| 1 | /* Passes for transactional memory support. |
| 2 | Copyright (C) 2008-2025 Free Software Foundation, Inc. |
| 3 | Contributed by Richard Henderson <rth@redhat.com> |
| 4 | and Aldy Hernandez <aldyh@redhat.com>. |
| 5 | |
| 6 | This file is part of GCC. |
| 7 | |
| 8 | GCC is free software; you can redistribute it and/or modify it under |
| 9 | the terms of the GNU General Public License as published by the Free |
| 10 | Software Foundation; either version 3, or (at your option) any later |
| 11 | version. |
| 12 | |
| 13 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 14 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 15 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 16 | for more details. |
| 17 | |
| 18 | You should have received a copy of the GNU General Public License |
| 19 | along with GCC; see the file COPYING3. If not see |
| 20 | <http://www.gnu.org/licenses/>. */ |
| 21 | |
| 22 | #include "config.h" |
| 23 | #include "system.h" |
| 24 | #include "coretypes.h" |
| 25 | #include "backend.h" |
| 26 | #include "target.h" |
| 27 | #include "rtl.h" |
| 28 | #include "tree.h" |
| 29 | #include "gimple.h" |
| 30 | #include "cfghooks.h" |
| 31 | #include "tree-pass.h" |
| 32 | #include "ssa.h" |
| 33 | #include "cgraph.h" |
| 34 | #include "gimple-pretty-print.h" |
| 35 | #include "diagnostic-core.h" |
| 36 | #include "fold-const.h" |
| 37 | #include "tree-eh.h" |
| 38 | #include "calls.h" |
| 39 | #include "gimplify.h" |
| 40 | #include "gimple-iterator.h" |
| 41 | #include "gimplify-me.h" |
| 42 | #include "gimple-walk.h" |
| 43 | #include "tree-cfg.h" |
| 44 | #include "tree-into-ssa.h" |
| 45 | #include "tree-inline.h" |
| 46 | #include "demangle.h" |
| 47 | #include "output.h" |
| 48 | #include "trans-mem.h" |
| 49 | #include "langhooks.h" |
| 50 | #include "cfgloop.h" |
| 51 | #include "tree-ssa-address.h" |
| 52 | #include "stringpool.h" |
| 53 | #include "attribs.h" |
| 54 | #include "alloc-pool.h" |
| 55 | #include "symbol-summary.h" |
| 56 | #include "symtab-thunks.h" |
| 57 | |
| 58 | #define A_RUNINSTRUMENTEDCODE 0x0001 |
| 59 | #define A_RUNUNINSTRUMENTEDCODE 0x0002 |
| 60 | #define A_SAVELIVEVARIABLES 0x0004 |
| 61 | #define A_RESTORELIVEVARIABLES 0x0008 |
| 62 | #define A_ABORTTRANSACTION 0x0010 |
| 63 | |
| 64 | #define AR_USERABORT 0x0001 |
| 65 | #define AR_USERRETRY 0x0002 |
| 66 | #define AR_TMCONFLICT 0x0004 |
| 67 | #define AR_EXCEPTIONBLOCKABORT 0x0008 |
| 68 | #define AR_OUTERABORT 0x0010 |
| 69 | |
| 70 | #define MODE_SERIALIRREVOCABLE 0x0000 |
| 71 | |
| 72 | |
| 73 | /* The representation of a transaction changes several times during the |
| 74 | lowering process. In the beginning, in the front-end we have the |
| 75 | GENERIC tree TRANSACTION_EXPR. For example, |
| 76 | |
| 77 | __transaction { |
| 78 | local++; |
| 79 | if (++global == 10) |
| 80 | __tm_abort; |
| 81 | } |
| 82 | |
| 83 | During initial gimplification (gimplify.cc) the TRANSACTION_EXPR node is |
| 84 | trivially replaced with a GIMPLE_TRANSACTION node. |
| 85 | |
| 86 | During pass_lower_tm, we examine the body of transactions looking |
| 87 | for aborts. Transactions that do not contain an abort may be |
| 88 | merged into an outer transaction. We also add a TRY-FINALLY node |
| 89 | to arrange for the transaction to be committed on any exit. |
| 90 | |
| 91 | [??? Think about how this arrangement affects throw-with-commit |
| 92 | and throw-with-abort operations. In this case we want the TRY to |
| 93 | handle gotos, but not to catch any exceptions because the transaction |
| 94 | will already be closed.] |
| 95 | |
| 96 | GIMPLE_TRANSACTION [label=NULL] { |
| 97 | try { |
| 98 | local = local + 1; |
| 99 | t0 = global; |
| 100 | t1 = t0 + 1; |
| 101 | global = t1; |
| 102 | if (t1 == 10) |
| 103 | __builtin___tm_abort (); |
| 104 | } finally { |
| 105 | __builtin___tm_commit (); |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | During pass_lower_eh, we create EH regions for the transactions, |
| 110 | intermixed with the regular EH stuff. This gives us a nice persistent |
| 111 | mapping (all the way through rtl) from transactional memory operation |
| 112 | back to the transaction, which allows us to get the abnormal edges |
| 113 | correct to model transaction aborts and restarts: |
| 114 | |
| 115 | GIMPLE_TRANSACTION [label=over] |
| 116 | local = local + 1; |
| 117 | t0 = global; |
| 118 | t1 = t0 + 1; |
| 119 | global = t1; |
| 120 | if (t1 == 10) |
| 121 | __builtin___tm_abort (); |
| 122 | __builtin___tm_commit (); |
| 123 | over: |
| 124 | |
| 125 | This is the end of all_lowering_passes, and so is what is present |
| 126 | during the IPA passes, and through all of the optimization passes. |
| 127 | |
| 128 | During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all |
| 129 | functions and mark functions for cloning. |
| 130 | |
| 131 | At the end of gimple optimization, before exiting SSA form, |
| 132 | pass_tm_edges replaces statements that perform transactional |
| 133 | memory operations with the appropriate TM builtins, and swap |
| 134 | out function calls with their transactional clones. At this |
| 135 | point we introduce the abnormal transaction restart edges and |
| 136 | complete lowering of the GIMPLE_TRANSACTION node. |
| 137 | |
| 138 | x = __builtin___tm_start (MAY_ABORT); |
| 139 | eh_label: |
| 140 | if (x & abort_transaction) |
| 141 | goto over; |
| 142 | local = local + 1; |
| 143 | t0 = __builtin___tm_load (global); |
| 144 | t1 = t0 + 1; |
| 145 | __builtin___tm_store (&global, t1); |
| 146 | if (t1 == 10) |
| 147 | __builtin___tm_abort (); |
| 148 | __builtin___tm_commit (); |
| 149 | over: |
| 150 | */ |
| 151 | |
| 152 | static void *expand_regions (struct tm_region *, |
| 153 | void *(*callback)(struct tm_region *, void *), |
| 154 | void *, bool); |
| 155 | |
| 156 | |
| 157 | /* Return the attributes we want to examine for X, or NULL if it's not |
| 158 | something we examine. We look at function types, but allow pointers |
| 159 | to function types and function decls and peek through. */ |
| 160 | |
| 161 | static tree |
| 162 | get_attrs_for (const_tree x) |
| 163 | { |
| 164 | if (x == NULL_TREE) |
| 165 | return NULL_TREE; |
| 166 | |
| 167 | switch (TREE_CODE (x)) |
| 168 | { |
| 169 | case FUNCTION_DECL: |
| 170 | return TYPE_ATTRIBUTES (TREE_TYPE (x)); |
| 171 | |
| 172 | default: |
| 173 | if (TYPE_P (x)) |
| 174 | return NULL_TREE; |
| 175 | x = TREE_TYPE (x); |
| 176 | if (TREE_CODE (x) != POINTER_TYPE) |
| 177 | return NULL_TREE; |
| 178 | /* FALLTHRU */ |
| 179 | |
| 180 | case POINTER_TYPE: |
| 181 | x = TREE_TYPE (x); |
| 182 | if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE) |
| 183 | return NULL_TREE; |
| 184 | /* FALLTHRU */ |
| 185 | |
| 186 | case FUNCTION_TYPE: |
| 187 | case METHOD_TYPE: |
| 188 | return TYPE_ATTRIBUTES (x); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | /* Return true if X has been marked TM_PURE. */ |
| 193 | |
| 194 | bool |
| 195 | is_tm_pure (const_tree x) |
| 196 | { |
| 197 | unsigned flags; |
| 198 | |
| 199 | switch (TREE_CODE (x)) |
| 200 | { |
| 201 | case FUNCTION_DECL: |
| 202 | case FUNCTION_TYPE: |
| 203 | case METHOD_TYPE: |
| 204 | break; |
| 205 | |
| 206 | default: |
| 207 | if (TYPE_P (x)) |
| 208 | return false; |
| 209 | x = TREE_TYPE (x); |
| 210 | if (TREE_CODE (x) != POINTER_TYPE) |
| 211 | return false; |
| 212 | /* FALLTHRU */ |
| 213 | |
| 214 | case POINTER_TYPE: |
| 215 | x = TREE_TYPE (x); |
| 216 | if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE) |
| 217 | return false; |
| 218 | break; |
| 219 | } |
| 220 | |
| 221 | flags = flags_from_decl_or_type (x); |
| 222 | return (flags & ECF_TM_PURE) != 0; |
| 223 | } |
| 224 | |
| 225 | /* Return true if X has been marked TM_IRREVOCABLE. */ |
| 226 | |
| 227 | static bool |
| 228 | is_tm_irrevocable (tree x) |
| 229 | { |
| 230 | tree attrs = get_attrs_for (x); |
| 231 | |
| 232 | if (attrs && lookup_attribute (attr_name: "transaction_unsafe" , list: attrs)) |
| 233 | return true; |
| 234 | |
| 235 | /* A call to the irrevocable builtin is by definition, |
| 236 | irrevocable. */ |
| 237 | if (TREE_CODE (x) == ADDR_EXPR) |
| 238 | x = TREE_OPERAND (x, 0); |
| 239 | if (TREE_CODE (x) == FUNCTION_DECL |
| 240 | && fndecl_built_in_p (node: x, name1: BUILT_IN_TM_IRREVOCABLE)) |
| 241 | return true; |
| 242 | |
| 243 | return false; |
| 244 | } |
| 245 | |
| 246 | /* Return true if X has been marked TM_SAFE. */ |
| 247 | |
| 248 | bool |
| 249 | is_tm_safe (const_tree x) |
| 250 | { |
| 251 | if (flag_tm) |
| 252 | { |
| 253 | tree attrs = get_attrs_for (x); |
| 254 | if (attrs) |
| 255 | { |
| 256 | if (lookup_attribute (attr_name: "transaction_safe" , list: attrs)) |
| 257 | return true; |
| 258 | if (lookup_attribute (attr_name: "transaction_may_cancel_outer" , list: attrs)) |
| 259 | return true; |
| 260 | } |
| 261 | } |
| 262 | return false; |
| 263 | } |
| 264 | |
| 265 | /* Return true if CALL is const, or tm_pure. */ |
| 266 | |
| 267 | static bool |
| 268 | is_tm_pure_call (gimple *call) |
| 269 | { |
| 270 | return (gimple_call_flags (call) & (ECF_CONST | ECF_TM_PURE)) != 0; |
| 271 | } |
| 272 | |
| 273 | /* Return true if X has been marked TM_CALLABLE. */ |
| 274 | |
| 275 | static bool |
| 276 | is_tm_callable (tree x) |
| 277 | { |
| 278 | tree attrs = get_attrs_for (x); |
| 279 | if (attrs) |
| 280 | { |
| 281 | if (lookup_attribute (attr_name: "transaction_callable" , list: attrs)) |
| 282 | return true; |
| 283 | if (lookup_attribute (attr_name: "transaction_safe" , list: attrs)) |
| 284 | return true; |
| 285 | if (lookup_attribute (attr_name: "transaction_may_cancel_outer" , list: attrs)) |
| 286 | return true; |
| 287 | } |
| 288 | return false; |
| 289 | } |
| 290 | |
| 291 | /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */ |
| 292 | |
| 293 | bool |
| 294 | is_tm_may_cancel_outer (tree x) |
| 295 | { |
| 296 | tree attrs = get_attrs_for (x); |
| 297 | if (attrs) |
| 298 | return lookup_attribute (attr_name: "transaction_may_cancel_outer" , list: attrs) != NULL; |
| 299 | return false; |
| 300 | } |
| 301 | |
| 302 | /* Return true for built in functions that "end" a transaction. */ |
| 303 | |
| 304 | bool |
| 305 | is_tm_ending_fndecl (tree fndecl) |
| 306 | { |
| 307 | if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) |
| 308 | switch (DECL_FUNCTION_CODE (decl: fndecl)) |
| 309 | { |
| 310 | case BUILT_IN_TM_COMMIT: |
| 311 | case BUILT_IN_TM_COMMIT_EH: |
| 312 | case BUILT_IN_TM_ABORT: |
| 313 | case BUILT_IN_TM_IRREVOCABLE: |
| 314 | return true; |
| 315 | default: |
| 316 | break; |
| 317 | } |
| 318 | |
| 319 | return false; |
| 320 | } |
| 321 | |
| 322 | /* Return true if STMT is a built in function call that "ends" a |
| 323 | transaction. */ |
| 324 | |
| 325 | bool |
| 326 | is_tm_ending (gimple *stmt) |
| 327 | { |
| 328 | tree fndecl; |
| 329 | |
| 330 | if (gimple_code (g: stmt) != GIMPLE_CALL) |
| 331 | return false; |
| 332 | |
| 333 | fndecl = gimple_call_fndecl (gs: stmt); |
| 334 | return (fndecl != NULL_TREE |
| 335 | && is_tm_ending_fndecl (fndecl)); |
| 336 | } |
| 337 | |
| 338 | /* Return true if STMT is a TM load. */ |
| 339 | |
| 340 | static bool |
| 341 | is_tm_load (gimple *stmt) |
| 342 | { |
| 343 | tree fndecl; |
| 344 | |
| 345 | if (gimple_code (g: stmt) != GIMPLE_CALL) |
| 346 | return false; |
| 347 | |
| 348 | fndecl = gimple_call_fndecl (gs: stmt); |
| 349 | return (fndecl |
| 350 | && fndecl_built_in_p (node: fndecl, klass: BUILT_IN_NORMAL) |
| 351 | && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl))); |
| 352 | } |
| 353 | |
| 354 | /* Same as above, but for simple TM loads, that is, not the |
| 355 | after-write, after-read, etc optimized variants. */ |
| 356 | |
| 357 | static bool |
| 358 | is_tm_simple_load (gimple *stmt) |
| 359 | { |
| 360 | tree fndecl; |
| 361 | |
| 362 | if (gimple_code (g: stmt) != GIMPLE_CALL) |
| 363 | return false; |
| 364 | |
| 365 | fndecl = gimple_call_fndecl (gs: stmt); |
| 366 | if (fndecl && fndecl_built_in_p (node: fndecl, klass: BUILT_IN_NORMAL)) |
| 367 | { |
| 368 | enum built_in_function fcode = DECL_FUNCTION_CODE (decl: fndecl); |
| 369 | return (fcode == BUILT_IN_TM_LOAD_1 |
| 370 | || fcode == BUILT_IN_TM_LOAD_2 |
| 371 | || fcode == BUILT_IN_TM_LOAD_4 |
| 372 | || fcode == BUILT_IN_TM_LOAD_8 |
| 373 | || fcode == BUILT_IN_TM_LOAD_FLOAT |
| 374 | || fcode == BUILT_IN_TM_LOAD_DOUBLE |
| 375 | || fcode == BUILT_IN_TM_LOAD_LDOUBLE |
| 376 | || fcode == BUILT_IN_TM_LOAD_M64 |
| 377 | || fcode == BUILT_IN_TM_LOAD_M128 |
| 378 | || fcode == BUILT_IN_TM_LOAD_M256); |
| 379 | } |
| 380 | return false; |
| 381 | } |
| 382 | |
| 383 | /* Return true if STMT is a TM store. */ |
| 384 | |
| 385 | static bool |
| 386 | is_tm_store (gimple *stmt) |
| 387 | { |
| 388 | tree fndecl; |
| 389 | |
| 390 | if (gimple_code (g: stmt) != GIMPLE_CALL) |
| 391 | return false; |
| 392 | |
| 393 | fndecl = gimple_call_fndecl (gs: stmt); |
| 394 | return (fndecl |
| 395 | && fndecl_built_in_p (node: fndecl, klass: BUILT_IN_NORMAL) |
| 396 | && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl))); |
| 397 | } |
| 398 | |
| 399 | /* Same as above, but for simple TM stores, that is, not the |
| 400 | after-write, after-read, etc optimized variants. */ |
| 401 | |
| 402 | static bool |
| 403 | is_tm_simple_store (gimple *stmt) |
| 404 | { |
| 405 | tree fndecl; |
| 406 | |
| 407 | if (gimple_code (g: stmt) != GIMPLE_CALL) |
| 408 | return false; |
| 409 | |
| 410 | fndecl = gimple_call_fndecl (gs: stmt); |
| 411 | if (fndecl |
| 412 | && fndecl_built_in_p (node: fndecl, klass: BUILT_IN_NORMAL)) |
| 413 | { |
| 414 | enum built_in_function fcode = DECL_FUNCTION_CODE (decl: fndecl); |
| 415 | return (fcode == BUILT_IN_TM_STORE_1 |
| 416 | || fcode == BUILT_IN_TM_STORE_2 |
| 417 | || fcode == BUILT_IN_TM_STORE_4 |
| 418 | || fcode == BUILT_IN_TM_STORE_8 |
| 419 | || fcode == BUILT_IN_TM_STORE_FLOAT |
| 420 | || fcode == BUILT_IN_TM_STORE_DOUBLE |
| 421 | || fcode == BUILT_IN_TM_STORE_LDOUBLE |
| 422 | || fcode == BUILT_IN_TM_STORE_M64 |
| 423 | || fcode == BUILT_IN_TM_STORE_M128 |
| 424 | || fcode == BUILT_IN_TM_STORE_M256); |
| 425 | } |
| 426 | return false; |
| 427 | } |
| 428 | |
| 429 | /* Return true if FNDECL is BUILT_IN_TM_ABORT. */ |
| 430 | |
| 431 | static bool |
| 432 | is_tm_abort (tree fndecl) |
| 433 | { |
| 434 | return (fndecl && fndecl_built_in_p (node: fndecl, name1: BUILT_IN_TM_ABORT)); |
| 435 | } |
| 436 | |
| 437 | /* Build a GENERIC tree for a user abort. This is called by front ends |
| 438 | while transforming the __tm_abort statement. */ |
| 439 | |
| 440 | tree |
| 441 | build_tm_abort_call (location_t loc, bool is_outer) |
| 442 | { |
| 443 | return build_call_expr_loc (loc, builtin_decl_explicit (fncode: BUILT_IN_TM_ABORT), 1, |
| 444 | build_int_cst (integer_type_node, |
| 445 | AR_USERABORT |
| 446 | | (is_outer ? AR_OUTERABORT : 0))); |
| 447 | } |
| 448 | |
| 449 | /* Map for arbitrary function replacement under TM, as created |
| 450 | by the tm_wrap attribute. */ |
| 451 | |
| 452 | struct tm_wrapper_hasher : ggc_cache_ptr_hash<tree_map> |
| 453 | { |
| 454 | static inline hashval_t hash (tree_map *m) { return m->hash; } |
| 455 | static inline bool |
| 456 | equal (tree_map *a, tree_map *b) |
| 457 | { |
| 458 | return a->base.from == b->base.from; |
| 459 | } |
| 460 | |
| 461 | static int |
| 462 | keep_cache_entry (tree_map *&m) |
| 463 | { |
| 464 | return ggc_marked_p (m->base.from); |
| 465 | } |
| 466 | }; |
| 467 | |
| 468 | static GTY((cache)) hash_table<tm_wrapper_hasher> *tm_wrap_map; |
| 469 | |
| 470 | void |
| 471 | record_tm_replacement (tree from, tree to) |
| 472 | { |
| 473 | struct tree_map **slot, *h; |
| 474 | |
| 475 | /* Do not inline wrapper functions that will get replaced in the TM |
| 476 | pass. |
| 477 | |
| 478 | Suppose you have foo() that will get replaced into tmfoo(). Make |
| 479 | sure the inliner doesn't try to outsmart us and inline foo() |
| 480 | before we get a chance to do the TM replacement. */ |
| 481 | DECL_UNINLINABLE (from) = 1; |
| 482 | |
| 483 | if (tm_wrap_map == NULL) |
| 484 | tm_wrap_map = hash_table<tm_wrapper_hasher>::create_ggc (n: 32); |
| 485 | |
| 486 | h = ggc_alloc<tree_map> (); |
| 487 | h->hash = htab_hash_pointer (from); |
| 488 | h->base.from = from; |
| 489 | h->to = to; |
| 490 | |
| 491 | slot = tm_wrap_map->find_slot_with_hash (comparable: h, hash: h->hash, insert: INSERT); |
| 492 | *slot = h; |
| 493 | } |
| 494 | |
| 495 | /* Return a TM-aware replacement function for DECL. */ |
| 496 | |
| 497 | static tree |
| 498 | find_tm_replacement_function (tree fndecl) |
| 499 | { |
| 500 | if (tm_wrap_map) |
| 501 | { |
| 502 | struct tree_map *h, in; |
| 503 | |
| 504 | in.base.from = fndecl; |
| 505 | in.hash = htab_hash_pointer (fndecl); |
| 506 | h = tm_wrap_map->find_with_hash (comparable: &in, hash: in.hash); |
| 507 | if (h) |
| 508 | return h->to; |
| 509 | } |
| 510 | |
| 511 | /* ??? We may well want TM versions of most of the common <string.h> |
| 512 | functions. For now, we've already these two defined. */ |
| 513 | /* Adjust expand_call_tm() attributes as necessary for the cases |
| 514 | handled here: */ |
| 515 | if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL) |
| 516 | switch (DECL_FUNCTION_CODE (decl: fndecl)) |
| 517 | { |
| 518 | case BUILT_IN_MEMCPY: |
| 519 | return builtin_decl_explicit (fncode: BUILT_IN_TM_MEMCPY); |
| 520 | case BUILT_IN_MEMMOVE: |
| 521 | return builtin_decl_explicit (fncode: BUILT_IN_TM_MEMMOVE); |
| 522 | case BUILT_IN_MEMSET: |
| 523 | return builtin_decl_explicit (fncode: BUILT_IN_TM_MEMSET); |
| 524 | default: |
| 525 | return NULL; |
| 526 | } |
| 527 | |
| 528 | return NULL; |
| 529 | } |
| 530 | |
| 531 | /* When appropriate, record TM replacement for memory allocation functions. |
| 532 | |
| 533 | FROM is the FNDECL to wrap. */ |
| 534 | void |
| 535 | tm_malloc_replacement (tree from) |
| 536 | { |
| 537 | const char *str; |
| 538 | tree to; |
| 539 | |
| 540 | if (TREE_CODE (from) != FUNCTION_DECL) |
| 541 | return; |
| 542 | |
| 543 | /* If we have a previous replacement, the user must be explicitly |
| 544 | wrapping malloc/calloc/free. They better know what they're |
| 545 | doing... */ |
| 546 | if (find_tm_replacement_function (fndecl: from)) |
| 547 | return; |
| 548 | |
| 549 | str = IDENTIFIER_POINTER (DECL_NAME (from)); |
| 550 | |
| 551 | if (!strcmp (s1: str, s2: "malloc" )) |
| 552 | to = builtin_decl_explicit (fncode: BUILT_IN_TM_MALLOC); |
| 553 | else if (!strcmp (s1: str, s2: "calloc" )) |
| 554 | to = builtin_decl_explicit (fncode: BUILT_IN_TM_CALLOC); |
| 555 | else if (!strcmp (s1: str, s2: "free" )) |
| 556 | to = builtin_decl_explicit (fncode: BUILT_IN_TM_FREE); |
| 557 | else |
| 558 | return; |
| 559 | |
| 560 | TREE_NOTHROW (to) = 0; |
| 561 | |
| 562 | record_tm_replacement (from, to); |
| 563 | } |
| 564 | |
| 565 | /* Diagnostics for tm_safe functions/regions. Called by the front end |
| 566 | once we've lowered the function to high-gimple. */ |
| 567 | |
| 568 | /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq. |
| 569 | Process exactly one statement. WI->INFO is set to non-null when in |
| 570 | the context of a tm_safe function, and null for a __transaction block. */ |
| 571 | |
| 572 | #define DIAG_TM_OUTER 1 |
| 573 | #define DIAG_TM_SAFE 2 |
| 574 | #define DIAG_TM_RELAXED 4 |
| 575 | |
| 576 | struct diagnose_tm |
| 577 | { |
| 578 | unsigned int summary_flags : 8; |
| 579 | unsigned int block_flags : 8; |
| 580 | unsigned int func_flags : 8; |
| 581 | unsigned int saw_volatile : 1; |
| 582 | gimple *stmt; |
| 583 | }; |
| 584 | |
| 585 | /* Return true if T is a volatile lvalue of some kind. */ |
| 586 | |
| 587 | static bool |
| 588 | volatile_lvalue_p (tree t) |
| 589 | { |
| 590 | return ((SSA_VAR_P (t) || REFERENCE_CLASS_P (t)) |
| 591 | && TREE_THIS_VOLATILE (TREE_TYPE (t))); |
| 592 | } |
| 593 | |
| 594 | /* Tree callback function for diagnose_tm pass. */ |
| 595 | |
| 596 | static tree |
| 597 | diagnose_tm_1_op (tree *tp, int *walk_subtrees, void *data) |
| 598 | { |
| 599 | struct walk_stmt_info *wi = (struct walk_stmt_info *) data; |
| 600 | struct diagnose_tm *d = (struct diagnose_tm *) wi->info; |
| 601 | |
| 602 | if (TYPE_P (*tp)) |
| 603 | *walk_subtrees = false; |
| 604 | else if (volatile_lvalue_p (t: *tp) |
| 605 | && !d->saw_volatile) |
| 606 | { |
| 607 | d->saw_volatile = 1; |
| 608 | if (d->block_flags & DIAG_TM_SAFE) |
| 609 | error_at (gimple_location (g: d->stmt), |
| 610 | "invalid use of volatile lvalue inside transaction" ); |
| 611 | else if (d->func_flags & DIAG_TM_SAFE) |
| 612 | error_at (gimple_location (g: d->stmt), |
| 613 | "invalid use of volatile lvalue inside %<transaction_safe%> " |
| 614 | "function" ); |
| 615 | } |
| 616 | |
| 617 | return NULL_TREE; |
| 618 | } |
| 619 | |
| 620 | static inline bool |
| 621 | is_tm_safe_or_pure (const_tree x) |
| 622 | { |
| 623 | return is_tm_safe (x) || is_tm_pure (x); |
| 624 | } |
| 625 | |
| 626 | static tree |
| 627 | diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p, |
| 628 | struct walk_stmt_info *wi) |
| 629 | { |
| 630 | gimple *stmt = gsi_stmt (i: *gsi); |
| 631 | struct diagnose_tm *d = (struct diagnose_tm *) wi->info; |
| 632 | |
| 633 | /* Save stmt for use in leaf analysis. */ |
| 634 | d->stmt = stmt; |
| 635 | |
| 636 | switch (gimple_code (g: stmt)) |
| 637 | { |
| 638 | case GIMPLE_CALL: |
| 639 | { |
| 640 | if (gimple_call_internal_p (gs: stmt)) |
| 641 | break; |
| 642 | |
| 643 | tree fn = gimple_call_fn (gs: stmt); |
| 644 | |
| 645 | if ((d->summary_flags & DIAG_TM_OUTER) == 0 |
| 646 | && is_tm_may_cancel_outer (x: fn)) |
| 647 | error_at (gimple_location (g: stmt), |
| 648 | "%<transaction_may_cancel_outer%> function call not within" |
| 649 | " outer transaction or %<transaction_may_cancel_outer%>" ); |
| 650 | |
| 651 | if (d->summary_flags & DIAG_TM_SAFE) |
| 652 | { |
| 653 | bool is_safe, direct_call_p; |
| 654 | tree replacement; |
| 655 | |
| 656 | if (TREE_CODE (fn) == ADDR_EXPR |
| 657 | && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL) |
| 658 | { |
| 659 | direct_call_p = true; |
| 660 | replacement = TREE_OPERAND (fn, 0); |
| 661 | replacement = find_tm_replacement_function (fndecl: replacement); |
| 662 | if (replacement) |
| 663 | fn = replacement; |
| 664 | } |
| 665 | else |
| 666 | { |
| 667 | direct_call_p = false; |
| 668 | replacement = NULL_TREE; |
| 669 | } |
| 670 | |
| 671 | if (is_tm_safe_or_pure (x: fn)) |
| 672 | is_safe = true; |
| 673 | else if (is_tm_callable (x: fn) || is_tm_irrevocable (x: fn)) |
| 674 | { |
| 675 | /* A function explicitly marked transaction_callable as |
| 676 | opposed to transaction_safe is being defined to be |
| 677 | unsafe as part of its ABI, regardless of its contents. */ |
| 678 | is_safe = false; |
| 679 | } |
| 680 | else if (direct_call_p) |
| 681 | { |
| 682 | if (IS_TYPE_OR_DECL_P (fn) |
| 683 | && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN) |
| 684 | is_safe = true; |
| 685 | else if (replacement) |
| 686 | { |
| 687 | /* ??? At present we've been considering replacements |
| 688 | merely transaction_callable, and therefore might |
| 689 | enter irrevocable. The tm_wrap attribute has not |
| 690 | yet made it into the new language spec. */ |
| 691 | is_safe = false; |
| 692 | } |
| 693 | else |
| 694 | { |
| 695 | /* ??? Diagnostics for unmarked direct calls moved into |
| 696 | the IPA pass. Section 3.2 of the spec details how |
| 697 | functions not marked should be considered "implicitly |
| 698 | safe" based on having examined the function body. */ |
| 699 | is_safe = true; |
| 700 | } |
| 701 | } |
| 702 | else |
| 703 | { |
| 704 | /* An unmarked indirect call. Consider it unsafe even |
| 705 | though optimization may yet figure out how to inline. */ |
| 706 | is_safe = false; |
| 707 | } |
| 708 | |
| 709 | if (!is_safe) |
| 710 | { |
| 711 | if (TREE_CODE (fn) == ADDR_EXPR) |
| 712 | fn = TREE_OPERAND (fn, 0); |
| 713 | if (d->block_flags & DIAG_TM_SAFE) |
| 714 | { |
| 715 | if (direct_call_p) |
| 716 | error_at (gimple_location (g: stmt), |
| 717 | "unsafe function call %qD within " |
| 718 | "atomic transaction" , fn); |
| 719 | else |
| 720 | { |
| 721 | if ((!DECL_P (fn) || DECL_NAME (fn)) |
| 722 | && TREE_CODE (fn) != SSA_NAME) |
| 723 | error_at (gimple_location (g: stmt), |
| 724 | "unsafe function call %qE within " |
| 725 | "atomic transaction" , fn); |
| 726 | else |
| 727 | error_at (gimple_location (g: stmt), |
| 728 | "unsafe indirect function call within " |
| 729 | "atomic transaction" ); |
| 730 | } |
| 731 | } |
| 732 | else |
| 733 | { |
| 734 | if (direct_call_p) |
| 735 | error_at (gimple_location (g: stmt), |
| 736 | "unsafe function call %qD within " |
| 737 | "%<transaction_safe%> function" , fn); |
| 738 | else |
| 739 | { |
| 740 | if ((!DECL_P (fn) || DECL_NAME (fn)) |
| 741 | && TREE_CODE (fn) != SSA_NAME) |
| 742 | error_at (gimple_location (g: stmt), |
| 743 | "unsafe function call %qE within " |
| 744 | "%<transaction_safe%> function" , fn); |
| 745 | else |
| 746 | error_at (gimple_location (g: stmt), |
| 747 | "unsafe indirect function call within " |
| 748 | "%<transaction_safe%> function" ); |
| 749 | } |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | } |
| 754 | break; |
| 755 | |
| 756 | case GIMPLE_ASM: |
| 757 | /* ??? We ought to come up with a way to add attributes to |
| 758 | asm statements, and then add "transaction_safe" to it. |
| 759 | Either that or get the language spec to resurrect __tm_waiver. */ |
| 760 | if (d->block_flags & DIAG_TM_SAFE) |
| 761 | error_at (gimple_location (g: stmt), |
| 762 | "%<asm%> not allowed in atomic transaction" ); |
| 763 | else if (d->func_flags & DIAG_TM_SAFE) |
| 764 | error_at (gimple_location (g: stmt), |
| 765 | "%<asm%> not allowed in %<transaction_safe%> function" ); |
| 766 | break; |
| 767 | |
| 768 | case GIMPLE_TRANSACTION: |
| 769 | { |
| 770 | gtransaction *trans_stmt = as_a <gtransaction *> (p: stmt); |
| 771 | unsigned char inner_flags = DIAG_TM_SAFE; |
| 772 | |
| 773 | if (gimple_transaction_subcode (transaction_stmt: trans_stmt) & GTMA_IS_RELAXED) |
| 774 | { |
| 775 | if (d->block_flags & DIAG_TM_SAFE) |
| 776 | error_at (gimple_location (g: stmt), |
| 777 | "relaxed transaction in atomic transaction" ); |
| 778 | else if (d->func_flags & DIAG_TM_SAFE) |
| 779 | error_at (gimple_location (g: stmt), |
| 780 | "relaxed transaction in %<transaction_safe%> function" ); |
| 781 | inner_flags = DIAG_TM_RELAXED; |
| 782 | } |
| 783 | else if (gimple_transaction_subcode (transaction_stmt: trans_stmt) & GTMA_IS_OUTER) |
| 784 | { |
| 785 | if (d->block_flags) |
| 786 | error_at (gimple_location (g: stmt), |
| 787 | "outer transaction in transaction" ); |
| 788 | else if (d->func_flags & DIAG_TM_OUTER) |
| 789 | error_at (gimple_location (g: stmt), |
| 790 | "outer transaction in " |
| 791 | "%<transaction_may_cancel_outer%> function" ); |
| 792 | else if (d->func_flags & DIAG_TM_SAFE) |
| 793 | error_at (gimple_location (g: stmt), |
| 794 | "outer transaction in %<transaction_safe%> function" ); |
| 795 | inner_flags |= DIAG_TM_OUTER; |
| 796 | } |
| 797 | |
| 798 | *handled_ops_p = true; |
| 799 | if (gimple_transaction_body (transaction_stmt: trans_stmt)) |
| 800 | { |
| 801 | struct walk_stmt_info wi_inner; |
| 802 | struct diagnose_tm d_inner; |
| 803 | |
| 804 | memset (s: &d_inner, c: 0, n: sizeof (d_inner)); |
| 805 | d_inner.func_flags = d->func_flags; |
| 806 | d_inner.block_flags = d->block_flags | inner_flags; |
| 807 | d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags; |
| 808 | |
| 809 | memset (s: &wi_inner, c: 0, n: sizeof (wi_inner)); |
| 810 | wi_inner.info = &d_inner; |
| 811 | |
| 812 | walk_gimple_seq (gimple_transaction_body (transaction_stmt: trans_stmt), |
| 813 | diagnose_tm_1, diagnose_tm_1_op, &wi_inner); |
| 814 | } |
| 815 | } |
| 816 | break; |
| 817 | |
| 818 | default: |
| 819 | break; |
| 820 | } |
| 821 | |
| 822 | return NULL_TREE; |
| 823 | } |
| 824 | |
| 825 | static unsigned int |
| 826 | diagnose_tm_blocks (void) |
| 827 | { |
| 828 | struct walk_stmt_info wi; |
| 829 | struct diagnose_tm d; |
| 830 | |
| 831 | memset (s: &d, c: 0, n: sizeof (d)); |
| 832 | if (is_tm_may_cancel_outer (x: current_function_decl)) |
| 833 | d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE; |
| 834 | else if (is_tm_safe (x: current_function_decl)) |
| 835 | d.func_flags = DIAG_TM_SAFE; |
| 836 | d.summary_flags = d.func_flags; |
| 837 | |
| 838 | memset (s: &wi, c: 0, n: sizeof (wi)); |
| 839 | wi.info = &d; |
| 840 | |
| 841 | walk_gimple_seq (gimple_body (current_function_decl), |
| 842 | diagnose_tm_1, diagnose_tm_1_op, &wi); |
| 843 | |
| 844 | return 0; |
| 845 | } |
| 846 | |
| 847 | namespace { |
| 848 | |
| 849 | const pass_data pass_data_diagnose_tm_blocks = |
| 850 | { |
| 851 | .type: GIMPLE_PASS, /* type */ |
| 852 | .name: "*diagnose_tm_blocks" , /* name */ |
| 853 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 854 | .tv_id: TV_TRANS_MEM, /* tv_id */ |
| 855 | PROP_gimple_any, /* properties_required */ |
| 856 | .properties_provided: 0, /* properties_provided */ |
| 857 | .properties_destroyed: 0, /* properties_destroyed */ |
| 858 | .todo_flags_start: 0, /* todo_flags_start */ |
| 859 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 860 | }; |
| 861 | |
| 862 | class pass_diagnose_tm_blocks : public gimple_opt_pass |
| 863 | { |
| 864 | public: |
| 865 | pass_diagnose_tm_blocks (gcc::context *ctxt) |
| 866 | : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt) |
| 867 | {} |
| 868 | |
| 869 | /* opt_pass methods: */ |
| 870 | bool gate (function *) final override { return flag_tm; } |
| 871 | unsigned int execute (function *) final override |
| 872 | { |
| 873 | return diagnose_tm_blocks (); |
| 874 | } |
| 875 | |
| 876 | }; // class pass_diagnose_tm_blocks |
| 877 | |
| 878 | } // anon namespace |
| 879 | |
| 880 | gimple_opt_pass * |
| 881 | make_pass_diagnose_tm_blocks (gcc::context *ctxt) |
| 882 | { |
| 883 | return new pass_diagnose_tm_blocks (ctxt); |
| 884 | } |
| 885 | |
| 886 | /* Instead of instrumenting thread private memory, we save the |
| 887 | addresses in a log which we later use to save/restore the addresses |
| 888 | upon transaction start/restart. |
| 889 | |
| 890 | The log is keyed by address, where each element contains individual |
| 891 | statements among different code paths that perform the store. |
| 892 | |
| 893 | This log is later used to generate either plain save/restore of the |
| 894 | addresses upon transaction start/restart, or calls to the ITM_L* |
| 895 | logging functions. |
| 896 | |
| 897 | So for something like: |
| 898 | |
| 899 | struct large { int x[1000]; }; |
| 900 | struct large lala = { 0 }; |
| 901 | __transaction { |
| 902 | lala.x[i] = 123; |
| 903 | ... |
| 904 | } |
| 905 | |
| 906 | We can either save/restore: |
| 907 | |
| 908 | lala = { 0 }; |
| 909 | trxn = _ITM_startTransaction (); |
| 910 | if (trxn & a_saveLiveVariables) |
| 911 | tmp_lala1 = lala.x[i]; |
| 912 | else if (a & a_restoreLiveVariables) |
| 913 | lala.x[i] = tmp_lala1; |
| 914 | |
| 915 | or use the logging functions: |
| 916 | |
| 917 | lala = { 0 }; |
| 918 | trxn = _ITM_startTransaction (); |
| 919 | _ITM_LU4 (&lala.x[i]); |
| 920 | |
| 921 | Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as |
| 922 | far up the dominator tree to shadow all of the writes to a given |
| 923 | location (thus reducing the total number of logging calls), but not |
| 924 | so high as to be called on a path that does not perform a |
| 925 | write. */ |
| 926 | |
| 927 | /* One individual log entry. We may have multiple statements for the |
| 928 | same location if neither dominate each other (on different |
| 929 | execution paths). */ |
| 930 | struct tm_log_entry |
| 931 | { |
| 932 | /* Address to save. */ |
| 933 | tree addr; |
| 934 | /* Entry block for the transaction this address occurs in. */ |
| 935 | basic_block entry_block; |
| 936 | /* Dominating statements the store occurs in. */ |
| 937 | vec<gimple *> stmts; |
| 938 | /* Initially, while we are building the log, we place a nonzero |
| 939 | value here to mean that this address *will* be saved with a |
| 940 | save/restore sequence. Later, when generating the save sequence |
| 941 | we place the SSA temp generated here. */ |
| 942 | tree save_var; |
| 943 | }; |
| 944 | |
| 945 | |
| 946 | /* Log entry hashtable helpers. */ |
| 947 | |
| 948 | struct log_entry_hasher : pointer_hash <tm_log_entry> |
| 949 | { |
| 950 | static inline hashval_t hash (const tm_log_entry *); |
| 951 | static inline bool equal (const tm_log_entry *, const tm_log_entry *); |
| 952 | static inline void remove (tm_log_entry *); |
| 953 | }; |
| 954 | |
| 955 | /* Htab support. Return hash value for a `tm_log_entry'. */ |
| 956 | inline hashval_t |
| 957 | log_entry_hasher::hash (const tm_log_entry *log) |
| 958 | { |
| 959 | return iterative_hash_expr (tree: log->addr, seed: 0); |
| 960 | } |
| 961 | |
| 962 | /* Htab support. Return true if two log entries are the same. */ |
| 963 | inline bool |
| 964 | log_entry_hasher::equal (const tm_log_entry *log1, const tm_log_entry *log2) |
| 965 | { |
| 966 | /* FIXME: |
| 967 | |
| 968 | rth: I suggest that we get rid of the component refs etc. |
| 969 | I.e. resolve the reference to base + offset. |
| 970 | |
| 971 | We may need to actually finish a merge with mainline for this, |
| 972 | since we'd like to be presented with Richi's MEM_REF_EXPRs more |
| 973 | often than not. But in the meantime your tm_log_entry could save |
| 974 | the results of get_inner_reference. |
| 975 | |
| 976 | See: g++.dg/tm/pr46653.C |
| 977 | */ |
| 978 | |
| 979 | /* Special case plain equality because operand_equal_p() below will |
| 980 | return FALSE if the addresses are equal but they have |
| 981 | side-effects (e.g. a volatile address). */ |
| 982 | if (log1->addr == log2->addr) |
| 983 | return true; |
| 984 | |
| 985 | return operand_equal_p (log1->addr, log2->addr, flags: 0); |
| 986 | } |
| 987 | |
| 988 | /* Htab support. Free one tm_log_entry. */ |
| 989 | inline void |
| 990 | log_entry_hasher::remove (tm_log_entry *lp) |
| 991 | { |
| 992 | lp->stmts.release (); |
| 993 | free (ptr: lp); |
| 994 | } |
| 995 | |
| 996 | |
| 997 | /* The actual log. */ |
| 998 | static hash_table<log_entry_hasher> *tm_log; |
| 999 | |
| 1000 | /* Addresses to log with a save/restore sequence. These should be in |
| 1001 | dominator order. */ |
| 1002 | static vec<tree> tm_log_save_addresses; |
| 1003 | |
| 1004 | enum thread_memory_type |
| 1005 | { |
| 1006 | mem_non_local = 0, |
| 1007 | mem_thread_local, |
| 1008 | mem_transaction_local, |
| 1009 | mem_max |
| 1010 | }; |
| 1011 | |
| 1012 | struct tm_new_mem_map |
| 1013 | { |
| 1014 | /* SSA_NAME being dereferenced. */ |
| 1015 | tree val; |
| 1016 | enum thread_memory_type local_new_memory; |
| 1017 | }; |
| 1018 | |
| 1019 | /* Hashtable helpers. */ |
| 1020 | |
| 1021 | struct tm_mem_map_hasher : free_ptr_hash <tm_new_mem_map> |
| 1022 | { |
| 1023 | static inline hashval_t hash (const tm_new_mem_map *); |
| 1024 | static inline bool equal (const tm_new_mem_map *, const tm_new_mem_map *); |
| 1025 | }; |
| 1026 | |
| 1027 | inline hashval_t |
| 1028 | tm_mem_map_hasher::hash (const tm_new_mem_map *v) |
| 1029 | { |
| 1030 | return (intptr_t)v->val >> 4; |
| 1031 | } |
| 1032 | |
| 1033 | inline bool |
| 1034 | tm_mem_map_hasher::equal (const tm_new_mem_map *v, const tm_new_mem_map *c) |
| 1035 | { |
| 1036 | return v->val == c->val; |
| 1037 | } |
| 1038 | |
| 1039 | /* Map for an SSA_NAME originally pointing to a non aliased new piece |
| 1040 | of memory (malloc, alloc, etc). */ |
| 1041 | static hash_table<tm_mem_map_hasher> *tm_new_mem_hash; |
| 1042 | |
| 1043 | /* Initialize logging data structures. */ |
| 1044 | static void |
| 1045 | tm_log_init (void) |
| 1046 | { |
| 1047 | tm_log = new hash_table<log_entry_hasher> (10); |
| 1048 | tm_new_mem_hash = new hash_table<tm_mem_map_hasher> (5); |
| 1049 | tm_log_save_addresses.create (nelems: 5); |
| 1050 | } |
| 1051 | |
| 1052 | /* Free logging data structures. */ |
| 1053 | static void |
| 1054 | tm_log_delete (void) |
| 1055 | { |
| 1056 | delete tm_log; |
| 1057 | tm_log = NULL; |
| 1058 | delete tm_new_mem_hash; |
| 1059 | tm_new_mem_hash = NULL; |
| 1060 | tm_log_save_addresses.release (); |
| 1061 | } |
| 1062 | |
| 1063 | /* Return true if MEM is a transaction invariant memory for the TM |
| 1064 | region starting at REGION_ENTRY_BLOCK. */ |
| 1065 | static bool |
| 1066 | transaction_invariant_address_p (const_tree mem, basic_block region_entry_block) |
| 1067 | { |
| 1068 | if ((INDIRECT_REF_P (mem) || TREE_CODE (mem) == MEM_REF) |
| 1069 | && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME) |
| 1070 | { |
| 1071 | basic_block def_bb; |
| 1072 | |
| 1073 | def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0))); |
| 1074 | return def_bb != region_entry_block |
| 1075 | && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb); |
| 1076 | } |
| 1077 | |
| 1078 | mem = strip_invariant_refs (mem); |
| 1079 | return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem)); |
| 1080 | } |
| 1081 | |
| 1082 | /* Given an address ADDR in STMT, find it in the memory log or add it, |
| 1083 | making sure to keep only the addresses highest in the dominator |
| 1084 | tree. |
| 1085 | |
| 1086 | ENTRY_BLOCK is the entry_block for the transaction. |
| 1087 | |
| 1088 | If we find the address in the log, make sure it's either the same |
| 1089 | address, or an equivalent one that dominates ADDR. |
| 1090 | |
| 1091 | If we find the address, but neither ADDR dominates the found |
| 1092 | address, nor the found one dominates ADDR, we're on different |
| 1093 | execution paths. Add it. |
| 1094 | |
| 1095 | If known, ENTRY_BLOCK is the entry block for the region, otherwise |
| 1096 | NULL. */ |
| 1097 | static void |
| 1098 | tm_log_add (basic_block entry_block, tree addr, gimple *stmt) |
| 1099 | { |
| 1100 | tm_log_entry **slot; |
| 1101 | struct tm_log_entry l, *lp; |
| 1102 | |
| 1103 | l.addr = addr; |
| 1104 | slot = tm_log->find_slot (value: &l, insert: INSERT); |
| 1105 | if (!*slot) |
| 1106 | { |
| 1107 | tree type = TREE_TYPE (addr); |
| 1108 | |
| 1109 | lp = XNEW (struct tm_log_entry); |
| 1110 | lp->addr = addr; |
| 1111 | *slot = lp; |
| 1112 | |
| 1113 | /* Small invariant addresses can be handled as save/restores. */ |
| 1114 | if (entry_block |
| 1115 | && transaction_invariant_address_p (mem: lp->addr, region_entry_block: entry_block) |
| 1116 | && TYPE_SIZE_UNIT (type) != NULL |
| 1117 | && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)) |
| 1118 | && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type)) |
| 1119 | < param_tm_max_aggregate_size) |
| 1120 | /* We must be able to copy this type normally. I.e., no |
| 1121 | special constructors and the like. */ |
| 1122 | && !TREE_ADDRESSABLE (type)) |
| 1123 | { |
| 1124 | lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save" ); |
| 1125 | lp->stmts.create (nelems: 0); |
| 1126 | lp->entry_block = entry_block; |
| 1127 | /* Save addresses separately in dominator order so we don't |
| 1128 | get confused by overlapping addresses in the save/restore |
| 1129 | sequence. */ |
| 1130 | tm_log_save_addresses.safe_push (obj: lp->addr); |
| 1131 | } |
| 1132 | else |
| 1133 | { |
| 1134 | /* Use the logging functions. */ |
| 1135 | lp->stmts.create (nelems: 5); |
| 1136 | lp->stmts.quick_push (obj: stmt); |
| 1137 | lp->save_var = NULL; |
| 1138 | } |
| 1139 | } |
| 1140 | else |
| 1141 | { |
| 1142 | size_t i; |
| 1143 | gimple *oldstmt; |
| 1144 | |
| 1145 | lp = *slot; |
| 1146 | |
| 1147 | /* If we're generating a save/restore sequence, we don't care |
| 1148 | about statements. */ |
| 1149 | if (lp->save_var) |
| 1150 | return; |
| 1151 | |
| 1152 | for (i = 0; lp->stmts.iterate (ix: i, ptr: &oldstmt); ++i) |
| 1153 | { |
| 1154 | if (stmt == oldstmt) |
| 1155 | return; |
| 1156 | /* We already have a store to the same address, higher up the |
| 1157 | dominator tree. Nothing to do. */ |
| 1158 | if (dominated_by_p (CDI_DOMINATORS, |
| 1159 | gimple_bb (g: stmt), gimple_bb (g: oldstmt))) |
| 1160 | return; |
| 1161 | /* We should be processing blocks in dominator tree order. */ |
| 1162 | gcc_assert (!dominated_by_p (CDI_DOMINATORS, |
| 1163 | gimple_bb (oldstmt), gimple_bb (stmt))); |
| 1164 | } |
| 1165 | /* Store is on a different code path. */ |
| 1166 | lp->stmts.safe_push (obj: stmt); |
| 1167 | } |
| 1168 | } |
| 1169 | |
| 1170 | /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME |
| 1171 | result, insert the new statements before GSI. */ |
| 1172 | |
| 1173 | static tree |
| 1174 | gimplify_addr (gimple_stmt_iterator *gsi, tree x) |
| 1175 | { |
| 1176 | if (TREE_CODE (x) == TARGET_MEM_REF) |
| 1177 | x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x); |
| 1178 | else |
| 1179 | x = build_fold_addr_expr (x); |
| 1180 | return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT); |
| 1181 | } |
| 1182 | |
| 1183 | /* Instrument one address with the logging functions. |
| 1184 | ADDR is the address to save. |
| 1185 | STMT is the statement before which to place it. */ |
| 1186 | static void |
| 1187 | tm_log_emit_stmt (tree addr, gimple *stmt) |
| 1188 | { |
| 1189 | tree type = TREE_TYPE (addr); |
| 1190 | gimple_stmt_iterator gsi = gsi_for_stmt (stmt); |
| 1191 | gimple *log; |
| 1192 | enum built_in_function code = BUILT_IN_TM_LOG; |
| 1193 | |
| 1194 | if (type == float_type_node) |
| 1195 | code = BUILT_IN_TM_LOG_FLOAT; |
| 1196 | else if (type == double_type_node) |
| 1197 | code = BUILT_IN_TM_LOG_DOUBLE; |
| 1198 | else if (type == long_double_type_node) |
| 1199 | code = BUILT_IN_TM_LOG_LDOUBLE; |
| 1200 | else if (TYPE_SIZE (type) != NULL |
| 1201 | && tree_fits_uhwi_p (TYPE_SIZE (type))) |
| 1202 | { |
| 1203 | unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type)); |
| 1204 | |
| 1205 | if (TREE_CODE (type) == VECTOR_TYPE) |
| 1206 | { |
| 1207 | switch (type_size) |
| 1208 | { |
| 1209 | case 64: |
| 1210 | code = BUILT_IN_TM_LOG_M64; |
| 1211 | break; |
| 1212 | case 128: |
| 1213 | code = BUILT_IN_TM_LOG_M128; |
| 1214 | break; |
| 1215 | case 256: |
| 1216 | code = BUILT_IN_TM_LOG_M256; |
| 1217 | break; |
| 1218 | default: |
| 1219 | goto unhandled_vec; |
| 1220 | } |
| 1221 | if (!builtin_decl_explicit_p (fncode: code)) |
| 1222 | goto unhandled_vec; |
| 1223 | } |
| 1224 | else |
| 1225 | { |
| 1226 | unhandled_vec: |
| 1227 | switch (type_size) |
| 1228 | { |
| 1229 | case 8: |
| 1230 | code = BUILT_IN_TM_LOG_1; |
| 1231 | break; |
| 1232 | case 16: |
| 1233 | code = BUILT_IN_TM_LOG_2; |
| 1234 | break; |
| 1235 | case 32: |
| 1236 | code = BUILT_IN_TM_LOG_4; |
| 1237 | break; |
| 1238 | case 64: |
| 1239 | code = BUILT_IN_TM_LOG_8; |
| 1240 | break; |
| 1241 | } |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | if (code != BUILT_IN_TM_LOG && !builtin_decl_explicit_p (fncode: code)) |
| 1246 | code = BUILT_IN_TM_LOG; |
| 1247 | tree decl = builtin_decl_explicit (fncode: code); |
| 1248 | |
| 1249 | addr = gimplify_addr (gsi: &gsi, x: addr); |
| 1250 | if (code == BUILT_IN_TM_LOG) |
| 1251 | log = gimple_build_call (decl, 2, addr, TYPE_SIZE_UNIT (type)); |
| 1252 | else |
| 1253 | log = gimple_build_call (decl, 1, addr); |
| 1254 | gsi_insert_before (&gsi, log, GSI_SAME_STMT); |
| 1255 | } |
| 1256 | |
| 1257 | /* Go through the log and instrument address that must be instrumented |
| 1258 | with the logging functions. Leave the save/restore addresses for |
| 1259 | later. */ |
| 1260 | static void |
| 1261 | tm_log_emit (void) |
| 1262 | { |
| 1263 | hash_table<log_entry_hasher>::iterator hi; |
| 1264 | struct tm_log_entry *lp; |
| 1265 | |
| 1266 | FOR_EACH_HASH_TABLE_ELEMENT (*tm_log, lp, tm_log_entry_t, hi) |
| 1267 | { |
| 1268 | size_t i; |
| 1269 | gimple *stmt; |
| 1270 | |
| 1271 | if (dump_file) |
| 1272 | { |
| 1273 | fprintf (stream: dump_file, format: "TM thread private mem logging: " ); |
| 1274 | print_generic_expr (dump_file, lp->addr); |
| 1275 | fprintf (stream: dump_file, format: "\n" ); |
| 1276 | } |
| 1277 | |
| 1278 | if (lp->save_var) |
| 1279 | { |
| 1280 | if (dump_file) |
| 1281 | fprintf (stream: dump_file, format: "DUMPING to variable\n" ); |
| 1282 | continue; |
| 1283 | } |
| 1284 | else |
| 1285 | { |
| 1286 | if (dump_file) |
| 1287 | fprintf (stream: dump_file, format: "DUMPING with logging functions\n" ); |
| 1288 | for (i = 0; lp->stmts.iterate (ix: i, ptr: &stmt); ++i) |
| 1289 | tm_log_emit_stmt (addr: lp->addr, stmt); |
| 1290 | } |
| 1291 | } |
| 1292 | } |
| 1293 | |
| 1294 | /* Emit the save sequence for the corresponding addresses in the log. |
| 1295 | ENTRY_BLOCK is the entry block for the transaction. |
| 1296 | BB is the basic block to insert the code in. */ |
| 1297 | static void |
| 1298 | tm_log_emit_saves (basic_block entry_block, basic_block bb) |
| 1299 | { |
| 1300 | size_t i; |
| 1301 | gimple_stmt_iterator gsi = gsi_last_bb (bb); |
| 1302 | gimple *stmt; |
| 1303 | struct tm_log_entry l, *lp; |
| 1304 | |
| 1305 | for (i = 0; i < tm_log_save_addresses.length (); ++i) |
| 1306 | { |
| 1307 | l.addr = tm_log_save_addresses[i]; |
| 1308 | lp = *(tm_log->find_slot (value: &l, insert: NO_INSERT)); |
| 1309 | gcc_assert (lp->save_var != NULL); |
| 1310 | |
| 1311 | /* We only care about variables in the current transaction. */ |
| 1312 | if (lp->entry_block != entry_block) |
| 1313 | continue; |
| 1314 | |
| 1315 | stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr)); |
| 1316 | |
| 1317 | /* Make sure we can create an SSA_NAME for this type. For |
| 1318 | instance, aggregates aren't allowed, in which case the system |
| 1319 | will create a VOP for us and everything will just work. */ |
| 1320 | if (is_gimple_reg_type (TREE_TYPE (lp->save_var))) |
| 1321 | { |
| 1322 | lp->save_var = make_ssa_name (var: lp->save_var, stmt); |
| 1323 | gimple_assign_set_lhs (gs: stmt, lhs: lp->save_var); |
| 1324 | } |
| 1325 | |
| 1326 | gsi_insert_before (&gsi, stmt, GSI_SAME_STMT); |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | /* Emit the restore sequence for the corresponding addresses in the log. |
| 1331 | ENTRY_BLOCK is the entry block for the transaction. |
| 1332 | BB is the basic block to insert the code in. */ |
| 1333 | static void |
| 1334 | tm_log_emit_restores (basic_block entry_block, basic_block bb) |
| 1335 | { |
| 1336 | int i; |
| 1337 | struct tm_log_entry l, *lp; |
| 1338 | gimple_stmt_iterator gsi; |
| 1339 | gimple *stmt; |
| 1340 | |
| 1341 | for (i = tm_log_save_addresses.length () - 1; i >= 0; i--) |
| 1342 | { |
| 1343 | l.addr = tm_log_save_addresses[i]; |
| 1344 | lp = *(tm_log->find_slot (value: &l, insert: NO_INSERT)); |
| 1345 | gcc_assert (lp->save_var != NULL); |
| 1346 | |
| 1347 | /* We only care about variables in the current transaction. */ |
| 1348 | if (lp->entry_block != entry_block) |
| 1349 | continue; |
| 1350 | |
| 1351 | /* Restores are in LIFO order from the saves in case we have |
| 1352 | overlaps. */ |
| 1353 | gsi = gsi_start_bb (bb); |
| 1354 | |
| 1355 | stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var); |
| 1356 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 1357 | } |
| 1358 | } |
| 1359 | |
| 1360 | |
| 1361 | static tree lower_sequence_tm (gimple_stmt_iterator *, bool *, |
| 1362 | struct walk_stmt_info *); |
| 1363 | static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *, |
| 1364 | struct walk_stmt_info *); |
| 1365 | |
| 1366 | /* Evaluate an address X being dereferenced and determine if it |
| 1367 | originally points to a non aliased new chunk of memory (malloc, |
| 1368 | alloca, etc). |
| 1369 | |
| 1370 | Return MEM_THREAD_LOCAL if it points to a thread-local address. |
| 1371 | Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address. |
| 1372 | Return MEM_NON_LOCAL otherwise. |
| 1373 | |
| 1374 | ENTRY_BLOCK is the entry block to the transaction containing the |
| 1375 | dereference of X. */ |
| 1376 | static enum thread_memory_type |
| 1377 | thread_private_new_memory (basic_block entry_block, tree x) |
| 1378 | { |
| 1379 | gimple *stmt = NULL; |
| 1380 | enum tree_code code; |
| 1381 | tm_new_mem_map **slot; |
| 1382 | tm_new_mem_map elt, *elt_p; |
| 1383 | tree val = x; |
| 1384 | enum thread_memory_type retval = mem_transaction_local; |
| 1385 | |
| 1386 | if (!entry_block |
| 1387 | || TREE_CODE (x) != SSA_NAME |
| 1388 | /* Possible uninitialized use, or a function argument. In |
| 1389 | either case, we don't care. */ |
| 1390 | || SSA_NAME_IS_DEFAULT_DEF (x)) |
| 1391 | return mem_non_local; |
| 1392 | |
| 1393 | /* Look in cache first. */ |
| 1394 | elt.val = x; |
| 1395 | slot = tm_new_mem_hash->find_slot (value: &elt, insert: INSERT); |
| 1396 | elt_p = *slot; |
| 1397 | if (elt_p) |
| 1398 | return elt_p->local_new_memory; |
| 1399 | |
| 1400 | /* Optimistically assume the memory is transaction local during |
| 1401 | processing. This catches recursion into this variable. */ |
| 1402 | *slot = elt_p = XNEW (tm_new_mem_map); |
| 1403 | elt_p->val = val; |
| 1404 | elt_p->local_new_memory = mem_transaction_local; |
| 1405 | |
| 1406 | /* Search DEF chain to find the original definition of this address. */ |
| 1407 | do |
| 1408 | { |
| 1409 | if (ptr_deref_may_alias_global_p (x, true)) |
| 1410 | { |
| 1411 | /* Address escapes. This is not thread-private. */ |
| 1412 | retval = mem_non_local; |
| 1413 | goto new_memory_ret; |
| 1414 | } |
| 1415 | |
| 1416 | stmt = SSA_NAME_DEF_STMT (x); |
| 1417 | |
| 1418 | /* If the malloc call is outside the transaction, this is |
| 1419 | thread-local. */ |
| 1420 | if (retval != mem_thread_local |
| 1421 | && !dominated_by_p (CDI_DOMINATORS, gimple_bb (g: stmt), entry_block)) |
| 1422 | retval = mem_thread_local; |
| 1423 | |
| 1424 | if (is_gimple_assign (gs: stmt)) |
| 1425 | { |
| 1426 | code = gimple_assign_rhs_code (gs: stmt); |
| 1427 | /* x = foo ==> foo */ |
| 1428 | if (code == SSA_NAME) |
| 1429 | x = gimple_assign_rhs1 (gs: stmt); |
| 1430 | /* x = foo + n ==> foo */ |
| 1431 | else if (code == POINTER_PLUS_EXPR) |
| 1432 | x = gimple_assign_rhs1 (gs: stmt); |
| 1433 | /* x = (cast*) foo ==> foo */ |
| 1434 | else if (code == VIEW_CONVERT_EXPR || CONVERT_EXPR_CODE_P (code)) |
| 1435 | x = gimple_assign_rhs1 (gs: stmt); |
| 1436 | /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */ |
| 1437 | else if (code == COND_EXPR) |
| 1438 | { |
| 1439 | tree op1 = gimple_assign_rhs2 (gs: stmt); |
| 1440 | tree op2 = gimple_assign_rhs3 (gs: stmt); |
| 1441 | enum thread_memory_type mem; |
| 1442 | retval = thread_private_new_memory (entry_block, x: op1); |
| 1443 | if (retval == mem_non_local) |
| 1444 | goto new_memory_ret; |
| 1445 | mem = thread_private_new_memory (entry_block, x: op2); |
| 1446 | retval = MIN (retval, mem); |
| 1447 | goto new_memory_ret; |
| 1448 | } |
| 1449 | else |
| 1450 | { |
| 1451 | retval = mem_non_local; |
| 1452 | goto new_memory_ret; |
| 1453 | } |
| 1454 | } |
| 1455 | else |
| 1456 | { |
| 1457 | if (gimple_code (g: stmt) == GIMPLE_PHI) |
| 1458 | { |
| 1459 | unsigned int i; |
| 1460 | enum thread_memory_type mem; |
| 1461 | tree phi_result = gimple_phi_result (gs: stmt); |
| 1462 | |
| 1463 | /* If any of the ancestors are non-local, we are sure to |
| 1464 | be non-local. Otherwise we can avoid doing anything |
| 1465 | and inherit what has already been generated. */ |
| 1466 | retval = mem_max; |
| 1467 | for (i = 0; i < gimple_phi_num_args (gs: stmt); ++i) |
| 1468 | { |
| 1469 | tree op = PHI_ARG_DEF (stmt, i); |
| 1470 | |
| 1471 | /* Exclude self-assignment. */ |
| 1472 | if (phi_result == op) |
| 1473 | continue; |
| 1474 | |
| 1475 | mem = thread_private_new_memory (entry_block, x: op); |
| 1476 | if (mem == mem_non_local) |
| 1477 | { |
| 1478 | retval = mem; |
| 1479 | goto new_memory_ret; |
| 1480 | } |
| 1481 | retval = MIN (retval, mem); |
| 1482 | } |
| 1483 | goto new_memory_ret; |
| 1484 | } |
| 1485 | break; |
| 1486 | } |
| 1487 | } |
| 1488 | while (TREE_CODE (x) == SSA_NAME); |
| 1489 | |
| 1490 | if (stmt && is_gimple_call (gs: stmt) && gimple_call_flags (stmt) & ECF_MALLOC) |
| 1491 | /* Thread-local or transaction-local. */ |
| 1492 | ; |
| 1493 | else |
| 1494 | retval = mem_non_local; |
| 1495 | |
| 1496 | new_memory_ret: |
| 1497 | elt_p->local_new_memory = retval; |
| 1498 | return retval; |
| 1499 | } |
| 1500 | |
| 1501 | /* Determine whether X has to be instrumented using a read |
| 1502 | or write barrier. |
| 1503 | |
| 1504 | ENTRY_BLOCK is the entry block for the region where stmt resides |
| 1505 | in. NULL if unknown. |
| 1506 | |
| 1507 | STMT is the statement in which X occurs in. It is used for thread |
| 1508 | private memory instrumentation. If no TPM instrumentation is |
| 1509 | desired, STMT should be null. */ |
| 1510 | static bool |
| 1511 | requires_barrier (basic_block entry_block, tree x, gimple *stmt) |
| 1512 | { |
| 1513 | tree orig = x; |
| 1514 | while (handled_component_p (t: x)) |
| 1515 | x = TREE_OPERAND (x, 0); |
| 1516 | |
| 1517 | switch (TREE_CODE (x)) |
| 1518 | { |
| 1519 | case INDIRECT_REF: |
| 1520 | case MEM_REF: |
| 1521 | { |
| 1522 | enum thread_memory_type ret; |
| 1523 | |
| 1524 | ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0)); |
| 1525 | if (ret == mem_non_local) |
| 1526 | return true; |
| 1527 | if (stmt && ret == mem_thread_local) |
| 1528 | /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */ |
| 1529 | tm_log_add (entry_block, addr: orig, stmt); |
| 1530 | |
| 1531 | /* Transaction-locals require nothing at all. For malloc, a |
| 1532 | transaction restart frees the memory and we reallocate. |
| 1533 | For alloca, the stack pointer gets reset by the retry and |
| 1534 | we reallocate. */ |
| 1535 | return false; |
| 1536 | } |
| 1537 | |
| 1538 | case TARGET_MEM_REF: |
| 1539 | if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR) |
| 1540 | return true; |
| 1541 | x = TREE_OPERAND (TMR_BASE (x), 0); |
| 1542 | if (TREE_CODE (x) == PARM_DECL) |
| 1543 | return false; |
| 1544 | gcc_assert (VAR_P (x)); |
| 1545 | /* FALLTHRU */ |
| 1546 | |
| 1547 | case PARM_DECL: |
| 1548 | case RESULT_DECL: |
| 1549 | case VAR_DECL: |
| 1550 | if (DECL_BY_REFERENCE (x)) |
| 1551 | { |
| 1552 | /* ??? This value is a pointer, but aggregate_value_p has been |
| 1553 | jigged to return true which confuses needs_to_live_in_memory. |
| 1554 | This ought to be cleaned up generically. |
| 1555 | |
| 1556 | FIXME: Verify this still happens after the next mainline |
| 1557 | merge. Testcase ie g++.dg/tm/pr47554.C. |
| 1558 | */ |
| 1559 | return false; |
| 1560 | } |
| 1561 | |
| 1562 | if (is_global_var (t: x)) |
| 1563 | return !TREE_READONLY (x); |
| 1564 | if (/* FIXME: This condition should actually go below in the |
| 1565 | tm_log_add() call, however is_call_clobbered() depends on |
| 1566 | aliasing info which is not available during |
| 1567 | gimplification. Since requires_barrier() gets called |
| 1568 | during lower_sequence_tm/gimplification, leave the call |
| 1569 | to needs_to_live_in_memory until we eliminate |
| 1570 | lower_sequence_tm altogether. */ |
| 1571 | needs_to_live_in_memory (x)) |
| 1572 | return true; |
| 1573 | else |
| 1574 | { |
| 1575 | /* For local memory that doesn't escape (aka thread private |
| 1576 | memory), we can either save the value at the beginning of |
| 1577 | the transaction and restore on restart, or call a tm |
| 1578 | function to dynamically save and restore on restart |
| 1579 | (ITM_L*). */ |
| 1580 | if (stmt) |
| 1581 | tm_log_add (entry_block, addr: orig, stmt); |
| 1582 | return false; |
| 1583 | } |
| 1584 | |
| 1585 | default: |
| 1586 | return false; |
| 1587 | } |
| 1588 | } |
| 1589 | |
| 1590 | /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside |
| 1591 | a transaction region. */ |
| 1592 | |
| 1593 | static void |
| 1594 | examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi) |
| 1595 | { |
| 1596 | gimple *stmt = gsi_stmt (i: *gsi); |
| 1597 | |
| 1598 | if (requires_barrier (/*entry_block=*/NULL, x: gimple_assign_rhs1 (gs: stmt), NULL)) |
| 1599 | *state |= GTMA_HAVE_LOAD; |
| 1600 | if (requires_barrier (/*entry_block=*/NULL, x: gimple_assign_lhs (gs: stmt), NULL)) |
| 1601 | *state |= GTMA_HAVE_STORE; |
| 1602 | } |
| 1603 | |
| 1604 | /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */ |
| 1605 | |
| 1606 | static void |
| 1607 | examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi) |
| 1608 | { |
| 1609 | gimple *stmt = gsi_stmt (i: *gsi); |
| 1610 | tree fn; |
| 1611 | |
| 1612 | if (is_tm_pure_call (call: stmt)) |
| 1613 | return; |
| 1614 | |
| 1615 | /* Check if this call is a transaction abort. */ |
| 1616 | fn = gimple_call_fndecl (gs: stmt); |
| 1617 | if (is_tm_abort (fndecl: fn)) |
| 1618 | *state |= GTMA_HAVE_ABORT; |
| 1619 | |
| 1620 | /* Note that something may happen. */ |
| 1621 | *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE; |
| 1622 | } |
| 1623 | |
| 1624 | /* Iterate through the statements in the sequence, moving labels |
| 1625 | (and thus edges) of transactions from "label_norm" to "label_uninst". */ |
| 1626 | |
| 1627 | static tree |
| 1628 | make_tm_uninst (gimple_stmt_iterator *gsi, bool *handled_ops_p, |
| 1629 | struct walk_stmt_info *) |
| 1630 | { |
| 1631 | gimple *stmt = gsi_stmt (i: *gsi); |
| 1632 | |
| 1633 | if (gtransaction *txn = dyn_cast <gtransaction *> (p: stmt)) |
| 1634 | { |
| 1635 | *handled_ops_p = true; |
| 1636 | txn->label_uninst = txn->label_norm; |
| 1637 | txn->label_norm = NULL; |
| 1638 | } |
| 1639 | else |
| 1640 | *handled_ops_p = !gimple_has_substatements (g: stmt); |
| 1641 | |
| 1642 | return NULL_TREE; |
| 1643 | } |
| 1644 | |
| 1645 | /* Lower a GIMPLE_TRANSACTION statement. */ |
| 1646 | |
| 1647 | static void |
| 1648 | lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi) |
| 1649 | { |
| 1650 | gimple *g; |
| 1651 | gtransaction *stmt = as_a <gtransaction *> (p: gsi_stmt (i: *gsi)); |
| 1652 | unsigned int *outer_state = (unsigned int *) wi->info; |
| 1653 | unsigned int this_state = 0; |
| 1654 | struct walk_stmt_info this_wi; |
| 1655 | |
| 1656 | /* First, lower the body. The scanning that we do inside gives |
| 1657 | us some idea of what we're dealing with. */ |
| 1658 | memset (s: &this_wi, c: 0, n: sizeof (this_wi)); |
| 1659 | this_wi.info = (void *) &this_state; |
| 1660 | walk_gimple_seq_mod (gimple_transaction_body_ptr (transaction_stmt: stmt), |
| 1661 | lower_sequence_tm, NULL, &this_wi); |
| 1662 | |
| 1663 | /* If there was absolutely nothing transaction related inside the |
| 1664 | transaction, we may elide it. Likewise if this is a nested |
| 1665 | transaction and does not contain an abort. */ |
| 1666 | if (this_state == 0 |
| 1667 | || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL)) |
| 1668 | { |
| 1669 | if (outer_state) |
| 1670 | *outer_state |= this_state; |
| 1671 | |
| 1672 | gsi_insert_seq_before (gsi, gimple_transaction_body (transaction_stmt: stmt), |
| 1673 | GSI_SAME_STMT); |
| 1674 | gimple_transaction_set_body (transaction_stmt: stmt, NULL); |
| 1675 | |
| 1676 | gsi_remove (gsi, true); |
| 1677 | wi->removed_stmt = true; |
| 1678 | return; |
| 1679 | } |
| 1680 | |
| 1681 | /* Wrap the body of the transaction in a try-finally node so that |
| 1682 | the commit call is always properly called. */ |
| 1683 | g = gimple_build_call (builtin_decl_explicit (fncode: BUILT_IN_TM_COMMIT), 0); |
| 1684 | if (flag_exceptions) |
| 1685 | { |
| 1686 | tree ptr; |
| 1687 | gimple_seq n_seq, e_seq; |
| 1688 | |
| 1689 | n_seq = gimple_seq_alloc_with_stmt (stmt: g); |
| 1690 | e_seq = NULL; |
| 1691 | |
| 1692 | g = gimple_build_call (builtin_decl_explicit (fncode: BUILT_IN_EH_POINTER), |
| 1693 | 1, integer_zero_node); |
| 1694 | ptr = create_tmp_var (ptr_type_node); |
| 1695 | gimple_call_set_lhs (gs: g, lhs: ptr); |
| 1696 | gimple_seq_add_stmt (&e_seq, g); |
| 1697 | |
| 1698 | g = gimple_build_call (builtin_decl_explicit (fncode: BUILT_IN_TM_COMMIT_EH), |
| 1699 | 1, ptr); |
| 1700 | gimple_seq_add_stmt (&e_seq, g); |
| 1701 | |
| 1702 | g = gimple_build_eh_else (n_seq, e_seq); |
| 1703 | } |
| 1704 | |
| 1705 | g = gimple_build_try (gimple_transaction_body (transaction_stmt: stmt), |
| 1706 | gimple_seq_alloc_with_stmt (stmt: g), GIMPLE_TRY_FINALLY); |
| 1707 | |
| 1708 | /* For a (potentially) outer transaction, create two paths. */ |
| 1709 | gimple_seq uninst = NULL; |
| 1710 | if (outer_state == NULL) |
| 1711 | { |
| 1712 | uninst = copy_gimple_seq_and_replace_locals (seq: g); |
| 1713 | /* In the uninstrumented copy, reset inner transactions to have only |
| 1714 | an uninstrumented code path. */ |
| 1715 | memset (s: &this_wi, c: 0, n: sizeof (this_wi)); |
| 1716 | walk_gimple_seq (uninst, make_tm_uninst, NULL, &this_wi); |
| 1717 | } |
| 1718 | |
| 1719 | tree label1 = create_artificial_label (UNKNOWN_LOCATION); |
| 1720 | gsi_insert_after (gsi, gimple_build_label (label: label1), GSI_CONTINUE_LINKING); |
| 1721 | gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING); |
| 1722 | gimple_transaction_set_label_norm (transaction_stmt: stmt, label: label1); |
| 1723 | |
| 1724 | /* If the transaction calls abort or if this is an outer transaction, |
| 1725 | add an "over" label afterwards. */ |
| 1726 | tree label3 = NULL; |
| 1727 | if ((this_state & GTMA_HAVE_ABORT) |
| 1728 | || outer_state == NULL |
| 1729 | || (gimple_transaction_subcode (transaction_stmt: stmt) & GTMA_IS_OUTER)) |
| 1730 | { |
| 1731 | label3 = create_artificial_label (UNKNOWN_LOCATION); |
| 1732 | gimple_transaction_set_label_over (transaction_stmt: stmt, label: label3); |
| 1733 | } |
| 1734 | |
| 1735 | if (uninst != NULL) |
| 1736 | { |
| 1737 | gsi_insert_after (gsi, gimple_build_goto (dest: label3), GSI_CONTINUE_LINKING); |
| 1738 | |
| 1739 | tree label2 = create_artificial_label (UNKNOWN_LOCATION); |
| 1740 | gsi_insert_after (gsi, gimple_build_label (label: label2), GSI_CONTINUE_LINKING); |
| 1741 | gsi_insert_seq_after (gsi, uninst, GSI_CONTINUE_LINKING); |
| 1742 | gimple_transaction_set_label_uninst (transaction_stmt: stmt, label: label2); |
| 1743 | } |
| 1744 | |
| 1745 | if (label3 != NULL) |
| 1746 | gsi_insert_after (gsi, gimple_build_label (label: label3), GSI_CONTINUE_LINKING); |
| 1747 | |
| 1748 | gimple_transaction_set_body (transaction_stmt: stmt, NULL); |
| 1749 | |
| 1750 | /* Record the set of operations found for use later. */ |
| 1751 | this_state |= gimple_transaction_subcode (transaction_stmt: stmt) & GTMA_DECLARATION_MASK; |
| 1752 | gimple_transaction_set_subcode (transaction_stmt: stmt, subcode: this_state); |
| 1753 | } |
| 1754 | |
| 1755 | /* Iterate through the statements in the sequence, lowering them all |
| 1756 | as appropriate for being in a transaction. */ |
| 1757 | |
| 1758 | static tree |
| 1759 | lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p, |
| 1760 | struct walk_stmt_info *wi) |
| 1761 | { |
| 1762 | unsigned int *state = (unsigned int *) wi->info; |
| 1763 | gimple *stmt = gsi_stmt (i: *gsi); |
| 1764 | |
| 1765 | *handled_ops_p = true; |
| 1766 | switch (gimple_code (g: stmt)) |
| 1767 | { |
| 1768 | case GIMPLE_ASSIGN: |
| 1769 | /* Only memory reads/writes need to be instrumented. */ |
| 1770 | if (gimple_assign_single_p (gs: stmt)) |
| 1771 | examine_assign_tm (state, gsi); |
| 1772 | break; |
| 1773 | |
| 1774 | case GIMPLE_CALL: |
| 1775 | examine_call_tm (state, gsi); |
| 1776 | break; |
| 1777 | |
| 1778 | case GIMPLE_ASM: |
| 1779 | *state |= GTMA_MAY_ENTER_IRREVOCABLE; |
| 1780 | break; |
| 1781 | |
| 1782 | case GIMPLE_TRANSACTION: |
| 1783 | lower_transaction (gsi, wi); |
| 1784 | break; |
| 1785 | |
| 1786 | default: |
| 1787 | *handled_ops_p = !gimple_has_substatements (g: stmt); |
| 1788 | break; |
| 1789 | } |
| 1790 | |
| 1791 | return NULL_TREE; |
| 1792 | } |
| 1793 | |
| 1794 | /* Iterate through the statements in the sequence, lowering them all |
| 1795 | as appropriate for being outside of a transaction. */ |
| 1796 | |
| 1797 | static tree |
| 1798 | lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p, |
| 1799 | struct walk_stmt_info * wi) |
| 1800 | { |
| 1801 | gimple *stmt = gsi_stmt (i: *gsi); |
| 1802 | |
| 1803 | if (gimple_code (g: stmt) == GIMPLE_TRANSACTION) |
| 1804 | { |
| 1805 | *handled_ops_p = true; |
| 1806 | lower_transaction (gsi, wi); |
| 1807 | } |
| 1808 | else |
| 1809 | *handled_ops_p = !gimple_has_substatements (g: stmt); |
| 1810 | |
| 1811 | return NULL_TREE; |
| 1812 | } |
| 1813 | |
| 1814 | /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After |
| 1815 | this, GIMPLE_TRANSACTION nodes still exist, but the nested body has |
| 1816 | been moved out, and all the data required for constructing a proper |
| 1817 | CFG has been recorded. */ |
| 1818 | |
| 1819 | static unsigned int |
| 1820 | execute_lower_tm (void) |
| 1821 | { |
| 1822 | struct walk_stmt_info wi; |
| 1823 | gimple_seq body; |
| 1824 | |
| 1825 | /* Transactional clones aren't created until a later pass. */ |
| 1826 | gcc_assert (!decl_is_tm_clone (current_function_decl)); |
| 1827 | |
| 1828 | body = gimple_body (current_function_decl); |
| 1829 | memset (s: &wi, c: 0, n: sizeof (wi)); |
| 1830 | walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi); |
| 1831 | gimple_set_body (current_function_decl, body); |
| 1832 | |
| 1833 | return 0; |
| 1834 | } |
| 1835 | |
| 1836 | namespace { |
| 1837 | |
| 1838 | const pass_data pass_data_lower_tm = |
| 1839 | { |
| 1840 | .type: GIMPLE_PASS, /* type */ |
| 1841 | .name: "tmlower" , /* name */ |
| 1842 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 1843 | .tv_id: TV_TRANS_MEM, /* tv_id */ |
| 1844 | PROP_gimple_lcf, /* properties_required */ |
| 1845 | .properties_provided: 0, /* properties_provided */ |
| 1846 | .properties_destroyed: 0, /* properties_destroyed */ |
| 1847 | .todo_flags_start: 0, /* todo_flags_start */ |
| 1848 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 1849 | }; |
| 1850 | |
| 1851 | class pass_lower_tm : public gimple_opt_pass |
| 1852 | { |
| 1853 | public: |
| 1854 | pass_lower_tm (gcc::context *ctxt) |
| 1855 | : gimple_opt_pass (pass_data_lower_tm, ctxt) |
| 1856 | {} |
| 1857 | |
| 1858 | /* opt_pass methods: */ |
| 1859 | bool gate (function *) final override { return flag_tm; } |
| 1860 | unsigned int execute (function *) final override |
| 1861 | { |
| 1862 | return execute_lower_tm (); |
| 1863 | } |
| 1864 | |
| 1865 | }; // class pass_lower_tm |
| 1866 | |
| 1867 | } // anon namespace |
| 1868 | |
| 1869 | gimple_opt_pass * |
| 1870 | make_pass_lower_tm (gcc::context *ctxt) |
| 1871 | { |
| 1872 | return new pass_lower_tm (ctxt); |
| 1873 | } |
| 1874 | |
| 1875 | /* Collect region information for each transaction. */ |
| 1876 | |
| 1877 | struct tm_region |
| 1878 | { |
| 1879 | public: |
| 1880 | |
| 1881 | /* The field "transaction_stmt" is initially a gtransaction *, |
| 1882 | but eventually gets lowered to a gcall *(to BUILT_IN_TM_START). |
| 1883 | |
| 1884 | Helper method to get it as a gtransaction *, with code-checking |
| 1885 | in a checked-build. */ |
| 1886 | |
| 1887 | gtransaction * |
| 1888 | get_transaction_stmt () const |
| 1889 | { |
| 1890 | return as_a <gtransaction *> (p: transaction_stmt); |
| 1891 | } |
| 1892 | |
| 1893 | public: |
| 1894 | |
| 1895 | /* Link to the next unnested transaction. */ |
| 1896 | struct tm_region *next; |
| 1897 | |
| 1898 | /* Link to the next inner transaction. */ |
| 1899 | struct tm_region *inner; |
| 1900 | |
| 1901 | /* Link to the next outer transaction. */ |
| 1902 | struct tm_region *outer; |
| 1903 | |
| 1904 | /* The GIMPLE_TRANSACTION statement beginning this transaction. |
| 1905 | After TM_MARK, this gets replaced by a call to |
| 1906 | BUILT_IN_TM_START. |
| 1907 | Hence this will be either a gtransaction *or a gcall *. */ |
| 1908 | gimple *transaction_stmt; |
| 1909 | |
| 1910 | /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to |
| 1911 | BUILT_IN_TM_START, this field is true if the transaction is an |
| 1912 | outer transaction. */ |
| 1913 | bool original_transaction_was_outer; |
| 1914 | |
| 1915 | /* Return value from BUILT_IN_TM_START. */ |
| 1916 | tree tm_state; |
| 1917 | |
| 1918 | /* The entry block to this region. This will always be the first |
| 1919 | block of the body of the transaction. */ |
| 1920 | basic_block entry_block; |
| 1921 | |
| 1922 | /* The first block after an expanded call to _ITM_beginTransaction. */ |
| 1923 | basic_block restart_block; |
| 1924 | |
| 1925 | /* The set of all blocks that end the region; NULL if only EXIT_BLOCK. |
| 1926 | These blocks are still a part of the region (i.e., the border is |
| 1927 | inclusive). Note that this set is only complete for paths in the CFG |
| 1928 | starting at ENTRY_BLOCK, and that there is no exit block recorded for |
| 1929 | the edge to the "over" label. */ |
| 1930 | bitmap exit_blocks; |
| 1931 | |
| 1932 | /* The set of all blocks that have an TM_IRREVOCABLE call. */ |
| 1933 | bitmap irr_blocks; |
| 1934 | }; |
| 1935 | |
| 1936 | /* True if there are pending edge statements to be committed for the |
| 1937 | current function being scanned in the tmmark pass. */ |
| 1938 | bool pending_edge_inserts_p; |
| 1939 | |
| 1940 | static struct tm_region *all_tm_regions; |
| 1941 | static bitmap_obstack tm_obstack; |
| 1942 | |
| 1943 | |
| 1944 | /* A subroutine of tm_region_init. Record the existence of the |
| 1945 | GIMPLE_TRANSACTION statement in a tree of tm_region elements. */ |
| 1946 | |
| 1947 | static struct tm_region * |
| 1948 | tm_region_init_0 (struct tm_region *outer, basic_block bb, |
| 1949 | gtransaction *stmt) |
| 1950 | { |
| 1951 | struct tm_region *region; |
| 1952 | |
| 1953 | region = (struct tm_region *) |
| 1954 | obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region)); |
| 1955 | |
| 1956 | if (outer) |
| 1957 | { |
| 1958 | region->next = outer->inner; |
| 1959 | outer->inner = region; |
| 1960 | } |
| 1961 | else |
| 1962 | { |
| 1963 | region->next = all_tm_regions; |
| 1964 | all_tm_regions = region; |
| 1965 | } |
| 1966 | region->inner = NULL; |
| 1967 | region->outer = outer; |
| 1968 | |
| 1969 | region->transaction_stmt = stmt; |
| 1970 | region->original_transaction_was_outer = false; |
| 1971 | region->tm_state = NULL; |
| 1972 | |
| 1973 | /* There are either one or two edges out of the block containing |
| 1974 | the GIMPLE_TRANSACTION, one to the actual region and one to the |
| 1975 | "over" label if the region contains an abort. The former will |
| 1976 | always be the one marked FALLTHRU. */ |
| 1977 | region->entry_block = FALLTHRU_EDGE (bb)->dest; |
| 1978 | |
| 1979 | region->exit_blocks = BITMAP_ALLOC (obstack: &tm_obstack); |
| 1980 | region->irr_blocks = BITMAP_ALLOC (obstack: &tm_obstack); |
| 1981 | |
| 1982 | return region; |
| 1983 | } |
| 1984 | |
| 1985 | /* A subroutine of tm_region_init. Record all the exit and |
| 1986 | irrevocable blocks in BB into the region's exit_blocks and |
| 1987 | irr_blocks bitmaps. Returns the new region being scanned. */ |
| 1988 | |
| 1989 | static struct tm_region * |
| 1990 | tm_region_init_1 (struct tm_region *region, basic_block bb) |
| 1991 | { |
| 1992 | gimple_stmt_iterator gsi; |
| 1993 | gimple *g; |
| 1994 | |
| 1995 | if (!region |
| 1996 | || (!region->irr_blocks && !region->exit_blocks)) |
| 1997 | return region; |
| 1998 | |
| 1999 | /* Check to see if this is the end of a region by seeing if it |
| 2000 | contains a call to __builtin_tm_commit{,_eh}. Note that the |
| 2001 | outermost region for DECL_IS_TM_CLONE need not collect this. */ |
| 2002 | for (gsi = gsi_last_bb (bb); !gsi_end_p (i: gsi); gsi_prev (i: &gsi)) |
| 2003 | { |
| 2004 | g = gsi_stmt (i: gsi); |
| 2005 | if (gimple_code (g) == GIMPLE_CALL) |
| 2006 | { |
| 2007 | tree fn = gimple_call_fndecl (gs: g); |
| 2008 | if (fn && fndecl_built_in_p (node: fn, klass: BUILT_IN_NORMAL)) |
| 2009 | { |
| 2010 | if ((DECL_FUNCTION_CODE (decl: fn) == BUILT_IN_TM_COMMIT |
| 2011 | || DECL_FUNCTION_CODE (decl: fn) == BUILT_IN_TM_COMMIT_EH) |
| 2012 | && region->exit_blocks) |
| 2013 | { |
| 2014 | bitmap_set_bit (region->exit_blocks, bb->index); |
| 2015 | region = region->outer; |
| 2016 | break; |
| 2017 | } |
| 2018 | if (DECL_FUNCTION_CODE (decl: fn) == BUILT_IN_TM_IRREVOCABLE) |
| 2019 | bitmap_set_bit (region->irr_blocks, bb->index); |
| 2020 | } |
| 2021 | } |
| 2022 | } |
| 2023 | return region; |
| 2024 | } |
| 2025 | |
| 2026 | /* Collect all of the transaction regions within the current function |
| 2027 | and record them in ALL_TM_REGIONS. The REGION parameter may specify |
| 2028 | an "outermost" region for use by tm clones. */ |
| 2029 | |
| 2030 | static void |
| 2031 | tm_region_init (struct tm_region *region) |
| 2032 | { |
| 2033 | gimple *g; |
| 2034 | edge_iterator ei; |
| 2035 | edge e; |
| 2036 | basic_block bb; |
| 2037 | auto_vec<basic_block> queue; |
| 2038 | bitmap visited_blocks = BITMAP_ALLOC (NULL); |
| 2039 | struct tm_region *old_region; |
| 2040 | auto_vec<tm_region *> bb_regions; |
| 2041 | |
| 2042 | /* We could store this information in bb->aux, but we may get called |
| 2043 | through get_all_tm_blocks() from another pass that may be already |
| 2044 | using bb->aux. */ |
| 2045 | bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun), exact: true); |
| 2046 | |
| 2047 | all_tm_regions = region; |
| 2048 | bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); |
| 2049 | queue.safe_push (obj: bb); |
| 2050 | bitmap_set_bit (visited_blocks, bb->index); |
| 2051 | bb_regions[bb->index] = region; |
| 2052 | |
| 2053 | do |
| 2054 | { |
| 2055 | bb = queue.pop (); |
| 2056 | region = bb_regions[bb->index]; |
| 2057 | bb_regions[bb->index] = NULL; |
| 2058 | |
| 2059 | /* Record exit and irrevocable blocks. */ |
| 2060 | region = tm_region_init_1 (region, bb); |
| 2061 | |
| 2062 | /* Check for the last statement in the block beginning a new region. */ |
| 2063 | g = last_nondebug_stmt (bb); |
| 2064 | old_region = region; |
| 2065 | if (g) |
| 2066 | if (gtransaction *trans_stmt = dyn_cast <gtransaction *> (p: g)) |
| 2067 | region = tm_region_init_0 (outer: region, bb, stmt: trans_stmt); |
| 2068 | |
| 2069 | /* Process subsequent blocks. */ |
| 2070 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 2071 | if (!bitmap_bit_p (visited_blocks, e->dest->index)) |
| 2072 | { |
| 2073 | bitmap_set_bit (visited_blocks, e->dest->index); |
| 2074 | queue.safe_push (obj: e->dest); |
| 2075 | |
| 2076 | /* If the current block started a new region, make sure that only |
| 2077 | the entry block of the new region is associated with this region. |
| 2078 | Other successors are still part of the old region. */ |
| 2079 | if (old_region != region && e->dest != region->entry_block) |
| 2080 | bb_regions[e->dest->index] = old_region; |
| 2081 | else |
| 2082 | bb_regions[e->dest->index] = region; |
| 2083 | } |
| 2084 | } |
| 2085 | while (!queue.is_empty ()); |
| 2086 | BITMAP_FREE (visited_blocks); |
| 2087 | } |
| 2088 | |
| 2089 | /* The "gate" function for all transactional memory expansion and optimization |
| 2090 | passes. We collect region information for each top-level transaction, and |
| 2091 | if we don't find any, we skip all of the TM passes. Each region will have |
| 2092 | all of the exit blocks recorded, and the originating statement. */ |
| 2093 | |
| 2094 | static bool |
| 2095 | gate_tm_init (void) |
| 2096 | { |
| 2097 | if (!flag_tm) |
| 2098 | return false; |
| 2099 | |
| 2100 | calculate_dominance_info (CDI_DOMINATORS); |
| 2101 | bitmap_obstack_initialize (&tm_obstack); |
| 2102 | |
| 2103 | /* If the function is a TM_CLONE, then the entire function is the region. */ |
| 2104 | if (decl_is_tm_clone (fndecl: current_function_decl)) |
| 2105 | { |
| 2106 | struct tm_region *region = (struct tm_region *) |
| 2107 | obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region)); |
| 2108 | memset (s: region, c: 0, n: sizeof (*region)); |
| 2109 | region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)); |
| 2110 | /* For a clone, the entire function is the region. But even if |
| 2111 | we don't need to record any exit blocks, we may need to |
| 2112 | record irrevocable blocks. */ |
| 2113 | region->irr_blocks = BITMAP_ALLOC (obstack: &tm_obstack); |
| 2114 | |
| 2115 | tm_region_init (region); |
| 2116 | } |
| 2117 | else |
| 2118 | { |
| 2119 | tm_region_init (NULL); |
| 2120 | |
| 2121 | /* If we didn't find any regions, cleanup and skip the whole tree |
| 2122 | of tm-related optimizations. */ |
| 2123 | if (all_tm_regions == NULL) |
| 2124 | { |
| 2125 | bitmap_obstack_release (&tm_obstack); |
| 2126 | return false; |
| 2127 | } |
| 2128 | } |
| 2129 | |
| 2130 | return true; |
| 2131 | } |
| 2132 | |
| 2133 | namespace { |
| 2134 | |
| 2135 | const pass_data pass_data_tm_init = |
| 2136 | { |
| 2137 | .type: GIMPLE_PASS, /* type */ |
| 2138 | .name: "*tminit" , /* name */ |
| 2139 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 2140 | .tv_id: TV_TRANS_MEM, /* tv_id */ |
| 2141 | .properties_required: ( PROP_ssa | PROP_cfg ), /* properties_required */ |
| 2142 | .properties_provided: 0, /* properties_provided */ |
| 2143 | .properties_destroyed: 0, /* properties_destroyed */ |
| 2144 | .todo_flags_start: 0, /* todo_flags_start */ |
| 2145 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 2146 | }; |
| 2147 | |
| 2148 | class pass_tm_init : public gimple_opt_pass |
| 2149 | { |
| 2150 | public: |
| 2151 | pass_tm_init (gcc::context *ctxt) |
| 2152 | : gimple_opt_pass (pass_data_tm_init, ctxt) |
| 2153 | {} |
| 2154 | |
| 2155 | /* opt_pass methods: */ |
| 2156 | bool gate (function *) final override { return gate_tm_init (); } |
| 2157 | |
| 2158 | }; // class pass_tm_init |
| 2159 | |
| 2160 | } // anon namespace |
| 2161 | |
| 2162 | gimple_opt_pass * |
| 2163 | make_pass_tm_init (gcc::context *ctxt) |
| 2164 | { |
| 2165 | return new pass_tm_init (ctxt); |
| 2166 | } |
| 2167 | |
| 2168 | /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region |
| 2169 | represented by STATE. */ |
| 2170 | |
| 2171 | static inline void |
| 2172 | transaction_subcode_ior (struct tm_region *region, unsigned flags) |
| 2173 | { |
| 2174 | if (region && region->transaction_stmt) |
| 2175 | { |
| 2176 | gtransaction *transaction_stmt = region->get_transaction_stmt (); |
| 2177 | flags |= gimple_transaction_subcode (transaction_stmt); |
| 2178 | gimple_transaction_set_subcode (transaction_stmt, subcode: flags); |
| 2179 | } |
| 2180 | } |
| 2181 | |
| 2182 | /* Construct a memory load in a transactional context. Return the |
| 2183 | gimple statement performing the load, or NULL if there is no |
| 2184 | TM_LOAD builtin of the appropriate size to do the load. |
| 2185 | |
| 2186 | LOC is the location to use for the new statement(s). */ |
| 2187 | |
| 2188 | static gcall * |
| 2189 | build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi) |
| 2190 | { |
| 2191 | tree t, type = TREE_TYPE (rhs); |
| 2192 | gcall *gcall; |
| 2193 | |
| 2194 | built_in_function code; |
| 2195 | if (type == float_type_node) |
| 2196 | code = BUILT_IN_TM_LOAD_FLOAT; |
| 2197 | else if (type == double_type_node) |
| 2198 | code = BUILT_IN_TM_LOAD_DOUBLE; |
| 2199 | else if (type == long_double_type_node) |
| 2200 | code = BUILT_IN_TM_LOAD_LDOUBLE; |
| 2201 | else |
| 2202 | { |
| 2203 | if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type))) |
| 2204 | return NULL; |
| 2205 | unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type)); |
| 2206 | |
| 2207 | if (TREE_CODE (type) == VECTOR_TYPE) |
| 2208 | { |
| 2209 | switch (type_size) |
| 2210 | { |
| 2211 | case 64: |
| 2212 | code = BUILT_IN_TM_LOAD_M64; |
| 2213 | break; |
| 2214 | case 128: |
| 2215 | code = BUILT_IN_TM_LOAD_M128; |
| 2216 | break; |
| 2217 | case 256: |
| 2218 | code = BUILT_IN_TM_LOAD_M256; |
| 2219 | break; |
| 2220 | default: |
| 2221 | goto unhandled_vec; |
| 2222 | } |
| 2223 | if (!builtin_decl_explicit_p (fncode: code)) |
| 2224 | goto unhandled_vec; |
| 2225 | } |
| 2226 | else |
| 2227 | { |
| 2228 | unhandled_vec: |
| 2229 | switch (type_size) |
| 2230 | { |
| 2231 | case 8: |
| 2232 | code = BUILT_IN_TM_LOAD_1; |
| 2233 | break; |
| 2234 | case 16: |
| 2235 | code = BUILT_IN_TM_LOAD_2; |
| 2236 | break; |
| 2237 | case 32: |
| 2238 | code = BUILT_IN_TM_LOAD_4; |
| 2239 | break; |
| 2240 | case 64: |
| 2241 | code = BUILT_IN_TM_LOAD_8; |
| 2242 | break; |
| 2243 | default: |
| 2244 | return NULL; |
| 2245 | } |
| 2246 | } |
| 2247 | } |
| 2248 | |
| 2249 | tree decl = builtin_decl_explicit (fncode: code); |
| 2250 | gcc_assert (decl); |
| 2251 | |
| 2252 | t = gimplify_addr (gsi, x: rhs); |
| 2253 | gcall = gimple_build_call (decl, 1, t); |
| 2254 | gimple_set_location (g: gcall, location: loc); |
| 2255 | |
| 2256 | t = TREE_TYPE (TREE_TYPE (decl)); |
| 2257 | if (useless_type_conversion_p (type, t)) |
| 2258 | { |
| 2259 | gimple_call_set_lhs (gs: gcall, lhs); |
| 2260 | gsi_insert_before (gsi, gcall, GSI_SAME_STMT); |
| 2261 | } |
| 2262 | else |
| 2263 | { |
| 2264 | gimple *g; |
| 2265 | tree temp; |
| 2266 | |
| 2267 | temp = create_tmp_reg (t); |
| 2268 | gimple_call_set_lhs (gs: gcall, lhs: temp); |
| 2269 | gsi_insert_before (gsi, gcall, GSI_SAME_STMT); |
| 2270 | |
| 2271 | t = fold_build1 (VIEW_CONVERT_EXPR, type, temp); |
| 2272 | g = gimple_build_assign (lhs, t); |
| 2273 | gsi_insert_before (gsi, g, GSI_SAME_STMT); |
| 2274 | } |
| 2275 | |
| 2276 | return gcall; |
| 2277 | } |
| 2278 | |
| 2279 | |
| 2280 | /* Similarly for storing TYPE in a transactional context. */ |
| 2281 | |
| 2282 | static gcall * |
| 2283 | build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi) |
| 2284 | { |
| 2285 | tree t, fn, type = TREE_TYPE (rhs), simple_type; |
| 2286 | gcall *gcall; |
| 2287 | |
| 2288 | built_in_function code; |
| 2289 | if (type == float_type_node) |
| 2290 | code = BUILT_IN_TM_STORE_FLOAT; |
| 2291 | else if (type == double_type_node) |
| 2292 | code = BUILT_IN_TM_STORE_DOUBLE; |
| 2293 | else if (type == long_double_type_node) |
| 2294 | code = BUILT_IN_TM_STORE_LDOUBLE; |
| 2295 | else |
| 2296 | { |
| 2297 | if (TYPE_SIZE (type) == NULL || !tree_fits_uhwi_p (TYPE_SIZE (type))) |
| 2298 | return NULL; |
| 2299 | unsigned HOST_WIDE_INT type_size = tree_to_uhwi (TYPE_SIZE (type)); |
| 2300 | |
| 2301 | if (TREE_CODE (type) == VECTOR_TYPE) |
| 2302 | { |
| 2303 | switch (type_size) |
| 2304 | { |
| 2305 | case 64: |
| 2306 | code = BUILT_IN_TM_STORE_M64; |
| 2307 | break; |
| 2308 | case 128: |
| 2309 | code = BUILT_IN_TM_STORE_M128; |
| 2310 | break; |
| 2311 | case 256: |
| 2312 | code = BUILT_IN_TM_STORE_M256; |
| 2313 | break; |
| 2314 | default: |
| 2315 | goto unhandled_vec; |
| 2316 | } |
| 2317 | if (!builtin_decl_explicit_p (fncode: code)) |
| 2318 | goto unhandled_vec; |
| 2319 | } |
| 2320 | else |
| 2321 | { |
| 2322 | unhandled_vec: |
| 2323 | switch (type_size) |
| 2324 | { |
| 2325 | case 8: |
| 2326 | code = BUILT_IN_TM_STORE_1; |
| 2327 | break; |
| 2328 | case 16: |
| 2329 | code = BUILT_IN_TM_STORE_2; |
| 2330 | break; |
| 2331 | case 32: |
| 2332 | code = BUILT_IN_TM_STORE_4; |
| 2333 | break; |
| 2334 | case 64: |
| 2335 | code = BUILT_IN_TM_STORE_8; |
| 2336 | break; |
| 2337 | default: |
| 2338 | return NULL; |
| 2339 | } |
| 2340 | } |
| 2341 | } |
| 2342 | |
| 2343 | fn = builtin_decl_explicit (fncode: code); |
| 2344 | gcc_assert (fn); |
| 2345 | |
| 2346 | simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn)))); |
| 2347 | |
| 2348 | if (TREE_CODE (rhs) == CONSTRUCTOR) |
| 2349 | { |
| 2350 | /* Handle the easy initialization to zero. */ |
| 2351 | if (!CONSTRUCTOR_ELTS (rhs)) |
| 2352 | rhs = build_int_cst (simple_type, 0); |
| 2353 | else |
| 2354 | { |
| 2355 | /* ...otherwise punt to the caller and probably use |
| 2356 | BUILT_IN_TM_MEMMOVE, because we can't wrap a |
| 2357 | VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce |
| 2358 | valid gimple. */ |
| 2359 | return NULL; |
| 2360 | } |
| 2361 | } |
| 2362 | else if (!useless_type_conversion_p (simple_type, type)) |
| 2363 | { |
| 2364 | gimple *g; |
| 2365 | tree temp; |
| 2366 | |
| 2367 | temp = create_tmp_reg (simple_type); |
| 2368 | t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs); |
| 2369 | g = gimple_build_assign (temp, t); |
| 2370 | gimple_set_location (g, location: loc); |
| 2371 | gsi_insert_before (gsi, g, GSI_SAME_STMT); |
| 2372 | |
| 2373 | rhs = temp; |
| 2374 | } |
| 2375 | |
| 2376 | t = gimplify_addr (gsi, x: lhs); |
| 2377 | gcall = gimple_build_call (fn, 2, t, rhs); |
| 2378 | gimple_set_location (g: gcall, location: loc); |
| 2379 | gsi_insert_before (gsi, gcall, GSI_SAME_STMT); |
| 2380 | |
| 2381 | return gcall; |
| 2382 | } |
| 2383 | |
| 2384 | |
| 2385 | /* Expand an assignment statement into transactional builtins. */ |
| 2386 | |
| 2387 | static void |
| 2388 | expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi) |
| 2389 | { |
| 2390 | gimple *stmt = gsi_stmt (i: *gsi); |
| 2391 | location_t loc = gimple_location (g: stmt); |
| 2392 | tree lhs = gimple_assign_lhs (gs: stmt); |
| 2393 | tree rhs = gimple_assign_rhs1 (gs: stmt); |
| 2394 | bool store_p = requires_barrier (entry_block: region->entry_block, x: lhs, NULL); |
| 2395 | bool load_p = requires_barrier (entry_block: region->entry_block, x: rhs, NULL); |
| 2396 | gimple *gcall = NULL; |
| 2397 | |
| 2398 | if (!load_p && !store_p) |
| 2399 | { |
| 2400 | /* Add thread private addresses to log if applicable. */ |
| 2401 | requires_barrier (entry_block: region->entry_block, x: lhs, stmt); |
| 2402 | gsi_next (i: gsi); |
| 2403 | return; |
| 2404 | } |
| 2405 | |
| 2406 | if (load_p) |
| 2407 | transaction_subcode_ior (region, GTMA_HAVE_LOAD); |
| 2408 | if (store_p) |
| 2409 | transaction_subcode_ior (region, GTMA_HAVE_STORE); |
| 2410 | |
| 2411 | // Remove original load/store statement. |
| 2412 | gsi_remove (gsi, true); |
| 2413 | |
| 2414 | // Attempt to use a simple load/store helper function. |
| 2415 | if (load_p && !store_p) |
| 2416 | gcall = build_tm_load (loc, lhs, rhs, gsi); |
| 2417 | else if (store_p && !load_p) |
| 2418 | gcall = build_tm_store (loc, lhs, rhs, gsi); |
| 2419 | |
| 2420 | // If gcall has not been set, then we do not have a simple helper |
| 2421 | // function available for the type. This may be true of larger |
| 2422 | // structures, vectors, and non-standard float types. |
| 2423 | if (!gcall) |
| 2424 | { |
| 2425 | tree lhs_addr, rhs_addr, ltmp = NULL, copy_fn; |
| 2426 | |
| 2427 | // If this is a type that we couldn't handle above, but it's |
| 2428 | // in a register, we must spill it to memory for the copy. |
| 2429 | if (is_gimple_reg (lhs)) |
| 2430 | { |
| 2431 | ltmp = create_tmp_var (TREE_TYPE (lhs)); |
| 2432 | lhs_addr = build_fold_addr_expr (ltmp); |
| 2433 | } |
| 2434 | else |
| 2435 | lhs_addr = gimplify_addr (gsi, x: lhs); |
| 2436 | if (is_gimple_reg (rhs)) |
| 2437 | { |
| 2438 | tree rtmp = create_tmp_var (TREE_TYPE (rhs)); |
| 2439 | TREE_ADDRESSABLE (rtmp) = 1; |
| 2440 | rhs_addr = build_fold_addr_expr (rtmp); |
| 2441 | gcall = gimple_build_assign (rtmp, rhs); |
| 2442 | gsi_insert_before (gsi, gcall, GSI_SAME_STMT); |
| 2443 | } |
| 2444 | else if (TREE_CODE (rhs) == CONSTRUCTOR |
| 2445 | && CONSTRUCTOR_NELTS (rhs) == 0) |
| 2446 | { |
| 2447 | /* Don't take address of an empty CONSTRUCTOR, it might not |
| 2448 | work for C++ non-POD constructors at all and otherwise |
| 2449 | would be inefficient. Use tm memset to clear lhs. */ |
| 2450 | gcc_assert (!load_p && store_p); |
| 2451 | rhs_addr = integer_zero_node; |
| 2452 | } |
| 2453 | else |
| 2454 | rhs_addr = gimplify_addr (gsi, x: rhs); |
| 2455 | |
| 2456 | // Choose the appropriate memory transfer function. |
| 2457 | if (store_p |
| 2458 | && TREE_CODE (rhs) == CONSTRUCTOR |
| 2459 | && CONSTRUCTOR_NELTS (rhs) == 0) |
| 2460 | copy_fn = builtin_decl_explicit (fncode: BUILT_IN_TM_MEMSET); |
| 2461 | else if (load_p && store_p) |
| 2462 | // ??? Figure out if there's any possible overlap between |
| 2463 | // the LHS and the RHS and if not, use MEMCPY. |
| 2464 | copy_fn = builtin_decl_explicit (fncode: BUILT_IN_TM_MEMMOVE); |
| 2465 | else if (load_p) |
| 2466 | // Note that the store is non-transactional and cannot overlap. |
| 2467 | copy_fn = builtin_decl_explicit (fncode: BUILT_IN_TM_MEMCPY_RTWN); |
| 2468 | else |
| 2469 | // Note that the load is non-transactional and cannot overlap. |
| 2470 | copy_fn = builtin_decl_explicit (fncode: BUILT_IN_TM_MEMCPY_RNWT); |
| 2471 | |
| 2472 | gcall = gimple_build_call (copy_fn, 3, lhs_addr, rhs_addr, |
| 2473 | TYPE_SIZE_UNIT (TREE_TYPE (lhs))); |
| 2474 | gimple_set_location (g: gcall, location: loc); |
| 2475 | gsi_insert_before (gsi, gcall, GSI_SAME_STMT); |
| 2476 | |
| 2477 | if (ltmp) |
| 2478 | { |
| 2479 | gcall = gimple_build_assign (lhs, ltmp); |
| 2480 | gsi_insert_before (gsi, gcall, GSI_SAME_STMT); |
| 2481 | } |
| 2482 | } |
| 2483 | |
| 2484 | // Now that we have the load/store in its instrumented form, add |
| 2485 | // thread private addresses to the log if applicable. |
| 2486 | if (!store_p) |
| 2487 | requires_barrier (entry_block: region->entry_block, x: lhs, stmt: gcall); |
| 2488 | } |
| 2489 | |
| 2490 | |
| 2491 | /* Expand a call statement as appropriate for a transaction. That is, |
| 2492 | either verify that the call does not affect the transaction, or |
| 2493 | redirect the call to a clone that handles transactions, or change |
| 2494 | the transaction state to IRREVOCABLE. Return true if the call is |
| 2495 | one of the builtins that end a transaction. */ |
| 2496 | |
| 2497 | static bool |
| 2498 | expand_call_tm (struct tm_region *region, |
| 2499 | gimple_stmt_iterator *gsi) |
| 2500 | { |
| 2501 | gcall *stmt = as_a <gcall *> (p: gsi_stmt (i: *gsi)); |
| 2502 | tree lhs = gimple_call_lhs (gs: stmt); |
| 2503 | tree fn_decl; |
| 2504 | struct cgraph_node *node; |
| 2505 | bool retval = false; |
| 2506 | |
| 2507 | fn_decl = gimple_call_fndecl (gs: stmt); |
| 2508 | |
| 2509 | if (fn_decl == builtin_decl_explicit (fncode: BUILT_IN_TM_MEMCPY) |
| 2510 | || fn_decl == builtin_decl_explicit (fncode: BUILT_IN_TM_MEMMOVE)) |
| 2511 | transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD); |
| 2512 | if (fn_decl == builtin_decl_explicit (fncode: BUILT_IN_TM_MEMSET)) |
| 2513 | transaction_subcode_ior (region, GTMA_HAVE_STORE); |
| 2514 | |
| 2515 | if (is_tm_pure_call (call: stmt)) |
| 2516 | return false; |
| 2517 | |
| 2518 | if (fn_decl) |
| 2519 | retval = is_tm_ending_fndecl (fndecl: fn_decl); |
| 2520 | if (!retval) |
| 2521 | { |
| 2522 | /* Assume all non-const/pure calls write to memory, except |
| 2523 | transaction ending builtins. */ |
| 2524 | transaction_subcode_ior (region, GTMA_HAVE_STORE); |
| 2525 | } |
| 2526 | |
| 2527 | /* For indirect calls, we already generated a call into the runtime. */ |
| 2528 | if (!fn_decl) |
| 2529 | { |
| 2530 | tree fn = gimple_call_fn (gs: stmt); |
| 2531 | |
| 2532 | /* We are guaranteed never to go irrevocable on a safe or pure |
| 2533 | call, and the pure call was handled above. */ |
| 2534 | if (is_tm_safe (x: fn)) |
| 2535 | return false; |
| 2536 | else |
| 2537 | transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE); |
| 2538 | |
| 2539 | return false; |
| 2540 | } |
| 2541 | |
| 2542 | node = cgraph_node::get (decl: fn_decl); |
| 2543 | /* All calls should have cgraph here. */ |
| 2544 | if (!node) |
| 2545 | { |
| 2546 | /* We can have a nodeless call here if some pass after IPA-tm |
| 2547 | added uninstrumented calls. For example, loop distribution |
| 2548 | can transform certain loop constructs into __builtin_mem* |
| 2549 | calls. In this case, see if we have a suitable TM |
| 2550 | replacement and fill in the gaps. */ |
| 2551 | gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL); |
| 2552 | enum built_in_function code = DECL_FUNCTION_CODE (decl: fn_decl); |
| 2553 | gcc_assert (code == BUILT_IN_MEMCPY |
| 2554 | || code == BUILT_IN_MEMMOVE |
| 2555 | || code == BUILT_IN_MEMSET); |
| 2556 | |
| 2557 | tree repl = find_tm_replacement_function (fndecl: fn_decl); |
| 2558 | if (repl) |
| 2559 | { |
| 2560 | gimple_call_set_fndecl (gs: stmt, decl: repl); |
| 2561 | update_stmt (s: stmt); |
| 2562 | node = cgraph_node::create (decl: repl); |
| 2563 | node->tm_may_enter_irr = false; |
| 2564 | return expand_call_tm (region, gsi); |
| 2565 | } |
| 2566 | gcc_unreachable (); |
| 2567 | } |
| 2568 | if (node->tm_may_enter_irr) |
| 2569 | transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE); |
| 2570 | |
| 2571 | if (is_tm_abort (fndecl: fn_decl)) |
| 2572 | { |
| 2573 | transaction_subcode_ior (region, GTMA_HAVE_ABORT); |
| 2574 | return true; |
| 2575 | } |
| 2576 | |
| 2577 | /* Instrument the store if needed. |
| 2578 | |
| 2579 | If the assignment happens inside the function call (return slot |
| 2580 | optimization), there is no instrumentation to be done, since |
| 2581 | the callee should have done the right thing. */ |
| 2582 | if (lhs && requires_barrier (entry_block: region->entry_block, x: lhs, stmt) |
| 2583 | && !gimple_call_return_slot_opt_p (s: stmt)) |
| 2584 | { |
| 2585 | tree tmp = create_tmp_reg (TREE_TYPE (lhs)); |
| 2586 | location_t loc = gimple_location (g: stmt); |
| 2587 | edge fallthru_edge = NULL; |
| 2588 | gassign *assign_stmt; |
| 2589 | |
| 2590 | /* Remember if the call was going to throw. */ |
| 2591 | if (stmt_can_throw_internal (cfun, stmt)) |
| 2592 | { |
| 2593 | edge_iterator ei; |
| 2594 | edge e; |
| 2595 | basic_block bb = gimple_bb (g: stmt); |
| 2596 | |
| 2597 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 2598 | if (e->flags & EDGE_FALLTHRU) |
| 2599 | { |
| 2600 | fallthru_edge = e; |
| 2601 | break; |
| 2602 | } |
| 2603 | } |
| 2604 | |
| 2605 | gimple_call_set_lhs (gs: stmt, lhs: tmp); |
| 2606 | update_stmt (s: stmt); |
| 2607 | assign_stmt = gimple_build_assign (lhs, tmp); |
| 2608 | gimple_set_location (g: assign_stmt, location: loc); |
| 2609 | |
| 2610 | /* We cannot throw in the middle of a BB. If the call was going |
| 2611 | to throw, place the instrumentation on the fallthru edge, so |
| 2612 | the call remains the last statement in the block. */ |
| 2613 | if (fallthru_edge) |
| 2614 | { |
| 2615 | gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt: assign_stmt); |
| 2616 | gimple_stmt_iterator fallthru_gsi = gsi_start (seq&: fallthru_seq); |
| 2617 | expand_assign_tm (region, gsi: &fallthru_gsi); |
| 2618 | gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq); |
| 2619 | pending_edge_inserts_p = true; |
| 2620 | } |
| 2621 | else |
| 2622 | { |
| 2623 | gsi_insert_after (gsi, assign_stmt, GSI_CONTINUE_LINKING); |
| 2624 | expand_assign_tm (region, gsi); |
| 2625 | } |
| 2626 | |
| 2627 | transaction_subcode_ior (region, GTMA_HAVE_STORE); |
| 2628 | } |
| 2629 | |
| 2630 | return retval; |
| 2631 | } |
| 2632 | |
| 2633 | |
| 2634 | /* Expand all statements in BB as appropriate for being inside |
| 2635 | a transaction. */ |
| 2636 | |
| 2637 | static void |
| 2638 | expand_block_tm (struct tm_region *region, basic_block bb) |
| 2639 | { |
| 2640 | gimple_stmt_iterator gsi; |
| 2641 | |
| 2642 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); ) |
| 2643 | { |
| 2644 | gimple *stmt = gsi_stmt (i: gsi); |
| 2645 | switch (gimple_code (g: stmt)) |
| 2646 | { |
| 2647 | case GIMPLE_ASSIGN: |
| 2648 | /* Only memory reads/writes need to be instrumented. */ |
| 2649 | if (gimple_assign_single_p (gs: stmt) |
| 2650 | && !gimple_clobber_p (s: stmt)) |
| 2651 | { |
| 2652 | expand_assign_tm (region, gsi: &gsi); |
| 2653 | continue; |
| 2654 | } |
| 2655 | break; |
| 2656 | |
| 2657 | case GIMPLE_CALL: |
| 2658 | if (expand_call_tm (region, gsi: &gsi)) |
| 2659 | return; |
| 2660 | break; |
| 2661 | |
| 2662 | case GIMPLE_ASM: |
| 2663 | gcc_unreachable (); |
| 2664 | |
| 2665 | default: |
| 2666 | break; |
| 2667 | } |
| 2668 | if (!gsi_end_p (i: gsi)) |
| 2669 | gsi_next (i: &gsi); |
| 2670 | } |
| 2671 | } |
| 2672 | |
| 2673 | /* Return the list of basic-blocks in REGION. |
| 2674 | |
| 2675 | STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks |
| 2676 | following a TM_IRREVOCABLE call. |
| 2677 | |
| 2678 | INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the |
| 2679 | uninstrumented code path blocks in the list of basic blocks |
| 2680 | returned, false otherwise. */ |
| 2681 | |
| 2682 | static vec<basic_block> |
| 2683 | get_tm_region_blocks (basic_block entry_block, |
| 2684 | bitmap exit_blocks, |
| 2685 | bitmap irr_blocks, |
| 2686 | bitmap all_region_blocks, |
| 2687 | bool stop_at_irrevocable_p, |
| 2688 | bool include_uninstrumented_p = true) |
| 2689 | { |
| 2690 | vec<basic_block> bbs = vNULL; |
| 2691 | unsigned i; |
| 2692 | edge e; |
| 2693 | edge_iterator ei; |
| 2694 | bitmap visited_blocks = BITMAP_ALLOC (NULL); |
| 2695 | |
| 2696 | i = 0; |
| 2697 | bbs.safe_push (obj: entry_block); |
| 2698 | bitmap_set_bit (visited_blocks, entry_block->index); |
| 2699 | |
| 2700 | do |
| 2701 | { |
| 2702 | basic_block bb = bbs[i++]; |
| 2703 | |
| 2704 | if (exit_blocks && |
| 2705 | bitmap_bit_p (exit_blocks, bb->index)) |
| 2706 | continue; |
| 2707 | |
| 2708 | if (stop_at_irrevocable_p |
| 2709 | && irr_blocks |
| 2710 | && bitmap_bit_p (irr_blocks, bb->index)) |
| 2711 | continue; |
| 2712 | |
| 2713 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 2714 | if ((include_uninstrumented_p |
| 2715 | || !(e->flags & EDGE_TM_UNINSTRUMENTED)) |
| 2716 | && !bitmap_bit_p (visited_blocks, e->dest->index)) |
| 2717 | { |
| 2718 | bitmap_set_bit (visited_blocks, e->dest->index); |
| 2719 | bbs.safe_push (obj: e->dest); |
| 2720 | } |
| 2721 | } |
| 2722 | while (i < bbs.length ()); |
| 2723 | |
| 2724 | if (all_region_blocks) |
| 2725 | bitmap_ior_into (all_region_blocks, visited_blocks); |
| 2726 | |
| 2727 | BITMAP_FREE (visited_blocks); |
| 2728 | return bbs; |
| 2729 | } |
| 2730 | |
| 2731 | // Callback data for collect_bb2reg. |
| 2732 | struct bb2reg_stuff |
| 2733 | { |
| 2734 | vec<tm_region *> *bb2reg; |
| 2735 | bool include_uninstrumented_p; |
| 2736 | }; |
| 2737 | |
| 2738 | // Callback for expand_regions, collect innermost region data for each bb. |
| 2739 | static void * |
| 2740 | collect_bb2reg (struct tm_region *region, void *data) |
| 2741 | { |
| 2742 | struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data; |
| 2743 | vec<tm_region *> *bb2reg = stuff->bb2reg; |
| 2744 | vec<basic_block> queue; |
| 2745 | unsigned int i; |
| 2746 | basic_block bb; |
| 2747 | |
| 2748 | queue = get_tm_region_blocks (entry_block: region->entry_block, |
| 2749 | exit_blocks: region->exit_blocks, |
| 2750 | irr_blocks: region->irr_blocks, |
| 2751 | NULL, |
| 2752 | /*stop_at_irr_p=*/stop_at_irrevocable_p: true, |
| 2753 | include_uninstrumented_p: stuff->include_uninstrumented_p); |
| 2754 | |
| 2755 | // We expect expand_region to perform a post-order traversal of the region |
| 2756 | // tree. Therefore the last region seen for any bb is the innermost. |
| 2757 | FOR_EACH_VEC_ELT (queue, i, bb) |
| 2758 | (*bb2reg)[bb->index] = region; |
| 2759 | |
| 2760 | queue.release (); |
| 2761 | return NULL; |
| 2762 | } |
| 2763 | |
| 2764 | // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to |
| 2765 | // which a basic block belongs. Note that we only consider the instrumented |
| 2766 | // code paths for the region; the uninstrumented code paths are ignored if |
| 2767 | // INCLUDE_UNINSTRUMENTED_P is false. |
| 2768 | // |
| 2769 | // ??? This data is very similar to the bb_regions array that is collected |
| 2770 | // during tm_region_init. Or, rather, this data is similar to what could |
| 2771 | // be used within tm_region_init. The actual computation in tm_region_init |
| 2772 | // begins and ends with bb_regions entirely full of NULL pointers, due to |
| 2773 | // the way in which pointers are swapped in and out of the array. |
| 2774 | // |
| 2775 | // ??? Our callers expect that blocks are not shared between transactions. |
| 2776 | // When the optimizers get too smart, and blocks are shared, then during |
| 2777 | // the tm_mark phase we'll add log entries to only one of the two transactions, |
| 2778 | // and in the tm_edge phase we'll add edges to the CFG that create invalid |
| 2779 | // cycles. The symptom being SSA defs that do not dominate their uses. |
| 2780 | // Note that the optimizers were locally correct with their transformation, |
| 2781 | // as we have no info within the program that suggests that the blocks cannot |
| 2782 | // be shared. |
| 2783 | // |
| 2784 | // ??? There is currently a hack inside tree-ssa-pre.cc to work around the |
| 2785 | // only known instance of this block sharing. |
| 2786 | |
| 2787 | static vec<tm_region *> |
| 2788 | get_bb_regions_instrumented (bool traverse_clones, |
| 2789 | bool include_uninstrumented_p) |
| 2790 | { |
| 2791 | unsigned n = last_basic_block_for_fn (cfun); |
| 2792 | struct bb2reg_stuff stuff; |
| 2793 | vec<tm_region *> ret; |
| 2794 | |
| 2795 | ret.create (nelems: n); |
| 2796 | ret.safe_grow_cleared (len: n, exact: true); |
| 2797 | stuff.bb2reg = &ret; |
| 2798 | stuff.include_uninstrumented_p = include_uninstrumented_p; |
| 2799 | expand_regions (all_tm_regions, callback: collect_bb2reg, &stuff, traverse_clones); |
| 2800 | |
| 2801 | return ret; |
| 2802 | } |
| 2803 | |
| 2804 | /* Set the IN_TRANSACTION for all gimple statements that appear in a |
| 2805 | transaction. */ |
| 2806 | |
| 2807 | void |
| 2808 | compute_transaction_bits (void) |
| 2809 | { |
| 2810 | struct tm_region *region; |
| 2811 | vec<basic_block> queue; |
| 2812 | unsigned int i; |
| 2813 | basic_block bb; |
| 2814 | |
| 2815 | /* ?? Perhaps we need to abstract gate_tm_init further, because we |
| 2816 | certainly don't need it to calculate CDI_DOMINATOR info. */ |
| 2817 | gate_tm_init (); |
| 2818 | |
| 2819 | FOR_EACH_BB_FN (bb, cfun) |
| 2820 | bb->flags &= ~BB_IN_TRANSACTION; |
| 2821 | |
| 2822 | for (region = all_tm_regions; region; region = region->next) |
| 2823 | { |
| 2824 | queue = get_tm_region_blocks (entry_block: region->entry_block, |
| 2825 | exit_blocks: region->exit_blocks, |
| 2826 | irr_blocks: region->irr_blocks, |
| 2827 | NULL, |
| 2828 | /*stop_at_irr_p=*/stop_at_irrevocable_p: true); |
| 2829 | for (i = 0; queue.iterate (ix: i, ptr: &bb); ++i) |
| 2830 | bb->flags |= BB_IN_TRANSACTION; |
| 2831 | queue.release (); |
| 2832 | } |
| 2833 | |
| 2834 | if (all_tm_regions) |
| 2835 | bitmap_obstack_release (&tm_obstack); |
| 2836 | } |
| 2837 | |
| 2838 | /* Replace the GIMPLE_TRANSACTION in this region with the corresponding |
| 2839 | call to BUILT_IN_TM_START. */ |
| 2840 | |
| 2841 | static void * |
| 2842 | expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED) |
| 2843 | { |
| 2844 | tree tm_start = builtin_decl_explicit (fncode: BUILT_IN_TM_START); |
| 2845 | basic_block transaction_bb = gimple_bb (g: region->transaction_stmt); |
| 2846 | tree tm_state = region->tm_state; |
| 2847 | tree tm_state_type = TREE_TYPE (tm_state); |
| 2848 | edge abort_edge = NULL; |
| 2849 | edge inst_edge = NULL; |
| 2850 | edge uninst_edge = NULL; |
| 2851 | edge fallthru_edge = NULL; |
| 2852 | |
| 2853 | // Identify the various successors of the transaction start. |
| 2854 | { |
| 2855 | edge_iterator i; |
| 2856 | edge e; |
| 2857 | FOR_EACH_EDGE (e, i, transaction_bb->succs) |
| 2858 | { |
| 2859 | if (e->flags & EDGE_TM_ABORT) |
| 2860 | abort_edge = e; |
| 2861 | else if (e->flags & EDGE_TM_UNINSTRUMENTED) |
| 2862 | uninst_edge = e; |
| 2863 | else |
| 2864 | inst_edge = e; |
| 2865 | if (e->flags & EDGE_FALLTHRU) |
| 2866 | fallthru_edge = e; |
| 2867 | } |
| 2868 | } |
| 2869 | |
| 2870 | /* ??? There are plenty of bits here we're not computing. */ |
| 2871 | { |
| 2872 | int subcode = gimple_transaction_subcode (transaction_stmt: region->get_transaction_stmt ()); |
| 2873 | int flags = 0; |
| 2874 | if (subcode & GTMA_DOES_GO_IRREVOCABLE) |
| 2875 | flags |= PR_DOESGOIRREVOCABLE; |
| 2876 | if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0) |
| 2877 | flags |= PR_HASNOIRREVOCABLE; |
| 2878 | /* If the transaction does not have an abort in lexical scope and is not |
| 2879 | marked as an outer transaction, then it will never abort. */ |
| 2880 | if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0) |
| 2881 | flags |= PR_HASNOABORT; |
| 2882 | if ((subcode & GTMA_HAVE_STORE) == 0) |
| 2883 | flags |= PR_READONLY; |
| 2884 | if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION)) |
| 2885 | flags |= PR_INSTRUMENTEDCODE; |
| 2886 | if (uninst_edge) |
| 2887 | flags |= PR_UNINSTRUMENTEDCODE; |
| 2888 | if (subcode & GTMA_IS_OUTER) |
| 2889 | region->original_transaction_was_outer = true; |
| 2890 | tree t = build_int_cst (tm_state_type, flags); |
| 2891 | gcall *call = gimple_build_call (tm_start, 1, t); |
| 2892 | gimple_call_set_lhs (gs: call, lhs: tm_state); |
| 2893 | gimple_set_location (g: call, location: gimple_location (g: region->transaction_stmt)); |
| 2894 | |
| 2895 | // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START. |
| 2896 | gimple_stmt_iterator gsi = gsi_last_bb (bb: transaction_bb); |
| 2897 | gcc_assert (gsi_stmt (gsi) == region->transaction_stmt); |
| 2898 | gsi_insert_before (&gsi, call, GSI_SAME_STMT); |
| 2899 | gsi_remove (&gsi, true); |
| 2900 | region->transaction_stmt = call; |
| 2901 | } |
| 2902 | |
| 2903 | // Generate log saves. |
| 2904 | if (!tm_log_save_addresses.is_empty ()) |
| 2905 | tm_log_emit_saves (entry_block: region->entry_block, bb: transaction_bb); |
| 2906 | |
| 2907 | // In the beginning, we've no tests to perform on transaction restart. |
| 2908 | // Note that after this point, transaction_bb becomes the "most recent |
| 2909 | // block containing tests for the transaction". |
| 2910 | region->restart_block = region->entry_block; |
| 2911 | |
| 2912 | // Generate log restores. |
| 2913 | if (!tm_log_save_addresses.is_empty ()) |
| 2914 | { |
| 2915 | basic_block test_bb = create_empty_bb (transaction_bb); |
| 2916 | basic_block code_bb = create_empty_bb (test_bb); |
| 2917 | basic_block join_bb = create_empty_bb (code_bb); |
| 2918 | add_bb_to_loop (test_bb, transaction_bb->loop_father); |
| 2919 | add_bb_to_loop (code_bb, transaction_bb->loop_father); |
| 2920 | add_bb_to_loop (join_bb, transaction_bb->loop_father); |
| 2921 | if (region->restart_block == region->entry_block) |
| 2922 | region->restart_block = test_bb; |
| 2923 | |
| 2924 | tree t1 = create_tmp_reg (tm_state_type); |
| 2925 | tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES); |
| 2926 | gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2); |
| 2927 | gimple_stmt_iterator gsi = gsi_last_bb (bb: test_bb); |
| 2928 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 2929 | |
| 2930 | t2 = build_int_cst (tm_state_type, 0); |
| 2931 | stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL); |
| 2932 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 2933 | |
| 2934 | tm_log_emit_restores (entry_block: region->entry_block, bb: code_bb); |
| 2935 | |
| 2936 | edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU); |
| 2937 | edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE); |
| 2938 | edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE); |
| 2939 | redirect_edge_pred (fallthru_edge, join_bb); |
| 2940 | |
| 2941 | join_bb->count = test_bb->count = transaction_bb->count; |
| 2942 | |
| 2943 | ei->probability = profile_probability::always (); |
| 2944 | et->probability = profile_probability::likely (); |
| 2945 | ef->probability = profile_probability::unlikely (); |
| 2946 | |
| 2947 | code_bb->count = et->count (); |
| 2948 | |
| 2949 | transaction_bb = join_bb; |
| 2950 | } |
| 2951 | |
| 2952 | // If we have an ABORT edge, create a test to perform the abort. |
| 2953 | if (abort_edge) |
| 2954 | { |
| 2955 | basic_block test_bb = create_empty_bb (transaction_bb); |
| 2956 | add_bb_to_loop (test_bb, transaction_bb->loop_father); |
| 2957 | if (region->restart_block == region->entry_block) |
| 2958 | region->restart_block = test_bb; |
| 2959 | |
| 2960 | tree t1 = create_tmp_reg (tm_state_type); |
| 2961 | tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION); |
| 2962 | gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2); |
| 2963 | gimple_stmt_iterator gsi = gsi_last_bb (bb: test_bb); |
| 2964 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 2965 | |
| 2966 | t2 = build_int_cst (tm_state_type, 0); |
| 2967 | stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL); |
| 2968 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 2969 | |
| 2970 | edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU); |
| 2971 | test_bb->count = transaction_bb->count; |
| 2972 | ei->probability = profile_probability::always (); |
| 2973 | |
| 2974 | // Not abort edge. If both are live, chose one at random as we'll |
| 2975 | // we'll be fixing that up below. |
| 2976 | redirect_edge_pred (fallthru_edge, test_bb); |
| 2977 | fallthru_edge->flags = EDGE_FALSE_VALUE; |
| 2978 | fallthru_edge->probability = profile_probability::very_likely (); |
| 2979 | |
| 2980 | // Abort/over edge. |
| 2981 | redirect_edge_pred (abort_edge, test_bb); |
| 2982 | abort_edge->flags = EDGE_TRUE_VALUE; |
| 2983 | abort_edge->probability = profile_probability::unlikely (); |
| 2984 | |
| 2985 | transaction_bb = test_bb; |
| 2986 | } |
| 2987 | |
| 2988 | // If we have both instrumented and uninstrumented code paths, select one. |
| 2989 | if (inst_edge && uninst_edge) |
| 2990 | { |
| 2991 | basic_block test_bb = create_empty_bb (transaction_bb); |
| 2992 | add_bb_to_loop (test_bb, transaction_bb->loop_father); |
| 2993 | if (region->restart_block == region->entry_block) |
| 2994 | region->restart_block = test_bb; |
| 2995 | |
| 2996 | tree t1 = create_tmp_reg (tm_state_type); |
| 2997 | tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE); |
| 2998 | |
| 2999 | gimple *stmt = gimple_build_assign (t1, BIT_AND_EXPR, tm_state, t2); |
| 3000 | gimple_stmt_iterator gsi = gsi_last_bb (bb: test_bb); |
| 3001 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 3002 | |
| 3003 | t2 = build_int_cst (tm_state_type, 0); |
| 3004 | stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL); |
| 3005 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 3006 | |
| 3007 | // Create the edge into test_bb first, as we want to copy values |
| 3008 | // out of the fallthru edge. |
| 3009 | edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags); |
| 3010 | e->probability = fallthru_edge->probability; |
| 3011 | test_bb->count = fallthru_edge->count (); |
| 3012 | |
| 3013 | // Now update the edges to the inst/uninist implementations. |
| 3014 | // For now assume that the paths are equally likely. When using HTM, |
| 3015 | // we'll try the uninst path first and fallback to inst path if htm |
| 3016 | // buffers are exceeded. Without HTM we start with the inst path and |
| 3017 | // use the uninst path when falling back to serial mode. |
| 3018 | redirect_edge_pred (inst_edge, test_bb); |
| 3019 | inst_edge->flags = EDGE_FALSE_VALUE; |
| 3020 | inst_edge->probability = profile_probability::even (); |
| 3021 | |
| 3022 | redirect_edge_pred (uninst_edge, test_bb); |
| 3023 | uninst_edge->flags = EDGE_TRUE_VALUE; |
| 3024 | uninst_edge->probability = profile_probability::even (); |
| 3025 | } |
| 3026 | |
| 3027 | // If we have no previous special cases, and we have PHIs at the beginning |
| 3028 | // of the atomic region, this means we have a loop at the beginning of the |
| 3029 | // atomic region that shares the first block. This can cause problems with |
| 3030 | // the transaction restart abnormal edges to be added in the tm_edges pass. |
| 3031 | // Solve this by adding a new empty block to receive the abnormal edges. |
| 3032 | if (region->restart_block == region->entry_block |
| 3033 | && phi_nodes (bb: region->entry_block)) |
| 3034 | { |
| 3035 | basic_block empty_bb = create_empty_bb (transaction_bb); |
| 3036 | region->restart_block = empty_bb; |
| 3037 | add_bb_to_loop (empty_bb, transaction_bb->loop_father); |
| 3038 | |
| 3039 | redirect_edge_pred (fallthru_edge, empty_bb); |
| 3040 | make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU); |
| 3041 | } |
| 3042 | |
| 3043 | return NULL; |
| 3044 | } |
| 3045 | |
| 3046 | /* Generate the temporary to be used for the return value of |
| 3047 | BUILT_IN_TM_START. */ |
| 3048 | |
| 3049 | static void * |
| 3050 | generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED) |
| 3051 | { |
| 3052 | tree tm_start = builtin_decl_explicit (fncode: BUILT_IN_TM_START); |
| 3053 | region->tm_state = |
| 3054 | create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state" ); |
| 3055 | |
| 3056 | // Reset the subcode, post optimizations. We'll fill this in |
| 3057 | // again as we process blocks. |
| 3058 | if (region->exit_blocks) |
| 3059 | { |
| 3060 | gtransaction *transaction_stmt = region->get_transaction_stmt (); |
| 3061 | unsigned int subcode = gimple_transaction_subcode (transaction_stmt); |
| 3062 | |
| 3063 | if (subcode & GTMA_DOES_GO_IRREVOCABLE) |
| 3064 | subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE |
| 3065 | | GTMA_MAY_ENTER_IRREVOCABLE |
| 3066 | | GTMA_HAS_NO_INSTRUMENTATION); |
| 3067 | else |
| 3068 | subcode &= GTMA_DECLARATION_MASK; |
| 3069 | gimple_transaction_set_subcode (transaction_stmt, subcode); |
| 3070 | } |
| 3071 | |
| 3072 | return NULL; |
| 3073 | } |
| 3074 | |
| 3075 | // Propagate flags from inner transactions outwards. |
| 3076 | static void |
| 3077 | propagate_tm_flags_out (struct tm_region *region) |
| 3078 | { |
| 3079 | if (region == NULL) |
| 3080 | return; |
| 3081 | propagate_tm_flags_out (region: region->inner); |
| 3082 | |
| 3083 | if (region->outer && region->outer->transaction_stmt) |
| 3084 | { |
| 3085 | unsigned s |
| 3086 | = gimple_transaction_subcode (transaction_stmt: region->get_transaction_stmt ()); |
| 3087 | s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE |
| 3088 | | GTMA_MAY_ENTER_IRREVOCABLE); |
| 3089 | s |= gimple_transaction_subcode (transaction_stmt: region->outer->get_transaction_stmt ()); |
| 3090 | gimple_transaction_set_subcode (transaction_stmt: region->outer->get_transaction_stmt (), |
| 3091 | subcode: s); |
| 3092 | } |
| 3093 | |
| 3094 | propagate_tm_flags_out (region: region->next); |
| 3095 | } |
| 3096 | |
| 3097 | /* Entry point to the MARK phase of TM expansion. Here we replace |
| 3098 | transactional memory statements with calls to builtins, and function |
| 3099 | calls with their transactional clones (if available). But we don't |
| 3100 | yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */ |
| 3101 | |
| 3102 | static unsigned int |
| 3103 | execute_tm_mark (void) |
| 3104 | { |
| 3105 | pending_edge_inserts_p = false; |
| 3106 | |
| 3107 | expand_regions (all_tm_regions, callback: generate_tm_state, NULL, |
| 3108 | /*traverse_clones=*/true); |
| 3109 | |
| 3110 | tm_log_init (); |
| 3111 | |
| 3112 | vec<tm_region *> bb_regions |
| 3113 | = get_bb_regions_instrumented (/*traverse_clones=*/true, |
| 3114 | /*include_uninstrumented_p=*/false); |
| 3115 | struct tm_region *r; |
| 3116 | unsigned i; |
| 3117 | |
| 3118 | // Expand memory operations into calls into the runtime. |
| 3119 | // This collects log entries as well. |
| 3120 | FOR_EACH_VEC_ELT (bb_regions, i, r) |
| 3121 | { |
| 3122 | if (r != NULL) |
| 3123 | { |
| 3124 | if (r->transaction_stmt) |
| 3125 | { |
| 3126 | unsigned sub |
| 3127 | = gimple_transaction_subcode (transaction_stmt: r->get_transaction_stmt ()); |
| 3128 | |
| 3129 | /* If we're sure to go irrevocable, there won't be |
| 3130 | anything to expand, since the run-time will go |
| 3131 | irrevocable right away. */ |
| 3132 | if (sub & GTMA_DOES_GO_IRREVOCABLE |
| 3133 | && sub & GTMA_MAY_ENTER_IRREVOCABLE) |
| 3134 | continue; |
| 3135 | } |
| 3136 | expand_block_tm (region: r, BASIC_BLOCK_FOR_FN (cfun, i)); |
| 3137 | } |
| 3138 | } |
| 3139 | |
| 3140 | bb_regions.release (); |
| 3141 | |
| 3142 | // Propagate flags from inner transactions outwards. |
| 3143 | propagate_tm_flags_out (region: all_tm_regions); |
| 3144 | |
| 3145 | // Expand GIMPLE_TRANSACTIONs into calls into the runtime. |
| 3146 | expand_regions (all_tm_regions, callback: expand_transaction, NULL, |
| 3147 | /*traverse_clones=*/false); |
| 3148 | |
| 3149 | tm_log_emit (); |
| 3150 | tm_log_delete (); |
| 3151 | |
| 3152 | if (pending_edge_inserts_p) |
| 3153 | gsi_commit_edge_inserts (); |
| 3154 | free_dominance_info (CDI_DOMINATORS); |
| 3155 | return 0; |
| 3156 | } |
| 3157 | |
| 3158 | namespace { |
| 3159 | |
| 3160 | const pass_data pass_data_tm_mark = |
| 3161 | { |
| 3162 | .type: GIMPLE_PASS, /* type */ |
| 3163 | .name: "tmmark" , /* name */ |
| 3164 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 3165 | .tv_id: TV_TRANS_MEM, /* tv_id */ |
| 3166 | .properties_required: ( PROP_ssa | PROP_cfg ), /* properties_required */ |
| 3167 | .properties_provided: 0, /* properties_provided */ |
| 3168 | .properties_destroyed: 0, /* properties_destroyed */ |
| 3169 | .todo_flags_start: 0, /* todo_flags_start */ |
| 3170 | TODO_update_ssa, /* todo_flags_finish */ |
| 3171 | }; |
| 3172 | |
| 3173 | class pass_tm_mark : public gimple_opt_pass |
| 3174 | { |
| 3175 | public: |
| 3176 | pass_tm_mark (gcc::context *ctxt) |
| 3177 | : gimple_opt_pass (pass_data_tm_mark, ctxt) |
| 3178 | {} |
| 3179 | |
| 3180 | /* opt_pass methods: */ |
| 3181 | unsigned int execute (function *) final override |
| 3182 | { |
| 3183 | return execute_tm_mark (); |
| 3184 | } |
| 3185 | |
| 3186 | }; // class pass_tm_mark |
| 3187 | |
| 3188 | } // anon namespace |
| 3189 | |
| 3190 | gimple_opt_pass * |
| 3191 | make_pass_tm_mark (gcc::context *ctxt) |
| 3192 | { |
| 3193 | return new pass_tm_mark (ctxt); |
| 3194 | } |
| 3195 | |
| 3196 | |
| 3197 | /* Create an abnormal edge from STMT at iter, splitting the block |
| 3198 | as necessary. Adjust *PNEXT as needed for the split block. */ |
| 3199 | |
| 3200 | static inline void |
| 3201 | split_bb_make_tm_edge (gimple *stmt, basic_block dest_bb, |
| 3202 | gimple_stmt_iterator iter, gimple_stmt_iterator *pnext) |
| 3203 | { |
| 3204 | basic_block bb = gimple_bb (g: stmt); |
| 3205 | if (!gsi_one_before_end_p (i: iter)) |
| 3206 | { |
| 3207 | edge e = split_block (bb, stmt); |
| 3208 | *pnext = gsi_start_bb (bb: e->dest); |
| 3209 | } |
| 3210 | edge e = make_edge (bb, dest_bb, EDGE_ABNORMAL); |
| 3211 | if (e) |
| 3212 | e->probability = profile_probability::guessed_never (); |
| 3213 | |
| 3214 | // Record the need for the edge for the benefit of the rtl passes. |
| 3215 | if (cfun->gimple_df->tm_restart == NULL) |
| 3216 | cfun->gimple_df->tm_restart |
| 3217 | = hash_table<tm_restart_hasher>::create_ggc (n: 31); |
| 3218 | |
| 3219 | struct tm_restart_node dummy; |
| 3220 | dummy.stmt = stmt; |
| 3221 | dummy.label_or_list = gimple_block_label (dest_bb); |
| 3222 | |
| 3223 | tm_restart_node **slot = cfun->gimple_df->tm_restart->find_slot (value: &dummy, |
| 3224 | insert: INSERT); |
| 3225 | struct tm_restart_node *n = *slot; |
| 3226 | if (n == NULL) |
| 3227 | { |
| 3228 | *slot = n = ggc_alloc<tm_restart_node> (); |
| 3229 | *n = dummy; |
| 3230 | } |
| 3231 | else |
| 3232 | { |
| 3233 | tree old = n->label_or_list; |
| 3234 | if (TREE_CODE (old) == LABEL_DECL) |
| 3235 | old = tree_cons (NULL, old, NULL); |
| 3236 | n->label_or_list = tree_cons (NULL, dummy.label_or_list, old); |
| 3237 | } |
| 3238 | } |
| 3239 | |
| 3240 | /* Split block BB as necessary for every builtin function we added, and |
| 3241 | wire up the abnormal back edges implied by the transaction restart. */ |
| 3242 | |
| 3243 | static void |
| 3244 | expand_block_edges (struct tm_region *const region, basic_block bb) |
| 3245 | { |
| 3246 | gimple_stmt_iterator gsi, next_gsi; |
| 3247 | |
| 3248 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi = next_gsi) |
| 3249 | { |
| 3250 | gimple *stmt = gsi_stmt (i: gsi); |
| 3251 | gcall *call_stmt; |
| 3252 | |
| 3253 | next_gsi = gsi; |
| 3254 | gsi_next (i: &next_gsi); |
| 3255 | |
| 3256 | // ??? Shouldn't we split for any non-pure, non-irrevocable function? |
| 3257 | call_stmt = dyn_cast <gcall *> (p: stmt); |
| 3258 | if ((!call_stmt) |
| 3259 | || (gimple_call_flags (call_stmt) & ECF_TM_BUILTIN) == 0) |
| 3260 | continue; |
| 3261 | |
| 3262 | if (gimple_call_builtin_p (call_stmt, BUILT_IN_TM_ABORT)) |
| 3263 | { |
| 3264 | // If we have a ``_transaction_cancel [[outer]]'', there is only |
| 3265 | // one abnormal edge: to the transaction marked OUTER. |
| 3266 | // All compiler-generated instances of BUILT_IN_TM_ABORT have a |
| 3267 | // constant argument, which we can examine here. Users invoking |
| 3268 | // TM_ABORT directly get what they deserve. |
| 3269 | tree arg = gimple_call_arg (gs: call_stmt, index: 0); |
| 3270 | if (TREE_CODE (arg) == INTEGER_CST |
| 3271 | && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0 |
| 3272 | && !decl_is_tm_clone (fndecl: current_function_decl)) |
| 3273 | { |
| 3274 | // Find the GTMA_IS_OUTER transaction. |
| 3275 | for (struct tm_region *o = region; o; o = o->outer) |
| 3276 | if (o->original_transaction_was_outer) |
| 3277 | { |
| 3278 | split_bb_make_tm_edge (stmt: call_stmt, dest_bb: o->restart_block, |
| 3279 | iter: gsi, pnext: &next_gsi); |
| 3280 | break; |
| 3281 | } |
| 3282 | |
| 3283 | // Otherwise, the front-end should have semantically checked |
| 3284 | // outer aborts, but in either case the target region is not |
| 3285 | // within this function. |
| 3286 | continue; |
| 3287 | } |
| 3288 | |
| 3289 | // Non-outer, TM aborts have an abnormal edge to the inner-most |
| 3290 | // transaction, the one being aborted; |
| 3291 | split_bb_make_tm_edge (stmt: call_stmt, dest_bb: region->restart_block, iter: gsi, |
| 3292 | pnext: &next_gsi); |
| 3293 | } |
| 3294 | |
| 3295 | // All TM builtins have an abnormal edge to the outer-most transaction. |
| 3296 | // We never restart inner transactions. For tm clones, we know a-priori |
| 3297 | // that the outer-most transaction is outside the function. |
| 3298 | if (decl_is_tm_clone (fndecl: current_function_decl)) |
| 3299 | continue; |
| 3300 | |
| 3301 | if (cfun->gimple_df->tm_restart == NULL) |
| 3302 | cfun->gimple_df->tm_restart |
| 3303 | = hash_table<tm_restart_hasher>::create_ggc (n: 31); |
| 3304 | |
| 3305 | // All TM builtins have an abnormal edge to the outer-most transaction. |
| 3306 | // We never restart inner transactions. |
| 3307 | for (struct tm_region *o = region; o; o = o->outer) |
| 3308 | if (!o->outer) |
| 3309 | { |
| 3310 | split_bb_make_tm_edge (stmt: call_stmt, dest_bb: o->restart_block, iter: gsi, pnext: &next_gsi); |
| 3311 | break; |
| 3312 | } |
| 3313 | |
| 3314 | // Delete any tail-call annotation that may have been added. |
| 3315 | // The tail-call pass may have mis-identified the commit as being |
| 3316 | // a candidate because we had not yet added this restart edge. |
| 3317 | gimple_call_set_tail (s: call_stmt, tail_p: false); |
| 3318 | } |
| 3319 | } |
| 3320 | |
| 3321 | /* Entry point to the final expansion of transactional nodes. */ |
| 3322 | |
| 3323 | namespace { |
| 3324 | |
| 3325 | const pass_data pass_data_tm_edges = |
| 3326 | { |
| 3327 | .type: GIMPLE_PASS, /* type */ |
| 3328 | .name: "tmedge" , /* name */ |
| 3329 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 3330 | .tv_id: TV_TRANS_MEM, /* tv_id */ |
| 3331 | .properties_required: ( PROP_ssa | PROP_cfg ), /* properties_required */ |
| 3332 | .properties_provided: 0, /* properties_provided */ |
| 3333 | .properties_destroyed: 0, /* properties_destroyed */ |
| 3334 | .todo_flags_start: 0, /* todo_flags_start */ |
| 3335 | TODO_update_ssa, /* todo_flags_finish */ |
| 3336 | }; |
| 3337 | |
| 3338 | class pass_tm_edges : public gimple_opt_pass |
| 3339 | { |
| 3340 | public: |
| 3341 | pass_tm_edges (gcc::context *ctxt) |
| 3342 | : gimple_opt_pass (pass_data_tm_edges, ctxt) |
| 3343 | {} |
| 3344 | |
| 3345 | /* opt_pass methods: */ |
| 3346 | unsigned int execute (function *) final override; |
| 3347 | |
| 3348 | }; // class pass_tm_edges |
| 3349 | |
| 3350 | unsigned int |
| 3351 | pass_tm_edges::execute (function *fun) |
| 3352 | { |
| 3353 | vec<tm_region *> bb_regions |
| 3354 | = get_bb_regions_instrumented (/*traverse_clones=*/false, |
| 3355 | /*include_uninstrumented_p=*/true); |
| 3356 | struct tm_region *r; |
| 3357 | unsigned i; |
| 3358 | |
| 3359 | FOR_EACH_VEC_ELT (bb_regions, i, r) |
| 3360 | if (r != NULL) |
| 3361 | expand_block_edges (region: r, BASIC_BLOCK_FOR_FN (fun, i)); |
| 3362 | |
| 3363 | bb_regions.release (); |
| 3364 | |
| 3365 | /* We've got to release the dominance info now, to indicate that it |
| 3366 | must be rebuilt completely. Otherwise we'll crash trying to update |
| 3367 | the SSA web in the TODO section following this pass. */ |
| 3368 | free_dominance_info (CDI_DOMINATORS); |
| 3369 | /* We'ge also wrecked loops badly with inserting of abnormal edges. */ |
| 3370 | loops_state_set (flags: LOOPS_NEED_FIXUP); |
| 3371 | bitmap_obstack_release (&tm_obstack); |
| 3372 | all_tm_regions = NULL; |
| 3373 | |
| 3374 | return 0; |
| 3375 | } |
| 3376 | |
| 3377 | } // anon namespace |
| 3378 | |
| 3379 | gimple_opt_pass * |
| 3380 | make_pass_tm_edges (gcc::context *ctxt) |
| 3381 | { |
| 3382 | return new pass_tm_edges (ctxt); |
| 3383 | } |
| 3384 | |
| 3385 | /* Helper function for expand_regions. Expand REGION and recurse to |
| 3386 | the inner region. Call CALLBACK on each region. CALLBACK returns |
| 3387 | NULL to continue the traversal, otherwise a non-null value which |
| 3388 | this function will return as well. TRAVERSE_CLONES is true if we |
| 3389 | should traverse transactional clones. */ |
| 3390 | |
| 3391 | static void * |
| 3392 | expand_regions_1 (struct tm_region *region, |
| 3393 | void *(*callback)(struct tm_region *, void *), |
| 3394 | void *data, |
| 3395 | bool traverse_clones) |
| 3396 | { |
| 3397 | void *retval = NULL; |
| 3398 | if (region->exit_blocks |
| 3399 | || (traverse_clones && decl_is_tm_clone (fndecl: current_function_decl))) |
| 3400 | { |
| 3401 | retval = callback (region, data); |
| 3402 | if (retval) |
| 3403 | return retval; |
| 3404 | } |
| 3405 | if (region->inner) |
| 3406 | { |
| 3407 | retval = expand_regions (region->inner, callback, data, traverse_clones); |
| 3408 | if (retval) |
| 3409 | return retval; |
| 3410 | } |
| 3411 | return retval; |
| 3412 | } |
| 3413 | |
| 3414 | /* Traverse the regions enclosed and including REGION. Execute |
| 3415 | CALLBACK for each region, passing DATA. CALLBACK returns NULL to |
| 3416 | continue the traversal, otherwise a non-null value which this |
| 3417 | function will return as well. TRAVERSE_CLONES is true if we should |
| 3418 | traverse transactional clones. */ |
| 3419 | |
| 3420 | static void * |
| 3421 | expand_regions (struct tm_region *region, |
| 3422 | void *(*callback)(struct tm_region *, void *), |
| 3423 | void *data, |
| 3424 | bool traverse_clones) |
| 3425 | { |
| 3426 | void *retval = NULL; |
| 3427 | while (region) |
| 3428 | { |
| 3429 | retval = expand_regions_1 (region, callback, data, traverse_clones); |
| 3430 | if (retval) |
| 3431 | return retval; |
| 3432 | region = region->next; |
| 3433 | } |
| 3434 | return retval; |
| 3435 | } |
| 3436 | |
| 3437 | |
| 3438 | /* A unique TM memory operation. */ |
| 3439 | struct tm_memop |
| 3440 | { |
| 3441 | /* Unique ID that all memory operations to the same location have. */ |
| 3442 | unsigned int value_id; |
| 3443 | /* Address of load/store. */ |
| 3444 | tree addr; |
| 3445 | }; |
| 3446 | |
| 3447 | /* TM memory operation hashtable helpers. */ |
| 3448 | |
| 3449 | struct tm_memop_hasher : free_ptr_hash <tm_memop> |
| 3450 | { |
| 3451 | static inline hashval_t hash (const tm_memop *); |
| 3452 | static inline bool equal (const tm_memop *, const tm_memop *); |
| 3453 | }; |
| 3454 | |
| 3455 | /* Htab support. Return a hash value for a `tm_memop'. */ |
| 3456 | inline hashval_t |
| 3457 | tm_memop_hasher::hash (const tm_memop *mem) |
| 3458 | { |
| 3459 | tree addr = mem->addr; |
| 3460 | /* We drill down to the SSA_NAME/DECL for the hash, but equality is |
| 3461 | actually done with operand_equal_p (see tm_memop_eq). */ |
| 3462 | if (TREE_CODE (addr) == ADDR_EXPR) |
| 3463 | addr = TREE_OPERAND (addr, 0); |
| 3464 | return iterative_hash_expr (tree: addr, seed: 0); |
| 3465 | } |
| 3466 | |
| 3467 | /* Htab support. Return true if two tm_memop's are the same. */ |
| 3468 | inline bool |
| 3469 | tm_memop_hasher::equal (const tm_memop *mem1, const tm_memop *mem2) |
| 3470 | { |
| 3471 | return operand_equal_p (mem1->addr, mem2->addr, flags: 0); |
| 3472 | } |
| 3473 | |
| 3474 | /* Sets for solving data flow equations in the memory optimization pass. */ |
| 3475 | struct tm_memopt_bitmaps |
| 3476 | { |
| 3477 | /* Stores available to this BB upon entry. Basically, stores that |
| 3478 | dominate this BB. */ |
| 3479 | bitmap store_avail_in; |
| 3480 | /* Stores available at the end of this BB. */ |
| 3481 | bitmap store_avail_out; |
| 3482 | bitmap store_antic_in; |
| 3483 | bitmap store_antic_out; |
| 3484 | /* Reads available to this BB upon entry. Basically, reads that |
| 3485 | dominate this BB. */ |
| 3486 | bitmap read_avail_in; |
| 3487 | /* Reads available at the end of this BB. */ |
| 3488 | bitmap read_avail_out; |
| 3489 | /* Reads performed in this BB. */ |
| 3490 | bitmap read_local; |
| 3491 | /* Writes performed in this BB. */ |
| 3492 | bitmap store_local; |
| 3493 | |
| 3494 | /* Temporary storage for pass. */ |
| 3495 | /* Is the current BB in the worklist? */ |
| 3496 | bool avail_in_worklist_p; |
| 3497 | /* Have we visited this BB? */ |
| 3498 | bool visited_p; |
| 3499 | }; |
| 3500 | |
| 3501 | static bitmap_obstack tm_memopt_obstack; |
| 3502 | |
| 3503 | /* Unique counter for TM loads and stores. Loads and stores of the |
| 3504 | same address get the same ID. */ |
| 3505 | static unsigned int tm_memopt_value_id; |
| 3506 | static hash_table<tm_memop_hasher> *tm_memopt_value_numbers; |
| 3507 | |
| 3508 | #define STORE_AVAIL_IN(BB) \ |
| 3509 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in |
| 3510 | #define STORE_AVAIL_OUT(BB) \ |
| 3511 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out |
| 3512 | #define STORE_ANTIC_IN(BB) \ |
| 3513 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in |
| 3514 | #define STORE_ANTIC_OUT(BB) \ |
| 3515 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out |
| 3516 | #define READ_AVAIL_IN(BB) \ |
| 3517 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in |
| 3518 | #define READ_AVAIL_OUT(BB) \ |
| 3519 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out |
| 3520 | #define READ_LOCAL(BB) \ |
| 3521 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local |
| 3522 | #define STORE_LOCAL(BB) \ |
| 3523 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local |
| 3524 | #define AVAIL_IN_WORKLIST_P(BB) \ |
| 3525 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p |
| 3526 | #define BB_VISITED_P(BB) \ |
| 3527 | ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p |
| 3528 | |
| 3529 | /* Given a TM load/store in STMT, return the value number for the address |
| 3530 | it accesses. */ |
| 3531 | |
| 3532 | static unsigned int |
| 3533 | tm_memopt_value_number (gimple *stmt, enum insert_option op) |
| 3534 | { |
| 3535 | struct tm_memop tmpmem, *mem; |
| 3536 | tm_memop **slot; |
| 3537 | |
| 3538 | gcc_assert (is_tm_load (stmt) || is_tm_store (stmt)); |
| 3539 | tmpmem.addr = gimple_call_arg (gs: stmt, index: 0); |
| 3540 | slot = tm_memopt_value_numbers->find_slot (value: &tmpmem, insert: op); |
| 3541 | if (*slot) |
| 3542 | mem = *slot; |
| 3543 | else if (op == INSERT) |
| 3544 | { |
| 3545 | mem = XNEW (struct tm_memop); |
| 3546 | *slot = mem; |
| 3547 | mem->value_id = tm_memopt_value_id++; |
| 3548 | mem->addr = tmpmem.addr; |
| 3549 | } |
| 3550 | else |
| 3551 | gcc_unreachable (); |
| 3552 | return mem->value_id; |
| 3553 | } |
| 3554 | |
| 3555 | /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */ |
| 3556 | |
| 3557 | static void |
| 3558 | tm_memopt_accumulate_memops (basic_block bb) |
| 3559 | { |
| 3560 | gimple_stmt_iterator gsi; |
| 3561 | |
| 3562 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 3563 | { |
| 3564 | gimple *stmt = gsi_stmt (i: gsi); |
| 3565 | bitmap bits; |
| 3566 | unsigned int loc; |
| 3567 | |
| 3568 | if (is_tm_store (stmt)) |
| 3569 | bits = STORE_LOCAL (bb); |
| 3570 | else if (is_tm_load (stmt)) |
| 3571 | bits = READ_LOCAL (bb); |
| 3572 | else |
| 3573 | continue; |
| 3574 | |
| 3575 | loc = tm_memopt_value_number (stmt, op: INSERT); |
| 3576 | bitmap_set_bit (bits, loc); |
| 3577 | if (dump_file) |
| 3578 | { |
| 3579 | fprintf (stream: dump_file, format: "TM memopt (%s): value num=%d, BB=%d, addr=" , |
| 3580 | is_tm_load (stmt) ? "LOAD" : "STORE" , loc, |
| 3581 | gimple_bb (g: stmt)->index); |
| 3582 | print_generic_expr (dump_file, gimple_call_arg (gs: stmt, index: 0)); |
| 3583 | fprintf (stream: dump_file, format: "\n" ); |
| 3584 | } |
| 3585 | } |
| 3586 | } |
| 3587 | |
| 3588 | /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */ |
| 3589 | |
| 3590 | static void |
| 3591 | dump_tm_memopt_set (const char *set_name, bitmap bits) |
| 3592 | { |
| 3593 | unsigned i; |
| 3594 | bitmap_iterator bi; |
| 3595 | const char *comma = "" ; |
| 3596 | |
| 3597 | fprintf (stream: dump_file, format: "TM memopt: %s: [" , set_name); |
| 3598 | EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi) |
| 3599 | { |
| 3600 | hash_table<tm_memop_hasher>::iterator hi; |
| 3601 | struct tm_memop *mem = NULL; |
| 3602 | |
| 3603 | /* Yeah, yeah, yeah. Whatever. This is just for debugging. */ |
| 3604 | FOR_EACH_HASH_TABLE_ELEMENT (*tm_memopt_value_numbers, mem, tm_memop_t, hi) |
| 3605 | if (mem->value_id == i) |
| 3606 | break; |
| 3607 | gcc_assert (mem->value_id == i); |
| 3608 | fprintf (stream: dump_file, format: "%s" , comma); |
| 3609 | comma = ", " ; |
| 3610 | print_generic_expr (dump_file, mem->addr); |
| 3611 | } |
| 3612 | fprintf (stream: dump_file, format: "]\n" ); |
| 3613 | } |
| 3614 | |
| 3615 | /* Prettily dump all of the memopt sets in BLOCKS. */ |
| 3616 | |
| 3617 | static void |
| 3618 | dump_tm_memopt_sets (vec<basic_block> blocks) |
| 3619 | { |
| 3620 | size_t i; |
| 3621 | basic_block bb; |
| 3622 | |
| 3623 | for (i = 0; blocks.iterate (ix: i, ptr: &bb); ++i) |
| 3624 | { |
| 3625 | fprintf (stream: dump_file, format: "------------BB %d---------\n" , bb->index); |
| 3626 | dump_tm_memopt_set (set_name: "STORE_LOCAL" , STORE_LOCAL (bb)); |
| 3627 | dump_tm_memopt_set (set_name: "READ_LOCAL" , READ_LOCAL (bb)); |
| 3628 | dump_tm_memopt_set (set_name: "STORE_AVAIL_IN" , STORE_AVAIL_IN (bb)); |
| 3629 | dump_tm_memopt_set (set_name: "STORE_AVAIL_OUT" , STORE_AVAIL_OUT (bb)); |
| 3630 | dump_tm_memopt_set (set_name: "READ_AVAIL_IN" , READ_AVAIL_IN (bb)); |
| 3631 | dump_tm_memopt_set (set_name: "READ_AVAIL_OUT" , READ_AVAIL_OUT (bb)); |
| 3632 | } |
| 3633 | } |
| 3634 | |
| 3635 | /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */ |
| 3636 | |
| 3637 | static void |
| 3638 | tm_memopt_compute_avin (basic_block bb) |
| 3639 | { |
| 3640 | edge e; |
| 3641 | unsigned ix; |
| 3642 | |
| 3643 | /* Seed with the AVOUT of any predecessor. */ |
| 3644 | for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++) |
| 3645 | { |
| 3646 | e = EDGE_PRED (bb, ix); |
| 3647 | /* Make sure we have already visited this BB, and is thus |
| 3648 | initialized. |
| 3649 | |
| 3650 | If e->src->aux is NULL, this predecessor is actually on an |
| 3651 | enclosing transaction. We only care about the current |
| 3652 | transaction, so ignore it. */ |
| 3653 | if (e->src->aux && BB_VISITED_P (e->src)) |
| 3654 | { |
| 3655 | bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src)); |
| 3656 | bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src)); |
| 3657 | break; |
| 3658 | } |
| 3659 | } |
| 3660 | |
| 3661 | for (; ix < EDGE_COUNT (bb->preds); ix++) |
| 3662 | { |
| 3663 | e = EDGE_PRED (bb, ix); |
| 3664 | if (e->src->aux && BB_VISITED_P (e->src)) |
| 3665 | { |
| 3666 | bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src)); |
| 3667 | bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src)); |
| 3668 | } |
| 3669 | } |
| 3670 | |
| 3671 | BB_VISITED_P (bb) = true; |
| 3672 | } |
| 3673 | |
| 3674 | /* Compute the STORE_ANTIC_IN for the basic block BB. */ |
| 3675 | |
| 3676 | static void |
| 3677 | tm_memopt_compute_antin (basic_block bb) |
| 3678 | { |
| 3679 | edge e; |
| 3680 | unsigned ix; |
| 3681 | |
| 3682 | /* Seed with the ANTIC_OUT of any successor. */ |
| 3683 | for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++) |
| 3684 | { |
| 3685 | e = EDGE_SUCC (bb, ix); |
| 3686 | /* Make sure we have already visited this BB, and is thus |
| 3687 | initialized. */ |
| 3688 | if (BB_VISITED_P (e->dest)) |
| 3689 | { |
| 3690 | bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest)); |
| 3691 | break; |
| 3692 | } |
| 3693 | } |
| 3694 | |
| 3695 | for (; ix < EDGE_COUNT (bb->succs); ix++) |
| 3696 | { |
| 3697 | e = EDGE_SUCC (bb, ix); |
| 3698 | if (BB_VISITED_P (e->dest)) |
| 3699 | bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest)); |
| 3700 | } |
| 3701 | |
| 3702 | BB_VISITED_P (bb) = true; |
| 3703 | } |
| 3704 | |
| 3705 | /* Compute the AVAIL sets for every basic block in BLOCKS. |
| 3706 | |
| 3707 | We compute {STORE,READ}_AVAIL_{OUT,IN} as follows: |
| 3708 | |
| 3709 | AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb]) |
| 3710 | AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors]) |
| 3711 | |
| 3712 | This is basically what we do in lcm's compute_available(), but here |
| 3713 | we calculate two sets of sets (one for STOREs and one for READs), |
| 3714 | and we work on a region instead of the entire CFG. |
| 3715 | |
| 3716 | REGION is the TM region. |
| 3717 | BLOCKS are the basic blocks in the region. */ |
| 3718 | |
| 3719 | static void |
| 3720 | tm_memopt_compute_available (struct tm_region *region, |
| 3721 | vec<basic_block> blocks) |
| 3722 | { |
| 3723 | edge e; |
| 3724 | basic_block *worklist, *qin, *qout, *qend, bb; |
| 3725 | unsigned int qlen, i; |
| 3726 | edge_iterator ei; |
| 3727 | bool changed; |
| 3728 | |
| 3729 | /* Allocate a worklist array/queue. Entries are only added to the |
| 3730 | list if they were not already on the list. So the size is |
| 3731 | bounded by the number of basic blocks in the region. */ |
| 3732 | gcc_assert (!blocks.is_empty ()); |
| 3733 | qlen = blocks.length () - 1; |
| 3734 | qin = qout = worklist = XNEWVEC (basic_block, qlen); |
| 3735 | |
| 3736 | /* Put every block in the region on the worklist. */ |
| 3737 | for (i = 0; blocks.iterate (ix: i, ptr: &bb); ++i) |
| 3738 | { |
| 3739 | /* Seed AVAIL_OUT with the LOCAL set. */ |
| 3740 | bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb)); |
| 3741 | bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb)); |
| 3742 | |
| 3743 | AVAIL_IN_WORKLIST_P (bb) = true; |
| 3744 | /* No need to insert the entry block, since it has an AVIN of |
| 3745 | null, and an AVOUT that has already been seeded in. */ |
| 3746 | if (bb != region->entry_block) |
| 3747 | *qin++ = bb; |
| 3748 | } |
| 3749 | |
| 3750 | /* The entry block has been initialized with the local sets. */ |
| 3751 | BB_VISITED_P (region->entry_block) = true; |
| 3752 | |
| 3753 | qin = worklist; |
| 3754 | qend = &worklist[qlen]; |
| 3755 | |
| 3756 | /* Iterate until the worklist is empty. */ |
| 3757 | while (qlen) |
| 3758 | { |
| 3759 | /* Take the first entry off the worklist. */ |
| 3760 | bb = *qout++; |
| 3761 | qlen--; |
| 3762 | |
| 3763 | if (qout >= qend) |
| 3764 | qout = worklist; |
| 3765 | |
| 3766 | /* This block can be added to the worklist again if necessary. */ |
| 3767 | AVAIL_IN_WORKLIST_P (bb) = false; |
| 3768 | tm_memopt_compute_avin (bb); |
| 3769 | |
| 3770 | /* Note: We do not add the LOCAL sets here because we already |
| 3771 | seeded the AVAIL_OUT sets with them. */ |
| 3772 | changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb)); |
| 3773 | changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb)); |
| 3774 | if (changed |
| 3775 | && (region->exit_blocks == NULL |
| 3776 | || !bitmap_bit_p (region->exit_blocks, bb->index))) |
| 3777 | /* If the out state of this block changed, then we need to add |
| 3778 | its successors to the worklist if they are not already in. */ |
| 3779 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 3780 | if (!AVAIL_IN_WORKLIST_P (e->dest) |
| 3781 | && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)) |
| 3782 | { |
| 3783 | *qin++ = e->dest; |
| 3784 | AVAIL_IN_WORKLIST_P (e->dest) = true; |
| 3785 | qlen++; |
| 3786 | |
| 3787 | if (qin >= qend) |
| 3788 | qin = worklist; |
| 3789 | } |
| 3790 | } |
| 3791 | |
| 3792 | free (ptr: worklist); |
| 3793 | |
| 3794 | if (dump_file) |
| 3795 | dump_tm_memopt_sets (blocks); |
| 3796 | } |
| 3797 | |
| 3798 | /* Compute ANTIC sets for every basic block in BLOCKS. |
| 3799 | |
| 3800 | We compute STORE_ANTIC_OUT as follows: |
| 3801 | |
| 3802 | STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb]) |
| 3803 | STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors]) |
| 3804 | |
| 3805 | REGION is the TM region. |
| 3806 | BLOCKS are the basic blocks in the region. */ |
| 3807 | |
| 3808 | static void |
| 3809 | tm_memopt_compute_antic (struct tm_region *region, |
| 3810 | vec<basic_block> blocks) |
| 3811 | { |
| 3812 | edge e; |
| 3813 | basic_block *worklist, *qin, *qout, *qend, bb; |
| 3814 | unsigned int qlen; |
| 3815 | int i; |
| 3816 | edge_iterator ei; |
| 3817 | |
| 3818 | /* Allocate a worklist array/queue. Entries are only added to the |
| 3819 | list if they were not already on the list. So the size is |
| 3820 | bounded by the number of basic blocks in the region. */ |
| 3821 | qin = qout = worklist = XNEWVEC (basic_block, blocks.length ()); |
| 3822 | |
| 3823 | for (qlen = 0, i = blocks.length () - 1; i >= 0; --i) |
| 3824 | { |
| 3825 | bb = blocks[i]; |
| 3826 | |
| 3827 | /* Seed ANTIC_OUT with the LOCAL set. */ |
| 3828 | bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb)); |
| 3829 | |
| 3830 | /* Put every block in the region on the worklist. */ |
| 3831 | AVAIL_IN_WORKLIST_P (bb) = true; |
| 3832 | /* No need to insert exit blocks, since their ANTIC_IN is NULL, |
| 3833 | and their ANTIC_OUT has already been seeded in. */ |
| 3834 | if (region->exit_blocks |
| 3835 | && !bitmap_bit_p (region->exit_blocks, bb->index)) |
| 3836 | { |
| 3837 | qlen++; |
| 3838 | *qin++ = bb; |
| 3839 | } |
| 3840 | } |
| 3841 | |
| 3842 | /* The exit blocks have been initialized with the local sets. */ |
| 3843 | if (region->exit_blocks) |
| 3844 | { |
| 3845 | unsigned int i; |
| 3846 | bitmap_iterator bi; |
| 3847 | EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi) |
| 3848 | BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true; |
| 3849 | } |
| 3850 | |
| 3851 | qin = worklist; |
| 3852 | qend = &worklist[qlen]; |
| 3853 | |
| 3854 | /* Iterate until the worklist is empty. */ |
| 3855 | while (qlen) |
| 3856 | { |
| 3857 | /* Take the first entry off the worklist. */ |
| 3858 | bb = *qout++; |
| 3859 | qlen--; |
| 3860 | |
| 3861 | if (qout >= qend) |
| 3862 | qout = worklist; |
| 3863 | |
| 3864 | /* This block can be added to the worklist again if necessary. */ |
| 3865 | AVAIL_IN_WORKLIST_P (bb) = false; |
| 3866 | tm_memopt_compute_antin (bb); |
| 3867 | |
| 3868 | /* Note: We do not add the LOCAL sets here because we already |
| 3869 | seeded the ANTIC_OUT sets with them. */ |
| 3870 | if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb)) |
| 3871 | && bb != region->entry_block) |
| 3872 | /* If the out state of this block changed, then we need to add |
| 3873 | its predecessors to the worklist if they are not already in. */ |
| 3874 | FOR_EACH_EDGE (e, ei, bb->preds) |
| 3875 | if (!AVAIL_IN_WORKLIST_P (e->src)) |
| 3876 | { |
| 3877 | *qin++ = e->src; |
| 3878 | AVAIL_IN_WORKLIST_P (e->src) = true; |
| 3879 | qlen++; |
| 3880 | |
| 3881 | if (qin >= qend) |
| 3882 | qin = worklist; |
| 3883 | } |
| 3884 | } |
| 3885 | |
| 3886 | free (ptr: worklist); |
| 3887 | |
| 3888 | if (dump_file) |
| 3889 | dump_tm_memopt_sets (blocks); |
| 3890 | } |
| 3891 | |
| 3892 | /* Offsets of load variants from TM_LOAD. For example, |
| 3893 | BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*. |
| 3894 | See gtm-builtins.def. */ |
| 3895 | #define TRANSFORM_RAR 1 |
| 3896 | #define TRANSFORM_RAW 2 |
| 3897 | #define TRANSFORM_RFW 3 |
| 3898 | /* Offsets of store variants from TM_STORE. */ |
| 3899 | #define TRANSFORM_WAR 1 |
| 3900 | #define TRANSFORM_WAW 2 |
| 3901 | |
| 3902 | /* Inform about a load/store optimization. */ |
| 3903 | |
| 3904 | static void |
| 3905 | dump_tm_memopt_transform (gimple *stmt) |
| 3906 | { |
| 3907 | if (dump_file) |
| 3908 | { |
| 3909 | fprintf (stream: dump_file, format: "TM memopt: transforming: " ); |
| 3910 | print_gimple_stmt (dump_file, stmt, 0); |
| 3911 | fprintf (stream: dump_file, format: "\n" ); |
| 3912 | } |
| 3913 | } |
| 3914 | |
| 3915 | /* Perform a read/write optimization. Replaces the TM builtin in STMT |
| 3916 | by a builtin that is OFFSET entries down in the builtins table in |
| 3917 | gtm-builtins.def. */ |
| 3918 | |
| 3919 | static void |
| 3920 | tm_memopt_transform_stmt (unsigned int offset, |
| 3921 | gcall *stmt, |
| 3922 | gimple_stmt_iterator *gsi) |
| 3923 | { |
| 3924 | tree fn = gimple_call_fn (gs: stmt); |
| 3925 | gcc_assert (TREE_CODE (fn) == ADDR_EXPR); |
| 3926 | TREE_OPERAND (fn, 0) |
| 3927 | = builtin_decl_explicit (fncode: (enum built_in_function) |
| 3928 | (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0)) |
| 3929 | + offset)); |
| 3930 | gimple_call_set_fn (gs: stmt, fn); |
| 3931 | gsi_replace (gsi, stmt, true); |
| 3932 | dump_tm_memopt_transform (stmt); |
| 3933 | } |
| 3934 | |
| 3935 | /* Perform the actual TM memory optimization transformations in the |
| 3936 | basic blocks in BLOCKS. */ |
| 3937 | |
| 3938 | static void |
| 3939 | tm_memopt_transform_blocks (vec<basic_block> blocks) |
| 3940 | { |
| 3941 | size_t i; |
| 3942 | basic_block bb; |
| 3943 | gimple_stmt_iterator gsi; |
| 3944 | |
| 3945 | for (i = 0; blocks.iterate (ix: i, ptr: &bb); ++i) |
| 3946 | { |
| 3947 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 3948 | { |
| 3949 | gimple *stmt = gsi_stmt (i: gsi); |
| 3950 | bitmap read_avail = READ_AVAIL_IN (bb); |
| 3951 | bitmap store_avail = STORE_AVAIL_IN (bb); |
| 3952 | bitmap store_antic = STORE_ANTIC_OUT (bb); |
| 3953 | unsigned int loc; |
| 3954 | |
| 3955 | if (is_tm_simple_load (stmt)) |
| 3956 | { |
| 3957 | gcall *call_stmt = as_a <gcall *> (p: stmt); |
| 3958 | loc = tm_memopt_value_number (stmt, op: NO_INSERT); |
| 3959 | if (store_avail && bitmap_bit_p (store_avail, loc)) |
| 3960 | tm_memopt_transform_stmt (TRANSFORM_RAW, stmt: call_stmt, gsi: &gsi); |
| 3961 | else if (store_antic && bitmap_bit_p (store_antic, loc)) |
| 3962 | { |
| 3963 | tm_memopt_transform_stmt (TRANSFORM_RFW, stmt: call_stmt, gsi: &gsi); |
| 3964 | bitmap_set_bit (store_avail, loc); |
| 3965 | } |
| 3966 | else if (read_avail && bitmap_bit_p (read_avail, loc)) |
| 3967 | tm_memopt_transform_stmt (TRANSFORM_RAR, stmt: call_stmt, gsi: &gsi); |
| 3968 | else |
| 3969 | bitmap_set_bit (read_avail, loc); |
| 3970 | } |
| 3971 | else if (is_tm_simple_store (stmt)) |
| 3972 | { |
| 3973 | gcall *call_stmt = as_a <gcall *> (p: stmt); |
| 3974 | loc = tm_memopt_value_number (stmt, op: NO_INSERT); |
| 3975 | if (store_avail && bitmap_bit_p (store_avail, loc)) |
| 3976 | tm_memopt_transform_stmt (TRANSFORM_WAW, stmt: call_stmt, gsi: &gsi); |
| 3977 | else |
| 3978 | { |
| 3979 | if (read_avail && bitmap_bit_p (read_avail, loc)) |
| 3980 | tm_memopt_transform_stmt (TRANSFORM_WAR, stmt: call_stmt, gsi: &gsi); |
| 3981 | bitmap_set_bit (store_avail, loc); |
| 3982 | } |
| 3983 | } |
| 3984 | } |
| 3985 | } |
| 3986 | } |
| 3987 | |
| 3988 | /* Return a new set of bitmaps for a BB. */ |
| 3989 | |
| 3990 | static struct tm_memopt_bitmaps * |
| 3991 | tm_memopt_init_sets (void) |
| 3992 | { |
| 3993 | struct tm_memopt_bitmaps *b |
| 3994 | = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps); |
| 3995 | b->store_avail_in = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 3996 | b->store_avail_out = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 3997 | b->store_antic_in = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 3998 | b->store_antic_out = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 3999 | b->store_avail_out = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 4000 | b->read_avail_in = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 4001 | b->read_avail_out = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 4002 | b->read_local = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 4003 | b->store_local = BITMAP_ALLOC (obstack: &tm_memopt_obstack); |
| 4004 | return b; |
| 4005 | } |
| 4006 | |
| 4007 | /* Free sets computed for each BB. */ |
| 4008 | |
| 4009 | static void |
| 4010 | tm_memopt_free_sets (vec<basic_block> blocks) |
| 4011 | { |
| 4012 | size_t i; |
| 4013 | basic_block bb; |
| 4014 | |
| 4015 | for (i = 0; blocks.iterate (ix: i, ptr: &bb); ++i) |
| 4016 | bb->aux = NULL; |
| 4017 | } |
| 4018 | |
| 4019 | /* Clear the visited bit for every basic block in BLOCKS. */ |
| 4020 | |
| 4021 | static void |
| 4022 | tm_memopt_clear_visited (vec<basic_block> blocks) |
| 4023 | { |
| 4024 | size_t i; |
| 4025 | basic_block bb; |
| 4026 | |
| 4027 | for (i = 0; blocks.iterate (ix: i, ptr: &bb); ++i) |
| 4028 | BB_VISITED_P (bb) = false; |
| 4029 | } |
| 4030 | |
| 4031 | /* Replace TM load/stores with hints for the runtime. We handle |
| 4032 | things like read-after-write, write-after-read, read-after-read, |
| 4033 | read-for-write, etc. */ |
| 4034 | |
| 4035 | static unsigned int |
| 4036 | execute_tm_memopt (void) |
| 4037 | { |
| 4038 | struct tm_region *region; |
| 4039 | vec<basic_block> bbs; |
| 4040 | |
| 4041 | tm_memopt_value_id = 0; |
| 4042 | tm_memopt_value_numbers = new hash_table<tm_memop_hasher> (10); |
| 4043 | |
| 4044 | for (region = all_tm_regions; region; region = region->next) |
| 4045 | { |
| 4046 | /* All the TM stores/loads in the current region. */ |
| 4047 | size_t i; |
| 4048 | basic_block bb; |
| 4049 | |
| 4050 | bitmap_obstack_initialize (&tm_memopt_obstack); |
| 4051 | |
| 4052 | /* Save all BBs for the current region. */ |
| 4053 | bbs = get_tm_region_blocks (entry_block: region->entry_block, |
| 4054 | exit_blocks: region->exit_blocks, |
| 4055 | irr_blocks: region->irr_blocks, |
| 4056 | NULL, |
| 4057 | stop_at_irrevocable_p: false); |
| 4058 | |
| 4059 | /* Collect all the memory operations. */ |
| 4060 | for (i = 0; bbs.iterate (ix: i, ptr: &bb); ++i) |
| 4061 | { |
| 4062 | bb->aux = tm_memopt_init_sets (); |
| 4063 | tm_memopt_accumulate_memops (bb); |
| 4064 | } |
| 4065 | |
| 4066 | /* Solve data flow equations and transform each block accordingly. */ |
| 4067 | tm_memopt_clear_visited (blocks: bbs); |
| 4068 | tm_memopt_compute_available (region, blocks: bbs); |
| 4069 | tm_memopt_clear_visited (blocks: bbs); |
| 4070 | tm_memopt_compute_antic (region, blocks: bbs); |
| 4071 | tm_memopt_transform_blocks (blocks: bbs); |
| 4072 | |
| 4073 | tm_memopt_free_sets (blocks: bbs); |
| 4074 | bbs.release (); |
| 4075 | bitmap_obstack_release (&tm_memopt_obstack); |
| 4076 | tm_memopt_value_numbers->empty (); |
| 4077 | } |
| 4078 | |
| 4079 | delete tm_memopt_value_numbers; |
| 4080 | tm_memopt_value_numbers = NULL; |
| 4081 | return 0; |
| 4082 | } |
| 4083 | |
| 4084 | namespace { |
| 4085 | |
| 4086 | const pass_data pass_data_tm_memopt = |
| 4087 | { |
| 4088 | .type: GIMPLE_PASS, /* type */ |
| 4089 | .name: "tmmemopt" , /* name */ |
| 4090 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 4091 | .tv_id: TV_TRANS_MEM, /* tv_id */ |
| 4092 | .properties_required: ( PROP_ssa | PROP_cfg ), /* properties_required */ |
| 4093 | .properties_provided: 0, /* properties_provided */ |
| 4094 | .properties_destroyed: 0, /* properties_destroyed */ |
| 4095 | .todo_flags_start: 0, /* todo_flags_start */ |
| 4096 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 4097 | }; |
| 4098 | |
| 4099 | class pass_tm_memopt : public gimple_opt_pass |
| 4100 | { |
| 4101 | public: |
| 4102 | pass_tm_memopt (gcc::context *ctxt) |
| 4103 | : gimple_opt_pass (pass_data_tm_memopt, ctxt) |
| 4104 | {} |
| 4105 | |
| 4106 | /* opt_pass methods: */ |
| 4107 | bool gate (function *) final override { return flag_tm && optimize > 0; } |
| 4108 | unsigned int execute (function *) final override |
| 4109 | { |
| 4110 | return execute_tm_memopt (); |
| 4111 | } |
| 4112 | |
| 4113 | }; // class pass_tm_memopt |
| 4114 | |
| 4115 | } // anon namespace |
| 4116 | |
| 4117 | gimple_opt_pass * |
| 4118 | make_pass_tm_memopt (gcc::context *ctxt) |
| 4119 | { |
| 4120 | return new pass_tm_memopt (ctxt); |
| 4121 | } |
| 4122 | |
| 4123 | |
| 4124 | /* Interprocedual analysis for the creation of transactional clones. |
| 4125 | The aim of this pass is to find which functions are referenced in |
| 4126 | a non-irrevocable transaction context, and for those over which |
| 4127 | we have control (or user directive), create a version of the |
| 4128 | function which uses only the transactional interface to reference |
| 4129 | protected memories. This analysis proceeds in several steps: |
| 4130 | |
| 4131 | (1) Collect the set of all possible transactional clones: |
| 4132 | |
| 4133 | (a) For all local public functions marked tm_callable, push |
| 4134 | it onto the tm_callee queue. |
| 4135 | |
| 4136 | (b) For all local functions, scan for calls in transaction blocks. |
| 4137 | Push the caller and callee onto the tm_caller and tm_callee |
| 4138 | queues. Count the number of callers for each callee. |
| 4139 | |
| 4140 | (c) For each local function on the callee list, assume we will |
| 4141 | create a transactional clone. Push *all* calls onto the |
| 4142 | callee queues; count the number of clone callers separately |
| 4143 | to the number of original callers. |
| 4144 | |
| 4145 | (2) Propagate irrevocable status up the dominator tree: |
| 4146 | |
| 4147 | (a) Any external function on the callee list that is not marked |
| 4148 | tm_callable is irrevocable. Push all callers of such onto |
| 4149 | a worklist. |
| 4150 | |
| 4151 | (b) For each function on the worklist, mark each block that |
| 4152 | contains an irrevocable call. Use the AND operator to |
| 4153 | propagate that mark up the dominator tree. |
| 4154 | |
| 4155 | (c) If we reach the entry block for a possible transactional |
| 4156 | clone, then the transactional clone is irrevocable, and |
| 4157 | we should not create the clone after all. Push all |
| 4158 | callers onto the worklist. |
| 4159 | |
| 4160 | (d) Place tm_irrevocable calls at the beginning of the relevant |
| 4161 | blocks. Special case here is the entry block for the entire |
| 4162 | transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for |
| 4163 | the library to begin the region in serial mode. Decrement |
| 4164 | the call count for all callees in the irrevocable region. |
| 4165 | |
| 4166 | (3) Create the transactional clones: |
| 4167 | |
| 4168 | Any tm_callee that still has a non-zero call count is cloned. |
| 4169 | */ |
| 4170 | |
| 4171 | /* This structure is stored in the AUX field of each cgraph_node. */ |
| 4172 | struct tm_ipa_cg_data |
| 4173 | { |
| 4174 | /* The clone of the function that got created. */ |
| 4175 | struct cgraph_node *clone; |
| 4176 | |
| 4177 | /* The tm regions in the normal function. */ |
| 4178 | struct tm_region *all_tm_regions; |
| 4179 | |
| 4180 | /* The blocks of the normal/clone functions that contain irrevocable |
| 4181 | calls, or blocks that are post-dominated by irrevocable calls. */ |
| 4182 | bitmap irrevocable_blocks_normal; |
| 4183 | bitmap irrevocable_blocks_clone; |
| 4184 | |
| 4185 | /* The blocks of the normal function that are involved in transactions. */ |
| 4186 | bitmap transaction_blocks_normal; |
| 4187 | |
| 4188 | /* The number of callers to the transactional clone of this function |
| 4189 | from normal and transactional clones respectively. */ |
| 4190 | unsigned tm_callers_normal; |
| 4191 | unsigned tm_callers_clone; |
| 4192 | |
| 4193 | /* True if all calls to this function's transactional clone |
| 4194 | are irrevocable. Also automatically true if the function |
| 4195 | has no transactional clone. */ |
| 4196 | bool is_irrevocable; |
| 4197 | |
| 4198 | /* Flags indicating the presence of this function in various queues. */ |
| 4199 | bool in_callee_queue; |
| 4200 | bool in_worklist; |
| 4201 | |
| 4202 | /* Flags indicating the kind of scan desired while in the worklist. */ |
| 4203 | bool want_irr_scan_normal; |
| 4204 | }; |
| 4205 | |
| 4206 | typedef vec<cgraph_node *> cgraph_node_queue; |
| 4207 | |
| 4208 | /* Return the ipa data associated with NODE, allocating zeroed memory |
| 4209 | if necessary. TRAVERSE_ALIASES is true if we must traverse aliases |
| 4210 | and set *NODE accordingly. */ |
| 4211 | |
| 4212 | static struct tm_ipa_cg_data * |
| 4213 | get_cg_data (struct cgraph_node **node, bool traverse_aliases) |
| 4214 | { |
| 4215 | struct tm_ipa_cg_data *d; |
| 4216 | |
| 4217 | if (traverse_aliases && (*node)->alias) |
| 4218 | *node = (*node)->get_alias_target (); |
| 4219 | |
| 4220 | d = (struct tm_ipa_cg_data *) (*node)->aux; |
| 4221 | |
| 4222 | if (d == NULL) |
| 4223 | { |
| 4224 | d = (struct tm_ipa_cg_data *) |
| 4225 | obstack_alloc (&tm_obstack.obstack, sizeof (*d)); |
| 4226 | (*node)->aux = (void *) d; |
| 4227 | memset (s: d, c: 0, n: sizeof (*d)); |
| 4228 | } |
| 4229 | |
| 4230 | return d; |
| 4231 | } |
| 4232 | |
| 4233 | /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that |
| 4234 | it is already present. */ |
| 4235 | |
| 4236 | static void |
| 4237 | maybe_push_queue (struct cgraph_node *node, |
| 4238 | cgraph_node_queue *queue_p, bool *in_queue_p) |
| 4239 | { |
| 4240 | if (!*in_queue_p) |
| 4241 | { |
| 4242 | *in_queue_p = true; |
| 4243 | queue_p->safe_push (obj: node); |
| 4244 | } |
| 4245 | } |
| 4246 | |
| 4247 | /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone. |
| 4248 | Queue all callees within block BB. */ |
| 4249 | |
| 4250 | static void |
| 4251 | ipa_tm_scan_calls_block (cgraph_node_queue *callees_p, |
| 4252 | basic_block bb, bool for_clone) |
| 4253 | { |
| 4254 | gimple_stmt_iterator gsi; |
| 4255 | |
| 4256 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 4257 | { |
| 4258 | gimple *stmt = gsi_stmt (i: gsi); |
| 4259 | if (is_gimple_call (gs: stmt) && !is_tm_pure_call (call: stmt)) |
| 4260 | { |
| 4261 | tree fndecl = gimple_call_fndecl (gs: stmt); |
| 4262 | if (fndecl) |
| 4263 | { |
| 4264 | struct tm_ipa_cg_data *d; |
| 4265 | unsigned *pcallers; |
| 4266 | struct cgraph_node *node; |
| 4267 | |
| 4268 | if (is_tm_ending_fndecl (fndecl)) |
| 4269 | continue; |
| 4270 | if (find_tm_replacement_function (fndecl)) |
| 4271 | continue; |
| 4272 | |
| 4273 | node = cgraph_node::get (decl: fndecl); |
| 4274 | gcc_assert (node != NULL); |
| 4275 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 4276 | |
| 4277 | pcallers = (for_clone ? &d->tm_callers_clone |
| 4278 | : &d->tm_callers_normal); |
| 4279 | *pcallers += 1; |
| 4280 | |
| 4281 | maybe_push_queue (node, queue_p: callees_p, in_queue_p: &d->in_callee_queue); |
| 4282 | } |
| 4283 | } |
| 4284 | } |
| 4285 | } |
| 4286 | |
| 4287 | /* Scan all calls in NODE that are within a transaction region, |
| 4288 | and push the resulting nodes into the callee queue. */ |
| 4289 | |
| 4290 | static void |
| 4291 | ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d, |
| 4292 | cgraph_node_queue *callees_p) |
| 4293 | { |
| 4294 | d->transaction_blocks_normal = BITMAP_ALLOC (obstack: &tm_obstack); |
| 4295 | d->all_tm_regions = all_tm_regions; |
| 4296 | |
| 4297 | for (tm_region *r = all_tm_regions; r; r = r->next) |
| 4298 | { |
| 4299 | vec<basic_block> bbs; |
| 4300 | basic_block bb; |
| 4301 | unsigned i; |
| 4302 | |
| 4303 | bbs = get_tm_region_blocks (entry_block: r->entry_block, exit_blocks: r->exit_blocks, NULL, |
| 4304 | all_region_blocks: d->transaction_blocks_normal, stop_at_irrevocable_p: false, include_uninstrumented_p: false); |
| 4305 | |
| 4306 | FOR_EACH_VEC_ELT (bbs, i, bb) |
| 4307 | ipa_tm_scan_calls_block (callees_p, bb, for_clone: false); |
| 4308 | |
| 4309 | bbs.release (); |
| 4310 | } |
| 4311 | } |
| 4312 | |
| 4313 | /* Scan all calls in NODE as if this is the transactional clone, |
| 4314 | and push the destinations into the callee queue. */ |
| 4315 | |
| 4316 | static void |
| 4317 | ipa_tm_scan_calls_clone (struct cgraph_node *node, |
| 4318 | cgraph_node_queue *callees_p) |
| 4319 | { |
| 4320 | struct function *fn = DECL_STRUCT_FUNCTION (node->decl); |
| 4321 | basic_block bb; |
| 4322 | |
| 4323 | FOR_EACH_BB_FN (bb, fn) |
| 4324 | ipa_tm_scan_calls_block (callees_p, bb, for_clone: true); |
| 4325 | } |
| 4326 | |
| 4327 | /* The function NODE has been detected to be irrevocable. Push all |
| 4328 | of its callers onto WORKLIST for the purpose of re-scanning them. */ |
| 4329 | |
| 4330 | static void |
| 4331 | ipa_tm_note_irrevocable (struct cgraph_node *node, |
| 4332 | cgraph_node_queue *worklist_p) |
| 4333 | { |
| 4334 | struct tm_ipa_cg_data *d = get_cg_data (node: &node, traverse_aliases: true); |
| 4335 | struct cgraph_edge *e; |
| 4336 | |
| 4337 | d->is_irrevocable = true; |
| 4338 | |
| 4339 | for (e = node->callers; e ; e = e->next_caller) |
| 4340 | { |
| 4341 | basic_block bb; |
| 4342 | struct cgraph_node *caller; |
| 4343 | |
| 4344 | /* Don't examine recursive calls. */ |
| 4345 | if (e->caller == node) |
| 4346 | continue; |
| 4347 | /* Even if we think we can go irrevocable, believe the user |
| 4348 | above all. */ |
| 4349 | if (is_tm_safe_or_pure (x: e->caller->decl)) |
| 4350 | continue; |
| 4351 | |
| 4352 | caller = e->caller; |
| 4353 | d = get_cg_data (node: &caller, traverse_aliases: true); |
| 4354 | |
| 4355 | /* Check if the callee is in a transactional region. If so, |
| 4356 | schedule the function for normal re-scan as well. */ |
| 4357 | bb = gimple_bb (g: e->call_stmt); |
| 4358 | gcc_assert (bb != NULL); |
| 4359 | if (d->transaction_blocks_normal |
| 4360 | && bitmap_bit_p (d->transaction_blocks_normal, bb->index)) |
| 4361 | d->want_irr_scan_normal = true; |
| 4362 | |
| 4363 | maybe_push_queue (node: caller, queue_p: worklist_p, in_queue_p: &d->in_worklist); |
| 4364 | } |
| 4365 | } |
| 4366 | |
| 4367 | /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement |
| 4368 | within the block is irrevocable. */ |
| 4369 | |
| 4370 | static bool |
| 4371 | ipa_tm_scan_irr_block (basic_block bb) |
| 4372 | { |
| 4373 | gimple_stmt_iterator gsi; |
| 4374 | tree fn; |
| 4375 | |
| 4376 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 4377 | { |
| 4378 | gimple *stmt = gsi_stmt (i: gsi); |
| 4379 | switch (gimple_code (g: stmt)) |
| 4380 | { |
| 4381 | case GIMPLE_ASSIGN: |
| 4382 | if (gimple_assign_single_p (gs: stmt)) |
| 4383 | { |
| 4384 | tree lhs = gimple_assign_lhs (gs: stmt); |
| 4385 | tree rhs = gimple_assign_rhs1 (gs: stmt); |
| 4386 | if (volatile_lvalue_p (t: lhs) || volatile_lvalue_p (t: rhs)) |
| 4387 | return true; |
| 4388 | } |
| 4389 | break; |
| 4390 | |
| 4391 | case GIMPLE_CALL: |
| 4392 | { |
| 4393 | tree lhs = gimple_call_lhs (gs: stmt); |
| 4394 | if (lhs && volatile_lvalue_p (t: lhs)) |
| 4395 | return true; |
| 4396 | |
| 4397 | if (is_tm_pure_call (call: stmt)) |
| 4398 | break; |
| 4399 | |
| 4400 | fn = gimple_call_fn (gs: stmt); |
| 4401 | |
| 4402 | /* Functions with the attribute are by definition irrevocable. */ |
| 4403 | if (is_tm_irrevocable (x: fn)) |
| 4404 | return true; |
| 4405 | |
| 4406 | /* For direct function calls, go ahead and check for replacement |
| 4407 | functions, or transitive irrevocable functions. For indirect |
| 4408 | functions, we'll ask the runtime. */ |
| 4409 | if (TREE_CODE (fn) == ADDR_EXPR) |
| 4410 | { |
| 4411 | struct tm_ipa_cg_data *d; |
| 4412 | struct cgraph_node *node; |
| 4413 | |
| 4414 | fn = TREE_OPERAND (fn, 0); |
| 4415 | if (is_tm_ending_fndecl (fndecl: fn)) |
| 4416 | break; |
| 4417 | if (find_tm_replacement_function (fndecl: fn)) |
| 4418 | break; |
| 4419 | |
| 4420 | node = cgraph_node::get (decl: fn); |
| 4421 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 4422 | |
| 4423 | /* Return true if irrevocable, but above all, believe |
| 4424 | the user. */ |
| 4425 | if (d->is_irrevocable |
| 4426 | && !is_tm_safe_or_pure (x: fn)) |
| 4427 | return true; |
| 4428 | } |
| 4429 | break; |
| 4430 | } |
| 4431 | |
| 4432 | case GIMPLE_ASM: |
| 4433 | /* ??? The Approved Method of indicating that an inline |
| 4434 | assembly statement is not relevant to the transaction |
| 4435 | is to wrap it in a __tm_waiver block. This is not |
| 4436 | yet implemented, so we can't check for it. */ |
| 4437 | if (is_tm_safe (x: current_function_decl)) |
| 4438 | error_at (gimple_location (g: stmt), |
| 4439 | "%<asm%> not allowed in %<transaction_safe%> function" ); |
| 4440 | return true; |
| 4441 | |
| 4442 | default: |
| 4443 | break; |
| 4444 | } |
| 4445 | } |
| 4446 | |
| 4447 | return false; |
| 4448 | } |
| 4449 | |
| 4450 | /* For each of the blocks seeded witin PQUEUE, walk the CFG looking |
| 4451 | for new irrevocable blocks, marking them in NEW_IRR. Don't bother |
| 4452 | scanning past OLD_IRR or EXIT_BLOCKS. */ |
| 4453 | |
| 4454 | static bool |
| 4455 | ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr, |
| 4456 | bitmap old_irr, bitmap exit_blocks) |
| 4457 | { |
| 4458 | bool any_new_irr = false; |
| 4459 | edge e; |
| 4460 | edge_iterator ei; |
| 4461 | bitmap visited_blocks = BITMAP_ALLOC (NULL); |
| 4462 | |
| 4463 | do |
| 4464 | { |
| 4465 | basic_block bb = pqueue->pop (); |
| 4466 | |
| 4467 | /* Don't re-scan blocks we know already are irrevocable. */ |
| 4468 | if (old_irr && bitmap_bit_p (old_irr, bb->index)) |
| 4469 | continue; |
| 4470 | |
| 4471 | if (ipa_tm_scan_irr_block (bb)) |
| 4472 | { |
| 4473 | bitmap_set_bit (new_irr, bb->index); |
| 4474 | any_new_irr = true; |
| 4475 | } |
| 4476 | else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index)) |
| 4477 | { |
| 4478 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 4479 | if (!bitmap_bit_p (visited_blocks, e->dest->index)) |
| 4480 | { |
| 4481 | bitmap_set_bit (visited_blocks, e->dest->index); |
| 4482 | pqueue->safe_push (obj: e->dest); |
| 4483 | } |
| 4484 | } |
| 4485 | } |
| 4486 | while (!pqueue->is_empty ()); |
| 4487 | |
| 4488 | BITMAP_FREE (visited_blocks); |
| 4489 | |
| 4490 | return any_new_irr; |
| 4491 | } |
| 4492 | |
| 4493 | /* Propagate the irrevocable property both up and down the dominator tree. |
| 4494 | BB is the current block being scanned; EXIT_BLOCKS are the edges of the |
| 4495 | TM regions; OLD_IRR are the results of a previous scan of the dominator |
| 4496 | tree which has been fully propagated; NEW_IRR is the set of new blocks |
| 4497 | which are gaining the irrevocable property during the current scan. */ |
| 4498 | |
| 4499 | static void |
| 4500 | ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr, |
| 4501 | bitmap old_irr, bitmap exit_blocks) |
| 4502 | { |
| 4503 | vec<basic_block> bbs; |
| 4504 | bitmap all_region_blocks; |
| 4505 | |
| 4506 | /* If this block is in the old set, no need to rescan. */ |
| 4507 | if (old_irr && bitmap_bit_p (old_irr, entry_block->index)) |
| 4508 | return; |
| 4509 | |
| 4510 | all_region_blocks = BITMAP_ALLOC (obstack: &tm_obstack); |
| 4511 | bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL, |
| 4512 | all_region_blocks, stop_at_irrevocable_p: false); |
| 4513 | do |
| 4514 | { |
| 4515 | basic_block bb = bbs.pop (); |
| 4516 | bool this_irr = bitmap_bit_p (new_irr, bb->index); |
| 4517 | bool all_son_irr = false; |
| 4518 | edge_iterator ei; |
| 4519 | edge e; |
| 4520 | |
| 4521 | /* Propagate up. If my children are, I am too, but we must have |
| 4522 | at least one child that is. */ |
| 4523 | if (!this_irr) |
| 4524 | { |
| 4525 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 4526 | { |
| 4527 | if (!bitmap_bit_p (new_irr, e->dest->index)) |
| 4528 | { |
| 4529 | all_son_irr = false; |
| 4530 | break; |
| 4531 | } |
| 4532 | else |
| 4533 | all_son_irr = true; |
| 4534 | } |
| 4535 | if (all_son_irr) |
| 4536 | { |
| 4537 | /* Add block to new_irr if it hasn't already been processed. */ |
| 4538 | if (!old_irr || !bitmap_bit_p (old_irr, bb->index)) |
| 4539 | { |
| 4540 | bitmap_set_bit (new_irr, bb->index); |
| 4541 | this_irr = true; |
| 4542 | } |
| 4543 | } |
| 4544 | } |
| 4545 | |
| 4546 | /* Propagate down to everyone we immediately dominate. */ |
| 4547 | if (this_irr) |
| 4548 | { |
| 4549 | basic_block son; |
| 4550 | for (son = first_dom_son (CDI_DOMINATORS, bb); |
| 4551 | son; |
| 4552 | son = next_dom_son (CDI_DOMINATORS, son)) |
| 4553 | { |
| 4554 | /* Make sure block is actually in a TM region, and it |
| 4555 | isn't already in old_irr. */ |
| 4556 | if ((!old_irr || !bitmap_bit_p (old_irr, son->index)) |
| 4557 | && bitmap_bit_p (all_region_blocks, son->index)) |
| 4558 | bitmap_set_bit (new_irr, son->index); |
| 4559 | } |
| 4560 | } |
| 4561 | } |
| 4562 | while (!bbs.is_empty ()); |
| 4563 | |
| 4564 | BITMAP_FREE (all_region_blocks); |
| 4565 | bbs.release (); |
| 4566 | } |
| 4567 | |
| 4568 | static void |
| 4569 | ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone) |
| 4570 | { |
| 4571 | gimple_stmt_iterator gsi; |
| 4572 | |
| 4573 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 4574 | { |
| 4575 | gimple *stmt = gsi_stmt (i: gsi); |
| 4576 | if (is_gimple_call (gs: stmt) && !is_tm_pure_call (call: stmt)) |
| 4577 | { |
| 4578 | tree fndecl = gimple_call_fndecl (gs: stmt); |
| 4579 | if (fndecl) |
| 4580 | { |
| 4581 | struct tm_ipa_cg_data *d; |
| 4582 | unsigned *pcallers; |
| 4583 | struct cgraph_node *tnode; |
| 4584 | |
| 4585 | if (is_tm_ending_fndecl (fndecl)) |
| 4586 | continue; |
| 4587 | if (find_tm_replacement_function (fndecl)) |
| 4588 | continue; |
| 4589 | |
| 4590 | tnode = cgraph_node::get (decl: fndecl); |
| 4591 | d = get_cg_data (node: &tnode, traverse_aliases: true); |
| 4592 | |
| 4593 | pcallers = (for_clone ? &d->tm_callers_clone |
| 4594 | : &d->tm_callers_normal); |
| 4595 | |
| 4596 | gcc_assert (*pcallers > 0); |
| 4597 | *pcallers -= 1; |
| 4598 | } |
| 4599 | } |
| 4600 | } |
| 4601 | } |
| 4602 | |
| 4603 | /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions, |
| 4604 | as well as other irrevocable actions such as inline assembly. Mark all |
| 4605 | such blocks as irrevocable and decrement the number of calls to |
| 4606 | transactional clones. Return true if, for the transactional clone, the |
| 4607 | entire function is irrevocable. */ |
| 4608 | |
| 4609 | static bool |
| 4610 | ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone) |
| 4611 | { |
| 4612 | struct tm_ipa_cg_data *d; |
| 4613 | bitmap new_irr, old_irr; |
| 4614 | bool ret = false; |
| 4615 | |
| 4616 | /* Builtin operators (operator new, and such). */ |
| 4617 | if (DECL_STRUCT_FUNCTION (node->decl) == NULL |
| 4618 | || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL) |
| 4619 | return false; |
| 4620 | |
| 4621 | push_cfun (DECL_STRUCT_FUNCTION (node->decl)); |
| 4622 | calculate_dominance_info (CDI_DOMINATORS); |
| 4623 | |
| 4624 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 4625 | auto_vec<basic_block, 10> queue; |
| 4626 | new_irr = BITMAP_ALLOC (obstack: &tm_obstack); |
| 4627 | |
| 4628 | /* Scan each tm region, propagating irrevocable status through the tree. */ |
| 4629 | if (for_clone) |
| 4630 | { |
| 4631 | old_irr = d->irrevocable_blocks_clone; |
| 4632 | queue.quick_push (obj: single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))); |
| 4633 | if (ipa_tm_scan_irr_blocks (pqueue: &queue, new_irr, old_irr, NULL)) |
| 4634 | { |
| 4635 | ipa_tm_propagate_irr (entry_block: single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), |
| 4636 | new_irr, |
| 4637 | old_irr, NULL); |
| 4638 | ret = bitmap_bit_p (new_irr, |
| 4639 | single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index); |
| 4640 | } |
| 4641 | } |
| 4642 | else |
| 4643 | { |
| 4644 | struct tm_region *region; |
| 4645 | |
| 4646 | old_irr = d->irrevocable_blocks_normal; |
| 4647 | for (region = d->all_tm_regions; region; region = region->next) |
| 4648 | { |
| 4649 | queue.quick_push (obj: region->entry_block); |
| 4650 | if (ipa_tm_scan_irr_blocks (pqueue: &queue, new_irr, old_irr, |
| 4651 | exit_blocks: region->exit_blocks)) |
| 4652 | ipa_tm_propagate_irr (entry_block: region->entry_block, new_irr, old_irr, |
| 4653 | exit_blocks: region->exit_blocks); |
| 4654 | } |
| 4655 | } |
| 4656 | |
| 4657 | /* If we found any new irrevocable blocks, reduce the call count for |
| 4658 | transactional clones within the irrevocable blocks. Save the new |
| 4659 | set of irrevocable blocks for next time. */ |
| 4660 | if (!bitmap_empty_p (map: new_irr)) |
| 4661 | { |
| 4662 | bitmap_iterator bmi; |
| 4663 | unsigned i; |
| 4664 | |
| 4665 | EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi) |
| 4666 | ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i), |
| 4667 | for_clone); |
| 4668 | |
| 4669 | if (old_irr) |
| 4670 | { |
| 4671 | bitmap_ior_into (old_irr, new_irr); |
| 4672 | BITMAP_FREE (new_irr); |
| 4673 | } |
| 4674 | else if (for_clone) |
| 4675 | d->irrevocable_blocks_clone = new_irr; |
| 4676 | else |
| 4677 | d->irrevocable_blocks_normal = new_irr; |
| 4678 | |
| 4679 | if (dump_file && new_irr) |
| 4680 | { |
| 4681 | const char *dname; |
| 4682 | bitmap_iterator bmi; |
| 4683 | unsigned i; |
| 4684 | |
| 4685 | dname = lang_hooks.decl_printable_name (current_function_decl, 2); |
| 4686 | EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi) |
| 4687 | fprintf (stream: dump_file, format: "%s: bb %d goes irrevocable\n" , dname, i); |
| 4688 | } |
| 4689 | } |
| 4690 | else |
| 4691 | BITMAP_FREE (new_irr); |
| 4692 | |
| 4693 | pop_cfun (); |
| 4694 | |
| 4695 | return ret; |
| 4696 | } |
| 4697 | |
| 4698 | /* Return true if, for the transactional clone of NODE, any call |
| 4699 | may enter irrevocable mode. */ |
| 4700 | |
| 4701 | static bool |
| 4702 | ipa_tm_mayenterirr_function (struct cgraph_node *node) |
| 4703 | { |
| 4704 | struct tm_ipa_cg_data *d; |
| 4705 | tree decl; |
| 4706 | unsigned flags; |
| 4707 | |
| 4708 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 4709 | decl = node->decl; |
| 4710 | flags = flags_from_decl_or_type (decl); |
| 4711 | |
| 4712 | /* Handle some TM builtins. Ordinarily these aren't actually generated |
| 4713 | at this point, but handling these functions when written in by the |
| 4714 | user makes it easier to build unit tests. */ |
| 4715 | if (flags & ECF_TM_BUILTIN) |
| 4716 | return false; |
| 4717 | |
| 4718 | /* Filter out all functions that are marked. */ |
| 4719 | if (flags & ECF_TM_PURE) |
| 4720 | return false; |
| 4721 | if (is_tm_safe (x: decl)) |
| 4722 | return false; |
| 4723 | if (is_tm_irrevocable (x: decl)) |
| 4724 | return true; |
| 4725 | if (is_tm_callable (x: decl)) |
| 4726 | return true; |
| 4727 | if (find_tm_replacement_function (fndecl: decl)) |
| 4728 | return true; |
| 4729 | |
| 4730 | /* If we aren't seeing the final version of the function we don't |
| 4731 | know what it will contain at runtime. */ |
| 4732 | if (node->get_availability () < AVAIL_AVAILABLE) |
| 4733 | return true; |
| 4734 | |
| 4735 | /* If the function must go irrevocable, then of course true. */ |
| 4736 | if (d->is_irrevocable) |
| 4737 | return true; |
| 4738 | |
| 4739 | /* If there are any blocks marked irrevocable, then the function |
| 4740 | as a whole may enter irrevocable. */ |
| 4741 | if (d->irrevocable_blocks_clone) |
| 4742 | return true; |
| 4743 | |
| 4744 | /* We may have previously marked this function as tm_may_enter_irr; |
| 4745 | see pass_diagnose_tm_blocks. */ |
| 4746 | if (node->tm_may_enter_irr) |
| 4747 | return true; |
| 4748 | |
| 4749 | /* Recurse on the main body for aliases. In general, this will |
| 4750 | result in one of the bits above being set so that we will not |
| 4751 | have to recurse next time. */ |
| 4752 | if (node->alias) |
| 4753 | return ipa_tm_mayenterirr_function |
| 4754 | (node: cgraph_node::get (decl: thunk_info::get (node)->alias)); |
| 4755 | |
| 4756 | /* What remains is unmarked local functions without items that force |
| 4757 | the function to go irrevocable. */ |
| 4758 | return false; |
| 4759 | } |
| 4760 | |
| 4761 | /* Diagnose calls from transaction_safe functions to unmarked |
| 4762 | functions that are determined to not be safe. */ |
| 4763 | |
| 4764 | static void |
| 4765 | ipa_tm_diagnose_tm_safe (struct cgraph_node *node) |
| 4766 | { |
| 4767 | struct cgraph_edge *e; |
| 4768 | |
| 4769 | for (e = node->callees; e ; e = e->next_callee) |
| 4770 | if (!is_tm_callable (x: e->callee->decl) |
| 4771 | && e->callee->tm_may_enter_irr) |
| 4772 | error_at (gimple_location (g: e->call_stmt), |
| 4773 | "unsafe function call %qD within " |
| 4774 | "%<transaction_safe%> function" , e->callee->decl); |
| 4775 | } |
| 4776 | |
| 4777 | /* Diagnose call from atomic transactions to unmarked functions |
| 4778 | that are determined to not be safe. */ |
| 4779 | |
| 4780 | static void |
| 4781 | ipa_tm_diagnose_transaction (struct cgraph_node *node, |
| 4782 | struct tm_region *all_tm_regions) |
| 4783 | { |
| 4784 | struct tm_region *r; |
| 4785 | |
| 4786 | for (r = all_tm_regions; r ; r = r->next) |
| 4787 | if (gimple_transaction_subcode (transaction_stmt: r->get_transaction_stmt ()) |
| 4788 | & GTMA_IS_RELAXED) |
| 4789 | { |
| 4790 | /* Atomic transactions can be nested inside relaxed. */ |
| 4791 | if (r->inner) |
| 4792 | ipa_tm_diagnose_transaction (node, all_tm_regions: r->inner); |
| 4793 | } |
| 4794 | else |
| 4795 | { |
| 4796 | vec<basic_block> bbs; |
| 4797 | gimple_stmt_iterator gsi; |
| 4798 | basic_block bb; |
| 4799 | size_t i; |
| 4800 | |
| 4801 | bbs = get_tm_region_blocks (entry_block: r->entry_block, exit_blocks: r->exit_blocks, |
| 4802 | irr_blocks: r->irr_blocks, NULL, stop_at_irrevocable_p: false); |
| 4803 | |
| 4804 | for (i = 0; bbs.iterate (ix: i, ptr: &bb); ++i) |
| 4805 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 4806 | { |
| 4807 | gimple *stmt = gsi_stmt (i: gsi); |
| 4808 | tree fndecl; |
| 4809 | |
| 4810 | if (gimple_code (g: stmt) == GIMPLE_ASM) |
| 4811 | { |
| 4812 | error_at (gimple_location (g: stmt), |
| 4813 | "%<asm%> not allowed in atomic transaction" ); |
| 4814 | continue; |
| 4815 | } |
| 4816 | |
| 4817 | if (!is_gimple_call (gs: stmt)) |
| 4818 | continue; |
| 4819 | fndecl = gimple_call_fndecl (gs: stmt); |
| 4820 | |
| 4821 | /* Indirect function calls have been diagnosed already. */ |
| 4822 | if (!fndecl) |
| 4823 | continue; |
| 4824 | |
| 4825 | /* Stop at the end of the transaction. */ |
| 4826 | if (is_tm_ending_fndecl (fndecl)) |
| 4827 | { |
| 4828 | if (bitmap_bit_p (r->exit_blocks, bb->index)) |
| 4829 | break; |
| 4830 | continue; |
| 4831 | } |
| 4832 | |
| 4833 | /* Marked functions have been diagnosed already. */ |
| 4834 | if (is_tm_pure_call (call: stmt)) |
| 4835 | continue; |
| 4836 | if (is_tm_callable (x: fndecl)) |
| 4837 | continue; |
| 4838 | |
| 4839 | if (cgraph_node::local_info_node (decl: fndecl)->tm_may_enter_irr) |
| 4840 | error_at (gimple_location (g: stmt), |
| 4841 | "unsafe function call %qD within " |
| 4842 | "atomic transaction" , fndecl); |
| 4843 | } |
| 4844 | |
| 4845 | bbs.release (); |
| 4846 | } |
| 4847 | } |
| 4848 | |
| 4849 | /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in |
| 4850 | OLD_DECL. The returned value is a freshly malloced pointer that |
| 4851 | should be freed by the caller. */ |
| 4852 | |
| 4853 | static tree |
| 4854 | tm_mangle (tree old_asm_id) |
| 4855 | { |
| 4856 | const char *old_asm_name; |
| 4857 | char *tm_name; |
| 4858 | void *alloc = NULL; |
| 4859 | struct demangle_component *dc; |
| 4860 | tree new_asm_id; |
| 4861 | |
| 4862 | /* Determine if the symbol is already a valid C++ mangled name. Do this |
| 4863 | even for C, which might be interfacing with C++ code via appropriately |
| 4864 | ugly identifiers. */ |
| 4865 | /* ??? We could probably do just as well checking for "_Z" and be done. */ |
| 4866 | old_asm_name = IDENTIFIER_POINTER (old_asm_id); |
| 4867 | dc = cplus_demangle_v3_components (mangled: old_asm_name, DMGL_NO_OPTS, mem: &alloc); |
| 4868 | |
| 4869 | if (dc == NULL) |
| 4870 | { |
| 4871 | char length[12]; |
| 4872 | |
| 4873 | do_unencoded: |
| 4874 | sprintf (s: length, format: "%u" , IDENTIFIER_LENGTH (old_asm_id)); |
| 4875 | tm_name = concat ("_ZGTt" , length, old_asm_name, NULL); |
| 4876 | } |
| 4877 | else |
| 4878 | { |
| 4879 | old_asm_name += 2; /* Skip _Z */ |
| 4880 | |
| 4881 | switch (dc->type) |
| 4882 | { |
| 4883 | case DEMANGLE_COMPONENT_TRANSACTION_CLONE: |
| 4884 | case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE: |
| 4885 | /* Don't play silly games, you! */ |
| 4886 | goto do_unencoded; |
| 4887 | |
| 4888 | case DEMANGLE_COMPONENT_HIDDEN_ALIAS: |
| 4889 | /* I'd really like to know if we can ever be passed one of |
| 4890 | these from the C++ front end. The Logical Thing would |
| 4891 | seem that hidden-alias should be outer-most, so that we |
| 4892 | get hidden-alias of a transaction-clone and not vice-versa. */ |
| 4893 | old_asm_name += 2; |
| 4894 | break; |
| 4895 | |
| 4896 | default: |
| 4897 | break; |
| 4898 | } |
| 4899 | |
| 4900 | tm_name = concat ("_ZGTt" , old_asm_name, NULL); |
| 4901 | } |
| 4902 | free (ptr: alloc); |
| 4903 | |
| 4904 | new_asm_id = get_identifier (tm_name); |
| 4905 | free (ptr: tm_name); |
| 4906 | |
| 4907 | return new_asm_id; |
| 4908 | } |
| 4909 | |
| 4910 | static inline void |
| 4911 | ipa_tm_mark_force_output_node (struct cgraph_node *node) |
| 4912 | { |
| 4913 | node->mark_force_output (); |
| 4914 | node->analyzed = true; |
| 4915 | } |
| 4916 | |
| 4917 | static inline void |
| 4918 | ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node) |
| 4919 | { |
| 4920 | node->forced_by_abi = true; |
| 4921 | node->analyzed = true; |
| 4922 | } |
| 4923 | |
| 4924 | /* Callback data for ipa_tm_create_version_alias. */ |
| 4925 | struct create_version_alias_info |
| 4926 | { |
| 4927 | struct cgraph_node *old_node; |
| 4928 | tree new_decl; |
| 4929 | }; |
| 4930 | |
| 4931 | /* A subroutine of ipa_tm_create_version, called via |
| 4932 | cgraph_for_node_and_aliases. Create new tm clones for each of |
| 4933 | the existing aliases. */ |
| 4934 | static bool |
| 4935 | ipa_tm_create_version_alias (struct cgraph_node *node, void *data) |
| 4936 | { |
| 4937 | struct create_version_alias_info *info |
| 4938 | = (struct create_version_alias_info *)data; |
| 4939 | tree old_decl, new_decl, tm_name; |
| 4940 | struct cgraph_node *new_node; |
| 4941 | |
| 4942 | if (!node->cpp_implicit_alias) |
| 4943 | return false; |
| 4944 | |
| 4945 | old_decl = node->decl; |
| 4946 | tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl)); |
| 4947 | new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl), |
| 4948 | TREE_CODE (old_decl), tm_name, |
| 4949 | TREE_TYPE (old_decl)); |
| 4950 | |
| 4951 | SET_DECL_ASSEMBLER_NAME (new_decl, tm_name); |
| 4952 | SET_DECL_RTL (new_decl, NULL); |
| 4953 | |
| 4954 | /* Based loosely on C++'s make_alias_for(). */ |
| 4955 | TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl); |
| 4956 | DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl); |
| 4957 | DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl); |
| 4958 | TREE_READONLY (new_decl) = TREE_READONLY (old_decl); |
| 4959 | DECL_EXTERNAL (new_decl) = 0; |
| 4960 | DECL_ARTIFICIAL (new_decl) = 1; |
| 4961 | TREE_ADDRESSABLE (new_decl) = 1; |
| 4962 | TREE_USED (new_decl) = 1; |
| 4963 | TREE_SYMBOL_REFERENCED (tm_name) = 1; |
| 4964 | |
| 4965 | /* Perform the same remapping to the comdat group. */ |
| 4966 | if (DECL_ONE_ONLY (new_decl)) |
| 4967 | varpool_node::get (decl: new_decl)->set_comdat_group |
| 4968 | (tm_mangle (old_asm_id: decl_comdat_group_id (old_decl))); |
| 4969 | |
| 4970 | new_node = cgraph_node::create_same_body_alias (alias: new_decl, decl: info->new_decl); |
| 4971 | new_node->tm_clone = true; |
| 4972 | new_node->externally_visible = info->old_node->externally_visible; |
| 4973 | new_node->no_reorder = info->old_node->no_reorder; |
| 4974 | /* ?? Do not traverse aliases here. */ |
| 4975 | get_cg_data (node: &node, traverse_aliases: false)->clone = new_node; |
| 4976 | |
| 4977 | record_tm_clone_pair (old_decl, new_decl); |
| 4978 | |
| 4979 | if (info->old_node->force_output |
| 4980 | || info->old_node->ref_list.first_referring ()) |
| 4981 | ipa_tm_mark_force_output_node (node: new_node); |
| 4982 | if (info->old_node->forced_by_abi) |
| 4983 | ipa_tm_mark_forced_by_abi_node (node: new_node); |
| 4984 | return false; |
| 4985 | } |
| 4986 | |
| 4987 | /* Create a copy of the function (possibly declaration only) of OLD_NODE, |
| 4988 | appropriate for the transactional clone. */ |
| 4989 | |
| 4990 | static void |
| 4991 | ipa_tm_create_version (struct cgraph_node *old_node) |
| 4992 | { |
| 4993 | tree new_decl, old_decl, tm_name; |
| 4994 | struct cgraph_node *new_node; |
| 4995 | |
| 4996 | old_decl = old_node->decl; |
| 4997 | new_decl = copy_node (old_decl); |
| 4998 | |
| 4999 | /* DECL_ASSEMBLER_NAME needs to be set before we call |
| 5000 | cgraph_copy_node_for_versioning below, because cgraph_node will |
| 5001 | fill the assembler_name_hash. */ |
| 5002 | tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl)); |
| 5003 | SET_DECL_ASSEMBLER_NAME (new_decl, tm_name); |
| 5004 | SET_DECL_RTL (new_decl, NULL); |
| 5005 | TREE_SYMBOL_REFERENCED (tm_name) = 1; |
| 5006 | |
| 5007 | /* Perform the same remapping to the comdat group. */ |
| 5008 | if (DECL_ONE_ONLY (new_decl)) |
| 5009 | varpool_node::get (decl: new_decl)->set_comdat_group |
| 5010 | (tm_mangle (DECL_COMDAT_GROUP (old_decl))); |
| 5011 | |
| 5012 | gcc_assert (!old_node->ipa_transforms_to_apply.exists ()); |
| 5013 | new_node = old_node->create_version_clone (new_decl, redirect_callers: vNULL, NULL); |
| 5014 | new_node->local = false; |
| 5015 | new_node->externally_visible = old_node->externally_visible; |
| 5016 | new_node->lowered = true; |
| 5017 | new_node->tm_clone = 1; |
| 5018 | if (!old_node->implicit_section) |
| 5019 | new_node->set_section (*old_node); |
| 5020 | get_cg_data (node: &old_node, traverse_aliases: true)->clone = new_node; |
| 5021 | |
| 5022 | if (old_node->get_availability () >= AVAIL_INTERPOSABLE) |
| 5023 | { |
| 5024 | /* Remap extern inline to static inline. */ |
| 5025 | /* ??? Is it worth trying to use make_decl_one_only? */ |
| 5026 | if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl)) |
| 5027 | { |
| 5028 | DECL_EXTERNAL (new_decl) = 0; |
| 5029 | TREE_PUBLIC (new_decl) = 0; |
| 5030 | DECL_WEAK (new_decl) = 0; |
| 5031 | } |
| 5032 | |
| 5033 | tree_function_versioning (old_decl, new_decl, |
| 5034 | NULL, NULL, false, NULL, NULL); |
| 5035 | } |
| 5036 | |
| 5037 | record_tm_clone_pair (old_decl, new_decl); |
| 5038 | |
| 5039 | symtab->call_cgraph_insertion_hooks (node: new_node); |
| 5040 | if (old_node->force_output |
| 5041 | || old_node->ref_list.first_referring ()) |
| 5042 | ipa_tm_mark_force_output_node (node: new_node); |
| 5043 | if (old_node->forced_by_abi) |
| 5044 | ipa_tm_mark_forced_by_abi_node (node: new_node); |
| 5045 | |
| 5046 | /* Do the same thing, but for any aliases of the original node. */ |
| 5047 | { |
| 5048 | struct create_version_alias_info data; |
| 5049 | data.old_node = old_node; |
| 5050 | data.new_decl = new_decl; |
| 5051 | old_node->call_for_symbol_thunks_and_aliases (callback: ipa_tm_create_version_alias, |
| 5052 | data: &data, include_overwritable: true); |
| 5053 | } |
| 5054 | } |
| 5055 | |
| 5056 | /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */ |
| 5057 | |
| 5058 | static void |
| 5059 | ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region, |
| 5060 | basic_block bb) |
| 5061 | { |
| 5062 | gimple_stmt_iterator gsi; |
| 5063 | gcall *g; |
| 5064 | |
| 5065 | transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE); |
| 5066 | |
| 5067 | g = gimple_build_call (builtin_decl_explicit (fncode: BUILT_IN_TM_IRREVOCABLE), |
| 5068 | 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE)); |
| 5069 | |
| 5070 | split_block_after_labels (bb); |
| 5071 | gsi = gsi_after_labels (bb); |
| 5072 | gsi_insert_before (&gsi, g, GSI_SAME_STMT); |
| 5073 | |
| 5074 | node->create_edge (callee: cgraph_node::get_create |
| 5075 | (builtin_decl_explicit (fncode: BUILT_IN_TM_IRREVOCABLE)), |
| 5076 | call_stmt: g, count: gimple_bb (g)->count); |
| 5077 | } |
| 5078 | |
| 5079 | /* Construct a call to TM_GETTMCLONE and insert it before GSI. */ |
| 5080 | |
| 5081 | static bool |
| 5082 | ipa_tm_insert_gettmclone_call (struct cgraph_node *node, |
| 5083 | struct tm_region *region, |
| 5084 | gimple_stmt_iterator *gsi, gcall *stmt) |
| 5085 | { |
| 5086 | tree gettm_fn, ret, old_fn, callfn; |
| 5087 | gcall *g; |
| 5088 | gassign *g2; |
| 5089 | bool safe; |
| 5090 | |
| 5091 | old_fn = gimple_call_fn (gs: stmt); |
| 5092 | |
| 5093 | if (TREE_CODE (old_fn) == ADDR_EXPR) |
| 5094 | { |
| 5095 | tree fndecl = TREE_OPERAND (old_fn, 0); |
| 5096 | tree clone = get_tm_clone_pair (fndecl); |
| 5097 | |
| 5098 | /* By transforming the call into a TM_GETTMCLONE, we are |
| 5099 | technically taking the address of the original function and |
| 5100 | its clone. Explain this so inlining will know this function |
| 5101 | is needed. */ |
| 5102 | cgraph_node::get (decl: fndecl)->mark_address_taken () ; |
| 5103 | if (clone) |
| 5104 | cgraph_node::get (decl: clone)->mark_address_taken (); |
| 5105 | } |
| 5106 | |
| 5107 | safe = is_tm_safe (TREE_TYPE (old_fn)); |
| 5108 | gettm_fn = builtin_decl_explicit (fncode: safe ? BUILT_IN_TM_GETTMCLONE_SAFE |
| 5109 | : BUILT_IN_TM_GETTMCLONE_IRR); |
| 5110 | ret = create_tmp_var (ptr_type_node); |
| 5111 | |
| 5112 | if (!safe) |
| 5113 | transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE); |
| 5114 | |
| 5115 | /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */ |
| 5116 | if (TREE_CODE (old_fn) == OBJ_TYPE_REF) |
| 5117 | old_fn = OBJ_TYPE_REF_EXPR (old_fn); |
| 5118 | |
| 5119 | g = gimple_build_call (gettm_fn, 1, old_fn); |
| 5120 | ret = make_ssa_name (var: ret, stmt: g); |
| 5121 | gimple_call_set_lhs (gs: g, lhs: ret); |
| 5122 | |
| 5123 | gsi_insert_before (gsi, g, GSI_SAME_STMT); |
| 5124 | |
| 5125 | node->create_edge (callee: cgraph_node::get_create (gettm_fn), call_stmt: g, count: gimple_bb (g)->count); |
| 5126 | |
| 5127 | /* Cast return value from tm_gettmclone* into appropriate function |
| 5128 | pointer. */ |
| 5129 | callfn = create_tmp_var (TREE_TYPE (old_fn)); |
| 5130 | g2 = gimple_build_assign (callfn, |
| 5131 | fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret)); |
| 5132 | callfn = make_ssa_name (var: callfn, stmt: g2); |
| 5133 | gimple_assign_set_lhs (gs: g2, lhs: callfn); |
| 5134 | gsi_insert_before (gsi, g2, GSI_SAME_STMT); |
| 5135 | |
| 5136 | /* ??? This is a hack to preserve the NOTHROW bit on the call, |
| 5137 | which we would have derived from the decl. Failure to save |
| 5138 | this bit means we might have to split the basic block. */ |
| 5139 | if (gimple_call_nothrow_p (s: stmt)) |
| 5140 | gimple_call_set_nothrow (s: stmt, nothrow_p: true); |
| 5141 | |
| 5142 | gimple_call_set_fn (gs: stmt, fn: callfn); |
| 5143 | |
| 5144 | /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS |
| 5145 | for a call statement. Fix it. */ |
| 5146 | { |
| 5147 | tree lhs = gimple_call_lhs (gs: stmt); |
| 5148 | tree rettype = TREE_TYPE (gimple_call_fntype (stmt)); |
| 5149 | if (lhs |
| 5150 | && !useless_type_conversion_p (TREE_TYPE (lhs), rettype)) |
| 5151 | { |
| 5152 | tree temp; |
| 5153 | |
| 5154 | temp = create_tmp_reg (rettype); |
| 5155 | gimple_call_set_lhs (gs: stmt, lhs: temp); |
| 5156 | |
| 5157 | g2 = gimple_build_assign (lhs, |
| 5158 | fold_build1 (VIEW_CONVERT_EXPR, |
| 5159 | TREE_TYPE (lhs), temp)); |
| 5160 | gsi_insert_after (gsi, g2, GSI_SAME_STMT); |
| 5161 | } |
| 5162 | } |
| 5163 | |
| 5164 | update_stmt (s: stmt); |
| 5165 | cgraph_edge *e = cgraph_node::get (decl: current_function_decl)->get_edge (call_stmt: stmt); |
| 5166 | if (e && e->indirect_info) |
| 5167 | e->indirect_info->polymorphic = false; |
| 5168 | |
| 5169 | return true; |
| 5170 | } |
| 5171 | |
| 5172 | /* Helper function for ipa_tm_transform_calls*. Given a call |
| 5173 | statement in GSI which resides inside transaction REGION, redirect |
| 5174 | the call to either its wrapper function, or its clone. */ |
| 5175 | |
| 5176 | static void |
| 5177 | ipa_tm_transform_calls_redirect (struct cgraph_node *node, |
| 5178 | struct tm_region *region, |
| 5179 | gimple_stmt_iterator *gsi, |
| 5180 | bool *need_ssa_rename_p) |
| 5181 | { |
| 5182 | gcall *stmt = as_a <gcall *> (p: gsi_stmt (i: *gsi)); |
| 5183 | struct cgraph_node *new_node; |
| 5184 | struct cgraph_edge *e = node->get_edge (call_stmt: stmt); |
| 5185 | tree fndecl = gimple_call_fndecl (gs: stmt); |
| 5186 | |
| 5187 | /* For indirect calls, pass the address through the runtime. */ |
| 5188 | if (fndecl == NULL) |
| 5189 | { |
| 5190 | *need_ssa_rename_p |= |
| 5191 | ipa_tm_insert_gettmclone_call (node, region, gsi, stmt); |
| 5192 | return; |
| 5193 | } |
| 5194 | |
| 5195 | /* Handle some TM builtins. Ordinarily these aren't actually generated |
| 5196 | at this point, but handling these functions when written in by the |
| 5197 | user makes it easier to build unit tests. */ |
| 5198 | if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN) |
| 5199 | return; |
| 5200 | |
| 5201 | /* Fixup recursive calls inside clones. */ |
| 5202 | /* ??? Why did cgraph_copy_node_for_versioning update the call edges |
| 5203 | for recursion but not update the call statements themselves? */ |
| 5204 | if (e->caller == e->callee && decl_is_tm_clone (fndecl: current_function_decl)) |
| 5205 | { |
| 5206 | gimple_call_set_fndecl (gs: stmt, decl: current_function_decl); |
| 5207 | return; |
| 5208 | } |
| 5209 | |
| 5210 | /* If there is a replacement, use it. */ |
| 5211 | fndecl = find_tm_replacement_function (fndecl); |
| 5212 | if (fndecl) |
| 5213 | { |
| 5214 | new_node = cgraph_node::get_create (fndecl); |
| 5215 | |
| 5216 | /* ??? Mark all transaction_wrap functions tm_may_enter_irr. |
| 5217 | |
| 5218 | We can't do this earlier in record_tm_replacement because |
| 5219 | cgraph_remove_unreachable_nodes is called before we inject |
| 5220 | references to the node. Further, we can't do this in some |
| 5221 | nice central place in ipa_tm_execute because we don't have |
| 5222 | the exact list of wrapper functions that would be used. |
| 5223 | Marking more wrappers than necessary results in the creation |
| 5224 | of unnecessary cgraph_nodes, which can cause some of the |
| 5225 | other IPA passes to crash. |
| 5226 | |
| 5227 | We do need to mark these nodes so that we get the proper |
| 5228 | result in expand_call_tm. */ |
| 5229 | /* ??? This seems broken. How is it that we're marking the |
| 5230 | CALLEE as may_enter_irr? Surely we should be marking the |
| 5231 | CALLER. Also note that find_tm_replacement_function also |
| 5232 | contains mappings into the TM runtime, e.g. memcpy. These |
| 5233 | we know won't go irrevocable. */ |
| 5234 | new_node->tm_may_enter_irr = 1; |
| 5235 | } |
| 5236 | else |
| 5237 | { |
| 5238 | struct tm_ipa_cg_data *d; |
| 5239 | struct cgraph_node *tnode = e->callee; |
| 5240 | |
| 5241 | d = get_cg_data (node: &tnode, traverse_aliases: true); |
| 5242 | new_node = d->clone; |
| 5243 | |
| 5244 | /* As we've already skipped pure calls and appropriate builtins, |
| 5245 | and we've already marked irrevocable blocks, if we can't come |
| 5246 | up with a static replacement, then ask the runtime. */ |
| 5247 | if (new_node == NULL) |
| 5248 | { |
| 5249 | *need_ssa_rename_p |= |
| 5250 | ipa_tm_insert_gettmclone_call (node, region, gsi, stmt); |
| 5251 | return; |
| 5252 | } |
| 5253 | |
| 5254 | fndecl = new_node->decl; |
| 5255 | } |
| 5256 | |
| 5257 | e->redirect_callee (n: new_node); |
| 5258 | gimple_call_set_fndecl (gs: stmt, decl: fndecl); |
| 5259 | } |
| 5260 | |
| 5261 | /* Helper function for ipa_tm_transform_calls. For a given BB, |
| 5262 | install calls to tm_irrevocable when IRR_BLOCKS are reached, |
| 5263 | redirect other calls to the generated transactional clone. */ |
| 5264 | |
| 5265 | static bool |
| 5266 | ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region, |
| 5267 | basic_block bb, bitmap irr_blocks) |
| 5268 | { |
| 5269 | gimple_stmt_iterator gsi; |
| 5270 | bool need_ssa_rename = false; |
| 5271 | |
| 5272 | if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index)) |
| 5273 | { |
| 5274 | ipa_tm_insert_irr_call (node, region, bb); |
| 5275 | return true; |
| 5276 | } |
| 5277 | |
| 5278 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 5279 | { |
| 5280 | gimple *stmt = gsi_stmt (i: gsi); |
| 5281 | |
| 5282 | if (!is_gimple_call (gs: stmt)) |
| 5283 | continue; |
| 5284 | if (is_tm_pure_call (call: stmt)) |
| 5285 | continue; |
| 5286 | |
| 5287 | /* Redirect edges to the appropriate replacement or clone. */ |
| 5288 | ipa_tm_transform_calls_redirect (node, region, gsi: &gsi, need_ssa_rename_p: &need_ssa_rename); |
| 5289 | } |
| 5290 | |
| 5291 | return need_ssa_rename; |
| 5292 | } |
| 5293 | |
| 5294 | /* Walk the CFG for REGION, beginning at BB. Install calls to |
| 5295 | tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to |
| 5296 | the generated transactional clone. */ |
| 5297 | |
| 5298 | static bool |
| 5299 | ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region, |
| 5300 | basic_block bb, bitmap irr_blocks) |
| 5301 | { |
| 5302 | bool need_ssa_rename = false; |
| 5303 | edge e; |
| 5304 | edge_iterator ei; |
| 5305 | auto_vec<basic_block> queue; |
| 5306 | bitmap visited_blocks = BITMAP_ALLOC (NULL); |
| 5307 | |
| 5308 | queue.safe_push (obj: bb); |
| 5309 | do |
| 5310 | { |
| 5311 | bb = queue.pop (); |
| 5312 | |
| 5313 | need_ssa_rename |= |
| 5314 | ipa_tm_transform_calls_1 (node, region, bb, irr_blocks); |
| 5315 | |
| 5316 | if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index)) |
| 5317 | continue; |
| 5318 | |
| 5319 | if (region && bitmap_bit_p (region->exit_blocks, bb->index)) |
| 5320 | continue; |
| 5321 | |
| 5322 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 5323 | if (!bitmap_bit_p (visited_blocks, e->dest->index)) |
| 5324 | { |
| 5325 | bitmap_set_bit (visited_blocks, e->dest->index); |
| 5326 | queue.safe_push (obj: e->dest); |
| 5327 | } |
| 5328 | } |
| 5329 | while (!queue.is_empty ()); |
| 5330 | |
| 5331 | BITMAP_FREE (visited_blocks); |
| 5332 | |
| 5333 | return need_ssa_rename; |
| 5334 | } |
| 5335 | |
| 5336 | /* Transform the calls within the TM regions within NODE. */ |
| 5337 | |
| 5338 | static void |
| 5339 | ipa_tm_transform_transaction (struct cgraph_node *node) |
| 5340 | { |
| 5341 | struct tm_ipa_cg_data *d; |
| 5342 | struct tm_region *region; |
| 5343 | bool need_ssa_rename = false; |
| 5344 | |
| 5345 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5346 | |
| 5347 | push_cfun (DECL_STRUCT_FUNCTION (node->decl)); |
| 5348 | calculate_dominance_info (CDI_DOMINATORS); |
| 5349 | |
| 5350 | for (region = d->all_tm_regions; region; region = region->next) |
| 5351 | { |
| 5352 | /* If we're sure to go irrevocable, don't transform anything. */ |
| 5353 | if (d->irrevocable_blocks_normal |
| 5354 | && bitmap_bit_p (d->irrevocable_blocks_normal, |
| 5355 | region->entry_block->index)) |
| 5356 | { |
| 5357 | transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE |
| 5358 | | GTMA_MAY_ENTER_IRREVOCABLE |
| 5359 | | GTMA_HAS_NO_INSTRUMENTATION); |
| 5360 | continue; |
| 5361 | } |
| 5362 | |
| 5363 | need_ssa_rename |= |
| 5364 | ipa_tm_transform_calls (node, region, bb: region->entry_block, |
| 5365 | irr_blocks: d->irrevocable_blocks_normal); |
| 5366 | } |
| 5367 | |
| 5368 | if (need_ssa_rename) |
| 5369 | update_ssa (TODO_update_ssa_only_virtuals); |
| 5370 | |
| 5371 | pop_cfun (); |
| 5372 | } |
| 5373 | |
| 5374 | /* Transform the calls within the transactional clone of NODE. */ |
| 5375 | |
| 5376 | static void |
| 5377 | ipa_tm_transform_clone (struct cgraph_node *node) |
| 5378 | { |
| 5379 | struct tm_ipa_cg_data *d; |
| 5380 | bool need_ssa_rename; |
| 5381 | |
| 5382 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5383 | |
| 5384 | /* If this function makes no calls and has no irrevocable blocks, |
| 5385 | then there's nothing to do. */ |
| 5386 | /* ??? Remove non-aborting top-level transactions. */ |
| 5387 | if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone) |
| 5388 | return; |
| 5389 | |
| 5390 | push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl)); |
| 5391 | calculate_dominance_info (CDI_DOMINATORS); |
| 5392 | |
| 5393 | need_ssa_rename = |
| 5394 | ipa_tm_transform_calls (node: d->clone, NULL, |
| 5395 | bb: single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)), |
| 5396 | irr_blocks: d->irrevocable_blocks_clone); |
| 5397 | |
| 5398 | if (need_ssa_rename) |
| 5399 | update_ssa (TODO_update_ssa_only_virtuals); |
| 5400 | |
| 5401 | pop_cfun (); |
| 5402 | } |
| 5403 | |
| 5404 | /* Main entry point for the transactional memory IPA pass. */ |
| 5405 | |
| 5406 | static unsigned int |
| 5407 | ipa_tm_execute (void) |
| 5408 | { |
| 5409 | cgraph_node_queue tm_callees = cgraph_node_queue (); |
| 5410 | /* List of functions that will go irrevocable. */ |
| 5411 | cgraph_node_queue irr_worklist = cgraph_node_queue (); |
| 5412 | |
| 5413 | struct cgraph_node *node; |
| 5414 | struct tm_ipa_cg_data *d; |
| 5415 | enum availability a; |
| 5416 | unsigned int i; |
| 5417 | |
| 5418 | cgraph_node::checking_verify_cgraph_nodes (); |
| 5419 | |
| 5420 | bitmap_obstack_initialize (&tm_obstack); |
| 5421 | initialize_original_copy_tables (); |
| 5422 | |
| 5423 | /* For all local functions marked tm_callable, queue them. */ |
| 5424 | FOR_EACH_DEFINED_FUNCTION (node) |
| 5425 | if (is_tm_callable (x: node->decl) |
| 5426 | && node->get_availability () >= AVAIL_INTERPOSABLE) |
| 5427 | { |
| 5428 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5429 | maybe_push_queue (node, queue_p: &tm_callees, in_queue_p: &d->in_callee_queue); |
| 5430 | } |
| 5431 | |
| 5432 | /* For all local reachable functions... */ |
| 5433 | FOR_EACH_DEFINED_FUNCTION (node) |
| 5434 | if (node->lowered |
| 5435 | && node->get_availability () >= AVAIL_INTERPOSABLE) |
| 5436 | { |
| 5437 | /* ... marked tm_pure, record that fact for the runtime by |
| 5438 | indicating that the pure function is its own tm_callable. |
| 5439 | No need to do this if the function's address can't be taken. */ |
| 5440 | if (is_tm_pure (x: node->decl)) |
| 5441 | { |
| 5442 | if (!node->local) |
| 5443 | record_tm_clone_pair (node->decl, node->decl); |
| 5444 | continue; |
| 5445 | } |
| 5446 | |
| 5447 | push_cfun (DECL_STRUCT_FUNCTION (node->decl)); |
| 5448 | calculate_dominance_info (CDI_DOMINATORS); |
| 5449 | |
| 5450 | tm_region_init (NULL); |
| 5451 | if (all_tm_regions) |
| 5452 | { |
| 5453 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5454 | |
| 5455 | /* Scan for calls that are in each transaction, and |
| 5456 | generate the uninstrumented code path. */ |
| 5457 | ipa_tm_scan_calls_transaction (d, callees_p: &tm_callees); |
| 5458 | |
| 5459 | /* Put it in the worklist so we can scan the function |
| 5460 | later (ipa_tm_scan_irr_function) and mark the |
| 5461 | irrevocable blocks. */ |
| 5462 | maybe_push_queue (node, queue_p: &irr_worklist, in_queue_p: &d->in_worklist); |
| 5463 | d->want_irr_scan_normal = true; |
| 5464 | } |
| 5465 | |
| 5466 | pop_cfun (); |
| 5467 | } |
| 5468 | |
| 5469 | /* For every local function on the callee list, scan as if we will be |
| 5470 | creating a transactional clone, queueing all new functions we find |
| 5471 | along the way. */ |
| 5472 | for (i = 0; i < tm_callees.length (); ++i) |
| 5473 | { |
| 5474 | node = tm_callees[i]; |
| 5475 | a = node->get_availability (); |
| 5476 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5477 | |
| 5478 | /* Put it in the worklist so we can scan the function later |
| 5479 | (ipa_tm_scan_irr_function) and mark the irrevocable |
| 5480 | blocks. */ |
| 5481 | maybe_push_queue (node, queue_p: &irr_worklist, in_queue_p: &d->in_worklist); |
| 5482 | |
| 5483 | /* Some callees cannot be arbitrarily cloned. These will always be |
| 5484 | irrevocable. Mark these now, so that we need not scan them. */ |
| 5485 | if (is_tm_irrevocable (x: node->decl)) |
| 5486 | ipa_tm_note_irrevocable (node, worklist_p: &irr_worklist); |
| 5487 | else if (a <= AVAIL_NOT_AVAILABLE |
| 5488 | && !is_tm_safe_or_pure (x: node->decl)) |
| 5489 | ipa_tm_note_irrevocable (node, worklist_p: &irr_worklist); |
| 5490 | else if (a >= AVAIL_INTERPOSABLE) |
| 5491 | { |
| 5492 | if (!tree_versionable_function_p (node->decl)) |
| 5493 | ipa_tm_note_irrevocable (node, worklist_p: &irr_worklist); |
| 5494 | else if (!d->is_irrevocable) |
| 5495 | { |
| 5496 | /* If this is an alias, make sure its base is queued as well. |
| 5497 | we need not scan the callees now, as the base will do. */ |
| 5498 | if (node->alias) |
| 5499 | { |
| 5500 | node = cgraph_node::get (decl: thunk_info::get (node)->alias); |
| 5501 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5502 | maybe_push_queue (node, queue_p: &tm_callees, in_queue_p: &d->in_callee_queue); |
| 5503 | continue; |
| 5504 | } |
| 5505 | |
| 5506 | /* Add all nodes called by this function into |
| 5507 | tm_callees as well. */ |
| 5508 | ipa_tm_scan_calls_clone (node, callees_p: &tm_callees); |
| 5509 | } |
| 5510 | } |
| 5511 | } |
| 5512 | |
| 5513 | /* Iterate scans until no more work to be done. Prefer not to use |
| 5514 | vec::pop because the worklist tends to follow a breadth-first |
| 5515 | search of the callgraph, which should allow convergance with a |
| 5516 | minimum number of scans. But we also don't want the worklist |
| 5517 | array to grow without bound, so we shift the array up periodically. */ |
| 5518 | for (i = 0; i < irr_worklist.length (); ++i) |
| 5519 | { |
| 5520 | if (i > 256 && i == irr_worklist.length () / 8) |
| 5521 | { |
| 5522 | irr_worklist.block_remove (ix: 0, len: i); |
| 5523 | i = 0; |
| 5524 | } |
| 5525 | |
| 5526 | node = irr_worklist[i]; |
| 5527 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5528 | d->in_worklist = false; |
| 5529 | |
| 5530 | if (d->want_irr_scan_normal) |
| 5531 | { |
| 5532 | d->want_irr_scan_normal = false; |
| 5533 | ipa_tm_scan_irr_function (node, for_clone: false); |
| 5534 | } |
| 5535 | if (d->in_callee_queue && ipa_tm_scan_irr_function (node, for_clone: true)) |
| 5536 | ipa_tm_note_irrevocable (node, worklist_p: &irr_worklist); |
| 5537 | } |
| 5538 | |
| 5539 | /* For every function on the callee list, collect the tm_may_enter_irr |
| 5540 | bit on the node. */ |
| 5541 | irr_worklist.truncate (size: 0); |
| 5542 | for (i = 0; i < tm_callees.length (); ++i) |
| 5543 | { |
| 5544 | node = tm_callees[i]; |
| 5545 | if (ipa_tm_mayenterirr_function (node)) |
| 5546 | { |
| 5547 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5548 | gcc_assert (d->in_worklist == false); |
| 5549 | maybe_push_queue (node, queue_p: &irr_worklist, in_queue_p: &d->in_worklist); |
| 5550 | } |
| 5551 | } |
| 5552 | |
| 5553 | /* Propagate the tm_may_enter_irr bit to callers until stable. */ |
| 5554 | for (i = 0; i < irr_worklist.length (); ++i) |
| 5555 | { |
| 5556 | struct cgraph_node *caller; |
| 5557 | struct cgraph_edge *e; |
| 5558 | struct ipa_ref *ref; |
| 5559 | |
| 5560 | if (i > 256 && i == irr_worklist.length () / 8) |
| 5561 | { |
| 5562 | irr_worklist.block_remove (ix: 0, len: i); |
| 5563 | i = 0; |
| 5564 | } |
| 5565 | |
| 5566 | node = irr_worklist[i]; |
| 5567 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5568 | d->in_worklist = false; |
| 5569 | node->tm_may_enter_irr = true; |
| 5570 | |
| 5571 | /* Propagate back to normal callers. */ |
| 5572 | for (e = node->callers; e ; e = e->next_caller) |
| 5573 | { |
| 5574 | caller = e->caller; |
| 5575 | if (!is_tm_safe_or_pure (x: caller->decl) |
| 5576 | && !caller->tm_may_enter_irr) |
| 5577 | { |
| 5578 | d = get_cg_data (node: &caller, traverse_aliases: true); |
| 5579 | maybe_push_queue (node: caller, queue_p: &irr_worklist, in_queue_p: &d->in_worklist); |
| 5580 | } |
| 5581 | } |
| 5582 | |
| 5583 | /* Propagate back to referring aliases as well. */ |
| 5584 | FOR_EACH_ALIAS (node, ref) |
| 5585 | { |
| 5586 | caller = dyn_cast<cgraph_node *> (p: ref->referring); |
| 5587 | if (!caller->tm_may_enter_irr) |
| 5588 | { |
| 5589 | /* ?? Do not traverse aliases here. */ |
| 5590 | d = get_cg_data (node: &caller, traverse_aliases: false); |
| 5591 | maybe_push_queue (node: caller, queue_p: &irr_worklist, in_queue_p: &d->in_worklist); |
| 5592 | } |
| 5593 | } |
| 5594 | } |
| 5595 | |
| 5596 | /* Now validate all tm_safe functions, and all atomic regions in |
| 5597 | other functions. */ |
| 5598 | FOR_EACH_DEFINED_FUNCTION (node) |
| 5599 | if (node->lowered |
| 5600 | && node->get_availability () >= AVAIL_INTERPOSABLE) |
| 5601 | { |
| 5602 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5603 | if (is_tm_safe (x: node->decl)) |
| 5604 | ipa_tm_diagnose_tm_safe (node); |
| 5605 | else if (d->all_tm_regions) |
| 5606 | ipa_tm_diagnose_transaction (node, all_tm_regions: d->all_tm_regions); |
| 5607 | } |
| 5608 | |
| 5609 | /* Create clones. Do those that are not irrevocable and have a |
| 5610 | positive call count. Do those publicly visible functions that |
| 5611 | the user directed us to clone. */ |
| 5612 | for (i = 0; i < tm_callees.length (); ++i) |
| 5613 | { |
| 5614 | bool doit = false; |
| 5615 | |
| 5616 | node = tm_callees[i]; |
| 5617 | if (node->cpp_implicit_alias) |
| 5618 | continue; |
| 5619 | |
| 5620 | a = node->get_availability (); |
| 5621 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5622 | |
| 5623 | if (a <= AVAIL_NOT_AVAILABLE) |
| 5624 | doit = is_tm_callable (x: node->decl); |
| 5625 | else if (a <= AVAIL_AVAILABLE && is_tm_callable (x: node->decl)) |
| 5626 | doit = true; |
| 5627 | else if (!d->is_irrevocable |
| 5628 | && d->tm_callers_normal + d->tm_callers_clone > 0) |
| 5629 | doit = true; |
| 5630 | |
| 5631 | if (doit) |
| 5632 | ipa_tm_create_version (old_node: node); |
| 5633 | } |
| 5634 | |
| 5635 | /* Redirect calls to the new clones, and insert irrevocable marks. */ |
| 5636 | for (i = 0; i < tm_callees.length (); ++i) |
| 5637 | { |
| 5638 | node = tm_callees[i]; |
| 5639 | if (node->analyzed) |
| 5640 | { |
| 5641 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5642 | if (d->clone) |
| 5643 | ipa_tm_transform_clone (node); |
| 5644 | } |
| 5645 | } |
| 5646 | FOR_EACH_DEFINED_FUNCTION (node) |
| 5647 | if (node->lowered |
| 5648 | && node->get_availability () >= AVAIL_INTERPOSABLE) |
| 5649 | { |
| 5650 | d = get_cg_data (node: &node, traverse_aliases: true); |
| 5651 | if (d->all_tm_regions) |
| 5652 | ipa_tm_transform_transaction (node); |
| 5653 | } |
| 5654 | |
| 5655 | /* Free and clear all data structures. */ |
| 5656 | tm_callees.release (); |
| 5657 | irr_worklist.release (); |
| 5658 | bitmap_obstack_release (&tm_obstack); |
| 5659 | free_original_copy_tables (); |
| 5660 | |
| 5661 | FOR_EACH_FUNCTION (node) |
| 5662 | node->aux = NULL; |
| 5663 | |
| 5664 | cgraph_node::checking_verify_cgraph_nodes (); |
| 5665 | |
| 5666 | return 0; |
| 5667 | } |
| 5668 | |
| 5669 | namespace { |
| 5670 | |
| 5671 | const pass_data pass_data_ipa_tm = |
| 5672 | { |
| 5673 | .type: SIMPLE_IPA_PASS, /* type */ |
| 5674 | .name: "tmipa" , /* name */ |
| 5675 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 5676 | .tv_id: TV_TRANS_MEM, /* tv_id */ |
| 5677 | .properties_required: ( PROP_ssa | PROP_cfg ), /* properties_required */ |
| 5678 | .properties_provided: 0, /* properties_provided */ |
| 5679 | .properties_destroyed: 0, /* properties_destroyed */ |
| 5680 | .todo_flags_start: 0, /* todo_flags_start */ |
| 5681 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 5682 | }; |
| 5683 | |
| 5684 | class pass_ipa_tm : public simple_ipa_opt_pass |
| 5685 | { |
| 5686 | public: |
| 5687 | pass_ipa_tm (gcc::context *ctxt) |
| 5688 | : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt) |
| 5689 | {} |
| 5690 | |
| 5691 | /* opt_pass methods: */ |
| 5692 | bool gate (function *) final override { return flag_tm; } |
| 5693 | unsigned int execute (function *) final override { return ipa_tm_execute (); } |
| 5694 | |
| 5695 | }; // class pass_ipa_tm |
| 5696 | |
| 5697 | } // anon namespace |
| 5698 | |
| 5699 | simple_ipa_opt_pass * |
| 5700 | make_pass_ipa_tm (gcc::context *ctxt) |
| 5701 | { |
| 5702 | return new pass_ipa_tm (ctxt); |
| 5703 | } |
| 5704 | |
| 5705 | #include "gt-trans-mem.h" |
| 5706 | |