| 1 | /* Vectorizer |
| 2 | Copyright (C) 2003-2025 Free Software Foundation, Inc. |
| 3 | Contributed by Dorit Naishlos <dorit@il.ibm.com> |
| 4 | |
| 5 | This file is part of GCC. |
| 6 | |
| 7 | GCC is free software; you can redistribute it and/or modify it under |
| 8 | the terms of the GNU General Public License as published by the Free |
| 9 | Software Foundation; either version 3, or (at your option) any later |
| 10 | version. |
| 11 | |
| 12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 15 | for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with GCC; see the file COPYING3. If not see |
| 19 | <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | /* Loop and basic block vectorizer. |
| 22 | |
| 23 | This file contains drivers for the three vectorizers: |
| 24 | (1) loop vectorizer (inter-iteration parallelism), |
| 25 | (2) loop-aware SLP (intra-iteration parallelism) (invoked by the loop |
| 26 | vectorizer) |
| 27 | (3) BB vectorizer (out-of-loops), aka SLP |
| 28 | |
| 29 | The rest of the vectorizer's code is organized as follows: |
| 30 | - tree-vect-loop.cc - loop specific parts such as reductions, etc. These are |
| 31 | used by drivers (1) and (2). |
| 32 | - tree-vect-loop-manip.cc - vectorizer's loop control-flow utilities, used by |
| 33 | drivers (1) and (2). |
| 34 | - tree-vect-slp.cc - BB vectorization specific analysis and transformation, |
| 35 | used by drivers (2) and (3). |
| 36 | - tree-vect-stmts.cc - statements analysis and transformation (used by all). |
| 37 | - tree-vect-data-refs.cc - vectorizer specific data-refs analysis and |
| 38 | manipulations (used by all). |
| 39 | - tree-vect-patterns.cc - vectorizable code patterns detector (used by all) |
| 40 | |
| 41 | Here's a poor attempt at illustrating that: |
| 42 | |
| 43 | tree-vectorizer.cc: |
| 44 | loop_vect() loop_aware_slp() slp_vect() |
| 45 | | / \ / |
| 46 | | / \ / |
| 47 | tree-vect-loop.cc tree-vect-slp.cc |
| 48 | | \ \ / / | |
| 49 | | \ \/ / | |
| 50 | | \ /\ / | |
| 51 | | \ / \ / | |
| 52 | tree-vect-stmts.cc tree-vect-data-refs.cc |
| 53 | \ / |
| 54 | tree-vect-patterns.cc |
| 55 | */ |
| 56 | |
| 57 | #include "config.h" |
| 58 | #include "system.h" |
| 59 | #include "coretypes.h" |
| 60 | #include "backend.h" |
| 61 | #include "tree.h" |
| 62 | #include "gimple.h" |
| 63 | #include "predict.h" |
| 64 | #include "tree-pass.h" |
| 65 | #include "ssa.h" |
| 66 | #include "cgraph.h" |
| 67 | #include "fold-const.h" |
| 68 | #include "stor-layout.h" |
| 69 | #include "gimple-iterator.h" |
| 70 | #include "gimple-walk.h" |
| 71 | #include "tree-ssa-loop-manip.h" |
| 72 | #include "tree-ssa-loop-niter.h" |
| 73 | #include "tree-cfg.h" |
| 74 | #include "cfgloop.h" |
| 75 | #include "tree-vectorizer.h" |
| 76 | #include "tree-ssa-propagate.h" |
| 77 | #include "dbgcnt.h" |
| 78 | #include "tree-scalar-evolution.h" |
| 79 | #include "stringpool.h" |
| 80 | #include "attribs.h" |
| 81 | #include "gimple-pretty-print.h" |
| 82 | #include "opt-problem.h" |
| 83 | #include "internal-fn.h" |
| 84 | #include "tree-ssa-sccvn.h" |
| 85 | #include "tree-into-ssa.h" |
| 86 | |
| 87 | /* Loop or bb location, with hotness information. */ |
| 88 | dump_user_location_t vect_location; |
| 89 | |
| 90 | /* auto_purge_vect_location's dtor: reset the vect_location |
| 91 | global, to avoid stale location_t values that could reference |
| 92 | GC-ed blocks. */ |
| 93 | |
| 94 | auto_purge_vect_location::~auto_purge_vect_location () |
| 95 | { |
| 96 | vect_location = dump_user_location_t (); |
| 97 | } |
| 98 | |
| 99 | /* Dump a cost entry according to args to F. */ |
| 100 | |
| 101 | void |
| 102 | dump_stmt_cost (FILE *f, int count, enum vect_cost_for_stmt kind, |
| 103 | stmt_vec_info stmt_info, slp_tree node, tree, |
| 104 | int misalign, unsigned cost, |
| 105 | enum vect_cost_model_location where) |
| 106 | { |
| 107 | if (stmt_info) |
| 108 | { |
| 109 | print_gimple_expr (f, STMT_VINFO_STMT (stmt_info), 0, TDF_SLIM); |
| 110 | fprintf (stream: f, format: " " ); |
| 111 | } |
| 112 | else if (node) |
| 113 | fprintf (stream: f, format: "node %p " , (void *)node); |
| 114 | else |
| 115 | fprintf (stream: f, format: "<unknown> " ); |
| 116 | fprintf (stream: f, format: "%d times " , count); |
| 117 | const char *ks = "unknown" ; |
| 118 | switch (kind) |
| 119 | { |
| 120 | case scalar_stmt: |
| 121 | ks = "scalar_stmt" ; |
| 122 | break; |
| 123 | case scalar_load: |
| 124 | ks = "scalar_load" ; |
| 125 | break; |
| 126 | case scalar_store: |
| 127 | ks = "scalar_store" ; |
| 128 | break; |
| 129 | case vector_stmt: |
| 130 | ks = "vector_stmt" ; |
| 131 | break; |
| 132 | case vector_load: |
| 133 | ks = "vector_load" ; |
| 134 | break; |
| 135 | case vector_gather_load: |
| 136 | ks = "vector_gather_load" ; |
| 137 | break; |
| 138 | case unaligned_load: |
| 139 | ks = "unaligned_load" ; |
| 140 | break; |
| 141 | case unaligned_store: |
| 142 | ks = "unaligned_store" ; |
| 143 | break; |
| 144 | case vector_store: |
| 145 | ks = "vector_store" ; |
| 146 | break; |
| 147 | case vector_scatter_store: |
| 148 | ks = "vector_scatter_store" ; |
| 149 | break; |
| 150 | case vec_to_scalar: |
| 151 | ks = "vec_to_scalar" ; |
| 152 | break; |
| 153 | case scalar_to_vec: |
| 154 | ks = "scalar_to_vec" ; |
| 155 | break; |
| 156 | case cond_branch_not_taken: |
| 157 | ks = "cond_branch_not_taken" ; |
| 158 | break; |
| 159 | case cond_branch_taken: |
| 160 | ks = "cond_branch_taken" ; |
| 161 | break; |
| 162 | case vec_perm: |
| 163 | ks = "vec_perm" ; |
| 164 | break; |
| 165 | case vec_promote_demote: |
| 166 | ks = "vec_promote_demote" ; |
| 167 | break; |
| 168 | case vec_construct: |
| 169 | ks = "vec_construct" ; |
| 170 | break; |
| 171 | } |
| 172 | fprintf (stream: f, format: "%s " , ks); |
| 173 | if (kind == unaligned_load || kind == unaligned_store) |
| 174 | fprintf (stream: f, format: "(misalign %d) " , misalign); |
| 175 | fprintf (stream: f, format: "costs %u " , cost); |
| 176 | const char *ws = "unknown" ; |
| 177 | switch (where) |
| 178 | { |
| 179 | case vect_prologue: |
| 180 | ws = "prologue" ; |
| 181 | break; |
| 182 | case vect_body: |
| 183 | ws = "body" ; |
| 184 | break; |
| 185 | case vect_epilogue: |
| 186 | ws = "epilogue" ; |
| 187 | break; |
| 188 | } |
| 189 | fprintf (stream: f, format: "in %s\n" , ws); |
| 190 | } |
| 191 | |
| 192 | /* For mapping simduid to vectorization factor. */ |
| 193 | |
| 194 | class simduid_to_vf : public free_ptr_hash<simduid_to_vf> |
| 195 | { |
| 196 | public: |
| 197 | unsigned int simduid; |
| 198 | poly_uint64 vf; |
| 199 | |
| 200 | /* hash_table support. */ |
| 201 | static inline hashval_t hash (const simduid_to_vf *); |
| 202 | static inline int equal (const simduid_to_vf *, const simduid_to_vf *); |
| 203 | }; |
| 204 | |
| 205 | inline hashval_t |
| 206 | simduid_to_vf::hash (const simduid_to_vf *p) |
| 207 | { |
| 208 | return p->simduid; |
| 209 | } |
| 210 | |
| 211 | inline int |
| 212 | simduid_to_vf::equal (const simduid_to_vf *p1, const simduid_to_vf *p2) |
| 213 | { |
| 214 | return p1->simduid == p2->simduid; |
| 215 | } |
| 216 | |
| 217 | /* This hash maps the OMP simd array to the corresponding simduid used |
| 218 | to index into it. Like thus, |
| 219 | |
| 220 | _7 = GOMP_SIMD_LANE (simduid.0) |
| 221 | ... |
| 222 | ... |
| 223 | D.1737[_7] = stuff; |
| 224 | |
| 225 | |
| 226 | This hash maps from the OMP simd array (D.1737[]) to DECL_UID of |
| 227 | simduid.0. */ |
| 228 | |
| 229 | struct simd_array_to_simduid : free_ptr_hash<simd_array_to_simduid> |
| 230 | { |
| 231 | tree decl; |
| 232 | unsigned int simduid; |
| 233 | |
| 234 | /* hash_table support. */ |
| 235 | static inline hashval_t hash (const simd_array_to_simduid *); |
| 236 | static inline int equal (const simd_array_to_simduid *, |
| 237 | const simd_array_to_simduid *); |
| 238 | }; |
| 239 | |
| 240 | inline hashval_t |
| 241 | simd_array_to_simduid::hash (const simd_array_to_simduid *p) |
| 242 | { |
| 243 | return DECL_UID (p->decl); |
| 244 | } |
| 245 | |
| 246 | inline int |
| 247 | simd_array_to_simduid::equal (const simd_array_to_simduid *p1, |
| 248 | const simd_array_to_simduid *p2) |
| 249 | { |
| 250 | return p1->decl == p2->decl; |
| 251 | } |
| 252 | |
| 253 | /* Fold IFN_GOMP_SIMD_LANE, IFN_GOMP_SIMD_VF, IFN_GOMP_SIMD_LAST_LANE, |
| 254 | into their corresponding constants and remove |
| 255 | IFN_GOMP_SIMD_ORDERED_{START,END}. */ |
| 256 | |
| 257 | static void |
| 258 | adjust_simduid_builtins (hash_table<simduid_to_vf> *htab, function *fun) |
| 259 | { |
| 260 | basic_block bb; |
| 261 | |
| 262 | FOR_EACH_BB_FN (bb, fun) |
| 263 | { |
| 264 | gimple_stmt_iterator i; |
| 265 | |
| 266 | for (i = gsi_start_bb (bb); !gsi_end_p (i); ) |
| 267 | { |
| 268 | poly_uint64 vf = 1; |
| 269 | enum internal_fn ifn; |
| 270 | gimple *stmt = gsi_stmt (i); |
| 271 | tree t; |
| 272 | if (!is_gimple_call (gs: stmt) |
| 273 | || !gimple_call_internal_p (gs: stmt)) |
| 274 | { |
| 275 | gsi_next (i: &i); |
| 276 | continue; |
| 277 | } |
| 278 | ifn = gimple_call_internal_fn (gs: stmt); |
| 279 | switch (ifn) |
| 280 | { |
| 281 | case IFN_GOMP_SIMD_LANE: |
| 282 | case IFN_GOMP_SIMD_VF: |
| 283 | case IFN_GOMP_SIMD_LAST_LANE: |
| 284 | break; |
| 285 | case IFN_GOMP_SIMD_ORDERED_START: |
| 286 | case IFN_GOMP_SIMD_ORDERED_END: |
| 287 | if (integer_onep (gimple_call_arg (gs: stmt, index: 0))) |
| 288 | { |
| 289 | enum built_in_function bcode |
| 290 | = (ifn == IFN_GOMP_SIMD_ORDERED_START |
| 291 | ? BUILT_IN_GOMP_ORDERED_START |
| 292 | : BUILT_IN_GOMP_ORDERED_END); |
| 293 | gimple *g |
| 294 | = gimple_build_call (builtin_decl_explicit (fncode: bcode), 0); |
| 295 | gimple_move_vops (g, stmt); |
| 296 | gsi_replace (&i, g, true); |
| 297 | continue; |
| 298 | } |
| 299 | gsi_remove (&i, true); |
| 300 | unlink_stmt_vdef (stmt); |
| 301 | continue; |
| 302 | default: |
| 303 | gsi_next (i: &i); |
| 304 | continue; |
| 305 | } |
| 306 | tree arg = gimple_call_arg (gs: stmt, index: 0); |
| 307 | gcc_assert (arg != NULL_TREE); |
| 308 | gcc_assert (TREE_CODE (arg) == SSA_NAME); |
| 309 | simduid_to_vf *p = NULL, data; |
| 310 | data.simduid = DECL_UID (SSA_NAME_VAR (arg)); |
| 311 | /* Need to nullify loop safelen field since it's value is not |
| 312 | valid after transformation. */ |
| 313 | if (bb->loop_father && bb->loop_father->safelen > 0) |
| 314 | bb->loop_father->safelen = 0; |
| 315 | if (htab) |
| 316 | { |
| 317 | p = htab->find (value: &data); |
| 318 | if (p) |
| 319 | vf = p->vf; |
| 320 | } |
| 321 | switch (ifn) |
| 322 | { |
| 323 | case IFN_GOMP_SIMD_VF: |
| 324 | t = build_int_cst (unsigned_type_node, vf); |
| 325 | break; |
| 326 | case IFN_GOMP_SIMD_LANE: |
| 327 | t = build_int_cst (unsigned_type_node, 0); |
| 328 | break; |
| 329 | case IFN_GOMP_SIMD_LAST_LANE: |
| 330 | t = gimple_call_arg (gs: stmt, index: 1); |
| 331 | break; |
| 332 | default: |
| 333 | gcc_unreachable (); |
| 334 | } |
| 335 | tree lhs = gimple_call_lhs (gs: stmt); |
| 336 | if (lhs) |
| 337 | replace_uses_by (lhs, t); |
| 338 | release_defs (stmt); |
| 339 | gsi_remove (&i, true); |
| 340 | } |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | /* Helper structure for note_simd_array_uses. */ |
| 345 | |
| 346 | struct note_simd_array_uses_struct |
| 347 | { |
| 348 | hash_table<simd_array_to_simduid> **htab; |
| 349 | unsigned int simduid; |
| 350 | }; |
| 351 | |
| 352 | /* Callback for note_simd_array_uses, called through walk_gimple_op. */ |
| 353 | |
| 354 | static tree |
| 355 | note_simd_array_uses_cb (tree *tp, int *walk_subtrees, void *data) |
| 356 | { |
| 357 | struct walk_stmt_info *wi = (struct walk_stmt_info *) data; |
| 358 | struct note_simd_array_uses_struct *ns |
| 359 | = (struct note_simd_array_uses_struct *) wi->info; |
| 360 | |
| 361 | if (TYPE_P (*tp)) |
| 362 | *walk_subtrees = 0; |
| 363 | else if (VAR_P (*tp) |
| 364 | && lookup_attribute (attr_name: "omp simd array" , DECL_ATTRIBUTES (*tp)) |
| 365 | && DECL_CONTEXT (*tp) == current_function_decl) |
| 366 | { |
| 367 | simd_array_to_simduid data; |
| 368 | if (!*ns->htab) |
| 369 | *ns->htab = new hash_table<simd_array_to_simduid> (15); |
| 370 | data.decl = *tp; |
| 371 | data.simduid = ns->simduid; |
| 372 | simd_array_to_simduid **slot = (*ns->htab)->find_slot (value: &data, insert: INSERT); |
| 373 | if (*slot == NULL) |
| 374 | { |
| 375 | simd_array_to_simduid *p = XNEW (simd_array_to_simduid); |
| 376 | *p = data; |
| 377 | *slot = p; |
| 378 | } |
| 379 | else if ((*slot)->simduid != ns->simduid) |
| 380 | (*slot)->simduid = -1U; |
| 381 | *walk_subtrees = 0; |
| 382 | } |
| 383 | return NULL_TREE; |
| 384 | } |
| 385 | |
| 386 | /* Find "omp simd array" temporaries and map them to corresponding |
| 387 | simduid. */ |
| 388 | |
| 389 | static void |
| 390 | note_simd_array_uses (hash_table<simd_array_to_simduid> **htab, function *fun) |
| 391 | { |
| 392 | basic_block bb; |
| 393 | gimple_stmt_iterator gsi; |
| 394 | struct walk_stmt_info wi; |
| 395 | struct note_simd_array_uses_struct ns; |
| 396 | |
| 397 | memset (s: &wi, c: 0, n: sizeof (wi)); |
| 398 | wi.info = &ns; |
| 399 | ns.htab = htab; |
| 400 | |
| 401 | FOR_EACH_BB_FN (bb, fun) |
| 402 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 403 | { |
| 404 | gimple *stmt = gsi_stmt (i: gsi); |
| 405 | if (!is_gimple_call (gs: stmt) || !gimple_call_internal_p (gs: stmt)) |
| 406 | continue; |
| 407 | switch (gimple_call_internal_fn (gs: stmt)) |
| 408 | { |
| 409 | case IFN_GOMP_SIMD_LANE: |
| 410 | case IFN_GOMP_SIMD_VF: |
| 411 | case IFN_GOMP_SIMD_LAST_LANE: |
| 412 | break; |
| 413 | default: |
| 414 | continue; |
| 415 | } |
| 416 | tree lhs = gimple_call_lhs (gs: stmt); |
| 417 | if (lhs == NULL_TREE) |
| 418 | continue; |
| 419 | imm_use_iterator use_iter; |
| 420 | gimple *use_stmt; |
| 421 | ns.simduid = DECL_UID (SSA_NAME_VAR (gimple_call_arg (stmt, 0))); |
| 422 | FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, lhs) |
| 423 | if (!is_gimple_debug (gs: use_stmt)) |
| 424 | walk_gimple_op (use_stmt, note_simd_array_uses_cb, &wi); |
| 425 | } |
| 426 | } |
| 427 | |
| 428 | /* Shrink arrays with "omp simd array" attribute to the corresponding |
| 429 | vectorization factor. */ |
| 430 | |
| 431 | static void |
| 432 | shrink_simd_arrays |
| 433 | (hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab, |
| 434 | hash_table<simduid_to_vf> *simduid_to_vf_htab) |
| 435 | { |
| 436 | for (hash_table<simd_array_to_simduid>::iterator iter |
| 437 | = simd_array_to_simduid_htab->begin (); |
| 438 | iter != simd_array_to_simduid_htab->end (); ++iter) |
| 439 | if ((*iter)->simduid != -1U) |
| 440 | { |
| 441 | tree decl = (*iter)->decl; |
| 442 | poly_uint64 vf = 1; |
| 443 | if (simduid_to_vf_htab) |
| 444 | { |
| 445 | simduid_to_vf *p = NULL, data; |
| 446 | data.simduid = (*iter)->simduid; |
| 447 | p = simduid_to_vf_htab->find (value: &data); |
| 448 | if (p) |
| 449 | vf = p->vf; |
| 450 | } |
| 451 | tree atype |
| 452 | = build_array_type_nelts (TREE_TYPE (TREE_TYPE (decl)), vf); |
| 453 | TREE_TYPE (decl) = atype; |
| 454 | relayout_decl (decl); |
| 455 | } |
| 456 | |
| 457 | delete simd_array_to_simduid_htab; |
| 458 | } |
| 459 | |
| 460 | /* Initialize the vec_info with kind KIND_IN and target cost data |
| 461 | TARGET_COST_DATA_IN. */ |
| 462 | |
| 463 | vec_info::vec_info (vec_info::vec_kind kind_in, vec_info_shared *shared_) |
| 464 | : kind (kind_in), |
| 465 | shared (shared_), |
| 466 | stmt_vec_info_ro (false), |
| 467 | bbs (NULL), |
| 468 | nbbs (0), |
| 469 | inv_pattern_def_seq (NULL) |
| 470 | { |
| 471 | stmt_vec_infos.create (nelems: 50); |
| 472 | } |
| 473 | |
| 474 | vec_info::~vec_info () |
| 475 | { |
| 476 | for (slp_instance &instance : slp_instances) |
| 477 | vect_free_slp_instance (instance); |
| 478 | |
| 479 | free_stmt_vec_infos (); |
| 480 | } |
| 481 | |
| 482 | vec_info_shared::vec_info_shared () |
| 483 | : datarefs (vNULL), |
| 484 | datarefs_copy (vNULL), |
| 485 | ddrs (vNULL) |
| 486 | { |
| 487 | } |
| 488 | |
| 489 | vec_info_shared::~vec_info_shared () |
| 490 | { |
| 491 | free_data_refs (datarefs); |
| 492 | free_dependence_relations (ddrs); |
| 493 | datarefs_copy.release (); |
| 494 | } |
| 495 | |
| 496 | void |
| 497 | vec_info_shared::save_datarefs () |
| 498 | { |
| 499 | if (!flag_checking) |
| 500 | return; |
| 501 | datarefs_copy.reserve_exact (nelems: datarefs.length ()); |
| 502 | for (unsigned i = 0; i < datarefs.length (); ++i) |
| 503 | datarefs_copy.quick_push (obj: *datarefs[i]); |
| 504 | } |
| 505 | |
| 506 | void |
| 507 | vec_info_shared::check_datarefs () |
| 508 | { |
| 509 | if (!flag_checking) |
| 510 | return; |
| 511 | gcc_assert (datarefs.length () == datarefs_copy.length ()); |
| 512 | for (unsigned i = 0; i < datarefs.length (); ++i) |
| 513 | if (memcmp (s1: &datarefs_copy[i], s2: datarefs[i], |
| 514 | offsetof (data_reference, alt_indices)) != 0) |
| 515 | gcc_unreachable (); |
| 516 | } |
| 517 | |
| 518 | /* Record that STMT belongs to the vectorizable region. Create and return |
| 519 | an associated stmt_vec_info. */ |
| 520 | |
| 521 | stmt_vec_info |
| 522 | vec_info::add_stmt (gimple *stmt) |
| 523 | { |
| 524 | stmt_vec_info res = new_stmt_vec_info (stmt); |
| 525 | set_vinfo_for_stmt (stmt, res); |
| 526 | return res; |
| 527 | } |
| 528 | |
| 529 | /* Record that STMT belongs to the vectorizable region. Create a new |
| 530 | stmt_vec_info and mark VECINFO as being related and return the new |
| 531 | stmt_vec_info. */ |
| 532 | |
| 533 | stmt_vec_info |
| 534 | vec_info::add_pattern_stmt (gimple *stmt, stmt_vec_info stmt_info) |
| 535 | { |
| 536 | stmt_vec_info res = new_stmt_vec_info (stmt); |
| 537 | res->pattern_stmt_p = true; |
| 538 | set_vinfo_for_stmt (stmt, res, false); |
| 539 | STMT_VINFO_RELATED_STMT (res) = stmt_info; |
| 540 | return res; |
| 541 | } |
| 542 | |
| 543 | /* If STMT was previously associated with a stmt_vec_info and STMT now resides |
| 544 | at a different address than before (e.g., because STMT is a phi node that has |
| 545 | been resized), update the stored address to match the new one. It is not |
| 546 | possible to use lookup_stmt () to perform this task, because that function |
| 547 | returns NULL if the stored stmt pointer does not match the one being looked |
| 548 | up. */ |
| 549 | |
| 550 | stmt_vec_info |
| 551 | vec_info::resync_stmt_addr (gimple *stmt) |
| 552 | { |
| 553 | unsigned int uid = gimple_uid (g: stmt); |
| 554 | if (uid > 0 && uid - 1 < stmt_vec_infos.length ()) |
| 555 | { |
| 556 | stmt_vec_info res = stmt_vec_infos[uid - 1]; |
| 557 | if (res && res->stmt) |
| 558 | { |
| 559 | res->stmt = stmt; |
| 560 | return res; |
| 561 | } |
| 562 | } |
| 563 | return nullptr; |
| 564 | } |
| 565 | |
| 566 | /* If STMT has an associated stmt_vec_info, return that vec_info, otherwise |
| 567 | return null. It is safe to call this function on any statement, even if |
| 568 | it might not be part of the vectorizable region. */ |
| 569 | |
| 570 | stmt_vec_info |
| 571 | vec_info::lookup_stmt (gimple *stmt) |
| 572 | { |
| 573 | unsigned int uid = gimple_uid (g: stmt); |
| 574 | if (uid > 0 && uid - 1 < stmt_vec_infos.length ()) |
| 575 | { |
| 576 | stmt_vec_info res = stmt_vec_infos[uid - 1]; |
| 577 | if (res && res->stmt == stmt) |
| 578 | return res; |
| 579 | } |
| 580 | return NULL; |
| 581 | } |
| 582 | |
| 583 | /* If NAME is an SSA_NAME and its definition has an associated stmt_vec_info, |
| 584 | return that stmt_vec_info, otherwise return null. It is safe to call |
| 585 | this on arbitrary operands. */ |
| 586 | |
| 587 | stmt_vec_info |
| 588 | vec_info::lookup_def (tree name) |
| 589 | { |
| 590 | if (TREE_CODE (name) == SSA_NAME |
| 591 | && !SSA_NAME_IS_DEFAULT_DEF (name)) |
| 592 | return lookup_stmt (SSA_NAME_DEF_STMT (name)); |
| 593 | return NULL; |
| 594 | } |
| 595 | |
| 596 | /* See whether there is a single non-debug statement that uses LHS and |
| 597 | whether that statement has an associated stmt_vec_info. Return the |
| 598 | stmt_vec_info if so, otherwise return null. */ |
| 599 | |
| 600 | stmt_vec_info |
| 601 | vec_info::lookup_single_use (tree lhs) |
| 602 | { |
| 603 | use_operand_p dummy; |
| 604 | gimple *use_stmt; |
| 605 | if (single_imm_use (var: lhs, use_p: &dummy, stmt: &use_stmt)) |
| 606 | return lookup_stmt (stmt: use_stmt); |
| 607 | return NULL; |
| 608 | } |
| 609 | |
| 610 | /* Return vectorization information about DR. */ |
| 611 | |
| 612 | dr_vec_info * |
| 613 | vec_info::lookup_dr (data_reference *dr) |
| 614 | { |
| 615 | stmt_vec_info stmt_info = lookup_stmt (DR_STMT (dr)); |
| 616 | /* DR_STMT should never refer to a stmt in a pattern replacement. */ |
| 617 | gcc_checking_assert (!is_pattern_stmt_p (stmt_info)); |
| 618 | return STMT_VINFO_DR_INFO (stmt_info->dr_aux.stmt); |
| 619 | } |
| 620 | |
| 621 | /* Record that NEW_STMT_INFO now implements the same data reference |
| 622 | as OLD_STMT_INFO. */ |
| 623 | |
| 624 | void |
| 625 | vec_info::move_dr (stmt_vec_info new_stmt_info, stmt_vec_info old_stmt_info) |
| 626 | { |
| 627 | gcc_assert (!is_pattern_stmt_p (old_stmt_info)); |
| 628 | STMT_VINFO_DR_INFO (old_stmt_info)->stmt = new_stmt_info; |
| 629 | new_stmt_info->dr_aux = old_stmt_info->dr_aux; |
| 630 | STMT_VINFO_DR_WRT_VEC_LOOP (new_stmt_info) |
| 631 | = STMT_VINFO_DR_WRT_VEC_LOOP (old_stmt_info); |
| 632 | STMT_VINFO_GATHER_SCATTER_P (new_stmt_info) |
| 633 | = STMT_VINFO_GATHER_SCATTER_P (old_stmt_info); |
| 634 | STMT_VINFO_STRIDED_P (new_stmt_info) |
| 635 | = STMT_VINFO_STRIDED_P (old_stmt_info); |
| 636 | STMT_VINFO_SIMD_LANE_ACCESS_P (new_stmt_info) |
| 637 | = STMT_VINFO_SIMD_LANE_ACCESS_P (old_stmt_info); |
| 638 | } |
| 639 | |
| 640 | /* Permanently remove the statement described by STMT_INFO from the |
| 641 | function. */ |
| 642 | |
| 643 | void |
| 644 | vec_info::remove_stmt (stmt_vec_info stmt_info) |
| 645 | { |
| 646 | gcc_assert (!stmt_info->pattern_stmt_p); |
| 647 | set_vinfo_for_stmt (stmt_info->stmt, NULL); |
| 648 | unlink_stmt_vdef (stmt_info->stmt); |
| 649 | gimple_stmt_iterator si = gsi_for_stmt (stmt_info->stmt); |
| 650 | gsi_remove (&si, true); |
| 651 | release_defs (stmt_info->stmt); |
| 652 | free_stmt_vec_info (stmt_info); |
| 653 | } |
| 654 | |
| 655 | /* Replace the statement at GSI by NEW_STMT, both the vectorization |
| 656 | information and the function itself. STMT_INFO describes the statement |
| 657 | at GSI. */ |
| 658 | |
| 659 | void |
| 660 | vec_info::replace_stmt (gimple_stmt_iterator *gsi, stmt_vec_info stmt_info, |
| 661 | gimple *new_stmt) |
| 662 | { |
| 663 | gimple *old_stmt = stmt_info->stmt; |
| 664 | gcc_assert (!stmt_info->pattern_stmt_p && old_stmt == gsi_stmt (*gsi)); |
| 665 | gimple_set_uid (g: new_stmt, uid: gimple_uid (g: old_stmt)); |
| 666 | stmt_info->stmt = new_stmt; |
| 667 | gsi_replace (gsi, new_stmt, true); |
| 668 | } |
| 669 | |
| 670 | /* Insert stmts in SEQ on the VEC_INFO region entry. If CONTEXT is |
| 671 | not NULL it specifies whether to use the sub-region entry |
| 672 | determined by it, currently used for loop vectorization to insert |
| 673 | on the inner loop entry vs. the outer loop entry. */ |
| 674 | |
| 675 | void |
| 676 | vec_info::insert_seq_on_entry (stmt_vec_info context, gimple_seq seq) |
| 677 | { |
| 678 | if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (p: this)) |
| 679 | { |
| 680 | class loop *loop = LOOP_VINFO_LOOP (loop_vinfo); |
| 681 | basic_block new_bb; |
| 682 | edge pe; |
| 683 | |
| 684 | if (context && nested_in_vect_loop_p (loop, stmt_info: context)) |
| 685 | loop = loop->inner; |
| 686 | |
| 687 | pe = loop_preheader_edge (loop); |
| 688 | new_bb = gsi_insert_seq_on_edge_immediate (pe, seq); |
| 689 | gcc_assert (!new_bb); |
| 690 | } |
| 691 | else |
| 692 | { |
| 693 | gimple_stmt_iterator gsi_region_begin |
| 694 | = gsi_after_labels (bb: bbs[0]); |
| 695 | gsi_insert_seq_before (&gsi_region_begin, seq, GSI_SAME_STMT); |
| 696 | } |
| 697 | } |
| 698 | |
| 699 | /* Like insert_seq_on_entry but just inserts the single stmt NEW_STMT. */ |
| 700 | |
| 701 | void |
| 702 | vec_info::insert_on_entry (stmt_vec_info context, gimple *new_stmt) |
| 703 | { |
| 704 | gimple_seq seq = NULL; |
| 705 | gimple_stmt_iterator gsi = gsi_start (seq); |
| 706 | gsi_insert_before_without_update (&gsi, new_stmt, GSI_SAME_STMT); |
| 707 | insert_seq_on_entry (context, seq); |
| 708 | } |
| 709 | |
| 710 | /* Create and initialize a new stmt_vec_info struct for STMT. */ |
| 711 | |
| 712 | stmt_vec_info |
| 713 | vec_info::new_stmt_vec_info (gimple *stmt) |
| 714 | { |
| 715 | stmt_vec_info res = XCNEW (class _stmt_vec_info); |
| 716 | res->stmt = stmt; |
| 717 | |
| 718 | STMT_VINFO_TYPE (res) = undef_vec_info_type; |
| 719 | STMT_VINFO_RELEVANT (res) = vect_unused_in_scope; |
| 720 | STMT_VINFO_VECTORIZABLE (res) = true; |
| 721 | STMT_VINFO_REDUC_TYPE (res) = TREE_CODE_REDUCTION; |
| 722 | STMT_VINFO_REDUC_CODE (res) = ERROR_MARK; |
| 723 | STMT_VINFO_REDUC_FN (res) = IFN_LAST; |
| 724 | STMT_VINFO_REDUC_IDX (res) = -1; |
| 725 | STMT_VINFO_SLP_VECT_ONLY (res) = false; |
| 726 | STMT_VINFO_SLP_VECT_ONLY_PATTERN (res) = false; |
| 727 | STMT_VINFO_VEC_STMTS (res) = vNULL; |
| 728 | res->reduc_initial_values = vNULL; |
| 729 | res->reduc_scalar_results = vNULL; |
| 730 | |
| 731 | if (is_a <loop_vec_info> (p: this) |
| 732 | && gimple_code (g: stmt) == GIMPLE_PHI |
| 733 | && is_loop_header_bb_p (bb: gimple_bb (g: stmt))) |
| 734 | STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type; |
| 735 | else |
| 736 | STMT_VINFO_DEF_TYPE (res) = vect_internal_def; |
| 737 | |
| 738 | STMT_SLP_TYPE (res) = loop_vect; |
| 739 | |
| 740 | /* This is really "uninitialized" until vect_compute_data_ref_alignment. */ |
| 741 | res->dr_aux.misalignment = DR_MISALIGNMENT_UNINITIALIZED; |
| 742 | |
| 743 | return res; |
| 744 | } |
| 745 | |
| 746 | /* Associate STMT with INFO. */ |
| 747 | |
| 748 | void |
| 749 | vec_info::set_vinfo_for_stmt (gimple *stmt, stmt_vec_info info, bool check_ro) |
| 750 | { |
| 751 | unsigned int uid = gimple_uid (g: stmt); |
| 752 | if (uid == 0) |
| 753 | { |
| 754 | gcc_assert (!check_ro || !stmt_vec_info_ro); |
| 755 | gcc_checking_assert (info); |
| 756 | uid = stmt_vec_infos.length () + 1; |
| 757 | gimple_set_uid (g: stmt, uid); |
| 758 | stmt_vec_infos.safe_push (obj: info); |
| 759 | } |
| 760 | else |
| 761 | { |
| 762 | gcc_checking_assert (info == NULL); |
| 763 | stmt_vec_infos[uid - 1] = info; |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | /* Free the contents of stmt_vec_infos. */ |
| 768 | |
| 769 | void |
| 770 | vec_info::free_stmt_vec_infos (void) |
| 771 | { |
| 772 | for (stmt_vec_info &info : stmt_vec_infos) |
| 773 | if (info != NULL) |
| 774 | free_stmt_vec_info (info); |
| 775 | stmt_vec_infos.release (); |
| 776 | } |
| 777 | |
| 778 | /* Free STMT_INFO. */ |
| 779 | |
| 780 | void |
| 781 | vec_info::free_stmt_vec_info (stmt_vec_info stmt_info) |
| 782 | { |
| 783 | if (stmt_info->pattern_stmt_p) |
| 784 | { |
| 785 | gimple_set_bb (stmt_info->stmt, NULL); |
| 786 | tree lhs = gimple_get_lhs (stmt_info->stmt); |
| 787 | if (lhs && TREE_CODE (lhs) == SSA_NAME) |
| 788 | release_ssa_name (name: lhs); |
| 789 | } |
| 790 | |
| 791 | stmt_info->reduc_initial_values.release (); |
| 792 | stmt_info->reduc_scalar_results.release (); |
| 793 | STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release (); |
| 794 | STMT_VINFO_VEC_STMTS (stmt_info).release (); |
| 795 | free (ptr: stmt_info); |
| 796 | } |
| 797 | |
| 798 | /* Returns true if S1 dominates S2. */ |
| 799 | |
| 800 | bool |
| 801 | vect_stmt_dominates_stmt_p (gimple *s1, gimple *s2) |
| 802 | { |
| 803 | basic_block bb1 = gimple_bb (g: s1), bb2 = gimple_bb (g: s2); |
| 804 | |
| 805 | /* If bb1 is NULL, it should be a GIMPLE_NOP def stmt of an (D) |
| 806 | SSA_NAME. Assume it lives at the beginning of function and |
| 807 | thus dominates everything. */ |
| 808 | if (!bb1 || s1 == s2) |
| 809 | return true; |
| 810 | |
| 811 | /* If bb2 is NULL, it doesn't dominate any stmt with a bb. */ |
| 812 | if (!bb2) |
| 813 | return false; |
| 814 | |
| 815 | if (bb1 != bb2) |
| 816 | return dominated_by_p (CDI_DOMINATORS, bb2, bb1); |
| 817 | |
| 818 | /* PHIs in the same basic block are assumed to be |
| 819 | executed all in parallel, if only one stmt is a PHI, |
| 820 | it dominates the other stmt in the same basic block. */ |
| 821 | if (gimple_code (g: s1) == GIMPLE_PHI) |
| 822 | return true; |
| 823 | |
| 824 | if (gimple_code (g: s2) == GIMPLE_PHI) |
| 825 | return false; |
| 826 | |
| 827 | /* Inserted vectorized stmts all have UID 0 while the original stmts |
| 828 | in the IL have UID increasing within a BB. Walk from both sides |
| 829 | until we find the other stmt or a stmt with UID != 0. */ |
| 830 | gimple_stmt_iterator gsi1 = gsi_for_stmt (s1); |
| 831 | while (gimple_uid (g: gsi_stmt (i: gsi1)) == 0) |
| 832 | { |
| 833 | gsi_next (i: &gsi1); |
| 834 | if (gsi_end_p (i: gsi1)) |
| 835 | return false; |
| 836 | if (gsi_stmt (i: gsi1) == s2) |
| 837 | return true; |
| 838 | } |
| 839 | if (gimple_uid (g: gsi_stmt (i: gsi1)) == -1u) |
| 840 | return false; |
| 841 | |
| 842 | gimple_stmt_iterator gsi2 = gsi_for_stmt (s2); |
| 843 | while (gimple_uid (g: gsi_stmt (i: gsi2)) == 0) |
| 844 | { |
| 845 | gsi_prev (i: &gsi2); |
| 846 | if (gsi_end_p (i: gsi2)) |
| 847 | return false; |
| 848 | if (gsi_stmt (i: gsi2) == s1) |
| 849 | return true; |
| 850 | } |
| 851 | if (gimple_uid (g: gsi_stmt (i: gsi2)) == -1u) |
| 852 | return false; |
| 853 | |
| 854 | if (gimple_uid (g: gsi_stmt (i: gsi1)) <= gimple_uid (g: gsi_stmt (i: gsi2))) |
| 855 | return true; |
| 856 | return false; |
| 857 | } |
| 858 | |
| 859 | /* A helper function to free scev and LOOP niter information, as well as |
| 860 | clear loop constraint LOOP_C_FINITE. */ |
| 861 | |
| 862 | void |
| 863 | vect_free_loop_info_assumptions (class loop *loop) |
| 864 | { |
| 865 | scev_reset_htab (); |
| 866 | /* We need to explicitly reset upper bound information since they are |
| 867 | used even after free_numbers_of_iterations_estimates. */ |
| 868 | loop->any_upper_bound = false; |
| 869 | loop->any_likely_upper_bound = false; |
| 870 | free_numbers_of_iterations_estimates (loop); |
| 871 | loop_constraint_clear (loop, LOOP_C_FINITE); |
| 872 | } |
| 873 | |
| 874 | /* If LOOP has been versioned during ifcvt, return the internal call |
| 875 | guarding it. */ |
| 876 | |
| 877 | gimple * |
| 878 | vect_loop_vectorized_call (class loop *loop, gcond **cond) |
| 879 | { |
| 880 | basic_block bb = loop_preheader_edge (loop)->src; |
| 881 | gimple *g; |
| 882 | do |
| 883 | { |
| 884 | g = *gsi_last_bb (bb); |
| 885 | if ((g && gimple_code (g) == GIMPLE_COND) |
| 886 | || !single_succ_p (bb)) |
| 887 | break; |
| 888 | if (!single_pred_p (bb)) |
| 889 | break; |
| 890 | bb = single_pred (bb); |
| 891 | } |
| 892 | while (1); |
| 893 | if (g && gimple_code (g) == GIMPLE_COND) |
| 894 | { |
| 895 | if (cond) |
| 896 | *cond = as_a <gcond *> (p: g); |
| 897 | gimple_stmt_iterator gsi = gsi_for_stmt (g); |
| 898 | gsi_prev (i: &gsi); |
| 899 | if (!gsi_end_p (i: gsi)) |
| 900 | { |
| 901 | g = gsi_stmt (i: gsi); |
| 902 | if (gimple_call_internal_p (gs: g, fn: IFN_LOOP_VECTORIZED) |
| 903 | && (tree_to_shwi (gimple_call_arg (gs: g, index: 0)) == loop->num |
| 904 | || tree_to_shwi (gimple_call_arg (gs: g, index: 1)) == loop->num)) |
| 905 | return g; |
| 906 | } |
| 907 | } |
| 908 | return NULL; |
| 909 | } |
| 910 | |
| 911 | /* If LOOP has been versioned during loop distribution, return the gurading |
| 912 | internal call. */ |
| 913 | |
| 914 | static gimple * |
| 915 | vect_loop_dist_alias_call (class loop *loop, function *fun) |
| 916 | { |
| 917 | basic_block bb; |
| 918 | basic_block entry; |
| 919 | class loop *outer, *orig; |
| 920 | |
| 921 | if (loop->orig_loop_num == 0) |
| 922 | return NULL; |
| 923 | |
| 924 | orig = get_loop (fn: fun, num: loop->orig_loop_num); |
| 925 | if (orig == NULL) |
| 926 | { |
| 927 | /* The original loop is somehow destroyed. Clear the information. */ |
| 928 | loop->orig_loop_num = 0; |
| 929 | return NULL; |
| 930 | } |
| 931 | |
| 932 | if (loop != orig) |
| 933 | bb = nearest_common_dominator (CDI_DOMINATORS, loop->header, orig->header); |
| 934 | else |
| 935 | bb = loop_preheader_edge (loop)->src; |
| 936 | |
| 937 | outer = bb->loop_father; |
| 938 | entry = ENTRY_BLOCK_PTR_FOR_FN (fun); |
| 939 | |
| 940 | /* Look upward in dominance tree. */ |
| 941 | for (; bb != entry && flow_bb_inside_loop_p (outer, bb); |
| 942 | bb = get_immediate_dominator (CDI_DOMINATORS, bb)) |
| 943 | { |
| 944 | gimple_stmt_iterator gsi = gsi_last_bb (bb); |
| 945 | if (!safe_is_a <gcond *> (p: *gsi)) |
| 946 | continue; |
| 947 | |
| 948 | gsi_prev (i: &gsi); |
| 949 | if (gsi_end_p (i: gsi)) |
| 950 | continue; |
| 951 | |
| 952 | gimple *g = gsi_stmt (i: gsi); |
| 953 | /* The guarding internal function call must have the same distribution |
| 954 | alias id. */ |
| 955 | if (gimple_call_internal_p (gs: g, fn: IFN_LOOP_DIST_ALIAS) |
| 956 | && (tree_to_shwi (gimple_call_arg (gs: g, index: 0)) == loop->orig_loop_num)) |
| 957 | return g; |
| 958 | } |
| 959 | return NULL; |
| 960 | } |
| 961 | |
| 962 | /* Set the uids of all the statements in basic blocks inside loop |
| 963 | represented by LOOP_VINFO. LOOP_VECTORIZED_CALL is the internal |
| 964 | call guarding the loop which has been if converted. */ |
| 965 | static void |
| 966 | set_uid_loop_bbs (loop_vec_info loop_vinfo, gimple *loop_vectorized_call, |
| 967 | function *fun) |
| 968 | { |
| 969 | tree arg = gimple_call_arg (gs: loop_vectorized_call, index: 1); |
| 970 | basic_block *bbs; |
| 971 | unsigned int i; |
| 972 | class loop *scalar_loop = get_loop (fn: fun, num: tree_to_shwi (arg)); |
| 973 | |
| 974 | LOOP_VINFO_SCALAR_LOOP (loop_vinfo) = scalar_loop; |
| 975 | LOOP_VINFO_SCALAR_IV_EXIT (loop_vinfo) |
| 976 | = vec_init_loop_exit_info (scalar_loop); |
| 977 | gcc_checking_assert (vect_loop_vectorized_call (scalar_loop) |
| 978 | == loop_vectorized_call); |
| 979 | /* If we are going to vectorize outer loop, prevent vectorization |
| 980 | of the inner loop in the scalar loop - either the scalar loop is |
| 981 | thrown away, so it is a wasted work, or is used only for |
| 982 | a few iterations. */ |
| 983 | if (scalar_loop->inner) |
| 984 | { |
| 985 | gimple *g = vect_loop_vectorized_call (loop: scalar_loop->inner); |
| 986 | if (g) |
| 987 | { |
| 988 | arg = gimple_call_arg (gs: g, index: 0); |
| 989 | get_loop (fn: fun, num: tree_to_shwi (arg))->dont_vectorize = true; |
| 990 | fold_loop_internal_call (g, boolean_false_node); |
| 991 | } |
| 992 | } |
| 993 | bbs = get_loop_body (scalar_loop); |
| 994 | for (i = 0; i < scalar_loop->num_nodes; i++) |
| 995 | { |
| 996 | basic_block bb = bbs[i]; |
| 997 | gimple_stmt_iterator gsi; |
| 998 | for (gsi = gsi_start_phis (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 999 | { |
| 1000 | gimple *phi = gsi_stmt (i: gsi); |
| 1001 | gimple_set_uid (g: phi, uid: 0); |
| 1002 | } |
| 1003 | for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 1004 | { |
| 1005 | gimple *stmt = gsi_stmt (i: gsi); |
| 1006 | gimple_set_uid (g: stmt, uid: 0); |
| 1007 | } |
| 1008 | } |
| 1009 | free (ptr: bbs); |
| 1010 | } |
| 1011 | |
| 1012 | /* Generate vectorized code for LOOP and its epilogues. */ |
| 1013 | |
| 1014 | static unsigned |
| 1015 | vect_transform_loops (hash_table<simduid_to_vf> *&simduid_to_vf_htab, |
| 1016 | loop_p loop, gimple *loop_vectorized_call, |
| 1017 | function *fun) |
| 1018 | { |
| 1019 | loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop); |
| 1020 | |
| 1021 | if (loop_vectorized_call) |
| 1022 | set_uid_loop_bbs (loop_vinfo, loop_vectorized_call, fun); |
| 1023 | |
| 1024 | unsigned HOST_WIDE_INT bytes; |
| 1025 | if (dump_enabled_p ()) |
| 1026 | { |
| 1027 | if (GET_MODE_SIZE (mode: loop_vinfo->vector_mode).is_constant (const_value: &bytes)) |
| 1028 | dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location, |
| 1029 | "%sloop vectorized using %s%wu byte vectors and" |
| 1030 | " unroll factor %u\n" , |
| 1031 | LOOP_VINFO_EPILOGUE_P (loop_vinfo) |
| 1032 | ? "epilogue " : "" , |
| 1033 | LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) |
| 1034 | ? "masked " : "" , bytes, |
| 1035 | (unsigned int) LOOP_VINFO_VECT_FACTOR |
| 1036 | (loop_vinfo).to_constant ()); |
| 1037 | else |
| 1038 | dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location, |
| 1039 | "%sloop vectorized using variable length vectors\n" , |
| 1040 | LOOP_VINFO_EPILOGUE_P (loop_vinfo) |
| 1041 | ? "epilogue " : "" ); |
| 1042 | } |
| 1043 | |
| 1044 | loop_p new_loop = vect_transform_loop (loop_vinfo, |
| 1045 | loop_vectorized_call); |
| 1046 | /* Now that the loop has been vectorized, allow it to be unrolled |
| 1047 | etc. */ |
| 1048 | loop->force_vectorize = false; |
| 1049 | |
| 1050 | if (loop->simduid) |
| 1051 | { |
| 1052 | simduid_to_vf *simduid_to_vf_data = XNEW (simduid_to_vf); |
| 1053 | if (!simduid_to_vf_htab) |
| 1054 | simduid_to_vf_htab = new hash_table<simduid_to_vf> (15); |
| 1055 | simduid_to_vf_data->simduid = DECL_UID (loop->simduid); |
| 1056 | simduid_to_vf_data->vf = loop_vinfo->vectorization_factor; |
| 1057 | *simduid_to_vf_htab->find_slot (value: simduid_to_vf_data, insert: INSERT) |
| 1058 | = simduid_to_vf_data; |
| 1059 | } |
| 1060 | |
| 1061 | /* We should not have to update virtual SSA form here but some |
| 1062 | transforms involve creating new virtual definitions which makes |
| 1063 | updating difficult. |
| 1064 | We delay the actual update to the end of the pass but avoid |
| 1065 | confusing ourselves by forcing need_ssa_update_p () to false. */ |
| 1066 | unsigned todo = 0; |
| 1067 | if (need_ssa_update_p (cfun)) |
| 1068 | { |
| 1069 | gcc_assert (loop_vinfo->any_known_not_updated_vssa); |
| 1070 | fun->gimple_df->ssa_renaming_needed = false; |
| 1071 | todo |= TODO_update_ssa_only_virtuals; |
| 1072 | } |
| 1073 | gcc_assert (!need_ssa_update_p (cfun)); |
| 1074 | |
| 1075 | /* Epilogue of vectorized loop must be vectorized too. */ |
| 1076 | if (new_loop) |
| 1077 | todo |= vect_transform_loops (simduid_to_vf_htab, loop: new_loop, NULL, fun); |
| 1078 | |
| 1079 | return todo; |
| 1080 | } |
| 1081 | |
| 1082 | /* Try to vectorize LOOP. */ |
| 1083 | |
| 1084 | static unsigned |
| 1085 | try_vectorize_loop_1 (hash_table<simduid_to_vf> *&simduid_to_vf_htab, |
| 1086 | unsigned *num_vectorized_loops, loop_p loop, |
| 1087 | gimple *loop_vectorized_call, |
| 1088 | gimple *loop_dist_alias_call, |
| 1089 | function *fun) |
| 1090 | { |
| 1091 | unsigned ret = 0; |
| 1092 | vec_info_shared shared; |
| 1093 | auto_purge_vect_location sentinel; |
| 1094 | vect_location = find_loop_location (loop); |
| 1095 | |
| 1096 | if (LOCATION_LOCUS (vect_location.get_location_t ()) != UNKNOWN_LOCATION |
| 1097 | && dump_enabled_p ()) |
| 1098 | dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS, |
| 1099 | "\nAnalyzing loop at %s:%d\n" , |
| 1100 | LOCATION_FILE (vect_location.get_location_t ()), |
| 1101 | LOCATION_LINE (vect_location.get_location_t ())); |
| 1102 | |
| 1103 | /* Try to analyze the loop, retaining an opt_problem if dump_enabled_p. */ |
| 1104 | opt_loop_vec_info loop_vinfo = vect_analyze_loop (loop, loop_vectorized_call, |
| 1105 | &shared); |
| 1106 | loop->aux = loop_vinfo; |
| 1107 | |
| 1108 | if (!loop_vinfo) |
| 1109 | if (dump_enabled_p ()) |
| 1110 | if (opt_problem *problem = loop_vinfo.get_problem ()) |
| 1111 | { |
| 1112 | dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| 1113 | "couldn't vectorize loop\n" ); |
| 1114 | problem->emit_and_clear (); |
| 1115 | } |
| 1116 | |
| 1117 | if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo)) |
| 1118 | { |
| 1119 | /* Free existing information if loop is analyzed with some |
| 1120 | assumptions. */ |
| 1121 | if (loop_constraint_set_p (loop, LOOP_C_FINITE)) |
| 1122 | vect_free_loop_info_assumptions (loop); |
| 1123 | |
| 1124 | /* If we applied if-conversion then try to vectorize the |
| 1125 | BB of innermost loops. |
| 1126 | ??? Ideally BB vectorization would learn to vectorize |
| 1127 | control flow by applying if-conversion on-the-fly, the |
| 1128 | following retains the if-converted loop body even when |
| 1129 | only non-if-converted parts took part in BB vectorization. */ |
| 1130 | if (flag_tree_slp_vectorize != 0 |
| 1131 | && loop_vectorized_call |
| 1132 | && ! loop->inner) |
| 1133 | { |
| 1134 | basic_block bb = loop->header; |
| 1135 | bool require_loop_vectorize = false; |
| 1136 | for (gimple_stmt_iterator gsi = gsi_start_bb (bb); |
| 1137 | !gsi_end_p (i: gsi); gsi_next (i: &gsi)) |
| 1138 | { |
| 1139 | gimple *stmt = gsi_stmt (i: gsi); |
| 1140 | gcall *call = dyn_cast <gcall *> (p: stmt); |
| 1141 | if (call && gimple_call_internal_p (gs: call)) |
| 1142 | { |
| 1143 | internal_fn ifn = gimple_call_internal_fn (gs: call); |
| 1144 | if (ifn == IFN_MASK_LOAD |
| 1145 | || ifn == IFN_MASK_STORE |
| 1146 | || ifn == IFN_MASK_CALL |
| 1147 | /* Don't keep the if-converted parts when the ifn with |
| 1148 | specifc type is not supported by the backend. */ |
| 1149 | || (direct_internal_fn_p (fn: ifn) |
| 1150 | && !direct_internal_fn_supported_p |
| 1151 | (call, OPTIMIZE_FOR_SPEED))) |
| 1152 | { |
| 1153 | require_loop_vectorize = true; |
| 1154 | break; |
| 1155 | } |
| 1156 | } |
| 1157 | gimple_set_uid (g: stmt, uid: -1); |
| 1158 | gimple_set_visited (stmt, visited_p: false); |
| 1159 | } |
| 1160 | if (!require_loop_vectorize) |
| 1161 | { |
| 1162 | tree arg = gimple_call_arg (gs: loop_vectorized_call, index: 1); |
| 1163 | class loop *scalar_loop = get_loop (fn: fun, num: tree_to_shwi (arg)); |
| 1164 | if (vect_slp_if_converted_bb (bb, orig_loop: scalar_loop)) |
| 1165 | { |
| 1166 | fold_loop_internal_call (loop_vectorized_call, |
| 1167 | boolean_true_node); |
| 1168 | loop_vectorized_call = NULL; |
| 1169 | ret |= TODO_cleanup_cfg | TODO_update_ssa_only_virtuals; |
| 1170 | } |
| 1171 | } |
| 1172 | } |
| 1173 | /* If outer loop vectorization fails for LOOP_VECTORIZED guarded |
| 1174 | loop, don't vectorize its inner loop; we'll attempt to |
| 1175 | vectorize LOOP_VECTORIZED guarded inner loop of the scalar |
| 1176 | loop version. */ |
| 1177 | if (loop_vectorized_call && loop->inner) |
| 1178 | loop->inner->dont_vectorize = true; |
| 1179 | return ret; |
| 1180 | } |
| 1181 | |
| 1182 | if (!dbg_cnt (index: vect_loop)) |
| 1183 | { |
| 1184 | /* Free existing information if loop is analyzed with some |
| 1185 | assumptions. */ |
| 1186 | if (loop_constraint_set_p (loop, LOOP_C_FINITE)) |
| 1187 | vect_free_loop_info_assumptions (loop); |
| 1188 | return ret; |
| 1189 | } |
| 1190 | |
| 1191 | (*num_vectorized_loops)++; |
| 1192 | /* Transform LOOP and its epilogues. */ |
| 1193 | ret |= vect_transform_loops (simduid_to_vf_htab, loop, |
| 1194 | loop_vectorized_call, fun); |
| 1195 | |
| 1196 | if (loop_vectorized_call) |
| 1197 | { |
| 1198 | fold_loop_internal_call (loop_vectorized_call, boolean_true_node); |
| 1199 | ret |= TODO_cleanup_cfg; |
| 1200 | } |
| 1201 | if (loop_dist_alias_call) |
| 1202 | { |
| 1203 | tree value = gimple_call_arg (gs: loop_dist_alias_call, index: 1); |
| 1204 | fold_loop_internal_call (loop_dist_alias_call, value); |
| 1205 | ret |= TODO_cleanup_cfg; |
| 1206 | } |
| 1207 | |
| 1208 | return ret; |
| 1209 | } |
| 1210 | |
| 1211 | /* Try to vectorize LOOP. */ |
| 1212 | |
| 1213 | static unsigned |
| 1214 | try_vectorize_loop (hash_table<simduid_to_vf> *&simduid_to_vf_htab, |
| 1215 | unsigned *num_vectorized_loops, loop_p loop, |
| 1216 | function *fun) |
| 1217 | { |
| 1218 | if (!((flag_tree_loop_vectorize |
| 1219 | && optimize_loop_nest_for_speed_p (loop)) |
| 1220 | || loop->force_vectorize)) |
| 1221 | return 0; |
| 1222 | |
| 1223 | return try_vectorize_loop_1 (simduid_to_vf_htab, num_vectorized_loops, loop, |
| 1224 | loop_vectorized_call: vect_loop_vectorized_call (loop), |
| 1225 | loop_dist_alias_call: vect_loop_dist_alias_call (loop, fun), fun); |
| 1226 | } |
| 1227 | |
| 1228 | |
| 1229 | /* Loop autovectorization. */ |
| 1230 | |
| 1231 | namespace { |
| 1232 | |
| 1233 | const pass_data pass_data_vectorize = |
| 1234 | { |
| 1235 | .type: GIMPLE_PASS, /* type */ |
| 1236 | .name: "vect" , /* name */ |
| 1237 | .optinfo_flags: OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */ |
| 1238 | .tv_id: TV_TREE_VECTORIZATION, /* tv_id */ |
| 1239 | .properties_required: ( PROP_cfg | PROP_ssa ), /* properties_required */ |
| 1240 | .properties_provided: 0, /* properties_provided */ |
| 1241 | .properties_destroyed: 0, /* properties_destroyed */ |
| 1242 | .todo_flags_start: 0, /* todo_flags_start */ |
| 1243 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 1244 | }; |
| 1245 | |
| 1246 | class pass_vectorize : public gimple_opt_pass |
| 1247 | { |
| 1248 | public: |
| 1249 | pass_vectorize (gcc::context *ctxt) |
| 1250 | : gimple_opt_pass (pass_data_vectorize, ctxt) |
| 1251 | {} |
| 1252 | |
| 1253 | /* opt_pass methods: */ |
| 1254 | bool gate (function *fun) final override |
| 1255 | { |
| 1256 | return flag_tree_loop_vectorize || fun->has_force_vectorize_loops; |
| 1257 | } |
| 1258 | |
| 1259 | unsigned int execute (function *) final override; |
| 1260 | |
| 1261 | }; // class pass_vectorize |
| 1262 | |
| 1263 | /* Function vectorize_loops. |
| 1264 | |
| 1265 | Entry point to loop vectorization phase. */ |
| 1266 | |
| 1267 | unsigned |
| 1268 | pass_vectorize::execute (function *fun) |
| 1269 | { |
| 1270 | unsigned int i; |
| 1271 | unsigned int num_vectorized_loops = 0; |
| 1272 | unsigned int vect_loops_num; |
| 1273 | hash_table<simduid_to_vf> *simduid_to_vf_htab = NULL; |
| 1274 | hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL; |
| 1275 | bool any_ifcvt_loops = false; |
| 1276 | unsigned ret = 0; |
| 1277 | |
| 1278 | vect_loops_num = number_of_loops (fn: fun); |
| 1279 | |
| 1280 | /* Bail out if there are no loops. */ |
| 1281 | if (vect_loops_num <= 1) |
| 1282 | return 0; |
| 1283 | |
| 1284 | vect_slp_init (); |
| 1285 | |
| 1286 | if (fun->has_simduid_loops) |
| 1287 | note_simd_array_uses (htab: &simd_array_to_simduid_htab, fun); |
| 1288 | |
| 1289 | /* ----------- Analyze loops. ----------- */ |
| 1290 | |
| 1291 | /* If some loop was duplicated, it gets bigger number |
| 1292 | than all previously defined loops. This fact allows us to run |
| 1293 | only over initial loops skipping newly generated ones. */ |
| 1294 | for (auto loop : loops_list (fun, 0)) |
| 1295 | if (loop->dont_vectorize) |
| 1296 | { |
| 1297 | any_ifcvt_loops = true; |
| 1298 | /* If-conversion sometimes versions both the outer loop |
| 1299 | (for the case when outer loop vectorization might be |
| 1300 | desirable) as well as the inner loop in the scalar version |
| 1301 | of the loop. So we have: |
| 1302 | if (LOOP_VECTORIZED (1, 3)) |
| 1303 | { |
| 1304 | loop1 |
| 1305 | loop2 |
| 1306 | } |
| 1307 | else |
| 1308 | loop3 (copy of loop1) |
| 1309 | if (LOOP_VECTORIZED (4, 5)) |
| 1310 | loop4 (copy of loop2) |
| 1311 | else |
| 1312 | loop5 (copy of loop4) |
| 1313 | If loops' iteration gives us loop3 first (which has |
| 1314 | dont_vectorize set), make sure to process loop1 before loop4; |
| 1315 | so that we can prevent vectorization of loop4 if loop1 |
| 1316 | is successfully vectorized. */ |
| 1317 | if (loop->inner) |
| 1318 | { |
| 1319 | gimple *loop_vectorized_call |
| 1320 | = vect_loop_vectorized_call (loop); |
| 1321 | if (loop_vectorized_call |
| 1322 | && vect_loop_vectorized_call (loop: loop->inner)) |
| 1323 | { |
| 1324 | tree arg = gimple_call_arg (gs: loop_vectorized_call, index: 0); |
| 1325 | class loop *vector_loop |
| 1326 | = get_loop (fn: fun, num: tree_to_shwi (arg)); |
| 1327 | if (vector_loop && vector_loop != loop) |
| 1328 | { |
| 1329 | /* Make sure we don't vectorize it twice. */ |
| 1330 | vector_loop->dont_vectorize = true; |
| 1331 | ret |= try_vectorize_loop (simduid_to_vf_htab, |
| 1332 | num_vectorized_loops: &num_vectorized_loops, |
| 1333 | loop: vector_loop, fun); |
| 1334 | } |
| 1335 | } |
| 1336 | } |
| 1337 | } |
| 1338 | else |
| 1339 | ret |= try_vectorize_loop (simduid_to_vf_htab, num_vectorized_loops: &num_vectorized_loops, |
| 1340 | loop, fun); |
| 1341 | |
| 1342 | vect_location = dump_user_location_t (); |
| 1343 | |
| 1344 | statistics_counter_event (fun, "Vectorized loops" , num_vectorized_loops); |
| 1345 | if (dump_enabled_p () |
| 1346 | || (num_vectorized_loops > 0 && dump_enabled_p ())) |
| 1347 | dump_printf_loc (MSG_NOTE, vect_location, |
| 1348 | "vectorized %u loops in function.\n" , |
| 1349 | num_vectorized_loops); |
| 1350 | |
| 1351 | /* ----------- Finalize. ----------- */ |
| 1352 | |
| 1353 | if (any_ifcvt_loops) |
| 1354 | for (i = 1; i < number_of_loops (fn: fun); i++) |
| 1355 | { |
| 1356 | class loop *loop = get_loop (fn: fun, num: i); |
| 1357 | if (loop && loop->dont_vectorize) |
| 1358 | { |
| 1359 | gimple *g = vect_loop_vectorized_call (loop); |
| 1360 | if (g) |
| 1361 | { |
| 1362 | fold_loop_internal_call (g, boolean_false_node); |
| 1363 | loop->dont_vectorize = false; |
| 1364 | ret |= TODO_cleanup_cfg; |
| 1365 | g = NULL; |
| 1366 | } |
| 1367 | else |
| 1368 | g = vect_loop_dist_alias_call (loop, fun); |
| 1369 | |
| 1370 | if (g) |
| 1371 | { |
| 1372 | fold_loop_internal_call (g, boolean_false_node); |
| 1373 | loop->dont_vectorize = false; |
| 1374 | ret |= TODO_cleanup_cfg; |
| 1375 | } |
| 1376 | } |
| 1377 | } |
| 1378 | |
| 1379 | /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */ |
| 1380 | if (fun->has_simduid_loops) |
| 1381 | { |
| 1382 | adjust_simduid_builtins (htab: simduid_to_vf_htab, fun); |
| 1383 | /* Avoid stale SCEV cache entries for the SIMD_LANE defs. */ |
| 1384 | scev_reset (); |
| 1385 | } |
| 1386 | /* Shrink any "omp array simd" temporary arrays to the |
| 1387 | actual vectorization factors. */ |
| 1388 | if (simd_array_to_simduid_htab) |
| 1389 | shrink_simd_arrays (simd_array_to_simduid_htab, simduid_to_vf_htab); |
| 1390 | delete simduid_to_vf_htab; |
| 1391 | fun->has_simduid_loops = false; |
| 1392 | |
| 1393 | if (num_vectorized_loops > 0) |
| 1394 | { |
| 1395 | /* We are collecting some corner cases where we need to update |
| 1396 | virtual SSA form via the TODO but delete the queued update-SSA |
| 1397 | state. Force renaming if we think that might be necessary. */ |
| 1398 | if (ret & TODO_update_ssa_only_virtuals) |
| 1399 | mark_virtual_operands_for_renaming (cfun); |
| 1400 | /* If we vectorized any loop only virtual SSA form needs to be updated. |
| 1401 | ??? Also while we try hard to update loop-closed SSA form we fail |
| 1402 | to properly do this in some corner-cases (see PR56286). */ |
| 1403 | rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa_only_virtuals); |
| 1404 | ret |= TODO_cleanup_cfg; |
| 1405 | } |
| 1406 | |
| 1407 | for (i = 1; i < number_of_loops (fn: fun); i++) |
| 1408 | { |
| 1409 | loop_vec_info loop_vinfo; |
| 1410 | bool has_mask_store; |
| 1411 | |
| 1412 | class loop *loop = get_loop (fn: fun, num: i); |
| 1413 | if (!loop || !loop->aux) |
| 1414 | continue; |
| 1415 | loop_vinfo = (loop_vec_info) loop->aux; |
| 1416 | has_mask_store = LOOP_VINFO_HAS_MASK_STORE (loop_vinfo); |
| 1417 | delete loop_vinfo; |
| 1418 | if (has_mask_store |
| 1419 | && targetm.vectorize.empty_mask_is_expensive (IFN_MASK_STORE)) |
| 1420 | optimize_mask_stores (loop); |
| 1421 | |
| 1422 | auto_bitmap exit_bbs; |
| 1423 | /* Perform local CSE, this esp. helps because we emit code for |
| 1424 | predicates that need to be shared for optimal predicate usage. |
| 1425 | However reassoc will re-order them and prevent CSE from working |
| 1426 | as it should. CSE only the loop body, not the entry. */ |
| 1427 | auto_vec<edge> exits = get_loop_exit_edges (loop); |
| 1428 | for (edge exit : exits) |
| 1429 | bitmap_set_bit (exit_bbs, exit->dest->index); |
| 1430 | |
| 1431 | edge entry = EDGE_PRED (loop_preheader_edge (loop)->src, 0); |
| 1432 | do_rpo_vn (fun, entry, exit_bbs); |
| 1433 | |
| 1434 | loop->aux = NULL; |
| 1435 | } |
| 1436 | |
| 1437 | vect_slp_fini (); |
| 1438 | |
| 1439 | return ret; |
| 1440 | } |
| 1441 | |
| 1442 | } // anon namespace |
| 1443 | |
| 1444 | gimple_opt_pass * |
| 1445 | make_pass_vectorize (gcc::context *ctxt) |
| 1446 | { |
| 1447 | return new pass_vectorize (ctxt); |
| 1448 | } |
| 1449 | |
| 1450 | /* Entry point to the simduid cleanup pass. */ |
| 1451 | |
| 1452 | namespace { |
| 1453 | |
| 1454 | const pass_data pass_data_simduid_cleanup = |
| 1455 | { |
| 1456 | .type: GIMPLE_PASS, /* type */ |
| 1457 | .name: "simduid" , /* name */ |
| 1458 | .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */ |
| 1459 | .tv_id: TV_NONE, /* tv_id */ |
| 1460 | .properties_required: ( PROP_ssa | PROP_cfg ), /* properties_required */ |
| 1461 | .properties_provided: 0, /* properties_provided */ |
| 1462 | .properties_destroyed: 0, /* properties_destroyed */ |
| 1463 | .todo_flags_start: 0, /* todo_flags_start */ |
| 1464 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 1465 | }; |
| 1466 | |
| 1467 | class pass_simduid_cleanup : public gimple_opt_pass |
| 1468 | { |
| 1469 | public: |
| 1470 | pass_simduid_cleanup (gcc::context *ctxt) |
| 1471 | : gimple_opt_pass (pass_data_simduid_cleanup, ctxt) |
| 1472 | {} |
| 1473 | |
| 1474 | /* opt_pass methods: */ |
| 1475 | opt_pass * clone () final override |
| 1476 | { |
| 1477 | return new pass_simduid_cleanup (m_ctxt); |
| 1478 | } |
| 1479 | bool gate (function *fun) final override { return fun->has_simduid_loops; } |
| 1480 | unsigned int execute (function *) final override; |
| 1481 | |
| 1482 | }; // class pass_simduid_cleanup |
| 1483 | |
| 1484 | unsigned int |
| 1485 | pass_simduid_cleanup::execute (function *fun) |
| 1486 | { |
| 1487 | hash_table<simd_array_to_simduid> *simd_array_to_simduid_htab = NULL; |
| 1488 | |
| 1489 | note_simd_array_uses (htab: &simd_array_to_simduid_htab, fun); |
| 1490 | |
| 1491 | /* Fold IFN_GOMP_SIMD_{VF,LANE,LAST_LANE,ORDERED_{START,END}} builtins. */ |
| 1492 | adjust_simduid_builtins (NULL, fun); |
| 1493 | |
| 1494 | /* Shrink any "omp array simd" temporary arrays to the |
| 1495 | actual vectorization factors. */ |
| 1496 | if (simd_array_to_simduid_htab) |
| 1497 | shrink_simd_arrays (simd_array_to_simduid_htab, NULL); |
| 1498 | fun->has_simduid_loops = false; |
| 1499 | return 0; |
| 1500 | } |
| 1501 | |
| 1502 | } // anon namespace |
| 1503 | |
| 1504 | gimple_opt_pass * |
| 1505 | make_pass_simduid_cleanup (gcc::context *ctxt) |
| 1506 | { |
| 1507 | return new pass_simduid_cleanup (ctxt); |
| 1508 | } |
| 1509 | |
| 1510 | |
| 1511 | /* Entry point to basic block SLP phase. */ |
| 1512 | |
| 1513 | namespace { |
| 1514 | |
| 1515 | const pass_data pass_data_slp_vectorize = |
| 1516 | { |
| 1517 | .type: GIMPLE_PASS, /* type */ |
| 1518 | .name: "slp" , /* name */ |
| 1519 | .optinfo_flags: OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */ |
| 1520 | .tv_id: TV_TREE_SLP_VECTORIZATION, /* tv_id */ |
| 1521 | .properties_required: ( PROP_ssa | PROP_cfg ), /* properties_required */ |
| 1522 | .properties_provided: 0, /* properties_provided */ |
| 1523 | .properties_destroyed: 0, /* properties_destroyed */ |
| 1524 | .todo_flags_start: 0, /* todo_flags_start */ |
| 1525 | TODO_update_ssa, /* todo_flags_finish */ |
| 1526 | }; |
| 1527 | |
| 1528 | class pass_slp_vectorize : public gimple_opt_pass |
| 1529 | { |
| 1530 | public: |
| 1531 | pass_slp_vectorize (gcc::context *ctxt) |
| 1532 | : gimple_opt_pass (pass_data_slp_vectorize, ctxt) |
| 1533 | {} |
| 1534 | |
| 1535 | /* opt_pass methods: */ |
| 1536 | opt_pass * clone () final override { return new pass_slp_vectorize (m_ctxt); } |
| 1537 | bool gate (function *) final override { return flag_tree_slp_vectorize != 0; } |
| 1538 | unsigned int execute (function *) final override; |
| 1539 | |
| 1540 | }; // class pass_slp_vectorize |
| 1541 | |
| 1542 | unsigned int |
| 1543 | pass_slp_vectorize::execute (function *fun) |
| 1544 | { |
| 1545 | auto_purge_vect_location sentinel; |
| 1546 | basic_block bb; |
| 1547 | |
| 1548 | bool in_loop_pipeline = scev_initialized_p (); |
| 1549 | if (!in_loop_pipeline) |
| 1550 | { |
| 1551 | loop_optimizer_init (LOOPS_NORMAL); |
| 1552 | scev_initialize (); |
| 1553 | } |
| 1554 | |
| 1555 | /* Mark all stmts as not belonging to the current region and unvisited. */ |
| 1556 | FOR_EACH_BB_FN (bb, fun) |
| 1557 | { |
| 1558 | for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (i: gsi); |
| 1559 | gsi_next (i: &gsi)) |
| 1560 | { |
| 1561 | gphi *stmt = gsi.phi (); |
| 1562 | gimple_set_uid (g: stmt, uid: -1); |
| 1563 | gimple_set_visited (stmt, visited_p: false); |
| 1564 | } |
| 1565 | for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); |
| 1566 | gsi_next (i: &gsi)) |
| 1567 | { |
| 1568 | gimple *stmt = gsi_stmt (i: gsi); |
| 1569 | gimple_set_uid (g: stmt, uid: -1); |
| 1570 | gimple_set_visited (stmt, visited_p: false); |
| 1571 | } |
| 1572 | } |
| 1573 | |
| 1574 | vect_slp_init (); |
| 1575 | |
| 1576 | vect_slp_function (fun); |
| 1577 | |
| 1578 | vect_slp_fini (); |
| 1579 | |
| 1580 | if (!in_loop_pipeline) |
| 1581 | { |
| 1582 | scev_finalize (); |
| 1583 | loop_optimizer_finalize (); |
| 1584 | } |
| 1585 | |
| 1586 | return 0; |
| 1587 | } |
| 1588 | |
| 1589 | } // anon namespace |
| 1590 | |
| 1591 | gimple_opt_pass * |
| 1592 | make_pass_slp_vectorize (gcc::context *ctxt) |
| 1593 | { |
| 1594 | return new pass_slp_vectorize (ctxt); |
| 1595 | } |
| 1596 | |
| 1597 | |
| 1598 | /* Increase alignment of global arrays to improve vectorization potential. |
| 1599 | TODO: |
| 1600 | - Consider also structs that have an array field. |
| 1601 | - Use ipa analysis to prune arrays that can't be vectorized? |
| 1602 | This should involve global alignment analysis and in the future also |
| 1603 | array padding. */ |
| 1604 | |
| 1605 | static unsigned get_vec_alignment_for_type (tree); |
| 1606 | static hash_map<tree, unsigned> *type_align_map; |
| 1607 | |
| 1608 | /* Return alignment of array's vector type corresponding to scalar type. |
| 1609 | 0 if no vector type exists. */ |
| 1610 | static unsigned |
| 1611 | get_vec_alignment_for_array_type (tree type) |
| 1612 | { |
| 1613 | gcc_assert (TREE_CODE (type) == ARRAY_TYPE); |
| 1614 | poly_uint64 array_size, vector_size; |
| 1615 | |
| 1616 | tree scalar_type = strip_array_types (type); |
| 1617 | tree vectype = get_related_vectype_for_scalar_type (VOIDmode, scalar_type); |
| 1618 | if (!vectype |
| 1619 | || !poly_int_tree_p (TYPE_SIZE (type), value: &array_size) |
| 1620 | || !poly_int_tree_p (TYPE_SIZE (vectype), value: &vector_size) |
| 1621 | || maybe_lt (a: array_size, b: vector_size)) |
| 1622 | return 0; |
| 1623 | |
| 1624 | return TYPE_ALIGN (vectype); |
| 1625 | } |
| 1626 | |
| 1627 | /* Return alignment of field having maximum alignment of vector type |
| 1628 | corresponding to it's scalar type. For now, we only consider fields whose |
| 1629 | offset is a multiple of it's vector alignment. |
| 1630 | 0 if no suitable field is found. */ |
| 1631 | static unsigned |
| 1632 | get_vec_alignment_for_record_type (tree type) |
| 1633 | { |
| 1634 | gcc_assert (TREE_CODE (type) == RECORD_TYPE); |
| 1635 | |
| 1636 | unsigned max_align = 0, alignment; |
| 1637 | HOST_WIDE_INT offset; |
| 1638 | tree offset_tree; |
| 1639 | |
| 1640 | if (TYPE_PACKED (type)) |
| 1641 | return 0; |
| 1642 | |
| 1643 | unsigned *slot = type_align_map->get (k: type); |
| 1644 | if (slot) |
| 1645 | return *slot; |
| 1646 | |
| 1647 | for (tree field = first_field (type); |
| 1648 | field != NULL_TREE; |
| 1649 | field = DECL_CHAIN (field)) |
| 1650 | { |
| 1651 | /* Skip if not FIELD_DECL or if alignment is set by user. */ |
| 1652 | if (TREE_CODE (field) != FIELD_DECL |
| 1653 | || DECL_USER_ALIGN (field) |
| 1654 | || DECL_ARTIFICIAL (field)) |
| 1655 | continue; |
| 1656 | |
| 1657 | /* We don't need to process the type further if offset is variable, |
| 1658 | since the offsets of remaining members will also be variable. */ |
| 1659 | if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST |
| 1660 | || TREE_CODE (DECL_FIELD_BIT_OFFSET (field)) != INTEGER_CST) |
| 1661 | break; |
| 1662 | |
| 1663 | /* Similarly stop processing the type if offset_tree |
| 1664 | does not fit in unsigned HOST_WIDE_INT. */ |
| 1665 | offset_tree = bit_position (field); |
| 1666 | if (!tree_fits_uhwi_p (offset_tree)) |
| 1667 | break; |
| 1668 | |
| 1669 | offset = tree_to_uhwi (offset_tree); |
| 1670 | alignment = get_vec_alignment_for_type (TREE_TYPE (field)); |
| 1671 | |
| 1672 | /* Get maximum alignment of vectorized field/array among those members |
| 1673 | whose offset is multiple of the vector alignment. */ |
| 1674 | if (alignment |
| 1675 | && (offset % alignment == 0) |
| 1676 | && (alignment > max_align)) |
| 1677 | max_align = alignment; |
| 1678 | } |
| 1679 | |
| 1680 | type_align_map->put (k: type, v: max_align); |
| 1681 | return max_align; |
| 1682 | } |
| 1683 | |
| 1684 | /* Return alignment of vector type corresponding to decl's scalar type |
| 1685 | or 0 if it doesn't exist or the vector alignment is lesser than |
| 1686 | decl's alignment. */ |
| 1687 | static unsigned |
| 1688 | get_vec_alignment_for_type (tree type) |
| 1689 | { |
| 1690 | if (type == NULL_TREE) |
| 1691 | return 0; |
| 1692 | |
| 1693 | gcc_assert (TYPE_P (type)); |
| 1694 | |
| 1695 | static unsigned alignment = 0; |
| 1696 | switch (TREE_CODE (type)) |
| 1697 | { |
| 1698 | case ARRAY_TYPE: |
| 1699 | alignment = get_vec_alignment_for_array_type (type); |
| 1700 | break; |
| 1701 | case RECORD_TYPE: |
| 1702 | alignment = get_vec_alignment_for_record_type (type); |
| 1703 | break; |
| 1704 | default: |
| 1705 | alignment = 0; |
| 1706 | break; |
| 1707 | } |
| 1708 | |
| 1709 | return (alignment > TYPE_ALIGN (type)) ? alignment : 0; |
| 1710 | } |
| 1711 | |
| 1712 | /* Entry point to increase_alignment pass. */ |
| 1713 | static unsigned int |
| 1714 | increase_alignment (void) |
| 1715 | { |
| 1716 | varpool_node *vnode; |
| 1717 | |
| 1718 | vect_location = dump_user_location_t (); |
| 1719 | type_align_map = new hash_map<tree, unsigned>; |
| 1720 | |
| 1721 | /* Increase the alignment of all global arrays for vectorization. */ |
| 1722 | FOR_EACH_DEFINED_VARIABLE (vnode) |
| 1723 | { |
| 1724 | tree decl = vnode->decl; |
| 1725 | unsigned int alignment; |
| 1726 | |
| 1727 | if ((decl_in_symtab_p (decl) |
| 1728 | && !symtab_node::get (decl)->can_increase_alignment_p ()) |
| 1729 | || DECL_USER_ALIGN (decl) || DECL_ARTIFICIAL (decl)) |
| 1730 | continue; |
| 1731 | |
| 1732 | alignment = get_vec_alignment_for_type (TREE_TYPE (decl)); |
| 1733 | if (alignment && vect_can_force_dr_alignment_p (decl, alignment)) |
| 1734 | { |
| 1735 | vnode->increase_alignment (align: alignment); |
| 1736 | if (dump_enabled_p ()) |
| 1737 | dump_printf (MSG_NOTE, "Increasing alignment of decl: %T\n" , decl); |
| 1738 | } |
| 1739 | } |
| 1740 | |
| 1741 | delete type_align_map; |
| 1742 | return 0; |
| 1743 | } |
| 1744 | |
| 1745 | |
| 1746 | namespace { |
| 1747 | |
| 1748 | const pass_data pass_data_ipa_increase_alignment = |
| 1749 | { |
| 1750 | .type: SIMPLE_IPA_PASS, /* type */ |
| 1751 | .name: "increase_alignment" , /* name */ |
| 1752 | .optinfo_flags: OPTGROUP_LOOP | OPTGROUP_VEC, /* optinfo_flags */ |
| 1753 | .tv_id: TV_IPA_OPT, /* tv_id */ |
| 1754 | .properties_required: 0, /* properties_required */ |
| 1755 | .properties_provided: 0, /* properties_provided */ |
| 1756 | .properties_destroyed: 0, /* properties_destroyed */ |
| 1757 | .todo_flags_start: 0, /* todo_flags_start */ |
| 1758 | .todo_flags_finish: 0, /* todo_flags_finish */ |
| 1759 | }; |
| 1760 | |
| 1761 | class pass_ipa_increase_alignment : public simple_ipa_opt_pass |
| 1762 | { |
| 1763 | public: |
| 1764 | pass_ipa_increase_alignment (gcc::context *ctxt) |
| 1765 | : simple_ipa_opt_pass (pass_data_ipa_increase_alignment, ctxt) |
| 1766 | {} |
| 1767 | |
| 1768 | /* opt_pass methods: */ |
| 1769 | bool gate (function *) final override |
| 1770 | { |
| 1771 | return flag_section_anchors && flag_tree_loop_vectorize; |
| 1772 | } |
| 1773 | |
| 1774 | unsigned int execute (function *) final override |
| 1775 | { |
| 1776 | return increase_alignment (); |
| 1777 | } |
| 1778 | |
| 1779 | }; // class pass_ipa_increase_alignment |
| 1780 | |
| 1781 | } // anon namespace |
| 1782 | |
| 1783 | simple_ipa_opt_pass * |
| 1784 | make_pass_ipa_increase_alignment (gcc::context *ctxt) |
| 1785 | { |
| 1786 | return new pass_ipa_increase_alignment (ctxt); |
| 1787 | } |
| 1788 | |
| 1789 | /* If the condition represented by T is a comparison or the SSA name |
| 1790 | result of a comparison, extract the comparison's operands. Represent |
| 1791 | T as NE_EXPR <T, 0> otherwise. */ |
| 1792 | |
| 1793 | void |
| 1794 | scalar_cond_masked_key::get_cond_ops_from_tree (tree t) |
| 1795 | { |
| 1796 | if (TREE_CODE_CLASS (TREE_CODE (t)) == tcc_comparison) |
| 1797 | { |
| 1798 | this->code = TREE_CODE (t); |
| 1799 | this->op0 = TREE_OPERAND (t, 0); |
| 1800 | this->op1 = TREE_OPERAND (t, 1); |
| 1801 | this->inverted_p = false; |
| 1802 | return; |
| 1803 | } |
| 1804 | |
| 1805 | if (TREE_CODE (t) == SSA_NAME) |
| 1806 | if (gassign *stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (t))) |
| 1807 | { |
| 1808 | tree_code code = gimple_assign_rhs_code (gs: stmt); |
| 1809 | if (TREE_CODE_CLASS (code) == tcc_comparison) |
| 1810 | { |
| 1811 | this->code = code; |
| 1812 | this->op0 = gimple_assign_rhs1 (gs: stmt); |
| 1813 | this->op1 = gimple_assign_rhs2 (gs: stmt); |
| 1814 | this->inverted_p = false; |
| 1815 | return; |
| 1816 | } |
| 1817 | else if (code == BIT_NOT_EXPR) |
| 1818 | { |
| 1819 | tree n_op = gimple_assign_rhs1 (gs: stmt); |
| 1820 | if ((stmt = dyn_cast<gassign *> (SSA_NAME_DEF_STMT (n_op)))) |
| 1821 | { |
| 1822 | code = gimple_assign_rhs_code (gs: stmt); |
| 1823 | if (TREE_CODE_CLASS (code) == tcc_comparison) |
| 1824 | { |
| 1825 | this->code = code; |
| 1826 | this->op0 = gimple_assign_rhs1 (gs: stmt); |
| 1827 | this->op1 = gimple_assign_rhs2 (gs: stmt); |
| 1828 | this->inverted_p = true; |
| 1829 | return; |
| 1830 | } |
| 1831 | } |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | this->code = NE_EXPR; |
| 1836 | this->op0 = t; |
| 1837 | this->op1 = build_zero_cst (TREE_TYPE (t)); |
| 1838 | this->inverted_p = false; |
| 1839 | } |
| 1840 | |
| 1841 | /* See the comment above the declaration for details. */ |
| 1842 | |
| 1843 | unsigned int |
| 1844 | vector_costs::add_stmt_cost (int count, vect_cost_for_stmt kind, |
| 1845 | stmt_vec_info stmt_info, slp_tree, |
| 1846 | tree vectype, int misalign, |
| 1847 | vect_cost_model_location where) |
| 1848 | { |
| 1849 | unsigned int cost |
| 1850 | = builtin_vectorization_cost (type_of_cost: kind, vectype, misalign) * count; |
| 1851 | return record_stmt_cost (stmt_info, where, cost); |
| 1852 | } |
| 1853 | |
| 1854 | /* See the comment above the declaration for details. */ |
| 1855 | |
| 1856 | void |
| 1857 | vector_costs::finish_cost (const vector_costs *) |
| 1858 | { |
| 1859 | gcc_assert (!m_finished); |
| 1860 | m_finished = true; |
| 1861 | } |
| 1862 | |
| 1863 | /* Record a base cost of COST units against WHERE. If STMT_INFO is |
| 1864 | nonnull, use it to adjust the cost based on execution frequency |
| 1865 | (where appropriate). */ |
| 1866 | |
| 1867 | unsigned int |
| 1868 | vector_costs::record_stmt_cost (stmt_vec_info stmt_info, |
| 1869 | vect_cost_model_location where, |
| 1870 | unsigned int cost) |
| 1871 | { |
| 1872 | cost = adjust_cost_for_freq (stmt_info, where, cost); |
| 1873 | m_costs[where] += cost; |
| 1874 | return cost; |
| 1875 | } |
| 1876 | |
| 1877 | /* COST is the base cost we have calculated for an operation in location WHERE. |
| 1878 | If STMT_INFO is nonnull, use it to adjust the cost based on execution |
| 1879 | frequency (where appropriate). Return the adjusted cost. */ |
| 1880 | |
| 1881 | unsigned int |
| 1882 | vector_costs::adjust_cost_for_freq (stmt_vec_info stmt_info, |
| 1883 | vect_cost_model_location where, |
| 1884 | unsigned int cost) |
| 1885 | { |
| 1886 | /* Statements in an inner loop relative to the loop being |
| 1887 | vectorized are weighted more heavily. The value here is |
| 1888 | arbitrary and could potentially be improved with analysis. */ |
| 1889 | if (where == vect_body |
| 1890 | && stmt_info |
| 1891 | && stmt_in_inner_loop_p (m_vinfo, stmt_info)) |
| 1892 | { |
| 1893 | loop_vec_info loop_vinfo = as_a<loop_vec_info> (p: m_vinfo); |
| 1894 | cost *= LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo); |
| 1895 | } |
| 1896 | return cost; |
| 1897 | } |
| 1898 | |
| 1899 | /* See the comment above the declaration for details. */ |
| 1900 | |
| 1901 | bool |
| 1902 | vector_costs::better_main_loop_than_p (const vector_costs *other) const |
| 1903 | { |
| 1904 | int diff = compare_inside_loop_cost (other); |
| 1905 | if (diff != 0) |
| 1906 | return diff < 0; |
| 1907 | |
| 1908 | /* If there's nothing to choose between the loop bodies, see whether |
| 1909 | there's a difference in the prologue and epilogue costs. */ |
| 1910 | diff = compare_outside_loop_cost (other); |
| 1911 | if (diff != 0) |
| 1912 | return diff < 0; |
| 1913 | |
| 1914 | return false; |
| 1915 | } |
| 1916 | |
| 1917 | |
| 1918 | /* See the comment above the declaration for details. */ |
| 1919 | |
| 1920 | bool |
| 1921 | vector_costs::better_epilogue_loop_than_p (const vector_costs *other, |
| 1922 | loop_vec_info main_loop) const |
| 1923 | { |
| 1924 | loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (p: this->m_vinfo); |
| 1925 | loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (p: other->m_vinfo); |
| 1926 | |
| 1927 | poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo); |
| 1928 | poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo); |
| 1929 | |
| 1930 | poly_uint64 main_poly_vf = LOOP_VINFO_VECT_FACTOR (main_loop); |
| 1931 | unsigned HOST_WIDE_INT main_vf; |
| 1932 | unsigned HOST_WIDE_INT other_factor, this_factor, other_cost, this_cost; |
| 1933 | /* If we can determine how many iterations are left for the epilogue |
| 1934 | loop, that is if both the main loop's vectorization factor and number |
| 1935 | of iterations are constant, then we use them to calculate the cost of |
| 1936 | the epilogue loop together with a 'likely value' for the epilogues |
| 1937 | vectorization factor. Otherwise we use the main loop's vectorization |
| 1938 | factor and the maximum poly value for the epilogue's. If the target |
| 1939 | has not provided with a sensible upper bound poly vectorization |
| 1940 | factors are likely to be favored over constant ones. */ |
| 1941 | if (main_poly_vf.is_constant (const_value: &main_vf) |
| 1942 | && LOOP_VINFO_NITERS_KNOWN_P (main_loop)) |
| 1943 | { |
| 1944 | unsigned HOST_WIDE_INT niters |
| 1945 | = LOOP_VINFO_INT_NITERS (main_loop) % main_vf; |
| 1946 | HOST_WIDE_INT other_likely_vf |
| 1947 | = estimated_poly_value (x: other_vf, kind: POLY_VALUE_LIKELY); |
| 1948 | HOST_WIDE_INT this_likely_vf |
| 1949 | = estimated_poly_value (x: this_vf, kind: POLY_VALUE_LIKELY); |
| 1950 | |
| 1951 | /* If the epilogue is using partial vectors we account for the |
| 1952 | partial iteration here too. */ |
| 1953 | other_factor = niters / other_likely_vf; |
| 1954 | if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo) |
| 1955 | && niters % other_likely_vf != 0) |
| 1956 | other_factor++; |
| 1957 | |
| 1958 | this_factor = niters / this_likely_vf; |
| 1959 | if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo) |
| 1960 | && niters % this_likely_vf != 0) |
| 1961 | this_factor++; |
| 1962 | } |
| 1963 | else |
| 1964 | { |
| 1965 | unsigned HOST_WIDE_INT main_vf_max |
| 1966 | = estimated_poly_value (x: main_poly_vf, kind: POLY_VALUE_MAX); |
| 1967 | unsigned HOST_WIDE_INT other_vf_max |
| 1968 | = estimated_poly_value (x: other_vf, kind: POLY_VALUE_MAX); |
| 1969 | unsigned HOST_WIDE_INT this_vf_max |
| 1970 | = estimated_poly_value (x: this_vf, kind: POLY_VALUE_MAX); |
| 1971 | |
| 1972 | other_factor = CEIL (main_vf_max, other_vf_max); |
| 1973 | this_factor = CEIL (main_vf_max, this_vf_max); |
| 1974 | |
| 1975 | /* If the loop is not using partial vectors then it will iterate one |
| 1976 | time less than one that does. It is safe to subtract one here, |
| 1977 | because the main loop's vf is always at least 2x bigger than that |
| 1978 | of an epilogue. */ |
| 1979 | if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (other_loop_vinfo)) |
| 1980 | other_factor -= 1; |
| 1981 | if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (this_loop_vinfo)) |
| 1982 | this_factor -= 1; |
| 1983 | } |
| 1984 | |
| 1985 | /* Compute the costs by multiplying the inside costs with the factor and |
| 1986 | add the outside costs for a more complete picture. The factor is the |
| 1987 | amount of times we are expecting to iterate this epilogue. */ |
| 1988 | other_cost = other->body_cost () * other_factor; |
| 1989 | this_cost = this->body_cost () * this_factor; |
| 1990 | other_cost += other->outside_cost (); |
| 1991 | this_cost += this->outside_cost (); |
| 1992 | return this_cost < other_cost; |
| 1993 | } |
| 1994 | |
| 1995 | /* A <=>-style subroutine of better_main_loop_than_p. Check whether we can |
| 1996 | determine the return value of better_main_loop_than_p by comparing the |
| 1997 | inside (loop body) costs of THIS and OTHER. Return: |
| 1998 | |
| 1999 | * -1 if better_main_loop_than_p should return true. |
| 2000 | * 1 if better_main_loop_than_p should return false. |
| 2001 | * 0 if we can't decide. */ |
| 2002 | |
| 2003 | int |
| 2004 | vector_costs::compare_inside_loop_cost (const vector_costs *other) const |
| 2005 | { |
| 2006 | loop_vec_info this_loop_vinfo = as_a<loop_vec_info> (p: this->m_vinfo); |
| 2007 | loop_vec_info other_loop_vinfo = as_a<loop_vec_info> (p: other->m_vinfo); |
| 2008 | |
| 2009 | struct loop *loop = LOOP_VINFO_LOOP (this_loop_vinfo); |
| 2010 | gcc_assert (LOOP_VINFO_LOOP (other_loop_vinfo) == loop); |
| 2011 | |
| 2012 | poly_int64 this_vf = LOOP_VINFO_VECT_FACTOR (this_loop_vinfo); |
| 2013 | poly_int64 other_vf = LOOP_VINFO_VECT_FACTOR (other_loop_vinfo); |
| 2014 | |
| 2015 | /* Limit the VFs to what is likely to be the maximum number of iterations, |
| 2016 | to handle cases in which at least one loop_vinfo is fully-masked. */ |
| 2017 | HOST_WIDE_INT estimated_max_niter = likely_max_stmt_executions_int (loop); |
| 2018 | if (estimated_max_niter != -1) |
| 2019 | { |
| 2020 | if (estimated_poly_value (x: this_vf, kind: POLY_VALUE_MIN) |
| 2021 | >= estimated_max_niter) |
| 2022 | this_vf = estimated_max_niter; |
| 2023 | if (estimated_poly_value (x: other_vf, kind: POLY_VALUE_MIN) |
| 2024 | >= estimated_max_niter) |
| 2025 | other_vf = estimated_max_niter; |
| 2026 | } |
| 2027 | |
| 2028 | /* Check whether the (fractional) cost per scalar iteration is lower or |
| 2029 | higher: this_inside_cost / this_vf vs. other_inside_cost / other_vf. */ |
| 2030 | poly_int64 rel_this = this_loop_vinfo->vector_costs->body_cost () * other_vf; |
| 2031 | poly_int64 rel_other |
| 2032 | = other_loop_vinfo->vector_costs->body_cost () * this_vf; |
| 2033 | |
| 2034 | HOST_WIDE_INT est_rel_this_min |
| 2035 | = estimated_poly_value (x: rel_this, kind: POLY_VALUE_MIN); |
| 2036 | HOST_WIDE_INT est_rel_this_max |
| 2037 | = estimated_poly_value (x: rel_this, kind: POLY_VALUE_MAX); |
| 2038 | |
| 2039 | HOST_WIDE_INT est_rel_other_min |
| 2040 | = estimated_poly_value (x: rel_other, kind: POLY_VALUE_MIN); |
| 2041 | HOST_WIDE_INT est_rel_other_max |
| 2042 | = estimated_poly_value (x: rel_other, kind: POLY_VALUE_MAX); |
| 2043 | |
| 2044 | /* Check first if we can make out an unambigous total order from the minimum |
| 2045 | and maximum estimates. */ |
| 2046 | if (est_rel_this_min < est_rel_other_min |
| 2047 | && est_rel_this_max < est_rel_other_max) |
| 2048 | return -1; |
| 2049 | |
| 2050 | if (est_rel_other_min < est_rel_this_min |
| 2051 | && est_rel_other_max < est_rel_this_max) |
| 2052 | return 1; |
| 2053 | |
| 2054 | /* When other_loop_vinfo uses a variable vectorization factor, |
| 2055 | we know that it has a lower cost for at least one runtime VF. |
| 2056 | However, we don't know how likely that VF is. |
| 2057 | |
| 2058 | One option would be to compare the costs for the estimated VFs. |
| 2059 | The problem is that that can put too much pressure on the cost |
| 2060 | model. E.g. if the estimated VF is also the lowest possible VF, |
| 2061 | and if other_loop_vinfo is 1 unit worse than this_loop_vinfo |
| 2062 | for the estimated VF, we'd then choose this_loop_vinfo even |
| 2063 | though (a) this_loop_vinfo might not actually be better than |
| 2064 | other_loop_vinfo for that VF and (b) it would be significantly |
| 2065 | worse at larger VFs. |
| 2066 | |
| 2067 | Here we go for a hacky compromise: pick this_loop_vinfo if it is |
| 2068 | no more expensive than other_loop_vinfo even after doubling the |
| 2069 | estimated other_loop_vinfo VF. For all but trivial loops, this |
| 2070 | ensures that we only pick this_loop_vinfo if it is significantly |
| 2071 | better than other_loop_vinfo at the estimated VF. */ |
| 2072 | if (est_rel_other_min != est_rel_this_min |
| 2073 | || est_rel_other_max != est_rel_this_max) |
| 2074 | { |
| 2075 | HOST_WIDE_INT est_rel_this_likely |
| 2076 | = estimated_poly_value (x: rel_this, kind: POLY_VALUE_LIKELY); |
| 2077 | HOST_WIDE_INT est_rel_other_likely |
| 2078 | = estimated_poly_value (x: rel_other, kind: POLY_VALUE_LIKELY); |
| 2079 | |
| 2080 | return est_rel_this_likely * 2 <= est_rel_other_likely ? -1 : 1; |
| 2081 | } |
| 2082 | |
| 2083 | return 0; |
| 2084 | } |
| 2085 | |
| 2086 | /* A <=>-style subroutine of better_main_loop_than_p, used when there is |
| 2087 | nothing to choose between the inside (loop body) costs of THIS and OTHER. |
| 2088 | Check whether we can determine the return value of better_main_loop_than_p |
| 2089 | by comparing the outside (prologue and epilogue) costs of THIS and OTHER. |
| 2090 | Return: |
| 2091 | |
| 2092 | * -1 if better_main_loop_than_p should return true. |
| 2093 | * 1 if better_main_loop_than_p should return false. |
| 2094 | * 0 if we can't decide. */ |
| 2095 | |
| 2096 | int |
| 2097 | vector_costs::compare_outside_loop_cost (const vector_costs *other) const |
| 2098 | { |
| 2099 | auto this_outside_cost = this->outside_cost (); |
| 2100 | auto other_outside_cost = other->outside_cost (); |
| 2101 | if (this_outside_cost != other_outside_cost) |
| 2102 | return this_outside_cost < other_outside_cost ? -1 : 1; |
| 2103 | |
| 2104 | return 0; |
| 2105 | } |
| 2106 | |