| 1 | use alloc::boxed::Box; |
| 2 | use alloc::vec::Vec; |
| 3 | use core::fmt::Debug; |
| 4 | |
| 5 | use pki_types::PrivateKeyDer; |
| 6 | use zeroize::Zeroize; |
| 7 | |
| 8 | #[cfg (all(doc, feature = "tls12" ))] |
| 9 | use crate::Tls12CipherSuite; |
| 10 | use crate::msgs::ffdhe_groups::FfdheGroup; |
| 11 | use crate::sign::SigningKey; |
| 12 | use crate::sync::Arc; |
| 13 | pub use crate::webpki::{ |
| 14 | WebPkiSupportedAlgorithms, verify_tls12_signature, verify_tls13_signature, |
| 15 | verify_tls13_signature_with_raw_key, |
| 16 | }; |
| 17 | #[cfg (doc)] |
| 18 | use crate::{ |
| 19 | ClientConfig, ConfigBuilder, ServerConfig, SupportedCipherSuite, Tls13CipherSuite, client, |
| 20 | crypto, server, sign, |
| 21 | }; |
| 22 | use crate::{Error, NamedGroup, ProtocolVersion, SupportedProtocolVersion, suites}; |
| 23 | |
| 24 | /// *ring* based CryptoProvider. |
| 25 | #[cfg (feature = "ring" )] |
| 26 | pub mod ring; |
| 27 | |
| 28 | /// aws-lc-rs-based CryptoProvider. |
| 29 | #[cfg (feature = "aws_lc_rs" )] |
| 30 | pub mod aws_lc_rs; |
| 31 | |
| 32 | /// TLS message encryption/decryption interfaces. |
| 33 | pub mod cipher; |
| 34 | |
| 35 | /// Hashing interfaces. |
| 36 | pub mod hash; |
| 37 | |
| 38 | /// HMAC interfaces. |
| 39 | pub mod hmac; |
| 40 | |
| 41 | #[cfg (feature = "tls12" )] |
| 42 | /// Cryptography specific to TLS1.2. |
| 43 | pub mod tls12; |
| 44 | |
| 45 | /// Cryptography specific to TLS1.3. |
| 46 | pub mod tls13; |
| 47 | |
| 48 | /// Hybrid public key encryption (RFC 9180). |
| 49 | pub mod hpke; |
| 50 | |
| 51 | // Message signing interfaces. Re-exported under rustls::sign. Kept crate-internal here to |
| 52 | // avoid having two import paths to the same types. |
| 53 | pub(crate) mod signer; |
| 54 | |
| 55 | pub use crate::msgs::handshake::KeyExchangeAlgorithm; |
| 56 | pub use crate::rand::GetRandomFailed; |
| 57 | pub use crate::suites::CipherSuiteCommon; |
| 58 | |
| 59 | /// Controls core cryptography used by rustls. |
| 60 | /// |
| 61 | /// This crate comes with two built-in options, provided as |
| 62 | /// `CryptoProvider` structures: |
| 63 | /// |
| 64 | /// - [`crypto::aws_lc_rs::default_provider`]: (behind the `aws_lc_rs` crate feature, |
| 65 | /// which is enabled by default). This provider uses the [aws-lc-rs](https://github.com/aws/aws-lc-rs) |
| 66 | /// crate. The `fips` crate feature makes this option use FIPS140-3-approved cryptography. |
| 67 | /// - [`crypto::ring::default_provider`]: (behind the `ring` crate feature, which |
| 68 | /// is optional). This provider uses the [*ring*](https://github.com/briansmith/ring) |
| 69 | /// crate. |
| 70 | /// |
| 71 | /// This structure provides defaults. Everything in it can be overridden at |
| 72 | /// runtime by replacing field values as needed. |
| 73 | /// |
| 74 | /// # Using the per-process default `CryptoProvider` |
| 75 | /// |
| 76 | /// There is the concept of an implicit default provider, configured at run-time once in |
| 77 | /// a given process. |
| 78 | /// |
| 79 | /// It is used for functions like [`ClientConfig::builder()`] and [`ServerConfig::builder()`]. |
| 80 | /// |
| 81 | /// The intention is that an application can specify the [`CryptoProvider`] they wish to use |
| 82 | /// once, and have that apply to the variety of places where their application does TLS |
| 83 | /// (which may be wrapped inside other libraries). |
| 84 | /// They should do this by calling [`CryptoProvider::install_default()`] early on. |
| 85 | /// |
| 86 | /// To achieve this goal: |
| 87 | /// |
| 88 | /// - _libraries_ should use [`ClientConfig::builder()`]/[`ServerConfig::builder()`] |
| 89 | /// or otherwise rely on the [`CryptoProvider::get_default()`] provider. |
| 90 | /// - _applications_ should call [`CryptoProvider::install_default()`] early |
| 91 | /// in their `fn main()`. If _applications_ uses a custom provider based on the one built-in, |
| 92 | /// they can activate the `custom-provider` feature to ensure its usage. |
| 93 | /// |
| 94 | /// # Using a specific `CryptoProvider` |
| 95 | /// |
| 96 | /// Supply the provider when constructing your [`ClientConfig`] or [`ServerConfig`]: |
| 97 | /// |
| 98 | /// - [`ClientConfig::builder_with_provider()`] |
| 99 | /// - [`ServerConfig::builder_with_provider()`] |
| 100 | /// |
| 101 | /// When creating and configuring a webpki-backed client or server certificate verifier, a choice of |
| 102 | /// provider is also needed to start the configuration process: |
| 103 | /// |
| 104 | /// - [`client::WebPkiServerVerifier::builder_with_provider()`] |
| 105 | /// - [`server::WebPkiClientVerifier::builder_with_provider()`] |
| 106 | /// |
| 107 | /// If you install a custom provider and want to avoid any accidental use of a built-in provider, the feature |
| 108 | /// `custom-provider` can be activated to ensure your custom provider is used everywhere |
| 109 | /// and not a built-in one. This will disable any implicit use of a built-in provider. |
| 110 | /// |
| 111 | /// # Making a custom `CryptoProvider` |
| 112 | /// |
| 113 | /// Your goal will be to populate an instance of this `CryptoProvider` struct. |
| 114 | /// |
| 115 | /// ## Which elements are required? |
| 116 | /// |
| 117 | /// There is no requirement that the individual elements ([`SupportedCipherSuite`], [`SupportedKxGroup`], |
| 118 | /// [`SigningKey`], etc.) come from the same crate. It is allowed and expected that uninteresting |
| 119 | /// elements would be delegated back to one of the default providers (statically) or a parent |
| 120 | /// provider (dynamically). |
| 121 | /// |
| 122 | /// For example, if we want to make a provider that just overrides key loading in the config builder |
| 123 | /// API (with [`ConfigBuilder::with_single_cert`], etc.), it might look like this: |
| 124 | /// |
| 125 | /// ``` |
| 126 | /// # #[cfg (feature = "aws_lc_rs" )] { |
| 127 | /// # use std::sync::Arc; |
| 128 | /// # mod fictious_hsm_api { pub fn load_private_key(key_der: pki_types::PrivateKeyDer<'static>) -> ! { unreachable!(); } } |
| 129 | /// use rustls::crypto::aws_lc_rs; |
| 130 | /// |
| 131 | /// pub fn provider() -> rustls::crypto::CryptoProvider { |
| 132 | /// rustls::crypto::CryptoProvider{ |
| 133 | /// key_provider: &HsmKeyLoader, |
| 134 | /// ..aws_lc_rs::default_provider() |
| 135 | /// } |
| 136 | /// } |
| 137 | /// |
| 138 | /// #[derive(Debug)] |
| 139 | /// struct HsmKeyLoader; |
| 140 | /// |
| 141 | /// impl rustls::crypto::KeyProvider for HsmKeyLoader { |
| 142 | /// fn load_private_key(&self, key_der: pki_types::PrivateKeyDer<'static>) -> Result<Arc<dyn rustls::sign::SigningKey>, rustls::Error> { |
| 143 | /// fictious_hsm_api::load_private_key(key_der) |
| 144 | /// } |
| 145 | /// } |
| 146 | /// # } |
| 147 | /// ``` |
| 148 | /// |
| 149 | /// ## References to the individual elements |
| 150 | /// |
| 151 | /// The elements are documented separately: |
| 152 | /// |
| 153 | /// - **Random** - see [`crypto::SecureRandom::fill()`]. |
| 154 | /// - **Cipher suites** - see [`SupportedCipherSuite`], [`Tls12CipherSuite`], and |
| 155 | /// [`Tls13CipherSuite`]. |
| 156 | /// - **Key exchange groups** - see [`crypto::SupportedKxGroup`]. |
| 157 | /// - **Signature verification algorithms** - see [`crypto::WebPkiSupportedAlgorithms`]. |
| 158 | /// - **Authentication key loading** - see [`crypto::KeyProvider::load_private_key()`] and |
| 159 | /// [`sign::SigningKey`]. |
| 160 | /// |
| 161 | /// # Example code |
| 162 | /// |
| 163 | /// See custom [`provider-example/`] for a full client and server example that uses |
| 164 | /// cryptography from the [`RustCrypto`] and [`dalek-cryptography`] projects. |
| 165 | /// |
| 166 | /// ```shell |
| 167 | /// $ cargo run --example client | head -3 |
| 168 | /// Current ciphersuite: TLS13_CHACHA20_POLY1305_SHA256 |
| 169 | /// HTTP/1.1 200 OK |
| 170 | /// Content-Type: text/html; charset=utf-8 |
| 171 | /// Content-Length: 19899 |
| 172 | /// ``` |
| 173 | /// |
| 174 | /// [`provider-example/`]: https://github.com/rustls/rustls/tree/main/provider-example/ |
| 175 | /// [`RustCrypto`]: https://github.com/RustCrypto |
| 176 | /// [`dalek-cryptography`]: https://github.com/dalek-cryptography |
| 177 | /// |
| 178 | /// # FIPS-approved cryptography |
| 179 | /// The `fips` crate feature enables use of the `aws-lc-rs` crate in FIPS mode. |
| 180 | /// |
| 181 | /// You can verify the configuration at runtime by checking |
| 182 | /// [`ServerConfig::fips()`]/[`ClientConfig::fips()`] return `true`. |
| 183 | #[derive (Debug, Clone)] |
| 184 | pub struct CryptoProvider { |
| 185 | /// List of supported ciphersuites, in preference order -- the first element |
| 186 | /// is the highest priority. |
| 187 | /// |
| 188 | /// The `SupportedCipherSuite` type carries both configuration and implementation. |
| 189 | /// |
| 190 | /// A valid `CryptoProvider` must ensure that all cipher suites are accompanied by at least |
| 191 | /// one matching key exchange group in [`CryptoProvider::kx_groups`]. |
| 192 | pub cipher_suites: Vec<suites::SupportedCipherSuite>, |
| 193 | |
| 194 | /// List of supported key exchange groups, in preference order -- the |
| 195 | /// first element is the highest priority. |
| 196 | /// |
| 197 | /// The first element in this list is the _default key share algorithm_, |
| 198 | /// and in TLS1.3 a key share for it is sent in the client hello. |
| 199 | /// |
| 200 | /// The `SupportedKxGroup` type carries both configuration and implementation. |
| 201 | pub kx_groups: Vec<&'static dyn SupportedKxGroup>, |
| 202 | |
| 203 | /// List of signature verification algorithms for use with webpki. |
| 204 | /// |
| 205 | /// These are used for both certificate chain verification and handshake signature verification. |
| 206 | /// |
| 207 | /// This is called by [`ConfigBuilder::with_root_certificates()`], |
| 208 | /// [`server::WebPkiClientVerifier::builder_with_provider()`] and |
| 209 | /// [`client::WebPkiServerVerifier::builder_with_provider()`]. |
| 210 | pub signature_verification_algorithms: WebPkiSupportedAlgorithms, |
| 211 | |
| 212 | /// Source of cryptographically secure random numbers. |
| 213 | pub secure_random: &'static dyn SecureRandom, |
| 214 | |
| 215 | /// Provider for loading private [`SigningKey`]s from [`PrivateKeyDer`]. |
| 216 | pub key_provider: &'static dyn KeyProvider, |
| 217 | } |
| 218 | |
| 219 | impl CryptoProvider { |
| 220 | /// Sets this `CryptoProvider` as the default for this process. |
| 221 | /// |
| 222 | /// This can be called successfully at most once in any process execution. |
| 223 | /// |
| 224 | /// Call this early in your process to configure which provider is used for |
| 225 | /// the provider. The configuration should happen before any use of |
| 226 | /// [`ClientConfig::builder()`] or [`ServerConfig::builder()`]. |
| 227 | pub fn install_default(self) -> Result<(), Arc<Self>> { |
| 228 | static_default::install_default(self) |
| 229 | } |
| 230 | |
| 231 | /// Returns the default `CryptoProvider` for this process. |
| 232 | /// |
| 233 | /// This will be `None` if no default has been set yet. |
| 234 | pub fn get_default() -> Option<&'static Arc<Self>> { |
| 235 | static_default::get_default() |
| 236 | } |
| 237 | |
| 238 | /// An internal function that: |
| 239 | /// |
| 240 | /// - gets the pre-installed default, or |
| 241 | /// - installs one `from_crate_features()`, or else |
| 242 | /// - panics about the need to call [`CryptoProvider::install_default()`] |
| 243 | pub(crate) fn get_default_or_install_from_crate_features() -> &'static Arc<Self> { |
| 244 | if let Some(provider) = Self::get_default() { |
| 245 | return provider; |
| 246 | } |
| 247 | |
| 248 | let provider = Self::from_crate_features() |
| 249 | .expect("no process-level CryptoProvider available -- call CryptoProvider::install_default() before this point" ); |
| 250 | // Ignore the error resulting from us losing a race, and accept the outcome. |
| 251 | let _ = provider.install_default(); |
| 252 | Self::get_default().unwrap() |
| 253 | } |
| 254 | |
| 255 | /// Returns a provider named unambiguously by rustls crate features. |
| 256 | /// |
| 257 | /// This function returns `None` if the crate features are ambiguous (ie, specify two |
| 258 | /// providers), or specify no providers, or the feature `custom-provider` is activated. |
| 259 | /// In all cases the application should explicitly specify the provider to use |
| 260 | /// with [`CryptoProvider::install_default`]. |
| 261 | fn from_crate_features() -> Option<Self> { |
| 262 | #[cfg (all( |
| 263 | feature = "ring" , |
| 264 | not(feature = "aws_lc_rs" ), |
| 265 | not(feature = "custom-provider" ) |
| 266 | ))] |
| 267 | { |
| 268 | return Some(ring::default_provider()); |
| 269 | } |
| 270 | |
| 271 | #[cfg (all( |
| 272 | feature = "aws_lc_rs" , |
| 273 | not(feature = "ring" ), |
| 274 | not(feature = "custom-provider" ) |
| 275 | ))] |
| 276 | { |
| 277 | return Some(aws_lc_rs::default_provider()); |
| 278 | } |
| 279 | |
| 280 | #[allow (unreachable_code)] |
| 281 | None |
| 282 | } |
| 283 | |
| 284 | /// Returns `true` if this `CryptoProvider` is operating in FIPS mode. |
| 285 | /// |
| 286 | /// This covers only the cryptographic parts of FIPS approval. There are |
| 287 | /// also TLS protocol-level recommendations made by NIST. You should |
| 288 | /// prefer to call [`ClientConfig::fips()`] or [`ServerConfig::fips()`] |
| 289 | /// which take these into account. |
| 290 | pub fn fips(&self) -> bool { |
| 291 | let Self { |
| 292 | cipher_suites, |
| 293 | kx_groups, |
| 294 | signature_verification_algorithms, |
| 295 | secure_random, |
| 296 | key_provider, |
| 297 | } = self; |
| 298 | cipher_suites.iter().all(|cs| cs.fips()) |
| 299 | && kx_groups.iter().all(|kx| kx.fips()) |
| 300 | && signature_verification_algorithms.fips() |
| 301 | && secure_random.fips() |
| 302 | && key_provider.fips() |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | /// A source of cryptographically secure randomness. |
| 307 | pub trait SecureRandom: Send + Sync + Debug { |
| 308 | /// Fill the given buffer with random bytes. |
| 309 | /// |
| 310 | /// The bytes must be sourced from a cryptographically secure random number |
| 311 | /// generator seeded with good quality, secret entropy. |
| 312 | /// |
| 313 | /// This is used for all randomness required by rustls, but not necessarily |
| 314 | /// randomness required by the underlying cryptography library. For example: |
| 315 | /// [`SupportedKxGroup::start()`] requires random material to generate |
| 316 | /// an ephemeral key exchange key, but this is not included in the interface with |
| 317 | /// rustls: it is assumed that the cryptography library provides for this itself. |
| 318 | fn fill(&self, buf: &mut [u8]) -> Result<(), GetRandomFailed>; |
| 319 | |
| 320 | /// Return `true` if this is backed by a FIPS-approved implementation. |
| 321 | fn fips(&self) -> bool { |
| 322 | false |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | /// A mechanism for loading private [`SigningKey`]s from [`PrivateKeyDer`]. |
| 327 | /// |
| 328 | /// This trait is intended to be used with private key material that is sourced from DER, |
| 329 | /// such as a private-key that may be present on-disk. It is not intended to be used with |
| 330 | /// keys held in hardware security modules (HSMs) or physical tokens. For these use-cases |
| 331 | /// see the Rustls manual section on [customizing private key usage]. |
| 332 | /// |
| 333 | /// [customizing private key usage]: <https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#customising-private-key-usage> |
| 334 | pub trait KeyProvider: Send + Sync + Debug { |
| 335 | /// Decode and validate a private signing key from `key_der`. |
| 336 | /// |
| 337 | /// This is used by [`ConfigBuilder::with_client_auth_cert()`], [`ConfigBuilder::with_single_cert()`], |
| 338 | /// and [`ConfigBuilder::with_single_cert_with_ocsp()`]. The key types and formats supported by this |
| 339 | /// function directly defines the key types and formats supported in those APIs. |
| 340 | /// |
| 341 | /// Return an error if the key type encoding is not supported, or if the key fails validation. |
| 342 | fn load_private_key( |
| 343 | &self, |
| 344 | key_der: PrivateKeyDer<'static>, |
| 345 | ) -> Result<Arc<dyn SigningKey>, Error>; |
| 346 | |
| 347 | /// Return `true` if this is backed by a FIPS-approved implementation. |
| 348 | /// |
| 349 | /// If this returns `true`, that must be the case for all possible key types |
| 350 | /// supported by [`KeyProvider::load_private_key()`]. |
| 351 | fn fips(&self) -> bool { |
| 352 | false |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | /// A supported key exchange group. |
| 357 | /// |
| 358 | /// This type carries both configuration and implementation. Specifically, |
| 359 | /// it has a TLS-level name expressed using the [`NamedGroup`] enum, and |
| 360 | /// a function which produces a [`ActiveKeyExchange`]. |
| 361 | /// |
| 362 | /// Compare with [`NamedGroup`], which carries solely a protocol identifier. |
| 363 | pub trait SupportedKxGroup: Send + Sync + Debug { |
| 364 | /// Start a key exchange. |
| 365 | /// |
| 366 | /// This will prepare an ephemeral secret key in the supported group, and a corresponding |
| 367 | /// public key. The key exchange can be completed by calling [ActiveKeyExchange#complete] |
| 368 | /// or discarded. |
| 369 | /// |
| 370 | /// # Errors |
| 371 | /// |
| 372 | /// This can fail if the random source fails during ephemeral key generation. |
| 373 | fn start(&self) -> Result<Box<dyn ActiveKeyExchange>, Error>; |
| 374 | |
| 375 | /// Start and complete a key exchange, in one operation. |
| 376 | /// |
| 377 | /// The default implementation for this calls `start()` and then calls |
| 378 | /// `complete()` on the result. This is suitable for Diffie-Hellman-like |
| 379 | /// key exchange algorithms, where there is not a data dependency between |
| 380 | /// our key share (named "pub_key" in this API) and the peer's (`peer_pub_key`). |
| 381 | /// |
| 382 | /// If there is such a data dependency (like key encapsulation mechanisms), this |
| 383 | /// function should be implemented. |
| 384 | fn start_and_complete(&self, peer_pub_key: &[u8]) -> Result<CompletedKeyExchange, Error> { |
| 385 | let kx = self.start()?; |
| 386 | |
| 387 | Ok(CompletedKeyExchange { |
| 388 | group: kx.group(), |
| 389 | pub_key: kx.pub_key().to_vec(), |
| 390 | secret: kx.complete(peer_pub_key)?, |
| 391 | }) |
| 392 | } |
| 393 | |
| 394 | /// FFDHE group the `SupportedKxGroup` operates in. |
| 395 | /// |
| 396 | /// Return `None` if this group is not a FFDHE one. |
| 397 | /// |
| 398 | /// The default implementation calls `FfdheGroup::from_named_group`: this function |
| 399 | /// is extremely linker-unfriendly so it is recommended all key exchange implementers |
| 400 | /// provide this function. |
| 401 | /// |
| 402 | /// `rustls::ffdhe_groups` contains suitable values to return from this, |
| 403 | /// for example [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048]. |
| 404 | fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> { |
| 405 | #[allow (deprecated)] |
| 406 | FfdheGroup::from_named_group(self.name()) |
| 407 | } |
| 408 | |
| 409 | /// Named group the SupportedKxGroup operates in. |
| 410 | /// |
| 411 | /// If the `NamedGroup` enum does not have a name for the algorithm you are implementing, |
| 412 | /// you can use [`NamedGroup::Unknown`]. |
| 413 | fn name(&self) -> NamedGroup; |
| 414 | |
| 415 | /// Return `true` if this is backed by a FIPS-approved implementation. |
| 416 | fn fips(&self) -> bool { |
| 417 | false |
| 418 | } |
| 419 | |
| 420 | /// Return `true` if this should be offered/selected with the given version. |
| 421 | /// |
| 422 | /// The default implementation returns true for all versions. |
| 423 | fn usable_for_version(&self, _version: ProtocolVersion) -> bool { |
| 424 | true |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | /// An in-progress key exchange originating from a [`SupportedKxGroup`]. |
| 429 | pub trait ActiveKeyExchange: Send + Sync { |
| 430 | /// Completes the key exchange, given the peer's public key. |
| 431 | /// |
| 432 | /// This method must return an error if `peer_pub_key` is invalid: either |
| 433 | /// mis-encoded, or an invalid public key (such as, but not limited to, being |
| 434 | /// in a small order subgroup). |
| 435 | /// |
| 436 | /// If the key exchange algorithm is FFDHE, the result must be left-padded with zeros, |
| 437 | /// as required by [RFC 8446](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1) |
| 438 | /// (see [`complete_for_tls_version()`](Self::complete_for_tls_version) for more details). |
| 439 | /// |
| 440 | /// The shared secret is returned as a [`SharedSecret`] which can be constructed |
| 441 | /// from a `&[u8]`. |
| 442 | /// |
| 443 | /// This consumes and so terminates the [`ActiveKeyExchange`]. |
| 444 | fn complete(self: Box<Self>, peer_pub_key: &[u8]) -> Result<SharedSecret, Error>; |
| 445 | |
| 446 | /// Completes the key exchange for the given TLS version, given the peer's public key. |
| 447 | /// |
| 448 | /// Note that finite-field Diffie–Hellman key exchange has different requirements for the derived |
| 449 | /// shared secret in TLS 1.2 and TLS 1.3 (ECDHE key exchange is the same in TLS 1.2 and TLS 1.3): |
| 450 | /// |
| 451 | /// In TLS 1.2, the calculated secret is required to be stripped of leading zeros |
| 452 | /// [(RFC 5246)](https://www.rfc-editor.org/rfc/rfc5246#section-8.1.2). |
| 453 | /// |
| 454 | /// In TLS 1.3, the calculated secret is required to be padded with leading zeros to be the same |
| 455 | /// byte-length as the group modulus [(RFC 8446)](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1). |
| 456 | /// |
| 457 | /// The default implementation of this method delegates to [`complete()`](Self::complete) assuming it is |
| 458 | /// implemented for TLS 1.3 (i.e., for FFDHE KX, removes padding as needed). Implementers of this trait |
| 459 | /// are encouraged to just implement [`complete()`](Self::complete) assuming TLS 1.3, and let the default |
| 460 | /// implementation of this method handle TLS 1.2-specific requirements. |
| 461 | /// |
| 462 | /// This method must return an error if `peer_pub_key` is invalid: either |
| 463 | /// mis-encoded, or an invalid public key (such as, but not limited to, being |
| 464 | /// in a small order subgroup). |
| 465 | /// |
| 466 | /// The shared secret is returned as a [`SharedSecret`] which can be constructed |
| 467 | /// from a `&[u8]`. |
| 468 | /// |
| 469 | /// This consumes and so terminates the [`ActiveKeyExchange`]. |
| 470 | fn complete_for_tls_version( |
| 471 | self: Box<Self>, |
| 472 | peer_pub_key: &[u8], |
| 473 | tls_version: &SupportedProtocolVersion, |
| 474 | ) -> Result<SharedSecret, Error> { |
| 475 | if tls_version.version != ProtocolVersion::TLSv1_2 { |
| 476 | return self.complete(peer_pub_key); |
| 477 | } |
| 478 | |
| 479 | let group = self.group(); |
| 480 | let mut complete_res = self.complete(peer_pub_key)?; |
| 481 | if group.key_exchange_algorithm() == KeyExchangeAlgorithm::DHE { |
| 482 | complete_res.strip_leading_zeros(); |
| 483 | } |
| 484 | Ok(complete_res) |
| 485 | } |
| 486 | |
| 487 | /// For hybrid key exchanges, returns the [`NamedGroup`] and key share |
| 488 | /// for the classical half of this key exchange. |
| 489 | /// |
| 490 | /// There is no requirement for a hybrid scheme (or any other!) to implement |
| 491 | /// `hybrid_component()`. It only enables an optimization; described below. |
| 492 | /// |
| 493 | /// "Hybrid" means a key exchange algorithm which is constructed from two |
| 494 | /// (or more) independent component algorithms. Usually one is post-quantum-secure, |
| 495 | /// and the other is "classical". See |
| 496 | /// <https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/11/> |
| 497 | /// |
| 498 | /// # Background |
| 499 | /// Rustls always sends a presumptive key share in its `ClientHello`, using |
| 500 | /// (absent any other information) the first item in [`CryptoProvider::kx_groups`]. |
| 501 | /// If the server accepts the client's selection, it can complete the handshake |
| 502 | /// using that key share. If not, the server sends a `HelloRetryRequest` instructing |
| 503 | /// the client to send a different key share instead. |
| 504 | /// |
| 505 | /// This request costs an extra round trip, and wastes the key exchange computation |
| 506 | /// (in [`SupportedKxGroup::start()`]) the client already did. We would |
| 507 | /// like to avoid those wastes if possible. |
| 508 | /// |
| 509 | /// It is early days for post-quantum-secure hybrid key exchange deployment. |
| 510 | /// This means (commonly) continuing to offer both the hybrid and classical |
| 511 | /// key exchanges, so the handshake can be completed without a `HelloRetryRequest` |
| 512 | /// for servers that support the offered hybrid or classical schemes. |
| 513 | /// |
| 514 | /// Implementing `hybrid_component()` enables two optimizations: |
| 515 | /// |
| 516 | /// 1. Sending both the hybrid and classical key shares in the `ClientHello`. |
| 517 | /// |
| 518 | /// 2. Performing the classical key exchange setup only once. This is important |
| 519 | /// because the classical key exchange setup is relatively expensive. |
| 520 | /// This optimization is permitted and described in |
| 521 | /// <https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-11.html#section-3.2> |
| 522 | /// |
| 523 | /// Both of these only happen if the classical algorithm appears separately in |
| 524 | /// the client's [`CryptoProvider::kx_groups`], and if the hybrid algorithm appears |
| 525 | /// first in that list. |
| 526 | /// |
| 527 | /// # How it works |
| 528 | /// This function is only called by rustls for clients. It is called when |
| 529 | /// constructing the initial `ClientHello`. rustls follows these steps: |
| 530 | /// |
| 531 | /// 1. If the return value is `None`, nothing further happens. |
| 532 | /// 2. If the given [`NamedGroup`] does not appear in |
| 533 | /// [`CryptoProvider::kx_groups`], nothing further happens. |
| 534 | /// 3. The given key share is added to the `ClientHello`, after the hybrid entry. |
| 535 | /// |
| 536 | /// Then, one of three things may happen when the server replies to the `ClientHello`: |
| 537 | /// |
| 538 | /// 1. The server sends a `HelloRetryRequest`. Everything is thrown away and |
| 539 | /// we start again. |
| 540 | /// 2. The server agrees to our hybrid key exchange: rustls calls |
| 541 | /// [`ActiveKeyExchange::complete()`] consuming `self`. |
| 542 | /// 3. The server agrees to our classical key exchange: rustls calls |
| 543 | /// [`ActiveKeyExchange::complete_hybrid_component()`] which |
| 544 | /// discards the hybrid key data, and completes just the classical key exchange. |
| 545 | fn hybrid_component(&self) -> Option<(NamedGroup, &[u8])> { |
| 546 | None |
| 547 | } |
| 548 | |
| 549 | /// Completes the classical component of the key exchange, given the peer's public key. |
| 550 | /// |
| 551 | /// This is only called if `hybrid_component` returns `Some(_)`. |
| 552 | /// |
| 553 | /// This method must return an error if `peer_pub_key` is invalid: either |
| 554 | /// mis-encoded, or an invalid public key (such as, but not limited to, being |
| 555 | /// in a small order subgroup). |
| 556 | /// |
| 557 | /// The shared secret is returned as a [`SharedSecret`] which can be constructed |
| 558 | /// from a `&[u8]`. |
| 559 | /// |
| 560 | /// See the documentation on [`Self::hybrid_component()`] for explanation. |
| 561 | fn complete_hybrid_component( |
| 562 | self: Box<Self>, |
| 563 | _peer_pub_key: &[u8], |
| 564 | ) -> Result<SharedSecret, Error> { |
| 565 | unreachable!("only called if `hybrid_component()` implemented" ) |
| 566 | } |
| 567 | |
| 568 | /// Return the public key being used. |
| 569 | /// |
| 570 | /// For ECDHE, the encoding required is defined in |
| 571 | /// [RFC8446 section 4.2.8.2](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.2). |
| 572 | /// |
| 573 | /// For FFDHE, the encoding required is defined in |
| 574 | /// [RFC8446 section 4.2.8.1](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.1). |
| 575 | fn pub_key(&self) -> &[u8]; |
| 576 | |
| 577 | /// FFDHE group the `ActiveKeyExchange` is operating in. |
| 578 | /// |
| 579 | /// Return `None` if this group is not a FFDHE one. |
| 580 | /// |
| 581 | /// The default implementation calls `FfdheGroup::from_named_group`: this function |
| 582 | /// is extremely linker-unfriendly so it is recommended all key exchange implementers |
| 583 | /// provide this function. |
| 584 | /// |
| 585 | /// `rustls::ffdhe_groups` contains suitable values to return from this, |
| 586 | /// for example [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048]. |
| 587 | fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> { |
| 588 | #[allow (deprecated)] |
| 589 | FfdheGroup::from_named_group(self.group()) |
| 590 | } |
| 591 | |
| 592 | /// Return the group being used. |
| 593 | fn group(&self) -> NamedGroup; |
| 594 | } |
| 595 | |
| 596 | /// The result from [`SupportedKxGroup::start_and_complete()`]. |
| 597 | pub struct CompletedKeyExchange { |
| 598 | /// Which group was used. |
| 599 | pub group: NamedGroup, |
| 600 | |
| 601 | /// Our key share (sometimes a public key). |
| 602 | pub pub_key: Vec<u8>, |
| 603 | |
| 604 | /// The computed shared secret. |
| 605 | pub secret: SharedSecret, |
| 606 | } |
| 607 | |
| 608 | /// The result from [`ActiveKeyExchange::complete`] or [`ActiveKeyExchange::complete_hybrid_component`]. |
| 609 | pub struct SharedSecret { |
| 610 | buf: Vec<u8>, |
| 611 | offset: usize, |
| 612 | } |
| 613 | |
| 614 | impl SharedSecret { |
| 615 | /// Returns the shared secret as a slice of bytes. |
| 616 | pub fn secret_bytes(&self) -> &[u8] { |
| 617 | &self.buf[self.offset..] |
| 618 | } |
| 619 | |
| 620 | /// Removes leading zeros from `secret_bytes()` by adjusting the `offset`. |
| 621 | /// |
| 622 | /// This function does not re-allocate. |
| 623 | fn strip_leading_zeros(&mut self) { |
| 624 | let start: usize = self |
| 625 | .secret_bytes() |
| 626 | .iter() |
| 627 | .enumerate() |
| 628 | .find(|(_i, x)| **x != 0) |
| 629 | .map(|(i, _x)| i) |
| 630 | .unwrap_or(self.secret_bytes().len()); |
| 631 | self.offset += start; |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | impl Drop for SharedSecret { |
| 636 | fn drop(&mut self) { |
| 637 | self.buf.zeroize(); |
| 638 | } |
| 639 | } |
| 640 | |
| 641 | impl From<&[u8]> for SharedSecret { |
| 642 | fn from(source: &[u8]) -> Self { |
| 643 | Self { |
| 644 | buf: source.to_vec(), |
| 645 | offset: 0, |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | impl From<Vec<u8>> for SharedSecret { |
| 651 | fn from(buf: Vec<u8>) -> Self { |
| 652 | Self { buf, offset: 0 } |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | /// This function returns a [`CryptoProvider`] that uses |
| 657 | /// FIPS140-3-approved cryptography. |
| 658 | /// |
| 659 | /// Using this function expresses in your code that you require |
| 660 | /// FIPS-approved cryptography, and will not compile if you make |
| 661 | /// a mistake with cargo features. |
| 662 | /// |
| 663 | /// See our [FIPS documentation](crate::manual::_06_fips) for |
| 664 | /// more detail. |
| 665 | /// |
| 666 | /// Install this as the process-default provider, like: |
| 667 | /// |
| 668 | /// ```rust |
| 669 | /// # #[cfg(feature = "fips")] { |
| 670 | /// rustls::crypto::default_fips_provider().install_default() |
| 671 | /// .expect("default provider already set elsewhere"); |
| 672 | /// # } |
| 673 | /// ``` |
| 674 | /// |
| 675 | /// You can also use this explicitly, like: |
| 676 | /// |
| 677 | /// ```rust |
| 678 | /// # #[cfg(feature = "fips")] { |
| 679 | /// # let root_store = rustls::RootCertStore::empty(); |
| 680 | /// let config = rustls::ClientConfig::builder_with_provider( |
| 681 | /// rustls::crypto::default_fips_provider().into() |
| 682 | /// ) |
| 683 | /// .with_safe_default_protocol_versions() |
| 684 | /// .unwrap() |
| 685 | /// .with_root_certificates(root_store) |
| 686 | /// .with_no_client_auth(); |
| 687 | /// # } |
| 688 | /// ``` |
| 689 | #[cfg (all(feature = "aws_lc_rs" , any(feature = "fips" , docsrs)))] |
| 690 | #[cfg_attr (docsrs, doc(cfg(feature = "fips" )))] |
| 691 | pub fn default_fips_provider() -> CryptoProvider { |
| 692 | aws_lc_rs::default_provider() |
| 693 | } |
| 694 | |
| 695 | mod static_default { |
| 696 | #[cfg (not(feature = "std" ))] |
| 697 | use alloc::boxed::Box; |
| 698 | #[cfg (feature = "std" )] |
| 699 | use std::sync::OnceLock; |
| 700 | |
| 701 | #[cfg (not(feature = "std" ))] |
| 702 | use once_cell::race::OnceBox; |
| 703 | |
| 704 | use super::CryptoProvider; |
| 705 | use crate::sync::Arc; |
| 706 | |
| 707 | #[cfg (feature = "std" )] |
| 708 | pub(crate) fn install_default( |
| 709 | default_provider: CryptoProvider, |
| 710 | ) -> Result<(), Arc<CryptoProvider>> { |
| 711 | PROCESS_DEFAULT_PROVIDER.set(Arc::new(default_provider)) |
| 712 | } |
| 713 | |
| 714 | #[cfg (not(feature = "std" ))] |
| 715 | pub(crate) fn install_default( |
| 716 | default_provider: CryptoProvider, |
| 717 | ) -> Result<(), Arc<CryptoProvider>> { |
| 718 | PROCESS_DEFAULT_PROVIDER |
| 719 | .set(Box::new(Arc::new(default_provider))) |
| 720 | .map_err(|e| *e) |
| 721 | } |
| 722 | |
| 723 | pub(crate) fn get_default() -> Option<&'static Arc<CryptoProvider>> { |
| 724 | PROCESS_DEFAULT_PROVIDER.get() |
| 725 | } |
| 726 | |
| 727 | #[cfg (feature = "std" )] |
| 728 | static PROCESS_DEFAULT_PROVIDER: OnceLock<Arc<CryptoProvider>> = OnceLock::new(); |
| 729 | #[cfg (not(feature = "std" ))] |
| 730 | static PROCESS_DEFAULT_PROVIDER: OnceBox<Arc<CryptoProvider>> = OnceBox::new(); |
| 731 | } |
| 732 | |
| 733 | #[cfg (test)] |
| 734 | mod tests { |
| 735 | use std::vec; |
| 736 | |
| 737 | use super::SharedSecret; |
| 738 | |
| 739 | #[test ] |
| 740 | fn test_shared_secret_strip_leading_zeros() { |
| 741 | let test_cases = [ |
| 742 | (vec![0, 1], vec![1]), |
| 743 | (vec![1], vec![1]), |
| 744 | (vec![1, 0, 2], vec![1, 0, 2]), |
| 745 | (vec![0, 0, 1, 2], vec![1, 2]), |
| 746 | (vec![0, 0, 0], vec![]), |
| 747 | (vec![], vec![]), |
| 748 | ]; |
| 749 | for (buf, expected) in test_cases { |
| 750 | let mut secret = SharedSecret::from(&buf[..]); |
| 751 | assert_eq!(secret.secret_bytes(), buf); |
| 752 | secret.strip_leading_zeros(); |
| 753 | assert_eq!(secret.secret_bytes(), expected); |
| 754 | } |
| 755 | } |
| 756 | } |
| 757 | |