1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
3 | |
4 | #include <linux/kernel.h> |
5 | #include <linux/sched.h> |
6 | #include <linux/sched/clock.h> |
7 | #include <linux/init.h> |
8 | #include <linux/export.h> |
9 | #include <linux/timer.h> |
10 | #include <linux/acpi_pmtmr.h> |
11 | #include <linux/cpufreq.h> |
12 | #include <linux/delay.h> |
13 | #include <linux/clocksource.h> |
14 | #include <linux/percpu.h> |
15 | #include <linux/timex.h> |
16 | #include <linux/static_key.h> |
17 | #include <linux/static_call.h> |
18 | |
19 | #include <asm/hpet.h> |
20 | #include <asm/timer.h> |
21 | #include <asm/vgtod.h> |
22 | #include <asm/time.h> |
23 | #include <asm/delay.h> |
24 | #include <asm/hypervisor.h> |
25 | #include <asm/nmi.h> |
26 | #include <asm/x86_init.h> |
27 | #include <asm/geode.h> |
28 | #include <asm/apic.h> |
29 | #include <asm/intel-family.h> |
30 | #include <asm/i8259.h> |
31 | #include <asm/uv/uv.h> |
32 | |
33 | unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ |
34 | EXPORT_SYMBOL(cpu_khz); |
35 | |
36 | unsigned int __read_mostly tsc_khz; |
37 | EXPORT_SYMBOL(tsc_khz); |
38 | |
39 | #define KHZ 1000 |
40 | |
41 | /* |
42 | * TSC can be unstable due to cpufreq or due to unsynced TSCs |
43 | */ |
44 | static int __read_mostly tsc_unstable; |
45 | static unsigned int __initdata tsc_early_khz; |
46 | |
47 | static DEFINE_STATIC_KEY_FALSE(__use_tsc); |
48 | |
49 | int tsc_clocksource_reliable; |
50 | |
51 | static int __read_mostly tsc_force_recalibrate; |
52 | |
53 | static u32 art_to_tsc_numerator; |
54 | static u32 art_to_tsc_denominator; |
55 | static u64 art_to_tsc_offset; |
56 | static bool have_art; |
57 | |
58 | struct cyc2ns { |
59 | struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */ |
60 | seqcount_latch_t seq; /* 32 + 4 = 36 */ |
61 | |
62 | }; /* fits one cacheline */ |
63 | |
64 | static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); |
65 | |
66 | static int __init tsc_early_khz_setup(char *buf) |
67 | { |
68 | return kstrtouint(s: buf, base: 0, res: &tsc_early_khz); |
69 | } |
70 | early_param("tsc_early_khz", tsc_early_khz_setup); |
71 | |
72 | __always_inline void __cyc2ns_read(struct cyc2ns_data *data) |
73 | { |
74 | int seq, idx; |
75 | |
76 | do { |
77 | seq = this_cpu_read(cyc2ns.seq.seqcount.sequence); |
78 | idx = seq & 1; |
79 | |
80 | data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset); |
81 | data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul); |
82 | data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift); |
83 | |
84 | } while (unlikely(seq != this_cpu_read(cyc2ns.seq.seqcount.sequence))); |
85 | } |
86 | |
87 | __always_inline void cyc2ns_read_begin(struct cyc2ns_data *data) |
88 | { |
89 | preempt_disable_notrace(); |
90 | __cyc2ns_read(data); |
91 | } |
92 | |
93 | __always_inline void cyc2ns_read_end(void) |
94 | { |
95 | preempt_enable_notrace(); |
96 | } |
97 | |
98 | /* |
99 | * Accelerators for sched_clock() |
100 | * convert from cycles(64bits) => nanoseconds (64bits) |
101 | * basic equation: |
102 | * ns = cycles / (freq / ns_per_sec) |
103 | * ns = cycles * (ns_per_sec / freq) |
104 | * ns = cycles * (10^9 / (cpu_khz * 10^3)) |
105 | * ns = cycles * (10^6 / cpu_khz) |
106 | * |
107 | * Then we use scaling math (suggested by george@mvista.com) to get: |
108 | * ns = cycles * (10^6 * SC / cpu_khz) / SC |
109 | * ns = cycles * cyc2ns_scale / SC |
110 | * |
111 | * And since SC is a constant power of two, we can convert the div |
112 | * into a shift. The larger SC is, the more accurate the conversion, but |
113 | * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication |
114 | * (64-bit result) can be used. |
115 | * |
116 | * We can use khz divisor instead of mhz to keep a better precision. |
117 | * (mathieu.desnoyers@polymtl.ca) |
118 | * |
119 | * -johnstul@us.ibm.com "math is hard, lets go shopping!" |
120 | */ |
121 | |
122 | static __always_inline unsigned long long __cycles_2_ns(unsigned long long cyc) |
123 | { |
124 | struct cyc2ns_data data; |
125 | unsigned long long ns; |
126 | |
127 | __cyc2ns_read(data: &data); |
128 | |
129 | ns = data.cyc2ns_offset; |
130 | ns += mul_u64_u32_shr(a: cyc, mul: data.cyc2ns_mul, shift: data.cyc2ns_shift); |
131 | |
132 | return ns; |
133 | } |
134 | |
135 | static __always_inline unsigned long long cycles_2_ns(unsigned long long cyc) |
136 | { |
137 | unsigned long long ns; |
138 | preempt_disable_notrace(); |
139 | ns = __cycles_2_ns(cyc); |
140 | preempt_enable_notrace(); |
141 | return ns; |
142 | } |
143 | |
144 | static void __set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) |
145 | { |
146 | unsigned long long ns_now; |
147 | struct cyc2ns_data data; |
148 | struct cyc2ns *c2n; |
149 | |
150 | ns_now = cycles_2_ns(cyc: tsc_now); |
151 | |
152 | /* |
153 | * Compute a new multiplier as per the above comment and ensure our |
154 | * time function is continuous; see the comment near struct |
155 | * cyc2ns_data. |
156 | */ |
157 | clocks_calc_mult_shift(mult: &data.cyc2ns_mul, shift: &data.cyc2ns_shift, from: khz, |
158 | NSEC_PER_MSEC, minsec: 0); |
159 | |
160 | /* |
161 | * cyc2ns_shift is exported via arch_perf_update_userpage() where it is |
162 | * not expected to be greater than 31 due to the original published |
163 | * conversion algorithm shifting a 32-bit value (now specifies a 64-bit |
164 | * value) - refer perf_event_mmap_page documentation in perf_event.h. |
165 | */ |
166 | if (data.cyc2ns_shift == 32) { |
167 | data.cyc2ns_shift = 31; |
168 | data.cyc2ns_mul >>= 1; |
169 | } |
170 | |
171 | data.cyc2ns_offset = ns_now - |
172 | mul_u64_u32_shr(a: tsc_now, mul: data.cyc2ns_mul, shift: data.cyc2ns_shift); |
173 | |
174 | c2n = per_cpu_ptr(&cyc2ns, cpu); |
175 | |
176 | raw_write_seqcount_latch(s: &c2n->seq); |
177 | c2n->data[0] = data; |
178 | raw_write_seqcount_latch(s: &c2n->seq); |
179 | c2n->data[1] = data; |
180 | } |
181 | |
182 | static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now) |
183 | { |
184 | unsigned long flags; |
185 | |
186 | local_irq_save(flags); |
187 | sched_clock_idle_sleep_event(); |
188 | |
189 | if (khz) |
190 | __set_cyc2ns_scale(khz, cpu, tsc_now); |
191 | |
192 | sched_clock_idle_wakeup_event(); |
193 | local_irq_restore(flags); |
194 | } |
195 | |
196 | /* |
197 | * Initialize cyc2ns for boot cpu |
198 | */ |
199 | static void __init cyc2ns_init_boot_cpu(void) |
200 | { |
201 | struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); |
202 | |
203 | seqcount_latch_init(&c2n->seq); |
204 | __set_cyc2ns_scale(khz: tsc_khz, smp_processor_id(), tsc_now: rdtsc()); |
205 | } |
206 | |
207 | /* |
208 | * Secondary CPUs do not run through tsc_init(), so set up |
209 | * all the scale factors for all CPUs, assuming the same |
210 | * speed as the bootup CPU. |
211 | */ |
212 | static void __init cyc2ns_init_secondary_cpus(void) |
213 | { |
214 | unsigned int cpu, this_cpu = smp_processor_id(); |
215 | struct cyc2ns *c2n = this_cpu_ptr(&cyc2ns); |
216 | struct cyc2ns_data *data = c2n->data; |
217 | |
218 | for_each_possible_cpu(cpu) { |
219 | if (cpu != this_cpu) { |
220 | seqcount_latch_init(&c2n->seq); |
221 | c2n = per_cpu_ptr(&cyc2ns, cpu); |
222 | c2n->data[0] = data[0]; |
223 | c2n->data[1] = data[1]; |
224 | } |
225 | } |
226 | } |
227 | |
228 | /* |
229 | * Scheduler clock - returns current time in nanosec units. |
230 | */ |
231 | noinstr u64 native_sched_clock(void) |
232 | { |
233 | if (static_branch_likely(&__use_tsc)) { |
234 | u64 tsc_now = rdtsc(); |
235 | |
236 | /* return the value in ns */ |
237 | return __cycles_2_ns(cyc: tsc_now); |
238 | } |
239 | |
240 | /* |
241 | * Fall back to jiffies if there's no TSC available: |
242 | * ( But note that we still use it if the TSC is marked |
243 | * unstable. We do this because unlike Time Of Day, |
244 | * the scheduler clock tolerates small errors and it's |
245 | * very important for it to be as fast as the platform |
246 | * can achieve it. ) |
247 | */ |
248 | |
249 | /* No locking but a rare wrong value is not a big deal: */ |
250 | return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); |
251 | } |
252 | |
253 | /* |
254 | * Generate a sched_clock if you already have a TSC value. |
255 | */ |
256 | u64 native_sched_clock_from_tsc(u64 tsc) |
257 | { |
258 | return cycles_2_ns(cyc: tsc); |
259 | } |
260 | |
261 | /* We need to define a real function for sched_clock, to override the |
262 | weak default version */ |
263 | #ifdef CONFIG_PARAVIRT |
264 | noinstr u64 sched_clock_noinstr(void) |
265 | { |
266 | return paravirt_sched_clock(); |
267 | } |
268 | |
269 | bool using_native_sched_clock(void) |
270 | { |
271 | return static_call_query(pv_sched_clock) == native_sched_clock; |
272 | } |
273 | #else |
274 | u64 sched_clock_noinstr(void) __attribute__((alias("native_sched_clock"))); |
275 | |
276 | bool using_native_sched_clock(void) { return true; } |
277 | #endif |
278 | |
279 | notrace u64 sched_clock(void) |
280 | { |
281 | u64 now; |
282 | preempt_disable_notrace(); |
283 | now = sched_clock_noinstr(); |
284 | preempt_enable_notrace(); |
285 | return now; |
286 | } |
287 | |
288 | int check_tsc_unstable(void) |
289 | { |
290 | return tsc_unstable; |
291 | } |
292 | EXPORT_SYMBOL_GPL(check_tsc_unstable); |
293 | |
294 | #ifdef CONFIG_X86_TSC |
295 | int __init notsc_setup(char *str) |
296 | { |
297 | mark_tsc_unstable(reason: "boot parameter notsc"); |
298 | return 1; |
299 | } |
300 | #else |
301 | /* |
302 | * disable flag for tsc. Takes effect by clearing the TSC cpu flag |
303 | * in cpu/common.c |
304 | */ |
305 | int __init notsc_setup(char *str) |
306 | { |
307 | setup_clear_cpu_cap(X86_FEATURE_TSC); |
308 | return 1; |
309 | } |
310 | #endif |
311 | |
312 | __setup("notsc", notsc_setup); |
313 | |
314 | static int no_sched_irq_time; |
315 | static int no_tsc_watchdog; |
316 | static int tsc_as_watchdog; |
317 | |
318 | static int __init tsc_setup(char *str) |
319 | { |
320 | if (!strcmp(str, "reliable")) |
321 | tsc_clocksource_reliable = 1; |
322 | if (!strncmp(str, "noirqtime", 9)) |
323 | no_sched_irq_time = 1; |
324 | if (!strcmp(str, "unstable")) |
325 | mark_tsc_unstable(reason: "boot parameter"); |
326 | if (!strcmp(str, "nowatchdog")) { |
327 | no_tsc_watchdog = 1; |
328 | if (tsc_as_watchdog) |
329 | pr_alert("%s: Overriding earlier tsc=watchdog with tsc=nowatchdog\n", |
330 | __func__); |
331 | tsc_as_watchdog = 0; |
332 | } |
333 | if (!strcmp(str, "recalibrate")) |
334 | tsc_force_recalibrate = 1; |
335 | if (!strcmp(str, "watchdog")) { |
336 | if (no_tsc_watchdog) |
337 | pr_alert("%s: tsc=watchdog overridden by earlier tsc=nowatchdog\n", |
338 | __func__); |
339 | else |
340 | tsc_as_watchdog = 1; |
341 | } |
342 | return 1; |
343 | } |
344 | |
345 | __setup("tsc=", tsc_setup); |
346 | |
347 | #define MAX_RETRIES 5 |
348 | #define TSC_DEFAULT_THRESHOLD 0x20000 |
349 | |
350 | /* |
351 | * Read TSC and the reference counters. Take care of any disturbances |
352 | */ |
353 | static u64 tsc_read_refs(u64 *p, int hpet) |
354 | { |
355 | u64 t1, t2; |
356 | u64 thresh = tsc_khz ? tsc_khz >> 5 : TSC_DEFAULT_THRESHOLD; |
357 | int i; |
358 | |
359 | for (i = 0; i < MAX_RETRIES; i++) { |
360 | t1 = get_cycles(); |
361 | if (hpet) |
362 | *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF; |
363 | else |
364 | *p = acpi_pm_read_early(); |
365 | t2 = get_cycles(); |
366 | if ((t2 - t1) < thresh) |
367 | return t2; |
368 | } |
369 | return ULLONG_MAX; |
370 | } |
371 | |
372 | /* |
373 | * Calculate the TSC frequency from HPET reference |
374 | */ |
375 | static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2) |
376 | { |
377 | u64 tmp; |
378 | |
379 | if (hpet2 < hpet1) |
380 | hpet2 += 0x100000000ULL; |
381 | hpet2 -= hpet1; |
382 | tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD)); |
383 | do_div(tmp, 1000000); |
384 | deltatsc = div64_u64(dividend: deltatsc, divisor: tmp); |
385 | |
386 | return (unsigned long) deltatsc; |
387 | } |
388 | |
389 | /* |
390 | * Calculate the TSC frequency from PMTimer reference |
391 | */ |
392 | static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2) |
393 | { |
394 | u64 tmp; |
395 | |
396 | if (!pm1 && !pm2) |
397 | return ULONG_MAX; |
398 | |
399 | if (pm2 < pm1) |
400 | pm2 += (u64)ACPI_PM_OVRRUN; |
401 | pm2 -= pm1; |
402 | tmp = pm2 * 1000000000LL; |
403 | do_div(tmp, PMTMR_TICKS_PER_SEC); |
404 | do_div(deltatsc, tmp); |
405 | |
406 | return (unsigned long) deltatsc; |
407 | } |
408 | |
409 | #define CAL_MS 10 |
410 | #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS)) |
411 | #define CAL_PIT_LOOPS 1000 |
412 | |
413 | #define CAL2_MS 50 |
414 | #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS)) |
415 | #define CAL2_PIT_LOOPS 5000 |
416 | |
417 | |
418 | /* |
419 | * Try to calibrate the TSC against the Programmable |
420 | * Interrupt Timer and return the frequency of the TSC |
421 | * in kHz. |
422 | * |
423 | * Return ULONG_MAX on failure to calibrate. |
424 | */ |
425 | static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin) |
426 | { |
427 | u64 tsc, t1, t2, delta; |
428 | unsigned long tscmin, tscmax; |
429 | int pitcnt; |
430 | |
431 | if (!has_legacy_pic()) { |
432 | /* |
433 | * Relies on tsc_early_delay_calibrate() to have given us semi |
434 | * usable udelay(), wait for the same 50ms we would have with |
435 | * the PIT loop below. |
436 | */ |
437 | udelay(10 * USEC_PER_MSEC); |
438 | udelay(10 * USEC_PER_MSEC); |
439 | udelay(10 * USEC_PER_MSEC); |
440 | udelay(10 * USEC_PER_MSEC); |
441 | udelay(10 * USEC_PER_MSEC); |
442 | return ULONG_MAX; |
443 | } |
444 | |
445 | /* Set the Gate high, disable speaker */ |
446 | outb(value: (inb(port: 0x61) & ~0x02) | 0x01, port: 0x61); |
447 | |
448 | /* |
449 | * Setup CTC channel 2* for mode 0, (interrupt on terminal |
450 | * count mode), binary count. Set the latch register to 50ms |
451 | * (LSB then MSB) to begin countdown. |
452 | */ |
453 | outb(value: 0xb0, port: 0x43); |
454 | outb(value: latch & 0xff, port: 0x42); |
455 | outb(value: latch >> 8, port: 0x42); |
456 | |
457 | tsc = t1 = t2 = get_cycles(); |
458 | |
459 | pitcnt = 0; |
460 | tscmax = 0; |
461 | tscmin = ULONG_MAX; |
462 | while ((inb(port: 0x61) & 0x20) == 0) { |
463 | t2 = get_cycles(); |
464 | delta = t2 - tsc; |
465 | tsc = t2; |
466 | if ((unsigned long) delta < tscmin) |
467 | tscmin = (unsigned int) delta; |
468 | if ((unsigned long) delta > tscmax) |
469 | tscmax = (unsigned int) delta; |
470 | pitcnt++; |
471 | } |
472 | |
473 | /* |
474 | * Sanity checks: |
475 | * |
476 | * If we were not able to read the PIT more than loopmin |
477 | * times, then we have been hit by a massive SMI |
478 | * |
479 | * If the maximum is 10 times larger than the minimum, |
480 | * then we got hit by an SMI as well. |
481 | */ |
482 | if (pitcnt < loopmin || tscmax > 10 * tscmin) |
483 | return ULONG_MAX; |
484 | |
485 | /* Calculate the PIT value */ |
486 | delta = t2 - t1; |
487 | do_div(delta, ms); |
488 | return delta; |
489 | } |
490 | |
491 | /* |
492 | * This reads the current MSB of the PIT counter, and |
493 | * checks if we are running on sufficiently fast and |
494 | * non-virtualized hardware. |
495 | * |
496 | * Our expectations are: |
497 | * |
498 | * - the PIT is running at roughly 1.19MHz |
499 | * |
500 | * - each IO is going to take about 1us on real hardware, |
501 | * but we allow it to be much faster (by a factor of 10) or |
502 | * _slightly_ slower (ie we allow up to a 2us read+counter |
503 | * update - anything else implies a unacceptably slow CPU |
504 | * or PIT for the fast calibration to work. |
505 | * |
506 | * - with 256 PIT ticks to read the value, we have 214us to |
507 | * see the same MSB (and overhead like doing a single TSC |
508 | * read per MSB value etc). |
509 | * |
510 | * - We're doing 2 reads per loop (LSB, MSB), and we expect |
511 | * them each to take about a microsecond on real hardware. |
512 | * So we expect a count value of around 100. But we'll be |
513 | * generous, and accept anything over 50. |
514 | * |
515 | * - if the PIT is stuck, and we see *many* more reads, we |
516 | * return early (and the next caller of pit_expect_msb() |
517 | * then consider it a failure when they don't see the |
518 | * next expected value). |
519 | * |
520 | * These expectations mean that we know that we have seen the |
521 | * transition from one expected value to another with a fairly |
522 | * high accuracy, and we didn't miss any events. We can thus |
523 | * use the TSC value at the transitions to calculate a pretty |
524 | * good value for the TSC frequency. |
525 | */ |
526 | static inline int pit_verify_msb(unsigned char val) |
527 | { |
528 | /* Ignore LSB */ |
529 | inb(port: 0x42); |
530 | return inb(port: 0x42) == val; |
531 | } |
532 | |
533 | static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap) |
534 | { |
535 | int count; |
536 | u64 tsc = 0, prev_tsc = 0; |
537 | |
538 | for (count = 0; count < 50000; count++) { |
539 | if (!pit_verify_msb(val)) |
540 | break; |
541 | prev_tsc = tsc; |
542 | tsc = get_cycles(); |
543 | } |
544 | *deltap = get_cycles() - prev_tsc; |
545 | *tscp = tsc; |
546 | |
547 | /* |
548 | * We require _some_ success, but the quality control |
549 | * will be based on the error terms on the TSC values. |
550 | */ |
551 | return count > 5; |
552 | } |
553 | |
554 | /* |
555 | * How many MSB values do we want to see? We aim for |
556 | * a maximum error rate of 500ppm (in practice the |
557 | * real error is much smaller), but refuse to spend |
558 | * more than 50ms on it. |
559 | */ |
560 | #define MAX_QUICK_PIT_MS 50 |
561 | #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256) |
562 | |
563 | static unsigned long quick_pit_calibrate(void) |
564 | { |
565 | int i; |
566 | u64 tsc, delta; |
567 | unsigned long d1, d2; |
568 | |
569 | if (!has_legacy_pic()) |
570 | return 0; |
571 | |
572 | /* Set the Gate high, disable speaker */ |
573 | outb(value: (inb(port: 0x61) & ~0x02) | 0x01, port: 0x61); |
574 | |
575 | /* |
576 | * Counter 2, mode 0 (one-shot), binary count |
577 | * |
578 | * NOTE! Mode 2 decrements by two (and then the |
579 | * output is flipped each time, giving the same |
580 | * final output frequency as a decrement-by-one), |
581 | * so mode 0 is much better when looking at the |
582 | * individual counts. |
583 | */ |
584 | outb(value: 0xb0, port: 0x43); |
585 | |
586 | /* Start at 0xffff */ |
587 | outb(value: 0xff, port: 0x42); |
588 | outb(value: 0xff, port: 0x42); |
589 | |
590 | /* |
591 | * The PIT starts counting at the next edge, so we |
592 | * need to delay for a microsecond. The easiest way |
593 | * to do that is to just read back the 16-bit counter |
594 | * once from the PIT. |
595 | */ |
596 | pit_verify_msb(val: 0); |
597 | |
598 | if (pit_expect_msb(val: 0xff, tscp: &tsc, deltap: &d1)) { |
599 | for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) { |
600 | if (!pit_expect_msb(val: 0xff-i, tscp: &delta, deltap: &d2)) |
601 | break; |
602 | |
603 | delta -= tsc; |
604 | |
605 | /* |
606 | * Extrapolate the error and fail fast if the error will |
607 | * never be below 500 ppm. |
608 | */ |
609 | if (i == 1 && |
610 | d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11) |
611 | return 0; |
612 | |
613 | /* |
614 | * Iterate until the error is less than 500 ppm |
615 | */ |
616 | if (d1+d2 >= delta >> 11) |
617 | continue; |
618 | |
619 | /* |
620 | * Check the PIT one more time to verify that |
621 | * all TSC reads were stable wrt the PIT. |
622 | * |
623 | * This also guarantees serialization of the |
624 | * last cycle read ('d2') in pit_expect_msb. |
625 | */ |
626 | if (!pit_verify_msb(val: 0xfe - i)) |
627 | break; |
628 | goto success; |
629 | } |
630 | } |
631 | pr_info("Fast TSC calibration failed\n"); |
632 | return 0; |
633 | |
634 | success: |
635 | /* |
636 | * Ok, if we get here, then we've seen the |
637 | * MSB of the PIT decrement 'i' times, and the |
638 | * error has shrunk to less than 500 ppm. |
639 | * |
640 | * As a result, we can depend on there not being |
641 | * any odd delays anywhere, and the TSC reads are |
642 | * reliable (within the error). |
643 | * |
644 | * kHz = ticks / time-in-seconds / 1000; |
645 | * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000 |
646 | * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000) |
647 | */ |
648 | delta *= PIT_TICK_RATE; |
649 | do_div(delta, i*256*1000); |
650 | pr_info("Fast TSC calibration using PIT\n"); |
651 | return delta; |
652 | } |
653 | |
654 | /** |
655 | * native_calibrate_tsc - determine TSC frequency |
656 | * Determine TSC frequency via CPUID, else return 0. |
657 | */ |
658 | unsigned long native_calibrate_tsc(void) |
659 | { |
660 | unsigned int eax_denominator, ebx_numerator, ecx_hz, edx; |
661 | unsigned int crystal_khz; |
662 | |
663 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
664 | return 0; |
665 | |
666 | if (boot_cpu_data.cpuid_level < 0x15) |
667 | return 0; |
668 | |
669 | eax_denominator = ebx_numerator = ecx_hz = edx = 0; |
670 | |
671 | /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */ |
672 | cpuid(op: 0x15, eax: &eax_denominator, ebx: &ebx_numerator, ecx: &ecx_hz, edx: &edx); |
673 | |
674 | if (ebx_numerator == 0 || eax_denominator == 0) |
675 | return 0; |
676 | |
677 | crystal_khz = ecx_hz / 1000; |
678 | |
679 | /* |
680 | * Denverton SoCs don't report crystal clock, and also don't support |
681 | * CPUID.0x16 for the calculation below, so hardcode the 25MHz crystal |
682 | * clock. |
683 | */ |
684 | if (crystal_khz == 0 && |
685 | boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT_D) |
686 | crystal_khz = 25000; |
687 | |
688 | /* |
689 | * TSC frequency reported directly by CPUID is a "hardware reported" |
690 | * frequency and is the most accurate one so far we have. This |
691 | * is considered a known frequency. |
692 | */ |
693 | if (crystal_khz != 0) |
694 | setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ); |
695 | |
696 | /* |
697 | * Some Intel SoCs like Skylake and Kabylake don't report the crystal |
698 | * clock, but we can easily calculate it to a high degree of accuracy |
699 | * by considering the crystal ratio and the CPU speed. |
700 | */ |
701 | if (crystal_khz == 0 && boot_cpu_data.cpuid_level >= 0x16) { |
702 | unsigned int eax_base_mhz, ebx, ecx, edx; |
703 | |
704 | cpuid(op: 0x16, eax: &eax_base_mhz, ebx: &ebx, ecx: &ecx, edx: &edx); |
705 | crystal_khz = eax_base_mhz * 1000 * |
706 | eax_denominator / ebx_numerator; |
707 | } |
708 | |
709 | if (crystal_khz == 0) |
710 | return 0; |
711 | |
712 | /* |
713 | * For Atom SoCs TSC is the only reliable clocksource. |
714 | * Mark TSC reliable so no watchdog on it. |
715 | */ |
716 | if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT) |
717 | setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE); |
718 | |
719 | #ifdef CONFIG_X86_LOCAL_APIC |
720 | /* |
721 | * The local APIC appears to be fed by the core crystal clock |
722 | * (which sounds entirely sensible). We can set the global |
723 | * lapic_timer_period here to avoid having to calibrate the APIC |
724 | * timer later. |
725 | */ |
726 | lapic_timer_period = crystal_khz * 1000 / HZ; |
727 | #endif |
728 | |
729 | return crystal_khz * ebx_numerator / eax_denominator; |
730 | } |
731 | |
732 | static unsigned long cpu_khz_from_cpuid(void) |
733 | { |
734 | unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx; |
735 | |
736 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) |
737 | return 0; |
738 | |
739 | if (boot_cpu_data.cpuid_level < 0x16) |
740 | return 0; |
741 | |
742 | eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0; |
743 | |
744 | cpuid(op: 0x16, eax: &eax_base_mhz, ebx: &ebx_max_mhz, ecx: &ecx_bus_mhz, edx: &edx); |
745 | |
746 | return eax_base_mhz * 1000; |
747 | } |
748 | |
749 | /* |
750 | * calibrate cpu using pit, hpet, and ptimer methods. They are available |
751 | * later in boot after acpi is initialized. |
752 | */ |
753 | static unsigned long pit_hpet_ptimer_calibrate_cpu(void) |
754 | { |
755 | u64 tsc1, tsc2, delta, ref1, ref2; |
756 | unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX; |
757 | unsigned long flags, latch, ms; |
758 | int hpet = is_hpet_enabled(), i, loopmin; |
759 | |
760 | /* |
761 | * Run 5 calibration loops to get the lowest frequency value |
762 | * (the best estimate). We use two different calibration modes |
763 | * here: |
764 | * |
765 | * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and |
766 | * load a timeout of 50ms. We read the time right after we |
767 | * started the timer and wait until the PIT count down reaches |
768 | * zero. In each wait loop iteration we read the TSC and check |
769 | * the delta to the previous read. We keep track of the min |
770 | * and max values of that delta. The delta is mostly defined |
771 | * by the IO time of the PIT access, so we can detect when |
772 | * any disturbance happened between the two reads. If the |
773 | * maximum time is significantly larger than the minimum time, |
774 | * then we discard the result and have another try. |
775 | * |
776 | * 2) Reference counter. If available we use the HPET or the |
777 | * PMTIMER as a reference to check the sanity of that value. |
778 | * We use separate TSC readouts and check inside of the |
779 | * reference read for any possible disturbance. We discard |
780 | * disturbed values here as well. We do that around the PIT |
781 | * calibration delay loop as we have to wait for a certain |
782 | * amount of time anyway. |
783 | */ |
784 | |
785 | /* Preset PIT loop values */ |
786 | latch = CAL_LATCH; |
787 | ms = CAL_MS; |
788 | loopmin = CAL_PIT_LOOPS; |
789 | |
790 | for (i = 0; i < 3; i++) { |
791 | unsigned long tsc_pit_khz; |
792 | |
793 | /* |
794 | * Read the start value and the reference count of |
795 | * hpet/pmtimer when available. Then do the PIT |
796 | * calibration, which will take at least 50ms, and |
797 | * read the end value. |
798 | */ |
799 | local_irq_save(flags); |
800 | tsc1 = tsc_read_refs(p: &ref1, hpet); |
801 | tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin); |
802 | tsc2 = tsc_read_refs(p: &ref2, hpet); |
803 | local_irq_restore(flags); |
804 | |
805 | /* Pick the lowest PIT TSC calibration so far */ |
806 | tsc_pit_min = min(tsc_pit_min, tsc_pit_khz); |
807 | |
808 | /* hpet or pmtimer available ? */ |
809 | if (ref1 == ref2) |
810 | continue; |
811 | |
812 | /* Check, whether the sampling was disturbed */ |
813 | if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX) |
814 | continue; |
815 | |
816 | tsc2 = (tsc2 - tsc1) * 1000000LL; |
817 | if (hpet) |
818 | tsc2 = calc_hpet_ref(deltatsc: tsc2, hpet1: ref1, hpet2: ref2); |
819 | else |
820 | tsc2 = calc_pmtimer_ref(deltatsc: tsc2, pm1: ref1, pm2: ref2); |
821 | |
822 | tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2); |
823 | |
824 | /* Check the reference deviation */ |
825 | delta = ((u64) tsc_pit_min) * 100; |
826 | do_div(delta, tsc_ref_min); |
827 | |
828 | /* |
829 | * If both calibration results are inside a 10% window |
830 | * then we can be sure, that the calibration |
831 | * succeeded. We break out of the loop right away. We |
832 | * use the reference value, as it is more precise. |
833 | */ |
834 | if (delta >= 90 && delta <= 110) { |
835 | pr_info("PIT calibration matches %s. %d loops\n", |
836 | hpet ? "HPET": "PMTIMER", i + 1); |
837 | return tsc_ref_min; |
838 | } |
839 | |
840 | /* |
841 | * Check whether PIT failed more than once. This |
842 | * happens in virtualized environments. We need to |
843 | * give the virtual PC a slightly longer timeframe for |
844 | * the HPET/PMTIMER to make the result precise. |
845 | */ |
846 | if (i == 1 && tsc_pit_min == ULONG_MAX) { |
847 | latch = CAL2_LATCH; |
848 | ms = CAL2_MS; |
849 | loopmin = CAL2_PIT_LOOPS; |
850 | } |
851 | } |
852 | |
853 | /* |
854 | * Now check the results. |
855 | */ |
856 | if (tsc_pit_min == ULONG_MAX) { |
857 | /* PIT gave no useful value */ |
858 | pr_warn("Unable to calibrate against PIT\n"); |
859 | |
860 | /* We don't have an alternative source, disable TSC */ |
861 | if (!hpet && !ref1 && !ref2) { |
862 | pr_notice("No reference (HPET/PMTIMER) available\n"); |
863 | return 0; |
864 | } |
865 | |
866 | /* The alternative source failed as well, disable TSC */ |
867 | if (tsc_ref_min == ULONG_MAX) { |
868 | pr_warn("HPET/PMTIMER calibration failed\n"); |
869 | return 0; |
870 | } |
871 | |
872 | /* Use the alternative source */ |
873 | pr_info("using %s reference calibration\n", |
874 | hpet ? "HPET": "PMTIMER"); |
875 | |
876 | return tsc_ref_min; |
877 | } |
878 | |
879 | /* We don't have an alternative source, use the PIT calibration value */ |
880 | if (!hpet && !ref1 && !ref2) { |
881 | pr_info("Using PIT calibration value\n"); |
882 | return tsc_pit_min; |
883 | } |
884 | |
885 | /* The alternative source failed, use the PIT calibration value */ |
886 | if (tsc_ref_min == ULONG_MAX) { |
887 | pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n"); |
888 | return tsc_pit_min; |
889 | } |
890 | |
891 | /* |
892 | * The calibration values differ too much. In doubt, we use |
893 | * the PIT value as we know that there are PMTIMERs around |
894 | * running at double speed. At least we let the user know: |
895 | */ |
896 | pr_warn("PIT calibration deviates from %s: %lu %lu\n", |
897 | hpet ? "HPET": "PMTIMER", tsc_pit_min, tsc_ref_min); |
898 | pr_info("Using PIT calibration value\n"); |
899 | return tsc_pit_min; |
900 | } |
901 | |
902 | /** |
903 | * native_calibrate_cpu_early - can calibrate the cpu early in boot |
904 | */ |
905 | unsigned long native_calibrate_cpu_early(void) |
906 | { |
907 | unsigned long flags, fast_calibrate = cpu_khz_from_cpuid(); |
908 | |
909 | if (!fast_calibrate) |
910 | fast_calibrate = cpu_khz_from_msr(); |
911 | if (!fast_calibrate) { |
912 | local_irq_save(flags); |
913 | fast_calibrate = quick_pit_calibrate(); |
914 | local_irq_restore(flags); |
915 | } |
916 | return fast_calibrate; |
917 | } |
918 | |
919 | |
920 | /** |
921 | * native_calibrate_cpu - calibrate the cpu |
922 | */ |
923 | static unsigned long native_calibrate_cpu(void) |
924 | { |
925 | unsigned long tsc_freq = native_calibrate_cpu_early(); |
926 | |
927 | if (!tsc_freq) |
928 | tsc_freq = pit_hpet_ptimer_calibrate_cpu(); |
929 | |
930 | return tsc_freq; |
931 | } |
932 | |
933 | void recalibrate_cpu_khz(void) |
934 | { |
935 | #ifndef CONFIG_SMP |
936 | unsigned long cpu_khz_old = cpu_khz; |
937 | |
938 | if (!boot_cpu_has(X86_FEATURE_TSC)) |
939 | return; |
940 | |
941 | cpu_khz = x86_platform.calibrate_cpu(); |
942 | tsc_khz = x86_platform.calibrate_tsc(); |
943 | if (tsc_khz == 0) |
944 | tsc_khz = cpu_khz; |
945 | else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) |
946 | cpu_khz = tsc_khz; |
947 | cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy, |
948 | cpu_khz_old, cpu_khz); |
949 | #endif |
950 | } |
951 | EXPORT_SYMBOL_GPL(recalibrate_cpu_khz); |
952 | |
953 | |
954 | static unsigned long long cyc2ns_suspend; |
955 | |
956 | void tsc_save_sched_clock_state(void) |
957 | { |
958 | if (!sched_clock_stable()) |
959 | return; |
960 | |
961 | cyc2ns_suspend = sched_clock(); |
962 | } |
963 | |
964 | /* |
965 | * Even on processors with invariant TSC, TSC gets reset in some the |
966 | * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to |
967 | * arbitrary value (still sync'd across cpu's) during resume from such sleep |
968 | * states. To cope up with this, recompute the cyc2ns_offset for each cpu so |
969 | * that sched_clock() continues from the point where it was left off during |
970 | * suspend. |
971 | */ |
972 | void tsc_restore_sched_clock_state(void) |
973 | { |
974 | unsigned long long offset; |
975 | unsigned long flags; |
976 | int cpu; |
977 | |
978 | if (!sched_clock_stable()) |
979 | return; |
980 | |
981 | local_irq_save(flags); |
982 | |
983 | /* |
984 | * We're coming out of suspend, there's no concurrency yet; don't |
985 | * bother being nice about the RCU stuff, just write to both |
986 | * data fields. |
987 | */ |
988 | |
989 | this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); |
990 | this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); |
991 | |
992 | offset = cyc2ns_suspend - sched_clock(); |
993 | |
994 | for_each_possible_cpu(cpu) { |
995 | per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; |
996 | per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; |
997 | } |
998 | |
999 | local_irq_restore(flags); |
1000 | } |
1001 | |
1002 | #ifdef CONFIG_CPU_FREQ |
1003 | /* |
1004 | * Frequency scaling support. Adjust the TSC based timer when the CPU frequency |
1005 | * changes. |
1006 | * |
1007 | * NOTE: On SMP the situation is not fixable in general, so simply mark the TSC |
1008 | * as unstable and give up in those cases. |
1009 | * |
1010 | * Should fix up last_tsc too. Currently gettimeofday in the |
1011 | * first tick after the change will be slightly wrong. |
1012 | */ |
1013 | |
1014 | static unsigned int ref_freq; |
1015 | static unsigned long loops_per_jiffy_ref; |
1016 | static unsigned long tsc_khz_ref; |
1017 | |
1018 | static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
1019 | void *data) |
1020 | { |
1021 | struct cpufreq_freqs *freq = data; |
1022 | |
1023 | if (num_online_cpus() > 1) { |
1024 | mark_tsc_unstable(reason: "cpufreq changes on SMP"); |
1025 | return 0; |
1026 | } |
1027 | |
1028 | if (!ref_freq) { |
1029 | ref_freq = freq->old; |
1030 | loops_per_jiffy_ref = boot_cpu_data.loops_per_jiffy; |
1031 | tsc_khz_ref = tsc_khz; |
1032 | } |
1033 | |
1034 | if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
1035 | (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) { |
1036 | boot_cpu_data.loops_per_jiffy = |
1037 | cpufreq_scale(old: loops_per_jiffy_ref, div: ref_freq, mult: freq->new); |
1038 | |
1039 | tsc_khz = cpufreq_scale(old: tsc_khz_ref, div: ref_freq, mult: freq->new); |
1040 | if (!(freq->flags & CPUFREQ_CONST_LOOPS)) |
1041 | mark_tsc_unstable(reason: "cpufreq changes"); |
1042 | |
1043 | set_cyc2ns_scale(khz: tsc_khz, cpu: freq->policy->cpu, tsc_now: rdtsc()); |
1044 | } |
1045 | |
1046 | return 0; |
1047 | } |
1048 | |
1049 | static struct notifier_block time_cpufreq_notifier_block = { |
1050 | .notifier_call = time_cpufreq_notifier |
1051 | }; |
1052 | |
1053 | static int __init cpufreq_register_tsc_scaling(void) |
1054 | { |
1055 | if (!boot_cpu_has(X86_FEATURE_TSC)) |
1056 | return 0; |
1057 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
1058 | return 0; |
1059 | cpufreq_register_notifier(nb: &time_cpufreq_notifier_block, |
1060 | CPUFREQ_TRANSITION_NOTIFIER); |
1061 | return 0; |
1062 | } |
1063 | |
1064 | core_initcall(cpufreq_register_tsc_scaling); |
1065 | |
1066 | #endif /* CONFIG_CPU_FREQ */ |
1067 | |
1068 | #define ART_CPUID_LEAF (0x15) |
1069 | #define ART_MIN_DENOMINATOR (1) |
1070 | |
1071 | |
1072 | /* |
1073 | * If ART is present detect the numerator:denominator to convert to TSC |
1074 | */ |
1075 | static void __init detect_art(void) |
1076 | { |
1077 | unsigned int unused[2]; |
1078 | |
1079 | if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF) |
1080 | return; |
1081 | |
1082 | /* |
1083 | * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required, |
1084 | * and the TSC counter resets must not occur asynchronously. |
1085 | */ |
1086 | if (boot_cpu_has(X86_FEATURE_HYPERVISOR) || |
1087 | !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) || |
1088 | !boot_cpu_has(X86_FEATURE_TSC_ADJUST) || |
1089 | tsc_async_resets) |
1090 | return; |
1091 | |
1092 | cpuid(ART_CPUID_LEAF, eax: &art_to_tsc_denominator, |
1093 | ebx: &art_to_tsc_numerator, ecx: unused, edx: unused+1); |
1094 | |
1095 | if (art_to_tsc_denominator < ART_MIN_DENOMINATOR) |
1096 | return; |
1097 | |
1098 | rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset); |
1099 | |
1100 | /* Make this sticky over multiple CPU init calls */ |
1101 | setup_force_cpu_cap(X86_FEATURE_ART); |
1102 | } |
1103 | |
1104 | |
1105 | /* clocksource code */ |
1106 | |
1107 | static void tsc_resume(struct clocksource *cs) |
1108 | { |
1109 | tsc_verify_tsc_adjust(resume: true); |
1110 | } |
1111 | |
1112 | /* |
1113 | * We used to compare the TSC to the cycle_last value in the clocksource |
1114 | * structure to avoid a nasty time-warp. This can be observed in a |
1115 | * very small window right after one CPU updated cycle_last under |
1116 | * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which |
1117 | * is smaller than the cycle_last reference value due to a TSC which |
1118 | * is slightly behind. This delta is nowhere else observable, but in |
1119 | * that case it results in a forward time jump in the range of hours |
1120 | * due to the unsigned delta calculation of the time keeping core |
1121 | * code, which is necessary to support wrapping clocksources like pm |
1122 | * timer. |
1123 | * |
1124 | * This sanity check is now done in the core timekeeping code. |
1125 | * checking the result of read_tsc() - cycle_last for being negative. |
1126 | * That works because CLOCKSOURCE_MASK(64) does not mask out any bit. |
1127 | */ |
1128 | static u64 read_tsc(struct clocksource *cs) |
1129 | { |
1130 | return (u64)rdtsc_ordered(); |
1131 | } |
1132 | |
1133 | static void tsc_cs_mark_unstable(struct clocksource *cs) |
1134 | { |
1135 | if (tsc_unstable) |
1136 | return; |
1137 | |
1138 | tsc_unstable = 1; |
1139 | if (using_native_sched_clock()) |
1140 | clear_sched_clock_stable(); |
1141 | disable_sched_clock_irqtime(); |
1142 | pr_info("Marking TSC unstable due to clocksource watchdog\n"); |
1143 | } |
1144 | |
1145 | static void tsc_cs_tick_stable(struct clocksource *cs) |
1146 | { |
1147 | if (tsc_unstable) |
1148 | return; |
1149 | |
1150 | if (using_native_sched_clock()) |
1151 | sched_clock_tick_stable(); |
1152 | } |
1153 | |
1154 | static int tsc_cs_enable(struct clocksource *cs) |
1155 | { |
1156 | vclocks_set_used(which: VDSO_CLOCKMODE_TSC); |
1157 | return 0; |
1158 | } |
1159 | |
1160 | /* |
1161 | * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc() |
1162 | */ |
1163 | static struct clocksource clocksource_tsc_early = { |
1164 | .name = "tsc-early", |
1165 | .rating = 299, |
1166 | .uncertainty_margin = 32 * NSEC_PER_MSEC, |
1167 | .read = read_tsc, |
1168 | .mask = CLOCKSOURCE_MASK(64), |
1169 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | |
1170 | CLOCK_SOURCE_MUST_VERIFY, |
1171 | .id = CSID_X86_TSC_EARLY, |
1172 | .vdso_clock_mode = VDSO_CLOCKMODE_TSC, |
1173 | .enable = tsc_cs_enable, |
1174 | .resume = tsc_resume, |
1175 | .mark_unstable = tsc_cs_mark_unstable, |
1176 | .tick_stable = tsc_cs_tick_stable, |
1177 | .list = LIST_HEAD_INIT(clocksource_tsc_early.list), |
1178 | }; |
1179 | |
1180 | /* |
1181 | * Must mark VALID_FOR_HRES early such that when we unregister tsc_early |
1182 | * this one will immediately take over. We will only register if TSC has |
1183 | * been found good. |
1184 | */ |
1185 | static struct clocksource clocksource_tsc = { |
1186 | .name = "tsc", |
1187 | .rating = 300, |
1188 | .read = read_tsc, |
1189 | .mask = CLOCKSOURCE_MASK(64), |
1190 | .flags = CLOCK_SOURCE_IS_CONTINUOUS | |
1191 | CLOCK_SOURCE_VALID_FOR_HRES | |
1192 | CLOCK_SOURCE_MUST_VERIFY | |
1193 | CLOCK_SOURCE_VERIFY_PERCPU, |
1194 | .id = CSID_X86_TSC, |
1195 | .vdso_clock_mode = VDSO_CLOCKMODE_TSC, |
1196 | .enable = tsc_cs_enable, |
1197 | .resume = tsc_resume, |
1198 | .mark_unstable = tsc_cs_mark_unstable, |
1199 | .tick_stable = tsc_cs_tick_stable, |
1200 | .list = LIST_HEAD_INIT(clocksource_tsc.list), |
1201 | }; |
1202 | |
1203 | void mark_tsc_unstable(char *reason) |
1204 | { |
1205 | if (tsc_unstable) |
1206 | return; |
1207 | |
1208 | tsc_unstable = 1; |
1209 | if (using_native_sched_clock()) |
1210 | clear_sched_clock_stable(); |
1211 | disable_sched_clock_irqtime(); |
1212 | pr_info("Marking TSC unstable due to %s\n", reason); |
1213 | |
1214 | clocksource_mark_unstable(cs: &clocksource_tsc_early); |
1215 | clocksource_mark_unstable(cs: &clocksource_tsc); |
1216 | } |
1217 | |
1218 | EXPORT_SYMBOL_GPL(mark_tsc_unstable); |
1219 | |
1220 | static void __init tsc_disable_clocksource_watchdog(void) |
1221 | { |
1222 | clocksource_tsc_early.flags &= ~CLOCK_SOURCE_MUST_VERIFY; |
1223 | clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY; |
1224 | } |
1225 | |
1226 | bool tsc_clocksource_watchdog_disabled(void) |
1227 | { |
1228 | return !(clocksource_tsc.flags & CLOCK_SOURCE_MUST_VERIFY) && |
1229 | tsc_as_watchdog && !no_tsc_watchdog; |
1230 | } |
1231 | |
1232 | static void __init check_system_tsc_reliable(void) |
1233 | { |
1234 | #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC) |
1235 | if (is_geode_lx()) { |
1236 | /* RTSC counts during suspend */ |
1237 | #define RTSC_SUSP 0x100 |
1238 | unsigned long res_low, res_high; |
1239 | |
1240 | rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high); |
1241 | /* Geode_LX - the OLPC CPU has a very reliable TSC */ |
1242 | if (res_low & RTSC_SUSP) |
1243 | tsc_clocksource_reliable = 1; |
1244 | } |
1245 | #endif |
1246 | if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) |
1247 | tsc_clocksource_reliable = 1; |
1248 | |
1249 | /* |
1250 | * Disable the clocksource watchdog when the system has: |
1251 | * - TSC running at constant frequency |
1252 | * - TSC which does not stop in C-States |
1253 | * - the TSC_ADJUST register which allows to detect even minimal |
1254 | * modifications |
1255 | * - not more than two sockets. As the number of sockets cannot be |
1256 | * evaluated at the early boot stage where this has to be |
1257 | * invoked, check the number of online memory nodes as a |
1258 | * fallback solution which is an reasonable estimate. |
1259 | */ |
1260 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && |
1261 | boot_cpu_has(X86_FEATURE_NONSTOP_TSC) && |
1262 | boot_cpu_has(X86_FEATURE_TSC_ADJUST) && |
1263 | nr_online_nodes <= 4) |
1264 | tsc_disable_clocksource_watchdog(); |
1265 | } |
1266 | |
1267 | /* |
1268 | * Make an educated guess if the TSC is trustworthy and synchronized |
1269 | * over all CPUs. |
1270 | */ |
1271 | int unsynchronized_tsc(void) |
1272 | { |
1273 | if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable) |
1274 | return 1; |
1275 | |
1276 | #ifdef CONFIG_SMP |
1277 | if (apic_is_clustered_box()) |
1278 | return 1; |
1279 | #endif |
1280 | |
1281 | if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) |
1282 | return 0; |
1283 | |
1284 | if (tsc_clocksource_reliable) |
1285 | return 0; |
1286 | /* |
1287 | * Intel systems are normally all synchronized. |
1288 | * Exceptions must mark TSC as unstable: |
1289 | */ |
1290 | if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) { |
1291 | /* assume multi socket systems are not synchronized: */ |
1292 | if (num_possible_cpus() > 1) |
1293 | return 1; |
1294 | } |
1295 | |
1296 | return 0; |
1297 | } |
1298 | |
1299 | /* |
1300 | * Convert ART to TSC given numerator/denominator found in detect_art() |
1301 | */ |
1302 | struct system_counterval_t convert_art_to_tsc(u64 art) |
1303 | { |
1304 | u64 tmp, res, rem; |
1305 | |
1306 | rem = do_div(art, art_to_tsc_denominator); |
1307 | |
1308 | res = art * art_to_tsc_numerator; |
1309 | tmp = rem * art_to_tsc_numerator; |
1310 | |
1311 | do_div(tmp, art_to_tsc_denominator); |
1312 | res += tmp + art_to_tsc_offset; |
1313 | |
1314 | return (struct system_counterval_t) { |
1315 | .cs_id = have_art ? CSID_X86_TSC : CSID_GENERIC, |
1316 | .cycles = res, |
1317 | }; |
1318 | } |
1319 | EXPORT_SYMBOL(convert_art_to_tsc); |
1320 | |
1321 | /** |
1322 | * convert_art_ns_to_tsc() - Convert ART in nanoseconds to TSC. |
1323 | * @art_ns: ART (Always Running Timer) in unit of nanoseconds |
1324 | * |
1325 | * PTM requires all timestamps to be in units of nanoseconds. When user |
1326 | * software requests a cross-timestamp, this function converts system timestamp |
1327 | * to TSC. |
1328 | * |
1329 | * This is valid when CPU feature flag X86_FEATURE_TSC_KNOWN_FREQ is set |
1330 | * indicating the tsc_khz is derived from CPUID[15H]. Drivers should check |
1331 | * that this flag is set before conversion to TSC is attempted. |
1332 | * |
1333 | * Return: |
1334 | * struct system_counterval_t - system counter value with the ID of the |
1335 | * corresponding clocksource: |
1336 | * cycles: System counter value |
1337 | * cs_id: The clocksource ID for validating comparability |
1338 | */ |
1339 | |
1340 | struct system_counterval_t convert_art_ns_to_tsc(u64 art_ns) |
1341 | { |
1342 | u64 tmp, res, rem; |
1343 | |
1344 | rem = do_div(art_ns, USEC_PER_SEC); |
1345 | |
1346 | res = art_ns * tsc_khz; |
1347 | tmp = rem * tsc_khz; |
1348 | |
1349 | do_div(tmp, USEC_PER_SEC); |
1350 | res += tmp; |
1351 | |
1352 | return (struct system_counterval_t) { |
1353 | .cs_id = have_art ? CSID_X86_TSC : CSID_GENERIC, |
1354 | .cycles = res, |
1355 | }; |
1356 | } |
1357 | EXPORT_SYMBOL(convert_art_ns_to_tsc); |
1358 | |
1359 | |
1360 | static void tsc_refine_calibration_work(struct work_struct *work); |
1361 | static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work); |
1362 | /** |
1363 | * tsc_refine_calibration_work - Further refine tsc freq calibration |
1364 | * @work: ignored. |
1365 | * |
1366 | * This functions uses delayed work over a period of a |
1367 | * second to further refine the TSC freq value. Since this is |
1368 | * timer based, instead of loop based, we don't block the boot |
1369 | * process while this longer calibration is done. |
1370 | * |
1371 | * If there are any calibration anomalies (too many SMIs, etc), |
1372 | * or the refined calibration is off by 1% of the fast early |
1373 | * calibration, we throw out the new calibration and use the |
1374 | * early calibration. |
1375 | */ |
1376 | static void tsc_refine_calibration_work(struct work_struct *work) |
1377 | { |
1378 | static u64 tsc_start = ULLONG_MAX, ref_start; |
1379 | static int hpet; |
1380 | u64 tsc_stop, ref_stop, delta; |
1381 | unsigned long freq; |
1382 | int cpu; |
1383 | |
1384 | /* Don't bother refining TSC on unstable systems */ |
1385 | if (tsc_unstable) |
1386 | goto unreg; |
1387 | |
1388 | /* |
1389 | * Since the work is started early in boot, we may be |
1390 | * delayed the first time we expire. So set the workqueue |
1391 | * again once we know timers are working. |
1392 | */ |
1393 | if (tsc_start == ULLONG_MAX) { |
1394 | restart: |
1395 | /* |
1396 | * Only set hpet once, to avoid mixing hardware |
1397 | * if the hpet becomes enabled later. |
1398 | */ |
1399 | hpet = is_hpet_enabled(); |
1400 | tsc_start = tsc_read_refs(p: &ref_start, hpet); |
1401 | schedule_delayed_work(dwork: &tsc_irqwork, HZ); |
1402 | return; |
1403 | } |
1404 | |
1405 | tsc_stop = tsc_read_refs(p: &ref_stop, hpet); |
1406 | |
1407 | /* hpet or pmtimer available ? */ |
1408 | if (ref_start == ref_stop) |
1409 | goto out; |
1410 | |
1411 | /* Check, whether the sampling was disturbed */ |
1412 | if (tsc_stop == ULLONG_MAX) |
1413 | goto restart; |
1414 | |
1415 | delta = tsc_stop - tsc_start; |
1416 | delta *= 1000000LL; |
1417 | if (hpet) |
1418 | freq = calc_hpet_ref(deltatsc: delta, hpet1: ref_start, hpet2: ref_stop); |
1419 | else |
1420 | freq = calc_pmtimer_ref(deltatsc: delta, pm1: ref_start, pm2: ref_stop); |
1421 | |
1422 | /* Will hit this only if tsc_force_recalibrate has been set */ |
1423 | if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { |
1424 | |
1425 | /* Warn if the deviation exceeds 500 ppm */ |
1426 | if (abs(tsc_khz - freq) > (tsc_khz >> 11)) { |
1427 | pr_warn("Warning: TSC freq calibrated by CPUID/MSR differs from what is calibrated by HW timer, please check with vendor!!\n"); |
1428 | pr_info("Previous calibrated TSC freq:\t %lu.%03lu MHz\n", |
1429 | (unsigned long)tsc_khz / 1000, |
1430 | (unsigned long)tsc_khz % 1000); |
1431 | } |
1432 | |
1433 | pr_info("TSC freq recalibrated by [%s]:\t %lu.%03lu MHz\n", |
1434 | hpet ? "HPET": "PM_TIMER", |
1435 | (unsigned long)freq / 1000, |
1436 | (unsigned long)freq % 1000); |
1437 | |
1438 | return; |
1439 | } |
1440 | |
1441 | /* Make sure we're within 1% */ |
1442 | if (abs(tsc_khz - freq) > tsc_khz/100) |
1443 | goto out; |
1444 | |
1445 | tsc_khz = freq; |
1446 | pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n", |
1447 | (unsigned long)tsc_khz / 1000, |
1448 | (unsigned long)tsc_khz % 1000); |
1449 | |
1450 | /* Inform the TSC deadline clockevent devices about the recalibration */ |
1451 | lapic_update_tsc_freq(); |
1452 | |
1453 | /* Update the sched_clock() rate to match the clocksource one */ |
1454 | for_each_possible_cpu(cpu) |
1455 | set_cyc2ns_scale(khz: tsc_khz, cpu, tsc_now: tsc_stop); |
1456 | |
1457 | out: |
1458 | if (tsc_unstable) |
1459 | goto unreg; |
1460 | |
1461 | if (boot_cpu_has(X86_FEATURE_ART)) |
1462 | have_art = true; |
1463 | clocksource_register_khz(cs: &clocksource_tsc, khz: tsc_khz); |
1464 | unreg: |
1465 | clocksource_unregister(&clocksource_tsc_early); |
1466 | } |
1467 | |
1468 | |
1469 | static int __init init_tsc_clocksource(void) |
1470 | { |
1471 | if (!boot_cpu_has(X86_FEATURE_TSC) || !tsc_khz) |
1472 | return 0; |
1473 | |
1474 | if (tsc_unstable) { |
1475 | clocksource_unregister(&clocksource_tsc_early); |
1476 | return 0; |
1477 | } |
1478 | |
1479 | if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3)) |
1480 | clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; |
1481 | |
1482 | /* |
1483 | * When TSC frequency is known (retrieved via MSR or CPUID), we skip |
1484 | * the refined calibration and directly register it as a clocksource. |
1485 | */ |
1486 | if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) { |
1487 | if (boot_cpu_has(X86_FEATURE_ART)) |
1488 | have_art = true; |
1489 | clocksource_register_khz(cs: &clocksource_tsc, khz: tsc_khz); |
1490 | clocksource_unregister(&clocksource_tsc_early); |
1491 | |
1492 | if (!tsc_force_recalibrate) |
1493 | return 0; |
1494 | } |
1495 | |
1496 | schedule_delayed_work(dwork: &tsc_irqwork, delay: 0); |
1497 | return 0; |
1498 | } |
1499 | /* |
1500 | * We use device_initcall here, to ensure we run after the hpet |
1501 | * is fully initialized, which may occur at fs_initcall time. |
1502 | */ |
1503 | device_initcall(init_tsc_clocksource); |
1504 | |
1505 | static bool __init determine_cpu_tsc_frequencies(bool early) |
1506 | { |
1507 | /* Make sure that cpu and tsc are not already calibrated */ |
1508 | WARN_ON(cpu_khz || tsc_khz); |
1509 | |
1510 | if (early) { |
1511 | cpu_khz = x86_platform.calibrate_cpu(); |
1512 | if (tsc_early_khz) |
1513 | tsc_khz = tsc_early_khz; |
1514 | else |
1515 | tsc_khz = x86_platform.calibrate_tsc(); |
1516 | } else { |
1517 | /* We should not be here with non-native cpu calibration */ |
1518 | WARN_ON(x86_platform.calibrate_cpu != native_calibrate_cpu); |
1519 | cpu_khz = pit_hpet_ptimer_calibrate_cpu(); |
1520 | } |
1521 | |
1522 | /* |
1523 | * Trust non-zero tsc_khz as authoritative, |
1524 | * and use it to sanity check cpu_khz, |
1525 | * which will be off if system timer is off. |
1526 | */ |
1527 | if (tsc_khz == 0) |
1528 | tsc_khz = cpu_khz; |
1529 | else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz) |
1530 | cpu_khz = tsc_khz; |
1531 | |
1532 | if (tsc_khz == 0) |
1533 | return false; |
1534 | |
1535 | pr_info("Detected %lu.%03lu MHz processor\n", |
1536 | (unsigned long)cpu_khz / KHZ, |
1537 | (unsigned long)cpu_khz % KHZ); |
1538 | |
1539 | if (cpu_khz != tsc_khz) { |
1540 | pr_info("Detected %lu.%03lu MHz TSC", |
1541 | (unsigned long)tsc_khz / KHZ, |
1542 | (unsigned long)tsc_khz % KHZ); |
1543 | } |
1544 | return true; |
1545 | } |
1546 | |
1547 | static unsigned long __init get_loops_per_jiffy(void) |
1548 | { |
1549 | u64 lpj = (u64)tsc_khz * KHZ; |
1550 | |
1551 | do_div(lpj, HZ); |
1552 | return lpj; |
1553 | } |
1554 | |
1555 | static void __init tsc_enable_sched_clock(void) |
1556 | { |
1557 | loops_per_jiffy = get_loops_per_jiffy(); |
1558 | use_tsc_delay(); |
1559 | |
1560 | /* Sanitize TSC ADJUST before cyc2ns gets initialized */ |
1561 | tsc_store_and_check_tsc_adjust(bootcpu: true); |
1562 | cyc2ns_init_boot_cpu(); |
1563 | static_branch_enable(&__use_tsc); |
1564 | } |
1565 | |
1566 | void __init tsc_early_init(void) |
1567 | { |
1568 | if (!boot_cpu_has(X86_FEATURE_TSC)) |
1569 | return; |
1570 | /* Don't change UV TSC multi-chassis synchronization */ |
1571 | if (is_early_uv_system()) |
1572 | return; |
1573 | if (!determine_cpu_tsc_frequencies(early: true)) |
1574 | return; |
1575 | tsc_enable_sched_clock(); |
1576 | } |
1577 | |
1578 | void __init tsc_init(void) |
1579 | { |
1580 | if (!cpu_feature_enabled(X86_FEATURE_TSC)) { |
1581 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
1582 | return; |
1583 | } |
1584 | |
1585 | /* |
1586 | * native_calibrate_cpu_early can only calibrate using methods that are |
1587 | * available early in boot. |
1588 | */ |
1589 | if (x86_platform.calibrate_cpu == native_calibrate_cpu_early) |
1590 | x86_platform.calibrate_cpu = native_calibrate_cpu; |
1591 | |
1592 | if (!tsc_khz) { |
1593 | /* We failed to determine frequencies earlier, try again */ |
1594 | if (!determine_cpu_tsc_frequencies(early: false)) { |
1595 | mark_tsc_unstable("could not calculate TSC khz"); |
1596 | setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER); |
1597 | return; |
1598 | } |
1599 | tsc_enable_sched_clock(); |
1600 | } |
1601 | |
1602 | cyc2ns_init_secondary_cpus(); |
1603 | |
1604 | if (!no_sched_irq_time) |
1605 | enable_sched_clock_irqtime(); |
1606 | |
1607 | lpj_fine = get_loops_per_jiffy(); |
1608 | |
1609 | check_system_tsc_reliable(); |
1610 | |
1611 | if (unsynchronized_tsc()) { |
1612 | mark_tsc_unstable("TSCs unsynchronized"); |
1613 | return; |
1614 | } |
1615 | |
1616 | if (tsc_clocksource_reliable || no_tsc_watchdog) |
1617 | tsc_disable_clocksource_watchdog(); |
1618 | |
1619 | clocksource_register_khz(cs: &clocksource_tsc_early, khz: tsc_khz); |
1620 | detect_art(); |
1621 | } |
1622 | |
1623 | #ifdef CONFIG_SMP |
1624 | /* |
1625 | * Check whether existing calibration data can be reused. |
1626 | */ |
1627 | unsigned long calibrate_delay_is_known(void) |
1628 | { |
1629 | int sibling, cpu = smp_processor_id(); |
1630 | int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC); |
1631 | const struct cpumask *mask = topology_core_cpumask(cpu); |
1632 | |
1633 | /* |
1634 | * If TSC has constant frequency and TSC is synchronized across |
1635 | * sockets then reuse CPU0 calibration. |
1636 | */ |
1637 | if (constant_tsc && !tsc_unstable) |
1638 | return cpu_data(0).loops_per_jiffy; |
1639 | |
1640 | /* |
1641 | * If TSC has constant frequency and TSC is not synchronized across |
1642 | * sockets and this is not the first CPU in the socket, then reuse |
1643 | * the calibration value of an already online CPU on that socket. |
1644 | * |
1645 | * This assumes that CONSTANT_TSC is consistent for all CPUs in a |
1646 | * socket. |
1647 | */ |
1648 | if (!constant_tsc || !mask) |
1649 | return 0; |
1650 | |
1651 | sibling = cpumask_any_but(mask, cpu); |
1652 | if (sibling < nr_cpu_ids) |
1653 | return cpu_data(sibling).loops_per_jiffy; |
1654 | return 0; |
1655 | } |
1656 | #endif |
1657 |
Definitions
- cpu_khz
- tsc_khz
- tsc_unstable
- tsc_early_khz
- __use_tsc
- tsc_clocksource_reliable
- tsc_force_recalibrate
- art_to_tsc_numerator
- art_to_tsc_denominator
- art_to_tsc_offset
- have_art
- cyc2ns
- cyc2ns
- tsc_early_khz_setup
- __cyc2ns_read
- cyc2ns_read_begin
- cyc2ns_read_end
- __cycles_2_ns
- cycles_2_ns
- __set_cyc2ns_scale
- set_cyc2ns_scale
- cyc2ns_init_boot_cpu
- cyc2ns_init_secondary_cpus
- native_sched_clock
- native_sched_clock_from_tsc
- sched_clock_noinstr
- using_native_sched_clock
- sched_clock
- check_tsc_unstable
- notsc_setup
- no_sched_irq_time
- no_tsc_watchdog
- tsc_as_watchdog
- tsc_setup
- tsc_read_refs
- calc_hpet_ref
- calc_pmtimer_ref
- pit_calibrate_tsc
- pit_verify_msb
- pit_expect_msb
- quick_pit_calibrate
- native_calibrate_tsc
- cpu_khz_from_cpuid
- pit_hpet_ptimer_calibrate_cpu
- native_calibrate_cpu_early
- native_calibrate_cpu
- recalibrate_cpu_khz
- cyc2ns_suspend
- tsc_save_sched_clock_state
- tsc_restore_sched_clock_state
- ref_freq
- loops_per_jiffy_ref
- tsc_khz_ref
- time_cpufreq_notifier
- time_cpufreq_notifier_block
- cpufreq_register_tsc_scaling
- detect_art
- tsc_resume
- read_tsc
- tsc_cs_mark_unstable
- tsc_cs_tick_stable
- tsc_cs_enable
- clocksource_tsc_early
- clocksource_tsc
- mark_tsc_unstable
- tsc_disable_clocksource_watchdog
- tsc_clocksource_watchdog_disabled
- check_system_tsc_reliable
- unsynchronized_tsc
- convert_art_to_tsc
- convert_art_ns_to_tsc
- tsc_irqwork
- tsc_refine_calibration_work
- init_tsc_clocksource
- determine_cpu_tsc_frequencies
- get_loops_per_jiffy
- tsc_enable_sched_clock
- tsc_early_init
- tsc_init
Improve your Profiling and Debugging skills
Find out more