1/*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25#include "dm_services.h"
26
27#include "amdgpu.h"
28
29#include "dc.h"
30
31#include "core_status.h"
32#include "core_types.h"
33#include "hw_sequencer.h"
34#include "dce/dce_hwseq.h"
35
36#include "resource.h"
37#include "dc_state.h"
38#include "dc_state_priv.h"
39
40#include "gpio_service_interface.h"
41#include "clk_mgr.h"
42#include "clock_source.h"
43#include "dc_bios_types.h"
44
45#include "bios_parser_interface.h"
46#include "bios/bios_parser_helper.h"
47#include "include/irq_service_interface.h"
48#include "transform.h"
49#include "dmcu.h"
50#include "dpp.h"
51#include "timing_generator.h"
52#include "abm.h"
53#include "virtual/virtual_link_encoder.h"
54#include "hubp.h"
55
56#include "link_hwss.h"
57#include "link_encoder.h"
58#include "link_enc_cfg.h"
59
60#include "link.h"
61#include "dm_helpers.h"
62#include "mem_input.h"
63
64#include "dc_dmub_srv.h"
65
66#include "dsc.h"
67
68#include "vm_helper.h"
69
70#include "dce/dce_i2c.h"
71
72#include "dmub/dmub_srv.h"
73
74#include "dce/dmub_psr.h"
75
76#include "dce/dmub_hw_lock_mgr.h"
77
78#include "dc_trace.h"
79
80#include "hw_sequencer_private.h"
81
82#include "dml2/dml2_internal_types.h"
83
84#include "dce/dmub_outbox.h"
85
86#define CTX \
87 dc->ctx
88
89#define DC_LOGGER \
90 dc->ctx->logger
91
92static const char DC_BUILD_ID[] = "production-build";
93
94/**
95 * DOC: Overview
96 *
97 * DC is the OS-agnostic component of the amdgpu DC driver.
98 *
99 * DC maintains and validates a set of structs representing the state of the
100 * driver and writes that state to AMD hardware
101 *
102 * Main DC HW structs:
103 *
104 * struct dc - The central struct. One per driver. Created on driver load,
105 * destroyed on driver unload.
106 *
107 * struct dc_context - One per driver.
108 * Used as a backpointer by most other structs in dc.
109 *
110 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
111 * plugpoints). Created on driver load, destroyed on driver unload.
112 *
113 * struct dc_sink - One per display. Created on boot or hotplug.
114 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
115 * (the display directly attached). It may also have one or more remote
116 * sinks (in the Multi-Stream Transport case)
117 *
118 * struct resource_pool - One per driver. Represents the hw blocks not in the
119 * main pipeline. Not directly accessible by dm.
120 *
121 * Main dc state structs:
122 *
123 * These structs can be created and destroyed as needed. There is a full set of
124 * these structs in dc->current_state representing the currently programmed state.
125 *
126 * struct dc_state - The global DC state to track global state information,
127 * such as bandwidth values.
128 *
129 * struct dc_stream_state - Represents the hw configuration for the pipeline from
130 * a framebuffer to a display. Maps one-to-one with dc_sink.
131 *
132 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
133 * and may have more in the Multi-Plane Overlay case.
134 *
135 * struct resource_context - Represents the programmable state of everything in
136 * the resource_pool. Not directly accessible by dm.
137 *
138 * struct pipe_ctx - A member of struct resource_context. Represents the
139 * internal hardware pipeline components. Each dc_plane_state has either
140 * one or two (in the pipe-split case).
141 */
142
143/* Private functions */
144
145static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
146{
147 if (new > *original)
148 *original = new;
149}
150
151static void destroy_links(struct dc *dc)
152{
153 uint32_t i;
154
155 for (i = 0; i < dc->link_count; i++) {
156 if (NULL != dc->links[i])
157 dc->link_srv->destroy_link(&dc->links[i]);
158 }
159}
160
161static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
162{
163 int i;
164 uint32_t count = 0;
165
166 for (i = 0; i < num_links; i++) {
167 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
168 links[i]->is_internal_display)
169 count++;
170 }
171
172 return count;
173}
174
175static int get_seamless_boot_stream_count(struct dc_state *ctx)
176{
177 uint8_t i;
178 uint8_t seamless_boot_stream_count = 0;
179
180 for (i = 0; i < ctx->stream_count; i++)
181 if (ctx->streams[i]->apply_seamless_boot_optimization)
182 seamless_boot_stream_count++;
183
184 return seamless_boot_stream_count;
185}
186
187static bool create_links(
188 struct dc *dc,
189 uint32_t num_virtual_links)
190{
191 int i;
192 int connectors_num;
193 struct dc_bios *bios = dc->ctx->dc_bios;
194
195 dc->link_count = 0;
196
197 connectors_num = bios->funcs->get_connectors_number(bios);
198
199 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
200
201 if (connectors_num > ENUM_ID_COUNT) {
202 dm_error(
203 "DC: Number of connectors %d exceeds maximum of %d!\n",
204 connectors_num,
205 ENUM_ID_COUNT);
206 return false;
207 }
208
209 dm_output_to_console(
210 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
211 __func__,
212 connectors_num,
213 num_virtual_links);
214
215 for (i = 0; i < connectors_num; i++) {
216 struct link_init_data link_init_params = {0};
217 struct dc_link *link;
218
219 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
220
221 link_init_params.ctx = dc->ctx;
222 /* next BIOS object table connector */
223 link_init_params.connector_index = i;
224 link_init_params.link_index = dc->link_count;
225 link_init_params.dc = dc;
226 link = dc->link_srv->create_link(&link_init_params);
227
228 if (link) {
229 dc->links[dc->link_count] = link;
230 link->dc = dc;
231 ++dc->link_count;
232 }
233 }
234
235 DC_LOG_DC("BIOS object table - end");
236
237 /* Create a link for each usb4 dpia port */
238 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
239 struct link_init_data link_init_params = {0};
240 struct dc_link *link;
241
242 link_init_params.ctx = dc->ctx;
243 link_init_params.connector_index = i;
244 link_init_params.link_index = dc->link_count;
245 link_init_params.dc = dc;
246 link_init_params.is_dpia_link = true;
247
248 link = dc->link_srv->create_link(&link_init_params);
249 if (link) {
250 dc->links[dc->link_count] = link;
251 link->dc = dc;
252 ++dc->link_count;
253 }
254 }
255
256 for (i = 0; i < num_virtual_links; i++) {
257 struct dc_link *link = kzalloc(size: sizeof(*link), GFP_KERNEL);
258 struct encoder_init_data enc_init = {0};
259
260 if (link == NULL) {
261 BREAK_TO_DEBUGGER();
262 goto failed_alloc;
263 }
264
265 link->link_index = dc->link_count;
266 dc->links[dc->link_count] = link;
267 dc->link_count++;
268
269 link->ctx = dc->ctx;
270 link->dc = dc;
271 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
272 link->link_id.type = OBJECT_TYPE_CONNECTOR;
273 link->link_id.id = CONNECTOR_ID_VIRTUAL;
274 link->link_id.enum_id = ENUM_ID_1;
275 link->link_enc = kzalloc(size: sizeof(*link->link_enc), GFP_KERNEL);
276
277 if (!link->link_enc) {
278 BREAK_TO_DEBUGGER();
279 goto failed_alloc;
280 }
281
282 link->link_status.dpcd_caps = &link->dpcd_caps;
283
284 enc_init.ctx = dc->ctx;
285 enc_init.channel = CHANNEL_ID_UNKNOWN;
286 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
287 enc_init.transmitter = TRANSMITTER_UNKNOWN;
288 enc_init.connector = link->link_id;
289 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
290 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
291 enc_init.encoder.enum_id = ENUM_ID_1;
292 virtual_link_encoder_construct(enc: link->link_enc, init_data: &enc_init);
293 }
294
295 dc->caps.num_of_internal_disp = get_num_of_internal_disp(links: dc->links, num_links: dc->link_count);
296
297 return true;
298
299failed_alloc:
300 return false;
301}
302
303/* Create additional DIG link encoder objects if fewer than the platform
304 * supports were created during link construction. This can happen if the
305 * number of physical connectors is less than the number of DIGs.
306 */
307static bool create_link_encoders(struct dc *dc)
308{
309 bool res = true;
310 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
311 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
312 int i;
313
314 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
315 * link encoders and physical display endpoints and does not require
316 * additional link encoder objects.
317 */
318 if (num_usb4_dpia == 0)
319 return res;
320
321 /* Create as many link encoder objects as the platform supports. DPIA
322 * endpoints can be programmably mapped to any DIG.
323 */
324 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
325 for (i = 0; i < num_dig_link_enc; i++) {
326 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
327
328 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
329 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
330 (enum engine_id)(ENGINE_ID_DIGA + i));
331 if (link_enc) {
332 dc->res_pool->link_encoders[i] = link_enc;
333 dc->res_pool->dig_link_enc_count++;
334 } else {
335 res = false;
336 }
337 }
338 }
339 }
340
341 return res;
342}
343
344/* Destroy any additional DIG link encoder objects created by
345 * create_link_encoders().
346 * NB: Must only be called after destroy_links().
347 */
348static void destroy_link_encoders(struct dc *dc)
349{
350 unsigned int num_usb4_dpia;
351 unsigned int num_dig_link_enc;
352 int i;
353
354 if (!dc->res_pool)
355 return;
356
357 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
358 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
359
360 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
361 * link encoders and physical display endpoints and does not require
362 * additional link encoder objects.
363 */
364 if (num_usb4_dpia == 0)
365 return;
366
367 for (i = 0; i < num_dig_link_enc; i++) {
368 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
369
370 if (link_enc) {
371 link_enc->funcs->destroy(&link_enc);
372 dc->res_pool->link_encoders[i] = NULL;
373 dc->res_pool->dig_link_enc_count--;
374 }
375 }
376}
377
378static struct dc_perf_trace *dc_perf_trace_create(void)
379{
380 return kzalloc(size: sizeof(struct dc_perf_trace), GFP_KERNEL);
381}
382
383static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
384{
385 kfree(objp: *perf_trace);
386 *perf_trace = NULL;
387}
388
389/**
390 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
391 * @dc: dc reference
392 * @stream: Initial dc stream state
393 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
394 *
395 * Looks up the pipe context of dc_stream_state and updates the
396 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
397 * Rate, which is a power-saving feature that targets reducing panel
398 * refresh rate while the screen is static
399 *
400 * Return: %true if the pipe context is found and adjusted;
401 * %false if the pipe context is not found.
402 */
403bool dc_stream_adjust_vmin_vmax(struct dc *dc,
404 struct dc_stream_state *stream,
405 struct dc_crtc_timing_adjust *adjust)
406{
407 int i;
408
409 /*
410 * Don't adjust DRR while there's bandwidth optimizations pending to
411 * avoid conflicting with firmware updates.
412 */
413 if (dc->ctx->dce_version > DCE_VERSION_MAX)
414 if (dc->optimized_required || dc->wm_optimized_required)
415 return false;
416
417 dc_exit_ips_for_hw_access(dc);
418
419 stream->adjust.v_total_max = adjust->v_total_max;
420 stream->adjust.v_total_mid = adjust->v_total_mid;
421 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
422 stream->adjust.v_total_min = adjust->v_total_min;
423
424 for (i = 0; i < MAX_PIPES; i++) {
425 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
426
427 if (pipe->stream == stream && pipe->stream_res.tg) {
428 dc->hwss.set_drr(&pipe,
429 1,
430 *adjust);
431
432 return true;
433 }
434 }
435 return false;
436}
437
438/**
439 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
440 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
441 *
442 * @dc: [in] dc reference
443 * @stream: [in] Initial dc stream state
444 * @refresh_rate: [in] new refresh_rate
445 *
446 * Return: %true if the pipe context is found and there is an associated
447 * timing_generator for the DC;
448 * %false if the pipe context is not found or there is no
449 * timing_generator for the DC.
450 */
451bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
452 struct dc_stream_state *stream,
453 uint32_t *refresh_rate)
454{
455 bool status = false;
456
457 int i = 0;
458
459 dc_exit_ips_for_hw_access(dc);
460
461 for (i = 0; i < MAX_PIPES; i++) {
462 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
463
464 if (pipe->stream == stream && pipe->stream_res.tg) {
465 /* Only execute if a function pointer has been defined for
466 * the DC version in question
467 */
468 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
469 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
470
471 status = true;
472
473 break;
474 }
475 }
476 }
477
478 return status;
479}
480
481bool dc_stream_get_crtc_position(struct dc *dc,
482 struct dc_stream_state **streams, int num_streams,
483 unsigned int *v_pos, unsigned int *nom_v_pos)
484{
485 /* TODO: Support multiple streams */
486 const struct dc_stream_state *stream = streams[0];
487 int i;
488 bool ret = false;
489 struct crtc_position position;
490
491 dc_exit_ips_for_hw_access(dc);
492
493 for (i = 0; i < MAX_PIPES; i++) {
494 struct pipe_ctx *pipe =
495 &dc->current_state->res_ctx.pipe_ctx[i];
496
497 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
498 dc->hwss.get_position(&pipe, 1, &position);
499
500 *v_pos = position.vertical_count;
501 *nom_v_pos = position.nominal_vcount;
502 ret = true;
503 }
504 }
505 return ret;
506}
507
508#if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
509static inline void
510dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
511 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
512{
513 union dmub_rb_cmd cmd = {0};
514
515 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
516 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
517
518 if (is_stop) {
519 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
520 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
521 } else {
522 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
523 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
524 cmd.secure_display.roi_info.x_start = rect->x;
525 cmd.secure_display.roi_info.y_start = rect->y;
526 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
527 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
528 }
529
530 dc_wake_and_execute_dmub_cmd(ctx: dmub_srv->ctx, cmd: &cmd, wait_type: DM_DMUB_WAIT_TYPE_NO_WAIT);
531}
532
533static inline void
534dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
535 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
536{
537 if (is_stop)
538 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
539 else
540 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
541}
542
543bool
544dc_stream_forward_crc_window(struct dc_stream_state *stream,
545 struct rect *rect, bool is_stop)
546{
547 struct dmcu *dmcu;
548 struct dc_dmub_srv *dmub_srv;
549 struct otg_phy_mux mux_mapping;
550 struct pipe_ctx *pipe;
551 int i;
552 struct dc *dc = stream->ctx->dc;
553
554 for (i = 0; i < MAX_PIPES; i++) {
555 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
556 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
557 break;
558 }
559
560 /* Stream not found */
561 if (i == MAX_PIPES)
562 return false;
563
564 mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
565 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
566
567 dmcu = dc->res_pool->dmcu;
568 dmub_srv = dc->ctx->dmub_srv;
569
570 /* forward to dmub */
571 if (dmub_srv)
572 dc_stream_forward_dmub_crc_window(dmub_srv, rect, mux_mapping: &mux_mapping, is_stop);
573 /* forward to dmcu */
574 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
575 dc_stream_forward_dmcu_crc_window(dmcu, rect, mux_mapping: &mux_mapping, is_stop);
576 else
577 return false;
578
579 return true;
580}
581#endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
582
583/**
584 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
585 * @dc: DC Object
586 * @stream: The stream to configure CRC on.
587 * @enable: Enable CRC if true, disable otherwise.
588 * @crc_window: CRC window (x/y start/end) information
589 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
590 * once.
591 *
592 * By default, only CRC0 is configured, and the entire frame is used to
593 * calculate the CRC.
594 *
595 * Return: %false if the stream is not found or CRC capture is not supported;
596 * %true if the stream has been configured.
597 */
598bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
599 struct crc_params *crc_window, bool enable, bool continuous)
600{
601 struct pipe_ctx *pipe;
602 struct crc_params param;
603 struct timing_generator *tg;
604
605 pipe = resource_get_otg_master_for_stream(
606 res_ctx: &dc->current_state->res_ctx, stream);
607
608 /* Stream not found */
609 if (pipe == NULL)
610 return false;
611
612 dc_exit_ips_for_hw_access(dc);
613
614 /* By default, capture the full frame */
615 param.windowa_x_start = 0;
616 param.windowa_y_start = 0;
617 param.windowa_x_end = pipe->stream->timing.h_addressable;
618 param.windowa_y_end = pipe->stream->timing.v_addressable;
619 param.windowb_x_start = 0;
620 param.windowb_y_start = 0;
621 param.windowb_x_end = pipe->stream->timing.h_addressable;
622 param.windowb_y_end = pipe->stream->timing.v_addressable;
623
624 if (crc_window) {
625 param.windowa_x_start = crc_window->windowa_x_start;
626 param.windowa_y_start = crc_window->windowa_y_start;
627 param.windowa_x_end = crc_window->windowa_x_end;
628 param.windowa_y_end = crc_window->windowa_y_end;
629 param.windowb_x_start = crc_window->windowb_x_start;
630 param.windowb_y_start = crc_window->windowb_y_start;
631 param.windowb_x_end = crc_window->windowb_x_end;
632 param.windowb_y_end = crc_window->windowb_y_end;
633 }
634
635 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
636 param.odm_mode = pipe->next_odm_pipe ? 1:0;
637
638 /* Default to the union of both windows */
639 param.selection = UNION_WINDOW_A_B;
640 param.continuous_mode = continuous;
641 param.enable = enable;
642
643 tg = pipe->stream_res.tg;
644
645 /* Only call if supported */
646 if (tg->funcs->configure_crc)
647 return tg->funcs->configure_crc(tg, &param);
648 DC_LOG_WARNING("CRC capture not supported.");
649 return false;
650}
651
652/**
653 * dc_stream_get_crc() - Get CRC values for the given stream.
654 *
655 * @dc: DC object.
656 * @stream: The DC stream state of the stream to get CRCs from.
657 * @r_cr: CRC value for the red component.
658 * @g_y: CRC value for the green component.
659 * @b_cb: CRC value for the blue component.
660 *
661 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
662 *
663 * Return:
664 * %false if stream is not found, or if CRCs are not enabled.
665 */
666bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
667 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
668{
669 int i;
670 struct pipe_ctx *pipe;
671 struct timing_generator *tg;
672
673 dc_exit_ips_for_hw_access(dc);
674
675 for (i = 0; i < MAX_PIPES; i++) {
676 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
677 if (pipe->stream == stream)
678 break;
679 }
680 /* Stream not found */
681 if (i == MAX_PIPES)
682 return false;
683
684 tg = pipe->stream_res.tg;
685
686 if (tg->funcs->get_crc)
687 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
688 DC_LOG_WARNING("CRC capture not supported.");
689 return false;
690}
691
692void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
693 enum dc_dynamic_expansion option)
694{
695 /* OPP FMT dyn expansion updates*/
696 int i;
697 struct pipe_ctx *pipe_ctx;
698
699 dc_exit_ips_for_hw_access(dc);
700
701 for (i = 0; i < MAX_PIPES; i++) {
702 if (dc->current_state->res_ctx.pipe_ctx[i].stream
703 == stream) {
704 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
705 pipe_ctx->stream_res.opp->dyn_expansion = option;
706 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
707 pipe_ctx->stream_res.opp,
708 COLOR_SPACE_YCBCR601,
709 stream->timing.display_color_depth,
710 stream->signal);
711 }
712 }
713}
714
715void dc_stream_set_dither_option(struct dc_stream_state *stream,
716 enum dc_dither_option option)
717{
718 struct bit_depth_reduction_params params;
719 struct dc_link *link = stream->link;
720 struct pipe_ctx *pipes = NULL;
721 int i;
722
723 for (i = 0; i < MAX_PIPES; i++) {
724 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
725 stream) {
726 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
727 break;
728 }
729 }
730
731 if (!pipes)
732 return;
733 if (option > DITHER_OPTION_MAX)
734 return;
735
736 dc_exit_ips_for_hw_access(dc: stream->ctx->dc);
737
738 stream->dither_option = option;
739
740 memset(&params, 0, sizeof(params));
741 resource_build_bit_depth_reduction_params(stream, fmt_bit_depth: &params);
742 stream->bit_depth_params = params;
743
744 if (pipes->plane_res.xfm &&
745 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
746 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
747 pipes->plane_res.xfm,
748 pipes->plane_res.scl_data.lb_params.depth,
749 &stream->bit_depth_params);
750 }
751
752 pipes->stream_res.opp->funcs->
753 opp_program_bit_depth_reduction(pipes->stream_res.opp, &params);
754}
755
756bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
757{
758 int i;
759 bool ret = false;
760 struct pipe_ctx *pipes;
761
762 dc_exit_ips_for_hw_access(dc);
763
764 for (i = 0; i < MAX_PIPES; i++) {
765 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
766 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
767 dc->hwss.program_gamut_remap(pipes);
768 ret = true;
769 }
770 }
771
772 return ret;
773}
774
775bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
776{
777 int i;
778 bool ret = false;
779 struct pipe_ctx *pipes;
780
781 dc_exit_ips_for_hw_access(dc);
782
783 for (i = 0; i < MAX_PIPES; i++) {
784 if (dc->current_state->res_ctx.pipe_ctx[i].stream
785 == stream) {
786
787 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
788 dc->hwss.program_output_csc(dc,
789 pipes,
790 stream->output_color_space,
791 stream->csc_color_matrix.matrix,
792 pipes->stream_res.opp->inst);
793 ret = true;
794 }
795 }
796
797 return ret;
798}
799
800void dc_stream_set_static_screen_params(struct dc *dc,
801 struct dc_stream_state **streams,
802 int num_streams,
803 const struct dc_static_screen_params *params)
804{
805 int i, j;
806 struct pipe_ctx *pipes_affected[MAX_PIPES];
807 int num_pipes_affected = 0;
808
809 dc_exit_ips_for_hw_access(dc);
810
811 for (i = 0; i < num_streams; i++) {
812 struct dc_stream_state *stream = streams[i];
813
814 for (j = 0; j < MAX_PIPES; j++) {
815 if (dc->current_state->res_ctx.pipe_ctx[j].stream
816 == stream) {
817 pipes_affected[num_pipes_affected++] =
818 &dc->current_state->res_ctx.pipe_ctx[j];
819 }
820 }
821 }
822
823 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
824}
825
826static void dc_destruct(struct dc *dc)
827{
828 // reset link encoder assignment table on destruct
829 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
830 link_enc_cfg_init(dc, state: dc->current_state);
831
832 if (dc->current_state) {
833 dc_state_release(state: dc->current_state);
834 dc->current_state = NULL;
835 }
836
837 destroy_links(dc);
838
839 destroy_link_encoders(dc);
840
841 if (dc->clk_mgr) {
842 dc_destroy_clk_mgr(clk_mgr: dc->clk_mgr);
843 dc->clk_mgr = NULL;
844 }
845
846 dc_destroy_resource_pool(dc);
847
848 if (dc->link_srv)
849 link_destroy_link_service(link_srv: &dc->link_srv);
850
851 if (dc->ctx->gpio_service)
852 dal_gpio_service_destroy(ptr: &dc->ctx->gpio_service);
853
854 if (dc->ctx->created_bios)
855 dal_bios_parser_destroy(dcb: &dc->ctx->dc_bios);
856
857 kfree(objp: dc->ctx->logger);
858 dc_perf_trace_destroy(perf_trace: &dc->ctx->perf_trace);
859
860 kfree(objp: dc->ctx);
861 dc->ctx = NULL;
862
863 kfree(objp: dc->bw_vbios);
864 dc->bw_vbios = NULL;
865
866 kfree(objp: dc->bw_dceip);
867 dc->bw_dceip = NULL;
868
869 kfree(objp: dc->dcn_soc);
870 dc->dcn_soc = NULL;
871
872 kfree(objp: dc->dcn_ip);
873 dc->dcn_ip = NULL;
874
875 kfree(objp: dc->vm_helper);
876 dc->vm_helper = NULL;
877
878}
879
880static bool dc_construct_ctx(struct dc *dc,
881 const struct dc_init_data *init_params)
882{
883 struct dc_context *dc_ctx;
884
885 dc_ctx = kzalloc(size: sizeof(*dc_ctx), GFP_KERNEL);
886 if (!dc_ctx)
887 return false;
888
889 dc_ctx->cgs_device = init_params->cgs_device;
890 dc_ctx->driver_context = init_params->driver;
891 dc_ctx->dc = dc;
892 dc_ctx->asic_id = init_params->asic_id;
893 dc_ctx->dc_sink_id_count = 0;
894 dc_ctx->dc_stream_id_count = 0;
895 dc_ctx->dce_environment = init_params->dce_environment;
896 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
897 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
898 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
899
900 /* Create logger */
901 dc_ctx->logger = kmalloc(size: sizeof(*dc_ctx->logger), GFP_KERNEL);
902
903 if (!dc_ctx->logger) {
904 kfree(objp: dc_ctx);
905 return false;
906 }
907
908 dc_ctx->logger->dev = adev_to_drm(adev: init_params->driver);
909 dc->dml.logger = dc_ctx->logger;
910
911 dc_ctx->dce_version = resource_parse_asic_id(asic_id: init_params->asic_id);
912
913 dc_ctx->perf_trace = dc_perf_trace_create();
914 if (!dc_ctx->perf_trace) {
915 kfree(objp: dc_ctx);
916 ASSERT_CRITICAL(false);
917 return false;
918 }
919
920 dc->ctx = dc_ctx;
921
922 dc->link_srv = link_create_link_service();
923 if (!dc->link_srv)
924 return false;
925
926 return true;
927}
928
929static bool dc_construct(struct dc *dc,
930 const struct dc_init_data *init_params)
931{
932 struct dc_context *dc_ctx;
933 struct bw_calcs_dceip *dc_dceip;
934 struct bw_calcs_vbios *dc_vbios;
935 struct dcn_soc_bounding_box *dcn_soc;
936 struct dcn_ip_params *dcn_ip;
937
938 dc->config = init_params->flags;
939
940 // Allocate memory for the vm_helper
941 dc->vm_helper = kzalloc(size: sizeof(struct vm_helper), GFP_KERNEL);
942 if (!dc->vm_helper) {
943 dm_error("%s: failed to create dc->vm_helper\n", __func__);
944 goto fail;
945 }
946
947 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
948
949 dc_dceip = kzalloc(size: sizeof(*dc_dceip), GFP_KERNEL);
950 if (!dc_dceip) {
951 dm_error("%s: failed to create dceip\n", __func__);
952 goto fail;
953 }
954
955 dc->bw_dceip = dc_dceip;
956
957 dc_vbios = kzalloc(size: sizeof(*dc_vbios), GFP_KERNEL);
958 if (!dc_vbios) {
959 dm_error("%s: failed to create vbios\n", __func__);
960 goto fail;
961 }
962
963 dc->bw_vbios = dc_vbios;
964 dcn_soc = kzalloc(size: sizeof(*dcn_soc), GFP_KERNEL);
965 if (!dcn_soc) {
966 dm_error("%s: failed to create dcn_soc\n", __func__);
967 goto fail;
968 }
969
970 dc->dcn_soc = dcn_soc;
971
972 dcn_ip = kzalloc(size: sizeof(*dcn_ip), GFP_KERNEL);
973 if (!dcn_ip) {
974 dm_error("%s: failed to create dcn_ip\n", __func__);
975 goto fail;
976 }
977
978 dc->dcn_ip = dcn_ip;
979
980 if (!dc_construct_ctx(dc, init_params)) {
981 dm_error("%s: failed to create ctx\n", __func__);
982 goto fail;
983 }
984
985 dc_ctx = dc->ctx;
986
987 /* Resource should construct all asic specific resources.
988 * This should be the only place where we need to parse the asic id
989 */
990 if (init_params->vbios_override)
991 dc_ctx->dc_bios = init_params->vbios_override;
992 else {
993 /* Create BIOS parser */
994 struct bp_init_data bp_init_data;
995
996 bp_init_data.ctx = dc_ctx;
997 bp_init_data.bios = init_params->asic_id.atombios_base_address;
998
999 dc_ctx->dc_bios = dal_bios_parser_create(
1000 init: &bp_init_data, dce_version: dc_ctx->dce_version);
1001
1002 if (!dc_ctx->dc_bios) {
1003 ASSERT_CRITICAL(false);
1004 goto fail;
1005 }
1006
1007 dc_ctx->created_bios = true;
1008 }
1009
1010 dc->vendor_signature = init_params->vendor_signature;
1011
1012 /* Create GPIO service */
1013 dc_ctx->gpio_service = dal_gpio_service_create(
1014 dce_version: dc_ctx->dce_version,
1015 dce_environment: dc_ctx->dce_environment,
1016 ctx: dc_ctx);
1017
1018 if (!dc_ctx->gpio_service) {
1019 ASSERT_CRITICAL(false);
1020 goto fail;
1021 }
1022
1023 dc->res_pool = dc_create_resource_pool(dc, init_data: init_params, dc_version: dc_ctx->dce_version);
1024 if (!dc->res_pool)
1025 goto fail;
1026
1027 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1028 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1029 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1030 if (dc->caps.max_optimizable_video_width == 0)
1031 dc->caps.max_optimizable_video_width = 5120;
1032 dc->clk_mgr = dc_clk_mgr_create(ctx: dc->ctx, pp_smu: dc->res_pool->pp_smu, dccg: dc->res_pool->dccg);
1033 if (!dc->clk_mgr)
1034 goto fail;
1035#ifdef CONFIG_DRM_AMD_DC_FP
1036 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1037
1038 if (dc->res_pool->funcs->update_bw_bounding_box) {
1039 DC_FP_START();
1040 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1041 DC_FP_END();
1042 }
1043#endif
1044
1045 if (!create_links(dc, num_virtual_links: init_params->num_virtual_links))
1046 goto fail;
1047
1048 /* Create additional DIG link encoder objects if fewer than the platform
1049 * supports were created during link construction.
1050 */
1051 if (!create_link_encoders(dc))
1052 goto fail;
1053
1054 /* Creation of current_state must occur after dc->dml
1055 * is initialized in dc_create_resource_pool because
1056 * on creation it copies the contents of dc->dml
1057 */
1058
1059 dc->current_state = dc_state_create(dc);
1060
1061 if (!dc->current_state) {
1062 dm_error("%s: failed to create validate ctx\n", __func__);
1063 goto fail;
1064 }
1065
1066 return true;
1067
1068fail:
1069 return false;
1070}
1071
1072static void disable_all_writeback_pipes_for_stream(
1073 const struct dc *dc,
1074 struct dc_stream_state *stream,
1075 struct dc_state *context)
1076{
1077 int i;
1078
1079 for (i = 0; i < stream->num_wb_info; i++)
1080 stream->writeback_info[i].wb_enabled = false;
1081}
1082
1083static void apply_ctx_interdependent_lock(struct dc *dc,
1084 struct dc_state *context,
1085 struct dc_stream_state *stream,
1086 bool lock)
1087{
1088 int i;
1089
1090 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1091 if (dc->hwss.interdependent_update_lock)
1092 dc->hwss.interdependent_update_lock(dc, context, lock);
1093 else {
1094 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1095 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1096 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1097
1098 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1099 if (stream == pipe_ctx->stream) {
1100 if (resource_is_pipe_type(pipe_ctx, type: OPP_HEAD) &&
1101 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1102 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1103 }
1104 }
1105 }
1106}
1107
1108static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1109{
1110 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1111 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1112
1113 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1114 get_hdr_visual_confirm_color(pipe_ctx, color: &(pipe_ctx->visual_confirm_color));
1115 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1116 get_surface_visual_confirm_color(pipe_ctx, color: &(pipe_ctx->visual_confirm_color));
1117 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1118 get_surface_tile_visual_confirm_color(pipe_ctx, color: &(pipe_ctx->visual_confirm_color));
1119 else {
1120 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1121 color_space_to_black_color(
1122 dc, colorspace: pipe_ctx->stream->output_color_space, black_color: &(pipe_ctx->visual_confirm_color));
1123 }
1124 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1125 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1126 get_mpctree_visual_confirm_color(pipe_ctx, color: &(pipe_ctx->visual_confirm_color));
1127 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1128 get_subvp_visual_confirm_color(pipe_ctx, color: &(pipe_ctx->visual_confirm_color));
1129 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1130 get_mclk_switch_visual_confirm_color(pipe_ctx, color: &(pipe_ctx->visual_confirm_color));
1131 }
1132 }
1133}
1134
1135static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1136{
1137 int i, j;
1138 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1139 struct dc_state *current_ctx;
1140 struct pipe_ctx *pipe;
1141 struct timing_generator *tg;
1142
1143 if (dangling_context == NULL)
1144 return;
1145
1146 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1147 struct dc_stream_state *old_stream =
1148 dc->current_state->res_ctx.pipe_ctx[i].stream;
1149 bool should_disable = true;
1150 bool pipe_split_change = false;
1151
1152 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1153 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1154 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1155 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1156 else
1157 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1158 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1159
1160 for (j = 0; j < context->stream_count; j++) {
1161 if (old_stream == context->streams[j]) {
1162 should_disable = false;
1163 break;
1164 }
1165 }
1166 if (!should_disable && pipe_split_change &&
1167 dc->current_state->stream_count != context->stream_count)
1168 should_disable = true;
1169
1170 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1171 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1172 struct pipe_ctx *old_pipe, *new_pipe;
1173
1174 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1175 new_pipe = &context->res_ctx.pipe_ctx[i];
1176
1177 if (old_pipe->plane_state && !new_pipe->plane_state)
1178 should_disable = true;
1179 }
1180
1181 if (should_disable && old_stream) {
1182 bool is_phantom = dc_state_get_stream_subvp_type(state: dc->current_state, stream: old_stream) == SUBVP_PHANTOM;
1183 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1184 tg = pipe->stream_res.tg;
1185 /* When disabling plane for a phantom pipe, we must turn on the
1186 * phantom OTG so the disable programming gets the double buffer
1187 * update. Otherwise the pipe will be left in a partially disabled
1188 * state that can result in underflow or hang when enabling it
1189 * again for different use.
1190 */
1191 if (is_phantom) {
1192 if (tg->funcs->enable_crtc) {
1193 int main_pipe_width, main_pipe_height;
1194 struct dc_stream_state *old_paired_stream = dc_state_get_paired_subvp_stream(state: dc->current_state, stream: old_stream);
1195
1196 main_pipe_width = old_paired_stream->dst.width;
1197 main_pipe_height = old_paired_stream->dst.height;
1198 if (dc->hwss.blank_phantom)
1199 dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1200 tg->funcs->enable_crtc(tg);
1201 }
1202 }
1203
1204 if (is_phantom)
1205 dc_state_rem_all_phantom_planes_for_stream(dc, phantom_stream: old_stream, state: dangling_context, should_release_planes: true);
1206 else
1207 dc_state_rem_all_planes_for_stream(dc, stream: old_stream, state: dangling_context);
1208 disable_all_writeback_pipes_for_stream(dc, stream: old_stream, context: dangling_context);
1209
1210 if (pipe->stream && pipe->plane_state) {
1211 set_p_state_switch_method(dc, context, pipe_ctx: pipe);
1212 dc_update_visual_confirm_color(dc, context, pipe_ctx: pipe);
1213 }
1214
1215 if (dc->hwss.apply_ctx_for_surface) {
1216 apply_ctx_interdependent_lock(dc, context: dc->current_state, stream: old_stream, lock: true);
1217 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1218 apply_ctx_interdependent_lock(dc, context: dc->current_state, stream: old_stream, lock: false);
1219 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1220 }
1221 if (dc->hwss.program_front_end_for_ctx) {
1222 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1223 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1224 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1225 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1226 }
1227 /* We need to put the phantom OTG back into it's default (disabled) state or we
1228 * can get corruption when transition from one SubVP config to a different one.
1229 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1230 * will still get it's double buffer update.
1231 */
1232 if (is_phantom) {
1233 if (tg->funcs->disable_phantom_crtc)
1234 tg->funcs->disable_phantom_crtc(tg);
1235 }
1236 }
1237 }
1238
1239 current_ctx = dc->current_state;
1240 dc->current_state = dangling_context;
1241 dc_state_release(state: current_ctx);
1242}
1243
1244static void disable_vbios_mode_if_required(
1245 struct dc *dc,
1246 struct dc_state *context)
1247{
1248 unsigned int i, j;
1249
1250 /* check if timing_changed, disable stream*/
1251 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1252 struct dc_stream_state *stream = NULL;
1253 struct dc_link *link = NULL;
1254 struct pipe_ctx *pipe = NULL;
1255
1256 pipe = &context->res_ctx.pipe_ctx[i];
1257 stream = pipe->stream;
1258 if (stream == NULL)
1259 continue;
1260
1261 if (stream->apply_seamless_boot_optimization)
1262 continue;
1263
1264 // only looking for first odm pipe
1265 if (pipe->prev_odm_pipe)
1266 continue;
1267
1268 if (stream->link->local_sink &&
1269 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1270 link = stream->link;
1271 }
1272
1273 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1274 unsigned int enc_inst, tg_inst = 0;
1275 unsigned int pix_clk_100hz;
1276
1277 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1278 if (enc_inst != ENGINE_ID_UNKNOWN) {
1279 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1280 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1281 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1282 dc->res_pool->stream_enc[j]);
1283 break;
1284 }
1285 }
1286
1287 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1288 dc->res_pool->dp_clock_source,
1289 tg_inst, &pix_clk_100hz);
1290
1291 if (link->link_status.link_active) {
1292 uint32_t requested_pix_clk_100hz =
1293 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1294
1295 if (pix_clk_100hz != requested_pix_clk_100hz) {
1296 dc->link_srv->set_dpms_off(pipe);
1297 pipe->stream->dpms_off = false;
1298 }
1299 }
1300 }
1301 }
1302 }
1303}
1304
1305/**
1306 * wait_for_blank_complete - wait for all active OPPs to finish pending blank
1307 * pattern updates
1308 *
1309 * @dc: [in] dc reference
1310 * @context: [in] hardware context in use
1311 */
1312static void wait_for_blank_complete(struct dc *dc,
1313 struct dc_state *context)
1314{
1315 struct pipe_ctx *opp_head;
1316 struct dce_hwseq *hws = dc->hwseq;
1317 int i;
1318
1319 if (!hws->funcs.wait_for_blank_complete)
1320 return;
1321
1322 for (i = 0; i < MAX_PIPES; i++) {
1323 opp_head = &context->res_ctx.pipe_ctx[i];
1324
1325 if (!resource_is_pipe_type(pipe_ctx: opp_head, type: OPP_HEAD) ||
1326 dc_state_get_pipe_subvp_type(state: context, pipe_ctx: opp_head) == SUBVP_PHANTOM)
1327 continue;
1328
1329 hws->funcs.wait_for_blank_complete(opp_head->stream_res.opp);
1330 }
1331}
1332
1333static void wait_for_odm_update_pending_complete(struct dc *dc, struct dc_state *context)
1334{
1335 struct pipe_ctx *otg_master;
1336 struct timing_generator *tg;
1337 int i;
1338
1339 for (i = 0; i < MAX_PIPES; i++) {
1340 otg_master = &context->res_ctx.pipe_ctx[i];
1341 if (!resource_is_pipe_type(pipe_ctx: otg_master, type: OTG_MASTER) ||
1342 dc_state_get_pipe_subvp_type(state: context, pipe_ctx: otg_master) == SUBVP_PHANTOM)
1343 continue;
1344 tg = otg_master->stream_res.tg;
1345 if (tg->funcs->wait_odm_doublebuffer_pending_clear)
1346 tg->funcs->wait_odm_doublebuffer_pending_clear(tg);
1347 }
1348
1349 /* ODM update may require to reprogram blank pattern for each OPP */
1350 wait_for_blank_complete(dc, context);
1351}
1352
1353static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context)
1354{
1355 int i;
1356 PERF_TRACE();
1357 for (i = 0; i < MAX_PIPES; i++) {
1358 int count = 0;
1359 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1360
1361 if (!pipe->plane_state || dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_PHANTOM)
1362 continue;
1363
1364 /* Timeout 100 ms */
1365 while (count < 100000) {
1366 /* Must set to false to start with, due to OR in update function */
1367 pipe->plane_state->status.is_flip_pending = false;
1368 dc->hwss.update_pending_status(pipe);
1369 if (!pipe->plane_state->status.is_flip_pending)
1370 break;
1371 udelay(1);
1372 count++;
1373 }
1374 ASSERT(!pipe->plane_state->status.is_flip_pending);
1375 }
1376 PERF_TRACE();
1377}
1378
1379/* Public functions */
1380
1381struct dc *dc_create(const struct dc_init_data *init_params)
1382{
1383 struct dc *dc = kzalloc(size: sizeof(*dc), GFP_KERNEL);
1384 unsigned int full_pipe_count;
1385
1386 if (!dc)
1387 return NULL;
1388
1389 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1390 if (!dc_construct_ctx(dc, init_params))
1391 goto destruct_dc;
1392 } else {
1393 if (!dc_construct(dc, init_params))
1394 goto destruct_dc;
1395
1396 full_pipe_count = dc->res_pool->pipe_count;
1397 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1398 full_pipe_count--;
1399 dc->caps.max_streams = min(
1400 full_pipe_count,
1401 dc->res_pool->stream_enc_count);
1402
1403 dc->caps.max_links = dc->link_count;
1404 dc->caps.max_audios = dc->res_pool->audio_count;
1405 dc->caps.linear_pitch_alignment = 64;
1406
1407 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1408
1409 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1410
1411 if (dc->res_pool->dmcu != NULL)
1412 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1413 }
1414
1415 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1416 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1417 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1418
1419 /* Populate versioning information */
1420 dc->versions.dc_ver = DC_VER;
1421
1422 dc->build_id = DC_BUILD_ID;
1423
1424 DC_LOG_DC("Display Core initialized\n");
1425
1426
1427
1428 return dc;
1429
1430destruct_dc:
1431 dc_destruct(dc);
1432 kfree(objp: dc);
1433 return NULL;
1434}
1435
1436static void detect_edp_presence(struct dc *dc)
1437{
1438 struct dc_link *edp_links[MAX_NUM_EDP];
1439 struct dc_link *edp_link = NULL;
1440 enum dc_connection_type type;
1441 int i;
1442 int edp_num;
1443
1444 dc_get_edp_links(dc, edp_links, edp_num: &edp_num);
1445 if (!edp_num)
1446 return;
1447
1448 for (i = 0; i < edp_num; i++) {
1449 edp_link = edp_links[i];
1450 if (dc->config.edp_not_connected) {
1451 edp_link->edp_sink_present = false;
1452 } else {
1453 dc_link_detect_connection_type(link: edp_link, type: &type);
1454 edp_link->edp_sink_present = (type != dc_connection_none);
1455 }
1456 }
1457}
1458
1459void dc_hardware_init(struct dc *dc)
1460{
1461
1462 detect_edp_presence(dc);
1463 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1464 dc->hwss.init_hw(dc);
1465}
1466
1467void dc_init_callbacks(struct dc *dc,
1468 const struct dc_callback_init *init_params)
1469{
1470 dc->ctx->cp_psp = init_params->cp_psp;
1471}
1472
1473void dc_deinit_callbacks(struct dc *dc)
1474{
1475 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1476}
1477
1478void dc_destroy(struct dc **dc)
1479{
1480 dc_destruct(dc: *dc);
1481 kfree(objp: *dc);
1482 *dc = NULL;
1483}
1484
1485static void enable_timing_multisync(
1486 struct dc *dc,
1487 struct dc_state *ctx)
1488{
1489 int i, multisync_count = 0;
1490 int pipe_count = dc->res_pool->pipe_count;
1491 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1492
1493 for (i = 0; i < pipe_count; i++) {
1494 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1495 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1496 continue;
1497 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1498 continue;
1499 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1500 multisync_count++;
1501 }
1502
1503 if (multisync_count > 0) {
1504 dc->hwss.enable_per_frame_crtc_position_reset(
1505 dc, multisync_count, multisync_pipes);
1506 }
1507}
1508
1509static void program_timing_sync(
1510 struct dc *dc,
1511 struct dc_state *ctx)
1512{
1513 int i, j, k;
1514 int group_index = 0;
1515 int num_group = 0;
1516 int pipe_count = dc->res_pool->pipe_count;
1517 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1518
1519 for (i = 0; i < pipe_count; i++) {
1520 if (!ctx->res_ctx.pipe_ctx[i].stream
1521 || ctx->res_ctx.pipe_ctx[i].top_pipe
1522 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1523 continue;
1524
1525 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1526 }
1527
1528 for (i = 0; i < pipe_count; i++) {
1529 int group_size = 1;
1530 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1531 struct pipe_ctx *pipe_set[MAX_PIPES];
1532
1533 if (!unsynced_pipes[i])
1534 continue;
1535
1536 pipe_set[0] = unsynced_pipes[i];
1537 unsynced_pipes[i] = NULL;
1538
1539 /* Add tg to the set, search rest of the tg's for ones with
1540 * same timing, add all tgs with same timing to the group
1541 */
1542 for (j = i + 1; j < pipe_count; j++) {
1543 if (!unsynced_pipes[j])
1544 continue;
1545 if (sync_type != TIMING_SYNCHRONIZABLE &&
1546 dc->hwss.enable_vblanks_synchronization &&
1547 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1548 resource_are_vblanks_synchronizable(
1549 stream1: unsynced_pipes[j]->stream,
1550 stream2: pipe_set[0]->stream)) {
1551 sync_type = VBLANK_SYNCHRONIZABLE;
1552 pipe_set[group_size] = unsynced_pipes[j];
1553 unsynced_pipes[j] = NULL;
1554 group_size++;
1555 } else
1556 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1557 resource_are_streams_timing_synchronizable(
1558 stream1: unsynced_pipes[j]->stream,
1559 stream2: pipe_set[0]->stream)) {
1560 sync_type = TIMING_SYNCHRONIZABLE;
1561 pipe_set[group_size] = unsynced_pipes[j];
1562 unsynced_pipes[j] = NULL;
1563 group_size++;
1564 }
1565 }
1566
1567 /* set first unblanked pipe as master */
1568 for (j = 0; j < group_size; j++) {
1569 bool is_blanked;
1570
1571 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1572 is_blanked =
1573 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1574 else
1575 is_blanked =
1576 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1577 if (!is_blanked) {
1578 if (j == 0)
1579 break;
1580
1581 swap(pipe_set[0], pipe_set[j]);
1582 break;
1583 }
1584 }
1585
1586 for (k = 0; k < group_size; k++) {
1587 struct dc_stream_status *status = dc_state_get_stream_status(state: ctx, stream: pipe_set[k]->stream);
1588
1589 status->timing_sync_info.group_id = num_group;
1590 status->timing_sync_info.group_size = group_size;
1591 if (k == 0)
1592 status->timing_sync_info.master = true;
1593 else
1594 status->timing_sync_info.master = false;
1595
1596 }
1597
1598 /* remove any other unblanked pipes as they have already been synced */
1599 if (dc->config.use_pipe_ctx_sync_logic) {
1600 /* check pipe's syncd to decide which pipe to be removed */
1601 for (j = 1; j < group_size; j++) {
1602 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1603 group_size--;
1604 pipe_set[j] = pipe_set[group_size];
1605 j--;
1606 } else
1607 /* link slave pipe's syncd with master pipe */
1608 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1609 }
1610 } else {
1611 /* remove any other pipes by checking valid plane */
1612 for (j = j + 1; j < group_size; j++) {
1613 bool is_blanked;
1614
1615 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1616 is_blanked =
1617 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1618 else
1619 is_blanked =
1620 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1621 if (!is_blanked) {
1622 group_size--;
1623 pipe_set[j] = pipe_set[group_size];
1624 j--;
1625 }
1626 }
1627 }
1628
1629 if (group_size > 1) {
1630 if (sync_type == TIMING_SYNCHRONIZABLE) {
1631 dc->hwss.enable_timing_synchronization(
1632 dc, ctx, group_index, group_size, pipe_set);
1633 } else
1634 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1635 dc->hwss.enable_vblanks_synchronization(
1636 dc, group_index, group_size, pipe_set);
1637 }
1638 group_index++;
1639 }
1640 num_group++;
1641 }
1642}
1643
1644static bool streams_changed(struct dc *dc,
1645 struct dc_stream_state *streams[],
1646 uint8_t stream_count)
1647{
1648 uint8_t i;
1649
1650 if (stream_count != dc->current_state->stream_count)
1651 return true;
1652
1653 for (i = 0; i < dc->current_state->stream_count; i++) {
1654 if (dc->current_state->streams[i] != streams[i])
1655 return true;
1656 if (!streams[i]->link->link_state_valid)
1657 return true;
1658 }
1659
1660 return false;
1661}
1662
1663bool dc_validate_boot_timing(const struct dc *dc,
1664 const struct dc_sink *sink,
1665 struct dc_crtc_timing *crtc_timing)
1666{
1667 struct timing_generator *tg;
1668 struct stream_encoder *se = NULL;
1669
1670 struct dc_crtc_timing hw_crtc_timing = {0};
1671
1672 struct dc_link *link = sink->link;
1673 unsigned int i, enc_inst, tg_inst = 0;
1674
1675 /* Support seamless boot on EDP displays only */
1676 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1677 return false;
1678 }
1679
1680 if (dc->debug.force_odm_combine)
1681 return false;
1682
1683 /* Check for enabled DIG to identify enabled display */
1684 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1685 return false;
1686
1687 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1688
1689 if (enc_inst == ENGINE_ID_UNKNOWN)
1690 return false;
1691
1692 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1693 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1694
1695 se = dc->res_pool->stream_enc[i];
1696
1697 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1698 dc->res_pool->stream_enc[i]);
1699 break;
1700 }
1701 }
1702
1703 // tg_inst not found
1704 if (i == dc->res_pool->stream_enc_count)
1705 return false;
1706
1707 if (tg_inst >= dc->res_pool->timing_generator_count)
1708 return false;
1709
1710 if (tg_inst != link->link_enc->preferred_engine)
1711 return false;
1712
1713 tg = dc->res_pool->timing_generators[tg_inst];
1714
1715 if (!tg->funcs->get_hw_timing)
1716 return false;
1717
1718 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1719 return false;
1720
1721 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1722 return false;
1723
1724 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1725 return false;
1726
1727 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1728 return false;
1729
1730 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1731 return false;
1732
1733 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1734 return false;
1735
1736 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1737 return false;
1738
1739 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1740 return false;
1741
1742 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1743 return false;
1744
1745 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1746 return false;
1747
1748 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1749 return false;
1750
1751 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1752 return false;
1753
1754 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1755 return false;
1756
1757 /* block DSC for now, as VBIOS does not currently support DSC timings */
1758 if (crtc_timing->flags.DSC)
1759 return false;
1760
1761 if (dc_is_dp_signal(signal: link->connector_signal)) {
1762 unsigned int pix_clk_100hz;
1763 uint32_t numOdmPipes = 1;
1764 uint32_t id_src[4] = {0};
1765
1766 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1767 dc->res_pool->dp_clock_source,
1768 tg_inst, &pix_clk_100hz);
1769
1770 if (tg->funcs->get_optc_source)
1771 tg->funcs->get_optc_source(tg,
1772 &numOdmPipes, &id_src[0], &id_src[1]);
1773
1774 if (numOdmPipes == 2)
1775 pix_clk_100hz *= 2;
1776 if (numOdmPipes == 4)
1777 pix_clk_100hz *= 4;
1778
1779 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1780 // slightly due to rounding issues in 10 kHz units.
1781 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1782 return false;
1783
1784 if (!se->funcs->dp_get_pixel_format)
1785 return false;
1786
1787 if (!se->funcs->dp_get_pixel_format(
1788 se,
1789 &hw_crtc_timing.pixel_encoding,
1790 &hw_crtc_timing.display_color_depth))
1791 return false;
1792
1793 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1794 return false;
1795
1796 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1797 return false;
1798 }
1799
1800 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1801 return false;
1802 }
1803
1804 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1805 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1806 return false;
1807 }
1808
1809 return true;
1810}
1811
1812static inline bool should_update_pipe_for_stream(
1813 struct dc_state *context,
1814 struct pipe_ctx *pipe_ctx,
1815 struct dc_stream_state *stream)
1816{
1817 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1818}
1819
1820static inline bool should_update_pipe_for_plane(
1821 struct dc_state *context,
1822 struct pipe_ctx *pipe_ctx,
1823 struct dc_plane_state *plane_state)
1824{
1825 return (pipe_ctx->plane_state == plane_state);
1826}
1827
1828void dc_enable_stereo(
1829 struct dc *dc,
1830 struct dc_state *context,
1831 struct dc_stream_state *streams[],
1832 uint8_t stream_count)
1833{
1834 int i, j;
1835 struct pipe_ctx *pipe;
1836
1837 dc_exit_ips_for_hw_access(dc);
1838
1839 for (i = 0; i < MAX_PIPES; i++) {
1840 if (context != NULL) {
1841 pipe = &context->res_ctx.pipe_ctx[i];
1842 } else {
1843 context = dc->current_state;
1844 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1845 }
1846
1847 for (j = 0; pipe && j < stream_count; j++) {
1848 if (should_update_pipe_for_stream(context, pipe_ctx: pipe, stream: streams[j]) &&
1849 dc->hwss.setup_stereo)
1850 dc->hwss.setup_stereo(pipe, dc);
1851 }
1852 }
1853}
1854
1855void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1856{
1857 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1858 dc_exit_ips_for_hw_access(dc);
1859
1860 enable_timing_multisync(dc, ctx: context);
1861 program_timing_sync(dc, ctx: context);
1862 }
1863}
1864
1865static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1866{
1867 int i;
1868 unsigned int stream_mask = 0;
1869
1870 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1871 if (context->res_ctx.pipe_ctx[i].stream)
1872 stream_mask |= 1 << i;
1873 }
1874
1875 return stream_mask;
1876}
1877
1878void dc_z10_restore(const struct dc *dc)
1879{
1880 if (dc->hwss.z10_restore)
1881 dc->hwss.z10_restore(dc);
1882}
1883
1884void dc_z10_save_init(struct dc *dc)
1885{
1886 if (dc->hwss.z10_save_init)
1887 dc->hwss.z10_save_init(dc);
1888}
1889
1890/**
1891 * dc_commit_state_no_check - Apply context to the hardware
1892 *
1893 * @dc: DC object with the current status to be updated
1894 * @context: New state that will become the current status at the end of this function
1895 *
1896 * Applies given context to the hardware and copy it into current context.
1897 * It's up to the user to release the src context afterwards.
1898 *
1899 * Return: an enum dc_status result code for the operation
1900 */
1901static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1902{
1903 struct dc_bios *dcb = dc->ctx->dc_bios;
1904 enum dc_status result = DC_ERROR_UNEXPECTED;
1905 struct pipe_ctx *pipe;
1906 int i, k, l;
1907 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1908 struct dc_state *old_state;
1909 bool subvp_prev_use = false;
1910
1911 dc_z10_restore(dc);
1912 dc_allow_idle_optimizations(dc, allow: false);
1913
1914 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1915 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1916
1917 /* Check old context for SubVP */
1918 subvp_prev_use |= (dc_state_get_pipe_subvp_type(state: dc->current_state, pipe_ctx: old_pipe) == SUBVP_PHANTOM);
1919 if (subvp_prev_use)
1920 break;
1921 }
1922
1923 for (i = 0; i < context->stream_count; i++)
1924 dc_streams[i] = context->streams[i];
1925
1926 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1927 disable_vbios_mode_if_required(dc, context);
1928 dc->hwss.enable_accelerated_mode(dc, context);
1929 }
1930
1931 if (context->stream_count > get_seamless_boot_stream_count(ctx: context) ||
1932 context->stream_count == 0)
1933 dc->hwss.prepare_bandwidth(dc, context);
1934
1935 /* When SubVP is active, all HW programming must be done while
1936 * SubVP lock is acquired
1937 */
1938 if (dc->hwss.subvp_pipe_control_lock)
1939 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1940
1941 if (dc->hwss.update_dsc_pg)
1942 dc->hwss.update_dsc_pg(dc, context, false);
1943
1944 disable_dangling_plane(dc, context);
1945 /* re-program planes for existing stream, in case we need to
1946 * free up plane resource for later use
1947 */
1948 if (dc->hwss.apply_ctx_for_surface) {
1949 for (i = 0; i < context->stream_count; i++) {
1950 if (context->streams[i]->mode_changed)
1951 continue;
1952 apply_ctx_interdependent_lock(dc, context, stream: context->streams[i], lock: true);
1953 dc->hwss.apply_ctx_for_surface(
1954 dc, context->streams[i],
1955 context->stream_status[i].plane_count,
1956 context); /* use new pipe config in new context */
1957 apply_ctx_interdependent_lock(dc, context, stream: context->streams[i], lock: false);
1958 dc->hwss.post_unlock_program_front_end(dc, context);
1959 }
1960 }
1961
1962 /* Program hardware */
1963 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1964 pipe = &context->res_ctx.pipe_ctx[i];
1965 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1966 }
1967
1968 result = dc->hwss.apply_ctx_to_hw(dc, context);
1969
1970 if (result != DC_OK) {
1971 /* Application of dc_state to hardware stopped. */
1972 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1973 return result;
1974 }
1975
1976 dc_trigger_sync(dc, context);
1977
1978 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1979 for (i = 0; i < context->stream_count; i++) {
1980 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1981
1982 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1983 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1984 }
1985
1986 /* Program all planes within new context*/
1987 if (dc->hwss.program_front_end_for_ctx) {
1988 dc->hwss.interdependent_update_lock(dc, context, true);
1989 dc->hwss.program_front_end_for_ctx(dc, context);
1990 dc->hwss.interdependent_update_lock(dc, context, false);
1991 dc->hwss.post_unlock_program_front_end(dc, context);
1992 }
1993
1994 if (dc->hwss.commit_subvp_config)
1995 dc->hwss.commit_subvp_config(dc, context);
1996 if (dc->hwss.subvp_pipe_control_lock)
1997 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1998
1999 for (i = 0; i < context->stream_count; i++) {
2000 const struct dc_link *link = context->streams[i]->link;
2001
2002 if (!context->streams[i]->mode_changed)
2003 continue;
2004
2005 if (dc->hwss.apply_ctx_for_surface) {
2006 apply_ctx_interdependent_lock(dc, context, stream: context->streams[i], lock: true);
2007 dc->hwss.apply_ctx_for_surface(
2008 dc, context->streams[i],
2009 context->stream_status[i].plane_count,
2010 context);
2011 apply_ctx_interdependent_lock(dc, context, stream: context->streams[i], lock: false);
2012 dc->hwss.post_unlock_program_front_end(dc, context);
2013 }
2014
2015 /*
2016 * enable stereo
2017 * TODO rework dc_enable_stereo call to work with validation sets?
2018 */
2019 for (k = 0; k < MAX_PIPES; k++) {
2020 pipe = &context->res_ctx.pipe_ctx[k];
2021
2022 for (l = 0 ; pipe && l < context->stream_count; l++) {
2023 if (context->streams[l] &&
2024 context->streams[l] == pipe->stream &&
2025 dc->hwss.setup_stereo)
2026 dc->hwss.setup_stereo(pipe, dc);
2027 }
2028 }
2029
2030 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2031 context->streams[i]->timing.h_addressable,
2032 context->streams[i]->timing.v_addressable,
2033 context->streams[i]->timing.h_total,
2034 context->streams[i]->timing.v_total,
2035 context->streams[i]->timing.pix_clk_100hz / 10);
2036 }
2037
2038 dc_enable_stereo(dc, context, streams: dc_streams, stream_count: context->stream_count);
2039
2040 if (context->stream_count > get_seamless_boot_stream_count(ctx: context) ||
2041 context->stream_count == 0) {
2042 /* Must wait for no flips to be pending before doing optimize bw */
2043 wait_for_no_pipes_pending(dc, context);
2044 /*
2045 * optimized dispclk depends on ODM setup. Need to wait for ODM
2046 * update pending complete before optimizing bandwidth.
2047 */
2048 wait_for_odm_update_pending_complete(dc, context);
2049 /* pplib is notified if disp_num changed */
2050 dc->hwss.optimize_bandwidth(dc, context);
2051 /* Need to do otg sync again as otg could be out of sync due to otg
2052 * workaround applied during clock update
2053 */
2054 dc_trigger_sync(dc, context);
2055 }
2056
2057 if (dc->hwss.update_dsc_pg)
2058 dc->hwss.update_dsc_pg(dc, context, true);
2059
2060 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2061 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2062 else
2063 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2064
2065 context->stream_mask = get_stream_mask(dc, context);
2066
2067 if (context->stream_mask != dc->current_state->stream_mask)
2068 dc_dmub_srv_notify_stream_mask(dc_dmub_srv: dc->ctx->dmub_srv, stream_mask: context->stream_mask);
2069
2070 for (i = 0; i < context->stream_count; i++)
2071 context->streams[i]->mode_changed = false;
2072
2073 /* Clear update flags that were set earlier to avoid redundant programming */
2074 for (i = 0; i < context->stream_count; i++) {
2075 context->streams[i]->update_flags.raw = 0x0;
2076 }
2077
2078 old_state = dc->current_state;
2079 dc->current_state = context;
2080
2081 dc_state_release(state: old_state);
2082
2083 dc_state_retain(state: dc->current_state);
2084
2085 return result;
2086}
2087
2088static bool commit_minimal_transition_state_legacy(struct dc *dc,
2089 struct dc_state *transition_base_context);
2090
2091/**
2092 * dc_commit_streams - Commit current stream state
2093 *
2094 * @dc: DC object with the commit state to be configured in the hardware
2095 * @streams: Array with a list of stream state
2096 * @stream_count: Total of streams
2097 *
2098 * Function responsible for commit streams change to the hardware.
2099 *
2100 * Return:
2101 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2102 * code.
2103 */
2104enum dc_status dc_commit_streams(struct dc *dc,
2105 struct dc_stream_state *streams[],
2106 uint8_t stream_count)
2107{
2108 int i, j;
2109 struct dc_state *context;
2110 enum dc_status res = DC_OK;
2111 struct dc_validation_set set[MAX_STREAMS] = {0};
2112 struct pipe_ctx *pipe;
2113 bool handle_exit_odm2to1 = false;
2114
2115 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2116 return res;
2117
2118 if (!streams_changed(dc, streams, stream_count))
2119 return res;
2120
2121 dc_exit_ips_for_hw_access(dc);
2122
2123 DC_LOG_DC("%s: %d streams\n", __func__, stream_count);
2124
2125 for (i = 0; i < stream_count; i++) {
2126 struct dc_stream_state *stream = streams[i];
2127 struct dc_stream_status *status = dc_stream_get_status(dc_stream: stream);
2128
2129 dc_stream_log(dc, stream);
2130
2131 set[i].stream = stream;
2132
2133 if (status) {
2134 set[i].plane_count = status->plane_count;
2135 for (j = 0; j < status->plane_count; j++)
2136 set[i].plane_states[j] = status->plane_states[j];
2137 }
2138 }
2139
2140 /* ODM Combine 2:1 power optimization is only applied for single stream
2141 * scenario, it uses extra pipes than needed to reduce power consumption
2142 * We need to switch off this feature to make room for new streams.
2143 */
2144 if (stream_count > dc->current_state->stream_count &&
2145 dc->current_state->stream_count == 1) {
2146 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2147 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2148 if (pipe->next_odm_pipe)
2149 handle_exit_odm2to1 = true;
2150 }
2151 }
2152
2153 if (handle_exit_odm2to1)
2154 res = commit_minimal_transition_state_legacy(dc, transition_base_context: dc->current_state);
2155
2156 context = dc_state_create_current_copy(dc);
2157 if (!context)
2158 goto context_alloc_fail;
2159
2160 res = dc_validate_with_context(dc, set, set_count: stream_count, context, fast_validate: false);
2161 if (res != DC_OK) {
2162 BREAK_TO_DEBUGGER();
2163 goto fail;
2164 }
2165
2166 res = dc_commit_state_no_check(dc, context);
2167
2168 for (i = 0; i < stream_count; i++) {
2169 for (j = 0; j < context->stream_count; j++) {
2170 if (streams[i]->stream_id == context->streams[j]->stream_id)
2171 streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2172
2173 if (dc_is_embedded_signal(signal: streams[i]->signal)) {
2174 struct dc_stream_status *status = dc_state_get_stream_status(state: context, stream: streams[i]);
2175
2176 if (dc->hwss.is_abm_supported)
2177 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, streams[i]);
2178 else
2179 status->is_abm_supported = true;
2180 }
2181 }
2182 }
2183
2184fail:
2185 dc_state_release(state: context);
2186
2187context_alloc_fail:
2188
2189 DC_LOG_DC("%s Finished.\n", __func__);
2190
2191 return res;
2192}
2193
2194bool dc_acquire_release_mpc_3dlut(
2195 struct dc *dc, bool acquire,
2196 struct dc_stream_state *stream,
2197 struct dc_3dlut **lut,
2198 struct dc_transfer_func **shaper)
2199{
2200 int pipe_idx;
2201 bool ret = false;
2202 bool found_pipe_idx = false;
2203 const struct resource_pool *pool = dc->res_pool;
2204 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2205 int mpcc_id = 0;
2206
2207 if (pool && res_ctx) {
2208 if (acquire) {
2209 /*find pipe idx for the given stream*/
2210 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2211 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2212 found_pipe_idx = true;
2213 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2214 break;
2215 }
2216 }
2217 } else
2218 found_pipe_idx = true;/*for release pipe_idx is not required*/
2219
2220 if (found_pipe_idx) {
2221 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2222 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2223 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2224 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2225 }
2226 }
2227 return ret;
2228}
2229
2230static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2231{
2232 int i;
2233 struct pipe_ctx *pipe;
2234
2235 for (i = 0; i < MAX_PIPES; i++) {
2236 pipe = &context->res_ctx.pipe_ctx[i];
2237
2238 // Don't check flip pending on phantom pipes
2239 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_PHANTOM))
2240 continue;
2241
2242 /* Must set to false to start with, due to OR in update function */
2243 pipe->plane_state->status.is_flip_pending = false;
2244 dc->hwss.update_pending_status(pipe);
2245 if (pipe->plane_state->status.is_flip_pending)
2246 return true;
2247 }
2248 return false;
2249}
2250
2251/* Perform updates here which need to be deferred until next vupdate
2252 *
2253 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2254 * but forcing lut memory to shutdown state is immediate. This causes
2255 * single frame corruption as lut gets disabled mid-frame unless shutdown
2256 * is deferred until after entering bypass.
2257 */
2258static void process_deferred_updates(struct dc *dc)
2259{
2260 int i = 0;
2261
2262 if (dc->debug.enable_mem_low_power.bits.cm) {
2263 ASSERT(dc->dcn_ip->max_num_dpp);
2264 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2265 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2266 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2267 }
2268}
2269
2270void dc_post_update_surfaces_to_stream(struct dc *dc)
2271{
2272 int i;
2273 struct dc_state *context = dc->current_state;
2274
2275 if ((!dc->optimized_required) || get_seamless_boot_stream_count(ctx: context) > 0)
2276 return;
2277
2278 post_surface_trace(dc);
2279
2280 /*
2281 * Only relevant for DCN behavior where we can guarantee the optimization
2282 * is safe to apply - retain the legacy behavior for DCE.
2283 */
2284
2285 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2286 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2287 else {
2288 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2289
2290 if (is_flip_pending_in_pipes(dc, context))
2291 return;
2292
2293 for (i = 0; i < dc->res_pool->pipe_count; i++)
2294 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2295 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2296 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2297 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2298 }
2299
2300 process_deferred_updates(dc);
2301
2302 dc->hwss.optimize_bandwidth(dc, context);
2303
2304 if (dc->hwss.update_dsc_pg)
2305 dc->hwss.update_dsc_pg(dc, context, true);
2306 }
2307
2308 dc->optimized_required = false;
2309 dc->wm_optimized_required = false;
2310}
2311
2312bool dc_set_generic_gpio_for_stereo(bool enable,
2313 struct gpio_service *gpio_service)
2314{
2315 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2316 struct gpio_pin_info pin_info;
2317 struct gpio *generic;
2318 struct gpio_generic_mux_config *config = kzalloc(size: sizeof(struct gpio_generic_mux_config),
2319 GFP_KERNEL);
2320
2321 if (!config)
2322 return false;
2323 pin_info = dal_gpio_get_generic_pin_info(service: gpio_service, id: GPIO_ID_GENERIC, en: 0);
2324
2325 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2326 kfree(objp: config);
2327 return false;
2328 } else {
2329 generic = dal_gpio_service_create_generic_mux(
2330 service: gpio_service,
2331 offset: pin_info.offset,
2332 mask: pin_info.mask);
2333 }
2334
2335 if (!generic) {
2336 kfree(objp: config);
2337 return false;
2338 }
2339
2340 gpio_result = dal_gpio_open(gpio: generic, mode: GPIO_MODE_OUTPUT);
2341
2342 config->enable_output_from_mux = enable;
2343 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2344
2345 if (gpio_result == GPIO_RESULT_OK)
2346 gpio_result = dal_mux_setup_config(mux: generic, config);
2347
2348 if (gpio_result == GPIO_RESULT_OK) {
2349 dal_gpio_close(gpio: generic);
2350 dal_gpio_destroy_generic_mux(mux: &generic);
2351 kfree(objp: config);
2352 return true;
2353 } else {
2354 dal_gpio_close(gpio: generic);
2355 dal_gpio_destroy_generic_mux(mux: &generic);
2356 kfree(objp: config);
2357 return false;
2358 }
2359}
2360
2361static bool is_surface_in_context(
2362 const struct dc_state *context,
2363 const struct dc_plane_state *plane_state)
2364{
2365 int j;
2366
2367 for (j = 0; j < MAX_PIPES; j++) {
2368 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2369
2370 if (plane_state == pipe_ctx->plane_state) {
2371 return true;
2372 }
2373 }
2374
2375 return false;
2376}
2377
2378static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u)
2379{
2380 union surface_update_flags *update_flags = &u->surface->update_flags;
2381 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2382
2383 if (!u->plane_info)
2384 return UPDATE_TYPE_FAST;
2385
2386 if (u->plane_info->color_space != u->surface->color_space) {
2387 update_flags->bits.color_space_change = 1;
2388 elevate_update_type(original: &update_type, new: UPDATE_TYPE_MED);
2389 }
2390
2391 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2392 update_flags->bits.horizontal_mirror_change = 1;
2393 elevate_update_type(original: &update_type, new: UPDATE_TYPE_MED);
2394 }
2395
2396 if (u->plane_info->rotation != u->surface->rotation) {
2397 update_flags->bits.rotation_change = 1;
2398 elevate_update_type(original: &update_type, new: UPDATE_TYPE_FULL);
2399 }
2400
2401 if (u->plane_info->format != u->surface->format) {
2402 update_flags->bits.pixel_format_change = 1;
2403 elevate_update_type(original: &update_type, new: UPDATE_TYPE_FULL);
2404 }
2405
2406 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2407 update_flags->bits.stereo_format_change = 1;
2408 elevate_update_type(original: &update_type, new: UPDATE_TYPE_FULL);
2409 }
2410
2411 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2412 update_flags->bits.per_pixel_alpha_change = 1;
2413 elevate_update_type(original: &update_type, new: UPDATE_TYPE_MED);
2414 }
2415
2416 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2417 update_flags->bits.global_alpha_change = 1;
2418 elevate_update_type(original: &update_type, new: UPDATE_TYPE_MED);
2419 }
2420
2421 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2422 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2423 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2424 /* During DCC on/off, stutter period is calculated before
2425 * DCC has fully transitioned. This results in incorrect
2426 * stutter period calculation. Triggering a full update will
2427 * recalculate stutter period.
2428 */
2429 update_flags->bits.dcc_change = 1;
2430 elevate_update_type(original: &update_type, new: UPDATE_TYPE_FULL);
2431 }
2432
2433 if (resource_pixel_format_to_bpp(format: u->plane_info->format) !=
2434 resource_pixel_format_to_bpp(format: u->surface->format)) {
2435 /* different bytes per element will require full bandwidth
2436 * and DML calculation
2437 */
2438 update_flags->bits.bpp_change = 1;
2439 elevate_update_type(original: &update_type, new: UPDATE_TYPE_FULL);
2440 }
2441
2442 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2443 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2444 update_flags->bits.plane_size_change = 1;
2445 elevate_update_type(original: &update_type, new: UPDATE_TYPE_MED);
2446 }
2447
2448
2449 if (memcmp(p: &u->plane_info->tiling_info, q: &u->surface->tiling_info,
2450 size: sizeof(union dc_tiling_info)) != 0) {
2451 update_flags->bits.swizzle_change = 1;
2452 elevate_update_type(original: &update_type, new: UPDATE_TYPE_MED);
2453
2454 /* todo: below are HW dependent, we should add a hook to
2455 * DCE/N resource and validated there.
2456 */
2457 if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) {
2458 /* swizzled mode requires RQ to be setup properly,
2459 * thus need to run DML to calculate RQ settings
2460 */
2461 update_flags->bits.bandwidth_change = 1;
2462 elevate_update_type(original: &update_type, new: UPDATE_TYPE_FULL);
2463 }
2464 }
2465
2466 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2467 return update_type;
2468}
2469
2470static enum surface_update_type get_scaling_info_update_type(
2471 const struct dc *dc,
2472 const struct dc_surface_update *u)
2473{
2474 union surface_update_flags *update_flags = &u->surface->update_flags;
2475
2476 if (!u->scaling_info)
2477 return UPDATE_TYPE_FAST;
2478
2479 if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2480 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2481 || u->scaling_info->scaling_quality.integer_scaling !=
2482 u->surface->scaling_quality.integer_scaling
2483 ) {
2484 update_flags->bits.scaling_change = 1;
2485
2486 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2487 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2488 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2489 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2490 /* Making dst rect smaller requires a bandwidth change */
2491 update_flags->bits.bandwidth_change = 1;
2492 }
2493
2494 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2495 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2496
2497 update_flags->bits.scaling_change = 1;
2498 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2499 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2500 /* Making src rect bigger requires a bandwidth change */
2501 update_flags->bits.clock_change = 1;
2502 }
2503
2504 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2505 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2506 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2507 /* Changing clip size of a large surface may result in MPC slice count change */
2508 update_flags->bits.bandwidth_change = 1;
2509
2510 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width ||
2511 u->scaling_info->clip_rect.height != u->surface->clip_rect.height)
2512 update_flags->bits.clip_size_change = 1;
2513
2514 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2515 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2516 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2517 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2518 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2519 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2520 update_flags->bits.position_change = 1;
2521
2522 if (update_flags->bits.clock_change
2523 || update_flags->bits.bandwidth_change
2524 || update_flags->bits.scaling_change)
2525 return UPDATE_TYPE_FULL;
2526
2527 if (update_flags->bits.position_change ||
2528 update_flags->bits.clip_size_change)
2529 return UPDATE_TYPE_MED;
2530
2531 return UPDATE_TYPE_FAST;
2532}
2533
2534static enum surface_update_type det_surface_update(const struct dc *dc,
2535 const struct dc_surface_update *u)
2536{
2537 const struct dc_state *context = dc->current_state;
2538 enum surface_update_type type;
2539 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2540 union surface_update_flags *update_flags = &u->surface->update_flags;
2541
2542 if (!is_surface_in_context(context, plane_state: u->surface) || u->surface->force_full_update) {
2543 update_flags->raw = 0xFFFFFFFF;
2544 return UPDATE_TYPE_FULL;
2545 }
2546
2547 update_flags->raw = 0; // Reset all flags
2548
2549 type = get_plane_info_update_type(u);
2550 elevate_update_type(original: &overall_type, new: type);
2551
2552 type = get_scaling_info_update_type(dc, u);
2553 elevate_update_type(original: &overall_type, new: type);
2554
2555 if (u->flip_addr) {
2556 update_flags->bits.addr_update = 1;
2557 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2558 update_flags->bits.tmz_changed = 1;
2559 elevate_update_type(original: &overall_type, new: UPDATE_TYPE_FULL);
2560 }
2561 }
2562 if (u->in_transfer_func)
2563 update_flags->bits.in_transfer_func_change = 1;
2564
2565 if (u->input_csc_color_matrix)
2566 update_flags->bits.input_csc_change = 1;
2567
2568 if (u->coeff_reduction_factor)
2569 update_flags->bits.coeff_reduction_change = 1;
2570
2571 if (u->gamut_remap_matrix)
2572 update_flags->bits.gamut_remap_change = 1;
2573
2574 if (u->blend_tf)
2575 update_flags->bits.gamma_change = 1;
2576
2577 if (u->gamma) {
2578 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2579
2580 if (u->plane_info)
2581 format = u->plane_info->format;
2582 else if (u->surface)
2583 format = u->surface->format;
2584
2585 if (dce_use_lut(format))
2586 update_flags->bits.gamma_change = 1;
2587 }
2588
2589 if (u->lut3d_func || u->func_shaper)
2590 update_flags->bits.lut_3d = 1;
2591
2592 if (u->hdr_mult.value)
2593 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2594 update_flags->bits.hdr_mult = 1;
2595 elevate_update_type(original: &overall_type, new: UPDATE_TYPE_MED);
2596 }
2597
2598 if (update_flags->bits.in_transfer_func_change) {
2599 type = UPDATE_TYPE_MED;
2600 elevate_update_type(original: &overall_type, new: type);
2601 }
2602
2603 if (update_flags->bits.lut_3d) {
2604 type = UPDATE_TYPE_FULL;
2605 elevate_update_type(original: &overall_type, new: type);
2606 }
2607
2608 if (dc->debug.enable_legacy_fast_update &&
2609 (update_flags->bits.gamma_change ||
2610 update_flags->bits.gamut_remap_change ||
2611 update_flags->bits.input_csc_change ||
2612 update_flags->bits.coeff_reduction_change)) {
2613 type = UPDATE_TYPE_FULL;
2614 elevate_update_type(original: &overall_type, new: type);
2615 }
2616 return overall_type;
2617}
2618
2619static enum surface_update_type check_update_surfaces_for_stream(
2620 struct dc *dc,
2621 struct dc_surface_update *updates,
2622 int surface_count,
2623 struct dc_stream_update *stream_update,
2624 const struct dc_stream_status *stream_status)
2625{
2626 int i;
2627 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2628
2629 if (dc->idle_optimizations_allowed)
2630 overall_type = UPDATE_TYPE_FULL;
2631
2632 if (stream_status == NULL || stream_status->plane_count != surface_count)
2633 overall_type = UPDATE_TYPE_FULL;
2634
2635 if (stream_update && stream_update->pending_test_pattern) {
2636 overall_type = UPDATE_TYPE_FULL;
2637 }
2638
2639 /* some stream updates require passive update */
2640 if (stream_update) {
2641 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2642
2643 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2644 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2645 stream_update->integer_scaling_update)
2646 su_flags->bits.scaling = 1;
2647
2648 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2649 su_flags->bits.out_tf = 1;
2650
2651 if (stream_update->abm_level)
2652 su_flags->bits.abm_level = 1;
2653
2654 if (stream_update->dpms_off)
2655 su_flags->bits.dpms_off = 1;
2656
2657 if (stream_update->gamut_remap)
2658 su_flags->bits.gamut_remap = 1;
2659
2660 if (stream_update->wb_update)
2661 su_flags->bits.wb_update = 1;
2662
2663 if (stream_update->dsc_config)
2664 su_flags->bits.dsc_changed = 1;
2665
2666 if (stream_update->mst_bw_update)
2667 su_flags->bits.mst_bw = 1;
2668
2669 if (stream_update->stream && stream_update->stream->freesync_on_desktop &&
2670 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2671 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2672 su_flags->bits.fams_changed = 1;
2673
2674 if (su_flags->raw != 0)
2675 overall_type = UPDATE_TYPE_FULL;
2676
2677 if (stream_update->output_csc_transform || stream_update->output_color_space)
2678 su_flags->bits.out_csc = 1;
2679
2680 /* Output transfer function changes do not require bandwidth recalculation,
2681 * so don't trigger a full update
2682 */
2683 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2684 su_flags->bits.out_tf = 1;
2685 }
2686
2687 for (i = 0 ; i < surface_count; i++) {
2688 enum surface_update_type type =
2689 det_surface_update(dc, u: &updates[i]);
2690
2691 elevate_update_type(original: &overall_type, new: type);
2692 }
2693
2694 return overall_type;
2695}
2696
2697/*
2698 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2699 *
2700 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2701 */
2702enum surface_update_type dc_check_update_surfaces_for_stream(
2703 struct dc *dc,
2704 struct dc_surface_update *updates,
2705 int surface_count,
2706 struct dc_stream_update *stream_update,
2707 const struct dc_stream_status *stream_status)
2708{
2709 int i;
2710 enum surface_update_type type;
2711
2712 if (stream_update)
2713 stream_update->stream->update_flags.raw = 0;
2714 for (i = 0; i < surface_count; i++)
2715 updates[i].surface->update_flags.raw = 0;
2716
2717 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2718 if (type == UPDATE_TYPE_FULL) {
2719 if (stream_update) {
2720 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2721 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2722 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2723 }
2724 for (i = 0; i < surface_count; i++)
2725 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2726 }
2727
2728 if (type == UPDATE_TYPE_FAST) {
2729 // If there's an available clock comparator, we use that.
2730 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2731 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2732 dc->optimized_required = true;
2733 // Else we fallback to mem compare.
2734 } else if (memcmp(p: &dc->current_state->bw_ctx.bw.dcn.clk, q: &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2735 dc->optimized_required = true;
2736 }
2737
2738 dc->optimized_required |= dc->wm_optimized_required;
2739 }
2740
2741 return type;
2742}
2743
2744static struct dc_stream_status *stream_get_status(
2745 struct dc_state *ctx,
2746 struct dc_stream_state *stream)
2747{
2748 uint8_t i;
2749
2750 for (i = 0; i < ctx->stream_count; i++) {
2751 if (stream == ctx->streams[i]) {
2752 return &ctx->stream_status[i];
2753 }
2754 }
2755
2756 return NULL;
2757}
2758
2759static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2760
2761static void copy_surface_update_to_plane(
2762 struct dc_plane_state *surface,
2763 struct dc_surface_update *srf_update)
2764{
2765 if (srf_update->flip_addr) {
2766 surface->address = srf_update->flip_addr->address;
2767 surface->flip_immediate =
2768 srf_update->flip_addr->flip_immediate;
2769 surface->time.time_elapsed_in_us[surface->time.index] =
2770 srf_update->flip_addr->flip_timestamp_in_us -
2771 surface->time.prev_update_time_in_us;
2772 surface->time.prev_update_time_in_us =
2773 srf_update->flip_addr->flip_timestamp_in_us;
2774 surface->time.index++;
2775 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2776 surface->time.index = 0;
2777
2778 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2779 }
2780
2781 if (srf_update->scaling_info) {
2782 surface->scaling_quality =
2783 srf_update->scaling_info->scaling_quality;
2784 surface->dst_rect =
2785 srf_update->scaling_info->dst_rect;
2786 surface->src_rect =
2787 srf_update->scaling_info->src_rect;
2788 surface->clip_rect =
2789 srf_update->scaling_info->clip_rect;
2790 }
2791
2792 if (srf_update->plane_info) {
2793 surface->color_space =
2794 srf_update->plane_info->color_space;
2795 surface->format =
2796 srf_update->plane_info->format;
2797 surface->plane_size =
2798 srf_update->plane_info->plane_size;
2799 surface->rotation =
2800 srf_update->plane_info->rotation;
2801 surface->horizontal_mirror =
2802 srf_update->plane_info->horizontal_mirror;
2803 surface->stereo_format =
2804 srf_update->plane_info->stereo_format;
2805 surface->tiling_info =
2806 srf_update->plane_info->tiling_info;
2807 surface->visible =
2808 srf_update->plane_info->visible;
2809 surface->per_pixel_alpha =
2810 srf_update->plane_info->per_pixel_alpha;
2811 surface->global_alpha =
2812 srf_update->plane_info->global_alpha;
2813 surface->global_alpha_value =
2814 srf_update->plane_info->global_alpha_value;
2815 surface->dcc =
2816 srf_update->plane_info->dcc;
2817 surface->layer_index =
2818 srf_update->plane_info->layer_index;
2819 }
2820
2821 if (srf_update->gamma &&
2822 (surface->gamma_correction !=
2823 srf_update->gamma)) {
2824 memcpy(&surface->gamma_correction->entries,
2825 &srf_update->gamma->entries,
2826 sizeof(struct dc_gamma_entries));
2827 surface->gamma_correction->is_identity =
2828 srf_update->gamma->is_identity;
2829 surface->gamma_correction->num_entries =
2830 srf_update->gamma->num_entries;
2831 surface->gamma_correction->type =
2832 srf_update->gamma->type;
2833 }
2834
2835 if (srf_update->in_transfer_func &&
2836 (surface->in_transfer_func !=
2837 srf_update->in_transfer_func)) {
2838 surface->in_transfer_func->sdr_ref_white_level =
2839 srf_update->in_transfer_func->sdr_ref_white_level;
2840 surface->in_transfer_func->tf =
2841 srf_update->in_transfer_func->tf;
2842 surface->in_transfer_func->type =
2843 srf_update->in_transfer_func->type;
2844 memcpy(&surface->in_transfer_func->tf_pts,
2845 &srf_update->in_transfer_func->tf_pts,
2846 sizeof(struct dc_transfer_func_distributed_points));
2847 }
2848
2849 if (srf_update->func_shaper &&
2850 (surface->in_shaper_func !=
2851 srf_update->func_shaper))
2852 memcpy(surface->in_shaper_func, srf_update->func_shaper,
2853 sizeof(*surface->in_shaper_func));
2854
2855 if (srf_update->lut3d_func &&
2856 (surface->lut3d_func !=
2857 srf_update->lut3d_func))
2858 memcpy(surface->lut3d_func, srf_update->lut3d_func,
2859 sizeof(*surface->lut3d_func));
2860
2861 if (srf_update->hdr_mult.value)
2862 surface->hdr_mult =
2863 srf_update->hdr_mult;
2864
2865 if (srf_update->blend_tf &&
2866 (surface->blend_tf !=
2867 srf_update->blend_tf))
2868 memcpy(surface->blend_tf, srf_update->blend_tf,
2869 sizeof(*surface->blend_tf));
2870
2871 if (srf_update->input_csc_color_matrix)
2872 surface->input_csc_color_matrix =
2873 *srf_update->input_csc_color_matrix;
2874
2875 if (srf_update->coeff_reduction_factor)
2876 surface->coeff_reduction_factor =
2877 *srf_update->coeff_reduction_factor;
2878
2879 if (srf_update->gamut_remap_matrix)
2880 surface->gamut_remap_matrix =
2881 *srf_update->gamut_remap_matrix;
2882}
2883
2884static void copy_stream_update_to_stream(struct dc *dc,
2885 struct dc_state *context,
2886 struct dc_stream_state *stream,
2887 struct dc_stream_update *update)
2888{
2889 struct dc_context *dc_ctx = dc->ctx;
2890
2891 if (update == NULL || stream == NULL)
2892 return;
2893
2894 if (update->src.height && update->src.width)
2895 stream->src = update->src;
2896
2897 if (update->dst.height && update->dst.width)
2898 stream->dst = update->dst;
2899
2900 if (update->out_transfer_func &&
2901 stream->out_transfer_func != update->out_transfer_func) {
2902 stream->out_transfer_func->sdr_ref_white_level =
2903 update->out_transfer_func->sdr_ref_white_level;
2904 stream->out_transfer_func->tf = update->out_transfer_func->tf;
2905 stream->out_transfer_func->type =
2906 update->out_transfer_func->type;
2907 memcpy(&stream->out_transfer_func->tf_pts,
2908 &update->out_transfer_func->tf_pts,
2909 sizeof(struct dc_transfer_func_distributed_points));
2910 }
2911
2912 if (update->hdr_static_metadata)
2913 stream->hdr_static_metadata = *update->hdr_static_metadata;
2914
2915 if (update->abm_level)
2916 stream->abm_level = *update->abm_level;
2917
2918 if (update->periodic_interrupt)
2919 stream->periodic_interrupt = *update->periodic_interrupt;
2920
2921 if (update->gamut_remap)
2922 stream->gamut_remap_matrix = *update->gamut_remap;
2923
2924 /* Note: this being updated after mode set is currently not a use case
2925 * however if it arises OCSC would need to be reprogrammed at the
2926 * minimum
2927 */
2928 if (update->output_color_space)
2929 stream->output_color_space = *update->output_color_space;
2930
2931 if (update->output_csc_transform)
2932 stream->csc_color_matrix = *update->output_csc_transform;
2933
2934 if (update->vrr_infopacket)
2935 stream->vrr_infopacket = *update->vrr_infopacket;
2936
2937 if (update->allow_freesync)
2938 stream->allow_freesync = *update->allow_freesync;
2939
2940 if (update->vrr_active_variable)
2941 stream->vrr_active_variable = *update->vrr_active_variable;
2942
2943 if (update->vrr_active_fixed)
2944 stream->vrr_active_fixed = *update->vrr_active_fixed;
2945
2946 if (update->crtc_timing_adjust)
2947 stream->adjust = *update->crtc_timing_adjust;
2948
2949 if (update->dpms_off)
2950 stream->dpms_off = *update->dpms_off;
2951
2952 if (update->hfvsif_infopacket)
2953 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2954
2955 if (update->vtem_infopacket)
2956 stream->vtem_infopacket = *update->vtem_infopacket;
2957
2958 if (update->vsc_infopacket)
2959 stream->vsc_infopacket = *update->vsc_infopacket;
2960
2961 if (update->vsp_infopacket)
2962 stream->vsp_infopacket = *update->vsp_infopacket;
2963
2964 if (update->adaptive_sync_infopacket)
2965 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2966
2967 if (update->dither_option)
2968 stream->dither_option = *update->dither_option;
2969
2970 if (update->pending_test_pattern)
2971 stream->test_pattern = *update->pending_test_pattern;
2972 /* update current stream with writeback info */
2973 if (update->wb_update) {
2974 int i;
2975
2976 stream->num_wb_info = update->wb_update->num_wb_info;
2977 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
2978 for (i = 0; i < stream->num_wb_info; i++)
2979 stream->writeback_info[i] =
2980 update->wb_update->writeback_info[i];
2981 }
2982 if (update->dsc_config) {
2983 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
2984 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
2985 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
2986 update->dsc_config->num_slices_v != 0);
2987
2988 /* Use temporarry context for validating new DSC config */
2989 struct dc_state *dsc_validate_context = dc_state_create_copy(src_state: dc->current_state);
2990
2991 if (dsc_validate_context) {
2992 stream->timing.dsc_cfg = *update->dsc_config;
2993 stream->timing.flags.DSC = enable_dsc;
2994 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
2995 stream->timing.dsc_cfg = old_dsc_cfg;
2996 stream->timing.flags.DSC = old_dsc_enabled;
2997 update->dsc_config = NULL;
2998 }
2999
3000 dc_state_release(state: dsc_validate_context);
3001 } else {
3002 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3003 update->dsc_config = NULL;
3004 }
3005 }
3006}
3007
3008static void backup_planes_and_stream_state(
3009 struct dc_scratch_space *scratch,
3010 struct dc_stream_state *stream)
3011{
3012 int i;
3013 struct dc_stream_status *status = dc_stream_get_status(dc_stream: stream);
3014
3015 if (!status)
3016 return;
3017
3018 for (i = 0; i < status->plane_count; i++) {
3019 scratch->plane_states[i] = *status->plane_states[i];
3020 scratch->gamma_correction[i] = *status->plane_states[i]->gamma_correction;
3021 scratch->in_transfer_func[i] = *status->plane_states[i]->in_transfer_func;
3022 scratch->lut3d_func[i] = *status->plane_states[i]->lut3d_func;
3023 scratch->in_shaper_func[i] = *status->plane_states[i]->in_shaper_func;
3024 scratch->blend_tf[i] = *status->plane_states[i]->blend_tf;
3025 }
3026 scratch->stream_state = *stream;
3027 if (stream->out_transfer_func)
3028 scratch->out_transfer_func = *stream->out_transfer_func;
3029}
3030
3031static void restore_planes_and_stream_state(
3032 struct dc_scratch_space *scratch,
3033 struct dc_stream_state *stream)
3034{
3035 int i;
3036 struct dc_stream_status *status = dc_stream_get_status(dc_stream: stream);
3037
3038 if (!status)
3039 return;
3040
3041 for (i = 0; i < status->plane_count; i++) {
3042 *status->plane_states[i] = scratch->plane_states[i];
3043 *status->plane_states[i]->gamma_correction = scratch->gamma_correction[i];
3044 *status->plane_states[i]->in_transfer_func = scratch->in_transfer_func[i];
3045 *status->plane_states[i]->lut3d_func = scratch->lut3d_func[i];
3046 *status->plane_states[i]->in_shaper_func = scratch->in_shaper_func[i];
3047 *status->plane_states[i]->blend_tf = scratch->blend_tf[i];
3048 }
3049 *stream = scratch->stream_state;
3050 if (stream->out_transfer_func)
3051 *stream->out_transfer_func = scratch->out_transfer_func;
3052}
3053
3054static bool update_planes_and_stream_state(struct dc *dc,
3055 struct dc_surface_update *srf_updates, int surface_count,
3056 struct dc_stream_state *stream,
3057 struct dc_stream_update *stream_update,
3058 enum surface_update_type *new_update_type,
3059 struct dc_state **new_context)
3060{
3061 struct dc_state *context;
3062 int i, j;
3063 enum surface_update_type update_type;
3064 const struct dc_stream_status *stream_status;
3065 struct dc_context *dc_ctx = dc->ctx;
3066
3067 stream_status = dc_stream_get_status(dc_stream: stream);
3068
3069 if (!stream_status) {
3070 if (surface_count) /* Only an error condition if surf_count non-zero*/
3071 ASSERT(false);
3072
3073 return false; /* Cannot commit surface to stream that is not committed */
3074 }
3075
3076 context = dc->current_state;
3077 backup_planes_and_stream_state(scratch: &dc->current_state->scratch, stream);
3078 update_type = dc_check_update_surfaces_for_stream(
3079 dc, updates: srf_updates, surface_count, stream_update, stream_status);
3080
3081 /* update current stream with the new updates */
3082 copy_stream_update_to_stream(dc, context, stream, update: stream_update);
3083
3084 /* do not perform surface update if surface has invalid dimensions
3085 * (all zero) and no scaling_info is provided
3086 */
3087 if (surface_count > 0) {
3088 for (i = 0; i < surface_count; i++) {
3089 if ((srf_updates[i].surface->src_rect.width == 0 ||
3090 srf_updates[i].surface->src_rect.height == 0 ||
3091 srf_updates[i].surface->dst_rect.width == 0 ||
3092 srf_updates[i].surface->dst_rect.height == 0) &&
3093 (!srf_updates[i].scaling_info ||
3094 srf_updates[i].scaling_info->src_rect.width == 0 ||
3095 srf_updates[i].scaling_info->src_rect.height == 0 ||
3096 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3097 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3098 DC_ERROR("Invalid src/dst rects in surface update!\n");
3099 return false;
3100 }
3101 }
3102 }
3103
3104 if (update_type >= update_surface_trace_level)
3105 update_surface_trace(dc, updates: srf_updates, surface_count);
3106
3107 for (i = 0; i < surface_count; i++)
3108 copy_surface_update_to_plane(surface: srf_updates[i].surface, srf_update: &srf_updates[i]);
3109
3110 if (update_type >= UPDATE_TYPE_FULL) {
3111 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3112
3113 for (i = 0; i < surface_count; i++)
3114 new_planes[i] = srf_updates[i].surface;
3115
3116 /* initialize scratch memory for building context */
3117 context = dc_state_create_copy(src_state: dc->current_state);
3118 if (context == NULL) {
3119 DC_ERROR("Failed to allocate new validate context!\n");
3120 return false;
3121 }
3122
3123 /* For each full update, remove all existing phantom pipes first.
3124 * Ensures that we have enough pipes for newly added MPO planes
3125 */
3126 dc_state_remove_phantom_streams_and_planes(dc, state: context);
3127 dc_state_release_phantom_streams_and_planes(dc, state: context);
3128
3129 /*remove old surfaces from context */
3130 if (!dc_state_rem_all_planes_for_stream(dc, stream, state: context)) {
3131
3132 BREAK_TO_DEBUGGER();
3133 goto fail;
3134 }
3135
3136 /* add surface to context */
3137 if (!dc_state_add_all_planes_for_stream(dc, stream, plane_states: new_planes, plane_count: surface_count, state: context)) {
3138
3139 BREAK_TO_DEBUGGER();
3140 goto fail;
3141 }
3142 }
3143
3144 /* save update parameters into surface */
3145 for (i = 0; i < surface_count; i++) {
3146 struct dc_plane_state *surface = srf_updates[i].surface;
3147
3148 if (update_type >= UPDATE_TYPE_MED) {
3149 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3150 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3151
3152 if (pipe_ctx->plane_state != surface)
3153 continue;
3154
3155 resource_build_scaling_params(pipe_ctx);
3156 }
3157 }
3158 }
3159
3160 if (update_type == UPDATE_TYPE_FULL) {
3161 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3162 BREAK_TO_DEBUGGER();
3163 goto fail;
3164 }
3165
3166 for (i = 0; i < context->stream_count; i++) {
3167 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(res_ctx: &context->res_ctx,
3168 stream: context->streams[i]);
3169
3170 if (otg_master && otg_master->stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
3171 resource_build_test_pattern_params(res_ctx: &context->res_ctx, pipe_ctx: otg_master);
3172 }
3173 }
3174
3175 *new_context = context;
3176 *new_update_type = update_type;
3177 backup_planes_and_stream_state(scratch: &context->scratch, stream);
3178
3179 return true;
3180
3181fail:
3182 dc_state_release(state: context);
3183
3184 return false;
3185
3186}
3187
3188static void commit_planes_do_stream_update(struct dc *dc,
3189 struct dc_stream_state *stream,
3190 struct dc_stream_update *stream_update,
3191 enum surface_update_type update_type,
3192 struct dc_state *context)
3193{
3194 int j;
3195
3196 // Stream updates
3197 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3198 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3199
3200 if (resource_is_pipe_type(pipe_ctx, type: OTG_MASTER) && pipe_ctx->stream == stream) {
3201
3202 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3203 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3204
3205 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3206 stream_update->vrr_infopacket ||
3207 stream_update->vsc_infopacket ||
3208 stream_update->vsp_infopacket ||
3209 stream_update->hfvsif_infopacket ||
3210 stream_update->adaptive_sync_infopacket ||
3211 stream_update->vtem_infopacket) {
3212 resource_build_info_frame(pipe_ctx);
3213 dc->hwss.update_info_frame(pipe_ctx);
3214
3215 if (dc_is_dp_signal(signal: pipe_ctx->stream->signal))
3216 dc->link_srv->dp_trace_source_sequence(
3217 pipe_ctx->stream->link,
3218 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3219 }
3220
3221 if (stream_update->hdr_static_metadata &&
3222 stream->use_dynamic_meta &&
3223 dc->hwss.set_dmdata_attributes &&
3224 pipe_ctx->stream->dmdata_address.quad_part != 0)
3225 dc->hwss.set_dmdata_attributes(pipe_ctx);
3226
3227 if (stream_update->gamut_remap)
3228 dc_stream_set_gamut_remap(dc, stream);
3229
3230 if (stream_update->output_csc_transform)
3231 dc_stream_program_csc_matrix(dc, stream);
3232
3233 if (stream_update->dither_option) {
3234 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3235 resource_build_bit_depth_reduction_params(stream: pipe_ctx->stream,
3236 fmt_bit_depth: &pipe_ctx->stream->bit_depth_params);
3237 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3238 &stream->bit_depth_params,
3239 &stream->clamping);
3240 while (odm_pipe) {
3241 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3242 &stream->bit_depth_params,
3243 &stream->clamping);
3244 odm_pipe = odm_pipe->next_odm_pipe;
3245 }
3246 }
3247
3248
3249 /* Full fe update*/
3250 if (update_type == UPDATE_TYPE_FAST)
3251 continue;
3252
3253 if (stream_update->dsc_config)
3254 dc->link_srv->update_dsc_config(pipe_ctx);
3255
3256 if (stream_update->mst_bw_update) {
3257 if (stream_update->mst_bw_update->is_increase)
3258 dc->link_srv->increase_mst_payload(pipe_ctx,
3259 stream_update->mst_bw_update->mst_stream_bw);
3260 else
3261 dc->link_srv->reduce_mst_payload(pipe_ctx,
3262 stream_update->mst_bw_update->mst_stream_bw);
3263 }
3264
3265 if (stream_update->pending_test_pattern) {
3266 dc_link_dp_set_test_pattern(link: stream->link,
3267 test_pattern: stream->test_pattern.type,
3268 test_pattern_color_space: stream->test_pattern.color_space,
3269 p_link_settings: stream->test_pattern.p_link_settings,
3270 p_custom_pattern: stream->test_pattern.p_custom_pattern,
3271 cust_pattern_size: stream->test_pattern.cust_pattern_size);
3272 }
3273
3274 if (stream_update->dpms_off) {
3275 if (*stream_update->dpms_off) {
3276 dc->link_srv->set_dpms_off(pipe_ctx);
3277 /* for dpms, keep acquired resources*/
3278 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3279 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3280
3281 dc->optimized_required = true;
3282
3283 } else {
3284 if (get_seamless_boot_stream_count(ctx: context) == 0)
3285 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3286 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3287 }
3288 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3289 && !stream->dpms_off && dc_is_dp_signal(signal: pipe_ctx->stream->signal)) {
3290 /*
3291 * Workaround for firmware issue in some receivers where they don't pick up
3292 * correct output color space unless DP link is disabled/re-enabled
3293 */
3294 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3295 }
3296
3297 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3298 bool should_program_abm = true;
3299
3300 // if otg funcs defined check if blanked before programming
3301 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3302 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3303 should_program_abm = false;
3304
3305 if (should_program_abm) {
3306 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3307 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3308 } else {
3309 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3310 pipe_ctx->stream_res.abm, stream->abm_level);
3311 }
3312 }
3313 }
3314 }
3315 }
3316}
3317
3318static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3319{
3320 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3321 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3322 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3323 return true;
3324
3325 if (stream->link->replay_settings.config.replay_supported)
3326 return true;
3327
3328 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3329 return true;
3330
3331 return false;
3332}
3333
3334void dc_dmub_update_dirty_rect(struct dc *dc,
3335 int surface_count,
3336 struct dc_stream_state *stream,
3337 struct dc_surface_update *srf_updates,
3338 struct dc_state *context)
3339{
3340 union dmub_rb_cmd cmd;
3341 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3342 unsigned int i, j;
3343 unsigned int panel_inst = 0;
3344
3345 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3346 return;
3347
3348 if (!dc_get_edp_link_panel_inst(dc, link: stream->link, inst_out: &panel_inst))
3349 return;
3350
3351 memset(&cmd, 0x0, sizeof(cmd));
3352 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3353 cmd.update_dirty_rect.header.sub_type = 0;
3354 cmd.update_dirty_rect.header.payload_bytes =
3355 sizeof(cmd.update_dirty_rect) -
3356 sizeof(cmd.update_dirty_rect.header);
3357 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3358 for (i = 0; i < surface_count; i++) {
3359 struct dc_plane_state *plane_state = srf_updates[i].surface;
3360 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3361
3362 if (!srf_updates[i].surface || !flip_addr)
3363 continue;
3364 /* Do not send in immediate flip mode */
3365 if (srf_updates[i].surface->flip_immediate)
3366 continue;
3367
3368 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3369 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3370 sizeof(flip_addr->dirty_rects));
3371 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3372 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3373
3374 if (pipe_ctx->stream != stream)
3375 continue;
3376 if (pipe_ctx->plane_state != plane_state)
3377 continue;
3378
3379 update_dirty_rect->panel_inst = panel_inst;
3380 update_dirty_rect->pipe_idx = j;
3381 dc_wake_and_execute_dmub_cmd(ctx: dc->ctx, cmd: &cmd, wait_type: DM_DMUB_WAIT_TYPE_NO_WAIT);
3382 }
3383 }
3384}
3385
3386static void build_dmub_update_dirty_rect(
3387 struct dc *dc,
3388 int surface_count,
3389 struct dc_stream_state *stream,
3390 struct dc_surface_update *srf_updates,
3391 struct dc_state *context,
3392 struct dc_dmub_cmd dc_dmub_cmd[],
3393 unsigned int *dmub_cmd_count)
3394{
3395 union dmub_rb_cmd cmd;
3396 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3397 unsigned int i, j;
3398 unsigned int panel_inst = 0;
3399
3400 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3401 return;
3402
3403 if (!dc_get_edp_link_panel_inst(dc, link: stream->link, inst_out: &panel_inst))
3404 return;
3405
3406 memset(&cmd, 0x0, sizeof(cmd));
3407 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3408 cmd.update_dirty_rect.header.sub_type = 0;
3409 cmd.update_dirty_rect.header.payload_bytes =
3410 sizeof(cmd.update_dirty_rect) -
3411 sizeof(cmd.update_dirty_rect.header);
3412 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3413 for (i = 0; i < surface_count; i++) {
3414 struct dc_plane_state *plane_state = srf_updates[i].surface;
3415 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3416
3417 if (!srf_updates[i].surface || !flip_addr)
3418 continue;
3419 /* Do not send in immediate flip mode */
3420 if (srf_updates[i].surface->flip_immediate)
3421 continue;
3422 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3423 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3424 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3425 sizeof(flip_addr->dirty_rects));
3426 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3427 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3428
3429 if (pipe_ctx->stream != stream)
3430 continue;
3431 if (pipe_ctx->plane_state != plane_state)
3432 continue;
3433 update_dirty_rect->panel_inst = panel_inst;
3434 update_dirty_rect->pipe_idx = j;
3435 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3436 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3437 (*dmub_cmd_count)++;
3438 }
3439 }
3440}
3441
3442
3443/**
3444 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3445 *
3446 * @dc: Current DC state
3447 * @srf_updates: Array of surface updates
3448 * @surface_count: Number of surfaces that have an updated
3449 * @stream: Corresponding stream to be updated in the current flip
3450 * @context: New DC state to be programmed
3451 *
3452 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3453 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3454 *
3455 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3456 * to build an array of commands and have them sent while the OTG lock is acquired.
3457 *
3458 * Return: void
3459 */
3460static void build_dmub_cmd_list(struct dc *dc,
3461 struct dc_surface_update *srf_updates,
3462 int surface_count,
3463 struct dc_stream_state *stream,
3464 struct dc_state *context,
3465 struct dc_dmub_cmd dc_dmub_cmd[],
3466 unsigned int *dmub_cmd_count)
3467{
3468 // Initialize cmd count to 0
3469 *dmub_cmd_count = 0;
3470 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3471}
3472
3473static void commit_planes_for_stream_fast(struct dc *dc,
3474 struct dc_surface_update *srf_updates,
3475 int surface_count,
3476 struct dc_stream_state *stream,
3477 struct dc_stream_update *stream_update,
3478 enum surface_update_type update_type,
3479 struct dc_state *context)
3480{
3481 int i, j;
3482 struct pipe_ctx *top_pipe_to_program = NULL;
3483 struct dc_stream_status *stream_status = NULL;
3484 dc_exit_ips_for_hw_access(dc);
3485
3486 dc_z10_restore(dc);
3487
3488 top_pipe_to_program = resource_get_otg_master_for_stream(
3489 res_ctx: &context->res_ctx,
3490 stream);
3491
3492 if (!top_pipe_to_program)
3493 return;
3494
3495 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3496 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3497
3498 if (pipe->stream && pipe->plane_state) {
3499 set_p_state_switch_method(dc, context, pipe_ctx: pipe);
3500
3501 if (dc->debug.visual_confirm)
3502 dc_update_visual_confirm_color(dc, context, pipe_ctx: pipe);
3503 }
3504 }
3505
3506 for (i = 0; i < surface_count; i++) {
3507 struct dc_plane_state *plane_state = srf_updates[i].surface;
3508 /*set logical flag for lock/unlock use*/
3509 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3510 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3511
3512 if (!pipe_ctx->plane_state)
3513 continue;
3514 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3515 continue;
3516 pipe_ctx->plane_state->triplebuffer_flips = false;
3517 if (update_type == UPDATE_TYPE_FAST &&
3518 dc->hwss.program_triplebuffer &&
3519 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3520 /*triple buffer for VUpdate only*/
3521 pipe_ctx->plane_state->triplebuffer_flips = true;
3522 }
3523 }
3524 }
3525
3526 stream_status = dc_state_get_stream_status(state: context, stream);
3527
3528 build_dmub_cmd_list(dc,
3529 srf_updates,
3530 surface_count,
3531 stream,
3532 context,
3533 dc_dmub_cmd: context->dc_dmub_cmd,
3534 dmub_cmd_count: &(context->dmub_cmd_count));
3535 hwss_build_fast_sequence(dc,
3536 dc_dmub_cmd: context->dc_dmub_cmd,
3537 dmub_cmd_count: context->dmub_cmd_count,
3538 block_sequence: context->block_sequence,
3539 num_steps: &(context->block_sequence_steps),
3540 pipe_ctx: top_pipe_to_program,
3541 stream_status);
3542 hwss_execute_sequence(dc,
3543 block_sequence: context->block_sequence,
3544 num_steps: context->block_sequence_steps);
3545 /* Clear update flags so next flip doesn't have redundant programming
3546 * (if there's no stream update, the update flags are not cleared).
3547 * Surface updates are cleared unconditionally at the beginning of each flip,
3548 * so no need to clear here.
3549 */
3550 if (top_pipe_to_program->stream)
3551 top_pipe_to_program->stream->update_flags.raw = 0;
3552}
3553
3554static void wait_for_outstanding_hw_updates(struct dc *dc, struct dc_state *dc_context)
3555{
3556/*
3557 * This function calls HWSS to wait for any potentially double buffered
3558 * operations to complete. It should be invoked as a pre-amble prior
3559 * to full update programming before asserting any HW locks.
3560 */
3561 int pipe_idx;
3562 int opp_inst;
3563 int opp_count = dc->res_pool->res_cap->num_opp;
3564 struct hubp *hubp;
3565 int mpcc_inst;
3566 const struct pipe_ctx *pipe_ctx;
3567
3568 for (pipe_idx = 0; pipe_idx < dc->res_pool->pipe_count; pipe_idx++) {
3569 pipe_ctx = &dc_context->res_ctx.pipe_ctx[pipe_idx];
3570
3571 if (!pipe_ctx->stream)
3572 continue;
3573
3574 if (pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear)
3575 pipe_ctx->stream_res.tg->funcs->wait_drr_doublebuffer_pending_clear(pipe_ctx->stream_res.tg);
3576
3577 hubp = pipe_ctx->plane_res.hubp;
3578 if (!hubp)
3579 continue;
3580
3581 mpcc_inst = hubp->inst;
3582 // MPCC inst is equal to pipe index in practice
3583 for (opp_inst = 0; opp_inst < opp_count; opp_inst++) {
3584 if ((dc->res_pool->opps[opp_inst] != NULL) &&
3585 (dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst])) {
3586 dc->res_pool->mpc->funcs->wait_for_idle(dc->res_pool->mpc, mpcc_inst);
3587 dc->res_pool->opps[opp_inst]->mpcc_disconnect_pending[mpcc_inst] = false;
3588 break;
3589 }
3590 }
3591 }
3592 wait_for_odm_update_pending_complete(dc, context: dc_context);
3593}
3594
3595static void commit_planes_for_stream(struct dc *dc,
3596 struct dc_surface_update *srf_updates,
3597 int surface_count,
3598 struct dc_stream_state *stream,
3599 struct dc_stream_update *stream_update,
3600 enum surface_update_type update_type,
3601 struct dc_state *context)
3602{
3603 int i, j;
3604 struct pipe_ctx *top_pipe_to_program = NULL;
3605 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3606 bool subvp_prev_use = false;
3607 bool subvp_curr_use = false;
3608 uint8_t current_stream_mask = 0;
3609
3610 // Once we apply the new subvp context to hardware it won't be in the
3611 // dc->current_state anymore, so we have to cache it before we apply
3612 // the new SubVP context
3613 subvp_prev_use = false;
3614 dc_exit_ips_for_hw_access(dc);
3615
3616 dc_z10_restore(dc);
3617 if (update_type == UPDATE_TYPE_FULL)
3618 wait_for_outstanding_hw_updates(dc, dc_context: context);
3619
3620 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3621 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3622
3623 if (pipe->stream && pipe->plane_state) {
3624 set_p_state_switch_method(dc, context, pipe_ctx: pipe);
3625
3626 if (dc->debug.visual_confirm)
3627 dc_update_visual_confirm_color(dc, context, pipe_ctx: pipe);
3628 }
3629 }
3630
3631 if (update_type == UPDATE_TYPE_FULL) {
3632 dc_allow_idle_optimizations(dc, allow: false);
3633
3634 if (get_seamless_boot_stream_count(ctx: context) == 0)
3635 dc->hwss.prepare_bandwidth(dc, context);
3636
3637 if (dc->hwss.update_dsc_pg)
3638 dc->hwss.update_dsc_pg(dc, context, false);
3639
3640 context_clock_trace(dc, context);
3641 }
3642
3643 top_pipe_to_program = resource_get_otg_master_for_stream(
3644 res_ctx: &context->res_ctx,
3645 stream);
3646 ASSERT(top_pipe_to_program != NULL);
3647 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3648 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3649
3650 // Check old context for SubVP
3651 subvp_prev_use |= (dc_state_get_pipe_subvp_type(state: dc->current_state, pipe_ctx: old_pipe) == SUBVP_PHANTOM);
3652 if (subvp_prev_use)
3653 break;
3654 }
3655
3656 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3657 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3658
3659 if (dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_PHANTOM) {
3660 subvp_curr_use = true;
3661 break;
3662 }
3663 }
3664
3665 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3666 struct pipe_ctx *mpcc_pipe;
3667 struct pipe_ctx *odm_pipe;
3668
3669 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3670 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3671 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3672 }
3673
3674 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3675 if (top_pipe_to_program &&
3676 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3677 if (should_use_dmub_lock(link: stream->link)) {
3678 union dmub_hw_lock_flags hw_locks = { 0 };
3679 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3680
3681 hw_locks.bits.lock_dig = 1;
3682 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3683
3684 dmub_hw_lock_mgr_cmd(dmub_srv: dc->ctx->dmub_srv,
3685 lock: true,
3686 hw_locks: &hw_locks,
3687 inst_flags: &inst_flags);
3688 } else
3689 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3690 top_pipe_to_program->stream_res.tg);
3691 }
3692
3693 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3694 if (dc->hwss.subvp_pipe_control_lock)
3695 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3696 dc->hwss.interdependent_update_lock(dc, context, true);
3697
3698 } else {
3699 if (dc->hwss.subvp_pipe_control_lock)
3700 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3701 /* Lock the top pipe while updating plane addrs, since freesync requires
3702 * plane addr update event triggers to be synchronized.
3703 * top_pipe_to_program is expected to never be NULL
3704 */
3705 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3706 }
3707
3708 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3709
3710 // Stream updates
3711 if (stream_update)
3712 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3713
3714 if (surface_count == 0) {
3715 /*
3716 * In case of turning off screen, no need to program front end a second time.
3717 * just return after program blank.
3718 */
3719 if (dc->hwss.apply_ctx_for_surface)
3720 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3721 if (dc->hwss.program_front_end_for_ctx)
3722 dc->hwss.program_front_end_for_ctx(dc, context);
3723
3724 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3725 dc->hwss.interdependent_update_lock(dc, context, false);
3726 } else {
3727 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3728 }
3729 dc->hwss.post_unlock_program_front_end(dc, context);
3730
3731 if (update_type != UPDATE_TYPE_FAST)
3732 if (dc->hwss.commit_subvp_config)
3733 dc->hwss.commit_subvp_config(dc, context);
3734
3735 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3736 * move the SubVP lock to after the phantom pipes have been setup
3737 */
3738 if (dc->hwss.subvp_pipe_control_lock)
3739 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3740 NULL, subvp_prev_use);
3741 return;
3742 }
3743
3744 if (update_type != UPDATE_TYPE_FAST) {
3745 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3746 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3747
3748 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3749 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3750 pipe_ctx->stream && pipe_ctx->plane_state) {
3751 /* Only update visual confirm for SUBVP and Mclk switching here.
3752 * The bar appears on all pipes, so we need to update the bar on all displays,
3753 * so the information doesn't get stale.
3754 */
3755 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3756 pipe_ctx->plane_res.hubp->inst);
3757 }
3758 }
3759 }
3760
3761 for (i = 0; i < surface_count; i++) {
3762 struct dc_plane_state *plane_state = srf_updates[i].surface;
3763 /*set logical flag for lock/unlock use*/
3764 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3765 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3766 if (!pipe_ctx->plane_state)
3767 continue;
3768 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3769 continue;
3770 pipe_ctx->plane_state->triplebuffer_flips = false;
3771 if (update_type == UPDATE_TYPE_FAST &&
3772 dc->hwss.program_triplebuffer != NULL &&
3773 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3774 /*triple buffer for VUpdate only*/
3775 pipe_ctx->plane_state->triplebuffer_flips = true;
3776 }
3777 }
3778 if (update_type == UPDATE_TYPE_FULL) {
3779 /* force vsync flip when reconfiguring pipes to prevent underflow */
3780 plane_state->flip_immediate = false;
3781 }
3782 }
3783
3784 // Update Type FULL, Surface updates
3785 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3786 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3787
3788 if (!pipe_ctx->top_pipe &&
3789 !pipe_ctx->prev_odm_pipe &&
3790 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3791 struct dc_stream_status *stream_status = NULL;
3792
3793 if (!pipe_ctx->plane_state)
3794 continue;
3795
3796 /* Full fe update*/
3797 if (update_type == UPDATE_TYPE_FAST)
3798 continue;
3799
3800 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3801
3802 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3803 /*turn off triple buffer for full update*/
3804 dc->hwss.program_triplebuffer(
3805 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3806 }
3807 stream_status =
3808 stream_get_status(ctx: context, stream: pipe_ctx->stream);
3809
3810 if (dc->hwss.apply_ctx_for_surface)
3811 dc->hwss.apply_ctx_for_surface(
3812 dc, pipe_ctx->stream, stream_status->plane_count, context);
3813 }
3814 }
3815 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3816 dc->hwss.program_front_end_for_ctx(dc, context);
3817 if (dc->debug.validate_dml_output) {
3818 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3819 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3820 if (cur_pipe->stream == NULL)
3821 continue;
3822
3823 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3824 cur_pipe->plane_res.hubp, dc->ctx,
3825 &context->res_ctx.pipe_ctx[i].rq_regs,
3826 &context->res_ctx.pipe_ctx[i].dlg_regs,
3827 &context->res_ctx.pipe_ctx[i].ttu_regs);
3828 }
3829 }
3830 }
3831
3832 // Update Type FAST, Surface updates
3833 if (update_type == UPDATE_TYPE_FAST) {
3834 if (dc->hwss.set_flip_control_gsl)
3835 for (i = 0; i < surface_count; i++) {
3836 struct dc_plane_state *plane_state = srf_updates[i].surface;
3837
3838 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3839 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3840
3841 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3842 continue;
3843
3844 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3845 continue;
3846
3847 // GSL has to be used for flip immediate
3848 dc->hwss.set_flip_control_gsl(pipe_ctx,
3849 pipe_ctx->plane_state->flip_immediate);
3850 }
3851 }
3852
3853 /* Perform requested Updates */
3854 for (i = 0; i < surface_count; i++) {
3855 struct dc_plane_state *plane_state = srf_updates[i].surface;
3856
3857 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3858 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3859
3860 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3861 continue;
3862
3863 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3864 continue;
3865
3866 /*program triple buffer after lock based on flip type*/
3867 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3868 /*only enable triplebuffer for fast_update*/
3869 dc->hwss.program_triplebuffer(
3870 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3871 }
3872 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3873 dc->hwss.update_plane_addr(dc, pipe_ctx);
3874 }
3875 }
3876 }
3877
3878 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3879 dc->hwss.interdependent_update_lock(dc, context, false);
3880 } else {
3881 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3882 }
3883
3884 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3885 if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3886 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3887 top_pipe_to_program->stream_res.tg,
3888 CRTC_STATE_VACTIVE);
3889 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3890 top_pipe_to_program->stream_res.tg,
3891 CRTC_STATE_VBLANK);
3892 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
3893 top_pipe_to_program->stream_res.tg,
3894 CRTC_STATE_VACTIVE);
3895
3896 if (should_use_dmub_lock(link: stream->link)) {
3897 union dmub_hw_lock_flags hw_locks = { 0 };
3898 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3899
3900 hw_locks.bits.lock_dig = 1;
3901 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3902
3903 dmub_hw_lock_mgr_cmd(dmub_srv: dc->ctx->dmub_srv,
3904 lock: false,
3905 hw_locks: &hw_locks,
3906 inst_flags: &inst_flags);
3907 } else
3908 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
3909 top_pipe_to_program->stream_res.tg);
3910 }
3911
3912 if (subvp_curr_use) {
3913 /* If enabling subvp or transitioning from subvp->subvp, enable the
3914 * phantom streams before we program front end for the phantom pipes.
3915 */
3916 if (update_type != UPDATE_TYPE_FAST) {
3917 if (dc->hwss.enable_phantom_streams)
3918 dc->hwss.enable_phantom_streams(dc, context);
3919 }
3920 }
3921
3922 if (update_type != UPDATE_TYPE_FAST)
3923 dc->hwss.post_unlock_program_front_end(dc, context);
3924
3925 if (subvp_prev_use && !subvp_curr_use) {
3926 /* If disabling subvp, disable phantom streams after front end
3927 * programming has completed (we turn on phantom OTG in order
3928 * to complete the plane disable for phantom pipes).
3929 */
3930
3931 if (dc->hwss.disable_phantom_streams)
3932 dc->hwss.disable_phantom_streams(dc, context);
3933 }
3934
3935 if (update_type != UPDATE_TYPE_FAST)
3936 if (dc->hwss.commit_subvp_config)
3937 dc->hwss.commit_subvp_config(dc, context);
3938 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3939 * move the SubVP lock to after the phantom pipes have been setup
3940 */
3941 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3942 if (dc->hwss.subvp_pipe_control_lock)
3943 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
3944 } else {
3945 if (dc->hwss.subvp_pipe_control_lock)
3946 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3947 }
3948
3949 // Fire manual trigger only when bottom plane is flipped
3950 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3951 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3952
3953 if (!pipe_ctx->plane_state)
3954 continue;
3955
3956 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
3957 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
3958 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
3959 pipe_ctx->plane_state->skip_manual_trigger)
3960 continue;
3961
3962 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
3963 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
3964 }
3965
3966 current_stream_mask = get_stream_mask(dc, context);
3967 if (current_stream_mask != context->stream_mask) {
3968 context->stream_mask = current_stream_mask;
3969 dc_dmub_srv_notify_stream_mask(dc_dmub_srv: dc->ctx->dmub_srv, stream_mask: current_stream_mask);
3970 }
3971}
3972
3973/**
3974 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
3975 *
3976 * @dc: Used to get the current state status
3977 * @stream: Target stream, which we want to remove the attached planes
3978 * @srf_updates: Array of surface updates
3979 * @surface_count: Number of surface update
3980 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
3981 *
3982 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
3983 * the MPO if used simultaneously in some specific configurations (e.g.,
3984 * 4k@144). This function checks if the incoming context requires applying a
3985 * transition state with unnecessary pipe splitting and ODM disabled to
3986 * circumvent our hardware limitations to prevent this edge case. If the OPP
3987 * associated with an MPCC might change due to plane additions, this function
3988 * returns true.
3989 *
3990 * Return:
3991 * Return true if OPP and MPCC might change, otherwise, return false.
3992 */
3993static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
3994 struct dc_stream_state *stream,
3995 struct dc_surface_update *srf_updates,
3996 int surface_count,
3997 bool *is_plane_addition)
3998{
3999
4000 struct dc_stream_status *cur_stream_status = stream_get_status(ctx: dc->current_state, stream);
4001 bool force_minimal_pipe_splitting = false;
4002 bool subvp_active = false;
4003 uint32_t i;
4004
4005 *is_plane_addition = false;
4006
4007 if (cur_stream_status &&
4008 dc->current_state->stream_count > 0 &&
4009 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4010 /* determine if minimal transition is required due to MPC*/
4011 if (surface_count > 0) {
4012 if (cur_stream_status->plane_count > surface_count) {
4013 force_minimal_pipe_splitting = true;
4014 } else if (cur_stream_status->plane_count < surface_count) {
4015 force_minimal_pipe_splitting = true;
4016 *is_plane_addition = true;
4017 }
4018 }
4019 }
4020
4021 if (cur_stream_status &&
4022 dc->current_state->stream_count == 1 &&
4023 dc->debug.enable_single_display_2to1_odm_policy) {
4024 /* determine if minimal transition is required due to dynamic ODM*/
4025 if (surface_count > 0) {
4026 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4027 force_minimal_pipe_splitting = true;
4028 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4029 force_minimal_pipe_splitting = true;
4030 *is_plane_addition = true;
4031 }
4032 }
4033 }
4034
4035 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4036 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4037
4038 if (dc_state_get_pipe_subvp_type(state: dc->current_state, pipe_ctx: pipe) != SUBVP_NONE) {
4039 subvp_active = true;
4040 break;
4041 }
4042 }
4043
4044 /* For SubVP when adding or removing planes we need to add a minimal transition
4045 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4046 * must use the minimal transition path to disable the pipe correctly.
4047 *
4048 * We want to use the minimal transition whenever subvp is active, not only if
4049 * a plane is being added / removed from a subvp stream (MPO plane can be added
4050 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4051 * a min transition to disable subvp.
4052 */
4053 if (cur_stream_status && subvp_active) {
4054 /* determine if minimal transition is required due to SubVP*/
4055 if (cur_stream_status->plane_count > surface_count) {
4056 force_minimal_pipe_splitting = true;
4057 } else if (cur_stream_status->plane_count < surface_count) {
4058 force_minimal_pipe_splitting = true;
4059 *is_plane_addition = true;
4060 }
4061 }
4062
4063 return force_minimal_pipe_splitting;
4064}
4065
4066struct pipe_split_policy_backup {
4067 bool dynamic_odm_policy;
4068 bool subvp_policy;
4069 enum pipe_split_policy mpc_policy;
4070};
4071
4072static void release_minimal_transition_state(struct dc *dc,
4073 struct dc_state *context, struct pipe_split_policy_backup *policy)
4074{
4075 dc_state_release(state: context);
4076 /* restore previous pipe split and odm policy */
4077 if (!dc->config.is_vmin_only_asic)
4078 dc->debug.pipe_split_policy = policy->mpc_policy;
4079 dc->debug.enable_single_display_2to1_odm_policy = policy->dynamic_odm_policy;
4080 dc->debug.force_disable_subvp = policy->subvp_policy;
4081}
4082
4083static struct dc_state *create_minimal_transition_state(struct dc *dc,
4084 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4085{
4086 struct dc_state *minimal_transition_context = NULL;
4087 unsigned int i, j;
4088
4089 if (!dc->config.is_vmin_only_asic) {
4090 policy->mpc_policy = dc->debug.pipe_split_policy;
4091 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4092 }
4093 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4094 dc->debug.enable_single_display_2to1_odm_policy = false;
4095 policy->subvp_policy = dc->debug.force_disable_subvp;
4096 dc->debug.force_disable_subvp = true;
4097
4098 minimal_transition_context = dc_state_create_copy(src_state: base_context);
4099 if (!minimal_transition_context)
4100 return NULL;
4101
4102 /* commit minimal state */
4103 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4104 for (i = 0; i < minimal_transition_context->stream_count; i++) {
4105 struct dc_stream_status *stream_status = &minimal_transition_context->stream_status[i];
4106
4107 for (j = 0; j < stream_status->plane_count; j++) {
4108 struct dc_plane_state *plane_state = stream_status->plane_states[j];
4109
4110 /* force vsync flip when reconfiguring pipes to prevent underflow
4111 * and corruption
4112 */
4113 plane_state->flip_immediate = false;
4114 }
4115 }
4116 } else {
4117 /* this should never happen */
4118 release_minimal_transition_state(dc, context: minimal_transition_context, policy);
4119 BREAK_TO_DEBUGGER();
4120 minimal_transition_context = NULL;
4121 }
4122 return minimal_transition_context;
4123}
4124
4125
4126/**
4127 * commit_minimal_transition_state - Commit a minimal state based on current or new context
4128 *
4129 * @dc: DC structure, used to get the current state
4130 * @context: New context
4131 * @stream: Stream getting the update for the flip
4132 *
4133 * The function takes in current state and new state and determine a minimal transition state
4134 * as the intermediate step which could make the transition between current and new states
4135 * seamless. If found, it will commit the minimal transition state and update current state to
4136 * this minimal transition state and return true, if not, it will return false.
4137 *
4138 * Return:
4139 * Return True if the minimal transition succeeded, false otherwise
4140 */
4141static bool commit_minimal_transition_state(struct dc *dc,
4142 struct dc_state *context,
4143 struct dc_stream_state *stream)
4144{
4145 bool success = false;
4146 struct dc_state *minimal_transition_context;
4147 struct pipe_split_policy_backup policy;
4148
4149 /* commit based on new context */
4150 minimal_transition_context = create_minimal_transition_state(dc,
4151 base_context: context, policy: &policy);
4152 if (minimal_transition_context) {
4153 if (dc->hwss.is_pipe_topology_transition_seamless(
4154 dc, dc->current_state, minimal_transition_context) &&
4155 dc->hwss.is_pipe_topology_transition_seamless(
4156 dc, minimal_transition_context, context)) {
4157 DC_LOG_DC("%s base = new state\n", __func__);
4158
4159 success = dc_commit_state_no_check(dc, context: minimal_transition_context) == DC_OK;
4160 }
4161 release_minimal_transition_state(dc, context: minimal_transition_context, policy: &policy);
4162 }
4163
4164 if (!success) {
4165 /* commit based on current context */
4166 restore_planes_and_stream_state(scratch: &dc->current_state->scratch, stream);
4167 minimal_transition_context = create_minimal_transition_state(dc,
4168 base_context: dc->current_state, policy: &policy);
4169 if (minimal_transition_context) {
4170 if (dc->hwss.is_pipe_topology_transition_seamless(
4171 dc, dc->current_state, minimal_transition_context) &&
4172 dc->hwss.is_pipe_topology_transition_seamless(
4173 dc, minimal_transition_context, context)) {
4174 DC_LOG_DC("%s base = current state\n", __func__);
4175 success = dc_commit_state_no_check(dc, context: minimal_transition_context) == DC_OK;
4176 }
4177 release_minimal_transition_state(dc, context: minimal_transition_context, policy: &policy);
4178 }
4179 restore_planes_and_stream_state(scratch: &context->scratch, stream);
4180 }
4181
4182 ASSERT(success);
4183 return success;
4184}
4185
4186/**
4187 * commit_minimal_transition_state_legacy - Create a transition pipe split state
4188 *
4189 * @dc: Used to get the current state status
4190 * @transition_base_context: New transition state
4191 *
4192 * In some specific configurations, such as pipe split on multi-display with
4193 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4194 * programming when moving to new planes. To mitigate those types of problems,
4195 * this function adds a transition state that minimizes pipe usage before
4196 * programming the new configuration. When adding a new plane, the current
4197 * state requires the least pipes, so it is applied without splitting. When
4198 * removing a plane, the new state requires the least pipes, so it is applied
4199 * without splitting.
4200 *
4201 * Return:
4202 * Return false if something is wrong in the transition state.
4203 */
4204static bool commit_minimal_transition_state_legacy(struct dc *dc,
4205 struct dc_state *transition_base_context)
4206{
4207 struct dc_state *transition_context;
4208 struct pipe_split_policy_backup policy;
4209 enum dc_status ret = DC_ERROR_UNEXPECTED;
4210 unsigned int i, j;
4211 unsigned int pipe_in_use = 0;
4212 bool subvp_in_use = false;
4213 bool odm_in_use = false;
4214
4215 /* check current pipes in use*/
4216 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4217 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4218
4219 if (pipe->plane_state)
4220 pipe_in_use++;
4221 }
4222
4223 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4224 * pipe, we must use the minimal transition.
4225 */
4226 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4227 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4228
4229 if (pipe->stream && dc_state_get_pipe_subvp_type(state: dc->current_state, pipe_ctx: pipe) == SUBVP_PHANTOM) {
4230 subvp_in_use = true;
4231 break;
4232 }
4233 }
4234
4235 /* If ODM is enabled and we are adding or removing planes from any ODM
4236 * pipe, we must use the minimal transition.
4237 */
4238 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4239 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4240
4241 if (resource_is_pipe_type(pipe_ctx: pipe, type: OTG_MASTER)) {
4242 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4243 break;
4244 }
4245 }
4246
4247 /* When the OS add a new surface if we have been used all of pipes with odm combine
4248 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4249 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4250 * call it again. Otherwise return true to skip.
4251 *
4252 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4253 * enter/exit MPO when DCN still have enough resources.
4254 */
4255 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4256 return true;
4257
4258 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4259 dc->current_state == transition_base_context ? "current" : "new",
4260 subvp_in_use ? "Subvp In Use" :
4261 odm_in_use ? "ODM in Use" :
4262 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4263 "Unknown");
4264
4265 transition_context = create_minimal_transition_state(dc,
4266 base_context: transition_base_context, policy: &policy);
4267 if (transition_context) {
4268 ret = dc_commit_state_no_check(dc, context: transition_context);
4269 release_minimal_transition_state(dc, context: transition_context, policy: &policy);
4270 }
4271
4272 if (ret != DC_OK) {
4273 /* this should never happen */
4274 BREAK_TO_DEBUGGER();
4275 return false;
4276 }
4277
4278 /* force full surface update */
4279 for (i = 0; i < dc->current_state->stream_count; i++) {
4280 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4281 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4282 }
4283 }
4284
4285 return true;
4286}
4287
4288/**
4289 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
4290 *
4291 * @dc: Current DC state
4292 * @context: New DC state to be programmed
4293 * @surface_count: Number of surfaces that have an updated
4294 * @stream: Corresponding stream to be updated in the current flip
4295 *
4296 * Updating seamless boot flags do not need to be part of the commit sequence. This
4297 * helper function will update the seamless boot flags on each flip (if required)
4298 * outside of the HW commit sequence (fast or slow).
4299 *
4300 * Return: void
4301 */
4302static void update_seamless_boot_flags(struct dc *dc,
4303 struct dc_state *context,
4304 int surface_count,
4305 struct dc_stream_state *stream)
4306{
4307 if (get_seamless_boot_stream_count(ctx: context) > 0 && surface_count > 0) {
4308 /* Optimize seamless boot flag keeps clocks and watermarks high until
4309 * first flip. After first flip, optimization is required to lower
4310 * bandwidth. Important to note that it is expected UEFI will
4311 * only light up a single display on POST, therefore we only expect
4312 * one stream with seamless boot flag set.
4313 */
4314 if (stream->apply_seamless_boot_optimization) {
4315 stream->apply_seamless_boot_optimization = false;
4316
4317 if (get_seamless_boot_stream_count(ctx: context) == 0)
4318 dc->optimized_required = true;
4319 }
4320 }
4321}
4322
4323static void populate_fast_updates(struct dc_fast_update *fast_update,
4324 struct dc_surface_update *srf_updates,
4325 int surface_count,
4326 struct dc_stream_update *stream_update)
4327{
4328 int i = 0;
4329
4330 if (stream_update) {
4331 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4332 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4333 }
4334
4335 for (i = 0; i < surface_count; i++) {
4336 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4337 fast_update[i].gamma = srf_updates[i].gamma;
4338 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4339 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4340 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4341 }
4342}
4343
4344static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4345{
4346 int i;
4347
4348 if (fast_update[0].out_transfer_func ||
4349 fast_update[0].output_csc_transform)
4350 return true;
4351
4352 for (i = 0; i < surface_count; i++) {
4353 if (fast_update[i].flip_addr ||
4354 fast_update[i].gamma ||
4355 fast_update[i].gamut_remap_matrix ||
4356 fast_update[i].input_csc_color_matrix ||
4357 fast_update[i].coeff_reduction_factor)
4358 return true;
4359 }
4360
4361 return false;
4362}
4363
4364static bool full_update_required(struct dc *dc,
4365 struct dc_surface_update *srf_updates,
4366 int surface_count,
4367 struct dc_stream_update *stream_update,
4368 struct dc_stream_state *stream)
4369{
4370
4371 int i;
4372 struct dc_stream_status *stream_status;
4373 const struct dc_state *context = dc->current_state;
4374
4375 for (i = 0; i < surface_count; i++) {
4376 if (srf_updates &&
4377 (srf_updates[i].plane_info ||
4378 srf_updates[i].scaling_info ||
4379 (srf_updates[i].hdr_mult.value &&
4380 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4381 srf_updates[i].in_transfer_func ||
4382 srf_updates[i].func_shaper ||
4383 srf_updates[i].lut3d_func ||
4384 srf_updates[i].surface->force_full_update ||
4385 (srf_updates[i].flip_addr &&
4386 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4387 !is_surface_in_context(context, plane_state: srf_updates[i].surface)))
4388 return true;
4389 }
4390
4391 if (stream_update &&
4392 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4393 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4394 stream_update->integer_scaling_update) ||
4395 stream_update->hdr_static_metadata ||
4396 stream_update->abm_level ||
4397 stream_update->periodic_interrupt ||
4398 stream_update->vrr_infopacket ||
4399 stream_update->vsc_infopacket ||
4400 stream_update->vsp_infopacket ||
4401 stream_update->hfvsif_infopacket ||
4402 stream_update->vtem_infopacket ||
4403 stream_update->adaptive_sync_infopacket ||
4404 stream_update->dpms_off ||
4405 stream_update->allow_freesync ||
4406 stream_update->vrr_active_variable ||
4407 stream_update->vrr_active_fixed ||
4408 stream_update->gamut_remap ||
4409 stream_update->output_color_space ||
4410 stream_update->dither_option ||
4411 stream_update->wb_update ||
4412 stream_update->dsc_config ||
4413 stream_update->mst_bw_update ||
4414 stream_update->func_shaper ||
4415 stream_update->lut3d_func ||
4416 stream_update->pending_test_pattern ||
4417 stream_update->crtc_timing_adjust))
4418 return true;
4419
4420 if (stream) {
4421 stream_status = dc_stream_get_status(dc_stream: stream);
4422 if (stream_status == NULL || stream_status->plane_count != surface_count)
4423 return true;
4424 }
4425 if (dc->idle_optimizations_allowed)
4426 return true;
4427
4428 return false;
4429}
4430
4431static bool fast_update_only(struct dc *dc,
4432 struct dc_fast_update *fast_update,
4433 struct dc_surface_update *srf_updates,
4434 int surface_count,
4435 struct dc_stream_update *stream_update,
4436 struct dc_stream_state *stream)
4437{
4438 return fast_updates_exist(fast_update, surface_count)
4439 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4440}
4441
4442bool dc_update_planes_and_stream(struct dc *dc,
4443 struct dc_surface_update *srf_updates, int surface_count,
4444 struct dc_stream_state *stream,
4445 struct dc_stream_update *stream_update)
4446{
4447 struct dc_state *context;
4448 enum surface_update_type update_type;
4449 int i;
4450 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4451
4452 /* In cases where MPO and split or ODM are used transitions can
4453 * cause underflow. Apply stream configuration with minimal pipe
4454 * split first to avoid unsupported transitions for active pipes.
4455 */
4456 bool force_minimal_pipe_splitting = 0;
4457 bool is_plane_addition = 0;
4458 bool is_fast_update_only;
4459
4460 dc_exit_ips_for_hw_access(dc);
4461
4462 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4463 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
4464 surface_count, stream_update, stream);
4465 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4466 dc,
4467 stream,
4468 srf_updates,
4469 surface_count,
4470 is_plane_addition: &is_plane_addition);
4471
4472 /* on plane addition, minimal state is the current one */
4473 if (force_minimal_pipe_splitting && is_plane_addition &&
4474 !commit_minimal_transition_state_legacy(dc, transition_base_context: dc->current_state))
4475 return false;
4476
4477 if (!update_planes_and_stream_state(
4478 dc,
4479 srf_updates,
4480 surface_count,
4481 stream,
4482 stream_update,
4483 new_update_type: &update_type,
4484 new_context: &context))
4485 return false;
4486
4487 /* on plane removal, minimal state is the new one */
4488 if (force_minimal_pipe_splitting && !is_plane_addition) {
4489 if (!commit_minimal_transition_state_legacy(dc, transition_base_context: context)) {
4490 dc_state_release(state: context);
4491 return false;
4492 }
4493 update_type = UPDATE_TYPE_FULL;
4494 }
4495
4496 if (dc->hwss.is_pipe_topology_transition_seamless &&
4497 !dc->hwss.is_pipe_topology_transition_seamless(
4498 dc, dc->current_state, context)) {
4499 commit_minimal_transition_state(dc,
4500 context, stream);
4501 }
4502 update_seamless_boot_flags(dc, context, surface_count, stream);
4503 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
4504 commit_planes_for_stream_fast(dc,
4505 srf_updates,
4506 surface_count,
4507 stream,
4508 stream_update,
4509 update_type,
4510 context);
4511 } else {
4512 if (!stream_update &&
4513 dc->hwss.is_pipe_topology_transition_seamless &&
4514 !dc->hwss.is_pipe_topology_transition_seamless(
4515 dc, dc->current_state, context)) {
4516 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4517 BREAK_TO_DEBUGGER();
4518 }
4519 commit_planes_for_stream(
4520 dc,
4521 srf_updates,
4522 surface_count,
4523 stream,
4524 stream_update,
4525 update_type,
4526 context);
4527 }
4528
4529 if (dc->current_state != context) {
4530
4531 /* Since memory free requires elevated IRQL, an interrupt
4532 * request is generated by mem free. If this happens
4533 * between freeing and reassigning the context, our vsync
4534 * interrupt will call into dc and cause a memory
4535 * corruption BSOD. Hence, we first reassign the context,
4536 * then free the old context.
4537 */
4538
4539 struct dc_state *old = dc->current_state;
4540
4541 dc->current_state = context;
4542 dc_state_release(state: old);
4543
4544 // clear any forced full updates
4545 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4546 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4547
4548 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4549 pipe_ctx->plane_state->force_full_update = false;
4550 }
4551 }
4552 return true;
4553}
4554
4555void dc_commit_updates_for_stream(struct dc *dc,
4556 struct dc_surface_update *srf_updates,
4557 int surface_count,
4558 struct dc_stream_state *stream,
4559 struct dc_stream_update *stream_update,
4560 struct dc_state *state)
4561{
4562 const struct dc_stream_status *stream_status;
4563 enum surface_update_type update_type;
4564 struct dc_state *context;
4565 struct dc_context *dc_ctx = dc->ctx;
4566 int i, j;
4567 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4568
4569 dc_exit_ips_for_hw_access(dc);
4570
4571 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4572 stream_status = dc_stream_get_status(dc_stream: stream);
4573 context = dc->current_state;
4574
4575 update_type = dc_check_update_surfaces_for_stream(
4576 dc, updates: srf_updates, surface_count, stream_update, stream_status);
4577
4578 /* TODO: Since change commit sequence can have a huge impact,
4579 * we decided to only enable it for DCN3x. However, as soon as
4580 * we get more confident about this change we'll need to enable
4581 * the new sequence for all ASICs.
4582 */
4583 if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
4584 /*
4585 * Previous frame finished and HW is ready for optimization.
4586 */
4587 if (update_type == UPDATE_TYPE_FAST)
4588 dc_post_update_surfaces_to_stream(dc);
4589
4590 dc_update_planes_and_stream(dc, srf_updates,
4591 surface_count, stream,
4592 stream_update);
4593 return;
4594 }
4595
4596 if (update_type >= update_surface_trace_level)
4597 update_surface_trace(dc, updates: srf_updates, surface_count);
4598
4599
4600 if (update_type >= UPDATE_TYPE_FULL) {
4601
4602 /* initialize scratch memory for building context */
4603 context = dc_state_create_copy(src_state: state);
4604 if (context == NULL) {
4605 DC_ERROR("Failed to allocate new validate context!\n");
4606 return;
4607 }
4608
4609 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4610 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4611 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4612
4613 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4614 new_pipe->plane_state->force_full_update = true;
4615 }
4616 } else if (update_type == UPDATE_TYPE_FAST) {
4617 /*
4618 * Previous frame finished and HW is ready for optimization.
4619 */
4620 dc_post_update_surfaces_to_stream(dc);
4621 }
4622
4623
4624 for (i = 0; i < surface_count; i++) {
4625 struct dc_plane_state *surface = srf_updates[i].surface;
4626
4627 copy_surface_update_to_plane(surface, srf_update: &srf_updates[i]);
4628
4629 if (update_type >= UPDATE_TYPE_MED) {
4630 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4631 struct pipe_ctx *pipe_ctx =
4632 &context->res_ctx.pipe_ctx[j];
4633
4634 if (pipe_ctx->plane_state != surface)
4635 continue;
4636
4637 resource_build_scaling_params(pipe_ctx);
4638 }
4639 }
4640 }
4641
4642 copy_stream_update_to_stream(dc, context, stream, update: stream_update);
4643
4644 if (update_type >= UPDATE_TYPE_FULL) {
4645 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4646 DC_ERROR("Mode validation failed for stream update!\n");
4647 dc_state_release(state: context);
4648 return;
4649 }
4650 }
4651
4652 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4653
4654 update_seamless_boot_flags(dc, context, surface_count, stream);
4655 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4656 !dc->debug.enable_legacy_fast_update) {
4657 commit_planes_for_stream_fast(dc,
4658 srf_updates,
4659 surface_count,
4660 stream,
4661 stream_update,
4662 update_type,
4663 context);
4664 } else {
4665 commit_planes_for_stream(
4666 dc,
4667 srf_updates,
4668 surface_count,
4669 stream,
4670 stream_update,
4671 update_type,
4672 context);
4673 }
4674 /*update current_State*/
4675 if (dc->current_state != context) {
4676
4677 struct dc_state *old = dc->current_state;
4678
4679 dc->current_state = context;
4680 dc_state_release(state: old);
4681
4682 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4683 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4684
4685 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4686 pipe_ctx->plane_state->force_full_update = false;
4687 }
4688 }
4689
4690 /* Legacy optimization path for DCE. */
4691 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4692 dc_post_update_surfaces_to_stream(dc);
4693 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4694 }
4695
4696 return;
4697
4698}
4699
4700uint8_t dc_get_current_stream_count(struct dc *dc)
4701{
4702 return dc->current_state->stream_count;
4703}
4704
4705struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
4706{
4707 if (i < dc->current_state->stream_count)
4708 return dc->current_state->streams[i];
4709 return NULL;
4710}
4711
4712enum dc_irq_source dc_interrupt_to_irq_source(
4713 struct dc *dc,
4714 uint32_t src_id,
4715 uint32_t ext_id)
4716{
4717 return dal_irq_service_to_irq_source(irq_service: dc->res_pool->irqs, src_id, ext_id);
4718}
4719
4720/*
4721 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
4722 */
4723bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
4724{
4725
4726 if (dc == NULL)
4727 return false;
4728
4729 return dal_irq_service_set(irq_service: dc->res_pool->irqs, source: src, enable);
4730}
4731
4732void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
4733{
4734 dal_irq_service_ack(irq_service: dc->res_pool->irqs, source: src);
4735}
4736
4737void dc_power_down_on_boot(struct dc *dc)
4738{
4739 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
4740 dc->hwss.power_down_on_boot)
4741 dc->hwss.power_down_on_boot(dc);
4742}
4743
4744void dc_set_power_state(
4745 struct dc *dc,
4746 enum dc_acpi_cm_power_state power_state)
4747{
4748 if (!dc->current_state)
4749 return;
4750
4751 switch (power_state) {
4752 case DC_ACPI_CM_POWER_STATE_D0:
4753 dc_state_construct(dc, state: dc->current_state);
4754
4755 dc_exit_ips_for_hw_access(dc);
4756
4757 dc_z10_restore(dc);
4758
4759 dc->hwss.init_hw(dc);
4760
4761 if (dc->hwss.init_sys_ctx != NULL &&
4762 dc->vm_pa_config.valid) {
4763 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
4764 }
4765
4766 break;
4767 default:
4768 ASSERT(dc->current_state->stream_count == 0);
4769
4770 dc_state_destruct(state: dc->current_state);
4771
4772 break;
4773 }
4774}
4775
4776void dc_resume(struct dc *dc)
4777{
4778 uint32_t i;
4779
4780 for (i = 0; i < dc->link_count; i++)
4781 dc->link_srv->resume(dc->links[i]);
4782}
4783
4784bool dc_is_dmcu_initialized(struct dc *dc)
4785{
4786 struct dmcu *dmcu = dc->res_pool->dmcu;
4787
4788 if (dmcu)
4789 return dmcu->funcs->is_dmcu_initialized(dmcu);
4790 return false;
4791}
4792
4793void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
4794{
4795 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
4796 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
4797 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
4798 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
4799 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
4800 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
4801 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
4802 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
4803 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
4804}
4805enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
4806{
4807 if (dc->hwss.set_clock)
4808 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
4809 return DC_ERROR_UNEXPECTED;
4810}
4811void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
4812{
4813 if (dc->hwss.get_clock)
4814 dc->hwss.get_clock(dc, clock_type, clock_cfg);
4815}
4816
4817/* enable/disable eDP PSR without specify stream for eDP */
4818bool dc_set_psr_allow_active(struct dc *dc, bool enable)
4819{
4820 int i;
4821 bool allow_active;
4822
4823 for (i = 0; i < dc->current_state->stream_count ; i++) {
4824 struct dc_link *link;
4825 struct dc_stream_state *stream = dc->current_state->streams[i];
4826
4827 link = stream->link;
4828 if (!link)
4829 continue;
4830
4831 if (link->psr_settings.psr_feature_enabled) {
4832 if (enable && !link->psr_settings.psr_allow_active) {
4833 allow_active = true;
4834 if (!dc_link_set_psr_allow_active(dc_link: link, enable: &allow_active, wait: false, force_static: false, NULL))
4835 return false;
4836 } else if (!enable && link->psr_settings.psr_allow_active) {
4837 allow_active = false;
4838 if (!dc_link_set_psr_allow_active(dc_link: link, enable: &allow_active, wait: true, force_static: false, NULL))
4839 return false;
4840 }
4841 }
4842 }
4843
4844 return true;
4845}
4846
4847/* enable/disable eDP Replay without specify stream for eDP */
4848bool dc_set_replay_allow_active(struct dc *dc, bool active)
4849{
4850 int i;
4851 bool allow_active;
4852
4853 for (i = 0; i < dc->current_state->stream_count; i++) {
4854 struct dc_link *link;
4855 struct dc_stream_state *stream = dc->current_state->streams[i];
4856
4857 link = stream->link;
4858 if (!link)
4859 continue;
4860
4861 if (link->replay_settings.replay_feature_enabled) {
4862 if (active && !link->replay_settings.replay_allow_active) {
4863 allow_active = true;
4864 if (!dc_link_set_replay_allow_active(dc_link: link, enable: &allow_active,
4865 wait: false, force_static: false, NULL))
4866 return false;
4867 } else if (!active && link->replay_settings.replay_allow_active) {
4868 allow_active = false;
4869 if (!dc_link_set_replay_allow_active(dc_link: link, enable: &allow_active,
4870 wait: true, force_static: false, NULL))
4871 return false;
4872 }
4873 }
4874 }
4875
4876 return true;
4877}
4878
4879void dc_allow_idle_optimizations(struct dc *dc, bool allow)
4880{
4881 if (dc->debug.disable_idle_power_optimizations)
4882 return;
4883
4884 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
4885 return;
4886
4887 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
4888 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
4889 return;
4890
4891 if (allow == dc->idle_optimizations_allowed)
4892 return;
4893
4894 if (dc->hwss.apply_idle_power_optimizations && dc->hwss.apply_idle_power_optimizations(dc, allow))
4895 dc->idle_optimizations_allowed = allow;
4896}
4897
4898void dc_exit_ips_for_hw_access(struct dc *dc)
4899{
4900 if (dc->caps.ips_support)
4901 dc_allow_idle_optimizations(dc, allow: false);
4902}
4903
4904bool dc_dmub_is_ips_idle_state(struct dc *dc)
4905{
4906 if (dc->debug.disable_idle_power_optimizations)
4907 return false;
4908
4909 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
4910 return false;
4911
4912 if (!dc->ctx->dmub_srv)
4913 return false;
4914
4915 return dc->ctx->dmub_srv->idle_allowed;
4916}
4917
4918/* set min and max memory clock to lowest and highest DPM level, respectively */
4919void dc_unlock_memory_clock_frequency(struct dc *dc)
4920{
4921 if (dc->clk_mgr->funcs->set_hard_min_memclk)
4922 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
4923
4924 if (dc->clk_mgr->funcs->set_hard_max_memclk)
4925 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4926}
4927
4928/* set min memory clock to the min required for current mode, max to maxDPM */
4929void dc_lock_memory_clock_frequency(struct dc *dc)
4930{
4931 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
4932 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
4933
4934 if (dc->clk_mgr->funcs->set_hard_min_memclk)
4935 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
4936
4937 if (dc->clk_mgr->funcs->set_hard_max_memclk)
4938 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
4939}
4940
4941static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
4942{
4943 struct dc_state *context = dc->current_state;
4944 struct hubp *hubp;
4945 struct pipe_ctx *pipe;
4946 int i;
4947
4948 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4949 pipe = &context->res_ctx.pipe_ctx[i];
4950
4951 if (pipe->stream != NULL) {
4952 dc->hwss.disable_pixel_data(dc, pipe, true);
4953
4954 // wait for double buffer
4955 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4956 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
4957 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
4958
4959 hubp = pipe->plane_res.hubp;
4960 hubp->funcs->set_blank_regs(hubp, true);
4961 }
4962 }
4963
4964 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
4965 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
4966
4967 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4968 pipe = &context->res_ctx.pipe_ctx[i];
4969
4970 if (pipe->stream != NULL) {
4971 dc->hwss.disable_pixel_data(dc, pipe, false);
4972
4973 hubp = pipe->plane_res.hubp;
4974 hubp->funcs->set_blank_regs(hubp, false);
4975 }
4976 }
4977}
4978
4979
4980/**
4981 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
4982 * @dc: pointer to dc of the dm calling this
4983 * @enable: True = transition to DC mode, false = transition back to AC mode
4984 *
4985 * Some SoCs define additional clock limits when in DC mode, DM should
4986 * invoke this function when the platform undergoes a power source transition
4987 * so DC can apply/unapply the limit. This interface may be disruptive to
4988 * the onscreen content.
4989 *
4990 * Context: Triggered by OS through DM interface, or manually by escape calls.
4991 * Need to hold a dclock when doing so.
4992 *
4993 * Return: none (void function)
4994 *
4995 */
4996void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
4997{
4998 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
4999 bool p_state_change_support;
5000
5001 if (!dc->config.dc_mode_clk_limit_support)
5002 return;
5003
5004 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5005 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5006 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5007 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5008 }
5009 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5010 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5011
5012 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5013 if (p_state_change_support) {
5014 if (funcMin <= softMax)
5015 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5016 // else: No-Op
5017 } else {
5018 if (funcMin <= softMax)
5019 blank_and_force_memclk(dc, apply: true, memclk_mhz: softMax);
5020 // else: No-Op
5021 }
5022 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5023 if (p_state_change_support) {
5024 if (funcMin <= softMax)
5025 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5026 // else: No-Op
5027 } else {
5028 if (funcMin <= softMax)
5029 blank_and_force_memclk(dc, apply: true, memclk_mhz: maxDPM);
5030 // else: No-Op
5031 }
5032 }
5033 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5034}
5035bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc, struct dc_plane_state *plane,
5036 struct dc_cursor_attributes *cursor_attr)
5037{
5038 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, plane, cursor_attr))
5039 return true;
5040 return false;
5041}
5042
5043/* cleanup on driver unload */
5044void dc_hardware_release(struct dc *dc)
5045{
5046 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5047
5048 if (dc->hwss.hardware_release)
5049 dc->hwss.hardware_release(dc);
5050}
5051
5052void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5053{
5054 if (dc->current_state)
5055 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5056}
5057
5058/**
5059 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5060 *
5061 * @dc: [in] dc structure
5062 *
5063 * Checks whether DMUB FW supports outbox notifications, if supported DM
5064 * should register outbox interrupt prior to actually enabling interrupts
5065 * via dc_enable_dmub_outbox
5066 *
5067 * Return:
5068 * True if DMUB FW supports outbox notifications, False otherwise
5069 */
5070bool dc_is_dmub_outbox_supported(struct dc *dc)
5071{
5072 switch (dc->ctx->asic_id.chip_family) {
5073
5074 case FAMILY_YELLOW_CARP:
5075 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5076 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5077 !dc->debug.dpia_debug.bits.disable_dpia)
5078 return true;
5079 break;
5080
5081 case AMDGPU_FAMILY_GC_11_0_1:
5082 case AMDGPU_FAMILY_GC_11_5_0:
5083 if (!dc->debug.dpia_debug.bits.disable_dpia)
5084 return true;
5085 break;
5086
5087 default:
5088 break;
5089 }
5090
5091 /* dmub aux needs dmub notifications to be enabled */
5092 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5093
5094}
5095
5096/**
5097 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5098 *
5099 * @dc: [in] dc structure
5100 *
5101 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5102 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5103 * API shall be removed after switching.
5104 *
5105 * Return:
5106 * True if DMUB FW supports outbox notifications, False otherwise
5107 */
5108bool dc_enable_dmub_notifications(struct dc *dc)
5109{
5110 return dc_is_dmub_outbox_supported(dc);
5111}
5112
5113/**
5114 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5115 *
5116 * @dc: [in] dc structure
5117 *
5118 * Enables DMUB unsolicited notifications to x86 via outbox.
5119 */
5120void dc_enable_dmub_outbox(struct dc *dc)
5121{
5122 struct dc_context *dc_ctx = dc->ctx;
5123
5124 dmub_enable_outbox_notification(dmub_srv: dc_ctx->dmub_srv);
5125 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5126}
5127
5128/**
5129 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5130 * Sets port index appropriately for legacy DDC
5131 * @dc: dc structure
5132 * @link_index: link index
5133 * @payload: aux payload
5134 *
5135 * Returns: True if successful, False if failure
5136 */
5137bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5138 uint32_t link_index,
5139 struct aux_payload *payload)
5140{
5141 uint8_t action;
5142 union dmub_rb_cmd cmd = {0};
5143
5144 ASSERT(payload->length <= 16);
5145
5146 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5147 cmd.dp_aux_access.header.payload_bytes = 0;
5148 /* For dpia, ddc_pin is set to NULL */
5149 if (!dc->links[link_index]->ddc->ddc_pin)
5150 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5151 else
5152 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5153
5154 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5155 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5156 cmd.dp_aux_access.aux_control.timeout = 0;
5157 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5158 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5159 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5160
5161 /* set aux action */
5162 if (payload->i2c_over_aux) {
5163 if (payload->write) {
5164 if (payload->mot)
5165 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5166 else
5167 action = DP_AUX_REQ_ACTION_I2C_WRITE;
5168 } else {
5169 if (payload->mot)
5170 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5171 else
5172 action = DP_AUX_REQ_ACTION_I2C_READ;
5173 }
5174 } else {
5175 if (payload->write)
5176 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5177 else
5178 action = DP_AUX_REQ_ACTION_DPCD_READ;
5179 }
5180
5181 cmd.dp_aux_access.aux_control.dpaux.action = action;
5182
5183 if (payload->length && payload->write) {
5184 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5185 payload->data,
5186 payload->length
5187 );
5188 }
5189
5190 dc_wake_and_execute_dmub_cmd(ctx: dc->ctx, cmd: &cmd, wait_type: DM_DMUB_WAIT_TYPE_WAIT);
5191
5192 return true;
5193}
5194
5195uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5196 uint8_t dpia_port_index)
5197{
5198 uint8_t index, link_index = 0xFF;
5199
5200 for (index = 0; index < dc->link_count; index++) {
5201 /* ddc_hw_inst has dpia port index for dpia links
5202 * and ddc instance for legacy links
5203 */
5204 if (!dc->links[index]->ddc->ddc_pin) {
5205 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5206 link_index = index;
5207 break;
5208 }
5209 }
5210 }
5211 ASSERT(link_index != 0xFF);
5212 return link_index;
5213}
5214
5215/**
5216 * dc_process_dmub_set_config_async - Submits set_config command
5217 *
5218 * @dc: [in] dc structure
5219 * @link_index: [in] link_index: link index
5220 * @payload: [in] aux payload
5221 * @notify: [out] set_config immediate reply
5222 *
5223 * Submits set_config command to dmub via inbox message.
5224 *
5225 * Return:
5226 * True if successful, False if failure
5227 */
5228bool dc_process_dmub_set_config_async(struct dc *dc,
5229 uint32_t link_index,
5230 struct set_config_cmd_payload *payload,
5231 struct dmub_notification *notify)
5232{
5233 union dmub_rb_cmd cmd = {0};
5234 bool is_cmd_complete = true;
5235
5236 /* prepare SET_CONFIG command */
5237 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5238 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5239
5240 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5241 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5242 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5243
5244 if (!dc_wake_and_execute_dmub_cmd(ctx: dc->ctx, cmd: &cmd, wait_type: DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5245 /* command is not processed by dmub */
5246 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5247 return is_cmd_complete;
5248 }
5249
5250 /* command processed by dmub, if ret_status is 1, it is completed instantly */
5251 if (cmd.set_config_access.header.ret_status == 1)
5252 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5253 else
5254 /* cmd pending, will receive notification via outbox */
5255 is_cmd_complete = false;
5256
5257 return is_cmd_complete;
5258}
5259
5260/**
5261 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5262 *
5263 * @dc: [in] dc structure
5264 * @link_index: [in] link index
5265 * @mst_alloc_slots: [in] mst slots to be allotted
5266 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5267 *
5268 * Submits mst slot allocation command to dmub via inbox message
5269 *
5270 * Return:
5271 * DC_OK if successful, DC_ERROR if failure
5272 */
5273enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5274 uint32_t link_index,
5275 uint8_t mst_alloc_slots,
5276 uint8_t *mst_slots_in_use)
5277{
5278 union dmub_rb_cmd cmd = {0};
5279
5280 /* prepare MST_ALLOC_SLOTS command */
5281 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5282 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5283
5284 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5285 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5286
5287 if (!dc_wake_and_execute_dmub_cmd(ctx: dc->ctx, cmd: &cmd, wait_type: DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5288 /* command is not processed by dmub */
5289 return DC_ERROR_UNEXPECTED;
5290
5291 /* command processed by dmub, if ret_status is 1 */
5292 if (cmd.set_config_access.header.ret_status != 1)
5293 /* command processing error */
5294 return DC_ERROR_UNEXPECTED;
5295
5296 /* command processed and we have a status of 2, mst not enabled in dpia */
5297 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5298 return DC_FAIL_UNSUPPORTED_1;
5299
5300 /* previously configured mst alloc and used slots did not match */
5301 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5302 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5303 return DC_NOT_SUPPORTED;
5304 }
5305
5306 return DC_OK;
5307}
5308
5309/**
5310 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5311 *
5312 * @dc: [in] dc structure
5313 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5314 *
5315 * Submits dpia hpd int enable command to dmub via inbox message
5316 */
5317void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5318 uint32_t hpd_int_enable)
5319{
5320 union dmub_rb_cmd cmd = {0};
5321
5322 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5323 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5324
5325 dc_wake_and_execute_dmub_cmd(ctx: dc->ctx, cmd: &cmd, wait_type: DM_DMUB_WAIT_TYPE_WAIT);
5326
5327 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5328}
5329
5330/**
5331 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5332 *
5333 * @dc: [in] dc structure
5334 *
5335 *
5336 */
5337void dc_print_dmub_diagnostic_data(const struct dc *dc)
5338{
5339 dc_dmub_srv_log_diagnostic_data(dc_dmub_srv: dc->ctx->dmub_srv);
5340}
5341
5342/**
5343 * dc_disable_accelerated_mode - disable accelerated mode
5344 * @dc: dc structure
5345 */
5346void dc_disable_accelerated_mode(struct dc *dc)
5347{
5348 bios_set_scratch_acc_mode_change(bios: dc->ctx->dc_bios, state: 0);
5349}
5350
5351
5352/**
5353 * dc_notify_vsync_int_state - notifies vsync enable/disable state
5354 * @dc: dc structure
5355 * @stream: stream where vsync int state changed
5356 * @enable: whether vsync is enabled or disabled
5357 *
5358 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5359 * interrupts after steady state is reached.
5360 */
5361void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5362{
5363 int i;
5364 int edp_num;
5365 struct pipe_ctx *pipe = NULL;
5366 struct dc_link *link = stream->sink->link;
5367 struct dc_link *edp_links[MAX_NUM_EDP];
5368
5369
5370 if (link->psr_settings.psr_feature_enabled)
5371 return;
5372
5373 if (link->replay_settings.replay_feature_enabled)
5374 return;
5375
5376 /*find primary pipe associated with stream*/
5377 for (i = 0; i < MAX_PIPES; i++) {
5378 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5379
5380 if (pipe->stream == stream && pipe->stream_res.tg)
5381 break;
5382 }
5383
5384 if (i == MAX_PIPES) {
5385 ASSERT(0);
5386 return;
5387 }
5388
5389 dc_get_edp_links(dc, edp_links, edp_num: &edp_num);
5390
5391 /* Determine panel inst */
5392 for (i = 0; i < edp_num; i++) {
5393 if (edp_links[i] == link)
5394 break;
5395 }
5396
5397 if (i == edp_num) {
5398 return;
5399 }
5400
5401 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5402 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5403}
5404
5405/*****************************************************************************
5406 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5407 * ABM
5408 * @dc: dc structure
5409 * @stream: stream where vsync int state changed
5410 * @pData: abm hw states
5411 *
5412 ****************************************************************************/
5413bool dc_abm_save_restore(
5414 struct dc *dc,
5415 struct dc_stream_state *stream,
5416 struct abm_save_restore *pData)
5417{
5418 int i;
5419 int edp_num;
5420 struct pipe_ctx *pipe = NULL;
5421 struct dc_link *link = stream->sink->link;
5422 struct dc_link *edp_links[MAX_NUM_EDP];
5423
5424 if (link->replay_settings.replay_feature_enabled)
5425 return false;
5426
5427 /*find primary pipe associated with stream*/
5428 for (i = 0; i < MAX_PIPES; i++) {
5429 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5430
5431 if (pipe->stream == stream && pipe->stream_res.tg)
5432 break;
5433 }
5434
5435 if (i == MAX_PIPES) {
5436 ASSERT(0);
5437 return false;
5438 }
5439
5440 dc_get_edp_links(dc, edp_links, edp_num: &edp_num);
5441
5442 /* Determine panel inst */
5443 for (i = 0; i < edp_num; i++)
5444 if (edp_links[i] == link)
5445 break;
5446
5447 if (i == edp_num)
5448 return false;
5449
5450 if (pipe->stream_res.abm &&
5451 pipe->stream_res.abm->funcs->save_restore)
5452 return pipe->stream_res.abm->funcs->save_restore(
5453 pipe->stream_res.abm,
5454 i,
5455 pData);
5456 return false;
5457}
5458
5459void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5460{
5461 unsigned int i;
5462 bool subvp_sw_cursor_req = false;
5463
5464 for (i = 0; i < dc->current_state->stream_count; i++) {
5465 if (check_subvp_sw_cursor_fallback_req(dc, stream: dc->current_state->streams[i])) {
5466 subvp_sw_cursor_req = true;
5467 break;
5468 }
5469 }
5470 properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
5471}
5472
5473/**
5474 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5475 *
5476 * Called when DM wants to power on/off eDP.
5477 * Only work on links with flag skip_implict_edp_power_control is set.
5478 *
5479 * @dc: Current DC state
5480 * @edp_link: a link with eDP connector signal type
5481 * @powerOn: power on/off eDP
5482 *
5483 * Return: void
5484 */
5485void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5486 bool powerOn)
5487{
5488 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5489 return;
5490
5491 if (edp_link->skip_implict_edp_power_control == false)
5492 return;
5493
5494 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5495}
5496
5497/*
5498 *****************************************************************************
5499 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
5500 *
5501 * Called when DM wants to make power policy decisions based on dc_state
5502 *
5503 *****************************************************************************
5504 */
5505struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
5506{
5507 struct dc_power_profile profile = { 0 };
5508
5509 profile.power_level += !context->bw_ctx.bw.dcn.clk.p_state_change_support;
5510
5511 return profile;
5512}
5513
5514

source code of linux/drivers/gpu/drm/amd/display/dc/core/dc.c