1 | /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */ |
---|---|
2 | /* |
3 | Written 1998-2000 by Donald Becker. |
4 | |
5 | Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please |
6 | send all bug reports to me, and not to Donald Becker, as this code |
7 | has been heavily modified from Donald's original version. |
8 | |
9 | This software may be used and distributed according to the terms of |
10 | the GNU General Public License (GPL), incorporated herein by reference. |
11 | Drivers based on or derived from this code fall under the GPL and must |
12 | retain the authorship, copyright and license notice. This file is not |
13 | a complete program and may only be used when the entire operating |
14 | system is licensed under the GPL. |
15 | |
16 | The information below comes from Donald Becker's original driver: |
17 | |
18 | The author may be reached as becker@scyld.com, or C/O |
19 | Scyld Computing Corporation |
20 | 410 Severn Ave., Suite 210 |
21 | Annapolis MD 21403 |
22 | |
23 | Support and updates available at |
24 | http://www.scyld.com/network/starfire.html |
25 | [link no longer provides useful info -jgarzik] |
26 | |
27 | */ |
28 | |
29 | #define DRV_NAME "starfire" |
30 | |
31 | #include <linux/interrupt.h> |
32 | #include <linux/module.h> |
33 | #include <linux/kernel.h> |
34 | #include <linux/pci.h> |
35 | #include <linux/netdevice.h> |
36 | #include <linux/etherdevice.h> |
37 | #include <linux/init.h> |
38 | #include <linux/delay.h> |
39 | #include <linux/crc32.h> |
40 | #include <linux/ethtool.h> |
41 | #include <linux/mii.h> |
42 | #include <linux/if_vlan.h> |
43 | #include <linux/mm.h> |
44 | #include <linux/firmware.h> |
45 | #include <asm/processor.h> /* Processor type for cache alignment. */ |
46 | #include <linux/uaccess.h> |
47 | #include <asm/io.h> |
48 | |
49 | /* |
50 | * The current frame processor firmware fails to checksum a fragment |
51 | * of length 1. If and when this is fixed, the #define below can be removed. |
52 | */ |
53 | #define HAS_BROKEN_FIRMWARE |
54 | |
55 | /* |
56 | * If using the broken firmware, data must be padded to the next 32-bit boundary. |
57 | */ |
58 | #ifdef HAS_BROKEN_FIRMWARE |
59 | #define PADDING_MASK 3 |
60 | #endif |
61 | |
62 | /* |
63 | * Define this if using the driver with the zero-copy patch |
64 | */ |
65 | #define ZEROCOPY |
66 | |
67 | #if IS_ENABLED(CONFIG_VLAN_8021Q) |
68 | #define VLAN_SUPPORT |
69 | #endif |
70 | |
71 | /* The user-configurable values. |
72 | These may be modified when a driver module is loaded.*/ |
73 | |
74 | /* Used for tuning interrupt latency vs. overhead. */ |
75 | static int intr_latency; |
76 | static int small_frames; |
77 | |
78 | static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ |
79 | static int max_interrupt_work = 20; |
80 | static int mtu; |
81 | /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). |
82 | The Starfire has a 512 element hash table based on the Ethernet CRC. */ |
83 | static const int multicast_filter_limit = 512; |
84 | /* Whether to do TCP/UDP checksums in hardware */ |
85 | static int enable_hw_cksum = 1; |
86 | |
87 | #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ |
88 | /* |
89 | * Set the copy breakpoint for the copy-only-tiny-frames scheme. |
90 | * Setting to > 1518 effectively disables this feature. |
91 | * |
92 | * NOTE: |
93 | * The ia64 doesn't allow for unaligned loads even of integers being |
94 | * misaligned on a 2 byte boundary. Thus always force copying of |
95 | * packets as the starfire doesn't allow for misaligned DMAs ;-( |
96 | * 23/10/2000 - Jes |
97 | * |
98 | * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64, |
99 | * at least, having unaligned frames leads to a rather serious performance |
100 | * penalty. -Ion |
101 | */ |
102 | #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) |
103 | static int rx_copybreak = PKT_BUF_SZ; |
104 | #else |
105 | static int rx_copybreak /* = 0 */; |
106 | #endif |
107 | |
108 | /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */ |
109 | #ifdef __sparc__ |
110 | #define DMA_BURST_SIZE 64 |
111 | #else |
112 | #define DMA_BURST_SIZE 128 |
113 | #endif |
114 | |
115 | /* Operational parameters that are set at compile time. */ |
116 | |
117 | /* The "native" ring sizes are either 256 or 2048. |
118 | However in some modes a descriptor may be marked to wrap the ring earlier. |
119 | */ |
120 | #define RX_RING_SIZE 256 |
121 | #define TX_RING_SIZE 32 |
122 | /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */ |
123 | #define DONE_Q_SIZE 1024 |
124 | /* All queues must be aligned on a 256-byte boundary */ |
125 | #define QUEUE_ALIGN 256 |
126 | |
127 | #if RX_RING_SIZE > 256 |
128 | #define RX_Q_ENTRIES Rx2048QEntries |
129 | #else |
130 | #define RX_Q_ENTRIES Rx256QEntries |
131 | #endif |
132 | |
133 | /* Operational parameters that usually are not changed. */ |
134 | /* Time in jiffies before concluding the transmitter is hung. */ |
135 | #define TX_TIMEOUT (2 * HZ) |
136 | |
137 | #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT |
138 | /* 64-bit dma_addr_t */ |
139 | #define ADDR_64BITS /* This chip uses 64 bit addresses. */ |
140 | #define netdrv_addr_t __le64 |
141 | #define cpu_to_dma(x) cpu_to_le64(x) |
142 | #define dma_to_cpu(x) le64_to_cpu(x) |
143 | #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit |
144 | #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit |
145 | #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit |
146 | #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit |
147 | #define RX_DESC_ADDR_SIZE RxDescAddr64bit |
148 | #else /* 32-bit dma_addr_t */ |
149 | #define netdrv_addr_t __le32 |
150 | #define cpu_to_dma(x) cpu_to_le32(x) |
151 | #define dma_to_cpu(x) le32_to_cpu(x) |
152 | #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit |
153 | #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit |
154 | #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit |
155 | #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit |
156 | #define RX_DESC_ADDR_SIZE RxDescAddr32bit |
157 | #endif |
158 | |
159 | #define skb_first_frag_len(skb) skb_headlen(skb) |
160 | #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1) |
161 | |
162 | /* Firmware names */ |
163 | #define FIRMWARE_RX "adaptec/starfire_rx.bin" |
164 | #define FIRMWARE_TX "adaptec/starfire_tx.bin" |
165 | |
166 | MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); |
167 | MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver"); |
168 | MODULE_LICENSE("GPL"); |
169 | MODULE_FIRMWARE(FIRMWARE_RX); |
170 | MODULE_FIRMWARE(FIRMWARE_TX); |
171 | |
172 | module_param(max_interrupt_work, int, 0); |
173 | module_param(mtu, int, 0); |
174 | module_param(debug, int, 0); |
175 | module_param(rx_copybreak, int, 0); |
176 | module_param(intr_latency, int, 0); |
177 | module_param(small_frames, int, 0); |
178 | module_param(enable_hw_cksum, int, 0); |
179 | MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt"); |
180 | MODULE_PARM_DESC(mtu, "MTU (all boards)"); |
181 | MODULE_PARM_DESC(debug, "Debug level (0-6)"); |
182 | MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); |
183 | MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds"); |
184 | MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)"); |
185 | MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)"); |
186 | |
187 | /* |
188 | Theory of Operation |
189 | |
190 | I. Board Compatibility |
191 | |
192 | This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter. |
193 | |
194 | II. Board-specific settings |
195 | |
196 | III. Driver operation |
197 | |
198 | IIIa. Ring buffers |
199 | |
200 | The Starfire hardware uses multiple fixed-size descriptor queues/rings. The |
201 | ring sizes are set fixed by the hardware, but may optionally be wrapped |
202 | earlier by the END bit in the descriptor. |
203 | This driver uses that hardware queue size for the Rx ring, where a large |
204 | number of entries has no ill effect beyond increases the potential backlog. |
205 | The Tx ring is wrapped with the END bit, since a large hardware Tx queue |
206 | disables the queue layer priority ordering and we have no mechanism to |
207 | utilize the hardware two-level priority queue. When modifying the |
208 | RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning |
209 | levels. |
210 | |
211 | IIIb/c. Transmit/Receive Structure |
212 | |
213 | See the Adaptec manual for the many possible structures, and options for |
214 | each structure. There are far too many to document all of them here. |
215 | |
216 | For transmit this driver uses type 0/1 transmit descriptors (depending |
217 | on the 32/64 bitness of the architecture), and relies on automatic |
218 | minimum-length padding. It does not use the completion queue |
219 | consumer index, but instead checks for non-zero status entries. |
220 | |
221 | For receive this driver uses type 2/3 receive descriptors. The driver |
222 | allocates full frame size skbuffs for the Rx ring buffers, so all frames |
223 | should fit in a single descriptor. The driver does not use the completion |
224 | queue consumer index, but instead checks for non-zero status entries. |
225 | |
226 | When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff |
227 | is allocated and the frame is copied to the new skbuff. When the incoming |
228 | frame is larger, the skbuff is passed directly up the protocol stack. |
229 | Buffers consumed this way are replaced by newly allocated skbuffs in a later |
230 | phase of receive. |
231 | |
232 | A notable aspect of operation is that unaligned buffers are not permitted by |
233 | the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame |
234 | isn't longword aligned, which may cause problems on some machine |
235 | e.g. Alphas and IA64. For these architectures, the driver is forced to copy |
236 | the frame into a new skbuff unconditionally. Copied frames are put into the |
237 | skbuff at an offset of "+2", thus 16-byte aligning the IP header. |
238 | |
239 | IIId. Synchronization |
240 | |
241 | The driver runs as two independent, single-threaded flows of control. One |
242 | is the send-packet routine, which enforces single-threaded use by the |
243 | dev->tbusy flag. The other thread is the interrupt handler, which is single |
244 | threaded by the hardware and interrupt handling software. |
245 | |
246 | The send packet thread has partial control over the Tx ring and the netif_queue |
247 | status. If the number of free Tx slots in the ring falls below a certain number |
248 | (currently hardcoded to 4), it signals the upper layer to stop the queue. |
249 | |
250 | The interrupt handler has exclusive control over the Rx ring and records stats |
251 | from the Tx ring. After reaping the stats, it marks the Tx queue entry as |
252 | empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the |
253 | number of free Tx slow is above the threshold, it signals the upper layer to |
254 | restart the queue. |
255 | |
256 | IV. Notes |
257 | |
258 | IVb. References |
259 | |
260 | The Adaptec Starfire manuals, available only from Adaptec. |
261 | http://www.scyld.com/expert/100mbps.html |
262 | http://www.scyld.com/expert/NWay.html |
263 | |
264 | IVc. Errata |
265 | |
266 | - StopOnPerr is broken, don't enable |
267 | - Hardware ethernet padding exposes random data, perform software padding |
268 | instead (unverified -- works correctly for all the hardware I have) |
269 | |
270 | */ |
271 | |
272 | |
273 | |
274 | enum chip_capability_flags {CanHaveMII=1, }; |
275 | |
276 | enum chipset { |
277 | CH_6915 = 0, |
278 | }; |
279 | |
280 | static const struct pci_device_id starfire_pci_tbl[] = { |
281 | { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 }, |
282 | { 0, } |
283 | }; |
284 | MODULE_DEVICE_TABLE(pci, starfire_pci_tbl); |
285 | |
286 | /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */ |
287 | static const struct chip_info { |
288 | const char *name; |
289 | int drv_flags; |
290 | } netdrv_tbl[] = { |
291 | { "Adaptec Starfire 6915", CanHaveMII }, |
292 | }; |
293 | |
294 | |
295 | /* Offsets to the device registers. |
296 | Unlike software-only systems, device drivers interact with complex hardware. |
297 | It's not useful to define symbolic names for every register bit in the |
298 | device. The name can only partially document the semantics and make |
299 | the driver longer and more difficult to read. |
300 | In general, only the important configuration values or bits changed |
301 | multiple times should be defined symbolically. |
302 | */ |
303 | enum register_offsets { |
304 | PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074, |
305 | IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088, |
306 | MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000, |
307 | GPIOCtrl=0x5008C, TxDescCtrl=0x50090, |
308 | TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */ |
309 | TxRingHiAddr=0x5009C, /* 64 bit address extension. */ |
310 | TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4, |
311 | TxThreshold=0x500B0, |
312 | CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8, |
313 | RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0, |
314 | CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0, |
315 | RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0, |
316 | RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4, |
317 | TxMode=0x55000, VlanType=0x55064, |
318 | PerfFilterTable=0x56000, HashTable=0x56100, |
319 | TxGfpMem=0x58000, RxGfpMem=0x5a000, |
320 | }; |
321 | |
322 | /* |
323 | * Bits in the interrupt status/mask registers. |
324 | * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register |
325 | * enables all the interrupt sources that are or'ed into those status bits. |
326 | */ |
327 | enum intr_status_bits { |
328 | IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000, |
329 | IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000, |
330 | IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000, |
331 | IntrTxComplQLow=0x200000, IntrPCI=0x100000, |
332 | IntrDMAErr=0x080000, IntrTxDataLow=0x040000, |
333 | IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000, |
334 | IntrNormalSummary=0x8000, IntrTxDone=0x4000, |
335 | IntrTxDMADone=0x2000, IntrTxEmpty=0x1000, |
336 | IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400, |
337 | IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100, |
338 | IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40, |
339 | IntrNoTxCsum=0x20, IntrTxBadID=0x10, |
340 | IntrHiPriTxBadID=0x08, IntrRxGfp=0x04, |
341 | IntrTxGfp=0x02, IntrPCIPad=0x01, |
342 | /* not quite bits */ |
343 | IntrRxDone=IntrRxQ2Done | IntrRxQ1Done, |
344 | IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low, |
345 | IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe, |
346 | }; |
347 | |
348 | /* Bits in the RxFilterMode register. */ |
349 | enum rx_mode_bits { |
350 | AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01, |
351 | AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30, |
352 | PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200, |
353 | WakeupOnGFP=0x0800, |
354 | }; |
355 | |
356 | /* Bits in the TxMode register */ |
357 | enum tx_mode_bits { |
358 | MiiSoftReset=0x8000, MIILoopback=0x4000, |
359 | TxFlowEnable=0x0800, RxFlowEnable=0x0400, |
360 | PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01, |
361 | }; |
362 | |
363 | /* Bits in the TxDescCtrl register. */ |
364 | enum tx_ctrl_bits { |
365 | TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20, |
366 | TxDescSpace128=0x30, TxDescSpace256=0x40, |
367 | TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02, |
368 | TxDescType3=0x03, TxDescType4=0x04, |
369 | TxNoDMACompletion=0x08, |
370 | TxDescQAddr64bit=0x80, TxDescQAddr32bit=0, |
371 | TxHiPriFIFOThreshShift=24, TxPadLenShift=16, |
372 | TxDMABurstSizeShift=8, |
373 | }; |
374 | |
375 | /* Bits in the RxDescQCtrl register. */ |
376 | enum rx_ctrl_bits { |
377 | RxBufferLenShift=16, RxMinDescrThreshShift=0, |
378 | RxPrefetchMode=0x8000, RxVariableQ=0x2000, |
379 | Rx2048QEntries=0x4000, Rx256QEntries=0, |
380 | RxDescAddr64bit=0x1000, RxDescAddr32bit=0, |
381 | RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0, |
382 | RxDescSpace4=0x000, RxDescSpace8=0x100, |
383 | RxDescSpace16=0x200, RxDescSpace32=0x300, |
384 | RxDescSpace64=0x400, RxDescSpace128=0x500, |
385 | RxConsumerWrEn=0x80, |
386 | }; |
387 | |
388 | /* Bits in the RxDMACtrl register. */ |
389 | enum rx_dmactrl_bits { |
390 | RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000, |
391 | RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000, |
392 | RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000, |
393 | RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000, |
394 | RxChecksumRejectTCPOnly=0x01000000, |
395 | RxCompletionQ2Enable=0x800000, |
396 | RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000, |
397 | RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000, |
398 | RxDMAQ2NonIP=0x400000, |
399 | RxUseBackupQueue=0x080000, RxDMACRC=0x040000, |
400 | RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8, |
401 | RxBurstSizeShift=0, |
402 | }; |
403 | |
404 | /* Bits in the RxCompletionAddr register */ |
405 | enum rx_compl_bits { |
406 | RxComplQAddr64bit=0x80, RxComplQAddr32bit=0, |
407 | RxComplProducerWrEn=0x40, |
408 | RxComplType0=0x00, RxComplType1=0x10, |
409 | RxComplType2=0x20, RxComplType3=0x30, |
410 | RxComplThreshShift=0, |
411 | }; |
412 | |
413 | /* Bits in the TxCompletionAddr register */ |
414 | enum tx_compl_bits { |
415 | TxComplQAddr64bit=0x80, TxComplQAddr32bit=0, |
416 | TxComplProducerWrEn=0x40, |
417 | TxComplIntrStatus=0x20, |
418 | CommonQueueMode=0x10, |
419 | TxComplThreshShift=0, |
420 | }; |
421 | |
422 | /* Bits in the GenCtrl register */ |
423 | enum gen_ctrl_bits { |
424 | RxEnable=0x05, TxEnable=0x0a, |
425 | RxGFPEnable=0x10, TxGFPEnable=0x20, |
426 | }; |
427 | |
428 | /* Bits in the IntrTimerCtrl register */ |
429 | enum intr_ctrl_bits { |
430 | Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100, |
431 | SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600, |
432 | IntrLatencyMask=0x1f, |
433 | }; |
434 | |
435 | /* The Rx and Tx buffer descriptors. */ |
436 | struct starfire_rx_desc { |
437 | netdrv_addr_t rxaddr; |
438 | }; |
439 | enum rx_desc_bits { |
440 | RxDescValid=1, RxDescEndRing=2, |
441 | }; |
442 | |
443 | /* Completion queue entry. */ |
444 | struct short_rx_done_desc { |
445 | __le32 status; /* Low 16 bits is length. */ |
446 | }; |
447 | struct basic_rx_done_desc { |
448 | __le32 status; /* Low 16 bits is length. */ |
449 | __le16 vlanid; |
450 | __le16 status2; |
451 | }; |
452 | struct csum_rx_done_desc { |
453 | __le32 status; /* Low 16 bits is length. */ |
454 | __le16 csum; /* Partial checksum */ |
455 | __le16 status2; |
456 | }; |
457 | struct full_rx_done_desc { |
458 | __le32 status; /* Low 16 bits is length. */ |
459 | __le16 status3; |
460 | __le16 status2; |
461 | __le16 vlanid; |
462 | __le16 csum; /* partial checksum */ |
463 | __le32 timestamp; |
464 | }; |
465 | /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */ |
466 | #ifdef VLAN_SUPPORT |
467 | typedef struct full_rx_done_desc rx_done_desc; |
468 | #define RxComplType RxComplType3 |
469 | #else /* not VLAN_SUPPORT */ |
470 | typedef struct csum_rx_done_desc rx_done_desc; |
471 | #define RxComplType RxComplType2 |
472 | #endif /* not VLAN_SUPPORT */ |
473 | |
474 | enum rx_done_bits { |
475 | RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000, |
476 | }; |
477 | |
478 | /* Type 1 Tx descriptor. */ |
479 | struct starfire_tx_desc_1 { |
480 | __le32 status; /* Upper bits are status, lower 16 length. */ |
481 | __le32 addr; |
482 | }; |
483 | |
484 | /* Type 2 Tx descriptor. */ |
485 | struct starfire_tx_desc_2 { |
486 | __le32 status; /* Upper bits are status, lower 16 length. */ |
487 | __le32 reserved; |
488 | __le64 addr; |
489 | }; |
490 | |
491 | #ifdef ADDR_64BITS |
492 | typedef struct starfire_tx_desc_2 starfire_tx_desc; |
493 | #define TX_DESC_TYPE TxDescType2 |
494 | #else /* not ADDR_64BITS */ |
495 | typedef struct starfire_tx_desc_1 starfire_tx_desc; |
496 | #define TX_DESC_TYPE TxDescType1 |
497 | #endif /* not ADDR_64BITS */ |
498 | #define TX_DESC_SPACING TxDescSpaceUnlim |
499 | |
500 | enum tx_desc_bits { |
501 | TxDescID=0xB0000000, |
502 | TxCRCEn=0x01000000, TxDescIntr=0x08000000, |
503 | TxRingWrap=0x04000000, TxCalTCP=0x02000000, |
504 | }; |
505 | struct tx_done_desc { |
506 | __le32 status; /* timestamp, index. */ |
507 | #if 0 |
508 | __le32 intrstatus; /* interrupt status */ |
509 | #endif |
510 | }; |
511 | |
512 | struct rx_ring_info { |
513 | struct sk_buff *skb; |
514 | dma_addr_t mapping; |
515 | }; |
516 | struct tx_ring_info { |
517 | struct sk_buff *skb; |
518 | dma_addr_t mapping; |
519 | unsigned int used_slots; |
520 | }; |
521 | |
522 | #define PHY_CNT 2 |
523 | struct netdev_private { |
524 | /* Descriptor rings first for alignment. */ |
525 | struct starfire_rx_desc *rx_ring; |
526 | starfire_tx_desc *tx_ring; |
527 | dma_addr_t rx_ring_dma; |
528 | dma_addr_t tx_ring_dma; |
529 | /* The addresses of rx/tx-in-place skbuffs. */ |
530 | struct rx_ring_info rx_info[RX_RING_SIZE]; |
531 | struct tx_ring_info tx_info[TX_RING_SIZE]; |
532 | /* Pointers to completion queues (full pages). */ |
533 | rx_done_desc *rx_done_q; |
534 | dma_addr_t rx_done_q_dma; |
535 | unsigned int rx_done; |
536 | struct tx_done_desc *tx_done_q; |
537 | dma_addr_t tx_done_q_dma; |
538 | unsigned int tx_done; |
539 | struct napi_struct napi; |
540 | struct net_device *dev; |
541 | struct pci_dev *pci_dev; |
542 | #ifdef VLAN_SUPPORT |
543 | unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; |
544 | #endif |
545 | void *queue_mem; |
546 | dma_addr_t queue_mem_dma; |
547 | size_t queue_mem_size; |
548 | |
549 | /* Frequently used values: keep some adjacent for cache effect. */ |
550 | spinlock_t lock; |
551 | unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ |
552 | unsigned int cur_tx, dirty_tx, reap_tx; |
553 | unsigned int rx_buf_sz; /* Based on MTU+slack. */ |
554 | /* These values keep track of the transceiver/media in use. */ |
555 | int speed100; /* Set if speed == 100MBit. */ |
556 | u32 tx_mode; |
557 | u32 intr_timer_ctrl; |
558 | u8 tx_threshold; |
559 | /* MII transceiver section. */ |
560 | struct mii_if_info mii_if; /* MII lib hooks/info */ |
561 | int phy_cnt; /* MII device addresses. */ |
562 | unsigned char phys[PHY_CNT]; /* MII device addresses. */ |
563 | void __iomem *base; |
564 | }; |
565 | |
566 | |
567 | static int mdio_read(struct net_device *dev, int phy_id, int location); |
568 | static void mdio_write(struct net_device *dev, int phy_id, int location, int value); |
569 | static int netdev_open(struct net_device *dev); |
570 | static void check_duplex(struct net_device *dev); |
571 | static void tx_timeout(struct net_device *dev, unsigned int txqueue); |
572 | static void init_ring(struct net_device *dev); |
573 | static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); |
574 | static irqreturn_t intr_handler(int irq, void *dev_instance); |
575 | static void netdev_error(struct net_device *dev, int intr_status); |
576 | static int __netdev_rx(struct net_device *dev, int *quota); |
577 | static int netdev_poll(struct napi_struct *napi, int budget); |
578 | static void refill_rx_ring(struct net_device *dev); |
579 | static void netdev_error(struct net_device *dev, int intr_status); |
580 | static void set_rx_mode(struct net_device *dev); |
581 | static struct net_device_stats *get_stats(struct net_device *dev); |
582 | static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); |
583 | static int netdev_close(struct net_device *dev); |
584 | static void netdev_media_change(struct net_device *dev); |
585 | static const struct ethtool_ops ethtool_ops; |
586 | |
587 | |
588 | #ifdef VLAN_SUPPORT |
589 | static int netdev_vlan_rx_add_vid(struct net_device *dev, |
590 | __be16 proto, u16 vid) |
591 | { |
592 | struct netdev_private *np = netdev_priv(dev); |
593 | |
594 | spin_lock(lock: &np->lock); |
595 | if (debug > 1) |
596 | printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid); |
597 | set_bit(nr: vid, addr: np->active_vlans); |
598 | set_rx_mode(dev); |
599 | spin_unlock(lock: &np->lock); |
600 | |
601 | return 0; |
602 | } |
603 | |
604 | static int netdev_vlan_rx_kill_vid(struct net_device *dev, |
605 | __be16 proto, u16 vid) |
606 | { |
607 | struct netdev_private *np = netdev_priv(dev); |
608 | |
609 | spin_lock(lock: &np->lock); |
610 | if (debug > 1) |
611 | printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid); |
612 | clear_bit(nr: vid, addr: np->active_vlans); |
613 | set_rx_mode(dev); |
614 | spin_unlock(lock: &np->lock); |
615 | |
616 | return 0; |
617 | } |
618 | #endif /* VLAN_SUPPORT */ |
619 | |
620 | |
621 | static const struct net_device_ops netdev_ops = { |
622 | .ndo_open = netdev_open, |
623 | .ndo_stop = netdev_close, |
624 | .ndo_start_xmit = start_tx, |
625 | .ndo_tx_timeout = tx_timeout, |
626 | .ndo_get_stats = get_stats, |
627 | .ndo_set_rx_mode = set_rx_mode, |
628 | .ndo_eth_ioctl = netdev_ioctl, |
629 | .ndo_set_mac_address = eth_mac_addr, |
630 | .ndo_validate_addr = eth_validate_addr, |
631 | #ifdef VLAN_SUPPORT |
632 | .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid, |
633 | .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid, |
634 | #endif |
635 | }; |
636 | |
637 | static int starfire_init_one(struct pci_dev *pdev, |
638 | const struct pci_device_id *ent) |
639 | { |
640 | struct device *d = &pdev->dev; |
641 | struct netdev_private *np; |
642 | int i, irq, chip_idx = ent->driver_data; |
643 | struct net_device *dev; |
644 | u8 addr[ETH_ALEN]; |
645 | long ioaddr; |
646 | void __iomem *base; |
647 | int drv_flags, io_size; |
648 | int boguscnt; |
649 | |
650 | if (pci_enable_device (dev: pdev)) |
651 | return -EIO; |
652 | |
653 | ioaddr = pci_resource_start(pdev, 0); |
654 | io_size = pci_resource_len(pdev, 0); |
655 | if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) { |
656 | dev_err(d, "no PCI MEM resources, aborting\n"); |
657 | return -ENODEV; |
658 | } |
659 | |
660 | dev = alloc_etherdev(sizeof(*np)); |
661 | if (!dev) |
662 | return -ENOMEM; |
663 | |
664 | SET_NETDEV_DEV(dev, &pdev->dev); |
665 | |
666 | irq = pdev->irq; |
667 | |
668 | if (pci_request_regions (pdev, DRV_NAME)) { |
669 | dev_err(d, "cannot reserve PCI resources, aborting\n"); |
670 | goto err_out_free_netdev; |
671 | } |
672 | |
673 | base = ioremap(offset: ioaddr, size: io_size); |
674 | if (!base) { |
675 | dev_err(d, "cannot remap %#x @ %#lx, aborting\n", |
676 | io_size, ioaddr); |
677 | goto err_out_free_res; |
678 | } |
679 | |
680 | pci_set_master(dev: pdev); |
681 | |
682 | /* enable MWI -- it vastly improves Rx performance on sparc64 */ |
683 | pci_try_set_mwi(dev: pdev); |
684 | |
685 | #ifdef ZEROCOPY |
686 | /* Starfire can do TCP/UDP checksumming */ |
687 | if (enable_hw_cksum) |
688 | dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; |
689 | #endif /* ZEROCOPY */ |
690 | |
691 | #ifdef VLAN_SUPPORT |
692 | dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER; |
693 | #endif /* VLAN_RX_KILL_VID */ |
694 | #ifdef ADDR_64BITS |
695 | dev->features |= NETIF_F_HIGHDMA; |
696 | #endif /* ADDR_64BITS */ |
697 | |
698 | /* Serial EEPROM reads are hidden by the hardware. */ |
699 | for (i = 0; i < 6; i++) |
700 | addr[i] = readb(addr: base + EEPROMCtrl + 20 - i); |
701 | eth_hw_addr_set(dev, addr); |
702 | |
703 | #if ! defined(final_version) /* Dump the EEPROM contents during development. */ |
704 | if (debug > 4) |
705 | for (i = 0; i < 0x20; i++) |
706 | printk("%2.2x%s", |
707 | (unsigned int)readb(base + EEPROMCtrl + i), |
708 | i % 16 != 15 ? " ": "\n"); |
709 | #endif |
710 | |
711 | /* Issue soft reset */ |
712 | writel(val: MiiSoftReset, addr: base + TxMode); |
713 | udelay(1000); |
714 | writel(val: 0, addr: base + TxMode); |
715 | |
716 | /* Reset the chip to erase previous misconfiguration. */ |
717 | writel(val: 1, addr: base + PCIDeviceConfig); |
718 | boguscnt = 1000; |
719 | while (--boguscnt > 0) { |
720 | udelay(10); |
721 | if ((readl(addr: base + PCIDeviceConfig) & 1) == 0) |
722 | break; |
723 | } |
724 | if (boguscnt == 0) |
725 | printk("%s: chipset reset never completed!\n", dev->name); |
726 | /* wait a little longer */ |
727 | udelay(1000); |
728 | |
729 | np = netdev_priv(dev); |
730 | np->dev = dev; |
731 | np->base = base; |
732 | spin_lock_init(&np->lock); |
733 | pci_set_drvdata(pdev, data: dev); |
734 | |
735 | np->pci_dev = pdev; |
736 | |
737 | np->mii_if.dev = dev; |
738 | np->mii_if.mdio_read = mdio_read; |
739 | np->mii_if.mdio_write = mdio_write; |
740 | np->mii_if.phy_id_mask = 0x1f; |
741 | np->mii_if.reg_num_mask = 0x1f; |
742 | |
743 | drv_flags = netdrv_tbl[chip_idx].drv_flags; |
744 | |
745 | np->speed100 = 1; |
746 | |
747 | /* timer resolution is 128 * 0.8us */ |
748 | np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) | |
749 | Timer10X | EnableIntrMasking; |
750 | |
751 | if (small_frames > 0) { |
752 | np->intr_timer_ctrl |= SmallFrameBypass; |
753 | switch (small_frames) { |
754 | case 1 ... 64: |
755 | np->intr_timer_ctrl |= SmallFrame64; |
756 | break; |
757 | case 65 ... 128: |
758 | np->intr_timer_ctrl |= SmallFrame128; |
759 | break; |
760 | case 129 ... 256: |
761 | np->intr_timer_ctrl |= SmallFrame256; |
762 | break; |
763 | default: |
764 | np->intr_timer_ctrl |= SmallFrame512; |
765 | if (small_frames > 512) |
766 | printk("Adjusting small_frames down to 512\n"); |
767 | break; |
768 | } |
769 | } |
770 | |
771 | dev->netdev_ops = &netdev_ops; |
772 | dev->watchdog_timeo = TX_TIMEOUT; |
773 | dev->ethtool_ops = ðtool_ops; |
774 | |
775 | netif_napi_add_weight(dev, napi: &np->napi, poll: netdev_poll, weight: max_interrupt_work); |
776 | |
777 | if (mtu) |
778 | dev->mtu = mtu; |
779 | |
780 | if (register_netdev(dev)) |
781 | goto err_out_cleardev; |
782 | |
783 | printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", |
784 | dev->name, netdrv_tbl[chip_idx].name, base, |
785 | dev->dev_addr, irq); |
786 | |
787 | if (drv_flags & CanHaveMII) { |
788 | int phy, phy_idx = 0; |
789 | int mii_status; |
790 | for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) { |
791 | mdio_write(dev, phy_id: phy, MII_BMCR, BMCR_RESET); |
792 | msleep(msecs: 100); |
793 | boguscnt = 1000; |
794 | while (--boguscnt > 0) |
795 | if ((mdio_read(dev, phy_id: phy, MII_BMCR) & BMCR_RESET) == 0) |
796 | break; |
797 | if (boguscnt == 0) { |
798 | printk("%s: PHY#%d reset never completed!\n", dev->name, phy); |
799 | continue; |
800 | } |
801 | mii_status = mdio_read(dev, phy_id: phy, MII_BMSR); |
802 | if (mii_status != 0) { |
803 | np->phys[phy_idx++] = phy; |
804 | np->mii_if.advertising = mdio_read(dev, phy_id: phy, MII_ADVERTISE); |
805 | printk(KERN_INFO "%s: MII PHY found at address %d, status " |
806 | "%#4.4x advertising %#4.4x.\n", |
807 | dev->name, phy, mii_status, np->mii_if.advertising); |
808 | /* there can be only one PHY on-board */ |
809 | break; |
810 | } |
811 | } |
812 | np->phy_cnt = phy_idx; |
813 | if (np->phy_cnt > 0) |
814 | np->mii_if.phy_id = np->phys[0]; |
815 | else |
816 | memset(&np->mii_if, 0, sizeof(np->mii_if)); |
817 | } |
818 | |
819 | printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n", |
820 | dev->name, enable_hw_cksum ? "enabled": "disabled"); |
821 | return 0; |
822 | |
823 | err_out_cleardev: |
824 | iounmap(addr: base); |
825 | err_out_free_res: |
826 | pci_release_regions (pdev); |
827 | err_out_free_netdev: |
828 | free_netdev(dev); |
829 | return -ENODEV; |
830 | } |
831 | |
832 | |
833 | /* Read the MII Management Data I/O (MDIO) interfaces. */ |
834 | static int mdio_read(struct net_device *dev, int phy_id, int location) |
835 | { |
836 | struct netdev_private *np = netdev_priv(dev); |
837 | void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); |
838 | int result, boguscnt=1000; |
839 | /* ??? Should we add a busy-wait here? */ |
840 | do { |
841 | result = readl(addr: mdio_addr); |
842 | } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0); |
843 | if (boguscnt == 0) |
844 | return 0; |
845 | if ((result & 0xffff) == 0xffff) |
846 | return 0; |
847 | return result & 0xffff; |
848 | } |
849 | |
850 | |
851 | static void mdio_write(struct net_device *dev, int phy_id, int location, int value) |
852 | { |
853 | struct netdev_private *np = netdev_priv(dev); |
854 | void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); |
855 | writel(val: value, addr: mdio_addr); |
856 | /* The busy-wait will occur before a read. */ |
857 | } |
858 | |
859 | |
860 | static int netdev_open(struct net_device *dev) |
861 | { |
862 | const struct firmware *fw_rx, *fw_tx; |
863 | const __be32 *fw_rx_data, *fw_tx_data; |
864 | struct netdev_private *np = netdev_priv(dev); |
865 | void __iomem *ioaddr = np->base; |
866 | const int irq = np->pci_dev->irq; |
867 | int i, retval; |
868 | size_t tx_size, rx_size; |
869 | size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size; |
870 | |
871 | /* Do we ever need to reset the chip??? */ |
872 | |
873 | retval = request_irq(irq, handler: intr_handler, IRQF_SHARED, name: dev->name, dev); |
874 | if (retval) |
875 | return retval; |
876 | |
877 | /* Disable the Rx and Tx, and reset the chip. */ |
878 | writel(val: 0, addr: ioaddr + GenCtrl); |
879 | writel(val: 1, addr: ioaddr + PCIDeviceConfig); |
880 | if (debug > 1) |
881 | printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", |
882 | dev->name, irq); |
883 | |
884 | /* Allocate the various queues. */ |
885 | if (!np->queue_mem) { |
886 | tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; |
887 | rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; |
888 | tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; |
889 | rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE; |
890 | np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size; |
891 | np->queue_mem = dma_alloc_coherent(dev: &np->pci_dev->dev, |
892 | size: np->queue_mem_size, |
893 | dma_handle: &np->queue_mem_dma, GFP_ATOMIC); |
894 | if (np->queue_mem == NULL) { |
895 | free_irq(irq, dev); |
896 | return -ENOMEM; |
897 | } |
898 | |
899 | np->tx_done_q = np->queue_mem; |
900 | np->tx_done_q_dma = np->queue_mem_dma; |
901 | np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size; |
902 | np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size; |
903 | np->tx_ring = (void *) np->rx_done_q + rx_done_q_size; |
904 | np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size; |
905 | np->rx_ring = (void *) np->tx_ring + tx_ring_size; |
906 | np->rx_ring_dma = np->tx_ring_dma + tx_ring_size; |
907 | } |
908 | |
909 | /* Start with no carrier, it gets adjusted later */ |
910 | netif_carrier_off(dev); |
911 | init_ring(dev); |
912 | /* Set the size of the Rx buffers. */ |
913 | writel(val: (np->rx_buf_sz << RxBufferLenShift) | |
914 | (0 << RxMinDescrThreshShift) | |
915 | RxPrefetchMode | RxVariableQ | |
916 | RX_Q_ENTRIES | |
917 | RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE | |
918 | RxDescSpace4, |
919 | addr: ioaddr + RxDescQCtrl); |
920 | |
921 | /* Set up the Rx DMA controller. */ |
922 | writel(val: RxChecksumIgnore | |
923 | (0 << RxEarlyIntThreshShift) | |
924 | (6 << RxHighPrioThreshShift) | |
925 | ((DMA_BURST_SIZE / 32) << RxBurstSizeShift), |
926 | addr: ioaddr + RxDMACtrl); |
927 | |
928 | /* Set Tx descriptor */ |
929 | writel(val: (2 << TxHiPriFIFOThreshShift) | |
930 | (0 << TxPadLenShift) | |
931 | ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) | |
932 | TX_DESC_Q_ADDR_SIZE | |
933 | TX_DESC_SPACING | TX_DESC_TYPE, |
934 | addr: ioaddr + TxDescCtrl); |
935 | |
936 | writel( val: (np->queue_mem_dma >> 16) >> 16, addr: ioaddr + RxDescQHiAddr); |
937 | writel( val: (np->queue_mem_dma >> 16) >> 16, addr: ioaddr + TxRingHiAddr); |
938 | writel( val: (np->queue_mem_dma >> 16) >> 16, addr: ioaddr + CompletionHiAddr); |
939 | writel(val: np->rx_ring_dma, addr: ioaddr + RxDescQAddr); |
940 | writel(val: np->tx_ring_dma, addr: ioaddr + TxRingPtr); |
941 | |
942 | writel(val: np->tx_done_q_dma, addr: ioaddr + TxCompletionAddr); |
943 | writel(val: np->rx_done_q_dma | |
944 | RxComplType | |
945 | (0 << RxComplThreshShift), |
946 | addr: ioaddr + RxCompletionAddr); |
947 | |
948 | if (debug > 1) |
949 | printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name); |
950 | |
951 | /* Fill both the Tx SA register and the Rx perfect filter. */ |
952 | for (i = 0; i < 6; i++) |
953 | writeb(val: dev->dev_addr[i], addr: ioaddr + TxStationAddr + 5 - i); |
954 | /* The first entry is special because it bypasses the VLAN filter. |
955 | Don't use it. */ |
956 | writew(val: 0, addr: ioaddr + PerfFilterTable); |
957 | writew(val: 0, addr: ioaddr + PerfFilterTable + 4); |
958 | writew(val: 0, addr: ioaddr + PerfFilterTable + 8); |
959 | for (i = 1; i < 16; i++) { |
960 | const __be16 *eaddrs = (const __be16 *)dev->dev_addr; |
961 | void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16; |
962 | writew(be16_to_cpu(eaddrs[2]), addr: setup_frm); setup_frm += 4; |
963 | writew(be16_to_cpu(eaddrs[1]), addr: setup_frm); setup_frm += 4; |
964 | writew(be16_to_cpu(eaddrs[0]), addr: setup_frm); setup_frm += 8; |
965 | } |
966 | |
967 | /* Initialize other registers. */ |
968 | /* Configure the PCI bus bursts and FIFO thresholds. */ |
969 | np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */ |
970 | writel(val: MiiSoftReset | np->tx_mode, addr: ioaddr + TxMode); |
971 | udelay(1000); |
972 | writel(val: np->tx_mode, addr: ioaddr + TxMode); |
973 | np->tx_threshold = 4; |
974 | writel(val: np->tx_threshold, addr: ioaddr + TxThreshold); |
975 | |
976 | writel(val: np->intr_timer_ctrl, addr: ioaddr + IntrTimerCtrl); |
977 | |
978 | napi_enable(n: &np->napi); |
979 | |
980 | netif_start_queue(dev); |
981 | |
982 | if (debug > 1) |
983 | printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name); |
984 | set_rx_mode(dev); |
985 | |
986 | np->mii_if.advertising = mdio_read(dev, phy_id: np->phys[0], MII_ADVERTISE); |
987 | check_duplex(dev); |
988 | |
989 | /* Enable GPIO interrupts on link change */ |
990 | writel(val: 0x0f00ff00, addr: ioaddr + GPIOCtrl); |
991 | |
992 | /* Set the interrupt mask */ |
993 | writel(val: IntrRxDone | IntrRxEmpty | IntrDMAErr | |
994 | IntrTxDMADone | IntrStatsMax | IntrLinkChange | |
995 | IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID, |
996 | addr: ioaddr + IntrEnable); |
997 | /* Enable PCI interrupts. */ |
998 | writel(val: 0x00800000 | readl(addr: ioaddr + PCIDeviceConfig), |
999 | addr: ioaddr + PCIDeviceConfig); |
1000 | |
1001 | #ifdef VLAN_SUPPORT |
1002 | /* Set VLAN type to 802.1q */ |
1003 | writel(ETH_P_8021Q, addr: ioaddr + VlanType); |
1004 | #endif /* VLAN_SUPPORT */ |
1005 | |
1006 | retval = request_firmware(fw: &fw_rx, FIRMWARE_RX, device: &np->pci_dev->dev); |
1007 | if (retval) { |
1008 | printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", |
1009 | FIRMWARE_RX); |
1010 | goto out_init; |
1011 | } |
1012 | if (fw_rx->size % 4) { |
1013 | printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", |
1014 | fw_rx->size, FIRMWARE_RX); |
1015 | retval = -EINVAL; |
1016 | goto out_rx; |
1017 | } |
1018 | retval = request_firmware(fw: &fw_tx, FIRMWARE_TX, device: &np->pci_dev->dev); |
1019 | if (retval) { |
1020 | printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", |
1021 | FIRMWARE_TX); |
1022 | goto out_rx; |
1023 | } |
1024 | if (fw_tx->size % 4) { |
1025 | printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", |
1026 | fw_tx->size, FIRMWARE_TX); |
1027 | retval = -EINVAL; |
1028 | goto out_tx; |
1029 | } |
1030 | fw_rx_data = (const __be32 *)&fw_rx->data[0]; |
1031 | fw_tx_data = (const __be32 *)&fw_tx->data[0]; |
1032 | rx_size = fw_rx->size / 4; |
1033 | tx_size = fw_tx->size / 4; |
1034 | |
1035 | /* Load Rx/Tx firmware into the frame processors */ |
1036 | for (i = 0; i < rx_size; i++) |
1037 | writel(be32_to_cpup(p: &fw_rx_data[i]), addr: ioaddr + RxGfpMem + i * 4); |
1038 | for (i = 0; i < tx_size; i++) |
1039 | writel(be32_to_cpup(p: &fw_tx_data[i]), addr: ioaddr + TxGfpMem + i * 4); |
1040 | if (enable_hw_cksum) |
1041 | /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */ |
1042 | writel(val: TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, addr: ioaddr + GenCtrl); |
1043 | else |
1044 | /* Enable the Rx and Tx units only. */ |
1045 | writel(val: TxEnable|RxEnable, addr: ioaddr + GenCtrl); |
1046 | |
1047 | if (debug > 1) |
1048 | printk(KERN_DEBUG "%s: Done netdev_open().\n", |
1049 | dev->name); |
1050 | |
1051 | out_tx: |
1052 | release_firmware(fw: fw_tx); |
1053 | out_rx: |
1054 | release_firmware(fw: fw_rx); |
1055 | out_init: |
1056 | if (retval) |
1057 | netdev_close(dev); |
1058 | return retval; |
1059 | } |
1060 | |
1061 | |
1062 | static void check_duplex(struct net_device *dev) |
1063 | { |
1064 | struct netdev_private *np = netdev_priv(dev); |
1065 | u16 reg0; |
1066 | int silly_count = 1000; |
1067 | |
1068 | mdio_write(dev, phy_id: np->phys[0], MII_ADVERTISE, value: np->mii_if.advertising); |
1069 | mdio_write(dev, phy_id: np->phys[0], MII_BMCR, BMCR_RESET); |
1070 | udelay(500); |
1071 | while (--silly_count && mdio_read(dev, phy_id: np->phys[0], MII_BMCR) & BMCR_RESET) |
1072 | /* do nothing */; |
1073 | if (!silly_count) { |
1074 | printk("%s: MII reset failed!\n", dev->name); |
1075 | return; |
1076 | } |
1077 | |
1078 | reg0 = mdio_read(dev, phy_id: np->phys[0], MII_BMCR); |
1079 | |
1080 | if (!np->mii_if.force_media) { |
1081 | reg0 |= BMCR_ANENABLE | BMCR_ANRESTART; |
1082 | } else { |
1083 | reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART); |
1084 | if (np->speed100) |
1085 | reg0 |= BMCR_SPEED100; |
1086 | if (np->mii_if.full_duplex) |
1087 | reg0 |= BMCR_FULLDPLX; |
1088 | printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n", |
1089 | dev->name, |
1090 | np->speed100 ? "100": "10", |
1091 | np->mii_if.full_duplex ? "full": "half"); |
1092 | } |
1093 | mdio_write(dev, phy_id: np->phys[0], MII_BMCR, value: reg0); |
1094 | } |
1095 | |
1096 | |
1097 | static void tx_timeout(struct net_device *dev, unsigned int txqueue) |
1098 | { |
1099 | struct netdev_private *np = netdev_priv(dev); |
1100 | void __iomem *ioaddr = np->base; |
1101 | int old_debug; |
1102 | |
1103 | printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, " |
1104 | "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus)); |
1105 | |
1106 | /* Perhaps we should reinitialize the hardware here. */ |
1107 | |
1108 | /* |
1109 | * Stop and restart the interface. |
1110 | * Cheat and increase the debug level temporarily. |
1111 | */ |
1112 | old_debug = debug; |
1113 | debug = 2; |
1114 | netdev_close(dev); |
1115 | netdev_open(dev); |
1116 | debug = old_debug; |
1117 | |
1118 | /* Trigger an immediate transmit demand. */ |
1119 | |
1120 | netif_trans_update(dev); /* prevent tx timeout */ |
1121 | dev->stats.tx_errors++; |
1122 | netif_wake_queue(dev); |
1123 | } |
1124 | |
1125 | |
1126 | /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ |
1127 | static void init_ring(struct net_device *dev) |
1128 | { |
1129 | struct netdev_private *np = netdev_priv(dev); |
1130 | int i; |
1131 | |
1132 | np->cur_rx = np->cur_tx = np->reap_tx = 0; |
1133 | np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0; |
1134 | |
1135 | np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); |
1136 | |
1137 | /* Fill in the Rx buffers. Handle allocation failure gracefully. */ |
1138 | for (i = 0; i < RX_RING_SIZE; i++) { |
1139 | struct sk_buff *skb = netdev_alloc_skb(dev, length: np->rx_buf_sz); |
1140 | np->rx_info[i].skb = skb; |
1141 | if (skb == NULL) |
1142 | break; |
1143 | np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev, |
1144 | skb->data, |
1145 | np->rx_buf_sz, |
1146 | DMA_FROM_DEVICE); |
1147 | if (dma_mapping_error(dev: &np->pci_dev->dev, dma_addr: np->rx_info[i].mapping)) { |
1148 | dev_kfree_skb(skb); |
1149 | np->rx_info[i].skb = NULL; |
1150 | break; |
1151 | } |
1152 | /* Grrr, we cannot offset to correctly align the IP header. */ |
1153 | np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid); |
1154 | } |
1155 | writew(val: i - 1, addr: np->base + RxDescQIdx); |
1156 | np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); |
1157 | |
1158 | /* Clear the remainder of the Rx buffer ring. */ |
1159 | for ( ; i < RX_RING_SIZE; i++) { |
1160 | np->rx_ring[i].rxaddr = 0; |
1161 | np->rx_info[i].skb = NULL; |
1162 | np->rx_info[i].mapping = 0; |
1163 | } |
1164 | /* Mark the last entry as wrapping the ring. */ |
1165 | np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing); |
1166 | |
1167 | /* Clear the completion rings. */ |
1168 | for (i = 0; i < DONE_Q_SIZE; i++) { |
1169 | np->rx_done_q[i].status = 0; |
1170 | np->tx_done_q[i].status = 0; |
1171 | } |
1172 | |
1173 | for (i = 0; i < TX_RING_SIZE; i++) |
1174 | memset(&np->tx_info[i], 0, sizeof(np->tx_info[i])); |
1175 | } |
1176 | |
1177 | |
1178 | static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) |
1179 | { |
1180 | struct netdev_private *np = netdev_priv(dev); |
1181 | unsigned int entry; |
1182 | unsigned int prev_tx; |
1183 | u32 status; |
1184 | int i, j; |
1185 | |
1186 | /* |
1187 | * be cautious here, wrapping the queue has weird semantics |
1188 | * and we may not have enough slots even when it seems we do. |
1189 | */ |
1190 | if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) { |
1191 | netif_stop_queue(dev); |
1192 | return NETDEV_TX_BUSY; |
1193 | } |
1194 | |
1195 | #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE) |
1196 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
1197 | if (skb_padto(skb, len: (skb->len + PADDING_MASK) & ~PADDING_MASK)) |
1198 | return NETDEV_TX_OK; |
1199 | } |
1200 | #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */ |
1201 | |
1202 | prev_tx = np->cur_tx; |
1203 | entry = np->cur_tx % TX_RING_SIZE; |
1204 | for (i = 0; i < skb_num_frags(skb); i++) { |
1205 | int wrap_ring = 0; |
1206 | status = TxDescID; |
1207 | |
1208 | if (i == 0) { |
1209 | np->tx_info[entry].skb = skb; |
1210 | status |= TxCRCEn; |
1211 | if (entry >= TX_RING_SIZE - skb_num_frags(skb)) { |
1212 | status |= TxRingWrap; |
1213 | wrap_ring = 1; |
1214 | } |
1215 | if (np->reap_tx) { |
1216 | status |= TxDescIntr; |
1217 | np->reap_tx = 0; |
1218 | } |
1219 | if (skb->ip_summed == CHECKSUM_PARTIAL) { |
1220 | status |= TxCalTCP; |
1221 | dev->stats.tx_compressed++; |
1222 | } |
1223 | status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16); |
1224 | |
1225 | np->tx_info[entry].mapping = |
1226 | dma_map_single(&np->pci_dev->dev, skb->data, |
1227 | skb_first_frag_len(skb), |
1228 | DMA_TO_DEVICE); |
1229 | } else { |
1230 | const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1]; |
1231 | status |= skb_frag_size(frag: this_frag); |
1232 | np->tx_info[entry].mapping = |
1233 | dma_map_single(&np->pci_dev->dev, |
1234 | skb_frag_address(this_frag), |
1235 | skb_frag_size(this_frag), |
1236 | DMA_TO_DEVICE); |
1237 | } |
1238 | if (dma_mapping_error(dev: &np->pci_dev->dev, dma_addr: np->tx_info[entry].mapping)) { |
1239 | dev->stats.tx_dropped++; |
1240 | goto err_out; |
1241 | } |
1242 | |
1243 | np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping); |
1244 | np->tx_ring[entry].status = cpu_to_le32(status); |
1245 | if (debug > 3) |
1246 | printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n", |
1247 | dev->name, np->cur_tx, np->dirty_tx, |
1248 | entry, status); |
1249 | if (wrap_ring) { |
1250 | np->tx_info[entry].used_slots = TX_RING_SIZE - entry; |
1251 | np->cur_tx += np->tx_info[entry].used_slots; |
1252 | entry = 0; |
1253 | } else { |
1254 | np->tx_info[entry].used_slots = 1; |
1255 | np->cur_tx += np->tx_info[entry].used_slots; |
1256 | entry++; |
1257 | } |
1258 | /* scavenge the tx descriptors twice per TX_RING_SIZE */ |
1259 | if (np->cur_tx % (TX_RING_SIZE / 2) == 0) |
1260 | np->reap_tx = 1; |
1261 | } |
1262 | |
1263 | /* Non-x86: explicitly flush descriptor cache lines here. */ |
1264 | /* Ensure all descriptors are written back before the transmit is |
1265 | initiated. - Jes */ |
1266 | wmb(); |
1267 | |
1268 | /* Update the producer index. */ |
1269 | writel(val: entry * (sizeof(starfire_tx_desc) / 8), addr: np->base + TxProducerIdx); |
1270 | |
1271 | /* 4 is arbitrary, but should be ok */ |
1272 | if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE) |
1273 | netif_stop_queue(dev); |
1274 | |
1275 | return NETDEV_TX_OK; |
1276 | |
1277 | err_out: |
1278 | entry = prev_tx % TX_RING_SIZE; |
1279 | np->tx_info[entry].skb = NULL; |
1280 | if (i > 0) { |
1281 | dma_unmap_single(&np->pci_dev->dev, |
1282 | np->tx_info[entry].mapping, |
1283 | skb_first_frag_len(skb), DMA_TO_DEVICE); |
1284 | np->tx_info[entry].mapping = 0; |
1285 | entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; |
1286 | for (j = 1; j < i; j++) { |
1287 | dma_unmap_single(&np->pci_dev->dev, |
1288 | np->tx_info[entry].mapping, |
1289 | skb_frag_size(&skb_shinfo(skb)->frags[j - 1]), |
1290 | DMA_TO_DEVICE); |
1291 | entry++; |
1292 | } |
1293 | } |
1294 | dev_kfree_skb_any(skb); |
1295 | np->cur_tx = prev_tx; |
1296 | return NETDEV_TX_OK; |
1297 | } |
1298 | |
1299 | /* The interrupt handler does all of the Rx thread work and cleans up |
1300 | after the Tx thread. */ |
1301 | static irqreturn_t intr_handler(int irq, void *dev_instance) |
1302 | { |
1303 | struct net_device *dev = dev_instance; |
1304 | struct netdev_private *np = netdev_priv(dev); |
1305 | void __iomem *ioaddr = np->base; |
1306 | int boguscnt = max_interrupt_work; |
1307 | int consumer; |
1308 | int tx_status; |
1309 | int handled = 0; |
1310 | |
1311 | do { |
1312 | u32 intr_status = readl(addr: ioaddr + IntrClear); |
1313 | |
1314 | if (debug > 4) |
1315 | printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n", |
1316 | dev->name, intr_status); |
1317 | |
1318 | if (intr_status == 0 || intr_status == (u32) -1) |
1319 | break; |
1320 | |
1321 | handled = 1; |
1322 | |
1323 | if (intr_status & (IntrRxDone | IntrRxEmpty)) { |
1324 | u32 enable; |
1325 | |
1326 | if (likely(napi_schedule_prep(&np->napi))) { |
1327 | __napi_schedule(n: &np->napi); |
1328 | enable = readl(addr: ioaddr + IntrEnable); |
1329 | enable &= ~(IntrRxDone | IntrRxEmpty); |
1330 | writel(val: enable, addr: ioaddr + IntrEnable); |
1331 | /* flush PCI posting buffers */ |
1332 | readl(addr: ioaddr + IntrEnable); |
1333 | } else { |
1334 | /* Paranoia check */ |
1335 | enable = readl(addr: ioaddr + IntrEnable); |
1336 | if (enable & (IntrRxDone | IntrRxEmpty)) { |
1337 | printk(KERN_INFO |
1338 | "%s: interrupt while in poll!\n", |
1339 | dev->name); |
1340 | enable &= ~(IntrRxDone | IntrRxEmpty); |
1341 | writel(val: enable, addr: ioaddr + IntrEnable); |
1342 | } |
1343 | } |
1344 | } |
1345 | |
1346 | /* Scavenge the skbuff list based on the Tx-done queue. |
1347 | There are redundant checks here that may be cleaned up |
1348 | after the driver has proven to be reliable. */ |
1349 | consumer = readl(addr: ioaddr + TxConsumerIdx); |
1350 | if (debug > 3) |
1351 | printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n", |
1352 | dev->name, consumer); |
1353 | |
1354 | while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) { |
1355 | if (debug > 3) |
1356 | printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n", |
1357 | dev->name, np->dirty_tx, np->tx_done, tx_status); |
1358 | if ((tx_status & 0xe0000000) == 0xa0000000) { |
1359 | dev->stats.tx_packets++; |
1360 | } else if ((tx_status & 0xe0000000) == 0x80000000) { |
1361 | u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc); |
1362 | struct sk_buff *skb = np->tx_info[entry].skb; |
1363 | np->tx_info[entry].skb = NULL; |
1364 | dma_unmap_single(&np->pci_dev->dev, |
1365 | np->tx_info[entry].mapping, |
1366 | skb_first_frag_len(skb), |
1367 | DMA_TO_DEVICE); |
1368 | np->tx_info[entry].mapping = 0; |
1369 | np->dirty_tx += np->tx_info[entry].used_slots; |
1370 | entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; |
1371 | { |
1372 | int i; |
1373 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { |
1374 | dma_unmap_single(&np->pci_dev->dev, |
1375 | np->tx_info[entry].mapping, |
1376 | skb_frag_size(&skb_shinfo(skb)->frags[i]), |
1377 | DMA_TO_DEVICE); |
1378 | np->dirty_tx++; |
1379 | entry++; |
1380 | } |
1381 | } |
1382 | |
1383 | dev_consume_skb_irq(skb); |
1384 | } |
1385 | np->tx_done_q[np->tx_done].status = 0; |
1386 | np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE; |
1387 | } |
1388 | writew(val: np->tx_done, addr: ioaddr + CompletionQConsumerIdx + 2); |
1389 | |
1390 | if (netif_queue_stopped(dev) && |
1391 | (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) { |
1392 | /* The ring is no longer full, wake the queue. */ |
1393 | netif_wake_queue(dev); |
1394 | } |
1395 | |
1396 | /* Stats overflow */ |
1397 | if (intr_status & IntrStatsMax) |
1398 | get_stats(dev); |
1399 | |
1400 | /* Media change interrupt. */ |
1401 | if (intr_status & IntrLinkChange) |
1402 | netdev_media_change(dev); |
1403 | |
1404 | /* Abnormal error summary/uncommon events handlers. */ |
1405 | if (intr_status & IntrAbnormalSummary) |
1406 | netdev_error(dev, intr_status); |
1407 | |
1408 | if (--boguscnt < 0) { |
1409 | if (debug > 1) |
1410 | printk(KERN_WARNING "%s: Too much work at interrupt, " |
1411 | "status=%#8.8x.\n", |
1412 | dev->name, intr_status); |
1413 | break; |
1414 | } |
1415 | } while (1); |
1416 | |
1417 | if (debug > 4) |
1418 | printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n", |
1419 | dev->name, (int) readl(ioaddr + IntrStatus)); |
1420 | return IRQ_RETVAL(handled); |
1421 | } |
1422 | |
1423 | |
1424 | /* |
1425 | * This routine is logically part of the interrupt/poll handler, but separated |
1426 | * for clarity and better register allocation. |
1427 | */ |
1428 | static int __netdev_rx(struct net_device *dev, int *quota) |
1429 | { |
1430 | struct netdev_private *np = netdev_priv(dev); |
1431 | u32 desc_status; |
1432 | int retcode = 0; |
1433 | |
1434 | /* If EOP is set on the next entry, it's a new packet. Send it up. */ |
1435 | while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) { |
1436 | struct sk_buff *skb; |
1437 | u16 pkt_len; |
1438 | int entry; |
1439 | rx_done_desc *desc = &np->rx_done_q[np->rx_done]; |
1440 | |
1441 | if (debug > 4) |
1442 | printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status); |
1443 | if (!(desc_status & RxOK)) { |
1444 | /* There was an error. */ |
1445 | if (debug > 2) |
1446 | printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status); |
1447 | dev->stats.rx_errors++; |
1448 | if (desc_status & RxFIFOErr) |
1449 | dev->stats.rx_fifo_errors++; |
1450 | goto next_rx; |
1451 | } |
1452 | |
1453 | if (*quota <= 0) { /* out of rx quota */ |
1454 | retcode = 1; |
1455 | goto out; |
1456 | } |
1457 | (*quota)--; |
1458 | |
1459 | pkt_len = desc_status; /* Implicitly Truncate */ |
1460 | entry = (desc_status >> 16) & 0x7ff; |
1461 | |
1462 | if (debug > 4) |
1463 | printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota); |
1464 | /* Check if the packet is long enough to accept without copying |
1465 | to a minimally-sized skbuff. */ |
1466 | if (pkt_len < rx_copybreak && |
1467 | (skb = netdev_alloc_skb(dev, length: pkt_len + 2)) != NULL) { |
1468 | skb_reserve(skb, len: 2); /* 16 byte align the IP header */ |
1469 | dma_sync_single_for_cpu(dev: &np->pci_dev->dev, |
1470 | addr: np->rx_info[entry].mapping, |
1471 | size: pkt_len, dir: DMA_FROM_DEVICE); |
1472 | skb_copy_to_linear_data(skb, from: np->rx_info[entry].skb->data, len: pkt_len); |
1473 | dma_sync_single_for_device(dev: &np->pci_dev->dev, |
1474 | addr: np->rx_info[entry].mapping, |
1475 | size: pkt_len, dir: DMA_FROM_DEVICE); |
1476 | skb_put(skb, len: pkt_len); |
1477 | } else { |
1478 | dma_unmap_single(&np->pci_dev->dev, |
1479 | np->rx_info[entry].mapping, |
1480 | np->rx_buf_sz, DMA_FROM_DEVICE); |
1481 | skb = np->rx_info[entry].skb; |
1482 | skb_put(skb, len: pkt_len); |
1483 | np->rx_info[entry].skb = NULL; |
1484 | np->rx_info[entry].mapping = 0; |
1485 | } |
1486 | #ifndef final_version /* Remove after testing. */ |
1487 | /* You will want this info for the initial debug. */ |
1488 | if (debug > 5) { |
1489 | printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n", |
1490 | skb->data, skb->data + 6, |
1491 | skb->data[12], skb->data[13]); |
1492 | } |
1493 | #endif |
1494 | |
1495 | skb->protocol = eth_type_trans(skb, dev); |
1496 | #ifdef VLAN_SUPPORT |
1497 | if (debug > 4) |
1498 | printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2)); |
1499 | #endif |
1500 | if (le16_to_cpu(desc->status2) & 0x0100) { |
1501 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
1502 | dev->stats.rx_compressed++; |
1503 | } |
1504 | /* |
1505 | * This feature doesn't seem to be working, at least |
1506 | * with the two firmware versions I have. If the GFP sees |
1507 | * an IP fragment, it either ignores it completely, or reports |
1508 | * "bad checksum" on it. |
1509 | * |
1510 | * Maybe I missed something -- corrections are welcome. |
1511 | * Until then, the printk stays. :-) -Ion |
1512 | */ |
1513 | else if (le16_to_cpu(desc->status2) & 0x0040) { |
1514 | skb->ip_summed = CHECKSUM_COMPLETE; |
1515 | skb->csum = le16_to_cpu(desc->csum); |
1516 | printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2)); |
1517 | } |
1518 | #ifdef VLAN_SUPPORT |
1519 | if (le16_to_cpu(desc->status2) & 0x0200) { |
1520 | u16 vlid = le16_to_cpu(desc->vlanid); |
1521 | |
1522 | if (debug > 4) { |
1523 | printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", |
1524 | vlid); |
1525 | } |
1526 | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci: vlid); |
1527 | } |
1528 | #endif /* VLAN_SUPPORT */ |
1529 | netif_receive_skb(skb); |
1530 | dev->stats.rx_packets++; |
1531 | |
1532 | next_rx: |
1533 | np->cur_rx++; |
1534 | desc->status = 0; |
1535 | np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE; |
1536 | } |
1537 | |
1538 | if (*quota == 0) { /* out of rx quota */ |
1539 | retcode = 1; |
1540 | goto out; |
1541 | } |
1542 | writew(val: np->rx_done, addr: np->base + CompletionQConsumerIdx); |
1543 | |
1544 | out: |
1545 | refill_rx_ring(dev); |
1546 | if (debug > 5) |
1547 | printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n", |
1548 | retcode, np->rx_done, desc_status); |
1549 | return retcode; |
1550 | } |
1551 | |
1552 | static int netdev_poll(struct napi_struct *napi, int budget) |
1553 | { |
1554 | struct netdev_private *np = container_of(napi, struct netdev_private, napi); |
1555 | struct net_device *dev = np->dev; |
1556 | u32 intr_status; |
1557 | void __iomem *ioaddr = np->base; |
1558 | int quota = budget; |
1559 | |
1560 | do { |
1561 | writel(val: IntrRxDone | IntrRxEmpty, addr: ioaddr + IntrClear); |
1562 | |
1563 | if (__netdev_rx(dev, quota: "a)) |
1564 | goto out; |
1565 | |
1566 | intr_status = readl(addr: ioaddr + IntrStatus); |
1567 | } while (intr_status & (IntrRxDone | IntrRxEmpty)); |
1568 | |
1569 | napi_complete(n: napi); |
1570 | intr_status = readl(addr: ioaddr + IntrEnable); |
1571 | intr_status |= IntrRxDone | IntrRxEmpty; |
1572 | writel(val: intr_status, addr: ioaddr + IntrEnable); |
1573 | |
1574 | out: |
1575 | if (debug > 5) |
1576 | printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", |
1577 | budget - quota); |
1578 | |
1579 | /* Restart Rx engine if stopped. */ |
1580 | return budget - quota; |
1581 | } |
1582 | |
1583 | static void refill_rx_ring(struct net_device *dev) |
1584 | { |
1585 | struct netdev_private *np = netdev_priv(dev); |
1586 | struct sk_buff *skb; |
1587 | int entry = -1; |
1588 | |
1589 | /* Refill the Rx ring buffers. */ |
1590 | for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { |
1591 | entry = np->dirty_rx % RX_RING_SIZE; |
1592 | if (np->rx_info[entry].skb == NULL) { |
1593 | skb = netdev_alloc_skb(dev, length: np->rx_buf_sz); |
1594 | np->rx_info[entry].skb = skb; |
1595 | if (skb == NULL) |
1596 | break; /* Better luck next round. */ |
1597 | np->rx_info[entry].mapping = |
1598 | dma_map_single(&np->pci_dev->dev, skb->data, |
1599 | np->rx_buf_sz, DMA_FROM_DEVICE); |
1600 | if (dma_mapping_error(dev: &np->pci_dev->dev, dma_addr: np->rx_info[entry].mapping)) { |
1601 | dev_kfree_skb(skb); |
1602 | np->rx_info[entry].skb = NULL; |
1603 | break; |
1604 | } |
1605 | np->rx_ring[entry].rxaddr = |
1606 | cpu_to_dma(np->rx_info[entry].mapping | RxDescValid); |
1607 | } |
1608 | if (entry == RX_RING_SIZE - 1) |
1609 | np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing); |
1610 | } |
1611 | if (entry >= 0) |
1612 | writew(val: entry, addr: np->base + RxDescQIdx); |
1613 | } |
1614 | |
1615 | |
1616 | static void netdev_media_change(struct net_device *dev) |
1617 | { |
1618 | struct netdev_private *np = netdev_priv(dev); |
1619 | void __iomem *ioaddr = np->base; |
1620 | u16 reg0, reg1, reg4, reg5; |
1621 | u32 new_tx_mode; |
1622 | u32 new_intr_timer_ctrl; |
1623 | |
1624 | /* reset status first */ |
1625 | mdio_read(dev, phy_id: np->phys[0], MII_BMCR); |
1626 | mdio_read(dev, phy_id: np->phys[0], MII_BMSR); |
1627 | |
1628 | reg0 = mdio_read(dev, phy_id: np->phys[0], MII_BMCR); |
1629 | reg1 = mdio_read(dev, phy_id: np->phys[0], MII_BMSR); |
1630 | |
1631 | if (reg1 & BMSR_LSTATUS) { |
1632 | /* link is up */ |
1633 | if (reg0 & BMCR_ANENABLE) { |
1634 | /* autonegotiation is enabled */ |
1635 | reg4 = mdio_read(dev, phy_id: np->phys[0], MII_ADVERTISE); |
1636 | reg5 = mdio_read(dev, phy_id: np->phys[0], MII_LPA); |
1637 | if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) { |
1638 | np->speed100 = 1; |
1639 | np->mii_if.full_duplex = 1; |
1640 | } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) { |
1641 | np->speed100 = 1; |
1642 | np->mii_if.full_duplex = 0; |
1643 | } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) { |
1644 | np->speed100 = 0; |
1645 | np->mii_if.full_duplex = 1; |
1646 | } else { |
1647 | np->speed100 = 0; |
1648 | np->mii_if.full_duplex = 0; |
1649 | } |
1650 | } else { |
1651 | /* autonegotiation is disabled */ |
1652 | if (reg0 & BMCR_SPEED100) |
1653 | np->speed100 = 1; |
1654 | else |
1655 | np->speed100 = 0; |
1656 | if (reg0 & BMCR_FULLDPLX) |
1657 | np->mii_if.full_duplex = 1; |
1658 | else |
1659 | np->mii_if.full_duplex = 0; |
1660 | } |
1661 | netif_carrier_on(dev); |
1662 | printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n", |
1663 | dev->name, |
1664 | np->speed100 ? "100": "10", |
1665 | np->mii_if.full_duplex ? "full": "half"); |
1666 | |
1667 | new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */ |
1668 | if (np->mii_if.full_duplex) |
1669 | new_tx_mode |= FullDuplex; |
1670 | if (np->tx_mode != new_tx_mode) { |
1671 | np->tx_mode = new_tx_mode; |
1672 | writel(val: np->tx_mode | MiiSoftReset, addr: ioaddr + TxMode); |
1673 | udelay(1000); |
1674 | writel(val: np->tx_mode, addr: ioaddr + TxMode); |
1675 | } |
1676 | |
1677 | new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X; |
1678 | if (np->speed100) |
1679 | new_intr_timer_ctrl |= Timer10X; |
1680 | if (np->intr_timer_ctrl != new_intr_timer_ctrl) { |
1681 | np->intr_timer_ctrl = new_intr_timer_ctrl; |
1682 | writel(val: new_intr_timer_ctrl, addr: ioaddr + IntrTimerCtrl); |
1683 | } |
1684 | } else { |
1685 | netif_carrier_off(dev); |
1686 | printk(KERN_DEBUG "%s: Link is down\n", dev->name); |
1687 | } |
1688 | } |
1689 | |
1690 | |
1691 | static void netdev_error(struct net_device *dev, int intr_status) |
1692 | { |
1693 | struct netdev_private *np = netdev_priv(dev); |
1694 | |
1695 | /* Came close to underrunning the Tx FIFO, increase threshold. */ |
1696 | if (intr_status & IntrTxDataLow) { |
1697 | if (np->tx_threshold <= PKT_BUF_SZ / 16) { |
1698 | writel(val: ++np->tx_threshold, addr: np->base + TxThreshold); |
1699 | printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n", |
1700 | dev->name, np->tx_threshold * 16); |
1701 | } else |
1702 | printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name); |
1703 | } |
1704 | if (intr_status & IntrRxGFPDead) { |
1705 | dev->stats.rx_fifo_errors++; |
1706 | dev->stats.rx_errors++; |
1707 | } |
1708 | if (intr_status & (IntrNoTxCsum | IntrDMAErr)) { |
1709 | dev->stats.tx_fifo_errors++; |
1710 | dev->stats.tx_errors++; |
1711 | } |
1712 | if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug) |
1713 | printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n", |
1714 | dev->name, intr_status); |
1715 | } |
1716 | |
1717 | |
1718 | static struct net_device_stats *get_stats(struct net_device *dev) |
1719 | { |
1720 | struct netdev_private *np = netdev_priv(dev); |
1721 | void __iomem *ioaddr = np->base; |
1722 | |
1723 | /* This adapter architecture needs no SMP locks. */ |
1724 | dev->stats.tx_bytes = readl(addr: ioaddr + 0x57010); |
1725 | dev->stats.rx_bytes = readl(addr: ioaddr + 0x57044); |
1726 | dev->stats.tx_packets = readl(addr: ioaddr + 0x57000); |
1727 | dev->stats.tx_aborted_errors = |
1728 | readl(addr: ioaddr + 0x57024) + readl(addr: ioaddr + 0x57028); |
1729 | dev->stats.tx_window_errors = readl(addr: ioaddr + 0x57018); |
1730 | dev->stats.collisions = |
1731 | readl(addr: ioaddr + 0x57004) + readl(addr: ioaddr + 0x57008); |
1732 | |
1733 | /* The chip only need report frame silently dropped. */ |
1734 | dev->stats.rx_dropped += readw(addr: ioaddr + RxDMAStatus); |
1735 | writew(val: 0, addr: ioaddr + RxDMAStatus); |
1736 | dev->stats.rx_crc_errors = readl(addr: ioaddr + 0x5703C); |
1737 | dev->stats.rx_frame_errors = readl(addr: ioaddr + 0x57040); |
1738 | dev->stats.rx_length_errors = readl(addr: ioaddr + 0x57058); |
1739 | dev->stats.rx_missed_errors = readl(addr: ioaddr + 0x5707C); |
1740 | |
1741 | return &dev->stats; |
1742 | } |
1743 | |
1744 | #ifdef VLAN_SUPPORT |
1745 | static u32 set_vlan_mode(struct netdev_private *np) |
1746 | { |
1747 | u32 ret = VlanMode; |
1748 | u16 vid; |
1749 | void __iomem *filter_addr = np->base + HashTable + 8; |
1750 | int vlan_count = 0; |
1751 | |
1752 | for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) { |
1753 | if (vlan_count == 32) |
1754 | break; |
1755 | writew(val: vid, addr: filter_addr); |
1756 | filter_addr += 16; |
1757 | vlan_count++; |
1758 | } |
1759 | if (vlan_count == 32) { |
1760 | ret |= PerfectFilterVlan; |
1761 | while (vlan_count < 32) { |
1762 | writew(val: 0, addr: filter_addr); |
1763 | filter_addr += 16; |
1764 | vlan_count++; |
1765 | } |
1766 | } |
1767 | return ret; |
1768 | } |
1769 | #endif /* VLAN_SUPPORT */ |
1770 | |
1771 | static void set_rx_mode(struct net_device *dev) |
1772 | { |
1773 | struct netdev_private *np = netdev_priv(dev); |
1774 | void __iomem *ioaddr = np->base; |
1775 | u32 rx_mode = MinVLANPrio; |
1776 | struct netdev_hw_addr *ha; |
1777 | int i; |
1778 | |
1779 | #ifdef VLAN_SUPPORT |
1780 | rx_mode |= set_vlan_mode(np); |
1781 | #endif /* VLAN_SUPPORT */ |
1782 | |
1783 | if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ |
1784 | rx_mode |= AcceptAll; |
1785 | } else if ((netdev_mc_count(dev) > multicast_filter_limit) || |
1786 | (dev->flags & IFF_ALLMULTI)) { |
1787 | /* Too many to match, or accept all multicasts. */ |
1788 | rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter; |
1789 | } else if (netdev_mc_count(dev) <= 14) { |
1790 | /* Use the 16 element perfect filter, skip first two entries. */ |
1791 | void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16; |
1792 | const __be16 *eaddrs; |
1793 | netdev_for_each_mc_addr(ha, dev) { |
1794 | eaddrs = (__be16 *) ha->addr; |
1795 | writew(be16_to_cpu(eaddrs[2]), addr: filter_addr); filter_addr += 4; |
1796 | writew(be16_to_cpu(eaddrs[1]), addr: filter_addr); filter_addr += 4; |
1797 | writew(be16_to_cpu(eaddrs[0]), addr: filter_addr); filter_addr += 8; |
1798 | } |
1799 | eaddrs = (const __be16 *)dev->dev_addr; |
1800 | i = netdev_mc_count(dev) + 2; |
1801 | while (i++ < 16) { |
1802 | writew(be16_to_cpu(eaddrs[0]), addr: filter_addr); filter_addr += 4; |
1803 | writew(be16_to_cpu(eaddrs[1]), addr: filter_addr); filter_addr += 4; |
1804 | writew(be16_to_cpu(eaddrs[2]), addr: filter_addr); filter_addr += 8; |
1805 | } |
1806 | rx_mode |= AcceptBroadcast|PerfectFilter; |
1807 | } else { |
1808 | /* Must use a multicast hash table. */ |
1809 | void __iomem *filter_addr; |
1810 | const __be16 *eaddrs; |
1811 | __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */ |
1812 | |
1813 | memset(mc_filter, 0, sizeof(mc_filter)); |
1814 | netdev_for_each_mc_addr(ha, dev) { |
1815 | /* The chip uses the upper 9 CRC bits |
1816 | as index into the hash table */ |
1817 | int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23; |
1818 | __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1]; |
1819 | |
1820 | *fptr |= cpu_to_le32(1 << (bit_nr & 31)); |
1821 | } |
1822 | /* Clear the perfect filter list, skip first two entries. */ |
1823 | filter_addr = ioaddr + PerfFilterTable + 2 * 16; |
1824 | eaddrs = (const __be16 *)dev->dev_addr; |
1825 | for (i = 2; i < 16; i++) { |
1826 | writew(be16_to_cpu(eaddrs[0]), addr: filter_addr); filter_addr += 4; |
1827 | writew(be16_to_cpu(eaddrs[1]), addr: filter_addr); filter_addr += 4; |
1828 | writew(be16_to_cpu(eaddrs[2]), addr: filter_addr); filter_addr += 8; |
1829 | } |
1830 | for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++) |
1831 | writew(val: mc_filter[i], addr: filter_addr); |
1832 | rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter; |
1833 | } |
1834 | writel(val: rx_mode, addr: ioaddr + RxFilterMode); |
1835 | } |
1836 | |
1837 | static int check_if_running(struct net_device *dev) |
1838 | { |
1839 | if (!netif_running(dev)) |
1840 | return -EINVAL; |
1841 | return 0; |
1842 | } |
1843 | |
1844 | static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) |
1845 | { |
1846 | struct netdev_private *np = netdev_priv(dev); |
1847 | strscpy(info->driver, DRV_NAME, sizeof(info->driver)); |
1848 | strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); |
1849 | } |
1850 | |
1851 | static int get_link_ksettings(struct net_device *dev, |
1852 | struct ethtool_link_ksettings *cmd) |
1853 | { |
1854 | struct netdev_private *np = netdev_priv(dev); |
1855 | spin_lock_irq(lock: &np->lock); |
1856 | mii_ethtool_get_link_ksettings(mii: &np->mii_if, cmd); |
1857 | spin_unlock_irq(lock: &np->lock); |
1858 | return 0; |
1859 | } |
1860 | |
1861 | static int set_link_ksettings(struct net_device *dev, |
1862 | const struct ethtool_link_ksettings *cmd) |
1863 | { |
1864 | struct netdev_private *np = netdev_priv(dev); |
1865 | int res; |
1866 | spin_lock_irq(lock: &np->lock); |
1867 | res = mii_ethtool_set_link_ksettings(mii: &np->mii_if, cmd); |
1868 | spin_unlock_irq(lock: &np->lock); |
1869 | check_duplex(dev); |
1870 | return res; |
1871 | } |
1872 | |
1873 | static int nway_reset(struct net_device *dev) |
1874 | { |
1875 | struct netdev_private *np = netdev_priv(dev); |
1876 | return mii_nway_restart(mii: &np->mii_if); |
1877 | } |
1878 | |
1879 | static u32 get_link(struct net_device *dev) |
1880 | { |
1881 | struct netdev_private *np = netdev_priv(dev); |
1882 | return mii_link_ok(mii: &np->mii_if); |
1883 | } |
1884 | |
1885 | static u32 get_msglevel(struct net_device *dev) |
1886 | { |
1887 | return debug; |
1888 | } |
1889 | |
1890 | static void set_msglevel(struct net_device *dev, u32 val) |
1891 | { |
1892 | debug = val; |
1893 | } |
1894 | |
1895 | static const struct ethtool_ops ethtool_ops = { |
1896 | .begin = check_if_running, |
1897 | .get_drvinfo = get_drvinfo, |
1898 | .nway_reset = nway_reset, |
1899 | .get_link = get_link, |
1900 | .get_msglevel = get_msglevel, |
1901 | .set_msglevel = set_msglevel, |
1902 | .get_link_ksettings = get_link_ksettings, |
1903 | .set_link_ksettings = set_link_ksettings, |
1904 | }; |
1905 | |
1906 | static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) |
1907 | { |
1908 | struct netdev_private *np = netdev_priv(dev); |
1909 | struct mii_ioctl_data *data = if_mii(rq); |
1910 | int rc; |
1911 | |
1912 | if (!netif_running(dev)) |
1913 | return -EINVAL; |
1914 | |
1915 | spin_lock_irq(lock: &np->lock); |
1916 | rc = generic_mii_ioctl(mii_if: &np->mii_if, mii_data: data, cmd, NULL); |
1917 | spin_unlock_irq(lock: &np->lock); |
1918 | |
1919 | if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0])) |
1920 | check_duplex(dev); |
1921 | |
1922 | return rc; |
1923 | } |
1924 | |
1925 | static int netdev_close(struct net_device *dev) |
1926 | { |
1927 | struct netdev_private *np = netdev_priv(dev); |
1928 | void __iomem *ioaddr = np->base; |
1929 | int i; |
1930 | |
1931 | netif_stop_queue(dev); |
1932 | |
1933 | napi_disable(n: &np->napi); |
1934 | |
1935 | if (debug > 1) { |
1936 | printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n", |
1937 | dev->name, (int) readl(ioaddr + IntrStatus)); |
1938 | printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", |
1939 | dev->name, np->cur_tx, np->dirty_tx, |
1940 | np->cur_rx, np->dirty_rx); |
1941 | } |
1942 | |
1943 | /* Disable interrupts by clearing the interrupt mask. */ |
1944 | writel(val: 0, addr: ioaddr + IntrEnable); |
1945 | |
1946 | /* Stop the chip's Tx and Rx processes. */ |
1947 | writel(val: 0, addr: ioaddr + GenCtrl); |
1948 | readl(addr: ioaddr + GenCtrl); |
1949 | |
1950 | if (debug > 5) { |
1951 | printk(KERN_DEBUG" Tx ring at %#llx:\n", |
1952 | (long long) np->tx_ring_dma); |
1953 | for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++) |
1954 | printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n", |
1955 | i, le32_to_cpu(np->tx_ring[i].status), |
1956 | (long long) dma_to_cpu(np->tx_ring[i].addr), |
1957 | le32_to_cpu(np->tx_done_q[i].status)); |
1958 | printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n", |
1959 | (long long) np->rx_ring_dma, np->rx_done_q); |
1960 | if (np->rx_done_q) |
1961 | for (i = 0; i < 8 /* RX_RING_SIZE */; i++) { |
1962 | printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n", |
1963 | i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status)); |
1964 | } |
1965 | } |
1966 | |
1967 | free_irq(np->pci_dev->irq, dev); |
1968 | |
1969 | /* Free all the skbuffs in the Rx queue. */ |
1970 | for (i = 0; i < RX_RING_SIZE; i++) { |
1971 | np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */ |
1972 | if (np->rx_info[i].skb != NULL) { |
1973 | dma_unmap_single(&np->pci_dev->dev, |
1974 | np->rx_info[i].mapping, |
1975 | np->rx_buf_sz, DMA_FROM_DEVICE); |
1976 | dev_kfree_skb(np->rx_info[i].skb); |
1977 | } |
1978 | np->rx_info[i].skb = NULL; |
1979 | np->rx_info[i].mapping = 0; |
1980 | } |
1981 | for (i = 0; i < TX_RING_SIZE; i++) { |
1982 | struct sk_buff *skb = np->tx_info[i].skb; |
1983 | if (skb == NULL) |
1984 | continue; |
1985 | dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping, |
1986 | skb_first_frag_len(skb), DMA_TO_DEVICE); |
1987 | np->tx_info[i].mapping = 0; |
1988 | dev_kfree_skb(skb); |
1989 | np->tx_info[i].skb = NULL; |
1990 | } |
1991 | |
1992 | return 0; |
1993 | } |
1994 | |
1995 | static int __maybe_unused starfire_suspend(struct device *dev_d) |
1996 | { |
1997 | struct net_device *dev = dev_get_drvdata(dev: dev_d); |
1998 | |
1999 | if (netif_running(dev)) { |
2000 | netif_device_detach(dev); |
2001 | netdev_close(dev); |
2002 | } |
2003 | |
2004 | return 0; |
2005 | } |
2006 | |
2007 | static int __maybe_unused starfire_resume(struct device *dev_d) |
2008 | { |
2009 | struct net_device *dev = dev_get_drvdata(dev: dev_d); |
2010 | |
2011 | if (netif_running(dev)) { |
2012 | netdev_open(dev); |
2013 | netif_device_attach(dev); |
2014 | } |
2015 | |
2016 | return 0; |
2017 | } |
2018 | |
2019 | static void starfire_remove_one(struct pci_dev *pdev) |
2020 | { |
2021 | struct net_device *dev = pci_get_drvdata(pdev); |
2022 | struct netdev_private *np = netdev_priv(dev); |
2023 | |
2024 | BUG_ON(!dev); |
2025 | |
2026 | unregister_netdev(dev); |
2027 | |
2028 | if (np->queue_mem) |
2029 | dma_free_coherent(dev: &pdev->dev, size: np->queue_mem_size, |
2030 | cpu_addr: np->queue_mem, dma_handle: np->queue_mem_dma); |
2031 | |
2032 | |
2033 | /* XXX: add wakeup code -- requires firmware for MagicPacket */ |
2034 | pci_set_power_state(dev: pdev, PCI_D3hot); /* go to sleep in D3 mode */ |
2035 | pci_disable_device(dev: pdev); |
2036 | |
2037 | iounmap(addr: np->base); |
2038 | pci_release_regions(pdev); |
2039 | |
2040 | free_netdev(dev); /* Will also free np!! */ |
2041 | } |
2042 | |
2043 | static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume); |
2044 | |
2045 | static struct pci_driver starfire_driver = { |
2046 | .name = DRV_NAME, |
2047 | .probe = starfire_init_one, |
2048 | .remove = starfire_remove_one, |
2049 | .driver.pm = &starfire_pm_ops, |
2050 | .id_table = starfire_pci_tbl, |
2051 | }; |
2052 | |
2053 | |
2054 | static int __init starfire_init (void) |
2055 | { |
2056 | /* when a module, this is printed whether or not devices are found in probe */ |
2057 | #ifdef MODULE |
2058 | printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n"); |
2059 | #endif |
2060 | |
2061 | BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t)); |
2062 | |
2063 | return pci_register_driver(&starfire_driver); |
2064 | } |
2065 | |
2066 | |
2067 | static void __exit starfire_cleanup (void) |
2068 | { |
2069 | pci_unregister_driver (dev: &starfire_driver); |
2070 | } |
2071 | |
2072 | |
2073 | module_init(starfire_init); |
2074 | module_exit(starfire_cleanup); |
2075 |
Definitions
- intr_latency
- small_frames
- debug
- max_interrupt_work
- mtu
- multicast_filter_limit
- enable_hw_cksum
- rx_copybreak
- chip_capability_flags
- chipset
- starfire_pci_tbl
- chip_info
- netdrv_tbl
- register_offsets
- intr_status_bits
- rx_mode_bits
- tx_mode_bits
- tx_ctrl_bits
- rx_ctrl_bits
- rx_dmactrl_bits
- rx_compl_bits
- tx_compl_bits
- gen_ctrl_bits
- intr_ctrl_bits
- starfire_rx_desc
- rx_desc_bits
- short_rx_done_desc
- basic_rx_done_desc
- csum_rx_done_desc
- full_rx_done_desc
- rx_done_bits
- starfire_tx_desc_1
- starfire_tx_desc_2
- tx_desc_bits
- tx_done_desc
- rx_ring_info
- tx_ring_info
- netdev_private
- ethtool_ops
- netdev_vlan_rx_add_vid
- netdev_vlan_rx_kill_vid
- netdev_ops
- starfire_init_one
- mdio_read
- mdio_write
- netdev_open
- check_duplex
- tx_timeout
- init_ring
- start_tx
- intr_handler
- __netdev_rx
- netdev_poll
- refill_rx_ring
- netdev_media_change
- netdev_error
- get_stats
- set_vlan_mode
- set_rx_mode
- check_if_running
- get_drvinfo
- get_link_ksettings
- set_link_ksettings
- nway_reset
- get_link
- get_msglevel
- set_msglevel
- ethtool_ops
- netdev_ioctl
- netdev_close
- starfire_suspend
- starfire_resume
- starfire_remove_one
- starfire_pm_ops
- starfire_driver
- starfire_init
Improve your Profiling and Debugging skills
Find out more