1/* Straight-line strength reduction.
2 Copyright (C) 2012-2023 Free Software Foundation, Inc.
3 Contributed by Bill Schmidt, IBM <wschmidt@linux.ibm.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 3, or (at your option) any later
10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21/* There are many algorithms for performing strength reduction on
22 loops. This is not one of them. IVOPTS handles strength reduction
23 of induction variables just fine. This pass is intended to pick
24 up the crumbs it leaves behind, by considering opportunities for
25 strength reduction along dominator paths.
26
27 Strength reduction addresses explicit multiplies, and certain
28 multiplies implicit in addressing expressions. It would also be
29 possible to apply strength reduction to divisions and modulos,
30 but such opportunities are relatively uncommon.
31
32 Strength reduction is also currently restricted to integer operations.
33 If desired, it could be extended to floating-point operations under
34 control of something like -funsafe-math-optimizations. */
35
36#include "config.h"
37#include "system.h"
38#include "coretypes.h"
39#include "backend.h"
40#include "rtl.h"
41#include "tree.h"
42#include "gimple.h"
43#include "cfghooks.h"
44#include "tree-pass.h"
45#include "ssa.h"
46#include "expmed.h"
47#include "gimple-pretty-print.h"
48#include "fold-const.h"
49#include "gimple-iterator.h"
50#include "gimplify-me.h"
51#include "stor-layout.h"
52#include "cfgloop.h"
53#include "tree-cfg.h"
54#include "domwalk.h"
55#include "tree-ssa-address.h"
56#include "tree-affine.h"
57#include "tree-eh.h"
58#include "builtins.h"
59
60/* Information about a strength reduction candidate. Each statement
61 in the candidate table represents an expression of one of the
62 following forms (the special case of CAND_REF will be described
63 later):
64
65 (CAND_MULT) S1: X = (B + i) * S
66 (CAND_ADD) S1: X = B + (i * S)
67
68 Here X and B are SSA names, i is an integer constant, and S is
69 either an SSA name or a constant. We call B the "base," i the
70 "index", and S the "stride."
71
72 Any statement S0 that dominates S1 and is of the form:
73
74 (CAND_MULT) S0: Y = (B + i') * S
75 (CAND_ADD) S0: Y = B + (i' * S)
76
77 is called a "basis" for S1. In both cases, S1 may be replaced by
78
79 S1': X = Y + (i - i') * S,
80
81 where (i - i') * S is folded to the extent possible.
82
83 All gimple statements are visited in dominator order, and each
84 statement that may contribute to one of the forms of S1 above is
85 given at least one entry in the candidate table. Such statements
86 include addition, pointer addition, subtraction, multiplication,
87 negation, copies, and nontrivial type casts. If a statement may
88 represent more than one expression of the forms of S1 above,
89 multiple "interpretations" are stored in the table and chained
90 together. Examples:
91
92 * An add of two SSA names may treat either operand as the base.
93 * A multiply of two SSA names, likewise.
94 * A copy or cast may be thought of as either a CAND_MULT with
95 i = 0 and S = 1, or as a CAND_ADD with i = 0 or S = 0.
96
97 Candidate records are allocated from an obstack. They are addressed
98 both from a hash table keyed on S1, and from a vector of candidate
99 pointers arranged in predominator order.
100
101 Opportunity note
102 ----------------
103 Currently we don't recognize:
104
105 S0: Y = (S * i') - B
106 S1: X = (S * i) - B
107
108 as a strength reduction opportunity, even though this S1 would
109 also be replaceable by the S1' above. This can be added if it
110 comes up in practice.
111
112 Strength reduction in addressing
113 --------------------------------
114 There is another kind of candidate known as CAND_REF. A CAND_REF
115 describes a statement containing a memory reference having
116 complex addressing that might benefit from strength reduction.
117 Specifically, we are interested in references for which
118 get_inner_reference returns a base address, offset, and bitpos as
119 follows:
120
121 base: MEM_REF (T1, C1)
122 offset: MULT_EXPR (PLUS_EXPR (T2, C2), C3)
123 bitpos: C4 * BITS_PER_UNIT
124
125 Here T1 and T2 are arbitrary trees, and C1, C2, C3, C4 are
126 arbitrary integer constants. Note that C2 may be zero, in which
127 case the offset will be MULT_EXPR (T2, C3).
128
129 When this pattern is recognized, the original memory reference
130 can be replaced with:
131
132 MEM_REF (POINTER_PLUS_EXPR (T1, MULT_EXPR (T2, C3)),
133 C1 + (C2 * C3) + C4)
134
135 which distributes the multiply to allow constant folding. When
136 two or more addressing expressions can be represented by MEM_REFs
137 of this form, differing only in the constants C1, C2, and C4,
138 making this substitution produces more efficient addressing during
139 the RTL phases. When there are not at least two expressions with
140 the same values of T1, T2, and C3, there is nothing to be gained
141 by the replacement.
142
143 Strength reduction of CAND_REFs uses the same infrastructure as
144 that used by CAND_MULTs and CAND_ADDs. We record T1 in the base (B)
145 field, MULT_EXPR (T2, C3) in the stride (S) field, and
146 C1 + (C2 * C3) + C4 in the index (i) field. A basis for a CAND_REF
147 is thus another CAND_REF with the same B and S values. When at
148 least two CAND_REFs are chained together using the basis relation,
149 each of them is replaced as above, resulting in improved code
150 generation for addressing.
151
152 Conditional candidates
153 ======================
154
155 Conditional candidates are best illustrated with an example.
156 Consider the code sequence:
157
158 (1) x_0 = ...;
159 (2) a_0 = x_0 * 5; MULT (B: x_0; i: 0; S: 5)
160 if (...)
161 (3) x_1 = x_0 + 1; ADD (B: x_0, i: 1; S: 1)
162 (4) x_2 = PHI <x_0, x_1>; PHI (B: x_0, i: 0, S: 1)
163 (5) x_3 = x_2 + 1; ADD (B: x_2, i: 1, S: 1)
164 (6) a_1 = x_3 * 5; MULT (B: x_2, i: 1; S: 5)
165
166 Here strength reduction is complicated by the uncertain value of x_2.
167 A legitimate transformation is:
168
169 (1) x_0 = ...;
170 (2) a_0 = x_0 * 5;
171 if (...)
172 {
173 (3) [x_1 = x_0 + 1;]
174 (3a) t_1 = a_0 + 5;
175 }
176 (4) [x_2 = PHI <x_0, x_1>;]
177 (4a) t_2 = PHI <a_0, t_1>;
178 (5) [x_3 = x_2 + 1;]
179 (6r) a_1 = t_2 + 5;
180
181 where the bracketed instructions may go dead.
182
183 To recognize this opportunity, we have to observe that statement (6)
184 has a "hidden basis" (2). The hidden basis is unlike a normal basis
185 in that the statement and the hidden basis have different base SSA
186 names (x_2 and x_0, respectively). The relationship is established
187 when a statement's base name (x_2) is defined by a phi statement (4),
188 each argument of which (x_0, x_1) has an identical "derived base name."
189 If the argument is defined by a candidate (as x_1 is by (3)) that is a
190 CAND_ADD having a stride of 1, the derived base name of the argument is
191 the base name of the candidate (x_0). Otherwise, the argument itself
192 is its derived base name (as is the case with argument x_0).
193
194 The hidden basis for statement (6) is the nearest dominating candidate
195 whose base name is the derived base name (x_0) of the feeding phi (4),
196 and whose stride is identical to that of the statement. We can then
197 create the new "phi basis" (4a) and feeding adds along incoming arcs (3a),
198 allowing the final replacement of (6) by the strength-reduced (6r).
199
200 To facilitate this, a new kind of candidate (CAND_PHI) is introduced.
201 A CAND_PHI is not a candidate for replacement, but is maintained in the
202 candidate table to ease discovery of hidden bases. Any phi statement
203 whose arguments share a common derived base name is entered into the
204 table with the derived base name, an (arbitrary) index of zero, and a
205 stride of 1. A statement with a hidden basis can then be detected by
206 simply looking up its feeding phi definition in the candidate table,
207 extracting the derived base name, and searching for a basis in the
208 usual manner after substituting the derived base name.
209
210 Note that the transformation is only valid when the original phi and
211 the statements that define the phi's arguments are all at the same
212 position in the loop hierarchy. */
213
214
215/* Index into the candidate vector, offset by 1. VECs are zero-based,
216 while cand_idx's are one-based, with zero indicating null. */
217typedef unsigned cand_idx;
218
219/* The kind of candidate. */
220enum cand_kind
221{
222 CAND_MULT,
223 CAND_ADD,
224 CAND_REF,
225 CAND_PHI
226};
227
228class slsr_cand_d
229{
230public:
231 /* The candidate statement S1. */
232 gimple *cand_stmt;
233
234 /* The base expression B: often an SSA name, but not always. */
235 tree base_expr;
236
237 /* The stride S. */
238 tree stride;
239
240 /* The index constant i. */
241 offset_int index;
242
243 /* The type of the candidate. This is normally the type of base_expr,
244 but casts may have occurred when combining feeding instructions.
245 A candidate can only be a basis for candidates of the same final type.
246 (For CAND_REFs, this is the type to be used for operand 1 of the
247 replacement MEM_REF.) */
248 tree cand_type;
249
250 /* The type to be used to interpret the stride field when the stride
251 is not a constant. Normally the same as the type of the recorded
252 stride, but when the stride has been cast we need to maintain that
253 knowledge in order to make legal substitutions without losing
254 precision. When the stride is a constant, this will be sizetype. */
255 tree stride_type;
256
257 /* The kind of candidate (CAND_MULT, etc.). */
258 enum cand_kind kind;
259
260 /* Index of this candidate in the candidate vector. */
261 cand_idx cand_num;
262
263 /* Index of the next candidate record for the same statement.
264 A statement may be useful in more than one way (e.g., due to
265 commutativity). So we can have multiple "interpretations"
266 of a statement. */
267 cand_idx next_interp;
268
269 /* Index of the first candidate record in a chain for the same
270 statement. */
271 cand_idx first_interp;
272
273 /* Index of the basis statement S0, if any, in the candidate vector. */
274 cand_idx basis;
275
276 /* First candidate for which this candidate is a basis, if one exists. */
277 cand_idx dependent;
278
279 /* Next candidate having the same basis as this one. */
280 cand_idx sibling;
281
282 /* If this is a conditional candidate, the CAND_PHI candidate
283 that defines the base SSA name B. */
284 cand_idx def_phi;
285
286 /* Savings that can be expected from eliminating dead code if this
287 candidate is replaced. */
288 int dead_savings;
289
290 /* For PHI candidates, use a visited flag to keep from processing the
291 same PHI twice from multiple paths. */
292 int visited;
293
294 /* We sometimes have to cache a phi basis with a phi candidate to
295 avoid processing it twice. Valid only if visited==1. */
296 tree cached_basis;
297};
298
299typedef class slsr_cand_d slsr_cand, *slsr_cand_t;
300typedef const class slsr_cand_d *const_slsr_cand_t;
301
302/* Pointers to candidates are chained together as part of a mapping
303 from base expressions to the candidates that use them. */
304
305struct cand_chain_d
306{
307 /* Base expression for the chain of candidates: often, but not
308 always, an SSA name. */
309 tree base_expr;
310
311 /* Pointer to a candidate. */
312 slsr_cand_t cand;
313
314 /* Chain pointer. */
315 struct cand_chain_d *next;
316
317};
318
319typedef struct cand_chain_d cand_chain, *cand_chain_t;
320typedef const struct cand_chain_d *const_cand_chain_t;
321
322/* Information about a unique "increment" associated with candidates
323 having an SSA name for a stride. An increment is the difference
324 between the index of the candidate and the index of its basis,
325 i.e., (i - i') as discussed in the module commentary.
326
327 When we are not going to generate address arithmetic we treat
328 increments that differ only in sign as the same, allowing sharing
329 of the cost of initializers. The absolute value of the increment
330 is stored in the incr_info. */
331
332class incr_info_d
333{
334public:
335 /* The increment that relates a candidate to its basis. */
336 offset_int incr;
337
338 /* How many times the increment occurs in the candidate tree. */
339 unsigned count;
340
341 /* Cost of replacing candidates using this increment. Negative and
342 zero costs indicate replacement should be performed. */
343 int cost;
344
345 /* If this increment is profitable but is not -1, 0, or 1, it requires
346 an initializer T_0 = stride * incr to be found or introduced in the
347 nearest common dominator of all candidates. This field holds T_0
348 for subsequent use. */
349 tree initializer;
350
351 /* If the initializer was found to already exist, this is the block
352 where it was found. */
353 basic_block init_bb;
354};
355
356typedef class incr_info_d incr_info, *incr_info_t;
357
358/* Candidates are maintained in a vector. If candidate X dominates
359 candidate Y, then X appears before Y in the vector; but the
360 converse does not necessarily hold. */
361static vec<slsr_cand_t> cand_vec;
362
363enum cost_consts
364{
365 COST_NEUTRAL = 0,
366 COST_INFINITE = 1000
367};
368
369enum stride_status
370{
371 UNKNOWN_STRIDE = 0,
372 KNOWN_STRIDE = 1
373};
374
375enum phi_adjust_status
376{
377 NOT_PHI_ADJUST = 0,
378 PHI_ADJUST = 1
379};
380
381enum count_phis_status
382{
383 DONT_COUNT_PHIS = 0,
384 COUNT_PHIS = 1
385};
386
387/* Constrain how many PHI nodes we will visit for a conditional
388 candidate (depth and breadth). */
389const int MAX_SPREAD = 16;
390
391/* Pointer map embodying a mapping from statements to candidates. */
392static hash_map<gimple *, slsr_cand_t> *stmt_cand_map;
393
394/* Obstack for candidates. */
395static struct obstack cand_obstack;
396
397/* Obstack for candidate chains. */
398static struct obstack chain_obstack;
399
400/* An array INCR_VEC of incr_infos is used during analysis of related
401 candidates having an SSA name for a stride. INCR_VEC_LEN describes
402 its current length. MAX_INCR_VEC_LEN is used to avoid costly
403 pathological cases. */
404static incr_info_t incr_vec;
405static unsigned incr_vec_len;
406const int MAX_INCR_VEC_LEN = 16;
407
408/* For a chain of candidates with unknown stride, indicates whether or not
409 we must generate pointer arithmetic when replacing statements. */
410static bool address_arithmetic_p;
411
412/* Forward function declarations. */
413static slsr_cand_t base_cand_from_table (tree);
414static tree introduce_cast_before_cand (slsr_cand_t, tree, tree);
415static bool legal_cast_p_1 (tree, tree);
416
417/* Produce a pointer to the IDX'th candidate in the candidate vector. */
418
419static slsr_cand_t
420lookup_cand (cand_idx idx)
421{
422 return cand_vec[idx];
423}
424
425/* Helper for hashing a candidate chain header. */
426
427struct cand_chain_hasher : nofree_ptr_hash <cand_chain>
428{
429 static inline hashval_t hash (const cand_chain *);
430 static inline bool equal (const cand_chain *, const cand_chain *);
431};
432
433inline hashval_t
434cand_chain_hasher::hash (const cand_chain *p)
435{
436 tree base_expr = p->base_expr;
437 return iterative_hash_expr (tree: base_expr, seed: 0);
438}
439
440inline bool
441cand_chain_hasher::equal (const cand_chain *chain1, const cand_chain *chain2)
442{
443 return operand_equal_p (chain1->base_expr, chain2->base_expr, flags: 0);
444}
445
446/* Hash table embodying a mapping from base exprs to chains of candidates. */
447static hash_table<cand_chain_hasher> *base_cand_map;
448
449/* Pointer map used by tree_to_aff_combination_expand. */
450static hash_map<tree, name_expansion *> *name_expansions;
451/* Pointer map embodying a mapping from bases to alternative bases. */
452static hash_map<tree, tree> *alt_base_map;
453
454/* Given BASE, use the tree affine combiniation facilities to
455 find the underlying tree expression for BASE, with any
456 immediate offset excluded.
457
458 N.B. we should eliminate this backtracking with better forward
459 analysis in a future release. */
460
461static tree
462get_alternative_base (tree base)
463{
464 tree *result = alt_base_map->get (k: base);
465
466 if (result == NULL)
467 {
468 tree expr;
469 aff_tree aff;
470
471 tree_to_aff_combination_expand (base, TREE_TYPE (base),
472 &aff, &name_expansions);
473 aff.offset = 0;
474 expr = aff_combination_to_tree (&aff);
475
476 gcc_assert (!alt_base_map->put (base, base == expr ? NULL : expr));
477
478 return expr == base ? NULL : expr;
479 }
480
481 return *result;
482}
483
484/* Look in the candidate table for a CAND_PHI that defines BASE and
485 return it if found; otherwise return NULL. */
486
487static cand_idx
488find_phi_def (tree base)
489{
490 slsr_cand_t c;
491
492 if (TREE_CODE (base) != SSA_NAME)
493 return 0;
494
495 c = base_cand_from_table (base);
496
497 if (!c || c->kind != CAND_PHI
498 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (c->cand_stmt)))
499 return 0;
500
501 return c->cand_num;
502}
503
504/* Determine whether all uses of NAME are directly or indirectly
505 used by STMT. That is, we want to know whether if STMT goes
506 dead, the definition of NAME also goes dead. */
507static bool
508uses_consumed_by_stmt (tree name, gimple *stmt, unsigned recurse = 0)
509{
510 gimple *use_stmt;
511 imm_use_iterator iter;
512 bool retval = true;
513
514 FOR_EACH_IMM_USE_STMT (use_stmt, iter, name)
515 {
516 if (use_stmt == stmt || is_gimple_debug (gs: use_stmt))
517 continue;
518
519 if (!is_gimple_assign (gs: use_stmt)
520 || !gimple_get_lhs (use_stmt)
521 || !is_gimple_reg (gimple_get_lhs (use_stmt))
522 || recurse >= 10
523 || !uses_consumed_by_stmt (name: gimple_get_lhs (use_stmt), stmt,
524 recurse: recurse + 1))
525 {
526 retval = false;
527 break;
528 }
529 }
530
531 return retval;
532}
533
534/* Helper routine for find_basis_for_candidate. May be called twice:
535 once for the candidate's base expr, and optionally again either for
536 the candidate's phi definition or for a CAND_REF's alternative base
537 expression. */
538
539static slsr_cand_t
540find_basis_for_base_expr (slsr_cand_t c, tree base_expr)
541{
542 cand_chain mapping_key;
543 cand_chain_t chain;
544 slsr_cand_t basis = NULL;
545
546 // Limit potential of N^2 behavior for long candidate chains.
547 int iters = 0;
548 int max_iters = param_max_slsr_candidate_scan;
549
550 mapping_key.base_expr = base_expr;
551 chain = base_cand_map->find (value: &mapping_key);
552
553 for (; chain && iters < max_iters; chain = chain->next, ++iters)
554 {
555 slsr_cand_t one_basis = chain->cand;
556
557 if (one_basis->kind != c->kind
558 || one_basis->cand_stmt == c->cand_stmt
559 || !operand_equal_p (one_basis->stride, c->stride, flags: 0)
560 || !types_compatible_p (type1: one_basis->cand_type, type2: c->cand_type)
561 || !types_compatible_p (type1: one_basis->stride_type, type2: c->stride_type)
562 || !dominated_by_p (CDI_DOMINATORS,
563 gimple_bb (g: c->cand_stmt),
564 gimple_bb (g: one_basis->cand_stmt)))
565 continue;
566
567 tree lhs = gimple_assign_lhs (gs: one_basis->cand_stmt);
568 if (lhs && TREE_CODE (lhs) == SSA_NAME
569 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
570 continue;
571
572 if (!basis || basis->cand_num < one_basis->cand_num)
573 basis = one_basis;
574 }
575
576 return basis;
577}
578
579/* Use the base expr from candidate C to look for possible candidates
580 that can serve as a basis for C. Each potential basis must also
581 appear in a block that dominates the candidate statement and have
582 the same stride and type. If more than one possible basis exists,
583 the one with highest index in the vector is chosen; this will be
584 the most immediately dominating basis. */
585
586static int
587find_basis_for_candidate (slsr_cand_t c)
588{
589 slsr_cand_t basis = find_basis_for_base_expr (c, base_expr: c->base_expr);
590
591 /* If a candidate doesn't have a basis using its base expression,
592 it may have a basis hidden by one or more intervening phis. */
593 if (!basis && c->def_phi)
594 {
595 basic_block basis_bb, phi_bb;
596 slsr_cand_t phi_cand = lookup_cand (idx: c->def_phi);
597 basis = find_basis_for_base_expr (c, base_expr: phi_cand->base_expr);
598
599 if (basis)
600 {
601 /* A hidden basis must dominate the phi-definition of the
602 candidate's base name. */
603 phi_bb = gimple_bb (g: phi_cand->cand_stmt);
604 basis_bb = gimple_bb (g: basis->cand_stmt);
605
606 if (phi_bb == basis_bb
607 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
608 {
609 basis = NULL;
610 c->basis = 0;
611 }
612
613 /* If we found a hidden basis, estimate additional dead-code
614 savings if the phi and its feeding statements can be removed. */
615 tree feeding_var = gimple_phi_result (gs: phi_cand->cand_stmt);
616 if (basis && uses_consumed_by_stmt (name: feeding_var, stmt: c->cand_stmt))
617 c->dead_savings += phi_cand->dead_savings;
618 }
619 }
620
621 if (flag_expensive_optimizations && !basis && c->kind == CAND_REF)
622 {
623 tree alt_base_expr = get_alternative_base (base: c->base_expr);
624 if (alt_base_expr)
625 basis = find_basis_for_base_expr (c, base_expr: alt_base_expr);
626 }
627
628 if (basis)
629 {
630 c->sibling = basis->dependent;
631 basis->dependent = c->cand_num;
632 return basis->cand_num;
633 }
634
635 return 0;
636}
637
638/* Record a mapping from BASE to C, indicating that C may potentially serve
639 as a basis using that base expression. BASE may be the same as
640 C->BASE_EXPR; alternatively BASE can be a different tree that share the
641 underlining expression of C->BASE_EXPR. */
642
643static void
644record_potential_basis (slsr_cand_t c, tree base)
645{
646 cand_chain_t node;
647 cand_chain **slot;
648
649 gcc_assert (base);
650
651 node = (cand_chain_t) obstack_alloc (&chain_obstack, sizeof (cand_chain));
652 node->base_expr = base;
653 node->cand = c;
654 node->next = NULL;
655 slot = base_cand_map->find_slot (value: node, insert: INSERT);
656
657 if (*slot)
658 {
659 cand_chain_t head = (cand_chain_t) (*slot);
660 node->next = head->next;
661 head->next = node;
662 }
663 else
664 *slot = node;
665}
666
667/* Allocate storage for a new candidate and initialize its fields.
668 Attempt to find a basis for the candidate.
669
670 For CAND_REF, an alternative base may also be recorded and used
671 to find a basis. This helps cases where the expression hidden
672 behind BASE (which is usually an SSA_NAME) has immediate offset,
673 e.g.
674
675 a2[i][j] = 1;
676 a2[i + 20][j] = 2; */
677
678static slsr_cand_t
679alloc_cand_and_find_basis (enum cand_kind kind, gimple *gs, tree base,
680 const offset_int &index, tree stride, tree ctype,
681 tree stype, unsigned savings)
682{
683 slsr_cand_t c = (slsr_cand_t) obstack_alloc (&cand_obstack,
684 sizeof (slsr_cand));
685 c->cand_stmt = gs;
686 c->base_expr = base;
687 c->stride = stride;
688 c->index = index;
689 c->cand_type = ctype;
690 c->stride_type = stype;
691 c->kind = kind;
692 c->cand_num = cand_vec.length ();
693 c->next_interp = 0;
694 c->first_interp = c->cand_num;
695 c->dependent = 0;
696 c->sibling = 0;
697 c->def_phi = kind == CAND_MULT ? find_phi_def (base) : 0;
698 c->dead_savings = savings;
699 c->visited = 0;
700 c->cached_basis = NULL_TREE;
701
702 cand_vec.safe_push (obj: c);
703
704 if (kind == CAND_PHI)
705 c->basis = 0;
706 else
707 c->basis = find_basis_for_candidate (c);
708
709 record_potential_basis (c, base);
710 if (flag_expensive_optimizations && kind == CAND_REF)
711 {
712 tree alt_base = get_alternative_base (base);
713 if (alt_base)
714 record_potential_basis (c, base: alt_base);
715 }
716
717 return c;
718}
719
720/* Determine the target cost of statement GS when compiling according
721 to SPEED. */
722
723static int
724stmt_cost (gimple *gs, bool speed)
725{
726 tree lhs, rhs1, rhs2;
727 machine_mode lhs_mode;
728
729 gcc_assert (is_gimple_assign (gs));
730 lhs = gimple_assign_lhs (gs);
731 rhs1 = gimple_assign_rhs1 (gs);
732 lhs_mode = TYPE_MODE (TREE_TYPE (lhs));
733
734 switch (gimple_assign_rhs_code (gs))
735 {
736 case MULT_EXPR:
737 rhs2 = gimple_assign_rhs2 (gs);
738
739 if (tree_fits_shwi_p (rhs2))
740 return mult_by_coeff_cost (tree_to_shwi (rhs2), lhs_mode, speed);
741
742 gcc_assert (TREE_CODE (rhs1) != INTEGER_CST);
743 return mul_cost (speed, mode: lhs_mode);
744
745 case PLUS_EXPR:
746 case POINTER_PLUS_EXPR:
747 case MINUS_EXPR:
748 return add_cost (speed, mode: lhs_mode);
749
750 case NEGATE_EXPR:
751 return neg_cost (speed, mode: lhs_mode);
752
753 CASE_CONVERT:
754 return convert_cost (to_mode: lhs_mode, TYPE_MODE (TREE_TYPE (rhs1)), speed);
755
756 /* Note that we don't assign costs to copies that in most cases
757 will go away. */
758 case SSA_NAME:
759 return 0;
760
761 default:
762 ;
763 }
764
765 gcc_unreachable ();
766}
767
768/* Look up the defining statement for BASE_IN and return a pointer
769 to its candidate in the candidate table, if any; otherwise NULL.
770 Only CAND_ADD and CAND_MULT candidates are returned. */
771
772static slsr_cand_t
773base_cand_from_table (tree base_in)
774{
775 slsr_cand_t *result;
776
777 gimple *def = SSA_NAME_DEF_STMT (base_in);
778 if (!def)
779 return (slsr_cand_t) NULL;
780
781 result = stmt_cand_map->get (k: def);
782
783 if (result && (*result)->kind != CAND_REF)
784 return *result;
785
786 return (slsr_cand_t) NULL;
787}
788
789/* Add an entry to the statement-to-candidate mapping. */
790
791static void
792add_cand_for_stmt (gimple *gs, slsr_cand_t c)
793{
794 gcc_assert (!stmt_cand_map->put (gs, c));
795}
796
797/* Given PHI which contains a phi statement, determine whether it
798 satisfies all the requirements of a phi candidate. If so, create
799 a candidate. Note that a CAND_PHI never has a basis itself, but
800 is used to help find a basis for subsequent candidates. */
801
802static void
803slsr_process_phi (gphi *phi, bool speed)
804{
805 unsigned i;
806 tree arg0_base = NULL_TREE, base_type;
807 slsr_cand_t c;
808 class loop *cand_loop = gimple_bb (g: phi)->loop_father;
809 unsigned savings = 0;
810
811 /* A CAND_PHI requires each of its arguments to have the same
812 derived base name. (See the module header commentary for a
813 definition of derived base names.) Furthermore, all feeding
814 definitions must be in the same position in the loop hierarchy
815 as PHI. */
816
817 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
818 {
819 slsr_cand_t arg_cand;
820 tree arg = gimple_phi_arg_def (gs: phi, index: i);
821 tree derived_base_name = NULL_TREE;
822 gimple *arg_stmt = NULL;
823 basic_block arg_bb = NULL;
824
825 if (TREE_CODE (arg) != SSA_NAME)
826 return;
827
828 arg_cand = base_cand_from_table (base_in: arg);
829
830 if (arg_cand)
831 {
832 while (arg_cand->kind != CAND_ADD && arg_cand->kind != CAND_PHI)
833 {
834 if (!arg_cand->next_interp)
835 return;
836
837 arg_cand = lookup_cand (idx: arg_cand->next_interp);
838 }
839
840 if (!integer_onep (arg_cand->stride))
841 return;
842
843 derived_base_name = arg_cand->base_expr;
844 arg_stmt = arg_cand->cand_stmt;
845 arg_bb = gimple_bb (g: arg_stmt);
846
847 /* Gather potential dead code savings if the phi statement
848 can be removed later on. */
849 if (uses_consumed_by_stmt (name: arg, stmt: phi))
850 {
851 if (gimple_code (g: arg_stmt) == GIMPLE_PHI)
852 savings += arg_cand->dead_savings;
853 else
854 savings += stmt_cost (gs: arg_stmt, speed);
855 }
856 }
857 else if (SSA_NAME_IS_DEFAULT_DEF (arg))
858 {
859 derived_base_name = arg;
860 arg_bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
861 }
862
863 if (!arg_bb || arg_bb->loop_father != cand_loop)
864 return;
865
866 if (i == 0)
867 arg0_base = derived_base_name;
868 else if (!operand_equal_p (derived_base_name, arg0_base, flags: 0))
869 return;
870 }
871
872 /* Create the candidate. "alloc_cand_and_find_basis" is named
873 misleadingly for this case, as no basis will be sought for a
874 CAND_PHI. */
875 base_type = TREE_TYPE (arg0_base);
876
877 c = alloc_cand_and_find_basis (kind: CAND_PHI, gs: phi, base: arg0_base,
878 index: 0, integer_one_node, ctype: base_type,
879 sizetype, savings);
880
881 /* Add the candidate to the statement-candidate mapping. */
882 add_cand_for_stmt (gs: phi, c);
883}
884
885/* Given PBASE which is a pointer to tree, look up the defining
886 statement for it and check whether the candidate is in the
887 form of:
888
889 X = B + (1 * S), S is integer constant
890 X = B + (i * S), S is integer one
891
892 If so, set PBASE to the candidate's base_expr and return double
893 int (i * S).
894 Otherwise, just return double int zero. */
895
896static offset_int
897backtrace_base_for_ref (tree *pbase)
898{
899 tree base_in = *pbase;
900 slsr_cand_t base_cand;
901
902 STRIP_NOPS (base_in);
903
904 /* Strip off widening conversion(s) to handle cases where
905 e.g. 'B' is widened from an 'int' in order to calculate
906 a 64-bit address. */
907 if (CONVERT_EXPR_P (base_in)
908 && legal_cast_p_1 (TREE_TYPE (base_in),
909 TREE_TYPE (TREE_OPERAND (base_in, 0))))
910 base_in = get_unwidened (base_in, NULL_TREE);
911
912 if (TREE_CODE (base_in) != SSA_NAME)
913 return 0;
914
915 base_cand = base_cand_from_table (base_in);
916
917 while (base_cand && base_cand->kind != CAND_PHI)
918 {
919 if (base_cand->kind == CAND_ADD
920 && base_cand->index == 1
921 && TREE_CODE (base_cand->stride) == INTEGER_CST)
922 {
923 /* X = B + (1 * S), S is integer constant. */
924 *pbase = base_cand->base_expr;
925 return wi::to_offset (t: base_cand->stride);
926 }
927 else if (base_cand->kind == CAND_ADD
928 && TREE_CODE (base_cand->stride) == INTEGER_CST
929 && integer_onep (base_cand->stride))
930 {
931 /* X = B + (i * S), S is integer one. */
932 *pbase = base_cand->base_expr;
933 return base_cand->index;
934 }
935
936 base_cand = lookup_cand (idx: base_cand->next_interp);
937 }
938
939 return 0;
940}
941
942/* Look for the following pattern:
943
944 *PBASE: MEM_REF (T1, C1)
945
946 *POFFSET: MULT_EXPR (T2, C3) [C2 is zero]
947 or
948 MULT_EXPR (PLUS_EXPR (T2, C2), C3)
949 or
950 MULT_EXPR (MINUS_EXPR (T2, -C2), C3)
951
952 *PINDEX: C4 * BITS_PER_UNIT
953
954 If not present, leave the input values unchanged and return FALSE.
955 Otherwise, modify the input values as follows and return TRUE:
956
957 *PBASE: T1
958 *POFFSET: MULT_EXPR (T2, C3)
959 *PINDEX: C1 + (C2 * C3) + C4
960
961 When T2 is recorded by a CAND_ADD in the form of (T2' + C5), it
962 will be further restructured to:
963
964 *PBASE: T1
965 *POFFSET: MULT_EXPR (T2', C3)
966 *PINDEX: C1 + (C2 * C3) + C4 + (C5 * C3) */
967
968static bool
969restructure_reference (tree *pbase, tree *poffset, offset_int *pindex,
970 tree *ptype)
971{
972 tree base = *pbase, offset = *poffset;
973 offset_int index = *pindex;
974 tree mult_op0, t1, t2, type;
975 offset_int c1, c2, c3, c4, c5;
976 offset_int mem_offset;
977
978 if (!base
979 || !offset
980 || TREE_CODE (base) != MEM_REF
981 || !mem_ref_offset (base).is_constant (const_value: &mem_offset)
982 || TREE_CODE (offset) != MULT_EXPR
983 || TREE_CODE (TREE_OPERAND (offset, 1)) != INTEGER_CST
984 || wi::umod_floor (x: index, BITS_PER_UNIT) != 0)
985 return false;
986
987 t1 = TREE_OPERAND (base, 0);
988 c1 = offset_int::from (x: mem_offset, sgn: SIGNED);
989 type = TREE_TYPE (TREE_OPERAND (base, 1));
990
991 mult_op0 = TREE_OPERAND (offset, 0);
992 c3 = wi::to_offset (TREE_OPERAND (offset, 1));
993
994 if (TREE_CODE (mult_op0) == PLUS_EXPR)
995
996 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
997 {
998 t2 = TREE_OPERAND (mult_op0, 0);
999 c2 = wi::to_offset (TREE_OPERAND (mult_op0, 1));
1000 }
1001 else
1002 return false;
1003
1004 else if (TREE_CODE (mult_op0) == MINUS_EXPR)
1005
1006 if (TREE_CODE (TREE_OPERAND (mult_op0, 1)) == INTEGER_CST)
1007 {
1008 t2 = TREE_OPERAND (mult_op0, 0);
1009 c2 = -wi::to_offset (TREE_OPERAND (mult_op0, 1));
1010 }
1011 else
1012 return false;
1013
1014 else
1015 {
1016 t2 = mult_op0;
1017 c2 = 0;
1018 }
1019
1020 c4 = index >> LOG2_BITS_PER_UNIT;
1021 c5 = backtrace_base_for_ref (pbase: &t2);
1022
1023 *pbase = t1;
1024 *poffset = fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, t2),
1025 wide_int_to_tree (sizetype, c3));
1026 *pindex = c1 + c2 * c3 + c4 + c5 * c3;
1027 *ptype = type;
1028
1029 return true;
1030}
1031
1032/* Given GS which contains a data reference, create a CAND_REF entry in
1033 the candidate table and attempt to find a basis. */
1034
1035static void
1036slsr_process_ref (gimple *gs)
1037{
1038 tree ref_expr, base, offset, type;
1039 poly_int64 bitsize, bitpos;
1040 machine_mode mode;
1041 int unsignedp, reversep, volatilep;
1042 slsr_cand_t c;
1043
1044 if (gimple_vdef (g: gs))
1045 ref_expr = gimple_assign_lhs (gs);
1046 else
1047 ref_expr = gimple_assign_rhs1 (gs);
1048
1049 if (!handled_component_p (t: ref_expr)
1050 || TREE_CODE (ref_expr) == BIT_FIELD_REF
1051 || (TREE_CODE (ref_expr) == COMPONENT_REF
1052 && DECL_BIT_FIELD (TREE_OPERAND (ref_expr, 1))))
1053 return;
1054
1055 base = get_inner_reference (ref_expr, &bitsize, &bitpos, &offset, &mode,
1056 &unsignedp, &reversep, &volatilep);
1057 HOST_WIDE_INT cbitpos;
1058 if (reversep || !bitpos.is_constant (const_value: &cbitpos))
1059 return;
1060 offset_int index = cbitpos;
1061
1062 if (!restructure_reference (pbase: &base, poffset: &offset, pindex: &index, ptype: &type))
1063 return;
1064
1065 c = alloc_cand_and_find_basis (kind: CAND_REF, gs, base, index, stride: offset,
1066 ctype: type, sizetype, savings: 0);
1067
1068 /* Add the candidate to the statement-candidate mapping. */
1069 add_cand_for_stmt (gs, c);
1070}
1071
1072/* Create a candidate entry for a statement GS, where GS multiplies
1073 two SSA names BASE_IN and STRIDE_IN. Propagate any known information
1074 about the two SSA names into the new candidate. Return the new
1075 candidate. */
1076
1077static slsr_cand_t
1078create_mul_ssa_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
1079{
1080 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1081 tree stype = NULL_TREE;
1082 offset_int index;
1083 unsigned savings = 0;
1084 slsr_cand_t c;
1085 slsr_cand_t base_cand = base_cand_from_table (base_in);
1086
1087 /* Look at all interpretations of the base candidate, if necessary,
1088 to find information to propagate into this candidate. */
1089 while (base_cand && !base && base_cand->kind != CAND_PHI)
1090 {
1091
1092 if (base_cand->kind == CAND_MULT && integer_onep (base_cand->stride))
1093 {
1094 /* Y = (B + i') * 1
1095 X = Y * Z
1096 ================
1097 X = (B + i') * Z */
1098 base = base_cand->base_expr;
1099 index = base_cand->index;
1100 stride = stride_in;
1101 ctype = base_cand->cand_type;
1102 stype = TREE_TYPE (stride_in);
1103 if (has_single_use (var: base_in))
1104 savings = (base_cand->dead_savings
1105 + stmt_cost (gs: base_cand->cand_stmt, speed));
1106 }
1107 else if (base_cand->kind == CAND_ADD
1108 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1109 {
1110 /* Y = B + (i' * S), S constant
1111 X = Y * Z
1112 ============================
1113 X = B + ((i' * S) * Z) */
1114 base = base_cand->base_expr;
1115 index = base_cand->index * wi::to_offset (t: base_cand->stride);
1116 stride = stride_in;
1117 ctype = base_cand->cand_type;
1118 stype = TREE_TYPE (stride_in);
1119 if (has_single_use (var: base_in))
1120 savings = (base_cand->dead_savings
1121 + stmt_cost (gs: base_cand->cand_stmt, speed));
1122 }
1123
1124 base_cand = lookup_cand (idx: base_cand->next_interp);
1125 }
1126
1127 if (!base)
1128 {
1129 /* No interpretations had anything useful to propagate, so
1130 produce X = (Y + 0) * Z. */
1131 base = base_in;
1132 index = 0;
1133 stride = stride_in;
1134 ctype = TREE_TYPE (base_in);
1135 stype = TREE_TYPE (stride_in);
1136 }
1137
1138 c = alloc_cand_and_find_basis (kind: CAND_MULT, gs, base, index, stride,
1139 ctype, stype, savings);
1140 return c;
1141}
1142
1143/* Create a candidate entry for a statement GS, where GS multiplies
1144 SSA name BASE_IN by constant STRIDE_IN. Propagate any known
1145 information about BASE_IN into the new candidate. Return the new
1146 candidate. */
1147
1148static slsr_cand_t
1149create_mul_imm_cand (gimple *gs, tree base_in, tree stride_in, bool speed)
1150{
1151 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1152 offset_int index, temp;
1153 unsigned savings = 0;
1154 slsr_cand_t c;
1155 slsr_cand_t base_cand = base_cand_from_table (base_in);
1156
1157 /* Look at all interpretations of the base candidate, if necessary,
1158 to find information to propagate into this candidate. */
1159 while (base_cand && !base && base_cand->kind != CAND_PHI)
1160 {
1161 if (base_cand->kind == CAND_MULT
1162 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1163 {
1164 /* Y = (B + i') * S, S constant
1165 X = Y * c
1166 ============================
1167 X = (B + i') * (S * c) */
1168 temp = wi::to_offset (t: base_cand->stride) * wi::to_offset (t: stride_in);
1169 if (wi::fits_to_tree_p (x: temp, TREE_TYPE (stride_in)))
1170 {
1171 base = base_cand->base_expr;
1172 index = base_cand->index;
1173 stride = wide_int_to_tree (TREE_TYPE (stride_in), cst: temp);
1174 ctype = base_cand->cand_type;
1175 if (has_single_use (var: base_in))
1176 savings = (base_cand->dead_savings
1177 + stmt_cost (gs: base_cand->cand_stmt, speed));
1178 }
1179 }
1180 else if (base_cand->kind == CAND_ADD && integer_onep (base_cand->stride))
1181 {
1182 /* Y = B + (i' * 1)
1183 X = Y * c
1184 ===========================
1185 X = (B + i') * c */
1186 base = base_cand->base_expr;
1187 index = base_cand->index;
1188 stride = stride_in;
1189 ctype = base_cand->cand_type;
1190 if (has_single_use (var: base_in))
1191 savings = (base_cand->dead_savings
1192 + stmt_cost (gs: base_cand->cand_stmt, speed));
1193 }
1194 else if (base_cand->kind == CAND_ADD
1195 && base_cand->index == 1
1196 && TREE_CODE (base_cand->stride) == INTEGER_CST)
1197 {
1198 /* Y = B + (1 * S), S constant
1199 X = Y * c
1200 ===========================
1201 X = (B + S) * c */
1202 base = base_cand->base_expr;
1203 index = wi::to_offset (t: base_cand->stride);
1204 stride = stride_in;
1205 ctype = base_cand->cand_type;
1206 if (has_single_use (var: base_in))
1207 savings = (base_cand->dead_savings
1208 + stmt_cost (gs: base_cand->cand_stmt, speed));
1209 }
1210
1211 base_cand = lookup_cand (idx: base_cand->next_interp);
1212 }
1213
1214 if (!base)
1215 {
1216 /* No interpretations had anything useful to propagate, so
1217 produce X = (Y + 0) * c. */
1218 base = base_in;
1219 index = 0;
1220 stride = stride_in;
1221 ctype = TREE_TYPE (base_in);
1222 }
1223
1224 c = alloc_cand_and_find_basis (kind: CAND_MULT, gs, base, index, stride,
1225 ctype, sizetype, savings);
1226 return c;
1227}
1228
1229/* Given GS which is a multiply of scalar integers, make an appropriate
1230 entry in the candidate table. If this is a multiply of two SSA names,
1231 create two CAND_MULT interpretations and attempt to find a basis for
1232 each of them. Otherwise, create a single CAND_MULT and attempt to
1233 find a basis. */
1234
1235static void
1236slsr_process_mul (gimple *gs, tree rhs1, tree rhs2, bool speed)
1237{
1238 slsr_cand_t c, c2;
1239
1240 /* If this is a multiply of an SSA name with itself, it is highly
1241 unlikely that we will get a strength reduction opportunity, so
1242 don't record it as a candidate. This simplifies the logic for
1243 finding a basis, so if this is removed that must be considered. */
1244 if (rhs1 == rhs2)
1245 return;
1246
1247 if (TREE_CODE (rhs2) == SSA_NAME)
1248 {
1249 /* Record an interpretation of this statement in the candidate table
1250 assuming RHS1 is the base expression and RHS2 is the stride. */
1251 c = create_mul_ssa_cand (gs, base_in: rhs1, stride_in: rhs2, speed);
1252
1253 /* Add the first interpretation to the statement-candidate mapping. */
1254 add_cand_for_stmt (gs, c);
1255
1256 /* Record another interpretation of this statement assuming RHS1
1257 is the stride and RHS2 is the base expression. */
1258 c2 = create_mul_ssa_cand (gs, base_in: rhs2, stride_in: rhs1, speed);
1259 c->next_interp = c2->cand_num;
1260 c2->first_interp = c->cand_num;
1261 }
1262 else if (TREE_CODE (rhs2) == INTEGER_CST && !integer_zerop (rhs2))
1263 {
1264 /* Record an interpretation for the multiply-immediate. */
1265 c = create_mul_imm_cand (gs, base_in: rhs1, stride_in: rhs2, speed);
1266
1267 /* Add the interpretation to the statement-candidate mapping. */
1268 add_cand_for_stmt (gs, c);
1269 }
1270}
1271
1272/* Create a candidate entry for a statement GS, where GS adds two
1273 SSA names BASE_IN and ADDEND_IN if SUBTRACT_P is false, and
1274 subtracts ADDEND_IN from BASE_IN otherwise. Propagate any known
1275 information about the two SSA names into the new candidate.
1276 Return the new candidate. */
1277
1278static slsr_cand_t
1279create_add_ssa_cand (gimple *gs, tree base_in, tree addend_in,
1280 bool subtract_p, bool speed)
1281{
1282 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1283 tree stype = NULL_TREE;
1284 offset_int index;
1285 unsigned savings = 0;
1286 slsr_cand_t c;
1287 slsr_cand_t base_cand = base_cand_from_table (base_in);
1288 slsr_cand_t addend_cand = base_cand_from_table (base_in: addend_in);
1289
1290 /* The most useful transformation is a multiply-immediate feeding
1291 an add or subtract. Look for that first. */
1292 while (addend_cand && !base && addend_cand->kind != CAND_PHI)
1293 {
1294 if (addend_cand->kind == CAND_MULT
1295 && addend_cand->index == 0
1296 && TREE_CODE (addend_cand->stride) == INTEGER_CST)
1297 {
1298 /* Z = (B + 0) * S, S constant
1299 X = Y +/- Z
1300 ===========================
1301 X = Y + ((+/-1 * S) * B) */
1302 base = base_in;
1303 index = wi::to_offset (t: addend_cand->stride);
1304 if (subtract_p)
1305 index = -index;
1306 stride = addend_cand->base_expr;
1307 ctype = TREE_TYPE (base_in);
1308 stype = addend_cand->cand_type;
1309 if (has_single_use (var: addend_in))
1310 savings = (addend_cand->dead_savings
1311 + stmt_cost (gs: addend_cand->cand_stmt, speed));
1312 }
1313
1314 addend_cand = lookup_cand (idx: addend_cand->next_interp);
1315 }
1316
1317 while (base_cand && !base && base_cand->kind != CAND_PHI)
1318 {
1319 if (base_cand->kind == CAND_ADD
1320 && (base_cand->index == 0
1321 || operand_equal_p (base_cand->stride,
1322 integer_zero_node, flags: 0)))
1323 {
1324 /* Y = B + (i' * S), i' * S = 0
1325 X = Y +/- Z
1326 ============================
1327 X = B + (+/-1 * Z) */
1328 base = base_cand->base_expr;
1329 index = subtract_p ? -1 : 1;
1330 stride = addend_in;
1331 ctype = base_cand->cand_type;
1332 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1333 : TREE_TYPE (addend_in));
1334 if (has_single_use (var: base_in))
1335 savings = (base_cand->dead_savings
1336 + stmt_cost (gs: base_cand->cand_stmt, speed));
1337 }
1338 else if (subtract_p)
1339 {
1340 slsr_cand_t subtrahend_cand = base_cand_from_table (base_in: addend_in);
1341
1342 while (subtrahend_cand && !base && subtrahend_cand->kind != CAND_PHI)
1343 {
1344 if (subtrahend_cand->kind == CAND_MULT
1345 && subtrahend_cand->index == 0
1346 && TREE_CODE (subtrahend_cand->stride) == INTEGER_CST)
1347 {
1348 /* Z = (B + 0) * S, S constant
1349 X = Y - Z
1350 ===========================
1351 Value: X = Y + ((-1 * S) * B) */
1352 base = base_in;
1353 index = wi::to_offset (t: subtrahend_cand->stride);
1354 index = -index;
1355 stride = subtrahend_cand->base_expr;
1356 ctype = TREE_TYPE (base_in);
1357 stype = subtrahend_cand->cand_type;
1358 if (has_single_use (var: addend_in))
1359 savings = (subtrahend_cand->dead_savings
1360 + stmt_cost (gs: subtrahend_cand->cand_stmt, speed));
1361 }
1362
1363 subtrahend_cand = lookup_cand (idx: subtrahend_cand->next_interp);
1364 }
1365 }
1366
1367 base_cand = lookup_cand (idx: base_cand->next_interp);
1368 }
1369
1370 if (!base)
1371 {
1372 /* No interpretations had anything useful to propagate, so
1373 produce X = Y + (1 * Z). */
1374 base = base_in;
1375 index = subtract_p ? -1 : 1;
1376 stride = addend_in;
1377 ctype = TREE_TYPE (base_in);
1378 stype = (TREE_CODE (addend_in) == INTEGER_CST ? sizetype
1379 : TREE_TYPE (addend_in));
1380 }
1381
1382 c = alloc_cand_and_find_basis (kind: CAND_ADD, gs, base, index, stride,
1383 ctype, stype, savings);
1384 return c;
1385}
1386
1387/* Create a candidate entry for a statement GS, where GS adds SSA
1388 name BASE_IN to constant INDEX_IN. Propagate any known information
1389 about BASE_IN into the new candidate. Return the new candidate. */
1390
1391static slsr_cand_t
1392create_add_imm_cand (gimple *gs, tree base_in, const offset_int &index_in,
1393 bool speed)
1394{
1395 enum cand_kind kind = CAND_ADD;
1396 tree base = NULL_TREE, stride = NULL_TREE, ctype = NULL_TREE;
1397 tree stype = NULL_TREE;
1398 offset_int index, multiple;
1399 unsigned savings = 0;
1400 slsr_cand_t c;
1401 slsr_cand_t base_cand = base_cand_from_table (base_in);
1402
1403 while (base_cand && !base && base_cand->kind != CAND_PHI)
1404 {
1405 signop sign = TYPE_SIGN (TREE_TYPE (base_cand->stride));
1406
1407 if (TREE_CODE (base_cand->stride) == INTEGER_CST
1408 && wi::multiple_of_p (x: index_in, y: wi::to_offset (t: base_cand->stride),
1409 sgn: sign, res: &multiple))
1410 {
1411 /* Y = (B + i') * S, S constant, c = kS for some integer k
1412 X = Y + c
1413 ============================
1414 X = (B + (i'+ k)) * S
1415 OR
1416 Y = B + (i' * S), S constant, c = kS for some integer k
1417 X = Y + c
1418 ============================
1419 X = (B + (i'+ k)) * S */
1420 kind = base_cand->kind;
1421 base = base_cand->base_expr;
1422 index = base_cand->index + multiple;
1423 stride = base_cand->stride;
1424 ctype = base_cand->cand_type;
1425 stype = base_cand->stride_type;
1426 if (has_single_use (var: base_in))
1427 savings = (base_cand->dead_savings
1428 + stmt_cost (gs: base_cand->cand_stmt, speed));
1429 }
1430
1431 base_cand = lookup_cand (idx: base_cand->next_interp);
1432 }
1433
1434 if (!base)
1435 {
1436 /* No interpretations had anything useful to propagate, so
1437 produce X = Y + (c * 1). */
1438 kind = CAND_ADD;
1439 base = base_in;
1440 index = index_in;
1441 stride = integer_one_node;
1442 ctype = TREE_TYPE (base_in);
1443 stype = sizetype;
1444 }
1445
1446 c = alloc_cand_and_find_basis (kind, gs, base, index, stride,
1447 ctype, stype, savings);
1448 return c;
1449}
1450
1451/* Given GS which is an add or subtract of scalar integers or pointers,
1452 make at least one appropriate entry in the candidate table. */
1453
1454static void
1455slsr_process_add (gimple *gs, tree rhs1, tree rhs2, bool speed)
1456{
1457 bool subtract_p = gimple_assign_rhs_code (gs) == MINUS_EXPR;
1458 slsr_cand_t c = NULL, c2;
1459
1460 if (TREE_CODE (rhs2) == SSA_NAME)
1461 {
1462 /* First record an interpretation assuming RHS1 is the base expression
1463 and RHS2 is the stride. But it doesn't make sense for the
1464 stride to be a pointer, so don't record a candidate in that case. */
1465 if (!POINTER_TYPE_P (TREE_TYPE (rhs2)))
1466 {
1467 c = create_add_ssa_cand (gs, base_in: rhs1, addend_in: rhs2, subtract_p, speed);
1468
1469 /* Add the first interpretation to the statement-candidate
1470 mapping. */
1471 add_cand_for_stmt (gs, c);
1472 }
1473
1474 /* If the two RHS operands are identical, or this is a subtract,
1475 we're done. */
1476 if (operand_equal_p (rhs1, rhs2, flags: 0) || subtract_p)
1477 return;
1478
1479 /* Otherwise, record another interpretation assuming RHS2 is the
1480 base expression and RHS1 is the stride, again provided that the
1481 stride is not a pointer. */
1482 if (!POINTER_TYPE_P (TREE_TYPE (rhs1)))
1483 {
1484 c2 = create_add_ssa_cand (gs, base_in: rhs2, addend_in: rhs1, subtract_p: false, speed);
1485 if (c)
1486 {
1487 c->next_interp = c2->cand_num;
1488 c2->first_interp = c->cand_num;
1489 }
1490 else
1491 add_cand_for_stmt (gs, c: c2);
1492 }
1493 }
1494 else if (TREE_CODE (rhs2) == INTEGER_CST)
1495 {
1496 /* Record an interpretation for the add-immediate. */
1497 offset_int index = wi::to_offset (t: rhs2);
1498 if (subtract_p)
1499 index = -index;
1500
1501 c = create_add_imm_cand (gs, base_in: rhs1, index_in: index, speed);
1502
1503 /* Add the interpretation to the statement-candidate mapping. */
1504 add_cand_for_stmt (gs, c);
1505 }
1506}
1507
1508/* Given GS which is a negate of a scalar integer, make an appropriate
1509 entry in the candidate table. A negate is equivalent to a multiply
1510 by -1. */
1511
1512static void
1513slsr_process_neg (gimple *gs, tree rhs1, bool speed)
1514{
1515 /* Record a CAND_MULT interpretation for the multiply by -1. */
1516 slsr_cand_t c = create_mul_imm_cand (gs, base_in: rhs1, integer_minus_one_node, speed);
1517
1518 /* Add the interpretation to the statement-candidate mapping. */
1519 add_cand_for_stmt (gs, c);
1520}
1521
1522/* Help function for legal_cast_p, operating on two trees. Checks
1523 whether it's allowable to cast from RHS to LHS. See legal_cast_p
1524 for more details. */
1525
1526static bool
1527legal_cast_p_1 (tree lhs_type, tree rhs_type)
1528{
1529 unsigned lhs_size, rhs_size;
1530 bool lhs_wraps, rhs_wraps;
1531
1532 lhs_size = TYPE_PRECISION (lhs_type);
1533 rhs_size = TYPE_PRECISION (rhs_type);
1534 lhs_wraps = ANY_INTEGRAL_TYPE_P (lhs_type) && TYPE_OVERFLOW_WRAPS (lhs_type);
1535 rhs_wraps = ANY_INTEGRAL_TYPE_P (rhs_type) && TYPE_OVERFLOW_WRAPS (rhs_type);
1536
1537 if (lhs_size < rhs_size
1538 || (rhs_wraps && !lhs_wraps)
1539 || (rhs_wraps && lhs_wraps && rhs_size != lhs_size))
1540 return false;
1541
1542 return true;
1543}
1544
1545/* Return TRUE if GS is a statement that defines an SSA name from
1546 a conversion and is legal for us to combine with an add and multiply
1547 in the candidate table. For example, suppose we have:
1548
1549 A = B + i;
1550 C = (type) A;
1551 D = C * S;
1552
1553 Without the type-cast, we would create a CAND_MULT for D with base B,
1554 index i, and stride S. We want to record this candidate only if it
1555 is equivalent to apply the type cast following the multiply:
1556
1557 A = B + i;
1558 E = A * S;
1559 D = (type) E;
1560
1561 We will record the type with the candidate for D. This allows us
1562 to use a similar previous candidate as a basis. If we have earlier seen
1563
1564 A' = B + i';
1565 C' = (type) A';
1566 D' = C' * S;
1567
1568 we can replace D with
1569
1570 D = D' + (i - i') * S;
1571
1572 But if moving the type-cast would change semantics, we mustn't do this.
1573
1574 This is legitimate for casts from a non-wrapping integral type to
1575 any integral type of the same or larger size. It is not legitimate
1576 to convert a wrapping type to a non-wrapping type, or to a wrapping
1577 type of a different size. I.e., with a wrapping type, we must
1578 assume that the addition B + i could wrap, in which case performing
1579 the multiply before or after one of the "illegal" type casts will
1580 have different semantics. */
1581
1582static bool
1583legal_cast_p (gimple *gs, tree rhs)
1584{
1585 if (!is_gimple_assign (gs)
1586 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs)))
1587 return false;
1588
1589 return legal_cast_p_1 (TREE_TYPE (gimple_assign_lhs (gs)), TREE_TYPE (rhs));
1590}
1591
1592/* Given GS which is a cast to a scalar integer type, determine whether
1593 the cast is legal for strength reduction. If so, make at least one
1594 appropriate entry in the candidate table. */
1595
1596static void
1597slsr_process_cast (gimple *gs, tree rhs1, bool speed)
1598{
1599 tree lhs, ctype;
1600 slsr_cand_t base_cand, c = NULL, c2;
1601 unsigned savings = 0;
1602
1603 if (!legal_cast_p (gs, rhs: rhs1))
1604 return;
1605
1606 lhs = gimple_assign_lhs (gs);
1607 base_cand = base_cand_from_table (base_in: rhs1);
1608 ctype = TREE_TYPE (lhs);
1609
1610 if (base_cand && base_cand->kind != CAND_PHI)
1611 {
1612 slsr_cand_t first_cand = NULL;
1613
1614 while (base_cand)
1615 {
1616 /* Propagate all data from the base candidate except the type,
1617 which comes from the cast, and the base candidate's cast,
1618 which is no longer applicable. */
1619 if (has_single_use (var: rhs1))
1620 savings = (base_cand->dead_savings
1621 + stmt_cost (gs: base_cand->cand_stmt, speed));
1622
1623 c = alloc_cand_and_find_basis (kind: base_cand->kind, gs,
1624 base: base_cand->base_expr,
1625 index: base_cand->index, stride: base_cand->stride,
1626 ctype, stype: base_cand->stride_type,
1627 savings);
1628 if (!first_cand)
1629 first_cand = c;
1630
1631 if (first_cand != c)
1632 c->first_interp = first_cand->cand_num;
1633
1634 base_cand = lookup_cand (idx: base_cand->next_interp);
1635 }
1636 }
1637 else
1638 {
1639 /* If nothing is known about the RHS, create fresh CAND_ADD and
1640 CAND_MULT interpretations:
1641
1642 X = Y + (0 * 1)
1643 X = (Y + 0) * 1
1644
1645 The first of these is somewhat arbitrary, but the choice of
1646 1 for the stride simplifies the logic for propagating casts
1647 into their uses. */
1648 c = alloc_cand_and_find_basis (kind: CAND_ADD, gs, base: rhs1, index: 0,
1649 integer_one_node, ctype, sizetype, savings: 0);
1650 c2 = alloc_cand_and_find_basis (kind: CAND_MULT, gs, base: rhs1, index: 0,
1651 integer_one_node, ctype, sizetype, savings: 0);
1652 c->next_interp = c2->cand_num;
1653 c2->first_interp = c->cand_num;
1654 }
1655
1656 /* Add the first (or only) interpretation to the statement-candidate
1657 mapping. */
1658 add_cand_for_stmt (gs, c);
1659}
1660
1661/* Given GS which is a copy of a scalar integer type, make at least one
1662 appropriate entry in the candidate table.
1663
1664 This interface is included for completeness, but is unnecessary
1665 if this pass immediately follows a pass that performs copy
1666 propagation, such as DOM. */
1667
1668static void
1669slsr_process_copy (gimple *gs, tree rhs1, bool speed)
1670{
1671 slsr_cand_t base_cand, c = NULL, c2;
1672 unsigned savings = 0;
1673
1674 base_cand = base_cand_from_table (base_in: rhs1);
1675
1676 if (base_cand && base_cand->kind != CAND_PHI)
1677 {
1678 slsr_cand_t first_cand = NULL;
1679
1680 while (base_cand)
1681 {
1682 /* Propagate all data from the base candidate. */
1683 if (has_single_use (var: rhs1))
1684 savings = (base_cand->dead_savings
1685 + stmt_cost (gs: base_cand->cand_stmt, speed));
1686
1687 c = alloc_cand_and_find_basis (kind: base_cand->kind, gs,
1688 base: base_cand->base_expr,
1689 index: base_cand->index, stride: base_cand->stride,
1690 ctype: base_cand->cand_type,
1691 stype: base_cand->stride_type, savings);
1692 if (!first_cand)
1693 first_cand = c;
1694
1695 if (first_cand != c)
1696 c->first_interp = first_cand->cand_num;
1697
1698 base_cand = lookup_cand (idx: base_cand->next_interp);
1699 }
1700 }
1701 else
1702 {
1703 /* If nothing is known about the RHS, create fresh CAND_ADD and
1704 CAND_MULT interpretations:
1705
1706 X = Y + (0 * 1)
1707 X = (Y + 0) * 1
1708
1709 The first of these is somewhat arbitrary, but the choice of
1710 1 for the stride simplifies the logic for propagating casts
1711 into their uses. */
1712 c = alloc_cand_and_find_basis (kind: CAND_ADD, gs, base: rhs1, index: 0,
1713 integer_one_node, TREE_TYPE (rhs1),
1714 sizetype, savings: 0);
1715 c2 = alloc_cand_and_find_basis (kind: CAND_MULT, gs, base: rhs1, index: 0,
1716 integer_one_node, TREE_TYPE (rhs1),
1717 sizetype, savings: 0);
1718 c->next_interp = c2->cand_num;
1719 c2->first_interp = c->cand_num;
1720 }
1721
1722 /* Add the first (or only) interpretation to the statement-candidate
1723 mapping. */
1724 add_cand_for_stmt (gs, c);
1725}
1726
1727class find_candidates_dom_walker : public dom_walker
1728{
1729public:
1730 find_candidates_dom_walker (cdi_direction direction)
1731 : dom_walker (direction) {}
1732 edge before_dom_children (basic_block) final override;
1733};
1734
1735/* Find strength-reduction candidates in block BB. */
1736
1737edge
1738find_candidates_dom_walker::before_dom_children (basic_block bb)
1739{
1740 bool speed = optimize_bb_for_speed_p (bb);
1741
1742 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (i: gsi);
1743 gsi_next (i: &gsi))
1744 slsr_process_phi (phi: gsi.phi (), speed);
1745
1746 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi);
1747 gsi_next (i: &gsi))
1748 {
1749 gimple *gs = gsi_stmt (i: gsi);
1750
1751 if (stmt_could_throw_p (cfun, gs))
1752 continue;
1753
1754 if (gimple_vuse (g: gs) && gimple_assign_single_p (gs))
1755 slsr_process_ref (gs);
1756
1757 else if (is_gimple_assign (gs)
1758 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))
1759 || POINTER_TYPE_P (TREE_TYPE (gimple_assign_lhs (gs)))))
1760 {
1761 tree rhs1 = NULL_TREE, rhs2 = NULL_TREE;
1762
1763 switch (gimple_assign_rhs_code (gs))
1764 {
1765 case MULT_EXPR:
1766 case PLUS_EXPR:
1767 rhs1 = gimple_assign_rhs1 (gs);
1768 rhs2 = gimple_assign_rhs2 (gs);
1769 /* Should never happen, but currently some buggy situations
1770 in earlier phases put constants in rhs1. */
1771 if (TREE_CODE (rhs1) != SSA_NAME)
1772 continue;
1773 break;
1774
1775 /* Possible future opportunity: rhs1 of a ptr+ can be
1776 an ADDR_EXPR. */
1777 case POINTER_PLUS_EXPR:
1778 case MINUS_EXPR:
1779 rhs2 = gimple_assign_rhs2 (gs);
1780 gcc_fallthrough ();
1781
1782 CASE_CONVERT:
1783 case SSA_NAME:
1784 case NEGATE_EXPR:
1785 rhs1 = gimple_assign_rhs1 (gs);
1786 if (TREE_CODE (rhs1) != SSA_NAME)
1787 continue;
1788 break;
1789
1790 default:
1791 ;
1792 }
1793
1794 switch (gimple_assign_rhs_code (gs))
1795 {
1796 case MULT_EXPR:
1797 slsr_process_mul (gs, rhs1, rhs2, speed);
1798 break;
1799
1800 case PLUS_EXPR:
1801 case POINTER_PLUS_EXPR:
1802 case MINUS_EXPR:
1803 slsr_process_add (gs, rhs1, rhs2, speed);
1804 break;
1805
1806 case NEGATE_EXPR:
1807 slsr_process_neg (gs, rhs1, speed);
1808 break;
1809
1810 CASE_CONVERT:
1811 slsr_process_cast (gs, rhs1, speed);
1812 break;
1813
1814 case SSA_NAME:
1815 slsr_process_copy (gs, rhs1, speed);
1816 break;
1817
1818 default:
1819 ;
1820 }
1821 }
1822 }
1823 return NULL;
1824}
1825
1826/* Dump a candidate for debug. */
1827
1828static void
1829dump_candidate (slsr_cand_t c)
1830{
1831 fprintf (stream: dump_file, format: "%3d [%d] ", c->cand_num,
1832 gimple_bb (g: c->cand_stmt)->index);
1833 print_gimple_stmt (dump_file, c->cand_stmt, 0);
1834 switch (c->kind)
1835 {
1836 case CAND_MULT:
1837 fputs (s: " MULT : (", stream: dump_file);
1838 print_generic_expr (dump_file, c->base_expr);
1839 fputs (s: " + ", stream: dump_file);
1840 print_decs (wi: c->index, file: dump_file);
1841 fputs (s: ") * ", stream: dump_file);
1842 if (TREE_CODE (c->stride) != INTEGER_CST
1843 && c->stride_type != TREE_TYPE (c->stride))
1844 {
1845 fputs (s: "(", stream: dump_file);
1846 print_generic_expr (dump_file, c->stride_type);
1847 fputs (s: ")", stream: dump_file);
1848 }
1849 print_generic_expr (dump_file, c->stride);
1850 fputs (s: " : ", stream: dump_file);
1851 break;
1852 case CAND_ADD:
1853 fputs (s: " ADD : ", stream: dump_file);
1854 print_generic_expr (dump_file, c->base_expr);
1855 fputs (s: " + (", stream: dump_file);
1856 print_decs (wi: c->index, file: dump_file);
1857 fputs (s: " * ", stream: dump_file);
1858 if (TREE_CODE (c->stride) != INTEGER_CST
1859 && c->stride_type != TREE_TYPE (c->stride))
1860 {
1861 fputs (s: "(", stream: dump_file);
1862 print_generic_expr (dump_file, c->stride_type);
1863 fputs (s: ")", stream: dump_file);
1864 }
1865 print_generic_expr (dump_file, c->stride);
1866 fputs (s: ") : ", stream: dump_file);
1867 break;
1868 case CAND_REF:
1869 fputs (s: " REF : ", stream: dump_file);
1870 print_generic_expr (dump_file, c->base_expr);
1871 fputs (s: " + (", stream: dump_file);
1872 print_generic_expr (dump_file, c->stride);
1873 fputs (s: ") + ", stream: dump_file);
1874 print_decs (wi: c->index, file: dump_file);
1875 fputs (s: " : ", stream: dump_file);
1876 break;
1877 case CAND_PHI:
1878 fputs (s: " PHI : ", stream: dump_file);
1879 print_generic_expr (dump_file, c->base_expr);
1880 fputs (s: " + (unknown * ", stream: dump_file);
1881 print_generic_expr (dump_file, c->stride);
1882 fputs (s: ") : ", stream: dump_file);
1883 break;
1884 default:
1885 gcc_unreachable ();
1886 }
1887 print_generic_expr (dump_file, c->cand_type);
1888 fprintf (stream: dump_file, format: "\n basis: %d dependent: %d sibling: %d\n",
1889 c->basis, c->dependent, c->sibling);
1890 fprintf (stream: dump_file,
1891 format: " next-interp: %d first-interp: %d dead-savings: %d\n",
1892 c->next_interp, c->first_interp, c->dead_savings);
1893 if (c->def_phi)
1894 fprintf (stream: dump_file, format: " phi: %d\n", c->def_phi);
1895 fputs (s: "\n", stream: dump_file);
1896}
1897
1898/* Dump the candidate vector for debug. */
1899
1900static void
1901dump_cand_vec (void)
1902{
1903 unsigned i;
1904 slsr_cand_t c;
1905
1906 fprintf (stream: dump_file, format: "\nStrength reduction candidate vector:\n\n");
1907
1908 FOR_EACH_VEC_ELT (cand_vec, i, c)
1909 if (c != NULL)
1910 dump_candidate (c);
1911}
1912
1913/* Callback used to dump the candidate chains hash table. */
1914
1915int
1916ssa_base_cand_dump_callback (cand_chain **slot, void *ignored ATTRIBUTE_UNUSED)
1917{
1918 const_cand_chain_t chain = *slot;
1919 cand_chain_t p;
1920
1921 print_generic_expr (dump_file, chain->base_expr);
1922 fprintf (stream: dump_file, format: " -> %d", chain->cand->cand_num);
1923
1924 for (p = chain->next; p; p = p->next)
1925 fprintf (stream: dump_file, format: " -> %d", p->cand->cand_num);
1926
1927 fputs (s: "\n", stream: dump_file);
1928 return 1;
1929}
1930
1931/* Dump the candidate chains. */
1932
1933static void
1934dump_cand_chains (void)
1935{
1936 fprintf (stream: dump_file, format: "\nStrength reduction candidate chains:\n\n");
1937 base_cand_map->traverse_noresize <void *, ssa_base_cand_dump_callback>
1938 (NULL);
1939 fputs (s: "\n", stream: dump_file);
1940}
1941
1942/* Dump the increment vector for debug. */
1943
1944static void
1945dump_incr_vec (void)
1946{
1947 if (dump_file && (dump_flags & TDF_DETAILS))
1948 {
1949 unsigned i;
1950
1951 fprintf (stream: dump_file, format: "\nIncrement vector:\n\n");
1952
1953 for (i = 0; i < incr_vec_len; i++)
1954 {
1955 fprintf (stream: dump_file, format: "%3d increment: ", i);
1956 print_decs (wi: incr_vec[i].incr, file: dump_file);
1957 fprintf (stream: dump_file, format: "\n count: %d", incr_vec[i].count);
1958 fprintf (stream: dump_file, format: "\n cost: %d", incr_vec[i].cost);
1959 fputs (s: "\n initializer: ", stream: dump_file);
1960 print_generic_expr (dump_file, incr_vec[i].initializer);
1961 fputs (s: "\n\n", stream: dump_file);
1962 }
1963 }
1964}
1965
1966/* Replace *EXPR in candidate C with an equivalent strength-reduced
1967 data reference. */
1968
1969static void
1970replace_ref (tree *expr, slsr_cand_t c)
1971{
1972 tree add_expr, mem_ref, acc_type = TREE_TYPE (*expr);
1973 unsigned HOST_WIDE_INT misalign;
1974 unsigned align;
1975
1976 /* Ensure the memory reference carries the minimum alignment
1977 requirement for the data type. See PR58041. */
1978 get_object_alignment_1 (*expr, &align, &misalign);
1979 if (misalign != 0)
1980 align = least_bit_hwi (x: misalign);
1981 if (align < TYPE_ALIGN (acc_type))
1982 acc_type = build_aligned_type (acc_type, align);
1983
1984 add_expr = fold_build2 (POINTER_PLUS_EXPR, c->cand_type,
1985 c->base_expr, c->stride);
1986 mem_ref = fold_build2 (MEM_REF, acc_type, add_expr,
1987 wide_int_to_tree (c->cand_type, c->index));
1988
1989 /* Gimplify the base addressing expression for the new MEM_REF tree. */
1990 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
1991 TREE_OPERAND (mem_ref, 0)
1992 = force_gimple_operand_gsi (&gsi, TREE_OPERAND (mem_ref, 0),
1993 /*simple_p=*/true, NULL,
1994 /*before=*/true, GSI_SAME_STMT);
1995 copy_ref_info (mem_ref, *expr);
1996 *expr = mem_ref;
1997 update_stmt (s: c->cand_stmt);
1998}
1999
2000/* Return true if CAND_REF candidate C is a valid memory reference. */
2001
2002static bool
2003valid_mem_ref_cand_p (slsr_cand_t c)
2004{
2005 if (TREE_CODE (TREE_OPERAND (c->stride, 1)) != INTEGER_CST)
2006 return false;
2007
2008 struct mem_address addr
2009 = { NULL_TREE, .base: c->base_expr, TREE_OPERAND (c->stride, 0),
2010 TREE_OPERAND (c->stride, 1), .offset: wide_int_to_tree (sizetype, cst: c->index) };
2011
2012 return
2013 valid_mem_ref_p (TYPE_MODE (c->cand_type), TYPE_ADDR_SPACE (c->cand_type),
2014 &addr);
2015}
2016
2017/* Replace CAND_REF candidate C, each sibling of candidate C, and each
2018 dependent of candidate C with an equivalent strength-reduced data
2019 reference. */
2020
2021static void
2022replace_refs (slsr_cand_t c)
2023{
2024 /* Replacing a chain of only 2 candidates which are valid memory references
2025 is generally counter-productive because you cannot recoup the additional
2026 calculation added in front of them. */
2027 if (c->basis == 0
2028 && c->dependent
2029 && !lookup_cand (idx: c->dependent)->dependent
2030 && valid_mem_ref_cand_p (c)
2031 && valid_mem_ref_cand_p (c: lookup_cand (idx: c->dependent)))
2032 return;
2033
2034 if (dump_file && (dump_flags & TDF_DETAILS))
2035 {
2036 fputs (s: "Replacing reference: ", stream: dump_file);
2037 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2038 }
2039
2040 if (gimple_vdef (g: c->cand_stmt))
2041 {
2042 tree *lhs = gimple_assign_lhs_ptr (gs: c->cand_stmt);
2043 replace_ref (expr: lhs, c);
2044 }
2045 else
2046 {
2047 tree *rhs = gimple_assign_rhs1_ptr (gs: c->cand_stmt);
2048 replace_ref (expr: rhs, c);
2049 }
2050
2051 if (dump_file && (dump_flags & TDF_DETAILS))
2052 {
2053 fputs (s: "With: ", stream: dump_file);
2054 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2055 fputs (s: "\n", stream: dump_file);
2056 }
2057
2058 if (c->sibling)
2059 replace_refs (c: lookup_cand (idx: c->sibling));
2060
2061 if (c->dependent)
2062 replace_refs (c: lookup_cand (idx: c->dependent));
2063}
2064
2065/* Return TRUE if candidate C is dependent upon a PHI. */
2066
2067static bool
2068phi_dependent_cand_p (slsr_cand_t c)
2069{
2070 /* A candidate is not necessarily dependent upon a PHI just because
2071 it has a phi definition for its base name. It may have a basis
2072 that relies upon the same phi definition, in which case the PHI
2073 is irrelevant to this candidate. */
2074 return (c->def_phi
2075 && c->basis
2076 && lookup_cand (idx: c->basis)->def_phi != c->def_phi);
2077}
2078
2079/* Calculate the increment required for candidate C relative to
2080 its basis. */
2081
2082static offset_int
2083cand_increment (slsr_cand_t c)
2084{
2085 slsr_cand_t basis;
2086
2087 /* If the candidate doesn't have a basis, just return its own
2088 index. This is useful in record_increments to help us find
2089 an existing initializer. Also, if the candidate's basis is
2090 hidden by a phi, then its own index will be the increment
2091 from the newly introduced phi basis. */
2092 if (!c->basis || phi_dependent_cand_p (c))
2093 return c->index;
2094
2095 basis = lookup_cand (idx: c->basis);
2096 gcc_assert (operand_equal_p (c->base_expr, basis->base_expr, 0));
2097 return c->index - basis->index;
2098}
2099
2100/* Calculate the increment required for candidate C relative to
2101 its basis. If we aren't going to generate pointer arithmetic
2102 for this candidate, return the absolute value of that increment
2103 instead. */
2104
2105static inline offset_int
2106cand_abs_increment (slsr_cand_t c)
2107{
2108 offset_int increment = cand_increment (c);
2109
2110 if (!address_arithmetic_p && wi::neg_p (x: increment))
2111 increment = -increment;
2112
2113 return increment;
2114}
2115
2116/* Return TRUE iff candidate C has already been replaced under
2117 another interpretation. */
2118
2119static inline bool
2120cand_already_replaced (slsr_cand_t c)
2121{
2122 return (gimple_bb (g: c->cand_stmt) == 0);
2123}
2124
2125/* Common logic used by replace_unconditional_candidate and
2126 replace_conditional_candidate. */
2127
2128static void
2129replace_mult_candidate (slsr_cand_t c, tree basis_name, offset_int bump)
2130{
2131 tree target_type = TREE_TYPE (gimple_assign_lhs (c->cand_stmt));
2132 enum tree_code cand_code = gimple_assign_rhs_code (gs: c->cand_stmt);
2133
2134 /* It is not useful to replace casts, copies, negates, or adds of
2135 an SSA name and a constant. */
2136 if (cand_code == SSA_NAME
2137 || CONVERT_EXPR_CODE_P (cand_code)
2138 || cand_code == PLUS_EXPR
2139 || cand_code == POINTER_PLUS_EXPR
2140 || cand_code == MINUS_EXPR
2141 || cand_code == NEGATE_EXPR)
2142 return;
2143
2144 enum tree_code code = PLUS_EXPR;
2145 tree bump_tree;
2146 gimple *stmt_to_print = NULL;
2147
2148 if (wi::neg_p (x: bump))
2149 {
2150 code = MINUS_EXPR;
2151 bump = -bump;
2152 }
2153
2154 /* It is possible that the resulting bump doesn't fit in target_type.
2155 Abandon the replacement in this case. This does not affect
2156 siblings or dependents of C. */
2157 if (bump != wi::ext (x: bump, TYPE_PRECISION (target_type),
2158 TYPE_SIGN (target_type)))
2159 return;
2160
2161 bump_tree = wide_int_to_tree (type: target_type, cst: bump);
2162
2163 /* If the basis name and the candidate's LHS have incompatible types,
2164 introduce a cast. */
2165 if (!useless_type_conversion_p (target_type, TREE_TYPE (basis_name)))
2166 basis_name = introduce_cast_before_cand (c, target_type, basis_name);
2167
2168 if (dump_file && (dump_flags & TDF_DETAILS))
2169 {
2170 fputs (s: "Replacing: ", stream: dump_file);
2171 print_gimple_stmt (dump_file, c->cand_stmt, 0);
2172 }
2173
2174 if (bump == 0)
2175 {
2176 tree lhs = gimple_assign_lhs (gs: c->cand_stmt);
2177 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
2178 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2179 slsr_cand_t cc = lookup_cand (idx: c->first_interp);
2180 gimple_set_location (g: copy_stmt, location: gimple_location (g: c->cand_stmt));
2181 gsi_replace (&gsi, copy_stmt, false);
2182 while (cc)
2183 {
2184 cc->cand_stmt = copy_stmt;
2185 cc = lookup_cand (idx: cc->next_interp);
2186 }
2187 if (dump_file && (dump_flags & TDF_DETAILS))
2188 stmt_to_print = copy_stmt;
2189 }
2190 else
2191 {
2192 tree rhs1, rhs2;
2193 if (cand_code != NEGATE_EXPR) {
2194 rhs1 = gimple_assign_rhs1 (gs: c->cand_stmt);
2195 rhs2 = gimple_assign_rhs2 (gs: c->cand_stmt);
2196 }
2197 if (cand_code != NEGATE_EXPR
2198 && ((operand_equal_p (rhs1, basis_name, flags: 0)
2199 && operand_equal_p (rhs2, bump_tree, flags: 0))
2200 || (operand_equal_p (rhs1, bump_tree, flags: 0)
2201 && operand_equal_p (rhs2, basis_name, flags: 0))))
2202 {
2203 if (dump_file && (dump_flags & TDF_DETAILS))
2204 {
2205 fputs (s: "(duplicate, not actually replacing)", stream: dump_file);
2206 stmt_to_print = c->cand_stmt;
2207 }
2208 }
2209 else
2210 {
2211 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
2212 slsr_cand_t cc = lookup_cand (idx: c->first_interp);
2213 gimple_assign_set_rhs_with_ops (gsi: &gsi, code, op1: basis_name, op2: bump_tree);
2214 update_stmt (s: gsi_stmt (i: gsi));
2215 while (cc)
2216 {
2217 cc->cand_stmt = gsi_stmt (i: gsi);
2218 cc = lookup_cand (idx: cc->next_interp);
2219 }
2220 if (dump_file && (dump_flags & TDF_DETAILS))
2221 stmt_to_print = gsi_stmt (i: gsi);
2222 }
2223 }
2224
2225 if (dump_file && (dump_flags & TDF_DETAILS))
2226 {
2227 fputs (s: "With: ", stream: dump_file);
2228 print_gimple_stmt (dump_file, stmt_to_print, 0);
2229 fputs (s: "\n", stream: dump_file);
2230 }
2231}
2232
2233/* Replace candidate C with an add or subtract. Note that we only
2234 operate on CAND_MULTs with known strides, so we will never generate
2235 a POINTER_PLUS_EXPR. Each candidate X = (B + i) * S is replaced by
2236 X = Y + ((i - i') * S), as described in the module commentary. The
2237 folded value ((i - i') * S) is referred to here as the "bump." */
2238
2239static void
2240replace_unconditional_candidate (slsr_cand_t c)
2241{
2242 slsr_cand_t basis;
2243
2244 if (cand_already_replaced (c))
2245 return;
2246
2247 basis = lookup_cand (idx: c->basis);
2248 offset_int bump = cand_increment (c) * wi::to_offset (t: c->stride);
2249
2250 replace_mult_candidate (c, basis_name: gimple_assign_lhs (gs: basis->cand_stmt), bump);
2251}
2252
2253/* Return the index in the increment vector of the given INCREMENT,
2254 or -1 if not found. The latter can occur if more than
2255 MAX_INCR_VEC_LEN increments have been found. */
2256
2257static inline int
2258incr_vec_index (const offset_int &increment)
2259{
2260 unsigned i;
2261
2262 for (i = 0; i < incr_vec_len && increment != incr_vec[i].incr; i++)
2263 ;
2264
2265 if (i < incr_vec_len)
2266 return i;
2267 else
2268 return -1;
2269}
2270
2271/* Create a new statement along edge E to add BASIS_NAME to the product
2272 of INCREMENT and the stride of candidate C. Create and return a new
2273 SSA name from *VAR to be used as the LHS of the new statement.
2274 KNOWN_STRIDE is true iff C's stride is a constant. */
2275
2276static tree
2277create_add_on_incoming_edge (slsr_cand_t c, tree basis_name,
2278 offset_int increment, edge e, location_t loc,
2279 bool known_stride)
2280{
2281 tree lhs, basis_type;
2282 gassign *new_stmt, *cast_stmt = NULL;
2283
2284 /* If the add candidate along this incoming edge has the same
2285 index as C's hidden basis, the hidden basis represents this
2286 edge correctly. */
2287 if (increment == 0)
2288 return basis_name;
2289
2290 basis_type = TREE_TYPE (basis_name);
2291 lhs = make_temp_ssa_name (type: basis_type, NULL, name: "slsr");
2292
2293 /* Occasionally people convert integers to pointers without a
2294 cast, leading us into trouble if we aren't careful. */
2295 enum tree_code plus_code
2296 = POINTER_TYPE_P (basis_type) ? POINTER_PLUS_EXPR : PLUS_EXPR;
2297
2298 if (known_stride)
2299 {
2300 tree bump_tree;
2301 enum tree_code code = plus_code;
2302 offset_int bump = increment * wi::to_offset (t: c->stride);
2303 if (wi::neg_p (x: bump) && !POINTER_TYPE_P (basis_type))
2304 {
2305 code = MINUS_EXPR;
2306 bump = -bump;
2307 }
2308
2309 tree stride_type = POINTER_TYPE_P (basis_type) ? sizetype : basis_type;
2310 bump_tree = wide_int_to_tree (type: stride_type, cst: bump);
2311 new_stmt = gimple_build_assign (lhs, code, basis_name, bump_tree);
2312 }
2313 else
2314 {
2315 int i;
2316 bool negate_incr = !POINTER_TYPE_P (basis_type) && wi::neg_p (x: increment);
2317 i = incr_vec_index (increment: negate_incr ? -increment : increment);
2318 gcc_assert (i >= 0);
2319
2320 if (incr_vec[i].initializer)
2321 {
2322 enum tree_code code = negate_incr ? MINUS_EXPR : plus_code;
2323 new_stmt = gimple_build_assign (lhs, code, basis_name,
2324 incr_vec[i].initializer);
2325 }
2326 else {
2327 tree stride;
2328
2329 if (!types_compatible_p (TREE_TYPE (c->stride), type2: c->stride_type))
2330 {
2331 tree cast_stride = make_temp_ssa_name (type: c->stride_type, NULL,
2332 name: "slsr");
2333 cast_stmt = gimple_build_assign (cast_stride, NOP_EXPR,
2334 c->stride);
2335 stride = cast_stride;
2336 }
2337 else
2338 stride = c->stride;
2339
2340 if (increment == 1)
2341 new_stmt = gimple_build_assign (lhs, plus_code, basis_name, stride);
2342 else if (increment == -1)
2343 new_stmt = gimple_build_assign (lhs, MINUS_EXPR, basis_name, stride);
2344 else
2345 gcc_unreachable ();
2346 }
2347 }
2348
2349 if (cast_stmt)
2350 {
2351 gimple_set_location (g: cast_stmt, location: loc);
2352 gsi_insert_on_edge (e, cast_stmt);
2353 }
2354
2355 gimple_set_location (g: new_stmt, location: loc);
2356 gsi_insert_on_edge (e, new_stmt);
2357
2358 if (dump_file && (dump_flags & TDF_DETAILS))
2359 {
2360 if (cast_stmt)
2361 {
2362 fprintf (stream: dump_file, format: "Inserting cast on edge %d->%d: ",
2363 e->src->index, e->dest->index);
2364 print_gimple_stmt (dump_file, cast_stmt, 0);
2365 }
2366 fprintf (stream: dump_file, format: "Inserting on edge %d->%d: ", e->src->index,
2367 e->dest->index);
2368 print_gimple_stmt (dump_file, new_stmt, 0);
2369 }
2370
2371 return lhs;
2372}
2373
2374/* Clear the visited field for a tree of PHI candidates. */
2375
2376static void
2377clear_visited (gphi *phi)
2378{
2379 unsigned i;
2380 slsr_cand_t phi_cand = *stmt_cand_map->get (k: phi);
2381
2382 if (phi_cand->visited)
2383 {
2384 phi_cand->visited = 0;
2385
2386 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
2387 {
2388 tree arg = gimple_phi_arg_def (gs: phi, index: i);
2389 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2390 if (gimple_code (g: arg_def) == GIMPLE_PHI)
2391 clear_visited (phi: as_a <gphi *> (p: arg_def));
2392 }
2393 }
2394}
2395
2396/* Recursive helper function for create_phi_basis. */
2397
2398static tree
2399create_phi_basis_1 (slsr_cand_t c, gimple *from_phi, tree basis_name,
2400 location_t loc, bool known_stride)
2401{
2402 int i;
2403 tree name, phi_arg;
2404 gphi *phi;
2405 slsr_cand_t basis = lookup_cand (idx: c->basis);
2406 int nargs = gimple_phi_num_args (gs: from_phi);
2407 basic_block phi_bb = gimple_bb (g: from_phi);
2408 slsr_cand_t phi_cand = *stmt_cand_map->get (k: from_phi);
2409 auto_vec<tree> phi_args (nargs);
2410
2411 if (phi_cand->visited)
2412 return phi_cand->cached_basis;
2413 phi_cand->visited = 1;
2414
2415 /* Process each argument of the existing phi that represents
2416 conditionally-executed add candidates. */
2417 for (i = 0; i < nargs; i++)
2418 {
2419 edge e = (*phi_bb->preds)[i];
2420 tree arg = gimple_phi_arg_def (gs: from_phi, index: i);
2421 tree feeding_def;
2422
2423 /* If the phi argument is the base name of the CAND_PHI, then
2424 this incoming arc should use the hidden basis. */
2425 if (operand_equal_p (arg, phi_cand->base_expr, flags: 0))
2426 if (basis->index == 0)
2427 feeding_def = gimple_assign_lhs (gs: basis->cand_stmt);
2428 else
2429 {
2430 offset_int incr = -basis->index;
2431 feeding_def = create_add_on_incoming_edge (c, basis_name, increment: incr,
2432 e, loc, known_stride);
2433 }
2434 else
2435 {
2436 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2437
2438 /* If there is another phi along this incoming edge, we must
2439 process it in the same fashion to ensure that all basis
2440 adjustments are made along its incoming edges. */
2441 if (gimple_code (g: arg_def) == GIMPLE_PHI)
2442 feeding_def = create_phi_basis_1 (c, from_phi: arg_def, basis_name,
2443 loc, known_stride);
2444 else
2445 {
2446 slsr_cand_t arg_cand = base_cand_from_table (base_in: arg);
2447 offset_int diff = arg_cand->index - basis->index;
2448 feeding_def = create_add_on_incoming_edge (c, basis_name, increment: diff,
2449 e, loc, known_stride);
2450 }
2451 }
2452
2453 /* Because of recursion, we need to save the arguments in a vector
2454 so we can create the PHI statement all at once. Otherwise the
2455 storage for the half-created PHI can be reclaimed. */
2456 phi_args.safe_push (obj: feeding_def);
2457 }
2458
2459 /* Create the new phi basis. */
2460 name = make_temp_ssa_name (TREE_TYPE (basis_name), NULL, name: "slsr");
2461 phi = create_phi_node (name, phi_bb);
2462 SSA_NAME_DEF_STMT (name) = phi;
2463
2464 FOR_EACH_VEC_ELT (phi_args, i, phi_arg)
2465 {
2466 edge e = (*phi_bb->preds)[i];
2467 add_phi_arg (phi, phi_arg, e, loc);
2468 }
2469
2470 update_stmt (s: phi);
2471
2472 if (dump_file && (dump_flags & TDF_DETAILS))
2473 {
2474 fputs (s: "Introducing new phi basis: ", stream: dump_file);
2475 print_gimple_stmt (dump_file, phi, 0);
2476 }
2477
2478 phi_cand->cached_basis = name;
2479 return name;
2480}
2481
2482/* Given a candidate C with BASIS_NAME being the LHS of C's basis which
2483 is hidden by the phi node FROM_PHI, create a new phi node in the same
2484 block as FROM_PHI. The new phi is suitable for use as a basis by C,
2485 with its phi arguments representing conditional adjustments to the
2486 hidden basis along conditional incoming paths. Those adjustments are
2487 made by creating add statements (and sometimes recursively creating
2488 phis) along those incoming paths. LOC is the location to attach to
2489 the introduced statements. KNOWN_STRIDE is true iff C's stride is a
2490 constant. */
2491
2492static tree
2493create_phi_basis (slsr_cand_t c, gimple *from_phi, tree basis_name,
2494 location_t loc, bool known_stride)
2495{
2496 tree retval = create_phi_basis_1 (c, from_phi, basis_name, loc,
2497 known_stride);
2498 gcc_assert (retval);
2499 clear_visited (phi: as_a <gphi *> (p: from_phi));
2500 return retval;
2501}
2502
2503/* Given a candidate C whose basis is hidden by at least one intervening
2504 phi, introduce a matching number of new phis to represent its basis
2505 adjusted by conditional increments along possible incoming paths. Then
2506 replace C as though it were an unconditional candidate, using the new
2507 basis. */
2508
2509static void
2510replace_conditional_candidate (slsr_cand_t c)
2511{
2512 tree basis_name, name;
2513 slsr_cand_t basis;
2514 location_t loc;
2515
2516 /* Look up the LHS SSA name from C's basis. This will be the
2517 RHS1 of the adds we will introduce to create new phi arguments. */
2518 basis = lookup_cand (idx: c->basis);
2519 basis_name = gimple_assign_lhs (gs: basis->cand_stmt);
2520
2521 /* Create a new phi statement which will represent C's true basis
2522 after the transformation is complete. */
2523 loc = gimple_location (g: c->cand_stmt);
2524 name = create_phi_basis (c, from_phi: lookup_cand (idx: c->def_phi)->cand_stmt,
2525 basis_name, loc, known_stride: KNOWN_STRIDE);
2526
2527 /* Replace C with an add of the new basis phi and a constant. */
2528 offset_int bump = c->index * wi::to_offset (t: c->stride);
2529
2530 replace_mult_candidate (c, basis_name: name, bump);
2531}
2532
2533/* Recursive helper function for phi_add_costs. SPREAD is a measure of
2534 how many PHI nodes we have visited at this point in the tree walk. */
2535
2536static int
2537phi_add_costs_1 (gimple *phi, slsr_cand_t c, int one_add_cost, int *spread)
2538{
2539 unsigned i;
2540 int cost = 0;
2541 slsr_cand_t phi_cand = *stmt_cand_map->get (k: phi);
2542
2543 if (phi_cand->visited)
2544 return 0;
2545
2546 phi_cand->visited = 1;
2547 (*spread)++;
2548
2549 /* If we work our way back to a phi that isn't dominated by the hidden
2550 basis, this isn't a candidate for replacement. Indicate this by
2551 returning an unreasonably high cost. It's not easy to detect
2552 these situations when determining the basis, so we defer the
2553 decision until now. */
2554 basic_block phi_bb = gimple_bb (g: phi);
2555 slsr_cand_t basis = lookup_cand (idx: c->basis);
2556 basic_block basis_bb = gimple_bb (g: basis->cand_stmt);
2557
2558 if (phi_bb == basis_bb || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
2559 return COST_INFINITE;
2560
2561 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
2562 {
2563 tree arg = gimple_phi_arg_def (gs: phi, index: i);
2564
2565 if (arg != phi_cand->base_expr)
2566 {
2567 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2568
2569 if (gimple_code (g: arg_def) == GIMPLE_PHI)
2570 {
2571 cost += phi_add_costs_1 (phi: arg_def, c, one_add_cost, spread);
2572
2573 if (cost >= COST_INFINITE || *spread > MAX_SPREAD)
2574 return COST_INFINITE;
2575 }
2576 else
2577 {
2578 slsr_cand_t arg_cand = base_cand_from_table (base_in: arg);
2579
2580 if (arg_cand->index != c->index)
2581 cost += one_add_cost;
2582 }
2583 }
2584 }
2585
2586 return cost;
2587}
2588
2589/* Compute the expected costs of inserting basis adjustments for
2590 candidate C with phi-definition PHI. The cost of inserting
2591 one adjustment is given by ONE_ADD_COST. If PHI has arguments
2592 which are themselves phi results, recursively calculate costs
2593 for those phis as well. */
2594
2595static int
2596phi_add_costs (gimple *phi, slsr_cand_t c, int one_add_cost)
2597{
2598 int spread = 0;
2599 int retval = phi_add_costs_1 (phi, c, one_add_cost, spread: &spread);
2600 clear_visited (phi: as_a <gphi *> (p: phi));
2601 return retval;
2602}
2603/* For candidate C, each sibling of candidate C, and each dependent of
2604 candidate C, determine whether the candidate is dependent upon a
2605 phi that hides its basis. If not, replace the candidate unconditionally.
2606 Otherwise, determine whether the cost of introducing compensation code
2607 for the candidate is offset by the gains from strength reduction. If
2608 so, replace the candidate and introduce the compensation code. */
2609
2610static void
2611replace_uncond_cands_and_profitable_phis (slsr_cand_t c)
2612{
2613 if (phi_dependent_cand_p (c))
2614 {
2615 /* A multiply candidate with a stride of 1 is just an artifice
2616 of a copy or cast; there is no value in replacing it. */
2617 if (c->kind == CAND_MULT && wi::to_offset (t: c->stride) != 1)
2618 {
2619 /* A candidate dependent upon a phi will replace a multiply by
2620 a constant with an add, and will insert at most one add for
2621 each phi argument. Add these costs with the potential dead-code
2622 savings to determine profitability. */
2623 bool speed = optimize_bb_for_speed_p (gimple_bb (g: c->cand_stmt));
2624 int mult_savings = stmt_cost (gs: c->cand_stmt, speed);
2625 gimple *phi = lookup_cand (idx: c->def_phi)->cand_stmt;
2626 tree phi_result = gimple_phi_result (gs: phi);
2627 int one_add_cost = add_cost (speed,
2628 TYPE_MODE (TREE_TYPE (phi_result)));
2629 int add_costs = one_add_cost + phi_add_costs (phi, c, one_add_cost);
2630 int cost = add_costs - mult_savings - c->dead_savings;
2631
2632 if (dump_file && (dump_flags & TDF_DETAILS))
2633 {
2634 fprintf (stream: dump_file, format: " Conditional candidate %d:\n", c->cand_num);
2635 fprintf (stream: dump_file, format: " add_costs = %d\n", add_costs);
2636 fprintf (stream: dump_file, format: " mult_savings = %d\n", mult_savings);
2637 fprintf (stream: dump_file, format: " dead_savings = %d\n", c->dead_savings);
2638 fprintf (stream: dump_file, format: " cost = %d\n", cost);
2639 if (cost <= COST_NEUTRAL)
2640 fputs (s: " Replacing...\n", stream: dump_file);
2641 else
2642 fputs (s: " Not replaced.\n", stream: dump_file);
2643 }
2644
2645 if (cost <= COST_NEUTRAL)
2646 replace_conditional_candidate (c);
2647 }
2648 }
2649 else
2650 replace_unconditional_candidate (c);
2651
2652 if (c->sibling)
2653 replace_uncond_cands_and_profitable_phis (c: lookup_cand (idx: c->sibling));
2654
2655 if (c->dependent)
2656 replace_uncond_cands_and_profitable_phis (c: lookup_cand (idx: c->dependent));
2657}
2658
2659/* Count the number of candidates in the tree rooted at C that have
2660 not already been replaced under other interpretations. */
2661
2662static int
2663count_candidates (slsr_cand_t c)
2664{
2665 unsigned count = cand_already_replaced (c) ? 0 : 1;
2666
2667 if (c->sibling)
2668 count += count_candidates (c: lookup_cand (idx: c->sibling));
2669
2670 if (c->dependent)
2671 count += count_candidates (c: lookup_cand (idx: c->dependent));
2672
2673 return count;
2674}
2675
2676/* Increase the count of INCREMENT by one in the increment vector.
2677 INCREMENT is associated with candidate C. If INCREMENT is to be
2678 conditionally executed as part of a conditional candidate replacement,
2679 IS_PHI_ADJUST is true, otherwise false. If an initializer
2680 T_0 = stride * I is provided by a candidate that dominates all
2681 candidates with the same increment, also record T_0 for subsequent use. */
2682
2683static void
2684record_increment (slsr_cand_t c, offset_int increment, bool is_phi_adjust)
2685{
2686 bool found = false;
2687 unsigned i;
2688
2689 /* Treat increments that differ only in sign as identical so as to
2690 share initializers, unless we are generating pointer arithmetic. */
2691 if (!address_arithmetic_p && wi::neg_p (x: increment))
2692 increment = -increment;
2693
2694 for (i = 0; i < incr_vec_len; i++)
2695 {
2696 if (incr_vec[i].incr == increment)
2697 {
2698 incr_vec[i].count++;
2699 found = true;
2700
2701 /* If we previously recorded an initializer that doesn't
2702 dominate this candidate, it's not going to be useful to
2703 us after all. */
2704 if (incr_vec[i].initializer
2705 && !dominated_by_p (CDI_DOMINATORS,
2706 gimple_bb (g: c->cand_stmt),
2707 incr_vec[i].init_bb))
2708 {
2709 incr_vec[i].initializer = NULL_TREE;
2710 incr_vec[i].init_bb = NULL;
2711 }
2712
2713 break;
2714 }
2715 }
2716
2717 if (!found && incr_vec_len < MAX_INCR_VEC_LEN - 1)
2718 {
2719 /* The first time we see an increment, create the entry for it.
2720 If this is the root candidate which doesn't have a basis, set
2721 the count to zero. We're only processing it so it can possibly
2722 provide an initializer for other candidates. */
2723 incr_vec[incr_vec_len].incr = increment;
2724 incr_vec[incr_vec_len].count = c->basis || is_phi_adjust ? 1 : 0;
2725 incr_vec[incr_vec_len].cost = COST_INFINITE;
2726
2727 /* Optimistically record the first occurrence of this increment
2728 as providing an initializer (if it does); we will revise this
2729 opinion later if it doesn't dominate all other occurrences.
2730 Exception: increments of 0, 1 never need initializers;
2731 and phi adjustments don't ever provide initializers. */
2732 if (c->kind == CAND_ADD
2733 && !is_phi_adjust
2734 && c->index == increment
2735 && (increment > 1 || increment < 0)
2736 && (gimple_assign_rhs_code (gs: c->cand_stmt) == PLUS_EXPR
2737 || gimple_assign_rhs_code (gs: c->cand_stmt) == POINTER_PLUS_EXPR))
2738 {
2739 tree t0 = NULL_TREE;
2740 tree rhs1 = gimple_assign_rhs1 (gs: c->cand_stmt);
2741 tree rhs2 = gimple_assign_rhs2 (gs: c->cand_stmt);
2742 if (operand_equal_p (rhs1, c->base_expr, flags: 0))
2743 t0 = rhs2;
2744 else if (operand_equal_p (rhs2, c->base_expr, flags: 0))
2745 t0 = rhs1;
2746 if (t0
2747 && SSA_NAME_DEF_STMT (t0)
2748 && gimple_bb (SSA_NAME_DEF_STMT (t0)))
2749 {
2750 incr_vec[incr_vec_len].initializer = t0;
2751 incr_vec[incr_vec_len++].init_bb
2752 = gimple_bb (SSA_NAME_DEF_STMT (t0));
2753 }
2754 else
2755 {
2756 incr_vec[incr_vec_len].initializer = NULL_TREE;
2757 incr_vec[incr_vec_len++].init_bb = NULL;
2758 }
2759 }
2760 else
2761 {
2762 incr_vec[incr_vec_len].initializer = NULL_TREE;
2763 incr_vec[incr_vec_len++].init_bb = NULL;
2764 }
2765 }
2766}
2767
2768/* Recursive helper function for record_phi_increments. */
2769
2770static void
2771record_phi_increments_1 (slsr_cand_t basis, gimple *phi)
2772{
2773 unsigned i;
2774 slsr_cand_t phi_cand = *stmt_cand_map->get (k: phi);
2775
2776 if (phi_cand->visited)
2777 return;
2778 phi_cand->visited = 1;
2779
2780 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
2781 {
2782 tree arg = gimple_phi_arg_def (gs: phi, index: i);
2783 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2784
2785 if (gimple_code (g: arg_def) == GIMPLE_PHI)
2786 record_phi_increments_1 (basis, phi: arg_def);
2787 else
2788 {
2789 offset_int diff;
2790
2791 if (operand_equal_p (arg, phi_cand->base_expr, flags: 0))
2792 {
2793 diff = -basis->index;
2794 record_increment (c: phi_cand, increment: diff, is_phi_adjust: PHI_ADJUST);
2795 }
2796 else
2797 {
2798 slsr_cand_t arg_cand = base_cand_from_table (base_in: arg);
2799 diff = arg_cand->index - basis->index;
2800 record_increment (c: arg_cand, increment: diff, is_phi_adjust: PHI_ADJUST);
2801 }
2802 }
2803 }
2804}
2805
2806/* Given phi statement PHI that hides a candidate from its BASIS, find
2807 the increments along each incoming arc (recursively handling additional
2808 phis that may be present) and record them. These increments are the
2809 difference in index between the index-adjusting statements and the
2810 index of the basis. */
2811
2812static void
2813record_phi_increments (slsr_cand_t basis, gimple *phi)
2814{
2815 record_phi_increments_1 (basis, phi);
2816 clear_visited (phi: as_a <gphi *> (p: phi));
2817}
2818
2819/* Determine how many times each unique increment occurs in the set
2820 of candidates rooted at C's parent, recording the data in the
2821 increment vector. For each unique increment I, if an initializer
2822 T_0 = stride * I is provided by a candidate that dominates all
2823 candidates with the same increment, also record T_0 for subsequent
2824 use. */
2825
2826static void
2827record_increments (slsr_cand_t c)
2828{
2829 if (!cand_already_replaced (c))
2830 {
2831 if (!phi_dependent_cand_p (c))
2832 record_increment (c, increment: cand_increment (c), is_phi_adjust: NOT_PHI_ADJUST);
2833 else
2834 {
2835 /* A candidate with a basis hidden by a phi will have one
2836 increment for its relationship to the index represented by
2837 the phi, and potentially additional increments along each
2838 incoming edge. For the root of the dependency tree (which
2839 has no basis), process just the initial index in case it has
2840 an initializer that can be used by subsequent candidates. */
2841 record_increment (c, increment: c->index, is_phi_adjust: NOT_PHI_ADJUST);
2842
2843 if (c->basis)
2844 record_phi_increments (basis: lookup_cand (idx: c->basis),
2845 phi: lookup_cand (idx: c->def_phi)->cand_stmt);
2846 }
2847 }
2848
2849 if (c->sibling)
2850 record_increments (c: lookup_cand (idx: c->sibling));
2851
2852 if (c->dependent)
2853 record_increments (c: lookup_cand (idx: c->dependent));
2854}
2855
2856/* Recursive helper function for phi_incr_cost. */
2857
2858static int
2859phi_incr_cost_1 (slsr_cand_t c, const offset_int &incr, gimple *phi,
2860 int *savings)
2861{
2862 unsigned i;
2863 int cost = 0;
2864 slsr_cand_t basis = lookup_cand (idx: c->basis);
2865 slsr_cand_t phi_cand = *stmt_cand_map->get (k: phi);
2866
2867 if (phi_cand->visited)
2868 return 0;
2869 phi_cand->visited = 1;
2870
2871 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
2872 {
2873 tree arg = gimple_phi_arg_def (gs: phi, index: i);
2874 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
2875
2876 if (gimple_code (g: arg_def) == GIMPLE_PHI)
2877 {
2878 int feeding_savings = 0;
2879 tree feeding_var = gimple_phi_result (gs: arg_def);
2880 cost += phi_incr_cost_1 (c, incr, phi: arg_def, savings: &feeding_savings);
2881 if (uses_consumed_by_stmt (name: feeding_var, stmt: phi))
2882 *savings += feeding_savings;
2883 }
2884 else
2885 {
2886 offset_int diff;
2887 slsr_cand_t arg_cand;
2888
2889 /* When the PHI argument is just a pass-through to the base
2890 expression of the hidden basis, the difference is zero minus
2891 the index of the basis. There is no potential savings by
2892 eliminating a statement in this case. */
2893 if (operand_equal_p (arg, phi_cand->base_expr, flags: 0))
2894 {
2895 arg_cand = (slsr_cand_t)NULL;
2896 diff = -basis->index;
2897 }
2898 else
2899 {
2900 arg_cand = base_cand_from_table (base_in: arg);
2901 diff = arg_cand->index - basis->index;
2902 }
2903
2904 if (incr == diff)
2905 {
2906 tree basis_lhs = gimple_assign_lhs (gs: basis->cand_stmt);
2907 cost += add_cost (speed: true, TYPE_MODE (TREE_TYPE (basis_lhs)));
2908 if (arg_cand)
2909 {
2910 tree lhs = gimple_assign_lhs (gs: arg_cand->cand_stmt);
2911 if (uses_consumed_by_stmt (name: lhs, stmt: phi))
2912 *savings += stmt_cost (gs: arg_cand->cand_stmt, speed: true);
2913 }
2914 }
2915 }
2916 }
2917
2918 return cost;
2919}
2920
2921/* Add up and return the costs of introducing add statements that
2922 require the increment INCR on behalf of candidate C and phi
2923 statement PHI. Accumulate into *SAVINGS the potential savings
2924 from removing existing statements that feed PHI and have no other
2925 uses. */
2926
2927static int
2928phi_incr_cost (slsr_cand_t c, const offset_int &incr, gimple *phi,
2929 int *savings)
2930{
2931 int retval = phi_incr_cost_1 (c, incr, phi, savings);
2932 clear_visited (phi: as_a <gphi *> (p: phi));
2933 return retval;
2934}
2935
2936/* Return the first candidate in the tree rooted at C that has not
2937 already been replaced, favoring siblings over dependents. */
2938
2939static slsr_cand_t
2940unreplaced_cand_in_tree (slsr_cand_t c)
2941{
2942 if (!cand_already_replaced (c))
2943 return c;
2944
2945 if (c->sibling)
2946 {
2947 slsr_cand_t sib = unreplaced_cand_in_tree (c: lookup_cand (idx: c->sibling));
2948 if (sib)
2949 return sib;
2950 }
2951
2952 if (c->dependent)
2953 {
2954 slsr_cand_t dep = unreplaced_cand_in_tree (c: lookup_cand (idx: c->dependent));
2955 if (dep)
2956 return dep;
2957 }
2958
2959 return NULL;
2960}
2961
2962/* Return TRUE if the candidates in the tree rooted at C should be
2963 optimized for speed, else FALSE. We estimate this based on the block
2964 containing the most dominant candidate in the tree that has not yet
2965 been replaced. */
2966
2967static bool
2968optimize_cands_for_speed_p (slsr_cand_t c)
2969{
2970 slsr_cand_t c2 = unreplaced_cand_in_tree (c);
2971 gcc_assert (c2);
2972 return optimize_bb_for_speed_p (gimple_bb (g: c2->cand_stmt));
2973}
2974
2975/* Add COST_IN to the lowest cost of any dependent path starting at
2976 candidate C or any of its siblings, counting only candidates along
2977 such paths with increment INCR. Assume that replacing a candidate
2978 reduces cost by REPL_SAVINGS. Also account for savings from any
2979 statements that would go dead. If COUNT_PHIS is true, include
2980 costs of introducing feeding statements for conditional candidates. */
2981
2982static int
2983lowest_cost_path (int cost_in, int repl_savings, slsr_cand_t c,
2984 const offset_int &incr, bool count_phis)
2985{
2986 int local_cost, sib_cost, savings = 0;
2987 offset_int cand_incr = cand_abs_increment (c);
2988
2989 if (cand_already_replaced (c))
2990 local_cost = cost_in;
2991 else if (incr == cand_incr)
2992 local_cost = cost_in - repl_savings - c->dead_savings;
2993 else
2994 local_cost = cost_in - c->dead_savings;
2995
2996 if (count_phis
2997 && phi_dependent_cand_p (c)
2998 && !cand_already_replaced (c))
2999 {
3000 gimple *phi = lookup_cand (idx: c->def_phi)->cand_stmt;
3001 local_cost += phi_incr_cost (c, incr, phi, savings: &savings);
3002
3003 if (uses_consumed_by_stmt (name: gimple_phi_result (gs: phi), stmt: c->cand_stmt))
3004 local_cost -= savings;
3005 }
3006
3007 if (c->dependent)
3008 local_cost = lowest_cost_path (cost_in: local_cost, repl_savings,
3009 c: lookup_cand (idx: c->dependent), incr,
3010 count_phis);
3011
3012 if (c->sibling)
3013 {
3014 sib_cost = lowest_cost_path (cost_in, repl_savings,
3015 c: lookup_cand (idx: c->sibling), incr,
3016 count_phis);
3017 local_cost = MIN (local_cost, sib_cost);
3018 }
3019
3020 return local_cost;
3021}
3022
3023/* Compute the total savings that would accrue from all replacements
3024 in the candidate tree rooted at C, counting only candidates with
3025 increment INCR. Assume that replacing a candidate reduces cost
3026 by REPL_SAVINGS. Also account for savings from statements that
3027 would go dead. */
3028
3029static int
3030total_savings (int repl_savings, slsr_cand_t c, const offset_int &incr,
3031 bool count_phis)
3032{
3033 int savings = 0;
3034 offset_int cand_incr = cand_abs_increment (c);
3035
3036 if (incr == cand_incr && !cand_already_replaced (c))
3037 savings += repl_savings + c->dead_savings;
3038
3039 if (count_phis
3040 && phi_dependent_cand_p (c)
3041 && !cand_already_replaced (c))
3042 {
3043 int phi_savings = 0;
3044 gimple *phi = lookup_cand (idx: c->def_phi)->cand_stmt;
3045 savings -= phi_incr_cost (c, incr, phi, savings: &phi_savings);
3046
3047 if (uses_consumed_by_stmt (name: gimple_phi_result (gs: phi), stmt: c->cand_stmt))
3048 savings += phi_savings;
3049 }
3050
3051 if (c->dependent)
3052 savings += total_savings (repl_savings, c: lookup_cand (idx: c->dependent), incr,
3053 count_phis);
3054
3055 if (c->sibling)
3056 savings += total_savings (repl_savings, c: lookup_cand (idx: c->sibling), incr,
3057 count_phis);
3058
3059 return savings;
3060}
3061
3062/* Use target-specific costs to determine and record which increments
3063 in the current candidate tree are profitable to replace, assuming
3064 MODE and SPEED. FIRST_DEP is the first dependent of the root of
3065 the candidate tree.
3066
3067 One slight limitation here is that we don't account for the possible
3068 introduction of casts in some cases. See replace_one_candidate for
3069 the cases where these are introduced. This should probably be cleaned
3070 up sometime. */
3071
3072static void
3073analyze_increments (slsr_cand_t first_dep, machine_mode mode, bool speed)
3074{
3075 unsigned i;
3076
3077 for (i = 0; i < incr_vec_len; i++)
3078 {
3079 HOST_WIDE_INT incr = incr_vec[i].incr.to_shwi ();
3080
3081 /* If somehow this increment is bigger than a HWI, we won't
3082 be optimizing candidates that use it. And if the increment
3083 has a count of zero, nothing will be done with it. */
3084 if (!wi::fits_shwi_p (x: incr_vec[i].incr) || !incr_vec[i].count)
3085 incr_vec[i].cost = COST_INFINITE;
3086
3087 /* Increments of 0, 1, and -1 are always profitable to replace,
3088 because they always replace a multiply or add with an add or
3089 copy, and may cause one or more existing instructions to go
3090 dead. Exception: -1 can't be assumed to be profitable for
3091 pointer addition. */
3092 else if (incr == 0
3093 || incr == 1
3094 || (incr == -1
3095 && !POINTER_TYPE_P (first_dep->cand_type)))
3096 incr_vec[i].cost = COST_NEUTRAL;
3097
3098 /* If we need to add an initializer, give up if a cast from the
3099 candidate's type to its stride's type can lose precision.
3100 Note that this already takes into account that the stride may
3101 have been cast to a wider type, in which case this test won't
3102 fire. Example:
3103
3104 short int _1;
3105 _2 = (int) _1;
3106 _3 = _2 * 10;
3107 _4 = x + _3; ADD: x + (10 * (int)_1) : int
3108 _5 = _2 * 15;
3109 _6 = x + _5; ADD: x + (15 * (int)_1) : int
3110
3111 Although the stride was a short int initially, the stride
3112 used in the analysis has been widened to an int, and such
3113 widening will be done in the initializer as well. */
3114 else if (!incr_vec[i].initializer
3115 && TREE_CODE (first_dep->stride) != INTEGER_CST
3116 && !legal_cast_p_1 (lhs_type: first_dep->stride_type,
3117 TREE_TYPE (gimple_assign_lhs
3118 (first_dep->cand_stmt))))
3119 incr_vec[i].cost = COST_INFINITE;
3120
3121 /* If we need to add an initializer, make sure we don't introduce
3122 a multiply by a pointer type, which can happen in certain cast
3123 scenarios. */
3124 else if (!incr_vec[i].initializer
3125 && TREE_CODE (first_dep->stride) != INTEGER_CST
3126 && POINTER_TYPE_P (first_dep->stride_type))
3127 incr_vec[i].cost = COST_INFINITE;
3128
3129 /* For any other increment, if this is a multiply candidate, we
3130 must introduce a temporary T and initialize it with
3131 T_0 = stride * increment. When optimizing for speed, walk the
3132 candidate tree to calculate the best cost reduction along any
3133 path; if it offsets the fixed cost of inserting the initializer,
3134 replacing the increment is profitable. When optimizing for
3135 size, instead calculate the total cost reduction from replacing
3136 all candidates with this increment. */
3137 else if (first_dep->kind == CAND_MULT)
3138 {
3139 int cost = mult_by_coeff_cost (incr, mode, speed);
3140 int repl_savings;
3141
3142 if (tree_fits_shwi_p (first_dep->stride))
3143 {
3144 HOST_WIDE_INT hwi_stride = tree_to_shwi (first_dep->stride);
3145 repl_savings = mult_by_coeff_cost (hwi_stride, mode, speed);
3146 }
3147 else
3148 repl_savings = mul_cost (speed, mode);
3149 repl_savings -= add_cost (speed, mode);
3150
3151 if (speed)
3152 cost = lowest_cost_path (cost_in: cost, repl_savings, c: first_dep,
3153 incr: incr_vec[i].incr, count_phis: COUNT_PHIS);
3154 else
3155 cost -= total_savings (repl_savings, c: first_dep, incr: incr_vec[i].incr,
3156 count_phis: COUNT_PHIS);
3157
3158 incr_vec[i].cost = cost;
3159 }
3160
3161 /* If this is an add candidate, the initializer may already
3162 exist, so only calculate the cost of the initializer if it
3163 doesn't. We are replacing one add with another here, so the
3164 known replacement savings is zero. We will account for removal
3165 of dead instructions in lowest_cost_path or total_savings. */
3166 else
3167 {
3168 int cost = 0;
3169 if (!incr_vec[i].initializer)
3170 cost = mult_by_coeff_cost (incr, mode, speed);
3171
3172 if (speed)
3173 cost = lowest_cost_path (cost_in: cost, repl_savings: 0, c: first_dep, incr: incr_vec[i].incr,
3174 count_phis: DONT_COUNT_PHIS);
3175 else
3176 cost -= total_savings (repl_savings: 0, c: first_dep, incr: incr_vec[i].incr,
3177 count_phis: DONT_COUNT_PHIS);
3178
3179 incr_vec[i].cost = cost;
3180 }
3181 }
3182}
3183
3184/* Return the nearest common dominator of BB1 and BB2. If the blocks
3185 are identical, return the earlier of C1 and C2 in *WHERE. Otherwise,
3186 if the NCD matches BB1, return C1 in *WHERE; if the NCD matches BB2,
3187 return C2 in *WHERE; and if the NCD matches neither, return NULL in
3188 *WHERE. Note: It is possible for one of C1 and C2 to be NULL. */
3189
3190static basic_block
3191ncd_for_two_cands (basic_block bb1, basic_block bb2,
3192 slsr_cand_t c1, slsr_cand_t c2, slsr_cand_t *where)
3193{
3194 basic_block ncd;
3195
3196 if (!bb1)
3197 {
3198 *where = c2;
3199 return bb2;
3200 }
3201
3202 if (!bb2)
3203 {
3204 *where = c1;
3205 return bb1;
3206 }
3207
3208 ncd = nearest_common_dominator (CDI_DOMINATORS, bb1, bb2);
3209
3210 /* If both candidates are in the same block, the earlier
3211 candidate wins. */
3212 if (bb1 == ncd && bb2 == ncd)
3213 {
3214 if (!c1 || (c2 && c2->cand_num < c1->cand_num))
3215 *where = c2;
3216 else
3217 *where = c1;
3218 }
3219
3220 /* Otherwise, if one of them produced a candidate in the
3221 dominator, that one wins. */
3222 else if (bb1 == ncd)
3223 *where = c1;
3224
3225 else if (bb2 == ncd)
3226 *where = c2;
3227
3228 /* If neither matches the dominator, neither wins. */
3229 else
3230 *where = NULL;
3231
3232 return ncd;
3233}
3234
3235/* Consider all candidates that feed PHI. Find the nearest common
3236 dominator of those candidates requiring the given increment INCR.
3237 Further find and return the nearest common dominator of this result
3238 with block NCD. If the returned block contains one or more of the
3239 candidates, return the earliest candidate in the block in *WHERE. */
3240
3241static basic_block
3242ncd_with_phi (slsr_cand_t c, const offset_int &incr, gphi *phi,
3243 basic_block ncd, slsr_cand_t *where)
3244{
3245 unsigned i;
3246 slsr_cand_t basis = lookup_cand (idx: c->basis);
3247 slsr_cand_t phi_cand = *stmt_cand_map->get (k: phi);
3248
3249 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
3250 {
3251 tree arg = gimple_phi_arg_def (gs: phi, index: i);
3252 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
3253
3254 if (gimple_code (g: arg_def) == GIMPLE_PHI)
3255 ncd = ncd_with_phi (c, incr, phi: as_a <gphi *> (p: arg_def), ncd, where);
3256 else
3257 {
3258 offset_int diff;
3259
3260 if (operand_equal_p (arg, phi_cand->base_expr, flags: 0))
3261 diff = -basis->index;
3262 else
3263 {
3264 slsr_cand_t arg_cand = base_cand_from_table (base_in: arg);
3265 diff = arg_cand->index - basis->index;
3266 }
3267
3268 basic_block pred = gimple_phi_arg_edge (phi, i)->src;
3269
3270 if ((incr == diff) || (!address_arithmetic_p && incr == -diff))
3271 ncd = ncd_for_two_cands (bb1: ncd, bb2: pred, c1: *where, NULL, where);
3272 }
3273 }
3274
3275 return ncd;
3276}
3277
3278/* Consider the candidate C together with any candidates that feed
3279 C's phi dependence (if any). Find and return the nearest common
3280 dominator of those candidates requiring the given increment INCR.
3281 If the returned block contains one or more of the candidates,
3282 return the earliest candidate in the block in *WHERE. */
3283
3284static basic_block
3285ncd_of_cand_and_phis (slsr_cand_t c, const offset_int &incr, slsr_cand_t *where)
3286{
3287 basic_block ncd = NULL;
3288
3289 if (cand_abs_increment (c) == incr)
3290 {
3291 ncd = gimple_bb (g: c->cand_stmt);
3292 *where = c;
3293 }
3294
3295 if (phi_dependent_cand_p (c))
3296 ncd = ncd_with_phi (c, incr,
3297 phi: as_a <gphi *> (p: lookup_cand (idx: c->def_phi)->cand_stmt),
3298 ncd, where);
3299
3300 return ncd;
3301}
3302
3303/* Consider all candidates in the tree rooted at C for which INCR
3304 represents the required increment of C relative to its basis.
3305 Find and return the basic block that most nearly dominates all
3306 such candidates. If the returned block contains one or more of
3307 the candidates, return the earliest candidate in the block in
3308 *WHERE. */
3309
3310static basic_block
3311nearest_common_dominator_for_cands (slsr_cand_t c, const offset_int &incr,
3312 slsr_cand_t *where)
3313{
3314 basic_block sib_ncd = NULL, dep_ncd = NULL, this_ncd = NULL, ncd;
3315 slsr_cand_t sib_where = NULL, dep_where = NULL, this_where = NULL, new_where;
3316
3317 /* First find the NCD of all siblings and dependents. */
3318 if (c->sibling)
3319 sib_ncd = nearest_common_dominator_for_cands (c: lookup_cand (idx: c->sibling),
3320 incr, where: &sib_where);
3321 if (c->dependent)
3322 dep_ncd = nearest_common_dominator_for_cands (c: lookup_cand (idx: c->dependent),
3323 incr, where: &dep_where);
3324 if (!sib_ncd && !dep_ncd)
3325 {
3326 new_where = NULL;
3327 ncd = NULL;
3328 }
3329 else if (sib_ncd && !dep_ncd)
3330 {
3331 new_where = sib_where;
3332 ncd = sib_ncd;
3333 }
3334 else if (dep_ncd && !sib_ncd)
3335 {
3336 new_where = dep_where;
3337 ncd = dep_ncd;
3338 }
3339 else
3340 ncd = ncd_for_two_cands (bb1: sib_ncd, bb2: dep_ncd, c1: sib_where,
3341 c2: dep_where, where: &new_where);
3342
3343 /* If the candidate's increment doesn't match the one we're interested
3344 in (and nor do any increments for feeding defs of a phi-dependence),
3345 then the result depends only on siblings and dependents. */
3346 this_ncd = ncd_of_cand_and_phis (c, incr, where: &this_where);
3347
3348 if (!this_ncd || cand_already_replaced (c))
3349 {
3350 *where = new_where;
3351 return ncd;
3352 }
3353
3354 /* Otherwise, compare this candidate with the result from all siblings
3355 and dependents. */
3356 ncd = ncd_for_two_cands (bb1: ncd, bb2: this_ncd, c1: new_where, c2: this_where, where);
3357
3358 return ncd;
3359}
3360
3361/* Return TRUE if the increment indexed by INDEX is profitable to replace. */
3362
3363static inline bool
3364profitable_increment_p (unsigned index)
3365{
3366 return (incr_vec[index].cost <= COST_NEUTRAL);
3367}
3368
3369/* For each profitable increment in the increment vector not equal to
3370 0 or 1 (or -1, for non-pointer arithmetic), find the nearest common
3371 dominator of all statements in the candidate chain rooted at C
3372 that require that increment, and insert an initializer
3373 T_0 = stride * increment at that location. Record T_0 with the
3374 increment record. */
3375
3376static void
3377insert_initializers (slsr_cand_t c)
3378{
3379 unsigned i;
3380
3381 for (i = 0; i < incr_vec_len; i++)
3382 {
3383 basic_block bb;
3384 slsr_cand_t where = NULL;
3385 gassign *init_stmt;
3386 gassign *cast_stmt = NULL;
3387 tree new_name, incr_tree, init_stride;
3388 offset_int incr = incr_vec[i].incr;
3389
3390 if (!profitable_increment_p (index: i)
3391 || incr == 1
3392 || (incr == -1
3393 && (!POINTER_TYPE_P (lookup_cand (c->basis)->cand_type)))
3394 || incr == 0)
3395 continue;
3396
3397 /* We may have already identified an existing initializer that
3398 will suffice. */
3399 if (incr_vec[i].initializer)
3400 {
3401 if (dump_file && (dump_flags & TDF_DETAILS))
3402 {
3403 fputs (s: "Using existing initializer: ", stream: dump_file);
3404 print_gimple_stmt (dump_file,
3405 SSA_NAME_DEF_STMT (incr_vec[i].initializer),
3406 0, TDF_NONE);
3407 }
3408 continue;
3409 }
3410
3411 /* Find the block that most closely dominates all candidates
3412 with this increment. If there is at least one candidate in
3413 that block, the earliest one will be returned in WHERE. */
3414 bb = nearest_common_dominator_for_cands (c, incr, where: &where);
3415
3416 /* If the NCD is not dominated by the block containing the
3417 definition of the stride, we can't legally insert a
3418 single initializer. Mark the increment as unprofitable
3419 so we don't make any replacements. FIXME: Multiple
3420 initializers could be placed with more analysis. */
3421 gimple *stride_def = SSA_NAME_DEF_STMT (c->stride);
3422 basic_block stride_bb = gimple_bb (g: stride_def);
3423
3424 if (stride_bb && !dominated_by_p (CDI_DOMINATORS, bb, stride_bb))
3425 {
3426 if (dump_file && (dump_flags & TDF_DETAILS))
3427 fprintf (stream: dump_file,
3428 format: "Initializer #%d cannot be legally placed\n", i);
3429 incr_vec[i].cost = COST_INFINITE;
3430 continue;
3431 }
3432
3433 /* If the nominal stride has a different type than the recorded
3434 stride type, build a cast from the nominal stride to that type. */
3435 if (!types_compatible_p (TREE_TYPE (c->stride), type2: c->stride_type))
3436 {
3437 init_stride = make_temp_ssa_name (type: c->stride_type, NULL, name: "slsr");
3438 cast_stmt = gimple_build_assign (init_stride, NOP_EXPR, c->stride);
3439 }
3440 else
3441 init_stride = c->stride;
3442
3443 /* Create a new SSA name to hold the initializer's value. */
3444 new_name = make_temp_ssa_name (type: c->stride_type, NULL, name: "slsr");
3445 incr_vec[i].initializer = new_name;
3446
3447 /* Create the initializer and insert it in the latest possible
3448 dominating position. */
3449 incr_tree = wide_int_to_tree (type: c->stride_type, cst: incr);
3450 init_stmt = gimple_build_assign (new_name, MULT_EXPR,
3451 init_stride, incr_tree);
3452 if (where)
3453 {
3454 gimple_stmt_iterator gsi = gsi_for_stmt (where->cand_stmt);
3455 location_t loc = gimple_location (g: where->cand_stmt);
3456
3457 if (cast_stmt)
3458 {
3459 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3460 gimple_set_location (g: cast_stmt, location: loc);
3461 }
3462
3463 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3464 gimple_set_location (g: init_stmt, location: loc);
3465 }
3466 else
3467 {
3468 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3469 gimple *basis_stmt = lookup_cand (idx: c->basis)->cand_stmt;
3470 location_t loc = gimple_location (g: basis_stmt);
3471
3472 if (!gsi_end_p (i: gsi) && stmt_ends_bb_p (gsi_stmt (i: gsi)))
3473 {
3474 if (cast_stmt)
3475 {
3476 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3477 gimple_set_location (g: cast_stmt, location: loc);
3478 }
3479 gsi_insert_before (&gsi, init_stmt, GSI_SAME_STMT);
3480 }
3481 else
3482 {
3483 if (cast_stmt)
3484 {
3485 gsi_insert_after (&gsi, cast_stmt, GSI_NEW_STMT);
3486 gimple_set_location (g: cast_stmt, location: loc);
3487 }
3488 gsi_insert_after (&gsi, init_stmt, GSI_NEW_STMT);
3489 }
3490
3491 gimple_set_location (g: init_stmt, location: gimple_location (g: basis_stmt));
3492 }
3493
3494 if (dump_file && (dump_flags & TDF_DETAILS))
3495 {
3496 if (cast_stmt)
3497 {
3498 fputs (s: "Inserting stride cast: ", stream: dump_file);
3499 print_gimple_stmt (dump_file, cast_stmt, 0);
3500 }
3501 fputs (s: "Inserting initializer: ", stream: dump_file);
3502 print_gimple_stmt (dump_file, init_stmt, 0);
3503 }
3504 }
3505}
3506
3507/* Recursive helper function for all_phi_incrs_profitable. */
3508
3509static bool
3510all_phi_incrs_profitable_1 (slsr_cand_t c, gphi *phi, int *spread)
3511{
3512 unsigned i;
3513 slsr_cand_t basis = lookup_cand (idx: c->basis);
3514 slsr_cand_t phi_cand = *stmt_cand_map->get (k: phi);
3515
3516 if (phi_cand->visited)
3517 return true;
3518
3519 phi_cand->visited = 1;
3520 (*spread)++;
3521
3522 /* If the basis doesn't dominate the PHI (including when the PHI is
3523 in the same block as the basis), we won't be able to create a PHI
3524 using the basis here. */
3525 basic_block basis_bb = gimple_bb (g: basis->cand_stmt);
3526 basic_block phi_bb = gimple_bb (g: phi);
3527
3528 if (phi_bb == basis_bb
3529 || !dominated_by_p (CDI_DOMINATORS, phi_bb, basis_bb))
3530 return false;
3531
3532 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
3533 {
3534 /* If the PHI arg resides in a block not dominated by the basis,
3535 we won't be able to create a PHI using the basis here. */
3536 basic_block pred_bb = gimple_phi_arg_edge (phi, i)->src;
3537
3538 if (!dominated_by_p (CDI_DOMINATORS, pred_bb, basis_bb))
3539 return false;
3540
3541 tree arg = gimple_phi_arg_def (gs: phi, index: i);
3542 gimple *arg_def = SSA_NAME_DEF_STMT (arg);
3543
3544 if (gimple_code (g: arg_def) == GIMPLE_PHI)
3545 {
3546 if (!all_phi_incrs_profitable_1 (c, phi: as_a <gphi *> (p: arg_def), spread)
3547 || *spread > MAX_SPREAD)
3548 return false;
3549 }
3550 else
3551 {
3552 int j;
3553 offset_int increment;
3554
3555 if (operand_equal_p (arg, phi_cand->base_expr, flags: 0))
3556 increment = -basis->index;
3557 else
3558 {
3559 slsr_cand_t arg_cand = base_cand_from_table (base_in: arg);
3560 increment = arg_cand->index - basis->index;
3561 }
3562
3563 if (!address_arithmetic_p && wi::neg_p (x: increment))
3564 increment = -increment;
3565
3566 j = incr_vec_index (increment);
3567
3568 if (dump_file && (dump_flags & TDF_DETAILS))
3569 {
3570 fprintf (stream: dump_file, format: " Conditional candidate %d, phi: ",
3571 c->cand_num);
3572 print_gimple_stmt (dump_file, phi, 0);
3573 fputs (s: " increment: ", stream: dump_file);
3574 print_decs (wi: increment, file: dump_file);
3575 if (j < 0)
3576 fprintf (stream: dump_file,
3577 format: "\n Not replaced; incr_vec overflow.\n");
3578 else {
3579 fprintf (stream: dump_file, format: "\n cost: %d\n", incr_vec[j].cost);
3580 if (profitable_increment_p (index: j))
3581 fputs (s: " Replacing...\n", stream: dump_file);
3582 else
3583 fputs (s: " Not replaced.\n", stream: dump_file);
3584 }
3585 }
3586
3587 if (j < 0 || !profitable_increment_p (index: j))
3588 return false;
3589 }
3590 }
3591
3592 return true;
3593}
3594
3595/* Return TRUE iff all required increments for candidates feeding PHI
3596 are profitable (and legal!) to replace on behalf of candidate C. */
3597
3598static bool
3599all_phi_incrs_profitable (slsr_cand_t c, gphi *phi)
3600{
3601 int spread = 0;
3602 bool retval = all_phi_incrs_profitable_1 (c, phi, spread: &spread);
3603 clear_visited (phi);
3604 return retval;
3605}
3606
3607/* Create a NOP_EXPR that copies FROM_EXPR into a new SSA name of
3608 type TO_TYPE, and insert it in front of the statement represented
3609 by candidate C. Use *NEW_VAR to create the new SSA name. Return
3610 the new SSA name. */
3611
3612static tree
3613introduce_cast_before_cand (slsr_cand_t c, tree to_type, tree from_expr)
3614{
3615 tree cast_lhs;
3616 gassign *cast_stmt;
3617 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3618
3619 cast_lhs = make_temp_ssa_name (type: to_type, NULL, name: "slsr");
3620 cast_stmt = gimple_build_assign (cast_lhs, NOP_EXPR, from_expr);
3621 gimple_set_location (g: cast_stmt, location: gimple_location (g: c->cand_stmt));
3622 gsi_insert_before (&gsi, cast_stmt, GSI_SAME_STMT);
3623
3624 if (dump_file && (dump_flags & TDF_DETAILS))
3625 {
3626 fputs (s: " Inserting: ", stream: dump_file);
3627 print_gimple_stmt (dump_file, cast_stmt, 0);
3628 }
3629
3630 return cast_lhs;
3631}
3632
3633/* Replace the RHS of the statement represented by candidate C with
3634 NEW_CODE, NEW_RHS1, and NEW_RHS2, provided that to do so doesn't
3635 leave C unchanged or just interchange its operands. The original
3636 operation and operands are in OLD_CODE, OLD_RHS1, and OLD_RHS2.
3637 If the replacement was made and we are doing a details dump,
3638 return the revised statement, else NULL. */
3639
3640static gimple *
3641replace_rhs_if_not_dup (enum tree_code new_code, tree new_rhs1, tree new_rhs2,
3642 enum tree_code old_code, tree old_rhs1, tree old_rhs2,
3643 slsr_cand_t c)
3644{
3645 if (new_code != old_code
3646 || ((!operand_equal_p (new_rhs1, old_rhs1, flags: 0)
3647 || !operand_equal_p (new_rhs2, old_rhs2, flags: 0))
3648 && (!operand_equal_p (new_rhs1, old_rhs2, flags: 0)
3649 || !operand_equal_p (new_rhs2, old_rhs1, flags: 0))))
3650 {
3651 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3652 slsr_cand_t cc = lookup_cand (idx: c->first_interp);
3653 gimple_assign_set_rhs_with_ops (gsi: &gsi, code: new_code, op1: new_rhs1, op2: new_rhs2);
3654 update_stmt (s: gsi_stmt (i: gsi));
3655 while (cc)
3656 {
3657 cc->cand_stmt = gsi_stmt (i: gsi);
3658 cc = lookup_cand (idx: cc->next_interp);
3659 }
3660
3661 if (dump_file && (dump_flags & TDF_DETAILS))
3662 return gsi_stmt (i: gsi);
3663 }
3664
3665 else if (dump_file && (dump_flags & TDF_DETAILS))
3666 fputs (s: " (duplicate, not actually replacing)\n", stream: dump_file);
3667
3668 return NULL;
3669}
3670
3671/* Strength-reduce the statement represented by candidate C by replacing
3672 it with an equivalent addition or subtraction. I is the index into
3673 the increment vector identifying C's increment. NEW_VAR is used to
3674 create a new SSA name if a cast needs to be introduced. BASIS_NAME
3675 is the rhs1 to use in creating the add/subtract. */
3676
3677static void
3678replace_one_candidate (slsr_cand_t c, unsigned i, tree basis_name)
3679{
3680 gimple *stmt_to_print = NULL;
3681 tree orig_rhs1, orig_rhs2;
3682 tree rhs2;
3683 enum tree_code orig_code, repl_code;
3684 offset_int cand_incr;
3685
3686 orig_code = gimple_assign_rhs_code (gs: c->cand_stmt);
3687 orig_rhs1 = gimple_assign_rhs1 (gs: c->cand_stmt);
3688 orig_rhs2 = gimple_assign_rhs2 (gs: c->cand_stmt);
3689 cand_incr = cand_increment (c);
3690
3691 /* If orig_rhs2 is NULL, we have already replaced this in situ with
3692 a copy statement under another interpretation. */
3693 if (!orig_rhs2)
3694 return;
3695
3696 if (dump_file && (dump_flags & TDF_DETAILS))
3697 {
3698 fputs (s: "Replacing: ", stream: dump_file);
3699 print_gimple_stmt (dump_file, c->cand_stmt, 0);
3700 stmt_to_print = c->cand_stmt;
3701 }
3702
3703 if (address_arithmetic_p)
3704 repl_code = POINTER_PLUS_EXPR;
3705 else
3706 repl_code = PLUS_EXPR;
3707
3708 /* If the increment has an initializer T_0, replace the candidate
3709 statement with an add of the basis name and the initializer. */
3710 if (incr_vec[i].initializer)
3711 {
3712 tree init_type = TREE_TYPE (incr_vec[i].initializer);
3713 tree orig_type = TREE_TYPE (orig_rhs2);
3714
3715 if (types_compatible_p (type1: orig_type, type2: init_type))
3716 rhs2 = incr_vec[i].initializer;
3717 else
3718 rhs2 = introduce_cast_before_cand (c, to_type: orig_type,
3719 from_expr: incr_vec[i].initializer);
3720
3721 if (incr_vec[i].incr != cand_incr)
3722 {
3723 gcc_assert (repl_code == PLUS_EXPR);
3724 repl_code = MINUS_EXPR;
3725 }
3726
3727 stmt_to_print = replace_rhs_if_not_dup (new_code: repl_code, new_rhs1: basis_name, new_rhs2: rhs2,
3728 old_code: orig_code, old_rhs1: orig_rhs1, old_rhs2: orig_rhs2,
3729 c);
3730 }
3731
3732 /* Otherwise, the increment is one of -1, 0, and 1. Replace
3733 with a subtract of the stride from the basis name, a copy
3734 from the basis name, or an add of the stride to the basis
3735 name, respectively. It may be necessary to introduce a
3736 cast (or reuse an existing cast). */
3737 else if (cand_incr == 1)
3738 {
3739 tree stride_type = TREE_TYPE (c->stride);
3740 tree orig_type = TREE_TYPE (orig_rhs2);
3741
3742 if (types_compatible_p (type1: orig_type, type2: stride_type))
3743 rhs2 = c->stride;
3744 else
3745 rhs2 = introduce_cast_before_cand (c, to_type: orig_type, from_expr: c->stride);
3746
3747 stmt_to_print = replace_rhs_if_not_dup (new_code: repl_code, new_rhs1: basis_name, new_rhs2: rhs2,
3748 old_code: orig_code, old_rhs1: orig_rhs1, old_rhs2: orig_rhs2,
3749 c);
3750 }
3751
3752 else if (cand_incr == -1)
3753 {
3754 tree stride_type = TREE_TYPE (c->stride);
3755 tree orig_type = TREE_TYPE (orig_rhs2);
3756 gcc_assert (repl_code != POINTER_PLUS_EXPR);
3757
3758 if (types_compatible_p (type1: orig_type, type2: stride_type))
3759 rhs2 = c->stride;
3760 else
3761 rhs2 = introduce_cast_before_cand (c, to_type: orig_type, from_expr: c->stride);
3762
3763 if (orig_code != MINUS_EXPR
3764 || !operand_equal_p (basis_name, orig_rhs1, flags: 0)
3765 || !operand_equal_p (rhs2, orig_rhs2, flags: 0))
3766 {
3767 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3768 slsr_cand_t cc = lookup_cand (idx: c->first_interp);
3769 gimple_assign_set_rhs_with_ops (gsi: &gsi, code: MINUS_EXPR, op1: basis_name, op2: rhs2);
3770 update_stmt (s: gsi_stmt (i: gsi));
3771 while (cc)
3772 {
3773 cc->cand_stmt = gsi_stmt (i: gsi);
3774 cc = lookup_cand (idx: cc->next_interp);
3775 }
3776
3777 if (dump_file && (dump_flags & TDF_DETAILS))
3778 stmt_to_print = gsi_stmt (i: gsi);
3779 }
3780 else if (dump_file && (dump_flags & TDF_DETAILS))
3781 fputs (s: " (duplicate, not actually replacing)\n", stream: dump_file);
3782 }
3783
3784 else if (cand_incr == 0)
3785 {
3786 tree lhs = gimple_assign_lhs (gs: c->cand_stmt);
3787 tree lhs_type = TREE_TYPE (lhs);
3788 tree basis_type = TREE_TYPE (basis_name);
3789
3790 if (types_compatible_p (type1: lhs_type, type2: basis_type))
3791 {
3792 gassign *copy_stmt = gimple_build_assign (lhs, basis_name);
3793 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3794 slsr_cand_t cc = lookup_cand (idx: c->first_interp);
3795 gimple_set_location (g: copy_stmt, location: gimple_location (g: c->cand_stmt));
3796 gsi_replace (&gsi, copy_stmt, false);
3797 while (cc)
3798 {
3799 cc->cand_stmt = copy_stmt;
3800 cc = lookup_cand (idx: cc->next_interp);
3801 }
3802
3803 if (dump_file && (dump_flags & TDF_DETAILS))
3804 stmt_to_print = copy_stmt;
3805 }
3806 else
3807 {
3808 gimple_stmt_iterator gsi = gsi_for_stmt (c->cand_stmt);
3809 gassign *cast_stmt = gimple_build_assign (lhs, NOP_EXPR, basis_name);
3810 slsr_cand_t cc = lookup_cand (idx: c->first_interp);
3811 gimple_set_location (g: cast_stmt, location: gimple_location (g: c->cand_stmt));
3812 gsi_replace (&gsi, cast_stmt, false);
3813 while (cc)
3814 {
3815 cc->cand_stmt = cast_stmt;
3816 cc = lookup_cand (idx: cc->next_interp);
3817 }
3818
3819 if (dump_file && (dump_flags & TDF_DETAILS))
3820 stmt_to_print = cast_stmt;
3821 }
3822 }
3823 else
3824 gcc_unreachable ();
3825
3826 if (dump_file && (dump_flags & TDF_DETAILS) && stmt_to_print)
3827 {
3828 fputs (s: "With: ", stream: dump_file);
3829 print_gimple_stmt (dump_file, stmt_to_print, 0);
3830 fputs (s: "\n", stream: dump_file);
3831 }
3832}
3833
3834/* For each candidate in the tree rooted at C, replace it with
3835 an increment if such has been shown to be profitable. */
3836
3837static void
3838replace_profitable_candidates (slsr_cand_t c)
3839{
3840 if (!cand_already_replaced (c))
3841 {
3842 offset_int increment = cand_abs_increment (c);
3843 enum tree_code orig_code = gimple_assign_rhs_code (gs: c->cand_stmt);
3844 int i;
3845
3846 i = incr_vec_index (increment);
3847
3848 /* Only process profitable increments. Nothing useful can be done
3849 to a cast or copy. */
3850 if (i >= 0
3851 && profitable_increment_p (index: i)
3852 && orig_code != SSA_NAME
3853 && !CONVERT_EXPR_CODE_P (orig_code))
3854 {
3855 if (phi_dependent_cand_p (c))
3856 {
3857 gphi *phi = as_a <gphi *> (p: lookup_cand (idx: c->def_phi)->cand_stmt);
3858
3859 if (all_phi_incrs_profitable (c, phi))
3860 {
3861 /* Look up the LHS SSA name from C's basis. This will be
3862 the RHS1 of the adds we will introduce to create new
3863 phi arguments. */
3864 slsr_cand_t basis = lookup_cand (idx: c->basis);
3865 tree basis_name = gimple_assign_lhs (gs: basis->cand_stmt);
3866
3867 /* Create a new phi statement that will represent C's true
3868 basis after the transformation is complete. */
3869 location_t loc = gimple_location (g: c->cand_stmt);
3870 tree name = create_phi_basis (c, from_phi: phi, basis_name,
3871 loc, known_stride: UNKNOWN_STRIDE);
3872
3873 /* Replace C with an add of the new basis phi and the
3874 increment. */
3875 replace_one_candidate (c, i, basis_name: name);
3876 }
3877 }
3878 else
3879 {
3880 slsr_cand_t basis = lookup_cand (idx: c->basis);
3881 tree basis_name = gimple_assign_lhs (gs: basis->cand_stmt);
3882 replace_one_candidate (c, i, basis_name);
3883 }
3884 }
3885 }
3886
3887 if (c->sibling)
3888 replace_profitable_candidates (c: lookup_cand (idx: c->sibling));
3889
3890 if (c->dependent)
3891 replace_profitable_candidates (c: lookup_cand (idx: c->dependent));
3892}
3893
3894/* Analyze costs of related candidates in the candidate vector,
3895 and make beneficial replacements. */
3896
3897static void
3898analyze_candidates_and_replace (void)
3899{
3900 unsigned i;
3901 slsr_cand_t c;
3902
3903 /* Each candidate that has a null basis and a non-null
3904 dependent is the root of a tree of related statements.
3905 Analyze each tree to determine a subset of those
3906 statements that can be replaced with maximum benefit.
3907
3908 Note the first NULL element is skipped. */
3909 FOR_EACH_VEC_ELT_FROM (cand_vec, i, c, 1)
3910 {
3911 slsr_cand_t first_dep;
3912
3913 if (c->basis != 0 || c->dependent == 0)
3914 continue;
3915
3916 if (dump_file && (dump_flags & TDF_DETAILS))
3917 fprintf (stream: dump_file, format: "\nProcessing dependency tree rooted at %d.\n",
3918 c->cand_num);
3919
3920 first_dep = lookup_cand (idx: c->dependent);
3921
3922 /* If this is a chain of CAND_REFs, unconditionally replace
3923 each of them with a strength-reduced data reference. */
3924 if (c->kind == CAND_REF)
3925 replace_refs (c);
3926
3927 /* If the common stride of all related candidates is a known
3928 constant, each candidate without a phi-dependence can be
3929 profitably replaced. Each replaces a multiply by a single
3930 add, with the possibility that a feeding add also goes dead.
3931 A candidate with a phi-dependence is replaced only if the
3932 compensation code it requires is offset by the strength
3933 reduction savings. */
3934 else if (TREE_CODE (c->stride) == INTEGER_CST)
3935 replace_uncond_cands_and_profitable_phis (c: first_dep);
3936
3937 /* When the stride is an SSA name, it may still be profitable
3938 to replace some or all of the dependent candidates, depending
3939 on whether the introduced increments can be reused, or are
3940 less expensive to calculate than the replaced statements. */
3941 else
3942 {
3943 machine_mode mode;
3944 bool speed;
3945
3946 /* Determine whether we'll be generating pointer arithmetic
3947 when replacing candidates. */
3948 address_arithmetic_p = (c->kind == CAND_ADD
3949 && POINTER_TYPE_P (c->cand_type));
3950
3951 /* If all candidates have already been replaced under other
3952 interpretations, nothing remains to be done. */
3953 if (!count_candidates (c))
3954 continue;
3955
3956 /* Construct an array of increments for this candidate chain. */
3957 incr_vec = XNEWVEC (incr_info, MAX_INCR_VEC_LEN);
3958 incr_vec_len = 0;
3959 record_increments (c);
3960
3961 /* Determine which increments are profitable to replace. */
3962 mode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (c->cand_stmt)));
3963 speed = optimize_cands_for_speed_p (c);
3964 analyze_increments (first_dep, mode, speed);
3965
3966 /* Insert initializers of the form T_0 = stride * increment
3967 for use in profitable replacements. */
3968 insert_initializers (c: first_dep);
3969 dump_incr_vec ();
3970
3971 /* Perform the replacements. */
3972 replace_profitable_candidates (c: first_dep);
3973 free (ptr: incr_vec);
3974 }
3975 }
3976
3977 /* For conditional candidates, we may have uncommitted insertions
3978 on edges to clean up. */
3979 gsi_commit_edge_inserts ();
3980}
3981
3982namespace {
3983
3984const pass_data pass_data_strength_reduction =
3985{
3986 .type: GIMPLE_PASS, /* type */
3987 .name: "slsr", /* name */
3988 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3989 .tv_id: TV_GIMPLE_SLSR, /* tv_id */
3990 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
3991 .properties_provided: 0, /* properties_provided */
3992 .properties_destroyed: 0, /* properties_destroyed */
3993 .todo_flags_start: 0, /* todo_flags_start */
3994 .todo_flags_finish: 0, /* todo_flags_finish */
3995};
3996
3997class pass_strength_reduction : public gimple_opt_pass
3998{
3999public:
4000 pass_strength_reduction (gcc::context *ctxt)
4001 : gimple_opt_pass (pass_data_strength_reduction, ctxt)
4002 {}
4003
4004 /* opt_pass methods: */
4005 bool gate (function *) final override { return flag_tree_slsr; }
4006 unsigned int execute (function *) final override;
4007
4008}; // class pass_strength_reduction
4009
4010unsigned
4011pass_strength_reduction::execute (function *fun)
4012{
4013 /* Create the obstack where candidates will reside. */
4014 gcc_obstack_init (&cand_obstack);
4015
4016 /* Allocate the candidate vector and initialize the first NULL element. */
4017 cand_vec.create (nelems: 128);
4018 cand_vec.safe_push (NULL);
4019
4020 /* Allocate the mapping from statements to candidate indices. */
4021 stmt_cand_map = new hash_map<gimple *, slsr_cand_t>;
4022
4023 /* Create the obstack where candidate chains will reside. */
4024 gcc_obstack_init (&chain_obstack);
4025
4026 /* Allocate the mapping from base expressions to candidate chains. */
4027 base_cand_map = new hash_table<cand_chain_hasher> (500);
4028
4029 /* Allocate the mapping from bases to alternative bases. */
4030 alt_base_map = new hash_map<tree, tree>;
4031
4032 /* Initialize the loop optimizer. We need to detect flow across
4033 back edges, and this gives us dominator information as well. */
4034 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4035
4036 /* Walk the CFG in predominator order looking for strength reduction
4037 candidates. */
4038 find_candidates_dom_walker (CDI_DOMINATORS)
4039 .walk (fun->cfg->x_entry_block_ptr);
4040
4041 if (dump_file && (dump_flags & TDF_DETAILS))
4042 {
4043 dump_cand_vec ();
4044 dump_cand_chains ();
4045 }
4046
4047 delete alt_base_map;
4048 free_affine_expand_cache (&name_expansions);
4049
4050 /* Analyze costs and make appropriate replacements. */
4051 analyze_candidates_and_replace ();
4052
4053 loop_optimizer_finalize ();
4054 delete base_cand_map;
4055 base_cand_map = NULL;
4056 obstack_free (&chain_obstack, NULL);
4057 delete stmt_cand_map;
4058 cand_vec.release ();
4059 obstack_free (&cand_obstack, NULL);
4060
4061 return 0;
4062}
4063
4064} // anon namespace
4065
4066gimple_opt_pass *
4067make_pass_strength_reduction (gcc::context *ctxt)
4068{
4069 return new pass_strength_reduction (ctxt);
4070}
4071

source code of gcc/gimple-ssa-strength-reduction.cc