1 |
|
2 | //! Data structures that represent a complete exr image.
|
3 | //! Contains generic structs that must be nested to obtain a complete image type.
|
4 | //!
|
5 | //!
|
6 | //! For example, an rgba image containing multiple layers
|
7 | //! can be represented using `Image<Layers<SpecificChannels<MyPixelStorage>>>`.
|
8 | //! An image containing a single layer with arbitrary channels and no deep data
|
9 | //! can be represented using `Image<Layer<AnyChannels<FlatSamples>>>`.
|
10 | //!
|
11 | //!
|
12 | //! These and other predefined types are included in this module as
|
13 | //! 1. `PixelImage`: A single layer, fixed set of arbitrary channels.
|
14 | //! 1. `PixelLayersImage`: Multiple layers, fixed set of arbitrary channels.
|
15 | //! 1. `RgbaImage`: A single layer, fixed set of channels: rgb, optional a.
|
16 | //! 1. `RgbaLayersImage`: Multiple layers, fixed set of channels: rgb, optional a.
|
17 | //! 1. `FlatImage`: Multiple layers, any channels, no deep data.
|
18 | //! 1. `AnyImage`: All supported data (multiple layers, arbitrary channels, no deep data yet)
|
19 | //!
|
20 | //! You can also use your own types inside an image,
|
21 | //! for example if you want to use a custom sample storage.
|
22 | //!
|
23 | //! This is the high-level interface for the pixels of an image.
|
24 | //! See `exr::blocks` module for a low-level interface.
|
25 |
|
26 | pub mod read;
|
27 | pub mod write;
|
28 | pub mod crop;
|
29 | pub mod pixel_vec;
|
30 | pub mod recursive;
|
31 | // pub mod channel_groups;
|
32 |
|
33 |
|
34 | use crate::meta::header::{ImageAttributes, LayerAttributes};
|
35 | use crate::meta::attribute::{Text, LineOrder};
|
36 | use half::f16;
|
37 | use crate::math::{Vec2, RoundingMode};
|
38 | use crate::compression::Compression;
|
39 | use smallvec::{SmallVec};
|
40 | use crate::error::Error;
|
41 |
|
42 | /// Don't do anything
|
43 | pub(crate) fn ignore_progress(_progress: f64){}
|
44 |
|
45 | /// This image type contains all supported exr features and can represent almost any image.
|
46 | /// It currently does not support deep data yet.
|
47 | pub type AnyImage = Image<Layers<AnyChannels<Levels<FlatSamples>>>>;
|
48 |
|
49 | /// This image type contains the most common exr features and can represent almost any plain image.
|
50 | /// Does not contain resolution levels. Does not support deep data.
|
51 | pub type FlatImage = Image<Layers<AnyChannels<FlatSamples>>>;
|
52 |
|
53 | /// This image type contains multiple layers, with each layer containing a user-defined type of pixels.
|
54 | pub type PixelLayersImage<Storage, Channels> = Image<Layers<SpecificChannels<Storage, Channels>>>;
|
55 |
|
56 | /// This image type contains a single layer containing a user-defined type of pixels.
|
57 | pub type PixelImage<Storage, Channels> = Image<Layer<SpecificChannels<Storage, Channels>>>;
|
58 |
|
59 | /// This image type contains multiple layers, with each layer containing a user-defined type of rgba pixels.
|
60 | pub type RgbaLayersImage<Storage> = PixelLayersImage<Storage, RgbaChannels>;
|
61 |
|
62 | /// This image type contains a single layer containing a user-defined type of rgba pixels.
|
63 | pub type RgbaImage<Storage> = PixelImage<Storage, RgbaChannels>;
|
64 |
|
65 | /// Contains information about the channels in an rgba image, in the order `(red, green, blue, alpha)`.
|
66 | /// The alpha channel is not required. May be `None` if the image did not contain an alpha channel.
|
67 | pub type RgbaChannels = (ChannelDescription, ChannelDescription, ChannelDescription, Option<ChannelDescription>);
|
68 |
|
69 | /// Contains information about the channels in an rgb image, in the order `(red, green, blue)`.
|
70 | pub type RgbChannels = (ChannelDescription, ChannelDescription, ChannelDescription);
|
71 |
|
72 | /// The complete exr image.
|
73 | /// `Layers` can be either a single `Layer` or `Layers`.
|
74 | #[derive (Debug, Clone, PartialEq)]
|
75 | pub struct Image<Layers> {
|
76 |
|
77 | /// Attributes that apply to the whole image file.
|
78 | /// These attributes appear in each layer of the file.
|
79 | /// Excludes technical meta data.
|
80 | /// Each layer in this image also has its own attributes.
|
81 | pub attributes: ImageAttributes,
|
82 |
|
83 | /// The layers contained in the image file.
|
84 | /// Can be either a single `Layer` or a list of layers.
|
85 | pub layer_data: Layers,
|
86 | }
|
87 |
|
88 | /// A list of layers. `Channels` can be `SpecificChannels` or `AnyChannels`.
|
89 | pub type Layers<Channels> = SmallVec<[Layer<Channels>; 2]>;
|
90 |
|
91 | /// A single Layer, including fancy attributes and compression settings.
|
92 | /// `Channels` can be either `SpecificChannels` or `AnyChannels`
|
93 | #[derive (Debug, Clone, PartialEq)]
|
94 | pub struct Layer<Channels> {
|
95 |
|
96 | /// The actual pixel data. Either `SpecificChannels` or `AnyChannels`
|
97 | pub channel_data: Channels,
|
98 |
|
99 | /// Attributes that apply to this layer.
|
100 | /// May still contain attributes that should be considered global for an image file.
|
101 | /// Excludes technical meta data: Does not contain data window size, line order, tiling, or compression attributes.
|
102 | /// The image also has attributes, which do not differ per layer.
|
103 | pub attributes: LayerAttributes,
|
104 |
|
105 | /// The pixel resolution of this layer.
|
106 | /// See `layer.attributes` for more attributes, like for example layer position.
|
107 | pub size: Vec2<usize>,
|
108 |
|
109 | /// How the pixels are split up and compressed.
|
110 | pub encoding: Encoding
|
111 | }
|
112 |
|
113 | /// How the pixels are split up and compressed.
|
114 | #[derive (Copy, Clone, Debug, PartialEq)]
|
115 | pub struct Encoding {
|
116 |
|
117 | /// How the pixel data of all channels in this layer is compressed. May be `Compression::Uncompressed`.
|
118 | /// See `layer.attributes` for more attributes.
|
119 | pub compression: Compression,
|
120 |
|
121 | /// Describes how the pixels of this layer are divided into smaller blocks.
|
122 | /// Either splits the image into its scan lines or splits the image into tiles of the specified size.
|
123 | /// A single block can be loaded without processing all bytes of a file.
|
124 | pub blocks: Blocks,
|
125 |
|
126 | /// In what order the tiles of this header occur in the file.
|
127 | /// Does not change any actual image orientation.
|
128 | /// See `layer.attributes` for more attributes.
|
129 | pub line_order: LineOrder,
|
130 | }
|
131 |
|
132 | /// How the image pixels are split up into separate blocks.
|
133 | #[derive (Copy, Clone, Debug, PartialEq, Eq)]
|
134 | pub enum Blocks {
|
135 |
|
136 | /// The image is divided into scan line blocks.
|
137 | /// The number of scan lines in a block depends on the compression method.
|
138 | ScanLines,
|
139 |
|
140 | /// The image is divided into tile blocks.
|
141 | /// Also specifies the size of each tile in the image
|
142 | /// and whether this image contains multiple resolution levels.
|
143 | ///
|
144 | /// The inner `Vec2` describes the size of each tile.
|
145 | /// Stays the same number of pixels across all levels.
|
146 | Tiles (Vec2<usize>)
|
147 | }
|
148 |
|
149 |
|
150 | /// A grid of pixels. The pixels are written to your custom pixel storage.
|
151 | /// `PixelStorage` can be anything, from a flat `Vec<f16>` to `Vec<Vec<AnySample>>`, as desired.
|
152 | /// In order to write this image to a file, your `PixelStorage` must implement [`GetPixel`].
|
153 | #[derive (Debug, Clone, PartialEq, Eq)]
|
154 | pub struct SpecificChannels<Pixels, ChannelsDescription> {
|
155 |
|
156 | /// A description of the channels in the file, as opposed to the channels in memory.
|
157 | /// Should always be a tuple containing `ChannelDescription`s, one description for each channel.
|
158 | pub channels: ChannelsDescription, // TODO this is awkward. can this be not a type parameter please? maybe vec<option<chan_info>> ??
|
159 |
|
160 | /// Your custom pixel storage
|
161 | // TODO should also support `Levels<YourStorage>`, where levels are desired!
|
162 | pub pixels: Pixels, // TODO rename to "pixels"?
|
163 | }
|
164 |
|
165 |
|
166 | /// A dynamic list of arbitrary channels.
|
167 | /// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`.
|
168 | #[derive (Debug, Clone, PartialEq)]
|
169 | pub struct AnyChannels<Samples> {
|
170 |
|
171 | /// This list must be sorted alphabetically, by channel name.
|
172 | /// Use `AnyChannels::sorted` for automatic sorting.
|
173 | pub list: SmallVec<[AnyChannel<Samples>; 4]>
|
174 | }
|
175 |
|
176 | /// A single arbitrary channel.
|
177 | /// `Samples` can currently only be `FlatSamples` or `Levels<FlatSamples>`
|
178 | #[derive (Debug, Clone, PartialEq)]
|
179 | pub struct AnyChannel<Samples> {
|
180 |
|
181 | /// One of "R", "G", or "B" most of the time.
|
182 | pub name: Text,
|
183 |
|
184 | /// The actual pixel data.
|
185 | /// Can be `FlatSamples` or `Levels<FlatSamples>`.
|
186 | pub sample_data: Samples,
|
187 |
|
188 | /// This attribute only tells lossy compression methods
|
189 | /// whether this value should be quantized exponentially or linearly.
|
190 | ///
|
191 | /// Should be `false` for red, green, blue and luma channels, as they are not perceived linearly.
|
192 | /// Should be `true` for hue, chroma, saturation, and alpha channels.
|
193 | pub quantize_linearly: bool,
|
194 |
|
195 | /// How many of the samples are skipped compared to the other channels in this layer.
|
196 | ///
|
197 | /// Can be used for chroma subsampling for manual lossy data compression.
|
198 | /// Values other than 1 are allowed only in flat, scan-line based images.
|
199 | /// If an image is deep or tiled, the sampling rates for all of its channels must be 1.
|
200 | pub sampling: Vec2<usize>,
|
201 | }
|
202 |
|
203 | /// One or multiple resolution levels of the same image.
|
204 | /// `Samples` can be `FlatSamples`.
|
205 | #[derive (Debug, Clone, PartialEq, Eq)]
|
206 | pub enum Levels<Samples> {
|
207 |
|
208 | /// A single image without smaller versions of itself.
|
209 | /// If you only want to handle exclusively this case, use `Samples` directly, and not `Levels<Samples>`.
|
210 | Singular(Samples),
|
211 |
|
212 | /// Contains uniformly scaled smaller versions of the original.
|
213 | Mip
|
214 | {
|
215 | /// Whether to round up or down when calculating Mip/Rip levels.
|
216 | rounding_mode: RoundingMode,
|
217 |
|
218 | /// The smaller versions of the original.
|
219 | level_data: LevelMaps<Samples>
|
220 | },
|
221 |
|
222 | /// Contains any possible combination of smaller versions of the original.
|
223 | Rip
|
224 | {
|
225 | /// Whether to round up or down when calculating Mip/Rip levels.
|
226 | rounding_mode: RoundingMode,
|
227 |
|
228 | /// The smaller versions of the original.
|
229 | level_data: RipMaps<Samples>
|
230 | },
|
231 | }
|
232 |
|
233 | /// A list of resolution levels. `Samples` can currently only be `FlatSamples`.
|
234 | // or `DeepAndFlatSamples` (not yet implemented).
|
235 | pub type LevelMaps<Samples> = Vec<Samples>;
|
236 |
|
237 | /// In addition to the full resolution image,
|
238 | /// this layer also contains smaller versions,
|
239 | /// and each smaller version has further versions with varying aspect ratios.
|
240 | /// `Samples` can currently only be `FlatSamples`.
|
241 | #[derive (Debug, Clone, PartialEq, Eq)]
|
242 | pub struct RipMaps<Samples> {
|
243 |
|
244 | /// A flattened list containing the individual levels
|
245 | pub map_data: LevelMaps<Samples>,
|
246 |
|
247 | /// The number of levels that were generated along the x-axis and y-axis.
|
248 | pub level_count: Vec2<usize>,
|
249 | }
|
250 |
|
251 |
|
252 | // TODO deep data
|
253 | /*#[derive(Clone, PartialEq)]
|
254 | pub enum DeepAndFlatSamples {
|
255 | Deep(DeepSamples),
|
256 | Flat(FlatSamples)
|
257 | }*/
|
258 |
|
259 | /// A vector of non-deep values (one value per pixel per channel).
|
260 | /// Stores row after row in a single vector.
|
261 | /// The precision of all values is either `f16`, `f32` or `u32`.
|
262 | ///
|
263 | /// Since this is close to the pixel layout in the byte file,
|
264 | /// this will most likely be the fastest storage.
|
265 | /// Using a different storage, for example `SpecificChannels`,
|
266 | /// will probably be slower.
|
267 | #[derive (Clone, PartialEq)] // debug is implemented manually
|
268 | pub enum FlatSamples {
|
269 |
|
270 | /// A vector of non-deep `f16` values.
|
271 | F16(Vec<f16>),
|
272 |
|
273 | /// A vector of non-deep `f32` values.
|
274 | F32(Vec<f32>),
|
275 |
|
276 | /// A vector of non-deep `u32` values.
|
277 | U32(Vec<u32>),
|
278 | }
|
279 |
|
280 |
|
281 | /*#[derive(Clone, PartialEq)]
|
282 | pub enum DeepSamples {
|
283 | F16(Vec<Vec<f16>>),
|
284 | F32(Vec<Vec<f32>>),
|
285 | U32(Vec<Vec<u32>>),
|
286 | }*/
|
287 |
|
288 | use crate::block::samples::*;
|
289 | use crate::meta::attribute::*;
|
290 | use crate::error::Result;
|
291 | use crate::block::samples::Sample;
|
292 | use crate::image::write::channels::*;
|
293 | use crate::image::write::layers::WritableLayers;
|
294 | use crate::image::write::samples::{WritableSamples};
|
295 | use crate::meta::{mip_map_levels, rip_map_levels};
|
296 | use crate::io::Data;
|
297 | use crate::image::recursive::{NoneMore, Recursive, IntoRecursive};
|
298 | use std::marker::PhantomData;
|
299 | use std::ops::Not;
|
300 | use crate::image::validate_results::{ValidationOptions};
|
301 |
|
302 |
|
303 | impl<Channels> Layer<Channels> {
|
304 | /// Sometimes called "data window"
|
305 | pub fn absolute_bounds(&self) -> IntegerBounds {
|
306 | IntegerBounds::new(self.attributes.layer_position, self.size)
|
307 | }
|
308 | }
|
309 |
|
310 |
|
311 | impl<SampleStorage, Channels> SpecificChannels<SampleStorage, Channels> {
|
312 | /// Create some pixels with channel information.
|
313 | /// The `Channels` must be a tuple containing either `ChannelDescription` or `Option<ChannelDescription>`.
|
314 | /// The length of the tuple dictates the number of channels in the sample storage.
|
315 | pub fn new(channels: Channels, source_samples: SampleStorage) -> Self
|
316 | where
|
317 | SampleStorage: GetPixel,
|
318 | SampleStorage::Pixel: IntoRecursive,
|
319 | Channels: Sync + Clone + IntoRecursive,
|
320 | <Channels as IntoRecursive>::Recursive: WritableChannelsDescription<<SampleStorage::Pixel as IntoRecursive>::Recursive>,
|
321 | {
|
322 | SpecificChannels { channels, pixels: source_samples }
|
323 | }
|
324 | }
|
325 |
|
326 | /// Convert this type into one of the known sample types.
|
327 | /// Also specify the preferred native type, which dictates the default sample type in the image.
|
328 | pub trait IntoSample: IntoNativeSample {
|
329 |
|
330 | /// The native sample types that this type should be converted to.
|
331 | const PREFERRED_SAMPLE_TYPE: SampleType;
|
332 | }
|
333 |
|
334 | impl IntoSample for f16 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F16; }
|
335 | impl IntoSample for f32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::F32; }
|
336 | impl IntoSample for u32 { const PREFERRED_SAMPLE_TYPE: SampleType = SampleType::U32; }
|
337 |
|
338 | /// Used to construct a `SpecificChannels`.
|
339 | /// Call `with_named_channel` as many times as desired,
|
340 | /// and then call `with_pixels` to define the colors.
|
341 | #[derive (Debug)]
|
342 | pub struct SpecificChannelsBuilder<RecursiveChannels, RecursivePixel> {
|
343 | channels: RecursiveChannels,
|
344 | px: PhantomData<RecursivePixel>
|
345 | }
|
346 |
|
347 | /// This check can be executed at compile time
|
348 | /// if the channel names are `&'static str` and the compiler is smart enough.
|
349 | pub trait CheckDuplicates {
|
350 |
|
351 | /// Check for duplicate channel names.
|
352 | fn already_contains(&self, name: &Text) -> bool;
|
353 | }
|
354 |
|
355 | impl CheckDuplicates for NoneMore {
|
356 | fn already_contains(&self, _: &Text) -> bool { false }
|
357 | }
|
358 |
|
359 | impl<Inner: CheckDuplicates> CheckDuplicates for Recursive<Inner, ChannelDescription> {
|
360 | fn already_contains(&self, name: &Text) -> bool {
|
361 | &self.value.name == name || self.inner.already_contains(name)
|
362 | }
|
363 | }
|
364 |
|
365 | impl SpecificChannels<(),()>
|
366 | {
|
367 | /// Start building some specific channels. On the result of this function,
|
368 | /// call `with_named_channel` as many times as desired,
|
369 | /// and then call `with_pixels` to define the colors.
|
370 | pub fn build() -> SpecificChannelsBuilder<NoneMore, NoneMore> {
|
371 | SpecificChannelsBuilder { channels: NoneMore, px: Default::default() }
|
372 | }
|
373 | }
|
374 |
|
375 | impl<RecursiveChannels: CheckDuplicates, RecursivePixel> SpecificChannelsBuilder<RecursiveChannels, RecursivePixel>
|
376 | {
|
377 | /// Add another channel to this image. Does not add the actual pixels,
|
378 | /// but instead only declares the presence of the channel.
|
379 | /// Panics if the name contains unsupported characters.
|
380 | /// Panics if a channel with the same name already exists.
|
381 | /// Use `Text::new_or_none()` to manually handle these cases.
|
382 | /// Use `with_channel_details` instead if you want to specify more options than just the name of the channel.
|
383 | /// The generic parameter can usually be inferred from the closure in `with_pixels`.
|
384 | pub fn with_channel<Sample: IntoSample>(self, name: impl Into<Text>)
|
385 | -> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
|
386 | {
|
387 | self.with_channel_details::<Sample>(ChannelDescription::named(name, Sample::PREFERRED_SAMPLE_TYPE))
|
388 | }
|
389 |
|
390 | /// Add another channel to this image. Does not add the actual pixels,
|
391 | /// but instead only declares the presence of the channel.
|
392 | /// Use `with_channel` instead if you only want to specify the name of the channel.
|
393 | /// Panics if a channel with the same name already exists.
|
394 | /// The generic parameter can usually be inferred from the closure in `with_pixels`.
|
395 | pub fn with_channel_details<Sample: Into<Sample>>(self, channel: ChannelDescription)
|
396 | -> SpecificChannelsBuilder<Recursive<RecursiveChannels, ChannelDescription>, Recursive<RecursivePixel, Sample>>
|
397 | {
|
398 | // duplicate channel names are checked later, but also check now to make sure there are no problems with the `SpecificChannelsWriter`
|
399 | assert!(self.channels.already_contains(&channel.name).not(), "channel name ` {}` is duplicate" , channel.name);
|
400 |
|
401 | SpecificChannelsBuilder {
|
402 | channels: Recursive::new(self.channels, channel),
|
403 | px: PhantomData::default()
|
404 | }
|
405 | }
|
406 |
|
407 | /// Specify the actual pixel contents of the image.
|
408 | /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> Pixel`),
|
409 | /// or you can pass your own image if it implements `GetPixel`.
|
410 | /// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
|
411 | /// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
|
412 | /// Use `with_pixel_fn` instead of this function, to get extra type safety for your pixel closure.
|
413 | pub fn with_pixels<Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
|
414 | where Pixels: GetPixel, <Pixels as GetPixel>::Pixel: IntoRecursive<Recursive=RecursivePixel>,
|
415 | {
|
416 | SpecificChannels {
|
417 | channels: self.channels,
|
418 | pixels: get_pixel
|
419 | }
|
420 | }
|
421 |
|
422 | /// Specify the contents of the image.
|
423 | /// The pixel type must be a tuple with the correct number of entries, depending on the number of channels.
|
424 | /// The tuple entries can be either `f16`, `f32`, `u32` or `Sample`.
|
425 | /// Use `with_pixels` instead of this function, if you want to pass an object that is not a closure.
|
426 | ///
|
427 | /// Usually, the compiler can infer the type of the pixel (for example, `f16,f32,f32`) from the closure.
|
428 | /// If that's not possible, you can specify the type of the channels
|
429 | /// when declaring the channel (for example, `with_named_channel::<f32>("R")`).
|
430 | pub fn with_pixel_fn<Pixel, Pixels>(self, get_pixel: Pixels) -> SpecificChannels<Pixels, RecursiveChannels>
|
431 | where Pixels: Sync + Fn(Vec2<usize>) -> Pixel, Pixel: IntoRecursive<Recursive=RecursivePixel>,
|
432 | {
|
433 | SpecificChannels {
|
434 | channels: self.channels,
|
435 | pixels: get_pixel
|
436 | }
|
437 | }
|
438 | }
|
439 |
|
440 | impl<SampleStorage> SpecificChannels<
|
441 | SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription, ChannelDescription)
|
442 | >
|
443 | {
|
444 |
|
445 | /// Create an image with red, green, blue, and alpha channels.
|
446 | /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B,A)`),
|
447 | /// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B,A)>`.
|
448 | /// Each of `R`, `G`, `B` and `A` can be either `f16`, `f32`, `u32`, or `Sample`.
|
449 | pub fn rgba<R, G, B, A>(source_samples: SampleStorage) -> Self
|
450 | where R: IntoSample, G: IntoSample,
|
451 | B: IntoSample, A: IntoSample,
|
452 | SampleStorage: GetPixel<Pixel=(R, G, B, A)>
|
453 | {
|
454 | SpecificChannels {
|
455 | channels: (
|
456 | ChannelDescription::named(name:"R" , R::PREFERRED_SAMPLE_TYPE),
|
457 | ChannelDescription::named(name:"G" , G::PREFERRED_SAMPLE_TYPE),
|
458 | ChannelDescription::named(name:"B" , B::PREFERRED_SAMPLE_TYPE),
|
459 | ChannelDescription::named(name:"A" , A::PREFERRED_SAMPLE_TYPE),
|
460 | ),
|
461 | pixels: source_samples
|
462 | }
|
463 | }
|
464 | }
|
465 |
|
466 | impl<SampleStorage> SpecificChannels<
|
467 | SampleStorage, (ChannelDescription, ChannelDescription, ChannelDescription)
|
468 | >
|
469 | {
|
470 |
|
471 | /// Create an image with red, green, and blue channels.
|
472 | /// You can pass a closure that returns a color for each pixel (`Fn(Vec2<usize>) -> (R,G,B)`),
|
473 | /// or you can pass your own image if it implements `GetPixel<Pixel=(R,G,B)>`.
|
474 | /// Each of `R`, `G` and `B` can be either `f16`, `f32`, `u32`, or `Sample`.
|
475 | pub fn rgb<R, G, B>(source_samples: SampleStorage) -> Self
|
476 | where R: IntoSample, G: IntoSample, B: IntoSample,
|
477 | SampleStorage: GetPixel<Pixel=(R, G, B)>
|
478 | {
|
479 | SpecificChannels {
|
480 | channels: (
|
481 | ChannelDescription::named(name:"R" , R::PREFERRED_SAMPLE_TYPE),
|
482 | ChannelDescription::named(name:"G" , G::PREFERRED_SAMPLE_TYPE),
|
483 | ChannelDescription::named(name:"B" , B::PREFERRED_SAMPLE_TYPE),
|
484 | ),
|
485 | pixels: source_samples
|
486 | }
|
487 | }
|
488 | }
|
489 |
|
490 |
|
491 | /// A list of samples representing a single pixel.
|
492 | /// Does not heap allocate for images with 8 or fewer channels.
|
493 | pub type FlatSamplesPixel = SmallVec<[Sample; 8]>;
|
494 |
|
495 | // TODO also deep samples?
|
496 | impl Layer<AnyChannels<FlatSamples>> {
|
497 |
|
498 | /// Use `samples_at` if you can borrow from this layer
|
499 | pub fn sample_vec_at(&self, position: Vec2<usize>) -> FlatSamplesPixel {
|
500 | self.samples_at(position).collect()
|
501 | }
|
502 |
|
503 | /// Lookup all channels of a single pixel in the image
|
504 | pub fn samples_at(&self, position: Vec2<usize>) -> FlatSampleIterator<'_> {
|
505 | FlatSampleIterator {
|
506 | layer: self,
|
507 | channel_index: 0,
|
508 | position
|
509 | }
|
510 | }
|
511 | }
|
512 |
|
513 | /// Iterate over all channels of a single pixel in the image
|
514 | #[derive (Debug, Copy, Clone, PartialEq)]
|
515 | pub struct FlatSampleIterator<'s> {
|
516 | layer: &'s Layer<AnyChannels<FlatSamples>>,
|
517 | channel_index: usize,
|
518 | position: Vec2<usize>,
|
519 | }
|
520 |
|
521 | impl Iterator for FlatSampleIterator<'_> {
|
522 | type Item = Sample;
|
523 |
|
524 | fn next(&mut self) -> Option<Self::Item> {
|
525 | if self.channel_index < self.layer.channel_data.list.len() {
|
526 | let channel: &AnyChannel = &self.layer.channel_data.list[self.channel_index];
|
527 | let sample: Sample = channel.sample_data.value_by_flat_index(self.position.flat_index_for_size(self.layer.size));
|
528 | self.channel_index += 1;
|
529 | Some(sample)
|
530 | }
|
531 | else { None }
|
532 | }
|
533 |
|
534 | fn nth(&mut self, pos: usize) -> Option<Self::Item> {
|
535 | self.channel_index += pos;
|
536 | self.next()
|
537 | }
|
538 |
|
539 | fn size_hint(&self) -> (usize, Option<usize>) {
|
540 | let remaining: usize = self.layer.channel_data.list.len().saturating_sub(self.channel_index);
|
541 | (remaining, Some(remaining))
|
542 | }
|
543 | }
|
544 |
|
545 | impl ExactSizeIterator for FlatSampleIterator<'_> {}
|
546 |
|
547 | impl<SampleData> AnyChannels<SampleData>{
|
548 |
|
549 | /// A new list of arbitrary channels. Sorts the list to make it alphabetically stable.
|
550 | pub fn sort(mut list: SmallVec<[AnyChannel<SampleData>; 4]>) -> Self {
|
551 | list.sort_unstable_by_key(|channel: &AnyChannel| channel.name.clone()); // TODO no clone?
|
552 | Self { list }
|
553 | }
|
554 | }
|
555 |
|
556 | // FIXME check content size of layer somewhere??? before writing?
|
557 | impl<LevelSamples> Levels<LevelSamples> {
|
558 |
|
559 | /// Get a resolution level by index, sorted by size, decreasing.
|
560 | pub fn get_level(&self, level: Vec2<usize>) -> Result<&LevelSamples> {
|
561 | match self {
|
562 | Levels::Singular(block) => {
|
563 | debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug" );
|
564 | Ok(block)
|
565 | },
|
566 |
|
567 | Levels::Mip { level_data, .. } => {
|
568 | debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug" );
|
569 | level_data.get(level.x()).ok_or(Error::invalid("block mip level index" ))
|
570 | },
|
571 |
|
572 | Levels::Rip { level_data, .. } => {
|
573 | level_data.get_by_level(level).ok_or(Error::invalid("block rip level index" ))
|
574 | }
|
575 | }
|
576 | }
|
577 |
|
578 | /// Get a resolution level by index, sorted by size, decreasing.
|
579 | // TODO storage order for RIP maps?
|
580 | pub fn get_level_mut(&mut self, level: Vec2<usize>) -> Result<&mut LevelSamples> {
|
581 | match self {
|
582 | Levels::Singular(ref mut block) => {
|
583 | debug_assert_eq!(level, Vec2(0,0), "singular image cannot write leveled blocks bug" );
|
584 | Ok(block)
|
585 | },
|
586 |
|
587 | Levels::Mip { level_data, .. } => {
|
588 | debug_assert_eq!(level.x(), level.y(), "mip map levels must be equal on x and y bug" );
|
589 | level_data.get_mut(level.x()).ok_or(Error::invalid("block mip level index" ))
|
590 | },
|
591 |
|
592 | Levels::Rip { level_data, .. } => {
|
593 | level_data.get_by_level_mut(level).ok_or(Error::invalid("block rip level index" ))
|
594 | }
|
595 | }
|
596 | }
|
597 |
|
598 | /// Get a slice of all resolution levels, sorted by size, decreasing.
|
599 | pub fn levels_as_slice(&self) -> &[LevelSamples] {
|
600 | match self {
|
601 | Levels::Singular(data) => std::slice::from_ref(data),
|
602 | Levels::Mip { level_data, .. } => level_data,
|
603 | Levels::Rip { level_data, .. } => &level_data.map_data,
|
604 | }
|
605 | }
|
606 |
|
607 | /// Get a mutable slice of all resolution levels, sorted by size, decreasing.
|
608 | pub fn levels_as_slice_mut(&mut self) -> &mut [LevelSamples] {
|
609 | match self {
|
610 | Levels::Singular(data) => std::slice::from_mut(data),
|
611 | Levels::Mip { level_data, .. } => level_data,
|
612 | Levels::Rip { level_data, .. } => &mut level_data.map_data,
|
613 | }
|
614 | }
|
615 |
|
616 | // TODO simplify working with levels in general! like level_size_by_index and such
|
617 |
|
618 | /*pub fn levels_with_size(&self, rounding: RoundingMode, max_resolution: Vec2<usize>) -> Vec<(Vec2<usize>, &S)> {
|
619 | match self {
|
620 | Levels::Singular(ref data) => vec![ (max_resolution, data) ],
|
621 | Levels::Mip(ref maps) => mip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(maps).collect(),
|
622 | Levels::Rip(ref rip_maps) => rip_map_levels(rounding, max_resolution).map(|(_index, size)| size).zip(&rip_maps.map_data).collect(),
|
623 | }
|
624 | }*/
|
625 |
|
626 | /// Whether this stores multiple resolution levels.
|
627 | pub fn level_mode(&self) -> LevelMode {
|
628 | match self {
|
629 | Levels::Singular(_) => LevelMode::Singular,
|
630 | Levels::Mip { .. } => LevelMode::MipMap,
|
631 | Levels::Rip { .. } => LevelMode::RipMap,
|
632 | }
|
633 | }
|
634 | }
|
635 |
|
636 | impl<Samples> RipMaps<Samples> {
|
637 |
|
638 | /// Flatten the 2D level index to a one dimensional index.
|
639 | pub fn get_level_index(&self, level: Vec2<usize>) -> usize {
|
640 | level.flat_index_for_size(self.level_count)
|
641 | }
|
642 |
|
643 | /// Return a level by level index. Level `0` has the largest resolution.
|
644 | pub fn get_by_level(&self, level: Vec2<usize>) -> Option<&Samples> {
|
645 | self.map_data.get(self.get_level_index(level))
|
646 | }
|
647 |
|
648 | /// Return a mutable level reference by level index. Level `0` has the largest resolution.
|
649 | pub fn get_by_level_mut(&mut self, level: Vec2<usize>) -> Option<&mut Samples> {
|
650 | let index: usize = self.get_level_index(level);
|
651 | self.map_data.get_mut(index)
|
652 | }
|
653 | }
|
654 |
|
655 | impl FlatSamples {
|
656 |
|
657 | /// The number of samples in the image. Should be the width times the height.
|
658 | /// Might vary when subsampling is used.
|
659 | pub fn len(&self) -> usize {
|
660 | match self {
|
661 | FlatSamples::F16(vec) => vec.len(),
|
662 | FlatSamples::F32(vec) => vec.len(),
|
663 | FlatSamples::U32(vec) => vec.len(),
|
664 | }
|
665 | }
|
666 |
|
667 | /// Views all samples in this storage as f32.
|
668 | /// Matches the underlying sample type again for every sample,
|
669 | /// match yourself if performance is critical! Does not allocate.
|
670 | pub fn values_as_f32<'s>(&'s self) -> impl 's + Iterator<Item = f32> {
|
671 | self.values().map(|sample| sample.to_f32())
|
672 | }
|
673 |
|
674 | /// All samples in this storage as iterator.
|
675 | /// Matches the underlying sample type again for every sample,
|
676 | /// match yourself if performance is critical! Does not allocate.
|
677 | pub fn values<'s>(&'s self) -> impl 's + Iterator<Item = Sample> {
|
678 | (0..self.len()).map(move |index| self.value_by_flat_index(index))
|
679 | }
|
680 |
|
681 | /// Lookup a single value, by flat index.
|
682 | /// The flat index can be obtained using `Vec2::flatten_for_width`
|
683 | /// which computes the index in a flattened array of pixel rows.
|
684 | pub fn value_by_flat_index(&self, index: usize) -> Sample {
|
685 | match self {
|
686 | FlatSamples::F16(vec) => Sample::F16(vec[index]),
|
687 | FlatSamples::F32(vec) => Sample::F32(vec[index]),
|
688 | FlatSamples::U32(vec) => Sample::U32(vec[index]),
|
689 | }
|
690 | }
|
691 | }
|
692 |
|
693 |
|
694 | impl<'s, ChannelData:'s> Layer<ChannelData> {
|
695 |
|
696 | /// Create a layer with the specified size, attributes, encoding and channels.
|
697 | /// The channels can be either `SpecificChannels` or `AnyChannels`.
|
698 | pub fn new(
|
699 | dimensions: impl Into<Vec2<usize>>,
|
700 | attributes: LayerAttributes,
|
701 | encoding: Encoding,
|
702 | channels: ChannelData
|
703 | ) -> Self
|
704 | where ChannelData: WritableChannels<'s>
|
705 | {
|
706 | Layer { channel_data: channels, attributes, size: dimensions.into(), encoding }
|
707 | }
|
708 |
|
709 | // TODO test pls wtf
|
710 | /// Panics for images with Scanline encoding.
|
711 | pub fn levels_with_resolution<'l, L>(&self, levels: &'l Levels<L>) -> Box<dyn 'l + Iterator<Item=(&'l L, Vec2<usize>)>> {
|
712 | match levels {
|
713 | Levels::Singular(level) => Box::new(std::iter::once((level, self.size))),
|
714 |
|
715 | Levels::Mip { rounding_mode, level_data } => Box::new(level_data.iter().zip(
|
716 | mip_map_levels(*rounding_mode, self.size)
|
717 | .map(|(_index, size)| size)
|
718 | )),
|
719 |
|
720 | Levels::Rip { rounding_mode, level_data } => Box::new(level_data.map_data.iter().zip(
|
721 | rip_map_levels(*rounding_mode, self.size)
|
722 | .map(|(_index, size)| size)
|
723 | )),
|
724 | }
|
725 | }
|
726 | }
|
727 |
|
728 | impl Encoding {
|
729 |
|
730 | /// No compression. Massive space requirements.
|
731 | /// Fast, because it minimizes data shuffling and reallocation.
|
732 | pub const UNCOMPRESSED: Encoding = Encoding {
|
733 | compression: Compression::Uncompressed,
|
734 | blocks: Blocks::ScanLines, // longest lines, faster memcpy
|
735 | line_order: LineOrder::Increasing // presumably fastest?
|
736 | };
|
737 |
|
738 | /// Run-length encoding with tiles of 64x64 pixels. This is the recommended default encoding.
|
739 | /// Almost as fast as uncompressed data, but optimizes single-colored areas such as mattes and masks.
|
740 | pub const FAST_LOSSLESS: Encoding = Encoding {
|
741 | compression: Compression::RLE,
|
742 | blocks: Blocks::Tiles(Vec2(64, 64)), // optimize for RLE compression
|
743 | line_order: LineOrder::Unspecified
|
744 | };
|
745 |
|
746 | /// ZIP compression with blocks of 16 lines. Slow, but produces small files without visible artefacts.
|
747 | pub const SMALL_LOSSLESS: Encoding = Encoding {
|
748 | compression: Compression::ZIP16,
|
749 | blocks: Blocks::ScanLines, // largest possible, but also with high probability of parallel workers
|
750 | line_order: LineOrder::Increasing
|
751 | };
|
752 |
|
753 | /// PIZ compression with tiles of 256x256 pixels. Small images, not too slow.
|
754 | pub const SMALL_FAST_LOSSLESS: Encoding = Encoding {
|
755 | compression: Compression::PIZ,
|
756 | blocks: Blocks::Tiles(Vec2(256, 256)),
|
757 | line_order: LineOrder::Unspecified
|
758 | };
|
759 | }
|
760 |
|
761 | impl Default for Encoding {
|
762 | fn default() -> Self { Encoding::FAST_LOSSLESS }
|
763 | }
|
764 |
|
765 | impl<'s, LayerData: 's> Image<LayerData> where LayerData: WritableLayers<'s> {
|
766 | /// Create an image with one or multiple layers. The layer can be a `Layer`, or `Layers` small vector, or `Vec<Layer>` or `&[Layer]`.
|
767 | pub fn new(image_attributes: ImageAttributes, layer_data: LayerData) -> Self {
|
768 | Image { attributes: image_attributes, layer_data }
|
769 | }
|
770 | }
|
771 |
|
772 | // explorable constructor alias
|
773 | impl<'s, Channels: 's> Image<Layers<Channels>> where Channels: WritableChannels<'s> {
|
774 | /// Create an image with multiple layers. The layer can be a `Vec<Layer>` or `Layers` (a small vector).
|
775 | pub fn from_layers(image_attributes: ImageAttributes, layer_data: impl Into<Layers<Channels>>) -> Self {
|
776 | Self::new(image_attributes, layer_data:layer_data.into())
|
777 | }
|
778 | }
|
779 |
|
780 |
|
781 | impl<'s, ChannelData:'s> Image<Layer<ChannelData>> where ChannelData: WritableChannels<'s> {
|
782 |
|
783 | /// Uses the display position and size to the channel position and size of the layer.
|
784 | pub fn from_layer(layer: Layer<ChannelData>) -> Self {
|
785 | let bounds: IntegerBounds = IntegerBounds::new(start:layer.attributes.layer_position, layer.size);
|
786 | Self::new(ImageAttributes::new(bounds), layer_data:layer)
|
787 | }
|
788 |
|
789 | /// Uses empty attributes.
|
790 | pub fn from_encoded_channels(size: impl Into<Vec2<usize>>, encoding: Encoding, channels: ChannelData) -> Self {
|
791 | // layer name is not required for single-layer images
|
792 | Self::from_layer(Layer::new(dimensions:size, attributes:LayerAttributes::default(), encoding, channels))
|
793 | }
|
794 |
|
795 | /// Uses empty attributes and fast compression.
|
796 | pub fn from_channels(size: impl Into<Vec2<usize>>, channels: ChannelData) -> Self {
|
797 | Self::from_encoded_channels(size, Encoding::default(), channels)
|
798 | }
|
799 | }
|
800 |
|
801 |
|
802 | impl Image<NoneMore> {
|
803 |
|
804 | /// Create an empty image, to be filled with layers later on. Add at least one layer to obtain a valid image.
|
805 | /// Call `with_layer(another_layer)` for each layer you want to add to this image.
|
806 | pub fn empty(attributes: ImageAttributes) -> Self { Self { attributes, layer_data: NoneMore } }
|
807 | }
|
808 |
|
809 | impl<'s, InnerLayers: 's> Image<InnerLayers> where
|
810 | InnerLayers: WritableLayers<'s>,
|
811 | {
|
812 | /// Add another layer to this image. The layer type does
|
813 | /// not have to equal the existing layers in this image.
|
814 | pub fn with_layer<NewChannels>(self, layer: Layer<NewChannels>)
|
815 | -> Image<Recursive<InnerLayers, Layer<NewChannels>>>
|
816 | where NewChannels: 's + WritableChannels<'s>
|
817 | {
|
818 | Image {
|
819 | attributes: self.attributes,
|
820 | layer_data: Recursive::new(self.layer_data, value:layer)
|
821 | }
|
822 | }
|
823 | }
|
824 |
|
825 |
|
826 | impl<'s, SampleData: 's> AnyChannel<SampleData> {
|
827 |
|
828 | /// Create a new channel without subsampling.
|
829 | ///
|
830 | /// Automatically flags this channel for specialized compression
|
831 | /// if the name is "R", "G", "B", "Y", or "L",
|
832 | /// as they typically encode values that are perceived non-linearly.
|
833 | /// Construct the value yourself using `AnyChannel { .. }`, if you want to control this flag.
|
834 | pub fn new(name: impl Into<Text>, sample_data: SampleData) -> Self where SampleData: WritableSamples<'s> {
|
835 | let name: Text = name.into();
|
836 |
|
837 | AnyChannel {
|
838 | quantize_linearly: ChannelDescription::guess_quantization_linearity(&name),
|
839 | name, sample_data,
|
840 | sampling: Vec2(1, 1),
|
841 | }
|
842 | }
|
843 |
|
844 | /*/// This is the same as `AnyChannel::new()`, but additionally ensures that the closure type is correct.
|
845 | pub fn from_closure<V>(name: Text, sample_data: S) -> Self
|
846 | where S: Sync + Fn(Vec2<usize>) -> V, V: InferSampleType + Data
|
847 | {
|
848 | Self::new(name, sample_data)
|
849 | }*/
|
850 | }
|
851 |
|
852 | impl std::fmt::Debug for FlatSamples {
|
853 | fn fmt(&self, formatter: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
854 | if self.len() <= 6 {
|
855 | match self {
|
856 | FlatSamples::F16(vec: &Vec) => vec.fmt(formatter),
|
857 | FlatSamples::F32(vec: &Vec) => vec.fmt(formatter),
|
858 | FlatSamples::U32(vec: &Vec) => vec.fmt(formatter),
|
859 | }
|
860 | }
|
861 | else {
|
862 | match self {
|
863 | FlatSamples::F16(vec: &Vec) => write!(formatter, "[f16; {}]" , vec.len()),
|
864 | FlatSamples::F32(vec: &Vec) => write!(formatter, "[f32; {}]" , vec.len()),
|
865 | FlatSamples::U32(vec: &Vec) => write!(formatter, "[u32; {}]" , vec.len()),
|
866 | }
|
867 | }
|
868 | }
|
869 | }
|
870 |
|
871 |
|
872 |
|
873 | /// Compare the result of a round trip test with the original method.
|
874 | /// Supports lossy compression methods.
|
875 | // #[cfg(test)] TODO do not ship this code
|
876 | pub mod validate_results {
|
877 | use crate::prelude::*;
|
878 | use smallvec::Array;
|
879 | use crate::prelude::recursive::*;
|
880 | use crate::image::write::samples::WritableSamples;
|
881 | use std::ops::Not;
|
882 | use crate::block::samples::IntoNativeSample;
|
883 |
|
884 |
|
885 | /// Compare two objects, but with a few special quirks.
|
886 | /// Intended mainly for unit testing.
|
887 | pub trait ValidateResult {
|
888 |
|
889 | /// Compare self with the other. Panics if not equal.
|
890 | ///
|
891 | /// Exceptional behaviour:
|
892 | /// This does not work the other way around! This method is not symmetrical!
|
893 | /// Returns whether the result is correct for this image.
|
894 | /// For lossy compression methods, uses approximate equality.
|
895 | /// Intended for unit testing.
|
896 | ///
|
897 | /// Warning: If you use `SpecificChannels`, the comparison might be inaccurate
|
898 | /// for images with mixed compression methods. This is to be used with `AnyChannels` mainly.
|
899 | fn assert_equals_result(&self, result: &Self) {
|
900 | self.validate_result(result, ValidationOptions::default(), || String::new()).unwrap();
|
901 | }
|
902 |
|
903 | /// Compare self with the other.
|
904 | /// Exceptional behaviour:
|
905 | /// - Any two NaN values are considered equal, regardless of bit representation.
|
906 | /// - If a `lossy` is specified, any two values that differ only by a small amount will be considered equal.
|
907 | /// - If `nan_to_zero` is true, and __self is NaN/Infinite and the other value is zero, they are considered equal__
|
908 | /// (because some compression methods replace nan with zero)
|
909 | ///
|
910 | /// This does not work the other way around! This method is not symmetrical!
|
911 | fn validate_result(
|
912 | &self, lossy_result: &Self,
|
913 | options: ValidationOptions,
|
914 | // this is a lazy string, because constructing a string is only necessary in the case of an error,
|
915 | // but eats up memory and allocation time every time. this was measured.
|
916 | context: impl Fn() -> String
|
917 | ) -> ValidationResult;
|
918 | }
|
919 |
|
920 | /// Whether to do accurate or approximate comparison.
|
921 | #[derive (Default, Debug, Eq, PartialEq, Hash, Copy, Clone)]
|
922 | pub struct ValidationOptions {
|
923 | allow_lossy: bool,
|
924 | nan_converted_to_zero: bool,
|
925 | }
|
926 |
|
927 | /// If invalid, contains the error message.
|
928 | pub type ValidationResult = std::result::Result<(), String>;
|
929 |
|
930 |
|
931 | impl<C> ValidateResult for Image<C> where C: ValidateResult {
|
932 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
933 | if self.attributes != other.attributes { Err(location() + "| image > attributes" ) }
|
934 | else { self.layer_data.validate_result(&other.layer_data, options, || location() + "| image > layer data" ) }
|
935 | }
|
936 | }
|
937 |
|
938 | impl<S> ValidateResult for Layer<AnyChannels<S>>
|
939 | where AnyChannel<S>: ValidateResult, S: for<'a> WritableSamples<'a>
|
940 | {
|
941 | fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
942 | let location = || format!(" {} (layer ` {:?}`)" , location(), self.attributes.layer_name);
|
943 | if self.attributes != other.attributes { Err(location() + " > attributes" ) }
|
944 | else if self.encoding != other.encoding { Err(location() + " > encoding" ) }
|
945 | else if self.size != other.size { Err(location() + " > size" ) }
|
946 | else if self.channel_data.list.len() != other.channel_data.list.len() { Err(location() + " > channel count" ) }
|
947 | else {
|
948 | for (own_chan, other_chan) in self.channel_data.list.iter().zip(other.channel_data.list.iter()) {
|
949 | own_chan.validate_result(
|
950 | other_chan,
|
951 |
|
952 | ValidationOptions {
|
953 | // no tolerance for lossless channels
|
954 | allow_lossy: other.encoding.compression
|
955 | .is_lossless_for(other_chan.sample_data.sample_type()).not(),
|
956 |
|
957 | // consider nan and zero equal if the compression method does not support nan
|
958 | nan_converted_to_zero: other.encoding.compression.supports_nan().not()
|
959 | },
|
960 |
|
961 | || format!(" {} > channel ` {}`" , location(), own_chan.name)
|
962 | )?;
|
963 | }
|
964 | Ok(())
|
965 | }
|
966 | }
|
967 | }
|
968 |
|
969 | impl<Px, Desc> ValidateResult for Layer<SpecificChannels<Px, Desc>>
|
970 | where SpecificChannels<Px, Desc>: ValidateResult
|
971 | {
|
972 | /// This does an approximate comparison for all channels,
|
973 | /// even if some channels can be compressed without loss.
|
974 | fn validate_result(&self, other: &Self, _overridden: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
975 | let location = || format!(" {} (layer ` {:?}`)" , location(), self.attributes.layer_name);
|
976 |
|
977 | // TODO dedup with above
|
978 | if self.attributes != other.attributes { Err(location() + " > attributes" ) }
|
979 | else if self.encoding != other.encoding { Err(location() + " > encoding" ) }
|
980 | else if self.size != other.size { Err(location() + " > size" ) }
|
981 | else {
|
982 | let options = ValidationOptions {
|
983 | // no tolerance for lossless channels
|
984 | // pxr only looses data for f32 values, B44 only for f16, not other any other types
|
985 | allow_lossy: other.encoding.compression.may_loose_data(),// TODO check specific channels sample types
|
986 |
|
987 | // consider nan and zero equal if the compression method does not support nan
|
988 | nan_converted_to_zero: other.encoding.compression.supports_nan().not()
|
989 | };
|
990 |
|
991 | self.channel_data.validate_result(&other.channel_data, options, || location() + " > channel_data" )?;
|
992 | Ok(())
|
993 | }
|
994 | }
|
995 | }
|
996 |
|
997 | impl<S> ValidateResult for AnyChannels<S> where S: ValidateResult {
|
998 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
999 | self.list.validate_result(&other.list, options, location)
|
1000 | }
|
1001 | }
|
1002 |
|
1003 | impl<S> ValidateResult for AnyChannel<S> where S: ValidateResult {
|
1004 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1005 | if self.name != other.name { Err(location() + " > name" ) }
|
1006 | else if self.quantize_linearly != other.quantize_linearly { Err(location() + " > quantize_linearly" ) }
|
1007 | else if self.sampling != other.sampling { Err(location() + " > sampling" ) }
|
1008 | else {
|
1009 | self.sample_data.validate_result(&other.sample_data, options, || location() + " > sample_data" )
|
1010 | }
|
1011 | }
|
1012 | }
|
1013 |
|
1014 | impl<Pxs, Chans> ValidateResult for SpecificChannels<Pxs, Chans> where Pxs: ValidateResult, Chans: Eq {
|
1015 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1016 | if self.channels != other.channels { Err(location() + " > specific channels" ) }
|
1017 | else { self.pixels.validate_result(&other.pixels, options, || location() + " > specific pixels" ) }
|
1018 | }
|
1019 | }
|
1020 |
|
1021 | impl<S> ValidateResult for Levels<S> where S: ValidateResult {
|
1022 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1023 | self.levels_as_slice().validate_result(&other.levels_as_slice(), options, || location() + " > levels" )
|
1024 | }
|
1025 | }
|
1026 |
|
1027 | impl ValidateResult for FlatSamples {
|
1028 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1029 | use FlatSamples::*;
|
1030 | match (self, other) {
|
1031 | (F16(values), F16(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f16 samples" ),
|
1032 | (F32(values), F32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > f32 samples" ),
|
1033 | (U32(values), U32(other_values)) => values.as_slice().validate_result(&other_values.as_slice(), options, ||location() + " > u32 samples" ),
|
1034 | (own, other) => Err(format!(" {}: samples type mismatch. expected {:?}, found {:?}" , location(), own.sample_type(), other.sample_type()))
|
1035 | }
|
1036 | }
|
1037 | }
|
1038 |
|
1039 | impl<T> ValidateResult for &[T] where T: ValidateResult {
|
1040 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1041 | if self.len() != other.len() { Err(location() + " count" ) }
|
1042 | else {
|
1043 | for (index, (slf, other)) in self.iter().zip(other.iter()).enumerate() {
|
1044 | slf.validate_result(other, options, ||format!(" {} element [ {}] of {}" , location(), index, self.len()))?;
|
1045 | }
|
1046 | Ok(())
|
1047 | }
|
1048 | }
|
1049 | }
|
1050 |
|
1051 | impl<A: Array> ValidateResult for SmallVec<A> where A::Item: ValidateResult {
|
1052 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1053 | self.as_slice().validate_result(&other.as_slice(), options, location)
|
1054 | }
|
1055 | }
|
1056 |
|
1057 | impl<A> ValidateResult for Vec<A> where A: ValidateResult {
|
1058 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1059 | self.as_slice().validate_result(&other.as_slice(), options, location)
|
1060 | }
|
1061 | }
|
1062 |
|
1063 | impl<A,B,C,D> ValidateResult for (A, B, C, D) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult, D: Clone+ ValidateResult {
|
1064 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1065 | self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
|
1066 | }
|
1067 | }
|
1068 |
|
1069 | impl<A,B,C> ValidateResult for (A, B, C) where A: Clone+ ValidateResult, B: Clone+ ValidateResult, C: Clone+ ValidateResult {
|
1070 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1071 | self.clone().into_recursive().validate_result(&other.clone().into_recursive(), options, location)
|
1072 | }
|
1073 | }
|
1074 |
|
1075 | // // (low priority because it is only used in the tests)
|
1076 | /*TODO
|
1077 | impl<Tuple> SimilarToLossy for Tuple where
|
1078 | Tuple: Clone + IntoRecursive,
|
1079 | <Tuple as IntoRecursive>::Recursive: SimilarToLossy,
|
1080 | {
|
1081 | fn similar_to_lossy(&self, other: &Self, max_difference: f32) -> bool {
|
1082 | self.clone().into_recursive().similar_to_lossy(&other.clone().into_recursive(), max_difference)
|
1083 | } // TODO no clone?
|
1084 | }*/
|
1085 |
|
1086 |
|
1087 | // implement for recursive types
|
1088 | impl ValidateResult for NoneMore {
|
1089 | fn validate_result(&self, _: &Self, _: ValidationOptions, _: impl Fn()->String) -> ValidationResult { Ok(()) }
|
1090 | }
|
1091 |
|
1092 | impl<Inner, T> ValidateResult for Recursive<Inner, T> where Inner: ValidateResult, T: ValidateResult {
|
1093 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1094 | self.value.validate_result(&other.value, options, &location).and_then(|()|
|
1095 | self.inner.validate_result(&other.inner, options, &location)
|
1096 | )
|
1097 | }
|
1098 | }
|
1099 |
|
1100 | impl<S> ValidateResult for Option<S> where S: ValidateResult {
|
1101 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1102 | match (self, other) {
|
1103 | (None, None) => Ok(()),
|
1104 | (Some(value), Some(other)) => value.validate_result(other, options, location),
|
1105 | _ => Err(location() + ": option mismatch" )
|
1106 | }
|
1107 | }
|
1108 | }
|
1109 |
|
1110 | impl ValidateResult for f32 {
|
1111 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1112 | if self == other || (self.is_nan() && other.is_nan()) || (options.nan_converted_to_zero && !self.is_normal() && *other == 0.0) {
|
1113 | return Ok(());
|
1114 | }
|
1115 |
|
1116 | if options.allow_lossy {
|
1117 | let epsilon = 0.06;
|
1118 | let max_difference = 0.1;
|
1119 |
|
1120 | let adaptive_threshold = epsilon * (self.abs() + other.abs());
|
1121 | let tolerance = adaptive_threshold.max(max_difference);
|
1122 | let difference = (self - other).abs();
|
1123 |
|
1124 | return if difference <= tolerance { Ok(()) }
|
1125 | else { Err(format!(" {}: expected ~ {}, found {} (adaptive tolerance {})" , location(), self, other, tolerance)) };
|
1126 | }
|
1127 |
|
1128 | Err(format!(" {}: expected exactly {}, found {}" , location(), self, other))
|
1129 | }
|
1130 | }
|
1131 |
|
1132 | impl ValidateResult for f16 {
|
1133 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1134 | if self.to_bits() == other.to_bits() { Ok(()) } else {
|
1135 | self.to_f32().validate_result(&other.to_f32(), options, location)
|
1136 | }
|
1137 | }
|
1138 | }
|
1139 |
|
1140 | impl ValidateResult for u32 {
|
1141 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1142 | if self == other { Ok(()) } else { // todo to float conversion resulting in nan/infinity?
|
1143 | self.to_f32().validate_result(&other.to_f32(), options, location)
|
1144 | }
|
1145 | }
|
1146 | }
|
1147 |
|
1148 | impl ValidateResult for Sample {
|
1149 | fn validate_result(&self, other: &Self, options: ValidationOptions, location: impl Fn()->String) -> ValidationResult {
|
1150 | use Sample::*;
|
1151 | match (self, other) {
|
1152 | (F16(a), F16(b)) => a.validate_result(b, options, ||location() + " (f16)" ),
|
1153 | (F32(a), F32(b)) => a.validate_result(b, options, ||location() + " (f32)" ),
|
1154 | (U32(a), U32(b)) => a.validate_result(b, options, ||location() + " (u32)" ),
|
1155 | (_,_) => Err(location() + ": sample type mismatch" )
|
1156 | }
|
1157 | }
|
1158 | }
|
1159 |
|
1160 |
|
1161 | #[cfg (test)]
|
1162 | mod test_value_result {
|
1163 | use std::f32::consts::*;
|
1164 | use std::io::Cursor;
|
1165 | use crate::image::pixel_vec::PixelVec;
|
1166 | use crate::image::validate_results::{ValidateResult, ValidationOptions};
|
1167 | use crate::meta::attribute::LineOrder::Increasing;
|
1168 | use crate::image::{FlatSamples};
|
1169 |
|
1170 | fn expect_valid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
|
1171 | original.validate_result(
|
1172 | result,
|
1173 | ValidationOptions { allow_lossy, nan_converted_to_zero },
|
1174 | || String::new()
|
1175 | ).unwrap();
|
1176 | }
|
1177 |
|
1178 | fn expect_invalid<T>(original: &T, result: &T, allow_lossy: bool, nan_converted_to_zero: bool) where T: ValidateResult {
|
1179 | assert!(original.validate_result(
|
1180 | result,
|
1181 | ValidationOptions { allow_lossy, nan_converted_to_zero },
|
1182 | || String::new()
|
1183 | ).is_err());
|
1184 | }
|
1185 |
|
1186 | #[test ]
|
1187 | fn test_f32(){
|
1188 | let original:&[f32] = &[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, -20.4, f32::NAN];
|
1189 | let lossy:&[f32] = &[0.0, 0.2, 0.2, 0.3, 0.4, 0.5, -20.5, f32::NAN];
|
1190 |
|
1191 | expect_valid(&original, &original, true, true);
|
1192 | expect_valid(&original, &original, true, false);
|
1193 | expect_valid(&original, &original, false, true);
|
1194 | expect_valid(&original, &original, false, false);
|
1195 |
|
1196 | expect_invalid(&original, &lossy, false, false);
|
1197 | expect_valid(&original, &lossy, true, false);
|
1198 |
|
1199 | expect_invalid(&original, &&original[..original.len()-2], true, true);
|
1200 |
|
1201 | // test relative comparison with some large values
|
1202 | expect_valid(&1_000_f32, &1_001_f32, true, false);
|
1203 | expect_invalid(&1_000_f32, &1_200_f32, true, false);
|
1204 |
|
1205 | expect_valid(&10_000_f32, &10_100_f32, true, false);
|
1206 | expect_invalid(&10_000_f32, &12_000_f32, true, false);
|
1207 |
|
1208 | expect_valid(&33_120_f32, &30_120_f32, true, false);
|
1209 | expect_invalid(&33_120_f32, &20_120_f32, true, false);
|
1210 | }
|
1211 |
|
1212 | #[test ]
|
1213 | fn test_nan(){
|
1214 | let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
|
1215 | let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
|
1216 |
|
1217 | expect_valid(&original, &lossy, true, true);
|
1218 | expect_invalid(&lossy, &original, true, true);
|
1219 |
|
1220 | expect_valid(&lossy, &lossy, true, true);
|
1221 | expect_valid(&lossy, &lossy, false, true);
|
1222 | }
|
1223 |
|
1224 | #[test ]
|
1225 | fn test_error(){
|
1226 |
|
1227 | fn print_error<T: ValidateResult>(original: &T, lossy: &T, allow_lossy: bool){
|
1228 | let message = original
|
1229 | .validate_result(
|
1230 | &lossy,
|
1231 | ValidationOptions { allow_lossy, .. Default::default() },
|
1232 | || String::new() // type_name::<T>().to_string()
|
1233 | )
|
1234 | .unwrap_err();
|
1235 |
|
1236 | println!("message: {}" , message);
|
1237 | }
|
1238 |
|
1239 | let original:&[f32] = &[ 0.0, f32::NAN, f32::NAN ];
|
1240 | let lossy:&[f32] = &[ 0.0, f32::NAN, 0.0 ];
|
1241 | print_error(&original, &lossy, false);
|
1242 |
|
1243 | print_error(&2.0, &1.0, true);
|
1244 | print_error(&2.0, &1.0, false);
|
1245 |
|
1246 | print_error(&FlatSamples::F32(vec![0.1,0.1]), &FlatSamples::F32(vec![0.1,0.2]), false);
|
1247 | print_error(&FlatSamples::U32(vec![0,0]), &FlatSamples::F32(vec![0.1,0.2]), false);
|
1248 |
|
1249 | {
|
1250 | let image = crate::prelude::read_all_data_from_file("tests/images/valid/openexr/MultiResolution/Kapaa.exr" ).unwrap();
|
1251 |
|
1252 | let mut mutated = image.clone();
|
1253 | let samples = mutated.layer_data.first_mut().unwrap()
|
1254 | .channel_data.list.first_mut().unwrap().sample_data.levels_as_slice_mut().first_mut().unwrap();
|
1255 |
|
1256 | match samples {
|
1257 | FlatSamples::F16(vals) => vals[100] = vals[1],
|
1258 | FlatSamples::F32(vals) => vals[100] = vals[1],
|
1259 | FlatSamples::U32(vals) => vals[100] = vals[1],
|
1260 | }
|
1261 |
|
1262 | print_error(&image, &mutated, false);
|
1263 | }
|
1264 |
|
1265 | // TODO check out more nested behaviour!
|
1266 | }
|
1267 |
|
1268 | #[test ]
|
1269 | fn test_uncompressed(){
|
1270 | use crate::prelude::*;
|
1271 |
|
1272 | let original_pixels: [(f32,f32,f32); 4] = [
|
1273 | (0.0, -1.1, PI),
|
1274 | (0.0, -1.1, TAU),
|
1275 | (0.0, -1.1, f32::EPSILON),
|
1276 | (f32::NAN, 10000.1, -1024.009),
|
1277 | ];
|
1278 |
|
1279 | let mut file_bytes = Vec::new();
|
1280 | let original_image = Image::from_encoded_channels(
|
1281 | (2,2),
|
1282 | Encoding {
|
1283 | compression: Compression::Uncompressed,
|
1284 | line_order: Increasing, // FIXME unspecified may be optimized to increasing, which destroys test eq
|
1285 | .. Encoding::default()
|
1286 | },
|
1287 | SpecificChannels::rgb(PixelVec::new(Vec2(2,2), original_pixels.to_vec()))
|
1288 | );
|
1289 |
|
1290 | original_image.write().to_buffered(Cursor::new(&mut file_bytes)).unwrap();
|
1291 |
|
1292 | let lossy_image = read().no_deep_data().largest_resolution_level()
|
1293 | .rgb_channels(PixelVec::<(f32,f32,f32)>::constructor, PixelVec::set_pixel)
|
1294 | .first_valid_layer().all_attributes().from_buffered(Cursor::new(&file_bytes)).unwrap();
|
1295 |
|
1296 | original_image.assert_equals_result(&original_image);
|
1297 | lossy_image.assert_equals_result(&lossy_image);
|
1298 | original_image.assert_equals_result(&lossy_image);
|
1299 | lossy_image.assert_equals_result(&original_image);
|
1300 | }
|
1301 |
|
1302 | #[test ]
|
1303 | fn test_compiles(){
|
1304 | use crate::prelude::*;
|
1305 |
|
1306 | fn accepts_validatable_value(_: &impl ValidateResult){}
|
1307 |
|
1308 | let object: Levels<FlatSamples> = Levels::Singular(FlatSamples::F32(Vec::default()));
|
1309 | accepts_validatable_value(&object);
|
1310 |
|
1311 | let object: AnyChannels<Levels<FlatSamples>> = AnyChannels::sort(SmallVec::default());
|
1312 | accepts_validatable_value(&object);
|
1313 |
|
1314 | let layer: Layer<AnyChannels<Levels<FlatSamples>>> = Layer::new((0,0), Default::default(), Default::default(), object);
|
1315 | accepts_validatable_value(&layer);
|
1316 |
|
1317 | let layers: Layers<AnyChannels<Levels<FlatSamples>>> = Default::default();
|
1318 | accepts_validatable_value(&layers);
|
1319 |
|
1320 | let object: Image<Layer<AnyChannels<Levels<FlatSamples>>>> = Image::from_layer(layer);
|
1321 | object.assert_equals_result(&object);
|
1322 | }
|
1323 | }
|
1324 | }
|
1325 |
|
1326 |
|
1327 | |