| 1 | /* Loop invariant motion. |
| 2 | Copyright (C) 2003-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it |
| 7 | under the terms of the GNU General Public License as published by the |
| 8 | Free Software Foundation; either version 3, or (at your option) any |
| 9 | later version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT |
| 12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with GCC; see the file COPYING3. If not see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "config.h" |
| 21 | #include "system.h" |
| 22 | #include "coretypes.h" |
| 23 | #include "backend.h" |
| 24 | #include "tree.h" |
| 25 | #include "gimple.h" |
| 26 | #include "cfghooks.h" |
| 27 | #include "tree-pass.h" |
| 28 | #include "ssa.h" |
| 29 | #include "gimple-pretty-print.h" |
| 30 | #include "fold-const.h" |
| 31 | #include "cfganal.h" |
| 32 | #include "tree-eh.h" |
| 33 | #include "gimplify.h" |
| 34 | #include "gimple-iterator.h" |
| 35 | #include "tree-cfg.h" |
| 36 | #include "tree-ssa-loop-manip.h" |
| 37 | #include "tree-ssa-loop.h" |
| 38 | #include "tree-into-ssa.h" |
| 39 | #include "cfgloop.h" |
| 40 | #include "tree-affine.h" |
| 41 | #include "tree-ssa-propagate.h" |
| 42 | #include "trans-mem.h" |
| 43 | #include "gimple-fold.h" |
| 44 | #include "tree-scalar-evolution.h" |
| 45 | #include "tree-ssa-loop-niter.h" |
| 46 | #include "alias.h" |
| 47 | #include "builtins.h" |
| 48 | #include "tree-dfa.h" |
| 49 | #include "tree-ssa.h" |
| 50 | #include "dbgcnt.h" |
| 51 | #include "insn-codes.h" |
| 52 | #include "optabs-tree.h" |
| 53 | |
| 54 | /* TODO: Support for predicated code motion. I.e. |
| 55 | |
| 56 | while (1) |
| 57 | { |
| 58 | if (cond) |
| 59 | { |
| 60 | a = inv; |
| 61 | something; |
| 62 | } |
| 63 | } |
| 64 | |
| 65 | Where COND and INV are invariants, but evaluating INV may trap or be |
| 66 | invalid from some other reason if !COND. This may be transformed to |
| 67 | |
| 68 | if (cond) |
| 69 | a = inv; |
| 70 | while (1) |
| 71 | { |
| 72 | if (cond) |
| 73 | something; |
| 74 | } */ |
| 75 | |
| 76 | /* The auxiliary data kept for each statement. */ |
| 77 | |
| 78 | struct lim_aux_data |
| 79 | { |
| 80 | class loop *max_loop; /* The outermost loop in that the statement |
| 81 | is invariant. */ |
| 82 | |
| 83 | class loop *tgt_loop; /* The loop out of that we want to move the |
| 84 | invariant. */ |
| 85 | |
| 86 | class loop *always_executed_in; |
| 87 | /* The outermost loop for that we are sure |
| 88 | the statement is executed if the loop |
| 89 | is entered. */ |
| 90 | |
| 91 | unsigned cost; /* Cost of the computation performed by the |
| 92 | statement. */ |
| 93 | |
| 94 | unsigned ref; /* The simple_mem_ref in this stmt or 0. */ |
| 95 | |
| 96 | vec<gimple *> depends; /* Vector of statements that must be also |
| 97 | hoisted out of the loop when this statement |
| 98 | is hoisted; i.e. those that define the |
| 99 | operands of the statement and are inside of |
| 100 | the MAX_LOOP loop. */ |
| 101 | }; |
| 102 | |
| 103 | /* Maps statements to their lim_aux_data. */ |
| 104 | |
| 105 | static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map; |
| 106 | |
| 107 | /* Description of a memory reference location. */ |
| 108 | |
| 109 | struct mem_ref_loc |
| 110 | { |
| 111 | tree *ref; /* The reference itself. */ |
| 112 | gimple *stmt; /* The statement in that it occurs. */ |
| 113 | }; |
| 114 | |
| 115 | |
| 116 | /* Description of a memory reference. */ |
| 117 | |
| 118 | class im_mem_ref |
| 119 | { |
| 120 | public: |
| 121 | unsigned id : 30; /* ID assigned to the memory reference |
| 122 | (its index in memory_accesses.refs_list) */ |
| 123 | unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */ |
| 124 | unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */ |
| 125 | hashval_t hash; /* Its hash value. */ |
| 126 | |
| 127 | /* The memory access itself and associated caching of alias-oracle |
| 128 | query meta-data. We are using mem.ref == error_mark_node for the |
| 129 | case the reference is represented by its single access stmt |
| 130 | in accesses_in_loop[0]. */ |
| 131 | ao_ref mem; |
| 132 | |
| 133 | bitmap stored; /* The set of loops in that this memory location |
| 134 | is stored to. */ |
| 135 | bitmap loaded; /* The set of loops in that this memory location |
| 136 | is loaded from. */ |
| 137 | vec<mem_ref_loc> accesses_in_loop; |
| 138 | /* The locations of the accesses. */ |
| 139 | |
| 140 | /* The following set is computed on demand. */ |
| 141 | bitmap_head dep_loop; /* The set of loops in that the memory |
| 142 | reference is {in,}dependent in |
| 143 | different modes. */ |
| 144 | }; |
| 145 | |
| 146 | static bool in_loop_pipeline; |
| 147 | |
| 148 | /* We use six bits per loop in the ref->dep_loop bitmap to record |
| 149 | the dep_kind x dep_state combinations. */ |
| 150 | |
| 151 | enum dep_kind { lim_raw, sm_war, sm_waw }; |
| 152 | enum dep_state { dep_unknown, dep_independent, dep_dependent }; |
| 153 | |
| 154 | /* coldest outermost loop for given loop. */ |
| 155 | vec<class loop *> coldest_outermost_loop; |
| 156 | /* hotter outer loop nearest to given loop. */ |
| 157 | vec<class loop *> hotter_than_inner_loop; |
| 158 | |
| 159 | /* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */ |
| 160 | |
| 161 | static void |
| 162 | record_loop_dependence (class loop *loop, im_mem_ref *ref, |
| 163 | dep_kind kind, dep_state state) |
| 164 | { |
| 165 | gcc_assert (state != dep_unknown); |
| 166 | unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0; |
| 167 | bitmap_set_bit (&ref->dep_loop, bit); |
| 168 | } |
| 169 | |
| 170 | /* Query the loop dependence cache of REF for LOOP, KIND. */ |
| 171 | |
| 172 | static dep_state |
| 173 | query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind) |
| 174 | { |
| 175 | unsigned first_bit = 6 * loop->num + kind * 2; |
| 176 | if (bitmap_bit_p (&ref->dep_loop, first_bit)) |
| 177 | return dep_independent; |
| 178 | else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1)) |
| 179 | return dep_dependent; |
| 180 | return dep_unknown; |
| 181 | } |
| 182 | |
| 183 | /* Mem_ref hashtable helpers. */ |
| 184 | |
| 185 | struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref> |
| 186 | { |
| 187 | typedef ao_ref *compare_type; |
| 188 | static inline hashval_t hash (const im_mem_ref *); |
| 189 | static inline bool equal (const im_mem_ref *, const ao_ref *); |
| 190 | }; |
| 191 | |
| 192 | /* A hash function for class im_mem_ref object OBJ. */ |
| 193 | |
| 194 | inline hashval_t |
| 195 | mem_ref_hasher::hash (const im_mem_ref *mem) |
| 196 | { |
| 197 | return mem->hash; |
| 198 | } |
| 199 | |
| 200 | /* An equality function for class im_mem_ref object MEM1 with |
| 201 | memory reference OBJ2. */ |
| 202 | |
| 203 | inline bool |
| 204 | mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2) |
| 205 | { |
| 206 | if (obj2->max_size_known_p ()) |
| 207 | return (mem1->ref_decomposed |
| 208 | && ((TREE_CODE (mem1->mem.base) == MEM_REF |
| 209 | && TREE_CODE (obj2->base) == MEM_REF |
| 210 | && operand_equal_p (TREE_OPERAND (mem1->mem.base, 0), |
| 211 | TREE_OPERAND (obj2->base, 0), flags: 0) |
| 212 | && known_eq (mem_ref_offset (mem1->mem.base) * BITS_PER_UNIT + mem1->mem.offset, |
| 213 | mem_ref_offset (obj2->base) * BITS_PER_UNIT + obj2->offset)) |
| 214 | || (operand_equal_p (mem1->mem.base, obj2->base, flags: 0) |
| 215 | && known_eq (mem1->mem.offset, obj2->offset))) |
| 216 | && known_eq (mem1->mem.size, obj2->size) |
| 217 | && known_eq (mem1->mem.max_size, obj2->max_size) |
| 218 | && mem1->mem.volatile_p == obj2->volatile_p |
| 219 | && (mem1->mem.ref_alias_set == obj2->ref_alias_set |
| 220 | /* We are not canonicalizing alias-sets but for the |
| 221 | special-case we didn't canonicalize yet and the |
| 222 | incoming ref is a alias-set zero MEM we pick |
| 223 | the correct one already. */ |
| 224 | || (!mem1->ref_canonical |
| 225 | && (TREE_CODE (obj2->ref) == MEM_REF |
| 226 | || TREE_CODE (obj2->ref) == TARGET_MEM_REF) |
| 227 | && obj2->ref_alias_set == 0) |
| 228 | /* Likewise if there's a canonical ref with alias-set zero. */ |
| 229 | || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0)) |
| 230 | && types_compatible_p (TREE_TYPE (mem1->mem.ref), |
| 231 | TREE_TYPE (obj2->ref))); |
| 232 | else |
| 233 | return operand_equal_p (mem1->mem.ref, obj2->ref, flags: 0); |
| 234 | } |
| 235 | |
| 236 | |
| 237 | /* Description of memory accesses in loops. */ |
| 238 | |
| 239 | static struct |
| 240 | { |
| 241 | /* The hash table of memory references accessed in loops. */ |
| 242 | hash_table<mem_ref_hasher> *refs; |
| 243 | |
| 244 | /* The list of memory references. */ |
| 245 | vec<im_mem_ref *> refs_list; |
| 246 | |
| 247 | /* The set of memory references accessed in each loop. */ |
| 248 | vec<bitmap_head> refs_loaded_in_loop; |
| 249 | |
| 250 | /* The set of memory references stored in each loop. */ |
| 251 | vec<bitmap_head> refs_stored_in_loop; |
| 252 | |
| 253 | /* The set of memory references stored in each loop, including subloops . */ |
| 254 | vec<bitmap_head> all_refs_stored_in_loop; |
| 255 | |
| 256 | /* Cache for expanding memory addresses. */ |
| 257 | hash_map<tree, name_expansion *> *ttae_cache; |
| 258 | } memory_accesses; |
| 259 | |
| 260 | /* Obstack for the bitmaps in the above data structures. */ |
| 261 | static bitmap_obstack lim_bitmap_obstack; |
| 262 | static obstack mem_ref_obstack; |
| 263 | |
| 264 | static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind); |
| 265 | static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool); |
| 266 | static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true); |
| 267 | |
| 268 | /* Minimum cost of an expensive expression. */ |
| 269 | #define LIM_EXPENSIVE ((unsigned) param_lim_expensive) |
| 270 | |
| 271 | /* The outermost loop for which execution of the header guarantees that the |
| 272 | block will be executed. */ |
| 273 | #define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux) |
| 274 | #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL)) |
| 275 | |
| 276 | /* ID of the shared unanalyzable mem. */ |
| 277 | #define UNANALYZABLE_MEM_ID 0 |
| 278 | |
| 279 | /* Whether the reference was analyzable. */ |
| 280 | #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID) |
| 281 | |
| 282 | static struct lim_aux_data * |
| 283 | init_lim_data (gimple *stmt) |
| 284 | { |
| 285 | lim_aux_data *p = XCNEW (struct lim_aux_data); |
| 286 | lim_aux_data_map->put (k: stmt, v: p); |
| 287 | |
| 288 | return p; |
| 289 | } |
| 290 | |
| 291 | static struct lim_aux_data * |
| 292 | get_lim_data (gimple *stmt) |
| 293 | { |
| 294 | lim_aux_data **p = lim_aux_data_map->get (k: stmt); |
| 295 | if (!p) |
| 296 | return NULL; |
| 297 | |
| 298 | return *p; |
| 299 | } |
| 300 | |
| 301 | /* Releases the memory occupied by DATA. */ |
| 302 | |
| 303 | static void |
| 304 | free_lim_aux_data (struct lim_aux_data *data) |
| 305 | { |
| 306 | data->depends.release (); |
| 307 | free (ptr: data); |
| 308 | } |
| 309 | |
| 310 | static void |
| 311 | clear_lim_data (gimple *stmt) |
| 312 | { |
| 313 | lim_aux_data **p = lim_aux_data_map->get (k: stmt); |
| 314 | if (!p) |
| 315 | return; |
| 316 | |
| 317 | free_lim_aux_data (data: *p); |
| 318 | *p = NULL; |
| 319 | } |
| 320 | |
| 321 | |
| 322 | /* The possibilities of statement movement. */ |
| 323 | enum move_pos |
| 324 | { |
| 325 | MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */ |
| 326 | MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement |
| 327 | become executed -- memory accesses, ... */ |
| 328 | MOVE_POSSIBLE /* Unlimited movement. */ |
| 329 | }; |
| 330 | |
| 331 | |
| 332 | /* If it is possible to hoist the statement STMT unconditionally, |
| 333 | returns MOVE_POSSIBLE. |
| 334 | If it is possible to hoist the statement STMT, but we must avoid making |
| 335 | it executed if it would not be executed in the original program (e.g. |
| 336 | because it may trap), return MOVE_PRESERVE_EXECUTION. |
| 337 | Otherwise return MOVE_IMPOSSIBLE. */ |
| 338 | |
| 339 | static enum move_pos |
| 340 | movement_possibility_1 (gimple *stmt) |
| 341 | { |
| 342 | tree lhs; |
| 343 | enum move_pos ret = MOVE_POSSIBLE; |
| 344 | |
| 345 | if (flag_unswitch_loops |
| 346 | && gimple_code (g: stmt) == GIMPLE_COND) |
| 347 | { |
| 348 | /* If we perform unswitching, force the operands of the invariant |
| 349 | condition to be moved out of the loop. */ |
| 350 | return MOVE_POSSIBLE; |
| 351 | } |
| 352 | |
| 353 | if (gimple_code (g: stmt) == GIMPLE_PHI |
| 354 | && gimple_phi_num_args (gs: stmt) <= 2 |
| 355 | && !virtual_operand_p (op: gimple_phi_result (gs: stmt)) |
| 356 | && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt))) |
| 357 | return MOVE_POSSIBLE; |
| 358 | |
| 359 | if (gimple_get_lhs (stmt) == NULL_TREE) |
| 360 | return MOVE_IMPOSSIBLE; |
| 361 | |
| 362 | if (gimple_vdef (g: stmt)) |
| 363 | return MOVE_IMPOSSIBLE; |
| 364 | |
| 365 | if (stmt_ends_bb_p (stmt) |
| 366 | || gimple_has_volatile_ops (stmt) |
| 367 | || gimple_has_side_effects (stmt) |
| 368 | || stmt_could_throw_p (cfun, stmt)) |
| 369 | return MOVE_IMPOSSIBLE; |
| 370 | |
| 371 | if (is_gimple_call (gs: stmt)) |
| 372 | { |
| 373 | /* While pure or const call is guaranteed to have no side effects, we |
| 374 | cannot move it arbitrarily. Consider code like |
| 375 | |
| 376 | char *s = something (); |
| 377 | |
| 378 | while (1) |
| 379 | { |
| 380 | if (s) |
| 381 | t = strlen (s); |
| 382 | else |
| 383 | t = 0; |
| 384 | } |
| 385 | |
| 386 | Here the strlen call cannot be moved out of the loop, even though |
| 387 | s is invariant. In addition to possibly creating a call with |
| 388 | invalid arguments, moving out a function call that is not executed |
| 389 | may cause performance regressions in case the call is costly and |
| 390 | not executed at all. */ |
| 391 | ret = MOVE_PRESERVE_EXECUTION; |
| 392 | lhs = gimple_call_lhs (gs: stmt); |
| 393 | } |
| 394 | else if (is_gimple_assign (gs: stmt)) |
| 395 | lhs = gimple_assign_lhs (gs: stmt); |
| 396 | else |
| 397 | return MOVE_IMPOSSIBLE; |
| 398 | |
| 399 | if (TREE_CODE (lhs) == SSA_NAME |
| 400 | && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) |
| 401 | return MOVE_IMPOSSIBLE; |
| 402 | |
| 403 | if (TREE_CODE (lhs) != SSA_NAME |
| 404 | || gimple_could_trap_p (stmt)) |
| 405 | return MOVE_PRESERVE_EXECUTION; |
| 406 | |
| 407 | if (is_gimple_assign (gs: stmt)) |
| 408 | { |
| 409 | auto code = gimple_assign_rhs_code (gs: stmt); |
| 410 | tree type = TREE_TYPE (gimple_assign_rhs1 (stmt)); |
| 411 | /* For shifts and rotates and possibly out-of-bound shift operands |
| 412 | we currently cannot rewrite them into something unconditionally |
| 413 | well-defined. */ |
| 414 | if ((code == LSHIFT_EXPR |
| 415 | || code == RSHIFT_EXPR |
| 416 | || code == LROTATE_EXPR |
| 417 | || code == RROTATE_EXPR) |
| 418 | && (TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST |
| 419 | /* We cannot use ranges at 'stmt' here. */ |
| 420 | || wi::ltu_p (x: wi::to_wide (t: gimple_assign_rhs2 (gs: stmt)), |
| 421 | y: element_precision (type)))) |
| 422 | ret = MOVE_PRESERVE_EXECUTION; |
| 423 | } |
| 424 | |
| 425 | /* Non local loads in a transaction cannot be hoisted out. Well, |
| 426 | unless the load happens on every path out of the loop, but we |
| 427 | don't take this into account yet. */ |
| 428 | if (flag_tm |
| 429 | && gimple_in_transaction (stmt) |
| 430 | && gimple_assign_single_p (gs: stmt)) |
| 431 | { |
| 432 | tree rhs = gimple_assign_rhs1 (gs: stmt); |
| 433 | if (DECL_P (rhs) && is_global_var (t: rhs)) |
| 434 | { |
| 435 | if (dump_file) |
| 436 | { |
| 437 | fprintf (stream: dump_file, format: "Cannot hoist conditional load of " ); |
| 438 | print_generic_expr (dump_file, rhs, TDF_SLIM); |
| 439 | fprintf (stream: dump_file, format: " because it is in a transaction.\n" ); |
| 440 | } |
| 441 | return MOVE_IMPOSSIBLE; |
| 442 | } |
| 443 | } |
| 444 | |
| 445 | return ret; |
| 446 | } |
| 447 | |
| 448 | static enum move_pos |
| 449 | movement_possibility (gimple *stmt) |
| 450 | { |
| 451 | enum move_pos pos = movement_possibility_1 (stmt); |
| 452 | if (pos == MOVE_POSSIBLE) |
| 453 | { |
| 454 | use_operand_p use_p; |
| 455 | ssa_op_iter ssa_iter; |
| 456 | FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, ssa_iter, SSA_OP_USE) |
| 457 | if (TREE_CODE (USE_FROM_PTR (use_p)) == SSA_NAME |
| 458 | && ssa_name_maybe_undef_p (USE_FROM_PTR (use_p))) |
| 459 | return MOVE_PRESERVE_EXECUTION; |
| 460 | } |
| 461 | return pos; |
| 462 | } |
| 463 | |
| 464 | |
| 465 | /* Compare the profile count inequality of bb and loop's preheader, it is |
| 466 | three-state as stated in profile-count.h, FALSE is returned if inequality |
| 467 | cannot be decided. */ |
| 468 | bool |
| 469 | (basic_block bb, class loop *loop) |
| 470 | { |
| 471 | gcc_assert (bb && loop); |
| 472 | return bb->count < loop_preheader_edge (loop)->src->count; |
| 473 | } |
| 474 | |
| 475 | /* Check coldest loop between OUTERMOST_LOOP and LOOP by comparing profile |
| 476 | count. |
| 477 | It does three steps check: |
| 478 | 1) Check whether CURR_BB is cold in it's own loop_father, if it is cold, just |
| 479 | return NULL which means it should not be moved out at all; |
| 480 | 2) CURR_BB is NOT cold, check if pre-computed COLDEST_LOOP is outside of |
| 481 | OUTERMOST_LOOP, if it is inside of OUTERMOST_LOOP, return the COLDEST_LOOP; |
| 482 | 3) If COLDEST_LOOP is outside of OUTERMOST_LOOP, check whether there is a |
| 483 | hotter loop between OUTERMOST_LOOP and loop in pre-computed |
| 484 | HOTTER_THAN_INNER_LOOP, return it's nested inner loop, otherwise return |
| 485 | OUTERMOST_LOOP. |
| 486 | At last, the coldest_loop is inside of OUTERMOST_LOOP, just return it as |
| 487 | the hoist target. */ |
| 488 | |
| 489 | static class loop * |
| 490 | get_coldest_out_loop (class loop *outermost_loop, class loop *loop, |
| 491 | basic_block curr_bb) |
| 492 | { |
| 493 | gcc_assert (outermost_loop == loop |
| 494 | || flow_loop_nested_p (outermost_loop, loop)); |
| 495 | |
| 496 | /* If bb_colder_than_loop_preheader returns false due to three-state |
| 497 | comparision, OUTERMOST_LOOP is returned finally to preserve the behavior. |
| 498 | Otherwise, return the coldest loop between OUTERMOST_LOOP and LOOP. */ |
| 499 | if (curr_bb && bb_colder_than_loop_preheader (bb: curr_bb, loop)) |
| 500 | return NULL; |
| 501 | |
| 502 | class loop *coldest_loop = coldest_outermost_loop[loop->num]; |
| 503 | if (loop_depth (loop: coldest_loop) < loop_depth (loop: outermost_loop)) |
| 504 | { |
| 505 | class loop *hotter_loop = hotter_than_inner_loop[loop->num]; |
| 506 | if (!hotter_loop |
| 507 | || loop_depth (loop: hotter_loop) < loop_depth (loop: outermost_loop)) |
| 508 | return outermost_loop; |
| 509 | |
| 510 | /* hotter_loop is between OUTERMOST_LOOP and LOOP like: |
| 511 | [loop tree root, ..., coldest_loop, ..., outermost_loop, ..., |
| 512 | hotter_loop, second_coldest_loop, ..., loop] |
| 513 | return second_coldest_loop to be the hoist target. */ |
| 514 | class loop *aloop; |
| 515 | for (aloop = hotter_loop->inner; aloop; aloop = aloop->next) |
| 516 | if (aloop == loop || flow_loop_nested_p (aloop, loop)) |
| 517 | return aloop; |
| 518 | } |
| 519 | return coldest_loop; |
| 520 | } |
| 521 | |
| 522 | /* Suppose that operand DEF is used inside the LOOP. Returns the outermost |
| 523 | loop to that we could move the expression using DEF if it did not have |
| 524 | other operands, i.e. the outermost loop enclosing LOOP in that the value |
| 525 | of DEF is invariant. */ |
| 526 | |
| 527 | static class loop * |
| 528 | outermost_invariant_loop (tree def, class loop *loop) |
| 529 | { |
| 530 | gimple *def_stmt; |
| 531 | basic_block def_bb; |
| 532 | class loop *max_loop; |
| 533 | struct lim_aux_data *lim_data; |
| 534 | |
| 535 | if (!def) |
| 536 | return superloop_at_depth (loop, 1); |
| 537 | |
| 538 | if (TREE_CODE (def) != SSA_NAME) |
| 539 | { |
| 540 | gcc_assert (is_gimple_min_invariant (def)); |
| 541 | return superloop_at_depth (loop, 1); |
| 542 | } |
| 543 | |
| 544 | def_stmt = SSA_NAME_DEF_STMT (def); |
| 545 | def_bb = gimple_bb (g: def_stmt); |
| 546 | if (!def_bb) |
| 547 | return superloop_at_depth (loop, 1); |
| 548 | |
| 549 | max_loop = find_common_loop (loop, def_bb->loop_father); |
| 550 | |
| 551 | lim_data = get_lim_data (stmt: def_stmt); |
| 552 | if (lim_data != NULL && lim_data->max_loop != NULL) |
| 553 | max_loop = find_common_loop (max_loop, |
| 554 | loop_outer (loop: lim_data->max_loop)); |
| 555 | if (max_loop == loop) |
| 556 | return NULL; |
| 557 | max_loop = superloop_at_depth (loop, loop_depth (loop: max_loop) + 1); |
| 558 | |
| 559 | return max_loop; |
| 560 | } |
| 561 | |
| 562 | /* DATA is a structure containing information associated with a statement |
| 563 | inside LOOP. DEF is one of the operands of this statement. |
| 564 | |
| 565 | Find the outermost loop enclosing LOOP in that value of DEF is invariant |
| 566 | and record this in DATA->max_loop field. If DEF itself is defined inside |
| 567 | this loop as well (i.e. we need to hoist it out of the loop if we want |
| 568 | to hoist the statement represented by DATA), record the statement in that |
| 569 | DEF is defined to the DATA->depends list. Additionally if ADD_COST is true, |
| 570 | add the cost of the computation of DEF to the DATA->cost. |
| 571 | |
| 572 | If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */ |
| 573 | |
| 574 | static bool |
| 575 | add_dependency (tree def, struct lim_aux_data *data, class loop *loop, |
| 576 | bool add_cost) |
| 577 | { |
| 578 | gimple *def_stmt = SSA_NAME_DEF_STMT (def); |
| 579 | basic_block def_bb = gimple_bb (g: def_stmt); |
| 580 | class loop *max_loop; |
| 581 | struct lim_aux_data *def_data; |
| 582 | |
| 583 | if (!def_bb) |
| 584 | return true; |
| 585 | |
| 586 | max_loop = outermost_invariant_loop (def, loop); |
| 587 | if (!max_loop) |
| 588 | return false; |
| 589 | |
| 590 | if (flow_loop_nested_p (data->max_loop, max_loop)) |
| 591 | data->max_loop = max_loop; |
| 592 | |
| 593 | def_data = get_lim_data (stmt: def_stmt); |
| 594 | if (!def_data) |
| 595 | return true; |
| 596 | |
| 597 | if (add_cost |
| 598 | /* Only add the cost if the statement defining DEF is inside LOOP, |
| 599 | i.e. if it is likely that by moving the invariants dependent |
| 600 | on it, we will be able to avoid creating a new register for |
| 601 | it (since it will be only used in these dependent invariants). */ |
| 602 | && def_bb->loop_father == loop) |
| 603 | data->cost += def_data->cost; |
| 604 | |
| 605 | data->depends.safe_push (obj: def_stmt); |
| 606 | |
| 607 | return true; |
| 608 | } |
| 609 | |
| 610 | /* Returns an estimate for a cost of statement STMT. The values here |
| 611 | are just ad-hoc constants, similar to costs for inlining. */ |
| 612 | |
| 613 | static unsigned |
| 614 | stmt_cost (gimple *stmt) |
| 615 | { |
| 616 | /* Always try to create possibilities for unswitching. */ |
| 617 | if (gimple_code (g: stmt) == GIMPLE_COND |
| 618 | || gimple_code (g: stmt) == GIMPLE_PHI) |
| 619 | return LIM_EXPENSIVE; |
| 620 | |
| 621 | /* We should be hoisting calls if possible. */ |
| 622 | if (is_gimple_call (gs: stmt)) |
| 623 | { |
| 624 | tree fndecl; |
| 625 | |
| 626 | /* Unless the call is a builtin_constant_p; this always folds to a |
| 627 | constant, so moving it is useless. */ |
| 628 | fndecl = gimple_call_fndecl (gs: stmt); |
| 629 | if (fndecl && fndecl_built_in_p (node: fndecl, name1: BUILT_IN_CONSTANT_P)) |
| 630 | return 0; |
| 631 | |
| 632 | return LIM_EXPENSIVE; |
| 633 | } |
| 634 | |
| 635 | /* Hoisting memory references out should almost surely be a win. */ |
| 636 | if (gimple_references_memory_p (stmt)) |
| 637 | return LIM_EXPENSIVE; |
| 638 | |
| 639 | if (gimple_code (g: stmt) != GIMPLE_ASSIGN) |
| 640 | return 1; |
| 641 | |
| 642 | enum tree_code code = gimple_assign_rhs_code (gs: stmt); |
| 643 | switch (code) |
| 644 | { |
| 645 | case MULT_EXPR: |
| 646 | case WIDEN_MULT_EXPR: |
| 647 | case WIDEN_MULT_PLUS_EXPR: |
| 648 | case WIDEN_MULT_MINUS_EXPR: |
| 649 | case DOT_PROD_EXPR: |
| 650 | case TRUNC_DIV_EXPR: |
| 651 | case CEIL_DIV_EXPR: |
| 652 | case FLOOR_DIV_EXPR: |
| 653 | case ROUND_DIV_EXPR: |
| 654 | case EXACT_DIV_EXPR: |
| 655 | case CEIL_MOD_EXPR: |
| 656 | case FLOOR_MOD_EXPR: |
| 657 | case ROUND_MOD_EXPR: |
| 658 | case TRUNC_MOD_EXPR: |
| 659 | case RDIV_EXPR: |
| 660 | /* Division and multiplication are usually expensive. */ |
| 661 | return LIM_EXPENSIVE; |
| 662 | |
| 663 | case LSHIFT_EXPR: |
| 664 | case RSHIFT_EXPR: |
| 665 | case WIDEN_LSHIFT_EXPR: |
| 666 | case LROTATE_EXPR: |
| 667 | case RROTATE_EXPR: |
| 668 | /* Shifts and rotates are usually expensive. */ |
| 669 | return LIM_EXPENSIVE; |
| 670 | |
| 671 | case COND_EXPR: |
| 672 | case VEC_COND_EXPR: |
| 673 | /* Conditionals are expensive. */ |
| 674 | return LIM_EXPENSIVE; |
| 675 | |
| 676 | case CONSTRUCTOR: |
| 677 | /* Make vector construction cost proportional to the number |
| 678 | of elements. */ |
| 679 | return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt)); |
| 680 | |
| 681 | case SSA_NAME: |
| 682 | case PAREN_EXPR: |
| 683 | /* Whether or not something is wrapped inside a PAREN_EXPR |
| 684 | should not change move cost. Nor should an intermediate |
| 685 | unpropagated SSA name copy. */ |
| 686 | return 0; |
| 687 | |
| 688 | default: |
| 689 | /* Comparisons are usually expensive. */ |
| 690 | if (TREE_CODE_CLASS (code) == tcc_comparison) |
| 691 | return LIM_EXPENSIVE; |
| 692 | return 1; |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | /* Finds the outermost loop between OUTER and LOOP in that the memory reference |
| 697 | REF is independent. If REF is not independent in LOOP, NULL is returned |
| 698 | instead. */ |
| 699 | |
| 700 | static class loop * |
| 701 | outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref) |
| 702 | { |
| 703 | class loop *aloop; |
| 704 | |
| 705 | if (ref->stored && bitmap_bit_p (ref->stored, loop->num)) |
| 706 | return NULL; |
| 707 | |
| 708 | for (aloop = outer; |
| 709 | aloop != loop; |
| 710 | aloop = superloop_at_depth (loop, loop_depth (loop: aloop) + 1)) |
| 711 | if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num)) |
| 712 | && ref_indep_loop_p (aloop, ref, lim_raw)) |
| 713 | return aloop; |
| 714 | |
| 715 | if (ref_indep_loop_p (loop, ref, lim_raw)) |
| 716 | return loop; |
| 717 | else |
| 718 | return NULL; |
| 719 | } |
| 720 | |
| 721 | /* If there is a simple load or store to a memory reference in STMT, returns |
| 722 | the location of the memory reference, and sets IS_STORE according to whether |
| 723 | it is a store or load. Otherwise, returns NULL. */ |
| 724 | |
| 725 | static tree * |
| 726 | simple_mem_ref_in_stmt (gimple *stmt, bool *is_store) |
| 727 | { |
| 728 | tree *lhs, *rhs; |
| 729 | |
| 730 | /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */ |
| 731 | if (!gimple_assign_single_p (gs: stmt)) |
| 732 | return NULL; |
| 733 | |
| 734 | lhs = gimple_assign_lhs_ptr (gs: stmt); |
| 735 | rhs = gimple_assign_rhs1_ptr (gs: stmt); |
| 736 | |
| 737 | if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (g: stmt)) |
| 738 | { |
| 739 | *is_store = false; |
| 740 | return rhs; |
| 741 | } |
| 742 | else if (gimple_vdef (g: stmt) |
| 743 | && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs))) |
| 744 | { |
| 745 | *is_store = true; |
| 746 | return lhs; |
| 747 | } |
| 748 | else |
| 749 | return NULL; |
| 750 | } |
| 751 | |
| 752 | /* From a controlling predicate in DOM determine the arguments from |
| 753 | the PHI node PHI that are chosen if the predicate evaluates to |
| 754 | true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if |
| 755 | they are non-NULL. Returns true if the arguments can be determined, |
| 756 | else return false. */ |
| 757 | |
| 758 | static bool |
| 759 | (basic_block dom, gphi *phi, |
| 760 | tree *true_arg_p, tree *false_arg_p) |
| 761 | { |
| 762 | edge te, fe; |
| 763 | if (! extract_true_false_controlled_edges (dom, gimple_bb (g: phi), |
| 764 | &te, &fe)) |
| 765 | return false; |
| 766 | |
| 767 | if (true_arg_p) |
| 768 | *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx); |
| 769 | if (false_arg_p) |
| 770 | *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx); |
| 771 | |
| 772 | return true; |
| 773 | } |
| 774 | |
| 775 | /* Determine the outermost loop to that it is possible to hoist a statement |
| 776 | STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine |
| 777 | the outermost loop in that the value computed by STMT is invariant. |
| 778 | If MUST_PRESERVE_EXEC is true, additionally choose such a loop that |
| 779 | we preserve the fact whether STMT is executed. It also fills other related |
| 780 | information to LIM_DATA (STMT). |
| 781 | |
| 782 | The function returns false if STMT cannot be hoisted outside of the loop it |
| 783 | is defined in, and true otherwise. */ |
| 784 | |
| 785 | static bool |
| 786 | determine_max_movement (gimple *stmt, bool must_preserve_exec) |
| 787 | { |
| 788 | basic_block bb = gimple_bb (g: stmt); |
| 789 | class loop *loop = bb->loop_father; |
| 790 | class loop *level; |
| 791 | struct lim_aux_data *lim_data = get_lim_data (stmt); |
| 792 | tree val; |
| 793 | ssa_op_iter iter; |
| 794 | |
| 795 | if (must_preserve_exec) |
| 796 | level = ALWAYS_EXECUTED_IN (bb); |
| 797 | else |
| 798 | level = superloop_at_depth (loop, 1); |
| 799 | lim_data->max_loop = get_coldest_out_loop (outermost_loop: level, loop, curr_bb: bb); |
| 800 | if (!lim_data->max_loop) |
| 801 | return false; |
| 802 | |
| 803 | if (gphi *phi = dyn_cast <gphi *> (p: stmt)) |
| 804 | { |
| 805 | use_operand_p use_p; |
| 806 | unsigned min_cost = UINT_MAX; |
| 807 | unsigned total_cost = 0; |
| 808 | struct lim_aux_data *def_data; |
| 809 | |
| 810 | /* We will end up promoting dependencies to be unconditionally |
| 811 | evaluated. For this reason the PHI cost (and thus the |
| 812 | cost we remove from the loop by doing the invariant motion) |
| 813 | is that of the cheapest PHI argument dependency chain. */ |
| 814 | FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE) |
| 815 | { |
| 816 | val = USE_FROM_PTR (use_p); |
| 817 | |
| 818 | if (TREE_CODE (val) != SSA_NAME) |
| 819 | { |
| 820 | /* Assign const 1 to constants. */ |
| 821 | min_cost = MIN (min_cost, 1); |
| 822 | total_cost += 1; |
| 823 | continue; |
| 824 | } |
| 825 | if (!add_dependency (def: val, data: lim_data, loop, add_cost: false)) |
| 826 | return false; |
| 827 | |
| 828 | gimple *def_stmt = SSA_NAME_DEF_STMT (val); |
| 829 | if (gimple_bb (g: def_stmt) |
| 830 | && gimple_bb (g: def_stmt)->loop_father == loop) |
| 831 | { |
| 832 | def_data = get_lim_data (stmt: def_stmt); |
| 833 | if (def_data) |
| 834 | { |
| 835 | min_cost = MIN (min_cost, def_data->cost); |
| 836 | total_cost += def_data->cost; |
| 837 | } |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | min_cost = MIN (min_cost, total_cost); |
| 842 | lim_data->cost += min_cost; |
| 843 | |
| 844 | if (gimple_phi_num_args (gs: phi) > 1) |
| 845 | { |
| 846 | basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb); |
| 847 | gimple *cond; |
| 848 | if (gsi_end_p (i: gsi_last_bb (bb: dom))) |
| 849 | return false; |
| 850 | cond = gsi_stmt (i: gsi_last_bb (bb: dom)); |
| 851 | if (gimple_code (g: cond) != GIMPLE_COND) |
| 852 | return false; |
| 853 | /* Verify that this is an extended form of a diamond and |
| 854 | the PHI arguments are completely controlled by the |
| 855 | predicate in DOM. */ |
| 856 | if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL)) |
| 857 | return false; |
| 858 | |
| 859 | /* Check if one of the depedent statement is a vector compare whether |
| 860 | the target supports it, otherwise it's invalid to hoist it out of |
| 861 | the gcond it belonged to. */ |
| 862 | if (VECTOR_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond)))) |
| 863 | { |
| 864 | tree type = TREE_TYPE (gimple_cond_lhs (cond)); |
| 865 | auto code = gimple_cond_code (gs: cond); |
| 866 | if (!target_supports_op_p (type, code, optab_vector)) |
| 867 | return false; |
| 868 | } |
| 869 | |
| 870 | /* Fold in dependencies and cost of the condition. */ |
| 871 | FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE) |
| 872 | { |
| 873 | if (!add_dependency (def: val, data: lim_data, loop, add_cost: false)) |
| 874 | return false; |
| 875 | def_data = get_lim_data (SSA_NAME_DEF_STMT (val)); |
| 876 | if (def_data) |
| 877 | lim_data->cost += def_data->cost; |
| 878 | } |
| 879 | |
| 880 | /* We want to avoid unconditionally executing very expensive |
| 881 | operations. As costs for our dependencies cannot be |
| 882 | negative just claim we are not invariand for this case. |
| 883 | We also are not sure whether the control-flow inside the |
| 884 | loop will vanish. */ |
| 885 | if (total_cost - min_cost >= 2 * LIM_EXPENSIVE |
| 886 | && !(min_cost != 0 |
| 887 | && total_cost / min_cost <= 2)) |
| 888 | return false; |
| 889 | |
| 890 | /* Assume that the control-flow in the loop will vanish. |
| 891 | ??? We should verify this and not artificially increase |
| 892 | the cost if that is not the case. */ |
| 893 | lim_data->cost += stmt_cost (stmt); |
| 894 | } |
| 895 | |
| 896 | return true; |
| 897 | } |
| 898 | |
| 899 | /* A stmt that receives abnormal edges cannot be hoisted. */ |
| 900 | if (is_a <gcall *> (p: stmt) |
| 901 | && (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)) |
| 902 | return false; |
| 903 | |
| 904 | FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE) |
| 905 | if (!add_dependency (def: val, data: lim_data, loop, add_cost: true)) |
| 906 | return false; |
| 907 | |
| 908 | if (gimple_vuse (g: stmt)) |
| 909 | { |
| 910 | im_mem_ref *ref |
| 911 | = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL; |
| 912 | if (ref |
| 913 | && MEM_ANALYZABLE (ref)) |
| 914 | { |
| 915 | lim_data->max_loop = outermost_indep_loop (outer: lim_data->max_loop, |
| 916 | loop, ref); |
| 917 | if (!lim_data->max_loop) |
| 918 | return false; |
| 919 | } |
| 920 | else if (! add_dependency (def: gimple_vuse (g: stmt), data: lim_data, loop, add_cost: false)) |
| 921 | return false; |
| 922 | } |
| 923 | |
| 924 | lim_data->cost += stmt_cost (stmt); |
| 925 | |
| 926 | return true; |
| 927 | } |
| 928 | |
| 929 | /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL, |
| 930 | and that one of the operands of this statement is computed by STMT. |
| 931 | Ensure that STMT (together with all the statements that define its |
| 932 | operands) is hoisted at least out of the loop LEVEL. */ |
| 933 | |
| 934 | static void |
| 935 | set_level (gimple *stmt, class loop *orig_loop, class loop *level) |
| 936 | { |
| 937 | class loop *stmt_loop = gimple_bb (g: stmt)->loop_father; |
| 938 | struct lim_aux_data *lim_data; |
| 939 | gimple *dep_stmt; |
| 940 | unsigned i; |
| 941 | |
| 942 | stmt_loop = find_common_loop (orig_loop, stmt_loop); |
| 943 | lim_data = get_lim_data (stmt); |
| 944 | if (lim_data != NULL && lim_data->tgt_loop != NULL) |
| 945 | stmt_loop = find_common_loop (stmt_loop, |
| 946 | loop_outer (loop: lim_data->tgt_loop)); |
| 947 | if (flow_loop_nested_p (stmt_loop, level)) |
| 948 | return; |
| 949 | |
| 950 | gcc_assert (level == lim_data->max_loop |
| 951 | || flow_loop_nested_p (lim_data->max_loop, level)); |
| 952 | |
| 953 | lim_data->tgt_loop = level; |
| 954 | FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt) |
| 955 | set_level (stmt: dep_stmt, orig_loop, level); |
| 956 | } |
| 957 | |
| 958 | /* Determines an outermost loop from that we want to hoist the statement STMT. |
| 959 | For now we chose the outermost possible loop. TODO -- use profiling |
| 960 | information to set it more sanely. */ |
| 961 | |
| 962 | static void |
| 963 | set_profitable_level (gimple *stmt) |
| 964 | { |
| 965 | set_level (stmt, orig_loop: gimple_bb (g: stmt)->loop_father, level: get_lim_data (stmt)->max_loop); |
| 966 | } |
| 967 | |
| 968 | /* Returns true if STMT is a call that has side effects. */ |
| 969 | |
| 970 | static bool |
| 971 | nonpure_call_p (gimple *stmt) |
| 972 | { |
| 973 | if (gimple_code (g: stmt) != GIMPLE_CALL) |
| 974 | return false; |
| 975 | |
| 976 | return gimple_has_side_effects (stmt); |
| 977 | } |
| 978 | |
| 979 | /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */ |
| 980 | |
| 981 | static gimple * |
| 982 | rewrite_reciprocal (gimple_stmt_iterator *bsi) |
| 983 | { |
| 984 | gassign *stmt, *stmt1, *stmt2; |
| 985 | tree name, lhs, type; |
| 986 | tree real_one; |
| 987 | gimple_stmt_iterator gsi; |
| 988 | |
| 989 | stmt = as_a <gassign *> (p: gsi_stmt (i: *bsi)); |
| 990 | lhs = gimple_assign_lhs (gs: stmt); |
| 991 | type = TREE_TYPE (lhs); |
| 992 | |
| 993 | real_one = build_one_cst (type); |
| 994 | |
| 995 | name = make_temp_ssa_name (type, NULL, name: "reciptmp" ); |
| 996 | stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one, |
| 997 | gimple_assign_rhs2 (gs: stmt)); |
| 998 | stmt2 = gimple_build_assign (lhs, MULT_EXPR, name, |
| 999 | gimple_assign_rhs1 (gs: stmt)); |
| 1000 | |
| 1001 | /* Replace division stmt with reciprocal and multiply stmts. |
| 1002 | The multiply stmt is not invariant, so update iterator |
| 1003 | and avoid rescanning. */ |
| 1004 | gsi = *bsi; |
| 1005 | gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); |
| 1006 | gsi_replace (&gsi, stmt2, true); |
| 1007 | |
| 1008 | /* Continue processing with invariant reciprocal statement. */ |
| 1009 | return stmt1; |
| 1010 | } |
| 1011 | |
| 1012 | /* Check if the pattern at *BSI is a bittest of the form |
| 1013 | (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */ |
| 1014 | |
| 1015 | static gimple * |
| 1016 | rewrite_bittest (gimple_stmt_iterator *bsi) |
| 1017 | { |
| 1018 | gassign *stmt; |
| 1019 | gimple *stmt1; |
| 1020 | gassign *stmt2; |
| 1021 | gimple *use_stmt; |
| 1022 | gcond *cond_stmt; |
| 1023 | tree lhs, name, t, a, b; |
| 1024 | use_operand_p use; |
| 1025 | |
| 1026 | stmt = as_a <gassign *> (p: gsi_stmt (i: *bsi)); |
| 1027 | lhs = gimple_assign_lhs (gs: stmt); |
| 1028 | |
| 1029 | /* Verify that the single use of lhs is a comparison against zero. */ |
| 1030 | if (TREE_CODE (lhs) != SSA_NAME |
| 1031 | || !single_imm_use (var: lhs, use_p: &use, stmt: &use_stmt)) |
| 1032 | return stmt; |
| 1033 | cond_stmt = dyn_cast <gcond *> (p: use_stmt); |
| 1034 | if (!cond_stmt) |
| 1035 | return stmt; |
| 1036 | if (gimple_cond_lhs (gs: cond_stmt) != lhs |
| 1037 | || (gimple_cond_code (gs: cond_stmt) != NE_EXPR |
| 1038 | && gimple_cond_code (gs: cond_stmt) != EQ_EXPR) |
| 1039 | || !integer_zerop (gimple_cond_rhs (gs: cond_stmt))) |
| 1040 | return stmt; |
| 1041 | |
| 1042 | /* Get at the operands of the shift. The rhs is TMP1 & 1. */ |
| 1043 | stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); |
| 1044 | if (gimple_code (g: stmt1) != GIMPLE_ASSIGN) |
| 1045 | return stmt; |
| 1046 | |
| 1047 | /* There is a conversion in between possibly inserted by fold. */ |
| 1048 | if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1))) |
| 1049 | { |
| 1050 | t = gimple_assign_rhs1 (gs: stmt1); |
| 1051 | if (TREE_CODE (t) != SSA_NAME |
| 1052 | || !has_single_use (var: t)) |
| 1053 | return stmt; |
| 1054 | stmt1 = SSA_NAME_DEF_STMT (t); |
| 1055 | if (gimple_code (g: stmt1) != GIMPLE_ASSIGN) |
| 1056 | return stmt; |
| 1057 | } |
| 1058 | |
| 1059 | /* Verify that B is loop invariant but A is not. Verify that with |
| 1060 | all the stmt walking we are still in the same loop. */ |
| 1061 | if (gimple_assign_rhs_code (gs: stmt1) != RSHIFT_EXPR |
| 1062 | || loop_containing_stmt (stmt: stmt1) != loop_containing_stmt (stmt)) |
| 1063 | return stmt; |
| 1064 | |
| 1065 | a = gimple_assign_rhs1 (gs: stmt1); |
| 1066 | b = gimple_assign_rhs2 (gs: stmt1); |
| 1067 | |
| 1068 | if (outermost_invariant_loop (def: b, loop: loop_containing_stmt (stmt: stmt1)) != NULL |
| 1069 | && outermost_invariant_loop (def: a, loop: loop_containing_stmt (stmt: stmt1)) == NULL) |
| 1070 | { |
| 1071 | gimple_stmt_iterator rsi; |
| 1072 | |
| 1073 | /* 1 << B */ |
| 1074 | t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a), |
| 1075 | build_int_cst (TREE_TYPE (a), 1), b); |
| 1076 | name = make_temp_ssa_name (TREE_TYPE (a), NULL, name: "shifttmp" ); |
| 1077 | stmt1 = gimple_build_assign (name, t); |
| 1078 | |
| 1079 | /* A & (1 << B) */ |
| 1080 | t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name); |
| 1081 | name = make_temp_ssa_name (TREE_TYPE (a), NULL, name: "shifttmp" ); |
| 1082 | stmt2 = gimple_build_assign (name, t); |
| 1083 | |
| 1084 | /* Replace the SSA_NAME we compare against zero. Adjust |
| 1085 | the type of zero accordingly. */ |
| 1086 | SET_USE (use, name); |
| 1087 | gimple_cond_set_rhs (gs: cond_stmt, |
| 1088 | rhs: build_int_cst_type (TREE_TYPE (name), |
| 1089 | 0)); |
| 1090 | |
| 1091 | /* Don't use gsi_replace here, none of the new assignments sets |
| 1092 | the variable originally set in stmt. Move bsi to stmt1, and |
| 1093 | then remove the original stmt, so that we get a chance to |
| 1094 | retain debug info for it. */ |
| 1095 | rsi = *bsi; |
| 1096 | gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); |
| 1097 | gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT); |
| 1098 | gimple *to_release = gsi_stmt (i: rsi); |
| 1099 | gsi_remove (&rsi, true); |
| 1100 | release_defs (to_release); |
| 1101 | |
| 1102 | return stmt1; |
| 1103 | } |
| 1104 | |
| 1105 | return stmt; |
| 1106 | } |
| 1107 | |
| 1108 | /* Determine the outermost loops in that statements in basic block BB are |
| 1109 | invariant, and record them to the LIM_DATA associated with the |
| 1110 | statements. */ |
| 1111 | |
| 1112 | static void |
| 1113 | compute_invariantness (basic_block bb) |
| 1114 | { |
| 1115 | enum move_pos pos; |
| 1116 | gimple_stmt_iterator bsi; |
| 1117 | gimple *stmt; |
| 1118 | bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL; |
| 1119 | class loop *outermost = ALWAYS_EXECUTED_IN (bb); |
| 1120 | struct lim_aux_data *lim_data; |
| 1121 | |
| 1122 | if (!loop_outer (loop: bb->loop_father)) |
| 1123 | return; |
| 1124 | |
| 1125 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1126 | fprintf (stream: dump_file, format: "Basic block %d (loop %d -- depth %d):\n\n" , |
| 1127 | bb->index, bb->loop_father->num, loop_depth (loop: bb->loop_father)); |
| 1128 | |
| 1129 | /* Look at PHI nodes, but only if there is at most two. |
| 1130 | ??? We could relax this further by post-processing the inserted |
| 1131 | code and transforming adjacent cond-exprs with the same predicate |
| 1132 | to control flow again. */ |
| 1133 | bsi = gsi_start_phis (bb); |
| 1134 | if (!gsi_end_p (i: bsi) |
| 1135 | && ((gsi_next (i: &bsi), gsi_end_p (i: bsi)) |
| 1136 | || (gsi_next (i: &bsi), gsi_end_p (i: bsi)))) |
| 1137 | for (bsi = gsi_start_phis (bb); !gsi_end_p (i: bsi); gsi_next (i: &bsi)) |
| 1138 | { |
| 1139 | stmt = gsi_stmt (i: bsi); |
| 1140 | |
| 1141 | pos = movement_possibility (stmt); |
| 1142 | if (pos == MOVE_IMPOSSIBLE) |
| 1143 | continue; |
| 1144 | |
| 1145 | lim_data = get_lim_data (stmt); |
| 1146 | if (! lim_data) |
| 1147 | lim_data = init_lim_data (stmt); |
| 1148 | lim_data->always_executed_in = outermost; |
| 1149 | |
| 1150 | if (!determine_max_movement (stmt, must_preserve_exec: false)) |
| 1151 | { |
| 1152 | lim_data->max_loop = NULL; |
| 1153 | continue; |
| 1154 | } |
| 1155 | |
| 1156 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1157 | { |
| 1158 | print_gimple_stmt (dump_file, stmt, 2); |
| 1159 | fprintf (stream: dump_file, format: " invariant up to level %d, cost %d.\n\n" , |
| 1160 | loop_depth (loop: lim_data->max_loop), |
| 1161 | lim_data->cost); |
| 1162 | } |
| 1163 | |
| 1164 | if (lim_data->cost >= LIM_EXPENSIVE) |
| 1165 | set_profitable_level (stmt); |
| 1166 | } |
| 1167 | |
| 1168 | for (bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi); gsi_next (i: &bsi)) |
| 1169 | { |
| 1170 | stmt = gsi_stmt (i: bsi); |
| 1171 | |
| 1172 | pos = movement_possibility (stmt); |
| 1173 | if (pos == MOVE_IMPOSSIBLE) |
| 1174 | { |
| 1175 | if (nonpure_call_p (stmt)) |
| 1176 | { |
| 1177 | maybe_never = true; |
| 1178 | outermost = NULL; |
| 1179 | } |
| 1180 | /* Make sure to note always_executed_in for stores to make |
| 1181 | store-motion work. */ |
| 1182 | else if (stmt_makes_single_store (stmt)) |
| 1183 | { |
| 1184 | struct lim_aux_data *lim_data = get_lim_data (stmt); |
| 1185 | if (! lim_data) |
| 1186 | lim_data = init_lim_data (stmt); |
| 1187 | lim_data->always_executed_in = outermost; |
| 1188 | } |
| 1189 | continue; |
| 1190 | } |
| 1191 | |
| 1192 | if (is_gimple_assign (gs: stmt) |
| 1193 | && (get_gimple_rhs_class (code: gimple_assign_rhs_code (gs: stmt)) |
| 1194 | == GIMPLE_BINARY_RHS)) |
| 1195 | { |
| 1196 | tree op0 = gimple_assign_rhs1 (gs: stmt); |
| 1197 | tree op1 = gimple_assign_rhs2 (gs: stmt); |
| 1198 | class loop *ol1 = outermost_invariant_loop (def: op1, |
| 1199 | loop: loop_containing_stmt (stmt)); |
| 1200 | |
| 1201 | /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal |
| 1202 | to be hoisted out of loop, saving expensive divide. */ |
| 1203 | if (pos == MOVE_POSSIBLE |
| 1204 | && gimple_assign_rhs_code (gs: stmt) == RDIV_EXPR |
| 1205 | && flag_unsafe_math_optimizations |
| 1206 | && !flag_trapping_math |
| 1207 | && ol1 != NULL |
| 1208 | && outermost_invariant_loop (def: op0, loop: ol1) == NULL) |
| 1209 | stmt = rewrite_reciprocal (bsi: &bsi); |
| 1210 | |
| 1211 | /* If the shift count is invariant, convert (A >> B) & 1 to |
| 1212 | A & (1 << B) allowing the bit mask to be hoisted out of the loop |
| 1213 | saving an expensive shift. */ |
| 1214 | if (pos == MOVE_POSSIBLE |
| 1215 | && gimple_assign_rhs_code (gs: stmt) == BIT_AND_EXPR |
| 1216 | && integer_onep (op1) |
| 1217 | && TREE_CODE (op0) == SSA_NAME |
| 1218 | && has_single_use (var: op0)) |
| 1219 | stmt = rewrite_bittest (bsi: &bsi); |
| 1220 | } |
| 1221 | |
| 1222 | lim_data = get_lim_data (stmt); |
| 1223 | if (! lim_data) |
| 1224 | lim_data = init_lim_data (stmt); |
| 1225 | lim_data->always_executed_in = outermost; |
| 1226 | |
| 1227 | if (maybe_never && pos == MOVE_PRESERVE_EXECUTION) |
| 1228 | continue; |
| 1229 | |
| 1230 | if (!determine_max_movement (stmt, must_preserve_exec: pos == MOVE_PRESERVE_EXECUTION)) |
| 1231 | { |
| 1232 | lim_data->max_loop = NULL; |
| 1233 | continue; |
| 1234 | } |
| 1235 | |
| 1236 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1237 | { |
| 1238 | print_gimple_stmt (dump_file, stmt, 2); |
| 1239 | fprintf (stream: dump_file, format: " invariant up to level %d, cost %d.\n\n" , |
| 1240 | loop_depth (loop: lim_data->max_loop), |
| 1241 | lim_data->cost); |
| 1242 | } |
| 1243 | |
| 1244 | if (lim_data->cost >= LIM_EXPENSIVE) |
| 1245 | set_profitable_level (stmt); |
| 1246 | /* When we run before PRE and PRE is active hoist all expressions |
| 1247 | to the always executed loop since PRE would do so anyway |
| 1248 | and we can preserve range info while PRE cannot. */ |
| 1249 | else if (flag_tree_pre && !in_loop_pipeline |
| 1250 | && outermost) |
| 1251 | { |
| 1252 | class loop *mloop = lim_data->max_loop; |
| 1253 | if (loop_depth (loop: outermost) > loop_depth (loop: mloop)) |
| 1254 | { |
| 1255 | mloop = outermost; |
| 1256 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1257 | fprintf (stream: dump_file, format: " constraining to loop depth %d\n\n\n" , |
| 1258 | loop_depth (loop: mloop)); |
| 1259 | } |
| 1260 | set_level (stmt, orig_loop: bb->loop_father, level: mloop); |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | /* Hoist the statements in basic block BB out of the loops prescribed by |
| 1266 | data stored in LIM_DATA structures associated with each statement. Callback |
| 1267 | for walk_dominator_tree. */ |
| 1268 | |
| 1269 | unsigned int |
| 1270 | move_computations_worker (basic_block bb) |
| 1271 | { |
| 1272 | class loop *level; |
| 1273 | unsigned cost = 0; |
| 1274 | struct lim_aux_data *lim_data; |
| 1275 | unsigned int todo = 0; |
| 1276 | |
| 1277 | if (!loop_outer (loop: bb->loop_father)) |
| 1278 | return todo; |
| 1279 | |
| 1280 | for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (i: bsi); ) |
| 1281 | { |
| 1282 | gassign *new_stmt; |
| 1283 | gphi *stmt = bsi.phi (); |
| 1284 | |
| 1285 | lim_data = get_lim_data (stmt); |
| 1286 | if (lim_data == NULL) |
| 1287 | { |
| 1288 | gsi_next (i: &bsi); |
| 1289 | continue; |
| 1290 | } |
| 1291 | |
| 1292 | cost = lim_data->cost; |
| 1293 | level = lim_data->tgt_loop; |
| 1294 | clear_lim_data (stmt); |
| 1295 | |
| 1296 | if (!level) |
| 1297 | { |
| 1298 | gsi_next (i: &bsi); |
| 1299 | continue; |
| 1300 | } |
| 1301 | |
| 1302 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1303 | { |
| 1304 | fprintf (stream: dump_file, format: "Moving PHI node\n" ); |
| 1305 | print_gimple_stmt (dump_file, stmt, 0); |
| 1306 | fprintf (stream: dump_file, format: "(cost %u) out of loop %d.\n\n" , |
| 1307 | cost, level->num); |
| 1308 | } |
| 1309 | |
| 1310 | if (gimple_phi_num_args (gs: stmt) == 1) |
| 1311 | { |
| 1312 | tree arg = PHI_ARG_DEF (stmt, 0); |
| 1313 | new_stmt = gimple_build_assign (gimple_phi_result (gs: stmt), |
| 1314 | TREE_CODE (arg), arg); |
| 1315 | } |
| 1316 | else |
| 1317 | { |
| 1318 | basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb); |
| 1319 | gimple *cond = gsi_stmt (i: gsi_last_bb (bb: dom)); |
| 1320 | tree arg0 = NULL_TREE, arg1 = NULL_TREE, t; |
| 1321 | /* Get the PHI arguments corresponding to the true and false |
| 1322 | edges of COND. */ |
| 1323 | extract_true_false_args_from_phi (dom, phi: stmt, true_arg_p: &arg0, false_arg_p: &arg1); |
| 1324 | gcc_assert (arg0 && arg1); |
| 1325 | /* For `bool_val != 0`, reuse bool_val. */ |
| 1326 | if (gimple_cond_code (gs: cond) == NE_EXPR |
| 1327 | && integer_zerop (gimple_cond_rhs (gs: cond)) |
| 1328 | && types_compatible_p (TREE_TYPE (gimple_cond_lhs (cond)), |
| 1329 | boolean_type_node)) |
| 1330 | { |
| 1331 | t = gimple_cond_lhs (gs: cond); |
| 1332 | } |
| 1333 | else |
| 1334 | { |
| 1335 | t = make_ssa_name (boolean_type_node); |
| 1336 | new_stmt = gimple_build_assign (t, gimple_cond_code (gs: cond), |
| 1337 | gimple_cond_lhs (gs: cond), |
| 1338 | gimple_cond_rhs (gs: cond)); |
| 1339 | gsi_insert_on_edge (loop_preheader_edge (level), new_stmt); |
| 1340 | } |
| 1341 | new_stmt = gimple_build_assign (gimple_phi_result (gs: stmt), |
| 1342 | COND_EXPR, t, arg0, arg1); |
| 1343 | todo |= TODO_cleanup_cfg; |
| 1344 | } |
| 1345 | if (!ALWAYS_EXECUTED_IN (bb) |
| 1346 | || (ALWAYS_EXECUTED_IN (bb) != level |
| 1347 | && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))) |
| 1348 | reset_flow_sensitive_info (gimple_assign_lhs (gs: new_stmt)); |
| 1349 | gsi_insert_on_edge (loop_preheader_edge (level), new_stmt); |
| 1350 | remove_phi_node (&bsi, false); |
| 1351 | } |
| 1352 | |
| 1353 | for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi); ) |
| 1354 | { |
| 1355 | edge e; |
| 1356 | |
| 1357 | gimple *stmt = gsi_stmt (i: bsi); |
| 1358 | |
| 1359 | lim_data = get_lim_data (stmt); |
| 1360 | if (lim_data == NULL) |
| 1361 | { |
| 1362 | gsi_next (i: &bsi); |
| 1363 | continue; |
| 1364 | } |
| 1365 | |
| 1366 | cost = lim_data->cost; |
| 1367 | level = lim_data->tgt_loop; |
| 1368 | clear_lim_data (stmt); |
| 1369 | |
| 1370 | if (!level) |
| 1371 | { |
| 1372 | gsi_next (i: &bsi); |
| 1373 | continue; |
| 1374 | } |
| 1375 | |
| 1376 | /* We do not really want to move conditionals out of the loop; we just |
| 1377 | placed it here to force its operands to be moved if necessary. */ |
| 1378 | if (gimple_code (g: stmt) == GIMPLE_COND) |
| 1379 | { |
| 1380 | gsi_next (i: &bsi); |
| 1381 | continue; |
| 1382 | } |
| 1383 | |
| 1384 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1385 | { |
| 1386 | fprintf (stream: dump_file, format: "Moving statement\n" ); |
| 1387 | print_gimple_stmt (dump_file, stmt, 0); |
| 1388 | fprintf (stream: dump_file, format: "(cost %u) out of loop %d.\n\n" , |
| 1389 | cost, level->num); |
| 1390 | } |
| 1391 | |
| 1392 | e = loop_preheader_edge (level); |
| 1393 | gcc_assert (!gimple_vdef (stmt)); |
| 1394 | if (gimple_vuse (g: stmt)) |
| 1395 | { |
| 1396 | /* The new VUSE is the one from the virtual PHI in the loop |
| 1397 | header or the one already present. */ |
| 1398 | gphi_iterator gsi2; |
| 1399 | for (gsi2 = gsi_start_phis (e->dest); |
| 1400 | !gsi_end_p (i: gsi2); gsi_next (i: &gsi2)) |
| 1401 | { |
| 1402 | gphi *phi = gsi2.phi (); |
| 1403 | if (virtual_operand_p (op: gimple_phi_result (gs: phi))) |
| 1404 | { |
| 1405 | SET_USE (gimple_vuse_op (stmt), |
| 1406 | PHI_ARG_DEF_FROM_EDGE (phi, e)); |
| 1407 | break; |
| 1408 | } |
| 1409 | } |
| 1410 | } |
| 1411 | gsi_remove (&bsi, false); |
| 1412 | if (gimple_has_lhs (stmt) |
| 1413 | && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME |
| 1414 | && (!ALWAYS_EXECUTED_IN (bb) |
| 1415 | || !(ALWAYS_EXECUTED_IN (bb) == level |
| 1416 | || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))) |
| 1417 | reset_flow_sensitive_info (gimple_get_lhs (stmt)); |
| 1418 | /* In case this is a stmt that is not unconditionally executed |
| 1419 | when the target loop header is executed and the stmt may |
| 1420 | invoke undefined integer or pointer overflow rewrite it to |
| 1421 | unsigned arithmetic. */ |
| 1422 | if (gimple_needing_rewrite_undefined (stmt) |
| 1423 | && (!ALWAYS_EXECUTED_IN (bb) |
| 1424 | || !(ALWAYS_EXECUTED_IN (bb) == level |
| 1425 | || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))) |
| 1426 | gsi_insert_seq_on_edge (e, rewrite_to_defined_unconditional (stmt)); |
| 1427 | else |
| 1428 | gsi_insert_on_edge (e, stmt); |
| 1429 | } |
| 1430 | |
| 1431 | return todo; |
| 1432 | } |
| 1433 | |
| 1434 | /* Checks whether the statement defining variable *INDEX can be hoisted |
| 1435 | out of the loop passed in DATA. Callback for for_each_index. */ |
| 1436 | |
| 1437 | static bool |
| 1438 | may_move_till (tree ref, tree *index, void *data) |
| 1439 | { |
| 1440 | class loop *loop = (class loop *) data, *max_loop; |
| 1441 | |
| 1442 | /* If REF is an array reference, check also that the step and the lower |
| 1443 | bound is invariant in LOOP. */ |
| 1444 | if (TREE_CODE (ref) == ARRAY_REF) |
| 1445 | { |
| 1446 | tree step = TREE_OPERAND (ref, 3); |
| 1447 | tree lbound = TREE_OPERAND (ref, 2); |
| 1448 | |
| 1449 | max_loop = outermost_invariant_loop (def: step, loop); |
| 1450 | if (!max_loop) |
| 1451 | return false; |
| 1452 | |
| 1453 | max_loop = outermost_invariant_loop (def: lbound, loop); |
| 1454 | if (!max_loop) |
| 1455 | return false; |
| 1456 | } |
| 1457 | |
| 1458 | max_loop = outermost_invariant_loop (def: *index, loop); |
| 1459 | if (!max_loop) |
| 1460 | return false; |
| 1461 | |
| 1462 | return true; |
| 1463 | } |
| 1464 | |
| 1465 | /* If OP is SSA NAME, force the statement that defines it to be |
| 1466 | moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */ |
| 1467 | |
| 1468 | static void |
| 1469 | force_move_till_op (tree op, class loop *orig_loop, class loop *loop) |
| 1470 | { |
| 1471 | gimple *stmt; |
| 1472 | |
| 1473 | if (!op |
| 1474 | || is_gimple_min_invariant (op)) |
| 1475 | return; |
| 1476 | |
| 1477 | gcc_assert (TREE_CODE (op) == SSA_NAME); |
| 1478 | |
| 1479 | stmt = SSA_NAME_DEF_STMT (op); |
| 1480 | if (gimple_nop_p (g: stmt)) |
| 1481 | return; |
| 1482 | |
| 1483 | set_level (stmt, orig_loop, level: loop); |
| 1484 | } |
| 1485 | |
| 1486 | /* Forces statement defining invariants in REF (and *INDEX) to be moved out of |
| 1487 | the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for |
| 1488 | for_each_index. */ |
| 1489 | |
| 1490 | struct fmt_data |
| 1491 | { |
| 1492 | class loop *loop; |
| 1493 | class loop *orig_loop; |
| 1494 | }; |
| 1495 | |
| 1496 | static bool |
| 1497 | force_move_till (tree ref, tree *index, void *data) |
| 1498 | { |
| 1499 | struct fmt_data *fmt_data = (struct fmt_data *) data; |
| 1500 | |
| 1501 | if (TREE_CODE (ref) == ARRAY_REF) |
| 1502 | { |
| 1503 | tree step = TREE_OPERAND (ref, 3); |
| 1504 | tree lbound = TREE_OPERAND (ref, 2); |
| 1505 | |
| 1506 | force_move_till_op (op: step, orig_loop: fmt_data->orig_loop, loop: fmt_data->loop); |
| 1507 | force_move_till_op (op: lbound, orig_loop: fmt_data->orig_loop, loop: fmt_data->loop); |
| 1508 | } |
| 1509 | |
| 1510 | force_move_till_op (op: *index, orig_loop: fmt_data->orig_loop, loop: fmt_data->loop); |
| 1511 | |
| 1512 | return true; |
| 1513 | } |
| 1514 | |
| 1515 | /* A function to free the mem_ref object OBJ. */ |
| 1516 | |
| 1517 | static void |
| 1518 | memref_free (class im_mem_ref *mem) |
| 1519 | { |
| 1520 | mem->accesses_in_loop.release (); |
| 1521 | } |
| 1522 | |
| 1523 | /* Allocates and returns a memory reference description for MEM whose hash |
| 1524 | value is HASH and id is ID. */ |
| 1525 | |
| 1526 | static im_mem_ref * |
| 1527 | mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id) |
| 1528 | { |
| 1529 | im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref); |
| 1530 | if (mem) |
| 1531 | ref->mem = *mem; |
| 1532 | else |
| 1533 | ao_ref_init (&ref->mem, error_mark_node); |
| 1534 | ref->id = id; |
| 1535 | ref->ref_canonical = false; |
| 1536 | ref->ref_decomposed = false; |
| 1537 | ref->hash = hash; |
| 1538 | ref->stored = NULL; |
| 1539 | ref->loaded = NULL; |
| 1540 | bitmap_initialize (head: &ref->dep_loop, obstack: &lim_bitmap_obstack); |
| 1541 | ref->accesses_in_loop.create (nelems: 1); |
| 1542 | |
| 1543 | return ref; |
| 1544 | } |
| 1545 | |
| 1546 | /* Records memory reference location *LOC in LOOP to the memory reference |
| 1547 | description REF. The reference occurs in statement STMT. */ |
| 1548 | |
| 1549 | static void |
| 1550 | record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc) |
| 1551 | { |
| 1552 | mem_ref_loc aref; |
| 1553 | aref.stmt = stmt; |
| 1554 | aref.ref = loc; |
| 1555 | ref->accesses_in_loop.safe_push (obj: aref); |
| 1556 | } |
| 1557 | |
| 1558 | /* Set the LOOP bit in REF stored bitmap and allocate that if |
| 1559 | necessary. Return whether a bit was changed. */ |
| 1560 | |
| 1561 | static bool |
| 1562 | set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop) |
| 1563 | { |
| 1564 | if (!ref->stored) |
| 1565 | ref->stored = BITMAP_ALLOC (obstack: &lim_bitmap_obstack); |
| 1566 | return bitmap_set_bit (ref->stored, loop->num); |
| 1567 | } |
| 1568 | |
| 1569 | /* Marks reference REF as stored in LOOP. */ |
| 1570 | |
| 1571 | static void |
| 1572 | mark_ref_stored (im_mem_ref *ref, class loop *loop) |
| 1573 | { |
| 1574 | while (loop != current_loops->tree_root |
| 1575 | && set_ref_stored_in_loop (ref, loop)) |
| 1576 | loop = loop_outer (loop); |
| 1577 | } |
| 1578 | |
| 1579 | /* Set the LOOP bit in REF loaded bitmap and allocate that if |
| 1580 | necessary. Return whether a bit was changed. */ |
| 1581 | |
| 1582 | static bool |
| 1583 | set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop) |
| 1584 | { |
| 1585 | if (!ref->loaded) |
| 1586 | ref->loaded = BITMAP_ALLOC (obstack: &lim_bitmap_obstack); |
| 1587 | return bitmap_set_bit (ref->loaded, loop->num); |
| 1588 | } |
| 1589 | |
| 1590 | /* Marks reference REF as loaded in LOOP. */ |
| 1591 | |
| 1592 | static void |
| 1593 | mark_ref_loaded (im_mem_ref *ref, class loop *loop) |
| 1594 | { |
| 1595 | while (loop != current_loops->tree_root |
| 1596 | && set_ref_loaded_in_loop (ref, loop)) |
| 1597 | loop = loop_outer (loop); |
| 1598 | } |
| 1599 | |
| 1600 | /* Gathers memory references in statement STMT in LOOP, storing the |
| 1601 | information about them in the memory_accesses structure. Marks |
| 1602 | the vops accessed through unrecognized statements there as |
| 1603 | well. */ |
| 1604 | |
| 1605 | static void |
| 1606 | gather_mem_refs_stmt (class loop *loop, gimple *stmt) |
| 1607 | { |
| 1608 | tree *mem = NULL; |
| 1609 | hashval_t hash; |
| 1610 | im_mem_ref **slot; |
| 1611 | im_mem_ref *ref; |
| 1612 | bool is_stored; |
| 1613 | unsigned id; |
| 1614 | |
| 1615 | if (!gimple_vuse (g: stmt)) |
| 1616 | return; |
| 1617 | |
| 1618 | mem = simple_mem_ref_in_stmt (stmt, is_store: &is_stored); |
| 1619 | if (!mem && is_gimple_assign (gs: stmt)) |
| 1620 | { |
| 1621 | /* For aggregate copies record distinct references but use them |
| 1622 | only for disambiguation purposes. */ |
| 1623 | id = memory_accesses.refs_list.length (); |
| 1624 | ref = mem_ref_alloc (NULL, hash: 0, id); |
| 1625 | memory_accesses.refs_list.safe_push (obj: ref); |
| 1626 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1627 | { |
| 1628 | fprintf (stream: dump_file, format: "Unhandled memory reference %u: " , id); |
| 1629 | print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| 1630 | } |
| 1631 | record_mem_ref_loc (ref, stmt, loc: mem); |
| 1632 | is_stored = gimple_vdef (g: stmt); |
| 1633 | } |
| 1634 | else if (!mem) |
| 1635 | { |
| 1636 | /* We use the shared mem_ref for all unanalyzable refs. */ |
| 1637 | id = UNANALYZABLE_MEM_ID; |
| 1638 | ref = memory_accesses.refs_list[id]; |
| 1639 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1640 | { |
| 1641 | fprintf (stream: dump_file, format: "Unanalyzed memory reference %u: " , id); |
| 1642 | print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| 1643 | } |
| 1644 | is_stored = gimple_vdef (g: stmt); |
| 1645 | } |
| 1646 | else |
| 1647 | { |
| 1648 | /* We are looking for equal refs that might differ in structure |
| 1649 | such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but |
| 1650 | make sure we can canonicalize the ref in the hashtable if |
| 1651 | non-operand_equal_p refs are found. For the lookup we mark |
| 1652 | the case we want strict equality with aor.max_size == -1. */ |
| 1653 | ao_ref aor; |
| 1654 | ao_ref_init (&aor, *mem); |
| 1655 | ao_ref_base (&aor); |
| 1656 | ao_ref_alias_set (&aor); |
| 1657 | HOST_WIDE_INT offset, size, max_size; |
| 1658 | poly_int64 saved_maxsize = aor.max_size, mem_off; |
| 1659 | tree mem_base; |
| 1660 | bool ref_decomposed; |
| 1661 | if (aor.max_size_known_p () |
| 1662 | && aor.offset.is_constant (const_value: &offset) |
| 1663 | && aor.size.is_constant (const_value: &size) |
| 1664 | && aor.max_size.is_constant (const_value: &max_size) |
| 1665 | && size == max_size |
| 1666 | && (size % BITS_PER_UNIT) == 0 |
| 1667 | /* We're canonicalizing to a MEM where TYPE_SIZE specifies the |
| 1668 | size. Make sure this is consistent with the extraction. */ |
| 1669 | && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem))) |
| 1670 | && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))), |
| 1671 | aor.size) |
| 1672 | && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off))) |
| 1673 | { |
| 1674 | ref_decomposed = true; |
| 1675 | tree base = ao_ref_base (&aor); |
| 1676 | poly_int64 moffset; |
| 1677 | HOST_WIDE_INT mcoffset; |
| 1678 | if (TREE_CODE (base) == MEM_REF |
| 1679 | && (mem_ref_offset (base) * BITS_PER_UNIT + offset).to_shwi (r: &moffset) |
| 1680 | && moffset.is_constant (const_value: &mcoffset)) |
| 1681 | { |
| 1682 | hash = iterative_hash_expr (TREE_OPERAND (base, 0), seed: 0); |
| 1683 | hash = iterative_hash_host_wide_int (val: mcoffset, val2: hash); |
| 1684 | } |
| 1685 | else |
| 1686 | { |
| 1687 | hash = iterative_hash_expr (tree: base, seed: 0); |
| 1688 | hash = iterative_hash_host_wide_int (val: offset, val2: hash); |
| 1689 | } |
| 1690 | hash = iterative_hash_host_wide_int (val: size, val2: hash); |
| 1691 | } |
| 1692 | else |
| 1693 | { |
| 1694 | ref_decomposed = false; |
| 1695 | hash = iterative_hash_expr (tree: aor.ref, seed: 0); |
| 1696 | aor.max_size = -1; |
| 1697 | } |
| 1698 | slot = memory_accesses.refs->find_slot_with_hash (comparable: &aor, hash, insert: INSERT); |
| 1699 | aor.max_size = saved_maxsize; |
| 1700 | if (*slot) |
| 1701 | { |
| 1702 | if (!(*slot)->ref_canonical |
| 1703 | && !operand_equal_p (*mem, (*slot)->mem.ref, flags: 0)) |
| 1704 | { |
| 1705 | /* If we didn't yet canonicalize the hashtable ref (which |
| 1706 | we'll end up using for code insertion) and hit a second |
| 1707 | equal ref that is not structurally equivalent create |
| 1708 | a canonical ref which is a bare MEM_REF. */ |
| 1709 | if (TREE_CODE (*mem) == MEM_REF |
| 1710 | || TREE_CODE (*mem) == TARGET_MEM_REF) |
| 1711 | { |
| 1712 | (*slot)->mem.ref = *mem; |
| 1713 | (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor); |
| 1714 | } |
| 1715 | else |
| 1716 | { |
| 1717 | tree ref_alias_type = reference_alias_ptr_type (*mem); |
| 1718 | unsigned int ref_align = get_object_alignment (*mem); |
| 1719 | tree ref_type = TREE_TYPE (*mem); |
| 1720 | tree tmp = build1 (ADDR_EXPR, ptr_type_node, |
| 1721 | unshare_expr (mem_base)); |
| 1722 | if (TYPE_ALIGN (ref_type) != ref_align) |
| 1723 | ref_type = build_aligned_type (ref_type, ref_align); |
| 1724 | tree new_ref |
| 1725 | = fold_build2 (MEM_REF, ref_type, tmp, |
| 1726 | build_int_cst (ref_alias_type, mem_off)); |
| 1727 | if ((*slot)->mem.volatile_p) |
| 1728 | TREE_THIS_VOLATILE (new_ref) = 1; |
| 1729 | (*slot)->mem.ref = new_ref; |
| 1730 | /* Make sure the recorded base and offset are consistent |
| 1731 | with the newly built ref. */ |
| 1732 | if (TREE_CODE (TREE_OPERAND (new_ref, 0)) == ADDR_EXPR) |
| 1733 | ; |
| 1734 | else |
| 1735 | { |
| 1736 | (*slot)->mem.base = new_ref; |
| 1737 | (*slot)->mem.offset = 0; |
| 1738 | } |
| 1739 | gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF |
| 1740 | && is_gimple_mem_ref_addr |
| 1741 | (TREE_OPERAND ((*slot)->mem.ref, |
| 1742 | 0))); |
| 1743 | (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set; |
| 1744 | } |
| 1745 | (*slot)->ref_canonical = true; |
| 1746 | } |
| 1747 | ref = *slot; |
| 1748 | id = ref->id; |
| 1749 | } |
| 1750 | else |
| 1751 | { |
| 1752 | id = memory_accesses.refs_list.length (); |
| 1753 | ref = mem_ref_alloc (mem: &aor, hash, id); |
| 1754 | ref->ref_decomposed = ref_decomposed; |
| 1755 | memory_accesses.refs_list.safe_push (obj: ref); |
| 1756 | *slot = ref; |
| 1757 | |
| 1758 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 1759 | { |
| 1760 | fprintf (stream: dump_file, format: "Memory reference %u: " , id); |
| 1761 | print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM); |
| 1762 | fprintf (stream: dump_file, format: "\n" ); |
| 1763 | } |
| 1764 | } |
| 1765 | |
| 1766 | record_mem_ref_loc (ref, stmt, loc: mem); |
| 1767 | } |
| 1768 | if (is_stored) |
| 1769 | { |
| 1770 | bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id); |
| 1771 | mark_ref_stored (ref, loop); |
| 1772 | } |
| 1773 | /* A not simple memory op is also a read when it is a write. */ |
| 1774 | if (!is_stored || id == UNANALYZABLE_MEM_ID |
| 1775 | || ref->mem.ref == error_mark_node) |
| 1776 | { |
| 1777 | bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id); |
| 1778 | mark_ref_loaded (ref, loop); |
| 1779 | } |
| 1780 | init_lim_data (stmt)->ref = ref->id; |
| 1781 | return; |
| 1782 | } |
| 1783 | |
| 1784 | static unsigned *bb_loop_postorder; |
| 1785 | |
| 1786 | /* qsort sort function to sort blocks after their loop fathers postorder. */ |
| 1787 | |
| 1788 | static int |
| 1789 | sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_, |
| 1790 | void *bb_loop_postorder_) |
| 1791 | { |
| 1792 | unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_; |
| 1793 | basic_block bb1 = *(const basic_block *)bb1_; |
| 1794 | basic_block bb2 = *(const basic_block *)bb2_; |
| 1795 | class loop *loop1 = bb1->loop_father; |
| 1796 | class loop *loop2 = bb2->loop_father; |
| 1797 | if (loop1->num == loop2->num) |
| 1798 | return bb1->index - bb2->index; |
| 1799 | return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1; |
| 1800 | } |
| 1801 | |
| 1802 | /* qsort sort function to sort ref locs after their loop fathers postorder. */ |
| 1803 | |
| 1804 | static int |
| 1805 | sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_, |
| 1806 | void *bb_loop_postorder_) |
| 1807 | { |
| 1808 | unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_; |
| 1809 | const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_; |
| 1810 | const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_; |
| 1811 | class loop *loop1 = gimple_bb (g: loc1->stmt)->loop_father; |
| 1812 | class loop *loop2 = gimple_bb (g: loc2->stmt)->loop_father; |
| 1813 | if (loop1->num == loop2->num) |
| 1814 | return 0; |
| 1815 | return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1; |
| 1816 | } |
| 1817 | |
| 1818 | /* Gathers memory references in loops. */ |
| 1819 | |
| 1820 | static void |
| 1821 | analyze_memory_references (bool store_motion) |
| 1822 | { |
| 1823 | gimple_stmt_iterator bsi; |
| 1824 | basic_block bb, *bbs; |
| 1825 | class loop *outer; |
| 1826 | unsigned i, n; |
| 1827 | |
| 1828 | /* Collect all basic-blocks in loops and sort them after their |
| 1829 | loops postorder. */ |
| 1830 | i = 0; |
| 1831 | bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS); |
| 1832 | FOR_EACH_BB_FN (bb, cfun) |
| 1833 | if (bb->loop_father != current_loops->tree_root) |
| 1834 | bbs[i++] = bb; |
| 1835 | n = i; |
| 1836 | gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp, |
| 1837 | bb_loop_postorder); |
| 1838 | |
| 1839 | /* Visit blocks in loop postorder and assign mem-ref IDs in that order. |
| 1840 | That results in better locality for all the bitmaps. It also |
| 1841 | automatically sorts the location list of gathered memory references |
| 1842 | after their loop postorder number allowing to binary-search it. */ |
| 1843 | for (i = 0; i < n; ++i) |
| 1844 | { |
| 1845 | basic_block bb = bbs[i]; |
| 1846 | for (bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi); gsi_next (i: &bsi)) |
| 1847 | gather_mem_refs_stmt (loop: bb->loop_father, stmt: gsi_stmt (i: bsi)); |
| 1848 | } |
| 1849 | |
| 1850 | /* Verify the list of gathered memory references is sorted after their |
| 1851 | loop postorder number. */ |
| 1852 | if (flag_checking) |
| 1853 | { |
| 1854 | im_mem_ref *ref; |
| 1855 | FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref) |
| 1856 | for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j) |
| 1857 | gcc_assert (sort_locs_in_loop_postorder_cmp |
| 1858 | (&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j], |
| 1859 | bb_loop_postorder) <= 0); |
| 1860 | } |
| 1861 | |
| 1862 | free (ptr: bbs); |
| 1863 | |
| 1864 | if (!store_motion) |
| 1865 | return; |
| 1866 | |
| 1867 | /* Propagate the information about accessed memory references up |
| 1868 | the loop hierarchy. */ |
| 1869 | for (auto loop : loops_list (cfun, LI_FROM_INNERMOST)) |
| 1870 | { |
| 1871 | /* Finalize the overall touched references (including subloops). */ |
| 1872 | bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num], |
| 1873 | &memory_accesses.refs_stored_in_loop[loop->num]); |
| 1874 | |
| 1875 | /* Propagate the information about accessed memory references up |
| 1876 | the loop hierarchy. */ |
| 1877 | outer = loop_outer (loop); |
| 1878 | if (outer == current_loops->tree_root) |
| 1879 | continue; |
| 1880 | |
| 1881 | bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num], |
| 1882 | &memory_accesses.all_refs_stored_in_loop[loop->num]); |
| 1883 | } |
| 1884 | } |
| 1885 | |
| 1886 | /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in |
| 1887 | tree_to_aff_combination_expand. */ |
| 1888 | |
| 1889 | static bool |
| 1890 | mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2, |
| 1891 | hash_map<tree, name_expansion *> **ttae_cache, |
| 1892 | bool tbaa_p) |
| 1893 | { |
| 1894 | gcc_checking_assert (mem1->mem.ref != error_mark_node |
| 1895 | && mem2->mem.ref != error_mark_node); |
| 1896 | |
| 1897 | /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same |
| 1898 | object and their offset differ in such a way that the locations cannot |
| 1899 | overlap, then they cannot alias. */ |
| 1900 | poly_widest_int size1, size2; |
| 1901 | aff_tree off1, off2; |
| 1902 | |
| 1903 | /* Perform basic offset and type-based disambiguation. */ |
| 1904 | if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p)) |
| 1905 | return false; |
| 1906 | |
| 1907 | /* The expansion of addresses may be a bit expensive, thus we only do |
| 1908 | the check at -O2 and higher optimization levels. */ |
| 1909 | if (optimize < 2) |
| 1910 | return true; |
| 1911 | |
| 1912 | get_inner_reference_aff (mem1->mem.ref, &off1, &size1); |
| 1913 | get_inner_reference_aff (mem2->mem.ref, &off2, &size2); |
| 1914 | aff_combination_expand (&off1, ttae_cache); |
| 1915 | aff_combination_expand (&off2, ttae_cache); |
| 1916 | aff_combination_scale (&off1, -1); |
| 1917 | aff_combination_add (&off2, &off1); |
| 1918 | |
| 1919 | if (aff_comb_cannot_overlap_p (&off2, size1, size2)) |
| 1920 | return false; |
| 1921 | |
| 1922 | return true; |
| 1923 | } |
| 1924 | |
| 1925 | /* Compare function for bsearch searching for reference locations |
| 1926 | in a loop. */ |
| 1927 | |
| 1928 | static int |
| 1929 | find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_, |
| 1930 | void *bb_loop_postorder_) |
| 1931 | { |
| 1932 | unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_; |
| 1933 | class loop *loop = (class loop *)const_cast<void *>(loop_); |
| 1934 | mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_); |
| 1935 | class loop *loc_loop = gimple_bb (g: loc->stmt)->loop_father; |
| 1936 | if (loop->num == loc_loop->num |
| 1937 | || flow_loop_nested_p (loop, loc_loop)) |
| 1938 | return 0; |
| 1939 | return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num] |
| 1940 | ? -1 : 1); |
| 1941 | } |
| 1942 | |
| 1943 | /* Iterates over all locations of REF in LOOP and its subloops calling |
| 1944 | fn.operator() with the location as argument. When that operator |
| 1945 | returns true the iteration is stopped and true is returned. |
| 1946 | Otherwise false is returned. */ |
| 1947 | |
| 1948 | template <typename FN> |
| 1949 | static bool |
| 1950 | for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn) |
| 1951 | { |
| 1952 | unsigned i; |
| 1953 | mem_ref_loc *loc; |
| 1954 | |
| 1955 | /* Search for the cluster of locs in the accesses_in_loop vector |
| 1956 | which is sorted after postorder index of the loop father. */ |
| 1957 | loc = ref->accesses_in_loop.bsearch (key: loop, cmp: find_ref_loc_in_loop_cmp, |
| 1958 | data: bb_loop_postorder); |
| 1959 | if (!loc) |
| 1960 | return false; |
| 1961 | |
| 1962 | /* We have found one location inside loop or its sub-loops. Iterate |
| 1963 | both forward and backward to cover the whole cluster. */ |
| 1964 | i = loc - ref->accesses_in_loop.address (); |
| 1965 | while (i > 0) |
| 1966 | { |
| 1967 | --i; |
| 1968 | mem_ref_loc *l = &ref->accesses_in_loop[i]; |
| 1969 | if (!flow_bb_inside_loop_p (loop, gimple_bb (g: l->stmt))) |
| 1970 | break; |
| 1971 | if (fn (l)) |
| 1972 | return true; |
| 1973 | } |
| 1974 | for (i = loc - ref->accesses_in_loop.address (); |
| 1975 | i < ref->accesses_in_loop.length (); ++i) |
| 1976 | { |
| 1977 | mem_ref_loc *l = &ref->accesses_in_loop[i]; |
| 1978 | if (!flow_bb_inside_loop_p (loop, gimple_bb (g: l->stmt))) |
| 1979 | break; |
| 1980 | if (fn (l)) |
| 1981 | return true; |
| 1982 | } |
| 1983 | |
| 1984 | return false; |
| 1985 | } |
| 1986 | |
| 1987 | /* Rewrites location LOC by TMP_VAR. */ |
| 1988 | |
| 1989 | class rewrite_mem_ref_loc |
| 1990 | { |
| 1991 | public: |
| 1992 | rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {} |
| 1993 | bool operator () (mem_ref_loc *loc); |
| 1994 | tree tmp_var; |
| 1995 | }; |
| 1996 | |
| 1997 | bool |
| 1998 | rewrite_mem_ref_loc::operator () (mem_ref_loc *loc) |
| 1999 | { |
| 2000 | *loc->ref = tmp_var; |
| 2001 | update_stmt (s: loc->stmt); |
| 2002 | return false; |
| 2003 | } |
| 2004 | |
| 2005 | /* Rewrites all references to REF in LOOP by variable TMP_VAR. */ |
| 2006 | |
| 2007 | static void |
| 2008 | rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var) |
| 2009 | { |
| 2010 | for_all_locs_in_loop (loop, ref, fn: rewrite_mem_ref_loc (tmp_var)); |
| 2011 | } |
| 2012 | |
| 2013 | /* Stores the first reference location in LOCP. */ |
| 2014 | |
| 2015 | class first_mem_ref_loc_1 |
| 2016 | { |
| 2017 | public: |
| 2018 | first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {} |
| 2019 | bool operator () (mem_ref_loc *loc); |
| 2020 | mem_ref_loc **locp; |
| 2021 | }; |
| 2022 | |
| 2023 | bool |
| 2024 | first_mem_ref_loc_1::operator () (mem_ref_loc *loc) |
| 2025 | { |
| 2026 | *locp = loc; |
| 2027 | return true; |
| 2028 | } |
| 2029 | |
| 2030 | /* Returns the first reference location to REF in LOOP. */ |
| 2031 | |
| 2032 | static mem_ref_loc * |
| 2033 | first_mem_ref_loc (class loop *loop, im_mem_ref *ref) |
| 2034 | { |
| 2035 | mem_ref_loc *locp = NULL; |
| 2036 | for_all_locs_in_loop (loop, ref, fn: first_mem_ref_loc_1 (&locp)); |
| 2037 | return locp; |
| 2038 | } |
| 2039 | |
| 2040 | /* Helper function for execute_sm. Emit code to store TMP_VAR into |
| 2041 | MEM along edge EX. |
| 2042 | |
| 2043 | The store is only done if MEM has changed. We do this so no |
| 2044 | changes to MEM occur on code paths that did not originally store |
| 2045 | into it. |
| 2046 | |
| 2047 | The common case for execute_sm will transform: |
| 2048 | |
| 2049 | for (...) { |
| 2050 | if (foo) |
| 2051 | stuff; |
| 2052 | else |
| 2053 | MEM = TMP_VAR; |
| 2054 | } |
| 2055 | |
| 2056 | into: |
| 2057 | |
| 2058 | lsm = MEM; |
| 2059 | for (...) { |
| 2060 | if (foo) |
| 2061 | stuff; |
| 2062 | else |
| 2063 | lsm = TMP_VAR; |
| 2064 | } |
| 2065 | MEM = lsm; |
| 2066 | |
| 2067 | This function will generate: |
| 2068 | |
| 2069 | lsm = MEM; |
| 2070 | |
| 2071 | lsm_flag = false; |
| 2072 | ... |
| 2073 | for (...) { |
| 2074 | if (foo) |
| 2075 | stuff; |
| 2076 | else { |
| 2077 | lsm = TMP_VAR; |
| 2078 | lsm_flag = true; |
| 2079 | } |
| 2080 | } |
| 2081 | if (lsm_flag) <-- |
| 2082 | MEM = lsm; <-- (X) |
| 2083 | |
| 2084 | In case MEM and TMP_VAR are NULL the function will return the then |
| 2085 | block so the caller can insert (X) and other related stmts. |
| 2086 | */ |
| 2087 | |
| 2088 | static basic_block |
| 2089 | execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag, |
| 2090 | edge , hash_set <basic_block> *flag_bbs, |
| 2091 | edge &append_cond_position, edge &last_cond_fallthru) |
| 2092 | { |
| 2093 | basic_block new_bb, then_bb, old_dest; |
| 2094 | bool loop_has_only_one_exit; |
| 2095 | edge then_old_edge; |
| 2096 | gimple_stmt_iterator gsi; |
| 2097 | gimple *stmt; |
| 2098 | bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP; |
| 2099 | |
| 2100 | profile_count count_sum = profile_count::zero (); |
| 2101 | int nbbs = 0, ncount = 0; |
| 2102 | profile_probability flag_probability = profile_probability::uninitialized (); |
| 2103 | |
| 2104 | /* Flag is set in FLAG_BBS. Determine probability that flag will be true |
| 2105 | at loop exit. |
| 2106 | |
| 2107 | This code may look fancy, but it cannot update profile very realistically |
| 2108 | because we do not know the probability that flag will be true at given |
| 2109 | loop exit. |
| 2110 | |
| 2111 | We look for two interesting extremes |
| 2112 | - when exit is dominated by block setting the flag, we know it will |
| 2113 | always be true. This is a common case. |
| 2114 | - when all blocks setting the flag have very low frequency we know |
| 2115 | it will likely be false. |
| 2116 | In all other cases we default to 2/3 for flag being true. */ |
| 2117 | |
| 2118 | for (hash_set<basic_block>::iterator it = flag_bbs->begin (); |
| 2119 | it != flag_bbs->end (); ++it) |
| 2120 | { |
| 2121 | if ((*it)->count.initialized_p ()) |
| 2122 | count_sum += (*it)->count, ncount ++; |
| 2123 | if (dominated_by_p (CDI_DOMINATORS, ex->src, *it)) |
| 2124 | flag_probability = profile_probability::always (); |
| 2125 | nbbs++; |
| 2126 | } |
| 2127 | |
| 2128 | profile_probability cap |
| 2129 | = profile_probability::guessed_always ().apply_scale (num: 2, den: 3); |
| 2130 | |
| 2131 | if (flag_probability.initialized_p ()) |
| 2132 | ; |
| 2133 | else if (ncount == nbbs |
| 2134 | && preheader->count () >= count_sum && preheader->count ().nonzero_p ()) |
| 2135 | { |
| 2136 | flag_probability = count_sum.probability_in (overall: preheader->count ()); |
| 2137 | if (flag_probability > cap) |
| 2138 | flag_probability = cap; |
| 2139 | } |
| 2140 | |
| 2141 | if (!flag_probability.initialized_p ()) |
| 2142 | flag_probability = cap; |
| 2143 | |
| 2144 | /* ?? Insert store after previous store if applicable. See note |
| 2145 | below. */ |
| 2146 | if (append_cond_position) |
| 2147 | ex = append_cond_position; |
| 2148 | |
| 2149 | loop_has_only_one_exit = single_pred_p (bb: ex->dest); |
| 2150 | |
| 2151 | if (loop_has_only_one_exit) |
| 2152 | ex = split_block_after_labels (ex->dest); |
| 2153 | else |
| 2154 | { |
| 2155 | for (gphi_iterator gpi = gsi_start_phis (ex->dest); |
| 2156 | !gsi_end_p (i: gpi); gsi_next (i: &gpi)) |
| 2157 | { |
| 2158 | gphi *phi = gpi.phi (); |
| 2159 | if (virtual_operand_p (op: gimple_phi_result (gs: phi))) |
| 2160 | continue; |
| 2161 | |
| 2162 | /* When the destination has a non-virtual PHI node with multiple |
| 2163 | predecessors make sure we preserve the PHI structure by |
| 2164 | forcing a forwarder block so that hoisting of that PHI will |
| 2165 | still work. */ |
| 2166 | split_edge (ex); |
| 2167 | break; |
| 2168 | } |
| 2169 | } |
| 2170 | |
| 2171 | old_dest = ex->dest; |
| 2172 | new_bb = split_edge (ex); |
| 2173 | if (append_cond_position) |
| 2174 | new_bb->count += last_cond_fallthru->count (); |
| 2175 | then_bb = create_empty_bb (new_bb); |
| 2176 | then_bb->count = new_bb->count.apply_probability (prob: flag_probability); |
| 2177 | if (irr) |
| 2178 | then_bb->flags = BB_IRREDUCIBLE_LOOP; |
| 2179 | add_bb_to_loop (then_bb, new_bb->loop_father); |
| 2180 | |
| 2181 | gsi = gsi_start_bb (bb: new_bb); |
| 2182 | stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node, |
| 2183 | NULL_TREE, NULL_TREE); |
| 2184 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 2185 | |
| 2186 | /* Insert actual store. */ |
| 2187 | if (mem) |
| 2188 | { |
| 2189 | gsi = gsi_start_bb (bb: then_bb); |
| 2190 | stmt = gimple_build_assign (unshare_expr (mem), tmp_var); |
| 2191 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 2192 | } |
| 2193 | |
| 2194 | edge e1 = single_succ_edge (bb: new_bb); |
| 2195 | edge e2 = make_edge (new_bb, then_bb, |
| 2196 | EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0)); |
| 2197 | e2->probability = flag_probability; |
| 2198 | |
| 2199 | e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0); |
| 2200 | e1->flags &= ~EDGE_FALLTHRU; |
| 2201 | |
| 2202 | e1->probability = flag_probability.invert (); |
| 2203 | |
| 2204 | then_old_edge = make_single_succ_edge (then_bb, old_dest, |
| 2205 | EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0)); |
| 2206 | |
| 2207 | set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb); |
| 2208 | |
| 2209 | if (append_cond_position) |
| 2210 | { |
| 2211 | basic_block prevbb = last_cond_fallthru->src; |
| 2212 | redirect_edge_succ (last_cond_fallthru, new_bb); |
| 2213 | set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb); |
| 2214 | set_immediate_dominator (CDI_DOMINATORS, old_dest, |
| 2215 | recompute_dominator (CDI_DOMINATORS, old_dest)); |
| 2216 | } |
| 2217 | |
| 2218 | /* ?? Because stores may alias, they must happen in the exact |
| 2219 | sequence they originally happened. Save the position right after |
| 2220 | the (_lsm) store we just created so we can continue appending after |
| 2221 | it and maintain the original order. */ |
| 2222 | append_cond_position = then_old_edge; |
| 2223 | last_cond_fallthru = find_edge (new_bb, old_dest); |
| 2224 | |
| 2225 | if (!loop_has_only_one_exit) |
| 2226 | for (gphi_iterator gpi = gsi_start_phis (old_dest); |
| 2227 | !gsi_end_p (i: gpi); gsi_next (i: &gpi)) |
| 2228 | { |
| 2229 | gphi *phi = gpi.phi (); |
| 2230 | unsigned i; |
| 2231 | |
| 2232 | for (i = 0; i < gimple_phi_num_args (gs: phi); i++) |
| 2233 | if (gimple_phi_arg_edge (phi, i)->src == new_bb) |
| 2234 | { |
| 2235 | tree arg = gimple_phi_arg_def (gs: phi, index: i); |
| 2236 | add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION); |
| 2237 | update_stmt (s: phi); |
| 2238 | } |
| 2239 | } |
| 2240 | |
| 2241 | return then_bb; |
| 2242 | } |
| 2243 | |
| 2244 | /* When REF is set on the location, set flag indicating the store. */ |
| 2245 | |
| 2246 | class sm_set_flag_if_changed |
| 2247 | { |
| 2248 | public: |
| 2249 | sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_) |
| 2250 | : flag (flag_), bbs (bbs_) {} |
| 2251 | bool operator () (mem_ref_loc *loc); |
| 2252 | tree flag; |
| 2253 | hash_set <basic_block> *bbs; |
| 2254 | }; |
| 2255 | |
| 2256 | bool |
| 2257 | sm_set_flag_if_changed::operator () (mem_ref_loc *loc) |
| 2258 | { |
| 2259 | /* Only set the flag for writes. */ |
| 2260 | if (is_gimple_assign (gs: loc->stmt) |
| 2261 | && gimple_assign_lhs_ptr (gs: loc->stmt) == loc->ref) |
| 2262 | { |
| 2263 | gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt); |
| 2264 | gimple *stmt = gimple_build_assign (flag, boolean_true_node); |
| 2265 | gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); |
| 2266 | bbs->add (k: gimple_bb (g: stmt)); |
| 2267 | } |
| 2268 | return false; |
| 2269 | } |
| 2270 | |
| 2271 | /* Helper function for execute_sm. On every location where REF is |
| 2272 | set, set an appropriate flag indicating the store. */ |
| 2273 | |
| 2274 | static tree |
| 2275 | execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref, |
| 2276 | hash_set <basic_block> *bbs) |
| 2277 | { |
| 2278 | tree flag; |
| 2279 | char *str = get_lsm_tmp_name (ref: ref->mem.ref, n: ~0, suffix: "_flag" ); |
| 2280 | flag = create_tmp_reg (boolean_type_node, str); |
| 2281 | for_all_locs_in_loop (loop, ref, fn: sm_set_flag_if_changed (flag, bbs)); |
| 2282 | return flag; |
| 2283 | } |
| 2284 | |
| 2285 | struct sm_aux |
| 2286 | { |
| 2287 | tree tmp_var; |
| 2288 | tree store_flag; |
| 2289 | hash_set <basic_block> flag_bbs; |
| 2290 | }; |
| 2291 | |
| 2292 | /* Executes store motion of memory reference REF from LOOP. |
| 2293 | Exits from the LOOP are stored in EXITS. The initialization of the |
| 2294 | temporary variable is put to the preheader of the loop, and assignments |
| 2295 | to the reference from the temporary variable are emitted to exits. */ |
| 2296 | |
| 2297 | static sm_aux * |
| 2298 | execute_sm (class loop *loop, im_mem_ref *ref, |
| 2299 | hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt, |
| 2300 | bool use_other_flag_var) |
| 2301 | { |
| 2302 | gassign *load; |
| 2303 | struct fmt_data fmt_data; |
| 2304 | struct lim_aux_data *lim_data; |
| 2305 | bool multi_threaded_model_p = false; |
| 2306 | gimple_stmt_iterator gsi; |
| 2307 | sm_aux *aux = new sm_aux; |
| 2308 | |
| 2309 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2310 | { |
| 2311 | fprintf (stream: dump_file, format: "Executing store motion of " ); |
| 2312 | print_generic_expr (dump_file, ref->mem.ref); |
| 2313 | fprintf (stream: dump_file, format: " from loop %d\n" , loop->num); |
| 2314 | } |
| 2315 | |
| 2316 | aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref), |
| 2317 | get_lsm_tmp_name (ref: ref->mem.ref, n: ~0)); |
| 2318 | |
| 2319 | fmt_data.loop = loop; |
| 2320 | fmt_data.orig_loop = loop; |
| 2321 | for_each_index (&ref->mem.ref, force_move_till, &fmt_data); |
| 2322 | |
| 2323 | bool always_stored = ref_always_accessed_p (loop, ref, true); |
| 2324 | if (maybe_mt |
| 2325 | && (bb_in_transaction (bb: loop_preheader_edge (loop)->src) |
| 2326 | || (ref_can_have_store_data_races (ref->mem.ref) && ! always_stored))) |
| 2327 | multi_threaded_model_p = true; |
| 2328 | |
| 2329 | if (multi_threaded_model_p && !use_other_flag_var) |
| 2330 | aux->store_flag |
| 2331 | = execute_sm_if_changed_flag_set (loop, ref, bbs: &aux->flag_bbs); |
| 2332 | else |
| 2333 | aux->store_flag = NULL_TREE; |
| 2334 | |
| 2335 | /* Remember variable setup. */ |
| 2336 | aux_map.put (k: ref, v: aux); |
| 2337 | |
| 2338 | rewrite_mem_refs (loop, ref, tmp_var: aux->tmp_var); |
| 2339 | |
| 2340 | /* Emit the load code on a random exit edge or into the latch if |
| 2341 | the loop does not exit, so that we are sure it will be processed |
| 2342 | by move_computations after all dependencies. */ |
| 2343 | gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt); |
| 2344 | |
| 2345 | /* Avoid doing a load if there was no load of the ref in the loop. |
| 2346 | Esp. when the ref is not always stored we cannot optimize it |
| 2347 | away later. But when it is not always stored we must use a conditional |
| 2348 | store then. */ |
| 2349 | if ((!always_stored && !multi_threaded_model_p) |
| 2350 | || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num))) |
| 2351 | load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref)); |
| 2352 | else |
| 2353 | { |
| 2354 | /* If not emitting a load mark the uninitialized state on the |
| 2355 | loop entry as not to be warned for. */ |
| 2356 | tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var)); |
| 2357 | suppress_warning (uninit, OPT_Wuninitialized); |
| 2358 | load = gimple_build_assign (aux->tmp_var, uninit); |
| 2359 | } |
| 2360 | lim_data = init_lim_data (stmt: load); |
| 2361 | lim_data->max_loop = loop; |
| 2362 | lim_data->tgt_loop = loop; |
| 2363 | gsi_insert_before (&gsi, load, GSI_SAME_STMT); |
| 2364 | |
| 2365 | if (aux->store_flag) |
| 2366 | { |
| 2367 | load = gimple_build_assign (aux->store_flag, boolean_false_node); |
| 2368 | lim_data = init_lim_data (stmt: load); |
| 2369 | lim_data->max_loop = loop; |
| 2370 | lim_data->tgt_loop = loop; |
| 2371 | gsi_insert_before (&gsi, load, GSI_SAME_STMT); |
| 2372 | } |
| 2373 | |
| 2374 | return aux; |
| 2375 | } |
| 2376 | |
| 2377 | /* sm_ord is used for ordinary stores we can retain order with respect |
| 2378 | to other stores |
| 2379 | sm_unord is used for conditional executed stores which need to be |
| 2380 | able to execute in arbitrary order with respect to other stores |
| 2381 | sm_other is used for stores we do not try to apply store motion to. */ |
| 2382 | enum sm_kind { sm_ord, sm_unord, sm_other }; |
| 2383 | struct seq_entry |
| 2384 | { |
| 2385 | seq_entry () = default; |
| 2386 | seq_entry (unsigned f, sm_kind k, tree fr = NULL) |
| 2387 | : first (f), second (k), from (fr) {} |
| 2388 | unsigned first; |
| 2389 | sm_kind second; |
| 2390 | tree from; |
| 2391 | }; |
| 2392 | |
| 2393 | static void |
| 2394 | execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq, |
| 2395 | hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind, |
| 2396 | edge &append_cond_position, edge &last_cond_fallthru, |
| 2397 | bitmap clobbers_to_prune) |
| 2398 | { |
| 2399 | /* Sink the stores to exit from the loop. */ |
| 2400 | for (unsigned i = seq.length (); i > 0; --i) |
| 2401 | { |
| 2402 | im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first]; |
| 2403 | if (seq[i-1].second == sm_other) |
| 2404 | { |
| 2405 | gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE); |
| 2406 | gassign *store; |
| 2407 | if (ref->mem.ref == error_mark_node) |
| 2408 | { |
| 2409 | tree lhs = gimple_assign_lhs (gs: ref->accesses_in_loop[0].stmt); |
| 2410 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2411 | { |
| 2412 | fprintf (stream: dump_file, format: "Re-issueing dependent " ); |
| 2413 | print_generic_expr (dump_file, unshare_expr (seq[i-1].from)); |
| 2414 | fprintf (stream: dump_file, format: " of " ); |
| 2415 | print_generic_expr (dump_file, lhs); |
| 2416 | fprintf (stream: dump_file, format: " from loop %d on exit %d -> %d\n" , |
| 2417 | loop->num, ex->src->index, ex->dest->index); |
| 2418 | } |
| 2419 | store = gimple_build_assign (unshare_expr (lhs), |
| 2420 | unshare_expr (seq[i-1].from)); |
| 2421 | bitmap_set_bit (clobbers_to_prune, seq[i-1].first); |
| 2422 | } |
| 2423 | else |
| 2424 | { |
| 2425 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 2426 | { |
| 2427 | fprintf (stream: dump_file, format: "Re-issueing dependent store of " ); |
| 2428 | print_generic_expr (dump_file, ref->mem.ref); |
| 2429 | fprintf (stream: dump_file, format: " from loop %d on exit %d -> %d\n" , |
| 2430 | loop->num, ex->src->index, ex->dest->index); |
| 2431 | } |
| 2432 | store = gimple_build_assign (unshare_expr (ref->mem.ref), |
| 2433 | seq[i-1].from); |
| 2434 | } |
| 2435 | gsi_insert_on_edge (ex, store); |
| 2436 | } |
| 2437 | else |
| 2438 | { |
| 2439 | sm_aux *aux = *aux_map.get (k: ref); |
| 2440 | if (!aux->store_flag || kind == sm_ord) |
| 2441 | { |
| 2442 | gassign *store; |
| 2443 | store = gimple_build_assign (unshare_expr (ref->mem.ref), |
| 2444 | aux->tmp_var); |
| 2445 | gsi_insert_on_edge (ex, store); |
| 2446 | } |
| 2447 | else |
| 2448 | execute_sm_if_changed (ex, mem: ref->mem.ref, tmp_var: aux->tmp_var, |
| 2449 | flag: aux->store_flag, |
| 2450 | preheader: loop_preheader_edge (loop), flag_bbs: &aux->flag_bbs, |
| 2451 | append_cond_position, last_cond_fallthru); |
| 2452 | } |
| 2453 | } |
| 2454 | } |
| 2455 | |
| 2456 | /* Push the SM candidate at index PTR in the sequence SEQ down until |
| 2457 | we hit the next SM candidate. Return true if that went OK and |
| 2458 | false if we could not disambiguate agains another unrelated ref. |
| 2459 | Update *AT to the index where the candidate now resides. */ |
| 2460 | |
| 2461 | static bool |
| 2462 | sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at) |
| 2463 | { |
| 2464 | *at = ptr; |
| 2465 | for (; ptr > 0; --ptr) |
| 2466 | { |
| 2467 | seq_entry &new_cand = seq[ptr]; |
| 2468 | seq_entry &against = seq[ptr-1]; |
| 2469 | if (against.second == sm_ord |
| 2470 | || (against.second == sm_other && against.from != NULL_TREE)) |
| 2471 | /* Found the tail of the sequence. */ |
| 2472 | break; |
| 2473 | /* We may not ignore self-dependences here. */ |
| 2474 | if (new_cand.first == against.first |
| 2475 | /* ??? We could actually handle clobbers here, but not easily |
| 2476 | with LIMs dependence analysis. */ |
| 2477 | || (memory_accesses.refs_list[new_cand.first]->mem.ref |
| 2478 | == error_mark_node) |
| 2479 | || (memory_accesses.refs_list[against.first]->mem.ref |
| 2480 | == error_mark_node) |
| 2481 | || !refs_independent_p (memory_accesses.refs_list[new_cand.first], |
| 2482 | memory_accesses.refs_list[against.first], |
| 2483 | false)) |
| 2484 | /* ??? Prune new_cand from the list of refs to apply SM to. */ |
| 2485 | return false; |
| 2486 | std::swap (a&: new_cand, b&: against); |
| 2487 | *at = ptr - 1; |
| 2488 | } |
| 2489 | return true; |
| 2490 | } |
| 2491 | |
| 2492 | /* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ |
| 2493 | walking backwards from VDEF (or the end of BB if VDEF is NULL). */ |
| 2494 | |
| 2495 | static int |
| 2496 | sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef, |
| 2497 | vec<seq_entry> &seq, bitmap refs_not_in_seq, |
| 2498 | bitmap refs_not_supported, bool forked, |
| 2499 | bitmap fully_visited) |
| 2500 | { |
| 2501 | if (!vdef) |
| 2502 | for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (i: gsi); |
| 2503 | gsi_prev (i: &gsi)) |
| 2504 | { |
| 2505 | vdef = gimple_vdef (g: gsi_stmt (i: gsi)); |
| 2506 | if (vdef) |
| 2507 | break; |
| 2508 | } |
| 2509 | if (!vdef) |
| 2510 | { |
| 2511 | gphi *vphi = get_virtual_phi (bb); |
| 2512 | if (vphi) |
| 2513 | vdef = gimple_phi_result (gs: vphi); |
| 2514 | } |
| 2515 | if (!vdef) |
| 2516 | { |
| 2517 | if (single_pred_p (bb)) |
| 2518 | /* This handles the perfect nest case. */ |
| 2519 | return sm_seq_valid_bb (loop, bb: single_pred (bb), vdef, |
| 2520 | seq, refs_not_in_seq, refs_not_supported, |
| 2521 | forked, fully_visited); |
| 2522 | return 0; |
| 2523 | } |
| 2524 | do |
| 2525 | { |
| 2526 | gimple *def = SSA_NAME_DEF_STMT (vdef); |
| 2527 | if (gimple_bb (g: def) != bb) |
| 2528 | { |
| 2529 | /* If we forked by processing a PHI do not allow our walk to |
| 2530 | merge again until we handle that robustly. */ |
| 2531 | if (forked) |
| 2532 | { |
| 2533 | /* Mark refs_not_in_seq as unsupported. */ |
| 2534 | bitmap_ior_into (refs_not_supported, refs_not_in_seq); |
| 2535 | return 1; |
| 2536 | } |
| 2537 | /* Otherwise it doesn't really matter if we end up in different |
| 2538 | BBs. */ |
| 2539 | bb = gimple_bb (g: def); |
| 2540 | } |
| 2541 | if (gphi *phi = dyn_cast <gphi *> (p: def)) |
| 2542 | { |
| 2543 | /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb) |
| 2544 | this is still linear. |
| 2545 | Eventually we want to cache intermediate results per BB |
| 2546 | (but we can't easily cache for different exits?). */ |
| 2547 | /* Stop at PHIs with possible backedges. */ |
| 2548 | if (bb == bb->loop_father->header |
| 2549 | || bb->flags & BB_IRREDUCIBLE_LOOP) |
| 2550 | { |
| 2551 | /* Mark refs_not_in_seq as unsupported. */ |
| 2552 | bitmap_ior_into (refs_not_supported, refs_not_in_seq); |
| 2553 | return 1; |
| 2554 | } |
| 2555 | if (gimple_phi_num_args (gs: phi) == 1) |
| 2556 | return sm_seq_valid_bb (loop, bb: gimple_phi_arg_edge (phi, i: 0)->src, |
| 2557 | vdef: gimple_phi_arg_def (gs: phi, index: 0), seq, |
| 2558 | refs_not_in_seq, refs_not_supported, |
| 2559 | forked: false, fully_visited); |
| 2560 | if (bitmap_bit_p (fully_visited, |
| 2561 | SSA_NAME_VERSION (gimple_phi_result (phi)))) |
| 2562 | return 1; |
| 2563 | auto_vec<seq_entry> first_edge_seq; |
| 2564 | auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack); |
| 2565 | int eret; |
| 2566 | bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq); |
| 2567 | eret = sm_seq_valid_bb (loop, bb: gimple_phi_arg_edge (phi, i: 0)->src, |
| 2568 | vdef: gimple_phi_arg_def (gs: phi, index: 0), |
| 2569 | seq&: first_edge_seq, |
| 2570 | refs_not_in_seq: tem_refs_not_in_seq, refs_not_supported, |
| 2571 | forked: true, fully_visited); |
| 2572 | if (eret != 1) |
| 2573 | return -1; |
| 2574 | /* Simplify our lives by pruning the sequence of !sm_ord. */ |
| 2575 | while (!first_edge_seq.is_empty () |
| 2576 | && first_edge_seq.last ().second != sm_ord) |
| 2577 | first_edge_seq.pop (); |
| 2578 | for (unsigned int i = 1; i < gimple_phi_num_args (gs: phi); ++i) |
| 2579 | { |
| 2580 | tree vuse = gimple_phi_arg_def (gs: phi, index: i); |
| 2581 | edge e = gimple_phi_arg_edge (phi, i); |
| 2582 | auto_vec<seq_entry> edge_seq; |
| 2583 | bitmap_and_compl (tem_refs_not_in_seq, |
| 2584 | refs_not_in_seq, refs_not_supported); |
| 2585 | /* If we've marked all refs we search for as unsupported |
| 2586 | we can stop processing and use the sequence as before |
| 2587 | the PHI. */ |
| 2588 | if (bitmap_empty_p (map: tem_refs_not_in_seq)) |
| 2589 | return 1; |
| 2590 | eret = sm_seq_valid_bb (loop, bb: e->src, vdef: vuse, seq&: edge_seq, |
| 2591 | refs_not_in_seq: tem_refs_not_in_seq, refs_not_supported, |
| 2592 | forked: true, fully_visited); |
| 2593 | if (eret != 1) |
| 2594 | return -1; |
| 2595 | /* Simplify our lives by pruning the sequence of !sm_ord. */ |
| 2596 | while (!edge_seq.is_empty () |
| 2597 | && edge_seq.last ().second != sm_ord) |
| 2598 | edge_seq.pop (); |
| 2599 | unsigned min_len = MIN(first_edge_seq.length (), |
| 2600 | edge_seq.length ()); |
| 2601 | /* Incrementally merge seqs into first_edge_seq. */ |
| 2602 | int first_uneq = -1; |
| 2603 | auto_vec<seq_entry, 2> ; |
| 2604 | for (unsigned int i = 0; i < min_len; ++i) |
| 2605 | { |
| 2606 | /* ??? We can more intelligently merge when we face different |
| 2607 | order by additional sinking operations in one sequence. |
| 2608 | For now we simply mark them as to be processed by the |
| 2609 | not order-preserving SM code. */ |
| 2610 | if (first_edge_seq[i].first != edge_seq[i].first) |
| 2611 | { |
| 2612 | if (first_edge_seq[i].second == sm_ord) |
| 2613 | bitmap_set_bit (refs_not_supported, |
| 2614 | first_edge_seq[i].first); |
| 2615 | if (edge_seq[i].second == sm_ord) |
| 2616 | bitmap_set_bit (refs_not_supported, edge_seq[i].first); |
| 2617 | first_edge_seq[i].second = sm_other; |
| 2618 | first_edge_seq[i].from = NULL_TREE; |
| 2619 | /* Record the dropped refs for later processing. */ |
| 2620 | if (first_uneq == -1) |
| 2621 | first_uneq = i; |
| 2622 | extra_refs.safe_push (obj: seq_entry (edge_seq[i].first, |
| 2623 | sm_other, NULL_TREE)); |
| 2624 | } |
| 2625 | /* sm_other prevails. */ |
| 2626 | else if (first_edge_seq[i].second != edge_seq[i].second) |
| 2627 | { |
| 2628 | /* Make sure the ref is marked as not supported. */ |
| 2629 | bitmap_set_bit (refs_not_supported, |
| 2630 | first_edge_seq[i].first); |
| 2631 | first_edge_seq[i].second = sm_other; |
| 2632 | first_edge_seq[i].from = NULL_TREE; |
| 2633 | } |
| 2634 | else if (first_edge_seq[i].second == sm_other |
| 2635 | && first_edge_seq[i].from != NULL_TREE |
| 2636 | && (edge_seq[i].from == NULL_TREE |
| 2637 | || !operand_equal_p (first_edge_seq[i].from, |
| 2638 | edge_seq[i].from, flags: 0))) |
| 2639 | first_edge_seq[i].from = NULL_TREE; |
| 2640 | } |
| 2641 | /* Any excess elements become sm_other since they are now |
| 2642 | coonditionally executed. */ |
| 2643 | if (first_edge_seq.length () > edge_seq.length ()) |
| 2644 | { |
| 2645 | for (unsigned i = edge_seq.length (); |
| 2646 | i < first_edge_seq.length (); ++i) |
| 2647 | { |
| 2648 | if (first_edge_seq[i].second == sm_ord) |
| 2649 | bitmap_set_bit (refs_not_supported, |
| 2650 | first_edge_seq[i].first); |
| 2651 | first_edge_seq[i].second = sm_other; |
| 2652 | } |
| 2653 | } |
| 2654 | else if (edge_seq.length () > first_edge_seq.length ()) |
| 2655 | { |
| 2656 | if (first_uneq == -1) |
| 2657 | first_uneq = first_edge_seq.length (); |
| 2658 | for (unsigned i = first_edge_seq.length (); |
| 2659 | i < edge_seq.length (); ++i) |
| 2660 | { |
| 2661 | if (edge_seq[i].second == sm_ord) |
| 2662 | bitmap_set_bit (refs_not_supported, edge_seq[i].first); |
| 2663 | extra_refs.safe_push (obj: seq_entry (edge_seq[i].first, |
| 2664 | sm_other, NULL_TREE)); |
| 2665 | } |
| 2666 | } |
| 2667 | /* Put unmerged refs at first_uneq to force dependence checking |
| 2668 | on them. */ |
| 2669 | if (first_uneq != -1) |
| 2670 | { |
| 2671 | /* Missing ordered_splice_at. */ |
| 2672 | if ((unsigned)first_uneq == first_edge_seq.length ()) |
| 2673 | first_edge_seq.safe_splice (src: extra_refs); |
| 2674 | else |
| 2675 | { |
| 2676 | unsigned fes_length = first_edge_seq.length (); |
| 2677 | first_edge_seq.safe_grow (len: fes_length |
| 2678 | + extra_refs.length ()); |
| 2679 | memmove (dest: &first_edge_seq[first_uneq + extra_refs.length ()], |
| 2680 | src: &first_edge_seq[first_uneq], |
| 2681 | n: (fes_length - first_uneq) * sizeof (seq_entry)); |
| 2682 | memcpy (dest: &first_edge_seq[first_uneq], |
| 2683 | src: extra_refs.address (), |
| 2684 | n: extra_refs.length () * sizeof (seq_entry)); |
| 2685 | } |
| 2686 | } |
| 2687 | } |
| 2688 | /* Use the sequence from the first edge and push SMs down. */ |
| 2689 | for (unsigned i = 0; i < first_edge_seq.length (); ++i) |
| 2690 | { |
| 2691 | unsigned id = first_edge_seq[i].first; |
| 2692 | seq.safe_push (obj: first_edge_seq[i]); |
| 2693 | unsigned new_idx; |
| 2694 | if ((first_edge_seq[i].second == sm_ord |
| 2695 | || (first_edge_seq[i].second == sm_other |
| 2696 | && first_edge_seq[i].from != NULL_TREE)) |
| 2697 | && !sm_seq_push_down (seq, ptr: seq.length () - 1, at: &new_idx)) |
| 2698 | { |
| 2699 | if (first_edge_seq[i].second == sm_ord) |
| 2700 | bitmap_set_bit (refs_not_supported, id); |
| 2701 | /* Mark it sm_other. */ |
| 2702 | seq[new_idx].second = sm_other; |
| 2703 | seq[new_idx].from = NULL_TREE; |
| 2704 | } |
| 2705 | } |
| 2706 | bitmap_set_bit (fully_visited, |
| 2707 | SSA_NAME_VERSION (gimple_phi_result (phi))); |
| 2708 | return 1; |
| 2709 | } |
| 2710 | lim_aux_data *data = get_lim_data (stmt: def); |
| 2711 | im_mem_ref *ref = memory_accesses.refs_list[data->ref]; |
| 2712 | if (data->ref == UNANALYZABLE_MEM_ID) |
| 2713 | return -1; |
| 2714 | /* Stop at memory references which we can't move. */ |
| 2715 | else if ((ref->mem.ref == error_mark_node |
| 2716 | /* We can move end-of-storage/object down. */ |
| 2717 | && !gimple_clobber_p (s: ref->accesses_in_loop[0].stmt, |
| 2718 | kind: CLOBBER_STORAGE_END) |
| 2719 | && !gimple_clobber_p (s: ref->accesses_in_loop[0].stmt, |
| 2720 | kind: CLOBBER_OBJECT_END)) |
| 2721 | || TREE_THIS_VOLATILE (ref->mem.ref)) |
| 2722 | { |
| 2723 | /* Mark refs_not_in_seq as unsupported. */ |
| 2724 | bitmap_ior_into (refs_not_supported, refs_not_in_seq); |
| 2725 | return 1; |
| 2726 | } |
| 2727 | /* One of the stores we want to apply SM to and we've not yet seen. */ |
| 2728 | else if (bitmap_clear_bit (refs_not_in_seq, data->ref)) |
| 2729 | { |
| 2730 | seq.safe_push (obj: seq_entry (data->ref, sm_ord)); |
| 2731 | |
| 2732 | /* 1) push it down the queue until a SMed |
| 2733 | and not ignored ref is reached, skipping all not SMed refs |
| 2734 | and ignored refs via non-TBAA disambiguation. */ |
| 2735 | unsigned new_idx; |
| 2736 | if (!sm_seq_push_down (seq, ptr: seq.length () - 1, at: &new_idx) |
| 2737 | /* If that fails but we did not fork yet continue, we'll see |
| 2738 | to re-materialize all of the stores in the sequence then. |
| 2739 | Further stores will only be pushed up to this one. */ |
| 2740 | && forked) |
| 2741 | { |
| 2742 | bitmap_set_bit (refs_not_supported, data->ref); |
| 2743 | /* Mark it sm_other. */ |
| 2744 | seq[new_idx].second = sm_other; |
| 2745 | } |
| 2746 | |
| 2747 | /* 2) check whether we've seen all refs we want to SM and if so |
| 2748 | declare success for the active exit */ |
| 2749 | if (bitmap_empty_p (map: refs_not_in_seq)) |
| 2750 | return 1; |
| 2751 | } |
| 2752 | else |
| 2753 | /* Another store not part of the final sequence. Simply push it. */ |
| 2754 | seq.safe_push (obj: seq_entry (data->ref, sm_other, |
| 2755 | gimple_assign_rhs1 (gs: def))); |
| 2756 | |
| 2757 | vdef = gimple_vuse (g: def); |
| 2758 | } |
| 2759 | while (1); |
| 2760 | } |
| 2761 | |
| 2762 | /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit |
| 2763 | edges of the LOOP. */ |
| 2764 | |
| 2765 | static void |
| 2766 | hoist_memory_references (class loop *loop, bitmap mem_refs, |
| 2767 | const vec<edge> &exits) |
| 2768 | { |
| 2769 | im_mem_ref *ref; |
| 2770 | unsigned i; |
| 2771 | bitmap_iterator bi; |
| 2772 | |
| 2773 | /* There's a special case we can use ordered re-materialization for |
| 2774 | conditionally excuted stores which is when all stores in the loop |
| 2775 | happen in the same basic-block. In that case we know we'll reach |
| 2776 | all stores and thus can simply process that BB and emit a single |
| 2777 | conditional block of ordered materializations. See PR102436. */ |
| 2778 | basic_block single_store_bb = NULL; |
| 2779 | EXECUTE_IF_SET_IN_BITMAP (&memory_accesses.all_refs_stored_in_loop[loop->num], |
| 2780 | 0, i, bi) |
| 2781 | { |
| 2782 | bool fail = false; |
| 2783 | ref = memory_accesses.refs_list[i]; |
| 2784 | for (auto loc : ref->accesses_in_loop) |
| 2785 | if (!gimple_vdef (g: loc.stmt)) |
| 2786 | ; |
| 2787 | else if (!single_store_bb) |
| 2788 | { |
| 2789 | single_store_bb = gimple_bb (g: loc.stmt); |
| 2790 | bool conditional = false; |
| 2791 | for (edge e : exits) |
| 2792 | if (!dominated_by_p (CDI_DOMINATORS, e->src, single_store_bb)) |
| 2793 | { |
| 2794 | /* Conditional as seen from e. */ |
| 2795 | conditional = true; |
| 2796 | break; |
| 2797 | } |
| 2798 | if (!conditional) |
| 2799 | { |
| 2800 | fail = true; |
| 2801 | break; |
| 2802 | } |
| 2803 | } |
| 2804 | else if (single_store_bb != gimple_bb (g: loc.stmt)) |
| 2805 | { |
| 2806 | fail = true; |
| 2807 | break; |
| 2808 | } |
| 2809 | if (fail) |
| 2810 | { |
| 2811 | single_store_bb = NULL; |
| 2812 | break; |
| 2813 | } |
| 2814 | } |
| 2815 | if (single_store_bb) |
| 2816 | { |
| 2817 | /* Analyze the single block with stores. */ |
| 2818 | auto_bitmap fully_visited; |
| 2819 | auto_bitmap refs_not_supported; |
| 2820 | auto_bitmap refs_not_in_seq; |
| 2821 | auto_vec<seq_entry> seq; |
| 2822 | bitmap_copy (refs_not_in_seq, mem_refs); |
| 2823 | int res = sm_seq_valid_bb (loop, bb: single_store_bb, NULL_TREE, |
| 2824 | seq, refs_not_in_seq, refs_not_supported, |
| 2825 | forked: false, fully_visited); |
| 2826 | if (res != 1) |
| 2827 | { |
| 2828 | /* Unhandled refs can still fail this. */ |
| 2829 | bitmap_clear (mem_refs); |
| 2830 | return; |
| 2831 | } |
| 2832 | |
| 2833 | /* We cannot handle sm_other since we neither remember the |
| 2834 | stored location nor the value at the point we execute them. */ |
| 2835 | for (unsigned i = 0; i < seq.length (); ++i) |
| 2836 | { |
| 2837 | unsigned new_i; |
| 2838 | if (seq[i].second == sm_other |
| 2839 | && seq[i].from != NULL_TREE) |
| 2840 | seq[i].from = NULL_TREE; |
| 2841 | else if ((seq[i].second == sm_ord |
| 2842 | || (seq[i].second == sm_other |
| 2843 | && seq[i].from != NULL_TREE)) |
| 2844 | && !sm_seq_push_down (seq, ptr: i, at: &new_i)) |
| 2845 | { |
| 2846 | bitmap_set_bit (refs_not_supported, seq[new_i].first); |
| 2847 | seq[new_i].second = sm_other; |
| 2848 | seq[new_i].from = NULL_TREE; |
| 2849 | } |
| 2850 | } |
| 2851 | bitmap_and_compl_into (mem_refs, refs_not_supported); |
| 2852 | if (bitmap_empty_p (map: mem_refs)) |
| 2853 | return; |
| 2854 | |
| 2855 | /* Prune seq. */ |
| 2856 | while (seq.last ().second == sm_other |
| 2857 | && seq.last ().from == NULL_TREE) |
| 2858 | seq.pop (); |
| 2859 | |
| 2860 | hash_map<im_mem_ref *, sm_aux *> aux_map; |
| 2861 | |
| 2862 | /* Execute SM but delay the store materialization for ordered |
| 2863 | sequences on exit. Remember a created flag var and make |
| 2864 | sure to re-use it. */ |
| 2865 | sm_aux *flag_var_aux = nullptr; |
| 2866 | EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi) |
| 2867 | { |
| 2868 | ref = memory_accesses.refs_list[i]; |
| 2869 | sm_aux *aux = execute_sm (loop, ref, aux_map, maybe_mt: true, |
| 2870 | use_other_flag_var: flag_var_aux != nullptr); |
| 2871 | if (aux->store_flag) |
| 2872 | flag_var_aux = aux; |
| 2873 | } |
| 2874 | |
| 2875 | /* Materialize ordered store sequences on exits. */ |
| 2876 | edge e; |
| 2877 | auto_bitmap clobbers_to_prune; |
| 2878 | FOR_EACH_VEC_ELT (exits, i, e) |
| 2879 | { |
| 2880 | edge append_cond_position = NULL; |
| 2881 | edge last_cond_fallthru = NULL; |
| 2882 | edge insert_e = e; |
| 2883 | /* Construct the single flag variable control flow and insert |
| 2884 | the ordered seq of stores in the then block. With |
| 2885 | -fstore-data-races we can do the stores unconditionally. */ |
| 2886 | if (flag_var_aux) |
| 2887 | insert_e |
| 2888 | = single_pred_edge |
| 2889 | (bb: execute_sm_if_changed (ex: e, NULL_TREE, NULL_TREE, |
| 2890 | flag: flag_var_aux->store_flag, |
| 2891 | preheader: loop_preheader_edge (loop), |
| 2892 | flag_bbs: &flag_var_aux->flag_bbs, |
| 2893 | append_cond_position, |
| 2894 | last_cond_fallthru)); |
| 2895 | execute_sm_exit (loop, ex: insert_e, seq, aux_map, kind: sm_ord, |
| 2896 | append_cond_position, last_cond_fallthru, |
| 2897 | clobbers_to_prune); |
| 2898 | gsi_commit_one_edge_insert (insert_e, NULL); |
| 2899 | } |
| 2900 | |
| 2901 | /* Remove clobbers inside the loop we re-materialized on exits. */ |
| 2902 | EXECUTE_IF_SET_IN_BITMAP (clobbers_to_prune, 0, i, bi) |
| 2903 | { |
| 2904 | gimple *stmt = memory_accesses.refs_list[i]->accesses_in_loop[0].stmt; |
| 2905 | gimple_stmt_iterator gsi = gsi_for_stmt (stmt); |
| 2906 | unlink_stmt_vdef (stmt); |
| 2907 | release_defs (stmt); |
| 2908 | gimple_set_vdef (g: stmt, NULL_TREE); |
| 2909 | gsi_remove (&gsi, true); |
| 2910 | } |
| 2911 | |
| 2912 | for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin (); |
| 2913 | iter != aux_map.end (); ++iter) |
| 2914 | delete (*iter).second; |
| 2915 | |
| 2916 | return; |
| 2917 | } |
| 2918 | |
| 2919 | /* To address PR57359 before actually applying store-motion check |
| 2920 | the candidates found for validity with regards to reordering |
| 2921 | relative to other stores which we until here disambiguated using |
| 2922 | TBAA which isn't valid. |
| 2923 | What matters is the order of the last stores to the mem_refs |
| 2924 | with respect to the other stores of the loop at the point of the |
| 2925 | loop exits. */ |
| 2926 | |
| 2927 | /* For each exit compute the store order, pruning from mem_refs |
| 2928 | on the fly. */ |
| 2929 | /* The complexity of this is at least |
| 2930 | O(number of exits * number of SM refs) but more approaching |
| 2931 | O(number of exits * number of SM refs * number of stores). */ |
| 2932 | /* ??? Somehow do this in a single sweep over the loop body. */ |
| 2933 | auto_vec<std::pair<edge, vec<seq_entry> > > sms; |
| 2934 | auto_bitmap refs_not_supported (&lim_bitmap_obstack); |
| 2935 | edge e; |
| 2936 | FOR_EACH_VEC_ELT (exits, i, e) |
| 2937 | { |
| 2938 | vec<seq_entry> seq; |
| 2939 | seq.create (nelems: 4); |
| 2940 | auto_bitmap refs_not_in_seq (&lim_bitmap_obstack); |
| 2941 | bitmap_and_compl (refs_not_in_seq, mem_refs, refs_not_supported); |
| 2942 | if (bitmap_empty_p (map: refs_not_in_seq)) |
| 2943 | { |
| 2944 | seq.release (); |
| 2945 | break; |
| 2946 | } |
| 2947 | auto_bitmap fully_visited; |
| 2948 | int res = sm_seq_valid_bb (loop, bb: e->src, NULL_TREE, |
| 2949 | seq, refs_not_in_seq, |
| 2950 | refs_not_supported, forked: false, |
| 2951 | fully_visited); |
| 2952 | if (res != 1) |
| 2953 | { |
| 2954 | bitmap_copy (refs_not_supported, mem_refs); |
| 2955 | seq.release (); |
| 2956 | break; |
| 2957 | } |
| 2958 | sms.safe_push (obj: std::make_pair (x&: e, y&: seq)); |
| 2959 | } |
| 2960 | |
| 2961 | /* Prune pruned mem_refs from earlier processed exits. */ |
| 2962 | bool changed = !bitmap_empty_p (map: refs_not_supported); |
| 2963 | while (changed) |
| 2964 | { |
| 2965 | changed = false; |
| 2966 | std::pair<edge, vec<seq_entry> > *seq; |
| 2967 | FOR_EACH_VEC_ELT (sms, i, seq) |
| 2968 | { |
| 2969 | bool need_to_push = false; |
| 2970 | for (unsigned i = 0; i < seq->second.length (); ++i) |
| 2971 | { |
| 2972 | sm_kind kind = seq->second[i].second; |
| 2973 | if (kind == sm_other && seq->second[i].from == NULL_TREE) |
| 2974 | break; |
| 2975 | unsigned id = seq->second[i].first; |
| 2976 | unsigned new_idx; |
| 2977 | if (kind == sm_ord |
| 2978 | && bitmap_bit_p (refs_not_supported, id)) |
| 2979 | { |
| 2980 | seq->second[i].second = sm_other; |
| 2981 | gcc_assert (seq->second[i].from == NULL_TREE); |
| 2982 | need_to_push = true; |
| 2983 | } |
| 2984 | else if (need_to_push |
| 2985 | && !sm_seq_push_down (seq&: seq->second, ptr: i, at: &new_idx)) |
| 2986 | { |
| 2987 | /* We need to push down both sm_ord and sm_other |
| 2988 | but for the latter we need to disqualify all |
| 2989 | following refs. */ |
| 2990 | if (kind == sm_ord) |
| 2991 | { |
| 2992 | if (bitmap_set_bit (refs_not_supported, id)) |
| 2993 | changed = true; |
| 2994 | seq->second[new_idx].second = sm_other; |
| 2995 | } |
| 2996 | else |
| 2997 | { |
| 2998 | for (unsigned j = seq->second.length () - 1; |
| 2999 | j > new_idx; --j) |
| 3000 | if (seq->second[j].second == sm_ord |
| 3001 | && bitmap_set_bit (refs_not_supported, |
| 3002 | seq->second[j].first)) |
| 3003 | changed = true; |
| 3004 | seq->second.truncate (size: new_idx); |
| 3005 | break; |
| 3006 | } |
| 3007 | } |
| 3008 | } |
| 3009 | } |
| 3010 | } |
| 3011 | std::pair<edge, vec<seq_entry> > *seq; |
| 3012 | FOR_EACH_VEC_ELT (sms, i, seq) |
| 3013 | { |
| 3014 | /* Prune sm_other from the end. */ |
| 3015 | while (!seq->second.is_empty () |
| 3016 | && seq->second.last ().second == sm_other) |
| 3017 | seq->second.pop (); |
| 3018 | /* Prune duplicates from the start. */ |
| 3019 | auto_bitmap seen (&lim_bitmap_obstack); |
| 3020 | unsigned j, k; |
| 3021 | for (j = k = 0; j < seq->second.length (); ++j) |
| 3022 | if (bitmap_set_bit (seen, seq->second[j].first)) |
| 3023 | { |
| 3024 | if (k != j) |
| 3025 | seq->second[k] = seq->second[j]; |
| 3026 | ++k; |
| 3027 | } |
| 3028 | seq->second.truncate (size: k); |
| 3029 | /* And verify. */ |
| 3030 | seq_entry *e; |
| 3031 | FOR_EACH_VEC_ELT (seq->second, j, e) |
| 3032 | gcc_assert (e->second == sm_ord |
| 3033 | || (e->second == sm_other && e->from != NULL_TREE)); |
| 3034 | } |
| 3035 | |
| 3036 | /* Verify dependence for refs we cannot handle with the order preserving |
| 3037 | code (refs_not_supported) or prune them from mem_refs. */ |
| 3038 | auto_vec<seq_entry> unord_refs; |
| 3039 | EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi) |
| 3040 | { |
| 3041 | ref = memory_accesses.refs_list[i]; |
| 3042 | if (!ref_indep_loop_p (loop, ref, sm_waw)) |
| 3043 | bitmap_clear_bit (mem_refs, i); |
| 3044 | /* We've now verified store order for ref with respect to all other |
| 3045 | stores in the loop does not matter. */ |
| 3046 | else |
| 3047 | unord_refs.safe_push (obj: seq_entry (i, sm_unord)); |
| 3048 | } |
| 3049 | |
| 3050 | hash_map<im_mem_ref *, sm_aux *> aux_map; |
| 3051 | |
| 3052 | /* Execute SM but delay the store materialization for ordered |
| 3053 | sequences on exit. */ |
| 3054 | EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi) |
| 3055 | { |
| 3056 | ref = memory_accesses.refs_list[i]; |
| 3057 | execute_sm (loop, ref, aux_map, maybe_mt: bitmap_bit_p (refs_not_supported, i), |
| 3058 | use_other_flag_var: false); |
| 3059 | } |
| 3060 | |
| 3061 | /* Materialize ordered store sequences on exits. */ |
| 3062 | auto_bitmap clobbers_to_prune; |
| 3063 | FOR_EACH_VEC_ELT (exits, i, e) |
| 3064 | { |
| 3065 | edge append_cond_position = NULL; |
| 3066 | edge last_cond_fallthru = NULL; |
| 3067 | if (i < sms.length ()) |
| 3068 | { |
| 3069 | gcc_assert (sms[i].first == e); |
| 3070 | execute_sm_exit (loop, ex: e, seq&: sms[i].second, aux_map, kind: sm_ord, |
| 3071 | append_cond_position, last_cond_fallthru, |
| 3072 | clobbers_to_prune); |
| 3073 | sms[i].second.release (); |
| 3074 | } |
| 3075 | if (!unord_refs.is_empty ()) |
| 3076 | execute_sm_exit (loop, ex: e, seq&: unord_refs, aux_map, kind: sm_unord, |
| 3077 | append_cond_position, last_cond_fallthru, |
| 3078 | clobbers_to_prune); |
| 3079 | /* Commit edge inserts here to preserve the order of stores |
| 3080 | when an exit exits multiple loops. */ |
| 3081 | gsi_commit_one_edge_insert (e, NULL); |
| 3082 | } |
| 3083 | |
| 3084 | /* Remove clobbers inside the loop we re-materialized on exits. */ |
| 3085 | EXECUTE_IF_SET_IN_BITMAP (clobbers_to_prune, 0, i, bi) |
| 3086 | { |
| 3087 | gimple *stmt = memory_accesses.refs_list[i]->accesses_in_loop[0].stmt; |
| 3088 | gimple_stmt_iterator gsi = gsi_for_stmt (stmt); |
| 3089 | unlink_stmt_vdef (stmt); |
| 3090 | release_defs (stmt); |
| 3091 | gimple_set_vdef (g: stmt, NULL_TREE); |
| 3092 | gsi_remove (&gsi, true); |
| 3093 | } |
| 3094 | |
| 3095 | for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin (); |
| 3096 | iter != aux_map.end (); ++iter) |
| 3097 | delete (*iter).second; |
| 3098 | } |
| 3099 | |
| 3100 | class ref_always_accessed |
| 3101 | { |
| 3102 | public: |
| 3103 | ref_always_accessed (class loop *loop_, bool stored_p_) |
| 3104 | : loop (loop_), stored_p (stored_p_) {} |
| 3105 | bool operator () (mem_ref_loc *loc); |
| 3106 | class loop *loop; |
| 3107 | bool stored_p; |
| 3108 | }; |
| 3109 | |
| 3110 | bool |
| 3111 | ref_always_accessed::operator () (mem_ref_loc *loc) |
| 3112 | { |
| 3113 | class loop *must_exec; |
| 3114 | |
| 3115 | struct lim_aux_data *lim_data = get_lim_data (stmt: loc->stmt); |
| 3116 | if (!lim_data) |
| 3117 | return false; |
| 3118 | |
| 3119 | /* If we require an always executed store make sure the statement |
| 3120 | is a store. */ |
| 3121 | if (stored_p) |
| 3122 | { |
| 3123 | tree lhs = gimple_get_lhs (loc->stmt); |
| 3124 | if (!lhs |
| 3125 | || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs))) |
| 3126 | return false; |
| 3127 | } |
| 3128 | |
| 3129 | must_exec = lim_data->always_executed_in; |
| 3130 | if (!must_exec) |
| 3131 | return false; |
| 3132 | |
| 3133 | if (must_exec == loop |
| 3134 | || flow_loop_nested_p (must_exec, loop)) |
| 3135 | return true; |
| 3136 | |
| 3137 | return false; |
| 3138 | } |
| 3139 | |
| 3140 | /* Returns true if REF is always accessed in LOOP. If STORED_P is true |
| 3141 | make sure REF is always stored to in LOOP. */ |
| 3142 | |
| 3143 | static bool |
| 3144 | ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p) |
| 3145 | { |
| 3146 | return for_all_locs_in_loop (loop, ref, |
| 3147 | fn: ref_always_accessed (loop, stored_p)); |
| 3148 | } |
| 3149 | |
| 3150 | /* Returns true if REF1 and REF2 are independent. */ |
| 3151 | |
| 3152 | static bool |
| 3153 | refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p) |
| 3154 | { |
| 3155 | if (ref1 == ref2) |
| 3156 | return true; |
| 3157 | |
| 3158 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3159 | fprintf (stream: dump_file, format: "Querying dependency of refs %u and %u: " , |
| 3160 | ref1->id, ref2->id); |
| 3161 | |
| 3162 | if (mem_refs_may_alias_p (mem1: ref1, mem2: ref2, ttae_cache: &memory_accesses.ttae_cache, tbaa_p)) |
| 3163 | { |
| 3164 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3165 | fprintf (stream: dump_file, format: "dependent.\n" ); |
| 3166 | return false; |
| 3167 | } |
| 3168 | else |
| 3169 | { |
| 3170 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3171 | fprintf (stream: dump_file, format: "independent.\n" ); |
| 3172 | return true; |
| 3173 | } |
| 3174 | } |
| 3175 | |
| 3176 | /* Returns true if REF is independent on all other accessess in LOOP. |
| 3177 | KIND specifies the kind of dependence to consider. |
| 3178 | lim_raw assumes REF is not stored in LOOP and disambiguates RAW |
| 3179 | dependences so if true REF can be hoisted out of LOOP |
| 3180 | sm_war disambiguates a store REF against all other loads to see |
| 3181 | whether the store can be sunk across loads out of LOOP |
| 3182 | sm_waw disambiguates a store REF against all other stores to see |
| 3183 | whether the store can be sunk across stores out of LOOP. */ |
| 3184 | |
| 3185 | static bool |
| 3186 | ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind) |
| 3187 | { |
| 3188 | bool indep_p = true; |
| 3189 | bitmap refs_to_check; |
| 3190 | |
| 3191 | if (kind == sm_war) |
| 3192 | refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num]; |
| 3193 | else |
| 3194 | refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num]; |
| 3195 | |
| 3196 | if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID) |
| 3197 | || ref->mem.ref == error_mark_node) |
| 3198 | indep_p = false; |
| 3199 | else |
| 3200 | { |
| 3201 | /* tri-state, { unknown, independent, dependent } */ |
| 3202 | dep_state state = query_loop_dependence (loop, ref, kind); |
| 3203 | if (state != dep_unknown) |
| 3204 | return state == dep_independent ? true : false; |
| 3205 | |
| 3206 | class loop *inner = loop->inner; |
| 3207 | while (inner) |
| 3208 | { |
| 3209 | if (!ref_indep_loop_p (loop: inner, ref, kind)) |
| 3210 | { |
| 3211 | indep_p = false; |
| 3212 | break; |
| 3213 | } |
| 3214 | inner = inner->next; |
| 3215 | } |
| 3216 | |
| 3217 | if (indep_p) |
| 3218 | { |
| 3219 | unsigned i; |
| 3220 | bitmap_iterator bi; |
| 3221 | EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi) |
| 3222 | { |
| 3223 | im_mem_ref *aref = memory_accesses.refs_list[i]; |
| 3224 | if (aref->mem.ref == error_mark_node) |
| 3225 | { |
| 3226 | gimple *stmt = aref->accesses_in_loop[0].stmt; |
| 3227 | if ((kind == sm_war |
| 3228 | && ref_maybe_used_by_stmt_p (stmt, &ref->mem, |
| 3229 | kind != sm_waw)) |
| 3230 | || stmt_may_clobber_ref_p_1 (stmt, &ref->mem, |
| 3231 | kind != sm_waw)) |
| 3232 | { |
| 3233 | indep_p = false; |
| 3234 | break; |
| 3235 | } |
| 3236 | } |
| 3237 | else if (!refs_independent_p (ref1: ref, ref2: aref, tbaa_p: kind != sm_waw)) |
| 3238 | { |
| 3239 | indep_p = false; |
| 3240 | break; |
| 3241 | } |
| 3242 | } |
| 3243 | } |
| 3244 | } |
| 3245 | |
| 3246 | if (dump_file && (dump_flags & TDF_DETAILS)) |
| 3247 | fprintf (stream: dump_file, format: "Querying %s dependencies of ref %u in loop %d: %s\n" , |
| 3248 | kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW" ), |
| 3249 | ref->id, loop->num, indep_p ? "independent" : "dependent" ); |
| 3250 | |
| 3251 | /* Record the computed result in the cache. */ |
| 3252 | record_loop_dependence (loop, ref, kind, |
| 3253 | state: indep_p ? dep_independent : dep_dependent); |
| 3254 | |
| 3255 | return indep_p; |
| 3256 | } |
| 3257 | |
| 3258 | class ref_in_loop_hot_body |
| 3259 | { |
| 3260 | public: |
| 3261 | ref_in_loop_hot_body (class loop *loop_) : l (loop_) {} |
| 3262 | bool operator () (mem_ref_loc *loc); |
| 3263 | class loop *l; |
| 3264 | }; |
| 3265 | |
| 3266 | /* Check the coldest loop between loop L and innermost loop. If there is one |
| 3267 | cold loop between L and INNER_LOOP, store motion can be performed, otherwise |
| 3268 | no cold loop means no store motion. get_coldest_out_loop also handles cases |
| 3269 | when l is inner_loop. */ |
| 3270 | bool |
| 3271 | ref_in_loop_hot_body::operator () (mem_ref_loc *loc) |
| 3272 | { |
| 3273 | basic_block curr_bb = gimple_bb (g: loc->stmt); |
| 3274 | class loop *inner_loop = curr_bb->loop_father; |
| 3275 | return get_coldest_out_loop (outermost_loop: l, loop: inner_loop, curr_bb); |
| 3276 | } |
| 3277 | |
| 3278 | |
| 3279 | /* Returns true if we can perform store motion of REF from LOOP. */ |
| 3280 | |
| 3281 | static bool |
| 3282 | can_sm_ref_p (class loop *loop, im_mem_ref *ref) |
| 3283 | { |
| 3284 | tree base; |
| 3285 | |
| 3286 | /* Can't hoist unanalyzable refs. */ |
| 3287 | if (!MEM_ANALYZABLE (ref)) |
| 3288 | return false; |
| 3289 | |
| 3290 | /* Can't hoist/sink aggregate copies. */ |
| 3291 | if (ref->mem.ref == error_mark_node) |
| 3292 | return false; |
| 3293 | |
| 3294 | /* It should be movable. */ |
| 3295 | if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref)) |
| 3296 | || TREE_THIS_VOLATILE (ref->mem.ref) |
| 3297 | || !for_each_index (&ref->mem.ref, may_move_till, loop)) |
| 3298 | return false; |
| 3299 | |
| 3300 | /* If it can throw fail, we do not properly update EH info. */ |
| 3301 | if (tree_could_throw_p (ref->mem.ref)) |
| 3302 | return false; |
| 3303 | |
| 3304 | /* If it can trap, it must be always executed in LOOP. |
| 3305 | Readonly memory locations may trap when storing to them, but |
| 3306 | tree_could_trap_p is a predicate for rvalues, so check that |
| 3307 | explicitly. */ |
| 3308 | base = get_base_address (t: ref->mem.ref); |
| 3309 | if ((tree_could_trap_p (ref->mem.ref) |
| 3310 | || (DECL_P (base) && TREE_READONLY (base)) |
| 3311 | || TREE_CODE (base) == STRING_CST) |
| 3312 | /* ??? We can at least use false here, allowing loads? We |
| 3313 | are forcing conditional stores if the ref is not always |
| 3314 | stored to later anyway. So this would only guard |
| 3315 | the load we need to emit. Thus when the ref is not |
| 3316 | loaded we can elide this completely? */ |
| 3317 | && !ref_always_accessed_p (loop, ref, stored_p: true)) |
| 3318 | return false; |
| 3319 | |
| 3320 | /* Verify all loads of ref can be hoisted. */ |
| 3321 | if (ref->loaded |
| 3322 | && bitmap_bit_p (ref->loaded, loop->num) |
| 3323 | && !ref_indep_loop_p (loop, ref, kind: lim_raw)) |
| 3324 | return false; |
| 3325 | |
| 3326 | /* Verify the candidate can be disambiguated against all loads, |
| 3327 | that is, we can elide all in-loop stores. Disambiguation |
| 3328 | against stores is done later when we cannot guarantee preserving |
| 3329 | the order of stores. */ |
| 3330 | if (!ref_indep_loop_p (loop, ref, kind: sm_war)) |
| 3331 | return false; |
| 3332 | |
| 3333 | /* Verify whether the candidate is hot for LOOP. Only do store motion if the |
| 3334 | candidate's profile count is hot. Statement in cold BB shouldn't be moved |
| 3335 | out of it's loop_father. */ |
| 3336 | if (!for_all_locs_in_loop (loop, ref, fn: ref_in_loop_hot_body (loop))) |
| 3337 | return false; |
| 3338 | |
| 3339 | return true; |
| 3340 | } |
| 3341 | |
| 3342 | /* Marks the references in LOOP for that store motion should be performed |
| 3343 | in REFS_TO_SM. SM_EXECUTED is the set of references for that store |
| 3344 | motion was performed in one of the outer loops. */ |
| 3345 | |
| 3346 | static void |
| 3347 | find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm) |
| 3348 | { |
| 3349 | bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num]; |
| 3350 | unsigned i; |
| 3351 | bitmap_iterator bi; |
| 3352 | im_mem_ref *ref; |
| 3353 | |
| 3354 | EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi) |
| 3355 | { |
| 3356 | ref = memory_accesses.refs_list[i]; |
| 3357 | if (can_sm_ref_p (loop, ref) && dbg_cnt (index: lim)) |
| 3358 | bitmap_set_bit (refs_to_sm, i); |
| 3359 | } |
| 3360 | } |
| 3361 | |
| 3362 | /* Checks whether LOOP (with exits stored in EXITS array) is suitable |
| 3363 | for a store motion optimization (i.e. whether we can insert statement |
| 3364 | on its exits). */ |
| 3365 | |
| 3366 | static bool |
| 3367 | loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED, |
| 3368 | const vec<edge> &exits) |
| 3369 | { |
| 3370 | unsigned i; |
| 3371 | edge ex; |
| 3372 | |
| 3373 | FOR_EACH_VEC_ELT (exits, i, ex) |
| 3374 | if (ex->flags & (EDGE_ABNORMAL | EDGE_EH)) |
| 3375 | return false; |
| 3376 | |
| 3377 | return true; |
| 3378 | } |
| 3379 | |
| 3380 | /* Try to perform store motion for all memory references modified inside |
| 3381 | LOOP. SM_EXECUTED is the bitmap of the memory references for that |
| 3382 | store motion was executed in one of the outer loops. */ |
| 3383 | |
| 3384 | static void |
| 3385 | store_motion_loop (class loop *loop, bitmap sm_executed) |
| 3386 | { |
| 3387 | auto_vec<edge> exits = get_loop_exit_edges (loop); |
| 3388 | class loop *subloop; |
| 3389 | bitmap sm_in_loop = BITMAP_ALLOC (obstack: &lim_bitmap_obstack); |
| 3390 | |
| 3391 | if (loop_suitable_for_sm (loop, exits)) |
| 3392 | { |
| 3393 | find_refs_for_sm (loop, sm_executed, refs_to_sm: sm_in_loop); |
| 3394 | if (!bitmap_empty_p (map: sm_in_loop)) |
| 3395 | hoist_memory_references (loop, mem_refs: sm_in_loop, exits); |
| 3396 | } |
| 3397 | |
| 3398 | bitmap_ior_into (sm_executed, sm_in_loop); |
| 3399 | for (subloop = loop->inner; subloop != NULL; subloop = subloop->next) |
| 3400 | store_motion_loop (loop: subloop, sm_executed); |
| 3401 | bitmap_and_compl_into (sm_executed, sm_in_loop); |
| 3402 | BITMAP_FREE (sm_in_loop); |
| 3403 | } |
| 3404 | |
| 3405 | /* Try to perform store motion for all memory references modified inside |
| 3406 | loops. */ |
| 3407 | |
| 3408 | static void |
| 3409 | do_store_motion (void) |
| 3410 | { |
| 3411 | class loop *loop; |
| 3412 | bitmap sm_executed = BITMAP_ALLOC (obstack: &lim_bitmap_obstack); |
| 3413 | |
| 3414 | for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next) |
| 3415 | store_motion_loop (loop, sm_executed); |
| 3416 | |
| 3417 | BITMAP_FREE (sm_executed); |
| 3418 | } |
| 3419 | |
| 3420 | /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e. |
| 3421 | for each such basic block bb records the outermost loop for that execution |
| 3422 | of its header implies execution of bb. CONTAINS_CALL is the bitmap of |
| 3423 | blocks that contain a nonpure call. */ |
| 3424 | |
| 3425 | static void |
| 3426 | fill_always_executed_in_1 (class loop *loop, sbitmap contains_call) |
| 3427 | { |
| 3428 | basic_block bb = NULL, last = NULL; |
| 3429 | edge e; |
| 3430 | class loop *inn_loop = loop; |
| 3431 | |
| 3432 | if (ALWAYS_EXECUTED_IN (loop->header) == NULL) |
| 3433 | { |
| 3434 | auto_vec<basic_block, 64> worklist; |
| 3435 | worklist.reserve_exact (nelems: loop->num_nodes); |
| 3436 | worklist.quick_push (obj: loop->header); |
| 3437 | do |
| 3438 | { |
| 3439 | edge_iterator ei; |
| 3440 | bb = worklist.pop (); |
| 3441 | |
| 3442 | if (!flow_bb_inside_loop_p (inn_loop, bb)) |
| 3443 | { |
| 3444 | /* When we are leaving a possibly infinite inner loop |
| 3445 | we have to stop processing. */ |
| 3446 | if (!finite_loop_p (inn_loop)) |
| 3447 | break; |
| 3448 | /* If the loop was finite we can continue with processing |
| 3449 | the loop we exited to. */ |
| 3450 | inn_loop = bb->loop_father; |
| 3451 | } |
| 3452 | |
| 3453 | if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) |
| 3454 | last = bb; |
| 3455 | |
| 3456 | if (bitmap_bit_p (map: contains_call, bitno: bb->index)) |
| 3457 | break; |
| 3458 | |
| 3459 | /* If LOOP exits from this BB stop processing. */ |
| 3460 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 3461 | if (!flow_bb_inside_loop_p (loop, e->dest)) |
| 3462 | break; |
| 3463 | if (e) |
| 3464 | break; |
| 3465 | |
| 3466 | /* A loop might be infinite (TODO use simple loop analysis |
| 3467 | to disprove this if possible). */ |
| 3468 | if (bb->flags & BB_IRREDUCIBLE_LOOP) |
| 3469 | break; |
| 3470 | |
| 3471 | if (bb->loop_father->header == bb) |
| 3472 | /* Record that we enter into a subloop since it might not |
| 3473 | be finite. */ |
| 3474 | /* ??? Entering into a not always executed subloop makes |
| 3475 | fill_always_executed_in quadratic in loop depth since |
| 3476 | we walk those loops N times. This is not a problem |
| 3477 | in practice though, see PR102253 for a worst-case testcase. */ |
| 3478 | inn_loop = bb->loop_father; |
| 3479 | |
| 3480 | /* Walk the body of LOOP sorted by dominance relation. Additionally, |
| 3481 | if a basic block S dominates the latch, then only blocks dominated |
| 3482 | by S are after it. |
| 3483 | This is get_loop_body_in_dom_order using a worklist algorithm and |
| 3484 | stopping once we are no longer interested in visiting further |
| 3485 | blocks. */ |
| 3486 | unsigned old_len = worklist.length (); |
| 3487 | unsigned postpone = 0; |
| 3488 | for (basic_block son = first_dom_son (CDI_DOMINATORS, bb); |
| 3489 | son; |
| 3490 | son = next_dom_son (CDI_DOMINATORS, son)) |
| 3491 | { |
| 3492 | if (!flow_bb_inside_loop_p (loop, son)) |
| 3493 | continue; |
| 3494 | if (dominated_by_p (CDI_DOMINATORS, loop->latch, son)) |
| 3495 | postpone = worklist.length (); |
| 3496 | worklist.quick_push (obj: son); |
| 3497 | } |
| 3498 | if (postpone) |
| 3499 | /* Postponing the block that dominates the latch means |
| 3500 | processing it last and thus putting it earliest in the |
| 3501 | worklist. */ |
| 3502 | std::swap (a&: worklist[old_len], b&: worklist[postpone]); |
| 3503 | } |
| 3504 | while (!worklist.is_empty ()); |
| 3505 | |
| 3506 | while (1) |
| 3507 | { |
| 3508 | if (dump_enabled_p ()) |
| 3509 | dump_printf (MSG_NOTE, "BB %d is always executed in loop %d\n" , |
| 3510 | last->index, loop->num); |
| 3511 | SET_ALWAYS_EXECUTED_IN (last, loop); |
| 3512 | if (last == loop->header) |
| 3513 | break; |
| 3514 | last = get_immediate_dominator (CDI_DOMINATORS, last); |
| 3515 | } |
| 3516 | } |
| 3517 | |
| 3518 | for (loop = loop->inner; loop; loop = loop->next) |
| 3519 | fill_always_executed_in_1 (loop, contains_call); |
| 3520 | } |
| 3521 | |
| 3522 | /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e. |
| 3523 | for each such basic block bb records the outermost loop for that execution |
| 3524 | of its header implies execution of bb. */ |
| 3525 | |
| 3526 | static void |
| 3527 | fill_always_executed_in (void) |
| 3528 | { |
| 3529 | basic_block bb; |
| 3530 | class loop *loop; |
| 3531 | |
| 3532 | auto_sbitmap contains_call (last_basic_block_for_fn (cfun)); |
| 3533 | bitmap_clear (contains_call); |
| 3534 | FOR_EACH_BB_FN (bb, cfun) |
| 3535 | { |
| 3536 | gimple_stmt_iterator gsi; |
| 3537 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 3538 | { |
| 3539 | if (nonpure_call_p (stmt: gsi_stmt (i: gsi))) |
| 3540 | break; |
| 3541 | } |
| 3542 | |
| 3543 | if (!gsi_end_p (i: gsi)) |
| 3544 | bitmap_set_bit (map: contains_call, bitno: bb->index); |
| 3545 | } |
| 3546 | |
| 3547 | for (loop = current_loops->tree_root->inner; loop; loop = loop->next) |
| 3548 | fill_always_executed_in_1 (loop, contains_call); |
| 3549 | } |
| 3550 | |
| 3551 | /* Find the coldest loop preheader for LOOP, also find the nearest hotter loop |
| 3552 | to LOOP. Then recursively iterate each inner loop. */ |
| 3553 | |
| 3554 | void |
| 3555 | fill_coldest_and_hotter_out_loop (class loop *coldest_loop, |
| 3556 | class loop *hotter_loop, class loop *loop) |
| 3557 | { |
| 3558 | if (bb_colder_than_loop_preheader (bb: loop_preheader_edge (loop)->src, |
| 3559 | loop: coldest_loop)) |
| 3560 | coldest_loop = loop; |
| 3561 | |
| 3562 | coldest_outermost_loop[loop->num] = coldest_loop; |
| 3563 | |
| 3564 | hotter_than_inner_loop[loop->num] = NULL; |
| 3565 | class loop *outer_loop = loop_outer (loop); |
| 3566 | if (hotter_loop |
| 3567 | && bb_colder_than_loop_preheader (bb: loop_preheader_edge (loop)->src, |
| 3568 | loop: hotter_loop)) |
| 3569 | hotter_than_inner_loop[loop->num] = hotter_loop; |
| 3570 | |
| 3571 | if (outer_loop && outer_loop != current_loops->tree_root |
| 3572 | && bb_colder_than_loop_preheader (bb: loop_preheader_edge (loop)->src, |
| 3573 | loop: outer_loop)) |
| 3574 | hotter_than_inner_loop[loop->num] = outer_loop; |
| 3575 | |
| 3576 | if (dump_enabled_p ()) |
| 3577 | { |
| 3578 | dump_printf (MSG_NOTE, "loop %d's coldest_outermost_loop is %d, " , |
| 3579 | loop->num, coldest_loop->num); |
| 3580 | if (hotter_than_inner_loop[loop->num]) |
| 3581 | dump_printf (MSG_NOTE, "hotter_than_inner_loop is %d\n" , |
| 3582 | hotter_than_inner_loop[loop->num]->num); |
| 3583 | else |
| 3584 | dump_printf (MSG_NOTE, "hotter_than_inner_loop is NULL\n" ); |
| 3585 | } |
| 3586 | |
| 3587 | class loop *inner_loop; |
| 3588 | for (inner_loop = loop->inner; inner_loop; inner_loop = inner_loop->next) |
| 3589 | fill_coldest_and_hotter_out_loop (coldest_loop, |
| 3590 | hotter_loop: hotter_than_inner_loop[loop->num], |
| 3591 | loop: inner_loop); |
| 3592 | } |
| 3593 | |
| 3594 | /* Compute the global information needed by the loop invariant motion pass. */ |
| 3595 | |
| 3596 | static void |
| 3597 | tree_ssa_lim_initialize (bool store_motion) |
| 3598 | { |
| 3599 | unsigned i; |
| 3600 | |
| 3601 | bitmap_obstack_initialize (&lim_bitmap_obstack); |
| 3602 | gcc_obstack_init (&mem_ref_obstack); |
| 3603 | lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>; |
| 3604 | |
| 3605 | if (flag_tm) |
| 3606 | compute_transaction_bits (); |
| 3607 | |
| 3608 | memory_accesses.refs = new hash_table<mem_ref_hasher> (100); |
| 3609 | memory_accesses.refs_list.create (nelems: 100); |
| 3610 | /* Allocate a special, unanalyzable mem-ref with ID zero. */ |
| 3611 | memory_accesses.refs_list.quick_push |
| 3612 | (obj: mem_ref_alloc (NULL, hash: 0, UNANALYZABLE_MEM_ID)); |
| 3613 | |
| 3614 | memory_accesses.refs_loaded_in_loop.create (nelems: number_of_loops (cfun)); |
| 3615 | memory_accesses.refs_loaded_in_loop.quick_grow_cleared (len: number_of_loops (cfun)); |
| 3616 | memory_accesses.refs_stored_in_loop.create (nelems: number_of_loops (cfun)); |
| 3617 | memory_accesses.refs_stored_in_loop.quick_grow_cleared (len: number_of_loops (cfun)); |
| 3618 | if (store_motion) |
| 3619 | { |
| 3620 | memory_accesses.all_refs_stored_in_loop.create (nelems: number_of_loops (cfun)); |
| 3621 | memory_accesses.all_refs_stored_in_loop.quick_grow_cleared |
| 3622 | (len: number_of_loops (cfun)); |
| 3623 | } |
| 3624 | |
| 3625 | for (i = 0; i < number_of_loops (cfun); i++) |
| 3626 | { |
| 3627 | bitmap_initialize (head: &memory_accesses.refs_loaded_in_loop[i], |
| 3628 | obstack: &lim_bitmap_obstack); |
| 3629 | bitmap_initialize (head: &memory_accesses.refs_stored_in_loop[i], |
| 3630 | obstack: &lim_bitmap_obstack); |
| 3631 | if (store_motion) |
| 3632 | bitmap_initialize (head: &memory_accesses.all_refs_stored_in_loop[i], |
| 3633 | obstack: &lim_bitmap_obstack); |
| 3634 | } |
| 3635 | |
| 3636 | memory_accesses.ttae_cache = NULL; |
| 3637 | |
| 3638 | /* Initialize bb_loop_postorder with a mapping from loop->num to |
| 3639 | its postorder index. */ |
| 3640 | i = 0; |
| 3641 | bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun)); |
| 3642 | for (auto loop : loops_list (cfun, LI_FROM_INNERMOST)) |
| 3643 | bb_loop_postorder[loop->num] = i++; |
| 3644 | } |
| 3645 | |
| 3646 | /* Cleans up after the invariant motion pass. */ |
| 3647 | |
| 3648 | static void |
| 3649 | tree_ssa_lim_finalize (void) |
| 3650 | { |
| 3651 | basic_block bb; |
| 3652 | unsigned i; |
| 3653 | im_mem_ref *ref; |
| 3654 | |
| 3655 | FOR_EACH_BB_FN (bb, cfun) |
| 3656 | SET_ALWAYS_EXECUTED_IN (bb, NULL); |
| 3657 | |
| 3658 | bitmap_obstack_release (&lim_bitmap_obstack); |
| 3659 | delete lim_aux_data_map; |
| 3660 | |
| 3661 | delete memory_accesses.refs; |
| 3662 | memory_accesses.refs = NULL; |
| 3663 | |
| 3664 | FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref) |
| 3665 | memref_free (mem: ref); |
| 3666 | memory_accesses.refs_list.release (); |
| 3667 | obstack_free (&mem_ref_obstack, NULL); |
| 3668 | |
| 3669 | memory_accesses.refs_loaded_in_loop.release (); |
| 3670 | memory_accesses.refs_stored_in_loop.release (); |
| 3671 | memory_accesses.all_refs_stored_in_loop.release (); |
| 3672 | |
| 3673 | if (memory_accesses.ttae_cache) |
| 3674 | free_affine_expand_cache (&memory_accesses.ttae_cache); |
| 3675 | |
| 3676 | free (ptr: bb_loop_postorder); |
| 3677 | |
| 3678 | coldest_outermost_loop.release (); |
| 3679 | hotter_than_inner_loop.release (); |
| 3680 | } |
| 3681 | |
| 3682 | /* Moves invariants from loops. Only "expensive" invariants are moved out -- |
| 3683 | i.e. those that are likely to be win regardless of the register pressure. |
| 3684 | Only perform store motion if STORE_MOTION is true. */ |
| 3685 | |
| 3686 | unsigned int |
| 3687 | loop_invariant_motion_in_fun (function *fun, bool store_motion) |
| 3688 | { |
| 3689 | unsigned int todo = 0; |
| 3690 | |
| 3691 | tree_ssa_lim_initialize (store_motion); |
| 3692 | |
| 3693 | mark_ssa_maybe_undefs (); |
| 3694 | |
| 3695 | /* Gathers information about memory accesses in the loops. */ |
| 3696 | analyze_memory_references (store_motion); |
| 3697 | |
| 3698 | /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */ |
| 3699 | fill_always_executed_in (); |
| 3700 | |
| 3701 | /* Pre-compute coldest outermost loop and nearest hotter loop of each loop. |
| 3702 | */ |
| 3703 | class loop *loop; |
| 3704 | coldest_outermost_loop.create (nelems: number_of_loops (cfun)); |
| 3705 | coldest_outermost_loop.safe_grow_cleared (len: number_of_loops (cfun)); |
| 3706 | hotter_than_inner_loop.create (nelems: number_of_loops (cfun)); |
| 3707 | hotter_than_inner_loop.safe_grow_cleared (len: number_of_loops (cfun)); |
| 3708 | for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next) |
| 3709 | fill_coldest_and_hotter_out_loop (coldest_loop: loop, NULL, loop); |
| 3710 | |
| 3711 | int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun)); |
| 3712 | int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false); |
| 3713 | |
| 3714 | /* For each statement determine the outermost loop in that it is |
| 3715 | invariant and cost for computing the invariant. */ |
| 3716 | for (int i = 0; i < n; ++i) |
| 3717 | compute_invariantness (BASIC_BLOCK_FOR_FN (fun, rpo[i])); |
| 3718 | |
| 3719 | /* Execute store motion. Force the necessary invariants to be moved |
| 3720 | out of the loops as well. */ |
| 3721 | if (store_motion) |
| 3722 | do_store_motion (); |
| 3723 | |
| 3724 | free (ptr: rpo); |
| 3725 | rpo = XNEWVEC (int, last_basic_block_for_fn (fun)); |
| 3726 | n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false); |
| 3727 | |
| 3728 | /* Move the expressions that are expensive enough. */ |
| 3729 | for (int i = 0; i < n; ++i) |
| 3730 | todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (fun, rpo[i])); |
| 3731 | |
| 3732 | free (ptr: rpo); |
| 3733 | |
| 3734 | gsi_commit_edge_inserts (); |
| 3735 | if (need_ssa_update_p (fun)) |
| 3736 | rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); |
| 3737 | |
| 3738 | tree_ssa_lim_finalize (); |
| 3739 | |
| 3740 | return todo; |
| 3741 | } |
| 3742 | |
| 3743 | /* Loop invariant motion pass. */ |
| 3744 | |
| 3745 | namespace { |
| 3746 | |
| 3747 | const pass_data pass_data_lim = |
| 3748 | { |
| 3749 | .type: GIMPLE_PASS, /* type */ |
| 3750 | .name: "lim" , /* name */ |
| 3751 | .optinfo_flags: OPTGROUP_LOOP, /* optinfo_flags */ |
| 3752 | .tv_id: TV_LIM, /* tv_id */ |
| 3753 | PROP_cfg, /* properties_required */ |
| 3754 | .properties_provided: 0, /* properties_provided */ |
| 3755 | .properties_destroyed: 0, /* properties_destroyed */ |
| 3756 | .todo_flags_start: 0, /* todo_flags_start */ |
| 3757 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 3758 | }; |
| 3759 | |
| 3760 | class pass_lim : public gimple_opt_pass |
| 3761 | { |
| 3762 | public: |
| 3763 | pass_lim (gcc::context *ctxt) |
| 3764 | : gimple_opt_pass (pass_data_lim, ctxt) |
| 3765 | {} |
| 3766 | |
| 3767 | /* opt_pass methods: */ |
| 3768 | opt_pass * clone () final override { return new pass_lim (m_ctxt); } |
| 3769 | bool gate (function *) final override { return flag_tree_loop_im != 0; } |
| 3770 | unsigned int execute (function *) final override; |
| 3771 | |
| 3772 | }; // class pass_lim |
| 3773 | |
| 3774 | unsigned int |
| 3775 | pass_lim::execute (function *fun) |
| 3776 | { |
| 3777 | in_loop_pipeline = scev_initialized_p (); |
| 3778 | if (!in_loop_pipeline) |
| 3779 | loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS); |
| 3780 | |
| 3781 | if (number_of_loops (fn: fun) <= 1) |
| 3782 | return 0; |
| 3783 | unsigned int todo = loop_invariant_motion_in_fun (fun, flag_move_loop_stores); |
| 3784 | |
| 3785 | if (!in_loop_pipeline) |
| 3786 | loop_optimizer_finalize (); |
| 3787 | else |
| 3788 | scev_reset (); |
| 3789 | return todo; |
| 3790 | } |
| 3791 | |
| 3792 | } // anon namespace |
| 3793 | |
| 3794 | gimple_opt_pass * |
| 3795 | make_pass_lim (gcc::context *ctxt) |
| 3796 | { |
| 3797 | return new pass_lim (ctxt); |
| 3798 | } |
| 3799 | |
| 3800 | |
| 3801 | |