1 | use alloc::{ |
2 | borrow::Cow, boxed::Box, string::String, string::ToString, sync::Arc, vec, |
3 | vec::Vec, |
4 | }; |
5 | |
6 | use crate::{ |
7 | error::Error, |
8 | hir::{self, Hir}, |
9 | int::NonMaxUsize, |
10 | interpolate, |
11 | nfa::{self, NFA}, |
12 | pikevm::{self, Cache, PikeVM}, |
13 | pool::CachePool, |
14 | }; |
15 | |
16 | /// A compiled regular expression for searching Unicode haystacks. |
17 | /// |
18 | /// A `Regex` can be used to search haystacks, split haystacks into substrings |
19 | /// or replace substrings in a haystack with a different substring. All |
20 | /// searching is done with an implicit `(?s:.)*?` at the beginning and end of |
21 | /// an pattern. To force an expression to match the whole string (or a prefix |
22 | /// or a suffix), you must use an anchor like `^` or `$` (or `\A` and `\z`). |
23 | /// |
24 | /// While this crate will handle Unicode strings (whether in the regular |
25 | /// expression or in the haystack), all positions returned are **byte |
26 | /// offsets**. Every byte offset is guaranteed to be at a Unicode code point |
27 | /// boundary. That is, all offsets returned by the `Regex` API are guaranteed |
28 | /// to be ranges that can slice a `&str` without panicking. |
29 | /// |
30 | /// The only methods that allocate new strings are the string replacement |
31 | /// methods. All other methods (searching and splitting) return borrowed |
32 | /// references into the haystack given. |
33 | /// |
34 | /// # Example |
35 | /// |
36 | /// Find the offsets of a US phone number: |
37 | /// |
38 | /// ``` |
39 | /// use regex_lite::Regex; |
40 | /// |
41 | /// let re = Regex::new("[0-9]{3}-[0-9]{3}-[0-9]{4}" ).unwrap(); |
42 | /// let m = re.find("phone: 111-222-3333" ).unwrap(); |
43 | /// assert_eq!(7..19, m.range()); |
44 | /// ``` |
45 | /// |
46 | /// # Example: extracting capture groups |
47 | /// |
48 | /// A common way to use regexes is with capture groups. That is, instead of |
49 | /// just looking for matches of an entire regex, parentheses are used to create |
50 | /// groups that represent part of the match. |
51 | /// |
52 | /// For example, consider a haystack with multiple lines, and each line has |
53 | /// three whitespace delimited fields where the second field is expected to be |
54 | /// a number and the third field a boolean. To make this convenient, we use |
55 | /// the [`Captures::extract`] API to put the strings that match each group |
56 | /// into a fixed size array: |
57 | /// |
58 | /// ``` |
59 | /// use regex_lite::Regex; |
60 | /// |
61 | /// let hay = " |
62 | /// rabbit 54 true |
63 | /// groundhog 2 true |
64 | /// does not match |
65 | /// fox 109 false |
66 | /// " ; |
67 | /// let re = Regex::new(r"(?m)^\s*(\S+)\s+([0-9]+)\s+(true|false)\s*$" ).unwrap(); |
68 | /// let mut fields: Vec<(&str, i64, bool)> = vec![]; |
69 | /// for (_, [f1, f2, f3]) in re.captures_iter(hay).map(|caps| caps.extract()) { |
70 | /// fields.push((f1, f2.parse()?, f3.parse()?)); |
71 | /// } |
72 | /// assert_eq!(fields, vec![ |
73 | /// ("rabbit" , 54, true), |
74 | /// ("groundhog" , 2, true), |
75 | /// ("fox" , 109, false), |
76 | /// ]); |
77 | /// |
78 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
79 | /// ``` |
80 | pub struct Regex { |
81 | pikevm: Arc<PikeVM>, |
82 | pool: CachePool, |
83 | } |
84 | |
85 | impl Clone for Regex { |
86 | fn clone(&self) -> Regex { |
87 | let pikevm: Arc = Arc::clone(&self.pikevm); |
88 | let pool: Pool … + Send + Sync + UnwindSafe + RefUnwindSafe + 'static>> = { |
89 | let pikevm: Arc = Arc::clone(&self.pikevm); |
90 | let create: Box Cache> = Box::new(move || Cache::new(&pikevm)); |
91 | CachePool::new(create) |
92 | }; |
93 | Regex { pikevm, pool } |
94 | } |
95 | } |
96 | |
97 | impl core::fmt::Display for Regex { |
98 | /// Shows the original regular expression. |
99 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
100 | write!(f, " {}" , self.as_str()) |
101 | } |
102 | } |
103 | |
104 | impl core::fmt::Debug for Regex { |
105 | /// Shows the original regular expression. |
106 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
107 | f.debug_tuple(name:"Regex" ).field(&self.as_str()).finish() |
108 | } |
109 | } |
110 | |
111 | impl core::str::FromStr for Regex { |
112 | type Err = Error; |
113 | |
114 | /// Attempts to parse a string into a regular expression |
115 | fn from_str(s: &str) -> Result<Regex, Error> { |
116 | Regex::new(pattern:s) |
117 | } |
118 | } |
119 | |
120 | impl TryFrom<&str> for Regex { |
121 | type Error = Error; |
122 | |
123 | /// Attempts to parse a string into a regular expression |
124 | fn try_from(s: &str) -> Result<Regex, Error> { |
125 | Regex::new(pattern:s) |
126 | } |
127 | } |
128 | |
129 | impl TryFrom<String> for Regex { |
130 | type Error = Error; |
131 | |
132 | /// Attempts to parse a string into a regular expression |
133 | fn try_from(s: String) -> Result<Regex, Error> { |
134 | Regex::new(&s) |
135 | } |
136 | } |
137 | |
138 | /// Core regular expression methods. |
139 | impl Regex { |
140 | /// Compiles a regular expression. Once compiled, it can be used repeatedly |
141 | /// to search, split or replace substrings in a haystack. |
142 | /// |
143 | /// Note that regex compilation tends to be a somewhat expensive process, |
144 | /// and unlike higher level environments, compilation is not automatically |
145 | /// cached for you. One should endeavor to compile a regex once and then |
146 | /// reuse it. For example, it's a bad idea to compile the same regex |
147 | /// repeatedly in a loop. |
148 | /// |
149 | /// # Errors |
150 | /// |
151 | /// If an invalid pattern is given, then an error is returned. |
152 | /// An error is also returned if the pattern is valid, but would |
153 | /// produce a regex that is bigger than the configured size limit via |
154 | /// [`RegexBuilder::size_limit`]. (A reasonable size limit is enabled by |
155 | /// default.) |
156 | /// |
157 | /// # Example |
158 | /// |
159 | /// ``` |
160 | /// use regex_lite::Regex; |
161 | /// |
162 | /// // An Invalid pattern because of an unclosed parenthesis |
163 | /// assert!(Regex::new(r"foo(bar" ).is_err()); |
164 | /// // An invalid pattern because the regex would be too big |
165 | /// // because Unicode tends to inflate things. |
166 | /// assert!(Regex::new(r"\w{1000000}" ).is_err()); |
167 | /// ``` |
168 | pub fn new(pattern: &str) -> Result<Regex, Error> { |
169 | RegexBuilder::new(pattern).build() |
170 | } |
171 | |
172 | /// Returns true if and only if there is a match for the regex anywhere |
173 | /// in the haystack given. |
174 | /// |
175 | /// It is recommended to use this method if all you need to do is test |
176 | /// whether a match exists, since the underlying matching engine may be |
177 | /// able to do less work. |
178 | /// |
179 | /// # Example |
180 | /// |
181 | /// Test if some haystack contains at least one word with exactly 13 |
182 | /// word characters: |
183 | /// |
184 | /// ``` |
185 | /// use regex_lite::Regex; |
186 | /// |
187 | /// let re = Regex::new(r"\b\w{13}\b" ).unwrap(); |
188 | /// let hay = "I categorically deny having triskaidekaphobia." ; |
189 | /// assert!(re.is_match(hay)); |
190 | /// ``` |
191 | #[inline ] |
192 | pub fn is_match(&self, haystack: &str) -> bool { |
193 | self.is_match_at(haystack, 0) |
194 | } |
195 | |
196 | /// This routine searches for the first match of this regex in the |
197 | /// haystack given, and if found, returns a [`Match`]. The `Match` |
198 | /// provides access to both the byte offsets of the match and the actual |
199 | /// substring that matched. |
200 | /// |
201 | /// Note that this should only be used if you want to find the entire |
202 | /// match. If instead you just want to test the existence of a match, |
203 | /// it's potentially faster to use `Regex::is_match(hay)` instead of |
204 | /// `Regex::find(hay).is_some()`. |
205 | /// |
206 | /// # Example |
207 | /// |
208 | /// Find the first word with exactly 13 word characters: |
209 | /// |
210 | /// ``` |
211 | /// use regex_lite::Regex; |
212 | /// |
213 | /// let re = Regex::new(r"\b\w{13}\b" ).unwrap(); |
214 | /// let hay = "I categorically deny having triskaidekaphobia." ; |
215 | /// let mat = re.find(hay).unwrap(); |
216 | /// assert_eq!(2..15, mat.range()); |
217 | /// assert_eq!("categorically" , mat.as_str()); |
218 | /// ``` |
219 | #[inline ] |
220 | pub fn find<'h>(&self, haystack: &'h str) -> Option<Match<'h>> { |
221 | self.find_at(haystack, 0) |
222 | } |
223 | |
224 | /// Returns an iterator that yields successive non-overlapping matches in |
225 | /// the given haystack. The iterator yields values of type [`Match`]. |
226 | /// |
227 | /// # Time complexity |
228 | /// |
229 | /// Note that since `find_iter` runs potentially many searches on the |
230 | /// haystack and since each search has worst case `O(m * n)` time |
231 | /// complexity, the overall worst case time complexity for iteration is |
232 | /// `O(m * n^2)`. |
233 | /// |
234 | /// # Example |
235 | /// |
236 | /// Find every word with exactly 13 word characters: |
237 | /// |
238 | /// ``` |
239 | /// use regex_lite::Regex; |
240 | /// |
241 | /// let re = Regex::new(r"\b\w{13}\b" ).unwrap(); |
242 | /// let hay = "Retroactively relinquishing remunerations is reprehensible." ; |
243 | /// let matches: Vec<_> = re.find_iter(hay).map(|m| m.as_str()).collect(); |
244 | /// assert_eq!(matches, vec![ |
245 | /// "Retroactively" , |
246 | /// "relinquishing" , |
247 | /// "remunerations" , |
248 | /// "reprehensible" , |
249 | /// ]); |
250 | /// ``` |
251 | #[inline ] |
252 | pub fn find_iter<'r, 'h>(&'r self, haystack: &'h str) -> Matches<'r, 'h> { |
253 | Matches { |
254 | haystack, |
255 | it: self.pikevm.find_iter(self.pool.get(), haystack.as_bytes()), |
256 | } |
257 | } |
258 | |
259 | /// This routine searches for the first match of this regex in the haystack |
260 | /// given, and if found, returns not only the overall match but also the |
261 | /// matches of each capture group in the regex. If no match is found, then |
262 | /// `None` is returned. |
263 | /// |
264 | /// Capture group `0` always corresponds to an implicit unnamed group that |
265 | /// includes the entire match. If a match is found, this group is always |
266 | /// present. Subsequent groups may be named and are numbered, starting |
267 | /// at 1, by the order in which the opening parenthesis appears in the |
268 | /// pattern. For example, in the pattern `(?<a>.(?<b>.))(?<c>.)`, `a`, |
269 | /// `b` and `c` correspond to capture group indices `1`, `2` and `3`, |
270 | /// respectively. |
271 | /// |
272 | /// You should only use `captures` if you need access to the capture group |
273 | /// matches. Otherwise, [`Regex::find`] is generally faster for discovering |
274 | /// just the overall match. |
275 | /// |
276 | /// # Example |
277 | /// |
278 | /// Say you have some haystack with movie names and their release years, |
279 | /// like "'Citizen Kane' (1941)". It'd be nice if we could search for |
280 | /// substrings looking like that, while also extracting the movie name and |
281 | /// its release year separately. The example below shows how to do that. |
282 | /// |
283 | /// ``` |
284 | /// use regex_lite::Regex; |
285 | /// |
286 | /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)" ).unwrap(); |
287 | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)." ; |
288 | /// let caps = re.captures(hay).unwrap(); |
289 | /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)" ); |
290 | /// assert_eq!(caps.get(1).unwrap().as_str(), "Citizen Kane" ); |
291 | /// assert_eq!(caps.get(2).unwrap().as_str(), "1941" ); |
292 | /// // You can also access the groups by index using the Index notation. |
293 | /// // Note that this will panic on an invalid index. In this case, these |
294 | /// // accesses are always correct because the overall regex will only |
295 | /// // match when these capture groups match. |
296 | /// assert_eq!(&caps[0], "'Citizen Kane' (1941)" ); |
297 | /// assert_eq!(&caps[1], "Citizen Kane" ); |
298 | /// assert_eq!(&caps[2], "1941" ); |
299 | /// ``` |
300 | /// |
301 | /// Note that the full match is at capture group `0`. Each subsequent |
302 | /// capture group is indexed by the order of its opening `(`. |
303 | /// |
304 | /// We can make this example a bit clearer by using *named* capture groups: |
305 | /// |
306 | /// ``` |
307 | /// use regex_lite::Regex; |
308 | /// |
309 | /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>\d{4})\)" ).unwrap(); |
310 | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)." ; |
311 | /// let caps = re.captures(hay).unwrap(); |
312 | /// assert_eq!(caps.get(0).unwrap().as_str(), "'Citizen Kane' (1941)" ); |
313 | /// assert_eq!(caps.name("title" ).unwrap().as_str(), "Citizen Kane" ); |
314 | /// assert_eq!(caps.name("year" ).unwrap().as_str(), "1941" ); |
315 | /// // You can also access the groups by name using the Index notation. |
316 | /// // Note that this will panic on an invalid group name. In this case, |
317 | /// // these accesses are always correct because the overall regex will |
318 | /// // only match when these capture groups match. |
319 | /// assert_eq!(&caps[0], "'Citizen Kane' (1941)" ); |
320 | /// assert_eq!(&caps["title" ], "Citizen Kane" ); |
321 | /// assert_eq!(&caps["year" ], "1941" ); |
322 | /// ``` |
323 | /// |
324 | /// Here we name the capture groups, which we can access with the `name` |
325 | /// method or the `Index` notation with a `&str`. Note that the named |
326 | /// capture groups are still accessible with `get` or the `Index` notation |
327 | /// with a `usize`. |
328 | /// |
329 | /// The `0`th capture group is always unnamed, so it must always be |
330 | /// accessed with `get(0)` or `[0]`. |
331 | /// |
332 | /// Finally, one other way to to get the matched substrings is with the |
333 | /// [`Captures::extract`] API: |
334 | /// |
335 | /// ``` |
336 | /// use regex_lite::Regex; |
337 | /// |
338 | /// let re = Regex::new(r"'([^']+)'\s+\((\d{4})\)" ).unwrap(); |
339 | /// let hay = "Not my favorite movie: 'Citizen Kane' (1941)." ; |
340 | /// let (full, [title, year]) = re.captures(hay).unwrap().extract(); |
341 | /// assert_eq!(full, "'Citizen Kane' (1941)" ); |
342 | /// assert_eq!(title, "Citizen Kane" ); |
343 | /// assert_eq!(year, "1941" ); |
344 | /// ``` |
345 | #[inline ] |
346 | pub fn captures<'h>(&self, haystack: &'h str) -> Option<Captures<'h>> { |
347 | self.captures_at(haystack, 0) |
348 | } |
349 | |
350 | /// Returns an iterator that yields successive non-overlapping matches in |
351 | /// the given haystack. The iterator yields values of type [`Captures`]. |
352 | /// |
353 | /// This is the same as [`Regex::find_iter`], but instead of only providing |
354 | /// access to the overall match, each value yield includes access to the |
355 | /// matches of all capture groups in the regex. Reporting this extra match |
356 | /// data is potentially costly, so callers should only use `captures_iter` |
357 | /// over `find_iter` when they actually need access to the capture group |
358 | /// matches. |
359 | /// |
360 | /// # Time complexity |
361 | /// |
362 | /// Note that since `captures_iter` runs potentially many searches on the |
363 | /// haystack and since each search has worst case `O(m * n)` time |
364 | /// complexity, the overall worst case time complexity for iteration is |
365 | /// `O(m * n^2)`. |
366 | /// |
367 | /// # Example |
368 | /// |
369 | /// We can use this to find all movie titles and their release years in |
370 | /// some haystack, where the movie is formatted like "'Title' (xxxx)": |
371 | /// |
372 | /// ``` |
373 | /// use regex_lite::Regex; |
374 | /// |
375 | /// let re = Regex::new(r"'([^']+)'\s+\(([0-9]{4})\)" ).unwrap(); |
376 | /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)." ; |
377 | /// let mut movies = vec![]; |
378 | /// for (_, [title, year]) in re.captures_iter(hay).map(|c| c.extract()) { |
379 | /// movies.push((title, year.parse::<i64>()?)); |
380 | /// } |
381 | /// assert_eq!(movies, vec![ |
382 | /// ("Citizen Kane" , 1941), |
383 | /// ("The Wizard of Oz" , 1939), |
384 | /// ("M" , 1931), |
385 | /// ]); |
386 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
387 | /// ``` |
388 | /// |
389 | /// Or with named groups: |
390 | /// |
391 | /// ``` |
392 | /// use regex_lite::Regex; |
393 | /// |
394 | /// let re = Regex::new(r"'(?<title>[^']+)'\s+\((?<year>[0-9]{4})\)" ).unwrap(); |
395 | /// let hay = "'Citizen Kane' (1941), 'The Wizard of Oz' (1939), 'M' (1931)." ; |
396 | /// let mut it = re.captures_iter(hay); |
397 | /// |
398 | /// let caps = it.next().unwrap(); |
399 | /// assert_eq!(&caps["title" ], "Citizen Kane" ); |
400 | /// assert_eq!(&caps["year" ], "1941" ); |
401 | /// |
402 | /// let caps = it.next().unwrap(); |
403 | /// assert_eq!(&caps["title" ], "The Wizard of Oz" ); |
404 | /// assert_eq!(&caps["year" ], "1939" ); |
405 | /// |
406 | /// let caps = it.next().unwrap(); |
407 | /// assert_eq!(&caps["title" ], "M" ); |
408 | /// assert_eq!(&caps["year" ], "1931" ); |
409 | /// ``` |
410 | #[inline ] |
411 | pub fn captures_iter<'r, 'h>( |
412 | &'r self, |
413 | haystack: &'h str, |
414 | ) -> CaptureMatches<'r, 'h> { |
415 | CaptureMatches { |
416 | haystack, |
417 | re: self, |
418 | it: self |
419 | .pikevm |
420 | .captures_iter(self.pool.get(), haystack.as_bytes()), |
421 | } |
422 | } |
423 | |
424 | /// Returns an iterator of substrings of the haystack given, delimited by a |
425 | /// match of the regex. Namely, each element of the iterator corresponds to |
426 | /// a part of the haystack that *isn't* matched by the regular expression. |
427 | /// |
428 | /// # Time complexity |
429 | /// |
430 | /// Since iterators over all matches requires running potentially many |
431 | /// searches on the haystack, and since each search has worst case |
432 | /// `O(m * n)` time complexity, the overall worst case time complexity for |
433 | /// this routine is `O(m * n^2)`. |
434 | /// |
435 | /// # Example |
436 | /// |
437 | /// To split a string delimited by arbitrary amounts of spaces or tabs: |
438 | /// |
439 | /// ``` |
440 | /// use regex_lite::Regex; |
441 | /// |
442 | /// let re = Regex::new(r"[ \t]+" ).unwrap(); |
443 | /// let hay = "a b \t c \td e" ; |
444 | /// let fields: Vec<&str> = re.split(hay).collect(); |
445 | /// assert_eq!(fields, vec!["a" , "b" , "c" , "d" , "e" ]); |
446 | /// ``` |
447 | /// |
448 | /// # Example: more cases |
449 | /// |
450 | /// Basic usage: |
451 | /// |
452 | /// ``` |
453 | /// use regex_lite::Regex; |
454 | /// |
455 | /// let re = Regex::new(r" " ).unwrap(); |
456 | /// let hay = "Mary had a little lamb" ; |
457 | /// let got: Vec<&str> = re.split(hay).collect(); |
458 | /// assert_eq!(got, vec!["Mary" , "had" , "a" , "little" , "lamb" ]); |
459 | /// |
460 | /// let re = Regex::new(r"X" ).unwrap(); |
461 | /// let hay = "" ; |
462 | /// let got: Vec<&str> = re.split(hay).collect(); |
463 | /// assert_eq!(got, vec!["" ]); |
464 | /// |
465 | /// let re = Regex::new(r"X" ).unwrap(); |
466 | /// let hay = "lionXXtigerXleopard" ; |
467 | /// let got: Vec<&str> = re.split(hay).collect(); |
468 | /// assert_eq!(got, vec!["lion" , "" , "tiger" , "leopard" ]); |
469 | /// |
470 | /// let re = Regex::new(r"::" ).unwrap(); |
471 | /// let hay = "lion::tiger::leopard" ; |
472 | /// let got: Vec<&str> = re.split(hay).collect(); |
473 | /// assert_eq!(got, vec!["lion" , "tiger" , "leopard" ]); |
474 | /// ``` |
475 | /// |
476 | /// If a haystack contains multiple contiguous matches, you will end up |
477 | /// with empty spans yielded by the iterator: |
478 | /// |
479 | /// ``` |
480 | /// use regex_lite::Regex; |
481 | /// |
482 | /// let re = Regex::new(r"X" ).unwrap(); |
483 | /// let hay = "XXXXaXXbXc" ; |
484 | /// let got: Vec<&str> = re.split(hay).collect(); |
485 | /// assert_eq!(got, vec!["" , "" , "" , "" , "a" , "" , "b" , "c" ]); |
486 | /// |
487 | /// let re = Regex::new(r"/" ).unwrap(); |
488 | /// let hay = "(///)" ; |
489 | /// let got: Vec<&str> = re.split(hay).collect(); |
490 | /// assert_eq!(got, vec!["(" , "" , "" , ")" ]); |
491 | /// ``` |
492 | /// |
493 | /// Separators at the start or end of a haystack are neighbored by empty |
494 | /// substring. |
495 | /// |
496 | /// ``` |
497 | /// use regex_lite::Regex; |
498 | /// |
499 | /// let re = Regex::new(r"0" ).unwrap(); |
500 | /// let hay = "010" ; |
501 | /// let got: Vec<&str> = re.split(hay).collect(); |
502 | /// assert_eq!(got, vec!["" , "1" , "" ]); |
503 | /// ``` |
504 | /// |
505 | /// When the empty string is used as a regex, it splits at every valid |
506 | /// UTF-8 boundary by default (which includes the beginning and end of the |
507 | /// haystack): |
508 | /// |
509 | /// ``` |
510 | /// use regex_lite::Regex; |
511 | /// |
512 | /// let re = Regex::new(r"" ).unwrap(); |
513 | /// let hay = "rust" ; |
514 | /// let got: Vec<&str> = re.split(hay).collect(); |
515 | /// assert_eq!(got, vec!["" , "r" , "u" , "s" , "t" , "" ]); |
516 | /// |
517 | /// // Splitting by an empty string is UTF-8 aware by default! |
518 | /// let re = Regex::new(r"" ).unwrap(); |
519 | /// let hay = "☃" ; |
520 | /// let got: Vec<&str> = re.split(hay).collect(); |
521 | /// assert_eq!(got, vec!["" , "☃" , "" ]); |
522 | /// ``` |
523 | /// |
524 | /// Contiguous separators (commonly shows up with whitespace), can lead to |
525 | /// possibly surprising behavior. For example, this code is correct: |
526 | /// |
527 | /// ``` |
528 | /// use regex_lite::Regex; |
529 | /// |
530 | /// let re = Regex::new(r" " ).unwrap(); |
531 | /// let hay = " a b c" ; |
532 | /// let got: Vec<&str> = re.split(hay).collect(); |
533 | /// assert_eq!(got, vec!["" , "" , "" , "" , "a" , "" , "b" , "c" ]); |
534 | /// ``` |
535 | /// |
536 | /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want |
537 | /// to match contiguous space characters: |
538 | /// |
539 | /// ``` |
540 | /// use regex_lite::Regex; |
541 | /// |
542 | /// let re = Regex::new(r" +" ).unwrap(); |
543 | /// let hay = " a b c" ; |
544 | /// let got: Vec<&str> = re.split(hay).collect(); |
545 | /// // N.B. This does still include a leading empty span because ' +' |
546 | /// // matches at the beginning of the haystack. |
547 | /// assert_eq!(got, vec!["" , "a" , "b" , "c" ]); |
548 | /// ``` |
549 | #[inline ] |
550 | pub fn split<'r, 'h>(&'r self, haystack: &'h str) -> Split<'r, 'h> { |
551 | Split { haystack, finder: self.find_iter(haystack), last: 0 } |
552 | } |
553 | |
554 | /// Returns an iterator of at most `limit` substrings of the haystack |
555 | /// given, delimited by a match of the regex. (A `limit` of `0` will return |
556 | /// no substrings.) Namely, each element of the iterator corresponds to a |
557 | /// part of the haystack that *isn't* matched by the regular expression. |
558 | /// The remainder of the haystack that is not split will be the last |
559 | /// element in the iterator. |
560 | /// |
561 | /// # Time complexity |
562 | /// |
563 | /// Since iterators over all matches requires running potentially many |
564 | /// searches on the haystack, and since each search has worst case |
565 | /// `O(m * n)` time complexity, the overall worst case time complexity for |
566 | /// this routine is `O(m * n^2)`. |
567 | /// |
568 | /// Although note that the worst case time here has an upper bound given |
569 | /// by the `limit` parameter. |
570 | /// |
571 | /// # Example |
572 | /// |
573 | /// Get the first two words in some haystack: |
574 | /// |
575 | /// ``` |
576 | /// use regex_lite::Regex; |
577 | /// |
578 | /// let re = Regex::new(r"\W+" ).unwrap(); |
579 | /// let hay = "Hey! How are you?" ; |
580 | /// let fields: Vec<&str> = re.splitn(hay, 3).collect(); |
581 | /// assert_eq!(fields, vec!["Hey" , "How" , "are you?" ]); |
582 | /// ``` |
583 | /// |
584 | /// # Examples: more cases |
585 | /// |
586 | /// ``` |
587 | /// use regex_lite::Regex; |
588 | /// |
589 | /// let re = Regex::new(r" " ).unwrap(); |
590 | /// let hay = "Mary had a little lamb" ; |
591 | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
592 | /// assert_eq!(got, vec!["Mary" , "had" , "a little lamb" ]); |
593 | /// |
594 | /// let re = Regex::new(r"X" ).unwrap(); |
595 | /// let hay = "" ; |
596 | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
597 | /// assert_eq!(got, vec!["" ]); |
598 | /// |
599 | /// let re = Regex::new(r"X" ).unwrap(); |
600 | /// let hay = "lionXXtigerXleopard" ; |
601 | /// let got: Vec<&str> = re.splitn(hay, 3).collect(); |
602 | /// assert_eq!(got, vec!["lion" , "" , "tigerXleopard" ]); |
603 | /// |
604 | /// let re = Regex::new(r"::" ).unwrap(); |
605 | /// let hay = "lion::tiger::leopard" ; |
606 | /// let got: Vec<&str> = re.splitn(hay, 2).collect(); |
607 | /// assert_eq!(got, vec!["lion" , "tiger::leopard" ]); |
608 | /// |
609 | /// let re = Regex::new(r"X" ).unwrap(); |
610 | /// let hay = "abcXdef" ; |
611 | /// let got: Vec<&str> = re.splitn(hay, 1).collect(); |
612 | /// assert_eq!(got, vec!["abcXdef" ]); |
613 | /// |
614 | /// let re = Regex::new(r"X" ).unwrap(); |
615 | /// let hay = "abcdef" ; |
616 | /// let got: Vec<&str> = re.splitn(hay, 2).collect(); |
617 | /// assert_eq!(got, vec!["abcdef" ]); |
618 | /// |
619 | /// let re = Regex::new(r"X" ).unwrap(); |
620 | /// let hay = "abcXdef" ; |
621 | /// let got: Vec<&str> = re.splitn(hay, 0).collect(); |
622 | /// assert!(got.is_empty()); |
623 | /// ``` |
624 | #[inline ] |
625 | pub fn splitn<'r, 'h>( |
626 | &'r self, |
627 | haystack: &'h str, |
628 | limit: usize, |
629 | ) -> SplitN<'r, 'h> { |
630 | SplitN { splits: self.split(haystack), limit } |
631 | } |
632 | |
633 | /// Replaces the leftmost-first match in the given haystack with the |
634 | /// replacement provided. The replacement can be a regular string (where |
635 | /// `$N` and `$name` are expanded to match capture groups) or a function |
636 | /// that takes a [`Captures`] and returns the replaced string. |
637 | /// |
638 | /// If no match is found, then the haystack is returned unchanged. In that |
639 | /// case, this implementation will likely return a `Cow::Borrowed` value |
640 | /// such that no allocation is performed. |
641 | /// |
642 | /// # Replacement string syntax |
643 | /// |
644 | /// All instances of `$ref` in the replacement string are replaced with |
645 | /// the substring corresponding to the capture group identified by `ref`. |
646 | /// |
647 | /// `ref` may be an integer corresponding to the index of the capture group |
648 | /// (counted by order of opening parenthesis where `0` is the entire match) |
649 | /// or it can be a name (consisting of letters, digits or underscores) |
650 | /// corresponding to a named capture group. |
651 | /// |
652 | /// If `ref` isn't a valid capture group (whether the name doesn't exist or |
653 | /// isn't a valid index), then it is replaced with the empty string. |
654 | /// |
655 | /// The longest possible name is used. For example, `$1a` looks up the |
656 | /// capture group named `1a` and not the capture group at index `1`. To |
657 | /// exert more precise control over the name, use braces, e.g., `${1}a`. |
658 | /// |
659 | /// To write a literal `$` use `$$`. |
660 | /// |
661 | /// # Example |
662 | /// |
663 | /// Note that this function is polymorphic with respect to the replacement. |
664 | /// In typical usage, this can just be a normal string: |
665 | /// |
666 | /// ``` |
667 | /// use regex_lite::Regex; |
668 | /// |
669 | /// let re = Regex::new(r"[^01]+" ).unwrap(); |
670 | /// assert_eq!(re.replace("1078910" , "" ), "1010" ); |
671 | /// ``` |
672 | /// |
673 | /// But anything satisfying the [`Replacer`] trait will work. For example, |
674 | /// a closure of type `|&Captures| -> String` provides direct access to the |
675 | /// captures corresponding to a match. This allows one to access capturing |
676 | /// group matches easily: |
677 | /// |
678 | /// ``` |
679 | /// use regex_lite::{Captures, Regex}; |
680 | /// |
681 | /// let re = Regex::new(r"([^,\s]+),\s+(\S+)" ).unwrap(); |
682 | /// let result = re.replace("Springsteen, Bruce" , |caps: &Captures| { |
683 | /// format!("{} {}" , &caps[2], &caps[1]) |
684 | /// }); |
685 | /// assert_eq!(result, "Bruce Springsteen" ); |
686 | /// ``` |
687 | /// |
688 | /// But this is a bit cumbersome to use all the time. Instead, a simple |
689 | /// syntax is supported (as described above) that expands `$name` into the |
690 | /// corresponding capture group. Here's the last example, but using this |
691 | /// expansion technique with named capture groups: |
692 | /// |
693 | /// ``` |
694 | /// use regex_lite::Regex; |
695 | /// |
696 | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)" ).unwrap(); |
697 | /// let result = re.replace("Springsteen, Bruce" , "$first $last" ); |
698 | /// assert_eq!(result, "Bruce Springsteen" ); |
699 | /// ``` |
700 | /// |
701 | /// Note that using `$2` instead of `$first` or `$1` instead of `$last` |
702 | /// would produce the same result. To write a literal `$` use `$$`. |
703 | /// |
704 | /// Sometimes the replacement string requires use of curly braces to |
705 | /// delineate a capture group replacement when it is adjacent to some other |
706 | /// literal text. For example, if we wanted to join two words together with |
707 | /// an underscore: |
708 | /// |
709 | /// ``` |
710 | /// use regex_lite::Regex; |
711 | /// |
712 | /// let re = Regex::new(r"(?<first>\w+)\s+(?<second>\w+)" ).unwrap(); |
713 | /// let result = re.replace("deep fried" , "${first}_$second" ); |
714 | /// assert_eq!(result, "deep_fried" ); |
715 | /// ``` |
716 | /// |
717 | /// Without the curly braces, the capture group name `first_` would be |
718 | /// used, and since it doesn't exist, it would be replaced with the empty |
719 | /// string. |
720 | /// |
721 | /// Finally, sometimes you just want to replace a literal string with no |
722 | /// regard for capturing group expansion. This can be done by wrapping a |
723 | /// string with [`NoExpand`]: |
724 | /// |
725 | /// ``` |
726 | /// use regex_lite::{NoExpand, Regex}; |
727 | /// |
728 | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)" ).unwrap(); |
729 | /// let result = re.replace("Springsteen, Bruce" , NoExpand("$2 $last" )); |
730 | /// assert_eq!(result, "$2 $last" ); |
731 | /// ``` |
732 | /// |
733 | /// Using `NoExpand` may also be faster, since the replacement string won't |
734 | /// need to be parsed for the `$` syntax. |
735 | #[inline ] |
736 | pub fn replace<'h, R: Replacer>( |
737 | &self, |
738 | haystack: &'h str, |
739 | rep: R, |
740 | ) -> Cow<'h, str> { |
741 | self.replacen(haystack, 1, rep) |
742 | } |
743 | |
744 | /// Replaces all non-overlapping matches in the haystack with the |
745 | /// replacement provided. This is the same as calling `replacen` with |
746 | /// `limit` set to `0`. |
747 | /// |
748 | /// The documentation for [`Regex::replace`] goes into more detail about |
749 | /// what kinds of replacement strings are supported. |
750 | /// |
751 | /// # Time complexity |
752 | /// |
753 | /// Since iterators over all matches requires running potentially many |
754 | /// searches on the haystack, and since each search has worst case |
755 | /// `O(m * n)` time complexity, the overall worst case time complexity for |
756 | /// this routine is `O(m * n^2)`. |
757 | /// |
758 | /// # Fallibility |
759 | /// |
760 | /// If you need to write a replacement routine where any individual |
761 | /// replacement might "fail," doing so with this API isn't really feasible |
762 | /// because there's no way to stop the search process if a replacement |
763 | /// fails. Instead, if you need this functionality, you should consider |
764 | /// implementing your own replacement routine: |
765 | /// |
766 | /// ``` |
767 | /// use regex_lite::{Captures, Regex}; |
768 | /// |
769 | /// fn replace_all<E>( |
770 | /// re: &Regex, |
771 | /// haystack: &str, |
772 | /// replacement: impl Fn(&Captures) -> Result<String, E>, |
773 | /// ) -> Result<String, E> { |
774 | /// let mut new = String::with_capacity(haystack.len()); |
775 | /// let mut last_match = 0; |
776 | /// for caps in re.captures_iter(haystack) { |
777 | /// let m = caps.get(0).unwrap(); |
778 | /// new.push_str(&haystack[last_match..m.start()]); |
779 | /// new.push_str(&replacement(&caps)?); |
780 | /// last_match = m.end(); |
781 | /// } |
782 | /// new.push_str(&haystack[last_match..]); |
783 | /// Ok(new) |
784 | /// } |
785 | /// |
786 | /// // Let's replace each word with the number of bytes in that word. |
787 | /// // But if we see a word that is "too long," we'll give up. |
788 | /// let re = Regex::new(r"\w+" ).unwrap(); |
789 | /// let replacement = |caps: &Captures| -> Result<String, &'static str> { |
790 | /// if caps[0].len() >= 5 { |
791 | /// return Err("word too long" ); |
792 | /// } |
793 | /// Ok(caps[0].len().to_string()) |
794 | /// }; |
795 | /// assert_eq!( |
796 | /// Ok("2 3 3 3?" .to_string()), |
797 | /// replace_all(&re, "hi how are you?" , &replacement), |
798 | /// ); |
799 | /// assert!(replace_all(&re, "hi there" , &replacement).is_err()); |
800 | /// ``` |
801 | /// |
802 | /// # Example |
803 | /// |
804 | /// This example shows how to flip the order of whitespace delimited |
805 | /// fields, and normalizes the whitespace that delimits the fields: |
806 | /// |
807 | /// ``` |
808 | /// use regex_lite::Regex; |
809 | /// |
810 | /// let re = Regex::new(r"(?m)^(\S+)\s+(\S+)$" ).unwrap(); |
811 | /// let hay = " |
812 | /// Greetings 1973 |
813 | /// Wild \t1973 |
814 | /// BornToRun \t\t\t\t1975 |
815 | /// Darkness 1978 |
816 | /// TheRiver 1980 |
817 | /// " ; |
818 | /// let new = re.replace_all(hay, "$2 $1" ); |
819 | /// assert_eq!(new, " |
820 | /// 1973 Greetings |
821 | /// 1973 Wild |
822 | /// 1975 BornToRun |
823 | /// 1978 Darkness |
824 | /// 1980 TheRiver |
825 | /// " ); |
826 | /// ``` |
827 | #[inline ] |
828 | pub fn replace_all<'h, R: Replacer>( |
829 | &self, |
830 | haystack: &'h str, |
831 | rep: R, |
832 | ) -> Cow<'h, str> { |
833 | self.replacen(haystack, 0, rep) |
834 | } |
835 | |
836 | /// Replaces at most `limit` non-overlapping matches in the haystack with |
837 | /// the replacement provided. If `limit` is `0`, then all non-overlapping |
838 | /// matches are replaced. That is, `Regex::replace_all(hay, rep)` is |
839 | /// equivalent to `Regex::replacen(hay, 0, rep)`. |
840 | /// |
841 | /// The documentation for [`Regex::replace`] goes into more detail about |
842 | /// what kinds of replacement strings are supported. |
843 | /// |
844 | /// # Time complexity |
845 | /// |
846 | /// Since iterators over all matches requires running potentially many |
847 | /// searches on the haystack, and since each search has worst case |
848 | /// `O(m * n)` time complexity, the overall worst case time complexity for |
849 | /// this routine is `O(m * n^2)`. |
850 | /// |
851 | /// Although note that the worst case time here has an upper bound given |
852 | /// by the `limit` parameter. |
853 | /// |
854 | /// # Fallibility |
855 | /// |
856 | /// See the corresponding section in the docs for [`Regex::replace_all`] |
857 | /// for tips on how to deal with a replacement routine that can fail. |
858 | /// |
859 | /// # Example |
860 | /// |
861 | /// This example shows how to flip the order of whitespace delimited |
862 | /// fields, and normalizes the whitespace that delimits the fields. But we |
863 | /// only do it for the first two matches. |
864 | /// |
865 | /// ``` |
866 | /// use regex_lite::Regex; |
867 | /// |
868 | /// let re = Regex::new(r"(?m)^(\S+)\s+(\S+)$" ).unwrap(); |
869 | /// let hay = " |
870 | /// Greetings 1973 |
871 | /// Wild \t1973 |
872 | /// BornToRun \t\t\t\t1975 |
873 | /// Darkness 1978 |
874 | /// TheRiver 1980 |
875 | /// " ; |
876 | /// let new = re.replacen(hay, 2, "$2 $1" ); |
877 | /// assert_eq!(new, " |
878 | /// 1973 Greetings |
879 | /// 1973 Wild |
880 | /// BornToRun \t\t\t\t1975 |
881 | /// Darkness 1978 |
882 | /// TheRiver 1980 |
883 | /// " ); |
884 | /// ``` |
885 | #[inline ] |
886 | pub fn replacen<'h, R: Replacer>( |
887 | &self, |
888 | haystack: &'h str, |
889 | limit: usize, |
890 | mut rep: R, |
891 | ) -> Cow<'h, str> { |
892 | // If we know that the replacement doesn't have any capture expansions, |
893 | // then we can use the fast path. The fast path can make a tremendous |
894 | // difference: |
895 | // |
896 | // 1) We use `find_iter` instead of `captures_iter`. Not asking for |
897 | // captures generally makes the regex engines faster. |
898 | // 2) We don't need to look up all of the capture groups and do |
899 | // replacements inside the replacement string. We just push it |
900 | // at each match and be done with it. |
901 | if let Some(rep) = rep.no_expansion() { |
902 | let mut it = self.find_iter(haystack).enumerate().peekable(); |
903 | if it.peek().is_none() { |
904 | return Cow::Borrowed(haystack); |
905 | } |
906 | let mut new = String::with_capacity(haystack.len()); |
907 | let mut last_match = 0; |
908 | for (i, m) in it { |
909 | new.push_str(&haystack[last_match..m.start()]); |
910 | new.push_str(&rep); |
911 | last_match = m.end(); |
912 | if limit > 0 && i >= limit - 1 { |
913 | break; |
914 | } |
915 | } |
916 | new.push_str(&haystack[last_match..]); |
917 | return Cow::Owned(new); |
918 | } |
919 | |
920 | // The slower path, which we use if the replacement needs access to |
921 | // capture groups. |
922 | let mut it = self.captures_iter(haystack).enumerate().peekable(); |
923 | if it.peek().is_none() { |
924 | return Cow::Borrowed(haystack); |
925 | } |
926 | let mut new = String::with_capacity(haystack.len()); |
927 | let mut last_match = 0; |
928 | for (i, cap) in it { |
929 | // unwrap on 0 is OK because captures only reports matches |
930 | let m = cap.get(0).unwrap(); |
931 | new.push_str(&haystack[last_match..m.start()]); |
932 | rep.replace_append(&cap, &mut new); |
933 | last_match = m.end(); |
934 | if limit > 0 && i >= limit - 1 { |
935 | break; |
936 | } |
937 | } |
938 | new.push_str(&haystack[last_match..]); |
939 | Cow::Owned(new) |
940 | } |
941 | } |
942 | |
943 | /// A group of advanced or "lower level" search methods. Some methods permit |
944 | /// starting the search at a position greater than `0` in the haystack. Other |
945 | /// methods permit reusing allocations, for example, when extracting the |
946 | /// matches for capture groups. |
947 | impl Regex { |
948 | /// Returns the end byte offset of the first match in the haystack given. |
949 | /// |
950 | /// This method may have the same performance characteristics as |
951 | /// `is_match`. Behaviorlly, it doesn't just report whether it match |
952 | /// occurs, but also the end offset for a match. In particular, the offset |
953 | /// returned *may be shorter* than the proper end of the leftmost-first |
954 | /// match that you would find via [`Regex::find`]. |
955 | /// |
956 | /// Note that it is not guaranteed that this routine finds the shortest or |
957 | /// "earliest" possible match. Instead, the main idea of this API is that |
958 | /// it returns the offset at the point at which the internal regex engine |
959 | /// has determined that a match has occurred. This may vary depending on |
960 | /// which internal regex engine is used, and thus, the offset itself may |
961 | /// change based on internal heuristics. |
962 | /// |
963 | /// # Example |
964 | /// |
965 | /// Typically, `a+` would match the entire first sequence of `a` in some |
966 | /// haystack, but `shortest_match` *may* give up as soon as it sees the |
967 | /// first `a`. |
968 | /// |
969 | /// ``` |
970 | /// use regex_lite::Regex; |
971 | /// |
972 | /// let re = Regex::new(r"a+" ).unwrap(); |
973 | /// let offset = re.shortest_match("aaaaa" ).unwrap(); |
974 | /// assert_eq!(offset, 1); |
975 | /// ``` |
976 | #[inline ] |
977 | pub fn shortest_match(&self, haystack: &str) -> Option<usize> { |
978 | self.shortest_match_at(haystack, 0) |
979 | } |
980 | |
981 | /// Returns the same as [`Regex::shortest_match`], but starts the search at |
982 | /// the given offset. |
983 | /// |
984 | /// The significance of the starting point is that it takes the surrounding |
985 | /// context into consideration. For example, the `\A` anchor can only match |
986 | /// when `start == 0`. |
987 | /// |
988 | /// If a match is found, the offset returned is relative to the beginning |
989 | /// of the haystack, not the beginning of the search. |
990 | /// |
991 | /// # Panics |
992 | /// |
993 | /// This panics when `start >= haystack.len() + 1`. |
994 | /// |
995 | /// # Example |
996 | /// |
997 | /// This example shows the significance of `start` by demonstrating how it |
998 | /// can be used to permit look-around assertions in a regex to take the |
999 | /// surrounding context into account. |
1000 | /// |
1001 | /// ``` |
1002 | /// use regex_lite::Regex; |
1003 | /// |
1004 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
1005 | /// let hay = "eschew" ; |
1006 | /// // We get a match here, but it's probably not intended. |
1007 | /// assert_eq!(re.shortest_match(&hay[2..]), Some(4)); |
1008 | /// // No match because the assertions take the context into account. |
1009 | /// assert_eq!(re.shortest_match_at(hay, 2), None); |
1010 | /// ``` |
1011 | #[inline ] |
1012 | pub fn shortest_match_at( |
1013 | &self, |
1014 | haystack: &str, |
1015 | start: usize, |
1016 | ) -> Option<usize> { |
1017 | let mut cache = self.pool.get(); |
1018 | let mut slots = [None, None]; |
1019 | let matched = self.pikevm.search( |
1020 | &mut cache, |
1021 | haystack.as_bytes(), |
1022 | start, |
1023 | haystack.len(), |
1024 | true, |
1025 | &mut slots, |
1026 | ); |
1027 | if !matched { |
1028 | return None; |
1029 | } |
1030 | Some(slots[1].unwrap().get()) |
1031 | } |
1032 | |
1033 | /// Returns the same as [`Regex::is_match`], but starts the search at the |
1034 | /// given offset. |
1035 | /// |
1036 | /// The significance of the starting point is that it takes the surrounding |
1037 | /// context into consideration. For example, the `\A` anchor can only |
1038 | /// match when `start == 0`. |
1039 | /// |
1040 | /// # Panics |
1041 | /// |
1042 | /// This panics when `start >= haystack.len() + 1`. |
1043 | /// |
1044 | /// # Example |
1045 | /// |
1046 | /// This example shows the significance of `start` by demonstrating how it |
1047 | /// can be used to permit look-around assertions in a regex to take the |
1048 | /// surrounding context into account. |
1049 | /// |
1050 | /// ``` |
1051 | /// use regex_lite::Regex; |
1052 | /// |
1053 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
1054 | /// let hay = "eschew" ; |
1055 | /// // We get a match here, but it's probably not intended. |
1056 | /// assert!(re.is_match(&hay[2..])); |
1057 | /// // No match because the assertions take the context into account. |
1058 | /// assert!(!re.is_match_at(hay, 2)); |
1059 | /// ``` |
1060 | #[inline ] |
1061 | pub fn is_match_at(&self, haystack: &str, start: usize) -> bool { |
1062 | let mut cache = self.pool.get(); |
1063 | self.pikevm.search( |
1064 | &mut cache, |
1065 | haystack.as_bytes(), |
1066 | start, |
1067 | haystack.len(), |
1068 | true, |
1069 | &mut [], |
1070 | ) |
1071 | } |
1072 | |
1073 | /// Returns the same as [`Regex::find`], but starts the search at the given |
1074 | /// offset. |
1075 | /// |
1076 | /// The significance of the starting point is that it takes the surrounding |
1077 | /// context into consideration. For example, the `\A` anchor can only |
1078 | /// match when `start == 0`. |
1079 | /// |
1080 | /// # Panics |
1081 | /// |
1082 | /// This panics when `start >= haystack.len() + 1`. |
1083 | /// |
1084 | /// # Example |
1085 | /// |
1086 | /// This example shows the significance of `start` by demonstrating how it |
1087 | /// can be used to permit look-around assertions in a regex to take the |
1088 | /// surrounding context into account. |
1089 | /// |
1090 | /// ``` |
1091 | /// use regex_lite::Regex; |
1092 | /// |
1093 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
1094 | /// let hay = "eschew" ; |
1095 | /// // We get a match here, but it's probably not intended. |
1096 | /// assert_eq!(re.find(&hay[2..]).map(|m| m.range()), Some(0..4)); |
1097 | /// // No match because the assertions take the context into account. |
1098 | /// assert_eq!(re.find_at(hay, 2), None); |
1099 | /// ``` |
1100 | #[inline ] |
1101 | pub fn find_at<'h>( |
1102 | &self, |
1103 | haystack: &'h str, |
1104 | start: usize, |
1105 | ) -> Option<Match<'h>> { |
1106 | let mut cache = self.pool.get(); |
1107 | let mut slots = [None, None]; |
1108 | let matched = self.pikevm.search( |
1109 | &mut cache, |
1110 | haystack.as_bytes(), |
1111 | start, |
1112 | haystack.len(), |
1113 | false, |
1114 | &mut slots, |
1115 | ); |
1116 | if !matched { |
1117 | return None; |
1118 | } |
1119 | let (start, end) = (slots[0].unwrap().get(), slots[1].unwrap().get()); |
1120 | Some(Match::new(haystack, start, end)) |
1121 | } |
1122 | |
1123 | /// Returns the same as [`Regex::captures`], but starts the search at the |
1124 | /// given offset. |
1125 | /// |
1126 | /// The significance of the starting point is that it takes the surrounding |
1127 | /// context into consideration. For example, the `\A` anchor can only |
1128 | /// match when `start == 0`. |
1129 | /// |
1130 | /// # Panics |
1131 | /// |
1132 | /// This panics when `start >= haystack.len() + 1`. |
1133 | /// |
1134 | /// # Example |
1135 | /// |
1136 | /// This example shows the significance of `start` by demonstrating how it |
1137 | /// can be used to permit look-around assertions in a regex to take the |
1138 | /// surrounding context into account. |
1139 | /// |
1140 | /// ``` |
1141 | /// use regex_lite::Regex; |
1142 | /// |
1143 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
1144 | /// let hay = "eschew" ; |
1145 | /// // We get a match here, but it's probably not intended. |
1146 | /// assert_eq!(&re.captures(&hay[2..]).unwrap()[0], "chew" ); |
1147 | /// // No match because the assertions take the context into account. |
1148 | /// assert!(re.captures_at(hay, 2).is_none()); |
1149 | /// ``` |
1150 | #[inline ] |
1151 | pub fn captures_at<'h>( |
1152 | &self, |
1153 | haystack: &'h str, |
1154 | start: usize, |
1155 | ) -> Option<Captures<'h>> { |
1156 | let mut caps = Captures { |
1157 | haystack, |
1158 | slots: self.capture_locations(), |
1159 | pikevm: Arc::clone(&self.pikevm), |
1160 | }; |
1161 | let mut cache = self.pool.get(); |
1162 | let matched = self.pikevm.search( |
1163 | &mut cache, |
1164 | haystack.as_bytes(), |
1165 | start, |
1166 | haystack.len(), |
1167 | false, |
1168 | &mut caps.slots.0, |
1169 | ); |
1170 | if !matched { |
1171 | return None; |
1172 | } |
1173 | Some(caps) |
1174 | } |
1175 | |
1176 | /// This is like [`Regex::captures`], but writes the byte offsets of each |
1177 | /// capture group match into the locations given. |
1178 | /// |
1179 | /// A [`CaptureLocations`] stores the same byte offsets as a [`Captures`], |
1180 | /// but does *not* store a reference to the haystack. This makes its API |
1181 | /// a bit lower level and less convenience. But in exchange, callers |
1182 | /// may allocate their own `CaptureLocations` and reuse it for multiple |
1183 | /// searches. This may be helpful if allocating a `Captures` shows up in a |
1184 | /// profile as too costly. |
1185 | /// |
1186 | /// To create a `CaptureLocations` value, use the |
1187 | /// [`Regex::capture_locations`] method. |
1188 | /// |
1189 | /// This also returns the overall match if one was found. When a match is |
1190 | /// found, its offsets are also always stored in `locs` at index `0`. |
1191 | /// |
1192 | /// # Panics |
1193 | /// |
1194 | /// This routine may panic if the given `CaptureLocations` was not created |
1195 | /// by this regex. |
1196 | /// |
1197 | /// # Example |
1198 | /// |
1199 | /// ``` |
1200 | /// use regex_lite::Regex; |
1201 | /// |
1202 | /// let re = Regex::new(r"^([a-z]+)=(\S*)$" ).unwrap(); |
1203 | /// let mut locs = re.capture_locations(); |
1204 | /// assert!(re.captures_read(&mut locs, "id=foo123" ).is_some()); |
1205 | /// assert_eq!(Some((0, 9)), locs.get(0)); |
1206 | /// assert_eq!(Some((0, 2)), locs.get(1)); |
1207 | /// assert_eq!(Some((3, 9)), locs.get(2)); |
1208 | /// ``` |
1209 | #[inline ] |
1210 | pub fn captures_read<'h>( |
1211 | &self, |
1212 | locs: &mut CaptureLocations, |
1213 | haystack: &'h str, |
1214 | ) -> Option<Match<'h>> { |
1215 | self.captures_read_at(locs, haystack, 0) |
1216 | } |
1217 | |
1218 | /// Returns the same as [`Regex::captures_read`], but starts the search at |
1219 | /// the given offset. |
1220 | /// |
1221 | /// The significance of the starting point is that it takes the surrounding |
1222 | /// context into consideration. For example, the `\A` anchor can only |
1223 | /// match when `start == 0`. |
1224 | /// |
1225 | /// # Panics |
1226 | /// |
1227 | /// This panics when `start >= haystack.len() + 1`. |
1228 | /// |
1229 | /// This routine may also panic if the given `CaptureLocations` was not |
1230 | /// created by this regex. |
1231 | /// |
1232 | /// # Example |
1233 | /// |
1234 | /// This example shows the significance of `start` by demonstrating how it |
1235 | /// can be used to permit look-around assertions in a regex to take the |
1236 | /// surrounding context into account. |
1237 | /// |
1238 | /// ``` |
1239 | /// use regex_lite::Regex; |
1240 | /// |
1241 | /// let re = Regex::new(r"\bchew\b" ).unwrap(); |
1242 | /// let hay = "eschew" ; |
1243 | /// let mut locs = re.capture_locations(); |
1244 | /// // We get a match here, but it's probably not intended. |
1245 | /// assert!(re.captures_read(&mut locs, &hay[2..]).is_some()); |
1246 | /// // No match because the assertions take the context into account. |
1247 | /// assert!(re.captures_read_at(&mut locs, hay, 2).is_none()); |
1248 | /// ``` |
1249 | #[inline ] |
1250 | pub fn captures_read_at<'h>( |
1251 | &self, |
1252 | locs: &mut CaptureLocations, |
1253 | haystack: &'h str, |
1254 | start: usize, |
1255 | ) -> Option<Match<'h>> { |
1256 | let mut cache = self.pool.get(); |
1257 | let matched = self.pikevm.search( |
1258 | &mut cache, |
1259 | haystack.as_bytes(), |
1260 | start, |
1261 | haystack.len(), |
1262 | false, |
1263 | &mut locs.0, |
1264 | ); |
1265 | if !matched { |
1266 | return None; |
1267 | } |
1268 | let (start, end) = locs.get(0).unwrap(); |
1269 | Some(Match::new(haystack, start, end)) |
1270 | } |
1271 | } |
1272 | |
1273 | /// Auxiliary methods. |
1274 | impl Regex { |
1275 | /// Returns the original string of this regex. |
1276 | /// |
1277 | /// # Example |
1278 | /// |
1279 | /// ``` |
1280 | /// use regex_lite::Regex; |
1281 | /// |
1282 | /// let re = Regex::new(r"foo\w+bar" ).unwrap(); |
1283 | /// assert_eq!(re.as_str(), r"foo\w+bar" ); |
1284 | /// ``` |
1285 | #[inline ] |
1286 | pub fn as_str(&self) -> &str { |
1287 | &self.pikevm.nfa().pattern() |
1288 | } |
1289 | |
1290 | /// Returns an iterator over the capture names in this regex. |
1291 | /// |
1292 | /// The iterator returned yields elements of type `Option<&str>`. That is, |
1293 | /// the iterator yields values for all capture groups, even ones that are |
1294 | /// unnamed. The order of the groups corresponds to the order of the group's |
1295 | /// corresponding opening parenthesis. |
1296 | /// |
1297 | /// The first element of the iterator always yields the group corresponding |
1298 | /// to the overall match, and this group is always unnamed. Therefore, the |
1299 | /// iterator always yields at least one group. |
1300 | /// |
1301 | /// # Example |
1302 | /// |
1303 | /// This shows basic usage with a mix of named and unnamed capture groups: |
1304 | /// |
1305 | /// ``` |
1306 | /// use regex_lite::Regex; |
1307 | /// |
1308 | /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)" ).unwrap(); |
1309 | /// let mut names = re.capture_names(); |
1310 | /// assert_eq!(names.next(), Some(None)); |
1311 | /// assert_eq!(names.next(), Some(Some("a" ))); |
1312 | /// assert_eq!(names.next(), Some(Some("b" ))); |
1313 | /// assert_eq!(names.next(), Some(None)); |
1314 | /// // the '(?:.)' group is non-capturing and so doesn't appear here! |
1315 | /// assert_eq!(names.next(), Some(Some("c" ))); |
1316 | /// assert_eq!(names.next(), None); |
1317 | /// ``` |
1318 | /// |
1319 | /// The iterator always yields at least one element, even for regexes with |
1320 | /// no capture groups and even for regexes that can never match: |
1321 | /// |
1322 | /// ``` |
1323 | /// use regex_lite::Regex; |
1324 | /// |
1325 | /// let re = Regex::new(r"" ).unwrap(); |
1326 | /// let mut names = re.capture_names(); |
1327 | /// assert_eq!(names.next(), Some(None)); |
1328 | /// assert_eq!(names.next(), None); |
1329 | /// |
1330 | /// let re = Regex::new(r"[^\s\S]" ).unwrap(); |
1331 | /// let mut names = re.capture_names(); |
1332 | /// assert_eq!(names.next(), Some(None)); |
1333 | /// assert_eq!(names.next(), None); |
1334 | /// ``` |
1335 | #[inline ] |
1336 | pub fn capture_names(&self) -> CaptureNames<'_> { |
1337 | CaptureNames(self.pikevm.nfa().capture_names()) |
1338 | } |
1339 | |
1340 | /// Returns the number of captures groups in this regex. |
1341 | /// |
1342 | /// This includes all named and unnamed groups, including the implicit |
1343 | /// unnamed group that is always present and corresponds to the entire |
1344 | /// match. |
1345 | /// |
1346 | /// Since the implicit unnamed group is always included in this length, the |
1347 | /// length returned is guaranteed to be greater than zero. |
1348 | /// |
1349 | /// # Example |
1350 | /// |
1351 | /// ``` |
1352 | /// use regex_lite::Regex; |
1353 | /// |
1354 | /// let re = Regex::new(r"foo" ).unwrap(); |
1355 | /// assert_eq!(1, re.captures_len()); |
1356 | /// |
1357 | /// let re = Regex::new(r"(foo)" ).unwrap(); |
1358 | /// assert_eq!(2, re.captures_len()); |
1359 | /// |
1360 | /// let re = Regex::new(r"(?<a>.(?<b>.))(.)(?:.)(?<c>.)" ).unwrap(); |
1361 | /// assert_eq!(5, re.captures_len()); |
1362 | /// |
1363 | /// let re = Regex::new(r"[^\s\S]" ).unwrap(); |
1364 | /// assert_eq!(1, re.captures_len()); |
1365 | /// ``` |
1366 | #[inline ] |
1367 | pub fn captures_len(&self) -> usize { |
1368 | self.pikevm.nfa().group_len() |
1369 | } |
1370 | |
1371 | /// Returns the total number of capturing groups that appear in every |
1372 | /// possible match. |
1373 | /// |
1374 | /// If the number of capture groups can vary depending on the match, then |
1375 | /// this returns `None`. That is, a value is only returned when the number |
1376 | /// of matching groups is invariant or "static." |
1377 | /// |
1378 | /// Note that like [`Regex::captures_len`], this **does** include the |
1379 | /// implicit capturing group corresponding to the entire match. Therefore, |
1380 | /// when a non-None value is returned, it is guaranteed to be at least `1`. |
1381 | /// Stated differently, a return value of `Some(0)` is impossible. |
1382 | /// |
1383 | /// # Example |
1384 | /// |
1385 | /// This shows a few cases where a static number of capture groups is |
1386 | /// available and a few cases where it is not. |
1387 | /// |
1388 | /// ``` |
1389 | /// use regex_lite::Regex; |
1390 | /// |
1391 | /// let len = |pattern| { |
1392 | /// Regex::new(pattern).map(|re| re.static_captures_len()) |
1393 | /// }; |
1394 | /// |
1395 | /// assert_eq!(Some(1), len("a" )?); |
1396 | /// assert_eq!(Some(2), len("(a)" )?); |
1397 | /// assert_eq!(Some(2), len("(a)|(b)" )?); |
1398 | /// assert_eq!(Some(3), len("(a)(b)|(c)(d)" )?); |
1399 | /// assert_eq!(None, len("(a)|b" )?); |
1400 | /// assert_eq!(None, len("a|(b)" )?); |
1401 | /// assert_eq!(None, len("(b)*" )?); |
1402 | /// assert_eq!(Some(2), len("(b)+" )?); |
1403 | /// |
1404 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1405 | /// ``` |
1406 | #[inline ] |
1407 | pub fn static_captures_len(&self) -> Option<usize> { |
1408 | self.pikevm |
1409 | .nfa() |
1410 | .static_explicit_captures_len() |
1411 | .map(|len| len.saturating_add(1)) |
1412 | } |
1413 | |
1414 | /// Returns a fresh allocated set of capture locations that can |
1415 | /// be reused in multiple calls to [`Regex::captures_read`] or |
1416 | /// [`Regex::captures_read_at`]. |
1417 | /// |
1418 | /// The returned locations can be used for any subsequent search for this |
1419 | /// particular regex. There is no guarantee that it is correct to use for |
1420 | /// other regexes, even if they have the same number of capture groups. |
1421 | /// |
1422 | /// # Example |
1423 | /// |
1424 | /// ``` |
1425 | /// use regex_lite::Regex; |
1426 | /// |
1427 | /// let re = Regex::new(r"(.)(.)(\w+)" ).unwrap(); |
1428 | /// let mut locs = re.capture_locations(); |
1429 | /// assert!(re.captures_read(&mut locs, "Padron" ).is_some()); |
1430 | /// assert_eq!(locs.get(0), Some((0, 6))); |
1431 | /// assert_eq!(locs.get(1), Some((0, 1))); |
1432 | /// assert_eq!(locs.get(2), Some((1, 2))); |
1433 | /// assert_eq!(locs.get(3), Some((2, 6))); |
1434 | /// ``` |
1435 | #[inline ] |
1436 | pub fn capture_locations(&self) -> CaptureLocations { |
1437 | // OK because NFA construction would have failed if this overflowed. |
1438 | let len = self.pikevm.nfa().group_len().checked_mul(2).unwrap(); |
1439 | CaptureLocations(vec![None; len]) |
1440 | } |
1441 | } |
1442 | |
1443 | /// Represents a single match of a regex in a haystack. |
1444 | /// |
1445 | /// A `Match` contains both the start and end byte offsets of the match and the |
1446 | /// actual substring corresponding to the range of those byte offsets. It is |
1447 | /// guaranteed that `start <= end`. When `start == end`, the match is empty. |
1448 | /// |
1449 | /// Since this `Match` can only be produced by the top-level `Regex` APIs |
1450 | /// that only support searching UTF-8 encoded strings, the byte offsets for a |
1451 | /// `Match` are guaranteed to fall on valid UTF-8 codepoint boundaries. That |
1452 | /// is, slicing a `&str` with [`Match::range`] is guaranteed to never panic. |
1453 | /// |
1454 | /// Values with this type are created by [`Regex::find`] or |
1455 | /// [`Regex::find_iter`]. Other APIs can create `Match` values too. For |
1456 | /// example, [`Captures::get`]. |
1457 | /// |
1458 | /// The lifetime parameter `'h` refers to the lifetime of the matched of the |
1459 | /// haystack that this match was produced from. |
1460 | /// |
1461 | /// # Numbering |
1462 | /// |
1463 | /// The byte offsets in a `Match` form a half-open interval. That is, the |
1464 | /// start of the range is inclusive and the end of the range is exclusive. |
1465 | /// For example, given a haystack `abcFOOxyz` and a match of `FOO`, its byte |
1466 | /// offset range starts at `3` and ends at `6`. `3` corresponds to `F` and |
1467 | /// `6` corresponds to `x`, which is one past the end of the match. This |
1468 | /// corresponds to the same kind of slicing that Rust uses. |
1469 | /// |
1470 | /// For more on why this was chosen over other schemes (aside from being |
1471 | /// consistent with how Rust the language works), see [this discussion] and |
1472 | /// [Dijkstra's note on a related topic][note]. |
1473 | /// |
1474 | /// [this discussion]: https://github.com/rust-lang/regex/discussions/866 |
1475 | /// [note]: https://www.cs.utexas.edu/users/EWD/transcriptions/EWD08xx/EWD831.html |
1476 | /// |
1477 | /// # Example |
1478 | /// |
1479 | /// This example shows the value of each of the methods on `Match` for a |
1480 | /// particular search. |
1481 | /// |
1482 | /// ``` |
1483 | /// use regex_lite::Regex; |
1484 | /// |
1485 | /// let re = Regex::new(r"\d+" ).unwrap(); |
1486 | /// let hay = "numbers: 1234" ; |
1487 | /// let m = re.find(hay).unwrap(); |
1488 | /// assert_eq!(9, m.start()); |
1489 | /// assert_eq!(13, m.end()); |
1490 | /// assert!(!m.is_empty()); |
1491 | /// assert_eq!(4, m.len()); |
1492 | /// assert_eq!(9..13, m.range()); |
1493 | /// assert_eq!("1234" , m.as_str()); |
1494 | /// ``` |
1495 | #[derive (Copy, Clone, Eq, PartialEq)] |
1496 | pub struct Match<'h> { |
1497 | haystack: &'h str, |
1498 | start: usize, |
1499 | end: usize, |
1500 | } |
1501 | |
1502 | impl<'h> Match<'h> { |
1503 | /// Creates a new match from the given haystack and byte offsets. |
1504 | #[inline ] |
1505 | fn new(haystack: &'h str, start: usize, end: usize) -> Match<'h> { |
1506 | Match { haystack, start, end } |
1507 | } |
1508 | |
1509 | /// Returns the byte offset of the start of the match in the haystack. The |
1510 | /// start of the match corresponds to the position where the match begins |
1511 | /// and includes the first byte in the match. |
1512 | /// |
1513 | /// It is guaranteed that `Match::start() <= Match::end()`. |
1514 | /// |
1515 | /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That |
1516 | /// is, it will never be an offset that appears between the UTF-8 code |
1517 | /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is |
1518 | /// always safe to slice the corresponding haystack using this offset. |
1519 | #[inline ] |
1520 | pub fn start(&self) -> usize { |
1521 | self.start |
1522 | } |
1523 | |
1524 | /// Returns the byte offset of the end of the match in the haystack. The |
1525 | /// end of the match corresponds to the byte immediately following the last |
1526 | /// byte in the match. This means that `&slice[start..end]` works as one |
1527 | /// would expect. |
1528 | /// |
1529 | /// It is guaranteed that `Match::start() <= Match::end()`. |
1530 | /// |
1531 | /// This is guaranteed to fall on a valid UTF-8 codepoint boundary. That |
1532 | /// is, it will never be an offset that appears between the UTF-8 code |
1533 | /// units of a UTF-8 encoded Unicode scalar value. Consequently, it is |
1534 | /// always safe to slice the corresponding haystack using this offset. |
1535 | #[inline ] |
1536 | pub fn end(&self) -> usize { |
1537 | self.end |
1538 | } |
1539 | |
1540 | /// Returns true if and only if this match has a length of zero. |
1541 | /// |
1542 | /// Note that an empty match can only occur when the regex itself can |
1543 | /// match the empty string. Here are some examples of regexes that can |
1544 | /// all match the empty string: `^`, `^$`, `\b`, `a?`, `a*`, `a{0}`, |
1545 | /// `(foo|\d+|quux)?`. |
1546 | #[inline ] |
1547 | pub fn is_empty(&self) -> bool { |
1548 | self.start == self.end |
1549 | } |
1550 | |
1551 | /// Returns the length, in bytes, of this match. |
1552 | #[inline ] |
1553 | pub fn len(&self) -> usize { |
1554 | self.end - self.start |
1555 | } |
1556 | |
1557 | /// Returns the range over the starting and ending byte offsets of the |
1558 | /// match in the haystack. |
1559 | /// |
1560 | /// It is always correct to slice the original haystack searched with this |
1561 | /// range. That is, because the offsets are guaranteed to fall on valid |
1562 | /// UTF-8 boundaries, the range returned is always valid. |
1563 | #[inline ] |
1564 | pub fn range(&self) -> core::ops::Range<usize> { |
1565 | self.start..self.end |
1566 | } |
1567 | |
1568 | /// Returns the substring of the haystack that matched. |
1569 | #[inline ] |
1570 | pub fn as_str(&self) -> &'h str { |
1571 | &self.haystack[self.range()] |
1572 | } |
1573 | } |
1574 | |
1575 | impl<'h> core::fmt::Debug for Match<'h> { |
1576 | fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { |
1577 | f&mut DebugStruct<'_, '_>.debug_struct("Match" ) |
1578 | .field("start" , &self.start) |
1579 | .field("end" , &self.end) |
1580 | .field(name:"string" , &self.as_str()) |
1581 | .finish() |
1582 | } |
1583 | } |
1584 | |
1585 | impl<'h> From<Match<'h>> for &'h str { |
1586 | fn from(m: Match<'h>) -> &'h str { |
1587 | m.as_str() |
1588 | } |
1589 | } |
1590 | |
1591 | impl<'h> From<Match<'h>> for core::ops::Range<usize> { |
1592 | fn from(m: Match<'h>) -> core::ops::Range<usize> { |
1593 | m.range() |
1594 | } |
1595 | } |
1596 | |
1597 | /// Represents the capture groups for a single match. |
1598 | /// |
1599 | /// Capture groups refer to parts of a regex enclosed in parentheses. They can |
1600 | /// be optionally named. The purpose of capture groups is to be able to |
1601 | /// reference different parts of a match based on the original pattern. For |
1602 | /// example, say you want to match the individual letters in a 5-letter word: |
1603 | /// |
1604 | /// ```text |
1605 | /// (?<first>\w)(\w)(?:\w)\w(?<last>\w) |
1606 | /// ``` |
1607 | /// |
1608 | /// This regex has 4 capture groups: |
1609 | /// |
1610 | /// * The group at index `0` corresponds to the overall match. It is always |
1611 | /// present in every match and never has a name. |
1612 | /// * The group at index `1` with name `first` corresponding to the first |
1613 | /// letter. |
1614 | /// * The group at index `2` with no name corresponding to the second letter. |
1615 | /// * The group at index `3` with name `last` corresponding to the fifth and |
1616 | /// last letter. |
1617 | /// |
1618 | /// Notice that `(?:\w)` was not listed above as a capture group despite it |
1619 | /// being enclosed in parentheses. That's because `(?:pattern)` is a special |
1620 | /// syntax that permits grouping but *without* capturing. The reason for not |
1621 | /// treating it as a capture is that tracking and reporting capture groups |
1622 | /// requires additional state that may lead to slower searches. So using as few |
1623 | /// capture groups as possible can help performance. (Although the difference |
1624 | /// in performance of a couple of capture groups is likely immaterial.) |
1625 | /// |
1626 | /// Values with this type are created by [`Regex::captures`] or |
1627 | /// [`Regex::captures_iter`]. |
1628 | /// |
1629 | /// `'h` is the lifetime of the haystack that these captures were matched from. |
1630 | /// |
1631 | /// # Example |
1632 | /// |
1633 | /// ``` |
1634 | /// use regex_lite::Regex; |
1635 | /// |
1636 | /// let re = Regex::new(r"(?<first>\w)(\w)(?:\w)\w(?<last>\w)" ).unwrap(); |
1637 | /// let caps = re.captures("toady" ).unwrap(); |
1638 | /// assert_eq!("toady" , &caps[0]); |
1639 | /// assert_eq!("t" , &caps["first" ]); |
1640 | /// assert_eq!("o" , &caps[2]); |
1641 | /// assert_eq!("y" , &caps["last" ]); |
1642 | /// ``` |
1643 | pub struct Captures<'h> { |
1644 | haystack: &'h str, |
1645 | slots: CaptureLocations, |
1646 | // It's a little weird to put the PikeVM in our Captures, but it's the |
1647 | // simplest thing to do and is cheap. The PikeVM gives us access to the |
1648 | // NFA and the NFA gives us access to the capture name<->index mapping. |
1649 | pikevm: Arc<PikeVM>, |
1650 | } |
1651 | |
1652 | impl<'h> Captures<'h> { |
1653 | /// Returns the `Match` associated with the capture group at index `i`. If |
1654 | /// `i` does not correspond to a capture group, or if the capture group did |
1655 | /// not participate in the match, then `None` is returned. |
1656 | /// |
1657 | /// When `i == 0`, this is guaranteed to return a non-`None` value. |
1658 | /// |
1659 | /// # Examples |
1660 | /// |
1661 | /// Get the substring that matched with a default of an empty string if the |
1662 | /// group didn't participate in the match: |
1663 | /// |
1664 | /// ``` |
1665 | /// use regex_lite::Regex; |
1666 | /// |
1667 | /// let re = Regex::new(r"[a-z]+(?:([0-9]+)|([A-Z]+))" ).unwrap(); |
1668 | /// let caps = re.captures("abc123" ).unwrap(); |
1669 | /// |
1670 | /// let substr1 = caps.get(1).map_or("" , |m| m.as_str()); |
1671 | /// let substr2 = caps.get(2).map_or("" , |m| m.as_str()); |
1672 | /// assert_eq!(substr1, "123" ); |
1673 | /// assert_eq!(substr2, "" ); |
1674 | /// ``` |
1675 | #[inline ] |
1676 | pub fn get(&self, i: usize) -> Option<Match<'h>> { |
1677 | self.slots.get(i).map(|(s, e)| Match::new(self.haystack, s, e)) |
1678 | } |
1679 | |
1680 | /// Returns the `Match` associated with the capture group named `name`. If |
1681 | /// `name` isn't a valid capture group or it refers to a group that didn't |
1682 | /// match, then `None` is returned. |
1683 | /// |
1684 | /// Note that unlike `caps["name"]`, this returns a `Match` whose lifetime |
1685 | /// matches the lifetime of the haystack in this `Captures` value. |
1686 | /// Conversely, the substring returned by `caps["name"]` has a lifetime |
1687 | /// of the `Captures` value, which is likely shorter than the lifetime of |
1688 | /// the haystack. In some cases, it may be necessary to use this method to |
1689 | /// access the matching substring instead of the `caps["name"]` notation. |
1690 | /// |
1691 | /// # Examples |
1692 | /// |
1693 | /// Get the substring that matched with a default of an empty string if the |
1694 | /// group didn't participate in the match: |
1695 | /// |
1696 | /// ``` |
1697 | /// use regex_lite::Regex; |
1698 | /// |
1699 | /// let re = Regex::new( |
1700 | /// r"[a-z]+(?:(?<numbers>[0-9]+)|(?<letters>[A-Z]+))" , |
1701 | /// ).unwrap(); |
1702 | /// let caps = re.captures("abc123" ).unwrap(); |
1703 | /// |
1704 | /// let numbers = caps.name("numbers" ).map_or("" , |m| m.as_str()); |
1705 | /// let letters = caps.name("letters" ).map_or("" , |m| m.as_str()); |
1706 | /// assert_eq!(numbers, "123" ); |
1707 | /// assert_eq!(letters, "" ); |
1708 | /// ``` |
1709 | #[inline ] |
1710 | pub fn name(&self, name: &str) -> Option<Match<'h>> { |
1711 | let i = self.pikevm.nfa().to_index(name)?; |
1712 | self.get(i) |
1713 | } |
1714 | |
1715 | /// This is a convenience routine for extracting the substrings |
1716 | /// corresponding to matching capture groups. |
1717 | /// |
1718 | /// This returns a tuple where the first element corresponds to the full |
1719 | /// substring of the haystack that matched the regex. The second element is |
1720 | /// an array of substrings, with each corresponding to the substring that |
1721 | /// matched for a particular capture group. |
1722 | /// |
1723 | /// # Panics |
1724 | /// |
1725 | /// This panics if the number of possible matching groups in this |
1726 | /// `Captures` value is not fixed to `N` in all circumstances. |
1727 | /// More precisely, this routine only works when `N` is equivalent to |
1728 | /// [`Regex::static_captures_len`]. |
1729 | /// |
1730 | /// Stated more plainly, if the number of matching capture groups in a |
1731 | /// regex can vary from match to match, then this function always panics. |
1732 | /// |
1733 | /// For example, `(a)(b)|(c)` could produce two matching capture groups |
1734 | /// or one matching capture group for any given match. Therefore, one |
1735 | /// cannot use `extract` with such a pattern. |
1736 | /// |
1737 | /// But a pattern like `(a)(b)|(c)(d)` can be used with `extract` because |
1738 | /// the number of capture groups in every match is always equivalent, |
1739 | /// even if the capture _indices_ in each match are not. |
1740 | /// |
1741 | /// # Example |
1742 | /// |
1743 | /// ``` |
1744 | /// use regex_lite::Regex; |
1745 | /// |
1746 | /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})" ).unwrap(); |
1747 | /// let hay = "On 2010-03-14, I became a Tenneessee lamb." ; |
1748 | /// let Some((full, [year, month, day])) = |
1749 | /// re.captures(hay).map(|caps| caps.extract()) else { return }; |
1750 | /// assert_eq!("2010-03-14" , full); |
1751 | /// assert_eq!("2010" , year); |
1752 | /// assert_eq!("03" , month); |
1753 | /// assert_eq!("14" , day); |
1754 | /// ``` |
1755 | /// |
1756 | /// # Example: iteration |
1757 | /// |
1758 | /// This example shows how to use this method when iterating over all |
1759 | /// `Captures` matches in a haystack. |
1760 | /// |
1761 | /// ``` |
1762 | /// use regex_lite::Regex; |
1763 | /// |
1764 | /// let re = Regex::new(r"([0-9]{4})-([0-9]{2})-([0-9]{2})" ).unwrap(); |
1765 | /// let hay = "1973-01-05, 1975-08-25 and 1980-10-18" ; |
1766 | /// |
1767 | /// let mut dates: Vec<(&str, &str, &str)> = vec![]; |
1768 | /// for (_, [y, m, d]) in re.captures_iter(hay).map(|c| c.extract()) { |
1769 | /// dates.push((y, m, d)); |
1770 | /// } |
1771 | /// assert_eq!(dates, vec![ |
1772 | /// ("1973" , "01" , "05" ), |
1773 | /// ("1975" , "08" , "25" ), |
1774 | /// ("1980" , "10" , "18" ), |
1775 | /// ]); |
1776 | /// ``` |
1777 | /// |
1778 | /// # Example: parsing different formats |
1779 | /// |
1780 | /// This API is particularly useful when you need to extract a particular |
1781 | /// value that might occur in a different format. Consider, for example, |
1782 | /// an identifier that might be in double quotes or single quotes: |
1783 | /// |
1784 | /// ``` |
1785 | /// use regex_lite::Regex; |
1786 | /// |
1787 | /// let re = Regex::new(r#"id:(?:"([^"]+)"|'([^']+)')"# ).unwrap(); |
1788 | /// let hay = r#"The first is id:"foo" and the second is id:'bar'."# ; |
1789 | /// let mut ids = vec![]; |
1790 | /// for (_, [id]) in re.captures_iter(hay).map(|c| c.extract()) { |
1791 | /// ids.push(id); |
1792 | /// } |
1793 | /// assert_eq!(ids, vec!["foo" , "bar" ]); |
1794 | /// ``` |
1795 | pub fn extract<const N: usize>(&self) -> (&'h str, [&'h str; N]) { |
1796 | let len = self |
1797 | .pikevm |
1798 | .nfa() |
1799 | .static_explicit_captures_len() |
1800 | .expect("number of capture groups can vary in a match" ); |
1801 | assert_eq!(N, len, "asked for {} groups, but must ask for {}" , N, len); |
1802 | let mut matched = self.iter().flatten(); |
1803 | let whole_match = matched.next().expect("a match" ).as_str(); |
1804 | let group_matches = [0; N].map(|_| { |
1805 | matched.next().expect("too few matching groups" ).as_str() |
1806 | }); |
1807 | (whole_match, group_matches) |
1808 | } |
1809 | |
1810 | /// Expands all instances of `$ref` in `replacement` to the corresponding |
1811 | /// capture group, and writes them to the `dst` buffer given. A `ref` can |
1812 | /// be a capture group index or a name. If `ref` doesn't refer to a capture |
1813 | /// group that participated in the match, then it is replaced with the |
1814 | /// empty string. |
1815 | /// |
1816 | /// # Format |
1817 | /// |
1818 | /// The format of the replacement string supports two different kinds of |
1819 | /// capture references: unbraced and braced. |
1820 | /// |
1821 | /// For the unbraced format, the format supported is `$ref` where `name` |
1822 | /// can be any character in the class `[0-9A-Za-z_]`. `ref` is always |
1823 | /// the longest possible parse. So for example, `$1a` corresponds to the |
1824 | /// capture group named `1a` and not the capture group at index `1`. If |
1825 | /// `ref` matches `^[0-9]+$`, then it is treated as a capture group index |
1826 | /// itself and not a name. |
1827 | /// |
1828 | /// For the braced format, the format supported is `${ref}` where `ref` can |
1829 | /// be any sequence of bytes except for `}`. If no closing brace occurs, |
1830 | /// then it is not considered a capture reference. As with the unbraced |
1831 | /// format, if `ref` matches `^[0-9]+$`, then it is treated as a capture |
1832 | /// group index and not a name. |
1833 | /// |
1834 | /// The braced format is useful for exerting precise control over the name |
1835 | /// of the capture reference. For example, `${1}a` corresponds to the |
1836 | /// capture group reference `1` followed by the letter `a`, where as `$1a` |
1837 | /// (as mentioned above) corresponds to the capture group reference `1a`. |
1838 | /// The braced format is also useful for expressing capture group names |
1839 | /// that use characters not supported by the unbraced format. For example, |
1840 | /// `${foo[bar].baz}` refers to the capture group named `foo[bar].baz`. |
1841 | /// |
1842 | /// If a capture group reference is found and it does not refer to a valid |
1843 | /// capture group, then it will be replaced with the empty string. |
1844 | /// |
1845 | /// To write a literal `$`, use `$$`. |
1846 | /// |
1847 | /// # Example |
1848 | /// |
1849 | /// ``` |
1850 | /// use regex_lite::Regex; |
1851 | /// |
1852 | /// let re = Regex::new( |
1853 | /// r"(?<day>[0-9]{2})-(?<month>[0-9]{2})-(?<year>[0-9]{4})" , |
1854 | /// ).unwrap(); |
1855 | /// let hay = "On 14-03-2010, I became a Tenneessee lamb." ; |
1856 | /// let caps = re.captures(hay).unwrap(); |
1857 | /// |
1858 | /// let mut dst = String::new(); |
1859 | /// caps.expand("year=$year, month=$month, day=$day" , &mut dst); |
1860 | /// assert_eq!(dst, "year=2010, month=03, day=14" ); |
1861 | /// ``` |
1862 | #[inline ] |
1863 | pub fn expand(&self, replacement: &str, dst: &mut String) { |
1864 | interpolate::string( |
1865 | replacement, |
1866 | |index, dst| { |
1867 | let m = match self.get(index) { |
1868 | None => return, |
1869 | Some(m) => m, |
1870 | }; |
1871 | dst.push_str(&self.haystack[m.range()]); |
1872 | }, |
1873 | |name| self.pikevm.nfa().to_index(name), |
1874 | dst, |
1875 | ); |
1876 | } |
1877 | |
1878 | /// Returns an iterator over all capture groups. This includes both |
1879 | /// matching and non-matching groups. |
1880 | /// |
1881 | /// The iterator always yields at least one matching group: the first group |
1882 | /// (at index `0`) with no name. Subsequent groups are returned in the order |
1883 | /// of their opening parenthesis in the regex. |
1884 | /// |
1885 | /// The elements yielded have type `Option<Match<'h>>`, where a non-`None` |
1886 | /// value is present if the capture group matches. |
1887 | /// |
1888 | /// # Example |
1889 | /// |
1890 | /// ``` |
1891 | /// use regex_lite::Regex; |
1892 | /// |
1893 | /// let re = Regex::new(r"(\w)(\d)?(\w)" ).unwrap(); |
1894 | /// let caps = re.captures("AZ" ).unwrap(); |
1895 | /// |
1896 | /// let mut it = caps.iter(); |
1897 | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("AZ" )); |
1898 | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("A" )); |
1899 | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), None); |
1900 | /// assert_eq!(it.next().unwrap().map(|m| m.as_str()), Some("Z" )); |
1901 | /// assert_eq!(it.next(), None); |
1902 | /// ``` |
1903 | #[inline ] |
1904 | pub fn iter<'c>(&'c self) -> SubCaptureMatches<'c, 'h> { |
1905 | SubCaptureMatches { |
1906 | caps: self, |
1907 | it: self.pikevm.nfa().capture_names().enumerate(), |
1908 | } |
1909 | } |
1910 | |
1911 | /// Returns the total number of capture groups. This includes both |
1912 | /// matching and non-matching groups. |
1913 | /// |
1914 | /// The length returned is always equivalent to the number of elements |
1915 | /// yielded by [`Captures::iter`]. Consequently, the length is always |
1916 | /// greater than zero since every `Captures` value always includes the |
1917 | /// match for the entire regex. |
1918 | /// |
1919 | /// # Example |
1920 | /// |
1921 | /// ``` |
1922 | /// use regex_lite::Regex; |
1923 | /// |
1924 | /// let re = Regex::new(r"(\w)(\d)?(\w)" ).unwrap(); |
1925 | /// let caps = re.captures("AZ" ).unwrap(); |
1926 | /// assert_eq!(caps.len(), 4); |
1927 | /// ``` |
1928 | #[inline ] |
1929 | pub fn len(&self) -> usize { |
1930 | self.pikevm.nfa().group_len() |
1931 | } |
1932 | } |
1933 | |
1934 | impl<'h> core::fmt::Debug for Captures<'h> { |
1935 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
1936 | /// A little helper type to provide a nice map-like debug |
1937 | /// representation for our capturing group spans. |
1938 | /// |
1939 | /// regex-automata has something similar, but it includes the pattern |
1940 | /// ID in its debug output, which is confusing. It also doesn't include |
1941 | /// that strings that match because a regex-automata `Captures` doesn't |
1942 | /// borrow the haystack. |
1943 | struct CapturesDebugMap<'a> { |
1944 | caps: &'a Captures<'a>, |
1945 | } |
1946 | |
1947 | impl<'a> core::fmt::Debug for CapturesDebugMap<'a> { |
1948 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1949 | let mut map = f.debug_map(); |
1950 | let names = self.caps.pikevm.nfa().capture_names(); |
1951 | for (group_index, maybe_name) in names.enumerate() { |
1952 | let key = Key(group_index, maybe_name); |
1953 | match self.caps.get(group_index) { |
1954 | None => map.entry(&key, &None::<()>), |
1955 | Some(mat) => map.entry(&key, &Value(mat)), |
1956 | }; |
1957 | } |
1958 | map.finish() |
1959 | } |
1960 | } |
1961 | |
1962 | struct Key<'a>(usize, Option<&'a str>); |
1963 | |
1964 | impl<'a> core::fmt::Debug for Key<'a> { |
1965 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1966 | write!(f, " {}" , self.0)?; |
1967 | if let Some(name) = self.1 { |
1968 | write!(f, "/ {:?}" , name)?; |
1969 | } |
1970 | Ok(()) |
1971 | } |
1972 | } |
1973 | |
1974 | struct Value<'a>(Match<'a>); |
1975 | |
1976 | impl<'a> core::fmt::Debug for Value<'a> { |
1977 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
1978 | write!( |
1979 | f, |
1980 | " {}.. {}/ {:?}" , |
1981 | self.0.start(), |
1982 | self.0.end(), |
1983 | self.0.as_str() |
1984 | ) |
1985 | } |
1986 | } |
1987 | |
1988 | f.debug_tuple("Captures" ) |
1989 | .field(&CapturesDebugMap { caps: self }) |
1990 | .finish() |
1991 | } |
1992 | } |
1993 | |
1994 | /// Get a matching capture group's haystack substring by index. |
1995 | /// |
1996 | /// The haystack substring returned can't outlive the `Captures` object if this |
1997 | /// method is used, because of how `Index` is defined (normally `a[i]` is part |
1998 | /// of `a` and can't outlive it). To work around this limitation, do that, use |
1999 | /// [`Captures::get`] instead. |
2000 | /// |
2001 | /// `'h` is the lifetime of the matched haystack, but the lifetime of the |
2002 | /// `&str` returned by this implementation is the lifetime of the `Captures` |
2003 | /// value itself. |
2004 | /// |
2005 | /// # Panics |
2006 | /// |
2007 | /// If there is no matching group at the given index. |
2008 | impl<'h> core::ops::Index<usize> for Captures<'h> { |
2009 | type Output = str; |
2010 | |
2011 | // The lifetime is written out to make it clear that the &str returned |
2012 | // does NOT have a lifetime equivalent to 'h. |
2013 | fn index(&self, i: usize) -> &str { |
2014 | self.get(i) |
2015 | .map(|m: Match<'h>| m.as_str()) |
2016 | .unwrap_or_else(|| panic!("no group at index ' {}'" , i)) |
2017 | } |
2018 | } |
2019 | |
2020 | /// Get a matching capture group's haystack substring by name. |
2021 | /// |
2022 | /// The haystack substring returned can't outlive the `Captures` object if this |
2023 | /// method is used, because of how `Index` is defined (normally `a[i]` is part |
2024 | /// of `a` and can't outlive it). To work around this limitation, do that, use |
2025 | /// [`Captures::get`] instead. |
2026 | /// |
2027 | /// `'h` is the lifetime of the matched haystack, but the lifetime of the |
2028 | /// `&str` returned by this implementation is the lifetime of the `Captures` |
2029 | /// value itself. |
2030 | /// |
2031 | /// `'n` is the lifetime of the group name used to index the `Captures` value. |
2032 | /// |
2033 | /// # Panics |
2034 | /// |
2035 | /// If there is no matching group at the given name. |
2036 | impl<'h, 'n> core::ops::Index<&'n str> for Captures<'h> { |
2037 | type Output = str; |
2038 | |
2039 | fn index<'a>(&'a self, name: &'n str) -> &'a str { |
2040 | self.name(name) |
2041 | .map(|m: Match<'h>| m.as_str()) |
2042 | .unwrap_or_else(|| panic!("no group named ' {}'" , name)) |
2043 | } |
2044 | } |
2045 | |
2046 | /// A low level representation of the byte offsets of each capture group. |
2047 | /// |
2048 | /// You can think of this as a lower level [`Captures`], where this type does |
2049 | /// not support named capturing groups directly and it does not borrow the |
2050 | /// haystack that these offsets were matched on. |
2051 | /// |
2052 | /// Primarily, this type is useful when using the lower level `Regex` APIs such |
2053 | /// as [`Regex::captures_read`], which permits amortizing the allocation in |
2054 | /// which capture match offsets are stored. |
2055 | /// |
2056 | /// In order to build a value of this type, you'll need to call the |
2057 | /// [`Regex::capture_locations`] method. The value returned can then be reused |
2058 | /// in subsequent searches for that regex. Using it for other regexes may |
2059 | /// result in a panic or otherwise incorrect results. |
2060 | /// |
2061 | /// # Example |
2062 | /// |
2063 | /// This example shows how to create and use `CaptureLocations` in a search. |
2064 | /// |
2065 | /// ``` |
2066 | /// use regex_lite::Regex; |
2067 | /// |
2068 | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)" ).unwrap(); |
2069 | /// let mut locs = re.capture_locations(); |
2070 | /// let m = re.captures_read(&mut locs, "Bruce Springsteen" ).unwrap(); |
2071 | /// assert_eq!(0..17, m.range()); |
2072 | /// assert_eq!(Some((0, 17)), locs.get(0)); |
2073 | /// assert_eq!(Some((0, 5)), locs.get(1)); |
2074 | /// assert_eq!(Some((6, 17)), locs.get(2)); |
2075 | /// |
2076 | /// // Asking for an invalid capture group always returns None. |
2077 | /// assert_eq!(None, locs.get(3)); |
2078 | /// # // literals are too big for 32-bit usize: #1041 |
2079 | /// # #[cfg (target_pointer_width = "64" )] |
2080 | /// assert_eq!(None, locs.get(34973498648)); |
2081 | /// # #[cfg (target_pointer_width = "64" )] |
2082 | /// assert_eq!(None, locs.get(9944060567225171988)); |
2083 | /// ``` |
2084 | #[derive (Clone, Debug)] |
2085 | pub struct CaptureLocations(Vec<Option<NonMaxUsize>>); |
2086 | |
2087 | impl CaptureLocations { |
2088 | /// Returns the start and end byte offsets of the capture group at index |
2089 | /// `i`. This returns `None` if `i` is not a valid capture group or if the |
2090 | /// capture group did not match. |
2091 | /// |
2092 | /// # Example |
2093 | /// |
2094 | /// ``` |
2095 | /// use regex_lite::Regex; |
2096 | /// |
2097 | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)" ).unwrap(); |
2098 | /// let mut locs = re.capture_locations(); |
2099 | /// re.captures_read(&mut locs, "Bruce Springsteen" ).unwrap(); |
2100 | /// assert_eq!(Some((0, 17)), locs.get(0)); |
2101 | /// assert_eq!(Some((0, 5)), locs.get(1)); |
2102 | /// assert_eq!(Some((6, 17)), locs.get(2)); |
2103 | /// ``` |
2104 | #[inline ] |
2105 | pub fn get(&self, i: usize) -> Option<(usize, usize)> { |
2106 | let slot = i.checked_mul(2)?; |
2107 | let start = self.0.get(slot).copied()??.get(); |
2108 | let slot = slot.checked_add(1)?; |
2109 | let end = self.0.get(slot).copied()??.get(); |
2110 | Some((start, end)) |
2111 | } |
2112 | |
2113 | /// Returns the total number of capture groups (even if they didn't match). |
2114 | /// That is, the length returned is unaffected by the result of a search. |
2115 | /// |
2116 | /// This is always at least `1` since every regex has at least `1` |
2117 | /// capturing group that corresponds to the entire match. |
2118 | /// |
2119 | /// # Example |
2120 | /// |
2121 | /// ``` |
2122 | /// use regex_lite::Regex; |
2123 | /// |
2124 | /// let re = Regex::new(r"(?<first>\w+)\s+(?<last>\w+)" ).unwrap(); |
2125 | /// let mut locs = re.capture_locations(); |
2126 | /// assert_eq!(3, locs.len()); |
2127 | /// re.captures_read(&mut locs, "Bruce Springsteen" ).unwrap(); |
2128 | /// assert_eq!(3, locs.len()); |
2129 | /// ``` |
2130 | /// |
2131 | /// Notice that the length is always at least `1`, regardless of the regex: |
2132 | /// |
2133 | /// ``` |
2134 | /// use regex_lite::Regex; |
2135 | /// |
2136 | /// let re = Regex::new(r"" ).unwrap(); |
2137 | /// let locs = re.capture_locations(); |
2138 | /// assert_eq!(1, locs.len()); |
2139 | /// |
2140 | /// // [a&&b] is a regex that never matches anything. |
2141 | /// let re = Regex::new(r"[^\s\S]" ).unwrap(); |
2142 | /// let locs = re.capture_locations(); |
2143 | /// assert_eq!(1, locs.len()); |
2144 | /// ``` |
2145 | #[inline ] |
2146 | pub fn len(&self) -> usize { |
2147 | // We always have twice as many slots as groups. |
2148 | self.0.len().checked_shr(1).unwrap() |
2149 | } |
2150 | } |
2151 | |
2152 | /// An iterator over all non-overlapping matches in a haystack. |
2153 | /// |
2154 | /// This iterator yields [`Match`] values. The iterator stops when no more |
2155 | /// matches can be found. |
2156 | /// |
2157 | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2158 | /// lifetime of the haystack. |
2159 | /// |
2160 | /// This iterator is created by [`Regex::find_iter`]. |
2161 | /// |
2162 | /// # Time complexity |
2163 | /// |
2164 | /// Note that since an iterator runs potentially many searches on the haystack |
2165 | /// and since each search has worst case `O(m * n)` time complexity, the |
2166 | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2167 | #[derive (Debug)] |
2168 | pub struct Matches<'r, 'h> { |
2169 | haystack: &'h str, |
2170 | it: pikevm::FindMatches<'r, 'h>, |
2171 | } |
2172 | |
2173 | impl<'r, 'h> Iterator for Matches<'r, 'h> { |
2174 | type Item = Match<'h>; |
2175 | |
2176 | #[inline ] |
2177 | fn next(&mut self) -> Option<Match<'h>> { |
2178 | self.it.next().map(|(s: usize, e: usize)| Match::new(self.haystack, start:s, end:e)) |
2179 | } |
2180 | |
2181 | #[inline ] |
2182 | fn count(self) -> usize { |
2183 | self.it.count() |
2184 | } |
2185 | } |
2186 | |
2187 | impl<'r, 'h> core::iter::FusedIterator for Matches<'r, 'h> {} |
2188 | |
2189 | /// An iterator over all non-overlapping capture matches in a haystack. |
2190 | /// |
2191 | /// This iterator yields [`Captures`] values. The iterator stops when no more |
2192 | /// matches can be found. |
2193 | /// |
2194 | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2195 | /// lifetime of the matched string. |
2196 | /// |
2197 | /// This iterator is created by [`Regex::captures_iter`]. |
2198 | /// |
2199 | /// # Time complexity |
2200 | /// |
2201 | /// Note that since an iterator runs potentially many searches on the haystack |
2202 | /// and since each search has worst case `O(m * n)` time complexity, the |
2203 | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2204 | #[derive (Debug)] |
2205 | pub struct CaptureMatches<'r, 'h> { |
2206 | haystack: &'h str, |
2207 | re: &'r Regex, |
2208 | it: pikevm::CapturesMatches<'r, 'h>, |
2209 | } |
2210 | |
2211 | impl<'r, 'h> Iterator for CaptureMatches<'r, 'h> { |
2212 | type Item = Captures<'h>; |
2213 | |
2214 | #[inline ] |
2215 | fn next(&mut self) -> Option<Captures<'h>> { |
2216 | self.it.next().map(|slots: Vec| Captures { |
2217 | haystack: self.haystack, |
2218 | slots: CaptureLocations(slots), |
2219 | pikevm: Arc::clone(&self.re.pikevm), |
2220 | }) |
2221 | } |
2222 | |
2223 | #[inline ] |
2224 | fn count(self) -> usize { |
2225 | self.it.count() |
2226 | } |
2227 | } |
2228 | |
2229 | impl<'r, 'h> core::iter::FusedIterator for CaptureMatches<'r, 'h> {} |
2230 | |
2231 | /// An iterator over all substrings delimited by a regex match. |
2232 | /// |
2233 | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2234 | /// lifetime of the byte string being split. |
2235 | /// |
2236 | /// This iterator is created by [`Regex::split`]. |
2237 | /// |
2238 | /// # Time complexity |
2239 | /// |
2240 | /// Note that since an iterator runs potentially many searches on the haystack |
2241 | /// and since each search has worst case `O(m * n)` time complexity, the |
2242 | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2243 | #[derive (Debug)] |
2244 | pub struct Split<'r, 'h> { |
2245 | haystack: &'h str, |
2246 | finder: Matches<'r, 'h>, |
2247 | last: usize, |
2248 | } |
2249 | |
2250 | impl<'r, 'h> Iterator for Split<'r, 'h> { |
2251 | type Item = &'h str; |
2252 | |
2253 | #[inline ] |
2254 | fn next(&mut self) -> Option<&'h str> { |
2255 | match self.finder.next() { |
2256 | None => { |
2257 | let len: usize = self.haystack.len(); |
2258 | if self.last > len { |
2259 | None |
2260 | } else { |
2261 | let range: Range = self.last..len; |
2262 | self.last = len + 1; // Next call will return None |
2263 | Some(&self.haystack[range]) |
2264 | } |
2265 | } |
2266 | Some(m: Match<'h>) => { |
2267 | let range: Range = self.last..m.start(); |
2268 | self.last = m.end(); |
2269 | Some(&self.haystack[range]) |
2270 | } |
2271 | } |
2272 | } |
2273 | } |
2274 | |
2275 | impl<'r, 't> core::iter::FusedIterator for Split<'r, 't> {} |
2276 | |
2277 | /// An iterator over at most `N` substrings delimited by a regex match. |
2278 | /// |
2279 | /// The last substring yielded by this iterator will be whatever remains after |
2280 | /// `N-1` splits. |
2281 | /// |
2282 | /// `'r` is the lifetime of the compiled regular expression and `'h` is the |
2283 | /// lifetime of the byte string being split. |
2284 | /// |
2285 | /// This iterator is created by [`Regex::splitn`]. |
2286 | /// |
2287 | /// # Time complexity |
2288 | /// |
2289 | /// Note that since an iterator runs potentially many searches on the haystack |
2290 | /// and since each search has worst case `O(m * n)` time complexity, the |
2291 | /// overall worst case time complexity for iteration is `O(m * n^2)`. |
2292 | /// |
2293 | /// Although note that the worst case time here has an upper bound given |
2294 | /// by the `limit` parameter to [`Regex::splitn`]. |
2295 | #[derive (Debug)] |
2296 | pub struct SplitN<'r, 'h> { |
2297 | splits: Split<'r, 'h>, |
2298 | limit: usize, |
2299 | } |
2300 | |
2301 | impl<'r, 'h> Iterator for SplitN<'r, 'h> { |
2302 | type Item = &'h str; |
2303 | |
2304 | #[inline ] |
2305 | fn next(&mut self) -> Option<&'h str> { |
2306 | if self.limit == 0 { |
2307 | return None; |
2308 | } |
2309 | |
2310 | self.limit -= 1; |
2311 | if self.limit > 0 { |
2312 | return self.splits.next(); |
2313 | } |
2314 | |
2315 | let len = self.splits.haystack.len(); |
2316 | if self.splits.last > len { |
2317 | // We've already returned all substrings. |
2318 | None |
2319 | } else { |
2320 | // self.n == 0, so future calls will return None immediately |
2321 | Some(&self.splits.haystack[self.splits.last..len]) |
2322 | } |
2323 | } |
2324 | |
2325 | #[inline ] |
2326 | fn size_hint(&self) -> (usize, Option<usize>) { |
2327 | self.splits.size_hint() |
2328 | } |
2329 | } |
2330 | |
2331 | impl<'r, 't> core::iter::FusedIterator for SplitN<'r, 't> {} |
2332 | |
2333 | /// An iterator over the names of all capture groups in a regex. |
2334 | /// |
2335 | /// This iterator yields values of type `Option<&str>` in order of the opening |
2336 | /// capture group parenthesis in the regex pattern. `None` is yielded for |
2337 | /// groups with no name. The first element always corresponds to the implicit |
2338 | /// and unnamed group for the overall match. |
2339 | /// |
2340 | /// `'r` is the lifetime of the compiled regular expression. |
2341 | /// |
2342 | /// This iterator is created by [`Regex::capture_names`]. |
2343 | #[derive (Clone, Debug)] |
2344 | pub struct CaptureNames<'r>(nfa::CaptureNames<'r>); |
2345 | |
2346 | impl<'r> Iterator for CaptureNames<'r> { |
2347 | type Item = Option<&'r str>; |
2348 | |
2349 | #[inline ] |
2350 | fn next(&mut self) -> Option<Option<&'r str>> { |
2351 | self.0.next() |
2352 | } |
2353 | |
2354 | #[inline ] |
2355 | fn size_hint(&self) -> (usize, Option<usize>) { |
2356 | self.0.size_hint() |
2357 | } |
2358 | |
2359 | #[inline ] |
2360 | fn count(self) -> usize { |
2361 | self.0.count() |
2362 | } |
2363 | } |
2364 | |
2365 | impl<'r> ExactSizeIterator for CaptureNames<'r> {} |
2366 | |
2367 | impl<'r> core::iter::FusedIterator for CaptureNames<'r> {} |
2368 | |
2369 | /// An iterator over all group matches in a [`Captures`] value. |
2370 | /// |
2371 | /// This iterator yields values of type `Option<Match<'h>>`, where `'h` is the |
2372 | /// lifetime of the haystack that the matches are for. The order of elements |
2373 | /// yielded corresponds to the order of the opening parenthesis for the group |
2374 | /// in the regex pattern. `None` is yielded for groups that did not participate |
2375 | /// in the match. |
2376 | /// |
2377 | /// The first element always corresponds to the implicit group for the overall |
2378 | /// match. Since this iterator is created by a [`Captures`] value, and a |
2379 | /// `Captures` value is only created when a match occurs, it follows that the |
2380 | /// first element yielded by this iterator is guaranteed to be non-`None`. |
2381 | /// |
2382 | /// The lifetime `'c` corresponds to the lifetime of the `Captures` value that |
2383 | /// created this iterator, and the lifetime `'h` corresponds to the originally |
2384 | /// matched haystack. |
2385 | #[derive (Clone, Debug)] |
2386 | pub struct SubCaptureMatches<'c, 'h> { |
2387 | caps: &'c Captures<'h>, |
2388 | it: core::iter::Enumerate<nfa::CaptureNames<'c>>, |
2389 | } |
2390 | |
2391 | impl<'c, 'h> Iterator for SubCaptureMatches<'c, 'h> { |
2392 | type Item = Option<Match<'h>>; |
2393 | |
2394 | #[inline ] |
2395 | fn next(&mut self) -> Option<Option<Match<'h>>> { |
2396 | let (group_index: usize, _) = self.it.next()?; |
2397 | Some(self.caps.get(group_index)) |
2398 | } |
2399 | |
2400 | #[inline ] |
2401 | fn size_hint(&self) -> (usize, Option<usize>) { |
2402 | self.it.size_hint() |
2403 | } |
2404 | |
2405 | #[inline ] |
2406 | fn count(self) -> usize { |
2407 | self.it.count() |
2408 | } |
2409 | } |
2410 | |
2411 | impl<'c, 'h> ExactSizeIterator for SubCaptureMatches<'c, 'h> {} |
2412 | |
2413 | impl<'c, 'h> core::iter::FusedIterator for SubCaptureMatches<'c, 'h> {} |
2414 | |
2415 | /// A trait for types that can be used to replace matches in a haystack. |
2416 | /// |
2417 | /// In general, users of this crate shouldn't need to implement this trait, |
2418 | /// since implementations are already provided for `&str` along with other |
2419 | /// variants of string types, as well as `FnMut(&Captures) -> String` (or any |
2420 | /// `FnMut(&Captures) -> T` where `T: AsRef<str>`). Those cover most use cases, |
2421 | /// but callers can implement this trait directly if necessary. |
2422 | /// |
2423 | /// # Example |
2424 | /// |
2425 | /// This example shows a basic implementation of the `Replacer` trait. This |
2426 | /// can be done much more simply using the replacement string interpolation |
2427 | /// support (e.g., `$first $last`), but this approach avoids needing to parse |
2428 | /// the replacement string at all. |
2429 | /// |
2430 | /// ``` |
2431 | /// use regex_lite::{Captures, Regex, Replacer}; |
2432 | /// |
2433 | /// struct NameSwapper; |
2434 | /// |
2435 | /// impl Replacer for NameSwapper { |
2436 | /// fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2437 | /// dst.push_str(&caps["first" ]); |
2438 | /// dst.push_str(" " ); |
2439 | /// dst.push_str(&caps["last" ]); |
2440 | /// } |
2441 | /// } |
2442 | /// |
2443 | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(?<first>\S+)" ).unwrap(); |
2444 | /// let result = re.replace("Springsteen, Bruce" , NameSwapper); |
2445 | /// assert_eq!(result, "Bruce Springsteen" ); |
2446 | /// ``` |
2447 | pub trait Replacer { |
2448 | /// Appends possibly empty data to `dst` to replace the current match. |
2449 | /// |
2450 | /// The current match is represented by `caps`, which is guaranteed to |
2451 | /// have a match at capture group `0`. |
2452 | /// |
2453 | /// For example, a no-op replacement would be `dst.push_str(&caps[0])`. |
2454 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String); |
2455 | |
2456 | /// Return a fixed unchanging replacement string. |
2457 | /// |
2458 | /// When doing replacements, if access to [`Captures`] is not needed (e.g., |
2459 | /// the replacement string does not need `$` expansion), then it can be |
2460 | /// beneficial to avoid finding sub-captures. |
2461 | /// |
2462 | /// In general, this is called once for every call to a replacement routine |
2463 | /// such as [`Regex::replace_all`]. |
2464 | fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>> { |
2465 | None |
2466 | } |
2467 | |
2468 | /// Returns a type that implements `Replacer`, but that borrows and wraps |
2469 | /// this `Replacer`. |
2470 | /// |
2471 | /// This is useful when you want to take a generic `Replacer` (which might |
2472 | /// not be cloneable) and use it without consuming it, so it can be used |
2473 | /// more than once. |
2474 | /// |
2475 | /// # Example |
2476 | /// |
2477 | /// ``` |
2478 | /// use regex_lite::{Regex, Replacer}; |
2479 | /// |
2480 | /// fn replace_all_twice<R: Replacer>( |
2481 | /// re: Regex, |
2482 | /// src: &str, |
2483 | /// mut rep: R, |
2484 | /// ) -> String { |
2485 | /// let dst = re.replace_all(src, rep.by_ref()); |
2486 | /// let dst = re.replace_all(&dst, rep.by_ref()); |
2487 | /// dst.into_owned() |
2488 | /// } |
2489 | /// ``` |
2490 | fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self> { |
2491 | ReplacerRef(self) |
2492 | } |
2493 | } |
2494 | |
2495 | impl<'a> Replacer for &'a str { |
2496 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2497 | caps.expand(*self, dst); |
2498 | } |
2499 | |
2500 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2501 | no_expansion(self) |
2502 | } |
2503 | } |
2504 | |
2505 | impl<'a> Replacer for &'a String { |
2506 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2507 | self.as_str().replace_append(caps, dst) |
2508 | } |
2509 | |
2510 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2511 | no_expansion(self) |
2512 | } |
2513 | } |
2514 | |
2515 | impl Replacer for String { |
2516 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2517 | self.as_str().replace_append(caps, dst) |
2518 | } |
2519 | |
2520 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2521 | no_expansion(self) |
2522 | } |
2523 | } |
2524 | |
2525 | impl<'a> Replacer for Cow<'a, str> { |
2526 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2527 | self.as_ref().replace_append(caps, dst) |
2528 | } |
2529 | |
2530 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2531 | no_expansion(self) |
2532 | } |
2533 | } |
2534 | |
2535 | impl<'a> Replacer for &'a Cow<'a, str> { |
2536 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2537 | self.as_ref().replace_append(caps, dst) |
2538 | } |
2539 | |
2540 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2541 | no_expansion(self) |
2542 | } |
2543 | } |
2544 | |
2545 | impl<F, T> Replacer for F |
2546 | where |
2547 | F: FnMut(&Captures<'_>) -> T, |
2548 | T: AsRef<str>, |
2549 | { |
2550 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2551 | dst.push_str((*self)(caps).as_ref()); |
2552 | } |
2553 | } |
2554 | |
2555 | /// A by-reference adaptor for a [`Replacer`]. |
2556 | /// |
2557 | /// This permits reusing the same `Replacer` value in multiple calls to a |
2558 | /// replacement routine like [`Regex::replace_all`]. |
2559 | /// |
2560 | /// This type is created by [`Replacer::by_ref`]. |
2561 | #[derive (Debug)] |
2562 | pub struct ReplacerRef<'a, R: ?Sized>(&'a mut R); |
2563 | |
2564 | impl<'a, R: Replacer + ?Sized + 'a> Replacer for ReplacerRef<'a, R> { |
2565 | fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String) { |
2566 | self.0.replace_append(caps, dst) |
2567 | } |
2568 | |
2569 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2570 | self.0.no_expansion() |
2571 | } |
2572 | } |
2573 | |
2574 | /// A helper type for forcing literal string replacement. |
2575 | /// |
2576 | /// It can be used with routines like [`Regex::replace`] and |
2577 | /// [`Regex::replace_all`] to do a literal string replacement without expanding |
2578 | /// `$name` to their corresponding capture groups. This can be both convenient |
2579 | /// (to avoid escaping `$`, for example) and faster (since capture groups |
2580 | /// don't need to be found). |
2581 | /// |
2582 | /// `'s` is the lifetime of the literal string to use. |
2583 | /// |
2584 | /// # Example |
2585 | /// |
2586 | /// ``` |
2587 | /// use regex_lite::{NoExpand, Regex}; |
2588 | /// |
2589 | /// let re = Regex::new(r"(?<last>[^,\s]+),\s+(\S+)" ).unwrap(); |
2590 | /// let result = re.replace("Springsteen, Bruce" , NoExpand("$2 $last" )); |
2591 | /// assert_eq!(result, "$2 $last" ); |
2592 | /// ``` |
2593 | #[derive (Clone, Debug)] |
2594 | pub struct NoExpand<'t>(pub &'t str); |
2595 | |
2596 | impl<'t> Replacer for NoExpand<'t> { |
2597 | fn replace_append(&mut self, _: &Captures<'_>, dst: &mut String) { |
2598 | dst.push_str(self.0); |
2599 | } |
2600 | |
2601 | fn no_expansion(&mut self) -> Option<Cow<'_, str>> { |
2602 | Some(Cow::Borrowed(self.0)) |
2603 | } |
2604 | } |
2605 | |
2606 | /// Quickly checks the given replacement string for whether interpolation |
2607 | /// should be done on it. It returns `None` if a `$` was found anywhere in the |
2608 | /// given string, which suggests interpolation needs to be done. But if there's |
2609 | /// no `$` anywhere, then interpolation definitely does not need to be done. In |
2610 | /// that case, the given string is returned as a borrowed `Cow`. |
2611 | /// |
2612 | /// This is meant to be used to implement the `Replacer::no_expandsion` method |
2613 | /// in its various trait impls. |
2614 | fn no_expansion<T: AsRef<str>>(t: &T) -> Option<Cow<'_, str>> { |
2615 | let s: &str = t.as_ref(); |
2616 | match s.find('$' ) { |
2617 | Some(_) => None, |
2618 | None => Some(Cow::Borrowed(s)), |
2619 | } |
2620 | } |
2621 | |
2622 | /// A configurable builder for a [`Regex`]. |
2623 | /// |
2624 | /// This builder can be used to programmatically set flags such as `i` (case |
2625 | /// insensitive) and `x` (for verbose mode). This builder can also be used to |
2626 | /// configure things like a size limit on the compiled regular expression. |
2627 | #[derive (Debug)] |
2628 | pub struct RegexBuilder { |
2629 | pattern: String, |
2630 | hir_config: hir::Config, |
2631 | nfa_config: nfa::Config, |
2632 | } |
2633 | |
2634 | impl RegexBuilder { |
2635 | /// Create a new builder with a default configuration for the given |
2636 | /// pattern. |
2637 | /// |
2638 | /// If the pattern is invalid or exceeds the configured size limits, then |
2639 | /// an error will be returned when [`RegexBuilder::build`] is called. |
2640 | pub fn new(pattern: &str) -> RegexBuilder { |
2641 | RegexBuilder { |
2642 | pattern: pattern.to_string(), |
2643 | hir_config: hir::Config::default(), |
2644 | nfa_config: nfa::Config::default(), |
2645 | } |
2646 | } |
2647 | |
2648 | /// Compiles the pattern given to `RegexBuilder::new` with the |
2649 | /// configuration set on this builder. |
2650 | /// |
2651 | /// If the pattern isn't a valid regex or if a configured size limit was |
2652 | /// exceeded, then an error is returned. |
2653 | pub fn build(&self) -> Result<Regex, Error> { |
2654 | let hir = Hir::parse(self.hir_config, &self.pattern)?; |
2655 | let nfa = NFA::new(self.nfa_config, self.pattern.clone(), &hir)?; |
2656 | let pikevm = Arc::new(PikeVM::new(nfa)); |
2657 | let pool = { |
2658 | let pikevm = Arc::clone(&pikevm); |
2659 | let create = Box::new(move || Cache::new(&pikevm)); |
2660 | CachePool::new(create) |
2661 | }; |
2662 | Ok(Regex { pikevm, pool }) |
2663 | } |
2664 | |
2665 | /// This configures whether to enable ASCII case insensitive matching for |
2666 | /// the entire pattern. |
2667 | /// |
2668 | /// This setting can also be configured using the inline flag `i` |
2669 | /// in the pattern. For example, `(?i:foo)` matches `foo` case |
2670 | /// insensitively while `(?-i:foo)` matches `foo` case sensitively. |
2671 | /// |
2672 | /// The default for this is `false`. |
2673 | /// |
2674 | /// # Example |
2675 | /// |
2676 | /// ``` |
2677 | /// use regex_lite::RegexBuilder; |
2678 | /// |
2679 | /// let re = RegexBuilder::new(r"foo(?-i:bar)quux" ) |
2680 | /// .case_insensitive(true) |
2681 | /// .build() |
2682 | /// .unwrap(); |
2683 | /// assert!(re.is_match("FoObarQuUx" )); |
2684 | /// // Even though case insensitive matching is enabled in the builder, |
2685 | /// // it can be locally disabled within the pattern. In this case, |
2686 | /// // `bar` is matched case sensitively. |
2687 | /// assert!(!re.is_match("fooBARquux" )); |
2688 | /// ``` |
2689 | pub fn case_insensitive(&mut self, yes: bool) -> &mut RegexBuilder { |
2690 | self.hir_config.flags.case_insensitive = yes; |
2691 | self |
2692 | } |
2693 | |
2694 | /// This configures multi-line mode for the entire pattern. |
2695 | /// |
2696 | /// Enabling multi-line mode changes the behavior of the `^` and `$` anchor |
2697 | /// assertions. Instead of only matching at the beginning and end of a |
2698 | /// haystack, respectively, multi-line mode causes them to match at the |
2699 | /// beginning and end of a line *in addition* to the beginning and end of |
2700 | /// a haystack. More precisely, `^` will match at the position immediately |
2701 | /// following a `\n` and `$` will match at the position immediately |
2702 | /// preceding a `\n`. |
2703 | /// |
2704 | /// The behavior of this option is impacted by the [`RegexBuilder::crlf`] |
2705 | /// setting. Namely, CRLF mode changes the line terminator to be either |
2706 | /// `\r` or `\n`, but never at the position between a `\r` and `\`n. |
2707 | /// |
2708 | /// This setting can also be configured using the inline flag `m` in the |
2709 | /// pattern. |
2710 | /// |
2711 | /// The default for this is `false`. |
2712 | /// |
2713 | /// # Example |
2714 | /// |
2715 | /// ``` |
2716 | /// use regex_lite::RegexBuilder; |
2717 | /// |
2718 | /// let re = RegexBuilder::new(r"^foo$" ) |
2719 | /// .multi_line(true) |
2720 | /// .build() |
2721 | /// .unwrap(); |
2722 | /// assert_eq!(Some(1..4), re.find(" \nfoo \n" ).map(|m| m.range())); |
2723 | /// ``` |
2724 | pub fn multi_line(&mut self, yes: bool) -> &mut RegexBuilder { |
2725 | self.hir_config.flags.multi_line = yes; |
2726 | self |
2727 | } |
2728 | |
2729 | /// This configures dot-matches-new-line mode for the entire pattern. |
2730 | /// |
2731 | /// Perhaps surprisingly, the default behavior for `.` is not to match |
2732 | /// any character, but rather, to match any character except for the line |
2733 | /// terminator (which is `\n` by default). When this mode is enabled, the |
2734 | /// behavior changes such that `.` truly matches any character. |
2735 | /// |
2736 | /// This setting can also be configured using the inline flag `s` in the |
2737 | /// pattern. |
2738 | /// |
2739 | /// The default for this is `false`. |
2740 | /// |
2741 | /// # Example |
2742 | /// |
2743 | /// ``` |
2744 | /// use regex_lite::RegexBuilder; |
2745 | /// |
2746 | /// let re = RegexBuilder::new(r"foo.bar" ) |
2747 | /// .dot_matches_new_line(true) |
2748 | /// .build() |
2749 | /// .unwrap(); |
2750 | /// let hay = "foo \nbar" ; |
2751 | /// assert_eq!(Some("foo \nbar" ), re.find(hay).map(|m| m.as_str())); |
2752 | /// ``` |
2753 | pub fn dot_matches_new_line(&mut self, yes: bool) -> &mut RegexBuilder { |
2754 | self.hir_config.flags.dot_matches_new_line = yes; |
2755 | self |
2756 | } |
2757 | |
2758 | /// This configures CRLF mode for the entire pattern. |
2759 | /// |
2760 | /// When CRLF mode is enabled, both `\r` ("carriage return" or CR for |
2761 | /// short) and `\n` ("line feed" or LF for short) are treated as line |
2762 | /// terminators. This results in the following: |
2763 | /// |
2764 | /// * Unless dot-matches-new-line mode is enabled, `.` will now match any |
2765 | /// character except for `\n` and `\r`. |
2766 | /// * When multi-line mode is enabled, `^` will match immediately |
2767 | /// following a `\n` or a `\r`. Similarly, `$` will match immediately |
2768 | /// preceding a `\n` or a `\r`. Neither `^` nor `$` will ever match between |
2769 | /// `\r` and `\n`. |
2770 | /// |
2771 | /// This setting can also be configured using the inline flag `R` in |
2772 | /// the pattern. |
2773 | /// |
2774 | /// The default for this is `false`. |
2775 | /// |
2776 | /// # Example |
2777 | /// |
2778 | /// ``` |
2779 | /// use regex_lite::RegexBuilder; |
2780 | /// |
2781 | /// let re = RegexBuilder::new(r"^foo$" ) |
2782 | /// .multi_line(true) |
2783 | /// .crlf(true) |
2784 | /// .build() |
2785 | /// .unwrap(); |
2786 | /// let hay = " \r\nfoo \r\n" ; |
2787 | /// // If CRLF mode weren't enabled here, then '$' wouldn't match |
2788 | /// // immediately after 'foo', and thus no match would be found. |
2789 | /// assert_eq!(Some("foo" ), re.find(hay).map(|m| m.as_str())); |
2790 | /// ``` |
2791 | /// |
2792 | /// This example demonstrates that `^` will never match at a position |
2793 | /// between `\r` and `\n`. (`$` will similarly not match between a `\r` |
2794 | /// and a `\n`.) |
2795 | /// |
2796 | /// ``` |
2797 | /// use regex_lite::RegexBuilder; |
2798 | /// |
2799 | /// let re = RegexBuilder::new(r"^" ) |
2800 | /// .multi_line(true) |
2801 | /// .crlf(true) |
2802 | /// .build() |
2803 | /// .unwrap(); |
2804 | /// let hay = " \r\n\r\n" ; |
2805 | /// let ranges: Vec<_> = re.find_iter(hay).map(|m| m.range()).collect(); |
2806 | /// assert_eq!(ranges, vec![0..0, 2..2, 4..4]); |
2807 | /// ``` |
2808 | pub fn crlf(&mut self, yes: bool) -> &mut RegexBuilder { |
2809 | self.hir_config.flags.crlf = yes; |
2810 | self |
2811 | } |
2812 | |
2813 | /// This configures swap-greed mode for the entire pattern. |
2814 | /// |
2815 | /// When swap-greed mode is enabled, patterns like `a+` will become |
2816 | /// non-greedy and patterns like `a+?` will become greedy. In other words, |
2817 | /// the meanings of `a+` and `a+?` are switched. |
2818 | /// |
2819 | /// This setting can also be configured using the inline flag `U` in the |
2820 | /// pattern. |
2821 | /// |
2822 | /// The default for this is `false`. |
2823 | /// |
2824 | /// # Example |
2825 | /// |
2826 | /// ``` |
2827 | /// use regex_lite::RegexBuilder; |
2828 | /// |
2829 | /// let re = RegexBuilder::new(r"a+" ) |
2830 | /// .swap_greed(true) |
2831 | /// .build() |
2832 | /// .unwrap(); |
2833 | /// assert_eq!(Some("a" ), re.find("aaa" ).map(|m| m.as_str())); |
2834 | /// ``` |
2835 | pub fn swap_greed(&mut self, yes: bool) -> &mut RegexBuilder { |
2836 | self.hir_config.flags.swap_greed = yes; |
2837 | self |
2838 | } |
2839 | |
2840 | /// This configures verbose mode for the entire pattern. |
2841 | /// |
2842 | /// When enabled, whitespace will treated as insignifcant in the pattern |
2843 | /// and `#` can be used to start a comment until the next new line. |
2844 | /// |
2845 | /// Normally, in most places in a pattern, whitespace is treated literally. |
2846 | /// For example ` +` will match one or more ASCII whitespace characters. |
2847 | /// |
2848 | /// When verbose mode is enabled, `\#` can be used to match a literal `#` |
2849 | /// and `\ ` can be used to match a literal ASCII whitespace character. |
2850 | /// |
2851 | /// Verbose mode is useful for permitting regexes to be formatted and |
2852 | /// broken up more nicely. This may make them more easily readable. |
2853 | /// |
2854 | /// This setting can also be configured using the inline flag `x` in the |
2855 | /// pattern. |
2856 | /// |
2857 | /// The default for this is `false`. |
2858 | /// |
2859 | /// # Example |
2860 | /// |
2861 | /// ``` |
2862 | /// use regex_lite::RegexBuilder; |
2863 | /// |
2864 | /// let pat = r" |
2865 | /// \b |
2866 | /// (?<first>[A-Z]\w*) # always start with uppercase letter |
2867 | /// \s+ # whitespace should separate names |
2868 | /// (?: # middle name can be an initial! |
2869 | /// (?:(?<initial>[A-Z])\.|(?<middle>[A-Z]\w*)) |
2870 | /// \s+ |
2871 | /// )? |
2872 | /// (?<last>[A-Z]\w*) |
2873 | /// \b |
2874 | /// " ; |
2875 | /// let re = RegexBuilder::new(pat) |
2876 | /// .ignore_whitespace(true) |
2877 | /// .build() |
2878 | /// .unwrap(); |
2879 | /// |
2880 | /// let caps = re.captures("Harry Potter" ).unwrap(); |
2881 | /// assert_eq!("Harry" , &caps["first" ]); |
2882 | /// assert_eq!("Potter" , &caps["last" ]); |
2883 | /// |
2884 | /// let caps = re.captures("Harry J. Potter" ).unwrap(); |
2885 | /// assert_eq!("Harry" , &caps["first" ]); |
2886 | /// // Since a middle name/initial isn't required for an overall match, |
2887 | /// // we can't assume that 'initial' or 'middle' will be populated! |
2888 | /// assert_eq!(Some("J" ), caps.name("initial" ).map(|m| m.as_str())); |
2889 | /// assert_eq!(None, caps.name("middle" ).map(|m| m.as_str())); |
2890 | /// assert_eq!("Potter" , &caps["last" ]); |
2891 | /// |
2892 | /// let caps = re.captures("Harry James Potter" ).unwrap(); |
2893 | /// assert_eq!("Harry" , &caps["first" ]); |
2894 | /// // Since a middle name/initial isn't required for an overall match, |
2895 | /// // we can't assume that 'initial' or 'middle' will be populated! |
2896 | /// assert_eq!(None, caps.name("initial" ).map(|m| m.as_str())); |
2897 | /// assert_eq!(Some("James" ), caps.name("middle" ).map(|m| m.as_str())); |
2898 | /// assert_eq!("Potter" , &caps["last" ]); |
2899 | /// ``` |
2900 | pub fn ignore_whitespace(&mut self, yes: bool) -> &mut RegexBuilder { |
2901 | self.hir_config.flags.ignore_whitespace = yes; |
2902 | self |
2903 | } |
2904 | |
2905 | /// Sets the approximate size limit, in bytes, of the compiled regex. |
2906 | /// |
2907 | /// This roughly corresponds to the number of heap memory, in bytes, |
2908 | /// occupied by a single regex. If the regex would otherwise approximately |
2909 | /// exceed this limit, then compiling that regex will fail. |
2910 | /// |
2911 | /// The main utility of a method like this is to avoid compiling regexes |
2912 | /// that use an unexpected amount of resources, such as time and memory. |
2913 | /// Even if the memory usage of a large regex is acceptable, its search |
2914 | /// time may not be. Namely, worst case time complexity for search is `O(m |
2915 | /// * n)`, where `m ~ len(pattern)` and `n ~ len(haystack)`. That is, |
2916 | /// search time depends, in part, on the size of the compiled regex. This |
2917 | /// means that putting a limit on the size of the regex limits how much a |
2918 | /// regex can impact search time. |
2919 | /// |
2920 | /// The default for this is some reasonable number that permits most |
2921 | /// patterns to compile successfully. |
2922 | /// |
2923 | /// # Example |
2924 | /// |
2925 | /// ``` |
2926 | /// use regex_lite::RegexBuilder; |
2927 | /// |
2928 | /// assert!(RegexBuilder::new(r"\w" ).size_limit(100).build().is_err()); |
2929 | /// ``` |
2930 | pub fn size_limit(&mut self, limit: usize) -> &mut RegexBuilder { |
2931 | self.nfa_config.size_limit = Some(limit); |
2932 | self |
2933 | } |
2934 | |
2935 | /// Set the nesting limit for this parser. |
2936 | /// |
2937 | /// The nesting limit controls how deep the abstract syntax tree is allowed |
2938 | /// to be. If the AST exceeds the given limit (e.g., with too many nested |
2939 | /// groups), then an error is returned by the parser. |
2940 | /// |
2941 | /// The purpose of this limit is to act as a heuristic to prevent stack |
2942 | /// overflow for consumers that do structural induction on an AST using |
2943 | /// explicit recursion. While this crate never does this (instead using |
2944 | /// constant stack space and moving the call stack to the heap), other |
2945 | /// crates may. |
2946 | /// |
2947 | /// This limit is not checked until the entire AST is parsed. Therefore, if |
2948 | /// callers want to put a limit on the amount of heap space used, then they |
2949 | /// should impose a limit on the length, in bytes, of the concrete pattern |
2950 | /// string. In particular, this is viable since this parser implementation |
2951 | /// will limit itself to heap space proportional to the length of the |
2952 | /// pattern string. See also the [untrusted inputs](crate#untrusted-input) |
2953 | /// section in the top-level crate documentation for more information about |
2954 | /// this. |
2955 | /// |
2956 | /// Note that a nest limit of `0` will return a nest limit error for most |
2957 | /// patterns but not all. For example, a nest limit of `0` permits `a` but |
2958 | /// not `ab`, since `ab` requires an explicit concatenation, which results |
2959 | /// in a nest depth of `1`. In general, a nest limit is not something that |
2960 | /// manifests in an obvious way in the concrete syntax, therefore, it |
2961 | /// should not be used in a granular way. |
2962 | /// |
2963 | /// # Example |
2964 | /// |
2965 | /// ``` |
2966 | /// use regex_lite::RegexBuilder; |
2967 | /// |
2968 | /// assert!(RegexBuilder::new(r"" ).nest_limit(0).build().is_ok()); |
2969 | /// assert!(RegexBuilder::new(r"a" ).nest_limit(0).build().is_ok()); |
2970 | /// assert!(RegexBuilder::new(r"(a)" ).nest_limit(0).build().is_err()); |
2971 | /// ``` |
2972 | pub fn nest_limit(&mut self, limit: u32) -> &mut RegexBuilder { |
2973 | self.hir_config.nest_limit = limit; |
2974 | self |
2975 | } |
2976 | } |
2977 | |