1/* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2023 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 3, or (at your option)
10any later version.
11
12GCC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
24#include "backend.h"
25#include "tree.h"
26#include "gimple.h"
27#include "tree-pass.h"
28#include "ssa.h"
29#include "gimple-pretty-print.h"
30#include "fold-const.h"
31#include "cfganal.h"
32#include "cfgloop.h"
33#include "gimple-iterator.h"
34#include "gimple-fold.h"
35#include "tree-eh.h"
36#include "tree-inline.h"
37#include "tree-cfg.h"
38#include "tree-into-ssa.h"
39#include "domwalk.h"
40#include "tree-ssa-propagate.h"
41#include "tree-ssa-threadupdate.h"
42#include "tree-ssa-scopedtables.h"
43#include "tree-ssa-threadedge.h"
44#include "tree-ssa-dom.h"
45#include "gimplify.h"
46#include "tree-cfgcleanup.h"
47#include "dbgcnt.h"
48#include "alloc-pool.h"
49#include "tree-vrp.h"
50#include "vr-values.h"
51#include "gimple-range.h"
52#include "gimple-range-path.h"
53#include "alias.h"
54
55/* This file implements optimizations on the dominator tree. */
56
57/* Structure for recording edge equivalences.
58
59 Computing and storing the edge equivalences instead of creating
60 them on-demand can save significant amounts of time, particularly
61 for pathological cases involving switch statements.
62
63 These structures live for a single iteration of the dominator
64 optimizer in the edge's AUX field. At the end of an iteration we
65 free each of these structures. */
66class edge_info
67{
68 public:
69 typedef std::pair <tree, tree> equiv_pair;
70 edge_info (edge);
71 ~edge_info ();
72
73 /* Record a simple LHS = RHS equivalence. This may trigger
74 calls to derive_equivalences. */
75 void record_simple_equiv (tree, tree);
76
77 /* If traversing this edge creates simple equivalences, we store
78 them as LHS/RHS pairs within this vector. */
79 vec<equiv_pair> simple_equivalences;
80
81 /* Traversing an edge may also indicate one or more particular conditions
82 are true or false. */
83 vec<cond_equivalence> cond_equivalences;
84
85 private:
86 /* Derive equivalences by walking the use-def chains. */
87 void derive_equivalences (tree, tree, int);
88};
89
90/* Track whether or not we have changed the control flow graph. */
91static bool cfg_altered;
92
93/* Bitmap of blocks that have had EH statements cleaned. We should
94 remove their dead edges eventually. */
95static bitmap need_eh_cleanup;
96static vec<gimple *> need_noreturn_fixup;
97
98/* Statistics for dominator optimizations. */
99struct opt_stats_d
100{
101 long num_stmts;
102 long num_exprs_considered;
103 long num_re;
104 long num_const_prop;
105 long num_copy_prop;
106};
107
108static struct opt_stats_d opt_stats;
109
110/* Local functions. */
111static void record_equality (tree, tree, class const_and_copies *);
112static void record_equivalences_from_phis (basic_block);
113static void record_equivalences_from_incoming_edge (basic_block,
114 class const_and_copies *,
115 class avail_exprs_stack *,
116 bitmap blocks_on_stack);
117static void eliminate_redundant_computations (gimple_stmt_iterator *,
118 class const_and_copies *,
119 class avail_exprs_stack *);
120static void record_equivalences_from_stmt (gimple *, int,
121 class avail_exprs_stack *);
122static void dump_dominator_optimization_stats (FILE *file,
123 hash_table<expr_elt_hasher> *);
124static void record_temporary_equivalences (edge, class const_and_copies *,
125 class avail_exprs_stack *, bitmap);
126
127/* Constructor for EDGE_INFO. An EDGE_INFO instance is always
128 associated with an edge E. */
129
130edge_info::edge_info (edge e)
131{
132 /* Free the old one associated with E, if it exists and
133 associate our new object with E. */
134 free_dom_edge_info (e);
135 e->aux = this;
136
137 /* And initialize the embedded vectors. */
138 simple_equivalences = vNULL;
139 cond_equivalences = vNULL;
140}
141
142/* Destructor just needs to release the vectors. */
143
144edge_info::~edge_info (void)
145{
146 this->cond_equivalences.release ();
147 this->simple_equivalences.release ();
148}
149
150/* NAME is known to have the value VALUE, which must be a constant.
151
152 Walk through its use-def chain to see if there are other equivalences
153 we might be able to derive.
154
155 RECURSION_LIMIT controls how far back we recurse through the use-def
156 chains. */
157
158void
159edge_info::derive_equivalences (tree name, tree value, int recursion_limit)
160{
161 if (TREE_CODE (name) != SSA_NAME || TREE_CODE (value) != INTEGER_CST)
162 return;
163
164 /* This records the equivalence for the toplevel object. Do
165 this before checking the recursion limit. */
166 simple_equivalences.safe_push (obj: equiv_pair (name, value));
167
168 /* Limit how far up the use-def chains we are willing to walk. */
169 if (recursion_limit == 0)
170 return;
171
172 /* We can walk up the use-def chains to potentially find more
173 equivalences. */
174 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
175 if (is_gimple_assign (gs: def_stmt))
176 {
177 enum tree_code code = gimple_assign_rhs_code (gs: def_stmt);
178 switch (code)
179 {
180 /* If the result of an OR is zero, then its operands are, too. */
181 case BIT_IOR_EXPR:
182 if (integer_zerop (value))
183 {
184 tree rhs1 = gimple_assign_rhs1 (gs: def_stmt);
185 tree rhs2 = gimple_assign_rhs2 (gs: def_stmt);
186
187 value = build_zero_cst (TREE_TYPE (rhs1));
188 derive_equivalences (name: rhs1, value, recursion_limit: recursion_limit - 1);
189 value = build_zero_cst (TREE_TYPE (rhs2));
190 derive_equivalences (name: rhs2, value, recursion_limit: recursion_limit - 1);
191 }
192 break;
193
194 /* If the result of an AND is nonzero, then its operands are, too. */
195 case BIT_AND_EXPR:
196 if (!integer_zerop (value))
197 {
198 tree rhs1 = gimple_assign_rhs1 (gs: def_stmt);
199 tree rhs2 = gimple_assign_rhs2 (gs: def_stmt);
200
201 /* If either operand has a boolean range, then we
202 know its value must be one, otherwise we just know it
203 is nonzero. The former is clearly useful, I haven't
204 seen cases where the latter is helpful yet. */
205 if (TREE_CODE (rhs1) == SSA_NAME)
206 {
207 if (ssa_name_has_boolean_range (rhs1))
208 {
209 value = build_one_cst (TREE_TYPE (rhs1));
210 derive_equivalences (name: rhs1, value, recursion_limit: recursion_limit - 1);
211 }
212 }
213 if (TREE_CODE (rhs2) == SSA_NAME)
214 {
215 if (ssa_name_has_boolean_range (rhs2))
216 {
217 value = build_one_cst (TREE_TYPE (rhs2));
218 derive_equivalences (name: rhs2, value, recursion_limit: recursion_limit - 1);
219 }
220 }
221 }
222 break;
223
224 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
225 set via a widening type conversion, then we may be able to record
226 additional equivalences. */
227 CASE_CONVERT:
228 {
229 tree rhs = gimple_assign_rhs1 (gs: def_stmt);
230 tree rhs_type = TREE_TYPE (rhs);
231 if (INTEGRAL_TYPE_P (rhs_type)
232 && (TYPE_PRECISION (TREE_TYPE (name))
233 >= TYPE_PRECISION (rhs_type))
234 && int_fits_type_p (value, rhs_type))
235 derive_equivalences (name: rhs,
236 fold_convert (rhs_type, value),
237 recursion_limit: recursion_limit - 1);
238 break;
239 }
240
241 /* We can invert the operation of these codes trivially if
242 one of the RHS operands is a constant to produce a known
243 value for the other RHS operand. */
244 case POINTER_PLUS_EXPR:
245 case PLUS_EXPR:
246 {
247 tree rhs1 = gimple_assign_rhs1 (gs: def_stmt);
248 tree rhs2 = gimple_assign_rhs2 (gs: def_stmt);
249
250 /* If either argument is a constant, then we can compute
251 a constant value for the nonconstant argument. */
252 if (TREE_CODE (rhs1) == INTEGER_CST
253 && TREE_CODE (rhs2) == SSA_NAME)
254 derive_equivalences (name: rhs2,
255 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
256 value, rhs1),
257 recursion_limit: recursion_limit - 1);
258 else if (TREE_CODE (rhs2) == INTEGER_CST
259 && TREE_CODE (rhs1) == SSA_NAME)
260 derive_equivalences (name: rhs1,
261 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
262 value, rhs2),
263 recursion_limit: recursion_limit - 1);
264 break;
265 }
266
267 /* If one of the operands is a constant, then we can compute
268 the value of the other operand. If both operands are
269 SSA_NAMEs, then they must be equal if the result is zero. */
270 case MINUS_EXPR:
271 {
272 tree rhs1 = gimple_assign_rhs1 (gs: def_stmt);
273 tree rhs2 = gimple_assign_rhs2 (gs: def_stmt);
274
275 /* If either argument is a constant, then we can compute
276 a constant value for the nonconstant argument. */
277 if (TREE_CODE (rhs1) == INTEGER_CST
278 && TREE_CODE (rhs2) == SSA_NAME)
279 derive_equivalences (name: rhs2,
280 fold_binary (MINUS_EXPR, TREE_TYPE (rhs1),
281 rhs1, value),
282 recursion_limit: recursion_limit - 1);
283 else if (TREE_CODE (rhs2) == INTEGER_CST
284 && TREE_CODE (rhs1) == SSA_NAME)
285 derive_equivalences (name: rhs1,
286 fold_binary (PLUS_EXPR, TREE_TYPE (rhs1),
287 value, rhs2),
288 recursion_limit: recursion_limit - 1);
289 else if (integer_zerop (value))
290 {
291 tree cond = build2 (EQ_EXPR, boolean_type_node,
292 gimple_assign_rhs1 (gs: def_stmt),
293 gimple_assign_rhs2 (gs: def_stmt));
294 tree inverted = invert_truthvalue (cond);
295 record_conditions (p: &this->cond_equivalences, cond, inverted);
296 }
297 break;
298 }
299
300 case EQ_EXPR:
301 case NE_EXPR:
302 {
303 if ((code == EQ_EXPR && integer_onep (value))
304 || (code == NE_EXPR && integer_zerop (value)))
305 {
306 tree rhs1 = gimple_assign_rhs1 (gs: def_stmt);
307 tree rhs2 = gimple_assign_rhs2 (gs: def_stmt);
308
309 /* If either argument is a constant, then record the
310 other argument as being the same as that constant.
311
312 If neither operand is a constant, then we have a
313 conditional name == name equivalence. */
314 if (TREE_CODE (rhs1) == INTEGER_CST)
315 derive_equivalences (name: rhs2, value: rhs1, recursion_limit: recursion_limit - 1);
316 else if (TREE_CODE (rhs2) == INTEGER_CST)
317 derive_equivalences (name: rhs1, value: rhs2, recursion_limit: recursion_limit - 1);
318 }
319 else
320 {
321 tree cond = build2 (code, boolean_type_node,
322 gimple_assign_rhs1 (gs: def_stmt),
323 gimple_assign_rhs2 (gs: def_stmt));
324 tree inverted = invert_truthvalue (cond);
325 if (integer_zerop (value))
326 std::swap (a&: cond, b&: inverted);
327 record_conditions (p: &this->cond_equivalences, cond, inverted);
328 }
329 break;
330 }
331
332 /* For BIT_NOT and NEGATE, we can just apply the operation to the
333 VALUE to get the new equivalence. It will always be a constant
334 so we can recurse. */
335 case BIT_NOT_EXPR:
336 case NEGATE_EXPR:
337 {
338 tree rhs = gimple_assign_rhs1 (gs: def_stmt);
339 tree res;
340 /* If this is a NOT and the operand has a boolean range, then we
341 know its value must be zero or one. We are not supposed to
342 have a BIT_NOT_EXPR for boolean types with precision > 1 in
343 the general case, see e.g. the handling of TRUTH_NOT_EXPR in
344 the gimplifier, but it can be generated by match.pd out of
345 a BIT_XOR_EXPR wrapped in a BIT_AND_EXPR. Now the handling
346 of BIT_AND_EXPR above already forces a specific semantics for
347 boolean types with precision > 1 so we must do the same here,
348 otherwise we could change the semantics of TRUTH_NOT_EXPR for
349 boolean types with precision > 1. */
350 if (code == BIT_NOT_EXPR
351 && TREE_CODE (rhs) == SSA_NAME
352 && ssa_name_has_boolean_range (rhs))
353 {
354 if ((TREE_INT_CST_LOW (value) & 1) == 0)
355 res = build_one_cst (TREE_TYPE (rhs));
356 else
357 res = build_zero_cst (TREE_TYPE (rhs));
358 }
359 else
360 res = fold_build1 (code, TREE_TYPE (rhs), value);
361 derive_equivalences (name: rhs, value: res, recursion_limit: recursion_limit - 1);
362 break;
363 }
364
365 default:
366 {
367 if (TREE_CODE_CLASS (code) == tcc_comparison)
368 {
369 tree cond = build2 (code, boolean_type_node,
370 gimple_assign_rhs1 (gs: def_stmt),
371 gimple_assign_rhs2 (gs: def_stmt));
372 tree inverted = invert_truthvalue (cond);
373 if (integer_zerop (value))
374 std::swap (a&: cond, b&: inverted);
375 record_conditions (p: &this->cond_equivalences, cond, inverted);
376 break;
377 }
378 break;
379 }
380 }
381 }
382}
383
384void
385edge_info::record_simple_equiv (tree lhs, tree rhs)
386{
387 /* If the RHS is a constant, then we may be able to derive
388 further equivalences. Else just record the name = name
389 equivalence. */
390 if (TREE_CODE (rhs) == INTEGER_CST)
391 derive_equivalences (name: lhs, value: rhs, recursion_limit: 4);
392 else
393 simple_equivalences.safe_push (obj: equiv_pair (lhs, rhs));
394}
395
396/* Free the edge_info data attached to E, if it exists and
397 clear e->aux. */
398
399void
400free_dom_edge_info (edge e)
401{
402 class edge_info *edge_info = (class edge_info *)e->aux;
403
404 if (edge_info)
405 delete edge_info;
406 e->aux = NULL;
407}
408
409/* Free all EDGE_INFO structures associated with edges in the CFG.
410 If a particular edge can be threaded, copy the redirection
411 target from the EDGE_INFO structure into the edge's AUX field
412 as required by code to update the CFG and SSA graph for
413 jump threading. */
414
415static void
416free_all_edge_infos (void)
417{
418 basic_block bb;
419 edge_iterator ei;
420 edge e;
421
422 FOR_EACH_BB_FN (bb, cfun)
423 {
424 FOR_EACH_EDGE (e, ei, bb->preds)
425 free_dom_edge_info (e);
426 }
427}
428
429/* Return TRUE if BB has precisely two preds, one of which
430 is a backedge from a forwarder block where the forwarder
431 block is a direct successor of BB. Being a forwarder
432 block, it has no side effects other than transfer of
433 control. Otherwise return FALSE. */
434
435static bool
436single_block_loop_p (basic_block bb)
437{
438 /* Two preds. */
439 if (EDGE_COUNT (bb->preds) != 2)
440 return false;
441
442 /* One and only one of the edges must be marked with
443 EDGE_DFS_BACK. */
444 basic_block pred = NULL;
445 unsigned int count = 0;
446 if (EDGE_PRED (bb, 0)->flags & EDGE_DFS_BACK)
447 {
448 pred = EDGE_PRED (bb, 0)->src;
449 count++;
450 }
451 if (EDGE_PRED (bb, 1)->flags & EDGE_DFS_BACK)
452 {
453 pred = EDGE_PRED (bb, 1)->src;
454 count++;
455 }
456
457 if (count != 1)
458 return false;
459
460 /* Now examine PRED. It should have a single predecessor which
461 is BB and a single successor that is also BB. */
462 if (EDGE_COUNT (pred->preds) != 1
463 || EDGE_COUNT (pred->succs) != 1
464 || EDGE_PRED (pred, 0)->src != bb
465 || EDGE_SUCC (pred, 0)->dest != bb)
466 return false;
467
468 /* This looks good from a CFG standpoint. Now look at the guts
469 of PRED. Basically we want to verify there are no PHI nodes
470 and no real statements. */
471 if (! gimple_seq_empty_p (s: phi_nodes (bb: pred)))
472 return false;
473
474 gimple_stmt_iterator gsi;
475 for (gsi = gsi_last_bb (bb: pred); !gsi_end_p (i: gsi); gsi_prev (i: &gsi))
476 {
477 gimple *stmt = gsi_stmt (i: gsi);
478
479 switch (gimple_code (g: stmt))
480 {
481 case GIMPLE_LABEL:
482 if (DECL_NONLOCAL (gimple_label_label (as_a <glabel *> (stmt))))
483 return false;
484 break;
485
486 case GIMPLE_DEBUG:
487 break;
488
489 default:
490 return false;
491 }
492 }
493
494 return true;
495}
496
497/* We have finished optimizing BB, record any information implied by
498 taking a specific outgoing edge from BB. */
499
500static void
501record_edge_info (basic_block bb)
502{
503 gimple_stmt_iterator gsi = gsi_last_bb (bb);
504 class edge_info *edge_info;
505
506 /* Free all the outgoing edge info data associated with
507 BB's outgoing edges. */
508 edge e;
509 edge_iterator ei;
510 FOR_EACH_EDGE (e, ei, bb->succs)
511 free_dom_edge_info (e);
512
513 if (! gsi_end_p (i: gsi))
514 {
515 gimple *stmt = gsi_stmt (i: gsi);
516 location_t loc = gimple_location (g: stmt);
517
518 if (gimple_code (g: stmt) == GIMPLE_SWITCH)
519 {
520 gswitch *switch_stmt = as_a <gswitch *> (p: stmt);
521 tree index = gimple_switch_index (gs: switch_stmt);
522
523 if (TREE_CODE (index) == SSA_NAME)
524 {
525 int i;
526 int n_labels = gimple_switch_num_labels (gs: switch_stmt);
527 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
528
529 for (i = 0; i < n_labels; i++)
530 {
531 tree label = gimple_switch_label (gs: switch_stmt, index: i);
532 basic_block target_bb
533 = label_to_block (cfun, CASE_LABEL (label));
534 if (CASE_HIGH (label)
535 || !CASE_LOW (label)
536 || info[target_bb->index])
537 info[target_bb->index] = error_mark_node;
538 else
539 info[target_bb->index] = label;
540 }
541
542 FOR_EACH_EDGE (e, ei, bb->succs)
543 {
544 basic_block target_bb = e->dest;
545 tree label = info[target_bb->index];
546
547 if (label != NULL && label != error_mark_node)
548 {
549 tree x = fold_convert_loc (loc, TREE_TYPE (index),
550 CASE_LOW (label));
551 edge_info = new class edge_info (e);
552 edge_info->record_simple_equiv (lhs: index, rhs: x);
553 }
554 }
555 free (ptr: info);
556 }
557 }
558
559 /* A COND_EXPR may create equivalences too. */
560 if (gimple_code (g: stmt) == GIMPLE_COND)
561 {
562 edge true_edge;
563 edge false_edge;
564
565 tree op0 = gimple_cond_lhs (gs: stmt);
566 tree op1 = gimple_cond_rhs (gs: stmt);
567 enum tree_code code = gimple_cond_code (gs: stmt);
568
569 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
570
571 /* Special case comparing booleans against a constant as we
572 know the value of OP0 on both arms of the branch. i.e., we
573 can record an equivalence for OP0 rather than COND.
574
575 However, don't do this if the constant isn't zero or one.
576 Such conditionals will get optimized more thoroughly during
577 the domwalk. */
578 if ((code == EQ_EXPR || code == NE_EXPR)
579 && TREE_CODE (op0) == SSA_NAME
580 && ssa_name_has_boolean_range (op0)
581 && is_gimple_min_invariant (op1)
582 && (integer_zerop (op1) || integer_onep (op1)))
583 {
584 tree true_val = constant_boolean_node (true, TREE_TYPE (op0));
585 tree false_val = constant_boolean_node (false, TREE_TYPE (op0));
586
587 if (code == EQ_EXPR)
588 {
589 edge_info = new class edge_info (true_edge);
590 edge_info->record_simple_equiv (lhs: op0,
591 rhs: (integer_zerop (op1)
592 ? false_val : true_val));
593 edge_info = new class edge_info (false_edge);
594 edge_info->record_simple_equiv (lhs: op0,
595 rhs: (integer_zerop (op1)
596 ? true_val : false_val));
597 }
598 else
599 {
600 edge_info = new class edge_info (true_edge);
601 edge_info->record_simple_equiv (lhs: op0,
602 rhs: (integer_zerop (op1)
603 ? true_val : false_val));
604 edge_info = new class edge_info (false_edge);
605 edge_info->record_simple_equiv (lhs: op0,
606 rhs: (integer_zerop (op1)
607 ? false_val : true_val));
608 }
609 }
610 /* This can show up in the IL as a result of copy propagation
611 it will eventually be canonicalized, but we have to cope
612 with this case within the pass. */
613 else if (is_gimple_min_invariant (op0)
614 && TREE_CODE (op1) == SSA_NAME)
615 {
616 tree cond = build2 (code, boolean_type_node, op0, op1);
617 tree inverted = invert_truthvalue_loc (loc, cond);
618 bool can_infer_simple_equiv
619 = !(HONOR_SIGNED_ZEROS (op0) && real_maybe_zerop (op0))
620 && !DECIMAL_FLOAT_MODE_P (element_mode (TREE_TYPE (op0)));
621 class edge_info *edge_info;
622
623 edge_info = new class edge_info (true_edge);
624 record_conditions (p: &edge_info->cond_equivalences, cond, inverted);
625
626 if (can_infer_simple_equiv && code == EQ_EXPR)
627 edge_info->record_simple_equiv (lhs: op1, rhs: op0);
628
629 edge_info = new class edge_info (false_edge);
630 record_conditions (p: &edge_info->cond_equivalences, inverted, cond);
631
632 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
633 edge_info->record_simple_equiv (lhs: op1, rhs: op0);
634 }
635
636 else if (TREE_CODE (op0) == SSA_NAME
637 && (TREE_CODE (op1) == SSA_NAME
638 || is_gimple_min_invariant (op1)))
639 {
640 tree cond = build2 (code, boolean_type_node, op0, op1);
641 tree inverted = invert_truthvalue_loc (loc, cond);
642 bool can_infer_simple_equiv
643 = !(HONOR_SIGNED_ZEROS (op1) && real_maybe_zerop (op1))
644 && !DECIMAL_FLOAT_MODE_P (element_mode (TREE_TYPE (op1)));
645 class edge_info *edge_info;
646
647 edge_info = new class edge_info (true_edge);
648 record_conditions (p: &edge_info->cond_equivalences, cond, inverted);
649
650 if (can_infer_simple_equiv && code == EQ_EXPR)
651 edge_info->record_simple_equiv (lhs: op0, rhs: op1);
652
653 edge_info = new class edge_info (false_edge);
654 record_conditions (p: &edge_info->cond_equivalences, inverted, cond);
655
656 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
657 edge_info->record_simple_equiv (lhs: op0, rhs: op1);
658 }
659
660 /* If this block is a single block loop, then we may be able to
661 record some equivalences on the loop's exit edge. */
662 if (single_block_loop_p (bb))
663 {
664 /* We know it's a single block loop. Now look at the loop
665 exit condition. What we're looking for is whether or not
666 the exit condition is loop invariant which we can detect
667 by checking if all the SSA_NAMEs referenced are defined
668 outside the loop. */
669 if ((TREE_CODE (op0) != SSA_NAME
670 || gimple_bb (SSA_NAME_DEF_STMT (op0)) != bb)
671 && (TREE_CODE (op1) != SSA_NAME
672 || gimple_bb (SSA_NAME_DEF_STMT (op1)) != bb))
673 {
674 /* At this point we know the exit condition is loop
675 invariant. The only way to get out of the loop is
676 if it never traverses the backedge to begin with. This
677 implies that any PHI nodes create equivalances that we
678 can attach to the loop exit edge. */
679 bool alternative
680 = (EDGE_PRED (bb, 0)->flags & EDGE_DFS_BACK) ? 1 : 0;
681
682 gphi_iterator gsi;
683 for (gsi = gsi_start_phis (bb);
684 !gsi_end_p (i: gsi);
685 gsi_next (i: &gsi))
686 {
687 /* Now get the EDGE_INFO class so we can append
688 it to our list. We want the successor edge
689 where the destination is not the source of
690 an incoming edge. */
691 gphi *phi = gsi.phi ();
692 tree src = PHI_ARG_DEF (phi, alternative);
693 tree dst = PHI_RESULT (phi);
694
695 /* If the other alternative is the same as the result,
696 then this is a degenerate and can be ignored. */
697 if (dst == PHI_ARG_DEF (phi, !alternative))
698 continue;
699
700 if (EDGE_SUCC (bb, 0)->dest
701 != EDGE_PRED (bb, !alternative)->src)
702 edge_info = (class edge_info *)EDGE_SUCC (bb, 0)->aux;
703 else
704 edge_info = (class edge_info *)EDGE_SUCC (bb, 1)->aux;
705
706 /* Note that since this processing is done independently
707 of other edge equivalency processing, we may not
708 have an EDGE_INFO structure set up yet. */
709 if (edge_info == NULL)
710 edge_info = new class edge_info (false_edge);
711 edge_info->record_simple_equiv (lhs: dst, rhs: src);
712 }
713 }
714 }
715 }
716 }
717}
718
719class dom_jt_state : public jt_state
720{
721public:
722 dom_jt_state (const_and_copies *copies, avail_exprs_stack *avails)
723 : m_copies (copies), m_avails (avails)
724 {
725 bitmap_tree_view (m_blocks_on_stack);
726 }
727 void push (edge e) override
728 {
729 m_copies->push_marker ();
730 m_avails->push_marker ();
731 jt_state::push (e);
732 }
733 void pop () override
734 {
735 m_copies->pop_to_marker ();
736 m_avails->pop_to_marker ();
737 jt_state::pop ();
738 }
739 void register_equivs_edge (edge e) override
740 {
741 record_temporary_equivalences (e, m_copies, m_avails, m_blocks_on_stack);
742 }
743 void register_equiv (tree dest, tree src, bool update) override;
744 bitmap get_blocks_on_stack () { return m_blocks_on_stack; }
745private:
746 const_and_copies *m_copies;
747 avail_exprs_stack *m_avails;
748 /* Set of blocks on the stack, to be used for medium-fast
749 dominance queries in back_propagate_equivalences. */
750 auto_bitmap m_blocks_on_stack;
751};
752
753void
754dom_jt_state::register_equiv (tree dest, tree src, bool)
755{
756 m_copies->record_const_or_copy (dest, src);
757}
758
759class dom_jt_simplifier : public hybrid_jt_simplifier
760{
761public:
762 dom_jt_simplifier (avail_exprs_stack *avails, gimple_ranger *ranger,
763 path_range_query *query)
764 : hybrid_jt_simplifier (ranger, query), m_avails (avails) { }
765
766private:
767 tree simplify (gimple *, gimple *, basic_block, jt_state *) override;
768 avail_exprs_stack *m_avails;
769};
770
771tree
772dom_jt_simplifier::simplify (gimple *stmt, gimple *within_stmt,
773 basic_block bb, jt_state *state)
774{
775 /* First see if the conditional is in the hash table. */
776 tree cached_lhs = m_avails->lookup_avail_expr (stmt, false, true);
777 if (cached_lhs)
778 return cached_lhs;
779
780 /* Otherwise call the ranger if possible. */
781 if (state)
782 return hybrid_jt_simplifier::simplify (stmt, within_stmt, bb, state);
783
784 return NULL;
785}
786
787class dom_opt_dom_walker : public dom_walker
788{
789public:
790 dom_opt_dom_walker (cdi_direction direction,
791 jump_threader *threader,
792 dom_jt_state *state,
793 gimple_ranger *ranger,
794 const_and_copies *const_and_copies,
795 avail_exprs_stack *avail_exprs_stack)
796 : dom_walker (direction, REACHABLE_BLOCKS)
797 {
798 m_ranger = ranger;
799 m_state = state;
800 m_dummy_cond = gimple_build_cond (NE_EXPR, integer_zero_node,
801 integer_zero_node, NULL, NULL);
802 m_const_and_copies = const_and_copies;
803 m_avail_exprs_stack = avail_exprs_stack;
804 m_threader = threader;
805 }
806
807 edge before_dom_children (basic_block) final override;
808 void after_dom_children (basic_block) final override;
809
810private:
811
812 /* Unwindable equivalences, both const/copy and expression varieties. */
813 class const_and_copies *m_const_and_copies;
814 class avail_exprs_stack *m_avail_exprs_stack;
815
816 /* Dummy condition to avoid creating lots of throw away statements. */
817 gcond *m_dummy_cond;
818
819 /* Optimize a single statement within a basic block using the
820 various tables mantained by DOM. Returns the taken edge if
821 the statement is a conditional with a statically determined
822 value. */
823 edge optimize_stmt (basic_block, gimple_stmt_iterator *, bool *);
824
825 void set_global_ranges_from_unreachable_edges (basic_block);
826
827 void test_for_singularity (gimple *, avail_exprs_stack *);
828 edge fold_cond (gcond *cond);
829
830 jump_threader *m_threader;
831 gimple_ranger *m_ranger;
832 dom_jt_state *m_state;
833};
834
835/* Jump threading, redundancy elimination and const/copy propagation.
836
837 This pass may expose new symbols that need to be renamed into SSA. For
838 every new symbol exposed, its corresponding bit will be set in
839 VARS_TO_RENAME. */
840
841namespace {
842
843const pass_data pass_data_dominator =
844{
845 .type: GIMPLE_PASS, /* type */
846 .name: "dom", /* name */
847 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
848 .tv_id: TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
849 .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */
850 .properties_provided: 0, /* properties_provided */
851 .properties_destroyed: 0, /* properties_destroyed */
852 .todo_flags_start: 0, /* todo_flags_start */
853 .todo_flags_finish: ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
854};
855
856class pass_dominator : public gimple_opt_pass
857{
858public:
859 pass_dominator (gcc::context *ctxt)
860 : gimple_opt_pass (pass_data_dominator, ctxt),
861 may_peel_loop_headers_p (false)
862 {}
863
864 /* opt_pass methods: */
865 opt_pass * clone () final override { return new pass_dominator (m_ctxt); }
866 void set_pass_param (unsigned int n, bool param) final override
867 {
868 gcc_assert (n == 0);
869 may_peel_loop_headers_p = param;
870 }
871 bool gate (function *) final override { return flag_tree_dom != 0; }
872 unsigned int execute (function *) final override;
873
874 private:
875 /* This flag is used to prevent loops from being peeled repeatedly in jump
876 threading; it will be removed once we preserve loop structures throughout
877 the compilation -- we will be able to mark the affected loops directly in
878 jump threading, and avoid peeling them next time. */
879 bool may_peel_loop_headers_p;
880}; // class pass_dominator
881
882unsigned int
883pass_dominator::execute (function *fun)
884{
885 memset (s: &opt_stats, c: 0, n: sizeof (opt_stats));
886
887 /* Create our hash tables. */
888 hash_table<expr_elt_hasher> *avail_exprs
889 = new hash_table<expr_elt_hasher> (1024);
890 class avail_exprs_stack *avail_exprs_stack
891 = new class avail_exprs_stack (avail_exprs);
892 class const_and_copies *const_and_copies = new class const_and_copies ();
893 need_eh_cleanup = BITMAP_ALLOC (NULL);
894 need_noreturn_fixup.create (nelems: 0);
895
896 calculate_dominance_info (CDI_DOMINATORS);
897 cfg_altered = false;
898
899 /* We need to know loop structures in order to avoid destroying them
900 in jump threading. Note that we still can e.g. thread through loop
901 headers to an exit edge, or through loop header to the loop body, assuming
902 that we update the loop info.
903
904 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
905 to several overly conservative bail-outs in jump threading, case
906 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
907 missing. We should improve jump threading in future then
908 LOOPS_HAVE_PREHEADERS won't be needed here. */
909 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES
910 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
911
912 /* We need accurate information regarding back edges in the CFG
913 for jump threading; this may include back edges that are not part of
914 a single loop. */
915 mark_dfs_back_edges ();
916
917 /* We want to create the edge info structures before the dominator walk
918 so that they'll be in place for the jump threader, particularly when
919 threading through a join block.
920
921 The conditions will be lazily updated with global equivalences as
922 we reach them during the dominator walk. */
923 basic_block bb;
924 FOR_EACH_BB_FN (bb, fun)
925 record_edge_info (bb);
926
927 /* Recursively walk the dominator tree optimizing statements. */
928 gimple_ranger *ranger = enable_ranger (m: fun);
929 path_range_query path_query (*ranger);
930 dom_jt_simplifier simplifier (avail_exprs_stack, ranger, &path_query);
931 dom_jt_state state (const_and_copies, avail_exprs_stack);
932 jump_threader threader (&simplifier, &state);
933 dom_opt_dom_walker walker (CDI_DOMINATORS,
934 &threader,
935 &state,
936 ranger,
937 const_and_copies,
938 avail_exprs_stack);
939 walker.walk (fun->cfg->x_entry_block_ptr);
940
941 ranger->export_global_ranges ();
942 disable_ranger (fun);
943
944 /* Look for blocks where we cleared EDGE_EXECUTABLE on an outgoing
945 edge. When found, remove jump threads which contain any outgoing
946 edge from the affected block. */
947 if (cfg_altered)
948 {
949 FOR_EACH_BB_FN (bb, fun)
950 {
951 edge_iterator ei;
952 edge e;
953
954 /* First see if there are any edges without EDGE_EXECUTABLE
955 set. */
956 bool found = false;
957 FOR_EACH_EDGE (e, ei, bb->succs)
958 {
959 if ((e->flags & EDGE_EXECUTABLE) == 0)
960 {
961 found = true;
962 break;
963 }
964 }
965
966 /* If there were any such edges found, then remove jump threads
967 containing any edge leaving BB. */
968 if (found)
969 FOR_EACH_EDGE (e, ei, bb->succs)
970 threader.remove_jump_threads_including (e);
971 }
972 }
973
974 {
975 gimple_stmt_iterator gsi;
976 basic_block bb;
977 FOR_EACH_BB_FN (bb, fun)
978 {
979 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
980 update_stmt_if_modified (s: gsi_stmt (i: gsi));
981 }
982 }
983
984 /* If we exposed any new variables, go ahead and put them into
985 SSA form now, before we handle jump threading. This simplifies
986 interactions between rewriting of _DECL nodes into SSA form
987 and rewriting SSA_NAME nodes into SSA form after block
988 duplication and CFG manipulation. */
989 update_ssa (TODO_update_ssa);
990
991 free_all_edge_infos ();
992
993 /* Thread jumps, creating duplicate blocks as needed. */
994 cfg_altered |= threader.thread_through_all_blocks (may_peel_loop_headers: may_peel_loop_headers_p);
995
996 if (cfg_altered)
997 free_dominance_info (CDI_DOMINATORS);
998
999 /* Removal of statements may make some EH edges dead. Purge
1000 such edges from the CFG as needed. */
1001 if (!bitmap_empty_p (map: need_eh_cleanup))
1002 {
1003 unsigned i;
1004 bitmap_iterator bi;
1005
1006 /* Jump threading may have created forwarder blocks from blocks
1007 needing EH cleanup; the new successor of these blocks, which
1008 has inherited from the original block, needs the cleanup.
1009 Don't clear bits in the bitmap, as that can break the bitmap
1010 iterator. */
1011 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
1012 {
1013 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
1014 if (bb == NULL)
1015 continue;
1016 while (single_succ_p (bb)
1017 && (single_succ_edge (bb)->flags
1018 & (EDGE_EH|EDGE_DFS_BACK)) == 0)
1019 bb = single_succ (bb);
1020 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
1021 continue;
1022 if ((unsigned) bb->index != i)
1023 bitmap_set_bit (need_eh_cleanup, bb->index);
1024 }
1025
1026 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
1027 bitmap_clear (need_eh_cleanup);
1028 }
1029
1030 /* Fixup stmts that became noreturn calls. This may require splitting
1031 blocks and thus isn't possible during the dominator walk or before
1032 jump threading finished. Do this in reverse order so we don't
1033 inadvertedly remove a stmt we want to fixup by visiting a dominating
1034 now noreturn call first. */
1035 while (!need_noreturn_fixup.is_empty ())
1036 {
1037 gimple *stmt = need_noreturn_fixup.pop ();
1038 if (dump_file && dump_flags & TDF_DETAILS)
1039 {
1040 fprintf (stream: dump_file, format: "Fixing up noreturn call ");
1041 print_gimple_stmt (dump_file, stmt, 0);
1042 fprintf (stream: dump_file, format: "\n");
1043 }
1044 fixup_noreturn_call (stmt);
1045 }
1046
1047 statistics_counter_event (fun, "Redundant expressions eliminated",
1048 opt_stats.num_re);
1049 statistics_counter_event (fun, "Constants propagated",
1050 opt_stats.num_const_prop);
1051 statistics_counter_event (fun, "Copies propagated",
1052 opt_stats.num_copy_prop);
1053
1054 /* Debugging dumps. */
1055 if (dump_file && (dump_flags & TDF_STATS))
1056 dump_dominator_optimization_stats (file: dump_file, avail_exprs);
1057
1058 loop_optimizer_finalize ();
1059
1060 /* Delete our main hashtable. */
1061 delete avail_exprs;
1062 avail_exprs = NULL;
1063
1064 /* Free asserted bitmaps and stacks. */
1065 BITMAP_FREE (need_eh_cleanup);
1066 need_noreturn_fixup.release ();
1067 delete avail_exprs_stack;
1068 delete const_and_copies;
1069
1070 return 0;
1071}
1072
1073} // anon namespace
1074
1075gimple_opt_pass *
1076make_pass_dominator (gcc::context *ctxt)
1077{
1078 return new pass_dominator (ctxt);
1079}
1080
1081/* Valueize hook for gimple_fold_stmt_to_constant_1. */
1082
1083static tree
1084dom_valueize (tree t)
1085{
1086 if (TREE_CODE (t) == SSA_NAME)
1087 {
1088 tree tem = SSA_NAME_VALUE (t);
1089 if (tem)
1090 return tem;
1091 }
1092 return t;
1093}
1094
1095/* We have just found an equivalence for LHS on an edge E.
1096 Look backwards to other uses of LHS and see if we can derive
1097 additional equivalences that are valid on edge E. */
1098static void
1099back_propagate_equivalences (tree lhs, edge e,
1100 class const_and_copies *const_and_copies,
1101 bitmap domby)
1102{
1103 use_operand_p use_p;
1104 imm_use_iterator iter;
1105 basic_block dest = e->dest;
1106 bool domok = (dom_info_state (CDI_DOMINATORS) == DOM_OK);
1107
1108 /* Iterate over the uses of LHS to see if any dominate E->dest.
1109 If so, they may create useful equivalences too.
1110
1111 ??? If the code gets re-organized to a worklist to catch more
1112 indirect opportunities and it is made to handle PHIs then this
1113 should only consider use_stmts in basic-blocks we have already visited. */
1114 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
1115 {
1116 gimple *use_stmt = USE_STMT (use_p);
1117
1118 /* Often the use is in DEST, which we trivially know we can't use.
1119 This is cheaper than the dominator set tests below. */
1120 if (dest == gimple_bb (g: use_stmt))
1121 continue;
1122
1123 /* Filter out statements that can never produce a useful
1124 equivalence. */
1125 tree lhs2 = gimple_get_lhs (use_stmt);
1126 if (!lhs2 || TREE_CODE (lhs2) != SSA_NAME)
1127 continue;
1128
1129 if (domok)
1130 {
1131 if (!dominated_by_p (CDI_DOMINATORS, dest, gimple_bb (g: use_stmt)))
1132 continue;
1133 }
1134 else
1135 {
1136 /* We can use the set of BBs on the stack from a domwalk
1137 for a medium fast way to query dominance. Profiling
1138 has shown non-fast query dominance tests here can be fairly
1139 expensive. */
1140 /* This tests if USE_STMT does not dominate DEST. */
1141 if (!bitmap_bit_p (domby, gimple_bb (g: use_stmt)->index))
1142 continue;
1143 }
1144
1145 /* At this point USE_STMT dominates DEST and may result in a
1146 useful equivalence. Try to simplify its RHS to a constant
1147 or SSA_NAME. */
1148 tree res = gimple_fold_stmt_to_constant_1 (use_stmt, dom_valueize,
1149 no_follow_ssa_edges);
1150 if (res && (TREE_CODE (res) == SSA_NAME || is_gimple_min_invariant (res)))
1151 record_equality (lhs2, res, const_and_copies);
1152 }
1153}
1154
1155/* Record into CONST_AND_COPIES and AVAIL_EXPRS_STACK any equivalences implied
1156 by traversing edge E (which are cached in E->aux).
1157
1158 Callers are responsible for managing the unwinding markers. */
1159static void
1160record_temporary_equivalences (edge e,
1161 class const_and_copies *const_and_copies,
1162 class avail_exprs_stack *avail_exprs_stack,
1163 bitmap blocks_on_stack)
1164{
1165 int i;
1166 class edge_info *edge_info = (class edge_info *) e->aux;
1167
1168 /* If we have info associated with this edge, record it into
1169 our equivalence tables. */
1170 if (edge_info)
1171 {
1172 cond_equivalence *eq;
1173 /* If we have 0 = COND or 1 = COND equivalences, record them
1174 into our expression hash tables. */
1175 for (i = 0; edge_info->cond_equivalences.iterate (ix: i, ptr: &eq); ++i)
1176 avail_exprs_stack->record_cond (eq);
1177
1178 edge_info::equiv_pair *seq;
1179 for (i = 0; edge_info->simple_equivalences.iterate (ix: i, ptr: &seq); ++i)
1180 {
1181 tree lhs = seq->first;
1182 if (!lhs || TREE_CODE (lhs) != SSA_NAME)
1183 continue;
1184
1185 /* Record the simple NAME = VALUE equivalence. */
1186 tree rhs = seq->second;
1187
1188 /* If this is a SSA_NAME = SSA_NAME equivalence and one operand is
1189 cheaper to compute than the other, then set up the equivalence
1190 such that we replace the expensive one with the cheap one.
1191
1192 If they are the same cost to compute, then do not record
1193 anything. */
1194 if (TREE_CODE (lhs) == SSA_NAME && TREE_CODE (rhs) == SSA_NAME)
1195 {
1196 gimple *rhs_def = SSA_NAME_DEF_STMT (rhs);
1197 int rhs_cost = estimate_num_insns (rhs_def, &eni_size_weights);
1198
1199 gimple *lhs_def = SSA_NAME_DEF_STMT (lhs);
1200 int lhs_cost = estimate_num_insns (lhs_def, &eni_size_weights);
1201
1202 if (rhs_cost > lhs_cost)
1203 record_equality (rhs, lhs, const_and_copies);
1204 else if (rhs_cost < lhs_cost)
1205 record_equality (lhs, rhs, const_and_copies);
1206 }
1207 else
1208 record_equality (lhs, rhs, const_and_copies);
1209
1210
1211 /* Any equivalence found for LHS may result in additional
1212 equivalences for other uses of LHS that we have already
1213 processed. */
1214 back_propagate_equivalences (lhs, e, const_and_copies,
1215 domby: blocks_on_stack);
1216 }
1217 }
1218}
1219
1220/* PHI nodes can create equivalences too.
1221
1222 Ignoring any alternatives which are the same as the result, if
1223 all the alternatives are equal, then the PHI node creates an
1224 equivalence. */
1225
1226static void
1227record_equivalences_from_phis (basic_block bb)
1228{
1229 gphi_iterator gsi;
1230
1231 for (gsi = gsi_start_phis (bb); !gsi_end_p (i: gsi); )
1232 {
1233 gphi *phi = gsi.phi ();
1234
1235 /* We might eliminate the PHI, so advance GSI now. */
1236 gsi_next (i: &gsi);
1237
1238 tree lhs = gimple_phi_result (gs: phi);
1239 tree rhs = NULL;
1240 size_t i;
1241
1242 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
1243 {
1244 tree t = gimple_phi_arg_def (gs: phi, index: i);
1245
1246 /* Ignore alternatives which are the same as our LHS. Since
1247 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1248 can simply compare pointers. */
1249 if (lhs == t)
1250 continue;
1251
1252 /* If the associated edge is not marked as executable, then it
1253 can be ignored. */
1254 if ((gimple_phi_arg_edge (phi, i)->flags & EDGE_EXECUTABLE) == 0)
1255 continue;
1256
1257 t = dom_valueize (t);
1258
1259 /* If T is an SSA_NAME and its associated edge is a backedge,
1260 then quit as we cannot utilize this equivalence. */
1261 if (TREE_CODE (t) == SSA_NAME
1262 && (gimple_phi_arg_edge (phi, i)->flags & EDGE_DFS_BACK))
1263 break;
1264
1265 /* If we have not processed an alternative yet, then set
1266 RHS to this alternative. */
1267 if (rhs == NULL)
1268 rhs = t;
1269 /* If we have processed an alternative (stored in RHS), then
1270 see if it is equal to this one. If it isn't, then stop
1271 the search. */
1272 else if (! operand_equal_for_phi_arg_p (rhs, t))
1273 break;
1274 }
1275
1276 /* If we had no interesting alternatives, then all the RHS alternatives
1277 must have been the same as LHS. */
1278 if (!rhs)
1279 rhs = lhs;
1280
1281 /* If we managed to iterate through each PHI alternative without
1282 breaking out of the loop, then we have a PHI which may create
1283 a useful equivalence. We do not need to record unwind data for
1284 this, since this is a true assignment and not an equivalence
1285 inferred from a comparison. All uses of this ssa name are dominated
1286 by this assignment, so unwinding just costs time and space. */
1287 if (i == gimple_phi_num_args (gs: phi))
1288 {
1289 if (may_propagate_copy (lhs, rhs))
1290 set_ssa_name_value (lhs, rhs);
1291 else if (virtual_operand_p (op: lhs))
1292 {
1293 gimple *use_stmt;
1294 imm_use_iterator iter;
1295 use_operand_p use_p;
1296 /* For virtual operands we have to propagate into all uses as
1297 otherwise we will create overlapping life-ranges. */
1298 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
1299 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
1300 SET_USE (use_p, rhs);
1301 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
1302 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
1303 gimple_stmt_iterator tmp_gsi = gsi_for_stmt (phi);
1304 remove_phi_node (&tmp_gsi, true);
1305 }
1306 }
1307 }
1308}
1309
1310/* Return true if all uses of NAME are dominated by STMT or feed STMT
1311 via a chain of single immediate uses. */
1312
1313static bool
1314all_uses_feed_or_dominated_by_stmt (tree name, gimple *stmt)
1315{
1316 use_operand_p use_p, use2_p;
1317 imm_use_iterator iter;
1318 basic_block stmt_bb = gimple_bb (g: stmt);
1319
1320 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
1321 {
1322 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
1323 if (use_stmt == stmt
1324 || is_gimple_debug (gs: use_stmt)
1325 || (gimple_bb (g: use_stmt) != stmt_bb
1326 && dominated_by_p (CDI_DOMINATORS,
1327 gimple_bb (g: use_stmt), stmt_bb)))
1328 continue;
1329 while (use_stmt != stmt
1330 && is_gimple_assign (gs: use_stmt)
1331 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
1332 && single_imm_use (var: gimple_assign_lhs (gs: use_stmt),
1333 use_p: &use2_p, stmt: &use_stmt2))
1334 use_stmt = use_stmt2;
1335 if (use_stmt != stmt)
1336 return false;
1337 }
1338 return true;
1339}
1340
1341/* Handle
1342 _4 = x_3 & 31;
1343 if (_4 != 0)
1344 goto <bb 6>;
1345 else
1346 goto <bb 7>;
1347 <bb 6>:
1348 __builtin_unreachable ();
1349 <bb 7>:
1350
1351 If x_3 has no other immediate uses (checked by caller), var is the
1352 x_3 var, we can clear low 5 bits from the non-zero bitmask. */
1353
1354static void
1355maybe_set_nonzero_bits (edge e, tree var)
1356{
1357 basic_block cond_bb = e->src;
1358 gcond *cond = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: cond_bb));
1359 tree cst;
1360
1361 if (cond == NULL
1362 || gimple_cond_code (gs: cond) != ((e->flags & EDGE_TRUE_VALUE)
1363 ? EQ_EXPR : NE_EXPR)
1364 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
1365 || !integer_zerop (gimple_cond_rhs (gs: cond)))
1366 return;
1367
1368 gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
1369 if (!is_gimple_assign (gs: stmt)
1370 || gimple_assign_rhs_code (gs: stmt) != BIT_AND_EXPR
1371 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
1372 return;
1373 if (gimple_assign_rhs1 (gs: stmt) != var)
1374 {
1375 gimple *stmt2;
1376
1377 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
1378 return;
1379 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1380 if (!gimple_assign_cast_p (s: stmt2)
1381 || gimple_assign_rhs1 (gs: stmt2) != var
1382 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
1383 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
1384 != TYPE_PRECISION (TREE_TYPE (var))))
1385 return;
1386 }
1387 cst = gimple_assign_rhs2 (gs: stmt);
1388 if (POINTER_TYPE_P (TREE_TYPE (var)))
1389 {
1390 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (var);
1391 if (pi && pi->misalign)
1392 return;
1393 wide_int w = wi::bit_not (x: wi::to_wide (t: cst));
1394 unsigned int bits = wi::ctz (w);
1395 if (bits == 0 || bits >= HOST_BITS_PER_INT)
1396 return;
1397 unsigned int align = 1U << bits;
1398 if (pi == NULL || pi->align < align)
1399 set_ptr_info_alignment (get_ptr_info (var), align, 0);
1400 }
1401 else
1402 set_nonzero_bits (var, wi::bit_and_not (x: get_nonzero_bits (var),
1403 y: wi::to_wide (t: cst)));
1404}
1405
1406/* Set global ranges that can be determined from the C->M edge:
1407
1408 <bb C>:
1409 ...
1410 if (something)
1411 goto <bb N>;
1412 else
1413 goto <bb M>;
1414 <bb N>:
1415 __builtin_unreachable ();
1416 <bb M>:
1417*/
1418
1419void
1420dom_opt_dom_walker::set_global_ranges_from_unreachable_edges (basic_block bb)
1421{
1422 edge pred_e = single_pred_edge_ignoring_loop_edges (bb, false);
1423 if (!pred_e)
1424 return;
1425
1426 gimple *stmt = *gsi_last_bb (bb: pred_e->src);
1427 if (!stmt
1428 || gimple_code (g: stmt) != GIMPLE_COND
1429 || !assert_unreachable_fallthru_edge_p (pred_e))
1430 return;
1431
1432 tree name;
1433 gori_compute &gori = m_ranger->gori ();
1434 FOR_EACH_GORI_EXPORT_NAME (gori, pred_e->src, name)
1435 if (all_uses_feed_or_dominated_by_stmt (name, stmt)
1436 // The condition must post-dominate the definition point.
1437 && (SSA_NAME_IS_DEFAULT_DEF (name)
1438 || (gimple_bb (SSA_NAME_DEF_STMT (name))
1439 == pred_e->src)))
1440 {
1441 Value_Range r (TREE_TYPE (name));
1442
1443 if (m_ranger->range_on_edge (r, e: pred_e, name)
1444 && !r.varying_p ()
1445 && !r.undefined_p ())
1446 {
1447 set_range_info (name, r);
1448 maybe_set_nonzero_bits (e: pred_e, var: name);
1449 }
1450 }
1451}
1452
1453/* Record any equivalences created by the incoming edge to BB into
1454 CONST_AND_COPIES and AVAIL_EXPRS_STACK. If BB has more than one
1455 incoming edge, then no equivalence is created. */
1456
1457static void
1458record_equivalences_from_incoming_edge (basic_block bb,
1459 class const_and_copies *const_and_copies,
1460 class avail_exprs_stack *avail_exprs_stack,
1461 bitmap blocks_on_stack)
1462{
1463 edge e;
1464 basic_block parent;
1465
1466 /* If our parent block ended with a control statement, then we may be
1467 able to record some equivalences based on which outgoing edge from
1468 the parent was followed. */
1469 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1470
1471 e = single_pred_edge_ignoring_loop_edges (bb, true);
1472
1473 /* If we had a single incoming edge from our parent block, then enter
1474 any data associated with the edge into our tables. */
1475 if (e && e->src == parent)
1476 record_temporary_equivalences (e, const_and_copies, avail_exprs_stack,
1477 blocks_on_stack);
1478}
1479
1480/* Dump statistics for the hash table HTAB. */
1481
1482static void
1483htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1484{
1485 fprintf (stream: file, format: "size %ld, %ld elements, %f collision/search ratio\n",
1486 (long) htab.size (),
1487 (long) htab.elements (),
1488 htab.collisions ());
1489}
1490
1491/* Dump SSA statistics on FILE. */
1492
1493static void
1494dump_dominator_optimization_stats (FILE *file,
1495 hash_table<expr_elt_hasher> *avail_exprs)
1496{
1497 fprintf (stream: file, format: "Total number of statements: %6ld\n\n",
1498 opt_stats.num_stmts);
1499 fprintf (stream: file, format: "Exprs considered for dominator optimizations: %6ld\n",
1500 opt_stats.num_exprs_considered);
1501
1502 fprintf (stream: file, format: "\nHash table statistics:\n");
1503
1504 fprintf (stream: file, format: " avail_exprs: ");
1505 htab_statistics (file, htab: *avail_exprs);
1506}
1507
1508
1509/* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1510 This constrains the cases in which we may treat this as assignment. */
1511
1512static void
1513record_equality (tree x, tree y, class const_and_copies *const_and_copies)
1514{
1515 tree prev_x = NULL, prev_y = NULL;
1516
1517 if (tree_swap_operands_p (x, y))
1518 std::swap (a&: x, b&: y);
1519
1520 /* Most of the time tree_swap_operands_p does what we want. But there
1521 are cases where we know one operand is better for copy propagation than
1522 the other. Given no other code cares about ordering of equality
1523 comparison operators for that purpose, we just handle the special cases
1524 here. */
1525 if (TREE_CODE (x) == SSA_NAME && TREE_CODE (y) == SSA_NAME)
1526 {
1527 /* If one operand is a single use operand, then make it
1528 X. This will preserve its single use properly and if this
1529 conditional is eliminated, the computation of X can be
1530 eliminated as well. */
1531 if (has_single_use (var: y) && ! has_single_use (var: x))
1532 std::swap (a&: x, b&: y);
1533 }
1534 if (TREE_CODE (x) == SSA_NAME)
1535 prev_x = SSA_NAME_VALUE (x);
1536 if (TREE_CODE (y) == SSA_NAME)
1537 prev_y = SSA_NAME_VALUE (y);
1538
1539 /* If one of the previous values is invariant, or invariant in more loops
1540 (by depth), then use that.
1541 Otherwise it doesn't matter which value we choose, just so
1542 long as we canonicalize on one value. */
1543 if (is_gimple_min_invariant (y))
1544 ;
1545 else if (is_gimple_min_invariant (x))
1546 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1547 else if (prev_x && is_gimple_min_invariant (prev_x))
1548 x = y, y = prev_x, prev_x = prev_y;
1549 else if (prev_y)
1550 y = prev_y;
1551
1552 /* After the swapping, we must have one SSA_NAME. */
1553 if (TREE_CODE (x) != SSA_NAME)
1554 return;
1555
1556 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1557 variable compared against zero. If we're honoring signed zeros,
1558 then we cannot record this value unless we know that the value is
1559 nonzero. */
1560 if (HONOR_SIGNED_ZEROS (x)
1561 && (TREE_CODE (y) != REAL_CST
1562 || real_equal (&dconst0, &TREE_REAL_CST (y))))
1563 return;
1564
1565 const_and_copies->record_const_or_copy (x, y, prev_x);
1566}
1567
1568/* Returns true when STMT is a simple iv increment. It detects the
1569 following situation:
1570
1571 i_1 = phi (..., i_k)
1572 [...]
1573 i_j = i_{j-1} for each j : 2 <= j <= k-1
1574 [...]
1575 i_k = i_{k-1} +/- ... */
1576
1577bool
1578simple_iv_increment_p (gimple *stmt)
1579{
1580 enum tree_code code;
1581 tree lhs, preinc;
1582 gimple *phi;
1583 size_t i;
1584
1585 if (gimple_code (g: stmt) != GIMPLE_ASSIGN)
1586 return false;
1587
1588 lhs = gimple_assign_lhs (gs: stmt);
1589 if (TREE_CODE (lhs) != SSA_NAME)
1590 return false;
1591
1592 code = gimple_assign_rhs_code (gs: stmt);
1593 if (code != PLUS_EXPR
1594 && code != MINUS_EXPR
1595 && code != POINTER_PLUS_EXPR)
1596 return false;
1597
1598 preinc = gimple_assign_rhs1 (gs: stmt);
1599 if (TREE_CODE (preinc) != SSA_NAME)
1600 return false;
1601
1602 phi = SSA_NAME_DEF_STMT (preinc);
1603 while (gimple_code (g: phi) != GIMPLE_PHI)
1604 {
1605 /* Follow trivial copies, but not the DEF used in a back edge,
1606 so that we don't prevent coalescing. */
1607 if (!gimple_assign_ssa_name_copy_p (phi))
1608 return false;
1609 preinc = gimple_assign_rhs1 (gs: phi);
1610 phi = SSA_NAME_DEF_STMT (preinc);
1611 }
1612
1613 for (i = 0; i < gimple_phi_num_args (gs: phi); i++)
1614 if (gimple_phi_arg_def (gs: phi, index: i) == lhs)
1615 return true;
1616
1617 return false;
1618}
1619
1620/* Propagate know values from SSA_NAME_VALUE into the PHI nodes of the
1621 successors of BB. */
1622
1623static void
1624cprop_into_successor_phis (basic_block bb,
1625 class const_and_copies *const_and_copies)
1626{
1627 edge e;
1628 edge_iterator ei;
1629
1630 FOR_EACH_EDGE (e, ei, bb->succs)
1631 {
1632 int indx;
1633 gphi_iterator gsi;
1634
1635 /* If this is an abnormal edge, then we do not want to copy propagate
1636 into the PHI alternative associated with this edge. */
1637 if (e->flags & EDGE_ABNORMAL)
1638 continue;
1639
1640 gsi = gsi_start_phis (e->dest);
1641 if (gsi_end_p (i: gsi))
1642 continue;
1643
1644 /* We may have an equivalence associated with this edge. While
1645 we cannot propagate it into non-dominated blocks, we can
1646 propagate them into PHIs in non-dominated blocks. */
1647
1648 /* Push the unwind marker so we can reset the const and copies
1649 table back to its original state after processing this edge. */
1650 const_and_copies->push_marker ();
1651
1652 /* Extract and record any simple NAME = VALUE equivalences.
1653
1654 Don't bother with [01] = COND equivalences, they're not useful
1655 here. */
1656 class edge_info *edge_info = (class edge_info *) e->aux;
1657
1658 if (edge_info)
1659 {
1660 edge_info::equiv_pair *seq;
1661 for (int i = 0; edge_info->simple_equivalences.iterate (ix: i, ptr: &seq); ++i)
1662 {
1663 tree lhs = seq->first;
1664 tree rhs = seq->second;
1665
1666 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1667 const_and_copies->record_const_or_copy (lhs, rhs);
1668 }
1669
1670 }
1671
1672 indx = e->dest_idx;
1673 for ( ; !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1674 {
1675 tree new_val;
1676 use_operand_p orig_p;
1677 tree orig_val;
1678 gphi *phi = gsi.phi ();
1679
1680 /* The alternative may be associated with a constant, so verify
1681 it is an SSA_NAME before doing anything with it. */
1682 orig_p = gimple_phi_arg_imm_use_ptr (gs: phi, i: indx);
1683 orig_val = get_use_from_ptr (use: orig_p);
1684 if (TREE_CODE (orig_val) != SSA_NAME)
1685 continue;
1686
1687 /* If we have *ORIG_P in our constant/copy table, then replace
1688 ORIG_P with its value in our constant/copy table. */
1689 new_val = SSA_NAME_VALUE (orig_val);
1690 if (new_val
1691 && new_val != orig_val
1692 && may_propagate_copy (orig_val, new_val))
1693 propagate_value (orig_p, new_val);
1694 }
1695
1696 const_and_copies->pop_to_marker ();
1697 }
1698}
1699
1700edge
1701dom_opt_dom_walker::before_dom_children (basic_block bb)
1702{
1703 gimple_stmt_iterator gsi;
1704
1705 if (dump_file && (dump_flags & TDF_DETAILS))
1706 fprintf (stream: dump_file, format: "\n\nOptimizing block #%d\n\n", bb->index);
1707
1708 /* Push a marker on the stacks of local information so that we know how
1709 far to unwind when we finalize this block. */
1710 m_avail_exprs_stack->push_marker ();
1711 m_const_and_copies->push_marker ();
1712 bitmap_set_bit (m_state->get_blocks_on_stack (), bb->index);
1713
1714 record_equivalences_from_incoming_edge (bb, const_and_copies: m_const_and_copies,
1715 avail_exprs_stack: m_avail_exprs_stack,
1716 blocks_on_stack: m_state->get_blocks_on_stack ());
1717 set_global_ranges_from_unreachable_edges (bb);
1718
1719 /* PHI nodes can create equivalences too. */
1720 record_equivalences_from_phis (bb);
1721
1722 /* Create equivalences from redundant PHIs. PHIs are only truly
1723 redundant when they exist in the same block, so push another
1724 marker and unwind right afterwards. */
1725 m_avail_exprs_stack->push_marker ();
1726 for (gsi = gsi_start_phis (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1727 eliminate_redundant_computations (&gsi, m_const_and_copies,
1728 m_avail_exprs_stack);
1729 m_avail_exprs_stack->pop_to_marker ();
1730
1731 edge taken_edge = NULL;
1732 /* Initialize visited flag ahead of us, it has undefined state on
1733 pass entry. */
1734 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
1735 gimple_set_visited (stmt: gsi_stmt (i: gsi), visited_p: false);
1736 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi);)
1737 {
1738 /* Do not optimize a stmt twice, substitution might end up with
1739 _3 = _3 which is not valid. */
1740 if (gimple_visited_p (stmt: gsi_stmt (i: gsi)))
1741 {
1742 gsi_next (i: &gsi);
1743 continue;
1744 }
1745
1746 bool removed_p = false;
1747 taken_edge = this->optimize_stmt (bb, &gsi, &removed_p);
1748 if (!removed_p)
1749 gimple_set_visited (stmt: gsi_stmt (i: gsi), visited_p: true);
1750
1751 /* Go back and visit stmts inserted by folding after substituting
1752 into the stmt at gsi. */
1753 if (gsi_end_p (i: gsi))
1754 {
1755 gcc_checking_assert (removed_p);
1756 gsi = gsi_last_bb (bb);
1757 while (!gsi_end_p (i: gsi) && !gimple_visited_p (stmt: gsi_stmt (i: gsi)))
1758 gsi_prev (i: &gsi);
1759 }
1760 else
1761 {
1762 do
1763 {
1764 gsi_prev (i: &gsi);
1765 }
1766 while (!gsi_end_p (i: gsi) && !gimple_visited_p (stmt: gsi_stmt (i: gsi)));
1767 }
1768 if (gsi_end_p (i: gsi))
1769 gsi = gsi_start_bb (bb);
1770 else
1771 gsi_next (i: &gsi);
1772 }
1773
1774 /* Now prepare to process dominated blocks. */
1775 record_edge_info (bb);
1776 cprop_into_successor_phis (bb, const_and_copies: m_const_and_copies);
1777 if (taken_edge && !dbg_cnt (index: dom_unreachable_edges))
1778 return NULL;
1779
1780 return taken_edge;
1781}
1782
1783/* We have finished processing the dominator children of BB, perform
1784 any finalization actions in preparation for leaving this node in
1785 the dominator tree. */
1786
1787void
1788dom_opt_dom_walker::after_dom_children (basic_block bb)
1789{
1790 m_threader->thread_outgoing_edges (bb);
1791 bitmap_clear_bit (m_state->get_blocks_on_stack (), bb->index);
1792 m_avail_exprs_stack->pop_to_marker ();
1793 m_const_and_copies->pop_to_marker ();
1794}
1795
1796/* Search for redundant computations in STMT. If any are found, then
1797 replace them with the variable holding the result of the computation.
1798
1799 If safe, record this expression into AVAIL_EXPRS_STACK and
1800 CONST_AND_COPIES. */
1801
1802static void
1803eliminate_redundant_computations (gimple_stmt_iterator* gsi,
1804 class const_and_copies *const_and_copies,
1805 class avail_exprs_stack *avail_exprs_stack)
1806{
1807 tree expr_type;
1808 tree cached_lhs;
1809 tree def;
1810 bool insert = true;
1811 bool assigns_var_p = false;
1812
1813 gimple *stmt = gsi_stmt (i: *gsi);
1814
1815 if (gimple_code (g: stmt) == GIMPLE_PHI)
1816 def = gimple_phi_result (gs: stmt);
1817 else
1818 def = gimple_get_lhs (stmt);
1819
1820 /* Certain expressions on the RHS can be optimized away, but cannot
1821 themselves be entered into the hash tables. */
1822 if (! def
1823 || TREE_CODE (def) != SSA_NAME
1824 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
1825 || gimple_vdef (g: stmt)
1826 /* Do not record equivalences for increments of ivs. This would create
1827 overlapping live ranges for a very questionable gain. */
1828 || simple_iv_increment_p (stmt))
1829 insert = false;
1830
1831 /* Check if the expression has been computed before. */
1832 cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, insert, true);
1833
1834 opt_stats.num_exprs_considered++;
1835
1836 /* Get the type of the expression we are trying to optimize. */
1837 if (is_gimple_assign (gs: stmt))
1838 {
1839 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
1840 assigns_var_p = true;
1841 }
1842 else if (gimple_code (g: stmt) == GIMPLE_COND)
1843 expr_type = boolean_type_node;
1844 else if (is_gimple_call (gs: stmt))
1845 {
1846 gcc_assert (gimple_call_lhs (stmt));
1847 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
1848 assigns_var_p = true;
1849 }
1850 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (p: stmt))
1851 expr_type = TREE_TYPE (gimple_switch_index (swtch_stmt));
1852 else if (gimple_code (g: stmt) == GIMPLE_PHI)
1853 /* We can't propagate into a phi, so the logic below doesn't apply.
1854 Instead record an equivalence between the cached LHS and the
1855 PHI result of this statement, provided they are in the same block.
1856 This should be sufficient to kill the redundant phi. */
1857 {
1858 if (def && cached_lhs)
1859 const_and_copies->record_const_or_copy (def, cached_lhs);
1860 return;
1861 }
1862 else
1863 gcc_unreachable ();
1864
1865 if (!cached_lhs)
1866 return;
1867
1868 /* It is safe to ignore types here since we have already done
1869 type checking in the hashing and equality routines. In fact
1870 type checking here merely gets in the way of constant
1871 propagation. Also, make sure that it is safe to propagate
1872 CACHED_LHS into the expression in STMT. */
1873 if ((TREE_CODE (cached_lhs) != SSA_NAME
1874 && (assigns_var_p
1875 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
1876 || may_propagate_copy_into_stmt (stmt, cached_lhs))
1877 {
1878 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
1879 || is_gimple_min_invariant (cached_lhs));
1880
1881 if (dump_file && (dump_flags & TDF_DETAILS))
1882 {
1883 fprintf (stream: dump_file, format: " Replaced redundant expr '");
1884 print_gimple_expr (dump_file, stmt, 0, dump_flags);
1885 fprintf (stream: dump_file, format: "' with '");
1886 print_generic_expr (dump_file, cached_lhs, dump_flags);
1887 fprintf (stream: dump_file, format: "'\n");
1888 }
1889
1890 opt_stats.num_re++;
1891
1892 if (assigns_var_p
1893 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
1894 cached_lhs = fold_convert (expr_type, cached_lhs);
1895
1896 propagate_tree_value_into_stmt (gsi, cached_lhs);
1897
1898 /* Since it is always necessary to mark the result as modified,
1899 perhaps we should move this into propagate_tree_value_into_stmt
1900 itself. */
1901 gimple_set_modified (s: gsi_stmt (i: *gsi), modifiedp: true);
1902 }
1903}
1904
1905/* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
1906 the available expressions table or the const_and_copies table.
1907 Detect and record those equivalences into AVAIL_EXPRS_STACK.
1908
1909 We handle only very simple copy equivalences here. The heavy
1910 lifing is done by eliminate_redundant_computations. */
1911
1912static void
1913record_equivalences_from_stmt (gimple *stmt, int may_optimize_p,
1914 class avail_exprs_stack *avail_exprs_stack)
1915{
1916 tree lhs;
1917 enum tree_code lhs_code;
1918
1919 gcc_assert (is_gimple_assign (stmt));
1920
1921 lhs = gimple_assign_lhs (gs: stmt);
1922 lhs_code = TREE_CODE (lhs);
1923
1924 if (lhs_code == SSA_NAME
1925 && gimple_assign_single_p (gs: stmt))
1926 {
1927 tree rhs = gimple_assign_rhs1 (gs: stmt);
1928
1929 /* If the RHS of the assignment is a constant or another variable that
1930 may be propagated, register it in the CONST_AND_COPIES table. We
1931 do not need to record unwind data for this, since this is a true
1932 assignment and not an equivalence inferred from a comparison. All
1933 uses of this ssa name are dominated by this assignment, so unwinding
1934 just costs time and space. */
1935 if (may_optimize_p
1936 && (TREE_CODE (rhs) == SSA_NAME
1937 || is_gimple_min_invariant (rhs)))
1938 {
1939 rhs = dom_valueize (t: rhs);
1940
1941 if (dump_file && (dump_flags & TDF_DETAILS))
1942 {
1943 fprintf (stream: dump_file, format: "==== ASGN ");
1944 print_generic_expr (dump_file, lhs);
1945 fprintf (stream: dump_file, format: " = ");
1946 print_generic_expr (dump_file, rhs);
1947 fprintf (stream: dump_file, format: "\n");
1948 }
1949
1950 set_ssa_name_value (lhs, rhs);
1951 }
1952 }
1953
1954 /* Make sure we can propagate &x + CST. */
1955 if (lhs_code == SSA_NAME
1956 && gimple_assign_rhs_code (gs: stmt) == POINTER_PLUS_EXPR
1957 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ADDR_EXPR
1958 && TREE_CODE (gimple_assign_rhs2 (stmt)) == INTEGER_CST)
1959 {
1960 tree op0 = gimple_assign_rhs1 (gs: stmt);
1961 tree op1 = gimple_assign_rhs2 (gs: stmt);
1962 tree new_rhs
1963 = build1 (ADDR_EXPR, TREE_TYPE (op0),
1964 fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)),
1965 unshare_expr (op0), fold_convert (ptr_type_node,
1966 op1)));
1967 if (dump_file && (dump_flags & TDF_DETAILS))
1968 {
1969 fprintf (stream: dump_file, format: "==== ASGN ");
1970 print_generic_expr (dump_file, lhs);
1971 fprintf (stream: dump_file, format: " = ");
1972 print_generic_expr (dump_file, new_rhs);
1973 fprintf (stream: dump_file, format: "\n");
1974 }
1975
1976 set_ssa_name_value (lhs, new_rhs);
1977 }
1978
1979 /* A memory store, even an aliased store, creates a useful
1980 equivalence. By exchanging the LHS and RHS, creating suitable
1981 vops and recording the result in the available expression table,
1982 we may be able to expose more redundant loads. */
1983 if (!gimple_has_volatile_ops (stmt)
1984 && gimple_references_memory_p (stmt)
1985 && gimple_assign_single_p (gs: stmt)
1986 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
1987 || is_gimple_min_invariant (gimple_assign_rhs1 (gs: stmt)))
1988 && !is_gimple_reg (lhs))
1989 {
1990 tree rhs = gimple_assign_rhs1 (gs: stmt);
1991 gassign *new_stmt;
1992
1993 /* Build a new statement with the RHS and LHS exchanged. */
1994 if (TREE_CODE (rhs) == SSA_NAME)
1995 {
1996 /* NOTE tuples. The call to gimple_build_assign below replaced
1997 a call to build_gimple_modify_stmt, which did not set the
1998 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
1999 may cause an SSA validation failure, as the LHS may be a
2000 default-initialized name and should have no definition. I'm
2001 a bit dubious of this, as the artificial statement that we
2002 generate here may in fact be ill-formed, but it is simply
2003 used as an internal device in this pass, and never becomes
2004 part of the CFG. */
2005 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2006 new_stmt = gimple_build_assign (rhs, lhs);
2007 SSA_NAME_DEF_STMT (rhs) = defstmt;
2008 }
2009 else
2010 new_stmt = gimple_build_assign (rhs, lhs);
2011
2012 gimple_set_vuse (g: new_stmt, vuse: gimple_vdef (g: stmt));
2013
2014 /* Finally enter the statement into the available expression
2015 table. */
2016 avail_exprs_stack->lookup_avail_expr (new_stmt, true, true);
2017 }
2018}
2019
2020/* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2021 CONST_AND_COPIES. */
2022
2023static void
2024cprop_operand (gimple *stmt, use_operand_p op_p, range_query *query)
2025{
2026 tree val;
2027 tree op = USE_FROM_PTR (op_p);
2028
2029 /* If the operand has a known constant value or it is known to be a
2030 copy of some other variable, use the value or copy stored in
2031 CONST_AND_COPIES. */
2032 val = SSA_NAME_VALUE (op);
2033 if (!val)
2034 {
2035 Value_Range r (TREE_TYPE (op));
2036 tree single;
2037 if (query->range_of_expr (r, expr: op, stmt) && r.singleton_p (result: &single))
2038 val = single;
2039 }
2040
2041 if (val && val != op)
2042 {
2043 /* Do not replace hard register operands in asm statements. */
2044 if (gimple_code (g: stmt) == GIMPLE_ASM
2045 && !may_propagate_copy_into_asm (op))
2046 return;
2047
2048 /* Certain operands are not allowed to be copy propagated due
2049 to their interaction with exception handling and some GCC
2050 extensions. */
2051 if (!may_propagate_copy (op, val))
2052 return;
2053
2054 /* Do not propagate copies into BIVs.
2055 See PR23821 and PR62217 for how this can disturb IV and
2056 number of iteration analysis. */
2057 if (TREE_CODE (val) != INTEGER_CST)
2058 {
2059 gimple *def = SSA_NAME_DEF_STMT (op);
2060 if (gimple_code (g: def) == GIMPLE_PHI
2061 && gimple_bb (g: def)->loop_father->header == gimple_bb (g: def))
2062 return;
2063 }
2064
2065 /* Dump details. */
2066 if (dump_file && (dump_flags & TDF_DETAILS))
2067 {
2068 fprintf (stream: dump_file, format: " Replaced '");
2069 print_generic_expr (dump_file, op, dump_flags);
2070 fprintf (stream: dump_file, format: "' with %s '",
2071 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2072 print_generic_expr (dump_file, val, dump_flags);
2073 fprintf (stream: dump_file, format: "'\n");
2074 }
2075
2076 if (TREE_CODE (val) != SSA_NAME)
2077 opt_stats.num_const_prop++;
2078 else
2079 opt_stats.num_copy_prop++;
2080
2081 propagate_value (op_p, val);
2082
2083 /* And note that we modified this statement. This is now
2084 safe, even if we changed virtual operands since we will
2085 rescan the statement and rewrite its operands again. */
2086 gimple_set_modified (s: stmt, modifiedp: true);
2087 }
2088}
2089
2090/* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2091 known value for that SSA_NAME (or NULL if no value is known).
2092
2093 Propagate values from CONST_AND_COPIES into the uses, vuses and
2094 vdef_ops of STMT. */
2095
2096static void
2097cprop_into_stmt (gimple *stmt, range_query *query)
2098{
2099 use_operand_p op_p;
2100 ssa_op_iter iter;
2101 tree last_copy_propagated_op = NULL;
2102
2103 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
2104 {
2105 tree old_op = USE_FROM_PTR (op_p);
2106
2107 /* If we have A = B and B = A in the copy propagation tables
2108 (due to an equality comparison), avoid substituting B for A
2109 then A for B in the trivially discovered cases. This allows
2110 optimization of statements were A and B appear as input
2111 operands. */
2112 if (old_op != last_copy_propagated_op)
2113 {
2114 cprop_operand (stmt, op_p, query);
2115
2116 tree new_op = USE_FROM_PTR (op_p);
2117 if (new_op != old_op && TREE_CODE (new_op) == SSA_NAME)
2118 last_copy_propagated_op = new_op;
2119 }
2120 }
2121}
2122
2123/* If STMT contains a relational test, try to convert it into an
2124 equality test if there is only a single value which can ever
2125 make the test true.
2126
2127 For example, if the expression hash table contains:
2128
2129 TRUE = (i <= 1)
2130
2131 And we have a test within statement of i >= 1, then we can safely
2132 rewrite the test as i == 1 since there only a single value where
2133 the test is true.
2134
2135 This is similar to code in VRP. */
2136
2137void
2138dom_opt_dom_walker::test_for_singularity (gimple *stmt,
2139 avail_exprs_stack *avail_exprs_stack)
2140{
2141 /* We want to support gimple conditionals as well as assignments
2142 where the RHS contains a conditional. */
2143 if (is_gimple_assign (gs: stmt) || gimple_code (g: stmt) == GIMPLE_COND)
2144 {
2145 enum tree_code code = ERROR_MARK;
2146 tree lhs, rhs;
2147
2148 /* Extract the condition of interest from both forms we support. */
2149 if (is_gimple_assign (gs: stmt))
2150 {
2151 code = gimple_assign_rhs_code (gs: stmt);
2152 lhs = gimple_assign_rhs1 (gs: stmt);
2153 rhs = gimple_assign_rhs2 (gs: stmt);
2154 }
2155 else if (gimple_code (g: stmt) == GIMPLE_COND)
2156 {
2157 code = gimple_cond_code (gs: as_a <gcond *> (p: stmt));
2158 lhs = gimple_cond_lhs (gs: as_a <gcond *> (p: stmt));
2159 rhs = gimple_cond_rhs (gs: as_a <gcond *> (p: stmt));
2160 }
2161
2162 /* We're looking for a relational test using LE/GE. Also note we can
2163 canonicalize LT/GT tests against constants into LE/GT tests. */
2164 if (code == LE_EXPR || code == GE_EXPR
2165 || ((code == LT_EXPR || code == GT_EXPR)
2166 && TREE_CODE (rhs) == INTEGER_CST))
2167 {
2168 /* For LT_EXPR and GT_EXPR, canonicalize to LE_EXPR and GE_EXPR. */
2169 if (code == LT_EXPR)
2170 rhs = fold_build2 (MINUS_EXPR, TREE_TYPE (rhs),
2171 rhs, build_int_cst (TREE_TYPE (rhs), 1));
2172
2173 if (code == GT_EXPR)
2174 rhs = fold_build2 (PLUS_EXPR, TREE_TYPE (rhs),
2175 rhs, build_int_cst (TREE_TYPE (rhs), 1));
2176
2177 /* Determine the code we want to check for in the hash table. */
2178 enum tree_code test_code;
2179 if (code == GE_EXPR || code == GT_EXPR)
2180 test_code = LE_EXPR;
2181 else
2182 test_code = GE_EXPR;
2183
2184 /* Update the dummy statement so we can query the hash tables. */
2185 gimple_cond_set_code (gs: m_dummy_cond, code: test_code);
2186 gimple_cond_set_lhs (gs: m_dummy_cond, lhs);
2187 gimple_cond_set_rhs (gs: m_dummy_cond, rhs);
2188 tree cached_lhs
2189 = avail_exprs_stack->lookup_avail_expr (m_dummy_cond,
2190 false, false);
2191
2192 /* If the lookup returned 1 (true), then the expression we
2193 queried was in the hash table. As a result there is only
2194 one value that makes the original conditional true. Update
2195 STMT accordingly. */
2196 if (cached_lhs && integer_onep (cached_lhs))
2197 {
2198 if (is_gimple_assign (gs: stmt))
2199 {
2200 gimple_assign_set_rhs_code (s: stmt, code: EQ_EXPR);
2201 gimple_assign_set_rhs2 (gs: stmt, rhs);
2202 gimple_set_modified (s: stmt, modifiedp: true);
2203 }
2204 else
2205 {
2206 gimple_set_modified (s: stmt, modifiedp: true);
2207 gimple_cond_set_code (gs: as_a <gcond *> (p: stmt), code: EQ_EXPR);
2208 gimple_cond_set_rhs (gs: as_a <gcond *> (p: stmt), rhs);
2209 gimple_set_modified (s: stmt, modifiedp: true);
2210 }
2211 }
2212 }
2213 }
2214}
2215
2216/* If STMT is a comparison of two uniform vectors reduce it to a comparison
2217 of scalar objects, otherwise leave STMT unchanged. */
2218
2219static void
2220reduce_vector_comparison_to_scalar_comparison (gimple *stmt)
2221{
2222 if (gimple_code (g: stmt) == GIMPLE_COND)
2223 {
2224 tree lhs = gimple_cond_lhs (gs: stmt);
2225 tree rhs = gimple_cond_rhs (gs: stmt);
2226
2227 /* We may have a vector comparison where both arms are uniform
2228 vectors. If so, we can simplify the vector comparison down
2229 to a scalar comparison. */
2230 if (VECTOR_TYPE_P (TREE_TYPE (lhs))
2231 && VECTOR_TYPE_P (TREE_TYPE (rhs)))
2232 {
2233 /* If either operand is an SSA_NAME, then look back to its
2234 defining statement to try and get at a suitable source. */
2235 if (TREE_CODE (rhs) == SSA_NAME)
2236 {
2237 gimple *def_stmt = SSA_NAME_DEF_STMT (rhs);
2238 if (gimple_assign_single_p (gs: def_stmt))
2239 rhs = gimple_assign_rhs1 (gs: def_stmt);
2240 }
2241
2242 if (TREE_CODE (lhs) == SSA_NAME)
2243 {
2244 gimple *def_stmt = SSA_NAME_DEF_STMT (lhs);
2245 if (gimple_assign_single_p (gs: def_stmt))
2246 lhs = gimple_assign_rhs1 (gs: def_stmt);
2247 }
2248
2249 /* Now see if they are both uniform vectors and if so replace
2250 the vector comparison with a scalar comparison. */
2251 tree rhs_elem = rhs ? uniform_vector_p (rhs) : NULL_TREE;
2252 tree lhs_elem = lhs ? uniform_vector_p (lhs) : NULL_TREE;
2253 if (rhs_elem && lhs_elem)
2254 {
2255 if (dump_file && dump_flags & TDF_DETAILS)
2256 {
2257 fprintf (stream: dump_file, format: "Reducing vector comparison: ");
2258 print_gimple_stmt (dump_file, stmt, 0);
2259 }
2260
2261 gimple_cond_set_rhs (gs: as_a <gcond *>(p: stmt), rhs: rhs_elem);
2262 gimple_cond_set_lhs (gs: as_a <gcond *>(p: stmt), lhs: lhs_elem);
2263 gimple_set_modified (s: stmt, modifiedp: true);
2264
2265 if (dump_file && dump_flags & TDF_DETAILS)
2266 {
2267 fprintf (stream: dump_file, format: "To scalar equivalent: ");
2268 print_gimple_stmt (dump_file, stmt, 0);
2269 fprintf (stream: dump_file, format: "\n");
2270 }
2271 }
2272 }
2273 }
2274}
2275
2276/* If possible, rewrite the conditional as TRUE or FALSE, and return
2277 the taken edge. Otherwise, return NULL. */
2278
2279edge
2280dom_opt_dom_walker::fold_cond (gcond *cond)
2281{
2282 simplify_using_ranges simplify (m_ranger);
2283 if (simplify.fold_cond (cond))
2284 {
2285 basic_block bb = gimple_bb (g: cond);
2286 if (gimple_cond_true_p (gs: cond))
2287 return find_taken_edge (bb, boolean_true_node);
2288 if (gimple_cond_false_p (gs: cond))
2289 return find_taken_edge (bb, boolean_false_node);
2290 }
2291 return NULL;
2292}
2293
2294/* Optimize the statement in block BB pointed to by iterator SI.
2295
2296 We try to perform some simplistic global redundancy elimination and
2297 constant propagation:
2298
2299 1- To detect global redundancy, we keep track of expressions that have
2300 been computed in this block and its dominators. If we find that the
2301 same expression is computed more than once, we eliminate repeated
2302 computations by using the target of the first one.
2303
2304 2- Constant values and copy assignments. This is used to do very
2305 simplistic constant and copy propagation. When a constant or copy
2306 assignment is found, we map the value on the RHS of the assignment to
2307 the variable in the LHS in the CONST_AND_COPIES table.
2308
2309 3- Very simple redundant store elimination is performed.
2310
2311 4- We can simplify a condition to a constant or from a relational
2312 condition to an equality condition. */
2313
2314edge
2315dom_opt_dom_walker::optimize_stmt (basic_block bb, gimple_stmt_iterator *si,
2316 bool *removed_p)
2317{
2318 gimple *stmt, *old_stmt;
2319 bool may_optimize_p;
2320 bool modified_p = false;
2321 bool was_noreturn;
2322 edge retval = NULL;
2323
2324 old_stmt = stmt = gsi_stmt (i: *si);
2325 was_noreturn = is_gimple_call (gs: stmt) && gimple_call_noreturn_p (s: stmt);
2326
2327 if (dump_file && (dump_flags & TDF_DETAILS))
2328 {
2329 fprintf (stream: dump_file, format: "Optimizing statement ");
2330 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2331 }
2332
2333 /* STMT may be a comparison of uniform vectors that we can simplify
2334 down to a comparison of scalars. Do that transformation first
2335 so that all the scalar optimizations from here onward apply. */
2336 reduce_vector_comparison_to_scalar_comparison (stmt);
2337
2338 update_stmt_if_modified (s: stmt);
2339 opt_stats.num_stmts++;
2340
2341 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2342 cprop_into_stmt (stmt, query: m_ranger);
2343
2344 /* If the statement has been modified with constant replacements,
2345 fold its RHS before checking for redundant computations. */
2346 if (gimple_modified_p (g: stmt))
2347 {
2348 tree rhs = NULL;
2349
2350 /* Try to fold the statement making sure that STMT is kept
2351 up to date. */
2352 if (fold_stmt (si))
2353 {
2354 stmt = gsi_stmt (i: *si);
2355 gimple_set_modified (s: stmt, modifiedp: true);
2356
2357 if (dump_file && (dump_flags & TDF_DETAILS))
2358 {
2359 fprintf (stream: dump_file, format: " Folded to: ");
2360 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2361 }
2362 }
2363
2364 /* We only need to consider cases that can yield a gimple operand. */
2365 if (gimple_assign_single_p (gs: stmt))
2366 rhs = gimple_assign_rhs1 (gs: stmt);
2367 else if (gimple_code (g: stmt) == GIMPLE_GOTO)
2368 rhs = gimple_goto_dest (gs: stmt);
2369 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (p: stmt))
2370 /* This should never be an ADDR_EXPR. */
2371 rhs = gimple_switch_index (gs: swtch_stmt);
2372
2373 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2374 recompute_tree_invariant_for_addr_expr (rhs);
2375
2376 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2377 even if fold_stmt updated the stmt already and thus cleared
2378 gimple_modified_p flag on it. */
2379 modified_p = true;
2380 }
2381
2382 /* Check for redundant computations. Do this optimization only
2383 for assignments that have no volatile ops and conditionals. */
2384 may_optimize_p = (!gimple_has_side_effects (stmt)
2385 && (is_gimple_assign (gs: stmt)
2386 || (is_gimple_call (gs: stmt)
2387 && gimple_call_lhs (gs: stmt) != NULL_TREE)
2388 || gimple_code (g: stmt) == GIMPLE_COND
2389 || gimple_code (g: stmt) == GIMPLE_SWITCH));
2390
2391 if (may_optimize_p)
2392 {
2393 if (gimple_code (g: stmt) == GIMPLE_CALL)
2394 {
2395 /* Resolve __builtin_constant_p. If it hasn't been
2396 folded to integer_one_node by now, it's fairly
2397 certain that the value simply isn't constant. */
2398 tree callee = gimple_call_fndecl (gs: stmt);
2399 if (callee
2400 && fndecl_built_in_p (node: callee, name1: BUILT_IN_CONSTANT_P))
2401 {
2402 propagate_tree_value_into_stmt (si, integer_zero_node);
2403 stmt = gsi_stmt (i: *si);
2404 }
2405 }
2406
2407 if (gimple_code (g: stmt) == GIMPLE_COND)
2408 {
2409 tree lhs = gimple_cond_lhs (gs: stmt);
2410 tree rhs = gimple_cond_rhs (gs: stmt);
2411
2412 /* If the LHS has a range [0..1] and the RHS has a range ~[0..1],
2413 then this conditional is computable at compile time. We can just
2414 shove either 0 or 1 into the LHS, mark the statement as modified
2415 and all the right things will just happen below.
2416
2417 Note this would apply to any case where LHS has a range
2418 narrower than its type implies and RHS is outside that
2419 narrower range. Future work. */
2420 if (TREE_CODE (lhs) == SSA_NAME
2421 && ssa_name_has_boolean_range (lhs)
2422 && TREE_CODE (rhs) == INTEGER_CST
2423 && ! (integer_zerop (rhs) || integer_onep (rhs)))
2424 {
2425 gimple_cond_set_lhs (gs: as_a <gcond *> (p: stmt),
2426 fold_convert (TREE_TYPE (lhs),
2427 integer_zero_node));
2428 gimple_set_modified (s: stmt, modifiedp: true);
2429 }
2430 else if (TREE_CODE (lhs) == SSA_NAME)
2431 {
2432 /* Exploiting EVRP data is not yet fully integrated into DOM
2433 but we need to do something for this case to avoid regressing
2434 udr4.f90 and new1.C which have unexecutable blocks with
2435 undefined behavior that get diagnosed if they're left in the
2436 IL because we've attached range information to new
2437 SSA_NAMES. */
2438 update_stmt_if_modified (s: stmt);
2439 edge taken_edge = fold_cond (cond: as_a <gcond *> (p: stmt));
2440 if (taken_edge)
2441 {
2442 gimple_set_modified (s: stmt, modifiedp: true);
2443 update_stmt (s: stmt);
2444 cfg_altered = true;
2445 return taken_edge;
2446 }
2447 }
2448 }
2449
2450 update_stmt_if_modified (s: stmt);
2451 eliminate_redundant_computations (gsi: si, const_and_copies: m_const_and_copies,
2452 avail_exprs_stack: m_avail_exprs_stack);
2453 stmt = gsi_stmt (i: *si);
2454
2455 /* Perform simple redundant store elimination. */
2456 if (gimple_assign_single_p (gs: stmt)
2457 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2458 {
2459 tree lhs = gimple_assign_lhs (gs: stmt);
2460 tree rhs = gimple_assign_rhs1 (gs: stmt);
2461 tree cached_lhs;
2462 gassign *new_stmt;
2463 rhs = dom_valueize (t: rhs);
2464 /* Build a new statement with the RHS and LHS exchanged. */
2465 if (TREE_CODE (rhs) == SSA_NAME)
2466 {
2467 gimple *defstmt = SSA_NAME_DEF_STMT (rhs);
2468 new_stmt = gimple_build_assign (rhs, lhs);
2469 SSA_NAME_DEF_STMT (rhs) = defstmt;
2470 }
2471 else
2472 new_stmt = gimple_build_assign (rhs, lhs);
2473 gimple_set_vuse (g: new_stmt, vuse: gimple_vuse (g: stmt));
2474 expr_hash_elt *elt = NULL;
2475 cached_lhs = m_avail_exprs_stack->lookup_avail_expr (new_stmt, false,
2476 false, &elt);
2477 if (cached_lhs
2478 && operand_equal_p (rhs, cached_lhs, flags: 0)
2479 && refs_same_for_tbaa_p (elt->expr ()->kind == EXPR_SINGLE
2480 ? elt->expr ()->ops.single.rhs
2481 : NULL_TREE, lhs))
2482 {
2483 basic_block bb = gimple_bb (g: stmt);
2484 unlink_stmt_vdef (stmt);
2485 if (gsi_remove (si, true))
2486 {
2487 bitmap_set_bit (need_eh_cleanup, bb->index);
2488 if (dump_file && (dump_flags & TDF_DETAILS))
2489 fprintf (stream: dump_file, format: " Flagged to clear EH edges.\n");
2490 }
2491 release_defs (stmt);
2492 *removed_p = true;
2493 return retval;
2494 }
2495 }
2496
2497 /* If this statement was not redundant, we may still be able to simplify
2498 it, which may in turn allow other part of DOM or other passes to do
2499 a better job. */
2500 test_for_singularity (stmt, avail_exprs_stack: m_avail_exprs_stack);
2501 }
2502
2503 /* Record any additional equivalences created by this statement. */
2504 if (is_gimple_assign (gs: stmt))
2505 record_equivalences_from_stmt (stmt, may_optimize_p, avail_exprs_stack: m_avail_exprs_stack);
2506
2507 /* If STMT is a COND_EXPR or SWITCH_EXPR and it was modified, then we may
2508 know where it goes. */
2509 if (gimple_modified_p (g: stmt) || modified_p)
2510 {
2511 tree val = NULL;
2512
2513 if (gimple_code (g: stmt) == GIMPLE_COND)
2514 val = fold_binary_loc (gimple_location (g: stmt),
2515 gimple_cond_code (gs: stmt), boolean_type_node,
2516 gimple_cond_lhs (gs: stmt),
2517 gimple_cond_rhs (gs: stmt));
2518 else if (gswitch *swtch_stmt = dyn_cast <gswitch *> (p: stmt))
2519 val = gimple_switch_index (gs: swtch_stmt);
2520
2521 if (val && TREE_CODE (val) == INTEGER_CST)
2522 {
2523 retval = find_taken_edge (bb, val);
2524 if (retval)
2525 {
2526 /* Fix the condition to be either true or false. */
2527 if (gimple_code (g: stmt) == GIMPLE_COND)
2528 {
2529 if (integer_zerop (val))
2530 gimple_cond_make_false (gs: as_a <gcond *> (p: stmt));
2531 else if (integer_onep (val))
2532 gimple_cond_make_true (gs: as_a <gcond *> (p: stmt));
2533 else
2534 gcc_unreachable ();
2535
2536 gimple_set_modified (s: stmt, modifiedp: true);
2537 }
2538
2539 /* Further simplifications may be possible. */
2540 cfg_altered = true;
2541 }
2542 }
2543
2544 update_stmt_if_modified (s: stmt);
2545
2546 /* If we simplified a statement in such a way as to be shown that it
2547 cannot trap, update the eh information and the cfg to match. */
2548 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2549 {
2550 bitmap_set_bit (need_eh_cleanup, bb->index);
2551 if (dump_file && (dump_flags & TDF_DETAILS))
2552 fprintf (stream: dump_file, format: " Flagged to clear EH edges.\n");
2553 }
2554
2555 if (!was_noreturn
2556 && is_gimple_call (gs: stmt) && gimple_call_noreturn_p (s: stmt))
2557 need_noreturn_fixup.safe_push (obj: stmt);
2558 }
2559 return retval;
2560}
2561

source code of gcc/tree-ssa-dom.cc