1 | use alloc::boxed::Box; |
2 | use alloc::vec::Vec; |
3 | use core::fmt::Debug; |
4 | |
5 | use pki_types::PrivateKeyDer; |
6 | use zeroize::Zeroize; |
7 | |
8 | #[cfg (all(doc, feature = "tls12" ))] |
9 | use crate::Tls12CipherSuite; |
10 | use crate::msgs::ffdhe_groups::FfdheGroup; |
11 | use crate::sign::SigningKey; |
12 | use crate::sync::Arc; |
13 | pub use crate::webpki::{ |
14 | WebPkiSupportedAlgorithms, verify_tls12_signature, verify_tls13_signature, |
15 | verify_tls13_signature_with_raw_key, |
16 | }; |
17 | #[cfg (doc)] |
18 | use crate::{ |
19 | ClientConfig, ConfigBuilder, ServerConfig, SupportedCipherSuite, Tls13CipherSuite, client, |
20 | crypto, server, sign, |
21 | }; |
22 | use crate::{Error, NamedGroup, ProtocolVersion, SupportedProtocolVersion, suites}; |
23 | |
24 | /// *ring* based CryptoProvider. |
25 | #[cfg (feature = "ring" )] |
26 | pub mod ring; |
27 | |
28 | /// aws-lc-rs-based CryptoProvider. |
29 | #[cfg (feature = "aws_lc_rs" )] |
30 | pub mod aws_lc_rs; |
31 | |
32 | /// TLS message encryption/decryption interfaces. |
33 | pub mod cipher; |
34 | |
35 | /// Hashing interfaces. |
36 | pub mod hash; |
37 | |
38 | /// HMAC interfaces. |
39 | pub mod hmac; |
40 | |
41 | #[cfg (feature = "tls12" )] |
42 | /// Cryptography specific to TLS1.2. |
43 | pub mod tls12; |
44 | |
45 | /// Cryptography specific to TLS1.3. |
46 | pub mod tls13; |
47 | |
48 | /// Hybrid public key encryption (RFC 9180). |
49 | pub mod hpke; |
50 | |
51 | // Message signing interfaces. Re-exported under rustls::sign. Kept crate-internal here to |
52 | // avoid having two import paths to the same types. |
53 | pub(crate) mod signer; |
54 | |
55 | pub use crate::msgs::handshake::KeyExchangeAlgorithm; |
56 | pub use crate::rand::GetRandomFailed; |
57 | pub use crate::suites::CipherSuiteCommon; |
58 | |
59 | /// Controls core cryptography used by rustls. |
60 | /// |
61 | /// This crate comes with two built-in options, provided as |
62 | /// `CryptoProvider` structures: |
63 | /// |
64 | /// - [`crypto::aws_lc_rs::default_provider`]: (behind the `aws_lc_rs` crate feature, |
65 | /// which is enabled by default). This provider uses the [aws-lc-rs](https://github.com/aws/aws-lc-rs) |
66 | /// crate. The `fips` crate feature makes this option use FIPS140-3-approved cryptography. |
67 | /// - [`crypto::ring::default_provider`]: (behind the `ring` crate feature, which |
68 | /// is optional). This provider uses the [*ring*](https://github.com/briansmith/ring) |
69 | /// crate. |
70 | /// |
71 | /// This structure provides defaults. Everything in it can be overridden at |
72 | /// runtime by replacing field values as needed. |
73 | /// |
74 | /// # Using the per-process default `CryptoProvider` |
75 | /// |
76 | /// There is the concept of an implicit default provider, configured at run-time once in |
77 | /// a given process. |
78 | /// |
79 | /// It is used for functions like [`ClientConfig::builder()`] and [`ServerConfig::builder()`]. |
80 | /// |
81 | /// The intention is that an application can specify the [`CryptoProvider`] they wish to use |
82 | /// once, and have that apply to the variety of places where their application does TLS |
83 | /// (which may be wrapped inside other libraries). |
84 | /// They should do this by calling [`CryptoProvider::install_default()`] early on. |
85 | /// |
86 | /// To achieve this goal: |
87 | /// |
88 | /// - _libraries_ should use [`ClientConfig::builder()`]/[`ServerConfig::builder()`] |
89 | /// or otherwise rely on the [`CryptoProvider::get_default()`] provider. |
90 | /// - _applications_ should call [`CryptoProvider::install_default()`] early |
91 | /// in their `fn main()`. If _applications_ uses a custom provider based on the one built-in, |
92 | /// they can activate the `custom-provider` feature to ensure its usage. |
93 | /// |
94 | /// # Using a specific `CryptoProvider` |
95 | /// |
96 | /// Supply the provider when constructing your [`ClientConfig`] or [`ServerConfig`]: |
97 | /// |
98 | /// - [`ClientConfig::builder_with_provider()`] |
99 | /// - [`ServerConfig::builder_with_provider()`] |
100 | /// |
101 | /// When creating and configuring a webpki-backed client or server certificate verifier, a choice of |
102 | /// provider is also needed to start the configuration process: |
103 | /// |
104 | /// - [`client::WebPkiServerVerifier::builder_with_provider()`] |
105 | /// - [`server::WebPkiClientVerifier::builder_with_provider()`] |
106 | /// |
107 | /// If you install a custom provider and want to avoid any accidental use of a built-in provider, the feature |
108 | /// `custom-provider` can be activated to ensure your custom provider is used everywhere |
109 | /// and not a built-in one. This will disable any implicit use of a built-in provider. |
110 | /// |
111 | /// # Making a custom `CryptoProvider` |
112 | /// |
113 | /// Your goal will be to populate an instance of this `CryptoProvider` struct. |
114 | /// |
115 | /// ## Which elements are required? |
116 | /// |
117 | /// There is no requirement that the individual elements ([`SupportedCipherSuite`], [`SupportedKxGroup`], |
118 | /// [`SigningKey`], etc.) come from the same crate. It is allowed and expected that uninteresting |
119 | /// elements would be delegated back to one of the default providers (statically) or a parent |
120 | /// provider (dynamically). |
121 | /// |
122 | /// For example, if we want to make a provider that just overrides key loading in the config builder |
123 | /// API (with [`ConfigBuilder::with_single_cert`], etc.), it might look like this: |
124 | /// |
125 | /// ``` |
126 | /// # #[cfg (feature = "aws_lc_rs" )] { |
127 | /// # use std::sync::Arc; |
128 | /// # mod fictious_hsm_api { pub fn load_private_key(key_der: pki_types::PrivateKeyDer<'static>) -> ! { unreachable!(); } } |
129 | /// use rustls::crypto::aws_lc_rs; |
130 | /// |
131 | /// pub fn provider() -> rustls::crypto::CryptoProvider { |
132 | /// rustls::crypto::CryptoProvider{ |
133 | /// key_provider: &HsmKeyLoader, |
134 | /// ..aws_lc_rs::default_provider() |
135 | /// } |
136 | /// } |
137 | /// |
138 | /// #[derive(Debug)] |
139 | /// struct HsmKeyLoader; |
140 | /// |
141 | /// impl rustls::crypto::KeyProvider for HsmKeyLoader { |
142 | /// fn load_private_key(&self, key_der: pki_types::PrivateKeyDer<'static>) -> Result<Arc<dyn rustls::sign::SigningKey>, rustls::Error> { |
143 | /// fictious_hsm_api::load_private_key(key_der) |
144 | /// } |
145 | /// } |
146 | /// # } |
147 | /// ``` |
148 | /// |
149 | /// ## References to the individual elements |
150 | /// |
151 | /// The elements are documented separately: |
152 | /// |
153 | /// - **Random** - see [`crypto::SecureRandom::fill()`]. |
154 | /// - **Cipher suites** - see [`SupportedCipherSuite`], [`Tls12CipherSuite`], and |
155 | /// [`Tls13CipherSuite`]. |
156 | /// - **Key exchange groups** - see [`crypto::SupportedKxGroup`]. |
157 | /// - **Signature verification algorithms** - see [`crypto::WebPkiSupportedAlgorithms`]. |
158 | /// - **Authentication key loading** - see [`crypto::KeyProvider::load_private_key()`] and |
159 | /// [`sign::SigningKey`]. |
160 | /// |
161 | /// # Example code |
162 | /// |
163 | /// See custom [`provider-example/`] for a full client and server example that uses |
164 | /// cryptography from the [`RustCrypto`] and [`dalek-cryptography`] projects. |
165 | /// |
166 | /// ```shell |
167 | /// $ cargo run --example client | head -3 |
168 | /// Current ciphersuite: TLS13_CHACHA20_POLY1305_SHA256 |
169 | /// HTTP/1.1 200 OK |
170 | /// Content-Type: text/html; charset=utf-8 |
171 | /// Content-Length: 19899 |
172 | /// ``` |
173 | /// |
174 | /// [`provider-example/`]: https://github.com/rustls/rustls/tree/main/provider-example/ |
175 | /// [`RustCrypto`]: https://github.com/RustCrypto |
176 | /// [`dalek-cryptography`]: https://github.com/dalek-cryptography |
177 | /// |
178 | /// # FIPS-approved cryptography |
179 | /// The `fips` crate feature enables use of the `aws-lc-rs` crate in FIPS mode. |
180 | /// |
181 | /// You can verify the configuration at runtime by checking |
182 | /// [`ServerConfig::fips()`]/[`ClientConfig::fips()`] return `true`. |
183 | #[derive (Debug, Clone)] |
184 | pub struct CryptoProvider { |
185 | /// List of supported ciphersuites, in preference order -- the first element |
186 | /// is the highest priority. |
187 | /// |
188 | /// The `SupportedCipherSuite` type carries both configuration and implementation. |
189 | /// |
190 | /// A valid `CryptoProvider` must ensure that all cipher suites are accompanied by at least |
191 | /// one matching key exchange group in [`CryptoProvider::kx_groups`]. |
192 | pub cipher_suites: Vec<suites::SupportedCipherSuite>, |
193 | |
194 | /// List of supported key exchange groups, in preference order -- the |
195 | /// first element is the highest priority. |
196 | /// |
197 | /// The first element in this list is the _default key share algorithm_, |
198 | /// and in TLS1.3 a key share for it is sent in the client hello. |
199 | /// |
200 | /// The `SupportedKxGroup` type carries both configuration and implementation. |
201 | pub kx_groups: Vec<&'static dyn SupportedKxGroup>, |
202 | |
203 | /// List of signature verification algorithms for use with webpki. |
204 | /// |
205 | /// These are used for both certificate chain verification and handshake signature verification. |
206 | /// |
207 | /// This is called by [`ConfigBuilder::with_root_certificates()`], |
208 | /// [`server::WebPkiClientVerifier::builder_with_provider()`] and |
209 | /// [`client::WebPkiServerVerifier::builder_with_provider()`]. |
210 | pub signature_verification_algorithms: WebPkiSupportedAlgorithms, |
211 | |
212 | /// Source of cryptographically secure random numbers. |
213 | pub secure_random: &'static dyn SecureRandom, |
214 | |
215 | /// Provider for loading private [`SigningKey`]s from [`PrivateKeyDer`]. |
216 | pub key_provider: &'static dyn KeyProvider, |
217 | } |
218 | |
219 | impl CryptoProvider { |
220 | /// Sets this `CryptoProvider` as the default for this process. |
221 | /// |
222 | /// This can be called successfully at most once in any process execution. |
223 | /// |
224 | /// Call this early in your process to configure which provider is used for |
225 | /// the provider. The configuration should happen before any use of |
226 | /// [`ClientConfig::builder()`] or [`ServerConfig::builder()`]. |
227 | pub fn install_default(self) -> Result<(), Arc<Self>> { |
228 | static_default::install_default(self) |
229 | } |
230 | |
231 | /// Returns the default `CryptoProvider` for this process. |
232 | /// |
233 | /// This will be `None` if no default has been set yet. |
234 | pub fn get_default() -> Option<&'static Arc<Self>> { |
235 | static_default::get_default() |
236 | } |
237 | |
238 | /// An internal function that: |
239 | /// |
240 | /// - gets the pre-installed default, or |
241 | /// - installs one `from_crate_features()`, or else |
242 | /// - panics about the need to call [`CryptoProvider::install_default()`] |
243 | pub(crate) fn get_default_or_install_from_crate_features() -> &'static Arc<Self> { |
244 | if let Some(provider) = Self::get_default() { |
245 | return provider; |
246 | } |
247 | |
248 | let provider = Self::from_crate_features() |
249 | .expect("no process-level CryptoProvider available -- call CryptoProvider::install_default() before this point" ); |
250 | // Ignore the error resulting from us losing a race, and accept the outcome. |
251 | let _ = provider.install_default(); |
252 | Self::get_default().unwrap() |
253 | } |
254 | |
255 | /// Returns a provider named unambiguously by rustls crate features. |
256 | /// |
257 | /// This function returns `None` if the crate features are ambiguous (ie, specify two |
258 | /// providers), or specify no providers, or the feature `custom-provider` is activated. |
259 | /// In all cases the application should explicitly specify the provider to use |
260 | /// with [`CryptoProvider::install_default`]. |
261 | fn from_crate_features() -> Option<Self> { |
262 | #[cfg (all( |
263 | feature = "ring" , |
264 | not(feature = "aws_lc_rs" ), |
265 | not(feature = "custom-provider" ) |
266 | ))] |
267 | { |
268 | return Some(ring::default_provider()); |
269 | } |
270 | |
271 | #[cfg (all( |
272 | feature = "aws_lc_rs" , |
273 | not(feature = "ring" ), |
274 | not(feature = "custom-provider" ) |
275 | ))] |
276 | { |
277 | return Some(aws_lc_rs::default_provider()); |
278 | } |
279 | |
280 | #[allow (unreachable_code)] |
281 | None |
282 | } |
283 | |
284 | /// Returns `true` if this `CryptoProvider` is operating in FIPS mode. |
285 | /// |
286 | /// This covers only the cryptographic parts of FIPS approval. There are |
287 | /// also TLS protocol-level recommendations made by NIST. You should |
288 | /// prefer to call [`ClientConfig::fips()`] or [`ServerConfig::fips()`] |
289 | /// which take these into account. |
290 | pub fn fips(&self) -> bool { |
291 | let Self { |
292 | cipher_suites, |
293 | kx_groups, |
294 | signature_verification_algorithms, |
295 | secure_random, |
296 | key_provider, |
297 | } = self; |
298 | cipher_suites.iter().all(|cs| cs.fips()) |
299 | && kx_groups.iter().all(|kx| kx.fips()) |
300 | && signature_verification_algorithms.fips() |
301 | && secure_random.fips() |
302 | && key_provider.fips() |
303 | } |
304 | } |
305 | |
306 | /// A source of cryptographically secure randomness. |
307 | pub trait SecureRandom: Send + Sync + Debug { |
308 | /// Fill the given buffer with random bytes. |
309 | /// |
310 | /// The bytes must be sourced from a cryptographically secure random number |
311 | /// generator seeded with good quality, secret entropy. |
312 | /// |
313 | /// This is used for all randomness required by rustls, but not necessarily |
314 | /// randomness required by the underlying cryptography library. For example: |
315 | /// [`SupportedKxGroup::start()`] requires random material to generate |
316 | /// an ephemeral key exchange key, but this is not included in the interface with |
317 | /// rustls: it is assumed that the cryptography library provides for this itself. |
318 | fn fill(&self, buf: &mut [u8]) -> Result<(), GetRandomFailed>; |
319 | |
320 | /// Return `true` if this is backed by a FIPS-approved implementation. |
321 | fn fips(&self) -> bool { |
322 | false |
323 | } |
324 | } |
325 | |
326 | /// A mechanism for loading private [`SigningKey`]s from [`PrivateKeyDer`]. |
327 | /// |
328 | /// This trait is intended to be used with private key material that is sourced from DER, |
329 | /// such as a private-key that may be present on-disk. It is not intended to be used with |
330 | /// keys held in hardware security modules (HSMs) or physical tokens. For these use-cases |
331 | /// see the Rustls manual section on [customizing private key usage]. |
332 | /// |
333 | /// [customizing private key usage]: <https://docs.rs/rustls/latest/rustls/manual/_03_howto/index.html#customising-private-key-usage> |
334 | pub trait KeyProvider: Send + Sync + Debug { |
335 | /// Decode and validate a private signing key from `key_der`. |
336 | /// |
337 | /// This is used by [`ConfigBuilder::with_client_auth_cert()`], [`ConfigBuilder::with_single_cert()`], |
338 | /// and [`ConfigBuilder::with_single_cert_with_ocsp()`]. The key types and formats supported by this |
339 | /// function directly defines the key types and formats supported in those APIs. |
340 | /// |
341 | /// Return an error if the key type encoding is not supported, or if the key fails validation. |
342 | fn load_private_key( |
343 | &self, |
344 | key_der: PrivateKeyDer<'static>, |
345 | ) -> Result<Arc<dyn SigningKey>, Error>; |
346 | |
347 | /// Return `true` if this is backed by a FIPS-approved implementation. |
348 | /// |
349 | /// If this returns `true`, that must be the case for all possible key types |
350 | /// supported by [`KeyProvider::load_private_key()`]. |
351 | fn fips(&self) -> bool { |
352 | false |
353 | } |
354 | } |
355 | |
356 | /// A supported key exchange group. |
357 | /// |
358 | /// This type carries both configuration and implementation. Specifically, |
359 | /// it has a TLS-level name expressed using the [`NamedGroup`] enum, and |
360 | /// a function which produces a [`ActiveKeyExchange`]. |
361 | /// |
362 | /// Compare with [`NamedGroup`], which carries solely a protocol identifier. |
363 | pub trait SupportedKxGroup: Send + Sync + Debug { |
364 | /// Start a key exchange. |
365 | /// |
366 | /// This will prepare an ephemeral secret key in the supported group, and a corresponding |
367 | /// public key. The key exchange can be completed by calling [ActiveKeyExchange#complete] |
368 | /// or discarded. |
369 | /// |
370 | /// # Errors |
371 | /// |
372 | /// This can fail if the random source fails during ephemeral key generation. |
373 | fn start(&self) -> Result<Box<dyn ActiveKeyExchange>, Error>; |
374 | |
375 | /// Start and complete a key exchange, in one operation. |
376 | /// |
377 | /// The default implementation for this calls `start()` and then calls |
378 | /// `complete()` on the result. This is suitable for Diffie-Hellman-like |
379 | /// key exchange algorithms, where there is not a data dependency between |
380 | /// our key share (named "pub_key" in this API) and the peer's (`peer_pub_key`). |
381 | /// |
382 | /// If there is such a data dependency (like key encapsulation mechanisms), this |
383 | /// function should be implemented. |
384 | fn start_and_complete(&self, peer_pub_key: &[u8]) -> Result<CompletedKeyExchange, Error> { |
385 | let kx = self.start()?; |
386 | |
387 | Ok(CompletedKeyExchange { |
388 | group: kx.group(), |
389 | pub_key: kx.pub_key().to_vec(), |
390 | secret: kx.complete(peer_pub_key)?, |
391 | }) |
392 | } |
393 | |
394 | /// FFDHE group the `SupportedKxGroup` operates in. |
395 | /// |
396 | /// Return `None` if this group is not a FFDHE one. |
397 | /// |
398 | /// The default implementation calls `FfdheGroup::from_named_group`: this function |
399 | /// is extremely linker-unfriendly so it is recommended all key exchange implementers |
400 | /// provide this function. |
401 | /// |
402 | /// `rustls::ffdhe_groups` contains suitable values to return from this, |
403 | /// for example [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048]. |
404 | fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> { |
405 | #[allow (deprecated)] |
406 | FfdheGroup::from_named_group(self.name()) |
407 | } |
408 | |
409 | /// Named group the SupportedKxGroup operates in. |
410 | /// |
411 | /// If the `NamedGroup` enum does not have a name for the algorithm you are implementing, |
412 | /// you can use [`NamedGroup::Unknown`]. |
413 | fn name(&self) -> NamedGroup; |
414 | |
415 | /// Return `true` if this is backed by a FIPS-approved implementation. |
416 | fn fips(&self) -> bool { |
417 | false |
418 | } |
419 | |
420 | /// Return `true` if this should be offered/selected with the given version. |
421 | /// |
422 | /// The default implementation returns true for all versions. |
423 | fn usable_for_version(&self, _version: ProtocolVersion) -> bool { |
424 | true |
425 | } |
426 | } |
427 | |
428 | /// An in-progress key exchange originating from a [`SupportedKxGroup`]. |
429 | pub trait ActiveKeyExchange: Send + Sync { |
430 | /// Completes the key exchange, given the peer's public key. |
431 | /// |
432 | /// This method must return an error if `peer_pub_key` is invalid: either |
433 | /// mis-encoded, or an invalid public key (such as, but not limited to, being |
434 | /// in a small order subgroup). |
435 | /// |
436 | /// If the key exchange algorithm is FFDHE, the result must be left-padded with zeros, |
437 | /// as required by [RFC 8446](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1) |
438 | /// (see [`complete_for_tls_version()`](Self::complete_for_tls_version) for more details). |
439 | /// |
440 | /// The shared secret is returned as a [`SharedSecret`] which can be constructed |
441 | /// from a `&[u8]`. |
442 | /// |
443 | /// This consumes and so terminates the [`ActiveKeyExchange`]. |
444 | fn complete(self: Box<Self>, peer_pub_key: &[u8]) -> Result<SharedSecret, Error>; |
445 | |
446 | /// Completes the key exchange for the given TLS version, given the peer's public key. |
447 | /// |
448 | /// Note that finite-field Diffie–Hellman key exchange has different requirements for the derived |
449 | /// shared secret in TLS 1.2 and TLS 1.3 (ECDHE key exchange is the same in TLS 1.2 and TLS 1.3): |
450 | /// |
451 | /// In TLS 1.2, the calculated secret is required to be stripped of leading zeros |
452 | /// [(RFC 5246)](https://www.rfc-editor.org/rfc/rfc5246#section-8.1.2). |
453 | /// |
454 | /// In TLS 1.3, the calculated secret is required to be padded with leading zeros to be the same |
455 | /// byte-length as the group modulus [(RFC 8446)](https://www.rfc-editor.org/rfc/rfc8446#section-7.4.1). |
456 | /// |
457 | /// The default implementation of this method delegates to [`complete()`](Self::complete) assuming it is |
458 | /// implemented for TLS 1.3 (i.e., for FFDHE KX, removes padding as needed). Implementers of this trait |
459 | /// are encouraged to just implement [`complete()`](Self::complete) assuming TLS 1.3, and let the default |
460 | /// implementation of this method handle TLS 1.2-specific requirements. |
461 | /// |
462 | /// This method must return an error if `peer_pub_key` is invalid: either |
463 | /// mis-encoded, or an invalid public key (such as, but not limited to, being |
464 | /// in a small order subgroup). |
465 | /// |
466 | /// The shared secret is returned as a [`SharedSecret`] which can be constructed |
467 | /// from a `&[u8]`. |
468 | /// |
469 | /// This consumes and so terminates the [`ActiveKeyExchange`]. |
470 | fn complete_for_tls_version( |
471 | self: Box<Self>, |
472 | peer_pub_key: &[u8], |
473 | tls_version: &SupportedProtocolVersion, |
474 | ) -> Result<SharedSecret, Error> { |
475 | if tls_version.version != ProtocolVersion::TLSv1_2 { |
476 | return self.complete(peer_pub_key); |
477 | } |
478 | |
479 | let group = self.group(); |
480 | let mut complete_res = self.complete(peer_pub_key)?; |
481 | if group.key_exchange_algorithm() == KeyExchangeAlgorithm::DHE { |
482 | complete_res.strip_leading_zeros(); |
483 | } |
484 | Ok(complete_res) |
485 | } |
486 | |
487 | /// For hybrid key exchanges, returns the [`NamedGroup`] and key share |
488 | /// for the classical half of this key exchange. |
489 | /// |
490 | /// There is no requirement for a hybrid scheme (or any other!) to implement |
491 | /// `hybrid_component()`. It only enables an optimization; described below. |
492 | /// |
493 | /// "Hybrid" means a key exchange algorithm which is constructed from two |
494 | /// (or more) independent component algorithms. Usually one is post-quantum-secure, |
495 | /// and the other is "classical". See |
496 | /// <https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/11/> |
497 | /// |
498 | /// # Background |
499 | /// Rustls always sends a presumptive key share in its `ClientHello`, using |
500 | /// (absent any other information) the first item in [`CryptoProvider::kx_groups`]. |
501 | /// If the server accepts the client's selection, it can complete the handshake |
502 | /// using that key share. If not, the server sends a `HelloRetryRequest` instructing |
503 | /// the client to send a different key share instead. |
504 | /// |
505 | /// This request costs an extra round trip, and wastes the key exchange computation |
506 | /// (in [`SupportedKxGroup::start()`]) the client already did. We would |
507 | /// like to avoid those wastes if possible. |
508 | /// |
509 | /// It is early days for post-quantum-secure hybrid key exchange deployment. |
510 | /// This means (commonly) continuing to offer both the hybrid and classical |
511 | /// key exchanges, so the handshake can be completed without a `HelloRetryRequest` |
512 | /// for servers that support the offered hybrid or classical schemes. |
513 | /// |
514 | /// Implementing `hybrid_component()` enables two optimizations: |
515 | /// |
516 | /// 1. Sending both the hybrid and classical key shares in the `ClientHello`. |
517 | /// |
518 | /// 2. Performing the classical key exchange setup only once. This is important |
519 | /// because the classical key exchange setup is relatively expensive. |
520 | /// This optimization is permitted and described in |
521 | /// <https://www.ietf.org/archive/id/draft-ietf-tls-hybrid-design-11.html#section-3.2> |
522 | /// |
523 | /// Both of these only happen if the classical algorithm appears separately in |
524 | /// the client's [`CryptoProvider::kx_groups`], and if the hybrid algorithm appears |
525 | /// first in that list. |
526 | /// |
527 | /// # How it works |
528 | /// This function is only called by rustls for clients. It is called when |
529 | /// constructing the initial `ClientHello`. rustls follows these steps: |
530 | /// |
531 | /// 1. If the return value is `None`, nothing further happens. |
532 | /// 2. If the given [`NamedGroup`] does not appear in |
533 | /// [`CryptoProvider::kx_groups`], nothing further happens. |
534 | /// 3. The given key share is added to the `ClientHello`, after the hybrid entry. |
535 | /// |
536 | /// Then, one of three things may happen when the server replies to the `ClientHello`: |
537 | /// |
538 | /// 1. The server sends a `HelloRetryRequest`. Everything is thrown away and |
539 | /// we start again. |
540 | /// 2. The server agrees to our hybrid key exchange: rustls calls |
541 | /// [`ActiveKeyExchange::complete()`] consuming `self`. |
542 | /// 3. The server agrees to our classical key exchange: rustls calls |
543 | /// [`ActiveKeyExchange::complete_hybrid_component()`] which |
544 | /// discards the hybrid key data, and completes just the classical key exchange. |
545 | fn hybrid_component(&self) -> Option<(NamedGroup, &[u8])> { |
546 | None |
547 | } |
548 | |
549 | /// Completes the classical component of the key exchange, given the peer's public key. |
550 | /// |
551 | /// This is only called if `hybrid_component` returns `Some(_)`. |
552 | /// |
553 | /// This method must return an error if `peer_pub_key` is invalid: either |
554 | /// mis-encoded, or an invalid public key (such as, but not limited to, being |
555 | /// in a small order subgroup). |
556 | /// |
557 | /// The shared secret is returned as a [`SharedSecret`] which can be constructed |
558 | /// from a `&[u8]`. |
559 | /// |
560 | /// See the documentation on [`Self::hybrid_component()`] for explanation. |
561 | fn complete_hybrid_component( |
562 | self: Box<Self>, |
563 | _peer_pub_key: &[u8], |
564 | ) -> Result<SharedSecret, Error> { |
565 | unreachable!("only called if `hybrid_component()` implemented" ) |
566 | } |
567 | |
568 | /// Return the public key being used. |
569 | /// |
570 | /// For ECDHE, the encoding required is defined in |
571 | /// [RFC8446 section 4.2.8.2](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.2). |
572 | /// |
573 | /// For FFDHE, the encoding required is defined in |
574 | /// [RFC8446 section 4.2.8.1](https://www.rfc-editor.org/rfc/rfc8446#section-4.2.8.1). |
575 | fn pub_key(&self) -> &[u8]; |
576 | |
577 | /// FFDHE group the `ActiveKeyExchange` is operating in. |
578 | /// |
579 | /// Return `None` if this group is not a FFDHE one. |
580 | /// |
581 | /// The default implementation calls `FfdheGroup::from_named_group`: this function |
582 | /// is extremely linker-unfriendly so it is recommended all key exchange implementers |
583 | /// provide this function. |
584 | /// |
585 | /// `rustls::ffdhe_groups` contains suitable values to return from this, |
586 | /// for example [`rustls::ffdhe_groups::FFDHE2048`][crate::ffdhe_groups::FFDHE2048]. |
587 | fn ffdhe_group(&self) -> Option<FfdheGroup<'static>> { |
588 | #[allow (deprecated)] |
589 | FfdheGroup::from_named_group(self.group()) |
590 | } |
591 | |
592 | /// Return the group being used. |
593 | fn group(&self) -> NamedGroup; |
594 | } |
595 | |
596 | /// The result from [`SupportedKxGroup::start_and_complete()`]. |
597 | pub struct CompletedKeyExchange { |
598 | /// Which group was used. |
599 | pub group: NamedGroup, |
600 | |
601 | /// Our key share (sometimes a public key). |
602 | pub pub_key: Vec<u8>, |
603 | |
604 | /// The computed shared secret. |
605 | pub secret: SharedSecret, |
606 | } |
607 | |
608 | /// The result from [`ActiveKeyExchange::complete`] or [`ActiveKeyExchange::complete_hybrid_component`]. |
609 | pub struct SharedSecret { |
610 | buf: Vec<u8>, |
611 | offset: usize, |
612 | } |
613 | |
614 | impl SharedSecret { |
615 | /// Returns the shared secret as a slice of bytes. |
616 | pub fn secret_bytes(&self) -> &[u8] { |
617 | &self.buf[self.offset..] |
618 | } |
619 | |
620 | /// Removes leading zeros from `secret_bytes()` by adjusting the `offset`. |
621 | /// |
622 | /// This function does not re-allocate. |
623 | fn strip_leading_zeros(&mut self) { |
624 | let start: usize = self |
625 | .secret_bytes() |
626 | .iter() |
627 | .enumerate() |
628 | .find(|(_i, x)| **x != 0) |
629 | .map(|(i, _x)| i) |
630 | .unwrap_or(self.secret_bytes().len()); |
631 | self.offset += start; |
632 | } |
633 | } |
634 | |
635 | impl Drop for SharedSecret { |
636 | fn drop(&mut self) { |
637 | self.buf.zeroize(); |
638 | } |
639 | } |
640 | |
641 | impl From<&[u8]> for SharedSecret { |
642 | fn from(source: &[u8]) -> Self { |
643 | Self { |
644 | buf: source.to_vec(), |
645 | offset: 0, |
646 | } |
647 | } |
648 | } |
649 | |
650 | impl From<Vec<u8>> for SharedSecret { |
651 | fn from(buf: Vec<u8>) -> Self { |
652 | Self { buf, offset: 0 } |
653 | } |
654 | } |
655 | |
656 | /// This function returns a [`CryptoProvider`] that uses |
657 | /// FIPS140-3-approved cryptography. |
658 | /// |
659 | /// Using this function expresses in your code that you require |
660 | /// FIPS-approved cryptography, and will not compile if you make |
661 | /// a mistake with cargo features. |
662 | /// |
663 | /// See our [FIPS documentation](crate::manual::_06_fips) for |
664 | /// more detail. |
665 | /// |
666 | /// Install this as the process-default provider, like: |
667 | /// |
668 | /// ```rust |
669 | /// # #[cfg(feature = "fips")] { |
670 | /// rustls::crypto::default_fips_provider().install_default() |
671 | /// .expect("default provider already set elsewhere"); |
672 | /// # } |
673 | /// ``` |
674 | /// |
675 | /// You can also use this explicitly, like: |
676 | /// |
677 | /// ```rust |
678 | /// # #[cfg(feature = "fips")] { |
679 | /// # let root_store = rustls::RootCertStore::empty(); |
680 | /// let config = rustls::ClientConfig::builder_with_provider( |
681 | /// rustls::crypto::default_fips_provider().into() |
682 | /// ) |
683 | /// .with_safe_default_protocol_versions() |
684 | /// .unwrap() |
685 | /// .with_root_certificates(root_store) |
686 | /// .with_no_client_auth(); |
687 | /// # } |
688 | /// ``` |
689 | #[cfg (all(feature = "aws_lc_rs" , any(feature = "fips" , docsrs)))] |
690 | #[cfg_attr (docsrs, doc(cfg(feature = "fips" )))] |
691 | pub fn default_fips_provider() -> CryptoProvider { |
692 | aws_lc_rs::default_provider() |
693 | } |
694 | |
695 | mod static_default { |
696 | #[cfg (not(feature = "std" ))] |
697 | use alloc::boxed::Box; |
698 | #[cfg (feature = "std" )] |
699 | use std::sync::OnceLock; |
700 | |
701 | #[cfg (not(feature = "std" ))] |
702 | use once_cell::race::OnceBox; |
703 | |
704 | use super::CryptoProvider; |
705 | use crate::sync::Arc; |
706 | |
707 | #[cfg (feature = "std" )] |
708 | pub(crate) fn install_default( |
709 | default_provider: CryptoProvider, |
710 | ) -> Result<(), Arc<CryptoProvider>> { |
711 | PROCESS_DEFAULT_PROVIDER.set(Arc::new(default_provider)) |
712 | } |
713 | |
714 | #[cfg (not(feature = "std" ))] |
715 | pub(crate) fn install_default( |
716 | default_provider: CryptoProvider, |
717 | ) -> Result<(), Arc<CryptoProvider>> { |
718 | PROCESS_DEFAULT_PROVIDER |
719 | .set(Box::new(Arc::new(default_provider))) |
720 | .map_err(|e| *e) |
721 | } |
722 | |
723 | pub(crate) fn get_default() -> Option<&'static Arc<CryptoProvider>> { |
724 | PROCESS_DEFAULT_PROVIDER.get() |
725 | } |
726 | |
727 | #[cfg (feature = "std" )] |
728 | static PROCESS_DEFAULT_PROVIDER: OnceLock<Arc<CryptoProvider>> = OnceLock::new(); |
729 | #[cfg (not(feature = "std" ))] |
730 | static PROCESS_DEFAULT_PROVIDER: OnceBox<Arc<CryptoProvider>> = OnceBox::new(); |
731 | } |
732 | |
733 | #[cfg (test)] |
734 | mod tests { |
735 | use std::vec; |
736 | |
737 | use super::SharedSecret; |
738 | |
739 | #[test ] |
740 | fn test_shared_secret_strip_leading_zeros() { |
741 | let test_cases = [ |
742 | (vec![0, 1], vec![1]), |
743 | (vec![1], vec![1]), |
744 | (vec![1, 0, 2], vec![1, 0, 2]), |
745 | (vec![0, 0, 1, 2], vec![1, 2]), |
746 | (vec![0, 0, 0], vec![]), |
747 | (vec![], vec![]), |
748 | ]; |
749 | for (buf, expected) in test_cases { |
750 | let mut secret = SharedSecret::from(&buf[..]); |
751 | assert_eq!(secret.secret_bytes(), buf); |
752 | secret.strip_leading_zeros(); |
753 | assert_eq!(secret.secret_bytes(), expected); |
754 | } |
755 | } |
756 | } |
757 | |