1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8#define KMSG_COMPONENT "cpum_sf"
9#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/kernel_stat.h>
13#include <linux/perf_event.h>
14#include <linux/percpu.h>
15#include <linux/pid.h>
16#include <linux/notifier.h>
17#include <linux/export.h>
18#include <linux/slab.h>
19#include <linux/mm.h>
20#include <linux/moduleparam.h>
21#include <asm/cpu_mf.h>
22#include <asm/irq.h>
23#include <asm/debug.h>
24#include <asm/timex.h>
25#include <linux/io.h>
26
27/* Minimum number of sample-data-block-tables:
28 * At least one table is required for the sampling buffer structure.
29 * A single table contains up to 511 pointers to sample-data-blocks.
30 */
31#define CPUM_SF_MIN_SDBT 1
32
33/* Number of sample-data-blocks per sample-data-block-table (SDBT):
34 * A table contains SDB pointers (8 bytes) and one table-link entry
35 * that points to the origin of the next SDBT.
36 */
37#define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
38
39/* Maximum page offset for an SDBT table-link entry:
40 * If this page offset is reached, a table-link entry to the next SDBT
41 * must be added.
42 */
43#define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
44static inline int require_table_link(const void *sdbt)
45{
46 return ((unsigned long)sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
47}
48
49/* Minimum and maximum sampling buffer sizes:
50 *
51 * This number represents the maximum size of the sampling buffer taking
52 * the number of sample-data-block-tables into account. Note that these
53 * numbers apply to the basic-sampling function only.
54 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
55 * the diagnostic-sampling function is active.
56 *
57 * Sampling buffer size Buffer characteristics
58 * ---------------------------------------------------
59 * 64KB == 16 pages (4KB per page)
60 * 1 page for SDB-tables
61 * 15 pages for SDBs
62 *
63 * 32MB == 8192 pages (4KB per page)
64 * 16 pages for SDB-tables
65 * 8176 pages for SDBs
66 */
67static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
68static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
69static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
70
71struct sf_buffer {
72 unsigned long *sdbt; /* Sample-data-block-table origin */
73 /* buffer characteristics (required for buffer increments) */
74 unsigned long num_sdb; /* Number of sample-data-blocks */
75 unsigned long num_sdbt; /* Number of sample-data-block-tables */
76 unsigned long *tail; /* last sample-data-block-table */
77};
78
79struct aux_buffer {
80 struct sf_buffer sfb;
81 unsigned long head; /* index of SDB of buffer head */
82 unsigned long alert_mark; /* index of SDB of alert request position */
83 unsigned long empty_mark; /* mark of SDB not marked full */
84 unsigned long *sdb_index; /* SDB address for fast lookup */
85 unsigned long *sdbt_index; /* SDBT address for fast lookup */
86};
87
88struct cpu_hw_sf {
89 /* CPU-measurement sampling information block */
90 struct hws_qsi_info_block qsi;
91 /* CPU-measurement sampling control block */
92 struct hws_lsctl_request_block lsctl;
93 struct sf_buffer sfb; /* Sampling buffer */
94 unsigned int flags; /* Status flags */
95 struct perf_event *event; /* Scheduled perf event */
96 struct perf_output_handle handle; /* AUX buffer output handle */
97};
98static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
99
100/* Debug feature */
101static debug_info_t *sfdbg;
102
103/* Sampling control helper functions */
104static inline unsigned long freq_to_sample_rate(struct hws_qsi_info_block *qsi,
105 unsigned long freq)
106{
107 return (USEC_PER_SEC / freq) * qsi->cpu_speed;
108}
109
110static inline unsigned long sample_rate_to_freq(struct hws_qsi_info_block *qsi,
111 unsigned long rate)
112{
113 return USEC_PER_SEC * qsi->cpu_speed / rate;
114}
115
116/* Return TOD timestamp contained in an trailer entry */
117static inline unsigned long long trailer_timestamp(struct hws_trailer_entry *te)
118{
119 /* TOD in STCKE format */
120 if (te->header.t)
121 return *((unsigned long long *)&te->timestamp[1]);
122
123 /* TOD in STCK format */
124 return *((unsigned long long *)&te->timestamp[0]);
125}
126
127/* Return pointer to trailer entry of an sample data block */
128static inline struct hws_trailer_entry *trailer_entry_ptr(unsigned long v)
129{
130 void *ret;
131
132 ret = (void *)v;
133 ret += PAGE_SIZE;
134 ret -= sizeof(struct hws_trailer_entry);
135
136 return ret;
137}
138
139/*
140 * Return true if the entry in the sample data block table (sdbt)
141 * is a link to the next sdbt
142 */
143static inline int is_link_entry(unsigned long *s)
144{
145 return *s & 0x1UL ? 1 : 0;
146}
147
148/* Return pointer to the linked sdbt */
149static inline unsigned long *get_next_sdbt(unsigned long *s)
150{
151 return phys_to_virt(address: *s & ~0x1UL);
152}
153
154/*
155 * sf_disable() - Switch off sampling facility
156 */
157static int sf_disable(void)
158{
159 struct hws_lsctl_request_block sreq;
160
161 memset(&sreq, 0, sizeof(sreq));
162 return lsctl(&sreq);
163}
164
165/*
166 * sf_buffer_available() - Check for an allocated sampling buffer
167 */
168static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
169{
170 return !!cpuhw->sfb.sdbt;
171}
172
173/*
174 * deallocate sampling facility buffer
175 */
176static void free_sampling_buffer(struct sf_buffer *sfb)
177{
178 unsigned long *sdbt, *curr;
179
180 if (!sfb->sdbt)
181 return;
182
183 sdbt = sfb->sdbt;
184 curr = sdbt;
185
186 /* Free the SDBT after all SDBs are processed... */
187 while (1) {
188 if (!*curr || !sdbt)
189 break;
190
191 /* Process table-link entries */
192 if (is_link_entry(s: curr)) {
193 curr = get_next_sdbt(s: curr);
194 if (sdbt)
195 free_page((unsigned long)sdbt);
196
197 /* If the origin is reached, sampling buffer is freed */
198 if (curr == sfb->sdbt)
199 break;
200 else
201 sdbt = curr;
202 } else {
203 /* Process SDB pointer */
204 if (*curr) {
205 free_page((unsigned long)phys_to_virt(*curr));
206 curr++;
207 }
208 }
209 }
210
211 debug_sprintf_event(sfdbg, 5, "%s: freed sdbt %#lx\n", __func__,
212 (unsigned long)sfb->sdbt);
213 memset(sfb, 0, sizeof(*sfb));
214}
215
216static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
217{
218 struct hws_trailer_entry *te;
219 unsigned long sdb;
220
221 /* Allocate and initialize sample-data-block */
222 sdb = get_zeroed_page(gfp_mask: gfp_flags);
223 if (!sdb)
224 return -ENOMEM;
225 te = trailer_entry_ptr(v: sdb);
226 te->header.a = 1;
227
228 /* Link SDB into the sample-data-block-table */
229 *sdbt = virt_to_phys(address: (void *)sdb);
230
231 return 0;
232}
233
234/*
235 * realloc_sampling_buffer() - extend sampler memory
236 *
237 * Allocates new sample-data-blocks and adds them to the specified sampling
238 * buffer memory.
239 *
240 * Important: This modifies the sampling buffer and must be called when the
241 * sampling facility is disabled.
242 *
243 * Returns zero on success, non-zero otherwise.
244 */
245static int realloc_sampling_buffer(struct sf_buffer *sfb,
246 unsigned long num_sdb, gfp_t gfp_flags)
247{
248 int i, rc;
249 unsigned long *new, *tail, *tail_prev = NULL;
250
251 if (!sfb->sdbt || !sfb->tail)
252 return -EINVAL;
253
254 if (!is_link_entry(s: sfb->tail))
255 return -EINVAL;
256
257 /* Append to the existing sampling buffer, overwriting the table-link
258 * register.
259 * The tail variables always points to the "tail" (last and table-link)
260 * entry in an SDB-table.
261 */
262 tail = sfb->tail;
263
264 /* Do a sanity check whether the table-link entry points to
265 * the sampling buffer origin.
266 */
267 if (sfb->sdbt != get_next_sdbt(s: tail)) {
268 debug_sprintf_event(sfdbg, 3, "%s: "
269 "sampling buffer is not linked: origin %#lx"
270 " tail %#lx\n", __func__,
271 (unsigned long)sfb->sdbt,
272 (unsigned long)tail);
273 return -EINVAL;
274 }
275
276 /* Allocate remaining SDBs */
277 rc = 0;
278 for (i = 0; i < num_sdb; i++) {
279 /* Allocate a new SDB-table if it is full. */
280 if (require_table_link(sdbt: tail)) {
281 new = (unsigned long *)get_zeroed_page(gfp_mask: gfp_flags);
282 if (!new) {
283 rc = -ENOMEM;
284 break;
285 }
286 sfb->num_sdbt++;
287 /* Link current page to tail of chain */
288 *tail = virt_to_phys(address: (void *)new) + 1;
289 tail_prev = tail;
290 tail = new;
291 }
292
293 /* Allocate a new sample-data-block.
294 * If there is not enough memory, stop the realloc process
295 * and simply use what was allocated. If this is a temporary
296 * issue, a new realloc call (if required) might succeed.
297 */
298 rc = alloc_sample_data_block(sdbt: tail, gfp_flags);
299 if (rc) {
300 /* Undo last SDBT. An SDBT with no SDB at its first
301 * entry but with an SDBT entry instead can not be
302 * handled by the interrupt handler code.
303 * Avoid this situation.
304 */
305 if (tail_prev) {
306 sfb->num_sdbt--;
307 free_page((unsigned long)new);
308 tail = tail_prev;
309 }
310 break;
311 }
312 sfb->num_sdb++;
313 tail++;
314 tail_prev = new = NULL; /* Allocated at least one SBD */
315 }
316
317 /* Link sampling buffer to its origin */
318 *tail = virt_to_phys(address: sfb->sdbt) + 1;
319 sfb->tail = tail;
320
321 debug_sprintf_event(sfdbg, 4, "%s: new buffer"
322 " settings: sdbt %lu sdb %lu\n", __func__,
323 sfb->num_sdbt, sfb->num_sdb);
324 return rc;
325}
326
327/*
328 * allocate_sampling_buffer() - allocate sampler memory
329 *
330 * Allocates and initializes a sampling buffer structure using the
331 * specified number of sample-data-blocks (SDB). For each allocation,
332 * a 4K page is used. The number of sample-data-block-tables (SDBT)
333 * are calculated from SDBs.
334 * Also set the ALERT_REQ mask in each SDBs trailer.
335 *
336 * Returns zero on success, non-zero otherwise.
337 */
338static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
339{
340 int rc;
341
342 if (sfb->sdbt)
343 return -EINVAL;
344
345 /* Allocate the sample-data-block-table origin */
346 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
347 if (!sfb->sdbt)
348 return -ENOMEM;
349 sfb->num_sdb = 0;
350 sfb->num_sdbt = 1;
351
352 /* Link the table origin to point to itself to prepare for
353 * realloc_sampling_buffer() invocation.
354 */
355 sfb->tail = sfb->sdbt;
356 *sfb->tail = virt_to_phys(address: (void *)sfb->sdbt) + 1;
357
358 /* Allocate requested number of sample-data-blocks */
359 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
360 if (rc) {
361 free_sampling_buffer(sfb);
362 debug_sprintf_event(sfdbg, 4, "%s: "
363 "realloc_sampling_buffer failed with rc %i\n",
364 __func__, rc);
365 } else
366 debug_sprintf_event(sfdbg, 4,
367 "%s: tear %#lx dear %#lx\n", __func__,
368 (unsigned long)sfb->sdbt, (unsigned long)*sfb->sdbt);
369 return rc;
370}
371
372static void sfb_set_limits(unsigned long min, unsigned long max)
373{
374 struct hws_qsi_info_block si;
375
376 CPUM_SF_MIN_SDB = min;
377 CPUM_SF_MAX_SDB = max;
378
379 memset(&si, 0, sizeof(si));
380 if (!qsi(&si))
381 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
382}
383
384static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
385{
386 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
387 : CPUM_SF_MAX_SDB;
388}
389
390static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
391 struct hw_perf_event *hwc)
392{
393 if (!sfb->sdbt)
394 return SFB_ALLOC_REG(hwc);
395 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
396 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
397 return 0;
398}
399
400static int sfb_has_pending_allocs(struct sf_buffer *sfb,
401 struct hw_perf_event *hwc)
402{
403 return sfb_pending_allocs(sfb, hwc) > 0;
404}
405
406static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
407{
408 /* Limit the number of SDBs to not exceed the maximum */
409 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
410 if (num)
411 SFB_ALLOC_REG(hwc) += num;
412}
413
414static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
415{
416 SFB_ALLOC_REG(hwc) = 0;
417 sfb_account_allocs(num, hwc);
418}
419
420static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
421{
422 if (cpuhw->sfb.sdbt)
423 free_sampling_buffer(sfb: &cpuhw->sfb);
424}
425
426static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
427{
428 unsigned long n_sdb, freq;
429 size_t sample_size;
430
431 /* Calculate sampling buffers using 4K pages
432 *
433 * 1. The sampling size is 32 bytes for basic sampling. This size
434 * is the same for all machine types. Diagnostic
435 * sampling uses auxlilary data buffer setup which provides the
436 * memory for SDBs using linux common code auxiliary trace
437 * setup.
438 *
439 * 2. Function alloc_sampling_buffer() sets the Alert Request
440 * Control indicator to trigger a measurement-alert to harvest
441 * sample-data-blocks (SDB). This is done per SDB. This
442 * measurement alert interrupt fires quick enough to handle
443 * one SDB, on very high frequency and work loads there might
444 * be 2 to 3 SBDs available for sample processing.
445 * Currently there is no need for setup alert request on every
446 * n-th page. This is counterproductive as one IRQ triggers
447 * a very high number of samples to be processed at one IRQ.
448 *
449 * 3. Use the sampling frequency as input.
450 * Compute the number of SDBs and ensure a minimum
451 * of CPUM_SF_MIN_SDB. Depending on frequency add some more
452 * SDBs to handle a higher sampling rate.
453 * Use a minimum of CPUM_SF_MIN_SDB and allow for 100 samples
454 * (one SDB) for every 10000 HZ frequency increment.
455 *
456 * 4. Compute the number of sample-data-block-tables (SDBT) and
457 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
458 * to 511 SDBs).
459 */
460 sample_size = sizeof(struct hws_basic_entry);
461 freq = sample_rate_to_freq(qsi: &cpuhw->qsi, rate: SAMPL_RATE(hwc));
462 n_sdb = CPUM_SF_MIN_SDB + DIV_ROUND_UP(freq, 10000);
463
464 /* If there is already a sampling buffer allocated, it is very likely
465 * that the sampling facility is enabled too. If the event to be
466 * initialized requires a greater sampling buffer, the allocation must
467 * be postponed. Changing the sampling buffer requires the sampling
468 * facility to be in the disabled state. So, account the number of
469 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
470 * before the event is started.
471 */
472 sfb_init_allocs(num: n_sdb, hwc);
473 if (sf_buffer_available(cpuhw))
474 return 0;
475
476 debug_sprintf_event(sfdbg, 3,
477 "%s: rate %lu f %lu sdb %lu/%lu"
478 " sample_size %lu cpuhw %p\n", __func__,
479 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
480 sample_size, cpuhw);
481
482 return alloc_sampling_buffer(sfb: &cpuhw->sfb,
483 num_sdb: sfb_pending_allocs(sfb: &cpuhw->sfb, hwc));
484}
485
486static unsigned long min_percent(unsigned int percent, unsigned long base,
487 unsigned long min)
488{
489 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
490}
491
492static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
493{
494 /* Use a percentage-based approach to extend the sampling facility
495 * buffer. Accept up to 5% sample data loss.
496 * Vary the extents between 1% to 5% of the current number of
497 * sample-data-blocks.
498 */
499 if (ratio <= 5)
500 return 0;
501 if (ratio <= 25)
502 return min_percent(percent: 1, base, min: 1);
503 if (ratio <= 50)
504 return min_percent(percent: 1, base, min: 1);
505 if (ratio <= 75)
506 return min_percent(percent: 2, base, min: 2);
507 if (ratio <= 100)
508 return min_percent(percent: 3, base, min: 3);
509 if (ratio <= 250)
510 return min_percent(percent: 4, base, min: 4);
511
512 return min_percent(percent: 5, base, min: 8);
513}
514
515static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
516 struct hw_perf_event *hwc)
517{
518 unsigned long ratio, num;
519
520 if (!OVERFLOW_REG(hwc))
521 return;
522
523 /* The sample_overflow contains the average number of sample data
524 * that has been lost because sample-data-blocks were full.
525 *
526 * Calculate the total number of sample data entries that has been
527 * discarded. Then calculate the ratio of lost samples to total samples
528 * per second in percent.
529 */
530 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
531 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
532
533 /* Compute number of sample-data-blocks */
534 num = compute_sfb_extent(ratio, base: cpuhw->sfb.num_sdb);
535 if (num)
536 sfb_account_allocs(num, hwc);
537
538 debug_sprintf_event(sfdbg, 5, "%s: overflow %llu ratio %lu num %lu\n",
539 __func__, OVERFLOW_REG(hwc), ratio, num);
540 OVERFLOW_REG(hwc) = 0;
541}
542
543/* extend_sampling_buffer() - Extend sampling buffer
544 * @sfb: Sampling buffer structure (for local CPU)
545 * @hwc: Perf event hardware structure
546 *
547 * Use this function to extend the sampling buffer based on the overflow counter
548 * and postponed allocation extents stored in the specified Perf event hardware.
549 *
550 * Important: This function disables the sampling facility in order to safely
551 * change the sampling buffer structure. Do not call this function
552 * when the PMU is active.
553 */
554static void extend_sampling_buffer(struct sf_buffer *sfb,
555 struct hw_perf_event *hwc)
556{
557 unsigned long num, num_old;
558 int rc;
559
560 num = sfb_pending_allocs(sfb, hwc);
561 if (!num)
562 return;
563 num_old = sfb->num_sdb;
564
565 /* Disable the sampling facility to reset any states and also
566 * clear pending measurement alerts.
567 */
568 sf_disable();
569
570 /* Extend the sampling buffer.
571 * This memory allocation typically happens in an atomic context when
572 * called by perf. Because this is a reallocation, it is fine if the
573 * new SDB-request cannot be satisfied immediately.
574 */
575 rc = realloc_sampling_buffer(sfb, num_sdb: num, GFP_ATOMIC);
576 if (rc)
577 debug_sprintf_event(sfdbg, 5, "%s: realloc failed with rc %i\n",
578 __func__, rc);
579
580 if (sfb_has_pending_allocs(sfb, hwc))
581 debug_sprintf_event(sfdbg, 5, "%s: "
582 "req %lu alloc %lu remaining %lu\n",
583 __func__, num, sfb->num_sdb - num_old,
584 sfb_pending_allocs(sfb, hwc));
585}
586
587/* Number of perf events counting hardware events */
588static atomic_t num_events;
589/* Used to avoid races in calling reserve/release_cpumf_hardware */
590static DEFINE_MUTEX(pmc_reserve_mutex);
591
592#define PMC_INIT 0
593#define PMC_RELEASE 1
594#define PMC_FAILURE 2
595static void setup_pmc_cpu(void *flags)
596{
597 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
598 int err = 0;
599
600 switch (*((int *)flags)) {
601 case PMC_INIT:
602 memset(cpusf, 0, sizeof(*cpusf));
603 err = qsi(&cpusf->qsi);
604 if (err)
605 break;
606 cpusf->flags |= PMU_F_RESERVED;
607 err = sf_disable();
608 break;
609 case PMC_RELEASE:
610 cpusf->flags &= ~PMU_F_RESERVED;
611 err = sf_disable();
612 if (!err)
613 deallocate_buffers(cpuhw: cpusf);
614 break;
615 }
616 if (err) {
617 *((int *)flags) |= PMC_FAILURE;
618 pr_err("Switching off the sampling facility failed with rc %i\n", err);
619 }
620}
621
622static void release_pmc_hardware(void)
623{
624 int flags = PMC_RELEASE;
625
626 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
627 on_each_cpu(func: setup_pmc_cpu, info: &flags, wait: 1);
628}
629
630static int reserve_pmc_hardware(void)
631{
632 int flags = PMC_INIT;
633
634 on_each_cpu(func: setup_pmc_cpu, info: &flags, wait: 1);
635 if (flags & PMC_FAILURE) {
636 release_pmc_hardware();
637 return -ENODEV;
638 }
639 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
640
641 return 0;
642}
643
644static void hw_perf_event_destroy(struct perf_event *event)
645{
646 /* Release PMC if this is the last perf event */
647 if (!atomic_add_unless(v: &num_events, a: -1, u: 1)) {
648 mutex_lock(&pmc_reserve_mutex);
649 if (atomic_dec_return(v: &num_events) == 0)
650 release_pmc_hardware();
651 mutex_unlock(lock: &pmc_reserve_mutex);
652 }
653}
654
655static void hw_init_period(struct hw_perf_event *hwc, u64 period)
656{
657 hwc->sample_period = period;
658 hwc->last_period = hwc->sample_period;
659 local64_set(&hwc->period_left, hwc->sample_period);
660}
661
662static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
663 unsigned long rate)
664{
665 return clamp_t(unsigned long, rate,
666 si->min_sampl_rate, si->max_sampl_rate);
667}
668
669static u32 cpumsf_pid_type(struct perf_event *event,
670 u32 pid, enum pid_type type)
671{
672 struct task_struct *tsk;
673
674 /* Idle process */
675 if (!pid)
676 goto out;
677
678 tsk = find_task_by_pid_ns(nr: pid, ns: &init_pid_ns);
679 pid = -1;
680 if (tsk) {
681 /*
682 * Only top level events contain the pid namespace in which
683 * they are created.
684 */
685 if (event->parent)
686 event = event->parent;
687 pid = __task_pid_nr_ns(task: tsk, type, ns: event->ns);
688 /*
689 * See also 1d953111b648
690 * "perf/core: Don't report zero PIDs for exiting tasks".
691 */
692 if (!pid && !pid_alive(p: tsk))
693 pid = -1;
694 }
695out:
696 return pid;
697}
698
699static void cpumsf_output_event_pid(struct perf_event *event,
700 struct perf_sample_data *data,
701 struct pt_regs *regs)
702{
703 u32 pid;
704 struct perf_event_header header;
705 struct perf_output_handle handle;
706
707 /*
708 * Obtain the PID from the basic-sampling data entry and
709 * correct the data->tid_entry.pid value.
710 */
711 pid = data->tid_entry.pid;
712
713 /* Protect callchain buffers, tasks */
714 rcu_read_lock();
715
716 perf_prepare_sample(data, event, regs);
717 perf_prepare_header(header: &header, data, event, regs);
718 if (perf_output_begin(handle: &handle, data, event, size: header.size))
719 goto out;
720
721 /* Update the process ID (see also kernel/events/core.c) */
722 data->tid_entry.pid = cpumsf_pid_type(event, pid, type: PIDTYPE_TGID);
723 data->tid_entry.tid = cpumsf_pid_type(event, pid, type: PIDTYPE_PID);
724
725 perf_output_sample(handle: &handle, header: &header, data, event);
726 perf_output_end(handle: &handle);
727out:
728 rcu_read_unlock();
729}
730
731static unsigned long getrate(bool freq, unsigned long sample,
732 struct hws_qsi_info_block *si)
733{
734 unsigned long rate;
735
736 if (freq) {
737 rate = freq_to_sample_rate(qsi: si, freq: sample);
738 rate = hw_limit_rate(si, rate);
739 } else {
740 /* The min/max sampling rates specifies the valid range
741 * of sample periods. If the specified sample period is
742 * out of range, limit the period to the range boundary.
743 */
744 rate = hw_limit_rate(si, rate: sample);
745
746 /* The perf core maintains a maximum sample rate that is
747 * configurable through the sysctl interface. Ensure the
748 * sampling rate does not exceed this value. This also helps
749 * to avoid throttling when pushing samples with
750 * perf_event_overflow().
751 */
752 if (sample_rate_to_freq(qsi: si, rate) >
753 sysctl_perf_event_sample_rate) {
754 debug_sprintf_event(sfdbg, 1, "%s: "
755 "Sampling rate exceeds maximum "
756 "perf sample rate\n", __func__);
757 rate = 0;
758 }
759 }
760 return rate;
761}
762
763/* The sampling information (si) contains information about the
764 * min/max sampling intervals and the CPU speed. So calculate the
765 * correct sampling interval and avoid the whole period adjust
766 * feedback loop.
767 *
768 * Since the CPU Measurement sampling facility can not handle frequency
769 * calculate the sampling interval when frequency is specified using
770 * this formula:
771 * interval := cpu_speed * 1000000 / sample_freq
772 *
773 * Returns errno on bad input and zero on success with parameter interval
774 * set to the correct sampling rate.
775 *
776 * Note: This function turns off freq bit to avoid calling function
777 * perf_adjust_period(). This causes frequency adjustment in the common
778 * code part which causes tremendous variations in the counter values.
779 */
780static int __hw_perf_event_init_rate(struct perf_event *event,
781 struct hws_qsi_info_block *si)
782{
783 struct perf_event_attr *attr = &event->attr;
784 struct hw_perf_event *hwc = &event->hw;
785 unsigned long rate;
786
787 if (attr->freq) {
788 if (!attr->sample_freq)
789 return -EINVAL;
790 rate = getrate(freq: attr->freq, sample: attr->sample_freq, si);
791 attr->freq = 0; /* Don't call perf_adjust_period() */
792 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FREQ_MODE;
793 } else {
794 rate = getrate(freq: attr->freq, sample: attr->sample_period, si);
795 if (!rate)
796 return -EINVAL;
797 }
798 attr->sample_period = rate;
799 SAMPL_RATE(hwc) = rate;
800 hw_init_period(hwc, period: SAMPL_RATE(hwc));
801 debug_sprintf_event(sfdbg, 4, "%s: cpu %d period %#llx freq %d,%#lx\n",
802 __func__, event->cpu, event->attr.sample_period,
803 event->attr.freq, SAMPLE_FREQ_MODE(hwc));
804 return 0;
805}
806
807static int __hw_perf_event_init(struct perf_event *event)
808{
809 struct cpu_hw_sf *cpuhw;
810 struct hws_qsi_info_block si;
811 struct perf_event_attr *attr = &event->attr;
812 struct hw_perf_event *hwc = &event->hw;
813 int cpu, err;
814
815 /* Reserve CPU-measurement sampling facility */
816 err = 0;
817 if (!atomic_inc_not_zero(v: &num_events)) {
818 mutex_lock(&pmc_reserve_mutex);
819 if (atomic_read(v: &num_events) == 0 && reserve_pmc_hardware())
820 err = -EBUSY;
821 else
822 atomic_inc(v: &num_events);
823 mutex_unlock(lock: &pmc_reserve_mutex);
824 }
825 event->destroy = hw_perf_event_destroy;
826
827 if (err)
828 goto out;
829
830 /* Access per-CPU sampling information (query sampling info) */
831 /*
832 * The event->cpu value can be -1 to count on every CPU, for example,
833 * when attaching to a task. If this is specified, use the query
834 * sampling info from the current CPU, otherwise use event->cpu to
835 * retrieve the per-CPU information.
836 * Later, cpuhw indicates whether to allocate sampling buffers for a
837 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
838 */
839 memset(&si, 0, sizeof(si));
840 cpuhw = NULL;
841 if (event->cpu == -1)
842 qsi(&si);
843 else {
844 /* Event is pinned to a particular CPU, retrieve the per-CPU
845 * sampling structure for accessing the CPU-specific QSI.
846 */
847 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
848 si = cpuhw->qsi;
849 }
850
851 /* Check sampling facility authorization and, if not authorized,
852 * fall back to other PMUs. It is safe to check any CPU because
853 * the authorization is identical for all configured CPUs.
854 */
855 if (!si.as) {
856 err = -ENOENT;
857 goto out;
858 }
859
860 if (si.ribm & CPU_MF_SF_RIBM_NOTAV) {
861 pr_warn("CPU Measurement Facility sampling is temporarily not available\n");
862 err = -EBUSY;
863 goto out;
864 }
865
866 /* Always enable basic sampling */
867 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
868
869 /* Check if diagnostic sampling is requested. Deny if the required
870 * sampling authorization is missing.
871 */
872 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
873 if (!si.ad) {
874 err = -EPERM;
875 goto out;
876 }
877 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
878 }
879
880 err = __hw_perf_event_init_rate(event, si: &si);
881 if (err)
882 goto out;
883
884 /* Initialize sample data overflow accounting */
885 hwc->extra_reg.reg = REG_OVERFLOW;
886 OVERFLOW_REG(hwc) = 0;
887
888 /* Use AUX buffer. No need to allocate it by ourself */
889 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
890 return 0;
891
892 /* Allocate the per-CPU sampling buffer using the CPU information
893 * from the event. If the event is not pinned to a particular
894 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
895 * buffers for each online CPU.
896 */
897 if (cpuhw)
898 /* Event is pinned to a particular CPU */
899 err = allocate_buffers(cpuhw, hwc);
900 else {
901 /* Event is not pinned, allocate sampling buffer on
902 * each online CPU
903 */
904 for_each_online_cpu(cpu) {
905 cpuhw = &per_cpu(cpu_hw_sf, cpu);
906 err = allocate_buffers(cpuhw, hwc);
907 if (err)
908 break;
909 }
910 }
911
912 /* If PID/TID sampling is active, replace the default overflow
913 * handler to extract and resolve the PIDs from the basic-sampling
914 * data entries.
915 */
916 if (event->attr.sample_type & PERF_SAMPLE_TID)
917 if (is_default_overflow_handler(event))
918 event->overflow_handler = cpumsf_output_event_pid;
919out:
920 return err;
921}
922
923static bool is_callchain_event(struct perf_event *event)
924{
925 u64 sample_type = event->attr.sample_type;
926
927 return sample_type & (PERF_SAMPLE_CALLCHAIN | PERF_SAMPLE_REGS_USER |
928 PERF_SAMPLE_STACK_USER);
929}
930
931static int cpumsf_pmu_event_init(struct perf_event *event)
932{
933 int err;
934
935 /* No support for taken branch sampling */
936 /* No support for callchain, stacks and registers */
937 if (has_branch_stack(event) || is_callchain_event(event))
938 return -EOPNOTSUPP;
939
940 switch (event->attr.type) {
941 case PERF_TYPE_RAW:
942 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
943 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
944 return -ENOENT;
945 break;
946 case PERF_TYPE_HARDWARE:
947 /* Support sampling of CPU cycles in addition to the
948 * counter facility. However, the counter facility
949 * is more precise and, hence, restrict this PMU to
950 * sampling events only.
951 */
952 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
953 return -ENOENT;
954 if (!is_sampling_event(event))
955 return -ENOENT;
956 break;
957 default:
958 return -ENOENT;
959 }
960
961 /* Force reset of idle/hv excludes regardless of what the
962 * user requested.
963 */
964 if (event->attr.exclude_hv)
965 event->attr.exclude_hv = 0;
966 if (event->attr.exclude_idle)
967 event->attr.exclude_idle = 0;
968
969 err = __hw_perf_event_init(event);
970 if (unlikely(err))
971 if (event->destroy)
972 event->destroy(event);
973 return err;
974}
975
976static void cpumsf_pmu_enable(struct pmu *pmu)
977{
978 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
979 struct hw_perf_event *hwc;
980 int err;
981
982 if (cpuhw->flags & PMU_F_ENABLED)
983 return;
984
985 if (cpuhw->flags & PMU_F_ERR_MASK)
986 return;
987
988 /* Check whether to extent the sampling buffer.
989 *
990 * Two conditions trigger an increase of the sampling buffer for a
991 * perf event:
992 * 1. Postponed buffer allocations from the event initialization.
993 * 2. Sampling overflows that contribute to pending allocations.
994 *
995 * Note that the extend_sampling_buffer() function disables the sampling
996 * facility, but it can be fully re-enabled using sampling controls that
997 * have been saved in cpumsf_pmu_disable().
998 */
999 if (cpuhw->event) {
1000 hwc = &cpuhw->event->hw;
1001 if (!(SAMPL_DIAG_MODE(hwc))) {
1002 /*
1003 * Account number of overflow-designated
1004 * buffer extents
1005 */
1006 sfb_account_overflows(cpuhw, hwc);
1007 extend_sampling_buffer(sfb: &cpuhw->sfb, hwc);
1008 }
1009 /* Rate may be adjusted with ioctl() */
1010 cpuhw->lsctl.interval = SAMPL_RATE(&cpuhw->event->hw);
1011 }
1012
1013 /* (Re)enable the PMU and sampling facility */
1014 cpuhw->flags |= PMU_F_ENABLED;
1015 barrier();
1016
1017 err = lsctl(&cpuhw->lsctl);
1018 if (err) {
1019 cpuhw->flags &= ~PMU_F_ENABLED;
1020 pr_err("Loading sampling controls failed: op 1 err %i\n", err);
1021 return;
1022 }
1023
1024 /* Load current program parameter */
1025 lpp(&S390_lowcore.lpp);
1026
1027 debug_sprintf_event(sfdbg, 6, "%s: es %i cs %i ed %i cd %i "
1028 "interval %#lx tear %#lx dear %#lx\n", __func__,
1029 cpuhw->lsctl.es, cpuhw->lsctl.cs, cpuhw->lsctl.ed,
1030 cpuhw->lsctl.cd, cpuhw->lsctl.interval,
1031 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1032}
1033
1034static void cpumsf_pmu_disable(struct pmu *pmu)
1035{
1036 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1037 struct hws_lsctl_request_block inactive;
1038 struct hws_qsi_info_block si;
1039 int err;
1040
1041 if (!(cpuhw->flags & PMU_F_ENABLED))
1042 return;
1043
1044 if (cpuhw->flags & PMU_F_ERR_MASK)
1045 return;
1046
1047 /* Switch off sampling activation control */
1048 inactive = cpuhw->lsctl;
1049 inactive.cs = 0;
1050 inactive.cd = 0;
1051
1052 err = lsctl(&inactive);
1053 if (err) {
1054 pr_err("Loading sampling controls failed: op 2 err %i\n", err);
1055 return;
1056 }
1057
1058 /* Save state of TEAR and DEAR register contents */
1059 err = qsi(&si);
1060 if (!err) {
1061 /* TEAR/DEAR values are valid only if the sampling facility is
1062 * enabled. Note that cpumsf_pmu_disable() might be called even
1063 * for a disabled sampling facility because cpumsf_pmu_enable()
1064 * controls the enable/disable state.
1065 */
1066 if (si.es) {
1067 cpuhw->lsctl.tear = si.tear;
1068 cpuhw->lsctl.dear = si.dear;
1069 }
1070 } else
1071 debug_sprintf_event(sfdbg, 3, "%s: qsi() failed with err %i\n",
1072 __func__, err);
1073
1074 cpuhw->flags &= ~PMU_F_ENABLED;
1075}
1076
1077/* perf_exclude_event() - Filter event
1078 * @event: The perf event
1079 * @regs: pt_regs structure
1080 * @sde_regs: Sample-data-entry (sde) regs structure
1081 *
1082 * Filter perf events according to their exclude specification.
1083 *
1084 * Return non-zero if the event shall be excluded.
1085 */
1086static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
1087 struct perf_sf_sde_regs *sde_regs)
1088{
1089 if (event->attr.exclude_user && user_mode(regs))
1090 return 1;
1091 if (event->attr.exclude_kernel && !user_mode(regs))
1092 return 1;
1093 if (event->attr.exclude_guest && sde_regs->in_guest)
1094 return 1;
1095 if (event->attr.exclude_host && !sde_regs->in_guest)
1096 return 1;
1097 return 0;
1098}
1099
1100/* perf_push_sample() - Push samples to perf
1101 * @event: The perf event
1102 * @sample: Hardware sample data
1103 *
1104 * Use the hardware sample data to create perf event sample. The sample
1105 * is the pushed to the event subsystem and the function checks for
1106 * possible event overflows. If an event overflow occurs, the PMU is
1107 * stopped.
1108 *
1109 * Return non-zero if an event overflow occurred.
1110 */
1111static int perf_push_sample(struct perf_event *event,
1112 struct hws_basic_entry *basic)
1113{
1114 int overflow;
1115 struct pt_regs regs;
1116 struct perf_sf_sde_regs *sde_regs;
1117 struct perf_sample_data data;
1118
1119 /* Setup perf sample */
1120 perf_sample_data_init(data: &data, addr: 0, period: event->hw.last_period);
1121
1122 /* Setup pt_regs to look like an CPU-measurement external interrupt
1123 * using the Program Request Alert code. The regs.int_parm_long
1124 * field which is unused contains additional sample-data-entry related
1125 * indicators.
1126 */
1127 memset(&regs, 0, sizeof(regs));
1128 regs.int_code = 0x1407;
1129 regs.int_parm = CPU_MF_INT_SF_PRA;
1130 sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1131
1132 psw_bits(regs.psw).ia = basic->ia;
1133 psw_bits(regs.psw).dat = basic->T;
1134 psw_bits(regs.psw).wait = basic->W;
1135 psw_bits(regs.psw).pstate = basic->P;
1136 psw_bits(regs.psw).as = basic->AS;
1137
1138 /*
1139 * Use the hardware provided configuration level to decide if the
1140 * sample belongs to a guest or host. If that is not available,
1141 * fall back to the following heuristics:
1142 * A non-zero guest program parameter always indicates a guest
1143 * sample. Some early samples or samples from guests without
1144 * lpp usage would be misaccounted to the host. We use the asn
1145 * value as an addon heuristic to detect most of these guest samples.
1146 * If the value differs from 0xffff (the host value), we assume to
1147 * be a KVM guest.
1148 */
1149 switch (basic->CL) {
1150 case 1: /* logical partition */
1151 sde_regs->in_guest = 0;
1152 break;
1153 case 2: /* virtual machine */
1154 sde_regs->in_guest = 1;
1155 break;
1156 default: /* old machine, use heuristics */
1157 if (basic->gpp || basic->prim_asn != 0xffff)
1158 sde_regs->in_guest = 1;
1159 break;
1160 }
1161
1162 /*
1163 * Store the PID value from the sample-data-entry to be
1164 * processed and resolved by cpumsf_output_event_pid().
1165 */
1166 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1167
1168 overflow = 0;
1169 if (perf_exclude_event(event, regs: &regs, sde_regs))
1170 goto out;
1171 if (perf_event_overflow(event, data: &data, regs: &regs)) {
1172 overflow = 1;
1173 event->pmu->stop(event, 0);
1174 }
1175 perf_event_update_userpage(event);
1176out:
1177 return overflow;
1178}
1179
1180static void perf_event_count_update(struct perf_event *event, u64 count)
1181{
1182 local64_add(count, &event->count);
1183}
1184
1185/* hw_collect_samples() - Walk through a sample-data-block and collect samples
1186 * @event: The perf event
1187 * @sdbt: Sample-data-block table
1188 * @overflow: Event overflow counter
1189 *
1190 * Walks through a sample-data-block and collects sampling data entries that are
1191 * then pushed to the perf event subsystem. Depending on the sampling function,
1192 * there can be either basic-sampling or combined-sampling data entries. A
1193 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1194 * data entry. The sampling function is determined by the flags in the perf
1195 * event hardware structure. The function always works with a combined-sampling
1196 * data entry but ignores the the diagnostic portion if it is not available.
1197 *
1198 * Note that the implementation focuses on basic-sampling data entries and, if
1199 * such an entry is not valid, the entire combined-sampling data entry is
1200 * ignored.
1201 *
1202 * The overflow variables counts the number of samples that has been discarded
1203 * due to a perf event overflow.
1204 */
1205static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1206 unsigned long long *overflow)
1207{
1208 struct hws_trailer_entry *te;
1209 struct hws_basic_entry *sample;
1210
1211 te = trailer_entry_ptr(v: (unsigned long)sdbt);
1212 sample = (struct hws_basic_entry *)sdbt;
1213 while ((unsigned long *)sample < (unsigned long *)te) {
1214 /* Check for an empty sample */
1215 if (!sample->def || sample->LS)
1216 break;
1217
1218 /* Update perf event period */
1219 perf_event_count_update(event, count: SAMPL_RATE(&event->hw));
1220
1221 /* Check whether sample is valid */
1222 if (sample->def == 0x0001) {
1223 /* If an event overflow occurred, the PMU is stopped to
1224 * throttle event delivery. Remaining sample data is
1225 * discarded.
1226 */
1227 if (!*overflow) {
1228 /* Check whether sample is consistent */
1229 if (sample->I == 0 && sample->W == 0) {
1230 /* Deliver sample data to perf */
1231 *overflow = perf_push_sample(event,
1232 basic: sample);
1233 }
1234 } else
1235 /* Count discarded samples */
1236 *overflow += 1;
1237 } else {
1238 debug_sprintf_event(sfdbg, 4,
1239 "%s: Found unknown"
1240 " sampling data entry: te->f %i"
1241 " basic.def %#4x (%p)\n", __func__,
1242 te->header.f, sample->def, sample);
1243 /* Sample slot is not yet written or other record.
1244 *
1245 * This condition can occur if the buffer was reused
1246 * from a combined basic- and diagnostic-sampling.
1247 * If only basic-sampling is then active, entries are
1248 * written into the larger diagnostic entries.
1249 * This is typically the case for sample-data-blocks
1250 * that are not full. Stop processing if the first
1251 * invalid format was detected.
1252 */
1253 if (!te->header.f)
1254 break;
1255 }
1256
1257 /* Reset sample slot and advance to next sample */
1258 sample->def = 0;
1259 sample++;
1260 }
1261}
1262
1263/* hw_perf_event_update() - Process sampling buffer
1264 * @event: The perf event
1265 * @flush_all: Flag to also flush partially filled sample-data-blocks
1266 *
1267 * Processes the sampling buffer and create perf event samples.
1268 * The sampling buffer position are retrieved and saved in the TEAR_REG
1269 * register of the specified perf event.
1270 *
1271 * Only full sample-data-blocks are processed. Specify the flush_all flag
1272 * to also walk through partially filled sample-data-blocks.
1273 */
1274static void hw_perf_event_update(struct perf_event *event, int flush_all)
1275{
1276 unsigned long long event_overflow, sampl_overflow, num_sdb;
1277 union hws_trailer_header old, prev, new;
1278 struct hw_perf_event *hwc = &event->hw;
1279 struct hws_trailer_entry *te;
1280 unsigned long *sdbt, sdb;
1281 int done;
1282
1283 /*
1284 * AUX buffer is used when in diagnostic sampling mode.
1285 * No perf events/samples are created.
1286 */
1287 if (SAMPL_DIAG_MODE(&event->hw))
1288 return;
1289
1290 sdbt = (unsigned long *)TEAR_REG(hwc);
1291 done = event_overflow = sampl_overflow = num_sdb = 0;
1292 while (!done) {
1293 /* Get the trailer entry of the sample-data-block */
1294 sdb = (unsigned long)phys_to_virt(address: *sdbt);
1295 te = trailer_entry_ptr(v: sdb);
1296
1297 /* Leave loop if no more work to do (block full indicator) */
1298 if (!te->header.f) {
1299 done = 1;
1300 if (!flush_all)
1301 break;
1302 }
1303
1304 /* Check the sample overflow count */
1305 if (te->header.overflow)
1306 /* Account sample overflows and, if a particular limit
1307 * is reached, extend the sampling buffer.
1308 * For details, see sfb_account_overflows().
1309 */
1310 sampl_overflow += te->header.overflow;
1311
1312 /* Timestamps are valid for full sample-data-blocks only */
1313 debug_sprintf_event(sfdbg, 6, "%s: sdbt %#lx/%#lx "
1314 "overflow %llu timestamp %#llx\n",
1315 __func__, sdb, (unsigned long)sdbt,
1316 te->header.overflow,
1317 (te->header.f) ? trailer_timestamp(te) : 0ULL);
1318
1319 /* Collect all samples from a single sample-data-block and
1320 * flag if an (perf) event overflow happened. If so, the PMU
1321 * is stopped and remaining samples will be discarded.
1322 */
1323 hw_collect_samples(event, sdbt: (unsigned long *)sdb, overflow: &event_overflow);
1324 num_sdb++;
1325
1326 /* Reset trailer (using compare-double-and-swap) */
1327 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1328 do {
1329 old.val = prev.val;
1330 new.val = prev.val;
1331 new.f = 0;
1332 new.a = 1;
1333 new.overflow = 0;
1334 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1335 } while (prev.val != old.val);
1336
1337 /* Advance to next sample-data-block */
1338 sdbt++;
1339 if (is_link_entry(s: sdbt))
1340 sdbt = get_next_sdbt(s: sdbt);
1341
1342 /* Update event hardware registers */
1343 TEAR_REG(hwc) = (unsigned long) sdbt;
1344
1345 /* Stop processing sample-data if all samples of the current
1346 * sample-data-block were flushed even if it was not full.
1347 */
1348 if (flush_all && done)
1349 break;
1350 }
1351
1352 /* Account sample overflows in the event hardware structure */
1353 if (sampl_overflow)
1354 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1355 sampl_overflow, 1 + num_sdb);
1356
1357 /* Perf_event_overflow() and perf_event_account_interrupt() limit
1358 * the interrupt rate to an upper limit. Roughly 1000 samples per
1359 * task tick.
1360 * Hitting this limit results in a large number
1361 * of throttled REF_REPORT_THROTTLE entries and the samples
1362 * are dropped.
1363 * Slightly increase the interval to avoid hitting this limit.
1364 */
1365 if (event_overflow) {
1366 SAMPL_RATE(hwc) += DIV_ROUND_UP(SAMPL_RATE(hwc), 10);
1367 debug_sprintf_event(sfdbg, 1, "%s: rate adjustment %ld\n",
1368 __func__,
1369 DIV_ROUND_UP(SAMPL_RATE(hwc), 10));
1370 }
1371
1372 if (sampl_overflow || event_overflow)
1373 debug_sprintf_event(sfdbg, 4, "%s: "
1374 "overflows: sample %llu event %llu"
1375 " total %llu num_sdb %llu\n",
1376 __func__, sampl_overflow, event_overflow,
1377 OVERFLOW_REG(hwc), num_sdb);
1378}
1379
1380static inline unsigned long aux_sdb_index(struct aux_buffer *aux,
1381 unsigned long i)
1382{
1383 return i % aux->sfb.num_sdb;
1384}
1385
1386static inline unsigned long aux_sdb_num(unsigned long start, unsigned long end)
1387{
1388 return end >= start ? end - start + 1 : 0;
1389}
1390
1391static inline unsigned long aux_sdb_num_alert(struct aux_buffer *aux)
1392{
1393 return aux_sdb_num(start: aux->head, end: aux->alert_mark);
1394}
1395
1396static inline unsigned long aux_sdb_num_empty(struct aux_buffer *aux)
1397{
1398 return aux_sdb_num(start: aux->head, end: aux->empty_mark);
1399}
1400
1401/*
1402 * Get trailer entry by index of SDB.
1403 */
1404static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1405 unsigned long index)
1406{
1407 unsigned long sdb;
1408
1409 index = aux_sdb_index(aux, i: index);
1410 sdb = aux->sdb_index[index];
1411 return trailer_entry_ptr(v: sdb);
1412}
1413
1414/*
1415 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1416 * disabled. Collect the full SDBs in AUX buffer which have not reached
1417 * the point of alert indicator. And ignore the SDBs which are not
1418 * full.
1419 *
1420 * 1. Scan SDBs to see how much data is there and consume them.
1421 * 2. Remove alert indicator in the buffer.
1422 */
1423static void aux_output_end(struct perf_output_handle *handle)
1424{
1425 unsigned long i, range_scan, idx;
1426 struct aux_buffer *aux;
1427 struct hws_trailer_entry *te;
1428
1429 aux = perf_get_aux(handle);
1430 if (!aux)
1431 return;
1432
1433 range_scan = aux_sdb_num_alert(aux);
1434 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1435 te = aux_sdb_trailer(aux, index: idx);
1436 if (!te->header.f)
1437 break;
1438 }
1439 /* i is num of SDBs which are full */
1440 perf_aux_output_end(handle, size: i << PAGE_SHIFT);
1441
1442 /* Remove alert indicators in the buffer */
1443 te = aux_sdb_trailer(aux, index: aux->alert_mark);
1444 te->header.a = 0;
1445
1446 debug_sprintf_event(sfdbg, 6, "%s: SDBs %ld range %ld head %ld\n",
1447 __func__, i, range_scan, aux->head);
1448}
1449
1450/*
1451 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1452 * is first added to the CPU or rescheduled again to the CPU. It is called
1453 * with pmu disabled.
1454 *
1455 * 1. Reset the trailer of SDBs to get ready for new data.
1456 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1457 * head(tear/dear).
1458 */
1459static int aux_output_begin(struct perf_output_handle *handle,
1460 struct aux_buffer *aux,
1461 struct cpu_hw_sf *cpuhw)
1462{
1463 unsigned long range, i, range_scan, idx, head, base, offset;
1464 struct hws_trailer_entry *te;
1465
1466 if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1467 return -EINVAL;
1468
1469 aux->head = handle->head >> PAGE_SHIFT;
1470 range = (handle->size + 1) >> PAGE_SHIFT;
1471 if (range <= 1)
1472 return -ENOMEM;
1473
1474 /*
1475 * SDBs between aux->head and aux->empty_mark are already ready
1476 * for new data. range_scan is num of SDBs not within them.
1477 */
1478 debug_sprintf_event(sfdbg, 6,
1479 "%s: range %ld head %ld alert %ld empty %ld\n",
1480 __func__, range, aux->head, aux->alert_mark,
1481 aux->empty_mark);
1482 if (range > aux_sdb_num_empty(aux)) {
1483 range_scan = range - aux_sdb_num_empty(aux);
1484 idx = aux->empty_mark + 1;
1485 for (i = 0; i < range_scan; i++, idx++) {
1486 te = aux_sdb_trailer(aux, index: idx);
1487 te->header.f = 0;
1488 te->header.a = 0;
1489 te->header.overflow = 0;
1490 }
1491 /* Save the position of empty SDBs */
1492 aux->empty_mark = aux->head + range - 1;
1493 }
1494
1495 /* Set alert indicator */
1496 aux->alert_mark = aux->head + range/2 - 1;
1497 te = aux_sdb_trailer(aux, index: aux->alert_mark);
1498 te->header.a = 1;
1499
1500 /* Reset hardware buffer head */
1501 head = aux_sdb_index(aux, i: aux->head);
1502 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1503 offset = head % CPUM_SF_SDB_PER_TABLE;
1504 cpuhw->lsctl.tear = virt_to_phys(address: (void *)base) + offset * sizeof(unsigned long);
1505 cpuhw->lsctl.dear = virt_to_phys(address: (void *)aux->sdb_index[head]);
1506
1507 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld empty %ld "
1508 "index %ld tear %#lx dear %#lx\n", __func__,
1509 aux->head, aux->alert_mark, aux->empty_mark,
1510 head / CPUM_SF_SDB_PER_TABLE,
1511 cpuhw->lsctl.tear, cpuhw->lsctl.dear);
1512
1513 return 0;
1514}
1515
1516/*
1517 * Set alert indicator on SDB at index @alert_index while sampler is running.
1518 *
1519 * Return true if successfully.
1520 * Return false if full indicator is already set by hardware sampler.
1521 */
1522static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1523 unsigned long long *overflow)
1524{
1525 union hws_trailer_header old, prev, new;
1526 struct hws_trailer_entry *te;
1527
1528 te = aux_sdb_trailer(aux, index: alert_index);
1529 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1530 do {
1531 old.val = prev.val;
1532 new.val = prev.val;
1533 *overflow = old.overflow;
1534 if (old.f) {
1535 /*
1536 * SDB is already set by hardware.
1537 * Abort and try to set somewhere
1538 * behind.
1539 */
1540 return false;
1541 }
1542 new.a = 1;
1543 new.overflow = 0;
1544 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1545 } while (prev.val != old.val);
1546 return true;
1547}
1548
1549/*
1550 * aux_reset_buffer() - Scan and setup SDBs for new samples
1551 * @aux: The AUX buffer to set
1552 * @range: The range of SDBs to scan started from aux->head
1553 * @overflow: Set to overflow count
1554 *
1555 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1556 * marked as empty, check if it is already set full by the hardware sampler.
1557 * If yes, that means new data is already there before we can set an alert
1558 * indicator. Caller should try to set alert indicator to some position behind.
1559 *
1560 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1561 * previously and have already been consumed by user space. Reset these SDBs
1562 * (clear full indicator and alert indicator) for new data.
1563 * If aux->alert_mark fall in this area, just set it. Overflow count is
1564 * recorded while scanning.
1565 *
1566 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1567 * and ready for new samples. So scanning on this area could be skipped.
1568 *
1569 * Return true if alert indicator is set successfully and false if not.
1570 */
1571static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1572 unsigned long long *overflow)
1573{
1574 unsigned long i, range_scan, idx, idx_old;
1575 union hws_trailer_header old, prev, new;
1576 unsigned long long orig_overflow;
1577 struct hws_trailer_entry *te;
1578
1579 debug_sprintf_event(sfdbg, 6, "%s: range %ld head %ld alert %ld "
1580 "empty %ld\n", __func__, range, aux->head,
1581 aux->alert_mark, aux->empty_mark);
1582 if (range <= aux_sdb_num_empty(aux))
1583 /*
1584 * No need to scan. All SDBs in range are marked as empty.
1585 * Just set alert indicator. Should check race with hardware
1586 * sampler.
1587 */
1588 return aux_set_alert(aux, alert_index: aux->alert_mark, overflow);
1589
1590 if (aux->alert_mark <= aux->empty_mark)
1591 /*
1592 * Set alert indicator on empty SDB. Should check race
1593 * with hardware sampler.
1594 */
1595 if (!aux_set_alert(aux, alert_index: aux->alert_mark, overflow))
1596 return false;
1597
1598 /*
1599 * Scan the SDBs to clear full and alert indicator used previously.
1600 * Start scanning from one SDB behind empty_mark. If the new alert
1601 * indicator fall into this range, set it.
1602 */
1603 range_scan = range - aux_sdb_num_empty(aux);
1604 idx_old = idx = aux->empty_mark + 1;
1605 for (i = 0; i < range_scan; i++, idx++) {
1606 te = aux_sdb_trailer(aux, index: idx);
1607 prev.val = READ_ONCE_ALIGNED_128(te->header.val);
1608 do {
1609 old.val = prev.val;
1610 new.val = prev.val;
1611 orig_overflow = old.overflow;
1612 new.f = 0;
1613 new.overflow = 0;
1614 if (idx == aux->alert_mark)
1615 new.a = 1;
1616 else
1617 new.a = 0;
1618 prev.val = cmpxchg128(&te->header.val, old.val, new.val);
1619 } while (prev.val != old.val);
1620 *overflow += orig_overflow;
1621 }
1622
1623 /* Update empty_mark to new position */
1624 aux->empty_mark = aux->head + range - 1;
1625
1626 debug_sprintf_event(sfdbg, 6, "%s: range_scan %ld idx %ld..%ld "
1627 "empty %ld\n", __func__, range_scan, idx_old,
1628 idx - 1, aux->empty_mark);
1629 return true;
1630}
1631
1632/*
1633 * Measurement alert handler for diagnostic mode sampling.
1634 */
1635static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1636{
1637 struct aux_buffer *aux;
1638 int done = 0;
1639 unsigned long range = 0, size;
1640 unsigned long long overflow = 0;
1641 struct perf_output_handle *handle = &cpuhw->handle;
1642 unsigned long num_sdb;
1643
1644 aux = perf_get_aux(handle);
1645 if (WARN_ON_ONCE(!aux))
1646 return;
1647
1648 /* Inform user space new data arrived */
1649 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1650 debug_sprintf_event(sfdbg, 6, "%s: #alert %ld\n", __func__,
1651 size >> PAGE_SHIFT);
1652 perf_aux_output_end(handle, size);
1653
1654 num_sdb = aux->sfb.num_sdb;
1655 while (!done) {
1656 /* Get an output handle */
1657 aux = perf_aux_output_begin(handle, event: cpuhw->event);
1658 if (handle->size == 0) {
1659 pr_err("The AUX buffer with %lu pages for the "
1660 "diagnostic-sampling mode is full\n",
1661 num_sdb);
1662 break;
1663 }
1664 if (WARN_ON_ONCE(!aux))
1665 return;
1666
1667 /* Update head and alert_mark to new position */
1668 aux->head = handle->head >> PAGE_SHIFT;
1669 range = (handle->size + 1) >> PAGE_SHIFT;
1670 if (range == 1)
1671 aux->alert_mark = aux->head;
1672 else
1673 aux->alert_mark = aux->head + range/2 - 1;
1674
1675 if (aux_reset_buffer(aux, range, overflow: &overflow)) {
1676 if (!overflow) {
1677 done = 1;
1678 break;
1679 }
1680 size = range << PAGE_SHIFT;
1681 perf_aux_output_end(handle: &cpuhw->handle, size);
1682 pr_err("Sample data caused the AUX buffer with %lu "
1683 "pages to overflow\n", aux->sfb.num_sdb);
1684 debug_sprintf_event(sfdbg, 1, "%s: head %ld range %ld "
1685 "overflow %lld\n", __func__,
1686 aux->head, range, overflow);
1687 } else {
1688 size = aux_sdb_num_alert(aux) << PAGE_SHIFT;
1689 perf_aux_output_end(handle: &cpuhw->handle, size);
1690 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1691 "already full, try another\n",
1692 __func__,
1693 aux->head, aux->alert_mark);
1694 }
1695 }
1696
1697 if (done)
1698 debug_sprintf_event(sfdbg, 6, "%s: head %ld alert %ld "
1699 "empty %ld\n", __func__, aux->head,
1700 aux->alert_mark, aux->empty_mark);
1701}
1702
1703/*
1704 * Callback when freeing AUX buffers.
1705 */
1706static void aux_buffer_free(void *data)
1707{
1708 struct aux_buffer *aux = data;
1709 unsigned long i, num_sdbt;
1710
1711 if (!aux)
1712 return;
1713
1714 /* Free SDBT. SDB is freed by the caller */
1715 num_sdbt = aux->sfb.num_sdbt;
1716 for (i = 0; i < num_sdbt; i++)
1717 free_page(aux->sdbt_index[i]);
1718
1719 kfree(objp: aux->sdbt_index);
1720 kfree(objp: aux->sdb_index);
1721 kfree(objp: aux);
1722
1723 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu\n", __func__, num_sdbt);
1724}
1725
1726static void aux_sdb_init(unsigned long sdb)
1727{
1728 struct hws_trailer_entry *te;
1729
1730 te = trailer_entry_ptr(v: sdb);
1731
1732 /* Save clock base */
1733 te->clock_base = 1;
1734 te->progusage2 = tod_clock_base.tod;
1735}
1736
1737/*
1738 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1739 * @event: Event the buffer is setup for, event->cpu == -1 means current
1740 * @pages: Array of pointers to buffer pages passed from perf core
1741 * @nr_pages: Total pages
1742 * @snapshot: Flag for snapshot mode
1743 *
1744 * This is the callback when setup an event using AUX buffer. Perf tool can
1745 * trigger this by an additional mmap() call on the event. Unlike the buffer
1746 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1747 * the task among online cpus when it is a per-thread event.
1748 *
1749 * Return the private AUX buffer structure if success or NULL if fails.
1750 */
1751static void *aux_buffer_setup(struct perf_event *event, void **pages,
1752 int nr_pages, bool snapshot)
1753{
1754 struct sf_buffer *sfb;
1755 struct aux_buffer *aux;
1756 unsigned long *new, *tail;
1757 int i, n_sdbt;
1758
1759 if (!nr_pages || !pages)
1760 return NULL;
1761
1762 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1763 pr_err("AUX buffer size (%i pages) is larger than the "
1764 "maximum sampling buffer limit\n",
1765 nr_pages);
1766 return NULL;
1767 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1768 pr_err("AUX buffer size (%i pages) is less than the "
1769 "minimum sampling buffer limit\n",
1770 nr_pages);
1771 return NULL;
1772 }
1773
1774 /* Allocate aux_buffer struct for the event */
1775 aux = kzalloc(size: sizeof(struct aux_buffer), GFP_KERNEL);
1776 if (!aux)
1777 goto no_aux;
1778 sfb = &aux->sfb;
1779
1780 /* Allocate sdbt_index for fast reference */
1781 n_sdbt = DIV_ROUND_UP(nr_pages, CPUM_SF_SDB_PER_TABLE);
1782 aux->sdbt_index = kmalloc_array(n: n_sdbt, size: sizeof(void *), GFP_KERNEL);
1783 if (!aux->sdbt_index)
1784 goto no_sdbt_index;
1785
1786 /* Allocate sdb_index for fast reference */
1787 aux->sdb_index = kmalloc_array(n: nr_pages, size: sizeof(void *), GFP_KERNEL);
1788 if (!aux->sdb_index)
1789 goto no_sdb_index;
1790
1791 /* Allocate the first SDBT */
1792 sfb->num_sdbt = 0;
1793 sfb->sdbt = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1794 if (!sfb->sdbt)
1795 goto no_sdbt;
1796 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1797 tail = sfb->tail = sfb->sdbt;
1798
1799 /*
1800 * Link the provided pages of AUX buffer to SDBT.
1801 * Allocate SDBT if needed.
1802 */
1803 for (i = 0; i < nr_pages; i++, tail++) {
1804 if (require_table_link(sdbt: tail)) {
1805 new = (unsigned long *)get_zeroed_page(GFP_KERNEL);
1806 if (!new)
1807 goto no_sdbt;
1808 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1809 /* Link current page to tail of chain */
1810 *tail = virt_to_phys(address: new) + 1;
1811 tail = new;
1812 }
1813 /* Tail is the entry in a SDBT */
1814 *tail = virt_to_phys(address: pages[i]);
1815 aux->sdb_index[i] = (unsigned long)pages[i];
1816 aux_sdb_init(sdb: (unsigned long)pages[i]);
1817 }
1818 sfb->num_sdb = nr_pages;
1819
1820 /* Link the last entry in the SDBT to the first SDBT */
1821 *tail = virt_to_phys(address: sfb->sdbt) + 1;
1822 sfb->tail = tail;
1823
1824 /*
1825 * Initial all SDBs are zeroed. Mark it as empty.
1826 * So there is no need to clear the full indicator
1827 * when this event is first added.
1828 */
1829 aux->empty_mark = sfb->num_sdb - 1;
1830
1831 debug_sprintf_event(sfdbg, 4, "%s: SDBTs %lu SDBs %lu\n", __func__,
1832 sfb->num_sdbt, sfb->num_sdb);
1833
1834 return aux;
1835
1836no_sdbt:
1837 /* SDBs (AUX buffer pages) are freed by caller */
1838 for (i = 0; i < sfb->num_sdbt; i++)
1839 free_page(aux->sdbt_index[i]);
1840 kfree(objp: aux->sdb_index);
1841no_sdb_index:
1842 kfree(objp: aux->sdbt_index);
1843no_sdbt_index:
1844 kfree(objp: aux);
1845no_aux:
1846 return NULL;
1847}
1848
1849static void cpumsf_pmu_read(struct perf_event *event)
1850{
1851 /* Nothing to do ... updates are interrupt-driven */
1852}
1853
1854/* Check if the new sampling period/frequency is appropriate.
1855 *
1856 * Return non-zero on error and zero on passed checks.
1857 */
1858static int cpumsf_pmu_check_period(struct perf_event *event, u64 value)
1859{
1860 struct hws_qsi_info_block si;
1861 unsigned long rate;
1862 bool do_freq;
1863
1864 memset(&si, 0, sizeof(si));
1865 if (event->cpu == -1) {
1866 if (qsi(&si))
1867 return -ENODEV;
1868 } else {
1869 /* Event is pinned to a particular CPU, retrieve the per-CPU
1870 * sampling structure for accessing the CPU-specific QSI.
1871 */
1872 struct cpu_hw_sf *cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
1873
1874 si = cpuhw->qsi;
1875 }
1876
1877 do_freq = !!SAMPLE_FREQ_MODE(&event->hw);
1878 rate = getrate(freq: do_freq, sample: value, si: &si);
1879 if (!rate)
1880 return -EINVAL;
1881
1882 event->attr.sample_period = rate;
1883 SAMPL_RATE(&event->hw) = rate;
1884 hw_init_period(hwc: &event->hw, period: SAMPL_RATE(&event->hw));
1885 debug_sprintf_event(sfdbg, 4, "%s:"
1886 " cpu %d value %#llx period %#llx freq %d\n",
1887 __func__, event->cpu, value,
1888 event->attr.sample_period, do_freq);
1889 return 0;
1890}
1891
1892/* Activate sampling control.
1893 * Next call of pmu_enable() starts sampling.
1894 */
1895static void cpumsf_pmu_start(struct perf_event *event, int flags)
1896{
1897 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1898
1899 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1900 return;
1901
1902 if (flags & PERF_EF_RELOAD)
1903 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1904
1905 perf_pmu_disable(pmu: event->pmu);
1906 event->hw.state = 0;
1907 cpuhw->lsctl.cs = 1;
1908 if (SAMPL_DIAG_MODE(&event->hw))
1909 cpuhw->lsctl.cd = 1;
1910 perf_pmu_enable(pmu: event->pmu);
1911}
1912
1913/* Deactivate sampling control.
1914 * Next call of pmu_enable() stops sampling.
1915 */
1916static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1917{
1918 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1919
1920 if (event->hw.state & PERF_HES_STOPPED)
1921 return;
1922
1923 perf_pmu_disable(pmu: event->pmu);
1924 cpuhw->lsctl.cs = 0;
1925 cpuhw->lsctl.cd = 0;
1926 event->hw.state |= PERF_HES_STOPPED;
1927
1928 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1929 hw_perf_event_update(event, flush_all: 1);
1930 event->hw.state |= PERF_HES_UPTODATE;
1931 }
1932 perf_pmu_enable(pmu: event->pmu);
1933}
1934
1935static int cpumsf_pmu_add(struct perf_event *event, int flags)
1936{
1937 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1938 struct aux_buffer *aux;
1939 int err;
1940
1941 if (cpuhw->flags & PMU_F_IN_USE)
1942 return -EAGAIN;
1943
1944 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1945 return -EINVAL;
1946
1947 err = 0;
1948 perf_pmu_disable(pmu: event->pmu);
1949
1950 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1951
1952 /* Set up sampling controls. Always program the sampling register
1953 * using the SDB-table start. Reset TEAR_REG event hardware register
1954 * that is used by hw_perf_event_update() to store the sampling buffer
1955 * position after samples have been flushed.
1956 */
1957 cpuhw->lsctl.s = 0;
1958 cpuhw->lsctl.h = 1;
1959 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1960 if (!SAMPL_DIAG_MODE(&event->hw)) {
1961 cpuhw->lsctl.tear = virt_to_phys(address: cpuhw->sfb.sdbt);
1962 cpuhw->lsctl.dear = *(unsigned long *)cpuhw->sfb.sdbt;
1963 TEAR_REG(&event->hw) = (unsigned long)cpuhw->sfb.sdbt;
1964 }
1965
1966 /* Ensure sampling functions are in the disabled state. If disabled,
1967 * switch on sampling enable control. */
1968 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1969 err = -EAGAIN;
1970 goto out;
1971 }
1972 if (SAMPL_DIAG_MODE(&event->hw)) {
1973 aux = perf_aux_output_begin(handle: &cpuhw->handle, event);
1974 if (!aux) {
1975 err = -EINVAL;
1976 goto out;
1977 }
1978 err = aux_output_begin(handle: &cpuhw->handle, aux, cpuhw);
1979 if (err)
1980 goto out;
1981 cpuhw->lsctl.ed = 1;
1982 }
1983 cpuhw->lsctl.es = 1;
1984
1985 /* Set in_use flag and store event */
1986 cpuhw->event = event;
1987 cpuhw->flags |= PMU_F_IN_USE;
1988
1989 if (flags & PERF_EF_START)
1990 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1991out:
1992 perf_event_update_userpage(event);
1993 perf_pmu_enable(pmu: event->pmu);
1994 return err;
1995}
1996
1997static void cpumsf_pmu_del(struct perf_event *event, int flags)
1998{
1999 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
2000
2001 perf_pmu_disable(pmu: event->pmu);
2002 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
2003
2004 cpuhw->lsctl.es = 0;
2005 cpuhw->lsctl.ed = 0;
2006 cpuhw->flags &= ~PMU_F_IN_USE;
2007 cpuhw->event = NULL;
2008
2009 if (SAMPL_DIAG_MODE(&event->hw))
2010 aux_output_end(handle: &cpuhw->handle);
2011 perf_event_update_userpage(event);
2012 perf_pmu_enable(pmu: event->pmu);
2013}
2014
2015CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
2016CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
2017
2018/* Attribute list for CPU_SF.
2019 *
2020 * The availablitiy depends on the CPU_MF sampling facility authorization
2021 * for basic + diagnositic samples. This is determined at initialization
2022 * time by the sampling facility device driver.
2023 * If the authorization for basic samples is turned off, it should be
2024 * also turned off for diagnostic sampling.
2025 *
2026 * During initialization of the device driver, check the authorization
2027 * level for diagnostic sampling and installs the attribute
2028 * file for diagnostic sampling if necessary.
2029 *
2030 * For now install a placeholder to reference all possible attributes:
2031 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
2032 * Add another entry for the final NULL pointer.
2033 */
2034enum {
2035 SF_CYCLES_BASIC_ATTR_IDX = 0,
2036 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
2037 SF_CYCLES_ATTR_MAX
2038};
2039
2040static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
2041 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
2042};
2043
2044PMU_FORMAT_ATTR(event, "config:0-63");
2045
2046static struct attribute *cpumsf_pmu_format_attr[] = {
2047 &format_attr_event.attr,
2048 NULL,
2049};
2050
2051static struct attribute_group cpumsf_pmu_events_group = {
2052 .name = "events",
2053 .attrs = cpumsf_pmu_events_attr,
2054};
2055
2056static struct attribute_group cpumsf_pmu_format_group = {
2057 .name = "format",
2058 .attrs = cpumsf_pmu_format_attr,
2059};
2060
2061static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
2062 &cpumsf_pmu_events_group,
2063 &cpumsf_pmu_format_group,
2064 NULL,
2065};
2066
2067static struct pmu cpumf_sampling = {
2068 .pmu_enable = cpumsf_pmu_enable,
2069 .pmu_disable = cpumsf_pmu_disable,
2070
2071 .event_init = cpumsf_pmu_event_init,
2072 .add = cpumsf_pmu_add,
2073 .del = cpumsf_pmu_del,
2074
2075 .start = cpumsf_pmu_start,
2076 .stop = cpumsf_pmu_stop,
2077 .read = cpumsf_pmu_read,
2078
2079 .attr_groups = cpumsf_pmu_attr_groups,
2080
2081 .setup_aux = aux_buffer_setup,
2082 .free_aux = aux_buffer_free,
2083
2084 .check_period = cpumsf_pmu_check_period,
2085};
2086
2087static void cpumf_measurement_alert(struct ext_code ext_code,
2088 unsigned int alert, unsigned long unused)
2089{
2090 struct cpu_hw_sf *cpuhw;
2091
2092 if (!(alert & CPU_MF_INT_SF_MASK))
2093 return;
2094 inc_irq_stat(IRQEXT_CMS);
2095 cpuhw = this_cpu_ptr(&cpu_hw_sf);
2096
2097 /* Measurement alerts are shared and might happen when the PMU
2098 * is not reserved. Ignore these alerts in this case. */
2099 if (!(cpuhw->flags & PMU_F_RESERVED))
2100 return;
2101
2102 /* The processing below must take care of multiple alert events that
2103 * might be indicated concurrently. */
2104
2105 /* Program alert request */
2106 if (alert & CPU_MF_INT_SF_PRA) {
2107 if (cpuhw->flags & PMU_F_IN_USE)
2108 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
2109 hw_collect_aux(cpuhw);
2110 else
2111 hw_perf_event_update(event: cpuhw->event, flush_all: 0);
2112 else
2113 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
2114 }
2115
2116 /* Report measurement alerts only for non-PRA codes */
2117 if (alert != CPU_MF_INT_SF_PRA)
2118 debug_sprintf_event(sfdbg, 6, "%s: alert %#x\n", __func__,
2119 alert);
2120
2121 /* Sampling authorization change request */
2122 if (alert & CPU_MF_INT_SF_SACA)
2123 qsi(&cpuhw->qsi);
2124
2125 /* Loss of sample data due to high-priority machine activities */
2126 if (alert & CPU_MF_INT_SF_LSDA) {
2127 pr_err("Sample data was lost\n");
2128 cpuhw->flags |= PMU_F_ERR_LSDA;
2129 sf_disable();
2130 }
2131
2132 /* Invalid sampling buffer entry */
2133 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
2134 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
2135 alert);
2136 cpuhw->flags |= PMU_F_ERR_IBE;
2137 sf_disable();
2138 }
2139}
2140
2141static int cpusf_pmu_setup(unsigned int cpu, int flags)
2142{
2143 /* Ignore the notification if no events are scheduled on the PMU.
2144 * This might be racy...
2145 */
2146 if (!atomic_read(v: &num_events))
2147 return 0;
2148
2149 local_irq_disable();
2150 setup_pmc_cpu(&flags);
2151 local_irq_enable();
2152 return 0;
2153}
2154
2155static int s390_pmu_sf_online_cpu(unsigned int cpu)
2156{
2157 return cpusf_pmu_setup(cpu, PMC_INIT);
2158}
2159
2160static int s390_pmu_sf_offline_cpu(unsigned int cpu)
2161{
2162 return cpusf_pmu_setup(cpu, PMC_RELEASE);
2163}
2164
2165static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
2166{
2167 if (!cpum_sf_avail())
2168 return -ENODEV;
2169 return sprintf(buf: buffer, fmt: "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2170}
2171
2172static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
2173{
2174 int rc;
2175 unsigned long min, max;
2176
2177 if (!cpum_sf_avail())
2178 return -ENODEV;
2179 if (!val || !strlen(val))
2180 return -EINVAL;
2181
2182 /* Valid parameter values: "min,max" or "max" */
2183 min = CPUM_SF_MIN_SDB;
2184 max = CPUM_SF_MAX_SDB;
2185 if (strchr(val, ','))
2186 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2187 else
2188 rc = kstrtoul(s: val, base: 10, res: &max);
2189
2190 if (min < 2 || min >= max || max > get_num_physpages())
2191 rc = -EINVAL;
2192 if (rc)
2193 return rc;
2194
2195 sfb_set_limits(min, max);
2196 pr_info("The sampling buffer limits have changed to: "
2197 "min %lu max %lu (diag %lu)\n",
2198 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2199 return 0;
2200}
2201
2202#define param_check_sfb_size(name, p) __param_check(name, p, void)
2203static const struct kernel_param_ops param_ops_sfb_size = {
2204 .set = param_set_sfb_size,
2205 .get = param_get_sfb_size,
2206};
2207
2208#define RS_INIT_FAILURE_QSI 0x0001
2209#define RS_INIT_FAILURE_BSDES 0x0002
2210#define RS_INIT_FAILURE_ALRT 0x0003
2211#define RS_INIT_FAILURE_PERF 0x0004
2212static void __init pr_cpumsf_err(unsigned int reason)
2213{
2214 pr_err("Sampling facility support for perf is not available: "
2215 "reason %#x\n", reason);
2216}
2217
2218static int __init init_cpum_sampling_pmu(void)
2219{
2220 struct hws_qsi_info_block si;
2221 int err;
2222
2223 if (!cpum_sf_avail())
2224 return -ENODEV;
2225
2226 memset(&si, 0, sizeof(si));
2227 if (qsi(&si)) {
2228 pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2229 return -ENODEV;
2230 }
2231
2232 if (!si.as && !si.ad)
2233 return -ENODEV;
2234
2235 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2236 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2237 return -EINVAL;
2238 }
2239
2240 if (si.ad) {
2241 sfb_set_limits(min: CPUM_SF_MIN_SDB, max: CPUM_SF_MAX_SDB);
2242 /* Sampling of diagnostic data authorized,
2243 * install event into attribute list of PMU device.
2244 */
2245 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2246 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2247 }
2248
2249 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2250 if (!sfdbg) {
2251 pr_err("Registering for s390dbf failed\n");
2252 return -ENOMEM;
2253 }
2254 debug_register_view(sfdbg, &debug_sprintf_view);
2255
2256 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2257 cpumf_measurement_alert);
2258 if (err) {
2259 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2260 debug_unregister(sfdbg);
2261 goto out;
2262 }
2263
2264 err = perf_pmu_register(pmu: &cpumf_sampling, name: "cpum_sf", type: PERF_TYPE_RAW);
2265 if (err) {
2266 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2267 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2268 cpumf_measurement_alert);
2269 debug_unregister(sfdbg);
2270 goto out;
2271 }
2272
2273 cpuhp_setup_state(state: CPUHP_AP_PERF_S390_SF_ONLINE, name: "perf/s390/sf:online",
2274 startup: s390_pmu_sf_online_cpu, teardown: s390_pmu_sf_offline_cpu);
2275out:
2276 return err;
2277}
2278
2279arch_initcall(init_cpum_sampling_pmu);
2280core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0644);
2281

source code of linux/arch/s390/kernel/perf_cpum_sf.c