1// SPDX-License-Identifier: GPL-2.0
2/* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11#include <linux/cache.h>
12#include <linux/clk.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/err.h>
16#include <linux/etherdevice.h>
17#include <linux/ethtool.h>
18#include <linux/if_vlan.h>
19#include <linux/kernel.h>
20#include <linux/list.h>
21#include <linux/module.h>
22#include <linux/net_tstamp.h>
23#include <linux/of.h>
24#include <linux/of_mdio.h>
25#include <linux/of_net.h>
26#include <linux/platform_device.h>
27#include <linux/pm_runtime.h>
28#include <linux/slab.h>
29#include <linux/spinlock.h>
30#include <linux/reset.h>
31#include <linux/math64.h>
32#include <net/ip.h>
33
34#include "ravb.h"
35
36#define RAVB_DEF_MSG_ENABLE \
37 (NETIF_MSG_LINK | \
38 NETIF_MSG_TIMER | \
39 NETIF_MSG_RX_ERR | \
40 NETIF_MSG_TX_ERR)
41
42void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
43 u32 set)
44{
45 ravb_write(ndev, data: (ravb_read(ndev, reg) & ~clear) | set, reg);
46}
47
48int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
49{
50 int i;
51
52 for (i = 0; i < 10000; i++) {
53 if ((ravb_read(ndev, reg) & mask) == value)
54 return 0;
55 udelay(10);
56 }
57 return -ETIMEDOUT;
58}
59
60static int ravb_set_opmode(struct net_device *ndev, u32 opmode)
61{
62 u32 csr_ops = 1U << (opmode & CCC_OPC);
63 u32 ccc_mask = CCC_OPC;
64 int error;
65
66 /* If gPTP active in config mode is supported it needs to be configured
67 * along with CSEL and operating mode in the same access. This is a
68 * hardware limitation.
69 */
70 if (opmode & CCC_GAC)
71 ccc_mask |= CCC_GAC | CCC_CSEL;
72
73 /* Set operating mode */
74 ravb_modify(ndev, reg: CCC, clear: ccc_mask, set: opmode);
75 /* Check if the operating mode is changed to the requested one */
76 error = ravb_wait(ndev, reg: CSR, mask: CSR_OPS, value: csr_ops);
77 if (error) {
78 netdev_err(dev: ndev, format: "failed to switch device to requested mode (%u)\n",
79 opmode & CCC_OPC);
80 }
81
82 return error;
83}
84
85static void ravb_set_rate_gbeth(struct net_device *ndev)
86{
87 struct ravb_private *priv = netdev_priv(dev: ndev);
88
89 switch (priv->speed) {
90 case 10: /* 10BASE */
91 ravb_write(ndev, data: GBETH_GECMR_SPEED_10, reg: GECMR);
92 break;
93 case 100: /* 100BASE */
94 ravb_write(ndev, data: GBETH_GECMR_SPEED_100, reg: GECMR);
95 break;
96 case 1000: /* 1000BASE */
97 ravb_write(ndev, data: GBETH_GECMR_SPEED_1000, reg: GECMR);
98 break;
99 }
100}
101
102static void ravb_set_rate_rcar(struct net_device *ndev)
103{
104 struct ravb_private *priv = netdev_priv(dev: ndev);
105
106 switch (priv->speed) {
107 case 100: /* 100BASE */
108 ravb_write(ndev, data: GECMR_SPEED_100, reg: GECMR);
109 break;
110 case 1000: /* 1000BASE */
111 ravb_write(ndev, data: GECMR_SPEED_1000, reg: GECMR);
112 break;
113 }
114}
115
116static struct sk_buff *
117ravb_alloc_skb(struct net_device *ndev, const struct ravb_hw_info *info,
118 gfp_t gfp_mask)
119{
120 struct sk_buff *skb;
121 u32 reserve;
122
123 skb = __netdev_alloc_skb(dev: ndev, length: info->rx_max_frame_size + RAVB_ALIGN - 1,
124 gfp_mask);
125 if (!skb)
126 return NULL;
127
128 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
129 if (reserve)
130 skb_reserve(skb, RAVB_ALIGN - reserve);
131
132 return skb;
133}
134
135/* Get MAC address from the MAC address registers
136 *
137 * Ethernet AVB device doesn't have ROM for MAC address.
138 * This function gets the MAC address that was used by a bootloader.
139 */
140static void ravb_read_mac_address(struct device_node *np,
141 struct net_device *ndev)
142{
143 int ret;
144
145 ret = of_get_ethdev_address(np, dev: ndev);
146 if (ret) {
147 u32 mahr = ravb_read(ndev, reg: MAHR);
148 u32 malr = ravb_read(ndev, reg: MALR);
149 u8 addr[ETH_ALEN];
150
151 addr[0] = (mahr >> 24) & 0xFF;
152 addr[1] = (mahr >> 16) & 0xFF;
153 addr[2] = (mahr >> 8) & 0xFF;
154 addr[3] = (mahr >> 0) & 0xFF;
155 addr[4] = (malr >> 8) & 0xFF;
156 addr[5] = (malr >> 0) & 0xFF;
157 eth_hw_addr_set(dev: ndev, addr);
158 }
159}
160
161static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
162{
163 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
164 mdiobb);
165
166 ravb_modify(ndev: priv->ndev, reg: PIR, clear: mask, set: set ? mask : 0);
167}
168
169/* MDC pin control */
170static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
171{
172 ravb_mdio_ctrl(ctrl, mask: PIR_MDC, set: level);
173}
174
175/* Data I/O pin control */
176static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
177{
178 ravb_mdio_ctrl(ctrl, mask: PIR_MMD, set: output);
179}
180
181/* Set data bit */
182static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
183{
184 ravb_mdio_ctrl(ctrl, mask: PIR_MDO, set: value);
185}
186
187/* Get data bit */
188static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
189{
190 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
191 mdiobb);
192
193 return (ravb_read(ndev: priv->ndev, reg: PIR) & PIR_MDI) != 0;
194}
195
196/* MDIO bus control struct */
197static const struct mdiobb_ops bb_ops = {
198 .owner = THIS_MODULE,
199 .set_mdc = ravb_set_mdc,
200 .set_mdio_dir = ravb_set_mdio_dir,
201 .set_mdio_data = ravb_set_mdio_data,
202 .get_mdio_data = ravb_get_mdio_data,
203};
204
205static struct ravb_rx_desc *
206ravb_rx_get_desc(struct ravb_private *priv, unsigned int q,
207 unsigned int i)
208{
209 return priv->rx_ring[q].raw + priv->info->rx_desc_size * i;
210}
211
212/* Free TX skb function for AVB-IP */
213static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
214{
215 struct ravb_private *priv = netdev_priv(dev: ndev);
216 struct net_device_stats *stats = &priv->stats[q];
217 unsigned int num_tx_desc = priv->num_tx_desc;
218 struct ravb_tx_desc *desc;
219 unsigned int entry;
220 int free_num = 0;
221 u32 size;
222
223 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
224 bool txed;
225
226 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
227 num_tx_desc);
228 desc = &priv->tx_ring[q][entry];
229 txed = desc->die_dt == DT_FEMPTY;
230 if (free_txed_only && !txed)
231 break;
232 /* Descriptor type must be checked before all other reads */
233 dma_rmb();
234 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
235 /* Free the original skb. */
236 if (priv->tx_skb[q][entry / num_tx_desc]) {
237 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
238 size, DMA_TO_DEVICE);
239 /* Last packet descriptor? */
240 if (entry % num_tx_desc == num_tx_desc - 1) {
241 entry /= num_tx_desc;
242 dev_kfree_skb_any(skb: priv->tx_skb[q][entry]);
243 priv->tx_skb[q][entry] = NULL;
244 if (txed)
245 stats->tx_packets++;
246 }
247 free_num++;
248 }
249 if (txed)
250 stats->tx_bytes += size;
251 desc->die_dt = DT_EEMPTY;
252 }
253 return free_num;
254}
255
256static void ravb_rx_ring_free(struct net_device *ndev, int q)
257{
258 struct ravb_private *priv = netdev_priv(dev: ndev);
259 unsigned int ring_size;
260 unsigned int i;
261
262 if (!priv->rx_ring[q].raw)
263 return;
264
265 for (i = 0; i < priv->num_rx_ring[q]; i++) {
266 struct ravb_rx_desc *desc = ravb_rx_get_desc(priv, q, i);
267
268 if (!dma_mapping_error(dev: ndev->dev.parent,
269 le32_to_cpu(desc->dptr)))
270 dma_unmap_single(ndev->dev.parent,
271 le32_to_cpu(desc->dptr),
272 priv->info->rx_max_frame_size,
273 DMA_FROM_DEVICE);
274 }
275 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
276 dma_free_coherent(dev: ndev->dev.parent, size: ring_size, cpu_addr: priv->rx_ring[q].raw,
277 dma_handle: priv->rx_desc_dma[q]);
278 priv->rx_ring[q].raw = NULL;
279}
280
281/* Free skb's and DMA buffers for Ethernet AVB */
282static void ravb_ring_free(struct net_device *ndev, int q)
283{
284 struct ravb_private *priv = netdev_priv(dev: ndev);
285 unsigned int num_tx_desc = priv->num_tx_desc;
286 unsigned int ring_size;
287 unsigned int i;
288
289 ravb_rx_ring_free(ndev, q);
290
291 if (priv->tx_ring[q]) {
292 ravb_tx_free(ndev, q, free_txed_only: false);
293
294 ring_size = sizeof(struct ravb_tx_desc) *
295 (priv->num_tx_ring[q] * num_tx_desc + 1);
296 dma_free_coherent(dev: ndev->dev.parent, size: ring_size, cpu_addr: priv->tx_ring[q],
297 dma_handle: priv->tx_desc_dma[q]);
298 priv->tx_ring[q] = NULL;
299 }
300
301 /* Free RX skb ringbuffer */
302 if (priv->rx_skb[q]) {
303 for (i = 0; i < priv->num_rx_ring[q]; i++)
304 dev_kfree_skb(priv->rx_skb[q][i]);
305 }
306 kfree(objp: priv->rx_skb[q]);
307 priv->rx_skb[q] = NULL;
308
309 /* Free aligned TX buffers */
310 kfree(objp: priv->tx_align[q]);
311 priv->tx_align[q] = NULL;
312
313 /* Free TX skb ringbuffer.
314 * SKBs are freed by ravb_tx_free() call above.
315 */
316 kfree(objp: priv->tx_skb[q]);
317 priv->tx_skb[q] = NULL;
318}
319
320static void ravb_rx_ring_format(struct net_device *ndev, int q)
321{
322 struct ravb_private *priv = netdev_priv(dev: ndev);
323 struct ravb_rx_desc *rx_desc;
324 unsigned int rx_ring_size;
325 dma_addr_t dma_addr;
326 unsigned int i;
327
328 rx_ring_size = priv->info->rx_desc_size * priv->num_rx_ring[q];
329 memset(priv->rx_ring[q].raw, 0, rx_ring_size);
330 /* Build RX ring buffer */
331 for (i = 0; i < priv->num_rx_ring[q]; i++) {
332 /* RX descriptor */
333 rx_desc = ravb_rx_get_desc(priv, q, i);
334 rx_desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
335 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
336 priv->info->rx_max_frame_size,
337 DMA_FROM_DEVICE);
338 /* We just set the data size to 0 for a failed mapping which
339 * should prevent DMA from happening...
340 */
341 if (dma_mapping_error(dev: ndev->dev.parent, dma_addr))
342 rx_desc->ds_cc = cpu_to_le16(0);
343 rx_desc->dptr = cpu_to_le32(dma_addr);
344 rx_desc->die_dt = DT_FEMPTY;
345 }
346 rx_desc = ravb_rx_get_desc(priv, q, i);
347 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
348 rx_desc->die_dt = DT_LINKFIX; /* type */
349}
350
351/* Format skb and descriptor buffer for Ethernet AVB */
352static void ravb_ring_format(struct net_device *ndev, int q)
353{
354 struct ravb_private *priv = netdev_priv(dev: ndev);
355 unsigned int num_tx_desc = priv->num_tx_desc;
356 struct ravb_tx_desc *tx_desc;
357 struct ravb_desc *desc;
358 unsigned int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
359 num_tx_desc;
360 unsigned int i;
361
362 priv->cur_rx[q] = 0;
363 priv->cur_tx[q] = 0;
364 priv->dirty_rx[q] = 0;
365 priv->dirty_tx[q] = 0;
366
367 ravb_rx_ring_format(ndev, q);
368
369 memset(priv->tx_ring[q], 0, tx_ring_size);
370 /* Build TX ring buffer */
371 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
372 i++, tx_desc++) {
373 tx_desc->die_dt = DT_EEMPTY;
374 if (num_tx_desc > 1) {
375 tx_desc++;
376 tx_desc->die_dt = DT_EEMPTY;
377 }
378 }
379 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
380 tx_desc->die_dt = DT_LINKFIX; /* type */
381
382 /* RX descriptor base address for best effort */
383 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
384 desc->die_dt = DT_LINKFIX; /* type */
385 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
386
387 /* TX descriptor base address for best effort */
388 desc = &priv->desc_bat[q];
389 desc->die_dt = DT_LINKFIX; /* type */
390 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
391}
392
393static void *ravb_alloc_rx_desc(struct net_device *ndev, int q)
394{
395 struct ravb_private *priv = netdev_priv(dev: ndev);
396 unsigned int ring_size;
397
398 ring_size = priv->info->rx_desc_size * (priv->num_rx_ring[q] + 1);
399
400 priv->rx_ring[q].raw = dma_alloc_coherent(dev: ndev->dev.parent, size: ring_size,
401 dma_handle: &priv->rx_desc_dma[q],
402 GFP_KERNEL);
403
404 return priv->rx_ring[q].raw;
405}
406
407/* Init skb and descriptor buffer for Ethernet AVB */
408static int ravb_ring_init(struct net_device *ndev, int q)
409{
410 struct ravb_private *priv = netdev_priv(dev: ndev);
411 const struct ravb_hw_info *info = priv->info;
412 unsigned int num_tx_desc = priv->num_tx_desc;
413 unsigned int ring_size;
414 struct sk_buff *skb;
415 unsigned int i;
416
417 /* Allocate RX and TX skb rings */
418 priv->rx_skb[q] = kcalloc(n: priv->num_rx_ring[q],
419 size: sizeof(*priv->rx_skb[q]), GFP_KERNEL);
420 priv->tx_skb[q] = kcalloc(n: priv->num_tx_ring[q],
421 size: sizeof(*priv->tx_skb[q]), GFP_KERNEL);
422 if (!priv->rx_skb[q] || !priv->tx_skb[q])
423 goto error;
424
425 for (i = 0; i < priv->num_rx_ring[q]; i++) {
426 skb = ravb_alloc_skb(ndev, info, GFP_KERNEL);
427 if (!skb)
428 goto error;
429 priv->rx_skb[q][i] = skb;
430 }
431
432 if (num_tx_desc > 1) {
433 /* Allocate rings for the aligned buffers */
434 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
435 DPTR_ALIGN - 1, GFP_KERNEL);
436 if (!priv->tx_align[q])
437 goto error;
438 }
439
440 /* Allocate all RX descriptors. */
441 if (!ravb_alloc_rx_desc(ndev, q))
442 goto error;
443
444 priv->dirty_rx[q] = 0;
445
446 /* Allocate all TX descriptors. */
447 ring_size = sizeof(struct ravb_tx_desc) *
448 (priv->num_tx_ring[q] * num_tx_desc + 1);
449 priv->tx_ring[q] = dma_alloc_coherent(dev: ndev->dev.parent, size: ring_size,
450 dma_handle: &priv->tx_desc_dma[q],
451 GFP_KERNEL);
452 if (!priv->tx_ring[q])
453 goto error;
454
455 return 0;
456
457error:
458 ravb_ring_free(ndev, q);
459
460 return -ENOMEM;
461}
462
463static void ravb_csum_init_gbeth(struct net_device *ndev)
464{
465 bool tx_enable = ndev->features & NETIF_F_HW_CSUM;
466 bool rx_enable = ndev->features & NETIF_F_RXCSUM;
467
468 if (!(tx_enable || rx_enable))
469 goto done;
470
471 ravb_write(ndev, data: 0, reg: CSR0);
472 if (ravb_wait(ndev, reg: CSR0, mask: CSR0_TPE | CSR0_RPE, value: 0)) {
473 netdev_err(dev: ndev, format: "Timeout enabling hardware checksum\n");
474
475 if (tx_enable)
476 ndev->features &= ~NETIF_F_HW_CSUM;
477
478 if (rx_enable)
479 ndev->features &= ~NETIF_F_RXCSUM;
480 } else {
481 if (tx_enable)
482 ravb_write(ndev, data: CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4, reg: CSR1);
483
484 if (rx_enable)
485 ravb_write(ndev, data: CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4,
486 reg: CSR2);
487 }
488
489done:
490 ravb_write(ndev, data: CSR0_TPE | CSR0_RPE, reg: CSR0);
491}
492
493static void ravb_emac_init_gbeth(struct net_device *ndev)
494{
495 struct ravb_private *priv = netdev_priv(dev: ndev);
496
497 if (priv->phy_interface == PHY_INTERFACE_MODE_MII) {
498 ravb_write(ndev, data: (1000 << 16) | CXR35_SEL_XMII_MII, reg: CXR35);
499 ravb_modify(ndev, reg: CXR31, clear: CXR31_SEL_LINK0 | CXR31_SEL_LINK1, set: 0);
500 } else {
501 ravb_write(ndev, data: (1000 << 16) | CXR35_SEL_XMII_RGMII, reg: CXR35);
502 ravb_modify(ndev, reg: CXR31, clear: CXR31_SEL_LINK0 | CXR31_SEL_LINK1,
503 set: CXR31_SEL_LINK0);
504 }
505
506 /* Receive frame limit set register */
507 ravb_write(ndev, data: priv->info->rx_max_frame_size + ETH_FCS_LEN, reg: RFLR);
508
509 /* EMAC Mode: PAUSE prohibition; Duplex; TX; RX; CRC Pass Through */
510 ravb_write(ndev, data: ECMR_ZPF | ((priv->duplex > 0) ? ECMR_DM : 0) |
511 ECMR_TE | ECMR_RE | ECMR_RCPT |
512 ECMR_TXF | ECMR_RXF, reg: ECMR);
513
514 ravb_set_rate_gbeth(ndev);
515
516 /* Set MAC address */
517 ravb_write(ndev,
518 data: (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
519 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), reg: MAHR);
520 ravb_write(ndev, data: (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), reg: MALR);
521
522 /* E-MAC status register clear */
523 ravb_write(ndev, data: ECSR_ICD | ECSR_LCHNG | ECSR_PFRI, reg: ECSR);
524
525 ravb_csum_init_gbeth(ndev);
526
527 /* E-MAC interrupt enable register */
528 ravb_write(ndev, data: ECSIPR_ICDIP, reg: ECSIPR);
529}
530
531static void ravb_emac_init_rcar(struct net_device *ndev)
532{
533 /* Receive frame limit set register */
534 ravb_write(ndev, data: ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, reg: RFLR);
535
536 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
537 ravb_write(ndev, data: ECMR_ZPF | ECMR_DM |
538 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
539 ECMR_TE | ECMR_RE, reg: ECMR);
540
541 ravb_set_rate_rcar(ndev);
542
543 /* Set MAC address */
544 ravb_write(ndev,
545 data: (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
546 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), reg: MAHR);
547 ravb_write(ndev,
548 data: (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), reg: MALR);
549
550 /* E-MAC status register clear */
551 ravb_write(ndev, data: ECSR_ICD | ECSR_MPD, reg: ECSR);
552
553 /* E-MAC interrupt enable register */
554 ravb_write(ndev, data: ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, reg: ECSIPR);
555}
556
557/* E-MAC init function */
558static void ravb_emac_init(struct net_device *ndev)
559{
560 struct ravb_private *priv = netdev_priv(dev: ndev);
561 const struct ravb_hw_info *info = priv->info;
562
563 info->emac_init(ndev);
564}
565
566static int ravb_dmac_init_gbeth(struct net_device *ndev)
567{
568 struct ravb_private *priv = netdev_priv(dev: ndev);
569 int error;
570
571 error = ravb_ring_init(ndev, q: RAVB_BE);
572 if (error)
573 return error;
574
575 /* Descriptor format */
576 ravb_ring_format(ndev, q: RAVB_BE);
577
578 /* Set DMAC RX */
579 ravb_write(ndev, data: 0x60000000, reg: RCR);
580
581 /* Set Max Frame Length (RTC) */
582 ravb_write(ndev, data: 0x7ffc0000 | priv->info->rx_max_frame_size, reg: RTC);
583
584 /* Set FIFO size */
585 ravb_write(ndev, data: 0x00222200, reg: TGC);
586
587 ravb_write(ndev, data: 0, reg: TCCR);
588
589 /* Frame receive */
590 ravb_write(ndev, data: RIC0_FRE0, reg: RIC0);
591 /* Disable FIFO full warning */
592 ravb_write(ndev, data: 0x0, reg: RIC1);
593 /* Receive FIFO full error, descriptor empty */
594 ravb_write(ndev, data: RIC2_QFE0 | RIC2_RFFE, reg: RIC2);
595
596 ravb_write(ndev, data: TIC_FTE0, reg: TIC);
597
598 return 0;
599}
600
601static int ravb_dmac_init_rcar(struct net_device *ndev)
602{
603 struct ravb_private *priv = netdev_priv(dev: ndev);
604 const struct ravb_hw_info *info = priv->info;
605 int error;
606
607 error = ravb_ring_init(ndev, q: RAVB_BE);
608 if (error)
609 return error;
610 error = ravb_ring_init(ndev, q: RAVB_NC);
611 if (error) {
612 ravb_ring_free(ndev, q: RAVB_BE);
613 return error;
614 }
615
616 /* Descriptor format */
617 ravb_ring_format(ndev, q: RAVB_BE);
618 ravb_ring_format(ndev, q: RAVB_NC);
619
620 /* Set AVB RX */
621 ravb_write(ndev,
622 data: RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, reg: RCR);
623
624 /* Set FIFO size */
625 ravb_write(ndev, data: TGC_TQP_AVBMODE1 | 0x00112200, reg: TGC);
626
627 /* Timestamp enable */
628 ravb_write(ndev, data: TCCR_TFEN, reg: TCCR);
629
630 /* Interrupt init: */
631 if (info->multi_irqs) {
632 /* Clear DIL.DPLx */
633 ravb_write(ndev, data: 0, reg: DIL);
634 /* Set queue specific interrupt */
635 ravb_write(ndev, data: CIE_CRIE | CIE_CTIE | CIE_CL0M, reg: CIE);
636 }
637 /* Frame receive */
638 ravb_write(ndev, data: RIC0_FRE0 | RIC0_FRE1, reg: RIC0);
639 /* Disable FIFO full warning */
640 ravb_write(ndev, data: 0, reg: RIC1);
641 /* Receive FIFO full error, descriptor empty */
642 ravb_write(ndev, data: RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, reg: RIC2);
643 /* Frame transmitted, timestamp FIFO updated */
644 ravb_write(ndev, data: TIC_FTE0 | TIC_FTE1 | TIC_TFUE, reg: TIC);
645
646 return 0;
647}
648
649/* Device init function for Ethernet AVB */
650static int ravb_dmac_init(struct net_device *ndev)
651{
652 struct ravb_private *priv = netdev_priv(dev: ndev);
653 const struct ravb_hw_info *info = priv->info;
654 int error;
655
656 /* Set CONFIG mode */
657 error = ravb_set_opmode(ndev, opmode: CCC_OPC_CONFIG);
658 if (error)
659 return error;
660
661 error = info->dmac_init(ndev);
662 if (error)
663 return error;
664
665 /* Setting the control will start the AVB-DMAC process. */
666 return ravb_set_opmode(ndev, opmode: CCC_OPC_OPERATION);
667}
668
669static void ravb_get_tx_tstamp(struct net_device *ndev)
670{
671 struct ravb_private *priv = netdev_priv(dev: ndev);
672 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
673 struct skb_shared_hwtstamps shhwtstamps;
674 struct sk_buff *skb;
675 struct timespec64 ts;
676 u16 tag, tfa_tag;
677 int count;
678 u32 tfa2;
679
680 count = (ravb_read(ndev, reg: TSR) & TSR_TFFL) >> 8;
681 while (count--) {
682 tfa2 = ravb_read(ndev, reg: TFA2);
683 tfa_tag = (tfa2 & TFA2_TST) >> 16;
684 ts.tv_nsec = (u64)ravb_read(ndev, reg: TFA0);
685 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
686 ravb_read(ndev, reg: TFA1);
687 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
688 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
689 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
690 list) {
691 skb = ts_skb->skb;
692 tag = ts_skb->tag;
693 list_del(entry: &ts_skb->list);
694 kfree(objp: ts_skb);
695 if (tag == tfa_tag) {
696 skb_tstamp_tx(orig_skb: skb, hwtstamps: &shhwtstamps);
697 dev_consume_skb_any(skb);
698 break;
699 } else {
700 dev_kfree_skb_any(skb);
701 }
702 }
703 ravb_modify(ndev, reg: TCCR, clear: TCCR_TFR, set: TCCR_TFR);
704 }
705}
706
707static void ravb_rx_csum_gbeth(struct sk_buff *skb)
708{
709 __wsum csum_ip_hdr, csum_proto;
710 u8 *hw_csum;
711
712 /* The hardware checksum status is contained in sizeof(__sum16) * 2 = 4
713 * bytes appended to packet data. First 2 bytes is ip header checksum
714 * and last 2 bytes is protocol checksum.
715 */
716 if (unlikely(skb->len < sizeof(__sum16) * 2))
717 return;
718
719 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
720 csum_proto = csum_unfold(n: (__force __sum16)get_unaligned_le16(p: hw_csum));
721
722 hw_csum -= sizeof(__sum16);
723 csum_ip_hdr = csum_unfold(n: (__force __sum16)get_unaligned_le16(p: hw_csum));
724 skb_trim(skb, len: skb->len - 2 * sizeof(__sum16));
725
726 /* TODO: IPV6 Rx checksum */
727 if (skb->protocol == htons(ETH_P_IP) && !csum_ip_hdr && !csum_proto)
728 skb->ip_summed = CHECKSUM_UNNECESSARY;
729}
730
731static void ravb_rx_csum(struct sk_buff *skb)
732{
733 u8 *hw_csum;
734
735 /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
736 * appended to packet data
737 */
738 if (unlikely(skb->len < sizeof(__sum16)))
739 return;
740 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
741 skb->csum = csum_unfold(n: (__force __sum16)get_unaligned_le16(p: hw_csum));
742 skb->ip_summed = CHECKSUM_COMPLETE;
743 skb_trim(skb, len: skb->len - sizeof(__sum16));
744}
745
746static struct sk_buff *ravb_get_skb_gbeth(struct net_device *ndev, int entry,
747 struct ravb_rx_desc *desc)
748{
749 struct ravb_private *priv = netdev_priv(dev: ndev);
750 struct sk_buff *skb;
751
752 skb = priv->rx_skb[RAVB_BE][entry];
753 priv->rx_skb[RAVB_BE][entry] = NULL;
754 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
755 ALIGN(priv->info->rx_max_frame_size, 16),
756 DMA_FROM_DEVICE);
757
758 return skb;
759}
760
761/* Packet receive function for Gigabit Ethernet */
762static bool ravb_rx_gbeth(struct net_device *ndev, int *quota, int q)
763{
764 struct ravb_private *priv = netdev_priv(dev: ndev);
765 const struct ravb_hw_info *info = priv->info;
766 struct net_device_stats *stats;
767 struct ravb_rx_desc *desc;
768 struct sk_buff *skb;
769 dma_addr_t dma_addr;
770 int rx_packets = 0;
771 u8 desc_status;
772 u16 desc_len;
773 u8 die_dt;
774 int entry;
775 int limit;
776 int i;
777
778 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
779 stats = &priv->stats[q];
780
781 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
782 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
783 desc = &priv->rx_ring[q].desc[entry];
784 if (rx_packets == *quota || desc->die_dt == DT_FEMPTY)
785 break;
786
787 /* Descriptor type must be checked before all other reads */
788 dma_rmb();
789 desc_status = desc->msc;
790 desc_len = le16_to_cpu(desc->ds_cc) & RX_DS;
791
792 /* We use 0-byte descriptors to mark the DMA mapping errors */
793 if (!desc_len)
794 continue;
795
796 if (desc_status & MSC_MC)
797 stats->multicast++;
798
799 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF | MSC_CEEF)) {
800 stats->rx_errors++;
801 if (desc_status & MSC_CRC)
802 stats->rx_crc_errors++;
803 if (desc_status & MSC_RFE)
804 stats->rx_frame_errors++;
805 if (desc_status & (MSC_RTLF | MSC_RTSF))
806 stats->rx_length_errors++;
807 if (desc_status & MSC_CEEF)
808 stats->rx_missed_errors++;
809 } else {
810 die_dt = desc->die_dt & 0xF0;
811 switch (die_dt) {
812 case DT_FSINGLE:
813 skb = ravb_get_skb_gbeth(ndev, entry, desc);
814 skb_put(skb, len: desc_len);
815 skb->protocol = eth_type_trans(skb, dev: ndev);
816 if (ndev->features & NETIF_F_RXCSUM)
817 ravb_rx_csum_gbeth(skb);
818 napi_gro_receive(napi: &priv->napi[q], skb);
819 rx_packets++;
820 stats->rx_bytes += desc_len;
821 break;
822 case DT_FSTART:
823 priv->rx_1st_skb = ravb_get_skb_gbeth(ndev, entry, desc);
824 skb_put(skb: priv->rx_1st_skb, len: desc_len);
825 break;
826 case DT_FMID:
827 skb = ravb_get_skb_gbeth(ndev, entry, desc);
828 skb_copy_to_linear_data_offset(skb: priv->rx_1st_skb,
829 offset: priv->rx_1st_skb->len,
830 from: skb->data,
831 len: desc_len);
832 skb_put(skb: priv->rx_1st_skb, len: desc_len);
833 dev_kfree_skb(skb);
834 break;
835 case DT_FEND:
836 skb = ravb_get_skb_gbeth(ndev, entry, desc);
837 skb_copy_to_linear_data_offset(skb: priv->rx_1st_skb,
838 offset: priv->rx_1st_skb->len,
839 from: skb->data,
840 len: desc_len);
841 skb_put(skb: priv->rx_1st_skb, len: desc_len);
842 dev_kfree_skb(skb);
843 priv->rx_1st_skb->protocol =
844 eth_type_trans(skb: priv->rx_1st_skb, dev: ndev);
845 if (ndev->features & NETIF_F_RXCSUM)
846 ravb_rx_csum_gbeth(skb: priv->rx_1st_skb);
847 stats->rx_bytes += priv->rx_1st_skb->len;
848 napi_gro_receive(napi: &priv->napi[q],
849 skb: priv->rx_1st_skb);
850 rx_packets++;
851 break;
852 }
853 }
854 }
855
856 /* Refill the RX ring buffers. */
857 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
858 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
859 desc = &priv->rx_ring[q].desc[entry];
860 desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
861
862 if (!priv->rx_skb[q][entry]) {
863 skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
864 if (!skb)
865 break;
866 dma_addr = dma_map_single(ndev->dev.parent,
867 skb->data,
868 priv->info->rx_max_frame_size,
869 DMA_FROM_DEVICE);
870 skb_checksum_none_assert(skb);
871 /* We just set the data size to 0 for a failed mapping
872 * which should prevent DMA from happening...
873 */
874 if (dma_mapping_error(dev: ndev->dev.parent, dma_addr))
875 desc->ds_cc = cpu_to_le16(0);
876 desc->dptr = cpu_to_le32(dma_addr);
877 priv->rx_skb[q][entry] = skb;
878 }
879 /* Descriptor type must be set after all the above writes */
880 dma_wmb();
881 desc->die_dt = DT_FEMPTY;
882 }
883
884 stats->rx_packets += rx_packets;
885 *quota -= rx_packets;
886 return *quota == 0;
887}
888
889/* Packet receive function for Ethernet AVB */
890static bool ravb_rx_rcar(struct net_device *ndev, int *quota, int q)
891{
892 struct ravb_private *priv = netdev_priv(dev: ndev);
893 const struct ravb_hw_info *info = priv->info;
894 struct net_device_stats *stats = &priv->stats[q];
895 struct ravb_ex_rx_desc *desc;
896 unsigned int limit, i;
897 struct sk_buff *skb;
898 dma_addr_t dma_addr;
899 struct timespec64 ts;
900 int rx_packets = 0;
901 u8 desc_status;
902 u16 pkt_len;
903 int entry;
904
905 limit = priv->dirty_rx[q] + priv->num_rx_ring[q] - priv->cur_rx[q];
906 for (i = 0; i < limit; i++, priv->cur_rx[q]++) {
907 entry = priv->cur_rx[q] % priv->num_rx_ring[q];
908 desc = &priv->rx_ring[q].ex_desc[entry];
909 if (rx_packets == *quota || desc->die_dt == DT_FEMPTY)
910 break;
911
912 /* Descriptor type must be checked before all other reads */
913 dma_rmb();
914 desc_status = desc->msc;
915 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
916
917 /* We use 0-byte descriptors to mark the DMA mapping errors */
918 if (!pkt_len)
919 continue;
920
921 if (desc_status & MSC_MC)
922 stats->multicast++;
923
924 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
925 MSC_CEEF)) {
926 stats->rx_errors++;
927 if (desc_status & MSC_CRC)
928 stats->rx_crc_errors++;
929 if (desc_status & MSC_RFE)
930 stats->rx_frame_errors++;
931 if (desc_status & (MSC_RTLF | MSC_RTSF))
932 stats->rx_length_errors++;
933 if (desc_status & MSC_CEEF)
934 stats->rx_missed_errors++;
935 } else {
936 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
937
938 skb = priv->rx_skb[q][entry];
939 priv->rx_skb[q][entry] = NULL;
940 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
941 priv->info->rx_max_frame_size,
942 DMA_FROM_DEVICE);
943 get_ts &= (q == RAVB_NC) ?
944 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
945 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
946 if (get_ts) {
947 struct skb_shared_hwtstamps *shhwtstamps;
948
949 shhwtstamps = skb_hwtstamps(skb);
950 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
951 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
952 32) | le32_to_cpu(desc->ts_sl);
953 ts.tv_nsec = le32_to_cpu(desc->ts_n);
954 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
955 }
956
957 skb_put(skb, len: pkt_len);
958 skb->protocol = eth_type_trans(skb, dev: ndev);
959 if (ndev->features & NETIF_F_RXCSUM)
960 ravb_rx_csum(skb);
961 napi_gro_receive(napi: &priv->napi[q], skb);
962 rx_packets++;
963 stats->rx_bytes += pkt_len;
964 }
965 }
966
967 /* Refill the RX ring buffers. */
968 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
969 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
970 desc = &priv->rx_ring[q].ex_desc[entry];
971 desc->ds_cc = cpu_to_le16(priv->info->rx_max_desc_use);
972
973 if (!priv->rx_skb[q][entry]) {
974 skb = ravb_alloc_skb(ndev, info, GFP_ATOMIC);
975 if (!skb)
976 break; /* Better luck next round. */
977 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
978 priv->info->rx_max_frame_size,
979 DMA_FROM_DEVICE);
980 skb_checksum_none_assert(skb);
981 /* We just set the data size to 0 for a failed mapping
982 * which should prevent DMA from happening...
983 */
984 if (dma_mapping_error(dev: ndev->dev.parent, dma_addr))
985 desc->ds_cc = cpu_to_le16(0);
986 desc->dptr = cpu_to_le32(dma_addr);
987 priv->rx_skb[q][entry] = skb;
988 }
989 /* Descriptor type must be set after all the above writes */
990 dma_wmb();
991 desc->die_dt = DT_FEMPTY;
992 }
993
994 stats->rx_packets += rx_packets;
995 *quota -= rx_packets;
996 return *quota == 0;
997}
998
999/* Packet receive function for Ethernet AVB */
1000static bool ravb_rx(struct net_device *ndev, int *quota, int q)
1001{
1002 struct ravb_private *priv = netdev_priv(dev: ndev);
1003 const struct ravb_hw_info *info = priv->info;
1004
1005 return info->receive(ndev, quota, q);
1006}
1007
1008static void ravb_rcv_snd_disable(struct net_device *ndev)
1009{
1010 /* Disable TX and RX */
1011 ravb_modify(ndev, reg: ECMR, clear: ECMR_RE | ECMR_TE, set: 0);
1012}
1013
1014static void ravb_rcv_snd_enable(struct net_device *ndev)
1015{
1016 /* Enable TX and RX */
1017 ravb_modify(ndev, reg: ECMR, clear: ECMR_RE | ECMR_TE, set: ECMR_RE | ECMR_TE);
1018}
1019
1020/* function for waiting dma process finished */
1021static int ravb_stop_dma(struct net_device *ndev)
1022{
1023 struct ravb_private *priv = netdev_priv(dev: ndev);
1024 const struct ravb_hw_info *info = priv->info;
1025 int error;
1026
1027 /* Wait for stopping the hardware TX process */
1028 error = ravb_wait(ndev, reg: TCCR, mask: info->tccr_mask, value: 0);
1029
1030 if (error)
1031 return error;
1032
1033 error = ravb_wait(ndev, reg: CSR, mask: CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
1034 value: 0);
1035 if (error)
1036 return error;
1037
1038 /* Stop the E-MAC's RX/TX processes. */
1039 ravb_rcv_snd_disable(ndev);
1040
1041 /* Wait for stopping the RX DMA process */
1042 error = ravb_wait(ndev, reg: CSR, mask: CSR_RPO, value: 0);
1043 if (error)
1044 return error;
1045
1046 /* Stop AVB-DMAC process */
1047 return ravb_set_opmode(ndev, opmode: CCC_OPC_CONFIG);
1048}
1049
1050/* E-MAC interrupt handler */
1051static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
1052{
1053 struct ravb_private *priv = netdev_priv(dev: ndev);
1054 u32 ecsr, psr;
1055
1056 ecsr = ravb_read(ndev, reg: ECSR);
1057 ravb_write(ndev, data: ecsr, reg: ECSR); /* clear interrupt */
1058
1059 if (ecsr & ECSR_MPD)
1060 pm_wakeup_event(dev: &priv->pdev->dev, msec: 0);
1061 if (ecsr & ECSR_ICD)
1062 ndev->stats.tx_carrier_errors++;
1063 if (ecsr & ECSR_LCHNG) {
1064 /* Link changed */
1065 if (priv->no_avb_link)
1066 return;
1067 psr = ravb_read(ndev, reg: PSR);
1068 if (priv->avb_link_active_low)
1069 psr ^= PSR_LMON;
1070 if (!(psr & PSR_LMON)) {
1071 /* DIsable RX and TX */
1072 ravb_rcv_snd_disable(ndev);
1073 } else {
1074 /* Enable RX and TX */
1075 ravb_rcv_snd_enable(ndev);
1076 }
1077 }
1078}
1079
1080static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
1081{
1082 struct net_device *ndev = dev_id;
1083 struct ravb_private *priv = netdev_priv(dev: ndev);
1084 struct device *dev = &priv->pdev->dev;
1085 irqreturn_t result = IRQ_HANDLED;
1086
1087 pm_runtime_get_noresume(dev);
1088
1089 if (unlikely(!pm_runtime_active(dev))) {
1090 result = IRQ_NONE;
1091 goto out_rpm_put;
1092 }
1093
1094 spin_lock(lock: &priv->lock);
1095 ravb_emac_interrupt_unlocked(ndev);
1096 spin_unlock(lock: &priv->lock);
1097
1098out_rpm_put:
1099 pm_runtime_put_noidle(dev);
1100 return result;
1101}
1102
1103/* Error interrupt handler */
1104static void ravb_error_interrupt(struct net_device *ndev)
1105{
1106 struct ravb_private *priv = netdev_priv(dev: ndev);
1107 u32 eis, ris2;
1108
1109 eis = ravb_read(ndev, reg: EIS);
1110 ravb_write(ndev, data: ~(EIS_QFS | EIS_RESERVED), reg: EIS);
1111 if (eis & EIS_QFS) {
1112 ris2 = ravb_read(ndev, reg: RIS2);
1113 ravb_write(ndev, data: ~(RIS2_QFF0 | RIS2_QFF1 | RIS2_RFFF | RIS2_RESERVED),
1114 reg: RIS2);
1115
1116 /* Receive Descriptor Empty int */
1117 if (ris2 & RIS2_QFF0)
1118 priv->stats[RAVB_BE].rx_over_errors++;
1119
1120 /* Receive Descriptor Empty int */
1121 if (ris2 & RIS2_QFF1)
1122 priv->stats[RAVB_NC].rx_over_errors++;
1123
1124 /* Receive FIFO Overflow int */
1125 if (ris2 & RIS2_RFFF)
1126 priv->rx_fifo_errors++;
1127 }
1128}
1129
1130static bool ravb_queue_interrupt(struct net_device *ndev, int q)
1131{
1132 struct ravb_private *priv = netdev_priv(dev: ndev);
1133 const struct ravb_hw_info *info = priv->info;
1134 u32 ris0 = ravb_read(ndev, reg: RIS0);
1135 u32 ric0 = ravb_read(ndev, reg: RIC0);
1136 u32 tis = ravb_read(ndev, reg: TIS);
1137 u32 tic = ravb_read(ndev, reg: TIC);
1138
1139 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
1140 if (napi_schedule_prep(n: &priv->napi[q])) {
1141 /* Mask RX and TX interrupts */
1142 if (!info->irq_en_dis) {
1143 ravb_write(ndev, data: ric0 & ~BIT(q), reg: RIC0);
1144 ravb_write(ndev, data: tic & ~BIT(q), reg: TIC);
1145 } else {
1146 ravb_write(ndev, BIT(q), reg: RID0);
1147 ravb_write(ndev, BIT(q), reg: TID);
1148 }
1149 __napi_schedule(n: &priv->napi[q]);
1150 } else {
1151 netdev_warn(dev: ndev,
1152 format: "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
1153 ris0, ric0);
1154 netdev_warn(dev: ndev,
1155 format: " tx status 0x%08x, tx mask 0x%08x.\n",
1156 tis, tic);
1157 }
1158 return true;
1159 }
1160 return false;
1161}
1162
1163static bool ravb_timestamp_interrupt(struct net_device *ndev)
1164{
1165 u32 tis = ravb_read(ndev, reg: TIS);
1166
1167 if (tis & TIS_TFUF) {
1168 ravb_write(ndev, data: ~(TIS_TFUF | TIS_RESERVED), reg: TIS);
1169 ravb_get_tx_tstamp(ndev);
1170 return true;
1171 }
1172 return false;
1173}
1174
1175static irqreturn_t ravb_interrupt(int irq, void *dev_id)
1176{
1177 struct net_device *ndev = dev_id;
1178 struct ravb_private *priv = netdev_priv(dev: ndev);
1179 const struct ravb_hw_info *info = priv->info;
1180 struct device *dev = &priv->pdev->dev;
1181 irqreturn_t result = IRQ_NONE;
1182 u32 iss;
1183
1184 pm_runtime_get_noresume(dev);
1185
1186 if (unlikely(!pm_runtime_active(dev)))
1187 goto out_rpm_put;
1188
1189 spin_lock(lock: &priv->lock);
1190 /* Get interrupt status */
1191 iss = ravb_read(ndev, reg: ISS);
1192
1193 /* Received and transmitted interrupts */
1194 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
1195 int q;
1196
1197 /* Timestamp updated */
1198 if (ravb_timestamp_interrupt(ndev))
1199 result = IRQ_HANDLED;
1200
1201 /* Network control and best effort queue RX/TX */
1202 if (info->nc_queues) {
1203 for (q = RAVB_NC; q >= RAVB_BE; q--) {
1204 if (ravb_queue_interrupt(ndev, q))
1205 result = IRQ_HANDLED;
1206 }
1207 } else {
1208 if (ravb_queue_interrupt(ndev, q: RAVB_BE))
1209 result = IRQ_HANDLED;
1210 }
1211 }
1212
1213 /* E-MAC status summary */
1214 if (iss & ISS_MS) {
1215 ravb_emac_interrupt_unlocked(ndev);
1216 result = IRQ_HANDLED;
1217 }
1218
1219 /* Error status summary */
1220 if (iss & ISS_ES) {
1221 ravb_error_interrupt(ndev);
1222 result = IRQ_HANDLED;
1223 }
1224
1225 /* gPTP interrupt status summary */
1226 if (iss & ISS_CGIS) {
1227 ravb_ptp_interrupt(ndev);
1228 result = IRQ_HANDLED;
1229 }
1230
1231 spin_unlock(lock: &priv->lock);
1232
1233out_rpm_put:
1234 pm_runtime_put_noidle(dev);
1235 return result;
1236}
1237
1238/* Timestamp/Error/gPTP interrupt handler */
1239static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
1240{
1241 struct net_device *ndev = dev_id;
1242 struct ravb_private *priv = netdev_priv(dev: ndev);
1243 struct device *dev = &priv->pdev->dev;
1244 irqreturn_t result = IRQ_NONE;
1245 u32 iss;
1246
1247 pm_runtime_get_noresume(dev);
1248
1249 if (unlikely(!pm_runtime_active(dev)))
1250 goto out_rpm_put;
1251
1252 spin_lock(lock: &priv->lock);
1253 /* Get interrupt status */
1254 iss = ravb_read(ndev, reg: ISS);
1255
1256 /* Timestamp updated */
1257 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
1258 result = IRQ_HANDLED;
1259
1260 /* Error status summary */
1261 if (iss & ISS_ES) {
1262 ravb_error_interrupt(ndev);
1263 result = IRQ_HANDLED;
1264 }
1265
1266 /* gPTP interrupt status summary */
1267 if (iss & ISS_CGIS) {
1268 ravb_ptp_interrupt(ndev);
1269 result = IRQ_HANDLED;
1270 }
1271
1272 spin_unlock(lock: &priv->lock);
1273
1274out_rpm_put:
1275 pm_runtime_put_noidle(dev);
1276 return result;
1277}
1278
1279static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
1280{
1281 struct net_device *ndev = dev_id;
1282 struct ravb_private *priv = netdev_priv(dev: ndev);
1283 struct device *dev = &priv->pdev->dev;
1284 irqreturn_t result = IRQ_NONE;
1285
1286 pm_runtime_get_noresume(dev);
1287
1288 if (unlikely(!pm_runtime_active(dev)))
1289 goto out_rpm_put;
1290
1291 spin_lock(lock: &priv->lock);
1292
1293 /* Network control/Best effort queue RX/TX */
1294 if (ravb_queue_interrupt(ndev, q))
1295 result = IRQ_HANDLED;
1296
1297 spin_unlock(lock: &priv->lock);
1298
1299out_rpm_put:
1300 pm_runtime_put_noidle(dev);
1301 return result;
1302}
1303
1304static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
1305{
1306 return ravb_dma_interrupt(irq, dev_id, q: RAVB_BE);
1307}
1308
1309static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
1310{
1311 return ravb_dma_interrupt(irq, dev_id, q: RAVB_NC);
1312}
1313
1314static int ravb_poll(struct napi_struct *napi, int budget)
1315{
1316 struct net_device *ndev = napi->dev;
1317 struct ravb_private *priv = netdev_priv(dev: ndev);
1318 const struct ravb_hw_info *info = priv->info;
1319 unsigned long flags;
1320 int q = napi - priv->napi;
1321 int mask = BIT(q);
1322 int quota = budget;
1323 bool unmask;
1324
1325 /* Processing RX Descriptor Ring */
1326 /* Clear RX interrupt */
1327 ravb_write(ndev, data: ~(mask | RIS0_RESERVED), reg: RIS0);
1328 unmask = !ravb_rx(ndev, quota: &quota, q);
1329
1330 /* Processing TX Descriptor Ring */
1331 spin_lock_irqsave(&priv->lock, flags);
1332 /* Clear TX interrupt */
1333 ravb_write(ndev, data: ~(mask | TIS_RESERVED), reg: TIS);
1334 ravb_tx_free(ndev, q, free_txed_only: true);
1335 netif_wake_subqueue(dev: ndev, queue_index: q);
1336 spin_unlock_irqrestore(lock: &priv->lock, flags);
1337
1338 /* Receive error message handling */
1339 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
1340 if (info->nc_queues)
1341 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
1342 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
1343 ndev->stats.rx_over_errors = priv->rx_over_errors;
1344 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
1345 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
1346
1347 if (!unmask)
1348 goto out;
1349
1350 napi_complete(n: napi);
1351
1352 /* Re-enable RX/TX interrupts */
1353 spin_lock_irqsave(&priv->lock, flags);
1354 if (!info->irq_en_dis) {
1355 ravb_modify(ndev, reg: RIC0, clear: mask, set: mask);
1356 ravb_modify(ndev, reg: TIC, clear: mask, set: mask);
1357 } else {
1358 ravb_write(ndev, data: mask, reg: RIE0);
1359 ravb_write(ndev, data: mask, reg: TIE);
1360 }
1361 spin_unlock_irqrestore(lock: &priv->lock, flags);
1362
1363out:
1364 return budget - quota;
1365}
1366
1367static void ravb_set_duplex_gbeth(struct net_device *ndev)
1368{
1369 struct ravb_private *priv = netdev_priv(dev: ndev);
1370
1371 ravb_modify(ndev, reg: ECMR, clear: ECMR_DM, set: priv->duplex > 0 ? ECMR_DM : 0);
1372}
1373
1374/* PHY state control function */
1375static void ravb_adjust_link(struct net_device *ndev)
1376{
1377 struct ravb_private *priv = netdev_priv(dev: ndev);
1378 const struct ravb_hw_info *info = priv->info;
1379 struct phy_device *phydev = ndev->phydev;
1380 bool new_state = false;
1381 unsigned long flags;
1382
1383 spin_lock_irqsave(&priv->lock, flags);
1384
1385 /* Disable TX and RX right over here, if E-MAC change is ignored */
1386 if (priv->no_avb_link)
1387 ravb_rcv_snd_disable(ndev);
1388
1389 if (phydev->link) {
1390 if (info->half_duplex && phydev->duplex != priv->duplex) {
1391 new_state = true;
1392 priv->duplex = phydev->duplex;
1393 ravb_set_duplex_gbeth(ndev);
1394 }
1395
1396 if (phydev->speed != priv->speed) {
1397 new_state = true;
1398 priv->speed = phydev->speed;
1399 info->set_rate(ndev);
1400 }
1401 if (!priv->link) {
1402 ravb_modify(ndev, reg: ECMR, clear: ECMR_TXF, set: 0);
1403 new_state = true;
1404 priv->link = phydev->link;
1405 }
1406 } else if (priv->link) {
1407 new_state = true;
1408 priv->link = 0;
1409 priv->speed = 0;
1410 if (info->half_duplex)
1411 priv->duplex = -1;
1412 }
1413
1414 /* Enable TX and RX right over here, if E-MAC change is ignored */
1415 if (priv->no_avb_link && phydev->link)
1416 ravb_rcv_snd_enable(ndev);
1417
1418 spin_unlock_irqrestore(lock: &priv->lock, flags);
1419
1420 if (new_state && netif_msg_link(priv))
1421 phy_print_status(phydev);
1422}
1423
1424/* PHY init function */
1425static int ravb_phy_init(struct net_device *ndev)
1426{
1427 struct device_node *np = ndev->dev.parent->of_node;
1428 struct ravb_private *priv = netdev_priv(dev: ndev);
1429 const struct ravb_hw_info *info = priv->info;
1430 struct phy_device *phydev;
1431 struct device_node *pn;
1432 phy_interface_t iface;
1433 int err;
1434
1435 priv->link = 0;
1436 priv->speed = 0;
1437 priv->duplex = -1;
1438
1439 /* Try connecting to PHY */
1440 pn = of_parse_phandle(np, phandle_name: "phy-handle", index: 0);
1441 if (!pn) {
1442 /* In the case of a fixed PHY, the DT node associated
1443 * to the PHY is the Ethernet MAC DT node.
1444 */
1445 if (of_phy_is_fixed_link(np)) {
1446 err = of_phy_register_fixed_link(np);
1447 if (err)
1448 return err;
1449 }
1450 pn = of_node_get(node: np);
1451 }
1452
1453 iface = priv->rgmii_override ? PHY_INTERFACE_MODE_RGMII
1454 : priv->phy_interface;
1455 phydev = of_phy_connect(dev: ndev, phy_np: pn, hndlr: ravb_adjust_link, flags: 0, iface);
1456 of_node_put(node: pn);
1457 if (!phydev) {
1458 netdev_err(dev: ndev, format: "failed to connect PHY\n");
1459 err = -ENOENT;
1460 goto err_deregister_fixed_link;
1461 }
1462
1463 if (!info->half_duplex) {
1464 /* 10BASE, Pause and Asym Pause is not supported */
1465 phy_remove_link_mode(phydev, link_mode: ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1466 phy_remove_link_mode(phydev, link_mode: ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1467 phy_remove_link_mode(phydev, link_mode: ETHTOOL_LINK_MODE_Pause_BIT);
1468 phy_remove_link_mode(phydev, link_mode: ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1469
1470 /* Half Duplex is not supported */
1471 phy_remove_link_mode(phydev, link_mode: ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1472 phy_remove_link_mode(phydev, link_mode: ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1473 }
1474
1475 phy_attached_info(phydev);
1476
1477 return 0;
1478
1479err_deregister_fixed_link:
1480 if (of_phy_is_fixed_link(np))
1481 of_phy_deregister_fixed_link(np);
1482
1483 return err;
1484}
1485
1486/* PHY control start function */
1487static int ravb_phy_start(struct net_device *ndev)
1488{
1489 int error;
1490
1491 error = ravb_phy_init(ndev);
1492 if (error)
1493 return error;
1494
1495 phy_start(phydev: ndev->phydev);
1496
1497 return 0;
1498}
1499
1500static u32 ravb_get_msglevel(struct net_device *ndev)
1501{
1502 struct ravb_private *priv = netdev_priv(dev: ndev);
1503
1504 return priv->msg_enable;
1505}
1506
1507static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1508{
1509 struct ravb_private *priv = netdev_priv(dev: ndev);
1510
1511 priv->msg_enable = value;
1512}
1513
1514static const char ravb_gstrings_stats_gbeth[][ETH_GSTRING_LEN] = {
1515 "rx_queue_0_current",
1516 "tx_queue_0_current",
1517 "rx_queue_0_dirty",
1518 "tx_queue_0_dirty",
1519 "rx_queue_0_packets",
1520 "tx_queue_0_packets",
1521 "rx_queue_0_bytes",
1522 "tx_queue_0_bytes",
1523 "rx_queue_0_mcast_packets",
1524 "rx_queue_0_errors",
1525 "rx_queue_0_crc_errors",
1526 "rx_queue_0_frame_errors",
1527 "rx_queue_0_length_errors",
1528 "rx_queue_0_csum_offload_errors",
1529 "rx_queue_0_over_errors",
1530};
1531
1532static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1533 "rx_queue_0_current",
1534 "tx_queue_0_current",
1535 "rx_queue_0_dirty",
1536 "tx_queue_0_dirty",
1537 "rx_queue_0_packets",
1538 "tx_queue_0_packets",
1539 "rx_queue_0_bytes",
1540 "tx_queue_0_bytes",
1541 "rx_queue_0_mcast_packets",
1542 "rx_queue_0_errors",
1543 "rx_queue_0_crc_errors",
1544 "rx_queue_0_frame_errors",
1545 "rx_queue_0_length_errors",
1546 "rx_queue_0_missed_errors",
1547 "rx_queue_0_over_errors",
1548
1549 "rx_queue_1_current",
1550 "tx_queue_1_current",
1551 "rx_queue_1_dirty",
1552 "tx_queue_1_dirty",
1553 "rx_queue_1_packets",
1554 "tx_queue_1_packets",
1555 "rx_queue_1_bytes",
1556 "tx_queue_1_bytes",
1557 "rx_queue_1_mcast_packets",
1558 "rx_queue_1_errors",
1559 "rx_queue_1_crc_errors",
1560 "rx_queue_1_frame_errors",
1561 "rx_queue_1_length_errors",
1562 "rx_queue_1_missed_errors",
1563 "rx_queue_1_over_errors",
1564};
1565
1566static int ravb_get_sset_count(struct net_device *netdev, int sset)
1567{
1568 struct ravb_private *priv = netdev_priv(dev: netdev);
1569 const struct ravb_hw_info *info = priv->info;
1570
1571 switch (sset) {
1572 case ETH_SS_STATS:
1573 return info->stats_len;
1574 default:
1575 return -EOPNOTSUPP;
1576 }
1577}
1578
1579static void ravb_get_ethtool_stats(struct net_device *ndev,
1580 struct ethtool_stats *estats, u64 *data)
1581{
1582 struct ravb_private *priv = netdev_priv(dev: ndev);
1583 const struct ravb_hw_info *info = priv->info;
1584 int num_rx_q;
1585 int i = 0;
1586 int q;
1587
1588 num_rx_q = info->nc_queues ? NUM_RX_QUEUE : 1;
1589 /* Device-specific stats */
1590 for (q = RAVB_BE; q < num_rx_q; q++) {
1591 struct net_device_stats *stats = &priv->stats[q];
1592
1593 data[i++] = priv->cur_rx[q];
1594 data[i++] = priv->cur_tx[q];
1595 data[i++] = priv->dirty_rx[q];
1596 data[i++] = priv->dirty_tx[q];
1597 data[i++] = stats->rx_packets;
1598 data[i++] = stats->tx_packets;
1599 data[i++] = stats->rx_bytes;
1600 data[i++] = stats->tx_bytes;
1601 data[i++] = stats->multicast;
1602 data[i++] = stats->rx_errors;
1603 data[i++] = stats->rx_crc_errors;
1604 data[i++] = stats->rx_frame_errors;
1605 data[i++] = stats->rx_length_errors;
1606 data[i++] = stats->rx_missed_errors;
1607 data[i++] = stats->rx_over_errors;
1608 }
1609}
1610
1611static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1612{
1613 struct ravb_private *priv = netdev_priv(dev: ndev);
1614 const struct ravb_hw_info *info = priv->info;
1615
1616 switch (stringset) {
1617 case ETH_SS_STATS:
1618 memcpy(data, info->gstrings_stats, info->gstrings_size);
1619 break;
1620 }
1621}
1622
1623static void ravb_get_ringparam(struct net_device *ndev,
1624 struct ethtool_ringparam *ring,
1625 struct kernel_ethtool_ringparam *kernel_ring,
1626 struct netlink_ext_ack *extack)
1627{
1628 struct ravb_private *priv = netdev_priv(dev: ndev);
1629
1630 ring->rx_max_pending = BE_RX_RING_MAX;
1631 ring->tx_max_pending = BE_TX_RING_MAX;
1632 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1633 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1634}
1635
1636static int ravb_set_ringparam(struct net_device *ndev,
1637 struct ethtool_ringparam *ring,
1638 struct kernel_ethtool_ringparam *kernel_ring,
1639 struct netlink_ext_ack *extack)
1640{
1641 struct ravb_private *priv = netdev_priv(dev: ndev);
1642 const struct ravb_hw_info *info = priv->info;
1643 int error;
1644
1645 if (ring->tx_pending > BE_TX_RING_MAX ||
1646 ring->rx_pending > BE_RX_RING_MAX ||
1647 ring->tx_pending < BE_TX_RING_MIN ||
1648 ring->rx_pending < BE_RX_RING_MIN)
1649 return -EINVAL;
1650 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1651 return -EINVAL;
1652
1653 if (netif_running(dev: ndev)) {
1654 netif_device_detach(dev: ndev);
1655 /* Stop PTP Clock driver */
1656 if (info->gptp)
1657 ravb_ptp_stop(ndev);
1658 /* Wait for DMA stopping */
1659 error = ravb_stop_dma(ndev);
1660 if (error) {
1661 netdev_err(dev: ndev,
1662 format: "cannot set ringparam! Any AVB processes are still running?\n");
1663 return error;
1664 }
1665 synchronize_irq(irq: ndev->irq);
1666
1667 /* Free all the skb's in the RX queue and the DMA buffers. */
1668 ravb_ring_free(ndev, q: RAVB_BE);
1669 if (info->nc_queues)
1670 ravb_ring_free(ndev, q: RAVB_NC);
1671 }
1672
1673 /* Set new parameters */
1674 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1675 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1676
1677 if (netif_running(dev: ndev)) {
1678 error = ravb_dmac_init(ndev);
1679 if (error) {
1680 netdev_err(dev: ndev,
1681 format: "%s: ravb_dmac_init() failed, error %d\n",
1682 __func__, error);
1683 return error;
1684 }
1685
1686 ravb_emac_init(ndev);
1687
1688 /* Initialise PTP Clock driver */
1689 if (info->gptp)
1690 ravb_ptp_init(ndev, pdev: priv->pdev);
1691
1692 netif_device_attach(dev: ndev);
1693 }
1694
1695 return 0;
1696}
1697
1698static int ravb_get_ts_info(struct net_device *ndev,
1699 struct ethtool_ts_info *info)
1700{
1701 struct ravb_private *priv = netdev_priv(dev: ndev);
1702 const struct ravb_hw_info *hw_info = priv->info;
1703
1704 info->so_timestamping =
1705 SOF_TIMESTAMPING_TX_SOFTWARE |
1706 SOF_TIMESTAMPING_RX_SOFTWARE |
1707 SOF_TIMESTAMPING_SOFTWARE |
1708 SOF_TIMESTAMPING_TX_HARDWARE |
1709 SOF_TIMESTAMPING_RX_HARDWARE |
1710 SOF_TIMESTAMPING_RAW_HARDWARE;
1711 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1712 info->rx_filters =
1713 (1 << HWTSTAMP_FILTER_NONE) |
1714 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1715 (1 << HWTSTAMP_FILTER_ALL);
1716 if (hw_info->gptp || hw_info->ccc_gac)
1717 info->phc_index = ptp_clock_index(ptp: priv->ptp.clock);
1718
1719 return 0;
1720}
1721
1722static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1723{
1724 struct ravb_private *priv = netdev_priv(dev: ndev);
1725
1726 wol->supported = WAKE_MAGIC;
1727 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1728}
1729
1730static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1731{
1732 struct ravb_private *priv = netdev_priv(dev: ndev);
1733 const struct ravb_hw_info *info = priv->info;
1734
1735 if (!info->magic_pkt || (wol->wolopts & ~WAKE_MAGIC))
1736 return -EOPNOTSUPP;
1737
1738 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1739
1740 device_set_wakeup_enable(dev: &priv->pdev->dev, enable: priv->wol_enabled);
1741
1742 return 0;
1743}
1744
1745static const struct ethtool_ops ravb_ethtool_ops = {
1746 .nway_reset = phy_ethtool_nway_reset,
1747 .get_msglevel = ravb_get_msglevel,
1748 .set_msglevel = ravb_set_msglevel,
1749 .get_link = ethtool_op_get_link,
1750 .get_strings = ravb_get_strings,
1751 .get_ethtool_stats = ravb_get_ethtool_stats,
1752 .get_sset_count = ravb_get_sset_count,
1753 .get_ringparam = ravb_get_ringparam,
1754 .set_ringparam = ravb_set_ringparam,
1755 .get_ts_info = ravb_get_ts_info,
1756 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1757 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1758 .get_wol = ravb_get_wol,
1759 .set_wol = ravb_set_wol,
1760};
1761
1762static int ravb_set_config_mode(struct net_device *ndev)
1763{
1764 struct ravb_private *priv = netdev_priv(dev: ndev);
1765 const struct ravb_hw_info *info = priv->info;
1766 int error;
1767
1768 if (info->gptp) {
1769 error = ravb_set_opmode(ndev, opmode: CCC_OPC_CONFIG);
1770 if (error)
1771 return error;
1772 /* Set CSEL value */
1773 ravb_modify(ndev, reg: CCC, clear: CCC_CSEL, set: CCC_CSEL_HPB);
1774 } else if (info->ccc_gac) {
1775 error = ravb_set_opmode(ndev, opmode: CCC_OPC_CONFIG | CCC_GAC | CCC_CSEL_HPB);
1776 } else {
1777 error = ravb_set_opmode(ndev, opmode: CCC_OPC_CONFIG);
1778 }
1779
1780 return error;
1781}
1782
1783static void ravb_set_gti(struct net_device *ndev)
1784{
1785 struct ravb_private *priv = netdev_priv(dev: ndev);
1786 const struct ravb_hw_info *info = priv->info;
1787
1788 if (!(info->gptp || info->ccc_gac))
1789 return;
1790
1791 ravb_write(ndev, data: priv->gti_tiv, reg: GTI);
1792
1793 /* Request GTI loading */
1794 ravb_modify(ndev, reg: GCCR, clear: GCCR_LTI, set: GCCR_LTI);
1795}
1796
1797static int ravb_compute_gti(struct net_device *ndev)
1798{
1799 struct ravb_private *priv = netdev_priv(dev: ndev);
1800 const struct ravb_hw_info *info = priv->info;
1801 struct device *dev = ndev->dev.parent;
1802 unsigned long rate;
1803 u64 inc;
1804
1805 if (!(info->gptp || info->ccc_gac))
1806 return 0;
1807
1808 if (info->gptp_ref_clk)
1809 rate = clk_get_rate(clk: priv->gptp_clk);
1810 else
1811 rate = clk_get_rate(clk: priv->clk);
1812 if (!rate)
1813 return -EINVAL;
1814
1815 inc = div64_ul(1000000000ULL << 20, rate);
1816
1817 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1818 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1819 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1820 return -EINVAL;
1821 }
1822 priv->gti_tiv = inc;
1823
1824 return 0;
1825}
1826
1827/* Set tx and rx clock internal delay modes */
1828static void ravb_parse_delay_mode(struct device_node *np, struct net_device *ndev)
1829{
1830 struct ravb_private *priv = netdev_priv(dev: ndev);
1831 bool explicit_delay = false;
1832 u32 delay;
1833
1834 if (!priv->info->internal_delay)
1835 return;
1836
1837 if (!of_property_read_u32(np, propname: "rx-internal-delay-ps", out_value: &delay)) {
1838 /* Valid values are 0 and 1800, according to DT bindings */
1839 priv->rxcidm = !!delay;
1840 explicit_delay = true;
1841 }
1842 if (!of_property_read_u32(np, propname: "tx-internal-delay-ps", out_value: &delay)) {
1843 /* Valid values are 0 and 2000, according to DT bindings */
1844 priv->txcidm = !!delay;
1845 explicit_delay = true;
1846 }
1847
1848 if (explicit_delay)
1849 return;
1850
1851 /* Fall back to legacy rgmii-*id behavior */
1852 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1853 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) {
1854 priv->rxcidm = 1;
1855 priv->rgmii_override = 1;
1856 }
1857
1858 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1859 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1860 priv->txcidm = 1;
1861 priv->rgmii_override = 1;
1862 }
1863}
1864
1865static void ravb_set_delay_mode(struct net_device *ndev)
1866{
1867 struct ravb_private *priv = netdev_priv(dev: ndev);
1868 u32 set = 0;
1869
1870 if (!priv->info->internal_delay)
1871 return;
1872
1873 if (priv->rxcidm)
1874 set |= APSR_RDM;
1875 if (priv->txcidm)
1876 set |= APSR_TDM;
1877 ravb_modify(ndev, reg: APSR, clear: APSR_RDM | APSR_TDM, set);
1878}
1879
1880/* Network device open function for Ethernet AVB */
1881static int ravb_open(struct net_device *ndev)
1882{
1883 struct ravb_private *priv = netdev_priv(dev: ndev);
1884 const struct ravb_hw_info *info = priv->info;
1885 struct device *dev = &priv->pdev->dev;
1886 int error;
1887
1888 napi_enable(n: &priv->napi[RAVB_BE]);
1889 if (info->nc_queues)
1890 napi_enable(n: &priv->napi[RAVB_NC]);
1891
1892 error = pm_runtime_resume_and_get(dev);
1893 if (error < 0)
1894 goto out_napi_off;
1895
1896 /* Set AVB config mode */
1897 error = ravb_set_config_mode(ndev);
1898 if (error)
1899 goto out_rpm_put;
1900
1901 ravb_set_delay_mode(ndev);
1902 ravb_write(ndev, data: priv->desc_bat_dma, reg: DBAT);
1903
1904 /* Device init */
1905 error = ravb_dmac_init(ndev);
1906 if (error)
1907 goto out_set_reset;
1908
1909 ravb_emac_init(ndev);
1910
1911 ravb_set_gti(ndev);
1912
1913 /* Initialise PTP Clock driver */
1914 if (info->gptp || info->ccc_gac)
1915 ravb_ptp_init(ndev, pdev: priv->pdev);
1916
1917 /* PHY control start */
1918 error = ravb_phy_start(ndev);
1919 if (error)
1920 goto out_ptp_stop;
1921
1922 netif_tx_start_all_queues(dev: ndev);
1923
1924 return 0;
1925
1926out_ptp_stop:
1927 /* Stop PTP Clock driver */
1928 if (info->gptp || info->ccc_gac)
1929 ravb_ptp_stop(ndev);
1930 ravb_stop_dma(ndev);
1931out_set_reset:
1932 ravb_set_opmode(ndev, opmode: CCC_OPC_RESET);
1933out_rpm_put:
1934 pm_runtime_mark_last_busy(dev);
1935 pm_runtime_put_autosuspend(dev);
1936out_napi_off:
1937 if (info->nc_queues)
1938 napi_disable(n: &priv->napi[RAVB_NC]);
1939 napi_disable(n: &priv->napi[RAVB_BE]);
1940 return error;
1941}
1942
1943/* Timeout function for Ethernet AVB */
1944static void ravb_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1945{
1946 struct ravb_private *priv = netdev_priv(dev: ndev);
1947
1948 netif_err(priv, tx_err, ndev,
1949 "transmit timed out, status %08x, resetting...\n",
1950 ravb_read(ndev, ISS));
1951
1952 /* tx_errors count up */
1953 ndev->stats.tx_errors++;
1954
1955 schedule_work(work: &priv->work);
1956}
1957
1958static void ravb_tx_timeout_work(struct work_struct *work)
1959{
1960 struct ravb_private *priv = container_of(work, struct ravb_private,
1961 work);
1962 const struct ravb_hw_info *info = priv->info;
1963 struct net_device *ndev = priv->ndev;
1964 int error;
1965
1966 if (!rtnl_trylock()) {
1967 usleep_range(min: 1000, max: 2000);
1968 schedule_work(work: &priv->work);
1969 return;
1970 }
1971
1972 netif_tx_stop_all_queues(dev: ndev);
1973
1974 /* Stop PTP Clock driver */
1975 if (info->gptp)
1976 ravb_ptp_stop(ndev);
1977
1978 /* Wait for DMA stopping */
1979 if (ravb_stop_dma(ndev)) {
1980 /* If ravb_stop_dma() fails, the hardware is still operating
1981 * for TX and/or RX. So, this should not call the following
1982 * functions because ravb_dmac_init() is possible to fail too.
1983 * Also, this should not retry ravb_stop_dma() again and again
1984 * here because it's possible to wait forever. So, this just
1985 * re-enables the TX and RX and skip the following
1986 * re-initialization procedure.
1987 */
1988 ravb_rcv_snd_enable(ndev);
1989 goto out;
1990 }
1991
1992 ravb_ring_free(ndev, q: RAVB_BE);
1993 if (info->nc_queues)
1994 ravb_ring_free(ndev, q: RAVB_NC);
1995
1996 /* Device init */
1997 error = ravb_dmac_init(ndev);
1998 if (error) {
1999 /* If ravb_dmac_init() fails, descriptors are freed. So, this
2000 * should return here to avoid re-enabling the TX and RX in
2001 * ravb_emac_init().
2002 */
2003 netdev_err(dev: ndev, format: "%s: ravb_dmac_init() failed, error %d\n",
2004 __func__, error);
2005 goto out_unlock;
2006 }
2007 ravb_emac_init(ndev);
2008
2009out:
2010 /* Initialise PTP Clock driver */
2011 if (info->gptp)
2012 ravb_ptp_init(ndev, pdev: priv->pdev);
2013
2014 netif_tx_start_all_queues(dev: ndev);
2015
2016out_unlock:
2017 rtnl_unlock();
2018}
2019
2020static bool ravb_can_tx_csum_gbeth(struct sk_buff *skb)
2021{
2022 struct iphdr *ip = ip_hdr(skb);
2023
2024 /* TODO: Need to add support for VLAN tag 802.1Q */
2025 if (skb_vlan_tag_present(skb))
2026 return false;
2027
2028 /* TODO: Need to add hardware checksum for IPv6 */
2029 if (skb->protocol != htons(ETH_P_IP))
2030 return false;
2031
2032 switch (ip->protocol) {
2033 case IPPROTO_TCP:
2034 break;
2035 case IPPROTO_UDP:
2036 /* If the checksum value in the UDP header field is 0, TOE does
2037 * not calculate checksum for UDP part of this frame as it is
2038 * optional function as per standards.
2039 */
2040 if (udp_hdr(skb)->check == 0)
2041 return false;
2042 break;
2043 default:
2044 return false;
2045 }
2046
2047 return true;
2048}
2049
2050/* Packet transmit function for Ethernet AVB */
2051static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2052{
2053 struct ravb_private *priv = netdev_priv(dev: ndev);
2054 const struct ravb_hw_info *info = priv->info;
2055 unsigned int num_tx_desc = priv->num_tx_desc;
2056 u16 q = skb_get_queue_mapping(skb);
2057 struct ravb_tstamp_skb *ts_skb;
2058 struct ravb_tx_desc *desc;
2059 unsigned long flags;
2060 dma_addr_t dma_addr;
2061 void *buffer;
2062 u32 entry;
2063 u32 len;
2064
2065 if (skb->ip_summed == CHECKSUM_PARTIAL && !ravb_can_tx_csum_gbeth(skb))
2066 skb_checksum_help(skb);
2067
2068 spin_lock_irqsave(&priv->lock, flags);
2069 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
2070 num_tx_desc) {
2071 netif_err(priv, tx_queued, ndev,
2072 "still transmitting with the full ring!\n");
2073 netif_stop_subqueue(dev: ndev, queue_index: q);
2074 spin_unlock_irqrestore(lock: &priv->lock, flags);
2075 return NETDEV_TX_BUSY;
2076 }
2077
2078 if (skb_put_padto(skb, ETH_ZLEN))
2079 goto exit;
2080
2081 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
2082 priv->tx_skb[q][entry / num_tx_desc] = skb;
2083
2084 if (num_tx_desc > 1) {
2085 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
2086 entry / num_tx_desc * DPTR_ALIGN;
2087 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
2088
2089 /* Zero length DMA descriptors are problematic as they seem
2090 * to terminate DMA transfers. Avoid them by simply using a
2091 * length of DPTR_ALIGN (4) when skb data is aligned to
2092 * DPTR_ALIGN.
2093 *
2094 * As skb is guaranteed to have at least ETH_ZLEN (60)
2095 * bytes of data by the call to skb_put_padto() above this
2096 * is safe with respect to both the length of the first DMA
2097 * descriptor (len) overflowing the available data and the
2098 * length of the second DMA descriptor (skb->len - len)
2099 * being negative.
2100 */
2101 if (len == 0)
2102 len = DPTR_ALIGN;
2103
2104 memcpy(buffer, skb->data, len);
2105 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2106 DMA_TO_DEVICE);
2107 if (dma_mapping_error(dev: ndev->dev.parent, dma_addr))
2108 goto drop;
2109
2110 desc = &priv->tx_ring[q][entry];
2111 desc->ds_tagl = cpu_to_le16(len);
2112 desc->dptr = cpu_to_le32(dma_addr);
2113
2114 buffer = skb->data + len;
2115 len = skb->len - len;
2116 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
2117 DMA_TO_DEVICE);
2118 if (dma_mapping_error(dev: ndev->dev.parent, dma_addr))
2119 goto unmap;
2120
2121 desc++;
2122 } else {
2123 desc = &priv->tx_ring[q][entry];
2124 len = skb->len;
2125 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
2126 DMA_TO_DEVICE);
2127 if (dma_mapping_error(dev: ndev->dev.parent, dma_addr))
2128 goto drop;
2129 }
2130 desc->ds_tagl = cpu_to_le16(len);
2131 desc->dptr = cpu_to_le32(dma_addr);
2132
2133 /* TX timestamp required */
2134 if (info->gptp || info->ccc_gac) {
2135 if (q == RAVB_NC) {
2136 ts_skb = kmalloc(size: sizeof(*ts_skb), GFP_ATOMIC);
2137 if (!ts_skb) {
2138 if (num_tx_desc > 1) {
2139 desc--;
2140 dma_unmap_single(ndev->dev.parent, dma_addr,
2141 len, DMA_TO_DEVICE);
2142 }
2143 goto unmap;
2144 }
2145 ts_skb->skb = skb_get(skb);
2146 ts_skb->tag = priv->ts_skb_tag++;
2147 priv->ts_skb_tag &= 0x3ff;
2148 list_add_tail(new: &ts_skb->list, head: &priv->ts_skb_list);
2149
2150 /* TAG and timestamp required flag */
2151 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2152 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
2153 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
2154 }
2155
2156 skb_tx_timestamp(skb);
2157 }
2158 /* Descriptor type must be set after all the above writes */
2159 dma_wmb();
2160 if (num_tx_desc > 1) {
2161 desc->die_dt = DT_FEND;
2162 desc--;
2163 desc->die_dt = DT_FSTART;
2164 } else {
2165 desc->die_dt = DT_FSINGLE;
2166 }
2167 ravb_modify(ndev, reg: TCCR, clear: TCCR_TSRQ0 << q, set: TCCR_TSRQ0 << q);
2168
2169 priv->cur_tx[q] += num_tx_desc;
2170 if (priv->cur_tx[q] - priv->dirty_tx[q] >
2171 (priv->num_tx_ring[q] - 1) * num_tx_desc &&
2172 !ravb_tx_free(ndev, q, free_txed_only: true))
2173 netif_stop_subqueue(dev: ndev, queue_index: q);
2174
2175exit:
2176 spin_unlock_irqrestore(lock: &priv->lock, flags);
2177 return NETDEV_TX_OK;
2178
2179unmap:
2180 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
2181 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
2182drop:
2183 dev_kfree_skb_any(skb);
2184 priv->tx_skb[q][entry / num_tx_desc] = NULL;
2185 goto exit;
2186}
2187
2188static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
2189 struct net_device *sb_dev)
2190{
2191 /* If skb needs TX timestamp, it is handled in network control queue */
2192 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
2193 RAVB_BE;
2194
2195}
2196
2197static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
2198{
2199 struct ravb_private *priv = netdev_priv(dev: ndev);
2200 const struct ravb_hw_info *info = priv->info;
2201 struct net_device_stats *nstats, *stats0, *stats1;
2202 struct device *dev = &priv->pdev->dev;
2203
2204 nstats = &ndev->stats;
2205
2206 pm_runtime_get_noresume(dev);
2207
2208 if (!pm_runtime_active(dev))
2209 goto out_rpm_put;
2210
2211 stats0 = &priv->stats[RAVB_BE];
2212
2213 if (info->tx_counters) {
2214 nstats->tx_dropped += ravb_read(ndev, reg: TROCR);
2215 ravb_write(ndev, data: 0, reg: TROCR); /* (write clear) */
2216 }
2217
2218 if (info->carrier_counters) {
2219 nstats->collisions += ravb_read(ndev, reg: CXR41);
2220 ravb_write(ndev, data: 0, reg: CXR41); /* (write clear) */
2221 nstats->tx_carrier_errors += ravb_read(ndev, reg: CXR42);
2222 ravb_write(ndev, data: 0, reg: CXR42); /* (write clear) */
2223 }
2224
2225 nstats->rx_packets = stats0->rx_packets;
2226 nstats->tx_packets = stats0->tx_packets;
2227 nstats->rx_bytes = stats0->rx_bytes;
2228 nstats->tx_bytes = stats0->tx_bytes;
2229 nstats->multicast = stats0->multicast;
2230 nstats->rx_errors = stats0->rx_errors;
2231 nstats->rx_crc_errors = stats0->rx_crc_errors;
2232 nstats->rx_frame_errors = stats0->rx_frame_errors;
2233 nstats->rx_length_errors = stats0->rx_length_errors;
2234 nstats->rx_missed_errors = stats0->rx_missed_errors;
2235 nstats->rx_over_errors = stats0->rx_over_errors;
2236 if (info->nc_queues) {
2237 stats1 = &priv->stats[RAVB_NC];
2238
2239 nstats->rx_packets += stats1->rx_packets;
2240 nstats->tx_packets += stats1->tx_packets;
2241 nstats->rx_bytes += stats1->rx_bytes;
2242 nstats->tx_bytes += stats1->tx_bytes;
2243 nstats->multicast += stats1->multicast;
2244 nstats->rx_errors += stats1->rx_errors;
2245 nstats->rx_crc_errors += stats1->rx_crc_errors;
2246 nstats->rx_frame_errors += stats1->rx_frame_errors;
2247 nstats->rx_length_errors += stats1->rx_length_errors;
2248 nstats->rx_missed_errors += stats1->rx_missed_errors;
2249 nstats->rx_over_errors += stats1->rx_over_errors;
2250 }
2251
2252out_rpm_put:
2253 pm_runtime_put_noidle(dev);
2254 return nstats;
2255}
2256
2257/* Update promiscuous bit */
2258static void ravb_set_rx_mode(struct net_device *ndev)
2259{
2260 struct ravb_private *priv = netdev_priv(dev: ndev);
2261 unsigned long flags;
2262
2263 spin_lock_irqsave(&priv->lock, flags);
2264 ravb_modify(ndev, reg: ECMR, clear: ECMR_PRM,
2265 set: ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
2266 spin_unlock_irqrestore(lock: &priv->lock, flags);
2267}
2268
2269/* Device close function for Ethernet AVB */
2270static int ravb_close(struct net_device *ndev)
2271{
2272 struct device_node *np = ndev->dev.parent->of_node;
2273 struct ravb_private *priv = netdev_priv(dev: ndev);
2274 const struct ravb_hw_info *info = priv->info;
2275 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
2276 struct device *dev = &priv->pdev->dev;
2277 int error;
2278
2279 netif_tx_stop_all_queues(dev: ndev);
2280
2281 /* Disable interrupts by clearing the interrupt masks. */
2282 ravb_write(ndev, data: 0, reg: RIC0);
2283 ravb_write(ndev, data: 0, reg: RIC2);
2284 ravb_write(ndev, data: 0, reg: TIC);
2285
2286 /* PHY disconnect */
2287 if (ndev->phydev) {
2288 phy_stop(phydev: ndev->phydev);
2289 phy_disconnect(phydev: ndev->phydev);
2290 if (of_phy_is_fixed_link(np))
2291 of_phy_deregister_fixed_link(np);
2292 }
2293
2294 /* Stop PTP Clock driver */
2295 if (info->gptp || info->ccc_gac)
2296 ravb_ptp_stop(ndev);
2297
2298 /* Set the config mode to stop the AVB-DMAC's processes */
2299 if (ravb_stop_dma(ndev) < 0)
2300 netdev_err(dev: ndev,
2301 format: "device will be stopped after h/w processes are done.\n");
2302
2303 /* Clear the timestamp list */
2304 if (info->gptp || info->ccc_gac) {
2305 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
2306 list_del(entry: &ts_skb->list);
2307 kfree_skb(skb: ts_skb->skb);
2308 kfree(objp: ts_skb);
2309 }
2310 }
2311
2312 cancel_work_sync(work: &priv->work);
2313
2314 if (info->nc_queues)
2315 napi_disable(n: &priv->napi[RAVB_NC]);
2316 napi_disable(n: &priv->napi[RAVB_BE]);
2317
2318 /* Free all the skb's in the RX queue and the DMA buffers. */
2319 ravb_ring_free(ndev, q: RAVB_BE);
2320 if (info->nc_queues)
2321 ravb_ring_free(ndev, q: RAVB_NC);
2322
2323 /* Update statistics. */
2324 ravb_get_stats(ndev);
2325
2326 /* Set reset mode. */
2327 error = ravb_set_opmode(ndev, opmode: CCC_OPC_RESET);
2328 if (error)
2329 return error;
2330
2331 pm_runtime_mark_last_busy(dev);
2332 pm_runtime_put_autosuspend(dev);
2333
2334 return 0;
2335}
2336
2337static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
2338{
2339 struct ravb_private *priv = netdev_priv(dev: ndev);
2340 struct hwtstamp_config config;
2341
2342 config.flags = 0;
2343 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
2344 HWTSTAMP_TX_OFF;
2345 switch (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE) {
2346 case RAVB_RXTSTAMP_TYPE_V2_L2_EVENT:
2347 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
2348 break;
2349 case RAVB_RXTSTAMP_TYPE_ALL:
2350 config.rx_filter = HWTSTAMP_FILTER_ALL;
2351 break;
2352 default:
2353 config.rx_filter = HWTSTAMP_FILTER_NONE;
2354 }
2355
2356 return copy_to_user(to: req->ifr_data, from: &config, n: sizeof(config)) ?
2357 -EFAULT : 0;
2358}
2359
2360/* Control hardware time stamping */
2361static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
2362{
2363 struct ravb_private *priv = netdev_priv(dev: ndev);
2364 struct hwtstamp_config config;
2365 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
2366 u32 tstamp_tx_ctrl;
2367
2368 if (copy_from_user(to: &config, from: req->ifr_data, n: sizeof(config)))
2369 return -EFAULT;
2370
2371 switch (config.tx_type) {
2372 case HWTSTAMP_TX_OFF:
2373 tstamp_tx_ctrl = 0;
2374 break;
2375 case HWTSTAMP_TX_ON:
2376 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
2377 break;
2378 default:
2379 return -ERANGE;
2380 }
2381
2382 switch (config.rx_filter) {
2383 case HWTSTAMP_FILTER_NONE:
2384 tstamp_rx_ctrl = 0;
2385 break;
2386 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2387 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
2388 break;
2389 default:
2390 config.rx_filter = HWTSTAMP_FILTER_ALL;
2391 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
2392 }
2393
2394 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
2395 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
2396
2397 return copy_to_user(to: req->ifr_data, from: &config, n: sizeof(config)) ?
2398 -EFAULT : 0;
2399}
2400
2401/* ioctl to device function */
2402static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
2403{
2404 struct phy_device *phydev = ndev->phydev;
2405
2406 if (!netif_running(dev: ndev))
2407 return -EINVAL;
2408
2409 if (!phydev)
2410 return -ENODEV;
2411
2412 switch (cmd) {
2413 case SIOCGHWTSTAMP:
2414 return ravb_hwtstamp_get(ndev, req);
2415 case SIOCSHWTSTAMP:
2416 return ravb_hwtstamp_set(ndev, req);
2417 }
2418
2419 return phy_mii_ioctl(phydev, ifr: req, cmd);
2420}
2421
2422static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
2423{
2424 struct ravb_private *priv = netdev_priv(dev: ndev);
2425
2426 ndev->mtu = new_mtu;
2427
2428 if (netif_running(dev: ndev)) {
2429 synchronize_irq(irq: priv->emac_irq);
2430 ravb_emac_init(ndev);
2431 }
2432
2433 netdev_update_features(dev: ndev);
2434
2435 return 0;
2436}
2437
2438static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
2439{
2440 struct ravb_private *priv = netdev_priv(dev: ndev);
2441 unsigned long flags;
2442
2443 spin_lock_irqsave(&priv->lock, flags);
2444
2445 /* Disable TX and RX */
2446 ravb_rcv_snd_disable(ndev);
2447
2448 /* Modify RX Checksum setting */
2449 ravb_modify(ndev, reg: ECMR, clear: ECMR_RCSC, set: enable ? ECMR_RCSC : 0);
2450
2451 /* Enable TX and RX */
2452 ravb_rcv_snd_enable(ndev);
2453
2454 spin_unlock_irqrestore(lock: &priv->lock, flags);
2455}
2456
2457static int ravb_endisable_csum_gbeth(struct net_device *ndev, enum ravb_reg reg,
2458 u32 val, u32 mask)
2459{
2460 u32 csr0 = CSR0_TPE | CSR0_RPE;
2461 int ret;
2462
2463 ravb_write(ndev, data: csr0 & ~mask, reg: CSR0);
2464 ret = ravb_wait(ndev, reg: CSR0, mask, value: 0);
2465 if (!ret)
2466 ravb_write(ndev, data: val, reg);
2467
2468 ravb_write(ndev, data: csr0, reg: CSR0);
2469
2470 return ret;
2471}
2472
2473static int ravb_set_features_gbeth(struct net_device *ndev,
2474 netdev_features_t features)
2475{
2476 netdev_features_t changed = ndev->features ^ features;
2477 struct ravb_private *priv = netdev_priv(dev: ndev);
2478 unsigned long flags;
2479 int ret = 0;
2480 u32 val;
2481
2482 spin_lock_irqsave(&priv->lock, flags);
2483 if (changed & NETIF_F_RXCSUM) {
2484 if (features & NETIF_F_RXCSUM)
2485 val = CSR2_RIP4 | CSR2_RTCP4 | CSR2_RUDP4 | CSR2_RICMP4;
2486 else
2487 val = 0;
2488
2489 ret = ravb_endisable_csum_gbeth(ndev, reg: CSR2, val, mask: CSR0_RPE);
2490 if (ret)
2491 goto done;
2492 }
2493
2494 if (changed & NETIF_F_HW_CSUM) {
2495 if (features & NETIF_F_HW_CSUM)
2496 val = CSR1_TIP4 | CSR1_TTCP4 | CSR1_TUDP4;
2497 else
2498 val = 0;
2499
2500 ret = ravb_endisable_csum_gbeth(ndev, reg: CSR1, val, mask: CSR0_TPE);
2501 if (ret)
2502 goto done;
2503 }
2504
2505done:
2506 spin_unlock_irqrestore(lock: &priv->lock, flags);
2507
2508 return ret;
2509}
2510
2511static int ravb_set_features_rcar(struct net_device *ndev,
2512 netdev_features_t features)
2513{
2514 netdev_features_t changed = ndev->features ^ features;
2515
2516 if (changed & NETIF_F_RXCSUM)
2517 ravb_set_rx_csum(ndev, enable: features & NETIF_F_RXCSUM);
2518
2519 return 0;
2520}
2521
2522static int ravb_set_features(struct net_device *ndev,
2523 netdev_features_t features)
2524{
2525 struct ravb_private *priv = netdev_priv(dev: ndev);
2526 const struct ravb_hw_info *info = priv->info;
2527 struct device *dev = &priv->pdev->dev;
2528 int ret;
2529
2530 pm_runtime_get_noresume(dev);
2531
2532 if (pm_runtime_active(dev))
2533 ret = info->set_feature(ndev, features);
2534 else
2535 ret = 0;
2536
2537 pm_runtime_put_noidle(dev);
2538
2539 if (ret)
2540 return ret;
2541
2542 ndev->features = features;
2543
2544 return 0;
2545}
2546
2547static const struct net_device_ops ravb_netdev_ops = {
2548 .ndo_open = ravb_open,
2549 .ndo_stop = ravb_close,
2550 .ndo_start_xmit = ravb_start_xmit,
2551 .ndo_select_queue = ravb_select_queue,
2552 .ndo_get_stats = ravb_get_stats,
2553 .ndo_set_rx_mode = ravb_set_rx_mode,
2554 .ndo_tx_timeout = ravb_tx_timeout,
2555 .ndo_eth_ioctl = ravb_do_ioctl,
2556 .ndo_change_mtu = ravb_change_mtu,
2557 .ndo_validate_addr = eth_validate_addr,
2558 .ndo_set_mac_address = eth_mac_addr,
2559 .ndo_set_features = ravb_set_features,
2560};
2561
2562/* MDIO bus init function */
2563static int ravb_mdio_init(struct ravb_private *priv)
2564{
2565 struct platform_device *pdev = priv->pdev;
2566 struct device *dev = &pdev->dev;
2567 struct phy_device *phydev;
2568 struct device_node *pn;
2569 int error;
2570
2571 /* Bitbang init */
2572 priv->mdiobb.ops = &bb_ops;
2573
2574 /* MII controller setting */
2575 priv->mii_bus = alloc_mdio_bitbang(ctrl: &priv->mdiobb);
2576 if (!priv->mii_bus)
2577 return -ENOMEM;
2578
2579 /* Hook up MII support for ethtool */
2580 priv->mii_bus->name = "ravb_mii";
2581 priv->mii_bus->parent = dev;
2582 snprintf(buf: priv->mii_bus->id, MII_BUS_ID_SIZE, fmt: "%s-%x",
2583 pdev->name, pdev->id);
2584
2585 /* Register MDIO bus */
2586 error = of_mdiobus_register(mdio: priv->mii_bus, np: dev->of_node);
2587 if (error)
2588 goto out_free_bus;
2589
2590 pn = of_parse_phandle(np: dev->of_node, phandle_name: "phy-handle", index: 0);
2591 phydev = of_phy_find_device(phy_np: pn);
2592 if (phydev) {
2593 phydev->mac_managed_pm = true;
2594 put_device(dev: &phydev->mdio.dev);
2595 }
2596 of_node_put(node: pn);
2597
2598 return 0;
2599
2600out_free_bus:
2601 free_mdio_bitbang(bus: priv->mii_bus);
2602 return error;
2603}
2604
2605/* MDIO bus release function */
2606static int ravb_mdio_release(struct ravb_private *priv)
2607{
2608 /* Unregister mdio bus */
2609 mdiobus_unregister(bus: priv->mii_bus);
2610
2611 /* Free bitbang info */
2612 free_mdio_bitbang(bus: priv->mii_bus);
2613
2614 return 0;
2615}
2616
2617static const struct ravb_hw_info ravb_gen3_hw_info = {
2618 .receive = ravb_rx_rcar,
2619 .set_rate = ravb_set_rate_rcar,
2620 .set_feature = ravb_set_features_rcar,
2621 .dmac_init = ravb_dmac_init_rcar,
2622 .emac_init = ravb_emac_init_rcar,
2623 .gstrings_stats = ravb_gstrings_stats,
2624 .gstrings_size = sizeof(ravb_gstrings_stats),
2625 .net_hw_features = NETIF_F_RXCSUM,
2626 .net_features = NETIF_F_RXCSUM,
2627 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2628 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2629 .rx_max_frame_size = SZ_2K,
2630 .rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2631 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2632 .internal_delay = 1,
2633 .tx_counters = 1,
2634 .multi_irqs = 1,
2635 .irq_en_dis = 1,
2636 .ccc_gac = 1,
2637 .nc_queues = 1,
2638 .magic_pkt = 1,
2639};
2640
2641static const struct ravb_hw_info ravb_gen2_hw_info = {
2642 .receive = ravb_rx_rcar,
2643 .set_rate = ravb_set_rate_rcar,
2644 .set_feature = ravb_set_features_rcar,
2645 .dmac_init = ravb_dmac_init_rcar,
2646 .emac_init = ravb_emac_init_rcar,
2647 .gstrings_stats = ravb_gstrings_stats,
2648 .gstrings_size = sizeof(ravb_gstrings_stats),
2649 .net_hw_features = NETIF_F_RXCSUM,
2650 .net_features = NETIF_F_RXCSUM,
2651 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2652 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2653 .rx_max_frame_size = SZ_2K,
2654 .rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2655 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2656 .aligned_tx = 1,
2657 .gptp = 1,
2658 .nc_queues = 1,
2659 .magic_pkt = 1,
2660};
2661
2662static const struct ravb_hw_info ravb_rzv2m_hw_info = {
2663 .receive = ravb_rx_rcar,
2664 .set_rate = ravb_set_rate_rcar,
2665 .set_feature = ravb_set_features_rcar,
2666 .dmac_init = ravb_dmac_init_rcar,
2667 .emac_init = ravb_emac_init_rcar,
2668 .gstrings_stats = ravb_gstrings_stats,
2669 .gstrings_size = sizeof(ravb_gstrings_stats),
2670 .net_hw_features = NETIF_F_RXCSUM,
2671 .net_features = NETIF_F_RXCSUM,
2672 .stats_len = ARRAY_SIZE(ravb_gstrings_stats),
2673 .tccr_mask = TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3,
2674 .rx_max_frame_size = SZ_2K,
2675 .rx_max_desc_use = SZ_2K - ETH_FCS_LEN + sizeof(__sum16),
2676 .rx_desc_size = sizeof(struct ravb_ex_rx_desc),
2677 .multi_irqs = 1,
2678 .err_mgmt_irqs = 1,
2679 .gptp = 1,
2680 .gptp_ref_clk = 1,
2681 .nc_queues = 1,
2682 .magic_pkt = 1,
2683};
2684
2685static const struct ravb_hw_info gbeth_hw_info = {
2686 .receive = ravb_rx_gbeth,
2687 .set_rate = ravb_set_rate_gbeth,
2688 .set_feature = ravb_set_features_gbeth,
2689 .dmac_init = ravb_dmac_init_gbeth,
2690 .emac_init = ravb_emac_init_gbeth,
2691 .gstrings_stats = ravb_gstrings_stats_gbeth,
2692 .gstrings_size = sizeof(ravb_gstrings_stats_gbeth),
2693 .net_hw_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2694 .net_features = NETIF_F_RXCSUM | NETIF_F_HW_CSUM,
2695 .stats_len = ARRAY_SIZE(ravb_gstrings_stats_gbeth),
2696 .tccr_mask = TCCR_TSRQ0,
2697 .rx_max_frame_size = SZ_8K,
2698 .rx_max_desc_use = 4080,
2699 .rx_desc_size = sizeof(struct ravb_rx_desc),
2700 .aligned_tx = 1,
2701 .tx_counters = 1,
2702 .carrier_counters = 1,
2703 .half_duplex = 1,
2704};
2705
2706static const struct of_device_id ravb_match_table[] = {
2707 { .compatible = "renesas,etheravb-r8a7790", .data = &ravb_gen2_hw_info },
2708 { .compatible = "renesas,etheravb-r8a7794", .data = &ravb_gen2_hw_info },
2709 { .compatible = "renesas,etheravb-rcar-gen2", .data = &ravb_gen2_hw_info },
2710 { .compatible = "renesas,etheravb-r8a7795", .data = &ravb_gen3_hw_info },
2711 { .compatible = "renesas,etheravb-rcar-gen3", .data = &ravb_gen3_hw_info },
2712 { .compatible = "renesas,etheravb-rcar-gen4", .data = &ravb_gen3_hw_info },
2713 { .compatible = "renesas,etheravb-rzv2m", .data = &ravb_rzv2m_hw_info },
2714 { .compatible = "renesas,rzg2l-gbeth", .data = &gbeth_hw_info },
2715 { }
2716};
2717MODULE_DEVICE_TABLE(of, ravb_match_table);
2718
2719static int ravb_setup_irq(struct ravb_private *priv, const char *irq_name,
2720 const char *ch, int *irq, irq_handler_t handler)
2721{
2722 struct platform_device *pdev = priv->pdev;
2723 struct net_device *ndev = priv->ndev;
2724 struct device *dev = &pdev->dev;
2725 const char *dev_name;
2726 unsigned long flags;
2727 int error, irq_num;
2728
2729 if (irq_name) {
2730 dev_name = devm_kasprintf(dev, GFP_KERNEL, fmt: "%s:%s", ndev->name, ch);
2731 if (!dev_name)
2732 return -ENOMEM;
2733
2734 irq_num = platform_get_irq_byname(pdev, irq_name);
2735 flags = 0;
2736 } else {
2737 dev_name = ndev->name;
2738 irq_num = platform_get_irq(pdev, 0);
2739 flags = IRQF_SHARED;
2740 }
2741 if (irq_num < 0)
2742 return irq_num;
2743
2744 if (irq)
2745 *irq = irq_num;
2746
2747 error = devm_request_irq(dev, irq: irq_num, handler, irqflags: flags, devname: dev_name, dev_id: ndev);
2748 if (error)
2749 netdev_err(dev: ndev, format: "cannot request IRQ %s\n", dev_name);
2750
2751 return error;
2752}
2753
2754static int ravb_setup_irqs(struct ravb_private *priv)
2755{
2756 const struct ravb_hw_info *info = priv->info;
2757 struct net_device *ndev = priv->ndev;
2758 const char *irq_name, *emac_irq_name;
2759 int error;
2760
2761 if (!info->multi_irqs)
2762 return ravb_setup_irq(priv, NULL, NULL, irq: &ndev->irq, handler: ravb_interrupt);
2763
2764 if (info->err_mgmt_irqs) {
2765 irq_name = "dia";
2766 emac_irq_name = "line3";
2767 } else {
2768 irq_name = "ch22";
2769 emac_irq_name = "ch24";
2770 }
2771
2772 error = ravb_setup_irq(priv, irq_name, ch: "ch22:multi", irq: &ndev->irq, handler: ravb_multi_interrupt);
2773 if (error)
2774 return error;
2775
2776 error = ravb_setup_irq(priv, irq_name: emac_irq_name, ch: "ch24:emac", irq: &priv->emac_irq,
2777 handler: ravb_emac_interrupt);
2778 if (error)
2779 return error;
2780
2781 if (info->err_mgmt_irqs) {
2782 error = ravb_setup_irq(priv, irq_name: "err_a", ch: "err_a", NULL, handler: ravb_multi_interrupt);
2783 if (error)
2784 return error;
2785
2786 error = ravb_setup_irq(priv, irq_name: "mgmt_a", ch: "mgmt_a", NULL, handler: ravb_multi_interrupt);
2787 if (error)
2788 return error;
2789 }
2790
2791 error = ravb_setup_irq(priv, irq_name: "ch0", ch: "ch0:rx_be", NULL, handler: ravb_be_interrupt);
2792 if (error)
2793 return error;
2794
2795 error = ravb_setup_irq(priv, irq_name: "ch1", ch: "ch1:rx_nc", NULL, handler: ravb_nc_interrupt);
2796 if (error)
2797 return error;
2798
2799 error = ravb_setup_irq(priv, irq_name: "ch18", ch: "ch18:tx_be", NULL, handler: ravb_be_interrupt);
2800 if (error)
2801 return error;
2802
2803 return ravb_setup_irq(priv, irq_name: "ch19", ch: "ch19:tx_nc", NULL, handler: ravb_nc_interrupt);
2804}
2805
2806static int ravb_probe(struct platform_device *pdev)
2807{
2808 struct device_node *np = pdev->dev.of_node;
2809 const struct ravb_hw_info *info;
2810 struct reset_control *rstc;
2811 struct ravb_private *priv;
2812 struct net_device *ndev;
2813 struct resource *res;
2814 int error, q;
2815
2816 if (!np) {
2817 dev_err(&pdev->dev,
2818 "this driver is required to be instantiated from device tree\n");
2819 return -EINVAL;
2820 }
2821
2822 rstc = devm_reset_control_get_exclusive(dev: &pdev->dev, NULL);
2823 if (IS_ERR(ptr: rstc))
2824 return dev_err_probe(dev: &pdev->dev, err: PTR_ERR(ptr: rstc),
2825 fmt: "failed to get cpg reset\n");
2826
2827 ndev = alloc_etherdev_mqs(sizeof_priv: sizeof(struct ravb_private),
2828 NUM_TX_QUEUE, NUM_RX_QUEUE);
2829 if (!ndev)
2830 return -ENOMEM;
2831
2832 info = of_device_get_match_data(dev: &pdev->dev);
2833
2834 ndev->features = info->net_features;
2835 ndev->hw_features = info->net_hw_features;
2836
2837 error = reset_control_deassert(rstc);
2838 if (error)
2839 goto out_free_netdev;
2840
2841 SET_NETDEV_DEV(ndev, &pdev->dev);
2842
2843 priv = netdev_priv(dev: ndev);
2844 priv->info = info;
2845 priv->rstc = rstc;
2846 priv->ndev = ndev;
2847 priv->pdev = pdev;
2848 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2849 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2850 if (info->nc_queues) {
2851 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2852 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2853 }
2854
2855 error = ravb_setup_irqs(priv);
2856 if (error)
2857 goto out_reset_assert;
2858
2859 priv->clk = devm_clk_get(dev: &pdev->dev, NULL);
2860 if (IS_ERR(ptr: priv->clk)) {
2861 error = PTR_ERR(ptr: priv->clk);
2862 goto out_reset_assert;
2863 }
2864
2865 if (info->gptp_ref_clk) {
2866 priv->gptp_clk = devm_clk_get(dev: &pdev->dev, id: "gptp");
2867 if (IS_ERR(ptr: priv->gptp_clk)) {
2868 error = PTR_ERR(ptr: priv->gptp_clk);
2869 goto out_reset_assert;
2870 }
2871 }
2872
2873 priv->refclk = devm_clk_get_optional(dev: &pdev->dev, id: "refclk");
2874 if (IS_ERR(ptr: priv->refclk)) {
2875 error = PTR_ERR(ptr: priv->refclk);
2876 goto out_reset_assert;
2877 }
2878 clk_prepare(clk: priv->refclk);
2879
2880 platform_set_drvdata(pdev, data: ndev);
2881 pm_runtime_set_autosuspend_delay(dev: &pdev->dev, delay: 100);
2882 pm_runtime_use_autosuspend(dev: &pdev->dev);
2883 pm_runtime_enable(dev: &pdev->dev);
2884 error = pm_runtime_resume_and_get(dev: &pdev->dev);
2885 if (error < 0)
2886 goto out_rpm_disable;
2887
2888 priv->addr = devm_platform_get_and_ioremap_resource(pdev, index: 0, res: &res);
2889 if (IS_ERR(ptr: priv->addr)) {
2890 error = PTR_ERR(ptr: priv->addr);
2891 goto out_rpm_put;
2892 }
2893
2894 /* The Ether-specific entries in the device structure. */
2895 ndev->base_addr = res->start;
2896
2897 spin_lock_init(&priv->lock);
2898 INIT_WORK(&priv->work, ravb_tx_timeout_work);
2899
2900 error = of_get_phy_mode(np, interface: &priv->phy_interface);
2901 if (error && error != -ENODEV)
2902 goto out_rpm_put;
2903
2904 priv->no_avb_link = of_property_read_bool(np, propname: "renesas,no-ether-link");
2905 priv->avb_link_active_low =
2906 of_property_read_bool(np, propname: "renesas,ether-link-active-low");
2907
2908 ndev->max_mtu = info->rx_max_frame_size -
2909 (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2910 ndev->min_mtu = ETH_MIN_MTU;
2911
2912 /* FIXME: R-Car Gen2 has 4byte alignment restriction for tx buffer
2913 * Use two descriptor to handle such situation. First descriptor to
2914 * handle aligned data buffer and second descriptor to handle the
2915 * overflow data because of alignment.
2916 */
2917 priv->num_tx_desc = info->aligned_tx ? 2 : 1;
2918
2919 /* Set function */
2920 ndev->netdev_ops = &ravb_netdev_ops;
2921 ndev->ethtool_ops = &ravb_ethtool_ops;
2922
2923 error = ravb_compute_gti(ndev);
2924 if (error)
2925 goto out_rpm_put;
2926
2927 ravb_parse_delay_mode(np, ndev);
2928
2929 /* Allocate descriptor base address table */
2930 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2931 priv->desc_bat = dma_alloc_coherent(dev: ndev->dev.parent, size: priv->desc_bat_size,
2932 dma_handle: &priv->desc_bat_dma, GFP_KERNEL);
2933 if (!priv->desc_bat) {
2934 dev_err(&pdev->dev,
2935 "Cannot allocate desc base address table (size %d bytes)\n",
2936 priv->desc_bat_size);
2937 error = -ENOMEM;
2938 goto out_rpm_put;
2939 }
2940 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2941 priv->desc_bat[q].die_dt = DT_EOS;
2942
2943 /* Initialise HW timestamp list */
2944 INIT_LIST_HEAD(list: &priv->ts_skb_list);
2945
2946 /* Debug message level */
2947 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2948
2949 /* Set config mode as this is needed for PHY initialization. */
2950 error = ravb_set_opmode(ndev, opmode: CCC_OPC_CONFIG);
2951 if (error)
2952 goto out_rpm_put;
2953
2954 /* Read and set MAC address */
2955 ravb_read_mac_address(np, ndev);
2956 if (!is_valid_ether_addr(addr: ndev->dev_addr)) {
2957 dev_warn(&pdev->dev,
2958 "no valid MAC address supplied, using a random one\n");
2959 eth_hw_addr_random(dev: ndev);
2960 }
2961
2962 /* MDIO bus init */
2963 error = ravb_mdio_init(priv);
2964 if (error) {
2965 dev_err(&pdev->dev, "failed to initialize MDIO\n");
2966 goto out_reset_mode;
2967 }
2968
2969 /* Undo previous switch to config opmode. */
2970 error = ravb_set_opmode(ndev, opmode: CCC_OPC_RESET);
2971 if (error)
2972 goto out_mdio_release;
2973
2974 netif_napi_add(dev: ndev, napi: &priv->napi[RAVB_BE], poll: ravb_poll);
2975 if (info->nc_queues)
2976 netif_napi_add(dev: ndev, napi: &priv->napi[RAVB_NC], poll: ravb_poll);
2977
2978 /* Network device register */
2979 error = register_netdev(dev: ndev);
2980 if (error)
2981 goto out_napi_del;
2982
2983 device_set_wakeup_capable(dev: &pdev->dev, capable: 1);
2984
2985 /* Print device information */
2986 netdev_info(dev: ndev, format: "Base address at %#x, %pM, IRQ %d.\n",
2987 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2988
2989 pm_runtime_mark_last_busy(dev: &pdev->dev);
2990 pm_runtime_put_autosuspend(dev: &pdev->dev);
2991
2992 return 0;
2993
2994out_napi_del:
2995 if (info->nc_queues)
2996 netif_napi_del(napi: &priv->napi[RAVB_NC]);
2997
2998 netif_napi_del(napi: &priv->napi[RAVB_BE]);
2999out_mdio_release:
3000 ravb_mdio_release(priv);
3001out_reset_mode:
3002 ravb_set_opmode(ndev, opmode: CCC_OPC_RESET);
3003 dma_free_coherent(dev: ndev->dev.parent, size: priv->desc_bat_size, cpu_addr: priv->desc_bat,
3004 dma_handle: priv->desc_bat_dma);
3005out_rpm_put:
3006 pm_runtime_put(dev: &pdev->dev);
3007out_rpm_disable:
3008 pm_runtime_disable(dev: &pdev->dev);
3009 pm_runtime_dont_use_autosuspend(dev: &pdev->dev);
3010 clk_unprepare(clk: priv->refclk);
3011out_reset_assert:
3012 reset_control_assert(rstc);
3013out_free_netdev:
3014 free_netdev(dev: ndev);
3015 return error;
3016}
3017
3018static void ravb_remove(struct platform_device *pdev)
3019{
3020 struct net_device *ndev = platform_get_drvdata(pdev);
3021 struct ravb_private *priv = netdev_priv(dev: ndev);
3022 const struct ravb_hw_info *info = priv->info;
3023 struct device *dev = &priv->pdev->dev;
3024 int error;
3025
3026 error = pm_runtime_resume_and_get(dev);
3027 if (error < 0)
3028 return;
3029
3030 unregister_netdev(dev: ndev);
3031 if (info->nc_queues)
3032 netif_napi_del(napi: &priv->napi[RAVB_NC]);
3033 netif_napi_del(napi: &priv->napi[RAVB_BE]);
3034
3035 ravb_mdio_release(priv);
3036
3037 dma_free_coherent(dev: ndev->dev.parent, size: priv->desc_bat_size, cpu_addr: priv->desc_bat,
3038 dma_handle: priv->desc_bat_dma);
3039
3040 pm_runtime_put_sync_suspend(dev: &pdev->dev);
3041 pm_runtime_disable(dev: &pdev->dev);
3042 pm_runtime_dont_use_autosuspend(dev);
3043 clk_unprepare(clk: priv->refclk);
3044 reset_control_assert(rstc: priv->rstc);
3045 free_netdev(dev: ndev);
3046 platform_set_drvdata(pdev, NULL);
3047}
3048
3049static int ravb_wol_setup(struct net_device *ndev)
3050{
3051 struct ravb_private *priv = netdev_priv(dev: ndev);
3052 const struct ravb_hw_info *info = priv->info;
3053
3054 /* Disable interrupts by clearing the interrupt masks. */
3055 ravb_write(ndev, data: 0, reg: RIC0);
3056 ravb_write(ndev, data: 0, reg: RIC2);
3057 ravb_write(ndev, data: 0, reg: TIC);
3058
3059 /* Only allow ECI interrupts */
3060 synchronize_irq(irq: priv->emac_irq);
3061 if (info->nc_queues)
3062 napi_disable(n: &priv->napi[RAVB_NC]);
3063 napi_disable(n: &priv->napi[RAVB_BE]);
3064 ravb_write(ndev, data: ECSIPR_MPDIP, reg: ECSIPR);
3065
3066 /* Enable MagicPacket */
3067 ravb_modify(ndev, reg: ECMR, clear: ECMR_MPDE, set: ECMR_MPDE);
3068
3069 if (priv->info->ccc_gac)
3070 ravb_ptp_stop(ndev);
3071
3072 return enable_irq_wake(irq: priv->emac_irq);
3073}
3074
3075static int ravb_wol_restore(struct net_device *ndev)
3076{
3077 struct ravb_private *priv = netdev_priv(dev: ndev);
3078 const struct ravb_hw_info *info = priv->info;
3079 int error;
3080
3081 /* Set reset mode to rearm the WoL logic. */
3082 error = ravb_set_opmode(ndev, opmode: CCC_OPC_RESET);
3083 if (error)
3084 return error;
3085
3086 /* Set AVB config mode. */
3087 error = ravb_set_config_mode(ndev);
3088 if (error)
3089 return error;
3090
3091 if (priv->info->ccc_gac)
3092 ravb_ptp_init(ndev, pdev: priv->pdev);
3093
3094 if (info->nc_queues)
3095 napi_enable(n: &priv->napi[RAVB_NC]);
3096 napi_enable(n: &priv->napi[RAVB_BE]);
3097
3098 /* Disable MagicPacket */
3099 ravb_modify(ndev, reg: ECMR, clear: ECMR_MPDE, set: 0);
3100
3101 ravb_close(ndev);
3102
3103 return disable_irq_wake(irq: priv->emac_irq);
3104}
3105
3106static int ravb_suspend(struct device *dev)
3107{
3108 struct net_device *ndev = dev_get_drvdata(dev);
3109 struct ravb_private *priv = netdev_priv(dev: ndev);
3110 int ret;
3111
3112 if (!netif_running(dev: ndev))
3113 goto reset_assert;
3114
3115 netif_device_detach(dev: ndev);
3116
3117 if (priv->wol_enabled)
3118 return ravb_wol_setup(ndev);
3119
3120 ret = ravb_close(ndev);
3121 if (ret)
3122 return ret;
3123
3124 ret = pm_runtime_force_suspend(dev: &priv->pdev->dev);
3125 if (ret)
3126 return ret;
3127
3128reset_assert:
3129 return reset_control_assert(rstc: priv->rstc);
3130}
3131
3132static int ravb_resume(struct device *dev)
3133{
3134 struct net_device *ndev = dev_get_drvdata(dev);
3135 struct ravb_private *priv = netdev_priv(dev: ndev);
3136 int ret;
3137
3138 ret = reset_control_deassert(rstc: priv->rstc);
3139 if (ret)
3140 return ret;
3141
3142 if (!netif_running(dev: ndev))
3143 return 0;
3144
3145 /* If WoL is enabled restore the interface. */
3146 if (priv->wol_enabled) {
3147 ret = ravb_wol_restore(ndev);
3148 if (ret)
3149 return ret;
3150 } else {
3151 ret = pm_runtime_force_resume(dev);
3152 if (ret)
3153 return ret;
3154 }
3155
3156 /* Reopening the interface will restore the device to the working state. */
3157 ret = ravb_open(ndev);
3158 if (ret < 0)
3159 goto out_rpm_put;
3160
3161 ravb_set_rx_mode(ndev);
3162 netif_device_attach(dev: ndev);
3163
3164 return 0;
3165
3166out_rpm_put:
3167 if (!priv->wol_enabled) {
3168 pm_runtime_mark_last_busy(dev);
3169 pm_runtime_put_autosuspend(dev);
3170 }
3171
3172 return ret;
3173}
3174
3175static int ravb_runtime_suspend(struct device *dev)
3176{
3177 struct net_device *ndev = dev_get_drvdata(dev);
3178 struct ravb_private *priv = netdev_priv(dev: ndev);
3179
3180 clk_disable(clk: priv->refclk);
3181
3182 return 0;
3183}
3184
3185static int ravb_runtime_resume(struct device *dev)
3186{
3187 struct net_device *ndev = dev_get_drvdata(dev);
3188 struct ravb_private *priv = netdev_priv(dev: ndev);
3189
3190 return clk_enable(clk: priv->refclk);
3191}
3192
3193static const struct dev_pm_ops ravb_dev_pm_ops = {
3194 SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
3195 RUNTIME_PM_OPS(ravb_runtime_suspend, ravb_runtime_resume, NULL)
3196};
3197
3198static struct platform_driver ravb_driver = {
3199 .probe = ravb_probe,
3200 .remove_new = ravb_remove,
3201 .driver = {
3202 .name = "ravb",
3203 .pm = pm_ptr(&ravb_dev_pm_ops),
3204 .of_match_table = ravb_match_table,
3205 },
3206};
3207
3208module_platform_driver(ravb_driver);
3209
3210MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
3211MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
3212MODULE_LICENSE("GPL v2");
3213

source code of linux/drivers/net/ethernet/renesas/ravb_main.c