1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * KVM Microsoft Hyper-V emulation
4 *
5 * derived from arch/x86/kvm/x86.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
12 *
13 * Authors:
14 * Avi Kivity <avi@qumranet.com>
15 * Yaniv Kamay <yaniv@qumranet.com>
16 * Amit Shah <amit.shah@qumranet.com>
17 * Ben-Ami Yassour <benami@il.ibm.com>
18 * Andrey Smetanin <asmetanin@virtuozzo.com>
19 */
20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21
22#include "x86.h"
23#include "lapic.h"
24#include "ioapic.h"
25#include "cpuid.h"
26#include "hyperv.h"
27#include "mmu.h"
28#include "xen.h"
29
30#include <linux/cpu.h>
31#include <linux/kvm_host.h>
32#include <linux/highmem.h>
33#include <linux/sched/cputime.h>
34#include <linux/spinlock.h>
35#include <linux/eventfd.h>
36
37#include <asm/apicdef.h>
38#include <asm/mshyperv.h>
39#include <trace/events/kvm.h>
40
41#include "trace.h"
42#include "irq.h"
43#include "fpu.h"
44
45#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)
46
47/*
48 * As per Hyper-V TLFS, extended hypercalls start from 0x8001
49 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
50 * where each bit tells which extended hypercall is available besides
51 * HvExtCallQueryCapabilities.
52 *
53 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
54 * assigned.
55 *
56 * 0x8002 - Bit 0
57 * 0x8003 - Bit 1
58 * ..
59 * 0x8041 - Bit 63
60 *
61 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
62 */
63#define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)
64
65static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
66 bool vcpu_kick);
67
68static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
69{
70 return atomic64_read(v: &synic->sint[sint]);
71}
72
73static inline int synic_get_sint_vector(u64 sint_value)
74{
75 if (sint_value & HV_SYNIC_SINT_MASKED)
76 return -1;
77 return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
78}
79
80static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
81 int vector)
82{
83 int i;
84
85 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
86 if (synic_get_sint_vector(sint_value: synic_read_sint(synic, sint: i)) == vector)
87 return true;
88 }
89 return false;
90}
91
92static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
93 int vector)
94{
95 int i;
96 u64 sint_value;
97
98 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
99 sint_value = synic_read_sint(synic, sint: i);
100 if (synic_get_sint_vector(sint_value) == vector &&
101 sint_value & HV_SYNIC_SINT_AUTO_EOI)
102 return true;
103 }
104 return false;
105}
106
107static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
108 int vector)
109{
110 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
111 struct kvm_hv *hv = to_kvm_hv(kvm: vcpu->kvm);
112 bool auto_eoi_old, auto_eoi_new;
113
114 if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
115 return;
116
117 if (synic_has_vector_connected(synic, vector))
118 __set_bit(vector, synic->vec_bitmap);
119 else
120 __clear_bit(vector, synic->vec_bitmap);
121
122 auto_eoi_old = !bitmap_empty(src: synic->auto_eoi_bitmap, nbits: 256);
123
124 if (synic_has_vector_auto_eoi(synic, vector))
125 __set_bit(vector, synic->auto_eoi_bitmap);
126 else
127 __clear_bit(vector, synic->auto_eoi_bitmap);
128
129 auto_eoi_new = !bitmap_empty(src: synic->auto_eoi_bitmap, nbits: 256);
130
131 if (auto_eoi_old == auto_eoi_new)
132 return;
133
134 if (!enable_apicv)
135 return;
136
137 down_write(sem: &vcpu->kvm->arch.apicv_update_lock);
138
139 if (auto_eoi_new)
140 hv->synic_auto_eoi_used++;
141 else
142 hv->synic_auto_eoi_used--;
143
144 /*
145 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
146 * the hypervisor to manually inject IRQs.
147 */
148 __kvm_set_or_clear_apicv_inhibit(kvm: vcpu->kvm,
149 reason: APICV_INHIBIT_REASON_HYPERV,
150 set: !!hv->synic_auto_eoi_used);
151
152 up_write(sem: &vcpu->kvm->arch.apicv_update_lock);
153}
154
155static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
156 u64 data, bool host)
157{
158 int vector, old_vector;
159 bool masked;
160
161 vector = data & HV_SYNIC_SINT_VECTOR_MASK;
162 masked = data & HV_SYNIC_SINT_MASKED;
163
164 /*
165 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
166 * default '0x10000' value on boot and this should not #GP. We need to
167 * allow zero-initing the register from host as well.
168 */
169 if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
170 return 1;
171 /*
172 * Guest may configure multiple SINTs to use the same vector, so
173 * we maintain a bitmap of vectors handled by synic, and a
174 * bitmap of vectors with auto-eoi behavior. The bitmaps are
175 * updated here, and atomically queried on fast paths.
176 */
177 old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;
178
179 atomic64_set(v: &synic->sint[sint], i: data);
180
181 synic_update_vector(synic, vector: old_vector);
182
183 synic_update_vector(synic, vector);
184
185 /* Load SynIC vectors into EOI exit bitmap */
186 kvm_make_request(KVM_REQ_SCAN_IOAPIC, vcpu: hv_synic_to_vcpu(synic));
187 return 0;
188}
189
190static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
191{
192 struct kvm_vcpu *vcpu = NULL;
193 unsigned long i;
194
195 if (vpidx >= KVM_MAX_VCPUS)
196 return NULL;
197
198 vcpu = kvm_get_vcpu(kvm, i: vpidx);
199 if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
200 return vcpu;
201 kvm_for_each_vcpu(i, vcpu, kvm)
202 if (kvm_hv_get_vpindex(vcpu) == vpidx)
203 return vcpu;
204 return NULL;
205}
206
207static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
208{
209 struct kvm_vcpu *vcpu;
210 struct kvm_vcpu_hv_synic *synic;
211
212 vcpu = get_vcpu_by_vpidx(kvm, vpidx);
213 if (!vcpu || !to_hv_vcpu(vcpu))
214 return NULL;
215 synic = to_hv_synic(vcpu);
216 return (synic->active) ? synic : NULL;
217}
218
219static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
220{
221 struct kvm *kvm = vcpu->kvm;
222 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
223 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
224 struct kvm_vcpu_hv_stimer *stimer;
225 int gsi, idx;
226
227 trace_kvm_hv_notify_acked_sint(vcpu_id: vcpu->vcpu_id, sint);
228
229 /* Try to deliver pending Hyper-V SynIC timers messages */
230 for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
231 stimer = &hv_vcpu->stimer[idx];
232 if (stimer->msg_pending && stimer->config.enable &&
233 !stimer->config.direct_mode &&
234 stimer->config.sintx == sint)
235 stimer_mark_pending(stimer, vcpu_kick: false);
236 }
237
238 idx = srcu_read_lock(ssp: &kvm->irq_srcu);
239 gsi = atomic_read(v: &synic->sint_to_gsi[sint]);
240 if (gsi != -1)
241 kvm_notify_acked_gsi(kvm, gsi);
242 srcu_read_unlock(ssp: &kvm->irq_srcu, idx);
243}
244
245static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
246{
247 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
248 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
249
250 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
251 hv_vcpu->exit.u.synic.msr = msr;
252 hv_vcpu->exit.u.synic.control = synic->control;
253 hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
254 hv_vcpu->exit.u.synic.msg_page = synic->msg_page;
255
256 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
257}
258
259static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
260 u32 msr, u64 data, bool host)
261{
262 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
263 int ret;
264
265 if (!synic->active && (!host || data))
266 return 1;
267
268 trace_kvm_hv_synic_set_msr(vcpu_id: vcpu->vcpu_id, msr, data, host);
269
270 ret = 0;
271 switch (msr) {
272 case HV_X64_MSR_SCONTROL:
273 synic->control = data;
274 if (!host)
275 synic_exit(synic, msr);
276 break;
277 case HV_X64_MSR_SVERSION:
278 if (!host) {
279 ret = 1;
280 break;
281 }
282 synic->version = data;
283 break;
284 case HV_X64_MSR_SIEFP:
285 if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
286 !synic->dont_zero_synic_pages)
287 if (kvm_clear_guest(kvm: vcpu->kvm,
288 gpa: data & PAGE_MASK, PAGE_SIZE)) {
289 ret = 1;
290 break;
291 }
292 synic->evt_page = data;
293 if (!host)
294 synic_exit(synic, msr);
295 break;
296 case HV_X64_MSR_SIMP:
297 if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
298 !synic->dont_zero_synic_pages)
299 if (kvm_clear_guest(kvm: vcpu->kvm,
300 gpa: data & PAGE_MASK, PAGE_SIZE)) {
301 ret = 1;
302 break;
303 }
304 synic->msg_page = data;
305 if (!host)
306 synic_exit(synic, msr);
307 break;
308 case HV_X64_MSR_EOM: {
309 int i;
310
311 if (!synic->active)
312 break;
313
314 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
315 kvm_hv_notify_acked_sint(vcpu, sint: i);
316 break;
317 }
318 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
319 ret = synic_set_sint(synic, sint: msr - HV_X64_MSR_SINT0, data, host);
320 break;
321 default:
322 ret = 1;
323 break;
324 }
325 return ret;
326}
327
328static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
329{
330 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
331
332 return hv_vcpu->cpuid_cache.syndbg_cap_eax &
333 HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
334}
335
336static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
337{
338 struct kvm_hv *hv = to_kvm_hv(kvm: vcpu->kvm);
339
340 if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
341 hv->hv_syndbg.control.status =
342 vcpu->run->hyperv.u.syndbg.status;
343 return 1;
344}
345
346static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
347{
348 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
349 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
350
351 hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
352 hv_vcpu->exit.u.syndbg.msr = msr;
353 hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
354 hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
355 hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
356 hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
357 vcpu->arch.complete_userspace_io =
358 kvm_hv_syndbg_complete_userspace;
359
360 kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
361}
362
363static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
364{
365 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
366
367 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
368 return 1;
369
370 trace_kvm_hv_syndbg_set_msr(vcpu_id: vcpu->vcpu_id,
371 vp_index: to_hv_vcpu(vcpu)->vp_index, msr, data);
372 switch (msr) {
373 case HV_X64_MSR_SYNDBG_CONTROL:
374 syndbg->control.control = data;
375 if (!host)
376 syndbg_exit(vcpu, msr);
377 break;
378 case HV_X64_MSR_SYNDBG_STATUS:
379 syndbg->control.status = data;
380 break;
381 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
382 syndbg->control.send_page = data;
383 break;
384 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
385 syndbg->control.recv_page = data;
386 break;
387 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
388 syndbg->control.pending_page = data;
389 if (!host)
390 syndbg_exit(vcpu, msr);
391 break;
392 case HV_X64_MSR_SYNDBG_OPTIONS:
393 syndbg->options = data;
394 break;
395 default:
396 break;
397 }
398
399 return 0;
400}
401
402static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
403{
404 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
405
406 if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
407 return 1;
408
409 switch (msr) {
410 case HV_X64_MSR_SYNDBG_CONTROL:
411 *pdata = syndbg->control.control;
412 break;
413 case HV_X64_MSR_SYNDBG_STATUS:
414 *pdata = syndbg->control.status;
415 break;
416 case HV_X64_MSR_SYNDBG_SEND_BUFFER:
417 *pdata = syndbg->control.send_page;
418 break;
419 case HV_X64_MSR_SYNDBG_RECV_BUFFER:
420 *pdata = syndbg->control.recv_page;
421 break;
422 case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
423 *pdata = syndbg->control.pending_page;
424 break;
425 case HV_X64_MSR_SYNDBG_OPTIONS:
426 *pdata = syndbg->options;
427 break;
428 default:
429 break;
430 }
431
432 trace_kvm_hv_syndbg_get_msr(vcpu_id: vcpu->vcpu_id, vp_index: kvm_hv_get_vpindex(vcpu), msr, data: *pdata);
433
434 return 0;
435}
436
437static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
438 bool host)
439{
440 int ret;
441
442 if (!synic->active && !host)
443 return 1;
444
445 ret = 0;
446 switch (msr) {
447 case HV_X64_MSR_SCONTROL:
448 *pdata = synic->control;
449 break;
450 case HV_X64_MSR_SVERSION:
451 *pdata = synic->version;
452 break;
453 case HV_X64_MSR_SIEFP:
454 *pdata = synic->evt_page;
455 break;
456 case HV_X64_MSR_SIMP:
457 *pdata = synic->msg_page;
458 break;
459 case HV_X64_MSR_EOM:
460 *pdata = 0;
461 break;
462 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
463 *pdata = atomic64_read(v: &synic->sint[msr - HV_X64_MSR_SINT0]);
464 break;
465 default:
466 ret = 1;
467 break;
468 }
469 return ret;
470}
471
472static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
473{
474 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
475 struct kvm_lapic_irq irq;
476 int ret, vector;
477
478 if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
479 return -EINVAL;
480
481 if (sint >= ARRAY_SIZE(synic->sint))
482 return -EINVAL;
483
484 vector = synic_get_sint_vector(sint_value: synic_read_sint(synic, sint));
485 if (vector < 0)
486 return -ENOENT;
487
488 memset(&irq, 0, sizeof(irq));
489 irq.shorthand = APIC_DEST_SELF;
490 irq.dest_mode = APIC_DEST_PHYSICAL;
491 irq.delivery_mode = APIC_DM_FIXED;
492 irq.vector = vector;
493 irq.level = 1;
494
495 ret = kvm_irq_delivery_to_apic(kvm: vcpu->kvm, src: vcpu->arch.apic, irq: &irq, NULL);
496 trace_kvm_hv_synic_set_irq(vcpu_id: vcpu->vcpu_id, sint, vector: irq.vector, ret);
497 return ret;
498}
499
500int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
501{
502 struct kvm_vcpu_hv_synic *synic;
503
504 synic = synic_get(kvm, vpidx);
505 if (!synic)
506 return -EINVAL;
507
508 return synic_set_irq(synic, sint);
509}
510
511void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
512{
513 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
514 int i;
515
516 trace_kvm_hv_synic_send_eoi(vcpu_id: vcpu->vcpu_id, vector);
517
518 for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
519 if (synic_get_sint_vector(sint_value: synic_read_sint(synic, sint: i)) == vector)
520 kvm_hv_notify_acked_sint(vcpu, sint: i);
521}
522
523static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
524{
525 struct kvm_vcpu_hv_synic *synic;
526
527 synic = synic_get(kvm, vpidx);
528 if (!synic)
529 return -EINVAL;
530
531 if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
532 return -EINVAL;
533
534 atomic_set(v: &synic->sint_to_gsi[sint], i: gsi);
535 return 0;
536}
537
538void kvm_hv_irq_routing_update(struct kvm *kvm)
539{
540 struct kvm_irq_routing_table *irq_rt;
541 struct kvm_kernel_irq_routing_entry *e;
542 u32 gsi;
543
544 irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
545 lockdep_is_held(&kvm->irq_lock));
546
547 for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
548 hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
549 if (e->type == KVM_IRQ_ROUTING_HV_SINT)
550 kvm_hv_set_sint_gsi(kvm, vpidx: e->hv_sint.vcpu,
551 sint: e->hv_sint.sint, gsi);
552 }
553 }
554}
555
556static void synic_init(struct kvm_vcpu_hv_synic *synic)
557{
558 int i;
559
560 memset(synic, 0, sizeof(*synic));
561 synic->version = HV_SYNIC_VERSION_1;
562 for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
563 atomic64_set(v: &synic->sint[i], HV_SYNIC_SINT_MASKED);
564 atomic_set(v: &synic->sint_to_gsi[i], i: -1);
565 }
566}
567
568static u64 get_time_ref_counter(struct kvm *kvm)
569{
570 struct kvm_hv *hv = to_kvm_hv(kvm);
571 struct kvm_vcpu *vcpu;
572 u64 tsc;
573
574 /*
575 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
576 * is broken, disabled or being updated.
577 */
578 if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
579 return div_u64(dividend: get_kvmclock_ns(kvm), divisor: 100);
580
581 vcpu = kvm_get_vcpu(kvm, i: 0);
582 tsc = kvm_read_l1_tsc(vcpu, host_tsc: rdtsc());
583 return mul_u64_u64_shr(a: tsc, mul: hv->tsc_ref.tsc_scale, shift: 64)
584 + hv->tsc_ref.tsc_offset;
585}
586
587static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
588 bool vcpu_kick)
589{
590 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
591
592 set_bit(nr: stimer->index,
593 addr: to_hv_vcpu(vcpu)->stimer_pending_bitmap);
594 kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
595 if (vcpu_kick)
596 kvm_vcpu_kick(vcpu);
597}
598
599static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
600{
601 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
602
603 trace_kvm_hv_stimer_cleanup(vcpu_id: hv_stimer_to_vcpu(stimer)->vcpu_id,
604 timer_index: stimer->index);
605
606 hrtimer_cancel(timer: &stimer->timer);
607 clear_bit(nr: stimer->index,
608 addr: to_hv_vcpu(vcpu)->stimer_pending_bitmap);
609 stimer->msg_pending = false;
610 stimer->exp_time = 0;
611}
612
613static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
614{
615 struct kvm_vcpu_hv_stimer *stimer;
616
617 stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
618 trace_kvm_hv_stimer_callback(vcpu_id: hv_stimer_to_vcpu(stimer)->vcpu_id,
619 timer_index: stimer->index);
620 stimer_mark_pending(stimer, vcpu_kick: true);
621
622 return HRTIMER_NORESTART;
623}
624
625/*
626 * stimer_start() assumptions:
627 * a) stimer->count is not equal to 0
628 * b) stimer->config has HV_STIMER_ENABLE flag
629 */
630static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
631{
632 u64 time_now;
633 ktime_t ktime_now;
634
635 time_now = get_time_ref_counter(kvm: hv_stimer_to_vcpu(stimer)->kvm);
636 ktime_now = ktime_get();
637
638 if (stimer->config.periodic) {
639 if (stimer->exp_time) {
640 if (time_now >= stimer->exp_time) {
641 u64 remainder;
642
643 div64_u64_rem(dividend: time_now - stimer->exp_time,
644 divisor: stimer->count, remainder: &remainder);
645 stimer->exp_time =
646 time_now + (stimer->count - remainder);
647 }
648 } else
649 stimer->exp_time = time_now + stimer->count;
650
651 trace_kvm_hv_stimer_start_periodic(
652 vcpu_id: hv_stimer_to_vcpu(stimer)->vcpu_id,
653 timer_index: stimer->index,
654 time_now, exp_time: stimer->exp_time);
655
656 hrtimer_start(timer: &stimer->timer,
657 ktime_add_ns(ktime_now,
658 100 * (stimer->exp_time - time_now)),
659 mode: HRTIMER_MODE_ABS);
660 return 0;
661 }
662 stimer->exp_time = stimer->count;
663 if (time_now >= stimer->count) {
664 /*
665 * Expire timer according to Hypervisor Top-Level Functional
666 * specification v4(15.3.1):
667 * "If a one shot is enabled and the specified count is in
668 * the past, it will expire immediately."
669 */
670 stimer_mark_pending(stimer, vcpu_kick: false);
671 return 0;
672 }
673
674 trace_kvm_hv_stimer_start_one_shot(vcpu_id: hv_stimer_to_vcpu(stimer)->vcpu_id,
675 timer_index: stimer->index,
676 time_now, count: stimer->count);
677
678 hrtimer_start(timer: &stimer->timer,
679 ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
680 mode: HRTIMER_MODE_ABS);
681 return 0;
682}
683
684static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
685 bool host)
686{
687 union hv_stimer_config new_config = {.as_uint64 = config},
688 old_config = {.as_uint64 = stimer->config.as_uint64};
689 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
690 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
691 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
692
693 if (!synic->active && (!host || config))
694 return 1;
695
696 if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
697 !(hv_vcpu->cpuid_cache.features_edx &
698 HV_STIMER_DIRECT_MODE_AVAILABLE)))
699 return 1;
700
701 trace_kvm_hv_stimer_set_config(vcpu_id: hv_stimer_to_vcpu(stimer)->vcpu_id,
702 timer_index: stimer->index, config, host);
703
704 stimer_cleanup(stimer);
705 if (old_config.enable &&
706 !new_config.direct_mode && new_config.sintx == 0)
707 new_config.enable = 0;
708 stimer->config.as_uint64 = new_config.as_uint64;
709
710 if (stimer->config.enable)
711 stimer_mark_pending(stimer, vcpu_kick: false);
712
713 return 0;
714}
715
716static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
717 bool host)
718{
719 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
720 struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
721
722 if (!synic->active && (!host || count))
723 return 1;
724
725 trace_kvm_hv_stimer_set_count(vcpu_id: hv_stimer_to_vcpu(stimer)->vcpu_id,
726 timer_index: stimer->index, count, host);
727
728 stimer_cleanup(stimer);
729 stimer->count = count;
730 if (!host) {
731 if (stimer->count == 0)
732 stimer->config.enable = 0;
733 else if (stimer->config.auto_enable)
734 stimer->config.enable = 1;
735 }
736
737 if (stimer->config.enable)
738 stimer_mark_pending(stimer, vcpu_kick: false);
739
740 return 0;
741}
742
743static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
744{
745 *pconfig = stimer->config.as_uint64;
746 return 0;
747}
748
749static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
750{
751 *pcount = stimer->count;
752 return 0;
753}
754
755static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
756 struct hv_message *src_msg, bool no_retry)
757{
758 struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
759 int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
760 gfn_t msg_page_gfn;
761 struct hv_message_header hv_hdr;
762 int r;
763
764 if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
765 return -ENOENT;
766
767 msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
768
769 /*
770 * Strictly following the spec-mandated ordering would assume setting
771 * .msg_pending before checking .message_type. However, this function
772 * is only called in vcpu context so the entire update is atomic from
773 * guest POV and thus the exact order here doesn't matter.
774 */
775 r = kvm_vcpu_read_guest_page(vcpu, gfn: msg_page_gfn, data: &hv_hdr.message_type,
776 offset: msg_off + offsetof(struct hv_message,
777 header.message_type),
778 len: sizeof(hv_hdr.message_type));
779 if (r < 0)
780 return r;
781
782 if (hv_hdr.message_type != HVMSG_NONE) {
783 if (no_retry)
784 return 0;
785
786 hv_hdr.message_flags.msg_pending = 1;
787 r = kvm_vcpu_write_guest_page(vcpu, gfn: msg_page_gfn,
788 data: &hv_hdr.message_flags,
789 offset: msg_off +
790 offsetof(struct hv_message,
791 header.message_flags),
792 len: sizeof(hv_hdr.message_flags));
793 if (r < 0)
794 return r;
795 return -EAGAIN;
796 }
797
798 r = kvm_vcpu_write_guest_page(vcpu, gfn: msg_page_gfn, data: src_msg, offset: msg_off,
799 len: sizeof(src_msg->header) +
800 src_msg->header.payload_size);
801 if (r < 0)
802 return r;
803
804 r = synic_set_irq(synic, sint);
805 if (r < 0)
806 return r;
807 if (r == 0)
808 return -EFAULT;
809 return 0;
810}
811
812static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
813{
814 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
815 struct hv_message *msg = &stimer->msg;
816 struct hv_timer_message_payload *payload =
817 (struct hv_timer_message_payload *)&msg->u.payload;
818
819 /*
820 * To avoid piling up periodic ticks, don't retry message
821 * delivery for them (within "lazy" lost ticks policy).
822 */
823 bool no_retry = stimer->config.periodic;
824
825 payload->expiration_time = stimer->exp_time;
826 payload->delivery_time = get_time_ref_counter(kvm: vcpu->kvm);
827 return synic_deliver_msg(synic: to_hv_synic(vcpu),
828 sint: stimer->config.sintx, src_msg: msg,
829 no_retry);
830}
831
832static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
833{
834 struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
835 struct kvm_lapic_irq irq = {
836 .delivery_mode = APIC_DM_FIXED,
837 .vector = stimer->config.apic_vector
838 };
839
840 if (lapic_in_kernel(vcpu))
841 return !kvm_apic_set_irq(vcpu, irq: &irq, NULL);
842 return 0;
843}
844
845static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
846{
847 int r, direct = stimer->config.direct_mode;
848
849 stimer->msg_pending = true;
850 if (!direct)
851 r = stimer_send_msg(stimer);
852 else
853 r = stimer_notify_direct(stimer);
854 trace_kvm_hv_stimer_expiration(vcpu_id: hv_stimer_to_vcpu(stimer)->vcpu_id,
855 timer_index: stimer->index, direct, msg_send_result: r);
856 if (!r) {
857 stimer->msg_pending = false;
858 if (!(stimer->config.periodic))
859 stimer->config.enable = 0;
860 }
861}
862
863void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
864{
865 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
866 struct kvm_vcpu_hv_stimer *stimer;
867 u64 time_now, exp_time;
868 int i;
869
870 if (!hv_vcpu)
871 return;
872
873 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
874 if (test_and_clear_bit(nr: i, addr: hv_vcpu->stimer_pending_bitmap)) {
875 stimer = &hv_vcpu->stimer[i];
876 if (stimer->config.enable) {
877 exp_time = stimer->exp_time;
878
879 if (exp_time) {
880 time_now =
881 get_time_ref_counter(kvm: vcpu->kvm);
882 if (time_now >= exp_time)
883 stimer_expiration(stimer);
884 }
885
886 if ((stimer->config.enable) &&
887 stimer->count) {
888 if (!stimer->msg_pending)
889 stimer_start(stimer);
890 } else
891 stimer_cleanup(stimer);
892 }
893 }
894}
895
896void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
897{
898 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
899 int i;
900
901 if (!hv_vcpu)
902 return;
903
904 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
905 stimer_cleanup(stimer: &hv_vcpu->stimer[i]);
906
907 kfree(objp: hv_vcpu);
908 vcpu->arch.hyperv = NULL;
909}
910
911bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
912{
913 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
914
915 if (!hv_vcpu)
916 return false;
917
918 if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
919 return false;
920 return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
921}
922EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);
923
924int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
925{
926 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
927
928 if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
929 return -EFAULT;
930
931 return kvm_read_guest_cached(kvm: vcpu->kvm, ghc: &vcpu->arch.pv_eoi.data,
932 data: &hv_vcpu->vp_assist_page, len: sizeof(struct hv_vp_assist_page));
933}
934EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);
935
936static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
937{
938 struct hv_message *msg = &stimer->msg;
939 struct hv_timer_message_payload *payload =
940 (struct hv_timer_message_payload *)&msg->u.payload;
941
942 memset(&msg->header, 0, sizeof(msg->header));
943 msg->header.message_type = HVMSG_TIMER_EXPIRED;
944 msg->header.payload_size = sizeof(*payload);
945
946 payload->timer_index = stimer->index;
947 payload->expiration_time = 0;
948 payload->delivery_time = 0;
949}
950
951static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
952{
953 memset(stimer, 0, sizeof(*stimer));
954 stimer->index = timer_index;
955 hrtimer_init(timer: &stimer->timer, CLOCK_MONOTONIC, mode: HRTIMER_MODE_ABS);
956 stimer->timer.function = stimer_timer_callback;
957 stimer_prepare_msg(stimer);
958}
959
960int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
961{
962 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
963 int i;
964
965 if (hv_vcpu)
966 return 0;
967
968 hv_vcpu = kzalloc(size: sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
969 if (!hv_vcpu)
970 return -ENOMEM;
971
972 vcpu->arch.hyperv = hv_vcpu;
973 hv_vcpu->vcpu = vcpu;
974
975 synic_init(synic: &hv_vcpu->synic);
976
977 bitmap_zero(dst: hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
978 for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
979 stimer_init(stimer: &hv_vcpu->stimer[i], timer_index: i);
980
981 hv_vcpu->vp_index = vcpu->vcpu_idx;
982
983 for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
984 INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
985 spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
986 }
987
988 return 0;
989}
990
991int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
992{
993 struct kvm_vcpu_hv_synic *synic;
994 int r;
995
996 r = kvm_hv_vcpu_init(vcpu);
997 if (r)
998 return r;
999
1000 synic = to_hv_synic(vcpu);
1001
1002 synic->active = true;
1003 synic->dont_zero_synic_pages = dont_zero_synic_pages;
1004 synic->control = HV_SYNIC_CONTROL_ENABLE;
1005 return 0;
1006}
1007
1008static bool kvm_hv_msr_partition_wide(u32 msr)
1009{
1010 bool r = false;
1011
1012 switch (msr) {
1013 case HV_X64_MSR_GUEST_OS_ID:
1014 case HV_X64_MSR_HYPERCALL:
1015 case HV_X64_MSR_REFERENCE_TSC:
1016 case HV_X64_MSR_TIME_REF_COUNT:
1017 case HV_X64_MSR_CRASH_CTL:
1018 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1019 case HV_X64_MSR_RESET:
1020 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1021 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1022 case HV_X64_MSR_TSC_EMULATION_STATUS:
1023 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1024 case HV_X64_MSR_SYNDBG_OPTIONS:
1025 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1026 r = true;
1027 break;
1028 }
1029
1030 return r;
1031}
1032
1033static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
1034{
1035 struct kvm_hv *hv = to_kvm_hv(kvm);
1036 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1037
1038 if (WARN_ON_ONCE(index >= size))
1039 return -EINVAL;
1040
1041 *pdata = hv->hv_crash_param[array_index_nospec(index, size)];
1042 return 0;
1043}
1044
1045static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
1046{
1047 struct kvm_hv *hv = to_kvm_hv(kvm);
1048
1049 *pdata = hv->hv_crash_ctl;
1050 return 0;
1051}
1052
1053static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
1054{
1055 struct kvm_hv *hv = to_kvm_hv(kvm);
1056
1057 hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
1058
1059 return 0;
1060}
1061
1062static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
1063{
1064 struct kvm_hv *hv = to_kvm_hv(kvm);
1065 size_t size = ARRAY_SIZE(hv->hv_crash_param);
1066
1067 if (WARN_ON_ONCE(index >= size))
1068 return -EINVAL;
1069
1070 hv->hv_crash_param[array_index_nospec(index, size)] = data;
1071 return 0;
1072}
1073
1074/*
1075 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
1076 * between them is possible:
1077 *
1078 * kvmclock formula:
1079 * nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
1080 * + system_time
1081 *
1082 * Hyper-V formula:
1083 * nsec/100 = ticks * scale / 2^64 + offset
1084 *
1085 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
1086 * By dividing the kvmclock formula by 100 and equating what's left we get:
1087 * ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1088 * scale / 2^64 = tsc_to_system_mul * 2^(tsc_shift-32) / 100
1089 * scale = tsc_to_system_mul * 2^(32+tsc_shift) / 100
1090 *
1091 * Now expand the kvmclock formula and divide by 100:
1092 * nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
1093 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
1094 * + system_time
1095 * nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1096 * - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
1097 * + system_time / 100
1098 *
1099 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
1100 * nsec/100 = ticks * scale / 2^64
1101 * - tsc_timestamp * scale / 2^64
1102 * + system_time / 100
1103 *
1104 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
1105 * offset = system_time / 100 - tsc_timestamp * scale / 2^64
1106 *
1107 * These two equivalencies are implemented in this function.
1108 */
1109static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
1110 struct ms_hyperv_tsc_page *tsc_ref)
1111{
1112 u64 max_mul;
1113
1114 if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
1115 return false;
1116
1117 /*
1118 * check if scale would overflow, if so we use the time ref counter
1119 * tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
1120 * tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
1121 * tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
1122 */
1123 max_mul = 100ull << (32 - hv_clock->tsc_shift);
1124 if (hv_clock->tsc_to_system_mul >= max_mul)
1125 return false;
1126
1127 /*
1128 * Otherwise compute the scale and offset according to the formulas
1129 * derived above.
1130 */
1131 tsc_ref->tsc_scale =
1132 mul_u64_u32_div(a: 1ULL << (32 + hv_clock->tsc_shift),
1133 mul: hv_clock->tsc_to_system_mul,
1134 div: 100);
1135
1136 tsc_ref->tsc_offset = hv_clock->system_time;
1137 do_div(tsc_ref->tsc_offset, 100);
1138 tsc_ref->tsc_offset -=
1139 mul_u64_u64_shr(a: hv_clock->tsc_timestamp, mul: tsc_ref->tsc_scale, shift: 64);
1140 return true;
1141}
1142
1143/*
1144 * Don't touch TSC page values if the guest has opted for TSC emulation after
1145 * migration. KVM doesn't fully support reenlightenment notifications and TSC
1146 * access emulation and Hyper-V is known to expect the values in TSC page to
1147 * stay constant before TSC access emulation is disabled from guest side
1148 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
1149 * frequency and guest visible TSC value across migration (and prevent it when
1150 * TSC scaling is unsupported).
1151 */
1152static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
1153{
1154 return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
1155 hv->hv_tsc_emulation_control;
1156}
1157
1158void kvm_hv_setup_tsc_page(struct kvm *kvm,
1159 struct pvclock_vcpu_time_info *hv_clock)
1160{
1161 struct kvm_hv *hv = to_kvm_hv(kvm);
1162 u32 tsc_seq;
1163 u64 gfn;
1164
1165 BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
1166 BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);
1167
1168 mutex_lock(&hv->hv_lock);
1169
1170 if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
1171 hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
1172 hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
1173 goto out_unlock;
1174
1175 if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
1176 goto out_unlock;
1177
1178 gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
1179 /*
1180 * Because the TSC parameters only vary when there is a
1181 * change in the master clock, do not bother with caching.
1182 */
1183 if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
1184 &tsc_seq, sizeof(tsc_seq))))
1185 goto out_err;
1186
1187 if (tsc_seq && tsc_page_update_unsafe(hv)) {
1188 if (kvm_read_guest(kvm, gpa: gfn_to_gpa(gfn), data: &hv->tsc_ref, len: sizeof(hv->tsc_ref)))
1189 goto out_err;
1190
1191 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1192 goto out_unlock;
1193 }
1194
1195 /*
1196 * While we're computing and writing the parameters, force the
1197 * guest to use the time reference count MSR.
1198 */
1199 hv->tsc_ref.tsc_sequence = 0;
1200 if (kvm_write_guest(kvm, gpa: gfn_to_gpa(gfn),
1201 data: &hv->tsc_ref, len: sizeof(hv->tsc_ref.tsc_sequence)))
1202 goto out_err;
1203
1204 if (!compute_tsc_page_parameters(hv_clock, tsc_ref: &hv->tsc_ref))
1205 goto out_err;
1206
1207 /* Ensure sequence is zero before writing the rest of the struct. */
1208 smp_wmb();
1209 if (kvm_write_guest(kvm, gpa: gfn_to_gpa(gfn), data: &hv->tsc_ref, len: sizeof(hv->tsc_ref)))
1210 goto out_err;
1211
1212 /*
1213 * Now switch to the TSC page mechanism by writing the sequence.
1214 */
1215 tsc_seq++;
1216 if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
1217 tsc_seq = 1;
1218
1219 /* Write the struct entirely before the non-zero sequence. */
1220 smp_wmb();
1221
1222 hv->tsc_ref.tsc_sequence = tsc_seq;
1223 if (kvm_write_guest(kvm, gpa: gfn_to_gpa(gfn),
1224 data: &hv->tsc_ref, len: sizeof(hv->tsc_ref.tsc_sequence)))
1225 goto out_err;
1226
1227 hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
1228 goto out_unlock;
1229
1230out_err:
1231 hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
1232out_unlock:
1233 mutex_unlock(lock: &hv->hv_lock);
1234}
1235
1236void kvm_hv_request_tsc_page_update(struct kvm *kvm)
1237{
1238 struct kvm_hv *hv = to_kvm_hv(kvm);
1239
1240 mutex_lock(&hv->hv_lock);
1241
1242 if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
1243 !tsc_page_update_unsafe(hv))
1244 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1245
1246 mutex_unlock(lock: &hv->hv_lock);
1247}
1248
1249static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
1250{
1251 if (!hv_vcpu->enforce_cpuid)
1252 return true;
1253
1254 switch (msr) {
1255 case HV_X64_MSR_GUEST_OS_ID:
1256 case HV_X64_MSR_HYPERCALL:
1257 return hv_vcpu->cpuid_cache.features_eax &
1258 HV_MSR_HYPERCALL_AVAILABLE;
1259 case HV_X64_MSR_VP_RUNTIME:
1260 return hv_vcpu->cpuid_cache.features_eax &
1261 HV_MSR_VP_RUNTIME_AVAILABLE;
1262 case HV_X64_MSR_TIME_REF_COUNT:
1263 return hv_vcpu->cpuid_cache.features_eax &
1264 HV_MSR_TIME_REF_COUNT_AVAILABLE;
1265 case HV_X64_MSR_VP_INDEX:
1266 return hv_vcpu->cpuid_cache.features_eax &
1267 HV_MSR_VP_INDEX_AVAILABLE;
1268 case HV_X64_MSR_RESET:
1269 return hv_vcpu->cpuid_cache.features_eax &
1270 HV_MSR_RESET_AVAILABLE;
1271 case HV_X64_MSR_REFERENCE_TSC:
1272 return hv_vcpu->cpuid_cache.features_eax &
1273 HV_MSR_REFERENCE_TSC_AVAILABLE;
1274 case HV_X64_MSR_SCONTROL:
1275 case HV_X64_MSR_SVERSION:
1276 case HV_X64_MSR_SIEFP:
1277 case HV_X64_MSR_SIMP:
1278 case HV_X64_MSR_EOM:
1279 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1280 return hv_vcpu->cpuid_cache.features_eax &
1281 HV_MSR_SYNIC_AVAILABLE;
1282 case HV_X64_MSR_STIMER0_CONFIG:
1283 case HV_X64_MSR_STIMER1_CONFIG:
1284 case HV_X64_MSR_STIMER2_CONFIG:
1285 case HV_X64_MSR_STIMER3_CONFIG:
1286 case HV_X64_MSR_STIMER0_COUNT:
1287 case HV_X64_MSR_STIMER1_COUNT:
1288 case HV_X64_MSR_STIMER2_COUNT:
1289 case HV_X64_MSR_STIMER3_COUNT:
1290 return hv_vcpu->cpuid_cache.features_eax &
1291 HV_MSR_SYNTIMER_AVAILABLE;
1292 case HV_X64_MSR_EOI:
1293 case HV_X64_MSR_ICR:
1294 case HV_X64_MSR_TPR:
1295 case HV_X64_MSR_VP_ASSIST_PAGE:
1296 return hv_vcpu->cpuid_cache.features_eax &
1297 HV_MSR_APIC_ACCESS_AVAILABLE;
1298 case HV_X64_MSR_TSC_FREQUENCY:
1299 case HV_X64_MSR_APIC_FREQUENCY:
1300 return hv_vcpu->cpuid_cache.features_eax &
1301 HV_ACCESS_FREQUENCY_MSRS;
1302 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1303 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1304 case HV_X64_MSR_TSC_EMULATION_STATUS:
1305 return hv_vcpu->cpuid_cache.features_eax &
1306 HV_ACCESS_REENLIGHTENMENT;
1307 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1308 return hv_vcpu->cpuid_cache.features_eax &
1309 HV_ACCESS_TSC_INVARIANT;
1310 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1311 case HV_X64_MSR_CRASH_CTL:
1312 return hv_vcpu->cpuid_cache.features_edx &
1313 HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
1314 case HV_X64_MSR_SYNDBG_OPTIONS:
1315 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1316 return hv_vcpu->cpuid_cache.features_edx &
1317 HV_FEATURE_DEBUG_MSRS_AVAILABLE;
1318 default:
1319 break;
1320 }
1321
1322 return false;
1323}
1324
1325#define KVM_HV_WIN2016_GUEST_ID 0x1040a00003839
1326#define KVM_HV_WIN2016_GUEST_ID_MASK (~GENMASK_ULL(23, 16)) /* mask out the service version */
1327
1328/*
1329 * Hyper-V enabled Windows Server 2016 SMP VMs fail to boot in !XSAVES && XSAVEC
1330 * configuration.
1331 * Such configuration can result from, for example, AMD Erratum 1386 workaround.
1332 *
1333 * Print a notice so users aren't left wondering what's suddenly gone wrong.
1334 */
1335static void __kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
1336{
1337 struct kvm *kvm = vcpu->kvm;
1338 struct kvm_hv *hv = to_kvm_hv(kvm);
1339
1340 /* Check again under the hv_lock. */
1341 if (hv->xsaves_xsavec_checked)
1342 return;
1343
1344 if ((hv->hv_guest_os_id & KVM_HV_WIN2016_GUEST_ID_MASK) !=
1345 KVM_HV_WIN2016_GUEST_ID)
1346 return;
1347
1348 hv->xsaves_xsavec_checked = true;
1349
1350 /* UP configurations aren't affected */
1351 if (atomic_read(v: &kvm->online_vcpus) < 2)
1352 return;
1353
1354 if (guest_cpuid_has(vcpu, X86_FEATURE_XSAVES) ||
1355 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVEC))
1356 return;
1357
1358 pr_notice_ratelimited("Booting SMP Windows KVM VM with !XSAVES && XSAVEC. "
1359 "If it fails to boot try disabling XSAVEC in the VM config.\n");
1360}
1361
1362void kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
1363{
1364 struct kvm_hv *hv = to_kvm_hv(kvm: vcpu->kvm);
1365
1366 if (!vcpu->arch.hyperv_enabled ||
1367 hv->xsaves_xsavec_checked)
1368 return;
1369
1370 mutex_lock(&hv->hv_lock);
1371 __kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
1372 mutex_unlock(lock: &hv->hv_lock);
1373}
1374
1375static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
1376 bool host)
1377{
1378 struct kvm *kvm = vcpu->kvm;
1379 struct kvm_hv *hv = to_kvm_hv(kvm);
1380
1381 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1382 return 1;
1383
1384 switch (msr) {
1385 case HV_X64_MSR_GUEST_OS_ID:
1386 hv->hv_guest_os_id = data;
1387 /* setting guest os id to zero disables hypercall page */
1388 if (!hv->hv_guest_os_id)
1389 hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1390 break;
1391 case HV_X64_MSR_HYPERCALL: {
1392 u8 instructions[9];
1393 int i = 0;
1394 u64 addr;
1395
1396 /* if guest os id is not set hypercall should remain disabled */
1397 if (!hv->hv_guest_os_id)
1398 break;
1399 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1400 hv->hv_hypercall = data;
1401 break;
1402 }
1403
1404 /*
1405 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
1406 * the same way Xen itself does, by setting the bit 31 of EAX
1407 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
1408 * going to be clobbered on 64-bit.
1409 */
1410 if (kvm_xen_hypercall_enabled(kvm)) {
1411 /* orl $0x80000000, %eax */
1412 instructions[i++] = 0x0d;
1413 instructions[i++] = 0x00;
1414 instructions[i++] = 0x00;
1415 instructions[i++] = 0x00;
1416 instructions[i++] = 0x80;
1417 }
1418
1419 /* vmcall/vmmcall */
1420 static_call(kvm_x86_patch_hypercall)(vcpu, instructions + i);
1421 i += 3;
1422
1423 /* ret */
1424 ((unsigned char *)instructions)[i++] = 0xc3;
1425
1426 addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
1427 if (kvm_vcpu_write_guest(vcpu, gpa: addr, data: instructions, len: i))
1428 return 1;
1429 hv->hv_hypercall = data;
1430 break;
1431 }
1432 case HV_X64_MSR_REFERENCE_TSC:
1433 hv->hv_tsc_page = data;
1434 if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
1435 if (!host)
1436 hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
1437 else
1438 hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
1439 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1440 } else {
1441 hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
1442 }
1443 break;
1444 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1445 return kvm_hv_msr_set_crash_data(kvm,
1446 index: msr - HV_X64_MSR_CRASH_P0,
1447 data);
1448 case HV_X64_MSR_CRASH_CTL:
1449 if (host)
1450 return kvm_hv_msr_set_crash_ctl(kvm, data);
1451
1452 if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
1453 vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
1454 hv->hv_crash_param[0],
1455 hv->hv_crash_param[1],
1456 hv->hv_crash_param[2],
1457 hv->hv_crash_param[3],
1458 hv->hv_crash_param[4]);
1459
1460 /* Send notification about crash to user space */
1461 kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
1462 }
1463 break;
1464 case HV_X64_MSR_RESET:
1465 if (data == 1) {
1466 vcpu_debug(vcpu, "hyper-v reset requested\n");
1467 kvm_make_request(KVM_REQ_HV_RESET, vcpu);
1468 }
1469 break;
1470 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1471 hv->hv_reenlightenment_control = data;
1472 break;
1473 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1474 hv->hv_tsc_emulation_control = data;
1475 break;
1476 case HV_X64_MSR_TSC_EMULATION_STATUS:
1477 if (data && !host)
1478 return 1;
1479
1480 hv->hv_tsc_emulation_status = data;
1481 break;
1482 case HV_X64_MSR_TIME_REF_COUNT:
1483 /* read-only, but still ignore it if host-initiated */
1484 if (!host)
1485 return 1;
1486 break;
1487 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1488 /* Only bit 0 is supported */
1489 if (data & ~HV_EXPOSE_INVARIANT_TSC)
1490 return 1;
1491
1492 /* The feature can't be disabled from the guest */
1493 if (!host && hv->hv_invtsc_control && !data)
1494 return 1;
1495
1496 hv->hv_invtsc_control = data;
1497 break;
1498 case HV_X64_MSR_SYNDBG_OPTIONS:
1499 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1500 return syndbg_set_msr(vcpu, msr, data, host);
1501 default:
1502 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1503 return 1;
1504 }
1505 return 0;
1506}
1507
1508/* Calculate cpu time spent by current task in 100ns units */
1509static u64 current_task_runtime_100ns(void)
1510{
1511 u64 utime, stime;
1512
1513 task_cputime_adjusted(current, ut: &utime, st: &stime);
1514
1515 return div_u64(dividend: utime + stime, divisor: 100);
1516}
1517
1518static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1519{
1520 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1521
1522 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1523 return 1;
1524
1525 switch (msr) {
1526 case HV_X64_MSR_VP_INDEX: {
1527 struct kvm_hv *hv = to_kvm_hv(kvm: vcpu->kvm);
1528 u32 new_vp_index = (u32)data;
1529
1530 if (!host || new_vp_index >= KVM_MAX_VCPUS)
1531 return 1;
1532
1533 if (new_vp_index == hv_vcpu->vp_index)
1534 return 0;
1535
1536 /*
1537 * The VP index is initialized to vcpu_index by
1538 * kvm_hv_vcpu_postcreate so they initially match. Now the
1539 * VP index is changing, adjust num_mismatched_vp_indexes if
1540 * it now matches or no longer matches vcpu_idx.
1541 */
1542 if (hv_vcpu->vp_index == vcpu->vcpu_idx)
1543 atomic_inc(v: &hv->num_mismatched_vp_indexes);
1544 else if (new_vp_index == vcpu->vcpu_idx)
1545 atomic_dec(v: &hv->num_mismatched_vp_indexes);
1546
1547 hv_vcpu->vp_index = new_vp_index;
1548 break;
1549 }
1550 case HV_X64_MSR_VP_ASSIST_PAGE: {
1551 u64 gfn;
1552 unsigned long addr;
1553
1554 if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
1555 hv_vcpu->hv_vapic = data;
1556 if (kvm_lapic_set_pv_eoi(vcpu, data: 0, len: 0))
1557 return 1;
1558 break;
1559 }
1560 gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
1561 addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
1562 if (kvm_is_error_hva(addr))
1563 return 1;
1564
1565 /*
1566 * Clear apic_assist portion of struct hv_vp_assist_page
1567 * only, there can be valuable data in the rest which needs
1568 * to be preserved e.g. on migration.
1569 */
1570 if (__put_user(0, (u32 __user *)addr))
1571 return 1;
1572 hv_vcpu->hv_vapic = data;
1573 kvm_vcpu_mark_page_dirty(vcpu, gfn);
1574 if (kvm_lapic_set_pv_eoi(vcpu,
1575 data: gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
1576 len: sizeof(struct hv_vp_assist_page)))
1577 return 1;
1578 break;
1579 }
1580 case HV_X64_MSR_EOI:
1581 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1582 case HV_X64_MSR_ICR:
1583 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1584 case HV_X64_MSR_TPR:
1585 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1586 case HV_X64_MSR_VP_RUNTIME:
1587 if (!host)
1588 return 1;
1589 hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
1590 break;
1591 case HV_X64_MSR_SCONTROL:
1592 case HV_X64_MSR_SVERSION:
1593 case HV_X64_MSR_SIEFP:
1594 case HV_X64_MSR_SIMP:
1595 case HV_X64_MSR_EOM:
1596 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1597 return synic_set_msr(synic: to_hv_synic(vcpu), msr, data, host);
1598 case HV_X64_MSR_STIMER0_CONFIG:
1599 case HV_X64_MSR_STIMER1_CONFIG:
1600 case HV_X64_MSR_STIMER2_CONFIG:
1601 case HV_X64_MSR_STIMER3_CONFIG: {
1602 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1603
1604 return stimer_set_config(stimer: to_hv_stimer(vcpu, timer_index),
1605 config: data, host);
1606 }
1607 case HV_X64_MSR_STIMER0_COUNT:
1608 case HV_X64_MSR_STIMER1_COUNT:
1609 case HV_X64_MSR_STIMER2_COUNT:
1610 case HV_X64_MSR_STIMER3_COUNT: {
1611 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1612
1613 return stimer_set_count(stimer: to_hv_stimer(vcpu, timer_index),
1614 count: data, host);
1615 }
1616 case HV_X64_MSR_TSC_FREQUENCY:
1617 case HV_X64_MSR_APIC_FREQUENCY:
1618 /* read-only, but still ignore it if host-initiated */
1619 if (!host)
1620 return 1;
1621 break;
1622 default:
1623 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
1624 return 1;
1625 }
1626
1627 return 0;
1628}
1629
1630static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1631 bool host)
1632{
1633 u64 data = 0;
1634 struct kvm *kvm = vcpu->kvm;
1635 struct kvm_hv *hv = to_kvm_hv(kvm);
1636
1637 if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
1638 return 1;
1639
1640 switch (msr) {
1641 case HV_X64_MSR_GUEST_OS_ID:
1642 data = hv->hv_guest_os_id;
1643 break;
1644 case HV_X64_MSR_HYPERCALL:
1645 data = hv->hv_hypercall;
1646 break;
1647 case HV_X64_MSR_TIME_REF_COUNT:
1648 data = get_time_ref_counter(kvm);
1649 break;
1650 case HV_X64_MSR_REFERENCE_TSC:
1651 data = hv->hv_tsc_page;
1652 break;
1653 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
1654 return kvm_hv_msr_get_crash_data(kvm,
1655 index: msr - HV_X64_MSR_CRASH_P0,
1656 pdata);
1657 case HV_X64_MSR_CRASH_CTL:
1658 return kvm_hv_msr_get_crash_ctl(kvm, pdata);
1659 case HV_X64_MSR_RESET:
1660 data = 0;
1661 break;
1662 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1663 data = hv->hv_reenlightenment_control;
1664 break;
1665 case HV_X64_MSR_TSC_EMULATION_CONTROL:
1666 data = hv->hv_tsc_emulation_control;
1667 break;
1668 case HV_X64_MSR_TSC_EMULATION_STATUS:
1669 data = hv->hv_tsc_emulation_status;
1670 break;
1671 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
1672 data = hv->hv_invtsc_control;
1673 break;
1674 case HV_X64_MSR_SYNDBG_OPTIONS:
1675 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
1676 return syndbg_get_msr(vcpu, msr, pdata, host);
1677 default:
1678 kvm_pr_unimpl_rdmsr(vcpu, msr);
1679 return 1;
1680 }
1681
1682 *pdata = data;
1683 return 0;
1684}
1685
1686static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
1687 bool host)
1688{
1689 u64 data = 0;
1690 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1691
1692 if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
1693 return 1;
1694
1695 switch (msr) {
1696 case HV_X64_MSR_VP_INDEX:
1697 data = hv_vcpu->vp_index;
1698 break;
1699 case HV_X64_MSR_EOI:
1700 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, data: pdata);
1701 case HV_X64_MSR_ICR:
1702 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, data: pdata);
1703 case HV_X64_MSR_TPR:
1704 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, data: pdata);
1705 case HV_X64_MSR_VP_ASSIST_PAGE:
1706 data = hv_vcpu->hv_vapic;
1707 break;
1708 case HV_X64_MSR_VP_RUNTIME:
1709 data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
1710 break;
1711 case HV_X64_MSR_SCONTROL:
1712 case HV_X64_MSR_SVERSION:
1713 case HV_X64_MSR_SIEFP:
1714 case HV_X64_MSR_SIMP:
1715 case HV_X64_MSR_EOM:
1716 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
1717 return synic_get_msr(synic: to_hv_synic(vcpu), msr, pdata, host);
1718 case HV_X64_MSR_STIMER0_CONFIG:
1719 case HV_X64_MSR_STIMER1_CONFIG:
1720 case HV_X64_MSR_STIMER2_CONFIG:
1721 case HV_X64_MSR_STIMER3_CONFIG: {
1722 int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;
1723
1724 return stimer_get_config(stimer: to_hv_stimer(vcpu, timer_index),
1725 pconfig: pdata);
1726 }
1727 case HV_X64_MSR_STIMER0_COUNT:
1728 case HV_X64_MSR_STIMER1_COUNT:
1729 case HV_X64_MSR_STIMER2_COUNT:
1730 case HV_X64_MSR_STIMER3_COUNT: {
1731 int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;
1732
1733 return stimer_get_count(stimer: to_hv_stimer(vcpu, timer_index),
1734 pcount: pdata);
1735 }
1736 case HV_X64_MSR_TSC_FREQUENCY:
1737 data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
1738 break;
1739 case HV_X64_MSR_APIC_FREQUENCY:
1740 data = APIC_BUS_FREQUENCY;
1741 break;
1742 default:
1743 kvm_pr_unimpl_rdmsr(vcpu, msr);
1744 return 1;
1745 }
1746 *pdata = data;
1747 return 0;
1748}
1749
1750int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
1751{
1752 struct kvm_hv *hv = to_kvm_hv(kvm: vcpu->kvm);
1753
1754 if (!host && !vcpu->arch.hyperv_enabled)
1755 return 1;
1756
1757 if (kvm_hv_vcpu_init(vcpu))
1758 return 1;
1759
1760 if (kvm_hv_msr_partition_wide(msr)) {
1761 int r;
1762
1763 mutex_lock(&hv->hv_lock);
1764 r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
1765 mutex_unlock(lock: &hv->hv_lock);
1766 return r;
1767 } else
1768 return kvm_hv_set_msr(vcpu, msr, data, host);
1769}
1770
1771int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
1772{
1773 struct kvm_hv *hv = to_kvm_hv(kvm: vcpu->kvm);
1774
1775 if (!host && !vcpu->arch.hyperv_enabled)
1776 return 1;
1777
1778 if (kvm_hv_vcpu_init(vcpu))
1779 return 1;
1780
1781 if (kvm_hv_msr_partition_wide(msr)) {
1782 int r;
1783
1784 mutex_lock(&hv->hv_lock);
1785 r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
1786 mutex_unlock(lock: &hv->hv_lock);
1787 return r;
1788 } else
1789 return kvm_hv_get_msr(vcpu, msr, pdata, host);
1790}
1791
1792static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
1793 u64 valid_bank_mask, unsigned long *vcpu_mask)
1794{
1795 struct kvm_hv *hv = to_kvm_hv(kvm);
1796 bool has_mismatch = atomic_read(v: &hv->num_mismatched_vp_indexes);
1797 u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
1798 struct kvm_vcpu *vcpu;
1799 int bank, sbank = 0;
1800 unsigned long i;
1801 u64 *bitmap;
1802
1803 BUILD_BUG_ON(sizeof(vp_bitmap) >
1804 sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));
1805
1806 /*
1807 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
1808 * fill a temporary buffer and manually test each vCPU's VP index.
1809 */
1810 if (likely(!has_mismatch))
1811 bitmap = (u64 *)vcpu_mask;
1812 else
1813 bitmap = vp_bitmap;
1814
1815 /*
1816 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
1817 * having a '1' for each bank that exists in sparse_banks. Sets must
1818 * be in ascending order, i.e. bank0..bankN.
1819 */
1820 memset(bitmap, 0, sizeof(vp_bitmap));
1821 for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
1822 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
1823 bitmap[bank] = sparse_banks[sbank++];
1824
1825 if (likely(!has_mismatch))
1826 return;
1827
1828 bitmap_zero(dst: vcpu_mask, KVM_MAX_VCPUS);
1829 kvm_for_each_vcpu(i, vcpu, kvm) {
1830 if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
1831 __set_bit(i, vcpu_mask);
1832 }
1833}
1834
1835static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
1836{
1837 int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
1838 unsigned long sbank;
1839
1840 if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
1841 return false;
1842
1843 /*
1844 * The index into the sparse bank is the number of preceding bits in
1845 * the valid mask. Optimize for VMs with <64 vCPUs by skipping the
1846 * fancy math if there can't possibly be preceding bits.
1847 */
1848 if (valid_bit_nr)
1849 sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
1850 else
1851 sbank = 0;
1852
1853 return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
1854 (unsigned long *)&sparse_banks[sbank]);
1855}
1856
1857struct kvm_hv_hcall {
1858 /* Hypercall input data */
1859 u64 param;
1860 u64 ingpa;
1861 u64 outgpa;
1862 u16 code;
1863 u16 var_cnt;
1864 u16 rep_cnt;
1865 u16 rep_idx;
1866 bool fast;
1867 bool rep;
1868 sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];
1869
1870 /*
1871 * Current read offset when KVM reads hypercall input data gradually,
1872 * either offset in bytes from 'ingpa' for regular hypercalls or the
1873 * number of already consumed 'XMM halves' for 'fast' hypercalls.
1874 */
1875 union {
1876 gpa_t data_offset;
1877 int consumed_xmm_halves;
1878 };
1879};
1880
1881
1882static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
1883 u16 orig_cnt, u16 cnt_cap, u64 *data)
1884{
1885 /*
1886 * Preserve the original count when ignoring entries via a "cap", KVM
1887 * still needs to validate the guest input (though the non-XMM path
1888 * punts on the checks).
1889 */
1890 u16 cnt = min(orig_cnt, cnt_cap);
1891 int i, j;
1892
1893 if (hc->fast) {
1894 /*
1895 * Each XMM holds two sparse banks, but do not count halves that
1896 * have already been consumed for hypercall parameters.
1897 */
1898 if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
1899 return HV_STATUS_INVALID_HYPERCALL_INPUT;
1900
1901 for (i = 0; i < cnt; i++) {
1902 j = i + hc->consumed_xmm_halves;
1903 if (j % 2)
1904 data[i] = sse128_hi(hc->xmm[j / 2]);
1905 else
1906 data[i] = sse128_lo(hc->xmm[j / 2]);
1907 }
1908 return 0;
1909 }
1910
1911 return kvm_read_guest(kvm, gpa: hc->ingpa + hc->data_offset, data,
1912 len: cnt * sizeof(*data));
1913}
1914
1915static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
1916 u64 *sparse_banks)
1917{
1918 if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
1919 return -EINVAL;
1920
1921 /* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
1922 return kvm_hv_get_hc_data(kvm, hc, orig_cnt: hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
1923 data: sparse_banks);
1924}
1925
1926static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
1927{
1928 return kvm_hv_get_hc_data(kvm, hc, orig_cnt: hc->rep_cnt, cnt_cap: hc->rep_cnt, data: entries);
1929}
1930
1931static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
1932 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
1933 u64 *entries, int count)
1934{
1935 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1936 u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;
1937
1938 if (!hv_vcpu)
1939 return;
1940
1941 spin_lock(lock: &tlb_flush_fifo->write_lock);
1942
1943 /*
1944 * All entries should fit on the fifo leaving one free for 'flush all'
1945 * entry in case another request comes in. In case there's not enough
1946 * space, just put 'flush all' entry there.
1947 */
1948 if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
1949 WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
1950 goto out_unlock;
1951 }
1952
1953 /*
1954 * Note: full fifo always contains 'flush all' entry, no need to check the
1955 * return value.
1956 */
1957 kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);
1958
1959out_unlock:
1960 spin_unlock(lock: &tlb_flush_fifo->write_lock);
1961}
1962
1963int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
1964{
1965 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
1966 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
1967 u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
1968 int i, j, count;
1969 gva_t gva;
1970
1971 if (!tdp_enabled || !hv_vcpu)
1972 return -EINVAL;
1973
1974 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode: is_guest_mode(vcpu));
1975
1976 count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);
1977
1978 for (i = 0; i < count; i++) {
1979 if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
1980 goto out_flush_all;
1981
1982 /*
1983 * Lower 12 bits of 'address' encode the number of additional
1984 * pages to flush.
1985 */
1986 gva = entries[i] & PAGE_MASK;
1987 for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
1988 static_call(kvm_x86_flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);
1989
1990 ++vcpu->stat.tlb_flush;
1991 }
1992 return 0;
1993
1994out_flush_all:
1995 kfifo_reset_out(&tlb_flush_fifo->entries);
1996
1997 /* Fall back to full flush. */
1998 return -ENOSPC;
1999}
2000
2001static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2002{
2003 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2004 u64 *sparse_banks = hv_vcpu->sparse_banks;
2005 struct kvm *kvm = vcpu->kvm;
2006 struct hv_tlb_flush_ex flush_ex;
2007 struct hv_tlb_flush flush;
2008 DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
2009 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
2010 /*
2011 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
2012 * entries on the TLB flush fifo. The last entry, however, needs to be
2013 * always left free for 'flush all' entry which gets placed when
2014 * there is not enough space to put all the requested entries.
2015 */
2016 u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
2017 u64 *tlb_flush_entries;
2018 u64 valid_bank_mask;
2019 struct kvm_vcpu *v;
2020 unsigned long i;
2021 bool all_cpus;
2022
2023 /*
2024 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
2025 * sparse banks. Fail the build if KVM's max allowed number of
2026 * vCPUs (>4096) exceeds this limit.
2027 */
2028 BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);
2029
2030 /*
2031 * 'Slow' hypercall's first parameter is the address in guest's memory
2032 * where hypercall parameters are placed. This is either a GPA or a
2033 * nested GPA when KVM is handling the call from L2 ('direct' TLB
2034 * flush). Translate the address here so the memory can be uniformly
2035 * read with kvm_read_guest().
2036 */
2037 if (!hc->fast && is_guest_mode(vcpu)) {
2038 hc->ingpa = translate_nested_gpa(vcpu, gpa: hc->ingpa, access: 0, NULL);
2039 if (unlikely(hc->ingpa == INVALID_GPA))
2040 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2041 }
2042
2043 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
2044 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
2045 if (hc->fast) {
2046 flush.address_space = hc->ingpa;
2047 flush.flags = hc->outgpa;
2048 flush.processor_mask = sse128_lo(hc->xmm[0]);
2049 hc->consumed_xmm_halves = 1;
2050 } else {
2051 if (unlikely(kvm_read_guest(kvm, hc->ingpa,
2052 &flush, sizeof(flush))))
2053 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2054 hc->data_offset = sizeof(flush);
2055 }
2056
2057 trace_kvm_hv_flush_tlb(processor_mask: flush.processor_mask,
2058 address_space: flush.address_space, flags: flush.flags,
2059 guest_mode: is_guest_mode(vcpu));
2060
2061 valid_bank_mask = BIT_ULL(0);
2062 sparse_banks[0] = flush.processor_mask;
2063
2064 /*
2065 * Work around possible WS2012 bug: it sends hypercalls
2066 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
2067 * while also expecting us to flush something and crashing if
2068 * we don't. Let's treat processor_mask == 0 same as
2069 * HV_FLUSH_ALL_PROCESSORS.
2070 */
2071 all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
2072 flush.processor_mask == 0;
2073 } else {
2074 if (hc->fast) {
2075 flush_ex.address_space = hc->ingpa;
2076 flush_ex.flags = hc->outgpa;
2077 memcpy(&flush_ex.hv_vp_set,
2078 &hc->xmm[0], sizeof(hc->xmm[0]));
2079 hc->consumed_xmm_halves = 2;
2080 } else {
2081 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
2082 sizeof(flush_ex))))
2083 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2084 hc->data_offset = sizeof(flush_ex);
2085 }
2086
2087 trace_kvm_hv_flush_tlb_ex(valid_bank_mask: flush_ex.hv_vp_set.valid_bank_mask,
2088 format: flush_ex.hv_vp_set.format,
2089 address_space: flush_ex.address_space,
2090 flags: flush_ex.flags, guest_mode: is_guest_mode(vcpu));
2091
2092 valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
2093 all_cpus = flush_ex.hv_vp_set.format !=
2094 HV_GENERIC_SET_SPARSE_4K;
2095
2096 if (hc->var_cnt != hweight64(valid_bank_mask))
2097 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2098
2099 if (!all_cpus) {
2100 if (!hc->var_cnt)
2101 goto ret_success;
2102
2103 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2104 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2105 }
2106
2107 /*
2108 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
2109 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
2110 * case (HV_GENERIC_SET_ALL). Always adjust data_offset and
2111 * consumed_xmm_halves to make sure TLB flush entries are read
2112 * from the correct offset.
2113 */
2114 if (hc->fast)
2115 hc->consumed_xmm_halves += hc->var_cnt;
2116 else
2117 hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
2118 }
2119
2120 if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
2121 hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
2122 hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
2123 tlb_flush_entries = NULL;
2124 } else {
2125 if (kvm_hv_get_tlb_flush_entries(kvm, hc, entries: __tlb_flush_entries))
2126 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2127 tlb_flush_entries = __tlb_flush_entries;
2128 }
2129
2130 /*
2131 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
2132 * analyze it here, flush TLB regardless of the specified address space.
2133 */
2134 if (all_cpus && !is_guest_mode(vcpu)) {
2135 kvm_for_each_vcpu(i, v, kvm) {
2136 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu: v, is_guest_mode: false);
2137 hv_tlb_flush_enqueue(vcpu: v, tlb_flush_fifo,
2138 entries: tlb_flush_entries, count: hc->rep_cnt);
2139 }
2140
2141 kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
2142 } else if (!is_guest_mode(vcpu)) {
2143 sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);
2144
2145 for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
2146 v = kvm_get_vcpu(kvm, i);
2147 if (!v)
2148 continue;
2149 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu: v, is_guest_mode: false);
2150 hv_tlb_flush_enqueue(vcpu: v, tlb_flush_fifo,
2151 entries: tlb_flush_entries, count: hc->rep_cnt);
2152 }
2153
2154 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_bitmap: vcpu_mask);
2155 } else {
2156 struct kvm_vcpu_hv *hv_v;
2157
2158 bitmap_zero(dst: vcpu_mask, KVM_MAX_VCPUS);
2159
2160 kvm_for_each_vcpu(i, v, kvm) {
2161 hv_v = to_hv_vcpu(vcpu: v);
2162
2163 /*
2164 * The following check races with nested vCPUs entering/exiting
2165 * and/or migrating between L1's vCPUs, however the only case when
2166 * KVM *must* flush the TLB is when the target L2 vCPU keeps
2167 * running on the same L1 vCPU from the moment of the request until
2168 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
2169 * cases, e.g. when the target L2 vCPU migrates to a different L1
2170 * vCPU or when the corresponding L1 vCPU temporary switches to a
2171 * different L2 vCPU while the request is being processed.
2172 */
2173 if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
2174 continue;
2175
2176 if (!all_cpus &&
2177 !hv_is_vp_in_sparse_set(vp_id: hv_v->nested.vp_id, valid_bank_mask,
2178 sparse_banks))
2179 continue;
2180
2181 __set_bit(i, vcpu_mask);
2182 tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu: v, is_guest_mode: true);
2183 hv_tlb_flush_enqueue(vcpu: v, tlb_flush_fifo,
2184 entries: tlb_flush_entries, count: hc->rep_cnt);
2185 }
2186
2187 kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_bitmap: vcpu_mask);
2188 }
2189
2190ret_success:
2191 /* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
2192 return (u64)HV_STATUS_SUCCESS |
2193 ((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
2194}
2195
2196static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
2197 u64 *sparse_banks, u64 valid_bank_mask)
2198{
2199 struct kvm_lapic_irq irq = {
2200 .delivery_mode = APIC_DM_FIXED,
2201 .vector = vector
2202 };
2203 struct kvm_vcpu *vcpu;
2204 unsigned long i;
2205
2206 kvm_for_each_vcpu(i, vcpu, kvm) {
2207 if (sparse_banks &&
2208 !hv_is_vp_in_sparse_set(vp_id: kvm_hv_get_vpindex(vcpu),
2209 valid_bank_mask, sparse_banks))
2210 continue;
2211
2212 /* We fail only when APIC is disabled */
2213 kvm_apic_set_irq(vcpu, irq: &irq, NULL);
2214 }
2215}
2216
2217static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2218{
2219 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2220 u64 *sparse_banks = hv_vcpu->sparse_banks;
2221 struct kvm *kvm = vcpu->kvm;
2222 struct hv_send_ipi_ex send_ipi_ex;
2223 struct hv_send_ipi send_ipi;
2224 u64 valid_bank_mask;
2225 u32 vector;
2226 bool all_cpus;
2227
2228 if (hc->code == HVCALL_SEND_IPI) {
2229 if (!hc->fast) {
2230 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
2231 sizeof(send_ipi))))
2232 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2233 sparse_banks[0] = send_ipi.cpu_mask;
2234 vector = send_ipi.vector;
2235 } else {
2236 /* 'reserved' part of hv_send_ipi should be 0 */
2237 if (unlikely(hc->ingpa >> 32 != 0))
2238 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2239 sparse_banks[0] = hc->outgpa;
2240 vector = (u32)hc->ingpa;
2241 }
2242 all_cpus = false;
2243 valid_bank_mask = BIT_ULL(0);
2244
2245 trace_kvm_hv_send_ipi(vector, processor_mask: sparse_banks[0]);
2246 } else {
2247 if (!hc->fast) {
2248 if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
2249 sizeof(send_ipi_ex))))
2250 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2251 } else {
2252 send_ipi_ex.vector = (u32)hc->ingpa;
2253 send_ipi_ex.vp_set.format = hc->outgpa;
2254 send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
2255 }
2256
2257 trace_kvm_hv_send_ipi_ex(vector: send_ipi_ex.vector,
2258 format: send_ipi_ex.vp_set.format,
2259 valid_bank_mask: send_ipi_ex.vp_set.valid_bank_mask);
2260
2261 vector = send_ipi_ex.vector;
2262 valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
2263 all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;
2264
2265 if (hc->var_cnt != hweight64(valid_bank_mask))
2266 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2267
2268 if (all_cpus)
2269 goto check_and_send_ipi;
2270
2271 if (!hc->var_cnt)
2272 goto ret_success;
2273
2274 if (!hc->fast)
2275 hc->data_offset = offsetof(struct hv_send_ipi_ex,
2276 vp_set.bank_contents);
2277 else
2278 hc->consumed_xmm_halves = 1;
2279
2280 if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
2281 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2282 }
2283
2284check_and_send_ipi:
2285 if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
2286 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2287
2288 if (all_cpus)
2289 kvm_hv_send_ipi_to_many(kvm, vector, NULL, valid_bank_mask: 0);
2290 else
2291 kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);
2292
2293ret_success:
2294 return HV_STATUS_SUCCESS;
2295}
2296
2297void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
2298{
2299 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2300 struct kvm_cpuid_entry2 *entry;
2301
2302 vcpu->arch.hyperv_enabled = hyperv_enabled;
2303
2304 if (!hv_vcpu) {
2305 /*
2306 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
2307 * enabled in CPUID.
2308 */
2309 WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
2310 return;
2311 }
2312
2313 memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));
2314
2315 if (!vcpu->arch.hyperv_enabled)
2316 return;
2317
2318 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
2319 if (entry) {
2320 hv_vcpu->cpuid_cache.features_eax = entry->eax;
2321 hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
2322 hv_vcpu->cpuid_cache.features_edx = entry->edx;
2323 }
2324
2325 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
2326 if (entry) {
2327 hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
2328 hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
2329 }
2330
2331 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
2332 if (entry)
2333 hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;
2334
2335 entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
2336 if (entry) {
2337 hv_vcpu->cpuid_cache.nested_eax = entry->eax;
2338 hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
2339 }
2340}
2341
2342int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
2343{
2344 struct kvm_vcpu_hv *hv_vcpu;
2345 int ret = 0;
2346
2347 if (!to_hv_vcpu(vcpu)) {
2348 if (enforce) {
2349 ret = kvm_hv_vcpu_init(vcpu);
2350 if (ret)
2351 return ret;
2352 } else {
2353 return 0;
2354 }
2355 }
2356
2357 hv_vcpu = to_hv_vcpu(vcpu);
2358 hv_vcpu->enforce_cpuid = enforce;
2359
2360 return ret;
2361}
2362
2363static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
2364{
2365 bool longmode;
2366
2367 longmode = is_64_bit_hypercall(vcpu);
2368 if (longmode)
2369 kvm_rax_write(vcpu, val: result);
2370 else {
2371 kvm_rdx_write(vcpu, val: result >> 32);
2372 kvm_rax_write(vcpu, val: result & 0xffffffff);
2373 }
2374}
2375
2376static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
2377{
2378 u32 tlb_lock_count = 0;
2379 int ret;
2380
2381 if (hv_result_success(status: result) && is_guest_mode(vcpu) &&
2382 kvm_hv_is_tlb_flush_hcall(vcpu) &&
2383 kvm_read_guest(kvm: vcpu->kvm, gpa: to_hv_vcpu(vcpu)->nested.pa_page_gpa,
2384 data: &tlb_lock_count, len: sizeof(tlb_lock_count)))
2385 result = HV_STATUS_INVALID_HYPERCALL_INPUT;
2386
2387 trace_kvm_hv_hypercall_done(result);
2388 kvm_hv_hypercall_set_result(vcpu, result);
2389 ++vcpu->stat.hypercalls;
2390
2391 ret = kvm_skip_emulated_instruction(vcpu);
2392
2393 if (tlb_lock_count)
2394 kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);
2395
2396 return ret;
2397}
2398
2399static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
2400{
2401 return kvm_hv_hypercall_complete(vcpu, result: vcpu->run->hyperv.u.hcall.result);
2402}
2403
2404static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
2405{
2406 struct kvm_hv *hv = to_kvm_hv(kvm: vcpu->kvm);
2407 struct eventfd_ctx *eventfd;
2408
2409 if (unlikely(!hc->fast)) {
2410 int ret;
2411 gpa_t gpa = hc->ingpa;
2412
2413 if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
2414 offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
2415 return HV_STATUS_INVALID_ALIGNMENT;
2416
2417 ret = kvm_vcpu_read_guest(vcpu, gpa,
2418 data: &hc->ingpa, len: sizeof(hc->ingpa));
2419 if (ret < 0)
2420 return HV_STATUS_INVALID_ALIGNMENT;
2421 }
2422
2423 /*
2424 * Per spec, bits 32-47 contain the extra "flag number". However, we
2425 * have no use for it, and in all known usecases it is zero, so just
2426 * report lookup failure if it isn't.
2427 */
2428 if (hc->ingpa & 0xffff00000000ULL)
2429 return HV_STATUS_INVALID_PORT_ID;
2430 /* remaining bits are reserved-zero */
2431 if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
2432 return HV_STATUS_INVALID_HYPERCALL_INPUT;
2433
2434 /* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
2435 rcu_read_lock();
2436 eventfd = idr_find(&hv->conn_to_evt, id: hc->ingpa);
2437 rcu_read_unlock();
2438 if (!eventfd)
2439 return HV_STATUS_INVALID_PORT_ID;
2440
2441 eventfd_signal(ctx: eventfd);
2442 return HV_STATUS_SUCCESS;
2443}
2444
2445static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
2446{
2447 switch (hc->code) {
2448 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2449 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2450 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2451 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2452 case HVCALL_SEND_IPI_EX:
2453 return true;
2454 }
2455
2456 return false;
2457}
2458
2459static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
2460{
2461 int reg;
2462
2463 kvm_fpu_get();
2464 for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
2465 _kvm_read_sse_reg(reg, data: &hc->xmm[reg]);
2466 kvm_fpu_put();
2467}
2468
2469static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
2470{
2471 if (!hv_vcpu->enforce_cpuid)
2472 return true;
2473
2474 switch (code) {
2475 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2476 return hv_vcpu->cpuid_cache.enlightenments_ebx &&
2477 hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
2478 case HVCALL_POST_MESSAGE:
2479 return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
2480 case HVCALL_SIGNAL_EVENT:
2481 return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
2482 case HVCALL_POST_DEBUG_DATA:
2483 case HVCALL_RETRIEVE_DEBUG_DATA:
2484 case HVCALL_RESET_DEBUG_SESSION:
2485 /*
2486 * Return 'true' when SynDBG is disabled so the resulting code
2487 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
2488 */
2489 return !kvm_hv_is_syndbg_enabled(vcpu: hv_vcpu->vcpu) ||
2490 hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
2491 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2492 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2493 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2494 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2495 return false;
2496 fallthrough;
2497 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2498 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2499 return hv_vcpu->cpuid_cache.enlightenments_eax &
2500 HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2501 case HVCALL_SEND_IPI_EX:
2502 if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
2503 HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
2504 return false;
2505 fallthrough;
2506 case HVCALL_SEND_IPI:
2507 return hv_vcpu->cpuid_cache.enlightenments_eax &
2508 HV_X64_CLUSTER_IPI_RECOMMENDED;
2509 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2510 return hv_vcpu->cpuid_cache.features_ebx &
2511 HV_ENABLE_EXTENDED_HYPERCALLS;
2512 default:
2513 break;
2514 }
2515
2516 return true;
2517}
2518
2519int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
2520{
2521 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
2522 struct kvm_hv_hcall hc;
2523 u64 ret = HV_STATUS_SUCCESS;
2524
2525 /*
2526 * hypercall generates UD from non zero cpl and real mode
2527 * per HYPER-V spec
2528 */
2529 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
2530 kvm_queue_exception(vcpu, UD_VECTOR);
2531 return 1;
2532 }
2533
2534#ifdef CONFIG_X86_64
2535 if (is_64_bit_hypercall(vcpu)) {
2536 hc.param = kvm_rcx_read(vcpu);
2537 hc.ingpa = kvm_rdx_read(vcpu);
2538 hc.outgpa = kvm_r8_read(vcpu);
2539 } else
2540#endif
2541 {
2542 hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
2543 (kvm_rax_read(vcpu) & 0xffffffff);
2544 hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
2545 (kvm_rcx_read(vcpu) & 0xffffffff);
2546 hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
2547 (kvm_rsi_read(vcpu) & 0xffffffff);
2548 }
2549
2550 hc.code = hc.param & 0xffff;
2551 hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
2552 hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
2553 hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
2554 hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
2555 hc.rep = !!(hc.rep_cnt || hc.rep_idx);
2556
2557 trace_kvm_hv_hypercall(code: hc.code, fast: hc.fast, var_cnt: hc.var_cnt, rep_cnt: hc.rep_cnt,
2558 rep_idx: hc.rep_idx, ingpa: hc.ingpa, outgpa: hc.outgpa);
2559
2560 if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
2561 ret = HV_STATUS_ACCESS_DENIED;
2562 goto hypercall_complete;
2563 }
2564
2565 if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
2566 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2567 goto hypercall_complete;
2568 }
2569
2570 if (hc.fast && is_xmm_fast_hypercall(hc: &hc)) {
2571 if (unlikely(hv_vcpu->enforce_cpuid &&
2572 !(hv_vcpu->cpuid_cache.features_edx &
2573 HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
2574 kvm_queue_exception(vcpu, UD_VECTOR);
2575 return 1;
2576 }
2577
2578 kvm_hv_hypercall_read_xmm(hc: &hc);
2579 }
2580
2581 switch (hc.code) {
2582 case HVCALL_NOTIFY_LONG_SPIN_WAIT:
2583 if (unlikely(hc.rep || hc.var_cnt)) {
2584 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2585 break;
2586 }
2587 kvm_vcpu_on_spin(vcpu, yield_to_kernel_mode: true);
2588 break;
2589 case HVCALL_SIGNAL_EVENT:
2590 if (unlikely(hc.rep || hc.var_cnt)) {
2591 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2592 break;
2593 }
2594 ret = kvm_hvcall_signal_event(vcpu, hc: &hc);
2595 if (ret != HV_STATUS_INVALID_PORT_ID)
2596 break;
2597 fallthrough; /* maybe userspace knows this conn_id */
2598 case HVCALL_POST_MESSAGE:
2599 /* don't bother userspace if it has no way to handle it */
2600 if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
2601 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2602 break;
2603 }
2604 goto hypercall_userspace_exit;
2605 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
2606 if (unlikely(hc.var_cnt)) {
2607 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2608 break;
2609 }
2610 fallthrough;
2611 case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
2612 if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
2613 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2614 break;
2615 }
2616 ret = kvm_hv_flush_tlb(vcpu, hc: &hc);
2617 break;
2618 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
2619 if (unlikely(hc.var_cnt)) {
2620 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2621 break;
2622 }
2623 fallthrough;
2624 case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
2625 if (unlikely(hc.rep)) {
2626 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2627 break;
2628 }
2629 ret = kvm_hv_flush_tlb(vcpu, hc: &hc);
2630 break;
2631 case HVCALL_SEND_IPI:
2632 if (unlikely(hc.var_cnt)) {
2633 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2634 break;
2635 }
2636 fallthrough;
2637 case HVCALL_SEND_IPI_EX:
2638 if (unlikely(hc.rep)) {
2639 ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
2640 break;
2641 }
2642 ret = kvm_hv_send_ipi(vcpu, hc: &hc);
2643 break;
2644 case HVCALL_POST_DEBUG_DATA:
2645 case HVCALL_RETRIEVE_DEBUG_DATA:
2646 if (unlikely(hc.fast)) {
2647 ret = HV_STATUS_INVALID_PARAMETER;
2648 break;
2649 }
2650 fallthrough;
2651 case HVCALL_RESET_DEBUG_SESSION: {
2652 struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
2653
2654 if (!kvm_hv_is_syndbg_enabled(vcpu)) {
2655 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2656 break;
2657 }
2658
2659 if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
2660 ret = HV_STATUS_OPERATION_DENIED;
2661 break;
2662 }
2663 goto hypercall_userspace_exit;
2664 }
2665 case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
2666 if (unlikely(hc.fast)) {
2667 ret = HV_STATUS_INVALID_PARAMETER;
2668 break;
2669 }
2670 goto hypercall_userspace_exit;
2671 default:
2672 ret = HV_STATUS_INVALID_HYPERCALL_CODE;
2673 break;
2674 }
2675
2676hypercall_complete:
2677 return kvm_hv_hypercall_complete(vcpu, result: ret);
2678
2679hypercall_userspace_exit:
2680 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
2681 vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
2682 vcpu->run->hyperv.u.hcall.input = hc.param;
2683 vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
2684 vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
2685 vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
2686 return 0;
2687}
2688
2689void kvm_hv_init_vm(struct kvm *kvm)
2690{
2691 struct kvm_hv *hv = to_kvm_hv(kvm);
2692
2693 mutex_init(&hv->hv_lock);
2694 idr_init(idr: &hv->conn_to_evt);
2695}
2696
2697void kvm_hv_destroy_vm(struct kvm *kvm)
2698{
2699 struct kvm_hv *hv = to_kvm_hv(kvm);
2700 struct eventfd_ctx *eventfd;
2701 int i;
2702
2703 idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
2704 eventfd_ctx_put(ctx: eventfd);
2705 idr_destroy(&hv->conn_to_evt);
2706}
2707
2708static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
2709{
2710 struct kvm_hv *hv = to_kvm_hv(kvm);
2711 struct eventfd_ctx *eventfd;
2712 int ret;
2713
2714 eventfd = eventfd_ctx_fdget(fd);
2715 if (IS_ERR(ptr: eventfd))
2716 return PTR_ERR(ptr: eventfd);
2717
2718 mutex_lock(&hv->hv_lock);
2719 ret = idr_alloc(&hv->conn_to_evt, ptr: eventfd, start: conn_id, end: conn_id + 1,
2720 GFP_KERNEL_ACCOUNT);
2721 mutex_unlock(lock: &hv->hv_lock);
2722
2723 if (ret >= 0)
2724 return 0;
2725
2726 if (ret == -ENOSPC)
2727 ret = -EEXIST;
2728 eventfd_ctx_put(ctx: eventfd);
2729 return ret;
2730}
2731
2732static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
2733{
2734 struct kvm_hv *hv = to_kvm_hv(kvm);
2735 struct eventfd_ctx *eventfd;
2736
2737 mutex_lock(&hv->hv_lock);
2738 eventfd = idr_remove(&hv->conn_to_evt, id: conn_id);
2739 mutex_unlock(lock: &hv->hv_lock);
2740
2741 if (!eventfd)
2742 return -ENOENT;
2743
2744 synchronize_srcu(ssp: &kvm->srcu);
2745 eventfd_ctx_put(ctx: eventfd);
2746 return 0;
2747}
2748
2749int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
2750{
2751 if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
2752 (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
2753 return -EINVAL;
2754
2755 if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
2756 return kvm_hv_eventfd_deassign(kvm, conn_id: args->conn_id);
2757 return kvm_hv_eventfd_assign(kvm, conn_id: args->conn_id, fd: args->fd);
2758}
2759
2760int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
2761 struct kvm_cpuid_entry2 __user *entries)
2762{
2763 uint16_t evmcs_ver = 0;
2764 struct kvm_cpuid_entry2 cpuid_entries[] = {
2765 { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
2766 { .function = HYPERV_CPUID_INTERFACE },
2767 { .function = HYPERV_CPUID_VERSION },
2768 { .function = HYPERV_CPUID_FEATURES },
2769 { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
2770 { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
2771 { .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
2772 { .function = HYPERV_CPUID_SYNDBG_INTERFACE },
2773 { .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES },
2774 { .function = HYPERV_CPUID_NESTED_FEATURES },
2775 };
2776 int i, nent = ARRAY_SIZE(cpuid_entries);
2777
2778 if (kvm_x86_ops.nested_ops->get_evmcs_version)
2779 evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);
2780
2781 if (cpuid->nent < nent)
2782 return -E2BIG;
2783
2784 if (cpuid->nent > nent)
2785 cpuid->nent = nent;
2786
2787 for (i = 0; i < nent; i++) {
2788 struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
2789 u32 signature[3];
2790
2791 switch (ent->function) {
2792 case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
2793 memcpy(signature, "Linux KVM Hv", 12);
2794
2795 ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
2796 ent->ebx = signature[0];
2797 ent->ecx = signature[1];
2798 ent->edx = signature[2];
2799 break;
2800
2801 case HYPERV_CPUID_INTERFACE:
2802 ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
2803 break;
2804
2805 case HYPERV_CPUID_VERSION:
2806 /*
2807 * We implement some Hyper-V 2016 functions so let's use
2808 * this version.
2809 */
2810 ent->eax = 0x00003839;
2811 ent->ebx = 0x000A0000;
2812 break;
2813
2814 case HYPERV_CPUID_FEATURES:
2815 ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
2816 ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
2817 ent->eax |= HV_MSR_SYNIC_AVAILABLE;
2818 ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
2819 ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
2820 ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
2821 ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
2822 ent->eax |= HV_MSR_RESET_AVAILABLE;
2823 ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
2824 ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
2825 ent->eax |= HV_ACCESS_REENLIGHTENMENT;
2826 ent->eax |= HV_ACCESS_TSC_INVARIANT;
2827
2828 ent->ebx |= HV_POST_MESSAGES;
2829 ent->ebx |= HV_SIGNAL_EVENTS;
2830 ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;
2831
2832 ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
2833 ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
2834 ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
2835
2836 ent->ebx |= HV_DEBUGGING;
2837 ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
2838 ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
2839 ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;
2840
2841 /*
2842 * Direct Synthetic timers only make sense with in-kernel
2843 * LAPIC
2844 */
2845 if (!vcpu || lapic_in_kernel(vcpu))
2846 ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
2847
2848 break;
2849
2850 case HYPERV_CPUID_ENLIGHTMENT_INFO:
2851 ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
2852 ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
2853 ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
2854 ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
2855 ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
2856 if (evmcs_ver)
2857 ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
2858 if (!cpu_smt_possible())
2859 ent->eax |= HV_X64_NO_NONARCH_CORESHARING;
2860
2861 ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
2862 /*
2863 * Default number of spinlock retry attempts, matches
2864 * HyperV 2016.
2865 */
2866 ent->ebx = 0x00000FFF;
2867
2868 break;
2869
2870 case HYPERV_CPUID_IMPLEMENT_LIMITS:
2871 /* Maximum number of virtual processors */
2872 ent->eax = KVM_MAX_VCPUS;
2873 /*
2874 * Maximum number of logical processors, matches
2875 * HyperV 2016.
2876 */
2877 ent->ebx = 64;
2878
2879 break;
2880
2881 case HYPERV_CPUID_NESTED_FEATURES:
2882 ent->eax = evmcs_ver;
2883 ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
2884 ent->eax |= HV_X64_NESTED_MSR_BITMAP;
2885 ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
2886 break;
2887
2888 case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
2889 memcpy(signature, "Linux KVM Hv", 12);
2890
2891 ent->eax = 0;
2892 ent->ebx = signature[0];
2893 ent->ecx = signature[1];
2894 ent->edx = signature[2];
2895 break;
2896
2897 case HYPERV_CPUID_SYNDBG_INTERFACE:
2898 memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
2899 ent->eax = signature[0];
2900 break;
2901
2902 case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
2903 ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
2904 break;
2905
2906 default:
2907 break;
2908 }
2909 }
2910
2911 if (copy_to_user(to: entries, from: cpuid_entries,
2912 n: nent * sizeof(struct kvm_cpuid_entry2)))
2913 return -EFAULT;
2914
2915 return 0;
2916}
2917

source code of linux/arch/x86/kvm/hyperv.c