1// SPDX-License-Identifier: MIT
2/*
3 * Copyright © 2016 Intel Corporation
4 */
5
6#include <linux/string_helpers.h>
7
8#include <drm/drm_print.h>
9
10#include "gem/i915_gem_context.h"
11#include "gem/i915_gem_internal.h"
12#include "gt/intel_gt_print.h"
13#include "gt/intel_gt_regs.h"
14
15#include "i915_cmd_parser.h"
16#include "i915_drv.h"
17#include "i915_irq.h"
18#include "i915_reg.h"
19#include "intel_breadcrumbs.h"
20#include "intel_context.h"
21#include "intel_engine.h"
22#include "intel_engine_pm.h"
23#include "intel_engine_regs.h"
24#include "intel_engine_user.h"
25#include "intel_execlists_submission.h"
26#include "intel_gt.h"
27#include "intel_gt_mcr.h"
28#include "intel_gt_pm.h"
29#include "intel_gt_requests.h"
30#include "intel_lrc.h"
31#include "intel_lrc_reg.h"
32#include "intel_reset.h"
33#include "intel_ring.h"
34#include "uc/intel_guc_submission.h"
35
36/* Haswell does have the CXT_SIZE register however it does not appear to be
37 * valid. Now, docs explain in dwords what is in the context object. The full
38 * size is 70720 bytes, however, the power context and execlist context will
39 * never be saved (power context is stored elsewhere, and execlists don't work
40 * on HSW) - so the final size, including the extra state required for the
41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42 */
43#define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
44
45#define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
46#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
47#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
48#define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
49
50#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
51
52#define MAX_MMIO_BASES 3
53struct engine_info {
54 u8 class;
55 u8 instance;
56 /* mmio bases table *must* be sorted in reverse graphics_ver order */
57 struct engine_mmio_base {
58 u32 graphics_ver : 8;
59 u32 base : 24;
60 } mmio_bases[MAX_MMIO_BASES];
61};
62
63static const struct engine_info intel_engines[] = {
64 [RCS0] = {
65 .class = RENDER_CLASS,
66 .instance = 0,
67 .mmio_bases = {
68 { .graphics_ver = 1, .base = RENDER_RING_BASE }
69 },
70 },
71 [BCS0] = {
72 .class = COPY_ENGINE_CLASS,
73 .instance = 0,
74 .mmio_bases = {
75 { .graphics_ver = 6, .base = BLT_RING_BASE }
76 },
77 },
78 [BCS1] = {
79 .class = COPY_ENGINE_CLASS,
80 .instance = 1,
81 .mmio_bases = {
82 { .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 },
84 },
85 [BCS2] = {
86 .class = COPY_ENGINE_CLASS,
87 .instance = 2,
88 .mmio_bases = {
89 { .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 },
91 },
92 [BCS3] = {
93 .class = COPY_ENGINE_CLASS,
94 .instance = 3,
95 .mmio_bases = {
96 { .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 },
98 },
99 [BCS4] = {
100 .class = COPY_ENGINE_CLASS,
101 .instance = 4,
102 .mmio_bases = {
103 { .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 },
105 },
106 [BCS5] = {
107 .class = COPY_ENGINE_CLASS,
108 .instance = 5,
109 .mmio_bases = {
110 { .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 },
112 },
113 [BCS6] = {
114 .class = COPY_ENGINE_CLASS,
115 .instance = 6,
116 .mmio_bases = {
117 { .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 },
119 },
120 [BCS7] = {
121 .class = COPY_ENGINE_CLASS,
122 .instance = 7,
123 .mmio_bases = {
124 { .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 },
126 },
127 [BCS8] = {
128 .class = COPY_ENGINE_CLASS,
129 .instance = 8,
130 .mmio_bases = {
131 { .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 },
133 },
134 [VCS0] = {
135 .class = VIDEO_DECODE_CLASS,
136 .instance = 0,
137 .mmio_bases = {
138 { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 { .graphics_ver = 4, .base = BSD_RING_BASE }
141 },
142 },
143 [VCS1] = {
144 .class = VIDEO_DECODE_CLASS,
145 .instance = 1,
146 .mmio_bases = {
147 { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 },
150 },
151 [VCS2] = {
152 .class = VIDEO_DECODE_CLASS,
153 .instance = 2,
154 .mmio_bases = {
155 { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 },
157 },
158 [VCS3] = {
159 .class = VIDEO_DECODE_CLASS,
160 .instance = 3,
161 .mmio_bases = {
162 { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 },
164 },
165 [VCS4] = {
166 .class = VIDEO_DECODE_CLASS,
167 .instance = 4,
168 .mmio_bases = {
169 { .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 },
171 },
172 [VCS5] = {
173 .class = VIDEO_DECODE_CLASS,
174 .instance = 5,
175 .mmio_bases = {
176 { .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 },
178 },
179 [VCS6] = {
180 .class = VIDEO_DECODE_CLASS,
181 .instance = 6,
182 .mmio_bases = {
183 { .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 },
185 },
186 [VCS7] = {
187 .class = VIDEO_DECODE_CLASS,
188 .instance = 7,
189 .mmio_bases = {
190 { .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 },
192 },
193 [VECS0] = {
194 .class = VIDEO_ENHANCEMENT_CLASS,
195 .instance = 0,
196 .mmio_bases = {
197 { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 { .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 },
200 },
201 [VECS1] = {
202 .class = VIDEO_ENHANCEMENT_CLASS,
203 .instance = 1,
204 .mmio_bases = {
205 { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 },
207 },
208 [VECS2] = {
209 .class = VIDEO_ENHANCEMENT_CLASS,
210 .instance = 2,
211 .mmio_bases = {
212 { .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 },
214 },
215 [VECS3] = {
216 .class = VIDEO_ENHANCEMENT_CLASS,
217 .instance = 3,
218 .mmio_bases = {
219 { .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 },
221 },
222 [CCS0] = {
223 .class = COMPUTE_CLASS,
224 .instance = 0,
225 .mmio_bases = {
226 { .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 }
228 },
229 [CCS1] = {
230 .class = COMPUTE_CLASS,
231 .instance = 1,
232 .mmio_bases = {
233 { .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 }
235 },
236 [CCS2] = {
237 .class = COMPUTE_CLASS,
238 .instance = 2,
239 .mmio_bases = {
240 { .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 }
242 },
243 [CCS3] = {
244 .class = COMPUTE_CLASS,
245 .instance = 3,
246 .mmio_bases = {
247 { .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 }
249 },
250 [GSC0] = {
251 .class = OTHER_CLASS,
252 .instance = OTHER_GSC_INSTANCE,
253 .mmio_bases = {
254 { .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 }
256 },
257};
258
259/**
260 * intel_engine_context_size() - return the size of the context for an engine
261 * @gt: the gt
262 * @class: engine class
263 *
264 * Each engine class may require a different amount of space for a context
265 * image.
266 *
267 * Return: size (in bytes) of an engine class specific context image
268 *
269 * Note: this size includes the HWSP, which is part of the context image
270 * in LRC mode, but does not include the "shared data page" used with
271 * GuC submission. The caller should account for this if using the GuC.
272 */
273u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274{
275 struct intel_uncore *uncore = gt->uncore;
276 u32 cxt_size;
277
278 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279
280 switch (class) {
281 case COMPUTE_CLASS:
282 fallthrough;
283 case RENDER_CLASS:
284 switch (GRAPHICS_VER(gt->i915)) {
285 default:
286 MISSING_CASE(GRAPHICS_VER(gt->i915));
287 return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 case 12:
289 case 11:
290 return GEN11_LR_CONTEXT_RENDER_SIZE;
291 case 9:
292 return GEN9_LR_CONTEXT_RENDER_SIZE;
293 case 8:
294 return GEN8_LR_CONTEXT_RENDER_SIZE;
295 case 7:
296 if (IS_HASWELL(gt->i915))
297 return HSW_CXT_TOTAL_SIZE;
298
299 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 PAGE_SIZE);
302 case 6:
303 cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 PAGE_SIZE);
306 case 5:
307 case 4:
308 /*
309 * There is a discrepancy here between the size reported
310 * by the register and the size of the context layout
311 * in the docs. Both are described as authorative!
312 *
313 * The discrepancy is on the order of a few cachelines,
314 * but the total is under one page (4k), which is our
315 * minimum allocation anyway so it should all come
316 * out in the wash.
317 */
318 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 GRAPHICS_VER(gt->i915), cxt_size * 64,
321 cxt_size - 1);
322 return round_up(cxt_size * 64, PAGE_SIZE);
323 case 3:
324 case 2:
325 /* For the special day when i810 gets merged. */
326 case 1:
327 return 0;
328 }
329 break;
330 default:
331 MISSING_CASE(class);
332 fallthrough;
333 case VIDEO_DECODE_CLASS:
334 case VIDEO_ENHANCEMENT_CLASS:
335 case COPY_ENGINE_CLASS:
336 case OTHER_CLASS:
337 if (GRAPHICS_VER(gt->i915) < 8)
338 return 0;
339 return GEN8_LR_CONTEXT_OTHER_SIZE;
340 }
341}
342
343static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 const struct engine_mmio_base *bases)
345{
346 int i;
347
348 for (i = 0; i < MAX_MMIO_BASES; i++)
349 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350 break;
351
352 GEM_BUG_ON(i == MAX_MMIO_BASES);
353 GEM_BUG_ON(!bases[i].base);
354
355 return bases[i].base;
356}
357
358static void __sprint_engine_name(struct intel_engine_cs *engine)
359{
360 /*
361 * Before we know what the uABI name for this engine will be,
362 * we still would like to keep track of this engine in the debug logs.
363 * We throw in a ' here as a reminder that this isn't its final name.
364 */
365 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 intel_engine_class_repr(engine->class),
367 engine->instance) >= sizeof(engine->name));
368}
369
370void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371{
372 /*
373 * Though they added more rings on g4x/ilk, they did not add
374 * per-engine HWSTAM until gen6.
375 */
376 if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377 return;
378
379 if (GRAPHICS_VER(engine->i915) >= 3)
380 ENGINE_WRITE(engine, RING_HWSTAM, mask);
381 else
382 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383}
384
385static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386{
387 /* Mask off all writes into the unknown HWSP */
388 intel_engine_set_hwsp_writemask(engine, mask: ~0u);
389}
390
391static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392{
393 GEM_DEBUG_WARN_ON(iir);
394}
395
396static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397{
398 u32 reset_domain;
399
400 if (ver >= 11) {
401 static const u32 engine_reset_domains[] = {
402 [RCS0] = GEN11_GRDOM_RENDER,
403 [BCS0] = GEN11_GRDOM_BLT,
404 [BCS1] = XEHPC_GRDOM_BLT1,
405 [BCS2] = XEHPC_GRDOM_BLT2,
406 [BCS3] = XEHPC_GRDOM_BLT3,
407 [BCS4] = XEHPC_GRDOM_BLT4,
408 [BCS5] = XEHPC_GRDOM_BLT5,
409 [BCS6] = XEHPC_GRDOM_BLT6,
410 [BCS7] = XEHPC_GRDOM_BLT7,
411 [BCS8] = XEHPC_GRDOM_BLT8,
412 [VCS0] = GEN11_GRDOM_MEDIA,
413 [VCS1] = GEN11_GRDOM_MEDIA2,
414 [VCS2] = GEN11_GRDOM_MEDIA3,
415 [VCS3] = GEN11_GRDOM_MEDIA4,
416 [VCS4] = GEN11_GRDOM_MEDIA5,
417 [VCS5] = GEN11_GRDOM_MEDIA6,
418 [VCS6] = GEN11_GRDOM_MEDIA7,
419 [VCS7] = GEN11_GRDOM_MEDIA8,
420 [VECS0] = GEN11_GRDOM_VECS,
421 [VECS1] = GEN11_GRDOM_VECS2,
422 [VECS2] = GEN11_GRDOM_VECS3,
423 [VECS3] = GEN11_GRDOM_VECS4,
424 [CCS0] = GEN11_GRDOM_RENDER,
425 [CCS1] = GEN11_GRDOM_RENDER,
426 [CCS2] = GEN11_GRDOM_RENDER,
427 [CCS3] = GEN11_GRDOM_RENDER,
428 [GSC0] = GEN12_GRDOM_GSC,
429 };
430 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 !engine_reset_domains[id]);
432 reset_domain = engine_reset_domains[id];
433 } else {
434 static const u32 engine_reset_domains[] = {
435 [RCS0] = GEN6_GRDOM_RENDER,
436 [BCS0] = GEN6_GRDOM_BLT,
437 [VCS0] = GEN6_GRDOM_MEDIA,
438 [VCS1] = GEN8_GRDOM_MEDIA2,
439 [VECS0] = GEN6_GRDOM_VECS,
440 };
441 GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 !engine_reset_domains[id]);
443 reset_domain = engine_reset_domains[id];
444 }
445
446 return reset_domain;
447}
448
449static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450 u8 logical_instance)
451{
452 const struct engine_info *info = &intel_engines[id];
453 struct drm_i915_private *i915 = gt->i915;
454 struct intel_engine_cs *engine;
455 u8 guc_class;
456
457 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461
462 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463 return -EINVAL;
464
465 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466 return -EINVAL;
467
468 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469 return -EINVAL;
470
471 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472 return -EINVAL;
473
474 engine = kzalloc(size: sizeof(*engine), GFP_KERNEL);
475 if (!engine)
476 return -ENOMEM;
477
478 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479
480 INIT_LIST_HEAD(list: &engine->pinned_contexts_list);
481 engine->id = id;
482 engine->legacy_idx = INVALID_ENGINE;
483 engine->mask = BIT(id);
484 engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485 id);
486 engine->i915 = i915;
487 engine->gt = gt;
488 engine->uncore = gt->uncore;
489 guc_class = engine_class_to_guc_class(class: info->class);
490 engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 engine->mmio_base = __engine_mmio_base(i915, bases: info->mmio_bases);
492
493 engine->irq_handler = nop_irq_handler;
494
495 engine->class = info->class;
496 engine->instance = info->instance;
497 engine->logical_mask = BIT(logical_instance);
498 __sprint_engine_name(engine);
499
500 if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501 __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502 engine->class == RENDER_CLASS)
503 engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504
505 /* features common between engines sharing EUs */
506 if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507 engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508 engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509 }
510
511 engine->props.heartbeat_interval_ms =
512 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513 engine->props.max_busywait_duration_ns =
514 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515 engine->props.preempt_timeout_ms =
516 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517 engine->props.stop_timeout_ms =
518 CONFIG_DRM_I915_STOP_TIMEOUT;
519 engine->props.timeslice_duration_ms =
520 CONFIG_DRM_I915_TIMESLICE_DURATION;
521
522 /*
523 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524 * some compute workloads run quite long threads. That means they get
525 * reset due to not pre-empting in a timely manner. So, bump the
526 * pre-emption timeout value to be much higher for compute engines.
527 */
528 if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529 engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530
531 /* Cap properties according to any system limits */
532#define CLAMP_PROP(field) \
533 do { \
534 u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535 if (clamp != engine->props.field) { \
536 drm_notice(&engine->i915->drm, \
537 "Warning, clamping %s to %lld to prevent overflow\n", \
538 #field, clamp); \
539 engine->props.field = clamp; \
540 } \
541 } while (0)
542
543 CLAMP_PROP(heartbeat_interval_ms);
544 CLAMP_PROP(max_busywait_duration_ns);
545 CLAMP_PROP(preempt_timeout_ms);
546 CLAMP_PROP(stop_timeout_ms);
547 CLAMP_PROP(timeslice_duration_ms);
548
549#undef CLAMP_PROP
550
551 engine->defaults = engine->props; /* never to change again */
552
553 engine->context_size = intel_engine_context_size(gt, class: engine->class);
554 if (WARN_ON(engine->context_size > BIT(20)))
555 engine->context_size = 0;
556 if (engine->context_size)
557 DRIVER_CAPS(i915)->has_logical_contexts = true;
558
559 ewma__engine_latency_init(e: &engine->latency);
560
561 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
562
563 /* Scrub mmio state on takeover */
564 intel_engine_sanitize_mmio(engine);
565
566 gt->engine_class[info->class][info->instance] = engine;
567 gt->engine[id] = engine;
568
569 return 0;
570}
571
572u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
573{
574 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
575
576 return value;
577}
578
579u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
580{
581 value = min(value, jiffies_to_nsecs(2));
582
583 return value;
584}
585
586u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
587{
588 /*
589 * NB: The GuC API only supports 32bit values. However, the limit is further
590 * reduced due to internal calculations which would otherwise overflow.
591 */
592 if (intel_guc_submission_is_wanted(guc: &engine->gt->uc.guc))
593 value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
594
595 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
596
597 return value;
598}
599
600u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
601{
602 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
603
604 return value;
605}
606
607u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
608{
609 /*
610 * NB: The GuC API only supports 32bit values. However, the limit is further
611 * reduced due to internal calculations which would otherwise overflow.
612 */
613 if (intel_guc_submission_is_wanted(guc: &engine->gt->uc.guc))
614 value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
615
616 value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
617
618 return value;
619}
620
621static void __setup_engine_capabilities(struct intel_engine_cs *engine)
622{
623 struct drm_i915_private *i915 = engine->i915;
624
625 if (engine->class == VIDEO_DECODE_CLASS) {
626 /*
627 * HEVC support is present on first engine instance
628 * before Gen11 and on all instances afterwards.
629 */
630 if (GRAPHICS_VER(i915) >= 11 ||
631 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
632 engine->uabi_capabilities |=
633 I915_VIDEO_CLASS_CAPABILITY_HEVC;
634
635 /*
636 * SFC block is present only on even logical engine
637 * instances.
638 */
639 if ((GRAPHICS_VER(i915) >= 11 &&
640 (engine->gt->info.vdbox_sfc_access &
641 BIT(engine->instance))) ||
642 (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
643 engine->uabi_capabilities |=
644 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
645 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
646 if (GRAPHICS_VER(i915) >= 9 &&
647 engine->gt->info.sfc_mask & BIT(engine->instance))
648 engine->uabi_capabilities |=
649 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
650 }
651}
652
653static void intel_setup_engine_capabilities(struct intel_gt *gt)
654{
655 struct intel_engine_cs *engine;
656 enum intel_engine_id id;
657
658 for_each_engine(engine, gt, id)
659 __setup_engine_capabilities(engine);
660}
661
662/**
663 * intel_engines_release() - free the resources allocated for Command Streamers
664 * @gt: pointer to struct intel_gt
665 */
666void intel_engines_release(struct intel_gt *gt)
667{
668 struct intel_engine_cs *engine;
669 enum intel_engine_id id;
670
671 /*
672 * Before we release the resources held by engine, we must be certain
673 * that the HW is no longer accessing them -- having the GPU scribble
674 * to or read from a page being used for something else causes no end
675 * of fun.
676 *
677 * The GPU should be reset by this point, but assume the worst just
678 * in case we aborted before completely initialising the engines.
679 */
680 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
681 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
682 __intel_gt_reset(gt, ALL_ENGINES);
683
684 /* Decouple the backend; but keep the layout for late GPU resets */
685 for_each_engine(engine, gt, id) {
686 if (!engine->release)
687 continue;
688
689 intel_wakeref_wait_for_idle(wf: &engine->wakeref);
690 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
691
692 engine->release(engine);
693 engine->release = NULL;
694
695 memset(&engine->reset, 0, sizeof(engine->reset));
696 }
697}
698
699void intel_engine_free_request_pool(struct intel_engine_cs *engine)
700{
701 if (!engine->request_pool)
702 return;
703
704 kmem_cache_free(s: i915_request_slab_cache(), objp: engine->request_pool);
705}
706
707void intel_engines_free(struct intel_gt *gt)
708{
709 struct intel_engine_cs *engine;
710 enum intel_engine_id id;
711
712 /* Free the requests! dma-resv keeps fences around for an eternity */
713 rcu_barrier();
714
715 for_each_engine(engine, gt, id) {
716 intel_engine_free_request_pool(engine);
717 kfree(objp: engine);
718 gt->engine[id] = NULL;
719 }
720}
721
722static
723bool gen11_vdbox_has_sfc(struct intel_gt *gt,
724 unsigned int physical_vdbox,
725 unsigned int logical_vdbox, u16 vdbox_mask)
726{
727 struct drm_i915_private *i915 = gt->i915;
728
729 /*
730 * In Gen11, only even numbered logical VDBOXes are hooked
731 * up to an SFC (Scaler & Format Converter) unit.
732 * In Gen12, Even numbered physical instance always are connected
733 * to an SFC. Odd numbered physical instances have SFC only if
734 * previous even instance is fused off.
735 *
736 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
737 * in the fuse register that tells us whether a specific SFC is present.
738 */
739 if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
740 return false;
741 else if (MEDIA_VER(i915) >= 12)
742 return (physical_vdbox % 2 == 0) ||
743 !(BIT(physical_vdbox - 1) & vdbox_mask);
744 else if (MEDIA_VER(i915) == 11)
745 return logical_vdbox % 2 == 0;
746
747 return false;
748}
749
750static void engine_mask_apply_media_fuses(struct intel_gt *gt)
751{
752 struct drm_i915_private *i915 = gt->i915;
753 unsigned int logical_vdbox = 0;
754 unsigned int i;
755 u32 media_fuse, fuse1;
756 u16 vdbox_mask;
757 u16 vebox_mask;
758
759 if (MEDIA_VER(gt->i915) < 11)
760 return;
761
762 /*
763 * On newer platforms the fusing register is called 'enable' and has
764 * enable semantics, while on older platforms it is called 'disable'
765 * and bits have disable semantices.
766 */
767 media_fuse = intel_uncore_read(uncore: gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
768 if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
769 media_fuse = ~media_fuse;
770
771 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
772 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
773 GEN11_GT_VEBOX_DISABLE_SHIFT;
774
775 if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
776 fuse1 = intel_uncore_read(uncore: gt->uncore, HSW_PAVP_FUSE1);
777 gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
778 } else {
779 gt->info.sfc_mask = ~0;
780 }
781
782 for (i = 0; i < I915_MAX_VCS; i++) {
783 if (!HAS_ENGINE(gt, _VCS(i))) {
784 vdbox_mask &= ~BIT(i);
785 continue;
786 }
787
788 if (!(BIT(i) & vdbox_mask)) {
789 gt->info.engine_mask &= ~BIT(_VCS(i));
790 gt_dbg(gt, "vcs%u fused off\n", i);
791 continue;
792 }
793
794 if (gen11_vdbox_has_sfc(gt, physical_vdbox: i, logical_vdbox, vdbox_mask))
795 gt->info.vdbox_sfc_access |= BIT(i);
796 logical_vdbox++;
797 }
798 gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
799 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
800
801 for (i = 0; i < I915_MAX_VECS; i++) {
802 if (!HAS_ENGINE(gt, _VECS(i))) {
803 vebox_mask &= ~BIT(i);
804 continue;
805 }
806
807 if (!(BIT(i) & vebox_mask)) {
808 gt->info.engine_mask &= ~BIT(_VECS(i));
809 gt_dbg(gt, "vecs%u fused off\n", i);
810 }
811 }
812 gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
813 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
814}
815
816static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
817{
818 struct drm_i915_private *i915 = gt->i915;
819 struct intel_gt_info *info = &gt->info;
820 int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
821 unsigned long ccs_mask;
822 unsigned int i;
823
824 if (GRAPHICS_VER(i915) < 11)
825 return;
826
827 if (hweight32(CCS_MASK(gt)) <= 1)
828 return;
829
830 ccs_mask = intel_slicemask_from_xehp_dssmask(dss_mask: info->sseu.compute_subslice_mask,
831 dss_per_slice: ss_per_ccs);
832 /*
833 * If all DSS in a quadrant are fused off, the corresponding CCS
834 * engine is not available for use.
835 */
836 for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
837 info->engine_mask &= ~BIT(_CCS(i));
838 gt_dbg(gt, "ccs%u fused off\n", i);
839 }
840}
841
842static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
843{
844 struct drm_i915_private *i915 = gt->i915;
845 struct intel_gt_info *info = &gt->info;
846 unsigned long meml3_mask;
847 unsigned long quad;
848
849 if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
850 GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
851 return;
852
853 meml3_mask = intel_uncore_read(uncore: gt->uncore, GEN10_MIRROR_FUSE3);
854 meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
855
856 /*
857 * Link Copy engines may be fused off according to meml3_mask. Each
858 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
859 */
860 for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
861 unsigned int instance = quad * 2 + 1;
862 intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
863 _BCS(instance));
864
865 if (mask & info->engine_mask) {
866 gt_dbg(gt, "bcs%u fused off\n", instance);
867 gt_dbg(gt, "bcs%u fused off\n", instance + 1);
868
869 info->engine_mask &= ~mask;
870 }
871 }
872}
873
874/*
875 * Determine which engines are fused off in our particular hardware.
876 * Note that we have a catch-22 situation where we need to be able to access
877 * the blitter forcewake domain to read the engine fuses, but at the same time
878 * we need to know which engines are available on the system to know which
879 * forcewake domains are present. We solve this by intializing the forcewake
880 * domains based on the full engine mask in the platform capabilities before
881 * calling this function and pruning the domains for fused-off engines
882 * afterwards.
883 */
884static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
885{
886 struct intel_gt_info *info = &gt->info;
887
888 GEM_BUG_ON(!info->engine_mask);
889
890 engine_mask_apply_media_fuses(gt);
891 engine_mask_apply_compute_fuses(gt);
892 engine_mask_apply_copy_fuses(gt);
893
894 /*
895 * The only use of the GSC CS is to load and communicate with the GSC
896 * FW, so we have no use for it if we don't have the FW.
897 *
898 * IMPORTANT: in cases where we don't have the GSC FW, we have a
899 * catch-22 situation that breaks media C6 due to 2 requirements:
900 * 1) once turned on, the GSC power well will not go to sleep unless the
901 * GSC FW is loaded.
902 * 2) to enable idling (which is required for media C6) we need to
903 * initialize the IDLE_MSG register for the GSC CS and do at least 1
904 * submission, which will wake up the GSC power well.
905 */
906 if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(uc: &gt->uc)) {
907 gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
908 info->engine_mask &= ~BIT(GSC0);
909 }
910
911 /*
912 * Do not create the command streamer for CCS slices beyond the first.
913 * All the workload submitted to the first engine will be shared among
914 * all the slices.
915 *
916 * Once the user will be allowed to customize the CCS mode, then this
917 * check needs to be removed.
918 */
919 if (IS_DG2(gt->i915)) {
920 u8 first_ccs = __ffs(CCS_MASK(gt));
921
922 /* Mask off all the CCS engine */
923 info->engine_mask &= ~GENMASK(CCS3, CCS0);
924 /* Put back in the first CCS engine */
925 info->engine_mask |= BIT(_CCS(first_ccs));
926 }
927
928 return info->engine_mask;
929}
930
931static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
932 u8 class, const u8 *map, u8 num_instances)
933{
934 int i, j;
935 u8 current_logical_id = 0;
936
937 for (j = 0; j < num_instances; ++j) {
938 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
939 if (!HAS_ENGINE(gt, i) ||
940 intel_engines[i].class != class)
941 continue;
942
943 if (intel_engines[i].instance == map[j]) {
944 logical_ids[intel_engines[i].instance] =
945 current_logical_id++;
946 break;
947 }
948 }
949 }
950}
951
952static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
953{
954 /*
955 * Logical to physical mapping is needed for proper support
956 * to split-frame feature.
957 */
958 if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
959 const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
960
961 populate_logical_ids(gt, logical_ids, class,
962 map, ARRAY_SIZE(map));
963 } else {
964 int i;
965 u8 map[MAX_ENGINE_INSTANCE + 1];
966
967 for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
968 map[i] = i;
969 populate_logical_ids(gt, logical_ids, class,
970 map, ARRAY_SIZE(map));
971 }
972}
973
974/**
975 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
976 * @gt: pointer to struct intel_gt
977 *
978 * Return: non-zero if the initialization failed.
979 */
980int intel_engines_init_mmio(struct intel_gt *gt)
981{
982 struct drm_i915_private *i915 = gt->i915;
983 const unsigned int engine_mask = init_engine_mask(gt);
984 unsigned int mask = 0;
985 unsigned int i, class;
986 u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
987 int err;
988
989 drm_WARN_ON(&i915->drm, engine_mask == 0);
990 drm_WARN_ON(&i915->drm, engine_mask &
991 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
992
993 if (i915_inject_probe_failure(i915))
994 return -ENODEV;
995
996 for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
997 setup_logical_ids(gt, logical_ids, class);
998
999 for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
1000 u8 instance = intel_engines[i].instance;
1001
1002 if (intel_engines[i].class != class ||
1003 !HAS_ENGINE(gt, i))
1004 continue;
1005
1006 err = intel_engine_setup(gt, id: i,
1007 logical_instance: logical_ids[instance]);
1008 if (err)
1009 goto cleanup;
1010
1011 mask |= BIT(i);
1012 }
1013 }
1014
1015 /*
1016 * Catch failures to update intel_engines table when the new engines
1017 * are added to the driver by a warning and disabling the forgotten
1018 * engines.
1019 */
1020 if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1021 gt->info.engine_mask = mask;
1022
1023 gt->info.num_engines = hweight32(mask);
1024
1025 intel_gt_check_and_clear_faults(gt);
1026
1027 intel_setup_engine_capabilities(gt);
1028
1029 intel_uncore_prune_engine_fw_domains(uncore: gt->uncore, gt);
1030
1031 return 0;
1032
1033cleanup:
1034 intel_engines_free(gt);
1035 return err;
1036}
1037
1038void intel_engine_init_execlists(struct intel_engine_cs *engine)
1039{
1040 struct intel_engine_execlists * const execlists = &engine->execlists;
1041
1042 execlists->port_mask = 1;
1043 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1044 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1045
1046 memset(execlists->pending, 0, sizeof(execlists->pending));
1047 execlists->active =
1048 memset(execlists->inflight, 0, sizeof(execlists->inflight));
1049}
1050
1051static void cleanup_status_page(struct intel_engine_cs *engine)
1052{
1053 struct i915_vma *vma;
1054
1055 /* Prevent writes into HWSP after returning the page to the system */
1056 intel_engine_set_hwsp_writemask(engine, mask: ~0u);
1057
1058 vma = fetch_and_zero(&engine->status_page.vma);
1059 if (!vma)
1060 return;
1061
1062 if (!HWS_NEEDS_PHYSICAL(engine->i915))
1063 i915_vma_unpin(vma);
1064
1065 i915_gem_object_unpin_map(obj: vma->obj);
1066 i915_gem_object_put(obj: vma->obj);
1067}
1068
1069static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1070 struct i915_gem_ww_ctx *ww,
1071 struct i915_vma *vma)
1072{
1073 unsigned int flags;
1074
1075 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(ggtt: engine->gt->ggtt))
1076 /*
1077 * On g33, we cannot place HWS above 256MiB, so
1078 * restrict its pinning to the low mappable arena.
1079 * Though this restriction is not documented for
1080 * gen4, gen5, or byt, they also behave similarly
1081 * and hang if the HWS is placed at the top of the
1082 * GTT. To generalise, it appears that all !llc
1083 * platforms have issues with us placing the HWS
1084 * above the mappable region (even though we never
1085 * actually map it).
1086 */
1087 flags = PIN_MAPPABLE;
1088 else
1089 flags = PIN_HIGH;
1090
1091 return i915_ggtt_pin(vma, ww, align: 0, flags);
1092}
1093
1094static int init_status_page(struct intel_engine_cs *engine)
1095{
1096 struct drm_i915_gem_object *obj;
1097 struct i915_gem_ww_ctx ww;
1098 struct i915_vma *vma;
1099 void *vaddr;
1100 int ret;
1101
1102 INIT_LIST_HEAD(list: &engine->status_page.timelines);
1103
1104 /*
1105 * Though the HWS register does support 36bit addresses, historically
1106 * we have had hangs and corruption reported due to wild writes if
1107 * the HWS is placed above 4G. We only allow objects to be allocated
1108 * in GFP_DMA32 for i965, and no earlier physical address users had
1109 * access to more than 4G.
1110 */
1111 obj = i915_gem_object_create_internal(i915: engine->i915, PAGE_SIZE);
1112 if (IS_ERR(ptr: obj)) {
1113 gt_err(engine->gt, "Failed to allocate status page\n");
1114 return PTR_ERR(ptr: obj);
1115 }
1116
1117 i915_gem_object_set_cache_coherency(obj, cache_level: I915_CACHE_LLC);
1118
1119 vma = i915_vma_instance(obj, vm: &engine->gt->ggtt->vm, NULL);
1120 if (IS_ERR(ptr: vma)) {
1121 ret = PTR_ERR(ptr: vma);
1122 goto err_put;
1123 }
1124
1125 i915_gem_ww_ctx_init(ctx: &ww, intr: true);
1126retry:
1127 ret = i915_gem_object_lock(obj, ww: &ww);
1128 if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1129 ret = pin_ggtt_status_page(engine, ww: &ww, vma);
1130 if (ret)
1131 goto err;
1132
1133 vaddr = i915_gem_object_pin_map(obj, type: I915_MAP_WB);
1134 if (IS_ERR(ptr: vaddr)) {
1135 ret = PTR_ERR(ptr: vaddr);
1136 goto err_unpin;
1137 }
1138
1139 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1140 engine->status_page.vma = vma;
1141
1142err_unpin:
1143 if (ret)
1144 i915_vma_unpin(vma);
1145err:
1146 if (ret == -EDEADLK) {
1147 ret = i915_gem_ww_ctx_backoff(ctx: &ww);
1148 if (!ret)
1149 goto retry;
1150 }
1151 i915_gem_ww_ctx_fini(ctx: &ww);
1152err_put:
1153 if (ret)
1154 i915_gem_object_put(obj);
1155 return ret;
1156}
1157
1158static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1159{
1160 static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1161 [RENDER_CLASS].reg = GEN8_RTCR,
1162 [VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */
1163 [VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR,
1164 [COPY_ENGINE_CLASS].reg = GEN8_BTCR,
1165 };
1166 static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1167 [RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR,
1168 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1169 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1170 [COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR,
1171 [COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR,
1172 };
1173 static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1174 [RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR,
1175 [VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR,
1176 [VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1177 [COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR,
1178 [COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR,
1179 };
1180 static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1181 [VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
1182 [VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
1183 [OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR,
1184 };
1185 struct drm_i915_private *i915 = engine->i915;
1186 const unsigned int instance = engine->instance;
1187 const unsigned int class = engine->class;
1188 const union intel_engine_tlb_inv_reg *regs;
1189 union intel_engine_tlb_inv_reg reg;
1190 unsigned int num = 0;
1191 u32 val;
1192
1193 /*
1194 * New platforms should not be added with catch-all-newer (>=)
1195 * condition so that any later platform added triggers the below warning
1196 * and in turn mandates a human cross-check of whether the invalidation
1197 * flows have compatible semantics.
1198 *
1199 * For instance with the 11.00 -> 12.00 transition three out of five
1200 * respective engine registers were moved to masked type. Then after the
1201 * 12.00 -> 12.50 transition multi cast handling is required too.
1202 */
1203
1204 if (engine->gt->type == GT_MEDIA) {
1205 if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1206 regs = xelpmp_regs;
1207 num = ARRAY_SIZE(xelpmp_regs);
1208 }
1209 } else {
1210 if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1211 GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1212 GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1213 GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1214 GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1215 regs = xehp_regs;
1216 num = ARRAY_SIZE(xehp_regs);
1217 } else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1218 GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1219 regs = gen12_regs;
1220 num = ARRAY_SIZE(gen12_regs);
1221 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1222 regs = gen8_regs;
1223 num = ARRAY_SIZE(gen8_regs);
1224 } else if (GRAPHICS_VER(i915) < 8) {
1225 return 0;
1226 }
1227 }
1228
1229 if (gt_WARN_ONCE(engine->gt, !num,
1230 "Platform does not implement TLB invalidation!"))
1231 return -ENODEV;
1232
1233 if (gt_WARN_ON_ONCE(engine->gt,
1234 class >= num ||
1235 (!regs[class].reg.reg &&
1236 !regs[class].mcr_reg.reg)))
1237 return -ERANGE;
1238
1239 reg = regs[class];
1240
1241 if (regs == xelpmp_regs && class == OTHER_CLASS) {
1242 /*
1243 * There's only a single GSC instance, but it uses register bit
1244 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1245 */
1246 GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1247 val = 1;
1248 } else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1249 reg.reg = GEN8_M2TCR;
1250 val = 0;
1251 } else {
1252 val = instance;
1253 }
1254
1255 val = BIT(val);
1256
1257 engine->tlb_inv.mcr = regs == xehp_regs;
1258 engine->tlb_inv.reg = reg;
1259 engine->tlb_inv.done = val;
1260
1261 if (GRAPHICS_VER(i915) >= 12 &&
1262 (engine->class == VIDEO_DECODE_CLASS ||
1263 engine->class == VIDEO_ENHANCEMENT_CLASS ||
1264 engine->class == COMPUTE_CLASS ||
1265 engine->class == OTHER_CLASS))
1266 engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1267 else
1268 engine->tlb_inv.request = val;
1269
1270 return 0;
1271}
1272
1273static int engine_setup_common(struct intel_engine_cs *engine)
1274{
1275 int err;
1276
1277 init_llist_head(list: &engine->barrier_tasks);
1278
1279 err = intel_engine_init_tlb_invalidation(engine);
1280 if (err)
1281 return err;
1282
1283 err = init_status_page(engine);
1284 if (err)
1285 return err;
1286
1287 engine->breadcrumbs = intel_breadcrumbs_create(irq_engine: engine);
1288 if (!engine->breadcrumbs) {
1289 err = -ENOMEM;
1290 goto err_status;
1291 }
1292
1293 engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1294 if (!engine->sched_engine) {
1295 err = -ENOMEM;
1296 goto err_sched_engine;
1297 }
1298 engine->sched_engine->private_data = engine;
1299
1300 err = intel_engine_init_cmd_parser(engine);
1301 if (err)
1302 goto err_cmd_parser;
1303
1304 intel_engine_init_execlists(engine);
1305 intel_engine_init__pm(engine);
1306 intel_engine_init_retire(engine);
1307
1308 /* Use the whole device by default */
1309 engine->sseu =
1310 intel_sseu_from_device_info(sseu: &engine->gt->info.sseu);
1311
1312 intel_engine_init_workarounds(engine);
1313 intel_engine_init_whitelist(engine);
1314 intel_engine_init_ctx_wa(engine);
1315
1316 if (GRAPHICS_VER(engine->i915) >= 12)
1317 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1318
1319 return 0;
1320
1321err_cmd_parser:
1322 i915_sched_engine_put(sched_engine: engine->sched_engine);
1323err_sched_engine:
1324 intel_breadcrumbs_put(b: engine->breadcrumbs);
1325err_status:
1326 cleanup_status_page(engine);
1327 return err;
1328}
1329
1330struct measure_breadcrumb {
1331 struct i915_request rq;
1332 struct intel_ring ring;
1333 u32 cs[2048];
1334};
1335
1336static int measure_breadcrumb_dw(struct intel_context *ce)
1337{
1338 struct intel_engine_cs *engine = ce->engine;
1339 struct measure_breadcrumb *frame;
1340 int dw;
1341
1342 GEM_BUG_ON(!engine->gt->scratch);
1343
1344 frame = kzalloc(size: sizeof(*frame), GFP_KERNEL);
1345 if (!frame)
1346 return -ENOMEM;
1347
1348 frame->rq.i915 = engine->i915;
1349 frame->rq.engine = engine;
1350 frame->rq.context = ce;
1351 rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1352 frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1353
1354 frame->ring.vaddr = frame->cs;
1355 frame->ring.size = sizeof(frame->cs);
1356 frame->ring.wrap =
1357 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1358 frame->ring.effective_size = frame->ring.size;
1359 intel_ring_update_space(ring: &frame->ring);
1360 frame->rq.ring = &frame->ring;
1361
1362 mutex_lock(&ce->timeline->mutex);
1363 spin_lock_irq(lock: &engine->sched_engine->lock);
1364
1365 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1366
1367 spin_unlock_irq(lock: &engine->sched_engine->lock);
1368 mutex_unlock(lock: &ce->timeline->mutex);
1369
1370 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1371
1372 kfree(objp: frame);
1373 return dw;
1374}
1375
1376struct intel_context *
1377intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1378 struct i915_address_space *vm,
1379 unsigned int ring_size,
1380 unsigned int hwsp,
1381 struct lock_class_key *key,
1382 const char *name)
1383{
1384 struct intel_context *ce;
1385 int err;
1386
1387 ce = intel_context_create(engine);
1388 if (IS_ERR(ptr: ce))
1389 return ce;
1390
1391 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1392 ce->timeline = page_pack_bits(NULL, hwsp);
1393 ce->ring = NULL;
1394 ce->ring_size = ring_size;
1395
1396 i915_vm_put(vm: ce->vm);
1397 ce->vm = i915_vm_get(vm);
1398
1399 err = intel_context_pin(ce); /* perma-pin so it is always available */
1400 if (err) {
1401 intel_context_put(ce);
1402 return ERR_PTR(error: err);
1403 }
1404
1405 list_add_tail(new: &ce->pinned_contexts_link, head: &engine->pinned_contexts_list);
1406
1407 /*
1408 * Give our perma-pinned kernel timelines a separate lockdep class,
1409 * so that we can use them from within the normal user timelines
1410 * should we need to inject GPU operations during their request
1411 * construction.
1412 */
1413 lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1414
1415 return ce;
1416}
1417
1418void intel_engine_destroy_pinned_context(struct intel_context *ce)
1419{
1420 struct intel_engine_cs *engine = ce->engine;
1421 struct i915_vma *hwsp = engine->status_page.vma;
1422
1423 GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1424
1425 mutex_lock(&hwsp->vm->mutex);
1426 list_del(entry: &ce->timeline->engine_link);
1427 mutex_unlock(lock: &hwsp->vm->mutex);
1428
1429 list_del(entry: &ce->pinned_contexts_link);
1430 intel_context_unpin(ce);
1431 intel_context_put(ce);
1432}
1433
1434static struct intel_context *
1435create_ggtt_bind_context(struct intel_engine_cs *engine)
1436{
1437 static struct lock_class_key kernel;
1438
1439 /*
1440 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1441 * bind requets at a time so get a bigger ring.
1442 */
1443 return intel_engine_create_pinned_context(engine, vm: engine->gt->vm, SZ_512K,
1444 I915_GEM_HWS_GGTT_BIND_ADDR,
1445 key: &kernel, name: "ggtt_bind_context");
1446}
1447
1448static struct intel_context *
1449create_kernel_context(struct intel_engine_cs *engine)
1450{
1451 static struct lock_class_key kernel;
1452
1453 return intel_engine_create_pinned_context(engine, vm: engine->gt->vm, SZ_4K,
1454 I915_GEM_HWS_SEQNO_ADDR,
1455 key: &kernel, name: "kernel_context");
1456}
1457
1458/*
1459 * engine_init_common - initialize engine state which might require hw access
1460 * @engine: Engine to initialize.
1461 *
1462 * Initializes @engine@ structure members shared between legacy and execlists
1463 * submission modes which do require hardware access.
1464 *
1465 * Typcally done at later stages of submission mode specific engine setup.
1466 *
1467 * Returns zero on success or an error code on failure.
1468 */
1469static int engine_init_common(struct intel_engine_cs *engine)
1470{
1471 struct intel_context *ce, *bce = NULL;
1472 int ret;
1473
1474 engine->set_default_submission(engine);
1475
1476 /*
1477 * We may need to do things with the shrinker which
1478 * require us to immediately switch back to the default
1479 * context. This can cause a problem as pinning the
1480 * default context also requires GTT space which may not
1481 * be available. To avoid this we always pin the default
1482 * context.
1483 */
1484 ce = create_kernel_context(engine);
1485 if (IS_ERR(ptr: ce))
1486 return PTR_ERR(ptr: ce);
1487 /*
1488 * Create a separate pinned context for GGTT update with blitter engine
1489 * if a platform require such service. MI_UPDATE_GTT works on other
1490 * engines as well but BCS should be less busy engine so pick that for
1491 * GGTT updates.
1492 */
1493 if (i915_ggtt_require_binder(i915: engine->i915) && engine->id == BCS0) {
1494 bce = create_ggtt_bind_context(engine);
1495 if (IS_ERR(ptr: bce)) {
1496 ret = PTR_ERR(ptr: bce);
1497 goto err_ce_context;
1498 }
1499 }
1500
1501 ret = measure_breadcrumb_dw(ce);
1502 if (ret < 0)
1503 goto err_bce_context;
1504
1505 engine->emit_fini_breadcrumb_dw = ret;
1506 engine->kernel_context = ce;
1507 engine->bind_context = bce;
1508
1509 return 0;
1510
1511err_bce_context:
1512 if (bce)
1513 intel_engine_destroy_pinned_context(ce: bce);
1514err_ce_context:
1515 intel_engine_destroy_pinned_context(ce);
1516 return ret;
1517}
1518
1519int intel_engines_init(struct intel_gt *gt)
1520{
1521 int (*setup)(struct intel_engine_cs *engine);
1522 struct intel_engine_cs *engine;
1523 enum intel_engine_id id;
1524 int err;
1525
1526 if (intel_uc_uses_guc_submission(uc: &gt->uc)) {
1527 gt->submission_method = INTEL_SUBMISSION_GUC;
1528 setup = intel_guc_submission_setup;
1529 } else if (HAS_EXECLISTS(gt->i915)) {
1530 gt->submission_method = INTEL_SUBMISSION_ELSP;
1531 setup = intel_execlists_submission_setup;
1532 } else {
1533 gt->submission_method = INTEL_SUBMISSION_RING;
1534 setup = intel_ring_submission_setup;
1535 }
1536
1537 for_each_engine(engine, gt, id) {
1538 err = engine_setup_common(engine);
1539 if (err)
1540 return err;
1541
1542 err = setup(engine);
1543 if (err) {
1544 intel_engine_cleanup_common(engine);
1545 return err;
1546 }
1547
1548 /* The backend should now be responsible for cleanup */
1549 GEM_BUG_ON(engine->release == NULL);
1550
1551 err = engine_init_common(engine);
1552 if (err)
1553 return err;
1554
1555 intel_engine_add_user(engine);
1556 }
1557
1558 return 0;
1559}
1560
1561/**
1562 * intel_engine_cleanup_common - cleans up the engine state created by
1563 * the common initiailizers.
1564 * @engine: Engine to cleanup.
1565 *
1566 * This cleans up everything created by the common helpers.
1567 */
1568void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1569{
1570 GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1571
1572 i915_sched_engine_put(sched_engine: engine->sched_engine);
1573 intel_breadcrumbs_put(b: engine->breadcrumbs);
1574
1575 intel_engine_fini_retire(engine);
1576 intel_engine_cleanup_cmd_parser(engine);
1577
1578 if (engine->default_state)
1579 fput(engine->default_state);
1580
1581 if (engine->kernel_context)
1582 intel_engine_destroy_pinned_context(ce: engine->kernel_context);
1583
1584 if (engine->bind_context)
1585 intel_engine_destroy_pinned_context(ce: engine->bind_context);
1586
1587
1588 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1589 cleanup_status_page(engine);
1590
1591 intel_wa_list_free(wal: &engine->ctx_wa_list);
1592 intel_wa_list_free(wal: &engine->wa_list);
1593 intel_wa_list_free(wal: &engine->whitelist);
1594}
1595
1596/**
1597 * intel_engine_resume - re-initializes the HW state of the engine
1598 * @engine: Engine to resume.
1599 *
1600 * Returns zero on success or an error code on failure.
1601 */
1602int intel_engine_resume(struct intel_engine_cs *engine)
1603{
1604 intel_engine_apply_workarounds(engine);
1605 intel_engine_apply_whitelist(engine);
1606
1607 return engine->resume(engine);
1608}
1609
1610u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1611{
1612 struct drm_i915_private *i915 = engine->i915;
1613
1614 u64 acthd;
1615
1616 if (GRAPHICS_VER(i915) >= 8)
1617 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1618 else if (GRAPHICS_VER(i915) >= 4)
1619 acthd = ENGINE_READ(engine, RING_ACTHD);
1620 else
1621 acthd = ENGINE_READ(engine, ACTHD);
1622
1623 return acthd;
1624}
1625
1626u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1627{
1628 u64 bbaddr;
1629
1630 if (GRAPHICS_VER(engine->i915) >= 8)
1631 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1632 else
1633 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1634
1635 return bbaddr;
1636}
1637
1638static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1639{
1640 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1641 return 0;
1642
1643 /*
1644 * If we are doing a normal GPU reset, we can take our time and allow
1645 * the engine to quiesce. We've stopped submission to the engine, and
1646 * if we wait long enough an innocent context should complete and
1647 * leave the engine idle. So they should not be caught unaware by
1648 * the forthcoming GPU reset (which usually follows the stop_cs)!
1649 */
1650 return READ_ONCE(engine->props.stop_timeout_ms);
1651}
1652
1653static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1654 int fast_timeout_us,
1655 int slow_timeout_ms)
1656{
1657 struct intel_uncore *uncore = engine->uncore;
1658 const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1659 int err;
1660
1661 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1662
1663 /*
1664 * Wa_22011802037: Prior to doing a reset, ensure CS is
1665 * stopped, set ring stop bit and prefetch disable bit to halt CS
1666 */
1667 if (intel_engine_reset_needs_wa_22011802037(gt: engine->gt))
1668 intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1669 _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1670
1671 err = __intel_wait_for_register_fw(uncore: engine->uncore, reg: mode,
1672 MODE_IDLE, MODE_IDLE,
1673 fast_timeout_us,
1674 slow_timeout_ms,
1675 NULL);
1676
1677 /* A final mmio read to let GPU writes be hopefully flushed to memory */
1678 intel_uncore_posting_read_fw(uncore, mode);
1679 return err;
1680}
1681
1682int intel_engine_stop_cs(struct intel_engine_cs *engine)
1683{
1684 int err = 0;
1685
1686 if (GRAPHICS_VER(engine->i915) < 3)
1687 return -ENODEV;
1688
1689 ENGINE_TRACE(engine, "\n");
1690 /*
1691 * TODO: Find out why occasionally stopping the CS times out. Seen
1692 * especially with gem_eio tests.
1693 *
1694 * Occasionally trying to stop the cs times out, but does not adversely
1695 * affect functionality. The timeout is set as a config parameter that
1696 * defaults to 100ms. In most cases the follow up operation is to wait
1697 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1698 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1699 * caused, the caller must check and handle the return from this
1700 * function.
1701 */
1702 if (__intel_engine_stop_cs(engine, fast_timeout_us: 1000, slow_timeout_ms: stop_timeout(engine))) {
1703 ENGINE_TRACE(engine,
1704 "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1705 ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1706 ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1707
1708 /*
1709 * Sometimes we observe that the idle flag is not
1710 * set even though the ring is empty. So double
1711 * check before giving up.
1712 */
1713 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1714 (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1715 err = -ETIMEDOUT;
1716 }
1717
1718 return err;
1719}
1720
1721void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1722{
1723 ENGINE_TRACE(engine, "\n");
1724
1725 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1726}
1727
1728static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1729{
1730 static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1731 [RCS0] = MSG_IDLE_CS,
1732 [BCS0] = MSG_IDLE_BCS,
1733 [VCS0] = MSG_IDLE_VCS0,
1734 [VCS1] = MSG_IDLE_VCS1,
1735 [VCS2] = MSG_IDLE_VCS2,
1736 [VCS3] = MSG_IDLE_VCS3,
1737 [VCS4] = MSG_IDLE_VCS4,
1738 [VCS5] = MSG_IDLE_VCS5,
1739 [VCS6] = MSG_IDLE_VCS6,
1740 [VCS7] = MSG_IDLE_VCS7,
1741 [VECS0] = MSG_IDLE_VECS0,
1742 [VECS1] = MSG_IDLE_VECS1,
1743 [VECS2] = MSG_IDLE_VECS2,
1744 [VECS3] = MSG_IDLE_VECS3,
1745 [CCS0] = MSG_IDLE_CS,
1746 [CCS1] = MSG_IDLE_CS,
1747 [CCS2] = MSG_IDLE_CS,
1748 [CCS3] = MSG_IDLE_CS,
1749 };
1750 u32 val;
1751
1752 if (!_reg[engine->id].reg)
1753 return 0;
1754
1755 val = intel_uncore_read(uncore: engine->uncore, reg: _reg[engine->id]);
1756
1757 /* bits[29:25] & bits[13:9] >> shift */
1758 return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1759}
1760
1761static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1762{
1763 int ret;
1764
1765 /* Ensure GPM receives fw up/down after CS is stopped */
1766 udelay(1);
1767
1768 /* Wait for forcewake request to complete in GPM */
1769 ret = __intel_wait_for_register_fw(uncore: gt->uncore,
1770 GEN9_PWRGT_DOMAIN_STATUS,
1771 mask: fw_mask, value: fw_mask, fast_timeout_us: 5000, slow_timeout_ms: 0, NULL);
1772
1773 /* Ensure CS receives fw ack from GPM */
1774 udelay(1);
1775
1776 if (ret)
1777 GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1778}
1779
1780/*
1781 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1782 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1783 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1784 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1785 * are concerned only with the gt reset here, we use a logical OR of pending
1786 * forcewakeups from all reset domains and then wait for them to complete by
1787 * querying PWRGT_DOMAIN_STATUS.
1788 */
1789void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1790{
1791 u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1792
1793 if (fw_pending)
1794 __gpm_wait_for_fw_complete(gt: engine->gt, fw_mask: fw_pending);
1795}
1796
1797/* NB: please notice the memset */
1798void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1799 struct intel_instdone *instdone)
1800{
1801 struct drm_i915_private *i915 = engine->i915;
1802 struct intel_uncore *uncore = engine->uncore;
1803 u32 mmio_base = engine->mmio_base;
1804 int slice;
1805 int subslice;
1806 int iter;
1807
1808 memset(instdone, 0, sizeof(*instdone));
1809
1810 if (GRAPHICS_VER(i915) >= 8) {
1811 instdone->instdone =
1812 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1813
1814 if (engine->id != RCS0)
1815 return;
1816
1817 instdone->slice_common =
1818 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1819 if (GRAPHICS_VER(i915) >= 12) {
1820 instdone->slice_common_extra[0] =
1821 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1822 instdone->slice_common_extra[1] =
1823 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1824 }
1825
1826 for_each_ss_steering(iter, engine->gt, slice, subslice) {
1827 instdone->sampler[slice][subslice] =
1828 intel_gt_mcr_read(gt: engine->gt,
1829 GEN8_SAMPLER_INSTDONE,
1830 group: slice, instance: subslice);
1831 instdone->row[slice][subslice] =
1832 intel_gt_mcr_read(gt: engine->gt,
1833 GEN8_ROW_INSTDONE,
1834 group: slice, instance: subslice);
1835 }
1836
1837 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1838 for_each_ss_steering(iter, engine->gt, slice, subslice)
1839 instdone->geom_svg[slice][subslice] =
1840 intel_gt_mcr_read(gt: engine->gt,
1841 XEHPG_INSTDONE_GEOM_SVG,
1842 group: slice, instance: subslice);
1843 }
1844 } else if (GRAPHICS_VER(i915) >= 7) {
1845 instdone->instdone =
1846 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1847
1848 if (engine->id != RCS0)
1849 return;
1850
1851 instdone->slice_common =
1852 intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1853 instdone->sampler[0][0] =
1854 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1855 instdone->row[0][0] =
1856 intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1857 } else if (GRAPHICS_VER(i915) >= 4) {
1858 instdone->instdone =
1859 intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1860 if (engine->id == RCS0)
1861 /* HACK: Using the wrong struct member */
1862 instdone->slice_common =
1863 intel_uncore_read(uncore, GEN4_INSTDONE1);
1864 } else {
1865 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1866 }
1867}
1868
1869static bool ring_is_idle(struct intel_engine_cs *engine)
1870{
1871 bool idle = true;
1872
1873 if (I915_SELFTEST_ONLY(!engine->mmio_base))
1874 return true;
1875
1876 if (!intel_engine_pm_get_if_awake(engine))
1877 return true;
1878
1879 /* First check that no commands are left in the ring */
1880 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1881 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1882 idle = false;
1883
1884 /* No bit for gen2, so assume the CS parser is idle */
1885 if (GRAPHICS_VER(engine->i915) > 2 &&
1886 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1887 idle = false;
1888
1889 intel_engine_pm_put(engine);
1890
1891 return idle;
1892}
1893
1894void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1895{
1896 struct tasklet_struct *t = &engine->sched_engine->tasklet;
1897
1898 if (!t->callback)
1899 return;
1900
1901 local_bh_disable();
1902 if (tasklet_trylock(t)) {
1903 /* Must wait for any GPU reset in progress. */
1904 if (__tasklet_is_enabled(t))
1905 t->callback(t);
1906 tasklet_unlock(t);
1907 }
1908 local_bh_enable();
1909
1910 /* Synchronise and wait for the tasklet on another CPU */
1911 if (sync)
1912 tasklet_unlock_wait(t);
1913}
1914
1915/**
1916 * intel_engine_is_idle() - Report if the engine has finished process all work
1917 * @engine: the intel_engine_cs
1918 *
1919 * Return true if there are no requests pending, nothing left to be submitted
1920 * to hardware, and that the engine is idle.
1921 */
1922bool intel_engine_is_idle(struct intel_engine_cs *engine)
1923{
1924 /* More white lies, if wedged, hw state is inconsistent */
1925 if (intel_gt_is_wedged(gt: engine->gt))
1926 return true;
1927
1928 if (!intel_engine_pm_is_awake(engine))
1929 return true;
1930
1931 /* Waiting to drain ELSP? */
1932 intel_synchronize_hardirq(i915: engine->i915);
1933 intel_engine_flush_submission(engine);
1934
1935 /* ELSP is empty, but there are ready requests? E.g. after reset */
1936 if (!i915_sched_engine_is_empty(sched_engine: engine->sched_engine))
1937 return false;
1938
1939 /* Ring stopped? */
1940 return ring_is_idle(engine);
1941}
1942
1943bool intel_engines_are_idle(struct intel_gt *gt)
1944{
1945 struct intel_engine_cs *engine;
1946 enum intel_engine_id id;
1947
1948 /*
1949 * If the driver is wedged, HW state may be very inconsistent and
1950 * report that it is still busy, even though we have stopped using it.
1951 */
1952 if (intel_gt_is_wedged(gt))
1953 return true;
1954
1955 /* Already parked (and passed an idleness test); must still be idle */
1956 if (!READ_ONCE(gt->awake))
1957 return true;
1958
1959 for_each_engine(engine, gt, id) {
1960 if (!intel_engine_is_idle(engine))
1961 return false;
1962 }
1963
1964 return true;
1965}
1966
1967bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1968{
1969 if (!engine->irq_enable)
1970 return false;
1971
1972 /* Caller disables interrupts */
1973 spin_lock(lock: engine->gt->irq_lock);
1974 engine->irq_enable(engine);
1975 spin_unlock(lock: engine->gt->irq_lock);
1976
1977 return true;
1978}
1979
1980void intel_engine_irq_disable(struct intel_engine_cs *engine)
1981{
1982 if (!engine->irq_disable)
1983 return;
1984
1985 /* Caller disables interrupts */
1986 spin_lock(lock: engine->gt->irq_lock);
1987 engine->irq_disable(engine);
1988 spin_unlock(lock: engine->gt->irq_lock);
1989}
1990
1991void intel_engines_reset_default_submission(struct intel_gt *gt)
1992{
1993 struct intel_engine_cs *engine;
1994 enum intel_engine_id id;
1995
1996 for_each_engine(engine, gt, id) {
1997 if (engine->sanitize)
1998 engine->sanitize(engine);
1999
2000 engine->set_default_submission(engine);
2001 }
2002}
2003
2004bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
2005{
2006 switch (GRAPHICS_VER(engine->i915)) {
2007 case 2:
2008 return false; /* uses physical not virtual addresses */
2009 case 3:
2010 /* maybe only uses physical not virtual addresses */
2011 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
2012 case 4:
2013 return !IS_I965G(engine->i915); /* who knows! */
2014 case 6:
2015 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
2016 default:
2017 return true;
2018 }
2019}
2020
2021static struct intel_timeline *get_timeline(struct i915_request *rq)
2022{
2023 struct intel_timeline *tl;
2024
2025 /*
2026 * Even though we are holding the engine->sched_engine->lock here, there
2027 * is no control over the submission queue per-se and we are
2028 * inspecting the active state at a random point in time, with an
2029 * unknown queue. Play safe and make sure the timeline remains valid.
2030 * (Only being used for pretty printing, one extra kref shouldn't
2031 * cause a camel stampede!)
2032 */
2033 rcu_read_lock();
2034 tl = rcu_dereference(rq->timeline);
2035 if (!kref_get_unless_zero(kref: &tl->kref))
2036 tl = NULL;
2037 rcu_read_unlock();
2038
2039 return tl;
2040}
2041
2042static int print_ring(char *buf, int sz, struct i915_request *rq)
2043{
2044 int len = 0;
2045
2046 if (!i915_request_signaled(rq)) {
2047 struct intel_timeline *tl = get_timeline(rq);
2048
2049 len = scnprintf(buf, size: sz,
2050 fmt: "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2051 i915_ggtt_offset(vma: rq->ring->vma),
2052 tl ? tl->hwsp_offset : 0,
2053 hwsp_seqno(rq),
2054 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2055 1000 * 1000));
2056
2057 if (tl)
2058 intel_timeline_put(timeline: tl);
2059 }
2060
2061 return len;
2062}
2063
2064static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2065{
2066 const size_t rowsize = 8 * sizeof(u32);
2067 const void *prev = NULL;
2068 bool skip = false;
2069 size_t pos;
2070
2071 for (pos = 0; pos < len; pos += rowsize) {
2072 char line[128];
2073
2074 if (prev && !memcmp(p: prev, q: buf + pos, size: rowsize)) {
2075 if (!skip) {
2076 drm_printf(p: m, f: "*\n");
2077 skip = true;
2078 }
2079 continue;
2080 }
2081
2082 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2083 rowsize, sizeof(u32),
2084 line, sizeof(line),
2085 false) >= sizeof(line));
2086 drm_printf(p: m, f: "[%04zx] %s\n", pos, line);
2087
2088 prev = buf + pos;
2089 skip = false;
2090 }
2091}
2092
2093static const char *repr_timer(const struct timer_list *t)
2094{
2095 if (!READ_ONCE(t->expires))
2096 return "inactive";
2097
2098 if (timer_pending(timer: t))
2099 return "active";
2100
2101 return "expired";
2102}
2103
2104static void intel_engine_print_registers(struct intel_engine_cs *engine,
2105 struct drm_printer *m)
2106{
2107 struct drm_i915_private *i915 = engine->i915;
2108 struct intel_engine_execlists * const execlists = &engine->execlists;
2109 u64 addr;
2110
2111 if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2112 drm_printf(p: m, f: "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2113 if (HAS_EXECLISTS(i915)) {
2114 drm_printf(p: m, f: "\tEL_STAT_HI: 0x%08x\n",
2115 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2116 drm_printf(p: m, f: "\tEL_STAT_LO: 0x%08x\n",
2117 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2118 }
2119 drm_printf(p: m, f: "\tRING_START: 0x%08x\n",
2120 ENGINE_READ(engine, RING_START));
2121 drm_printf(p: m, f: "\tRING_HEAD: 0x%08x\n",
2122 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2123 drm_printf(p: m, f: "\tRING_TAIL: 0x%08x\n",
2124 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2125 drm_printf(p: m, f: "\tRING_CTL: 0x%08x%s\n",
2126 ENGINE_READ(engine, RING_CTL),
2127 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2128 if (GRAPHICS_VER(engine->i915) > 2) {
2129 drm_printf(p: m, f: "\tRING_MODE: 0x%08x%s\n",
2130 ENGINE_READ(engine, RING_MI_MODE),
2131 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2132 }
2133
2134 if (GRAPHICS_VER(i915) >= 6) {
2135 drm_printf(p: m, f: "\tRING_IMR: 0x%08x\n",
2136 ENGINE_READ(engine, RING_IMR));
2137 drm_printf(p: m, f: "\tRING_ESR: 0x%08x\n",
2138 ENGINE_READ(engine, RING_ESR));
2139 drm_printf(p: m, f: "\tRING_EMR: 0x%08x\n",
2140 ENGINE_READ(engine, RING_EMR));
2141 drm_printf(p: m, f: "\tRING_EIR: 0x%08x\n",
2142 ENGINE_READ(engine, RING_EIR));
2143 }
2144
2145 addr = intel_engine_get_active_head(engine);
2146 drm_printf(p: m, f: "\tACTHD: 0x%08x_%08x\n",
2147 upper_32_bits(addr), lower_32_bits(addr));
2148 addr = intel_engine_get_last_batch_head(engine);
2149 drm_printf(p: m, f: "\tBBADDR: 0x%08x_%08x\n",
2150 upper_32_bits(addr), lower_32_bits(addr));
2151 if (GRAPHICS_VER(i915) >= 8)
2152 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2153 else if (GRAPHICS_VER(i915) >= 4)
2154 addr = ENGINE_READ(engine, RING_DMA_FADD);
2155 else
2156 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2157 drm_printf(p: m, f: "\tDMA_FADDR: 0x%08x_%08x\n",
2158 upper_32_bits(addr), lower_32_bits(addr));
2159 if (GRAPHICS_VER(i915) >= 4) {
2160 drm_printf(p: m, f: "\tIPEIR: 0x%08x\n",
2161 ENGINE_READ(engine, RING_IPEIR));
2162 drm_printf(p: m, f: "\tIPEHR: 0x%08x\n",
2163 ENGINE_READ(engine, RING_IPEHR));
2164 } else {
2165 drm_printf(p: m, f: "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2166 drm_printf(p: m, f: "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2167 }
2168
2169 if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2170 struct i915_request * const *port, *rq;
2171 const u32 *hws =
2172 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2173 const u8 num_entries = execlists->csb_size;
2174 unsigned int idx;
2175 u8 read, write;
2176
2177 drm_printf(p: m, f: "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2178 str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2179 str_enabled_disabled(v: !atomic_read(v: &engine->sched_engine->tasklet.count)),
2180 repr_timer(t: &engine->execlists.preempt),
2181 repr_timer(t: &engine->execlists.timer));
2182
2183 read = execlists->csb_head;
2184 write = READ_ONCE(*execlists->csb_write);
2185
2186 drm_printf(p: m, f: "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2187 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2188 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2189 read, write, num_entries);
2190
2191 if (read >= num_entries)
2192 read = 0;
2193 if (write >= num_entries)
2194 write = 0;
2195 if (read > write)
2196 write += num_entries;
2197 while (read < write) {
2198 idx = ++read % num_entries;
2199 drm_printf(p: m, f: "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2200 idx, hws[idx * 2], hws[idx * 2 + 1]);
2201 }
2202
2203 i915_sched_engine_active_lock_bh(sched_engine: engine->sched_engine);
2204 rcu_read_lock();
2205 for (port = execlists->active; (rq = *port); port++) {
2206 char hdr[160];
2207 int len;
2208
2209 len = scnprintf(buf: hdr, size: sizeof(hdr),
2210 fmt: "\t\tActive[%d]: ccid:%08x%s%s, ",
2211 (int)(port - execlists->active),
2212 rq->context->lrc.ccid,
2213 intel_context_is_closed(ce: rq->context) ? "!" : "",
2214 intel_context_is_banned(ce: rq->context) ? "*" : "");
2215 len += print_ring(buf: hdr + len, sz: sizeof(hdr) - len, rq);
2216 scnprintf(buf: hdr + len, size: sizeof(hdr) - len, fmt: "rq: ");
2217 i915_request_show(m, rq, prefix: hdr, indent: 0);
2218 }
2219 for (port = execlists->pending; (rq = *port); port++) {
2220 char hdr[160];
2221 int len;
2222
2223 len = scnprintf(buf: hdr, size: sizeof(hdr),
2224 fmt: "\t\tPending[%d]: ccid:%08x%s%s, ",
2225 (int)(port - execlists->pending),
2226 rq->context->lrc.ccid,
2227 intel_context_is_closed(ce: rq->context) ? "!" : "",
2228 intel_context_is_banned(ce: rq->context) ? "*" : "");
2229 len += print_ring(buf: hdr + len, sz: sizeof(hdr) - len, rq);
2230 scnprintf(buf: hdr + len, size: sizeof(hdr) - len, fmt: "rq: ");
2231 i915_request_show(m, rq, prefix: hdr, indent: 0);
2232 }
2233 rcu_read_unlock();
2234 i915_sched_engine_active_unlock_bh(sched_engine: engine->sched_engine);
2235 } else if (GRAPHICS_VER(i915) > 6) {
2236 drm_printf(p: m, f: "\tPP_DIR_BASE: 0x%08x\n",
2237 ENGINE_READ(engine, RING_PP_DIR_BASE));
2238 drm_printf(p: m, f: "\tPP_DIR_BASE_READ: 0x%08x\n",
2239 ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2240 drm_printf(p: m, f: "\tPP_DIR_DCLV: 0x%08x\n",
2241 ENGINE_READ(engine, RING_PP_DIR_DCLV));
2242 }
2243}
2244
2245static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2246{
2247 struct i915_vma_resource *vma_res = rq->batch_res;
2248 void *ring;
2249 int size;
2250
2251 drm_printf(p: m,
2252 f: "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2253 rq->head, rq->postfix, rq->tail,
2254 vma_res ? upper_32_bits(vma_res->start) : ~0u,
2255 vma_res ? lower_32_bits(vma_res->start) : ~0u);
2256
2257 size = rq->tail - rq->head;
2258 if (rq->tail < rq->head)
2259 size += rq->ring->size;
2260
2261 ring = kmalloc(size, GFP_ATOMIC);
2262 if (ring) {
2263 const void *vaddr = rq->ring->vaddr;
2264 unsigned int head = rq->head;
2265 unsigned int len = 0;
2266
2267 if (rq->tail < head) {
2268 len = rq->ring->size - head;
2269 memcpy(ring, vaddr + head, len);
2270 head = 0;
2271 }
2272 memcpy(ring + len, vaddr + head, size - len);
2273
2274 hexdump(m, buf: ring, len: size);
2275 kfree(objp: ring);
2276 }
2277}
2278
2279static unsigned long read_ul(void *p, size_t x)
2280{
2281 return *(unsigned long *)(p + x);
2282}
2283
2284static void print_properties(struct intel_engine_cs *engine,
2285 struct drm_printer *m)
2286{
2287 static const struct pmap {
2288 size_t offset;
2289 const char *name;
2290 } props[] = {
2291#define P(x) { \
2292 .offset = offsetof(typeof(engine->props), x), \
2293 .name = #x \
2294}
2295 P(heartbeat_interval_ms),
2296 P(max_busywait_duration_ns),
2297 P(preempt_timeout_ms),
2298 P(stop_timeout_ms),
2299 P(timeslice_duration_ms),
2300
2301 {},
2302#undef P
2303 };
2304 const struct pmap *p;
2305
2306 drm_printf(p: m, f: "\tProperties:\n");
2307 for (p = props; p->name; p++)
2308 drm_printf(p: m, f: "\t\t%s: %lu [default %lu]\n",
2309 p->name,
2310 read_ul(p: &engine->props, x: p->offset),
2311 read_ul(p: &engine->defaults, x: p->offset));
2312}
2313
2314static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2315{
2316 struct intel_timeline *tl = get_timeline(rq);
2317
2318 i915_request_show(m, rq, prefix: msg, indent: 0);
2319
2320 drm_printf(p: m, f: "\t\tring->start: 0x%08x\n",
2321 i915_ggtt_offset(vma: rq->ring->vma));
2322 drm_printf(p: m, f: "\t\tring->head: 0x%08x\n",
2323 rq->ring->head);
2324 drm_printf(p: m, f: "\t\tring->tail: 0x%08x\n",
2325 rq->ring->tail);
2326 drm_printf(p: m, f: "\t\tring->emit: 0x%08x\n",
2327 rq->ring->emit);
2328 drm_printf(p: m, f: "\t\tring->space: 0x%08x\n",
2329 rq->ring->space);
2330
2331 if (tl) {
2332 drm_printf(p: m, f: "\t\tring->hwsp: 0x%08x\n",
2333 tl->hwsp_offset);
2334 intel_timeline_put(timeline: tl);
2335 }
2336
2337 print_request_ring(m, rq);
2338
2339 if (rq->context->lrc_reg_state) {
2340 drm_printf(p: m, f: "Logical Ring Context:\n");
2341 hexdump(m, buf: rq->context->lrc_reg_state, PAGE_SIZE);
2342 }
2343}
2344
2345void intel_engine_dump_active_requests(struct list_head *requests,
2346 struct i915_request *hung_rq,
2347 struct drm_printer *m)
2348{
2349 struct i915_request *rq;
2350 const char *msg;
2351 enum i915_request_state state;
2352
2353 list_for_each_entry(rq, requests, sched.link) {
2354 if (rq == hung_rq)
2355 continue;
2356
2357 state = i915_test_request_state(rq);
2358 if (state < I915_REQUEST_QUEUED)
2359 continue;
2360
2361 if (state == I915_REQUEST_ACTIVE)
2362 msg = "\t\tactive on engine";
2363 else
2364 msg = "\t\tactive in queue";
2365
2366 engine_dump_request(rq, m, msg);
2367 }
2368}
2369
2370static void engine_dump_active_requests(struct intel_engine_cs *engine,
2371 struct drm_printer *m)
2372{
2373 struct intel_context *hung_ce = NULL;
2374 struct i915_request *hung_rq = NULL;
2375
2376 /*
2377 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2378 * The GPU is still running so requests are still executing and any
2379 * hardware reads will be out of date by the time they are reported.
2380 * But the intention here is just to report an instantaneous snapshot
2381 * so that's fine.
2382 */
2383 intel_engine_get_hung_entity(engine, ce: &hung_ce, rq: &hung_rq);
2384
2385 drm_printf(p: m, f: "\tRequests:\n");
2386
2387 if (hung_rq)
2388 engine_dump_request(rq: hung_rq, m, msg: "\t\thung");
2389 else if (hung_ce)
2390 drm_printf(p: m, f: "\t\tGot hung ce but no hung rq!\n");
2391
2392 if (intel_uc_uses_guc_submission(uc: &engine->gt->uc))
2393 intel_guc_dump_active_requests(engine, hung_rq, m);
2394 else
2395 intel_execlists_dump_active_requests(engine, hung_rq, m);
2396
2397 if (hung_rq)
2398 i915_request_put(rq: hung_rq);
2399}
2400
2401void intel_engine_dump(struct intel_engine_cs *engine,
2402 struct drm_printer *m,
2403 const char *header, ...)
2404{
2405 struct i915_gpu_error * const error = &engine->i915->gpu_error;
2406 struct i915_request *rq;
2407 intel_wakeref_t wakeref;
2408 ktime_t dummy;
2409
2410 if (header) {
2411 va_list ap;
2412
2413 va_start(ap, header);
2414 drm_vprintf(p: m, fmt: header, va: &ap);
2415 va_end(ap);
2416 }
2417
2418 if (intel_gt_is_wedged(gt: engine->gt))
2419 drm_printf(p: m, f: "*** WEDGED ***\n");
2420
2421 drm_printf(p: m, f: "\tAwake? %d\n", atomic_read(v: &engine->wakeref.count));
2422 drm_printf(p: m, f: "\tBarriers?: %s\n",
2423 str_yes_no(v: !llist_empty(head: &engine->barrier_tasks)));
2424 drm_printf(p: m, f: "\tLatency: %luus\n",
2425 ewma__engine_latency_read(e: &engine->latency));
2426 if (intel_engine_supports_stats(engine))
2427 drm_printf(p: m, f: "\tRuntime: %llums\n",
2428 ktime_to_ms(kt: intel_engine_get_busy_time(engine,
2429 now: &dummy)));
2430 drm_printf(p: m, f: "\tForcewake: %x domains, %d active\n",
2431 engine->fw_domain, READ_ONCE(engine->fw_active));
2432
2433 rcu_read_lock();
2434 rq = READ_ONCE(engine->heartbeat.systole);
2435 if (rq)
2436 drm_printf(p: m, f: "\tHeartbeat: %d ms ago\n",
2437 jiffies_to_msecs(j: jiffies - rq->emitted_jiffies));
2438 rcu_read_unlock();
2439 drm_printf(p: m, f: "\tReset count: %d (global %d)\n",
2440 i915_reset_engine_count(error, engine),
2441 i915_reset_count(error));
2442 print_properties(engine, m);
2443
2444 engine_dump_active_requests(engine, m);
2445
2446 drm_printf(p: m, f: "\tMMIO base: 0x%08x\n", engine->mmio_base);
2447 wakeref = intel_runtime_pm_get_if_in_use(rpm: engine->uncore->rpm);
2448 if (wakeref) {
2449 intel_engine_print_registers(engine, m);
2450 intel_runtime_pm_put(rpm: engine->uncore->rpm, wref: wakeref);
2451 } else {
2452 drm_printf(p: m, f: "\tDevice is asleep; skipping register dump\n");
2453 }
2454
2455 intel_execlists_show_requests(engine, m, show_request: i915_request_show, max: 8);
2456
2457 drm_printf(p: m, f: "HWSP:\n");
2458 hexdump(m, buf: engine->status_page.addr, PAGE_SIZE);
2459
2460 drm_printf(p: m, f: "Idle? %s\n", str_yes_no(v: intel_engine_is_idle(engine)));
2461
2462 intel_engine_print_breadcrumbs(engine, p: m);
2463}
2464
2465/**
2466 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2467 * @engine: engine to report on
2468 * @now: monotonic timestamp of sampling
2469 *
2470 * Returns accumulated time @engine was busy since engine stats were enabled.
2471 */
2472ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2473{
2474 return engine->busyness(engine, now);
2475}
2476
2477struct intel_context *
2478intel_engine_create_virtual(struct intel_engine_cs **siblings,
2479 unsigned int count, unsigned long flags)
2480{
2481 if (count == 0)
2482 return ERR_PTR(error: -EINVAL);
2483
2484 if (count == 1 && !(flags & FORCE_VIRTUAL))
2485 return intel_context_create(engine: siblings[0]);
2486
2487 GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2488 return siblings[0]->cops->create_virtual(siblings, count, flags);
2489}
2490
2491static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2492{
2493 struct i915_request *request, *active = NULL;
2494
2495 /*
2496 * This search does not work in GuC submission mode. However, the GuC
2497 * will report the hanging context directly to the driver itself. So
2498 * the driver should never get here when in GuC mode.
2499 */
2500 GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2501
2502 /*
2503 * We are called by the error capture, reset and to dump engine
2504 * state at random points in time. In particular, note that neither is
2505 * crucially ordered with an interrupt. After a hang, the GPU is dead
2506 * and we assume that no more writes can happen (we waited long enough
2507 * for all writes that were in transaction to be flushed) - adding an
2508 * extra delay for a recent interrupt is pointless. Hence, we do
2509 * not need an engine->irq_seqno_barrier() before the seqno reads.
2510 * At all other times, we must assume the GPU is still running, but
2511 * we only care about the snapshot of this moment.
2512 */
2513 lockdep_assert_held(&engine->sched_engine->lock);
2514
2515 rcu_read_lock();
2516 request = execlists_active(execlists: &engine->execlists);
2517 if (request) {
2518 struct intel_timeline *tl = request->context->timeline;
2519
2520 list_for_each_entry_from_reverse(request, &tl->requests, link) {
2521 if (__i915_request_is_complete(rq: request))
2522 break;
2523
2524 active = request;
2525 }
2526 }
2527 rcu_read_unlock();
2528 if (active)
2529 return active;
2530
2531 list_for_each_entry(request, &engine->sched_engine->requests,
2532 sched.link) {
2533 if (i915_test_request_state(rq: request) != I915_REQUEST_ACTIVE)
2534 continue;
2535
2536 active = request;
2537 break;
2538 }
2539
2540 return active;
2541}
2542
2543void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2544 struct intel_context **ce, struct i915_request **rq)
2545{
2546 unsigned long flags;
2547
2548 *ce = intel_engine_get_hung_context(engine);
2549 if (*ce) {
2550 intel_engine_clear_hung_context(engine);
2551
2552 *rq = intel_context_get_active_request(ce: *ce);
2553 return;
2554 }
2555
2556 /*
2557 * Getting here with GuC enabled means it is a forced error capture
2558 * with no actual hang. So, no need to attempt the execlist search.
2559 */
2560 if (intel_uc_uses_guc_submission(uc: &engine->gt->uc))
2561 return;
2562
2563 spin_lock_irqsave(&engine->sched_engine->lock, flags);
2564 *rq = engine_execlist_find_hung_request(engine);
2565 if (*rq)
2566 *rq = i915_request_get_rcu(rq: *rq);
2567 spin_unlock_irqrestore(lock: &engine->sched_engine->lock, flags);
2568}
2569
2570void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2571{
2572 /*
2573 * If there are any non-fused-off CCS engines, we need to enable CCS
2574 * support in the RCU_MODE register. This only needs to be done once,
2575 * so for simplicity we'll take care of this in the RCS engine's
2576 * resume handler; since the RCS and all CCS engines belong to the
2577 * same reset domain and are reset together, this will also take care
2578 * of re-applying the setting after i915-triggered resets.
2579 */
2580 if (!CCS_MASK(engine->gt))
2581 return;
2582
2583 intel_uncore_write(uncore: engine->uncore, GEN12_RCU_MODE,
2584 _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2585}
2586
2587#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2588#include "mock_engine.c"
2589#include "selftest_engine.c"
2590#include "selftest_engine_cs.c"
2591#endif
2592

source code of linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c