag `x` in the |
| 2855 | /// pattern. |
| 2856 | /// |
| 2857 | /// The default for this is `false`. |
| 2858 | /// |
| 2859 | /// # Example |
| 2860 | /// |
| 2861 | /// ``` |
| 2862 | /// use regex_lite::RegexBuilder; |
| 2863 | /// |
| 2864 | /// let pat = r" |
| 2865 | /// \b |
| 2866 | /// (?<first>[A-Z]\w*) # always start with uppercase letter |
| 2867 | /// \s+ # whitespace should separate names |
| 2868 | /// (?: # middle name can be an initial! |
| 2869 | /// (?:(?<initial>[A-Z])\.|(?<middle>[A-Z]\w*)) |
| 2870 | /// \s+ |
| 2871 | /// )? |
| 2872 | /// (?<last>[A-Z]\w*) |
| 2873 | /// \b |
| 2874 | /// " ; |
| 2875 | /// let re = RegexBuilder::new(pat) |
| 2876 | /// .ignore_whitespace(true) |
| 2877 | /// .build() |
| 2878 | /// .unwrap(); |
| 2879 | /// |
| 2880 | /// let caps = re.captures("Harry Potter" ).unwrap(); |
| 2881 | /// assert_eq!("Harry" , &caps["first" ]); |
| 2882 | /// assert_eq!("Potter" , &caps["last" ]); |
| 2883 | /// |
| 2884 | /// let caps = re.captures("Harry J. Potter" ).unwrap(); |
| 2885 | /// assert_eq!("Harry" , &caps["first" ]); |
| 2886 | /// // Since a middle name/initial isn't required for an overall match, |
| 2887 | /// // we can't assume that 'initial' or 'middle' will be populated! |
| 2888 | /// assert_eq!(Some("J" ), caps.name("initial" ).map(|m| m.as_str())); |
| 2889 | /// assert_eq!(None, caps.name("middle" ).map(|m| m.as_str())); |
| 2890 | /// assert_eq!("Potter" , &caps["last" ]); |
| 2891 | /// |
| 2892 | /// let caps = re.captures("Harry James Potter" ).unwrap(); |
| 2893 | /// assert_eq!("Harry" , &caps["first" ]); |
| 2894 | /// // Since a middle name/initial isn't required for an overall match, |
| 2895 | /// // we can't assume that 'initial' or 'middle' will be populated! |
| 2896 | /// assert_eq!(None, caps.name("initial" ).map(|m| m.as_str())); |
| 2897 | /// assert_eq!(Some("James" ), caps.name("middle" ).map(|m| m.as_str())); |
| 2898 | /// assert_eq!("Potter" , &caps["last" ]); |
| 2899 | /// ``` |
| 2900 | pub fn ignore_whitespace(&mut self, yes: bool) -> &mut RegexBuilder { |
| 2901 | self.hir_config.flags.ignore_whitespace = yes; |
| 2902 | self |
| 2903 | } |
| 2904 | |
| 2905 | /// Sets the approximate size limit, in bytes, of the compiled regex. |
| 2906 | /// |
| 2907 | /// This roughly corresponds to the number of heap memory, in bytes, |
| 2908 | /// occupied by a single regex. If the regex would otherwise approximately |
| 2909 | /// exceed this limit, then compiling that regex will fail. |
| 2910 | /// |
| 2911 | /// The main utility of a method like this is to avoid compiling regexes |
| 2912 | /// that use an unexpected amount of resources, such as time and memory. |
| 2913 | /// Even if the memory usage of a large regex is acceptable, its search |
| 2914 | /// time may not be. Namely, worst case time complexity for search is `O(m |
| 2915 | /// * n)`, where `m ~ len(pattern)` and `n ~ len(haystack)`. That is, |
| 2916 | /// search time depends, in part, on the size of the compiled regex. This |
| 2917 | /// means that putting a limit on the size of the regex limits how much a |
| 2918 | /// regex can impact search time. |
| 2919 | /// |
| 2920 | /// The default for this is some reasonable number that permits most |
| 2921 | /// patterns to compile successfully. |
| 2922 | /// |
| 2923 | /// # Example |
| 2924 | /// |
| 2925 | /// ``` |
| 2926 | /// use regex_lite::RegexBuilder; |
| 2927 | /// |
| 2928 | /// assert!(RegexBuilder::new(r"\w" ).size_limit(100).build().is_err()); |
| 2929 | /// ``` |
| 2930 | pub fn size_limit(&mut self, limit: usize) -> &mut RegexBuilder { |
| 2931 | self.nfa_config.size_limit = Some(limit); |
| 2932 | self |
| 2933 | } |
| 2934 | |
| 2935 | /// Set the nesting limit for this parser. |
| 2936 | /// |
| 2937 | /// The nesting limit controls how deep the abstract syntax tree is allowed |
| 2938 | /// to be. If the AST exceeds the given limit (e.g., with too many nested |
| 2939 | /// groups), then an error is returned by the parser. |
| 2940 | /// |
| 2941 | /// The purpose of this limit is to act as a heuristic to prevent stack |
| 2942 | /// overflow for consumers that do structural induction on an AST using |
| 2943 | /// explicit recursion. While this crate never does this (instead using |
| 2944 | /// constant stack space and moving the call stack to the heap), other |
| 2945 | /// crates may. |
| 2946 | /// |
| 2947 | /// This limit is not checked until the entire AST is parsed. Therefore, if |
| 2948 | /// callers want to put a limit on the amount of heap space used, then they |
| 2949 | /// should impose a limit on the length, in bytes, of the concrete pattern |
| 2950 | /// string. In particular, this is viable since this parser implementation |
| 2951 | /// will limit itself to heap space proportional to the length of the |
| 2952 | /// pattern string. See also the [untrusted inputs](crate#untrusted-input) |
| 2953 | /// section in the top-level crate documentation for more information about |
| 2954 | /// this. |
| 2955 | /// |
| 2956 | /// Note that a nest limit of `0` will return a nest limit error for most |
| 2957 | /// patterns but not all. For example, a nest limit of `0` permits `a` but |
| 2958 | /// not `ab`, since `ab` requires an explicit concatenation, which results |
| 2959 | /// in a nest depth of `1`. In general, a nest limit is not something that |
| 2960 | /// manifests in an obvious way in the concrete syntax, therefore, it |
| 2961 | /// should not be used in a granular way. |
| 2962 | /// |
| 2963 | /// # Example |
| 2964 | /// |
| 2965 | /// ``` |
| 2966 | /// use regex_lite::RegexBuilder; |
| 2967 | /// |
| 2968 | /// assert!(RegexBuilder::new(r"" ).nest_limit(0).build().is_ok()); |
| 2969 | /// assert!(RegexBuilder::new(r"a" ).nest_limit(0).build().is_ok()); |
| 2970 | /// assert!(RegexBuilder::new(r"(a)" ).nest_limit(0).build().is_err()); |
| 2971 | /// ``` |
| 2972 | pub fn nest_limit(&mut self, limit: u32) -> &mut RegexBuilder { |
| 2973 | self.hir_config.nest_limit = limit; |
| 2974 | self |
| 2975 | } |
| 2976 | } |
| 2977 | |