| 1 | //! Functions and filters for the sampling of pixels. |
| 2 | |
| 3 | // See http://cs.brown.edu/courses/cs123/lectures/08_Image_Processing_IV.pdf |
| 4 | // for some of the theory behind image scaling and convolution |
| 5 | |
| 6 | use std::f32; |
| 7 | |
| 8 | use num_traits::{NumCast, ToPrimitive, Zero}; |
| 9 | #[cfg (feature = "serde" )] |
| 10 | use serde::{Deserialize, Serialize}; |
| 11 | |
| 12 | use crate::image::{GenericImage, GenericImageView}; |
| 13 | use crate::traits::{Enlargeable, Pixel, Primitive}; |
| 14 | use crate::utils::clamp; |
| 15 | use crate::{ImageBuffer, Rgba32FImage}; |
| 16 | |
| 17 | /// Available Sampling Filters. |
| 18 | /// |
| 19 | /// ## Examples |
| 20 | /// |
| 21 | /// To test the different sampling filters on a real example, you can find two |
| 22 | /// examples called |
| 23 | /// [`scaledown`](https://github.com/image-rs/image/tree/master/examples/scaledown) |
| 24 | /// and |
| 25 | /// [`scaleup`](https://github.com/image-rs/image/tree/master/examples/scaleup) |
| 26 | /// in the `examples` directory of the crate source code. |
| 27 | /// |
| 28 | /// Here is a 3.58 MiB |
| 29 | /// [test image](https://github.com/image-rs/image/blob/master/examples/scaledown/test.jpg) |
| 30 | /// that has been scaled down to 300x225 px: |
| 31 | /// |
| 32 | /// <!-- NOTE: To test new test images locally, replace the GitHub path with `../../../docs/` --> |
| 33 | /// <div style="display: flex; flex-wrap: wrap; align-items: flex-start;"> |
| 34 | /// <div style="margin: 0 8px 8px 0;"> |
| 35 | /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-near.png" title="Nearest"><br> |
| 36 | /// Nearest Neighbor |
| 37 | /// </div> |
| 38 | /// <div style="margin: 0 8px 8px 0;"> |
| 39 | /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-tri.png" title="Triangle"><br> |
| 40 | /// Linear: Triangle |
| 41 | /// </div> |
| 42 | /// <div style="margin: 0 8px 8px 0;"> |
| 43 | /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-cmr.png" title="CatmullRom"><br> |
| 44 | /// Cubic: Catmull-Rom |
| 45 | /// </div> |
| 46 | /// <div style="margin: 0 8px 8px 0;"> |
| 47 | /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-gauss.png" title="Gaussian"><br> |
| 48 | /// Gaussian |
| 49 | /// </div> |
| 50 | /// <div style="margin: 0 8px 8px 0;"> |
| 51 | /// <img src="https://raw.githubusercontent.com/image-rs/image/master/examples/scaledown/scaledown-test-lcz2.png" title="Lanczos3"><br> |
| 52 | /// Lanczos with window 3 |
| 53 | /// </div> |
| 54 | /// </div> |
| 55 | /// |
| 56 | /// ## Speed |
| 57 | /// |
| 58 | /// Time required to create each of the examples above, tested on an Intel |
| 59 | /// i7-4770 CPU with Rust 1.37 in release mode: |
| 60 | /// |
| 61 | /// <table style="width: auto;"> |
| 62 | /// <tr> |
| 63 | /// <th>Nearest</th> |
| 64 | /// <td>31 ms</td> |
| 65 | /// </tr> |
| 66 | /// <tr> |
| 67 | /// <th>Triangle</th> |
| 68 | /// <td>414 ms</td> |
| 69 | /// </tr> |
| 70 | /// <tr> |
| 71 | /// <th>CatmullRom</th> |
| 72 | /// <td>817 ms</td> |
| 73 | /// </tr> |
| 74 | /// <tr> |
| 75 | /// <th>Gaussian</th> |
| 76 | /// <td>1180 ms</td> |
| 77 | /// </tr> |
| 78 | /// <tr> |
| 79 | /// <th>Lanczos3</th> |
| 80 | /// <td>1170 ms</td> |
| 81 | /// </tr> |
| 82 | /// </table> |
| 83 | #[derive (Clone, Copy, Debug, PartialEq, Eq, Hash)] |
| 84 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 85 | pub enum FilterType { |
| 86 | /// Nearest Neighbor |
| 87 | Nearest, |
| 88 | |
| 89 | /// Linear Filter |
| 90 | Triangle, |
| 91 | |
| 92 | /// Cubic Filter |
| 93 | CatmullRom, |
| 94 | |
| 95 | /// Gaussian Filter |
| 96 | Gaussian, |
| 97 | |
| 98 | /// Lanczos with window 3 |
| 99 | Lanczos3, |
| 100 | } |
| 101 | |
| 102 | /// A Representation of a separable filter. |
| 103 | pub(crate) struct Filter<'a> { |
| 104 | /// The filter's filter function. |
| 105 | pub(crate) kernel: Box<dyn Fn(f32) -> f32 + 'a>, |
| 106 | |
| 107 | /// The window on which this filter operates. |
| 108 | pub(crate) support: f32, |
| 109 | } |
| 110 | |
| 111 | struct FloatNearest(f32); |
| 112 | |
| 113 | // to_i64, to_u64, and to_f64 implicitly affect all other lower conversions. |
| 114 | // Note that to_f64 by default calls to_i64 and thus needs to be overridden. |
| 115 | impl ToPrimitive for FloatNearest { |
| 116 | // to_{i,u}64 is required, to_{i,u}{8,16} are useful. |
| 117 | // If a usecase for full 32 bits is found its trivial to add |
| 118 | fn to_i8(&self) -> Option<i8> { |
| 119 | self.0.round().to_i8() |
| 120 | } |
| 121 | fn to_i16(&self) -> Option<i16> { |
| 122 | self.0.round().to_i16() |
| 123 | } |
| 124 | fn to_i64(&self) -> Option<i64> { |
| 125 | self.0.round().to_i64() |
| 126 | } |
| 127 | fn to_u8(&self) -> Option<u8> { |
| 128 | self.0.round().to_u8() |
| 129 | } |
| 130 | fn to_u16(&self) -> Option<u16> { |
| 131 | self.0.round().to_u16() |
| 132 | } |
| 133 | fn to_u64(&self) -> Option<u64> { |
| 134 | self.0.round().to_u64() |
| 135 | } |
| 136 | fn to_f64(&self) -> Option<f64> { |
| 137 | self.0.to_f64() |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | // sinc function: the ideal sampling filter. |
| 142 | fn sinc(t: f32) -> f32 { |
| 143 | let a: f32 = t * f32::consts::PI; |
| 144 | |
| 145 | if t == 0.0 { |
| 146 | 1.0 |
| 147 | } else { |
| 148 | a.sin() / a |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | // lanczos kernel function. A windowed sinc function. |
| 153 | fn lanczos(x: f32, t: f32) -> f32 { |
| 154 | if x.abs() < t { |
| 155 | sinc(x) * sinc(x / t) |
| 156 | } else { |
| 157 | 0.0 |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | // Calculate a splice based on the b and c parameters. |
| 162 | // from authors Mitchell and Netravali. |
| 163 | fn bc_cubic_spline(x: f32, b: f32, c: f32) -> f32 { |
| 164 | let a: f32 = x.abs(); |
| 165 | |
| 166 | let k: f32 = if a < 1.0 { |
| 167 | (12.0 - 9.0 * b - 6.0 * c) * a.powi(3) |
| 168 | + (-18.0 + 12.0 * b + 6.0 * c) * a.powi(2) |
| 169 | + (6.0 - 2.0 * b) |
| 170 | } else if a < 2.0 { |
| 171 | (-b - 6.0 * c) * a.powi(3) |
| 172 | + (6.0 * b + 30.0 * c) * a.powi(2) |
| 173 | + (-12.0 * b - 48.0 * c) * a |
| 174 | + (8.0 * b + 24.0 * c) |
| 175 | } else { |
| 176 | 0.0 |
| 177 | }; |
| 178 | |
| 179 | k / 6.0 |
| 180 | } |
| 181 | |
| 182 | /// The Gaussian Function. |
| 183 | /// ```r``` is the standard deviation. |
| 184 | pub(crate) fn gaussian(x: f32, r: f32) -> f32 { |
| 185 | ((2.0 * f32::consts::PI).sqrt() * r).recip() * (-x.powi(2) / (2.0 * r.powi(2))).exp() |
| 186 | } |
| 187 | |
| 188 | /// Calculate the lanczos kernel with a window of 3 |
| 189 | pub(crate) fn lanczos3_kernel(x: f32) -> f32 { |
| 190 | lanczos(x, t:3.0) |
| 191 | } |
| 192 | |
| 193 | /// Calculate the gaussian function with a |
| 194 | /// standard deviation of 0.5 |
| 195 | pub(crate) fn gaussian_kernel(x: f32) -> f32 { |
| 196 | gaussian(x, r:0.5) |
| 197 | } |
| 198 | |
| 199 | /// Calculate the Catmull-Rom cubic spline. |
| 200 | /// Also known as a form of `BiCubic` sampling in two dimensions. |
| 201 | pub(crate) fn catmullrom_kernel(x: f32) -> f32 { |
| 202 | bc_cubic_spline(x, b:0.0, c:0.5) |
| 203 | } |
| 204 | |
| 205 | /// Calculate the triangle function. |
| 206 | /// Also known as `BiLinear` sampling in two dimensions. |
| 207 | pub(crate) fn triangle_kernel(x: f32) -> f32 { |
| 208 | if x.abs() < 1.0 { |
| 209 | 1.0 - x.abs() |
| 210 | } else { |
| 211 | 0.0 |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | /// Calculate the box kernel. |
| 216 | /// Only pixels inside the box should be considered, and those |
| 217 | /// contribute equally. So this method simply returns 1. |
| 218 | pub(crate) fn box_kernel(_x: f32) -> f32 { |
| 219 | 1.0 |
| 220 | } |
| 221 | |
| 222 | // Sample the rows of the supplied image using the provided filter. |
| 223 | // The height of the image remains unchanged. |
| 224 | // ```new_width``` is the desired width of the new image |
| 225 | // ```filter``` is the filter to use for sampling. |
| 226 | // ```image``` is not necessarily Rgba and the order of channels is passed through. |
| 227 | // |
| 228 | // Note: if an empty image is passed in, panics unless the image is truly empty. |
| 229 | fn horizontal_sample<P, S>( |
| 230 | image: &Rgba32FImage, |
| 231 | new_width: u32, |
| 232 | filter: &mut Filter, |
| 233 | ) -> ImageBuffer<P, Vec<S>> |
| 234 | where |
| 235 | P: Pixel<Subpixel = S> + 'static, |
| 236 | S: Primitive + 'static, |
| 237 | { |
| 238 | let (width, height) = image.dimensions(); |
| 239 | // This is protection against a memory usage similar to #2340. See `vertical_sample`. |
| 240 | assert!( |
| 241 | // Checks the implication: (width == 0) -> (height == 0) |
| 242 | width != 0 || height == 0, |
| 243 | "Unexpected prior allocation size. This case should have been handled by the caller" |
| 244 | ); |
| 245 | |
| 246 | let mut out = ImageBuffer::new(new_width, height); |
| 247 | let mut ws = Vec::new(); |
| 248 | |
| 249 | let max: f32 = NumCast::from(S::DEFAULT_MAX_VALUE).unwrap(); |
| 250 | let min: f32 = NumCast::from(S::DEFAULT_MIN_VALUE).unwrap(); |
| 251 | let ratio = width as f32 / new_width as f32; |
| 252 | let sratio = if ratio < 1.0 { 1.0 } else { ratio }; |
| 253 | let src_support = filter.support * sratio; |
| 254 | |
| 255 | for outx in 0..new_width { |
| 256 | // Find the point in the input image corresponding to the centre |
| 257 | // of the current pixel in the output image. |
| 258 | let inputx = (outx as f32 + 0.5) * ratio; |
| 259 | |
| 260 | // Left and right are slice bounds for the input pixels relevant |
| 261 | // to the output pixel we are calculating. Pixel x is relevant |
| 262 | // if and only if (x >= left) && (x < right). |
| 263 | |
| 264 | // Invariant: 0 <= left < right <= width |
| 265 | |
| 266 | let left = (inputx - src_support).floor() as i64; |
| 267 | let left = clamp(left, 0, <i64 as From<_>>::from(width) - 1) as u32; |
| 268 | |
| 269 | let right = (inputx + src_support).ceil() as i64; |
| 270 | let right = clamp( |
| 271 | right, |
| 272 | <i64 as From<_>>::from(left) + 1, |
| 273 | <i64 as From<_>>::from(width), |
| 274 | ) as u32; |
| 275 | |
| 276 | // Go back to left boundary of pixel, to properly compare with i |
| 277 | // below, as the kernel treats the centre of a pixel as 0. |
| 278 | let inputx = inputx - 0.5; |
| 279 | |
| 280 | ws.clear(); |
| 281 | let mut sum = 0.0; |
| 282 | for i in left..right { |
| 283 | let w = (filter.kernel)((i as f32 - inputx) / sratio); |
| 284 | ws.push(w); |
| 285 | sum += w; |
| 286 | } |
| 287 | ws.iter_mut().for_each(|w| *w /= sum); |
| 288 | |
| 289 | for y in 0..height { |
| 290 | let mut t = (0.0, 0.0, 0.0, 0.0); |
| 291 | |
| 292 | for (i, w) in ws.iter().enumerate() { |
| 293 | let p = image.get_pixel(left + i as u32, y); |
| 294 | |
| 295 | #[allow (deprecated)] |
| 296 | let vec = p.channels4(); |
| 297 | |
| 298 | t.0 += vec.0 * w; |
| 299 | t.1 += vec.1 * w; |
| 300 | t.2 += vec.2 * w; |
| 301 | t.3 += vec.3 * w; |
| 302 | } |
| 303 | |
| 304 | #[allow (deprecated)] |
| 305 | let t = Pixel::from_channels( |
| 306 | NumCast::from(FloatNearest(clamp(t.0, min, max))).unwrap(), |
| 307 | NumCast::from(FloatNearest(clamp(t.1, min, max))).unwrap(), |
| 308 | NumCast::from(FloatNearest(clamp(t.2, min, max))).unwrap(), |
| 309 | NumCast::from(FloatNearest(clamp(t.3, min, max))).unwrap(), |
| 310 | ); |
| 311 | |
| 312 | out.put_pixel(outx, y, t); |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | out |
| 317 | } |
| 318 | |
| 319 | /// Linearly sample from an image using coordinates in [0, 1]. |
| 320 | pub fn sample_bilinear<P: Pixel>( |
| 321 | img: &impl GenericImageView<Pixel = P>, |
| 322 | u: f32, |
| 323 | v: f32, |
| 324 | ) -> Option<P> { |
| 325 | if ![u, v].iter().all(|c: &f32| (0.0..=1.0).contains(item:c)) { |
| 326 | return None; |
| 327 | } |
| 328 | |
| 329 | let (w: u32, h: u32) = img.dimensions(); |
| 330 | if w == 0 || h == 0 { |
| 331 | return None; |
| 332 | } |
| 333 | |
| 334 | let ui: f32 = w as f32 * u - 0.5; |
| 335 | let vi: f32 = h as f32 * v - 0.5; |
| 336 | interpolate_bilinear( |
| 337 | img, |
| 338 | x:ui.max(0.).min((w - 1) as f32), |
| 339 | y:vi.max(0.).min((h - 1) as f32), |
| 340 | ) |
| 341 | } |
| 342 | |
| 343 | /// Sample from an image using coordinates in [0, 1], taking the nearest coordinate. |
| 344 | pub fn sample_nearest<P: Pixel>( |
| 345 | img: &impl GenericImageView<Pixel = P>, |
| 346 | u: f32, |
| 347 | v: f32, |
| 348 | ) -> Option<P> { |
| 349 | if ![u, v].iter().all(|c: &f32| (0.0..=1.0).contains(item:c)) { |
| 350 | return None; |
| 351 | } |
| 352 | |
| 353 | let (w: u32, h: u32) = img.dimensions(); |
| 354 | let ui: f32 = w as f32 * u - 0.5; |
| 355 | let ui: f32 = ui.max(0.).min((w.saturating_sub(1)) as f32); |
| 356 | |
| 357 | let vi: f32 = h as f32 * v - 0.5; |
| 358 | let vi: f32 = vi.max(0.).min((h.saturating_sub(1)) as f32); |
| 359 | interpolate_nearest(img, x:ui, y:vi) |
| 360 | } |
| 361 | |
| 362 | /// Sample from an image using coordinates in [0, w-1] and [0, h-1], taking the |
| 363 | /// nearest pixel. |
| 364 | /// |
| 365 | /// Coordinates outside the image bounds will return `None`, however the |
| 366 | /// behavior for points within half a pixel of the image bounds may change in |
| 367 | /// the future. |
| 368 | pub fn interpolate_nearest<P: Pixel>( |
| 369 | img: &impl GenericImageView<Pixel = P>, |
| 370 | x: f32, |
| 371 | y: f32, |
| 372 | ) -> Option<P> { |
| 373 | let (w: u32, h: u32) = img.dimensions(); |
| 374 | if w == 0 || h == 0 { |
| 375 | return None; |
| 376 | } |
| 377 | if !(0.0..=((w - 1) as f32)).contains(&x) { |
| 378 | return None; |
| 379 | } |
| 380 | if !(0.0..=((h - 1) as f32)).contains(&y) { |
| 381 | return None; |
| 382 | } |
| 383 | |
| 384 | Some(img.get_pixel(x.round() as u32, y.round() as u32)) |
| 385 | } |
| 386 | |
| 387 | /// Linearly sample from an image using coordinates in [0, w-1] and [0, h-1]. |
| 388 | pub fn interpolate_bilinear<P: Pixel>( |
| 389 | img: &impl GenericImageView<Pixel = P>, |
| 390 | x: f32, |
| 391 | y: f32, |
| 392 | ) -> Option<P> { |
| 393 | // assumption needed for correctness of pixel creation |
| 394 | assert!(P::CHANNEL_COUNT <= 4); |
| 395 | |
| 396 | let (w, h) = img.dimensions(); |
| 397 | if w == 0 || h == 0 { |
| 398 | return None; |
| 399 | } |
| 400 | if !(0.0..=((w - 1) as f32)).contains(&x) { |
| 401 | return None; |
| 402 | } |
| 403 | if !(0.0..=((h - 1) as f32)).contains(&y) { |
| 404 | return None; |
| 405 | } |
| 406 | |
| 407 | // keep these as integers, for fewer FLOPs |
| 408 | let uf = x.floor() as u32; |
| 409 | let vf = y.floor() as u32; |
| 410 | let uc = (uf + 1).min(w - 1); |
| 411 | let vc = (vf + 1).min(h - 1); |
| 412 | |
| 413 | // clamp coords to the range of the image |
| 414 | let mut sxx = [[0.; 4]; 4]; |
| 415 | |
| 416 | // do not use Array::map, as it can be slow with high stack usage, |
| 417 | // for [[f32; 4]; 4]. |
| 418 | |
| 419 | // convert samples to f32 |
| 420 | // currently rgba is the largest one, |
| 421 | // so just store as many items as necessary, |
| 422 | // because there's not a simple way to be generic over all of them. |
| 423 | let mut compute = |u: u32, v: u32, i| { |
| 424 | let s = img.get_pixel(u, v); |
| 425 | for (j, c) in s.channels().iter().enumerate() { |
| 426 | sxx[j][i] = c.to_f32().unwrap(); |
| 427 | } |
| 428 | s |
| 429 | }; |
| 430 | |
| 431 | // hacky reuse since cannot construct a generic Pixel |
| 432 | let mut out: P = compute(uf, vf, 0); |
| 433 | compute(uf, vc, 1); |
| 434 | compute(uc, vf, 2); |
| 435 | compute(uc, vc, 3); |
| 436 | |
| 437 | // weights, the later two are independent from the first 2 for better vectorization. |
| 438 | let ufw = x - uf as f32; |
| 439 | let vfw = y - vf as f32; |
| 440 | let ucw = (uf + 1) as f32 - x; |
| 441 | let vcw = (vf + 1) as f32 - y; |
| 442 | |
| 443 | // https://en.wikipedia.org/wiki/Bilinear_interpolation#Weighted_mean |
| 444 | // the distance between pixels is 1 so there is no denominator |
| 445 | let wff = ucw * vcw; |
| 446 | let wfc = ucw * vfw; |
| 447 | let wcf = ufw * vcw; |
| 448 | let wcc = ufw * vfw; |
| 449 | // was originally assert, but is actually not a cheap computation |
| 450 | debug_assert!(f32::abs((wff + wfc + wcf + wcc) - 1.) < 1e-3); |
| 451 | |
| 452 | // hack to see if primitive is an integer or a float |
| 453 | let is_float = P::Subpixel::DEFAULT_MAX_VALUE.to_f32().unwrap() == 1.0; |
| 454 | |
| 455 | for (i, c) in out.channels_mut().iter_mut().enumerate() { |
| 456 | let v = wff * sxx[i][0] + wfc * sxx[i][1] + wcf * sxx[i][2] + wcc * sxx[i][3]; |
| 457 | // this rounding may introduce quantization errors, |
| 458 | // Specifically what is meant is that many samples may deviate |
| 459 | // from the mean value of the originals, but it's not possible to fix that. |
| 460 | *c = <P::Subpixel as NumCast>::from(if is_float { v } else { v.round() }).unwrap_or({ |
| 461 | if v < 0.0 { |
| 462 | P::Subpixel::DEFAULT_MIN_VALUE |
| 463 | } else { |
| 464 | P::Subpixel::DEFAULT_MAX_VALUE |
| 465 | } |
| 466 | }); |
| 467 | } |
| 468 | |
| 469 | Some(out) |
| 470 | } |
| 471 | |
| 472 | // Sample the columns of the supplied image using the provided filter. |
| 473 | // The width of the image remains unchanged. |
| 474 | // ```new_height``` is the desired height of the new image |
| 475 | // ```filter``` is the filter to use for sampling. |
| 476 | // The return value is not necessarily Rgba, the underlying order of channels in ```image``` is |
| 477 | // preserved. |
| 478 | // |
| 479 | // Note: if an empty image is passed in, panics unless the image is truly empty. |
| 480 | fn vertical_sample<I, P, S>(image: &I, new_height: u32, filter: &mut Filter) -> Rgba32FImage |
| 481 | where |
| 482 | I: GenericImageView<Pixel = P>, |
| 483 | P: Pixel<Subpixel = S> + 'static, |
| 484 | S: Primitive + 'static, |
| 485 | { |
| 486 | let (width, height) = image.dimensions(); |
| 487 | |
| 488 | // This is protection against a regression in memory usage such as #2340. Since the strategy to |
| 489 | // deal with it depends on the caller it is a precondition of this function. |
| 490 | assert!( |
| 491 | // Checks the implication: (height == 0) -> (width == 0) |
| 492 | height != 0 || width == 0, |
| 493 | "Unexpected prior allocation size. This case should have been handled by the caller" |
| 494 | ); |
| 495 | |
| 496 | let mut out = ImageBuffer::new(width, new_height); |
| 497 | let mut ws = Vec::new(); |
| 498 | |
| 499 | let ratio = height as f32 / new_height as f32; |
| 500 | let sratio = if ratio < 1.0 { 1.0 } else { ratio }; |
| 501 | let src_support = filter.support * sratio; |
| 502 | |
| 503 | for outy in 0..new_height { |
| 504 | // For an explanation of this algorithm, see the comments |
| 505 | // in horizontal_sample. |
| 506 | let inputy = (outy as f32 + 0.5) * ratio; |
| 507 | |
| 508 | let left = (inputy - src_support).floor() as i64; |
| 509 | let left = clamp(left, 0, <i64 as From<_>>::from(height) - 1) as u32; |
| 510 | |
| 511 | let right = (inputy + src_support).ceil() as i64; |
| 512 | let right = clamp( |
| 513 | right, |
| 514 | <i64 as From<_>>::from(left) + 1, |
| 515 | <i64 as From<_>>::from(height), |
| 516 | ) as u32; |
| 517 | |
| 518 | let inputy = inputy - 0.5; |
| 519 | |
| 520 | ws.clear(); |
| 521 | let mut sum = 0.0; |
| 522 | for i in left..right { |
| 523 | let w = (filter.kernel)((i as f32 - inputy) / sratio); |
| 524 | ws.push(w); |
| 525 | sum += w; |
| 526 | } |
| 527 | ws.iter_mut().for_each(|w| *w /= sum); |
| 528 | |
| 529 | for x in 0..width { |
| 530 | let mut t = (0.0, 0.0, 0.0, 0.0); |
| 531 | |
| 532 | for (i, w) in ws.iter().enumerate() { |
| 533 | let p = image.get_pixel(x, left + i as u32); |
| 534 | |
| 535 | #[allow (deprecated)] |
| 536 | let (k1, k2, k3, k4) = p.channels4(); |
| 537 | let vec: (f32, f32, f32, f32) = ( |
| 538 | NumCast::from(k1).unwrap(), |
| 539 | NumCast::from(k2).unwrap(), |
| 540 | NumCast::from(k3).unwrap(), |
| 541 | NumCast::from(k4).unwrap(), |
| 542 | ); |
| 543 | |
| 544 | t.0 += vec.0 * w; |
| 545 | t.1 += vec.1 * w; |
| 546 | t.2 += vec.2 * w; |
| 547 | t.3 += vec.3 * w; |
| 548 | } |
| 549 | |
| 550 | #[allow (deprecated)] |
| 551 | // This is not necessarily Rgba. |
| 552 | let t = Pixel::from_channels(t.0, t.1, t.2, t.3); |
| 553 | |
| 554 | out.put_pixel(x, outy, t); |
| 555 | } |
| 556 | } |
| 557 | |
| 558 | out |
| 559 | } |
| 560 | |
| 561 | /// Local struct for keeping track of pixel sums for fast thumbnail averaging |
| 562 | struct ThumbnailSum<S: Primitive + Enlargeable>(S::Larger, S::Larger, S::Larger, S::Larger); |
| 563 | |
| 564 | impl<S: Primitive + Enlargeable> ThumbnailSum<S> { |
| 565 | fn zeroed() -> Self { |
| 566 | ThumbnailSum( |
| 567 | S::Larger::zero(), |
| 568 | S::Larger::zero(), |
| 569 | S::Larger::zero(), |
| 570 | S::Larger::zero(), |
| 571 | ) |
| 572 | } |
| 573 | |
| 574 | fn sample_val(val: S) -> S::Larger { |
| 575 | <S::Larger as NumCast>::from(val).unwrap() |
| 576 | } |
| 577 | |
| 578 | fn add_pixel<P: Pixel<Subpixel = S>>(&mut self, pixel: P) { |
| 579 | #[allow (deprecated)] |
| 580 | let pixel: (S, S, S, S) = pixel.channels4(); |
| 581 | self.0 += Self::sample_val(pixel.0); |
| 582 | self.1 += Self::sample_val(pixel.1); |
| 583 | self.2 += Self::sample_val(pixel.2); |
| 584 | self.3 += Self::sample_val(pixel.3); |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | /// Resize the supplied image to the specific dimensions. |
| 589 | /// |
| 590 | /// For downscaling, this method uses a fast integer algorithm where each source pixel contributes |
| 591 | /// to exactly one target pixel. May give aliasing artifacts if new size is close to old size. |
| 592 | /// |
| 593 | /// In case the current width is smaller than the new width or similar for the height, another |
| 594 | /// strategy is used instead. For each pixel in the output, a rectangular region of the input is |
| 595 | /// determined, just as previously. But when no input pixel is part of this region, the nearest |
| 596 | /// pixels are interpolated instead. |
| 597 | /// |
| 598 | /// For speed reasons, all interpolation is performed linearly over the colour values. It will not |
| 599 | /// take the pixel colour spaces into account. |
| 600 | pub fn thumbnail<I, P, S>(image: &I, new_width: u32, new_height: u32) -> ImageBuffer<P, Vec<S>> |
| 601 | where |
| 602 | I: GenericImageView<Pixel = P>, |
| 603 | P: Pixel<Subpixel = S> + 'static, |
| 604 | S: Primitive + Enlargeable + 'static, |
| 605 | { |
| 606 | let (width, height) = image.dimensions(); |
| 607 | let mut out = ImageBuffer::new(new_width, new_height); |
| 608 | if height == 0 || width == 0 { |
| 609 | return out; |
| 610 | } |
| 611 | |
| 612 | let x_ratio = width as f32 / new_width as f32; |
| 613 | let y_ratio = height as f32 / new_height as f32; |
| 614 | |
| 615 | for outy in 0..new_height { |
| 616 | let bottomf = outy as f32 * y_ratio; |
| 617 | let topf = bottomf + y_ratio; |
| 618 | |
| 619 | let bottom = clamp(bottomf.ceil() as u32, 0, height - 1); |
| 620 | let top = clamp(topf.ceil() as u32, bottom, height); |
| 621 | |
| 622 | for outx in 0..new_width { |
| 623 | let leftf = outx as f32 * x_ratio; |
| 624 | let rightf = leftf + x_ratio; |
| 625 | |
| 626 | let left = clamp(leftf.ceil() as u32, 0, width - 1); |
| 627 | let right = clamp(rightf.ceil() as u32, left, width); |
| 628 | |
| 629 | let avg = if bottom != top && left != right { |
| 630 | thumbnail_sample_block(image, left, right, bottom, top) |
| 631 | } else if bottom != top { |
| 632 | // && left == right |
| 633 | // In the first column we have left == 0 and right > ceil(y_scale) > 0 so this |
| 634 | // assertion can never trigger. |
| 635 | debug_assert!( |
| 636 | left > 0 && right > 0, |
| 637 | "First output column must have corresponding pixels" |
| 638 | ); |
| 639 | |
| 640 | let fraction_horizontal = (leftf.fract() + rightf.fract()) / 2.; |
| 641 | thumbnail_sample_fraction_horizontal( |
| 642 | image, |
| 643 | right - 1, |
| 644 | fraction_horizontal, |
| 645 | bottom, |
| 646 | top, |
| 647 | ) |
| 648 | } else if left != right { |
| 649 | // && bottom == top |
| 650 | // In the first line we have bottom == 0 and top > ceil(x_scale) > 0 so this |
| 651 | // assertion can never trigger. |
| 652 | debug_assert!( |
| 653 | bottom > 0 && top > 0, |
| 654 | "First output row must have corresponding pixels" |
| 655 | ); |
| 656 | |
| 657 | let fraction_vertical = (topf.fract() + bottomf.fract()) / 2.; |
| 658 | thumbnail_sample_fraction_vertical(image, left, right, top - 1, fraction_vertical) |
| 659 | } else { |
| 660 | // bottom == top && left == right |
| 661 | let fraction_horizontal = (topf.fract() + bottomf.fract()) / 2.; |
| 662 | let fraction_vertical = (leftf.fract() + rightf.fract()) / 2.; |
| 663 | |
| 664 | thumbnail_sample_fraction_both( |
| 665 | image, |
| 666 | right - 1, |
| 667 | fraction_horizontal, |
| 668 | top - 1, |
| 669 | fraction_vertical, |
| 670 | ) |
| 671 | }; |
| 672 | |
| 673 | #[allow (deprecated)] |
| 674 | let pixel = Pixel::from_channels(avg.0, avg.1, avg.2, avg.3); |
| 675 | out.put_pixel(outx, outy, pixel); |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | out |
| 680 | } |
| 681 | |
| 682 | /// Get a pixel for a thumbnail where the input window encloses at least a full pixel. |
| 683 | fn thumbnail_sample_block<I, P, S>( |
| 684 | image: &I, |
| 685 | left: u32, |
| 686 | right: u32, |
| 687 | bottom: u32, |
| 688 | top: u32, |
| 689 | ) -> (S, S, S, S) |
| 690 | where |
| 691 | I: GenericImageView<Pixel = P>, |
| 692 | P: Pixel<Subpixel = S>, |
| 693 | S: Primitive + Enlargeable, |
| 694 | { |
| 695 | let mut sum: ThumbnailSum = ThumbnailSum::zeroed(); |
| 696 | |
| 697 | for y: u32 in bottom..top { |
| 698 | for x: u32 in left..right { |
| 699 | let k: P = image.get_pixel(x, y); |
| 700 | sum.add_pixel(k); |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | let n: ::Larger = <S::Larger as NumCast>::from((right - left) * (top - bottom)).unwrap(); |
| 705 | let round: ::Larger = <S::Larger as NumCast>::from(n / NumCast::from(2).unwrap()).unwrap(); |
| 706 | ( |
| 707 | S::clamp_from((sum.0 + round) / n), |
| 708 | S::clamp_from((sum.1 + round) / n), |
| 709 | S::clamp_from((sum.2 + round) / n), |
| 710 | S::clamp_from((sum.3 + round) / n), |
| 711 | ) |
| 712 | } |
| 713 | |
| 714 | /// Get a thumbnail pixel where the input window encloses at least a vertical pixel. |
| 715 | fn thumbnail_sample_fraction_horizontal<I, P, S>( |
| 716 | image: &I, |
| 717 | left: u32, |
| 718 | fraction_horizontal: f32, |
| 719 | bottom: u32, |
| 720 | top: u32, |
| 721 | ) -> (S, S, S, S) |
| 722 | where |
| 723 | I: GenericImageView<Pixel = P>, |
| 724 | P: Pixel<Subpixel = S>, |
| 725 | S: Primitive + Enlargeable, |
| 726 | { |
| 727 | let fract = fraction_horizontal; |
| 728 | |
| 729 | let mut sum_left = ThumbnailSum::zeroed(); |
| 730 | let mut sum_right = ThumbnailSum::zeroed(); |
| 731 | for x in bottom..top { |
| 732 | let k_left = image.get_pixel(left, x); |
| 733 | sum_left.add_pixel(k_left); |
| 734 | |
| 735 | let k_right = image.get_pixel(left + 1, x); |
| 736 | sum_right.add_pixel(k_right); |
| 737 | } |
| 738 | |
| 739 | // Now we approximate: left/n*(1-fract) + right/n*fract |
| 740 | let fact_right = fract / ((top - bottom) as f32); |
| 741 | let fact_left = (1. - fract) / ((top - bottom) as f32); |
| 742 | |
| 743 | let mix_left_and_right = |leftv: S::Larger, rightv: S::Larger| { |
| 744 | <S as NumCast>::from( |
| 745 | fact_left * leftv.to_f32().unwrap() + fact_right * rightv.to_f32().unwrap(), |
| 746 | ) |
| 747 | .expect("Average sample value should fit into sample type" ) |
| 748 | }; |
| 749 | |
| 750 | ( |
| 751 | mix_left_and_right(sum_left.0, sum_right.0), |
| 752 | mix_left_and_right(sum_left.1, sum_right.1), |
| 753 | mix_left_and_right(sum_left.2, sum_right.2), |
| 754 | mix_left_and_right(sum_left.3, sum_right.3), |
| 755 | ) |
| 756 | } |
| 757 | |
| 758 | /// Get a thumbnail pixel where the input window encloses at least a horizontal pixel. |
| 759 | fn thumbnail_sample_fraction_vertical<I, P, S>( |
| 760 | image: &I, |
| 761 | left: u32, |
| 762 | right: u32, |
| 763 | bottom: u32, |
| 764 | fraction_vertical: f32, |
| 765 | ) -> (S, S, S, S) |
| 766 | where |
| 767 | I: GenericImageView<Pixel = P>, |
| 768 | P: Pixel<Subpixel = S>, |
| 769 | S: Primitive + Enlargeable, |
| 770 | { |
| 771 | let fract = fraction_vertical; |
| 772 | |
| 773 | let mut sum_bot = ThumbnailSum::zeroed(); |
| 774 | let mut sum_top = ThumbnailSum::zeroed(); |
| 775 | for x in left..right { |
| 776 | let k_bot = image.get_pixel(x, bottom); |
| 777 | sum_bot.add_pixel(k_bot); |
| 778 | |
| 779 | let k_top = image.get_pixel(x, bottom + 1); |
| 780 | sum_top.add_pixel(k_top); |
| 781 | } |
| 782 | |
| 783 | // Now we approximate: bot/n*fract + top/n*(1-fract) |
| 784 | let fact_top = fract / ((right - left) as f32); |
| 785 | let fact_bot = (1. - fract) / ((right - left) as f32); |
| 786 | |
| 787 | let mix_bot_and_top = |botv: S::Larger, topv: S::Larger| { |
| 788 | <S as NumCast>::from(fact_bot * botv.to_f32().unwrap() + fact_top * topv.to_f32().unwrap()) |
| 789 | .expect("Average sample value should fit into sample type" ) |
| 790 | }; |
| 791 | |
| 792 | ( |
| 793 | mix_bot_and_top(sum_bot.0, sum_top.0), |
| 794 | mix_bot_and_top(sum_bot.1, sum_top.1), |
| 795 | mix_bot_and_top(sum_bot.2, sum_top.2), |
| 796 | mix_bot_and_top(sum_bot.3, sum_top.3), |
| 797 | ) |
| 798 | } |
| 799 | |
| 800 | /// Get a single pixel for a thumbnail where the input window does not enclose any full pixel. |
| 801 | fn thumbnail_sample_fraction_both<I, P, S>( |
| 802 | image: &I, |
| 803 | left: u32, |
| 804 | fraction_vertical: f32, |
| 805 | bottom: u32, |
| 806 | fraction_horizontal: f32, |
| 807 | ) -> (S, S, S, S) |
| 808 | where |
| 809 | I: GenericImageView<Pixel = P>, |
| 810 | P: Pixel<Subpixel = S>, |
| 811 | S: Primitive + Enlargeable, |
| 812 | { |
| 813 | #[allow (deprecated)] |
| 814 | let k_bl = image.get_pixel(left, bottom).channels4(); |
| 815 | #[allow (deprecated)] |
| 816 | let k_tl = image.get_pixel(left, bottom + 1).channels4(); |
| 817 | #[allow (deprecated)] |
| 818 | let k_br = image.get_pixel(left + 1, bottom).channels4(); |
| 819 | #[allow (deprecated)] |
| 820 | let k_tr = image.get_pixel(left + 1, bottom + 1).channels4(); |
| 821 | |
| 822 | let frac_v = fraction_vertical; |
| 823 | let frac_h = fraction_horizontal; |
| 824 | |
| 825 | let fact_tr = frac_v * frac_h; |
| 826 | let fact_tl = frac_v * (1. - frac_h); |
| 827 | let fact_br = (1. - frac_v) * frac_h; |
| 828 | let fact_bl = (1. - frac_v) * (1. - frac_h); |
| 829 | |
| 830 | let mix = |br: S, tr: S, bl: S, tl: S| { |
| 831 | <S as NumCast>::from( |
| 832 | fact_br * br.to_f32().unwrap() |
| 833 | + fact_tr * tr.to_f32().unwrap() |
| 834 | + fact_bl * bl.to_f32().unwrap() |
| 835 | + fact_tl * tl.to_f32().unwrap(), |
| 836 | ) |
| 837 | .expect("Average sample value should fit into sample type" ) |
| 838 | }; |
| 839 | |
| 840 | ( |
| 841 | mix(k_br.0, k_tr.0, k_bl.0, k_tl.0), |
| 842 | mix(k_br.1, k_tr.1, k_bl.1, k_tl.1), |
| 843 | mix(k_br.2, k_tr.2, k_bl.2, k_tl.2), |
| 844 | mix(k_br.3, k_tr.3, k_bl.3, k_tl.3), |
| 845 | ) |
| 846 | } |
| 847 | |
| 848 | /// Perform a 3x3 box filter on the supplied image. |
| 849 | /// ```kernel``` is an array of the filter weights of length 9. |
| 850 | pub fn filter3x3<I, P, S>(image: &I, kernel: &[f32]) -> ImageBuffer<P, Vec<S>> |
| 851 | where |
| 852 | I: GenericImageView<Pixel = P>, |
| 853 | P: Pixel<Subpixel = S> + 'static, |
| 854 | S: Primitive + 'static, |
| 855 | { |
| 856 | // The kernel's input positions relative to the current pixel. |
| 857 | let taps: &[(isize, isize)] = &[ |
| 858 | (-1, -1), |
| 859 | (0, -1), |
| 860 | (1, -1), |
| 861 | (-1, 0), |
| 862 | (0, 0), |
| 863 | (1, 0), |
| 864 | (-1, 1), |
| 865 | (0, 1), |
| 866 | (1, 1), |
| 867 | ]; |
| 868 | |
| 869 | let (width, height) = image.dimensions(); |
| 870 | |
| 871 | let mut out = ImageBuffer::new(width, height); |
| 872 | |
| 873 | let max = S::DEFAULT_MAX_VALUE; |
| 874 | let max: f32 = NumCast::from(max).unwrap(); |
| 875 | |
| 876 | #[allow (clippy::redundant_guards)] |
| 877 | let sum = match kernel.iter().fold(0.0, |s, &item| s + item) { |
| 878 | x if x == 0.0 => 1.0, |
| 879 | sum => sum, |
| 880 | }; |
| 881 | let sum = (sum, sum, sum, sum); |
| 882 | |
| 883 | for y in 1..height - 1 { |
| 884 | for x in 1..width - 1 { |
| 885 | let mut t = (0.0, 0.0, 0.0, 0.0); |
| 886 | |
| 887 | // TODO: There is no need to recalculate the kernel for each pixel. |
| 888 | // Only a subtract and addition is needed for pixels after the first |
| 889 | // in each row. |
| 890 | for (&k, &(a, b)) in kernel.iter().zip(taps.iter()) { |
| 891 | let k = (k, k, k, k); |
| 892 | let x0 = x as isize + a; |
| 893 | let y0 = y as isize + b; |
| 894 | |
| 895 | let p = image.get_pixel(x0 as u32, y0 as u32); |
| 896 | |
| 897 | #[allow (deprecated)] |
| 898 | let (k1, k2, k3, k4) = p.channels4(); |
| 899 | |
| 900 | let vec: (f32, f32, f32, f32) = ( |
| 901 | NumCast::from(k1).unwrap(), |
| 902 | NumCast::from(k2).unwrap(), |
| 903 | NumCast::from(k3).unwrap(), |
| 904 | NumCast::from(k4).unwrap(), |
| 905 | ); |
| 906 | |
| 907 | t.0 += vec.0 * k.0; |
| 908 | t.1 += vec.1 * k.1; |
| 909 | t.2 += vec.2 * k.2; |
| 910 | t.3 += vec.3 * k.3; |
| 911 | } |
| 912 | |
| 913 | let (t1, t2, t3, t4) = (t.0 / sum.0, t.1 / sum.1, t.2 / sum.2, t.3 / sum.3); |
| 914 | |
| 915 | #[allow (deprecated)] |
| 916 | let t = Pixel::from_channels( |
| 917 | NumCast::from(clamp(t1, 0.0, max)).unwrap(), |
| 918 | NumCast::from(clamp(t2, 0.0, max)).unwrap(), |
| 919 | NumCast::from(clamp(t3, 0.0, max)).unwrap(), |
| 920 | NumCast::from(clamp(t4, 0.0, max)).unwrap(), |
| 921 | ); |
| 922 | |
| 923 | out.put_pixel(x, y, t); |
| 924 | } |
| 925 | } |
| 926 | |
| 927 | out |
| 928 | } |
| 929 | |
| 930 | /// Resize the supplied image to the specified dimensions. |
| 931 | /// ```nwidth``` and ```nheight``` are the new dimensions. |
| 932 | /// ```filter``` is the sampling filter to use. |
| 933 | /// This method assumes alpha pre-multiplication for images that contain non-constant alpha. |
| 934 | pub fn resize<I: GenericImageView>( |
| 935 | image: &I, |
| 936 | nwidth: u32, |
| 937 | nheight: u32, |
| 938 | filter: FilterType, |
| 939 | ) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>> |
| 940 | where |
| 941 | I::Pixel: 'static, |
| 942 | <I::Pixel as Pixel>::Subpixel: 'static, |
| 943 | { |
| 944 | // Check if there is nothing to sample from. |
| 945 | let is_empty = { |
| 946 | let (width, height) = image.dimensions(); |
| 947 | width == 0 || height == 0 |
| 948 | }; |
| 949 | |
| 950 | if is_empty { |
| 951 | return ImageBuffer::new(nwidth, nheight); |
| 952 | } |
| 953 | |
| 954 | // check if the new dimensions are the same as the old. if they are, make a copy instead of resampling |
| 955 | if (nwidth, nheight) == image.dimensions() { |
| 956 | let mut tmp = ImageBuffer::new(image.width(), image.height()); |
| 957 | tmp.copy_from(image, 0, 0).unwrap(); |
| 958 | return tmp; |
| 959 | } |
| 960 | |
| 961 | let mut method = match filter { |
| 962 | FilterType::Nearest => Filter { |
| 963 | kernel: Box::new(box_kernel), |
| 964 | support: 0.0, |
| 965 | }, |
| 966 | FilterType::Triangle => Filter { |
| 967 | kernel: Box::new(triangle_kernel), |
| 968 | support: 1.0, |
| 969 | }, |
| 970 | FilterType::CatmullRom => Filter { |
| 971 | kernel: Box::new(catmullrom_kernel), |
| 972 | support: 2.0, |
| 973 | }, |
| 974 | FilterType::Gaussian => Filter { |
| 975 | kernel: Box::new(gaussian_kernel), |
| 976 | support: 3.0, |
| 977 | }, |
| 978 | FilterType::Lanczos3 => Filter { |
| 979 | kernel: Box::new(lanczos3_kernel), |
| 980 | support: 3.0, |
| 981 | }, |
| 982 | }; |
| 983 | |
| 984 | // Note: tmp is not necessarily actually Rgba |
| 985 | let tmp: Rgba32FImage = vertical_sample(image, nheight, &mut method); |
| 986 | horizontal_sample(&tmp, nwidth, &mut method) |
| 987 | } |
| 988 | |
| 989 | /// Performs a Gaussian blur on the supplied image. |
| 990 | /// ```sigma``` is a measure of how much to blur by. |
| 991 | /// Use [`crate::imageops::fast_blur()`] for a faster but less |
| 992 | /// accurate version. |
| 993 | /// This method assumes alpha pre-multiplication for images that contain non-constant alpha. |
| 994 | pub fn blur<I: GenericImageView>( |
| 995 | image: &I, |
| 996 | sigma: f32, |
| 997 | ) -> ImageBuffer<I::Pixel, Vec<<I::Pixel as Pixel>::Subpixel>> |
| 998 | where |
| 999 | I::Pixel: 'static, |
| 1000 | { |
| 1001 | let sigma: f32 = if sigma <= 0.0 { 1.0 } else { sigma }; |
| 1002 | |
| 1003 | let mut method: Filter<'_> = Filter { |
| 1004 | kernel: Box::new(|x: f32| gaussian(x, r:sigma)), |
| 1005 | support: 2.0 * sigma, |
| 1006 | }; |
| 1007 | |
| 1008 | let (width: u32, height: u32) = image.dimensions(); |
| 1009 | let is_empty: bool = width == 0 || height == 0; |
| 1010 | |
| 1011 | if is_empty { |
| 1012 | return ImageBuffer::new(width, height); |
| 1013 | } |
| 1014 | |
| 1015 | // Keep width and height the same for horizontal and |
| 1016 | // vertical sampling. |
| 1017 | // Note: tmp is not necessarily actually Rgba |
| 1018 | let tmp: Rgba32FImage = vertical_sample(image, height, &mut method); |
| 1019 | horizontal_sample(&tmp, width, &mut method) |
| 1020 | } |
| 1021 | |
| 1022 | /// Performs an unsharpen mask on the supplied image. |
| 1023 | /// ```sigma``` is the amount to blur the image by. |
| 1024 | /// ```threshold``` is the threshold for minimal brightness change that will be sharpened. |
| 1025 | /// |
| 1026 | /// See <https://en.wikipedia.org/wiki/Unsharp_masking#Digital_unsharp_masking> |
| 1027 | pub fn unsharpen<I, P, S>(image: &I, sigma: f32, threshold: i32) -> ImageBuffer<P, Vec<S>> |
| 1028 | where |
| 1029 | I: GenericImageView<Pixel = P>, |
| 1030 | P: Pixel<Subpixel = S> + 'static, |
| 1031 | S: Primitive + 'static, |
| 1032 | { |
| 1033 | let mut tmp = blur(image, sigma); |
| 1034 | |
| 1035 | let max = S::DEFAULT_MAX_VALUE; |
| 1036 | let max: i32 = NumCast::from(max).unwrap(); |
| 1037 | let (width, height) = image.dimensions(); |
| 1038 | |
| 1039 | for y in 0..height { |
| 1040 | for x in 0..width { |
| 1041 | let a = image.get_pixel(x, y); |
| 1042 | let b = tmp.get_pixel_mut(x, y); |
| 1043 | |
| 1044 | let p = a.map2(b, |c, d| { |
| 1045 | let ic: i32 = NumCast::from(c).unwrap(); |
| 1046 | let id: i32 = NumCast::from(d).unwrap(); |
| 1047 | |
| 1048 | let diff = ic - id; |
| 1049 | |
| 1050 | if diff.abs() > threshold { |
| 1051 | let e = clamp(ic + diff, 0, max); // FIXME what does this do for f32? clamp 0-1 integers?? |
| 1052 | |
| 1053 | NumCast::from(e).unwrap() |
| 1054 | } else { |
| 1055 | c |
| 1056 | } |
| 1057 | }); |
| 1058 | |
| 1059 | *b = p; |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | tmp |
| 1064 | } |
| 1065 | |
| 1066 | #[cfg (test)] |
| 1067 | mod tests { |
| 1068 | use super::{resize, sample_bilinear, sample_nearest, FilterType}; |
| 1069 | use crate::{GenericImageView, ImageBuffer, RgbImage}; |
| 1070 | #[cfg (feature = "benchmarks" )] |
| 1071 | use test ; |
| 1072 | |
| 1073 | #[bench ] |
| 1074 | #[cfg (all(feature = "benchmarks" , feature = "png" ))] |
| 1075 | fn bench_resize(b: &mut test::Bencher) { |
| 1076 | use std::path::Path; |
| 1077 | let img = crate::open(Path::new("./examples/fractal.png" )).unwrap(); |
| 1078 | b.iter(|| { |
| 1079 | test::black_box(resize(&img, 200, 200, FilterType::Nearest)); |
| 1080 | }); |
| 1081 | b.bytes = 800 * 800 * 3 + 200 * 200 * 3; |
| 1082 | } |
| 1083 | |
| 1084 | #[test ] |
| 1085 | #[cfg (feature = "png" )] |
| 1086 | fn test_resize_same_size() { |
| 1087 | use std::path::Path; |
| 1088 | let img = crate::open(Path::new("./examples/fractal.png" )).unwrap(); |
| 1089 | let resize = img.resize(img.width(), img.height(), FilterType::Triangle); |
| 1090 | assert!(img.pixels().eq(resize.pixels())); |
| 1091 | } |
| 1092 | |
| 1093 | #[test ] |
| 1094 | #[cfg (feature = "png" )] |
| 1095 | fn test_sample_bilinear() { |
| 1096 | use std::path::Path; |
| 1097 | let img = crate::open(Path::new("./examples/fractal.png" )).unwrap(); |
| 1098 | assert!(sample_bilinear(&img, 0., 0.).is_some()); |
| 1099 | assert!(sample_bilinear(&img, 1., 0.).is_some()); |
| 1100 | assert!(sample_bilinear(&img, 0., 1.).is_some()); |
| 1101 | assert!(sample_bilinear(&img, 1., 1.).is_some()); |
| 1102 | assert!(sample_bilinear(&img, 0.5, 0.5).is_some()); |
| 1103 | |
| 1104 | assert!(sample_bilinear(&img, 1.2, 0.5).is_none()); |
| 1105 | assert!(sample_bilinear(&img, 0.5, 1.2).is_none()); |
| 1106 | assert!(sample_bilinear(&img, 1.2, 1.2).is_none()); |
| 1107 | |
| 1108 | assert!(sample_bilinear(&img, -0.1, 0.2).is_none()); |
| 1109 | assert!(sample_bilinear(&img, 0.2, -0.1).is_none()); |
| 1110 | assert!(sample_bilinear(&img, -0.1, -0.1).is_none()); |
| 1111 | } |
| 1112 | #[test ] |
| 1113 | #[cfg (feature = "png" )] |
| 1114 | fn test_sample_nearest() { |
| 1115 | use std::path::Path; |
| 1116 | let img = crate::open(Path::new("./examples/fractal.png" )).unwrap(); |
| 1117 | assert!(sample_nearest(&img, 0., 0.).is_some()); |
| 1118 | assert!(sample_nearest(&img, 1., 0.).is_some()); |
| 1119 | assert!(sample_nearest(&img, 0., 1.).is_some()); |
| 1120 | assert!(sample_nearest(&img, 1., 1.).is_some()); |
| 1121 | assert!(sample_nearest(&img, 0.5, 0.5).is_some()); |
| 1122 | |
| 1123 | assert!(sample_nearest(&img, 1.2, 0.5).is_none()); |
| 1124 | assert!(sample_nearest(&img, 0.5, 1.2).is_none()); |
| 1125 | assert!(sample_nearest(&img, 1.2, 1.2).is_none()); |
| 1126 | |
| 1127 | assert!(sample_nearest(&img, -0.1, 0.2).is_none()); |
| 1128 | assert!(sample_nearest(&img, 0.2, -0.1).is_none()); |
| 1129 | assert!(sample_nearest(&img, -0.1, -0.1).is_none()); |
| 1130 | } |
| 1131 | #[test ] |
| 1132 | fn test_sample_bilinear_correctness() { |
| 1133 | use crate::Rgba; |
| 1134 | let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) { |
| 1135 | (0, 0) => Rgba([255, 0, 0, 0]), |
| 1136 | (0, 1) => Rgba([0, 255, 0, 0]), |
| 1137 | (1, 0) => Rgba([0, 0, 255, 0]), |
| 1138 | (1, 1) => Rgba([0, 0, 0, 255]), |
| 1139 | _ => panic!(), |
| 1140 | }); |
| 1141 | assert_eq!(sample_bilinear(&img, 0.5, 0.5), Some(Rgba([64; 4]))); |
| 1142 | assert_eq!(sample_bilinear(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0]))); |
| 1143 | assert_eq!(sample_bilinear(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0]))); |
| 1144 | assert_eq!(sample_bilinear(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0]))); |
| 1145 | assert_eq!(sample_bilinear(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255]))); |
| 1146 | |
| 1147 | assert_eq!( |
| 1148 | sample_bilinear(&img, 0.5, 0.0), |
| 1149 | Some(Rgba([128, 0, 128, 0])) |
| 1150 | ); |
| 1151 | assert_eq!( |
| 1152 | sample_bilinear(&img, 0.0, 0.5), |
| 1153 | Some(Rgba([128, 128, 0, 0])) |
| 1154 | ); |
| 1155 | assert_eq!( |
| 1156 | sample_bilinear(&img, 0.5, 1.0), |
| 1157 | Some(Rgba([0, 128, 0, 128])) |
| 1158 | ); |
| 1159 | assert_eq!( |
| 1160 | sample_bilinear(&img, 1.0, 0.5), |
| 1161 | Some(Rgba([0, 0, 128, 128])) |
| 1162 | ); |
| 1163 | } |
| 1164 | #[bench ] |
| 1165 | #[cfg (feature = "benchmarks" )] |
| 1166 | fn bench_sample_bilinear(b: &mut test::Bencher) { |
| 1167 | use crate::Rgba; |
| 1168 | let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) { |
| 1169 | (0, 0) => Rgba([255, 0, 0, 0]), |
| 1170 | (0, 1) => Rgba([0, 255, 0, 0]), |
| 1171 | (1, 0) => Rgba([0, 0, 255, 0]), |
| 1172 | (1, 1) => Rgba([0, 0, 0, 255]), |
| 1173 | _ => panic!(), |
| 1174 | }); |
| 1175 | b.iter(|| { |
| 1176 | sample_bilinear(&img, test::black_box(0.5), test::black_box(0.5)); |
| 1177 | }); |
| 1178 | } |
| 1179 | #[test ] |
| 1180 | fn test_sample_nearest_correctness() { |
| 1181 | use crate::Rgba; |
| 1182 | let img = ImageBuffer::from_fn(2, 2, |x, y| match (x, y) { |
| 1183 | (0, 0) => Rgba([255, 0, 0, 0]), |
| 1184 | (0, 1) => Rgba([0, 255, 0, 0]), |
| 1185 | (1, 0) => Rgba([0, 0, 255, 0]), |
| 1186 | (1, 1) => Rgba([0, 0, 0, 255]), |
| 1187 | _ => panic!(), |
| 1188 | }); |
| 1189 | |
| 1190 | assert_eq!(sample_nearest(&img, 0.0, 0.0), Some(Rgba([255, 0, 0, 0]))); |
| 1191 | assert_eq!(sample_nearest(&img, 0.0, 1.0), Some(Rgba([0, 255, 0, 0]))); |
| 1192 | assert_eq!(sample_nearest(&img, 1.0, 0.0), Some(Rgba([0, 0, 255, 0]))); |
| 1193 | assert_eq!(sample_nearest(&img, 1.0, 1.0), Some(Rgba([0, 0, 0, 255]))); |
| 1194 | |
| 1195 | assert_eq!(sample_nearest(&img, 0.5, 0.5), Some(Rgba([0, 0, 0, 255]))); |
| 1196 | assert_eq!(sample_nearest(&img, 0.5, 0.0), Some(Rgba([0, 0, 255, 0]))); |
| 1197 | assert_eq!(sample_nearest(&img, 0.0, 0.5), Some(Rgba([0, 255, 0, 0]))); |
| 1198 | assert_eq!(sample_nearest(&img, 0.5, 1.0), Some(Rgba([0, 0, 0, 255]))); |
| 1199 | assert_eq!(sample_nearest(&img, 1.0, 0.5), Some(Rgba([0, 0, 0, 255]))); |
| 1200 | } |
| 1201 | |
| 1202 | #[bench ] |
| 1203 | #[cfg (all(feature = "benchmarks" , feature = "tiff" ))] |
| 1204 | fn bench_resize_same_size(b: &mut test::Bencher) { |
| 1205 | let path = concat!( |
| 1206 | env!("CARGO_MANIFEST_DIR" ), |
| 1207 | "/tests/images/tiff/testsuite/mandrill.tiff" |
| 1208 | ); |
| 1209 | let image = crate::open(path).unwrap(); |
| 1210 | b.iter(|| { |
| 1211 | test::black_box(image.resize(image.width(), image.height(), FilterType::CatmullRom)); |
| 1212 | }); |
| 1213 | b.bytes = (image.width() * image.height() * 3) as u64; |
| 1214 | } |
| 1215 | |
| 1216 | #[test ] |
| 1217 | fn test_issue_186() { |
| 1218 | let img: RgbImage = ImageBuffer::new(100, 100); |
| 1219 | let _ = resize(&img, 50, 50, FilterType::Lanczos3); |
| 1220 | } |
| 1221 | |
| 1222 | #[bench ] |
| 1223 | #[cfg (all(feature = "benchmarks" , feature = "tiff" ))] |
| 1224 | fn bench_thumbnail(b: &mut test::Bencher) { |
| 1225 | let path = concat!( |
| 1226 | env!("CARGO_MANIFEST_DIR" ), |
| 1227 | "/tests/images/tiff/testsuite/mandrill.tiff" |
| 1228 | ); |
| 1229 | let image = crate::open(path).unwrap(); |
| 1230 | b.iter(|| { |
| 1231 | test::black_box(image.thumbnail(256, 256)); |
| 1232 | }); |
| 1233 | b.bytes = 512 * 512 * 4 + 256 * 256 * 4; |
| 1234 | } |
| 1235 | |
| 1236 | #[bench ] |
| 1237 | #[cfg (all(feature = "benchmarks" , feature = "tiff" ))] |
| 1238 | fn bench_thumbnail_upsize(b: &mut test::Bencher) { |
| 1239 | let path = concat!( |
| 1240 | env!("CARGO_MANIFEST_DIR" ), |
| 1241 | "/tests/images/tiff/testsuite/mandrill.tiff" |
| 1242 | ); |
| 1243 | let image = crate::open(path).unwrap().thumbnail(256, 256); |
| 1244 | b.iter(|| { |
| 1245 | test::black_box(image.thumbnail(512, 512)); |
| 1246 | }); |
| 1247 | b.bytes = 512 * 512 * 4 + 256 * 256 * 4; |
| 1248 | } |
| 1249 | |
| 1250 | #[bench ] |
| 1251 | #[cfg (all(feature = "benchmarks" , feature = "tiff" ))] |
| 1252 | fn bench_thumbnail_upsize_irregular(b: &mut test::Bencher) { |
| 1253 | let path = concat!( |
| 1254 | env!("CARGO_MANIFEST_DIR" ), |
| 1255 | "/tests/images/tiff/testsuite/mandrill.tiff" |
| 1256 | ); |
| 1257 | let image = crate::open(path).unwrap().thumbnail(193, 193); |
| 1258 | b.iter(|| { |
| 1259 | test::black_box(image.thumbnail(256, 256)); |
| 1260 | }); |
| 1261 | b.bytes = 193 * 193 * 4 + 256 * 256 * 4; |
| 1262 | } |
| 1263 | |
| 1264 | #[test ] |
| 1265 | #[cfg (feature = "png" )] |
| 1266 | fn resize_transparent_image() { |
| 1267 | use super::FilterType::{CatmullRom, Gaussian, Lanczos3, Nearest, Triangle}; |
| 1268 | use crate::imageops::crop_imm; |
| 1269 | use crate::RgbaImage; |
| 1270 | |
| 1271 | fn assert_resize(image: &RgbaImage, filter: FilterType) { |
| 1272 | let resized = resize(image, 16, 16, filter); |
| 1273 | let cropped = crop_imm(&resized, 5, 5, 6, 6).to_image(); |
| 1274 | for pixel in cropped.pixels() { |
| 1275 | let alpha = pixel.0[3]; |
| 1276 | assert!( |
| 1277 | alpha != 254 && alpha != 253, |
| 1278 | "alpha value: {}, {:?}" , |
| 1279 | alpha, |
| 1280 | filter |
| 1281 | ); |
| 1282 | } |
| 1283 | } |
| 1284 | |
| 1285 | let path = concat!( |
| 1286 | env!("CARGO_MANIFEST_DIR" ), |
| 1287 | "/tests/images/png/transparency/tp1n3p08.png" |
| 1288 | ); |
| 1289 | let img = crate::open(path).unwrap(); |
| 1290 | let rgba8 = img.as_rgba8().unwrap(); |
| 1291 | let filters = &[Nearest, Triangle, CatmullRom, Gaussian, Lanczos3]; |
| 1292 | for filter in filters { |
| 1293 | assert_resize(rgba8, *filter); |
| 1294 | } |
| 1295 | } |
| 1296 | |
| 1297 | #[test ] |
| 1298 | fn bug_1600() { |
| 1299 | let image = crate::RgbaImage::from_raw(629, 627, vec![255; 629 * 627 * 4]).unwrap(); |
| 1300 | let result = resize(&image, 22, 22, FilterType::Lanczos3); |
| 1301 | assert!(result.into_raw().into_iter().any(|c| c != 0)); |
| 1302 | } |
| 1303 | |
| 1304 | #[test ] |
| 1305 | fn issue_2340() { |
| 1306 | let empty = crate::GrayImage::from_raw(1 << 31, 0, vec![]).unwrap(); |
| 1307 | // Really we're checking that no overflow / outsized allocation happens here. |
| 1308 | let result = resize(&empty, 1, 1, FilterType::Lanczos3); |
| 1309 | assert!(result.into_raw().into_iter().all(|c| c == 0)); |
| 1310 | // With the previous strategy before the regression this would allocate 1TB of memory for a |
| 1311 | // temporary during the sampling evaluation. |
| 1312 | let result = resize(&empty, 256, 256, FilterType::Lanczos3); |
| 1313 | assert!(result.into_raw().into_iter().all(|c| c == 0)); |
| 1314 | } |
| 1315 | |
| 1316 | #[test ] |
| 1317 | fn issue_2340_refl() { |
| 1318 | // Tests the swapped coordinate version of `issue_2340`. |
| 1319 | let empty = crate::GrayImage::from_raw(0, 1 << 31, vec![]).unwrap(); |
| 1320 | let result = resize(&empty, 1, 1, FilterType::Lanczos3); |
| 1321 | assert!(result.into_raw().into_iter().all(|c| c == 0)); |
| 1322 | let result = resize(&empty, 256, 256, FilterType::Lanczos3); |
| 1323 | assert!(result.into_raw().into_iter().all(|c| c == 0)); |
| 1324 | } |
| 1325 | } |
| 1326 | |