1/*
2 * Copyright © 2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include <linux/sched/mm.h>
26#include <linux/dma-fence-array.h>
27#include <drm/drm_gem.h>
28
29#include "display/intel_display.h"
30#include "display/intel_frontbuffer.h"
31#include "gem/i915_gem_lmem.h"
32#include "gem/i915_gem_object_frontbuffer.h"
33#include "gem/i915_gem_tiling.h"
34#include "gt/intel_engine.h"
35#include "gt/intel_engine_heartbeat.h"
36#include "gt/intel_gt.h"
37#include "gt/intel_gt_requests.h"
38#include "gt/intel_tlb.h"
39
40#include "i915_drv.h"
41#include "i915_gem_evict.h"
42#include "i915_sw_fence_work.h"
43#include "i915_trace.h"
44#include "i915_vma.h"
45#include "i915_vma_resource.h"
46
47static inline void assert_vma_held_evict(const struct i915_vma *vma)
48{
49 /*
50 * We may be forced to unbind when the vm is dead, to clean it up.
51 * This is the only exception to the requirement of the object lock
52 * being held.
53 */
54 if (kref_read(kref: &vma->vm->ref))
55 assert_object_held_shared(obj: vma->obj);
56}
57
58static struct kmem_cache *slab_vmas;
59
60static struct i915_vma *i915_vma_alloc(void)
61{
62 return kmem_cache_zalloc(k: slab_vmas, GFP_KERNEL);
63}
64
65static void i915_vma_free(struct i915_vma *vma)
66{
67 return kmem_cache_free(s: slab_vmas, objp: vma);
68}
69
70#if IS_ENABLED(CONFIG_DRM_I915_ERRLOG_GEM) && IS_ENABLED(CONFIG_DRM_DEBUG_MM)
71
72#include <linux/stackdepot.h>
73
74static void vma_print_allocator(struct i915_vma *vma, const char *reason)
75{
76 char buf[512];
77
78 if (!vma->node.stack) {
79 drm_dbg(vma->obj->base.dev,
80 "vma.node [%08llx + %08llx] %s: unknown owner\n",
81 vma->node.start, vma->node.size, reason);
82 return;
83 }
84
85 stack_depot_snprint(vma->node.stack, buf, sizeof(buf), 0);
86 drm_dbg(vma->obj->base.dev,
87 "vma.node [%08llx + %08llx] %s: inserted at %s\n",
88 vma->node.start, vma->node.size, reason, buf);
89}
90
91#else
92
93static void vma_print_allocator(struct i915_vma *vma, const char *reason)
94{
95}
96
97#endif
98
99static inline struct i915_vma *active_to_vma(struct i915_active *ref)
100{
101 return container_of(ref, typeof(struct i915_vma), active);
102}
103
104static int __i915_vma_active(struct i915_active *ref)
105{
106 return i915_vma_tryget(vma: active_to_vma(ref)) ? 0 : -ENOENT;
107}
108
109static void __i915_vma_retire(struct i915_active *ref)
110{
111 i915_vma_put(vma: active_to_vma(ref));
112}
113
114static struct i915_vma *
115vma_create(struct drm_i915_gem_object *obj,
116 struct i915_address_space *vm,
117 const struct i915_gtt_view *view)
118{
119 struct i915_vma *pos = ERR_PTR(error: -E2BIG);
120 struct i915_vma *vma;
121 struct rb_node *rb, **p;
122 int err;
123
124 /* The aliasing_ppgtt should never be used directly! */
125 GEM_BUG_ON(vm == &vm->gt->ggtt->alias->vm);
126
127 vma = i915_vma_alloc();
128 if (vma == NULL)
129 return ERR_PTR(error: -ENOMEM);
130
131 vma->ops = &vm->vma_ops;
132 vma->obj = obj;
133 vma->size = obj->base.size;
134 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
135
136 i915_active_init(&vma->active, __i915_vma_active, __i915_vma_retire, 0);
137
138 /* Declare ourselves safe for use inside shrinkers */
139 if (IS_ENABLED(CONFIG_LOCKDEP)) {
140 fs_reclaim_acquire(GFP_KERNEL);
141 might_lock(&vma->active.mutex);
142 fs_reclaim_release(GFP_KERNEL);
143 }
144
145 INIT_LIST_HEAD(list: &vma->closed_link);
146 INIT_LIST_HEAD(list: &vma->obj_link);
147 RB_CLEAR_NODE(&vma->obj_node);
148
149 if (view && view->type != I915_GTT_VIEW_NORMAL) {
150 vma->gtt_view = *view;
151 if (view->type == I915_GTT_VIEW_PARTIAL) {
152 GEM_BUG_ON(range_overflows_t(u64,
153 view->partial.offset,
154 view->partial.size,
155 obj->base.size >> PAGE_SHIFT));
156 vma->size = view->partial.size;
157 vma->size <<= PAGE_SHIFT;
158 GEM_BUG_ON(vma->size > obj->base.size);
159 } else if (view->type == I915_GTT_VIEW_ROTATED) {
160 vma->size = intel_rotation_info_size(rot_info: &view->rotated);
161 vma->size <<= PAGE_SHIFT;
162 } else if (view->type == I915_GTT_VIEW_REMAPPED) {
163 vma->size = intel_remapped_info_size(rem_info: &view->remapped);
164 vma->size <<= PAGE_SHIFT;
165 }
166 }
167
168 if (unlikely(vma->size > vm->total))
169 goto err_vma;
170
171 GEM_BUG_ON(!IS_ALIGNED(vma->size, I915_GTT_PAGE_SIZE));
172
173 err = mutex_lock_interruptible(&vm->mutex);
174 if (err) {
175 pos = ERR_PTR(error: err);
176 goto err_vma;
177 }
178
179 vma->vm = vm;
180 list_add_tail(new: &vma->vm_link, head: &vm->unbound_list);
181
182 spin_lock(lock: &obj->vma.lock);
183 if (i915_is_ggtt(vm)) {
184 if (unlikely(overflows_type(vma->size, u32)))
185 goto err_unlock;
186
187 vma->fence_size = i915_gem_fence_size(i915: vm->i915, size: vma->size,
188 tiling: i915_gem_object_get_tiling(obj),
189 stride: i915_gem_object_get_stride(obj));
190 if (unlikely(vma->fence_size < vma->size || /* overflow */
191 vma->fence_size > vm->total))
192 goto err_unlock;
193
194 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I915_GTT_MIN_ALIGNMENT));
195
196 vma->fence_alignment = i915_gem_fence_alignment(i915: vm->i915, size: vma->size,
197 tiling: i915_gem_object_get_tiling(obj),
198 stride: i915_gem_object_get_stride(obj));
199 GEM_BUG_ON(!is_power_of_2(vma->fence_alignment));
200
201 __set_bit(I915_VMA_GGTT_BIT, __i915_vma_flags(vma));
202 }
203
204 rb = NULL;
205 p = &obj->vma.tree.rb_node;
206 while (*p) {
207 long cmp;
208
209 rb = *p;
210 pos = rb_entry(rb, struct i915_vma, obj_node);
211
212 /*
213 * If the view already exists in the tree, another thread
214 * already created a matching vma, so return the older instance
215 * and dispose of ours.
216 */
217 cmp = i915_vma_compare(vma: pos, vm, view);
218 if (cmp < 0)
219 p = &rb->rb_right;
220 else if (cmp > 0)
221 p = &rb->rb_left;
222 else
223 goto err_unlock;
224 }
225 rb_link_node(node: &vma->obj_node, parent: rb, rb_link: p);
226 rb_insert_color(&vma->obj_node, &obj->vma.tree);
227
228 if (i915_vma_is_ggtt(vma))
229 /*
230 * We put the GGTT vma at the start of the vma-list, followed
231 * by the ppGGTT vma. This allows us to break early when
232 * iterating over only the GGTT vma for an object, see
233 * for_each_ggtt_vma()
234 */
235 list_add(new: &vma->obj_link, head: &obj->vma.list);
236 else
237 list_add_tail(new: &vma->obj_link, head: &obj->vma.list);
238
239 spin_unlock(lock: &obj->vma.lock);
240 mutex_unlock(lock: &vm->mutex);
241
242 return vma;
243
244err_unlock:
245 spin_unlock(lock: &obj->vma.lock);
246 list_del_init(entry: &vma->vm_link);
247 mutex_unlock(lock: &vm->mutex);
248err_vma:
249 i915_vma_free(vma);
250 return pos;
251}
252
253static struct i915_vma *
254i915_vma_lookup(struct drm_i915_gem_object *obj,
255 struct i915_address_space *vm,
256 const struct i915_gtt_view *view)
257{
258 struct rb_node *rb;
259
260 rb = obj->vma.tree.rb_node;
261 while (rb) {
262 struct i915_vma *vma = rb_entry(rb, struct i915_vma, obj_node);
263 long cmp;
264
265 cmp = i915_vma_compare(vma, vm, view);
266 if (cmp == 0)
267 return vma;
268
269 if (cmp < 0)
270 rb = rb->rb_right;
271 else
272 rb = rb->rb_left;
273 }
274
275 return NULL;
276}
277
278/**
279 * i915_vma_instance - return the singleton instance of the VMA
280 * @obj: parent &struct drm_i915_gem_object to be mapped
281 * @vm: address space in which the mapping is located
282 * @view: additional mapping requirements
283 *
284 * i915_vma_instance() looks up an existing VMA of the @obj in the @vm with
285 * the same @view characteristics. If a match is not found, one is created.
286 * Once created, the VMA is kept until either the object is freed, or the
287 * address space is closed.
288 *
289 * Returns the vma, or an error pointer.
290 */
291struct i915_vma *
292i915_vma_instance(struct drm_i915_gem_object *obj,
293 struct i915_address_space *vm,
294 const struct i915_gtt_view *view)
295{
296 struct i915_vma *vma;
297
298 GEM_BUG_ON(view && !i915_is_ggtt_or_dpt(vm));
299 GEM_BUG_ON(!kref_read(&vm->ref));
300
301 spin_lock(lock: &obj->vma.lock);
302 vma = i915_vma_lookup(obj, vm, view);
303 spin_unlock(lock: &obj->vma.lock);
304
305 /* vma_create() will resolve the race if another creates the vma */
306 if (unlikely(!vma))
307 vma = vma_create(obj, vm, view);
308
309 GEM_BUG_ON(!IS_ERR(vma) && i915_vma_compare(vma, vm, view));
310 return vma;
311}
312
313struct i915_vma_work {
314 struct dma_fence_work base;
315 struct i915_address_space *vm;
316 struct i915_vm_pt_stash stash;
317 struct i915_vma_resource *vma_res;
318 struct drm_i915_gem_object *obj;
319 struct i915_sw_dma_fence_cb cb;
320 unsigned int pat_index;
321 unsigned int flags;
322};
323
324static void __vma_bind(struct dma_fence_work *work)
325{
326 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
327 struct i915_vma_resource *vma_res = vw->vma_res;
328
329 /*
330 * We are about the bind the object, which must mean we have already
331 * signaled the work to potentially clear/move the pages underneath. If
332 * something went wrong at that stage then the object should have
333 * unknown_state set, in which case we need to skip the bind.
334 */
335 if (i915_gem_object_has_unknown_state(obj: vw->obj))
336 return;
337
338 vma_res->ops->bind_vma(vma_res->vm, &vw->stash,
339 vma_res, vw->pat_index, vw->flags);
340}
341
342static void __vma_release(struct dma_fence_work *work)
343{
344 struct i915_vma_work *vw = container_of(work, typeof(*vw), base);
345
346 if (vw->obj)
347 i915_gem_object_put(obj: vw->obj);
348
349 i915_vm_free_pt_stash(vm: vw->vm, stash: &vw->stash);
350 if (vw->vma_res)
351 i915_vma_resource_put(vma_res: vw->vma_res);
352}
353
354static const struct dma_fence_work_ops bind_ops = {
355 .name = "bind",
356 .work = __vma_bind,
357 .release = __vma_release,
358};
359
360struct i915_vma_work *i915_vma_work(void)
361{
362 struct i915_vma_work *vw;
363
364 vw = kzalloc(size: sizeof(*vw), GFP_KERNEL);
365 if (!vw)
366 return NULL;
367
368 dma_fence_work_init(f: &vw->base, ops: &bind_ops);
369 vw->base.dma.error = -EAGAIN; /* disable the worker by default */
370
371 return vw;
372}
373
374int i915_vma_wait_for_bind(struct i915_vma *vma)
375{
376 int err = 0;
377
378 if (rcu_access_pointer(vma->active.excl.fence)) {
379 struct dma_fence *fence;
380
381 rcu_read_lock();
382 fence = dma_fence_get_rcu_safe(fencep: &vma->active.excl.fence);
383 rcu_read_unlock();
384 if (fence) {
385 err = dma_fence_wait(fence, intr: true);
386 dma_fence_put(fence);
387 }
388 }
389
390 return err;
391}
392
393#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
394static int i915_vma_verify_bind_complete(struct i915_vma *vma)
395{
396 struct dma_fence *fence = i915_active_fence_get(&vma->active.excl);
397 int err;
398
399 if (!fence)
400 return 0;
401
402 if (dma_fence_is_signaled(fence))
403 err = fence->error;
404 else
405 err = -EBUSY;
406
407 dma_fence_put(fence);
408
409 return err;
410}
411#else
412#define i915_vma_verify_bind_complete(_vma) 0
413#endif
414
415I915_SELFTEST_EXPORT void
416i915_vma_resource_init_from_vma(struct i915_vma_resource *vma_res,
417 struct i915_vma *vma)
418{
419 struct drm_i915_gem_object *obj = vma->obj;
420
421 i915_vma_resource_init(vma_res, vm: vma->vm, pages: vma->pages, page_sizes: &vma->page_sizes,
422 pages_rsgt: obj->mm.rsgt, readonly: i915_gem_object_is_readonly(obj),
423 lmem: i915_gem_object_is_lmem(obj), mr: obj->mm.region,
424 ops: vma->ops, private: vma->private, start: __i915_vma_offset(vma),
425 node_size: __i915_vma_size(vma), size: vma->size, guard: vma->guard);
426}
427
428/**
429 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
430 * @vma: VMA to map
431 * @pat_index: PAT index to set in PTE
432 * @flags: flags like global or local mapping
433 * @work: preallocated worker for allocating and binding the PTE
434 * @vma_res: pointer to a preallocated vma resource. The resource is either
435 * consumed or freed.
436 *
437 * DMA addresses are taken from the scatter-gather table of this object (or of
438 * this VMA in case of non-default GGTT views) and PTE entries set up.
439 * Note that DMA addresses are also the only part of the SG table we care about.
440 */
441int i915_vma_bind(struct i915_vma *vma,
442 unsigned int pat_index,
443 u32 flags,
444 struct i915_vma_work *work,
445 struct i915_vma_resource *vma_res)
446{
447 u32 bind_flags;
448 u32 vma_flags;
449 int ret;
450
451 lockdep_assert_held(&vma->vm->mutex);
452 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
453 GEM_BUG_ON(vma->size > i915_vma_size(vma));
454
455 if (GEM_DEBUG_WARN_ON(range_overflows(vma->node.start,
456 vma->node.size,
457 vma->vm->total))) {
458 i915_vma_resource_free(vma_res);
459 return -ENODEV;
460 }
461
462 if (GEM_DEBUG_WARN_ON(!flags)) {
463 i915_vma_resource_free(vma_res);
464 return -EINVAL;
465 }
466
467 bind_flags = flags;
468 bind_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
469
470 vma_flags = atomic_read(v: &vma->flags);
471 vma_flags &= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
472
473 bind_flags &= ~vma_flags;
474 if (bind_flags == 0) {
475 i915_vma_resource_free(vma_res);
476 return 0;
477 }
478
479 GEM_BUG_ON(!atomic_read(&vma->pages_count));
480
481 /* Wait for or await async unbinds touching our range */
482 if (work && bind_flags & vma->vm->bind_async_flags)
483 ret = i915_vma_resource_bind_dep_await(vm: vma->vm,
484 sw_fence: &work->base.chain,
485 first: vma->node.start,
486 last: vma->node.size,
487 intr: true,
488 GFP_NOWAIT |
489 __GFP_RETRY_MAYFAIL |
490 __GFP_NOWARN);
491 else
492 ret = i915_vma_resource_bind_dep_sync(vm: vma->vm, first: vma->node.start,
493 last: vma->node.size, intr: true);
494 if (ret) {
495 i915_vma_resource_free(vma_res);
496 return ret;
497 }
498
499 if (vma->resource || !vma_res) {
500 /* Rebinding with an additional I915_VMA_*_BIND */
501 GEM_WARN_ON(!vma_flags);
502 i915_vma_resource_free(vma_res);
503 } else {
504 i915_vma_resource_init_from_vma(vma_res, vma);
505 vma->resource = vma_res;
506 }
507 trace_i915_vma_bind(vma, flags: bind_flags);
508 if (work && bind_flags & vma->vm->bind_async_flags) {
509 struct dma_fence *prev;
510
511 work->vma_res = i915_vma_resource_get(vma_res: vma->resource);
512 work->pat_index = pat_index;
513 work->flags = bind_flags;
514
515 /*
516 * Note we only want to chain up to the migration fence on
517 * the pages (not the object itself). As we don't track that,
518 * yet, we have to use the exclusive fence instead.
519 *
520 * Also note that we do not want to track the async vma as
521 * part of the obj->resv->excl_fence as it only affects
522 * execution and not content or object's backing store lifetime.
523 */
524 prev = i915_active_set_exclusive(ref: &vma->active, f: &work->base.dma);
525 if (prev) {
526 __i915_sw_fence_await_dma_fence(fence: &work->base.chain,
527 dma: prev,
528 cb: &work->cb);
529 dma_fence_put(fence: prev);
530 }
531
532 work->base.dma.error = 0; /* enable the queue_work() */
533 work->obj = i915_gem_object_get(obj: vma->obj);
534 } else {
535 ret = i915_gem_object_wait_moving_fence(obj: vma->obj, intr: true);
536 if (ret) {
537 i915_vma_resource_free(vma_res: vma->resource);
538 vma->resource = NULL;
539
540 return ret;
541 }
542 vma->ops->bind_vma(vma->vm, NULL, vma->resource, pat_index,
543 bind_flags);
544 }
545
546 atomic_or(i: bind_flags, v: &vma->flags);
547 return 0;
548}
549
550void __iomem *i915_vma_pin_iomap(struct i915_vma *vma)
551{
552 void __iomem *ptr;
553 int err;
554
555 if (WARN_ON_ONCE(vma->obj->flags & I915_BO_ALLOC_GPU_ONLY))
556 return IOMEM_ERR_PTR(-EINVAL);
557
558 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
559 GEM_BUG_ON(!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND));
560 GEM_BUG_ON(i915_vma_verify_bind_complete(vma));
561
562 ptr = READ_ONCE(vma->iomap);
563 if (ptr == NULL) {
564 /*
565 * TODO: consider just using i915_gem_object_pin_map() for lmem
566 * instead, which already supports mapping non-contiguous chunks
567 * of pages, that way we can also drop the
568 * I915_BO_ALLOC_CONTIGUOUS when allocating the object.
569 */
570 if (i915_gem_object_is_lmem(obj: vma->obj)) {
571 ptr = i915_gem_object_lmem_io_map(obj: vma->obj, n: 0,
572 size: vma->obj->base.size);
573 } else if (i915_vma_is_map_and_fenceable(vma)) {
574 ptr = io_mapping_map_wc(mapping: &i915_vm_to_ggtt(vm: vma->vm)->iomap,
575 offset: i915_vma_offset(vma),
576 size: i915_vma_size(vma));
577 } else {
578 ptr = (void __iomem *)
579 i915_gem_object_pin_map(obj: vma->obj, type: I915_MAP_WC);
580 if (IS_ERR(ptr)) {
581 err = PTR_ERR(ptr);
582 goto err;
583 }
584 ptr = page_pack_bits(ptr, 1);
585 }
586
587 if (ptr == NULL) {
588 err = -ENOMEM;
589 goto err;
590 }
591
592 if (unlikely(cmpxchg(&vma->iomap, NULL, ptr))) {
593 if (page_unmask_bits(ptr))
594 __i915_gem_object_release_map(obj: vma->obj);
595 else
596 io_mapping_unmap(vaddr: ptr);
597 ptr = vma->iomap;
598 }
599 }
600
601 __i915_vma_pin(vma);
602
603 err = i915_vma_pin_fence(vma);
604 if (err)
605 goto err_unpin;
606
607 i915_vma_set_ggtt_write(vma);
608
609 /* NB Access through the GTT requires the device to be awake. */
610 return page_mask_bits(ptr);
611
612err_unpin:
613 __i915_vma_unpin(vma);
614err:
615 return IOMEM_ERR_PTR(err);
616}
617
618void i915_vma_flush_writes(struct i915_vma *vma)
619{
620 if (i915_vma_unset_ggtt_write(vma))
621 intel_gt_flush_ggtt_writes(gt: vma->vm->gt);
622}
623
624void i915_vma_unpin_iomap(struct i915_vma *vma)
625{
626 GEM_BUG_ON(vma->iomap == NULL);
627
628 /* XXX We keep the mapping until __i915_vma_unbind()/evict() */
629
630 i915_vma_flush_writes(vma);
631
632 i915_vma_unpin_fence(vma);
633 i915_vma_unpin(vma);
634}
635
636void i915_vma_unpin_and_release(struct i915_vma **p_vma, unsigned int flags)
637{
638 struct i915_vma *vma;
639 struct drm_i915_gem_object *obj;
640
641 vma = fetch_and_zero(p_vma);
642 if (!vma)
643 return;
644
645 obj = vma->obj;
646 GEM_BUG_ON(!obj);
647
648 i915_vma_unpin(vma);
649
650 if (flags & I915_VMA_RELEASE_MAP)
651 i915_gem_object_unpin_map(obj);
652
653 i915_gem_object_put(obj);
654}
655
656bool i915_vma_misplaced(const struct i915_vma *vma,
657 u64 size, u64 alignment, u64 flags)
658{
659 if (!drm_mm_node_allocated(node: &vma->node))
660 return false;
661
662 if (test_bit(I915_VMA_ERROR_BIT, __i915_vma_flags(vma)))
663 return true;
664
665 if (i915_vma_size(vma) < size)
666 return true;
667
668 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
669 if (alignment && !IS_ALIGNED(i915_vma_offset(vma), alignment))
670 return true;
671
672 if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
673 return true;
674
675 if (flags & PIN_OFFSET_BIAS &&
676 i915_vma_offset(vma) < (flags & PIN_OFFSET_MASK))
677 return true;
678
679 if (flags & PIN_OFFSET_FIXED &&
680 i915_vma_offset(vma) != (flags & PIN_OFFSET_MASK))
681 return true;
682
683 if (flags & PIN_OFFSET_GUARD &&
684 vma->guard < (flags & PIN_OFFSET_MASK))
685 return true;
686
687 return false;
688}
689
690void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
691{
692 bool mappable, fenceable;
693
694 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
695 GEM_BUG_ON(!vma->fence_size);
696
697 fenceable = (i915_vma_size(vma) >= vma->fence_size &&
698 IS_ALIGNED(i915_vma_offset(vma), vma->fence_alignment));
699
700 mappable = i915_ggtt_offset(vma) + vma->fence_size <=
701 i915_vm_to_ggtt(vm: vma->vm)->mappable_end;
702
703 if (mappable && fenceable)
704 set_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
705 else
706 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
707}
708
709bool i915_gem_valid_gtt_space(struct i915_vma *vma, unsigned long color)
710{
711 struct drm_mm_node *node = &vma->node;
712 struct drm_mm_node *other;
713
714 /*
715 * On some machines we have to be careful when putting differing types
716 * of snoopable memory together to avoid the prefetcher crossing memory
717 * domains and dying. During vm initialisation, we decide whether or not
718 * these constraints apply and set the drm_mm.color_adjust
719 * appropriately.
720 */
721 if (!i915_vm_has_cache_coloring(vm: vma->vm))
722 return true;
723
724 /* Only valid to be called on an already inserted vma */
725 GEM_BUG_ON(!drm_mm_node_allocated(node));
726 GEM_BUG_ON(list_empty(&node->node_list));
727
728 other = list_prev_entry(node, node_list);
729 if (i915_node_color_differs(node: other, color) &&
730 !drm_mm_hole_follows(node: other))
731 return false;
732
733 other = list_next_entry(node, node_list);
734 if (i915_node_color_differs(node: other, color) &&
735 !drm_mm_hole_follows(node))
736 return false;
737
738 return true;
739}
740
741/**
742 * i915_vma_insert - finds a slot for the vma in its address space
743 * @vma: the vma
744 * @ww: An optional struct i915_gem_ww_ctx
745 * @size: requested size in bytes (can be larger than the VMA)
746 * @alignment: required alignment
747 * @flags: mask of PIN_* flags to use
748 *
749 * First we try to allocate some free space that meets the requirements for
750 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
751 * preferrably the oldest idle entry to make room for the new VMA.
752 *
753 * Returns:
754 * 0 on success, negative error code otherwise.
755 */
756static int
757i915_vma_insert(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
758 u64 size, u64 alignment, u64 flags)
759{
760 unsigned long color, guard;
761 u64 start, end;
762 int ret;
763
764 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
765 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
766 GEM_BUG_ON(hweight64(flags & (PIN_OFFSET_GUARD | PIN_OFFSET_FIXED | PIN_OFFSET_BIAS)) > 1);
767
768 size = max(size, vma->size);
769 alignment = max_t(typeof(alignment), alignment, vma->display_alignment);
770 if (flags & PIN_MAPPABLE) {
771 size = max_t(typeof(size), size, vma->fence_size);
772 alignment = max_t(typeof(alignment),
773 alignment, vma->fence_alignment);
774 }
775
776 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
777 GEM_BUG_ON(!IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
778 GEM_BUG_ON(!is_power_of_2(alignment));
779
780 guard = vma->guard; /* retain guard across rebinds */
781 if (flags & PIN_OFFSET_GUARD) {
782 GEM_BUG_ON(overflows_type(flags & PIN_OFFSET_MASK, u32));
783 guard = max_t(u32, guard, flags & PIN_OFFSET_MASK);
784 }
785 /*
786 * As we align the node upon insertion, but the hardware gets
787 * node.start + guard, the easiest way to make that work is
788 * to make the guard a multiple of the alignment size.
789 */
790 guard = ALIGN(guard, alignment);
791
792 start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
793 GEM_BUG_ON(!IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
794
795 end = vma->vm->total;
796 if (flags & PIN_MAPPABLE)
797 end = min_t(u64, end, i915_vm_to_ggtt(vma->vm)->mappable_end);
798 if (flags & PIN_ZONE_4G)
799 end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
800 GEM_BUG_ON(!IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
801
802 alignment = max(alignment, i915_vm_obj_min_alignment(vma->vm, vma->obj));
803
804 /*
805 * If binding the object/GGTT view requires more space than the entire
806 * aperture has, reject it early before evicting everything in a vain
807 * attempt to find space.
808 */
809 if (size > end - 2 * guard) {
810 drm_dbg(vma->obj->base.dev,
811 "Attempting to bind an object larger than the aperture: request=%llu > %s aperture=%llu\n",
812 size, flags & PIN_MAPPABLE ? "mappable" : "total", end);
813 return -ENOSPC;
814 }
815
816 color = 0;
817
818 if (i915_vm_has_cache_coloring(vm: vma->vm))
819 color = vma->obj->pat_index;
820
821 if (flags & PIN_OFFSET_FIXED) {
822 u64 offset = flags & PIN_OFFSET_MASK;
823 if (!IS_ALIGNED(offset, alignment) ||
824 range_overflows(offset, size, end))
825 return -EINVAL;
826 /*
827 * The caller knows not of the guard added by others and
828 * requests for the offset of the start of its buffer
829 * to be fixed, which may not be the same as the position
830 * of the vma->node due to the guard pages.
831 */
832 if (offset < guard || offset + size > end - guard)
833 return -ENOSPC;
834
835 ret = i915_gem_gtt_reserve(vm: vma->vm, ww, node: &vma->node,
836 size: size + 2 * guard,
837 offset: offset - guard,
838 color, flags);
839 if (ret)
840 return ret;
841 } else {
842 size += 2 * guard;
843 /*
844 * We only support huge gtt pages through the 48b PPGTT,
845 * however we also don't want to force any alignment for
846 * objects which need to be tightly packed into the low 32bits.
847 *
848 * Note that we assume that GGTT are limited to 4GiB for the
849 * forseeable future. See also i915_ggtt_offset().
850 */
851 if (upper_32_bits(end - 1) &&
852 vma->page_sizes.sg > I915_GTT_PAGE_SIZE &&
853 !HAS_64K_PAGES(vma->vm->i915)) {
854 /*
855 * We can't mix 64K and 4K PTEs in the same page-table
856 * (2M block), and so to avoid the ugliness and
857 * complexity of coloring we opt for just aligning 64K
858 * objects to 2M.
859 */
860 u64 page_alignment =
861 rounddown_pow_of_two(vma->page_sizes.sg |
862 I915_GTT_PAGE_SIZE_2M);
863
864 /*
865 * Check we don't expand for the limited Global GTT
866 * (mappable aperture is even more precious!). This
867 * also checks that we exclude the aliasing-ppgtt.
868 */
869 GEM_BUG_ON(i915_vma_is_ggtt(vma));
870
871 alignment = max(alignment, page_alignment);
872
873 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K)
874 size = round_up(size, I915_GTT_PAGE_SIZE_2M);
875 }
876
877 ret = i915_gem_gtt_insert(vm: vma->vm, ww, node: &vma->node,
878 size, alignment, color,
879 start, end, flags);
880 if (ret)
881 return ret;
882
883 GEM_BUG_ON(vma->node.start < start);
884 GEM_BUG_ON(vma->node.start + vma->node.size > end);
885 }
886 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
887 GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, color));
888
889 list_move_tail(list: &vma->vm_link, head: &vma->vm->bound_list);
890 vma->guard = guard;
891
892 return 0;
893}
894
895static void
896i915_vma_detach(struct i915_vma *vma)
897{
898 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
899 GEM_BUG_ON(i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
900
901 /*
902 * And finally now the object is completely decoupled from this
903 * vma, we can drop its hold on the backing storage and allow
904 * it to be reaped by the shrinker.
905 */
906 list_move_tail(list: &vma->vm_link, head: &vma->vm->unbound_list);
907}
908
909static bool try_qad_pin(struct i915_vma *vma, unsigned int flags)
910{
911 unsigned int bound;
912
913 bound = atomic_read(v: &vma->flags);
914
915 if (flags & PIN_VALIDATE) {
916 flags &= I915_VMA_BIND_MASK;
917
918 return (flags & bound) == flags;
919 }
920
921 /* with the lock mandatory for unbind, we don't race here */
922 flags &= I915_VMA_BIND_MASK;
923 do {
924 if (unlikely(flags & ~bound))
925 return false;
926
927 if (unlikely(bound & (I915_VMA_OVERFLOW | I915_VMA_ERROR)))
928 return false;
929
930 GEM_BUG_ON(((bound + 1) & I915_VMA_PIN_MASK) == 0);
931 } while (!atomic_try_cmpxchg(v: &vma->flags, old: &bound, new: bound + 1));
932
933 return true;
934}
935
936static struct scatterlist *
937rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
938 unsigned int width, unsigned int height,
939 unsigned int src_stride, unsigned int dst_stride,
940 struct sg_table *st, struct scatterlist *sg)
941{
942 unsigned int column, row;
943 pgoff_t src_idx;
944
945 for (column = 0; column < width; column++) {
946 unsigned int left;
947
948 src_idx = src_stride * (height - 1) + column + offset;
949 for (row = 0; row < height; row++) {
950 st->nents++;
951 /*
952 * We don't need the pages, but need to initialize
953 * the entries so the sg list can be happily traversed.
954 * The only thing we need are DMA addresses.
955 */
956 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, offset: 0);
957 sg_dma_address(sg) =
958 i915_gem_object_get_dma_address(obj, src_idx);
959 sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
960 sg = sg_next(sg);
961 src_idx -= src_stride;
962 }
963
964 left = (dst_stride - height) * I915_GTT_PAGE_SIZE;
965
966 if (!left)
967 continue;
968
969 st->nents++;
970
971 /*
972 * The DE ignores the PTEs for the padding tiles, the sg entry
973 * here is just a conenience to indicate how many padding PTEs
974 * to insert at this spot.
975 */
976 sg_set_page(sg, NULL, len: left, offset: 0);
977 sg_dma_address(sg) = 0;
978 sg_dma_len(sg) = left;
979 sg = sg_next(sg);
980 }
981
982 return sg;
983}
984
985static noinline struct sg_table *
986intel_rotate_pages(struct intel_rotation_info *rot_info,
987 struct drm_i915_gem_object *obj)
988{
989 unsigned int size = intel_rotation_info_size(rot_info);
990 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
991 struct sg_table *st;
992 struct scatterlist *sg;
993 int ret = -ENOMEM;
994 int i;
995
996 /* Allocate target SG list. */
997 st = kmalloc(size: sizeof(*st), GFP_KERNEL);
998 if (!st)
999 goto err_st_alloc;
1000
1001 ret = sg_alloc_table(st, size, GFP_KERNEL);
1002 if (ret)
1003 goto err_sg_alloc;
1004
1005 st->nents = 0;
1006 sg = st->sgl;
1007
1008 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
1009 sg = rotate_pages(obj, offset: rot_info->plane[i].offset,
1010 width: rot_info->plane[i].width, height: rot_info->plane[i].height,
1011 src_stride: rot_info->plane[i].src_stride,
1012 dst_stride: rot_info->plane[i].dst_stride,
1013 st, sg);
1014
1015 return st;
1016
1017err_sg_alloc:
1018 kfree(objp: st);
1019err_st_alloc:
1020
1021 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1022 obj->base.size, rot_info->plane[0].width,
1023 rot_info->plane[0].height, size);
1024
1025 return ERR_PTR(error: ret);
1026}
1027
1028static struct scatterlist *
1029add_padding_pages(unsigned int count,
1030 struct sg_table *st, struct scatterlist *sg)
1031{
1032 st->nents++;
1033
1034 /*
1035 * The DE ignores the PTEs for the padding tiles, the sg entry
1036 * here is just a convenience to indicate how many padding PTEs
1037 * to insert at this spot.
1038 */
1039 sg_set_page(sg, NULL, len: count * I915_GTT_PAGE_SIZE, offset: 0);
1040 sg_dma_address(sg) = 0;
1041 sg_dma_len(sg) = count * I915_GTT_PAGE_SIZE;
1042 sg = sg_next(sg);
1043
1044 return sg;
1045}
1046
1047static struct scatterlist *
1048remap_tiled_color_plane_pages(struct drm_i915_gem_object *obj,
1049 unsigned long offset, unsigned int alignment_pad,
1050 unsigned int width, unsigned int height,
1051 unsigned int src_stride, unsigned int dst_stride,
1052 struct sg_table *st, struct scatterlist *sg,
1053 unsigned int *gtt_offset)
1054{
1055 unsigned int row;
1056
1057 if (!width || !height)
1058 return sg;
1059
1060 if (alignment_pad)
1061 sg = add_padding_pages(count: alignment_pad, st, sg);
1062
1063 for (row = 0; row < height; row++) {
1064 unsigned int left = width * I915_GTT_PAGE_SIZE;
1065
1066 while (left) {
1067 dma_addr_t addr;
1068 unsigned int length;
1069
1070 /*
1071 * We don't need the pages, but need to initialize
1072 * the entries so the sg list can be happily traversed.
1073 * The only thing we need are DMA addresses.
1074 */
1075
1076 addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1077
1078 length = min(left, length);
1079
1080 st->nents++;
1081
1082 sg_set_page(sg, NULL, len: length, offset: 0);
1083 sg_dma_address(sg) = addr;
1084 sg_dma_len(sg) = length;
1085 sg = sg_next(sg);
1086
1087 offset += length / I915_GTT_PAGE_SIZE;
1088 left -= length;
1089 }
1090
1091 offset += src_stride - width;
1092
1093 left = (dst_stride - width) * I915_GTT_PAGE_SIZE;
1094
1095 if (!left)
1096 continue;
1097
1098 sg = add_padding_pages(count: left >> PAGE_SHIFT, st, sg);
1099 }
1100
1101 *gtt_offset += alignment_pad + dst_stride * height;
1102
1103 return sg;
1104}
1105
1106static struct scatterlist *
1107remap_contiguous_pages(struct drm_i915_gem_object *obj,
1108 pgoff_t obj_offset,
1109 unsigned int count,
1110 struct sg_table *st, struct scatterlist *sg)
1111{
1112 struct scatterlist *iter;
1113 unsigned int offset;
1114
1115 iter = i915_gem_object_get_sg_dma(obj, obj_offset, &offset);
1116 GEM_BUG_ON(!iter);
1117
1118 do {
1119 unsigned int len;
1120
1121 len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1122 count << PAGE_SHIFT);
1123 sg_set_page(sg, NULL, len, offset: 0);
1124 sg_dma_address(sg) =
1125 sg_dma_address(iter) + (offset << PAGE_SHIFT);
1126 sg_dma_len(sg) = len;
1127
1128 st->nents++;
1129 count -= len >> PAGE_SHIFT;
1130 if (count == 0)
1131 return sg;
1132
1133 sg = __sg_next(sg);
1134 iter = __sg_next(sg: iter);
1135 offset = 0;
1136 } while (1);
1137}
1138
1139static struct scatterlist *
1140remap_linear_color_plane_pages(struct drm_i915_gem_object *obj,
1141 pgoff_t obj_offset, unsigned int alignment_pad,
1142 unsigned int size,
1143 struct sg_table *st, struct scatterlist *sg,
1144 unsigned int *gtt_offset)
1145{
1146 if (!size)
1147 return sg;
1148
1149 if (alignment_pad)
1150 sg = add_padding_pages(count: alignment_pad, st, sg);
1151
1152 sg = remap_contiguous_pages(obj, obj_offset, count: size, st, sg);
1153 sg = sg_next(sg);
1154
1155 *gtt_offset += alignment_pad + size;
1156
1157 return sg;
1158}
1159
1160static struct scatterlist *
1161remap_color_plane_pages(const struct intel_remapped_info *rem_info,
1162 struct drm_i915_gem_object *obj,
1163 int color_plane,
1164 struct sg_table *st, struct scatterlist *sg,
1165 unsigned int *gtt_offset)
1166{
1167 unsigned int alignment_pad = 0;
1168
1169 if (rem_info->plane_alignment)
1170 alignment_pad = ALIGN(*gtt_offset, rem_info->plane_alignment) - *gtt_offset;
1171
1172 if (rem_info->plane[color_plane].linear)
1173 sg = remap_linear_color_plane_pages(obj,
1174 obj_offset: rem_info->plane[color_plane].offset,
1175 alignment_pad,
1176 size: rem_info->plane[color_plane].size,
1177 st, sg,
1178 gtt_offset);
1179
1180 else
1181 sg = remap_tiled_color_plane_pages(obj,
1182 offset: rem_info->plane[color_plane].offset,
1183 alignment_pad,
1184 width: rem_info->plane[color_plane].width,
1185 height: rem_info->plane[color_plane].height,
1186 src_stride: rem_info->plane[color_plane].src_stride,
1187 dst_stride: rem_info->plane[color_plane].dst_stride,
1188 st, sg,
1189 gtt_offset);
1190
1191 return sg;
1192}
1193
1194static noinline struct sg_table *
1195intel_remap_pages(struct intel_remapped_info *rem_info,
1196 struct drm_i915_gem_object *obj)
1197{
1198 unsigned int size = intel_remapped_info_size(rem_info);
1199 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
1200 struct sg_table *st;
1201 struct scatterlist *sg;
1202 unsigned int gtt_offset = 0;
1203 int ret = -ENOMEM;
1204 int i;
1205
1206 /* Allocate target SG list. */
1207 st = kmalloc(size: sizeof(*st), GFP_KERNEL);
1208 if (!st)
1209 goto err_st_alloc;
1210
1211 ret = sg_alloc_table(st, size, GFP_KERNEL);
1212 if (ret)
1213 goto err_sg_alloc;
1214
1215 st->nents = 0;
1216 sg = st->sgl;
1217
1218 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
1219 sg = remap_color_plane_pages(rem_info, obj, color_plane: i, st, sg, gtt_offset: &gtt_offset);
1220
1221 i915_sg_trim(orig_st: st);
1222
1223 return st;
1224
1225err_sg_alloc:
1226 kfree(objp: st);
1227err_st_alloc:
1228
1229 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1230 obj->base.size, rem_info->plane[0].width,
1231 rem_info->plane[0].height, size);
1232
1233 return ERR_PTR(error: ret);
1234}
1235
1236static noinline struct sg_table *
1237intel_partial_pages(const struct i915_gtt_view *view,
1238 struct drm_i915_gem_object *obj)
1239{
1240 struct sg_table *st;
1241 struct scatterlist *sg;
1242 unsigned int count = view->partial.size;
1243 int ret = -ENOMEM;
1244
1245 st = kmalloc(size: sizeof(*st), GFP_KERNEL);
1246 if (!st)
1247 goto err_st_alloc;
1248
1249 ret = sg_alloc_table(st, count, GFP_KERNEL);
1250 if (ret)
1251 goto err_sg_alloc;
1252
1253 st->nents = 0;
1254
1255 sg = remap_contiguous_pages(obj, obj_offset: view->partial.offset, count, st, sg: st->sgl);
1256
1257 sg_mark_end(sg);
1258 i915_sg_trim(orig_st: st); /* Drop any unused tail entries. */
1259
1260 return st;
1261
1262err_sg_alloc:
1263 kfree(objp: st);
1264err_st_alloc:
1265 return ERR_PTR(error: ret);
1266}
1267
1268static int
1269__i915_vma_get_pages(struct i915_vma *vma)
1270{
1271 struct sg_table *pages;
1272
1273 /*
1274 * The vma->pages are only valid within the lifespan of the borrowed
1275 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1276 * must be the vma->pages. A simple rule is that vma->pages must only
1277 * be accessed when the obj->mm.pages are pinned.
1278 */
1279 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1280
1281 switch (vma->gtt_view.type) {
1282 default:
1283 GEM_BUG_ON(vma->gtt_view.type);
1284 fallthrough;
1285 case I915_GTT_VIEW_NORMAL:
1286 pages = vma->obj->mm.pages;
1287 break;
1288
1289 case I915_GTT_VIEW_ROTATED:
1290 pages =
1291 intel_rotate_pages(rot_info: &vma->gtt_view.rotated, obj: vma->obj);
1292 break;
1293
1294 case I915_GTT_VIEW_REMAPPED:
1295 pages =
1296 intel_remap_pages(rem_info: &vma->gtt_view.remapped, obj: vma->obj);
1297 break;
1298
1299 case I915_GTT_VIEW_PARTIAL:
1300 pages = intel_partial_pages(view: &vma->gtt_view, obj: vma->obj);
1301 break;
1302 }
1303
1304 if (IS_ERR(ptr: pages)) {
1305 drm_err(&vma->vm->i915->drm,
1306 "Failed to get pages for VMA view type %u (%ld)!\n",
1307 vma->gtt_view.type, PTR_ERR(pages));
1308 return PTR_ERR(ptr: pages);
1309 }
1310
1311 vma->pages = pages;
1312
1313 return 0;
1314}
1315
1316I915_SELFTEST_EXPORT int i915_vma_get_pages(struct i915_vma *vma)
1317{
1318 int err;
1319
1320 if (atomic_add_unless(v: &vma->pages_count, a: 1, u: 0))
1321 return 0;
1322
1323 err = i915_gem_object_pin_pages(obj: vma->obj);
1324 if (err)
1325 return err;
1326
1327 err = __i915_vma_get_pages(vma);
1328 if (err)
1329 goto err_unpin;
1330
1331 vma->page_sizes = vma->obj->mm.page_sizes;
1332 atomic_inc(v: &vma->pages_count);
1333
1334 return 0;
1335
1336err_unpin:
1337 __i915_gem_object_unpin_pages(obj: vma->obj);
1338
1339 return err;
1340}
1341
1342void vma_invalidate_tlb(struct i915_address_space *vm, u32 *tlb)
1343{
1344 struct intel_gt *gt;
1345 int id;
1346
1347 if (!tlb)
1348 return;
1349
1350 /*
1351 * Before we release the pages that were bound by this vma, we
1352 * must invalidate all the TLBs that may still have a reference
1353 * back to our physical address. It only needs to be done once,
1354 * so after updating the PTE to point away from the pages, record
1355 * the most recent TLB invalidation seqno, and if we have not yet
1356 * flushed the TLBs upon release, perform a full invalidation.
1357 */
1358 for_each_gt(gt, vm->i915, id)
1359 WRITE_ONCE(tlb[id],
1360 intel_gt_next_invalidate_tlb_full(gt));
1361}
1362
1363static void __vma_put_pages(struct i915_vma *vma, unsigned int count)
1364{
1365 /* We allocate under vma_get_pages, so beware the shrinker */
1366 GEM_BUG_ON(atomic_read(&vma->pages_count) < count);
1367
1368 if (atomic_sub_return(i: count, v: &vma->pages_count) == 0) {
1369 if (vma->pages != vma->obj->mm.pages) {
1370 sg_free_table(vma->pages);
1371 kfree(objp: vma->pages);
1372 }
1373 vma->pages = NULL;
1374
1375 i915_gem_object_unpin_pages(obj: vma->obj);
1376 }
1377}
1378
1379I915_SELFTEST_EXPORT void i915_vma_put_pages(struct i915_vma *vma)
1380{
1381 if (atomic_add_unless(v: &vma->pages_count, a: -1, u: 1))
1382 return;
1383
1384 __vma_put_pages(vma, count: 1);
1385}
1386
1387static void vma_unbind_pages(struct i915_vma *vma)
1388{
1389 unsigned int count;
1390
1391 lockdep_assert_held(&vma->vm->mutex);
1392
1393 /* The upper portion of pages_count is the number of bindings */
1394 count = atomic_read(v: &vma->pages_count);
1395 count >>= I915_VMA_PAGES_BIAS;
1396 GEM_BUG_ON(!count);
1397
1398 __vma_put_pages(vma, count: count | count << I915_VMA_PAGES_BIAS);
1399}
1400
1401int i915_vma_pin_ww(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1402 u64 size, u64 alignment, u64 flags)
1403{
1404 struct i915_vma_work *work = NULL;
1405 struct dma_fence *moving = NULL;
1406 struct i915_vma_resource *vma_res = NULL;
1407 intel_wakeref_t wakeref = 0;
1408 unsigned int bound;
1409 int err;
1410
1411 assert_vma_held(vma);
1412 GEM_BUG_ON(!ww);
1413
1414 BUILD_BUG_ON(PIN_GLOBAL != I915_VMA_GLOBAL_BIND);
1415 BUILD_BUG_ON(PIN_USER != I915_VMA_LOCAL_BIND);
1416
1417 GEM_BUG_ON(!(flags & (PIN_USER | PIN_GLOBAL)));
1418
1419 /* First try and grab the pin without rebinding the vma */
1420 if (try_qad_pin(vma, flags))
1421 return 0;
1422
1423 err = i915_vma_get_pages(vma);
1424 if (err)
1425 return err;
1426
1427 if (flags & PIN_GLOBAL)
1428 wakeref = intel_runtime_pm_get(rpm: &vma->vm->i915->runtime_pm);
1429
1430 if (flags & vma->vm->bind_async_flags) {
1431 /* lock VM */
1432 err = i915_vm_lock_objects(vm: vma->vm, ww);
1433 if (err)
1434 goto err_rpm;
1435
1436 work = i915_vma_work();
1437 if (!work) {
1438 err = -ENOMEM;
1439 goto err_rpm;
1440 }
1441
1442 work->vm = vma->vm;
1443
1444 err = i915_gem_object_get_moving_fence(obj: vma->obj, fence: &moving);
1445 if (err)
1446 goto err_rpm;
1447
1448 dma_fence_work_chain(f: &work->base, signal: moving);
1449
1450 /* Allocate enough page directories to used PTE */
1451 if (vma->vm->allocate_va_range) {
1452 err = i915_vm_alloc_pt_stash(vm: vma->vm,
1453 stash: &work->stash,
1454 size: vma->size);
1455 if (err)
1456 goto err_fence;
1457
1458 err = i915_vm_map_pt_stash(vm: vma->vm, stash: &work->stash);
1459 if (err)
1460 goto err_fence;
1461 }
1462 }
1463
1464 vma_res = i915_vma_resource_alloc();
1465 if (IS_ERR(ptr: vma_res)) {
1466 err = PTR_ERR(ptr: vma_res);
1467 goto err_fence;
1468 }
1469
1470 /*
1471 * Differentiate between user/kernel vma inside the aliasing-ppgtt.
1472 *
1473 * We conflate the Global GTT with the user's vma when using the
1474 * aliasing-ppgtt, but it is still vitally important to try and
1475 * keep the use cases distinct. For example, userptr objects are
1476 * not allowed inside the Global GTT as that will cause lock
1477 * inversions when we have to evict them the mmu_notifier callbacks -
1478 * but they are allowed to be part of the user ppGTT which can never
1479 * be mapped. As such we try to give the distinct users of the same
1480 * mutex, distinct lockclasses [equivalent to how we keep i915_ggtt
1481 * and i915_ppgtt separate].
1482 *
1483 * NB this may cause us to mask real lock inversions -- while the
1484 * code is safe today, lockdep may not be able to spot future
1485 * transgressions.
1486 */
1487 err = mutex_lock_interruptible_nested(lock: &vma->vm->mutex,
1488 subclass: !(flags & PIN_GLOBAL));
1489 if (err)
1490 goto err_vma_res;
1491
1492 /* No more allocations allowed now we hold vm->mutex */
1493
1494 if (unlikely(i915_vma_is_closed(vma))) {
1495 err = -ENOENT;
1496 goto err_unlock;
1497 }
1498
1499 bound = atomic_read(v: &vma->flags);
1500 if (unlikely(bound & I915_VMA_ERROR)) {
1501 err = -ENOMEM;
1502 goto err_unlock;
1503 }
1504
1505 if (unlikely(!((bound + 1) & I915_VMA_PIN_MASK))) {
1506 err = -EAGAIN; /* pins are meant to be fairly temporary */
1507 goto err_unlock;
1508 }
1509
1510 if (unlikely(!(flags & ~bound & I915_VMA_BIND_MASK))) {
1511 if (!(flags & PIN_VALIDATE))
1512 __i915_vma_pin(vma);
1513 goto err_unlock;
1514 }
1515
1516 err = i915_active_acquire(ref: &vma->active);
1517 if (err)
1518 goto err_unlock;
1519
1520 if (!(bound & I915_VMA_BIND_MASK)) {
1521 err = i915_vma_insert(vma, ww, size, alignment, flags);
1522 if (err)
1523 goto err_active;
1524
1525 if (i915_is_ggtt(vma->vm))
1526 __i915_vma_set_map_and_fenceable(vma);
1527 }
1528
1529 GEM_BUG_ON(!vma->pages);
1530 err = i915_vma_bind(vma,
1531 pat_index: vma->obj->pat_index,
1532 flags, work, vma_res);
1533 vma_res = NULL;
1534 if (err)
1535 goto err_remove;
1536
1537 /* There should only be at most 2 active bindings (user, global) */
1538 GEM_BUG_ON(bound + I915_VMA_PAGES_ACTIVE < bound);
1539 atomic_add(I915_VMA_PAGES_ACTIVE, v: &vma->pages_count);
1540 list_move_tail(list: &vma->vm_link, head: &vma->vm->bound_list);
1541
1542 if (!(flags & PIN_VALIDATE)) {
1543 __i915_vma_pin(vma);
1544 GEM_BUG_ON(!i915_vma_is_pinned(vma));
1545 }
1546 GEM_BUG_ON(!i915_vma_is_bound(vma, flags));
1547 GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
1548
1549err_remove:
1550 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK)) {
1551 i915_vma_detach(vma);
1552 drm_mm_remove_node(node: &vma->node);
1553 }
1554err_active:
1555 i915_active_release(ref: &vma->active);
1556err_unlock:
1557 mutex_unlock(lock: &vma->vm->mutex);
1558err_vma_res:
1559 i915_vma_resource_free(vma_res);
1560err_fence:
1561 if (work)
1562 dma_fence_work_commit_imm(f: &work->base);
1563err_rpm:
1564 if (wakeref)
1565 intel_runtime_pm_put(rpm: &vma->vm->i915->runtime_pm, wref: wakeref);
1566
1567 if (moving)
1568 dma_fence_put(fence: moving);
1569
1570 i915_vma_put_pages(vma);
1571 return err;
1572}
1573
1574static void flush_idle_contexts(struct intel_gt *gt)
1575{
1576 struct intel_engine_cs *engine;
1577 enum intel_engine_id id;
1578
1579 for_each_engine(engine, gt, id)
1580 intel_engine_flush_barriers(engine);
1581
1582 intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1583}
1584
1585static int __i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1586 u32 align, unsigned int flags)
1587{
1588 struct i915_address_space *vm = vma->vm;
1589 struct intel_gt *gt;
1590 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
1591 int err;
1592
1593 do {
1594 err = i915_vma_pin_ww(vma, ww, size: 0, alignment: align, flags: flags | PIN_GLOBAL);
1595
1596 if (err != -ENOSPC) {
1597 if (!err) {
1598 err = i915_vma_wait_for_bind(vma);
1599 if (err)
1600 i915_vma_unpin(vma);
1601 }
1602 return err;
1603 }
1604
1605 /* Unlike i915_vma_pin, we don't take no for an answer! */
1606 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link)
1607 flush_idle_contexts(gt);
1608 if (mutex_lock_interruptible(&vm->mutex) == 0) {
1609 /*
1610 * We pass NULL ww here, as we don't want to unbind
1611 * locked objects when called from execbuf when pinning
1612 * is removed. This would probably regress badly.
1613 */
1614 i915_gem_evict_vm(vm, NULL, NULL);
1615 mutex_unlock(lock: &vm->mutex);
1616 }
1617 } while (1);
1618}
1619
1620int i915_ggtt_pin(struct i915_vma *vma, struct i915_gem_ww_ctx *ww,
1621 u32 align, unsigned int flags)
1622{
1623 struct i915_gem_ww_ctx _ww;
1624 int err;
1625
1626 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
1627
1628 if (ww)
1629 return __i915_ggtt_pin(vma, ww, align, flags);
1630
1631 lockdep_assert_not_held(&vma->obj->base.resv->lock.base);
1632
1633 for_i915_gem_ww(&_ww, err, true) {
1634 err = i915_gem_object_lock(obj: vma->obj, ww: &_ww);
1635 if (!err)
1636 err = __i915_ggtt_pin(vma, ww: &_ww, align, flags);
1637 }
1638
1639 return err;
1640}
1641
1642/**
1643 * i915_ggtt_clear_scanout - Clear scanout flag for all objects ggtt vmas
1644 * @obj: i915 GEM object
1645 * This function clears scanout flags for objects ggtt vmas. These flags are set
1646 * when object is pinned for display use and this function to clear them all is
1647 * targeted to be called by frontbuffer tracking code when the frontbuffer is
1648 * about to be released.
1649 */
1650void i915_ggtt_clear_scanout(struct drm_i915_gem_object *obj)
1651{
1652 struct i915_vma *vma;
1653
1654 spin_lock(lock: &obj->vma.lock);
1655 for_each_ggtt_vma(vma, obj) {
1656 i915_vma_clear_scanout(vma);
1657 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
1658 }
1659 spin_unlock(lock: &obj->vma.lock);
1660}
1661
1662static void __vma_close(struct i915_vma *vma, struct intel_gt *gt)
1663{
1664 /*
1665 * We defer actually closing, unbinding and destroying the VMA until
1666 * the next idle point, or if the object is freed in the meantime. By
1667 * postponing the unbind, we allow for it to be resurrected by the
1668 * client, avoiding the work required to rebind the VMA. This is
1669 * advantageous for DRI, where the client/server pass objects
1670 * between themselves, temporarily opening a local VMA to the
1671 * object, and then closing it again. The same object is then reused
1672 * on the next frame (or two, depending on the depth of the swap queue)
1673 * causing us to rebind the VMA once more. This ends up being a lot
1674 * of wasted work for the steady state.
1675 */
1676 GEM_BUG_ON(i915_vma_is_closed(vma));
1677 list_add(new: &vma->closed_link, head: &gt->closed_vma);
1678}
1679
1680void i915_vma_close(struct i915_vma *vma)
1681{
1682 struct intel_gt *gt = vma->vm->gt;
1683 unsigned long flags;
1684
1685 if (i915_vma_is_ggtt(vma))
1686 return;
1687
1688 GEM_BUG_ON(!atomic_read(&vma->open_count));
1689 if (atomic_dec_and_lock_irqsave(&vma->open_count,
1690 &gt->closed_lock,
1691 flags)) {
1692 __vma_close(vma, gt);
1693 spin_unlock_irqrestore(lock: &gt->closed_lock, flags);
1694 }
1695}
1696
1697static void __i915_vma_remove_closed(struct i915_vma *vma)
1698{
1699 list_del_init(entry: &vma->closed_link);
1700}
1701
1702void i915_vma_reopen(struct i915_vma *vma)
1703{
1704 struct intel_gt *gt = vma->vm->gt;
1705
1706 spin_lock_irq(lock: &gt->closed_lock);
1707 if (i915_vma_is_closed(vma))
1708 __i915_vma_remove_closed(vma);
1709 spin_unlock_irq(lock: &gt->closed_lock);
1710}
1711
1712static void force_unbind(struct i915_vma *vma)
1713{
1714 if (!drm_mm_node_allocated(node: &vma->node))
1715 return;
1716
1717 atomic_and(i: ~I915_VMA_PIN_MASK, v: &vma->flags);
1718 WARN_ON(__i915_vma_unbind(vma));
1719 GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
1720}
1721
1722static void release_references(struct i915_vma *vma, struct intel_gt *gt,
1723 bool vm_ddestroy)
1724{
1725 struct drm_i915_gem_object *obj = vma->obj;
1726
1727 GEM_BUG_ON(i915_vma_is_active(vma));
1728
1729 spin_lock(lock: &obj->vma.lock);
1730 list_del(entry: &vma->obj_link);
1731 if (!RB_EMPTY_NODE(&vma->obj_node))
1732 rb_erase(&vma->obj_node, &obj->vma.tree);
1733
1734 spin_unlock(lock: &obj->vma.lock);
1735
1736 spin_lock_irq(lock: &gt->closed_lock);
1737 __i915_vma_remove_closed(vma);
1738 spin_unlock_irq(lock: &gt->closed_lock);
1739
1740 if (vm_ddestroy)
1741 i915_vm_resv_put(vm: vma->vm);
1742
1743 /* Wait for async active retire */
1744 i915_active_wait(ref: &vma->active);
1745 i915_active_fini(ref: &vma->active);
1746 GEM_WARN_ON(vma->resource);
1747 i915_vma_free(vma);
1748}
1749
1750/*
1751 * i915_vma_destroy_locked - Remove all weak reference to the vma and put
1752 * the initial reference.
1753 *
1754 * This function should be called when it's decided the vma isn't needed
1755 * anymore. The caller must assure that it doesn't race with another lookup
1756 * plus destroy, typically by taking an appropriate reference.
1757 *
1758 * Current callsites are
1759 * - __i915_gem_object_pages_fini()
1760 * - __i915_vm_close() - Blocks the above function by taking a reference on
1761 * the object.
1762 * - __i915_vma_parked() - Blocks the above functions by taking a reference
1763 * on the vm and a reference on the object. Also takes the object lock so
1764 * destruction from __i915_vma_parked() can be blocked by holding the
1765 * object lock. Since the object lock is only allowed from within i915 with
1766 * an object refcount, holding the object lock also implicitly blocks the
1767 * vma freeing from __i915_gem_object_pages_fini().
1768 *
1769 * Because of locks taken during destruction, a vma is also guaranteed to
1770 * stay alive while the following locks are held if it was looked up while
1771 * holding one of the locks:
1772 * - vm->mutex
1773 * - obj->vma.lock
1774 * - gt->closed_lock
1775 */
1776void i915_vma_destroy_locked(struct i915_vma *vma)
1777{
1778 lockdep_assert_held(&vma->vm->mutex);
1779
1780 force_unbind(vma);
1781 list_del_init(entry: &vma->vm_link);
1782 release_references(vma, gt: vma->vm->gt, vm_ddestroy: false);
1783}
1784
1785void i915_vma_destroy(struct i915_vma *vma)
1786{
1787 struct intel_gt *gt;
1788 bool vm_ddestroy;
1789
1790 mutex_lock(&vma->vm->mutex);
1791 force_unbind(vma);
1792 list_del_init(entry: &vma->vm_link);
1793 vm_ddestroy = vma->vm_ddestroy;
1794 vma->vm_ddestroy = false;
1795
1796 /* vma->vm may be freed when releasing vma->vm->mutex. */
1797 gt = vma->vm->gt;
1798 mutex_unlock(lock: &vma->vm->mutex);
1799 release_references(vma, gt, vm_ddestroy);
1800}
1801
1802void i915_vma_parked(struct intel_gt *gt)
1803{
1804 struct i915_vma *vma, *next;
1805 LIST_HEAD(closed);
1806
1807 spin_lock_irq(lock: &gt->closed_lock);
1808 list_for_each_entry_safe(vma, next, &gt->closed_vma, closed_link) {
1809 struct drm_i915_gem_object *obj = vma->obj;
1810 struct i915_address_space *vm = vma->vm;
1811
1812 /* XXX All to avoid keeping a reference on i915_vma itself */
1813
1814 if (!kref_get_unless_zero(kref: &obj->base.refcount))
1815 continue;
1816
1817 if (!i915_vm_tryget(vm)) {
1818 i915_gem_object_put(obj);
1819 continue;
1820 }
1821
1822 list_move(list: &vma->closed_link, head: &closed);
1823 }
1824 spin_unlock_irq(lock: &gt->closed_lock);
1825
1826 /* As the GT is held idle, no vma can be reopened as we destroy them */
1827 list_for_each_entry_safe(vma, next, &closed, closed_link) {
1828 struct drm_i915_gem_object *obj = vma->obj;
1829 struct i915_address_space *vm = vma->vm;
1830
1831 if (i915_gem_object_trylock(obj, NULL)) {
1832 INIT_LIST_HEAD(list: &vma->closed_link);
1833 i915_vma_destroy(vma);
1834 i915_gem_object_unlock(obj);
1835 } else {
1836 /* back you go.. */
1837 spin_lock_irq(lock: &gt->closed_lock);
1838 list_add(new: &vma->closed_link, head: &gt->closed_vma);
1839 spin_unlock_irq(lock: &gt->closed_lock);
1840 }
1841
1842 i915_gem_object_put(obj);
1843 i915_vm_put(vm);
1844 }
1845}
1846
1847static void __i915_vma_iounmap(struct i915_vma *vma)
1848{
1849 GEM_BUG_ON(i915_vma_is_pinned(vma));
1850
1851 if (vma->iomap == NULL)
1852 return;
1853
1854 if (page_unmask_bits(vma->iomap))
1855 __i915_gem_object_release_map(obj: vma->obj);
1856 else
1857 io_mapping_unmap(vaddr: vma->iomap);
1858 vma->iomap = NULL;
1859}
1860
1861void i915_vma_revoke_mmap(struct i915_vma *vma)
1862{
1863 struct drm_vma_offset_node *node;
1864 u64 vma_offset;
1865
1866 if (!i915_vma_has_userfault(vma))
1867 return;
1868
1869 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
1870 GEM_BUG_ON(!vma->obj->userfault_count);
1871
1872 node = &vma->mmo->vma_node;
1873 vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
1874 unmap_mapping_range(mapping: vma->vm->i915->drm.anon_inode->i_mapping,
1875 holebegin: drm_vma_node_offset_addr(node) + vma_offset,
1876 holelen: vma->size,
1877 even_cows: 1);
1878
1879 i915_vma_unset_userfault(vma);
1880 if (!--vma->obj->userfault_count)
1881 list_del(entry: &vma->obj->userfault_link);
1882}
1883
1884static int
1885__i915_request_await_bind(struct i915_request *rq, struct i915_vma *vma)
1886{
1887 return __i915_request_await_exclusive(rq, active: &vma->active);
1888}
1889
1890static int __i915_vma_move_to_active(struct i915_vma *vma, struct i915_request *rq)
1891{
1892 int err;
1893
1894 /* Wait for the vma to be bound before we start! */
1895 err = __i915_request_await_bind(rq, vma);
1896 if (err)
1897 return err;
1898
1899 return i915_active_add_request(ref: &vma->active, rq);
1900}
1901
1902int _i915_vma_move_to_active(struct i915_vma *vma,
1903 struct i915_request *rq,
1904 struct dma_fence *fence,
1905 unsigned int flags)
1906{
1907 struct drm_i915_gem_object *obj = vma->obj;
1908 int err;
1909
1910 assert_object_held(obj);
1911
1912 GEM_BUG_ON(!vma->pages);
1913
1914 if (!(flags & __EXEC_OBJECT_NO_REQUEST_AWAIT)) {
1915 err = i915_request_await_object(to: rq, obj: vma->obj, write: flags & EXEC_OBJECT_WRITE);
1916 if (unlikely(err))
1917 return err;
1918 }
1919 err = __i915_vma_move_to_active(vma, rq);
1920 if (unlikely(err))
1921 return err;
1922
1923 /*
1924 * Reserve fences slot early to prevent an allocation after preparing
1925 * the workload and associating fences with dma_resv.
1926 */
1927 if (fence && !(flags & __EXEC_OBJECT_NO_RESERVE)) {
1928 struct dma_fence *curr;
1929 int idx;
1930
1931 dma_fence_array_for_each(curr, idx, fence)
1932 ;
1933 err = dma_resv_reserve_fences(obj: vma->obj->base.resv, num_fences: idx);
1934 if (unlikely(err))
1935 return err;
1936 }
1937
1938 if (flags & EXEC_OBJECT_WRITE) {
1939 struct intel_frontbuffer *front;
1940
1941 front = i915_gem_object_get_frontbuffer(obj);
1942 if (unlikely(front)) {
1943 if (intel_frontbuffer_invalidate(front, origin: ORIGIN_CS))
1944 i915_active_add_request(ref: &front->write, rq);
1945 intel_frontbuffer_put(front);
1946 }
1947 }
1948
1949 if (fence) {
1950 struct dma_fence *curr;
1951 enum dma_resv_usage usage;
1952 int idx;
1953
1954 if (flags & EXEC_OBJECT_WRITE) {
1955 usage = DMA_RESV_USAGE_WRITE;
1956 obj->write_domain = I915_GEM_DOMAIN_RENDER;
1957 obj->read_domains = 0;
1958 } else {
1959 usage = DMA_RESV_USAGE_READ;
1960 obj->write_domain = 0;
1961 }
1962
1963 dma_fence_array_for_each(curr, idx, fence)
1964 dma_resv_add_fence(obj: vma->obj->base.resv, fence: curr, usage);
1965 }
1966
1967 if (flags & EXEC_OBJECT_NEEDS_FENCE && vma->fence)
1968 i915_active_add_request(ref: &vma->fence->active, rq);
1969
1970 obj->read_domains |= I915_GEM_GPU_DOMAINS;
1971 obj->mm.dirty = true;
1972
1973 GEM_BUG_ON(!i915_vma_is_active(vma));
1974 return 0;
1975}
1976
1977struct dma_fence *__i915_vma_evict(struct i915_vma *vma, bool async)
1978{
1979 struct i915_vma_resource *vma_res = vma->resource;
1980 struct dma_fence *unbind_fence;
1981
1982 GEM_BUG_ON(i915_vma_is_pinned(vma));
1983 assert_vma_held_evict(vma);
1984
1985 if (i915_vma_is_map_and_fenceable(vma)) {
1986 /* Force a pagefault for domain tracking on next user access */
1987 i915_vma_revoke_mmap(vma);
1988
1989 /*
1990 * Check that we have flushed all writes through the GGTT
1991 * before the unbind, other due to non-strict nature of those
1992 * indirect writes they may end up referencing the GGTT PTE
1993 * after the unbind.
1994 *
1995 * Note that we may be concurrently poking at the GGTT_WRITE
1996 * bit from set-domain, as we mark all GGTT vma associated
1997 * with an object. We know this is for another vma, as we
1998 * are currently unbinding this one -- so if this vma will be
1999 * reused, it will be refaulted and have its dirty bit set
2000 * before the next write.
2001 */
2002 i915_vma_flush_writes(vma);
2003
2004 /* release the fence reg _after_ flushing */
2005 i915_vma_revoke_fence(vma);
2006
2007 clear_bit(I915_VMA_CAN_FENCE_BIT, __i915_vma_flags(vma));
2008 }
2009
2010 __i915_vma_iounmap(vma);
2011
2012 GEM_BUG_ON(vma->fence);
2013 GEM_BUG_ON(i915_vma_has_userfault(vma));
2014
2015 /* Object backend must be async capable. */
2016 GEM_WARN_ON(async && !vma->resource->bi.pages_rsgt);
2017
2018 /* If vm is not open, unbind is a nop. */
2019 vma_res->needs_wakeref = i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND) &&
2020 kref_read(kref: &vma->vm->ref);
2021 vma_res->skip_pte_rewrite = !kref_read(kref: &vma->vm->ref) ||
2022 vma->vm->skip_pte_rewrite;
2023 trace_i915_vma_unbind(vma);
2024
2025 if (async)
2026 unbind_fence = i915_vma_resource_unbind(vma_res,
2027 tlb: vma->obj->mm.tlb);
2028 else
2029 unbind_fence = i915_vma_resource_unbind(vma_res, NULL);
2030
2031 vma->resource = NULL;
2032
2033 atomic_and(i: ~(I915_VMA_BIND_MASK | I915_VMA_ERROR | I915_VMA_GGTT_WRITE),
2034 v: &vma->flags);
2035
2036 i915_vma_detach(vma);
2037
2038 if (!async) {
2039 if (unbind_fence) {
2040 dma_fence_wait(fence: unbind_fence, intr: false);
2041 dma_fence_put(fence: unbind_fence);
2042 unbind_fence = NULL;
2043 }
2044 vma_invalidate_tlb(vm: vma->vm, tlb: vma->obj->mm.tlb);
2045 }
2046
2047 /*
2048 * Binding itself may not have completed until the unbind fence signals,
2049 * so don't drop the pages until that happens, unless the resource is
2050 * async_capable.
2051 */
2052
2053 vma_unbind_pages(vma);
2054 return unbind_fence;
2055}
2056
2057int __i915_vma_unbind(struct i915_vma *vma)
2058{
2059 int ret;
2060
2061 lockdep_assert_held(&vma->vm->mutex);
2062 assert_vma_held_evict(vma);
2063
2064 if (!drm_mm_node_allocated(node: &vma->node))
2065 return 0;
2066
2067 if (i915_vma_is_pinned(vma)) {
2068 vma_print_allocator(vma, reason: "is pinned");
2069 return -EAGAIN;
2070 }
2071
2072 /*
2073 * After confirming that no one else is pinning this vma, wait for
2074 * any laggards who may have crept in during the wait (through
2075 * a residual pin skipping the vm->mutex) to complete.
2076 */
2077 ret = i915_vma_sync(vma);
2078 if (ret)
2079 return ret;
2080
2081 GEM_BUG_ON(i915_vma_is_active(vma));
2082 __i915_vma_evict(vma, async: false);
2083
2084 drm_mm_remove_node(node: &vma->node); /* pairs with i915_vma_release() */
2085 return 0;
2086}
2087
2088static struct dma_fence *__i915_vma_unbind_async(struct i915_vma *vma)
2089{
2090 struct dma_fence *fence;
2091
2092 lockdep_assert_held(&vma->vm->mutex);
2093
2094 if (!drm_mm_node_allocated(node: &vma->node))
2095 return NULL;
2096
2097 if (i915_vma_is_pinned(vma) ||
2098 &vma->obj->mm.rsgt->table != vma->resource->bi.pages)
2099 return ERR_PTR(error: -EAGAIN);
2100
2101 /*
2102 * We probably need to replace this with awaiting the fences of the
2103 * object's dma_resv when the vma active goes away. When doing that
2104 * we need to be careful to not add the vma_resource unbind fence
2105 * immediately to the object's dma_resv, because then unbinding
2106 * the next vma from the object, in case there are many, will
2107 * actually await the unbinding of the previous vmas, which is
2108 * undesirable.
2109 */
2110 if (i915_sw_fence_await_active(fence: &vma->resource->chain, ref: &vma->active,
2111 I915_ACTIVE_AWAIT_EXCL |
2112 I915_ACTIVE_AWAIT_ACTIVE) < 0) {
2113 return ERR_PTR(error: -EBUSY);
2114 }
2115
2116 fence = __i915_vma_evict(vma, async: true);
2117
2118 drm_mm_remove_node(node: &vma->node); /* pairs with i915_vma_release() */
2119
2120 return fence;
2121}
2122
2123int i915_vma_unbind(struct i915_vma *vma)
2124{
2125 struct i915_address_space *vm = vma->vm;
2126 intel_wakeref_t wakeref = 0;
2127 int err;
2128
2129 assert_object_held_shared(obj: vma->obj);
2130
2131 /* Optimistic wait before taking the mutex */
2132 err = i915_vma_sync(vma);
2133 if (err)
2134 return err;
2135
2136 if (!drm_mm_node_allocated(node: &vma->node))
2137 return 0;
2138
2139 if (i915_vma_is_pinned(vma)) {
2140 vma_print_allocator(vma, reason: "is pinned");
2141 return -EAGAIN;
2142 }
2143
2144 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2145 /* XXX not always required: nop_clear_range */
2146 wakeref = intel_runtime_pm_get(rpm: &vm->i915->runtime_pm);
2147
2148 err = mutex_lock_interruptible_nested(lock: &vma->vm->mutex, subclass: !wakeref);
2149 if (err)
2150 goto out_rpm;
2151
2152 err = __i915_vma_unbind(vma);
2153 mutex_unlock(lock: &vm->mutex);
2154
2155out_rpm:
2156 if (wakeref)
2157 intel_runtime_pm_put(rpm: &vm->i915->runtime_pm, wref: wakeref);
2158 return err;
2159}
2160
2161int i915_vma_unbind_async(struct i915_vma *vma, bool trylock_vm)
2162{
2163 struct drm_i915_gem_object *obj = vma->obj;
2164 struct i915_address_space *vm = vma->vm;
2165 intel_wakeref_t wakeref = 0;
2166 struct dma_fence *fence;
2167 int err;
2168
2169 /*
2170 * We need the dma-resv lock since we add the
2171 * unbind fence to the dma-resv object.
2172 */
2173 assert_object_held(obj);
2174
2175 if (!drm_mm_node_allocated(node: &vma->node))
2176 return 0;
2177
2178 if (i915_vma_is_pinned(vma)) {
2179 vma_print_allocator(vma, reason: "is pinned");
2180 return -EAGAIN;
2181 }
2182
2183 if (!obj->mm.rsgt)
2184 return -EBUSY;
2185
2186 err = dma_resv_reserve_fences(obj: obj->base.resv, num_fences: 2);
2187 if (err)
2188 return -EBUSY;
2189
2190 /*
2191 * It would be great if we could grab this wakeref from the
2192 * async unbind work if needed, but we can't because it uses
2193 * kmalloc and it's in the dma-fence signalling critical path.
2194 */
2195 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
2196 wakeref = intel_runtime_pm_get(rpm: &vm->i915->runtime_pm);
2197
2198 if (trylock_vm && !mutex_trylock(lock: &vm->mutex)) {
2199 err = -EBUSY;
2200 goto out_rpm;
2201 } else if (!trylock_vm) {
2202 err = mutex_lock_interruptible_nested(lock: &vm->mutex, subclass: !wakeref);
2203 if (err)
2204 goto out_rpm;
2205 }
2206
2207 fence = __i915_vma_unbind_async(vma);
2208 mutex_unlock(lock: &vm->mutex);
2209 if (IS_ERR_OR_NULL(ptr: fence)) {
2210 err = PTR_ERR_OR_ZERO(ptr: fence);
2211 goto out_rpm;
2212 }
2213
2214 dma_resv_add_fence(obj: obj->base.resv, fence, usage: DMA_RESV_USAGE_READ);
2215 dma_fence_put(fence);
2216
2217out_rpm:
2218 if (wakeref)
2219 intel_runtime_pm_put(rpm: &vm->i915->runtime_pm, wref: wakeref);
2220 return err;
2221}
2222
2223int i915_vma_unbind_unlocked(struct i915_vma *vma)
2224{
2225 int err;
2226
2227 i915_gem_object_lock(obj: vma->obj, NULL);
2228 err = i915_vma_unbind(vma);
2229 i915_gem_object_unlock(obj: vma->obj);
2230
2231 return err;
2232}
2233
2234struct i915_vma *i915_vma_make_unshrinkable(struct i915_vma *vma)
2235{
2236 i915_gem_object_make_unshrinkable(obj: vma->obj);
2237 return vma;
2238}
2239
2240void i915_vma_make_shrinkable(struct i915_vma *vma)
2241{
2242 i915_gem_object_make_shrinkable(obj: vma->obj);
2243}
2244
2245void i915_vma_make_purgeable(struct i915_vma *vma)
2246{
2247 i915_gem_object_make_purgeable(obj: vma->obj);
2248}
2249
2250#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2251#include "selftests/i915_vma.c"
2252#endif
2253
2254void i915_vma_module_exit(void)
2255{
2256 kmem_cache_destroy(s: slab_vmas);
2257}
2258
2259int __init i915_vma_module_init(void)
2260{
2261 slab_vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
2262 if (!slab_vmas)
2263 return -ENOMEM;
2264
2265 return 0;
2266}
2267

source code of linux/drivers/gpu/drm/i915/i915_vma.c