| 1 | use lyon_path::{ |
| 2 | geom::{euclid, Angle, Vector}, |
| 3 | traits::PathBuilder, |
| 4 | ArcFlags, Attributes, Polygon, Winding, |
| 5 | }; |
| 6 | |
| 7 | pub type Point = euclid::default::Point2D<f32>; |
| 8 | |
| 9 | /// Adds a sub-path from a polygon but rounds the corners. |
| 10 | /// |
| 11 | /// There must be no sub-path in progress when this method is called. |
| 12 | /// No sub-path is in progress after the method is called. |
| 13 | pub fn add_rounded_polygon<B: PathBuilder>( |
| 14 | builder: &mut B, |
| 15 | polygon: Polygon<Point>, |
| 16 | radius: f32, |
| 17 | attributes: Attributes, |
| 18 | ) { |
| 19 | if polygon.points.len() < 2 { |
| 20 | return; |
| 21 | } |
| 22 | |
| 23 | //p points are original polygon points |
| 24 | //q points are the actual points we will draw lines and arcs between |
| 25 | let clamped_radius = clamp_radius( |
| 26 | radius, |
| 27 | polygon.points[polygon.points.len() - 1], |
| 28 | polygon.points[0], |
| 29 | polygon.points[1], |
| 30 | ); |
| 31 | let q_first = get_point_between(polygon.points[0], polygon.points[1], clamped_radius); |
| 32 | |
| 33 | //We begin on the line just after the first point |
| 34 | builder.begin(q_first, attributes); |
| 35 | |
| 36 | for index in 0..polygon.points.len() { |
| 37 | let p_current = polygon.points[index]; |
| 38 | let p_next = polygon.points[(index + 1) % polygon.points.len()]; |
| 39 | let p_after_next = polygon.points[(index + 2) % polygon.points.len()]; |
| 40 | |
| 41 | let clamped_radius = clamp_radius(radius, p_current, p_next, p_after_next); |
| 42 | |
| 43 | //q1 is the second point on the line between p_current and p_next |
| 44 | let q1 = get_point_between(p_next, p_current, clamped_radius); |
| 45 | //q2 is the first point on the line between p_next and p_after_next |
| 46 | let q2 = get_point_between(p_next, p_after_next, clamped_radius); |
| 47 | |
| 48 | builder.line_to(q1, attributes); |
| 49 | let turn_winding = get_winding(p_current, p_next, p_after_next); |
| 50 | |
| 51 | //Draw the arc near p_next |
| 52 | arc( |
| 53 | builder, |
| 54 | Vector::new(clamped_radius, clamped_radius), |
| 55 | Angle { radians: 0.0 }, |
| 56 | ArcFlags { |
| 57 | large_arc: false, |
| 58 | sweep: turn_winding == Winding::Negative, |
| 59 | }, |
| 60 | q1, |
| 61 | q2, |
| 62 | attributes, |
| 63 | ); |
| 64 | } |
| 65 | |
| 66 | builder.end(polygon.closed); |
| 67 | } |
| 68 | |
| 69 | fn clamp_radius(radius: f32, p_previous: Point, p_current: Point, p_next: Point) -> f32 { |
| 70 | let shorter_edge: f32 = ((p_current - p_next).length()).min((p_previous - p_current).length()); |
| 71 | |
| 72 | radius.min(shorter_edge * 0.5) |
| 73 | } |
| 74 | |
| 75 | fn get_point_between(p1: Point, p2: Point, radius: f32) -> Point { |
| 76 | let dist: f32 = p1.distance_to(p2); |
| 77 | let ratio: f32 = radius / dist; |
| 78 | |
| 79 | p1.lerp(other:p2, t:ratio) |
| 80 | } |
| 81 | |
| 82 | fn get_winding(p0: Point, p1: Point, p2: Point) -> Winding { |
| 83 | let cross: f32 = (p2 - p0).cross(p1 - p0); |
| 84 | if cross.is_sign_positive() { |
| 85 | Winding::Positive |
| 86 | } else { |
| 87 | Winding::Negative |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | fn arc<B: PathBuilder>( |
| 92 | builder: &mut B, |
| 93 | radii: Vector<f32>, |
| 94 | x_rotation: Angle<f32>, |
| 95 | flags: ArcFlags, |
| 96 | from: Point, |
| 97 | to: Point, |
| 98 | attributes: Attributes, |
| 99 | ) { |
| 100 | let svg_arc: SvgArc = lyon_path::geom::SvgArc { |
| 101 | from, |
| 102 | to, |
| 103 | radii, |
| 104 | x_rotation, |
| 105 | flags, |
| 106 | }; |
| 107 | |
| 108 | if svg_arc.is_straight_line() { |
| 109 | builder.line_to(to, attributes); |
| 110 | } else { |
| 111 | let geom_arc: Arc = svg_arc.to_arc(); |
| 112 | geom_arc.for_each_quadratic_bezier(&mut |curve: &QuadraticBezierSegment| { |
| 113 | builder.quadratic_bezier_to(curve.ctrl, curve.to, attributes); |
| 114 | }); |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | #[test ] |
| 119 | fn rounded_polygon() { |
| 120 | use crate::geom::point; |
| 121 | use crate::rounded_polygon::*; |
| 122 | use alloc::vec::Vec; |
| 123 | use euclid::approxeq::ApproxEq; |
| 124 | |
| 125 | type Point = euclid::Point2D<f32, euclid::UnknownUnit>; |
| 126 | type Event = path::Event<Point, Point>; |
| 127 | let arrow_points = [ |
| 128 | point(-1.0, -0.3), |
| 129 | point(0.0, -0.3), |
| 130 | point(0.0, -1.0), |
| 131 | point(1.5, 0.0), |
| 132 | point(0.0, 1.0), |
| 133 | point(0.0, 0.3), |
| 134 | point(-1.0, 0.3), |
| 135 | ]; |
| 136 | |
| 137 | let arrow_polygon = Polygon { |
| 138 | points: &arrow_points, |
| 139 | closed: true, |
| 140 | }; |
| 141 | |
| 142 | let mut builder = lyon_path::Path::builder(); |
| 143 | add_rounded_polygon(&mut builder, arrow_polygon, 0.2, lyon_path::NO_ATTRIBUTES); |
| 144 | let arrow_path = builder.build(); |
| 145 | |
| 146 | //check that we have the right ordering of event types |
| 147 | let actual_events: alloc::vec::Vec<_> = arrow_path.into_iter().collect(); |
| 148 | |
| 149 | let actual_event_types = actual_events |
| 150 | .iter() |
| 151 | .map(|x| match x { |
| 152 | Event::Begin { at: _ } => "b" , |
| 153 | Event::Line { from: _, to: _ } => "l" , |
| 154 | Event::Quadratic { |
| 155 | from: _, |
| 156 | ctrl: _, |
| 157 | to: _, |
| 158 | } => "q" , |
| 159 | Event::Cubic { |
| 160 | from: _, |
| 161 | ctrl1: _, |
| 162 | ctrl2: _, |
| 163 | to: _, |
| 164 | } => "c" , |
| 165 | Event::End { |
| 166 | last: _, |
| 167 | first: _, |
| 168 | close: _, |
| 169 | } => "e" , |
| 170 | }) |
| 171 | .collect::<alloc::vec::Vec<_>>() |
| 172 | .concat(); |
| 173 | |
| 174 | assert_eq!(actual_event_types, "blqqlqqlqqlqqlqqlqqlqqe" ); |
| 175 | |
| 176 | let expected_lines = std::vec![ |
| 177 | (point(-0.8, -0.3), point(-0.2, -0.3)), |
| 178 | (point(0.0, -0.5), point(0.0, -0.8)), |
| 179 | (point(0.166, -0.889), point(1.333, -0.111)), |
| 180 | (point(1.334, 0.111), point(0.166, 0.889)), |
| 181 | (point(0.0, 0.8), point(0.0, 0.5)), |
| 182 | (point(-0.2, 0.3), point(-0.8, 0.3)), |
| 183 | (point(-1.0, 0.1), point(-1.0, -0.1)) |
| 184 | ]; |
| 185 | |
| 186 | //Check that the lines are approximately correct |
| 187 | let actual_lines: Vec<_> = arrow_path |
| 188 | .into_iter() |
| 189 | .filter_map(|event| match event { |
| 190 | Event::Line { from, to } => Some((from, to)), |
| 191 | _ => None, |
| 192 | }) |
| 193 | .collect(); |
| 194 | |
| 195 | for (actual, expected) in actual_lines.into_iter().zip(expected_lines.into_iter()) { |
| 196 | for (actual_point, expected_point) in [(actual.0, expected.0), (actual.1, expected.1)] { |
| 197 | assert!(actual_point.approx_eq_eps(&expected_point, &Point::new(0.01, 0.01))) |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | //Check that each event goes from the end of the previous event |
| 202 | |
| 203 | let mut previous = actual_events[0].to(); |
| 204 | |
| 205 | for e in actual_events { |
| 206 | e.from().approx_eq(&previous); |
| 207 | previous = e.to(); |
| 208 | } |
| 209 | } |
| 210 | |