1// SPDX-License-Identifier: GPL-2.0
2// Copyright (c) 2017-2018, The Linux foundation. All rights reserved.
3
4#include <linux/clk.h>
5#include <linux/dmaengine.h>
6#include <linux/dma-mapping.h>
7#include <linux/dma/qcom-gpi-dma.h>
8#include <linux/interrupt.h>
9#include <linux/io.h>
10#include <linux/log2.h>
11#include <linux/module.h>
12#include <linux/platform_device.h>
13#include <linux/pm_opp.h>
14#include <linux/pm_runtime.h>
15#include <linux/property.h>
16#include <linux/soc/qcom/geni-se.h>
17#include <linux/spi/spi.h>
18#include <linux/spinlock.h>
19
20/* SPI SE specific registers and respective register fields */
21#define SE_SPI_CPHA 0x224
22#define CPHA BIT(0)
23
24#define SE_SPI_LOOPBACK 0x22c
25#define LOOPBACK_ENABLE 0x1
26#define NORMAL_MODE 0x0
27#define LOOPBACK_MSK GENMASK(1, 0)
28
29#define SE_SPI_CPOL 0x230
30#define CPOL BIT(2)
31
32#define SE_SPI_DEMUX_OUTPUT_INV 0x24c
33#define CS_DEMUX_OUTPUT_INV_MSK GENMASK(3, 0)
34
35#define SE_SPI_DEMUX_SEL 0x250
36#define CS_DEMUX_OUTPUT_SEL GENMASK(3, 0)
37
38#define SE_SPI_TRANS_CFG 0x25c
39#define CS_TOGGLE BIT(1)
40
41#define SE_SPI_WORD_LEN 0x268
42#define WORD_LEN_MSK GENMASK(9, 0)
43#define MIN_WORD_LEN 4
44
45#define SE_SPI_TX_TRANS_LEN 0x26c
46#define SE_SPI_RX_TRANS_LEN 0x270
47#define TRANS_LEN_MSK GENMASK(23, 0)
48
49#define SE_SPI_PRE_POST_CMD_DLY 0x274
50
51#define SE_SPI_DELAY_COUNTERS 0x278
52#define SPI_INTER_WORDS_DELAY_MSK GENMASK(9, 0)
53#define SPI_CS_CLK_DELAY_MSK GENMASK(19, 10)
54#define SPI_CS_CLK_DELAY_SHFT 10
55
56#define SE_SPI_SLAVE_EN (0x2BC)
57#define SPI_SLAVE_EN BIT(0)
58
59/* M_CMD OP codes for SPI */
60#define SPI_TX_ONLY 1
61#define SPI_RX_ONLY 2
62#define SPI_TX_RX 7
63#define SPI_CS_ASSERT 8
64#define SPI_CS_DEASSERT 9
65#define SPI_SCK_ONLY 10
66/* M_CMD params for SPI */
67#define SPI_PRE_CMD_DELAY BIT(0)
68#define TIMESTAMP_BEFORE BIT(1)
69#define FRAGMENTATION BIT(2)
70#define TIMESTAMP_AFTER BIT(3)
71#define POST_CMD_DELAY BIT(4)
72
73#define GSI_LOOPBACK_EN BIT(0)
74#define GSI_CS_TOGGLE BIT(3)
75#define GSI_CPHA BIT(4)
76#define GSI_CPOL BIT(5)
77
78struct spi_geni_master {
79 struct geni_se se;
80 struct device *dev;
81 u32 tx_fifo_depth;
82 u32 fifo_width_bits;
83 u32 tx_wm;
84 u32 last_mode;
85 unsigned long cur_speed_hz;
86 unsigned long cur_sclk_hz;
87 unsigned int cur_bits_per_word;
88 unsigned int tx_rem_bytes;
89 unsigned int rx_rem_bytes;
90 const struct spi_transfer *cur_xfer;
91 struct completion cs_done;
92 struct completion cancel_done;
93 struct completion abort_done;
94 struct completion tx_reset_done;
95 struct completion rx_reset_done;
96 unsigned int oversampling;
97 spinlock_t lock;
98 int irq;
99 bool cs_flag;
100 bool abort_failed;
101 struct dma_chan *tx;
102 struct dma_chan *rx;
103 int cur_xfer_mode;
104};
105
106static void spi_slv_setup(struct spi_geni_master *mas)
107{
108 struct geni_se *se = &mas->se;
109
110 writel(SPI_SLAVE_EN, addr: se->base + SE_SPI_SLAVE_EN);
111 writel(GENI_IO_MUX_0_EN, addr: se->base + GENI_OUTPUT_CTRL);
112 writel(START_TRIGGER, addr: se->base + SE_GENI_CFG_SEQ_START);
113 dev_dbg(mas->dev, "spi slave setup done\n");
114}
115
116static int get_spi_clk_cfg(unsigned int speed_hz,
117 struct spi_geni_master *mas,
118 unsigned int *clk_idx,
119 unsigned int *clk_div)
120{
121 unsigned long sclk_freq;
122 unsigned int actual_hz;
123 int ret;
124
125 ret = geni_se_clk_freq_match(se: &mas->se,
126 req_freq: speed_hz * mas->oversampling,
127 index: clk_idx, res_freq: &sclk_freq, exact: false);
128 if (ret) {
129 dev_err(mas->dev, "Failed(%d) to find src clk for %dHz\n",
130 ret, speed_hz);
131 return ret;
132 }
133
134 *clk_div = DIV_ROUND_UP(sclk_freq, mas->oversampling * speed_hz);
135 actual_hz = sclk_freq / (mas->oversampling * *clk_div);
136
137 dev_dbg(mas->dev, "req %u=>%u sclk %lu, idx %d, div %d\n", speed_hz,
138 actual_hz, sclk_freq, *clk_idx, *clk_div);
139 ret = dev_pm_opp_set_rate(dev: mas->dev, target_freq: sclk_freq);
140 if (ret)
141 dev_err(mas->dev, "dev_pm_opp_set_rate failed %d\n", ret);
142 else
143 mas->cur_sclk_hz = sclk_freq;
144
145 return ret;
146}
147
148static void handle_se_timeout(struct spi_controller *spi,
149 struct spi_message *msg)
150{
151 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
152 unsigned long time_left;
153 struct geni_se *se = &mas->se;
154 const struct spi_transfer *xfer;
155
156 spin_lock_irq(lock: &mas->lock);
157 if (mas->cur_xfer_mode == GENI_SE_FIFO)
158 writel(val: 0, addr: se->base + SE_GENI_TX_WATERMARK_REG);
159
160 xfer = mas->cur_xfer;
161 mas->cur_xfer = NULL;
162
163 if (spi->target) {
164 /*
165 * skip CMD Cancel sequnece since spi target
166 * doesn`t support CMD Cancel sequnece
167 */
168 spin_unlock_irq(lock: &mas->lock);
169 goto reset_if_dma;
170 }
171
172 reinit_completion(x: &mas->cancel_done);
173 geni_se_cancel_m_cmd(se);
174 spin_unlock_irq(lock: &mas->lock);
175
176 time_left = wait_for_completion_timeout(x: &mas->cancel_done, HZ);
177 if (time_left)
178 goto reset_if_dma;
179
180 spin_lock_irq(lock: &mas->lock);
181 reinit_completion(x: &mas->abort_done);
182 geni_se_abort_m_cmd(se);
183 spin_unlock_irq(lock: &mas->lock);
184
185 time_left = wait_for_completion_timeout(x: &mas->abort_done, HZ);
186 if (!time_left) {
187 dev_err(mas->dev, "Failed to cancel/abort m_cmd\n");
188
189 /*
190 * No need for a lock since SPI core has a lock and we never
191 * access this from an interrupt.
192 */
193 mas->abort_failed = true;
194 }
195
196reset_if_dma:
197 if (mas->cur_xfer_mode == GENI_SE_DMA) {
198 if (xfer) {
199 if (xfer->tx_buf) {
200 spin_lock_irq(lock: &mas->lock);
201 reinit_completion(x: &mas->tx_reset_done);
202 writel(val: 1, addr: se->base + SE_DMA_TX_FSM_RST);
203 spin_unlock_irq(lock: &mas->lock);
204 time_left = wait_for_completion_timeout(x: &mas->tx_reset_done, HZ);
205 if (!time_left)
206 dev_err(mas->dev, "DMA TX RESET failed\n");
207 }
208 if (xfer->rx_buf) {
209 spin_lock_irq(lock: &mas->lock);
210 reinit_completion(x: &mas->rx_reset_done);
211 writel(val: 1, addr: se->base + SE_DMA_RX_FSM_RST);
212 spin_unlock_irq(lock: &mas->lock);
213 time_left = wait_for_completion_timeout(x: &mas->rx_reset_done, HZ);
214 if (!time_left)
215 dev_err(mas->dev, "DMA RX RESET failed\n");
216 }
217 } else {
218 /*
219 * This can happen if a timeout happened and we had to wait
220 * for lock in this function because isr was holding the lock
221 * and handling transfer completion at that time.
222 */
223 dev_warn(mas->dev, "Cancel/Abort on completed SPI transfer\n");
224 }
225 }
226}
227
228static void handle_gpi_timeout(struct spi_controller *spi, struct spi_message *msg)
229{
230 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
231
232 dmaengine_terminate_sync(chan: mas->tx);
233 dmaengine_terminate_sync(chan: mas->rx);
234}
235
236static void spi_geni_handle_err(struct spi_controller *spi, struct spi_message *msg)
237{
238 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
239
240 switch (mas->cur_xfer_mode) {
241 case GENI_SE_FIFO:
242 case GENI_SE_DMA:
243 handle_se_timeout(spi, msg);
244 break;
245 case GENI_GPI_DMA:
246 handle_gpi_timeout(spi, msg);
247 break;
248 default:
249 dev_err(mas->dev, "Abort on Mode:%d not supported", mas->cur_xfer_mode);
250 }
251}
252
253static bool spi_geni_is_abort_still_pending(struct spi_geni_master *mas)
254{
255 struct geni_se *se = &mas->se;
256 u32 m_irq, m_irq_en;
257
258 if (!mas->abort_failed)
259 return false;
260
261 /*
262 * The only known case where a transfer times out and then a cancel
263 * times out then an abort times out is if something is blocking our
264 * interrupt handler from running. Avoid starting any new transfers
265 * until that sorts itself out.
266 */
267 spin_lock_irq(lock: &mas->lock);
268 m_irq = readl(addr: se->base + SE_GENI_M_IRQ_STATUS);
269 m_irq_en = readl(addr: se->base + SE_GENI_M_IRQ_EN);
270 spin_unlock_irq(lock: &mas->lock);
271
272 if (m_irq & m_irq_en) {
273 dev_err(mas->dev, "Interrupts pending after abort: %#010x\n",
274 m_irq & m_irq_en);
275 return true;
276 }
277
278 /*
279 * If we're here the problem resolved itself so no need to check more
280 * on future transfers.
281 */
282 mas->abort_failed = false;
283
284 return false;
285}
286
287static void spi_geni_set_cs(struct spi_device *slv, bool set_flag)
288{
289 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: slv->controller);
290 struct spi_controller *spi = dev_get_drvdata(dev: mas->dev);
291 struct geni_se *se = &mas->se;
292 unsigned long time_left;
293
294 if (!(slv->mode & SPI_CS_HIGH))
295 set_flag = !set_flag;
296
297 if (set_flag == mas->cs_flag)
298 return;
299
300 pm_runtime_get_sync(dev: mas->dev);
301
302 if (spi_geni_is_abort_still_pending(mas)) {
303 dev_err(mas->dev, "Can't set chip select\n");
304 goto exit;
305 }
306
307 spin_lock_irq(lock: &mas->lock);
308 if (mas->cur_xfer) {
309 dev_err(mas->dev, "Can't set CS when prev xfer running\n");
310 spin_unlock_irq(lock: &mas->lock);
311 goto exit;
312 }
313
314 mas->cs_flag = set_flag;
315 /* set xfer_mode to FIFO to complete cs_done in isr */
316 mas->cur_xfer_mode = GENI_SE_FIFO;
317 geni_se_select_mode(se, mode: mas->cur_xfer_mode);
318
319 reinit_completion(x: &mas->cs_done);
320 if (set_flag)
321 geni_se_setup_m_cmd(se, SPI_CS_ASSERT, params: 0);
322 else
323 geni_se_setup_m_cmd(se, SPI_CS_DEASSERT, params: 0);
324 spin_unlock_irq(lock: &mas->lock);
325
326 time_left = wait_for_completion_timeout(x: &mas->cs_done, HZ);
327 if (!time_left) {
328 dev_warn(mas->dev, "Timeout setting chip select\n");
329 handle_se_timeout(spi, NULL);
330 }
331
332exit:
333 pm_runtime_put(dev: mas->dev);
334}
335
336static void spi_setup_word_len(struct spi_geni_master *mas, u16 mode,
337 unsigned int bits_per_word)
338{
339 unsigned int pack_words;
340 bool msb_first = (mode & SPI_LSB_FIRST) ? false : true;
341 struct geni_se *se = &mas->se;
342 u32 word_len;
343
344 /*
345 * If bits_per_word isn't a byte aligned value, set the packing to be
346 * 1 SPI word per FIFO word.
347 */
348 if (!(mas->fifo_width_bits % bits_per_word))
349 pack_words = mas->fifo_width_bits / bits_per_word;
350 else
351 pack_words = 1;
352 geni_se_config_packing(se: &mas->se, bpw: bits_per_word, pack_words, msb_to_lsb: msb_first,
353 tx_cfg: true, rx_cfg: true);
354 word_len = (bits_per_word - MIN_WORD_LEN) & WORD_LEN_MSK;
355 writel(val: word_len, addr: se->base + SE_SPI_WORD_LEN);
356}
357
358static int geni_spi_set_clock_and_bw(struct spi_geni_master *mas,
359 unsigned long clk_hz)
360{
361 u32 clk_sel, m_clk_cfg, idx, div;
362 struct geni_se *se = &mas->se;
363 int ret;
364
365 if (clk_hz == mas->cur_speed_hz)
366 return 0;
367
368 ret = get_spi_clk_cfg(speed_hz: clk_hz, mas, clk_idx: &idx, clk_div: &div);
369 if (ret) {
370 dev_err(mas->dev, "Err setting clk to %lu: %d\n", clk_hz, ret);
371 return ret;
372 }
373
374 /*
375 * SPI core clock gets configured with the requested frequency
376 * or the frequency closer to the requested frequency.
377 * For that reason requested frequency is stored in the
378 * cur_speed_hz and referred in the consecutive transfer instead
379 * of calling clk_get_rate() API.
380 */
381 mas->cur_speed_hz = clk_hz;
382
383 clk_sel = idx & CLK_SEL_MSK;
384 m_clk_cfg = (div << CLK_DIV_SHFT) | SER_CLK_EN;
385 writel(val: clk_sel, addr: se->base + SE_GENI_CLK_SEL);
386 writel(val: m_clk_cfg, addr: se->base + GENI_SER_M_CLK_CFG);
387
388 /* Set BW quota for CPU as driver supports FIFO mode only. */
389 se->icc_paths[CPU_TO_GENI].avg_bw = Bps_to_icc(mas->cur_speed_hz);
390 ret = geni_icc_set_bw(se);
391 if (ret)
392 return ret;
393
394 return 0;
395}
396
397static int setup_fifo_params(struct spi_device *spi_slv,
398 struct spi_controller *spi)
399{
400 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
401 struct geni_se *se = &mas->se;
402 u32 loopback_cfg = 0, cpol = 0, cpha = 0, demux_output_inv = 0;
403 u32 demux_sel;
404
405 if (mas->last_mode != spi_slv->mode) {
406 if (spi_slv->mode & SPI_LOOP)
407 loopback_cfg = LOOPBACK_ENABLE;
408
409 if (spi_slv->mode & SPI_CPOL)
410 cpol = CPOL;
411
412 if (spi_slv->mode & SPI_CPHA)
413 cpha = CPHA;
414
415 if (spi_slv->mode & SPI_CS_HIGH)
416 demux_output_inv = BIT(spi_get_chipselect(spi_slv, 0));
417
418 demux_sel = spi_get_chipselect(spi: spi_slv, idx: 0);
419 mas->cur_bits_per_word = spi_slv->bits_per_word;
420
421 spi_setup_word_len(mas, mode: spi_slv->mode, bits_per_word: spi_slv->bits_per_word);
422 writel(val: loopback_cfg, addr: se->base + SE_SPI_LOOPBACK);
423 writel(val: demux_sel, addr: se->base + SE_SPI_DEMUX_SEL);
424 writel(val: cpha, addr: se->base + SE_SPI_CPHA);
425 writel(val: cpol, addr: se->base + SE_SPI_CPOL);
426 writel(val: demux_output_inv, addr: se->base + SE_SPI_DEMUX_OUTPUT_INV);
427
428 mas->last_mode = spi_slv->mode;
429 }
430
431 return geni_spi_set_clock_and_bw(mas, clk_hz: spi_slv->max_speed_hz);
432}
433
434static void
435spi_gsi_callback_result(void *cb, const struct dmaengine_result *result)
436{
437 struct spi_controller *spi = cb;
438
439 spi->cur_msg->status = -EIO;
440 if (result->result != DMA_TRANS_NOERROR) {
441 dev_err(&spi->dev, "DMA txn failed: %d\n", result->result);
442 spi_finalize_current_transfer(ctlr: spi);
443 return;
444 }
445
446 if (!result->residue) {
447 spi->cur_msg->status = 0;
448 dev_dbg(&spi->dev, "DMA txn completed\n");
449 } else {
450 dev_err(&spi->dev, "DMA xfer has pending: %d\n", result->residue);
451 }
452
453 spi_finalize_current_transfer(ctlr: spi);
454}
455
456static int setup_gsi_xfer(struct spi_transfer *xfer, struct spi_geni_master *mas,
457 struct spi_device *spi_slv, struct spi_controller *spi)
458{
459 unsigned long flags = DMA_PREP_INTERRUPT | DMA_CTRL_ACK;
460 struct dma_slave_config config = {};
461 struct gpi_spi_config peripheral = {};
462 struct dma_async_tx_descriptor *tx_desc, *rx_desc;
463 int ret;
464
465 config.peripheral_config = &peripheral;
466 config.peripheral_size = sizeof(peripheral);
467 peripheral.set_config = true;
468
469 if (xfer->bits_per_word != mas->cur_bits_per_word ||
470 xfer->speed_hz != mas->cur_speed_hz) {
471 mas->cur_bits_per_word = xfer->bits_per_word;
472 mas->cur_speed_hz = xfer->speed_hz;
473 }
474
475 if (xfer->tx_buf && xfer->rx_buf) {
476 peripheral.cmd = SPI_DUPLEX;
477 } else if (xfer->tx_buf) {
478 peripheral.cmd = SPI_TX;
479 peripheral.rx_len = 0;
480 } else if (xfer->rx_buf) {
481 peripheral.cmd = SPI_RX;
482 if (!(mas->cur_bits_per_word % MIN_WORD_LEN)) {
483 peripheral.rx_len = ((xfer->len << 3) / mas->cur_bits_per_word);
484 } else {
485 int bytes_per_word = (mas->cur_bits_per_word / BITS_PER_BYTE) + 1;
486
487 peripheral.rx_len = (xfer->len / bytes_per_word);
488 }
489 }
490
491 peripheral.loopback_en = !!(spi_slv->mode & SPI_LOOP);
492 peripheral.clock_pol_high = !!(spi_slv->mode & SPI_CPOL);
493 peripheral.data_pol_high = !!(spi_slv->mode & SPI_CPHA);
494 peripheral.cs = spi_get_chipselect(spi: spi_slv, idx: 0);
495 peripheral.pack_en = true;
496 peripheral.word_len = xfer->bits_per_word - MIN_WORD_LEN;
497
498 ret = get_spi_clk_cfg(speed_hz: mas->cur_speed_hz, mas,
499 clk_idx: &peripheral.clk_src, clk_div: &peripheral.clk_div);
500 if (ret) {
501 dev_err(mas->dev, "Err in get_spi_clk_cfg() :%d\n", ret);
502 return ret;
503 }
504
505 if (!xfer->cs_change) {
506 if (!list_is_last(list: &xfer->transfer_list, head: &spi->cur_msg->transfers))
507 peripheral.fragmentation = FRAGMENTATION;
508 }
509
510 if (peripheral.cmd & SPI_RX) {
511 dmaengine_slave_config(chan: mas->rx, config: &config);
512 rx_desc = dmaengine_prep_slave_sg(chan: mas->rx, sgl: xfer->rx_sg.sgl, sg_len: xfer->rx_sg.nents,
513 dir: DMA_DEV_TO_MEM, flags);
514 if (!rx_desc) {
515 dev_err(mas->dev, "Err setting up rx desc\n");
516 return -EIO;
517 }
518 }
519
520 /*
521 * Prepare the TX always, even for RX or tx_buf being null, we would
522 * need TX to be prepared per GSI spec
523 */
524 dmaengine_slave_config(chan: mas->tx, config: &config);
525 tx_desc = dmaengine_prep_slave_sg(chan: mas->tx, sgl: xfer->tx_sg.sgl, sg_len: xfer->tx_sg.nents,
526 dir: DMA_MEM_TO_DEV, flags);
527 if (!tx_desc) {
528 dev_err(mas->dev, "Err setting up tx desc\n");
529 return -EIO;
530 }
531
532 tx_desc->callback_result = spi_gsi_callback_result;
533 tx_desc->callback_param = spi;
534
535 if (peripheral.cmd & SPI_RX)
536 dmaengine_submit(desc: rx_desc);
537 dmaengine_submit(desc: tx_desc);
538
539 if (peripheral.cmd & SPI_RX)
540 dma_async_issue_pending(chan: mas->rx);
541
542 dma_async_issue_pending(chan: mas->tx);
543 return 1;
544}
545
546static u32 get_xfer_len_in_words(struct spi_transfer *xfer,
547 struct spi_geni_master *mas)
548{
549 u32 len;
550
551 if (!(mas->cur_bits_per_word % MIN_WORD_LEN))
552 len = xfer->len * BITS_PER_BYTE / mas->cur_bits_per_word;
553 else
554 len = xfer->len / (mas->cur_bits_per_word / BITS_PER_BYTE + 1);
555 len &= TRANS_LEN_MSK;
556
557 return len;
558}
559
560static bool geni_can_dma(struct spi_controller *ctlr,
561 struct spi_device *slv, struct spi_transfer *xfer)
562{
563 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: slv->controller);
564 u32 len, fifo_size;
565
566 if (mas->cur_xfer_mode == GENI_GPI_DMA)
567 return true;
568
569 /* Set SE DMA mode for SPI target. */
570 if (ctlr->target)
571 return true;
572
573 len = get_xfer_len_in_words(xfer, mas);
574 fifo_size = mas->tx_fifo_depth * mas->fifo_width_bits / mas->cur_bits_per_word;
575
576 if (len > fifo_size)
577 return true;
578 else
579 return false;
580}
581
582static int spi_geni_prepare_message(struct spi_controller *spi,
583 struct spi_message *spi_msg)
584{
585 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
586 int ret;
587
588 switch (mas->cur_xfer_mode) {
589 case GENI_SE_FIFO:
590 case GENI_SE_DMA:
591 if (spi_geni_is_abort_still_pending(mas))
592 return -EBUSY;
593 ret = setup_fifo_params(spi_slv: spi_msg->spi, spi);
594 if (ret)
595 dev_err(mas->dev, "Couldn't select mode %d\n", ret);
596 return ret;
597
598 case GENI_GPI_DMA:
599 /* nothing to do for GPI DMA */
600 return 0;
601 }
602
603 dev_err(mas->dev, "Mode not supported %d", mas->cur_xfer_mode);
604 return -EINVAL;
605}
606
607static int spi_geni_grab_gpi_chan(struct spi_geni_master *mas)
608{
609 int ret;
610
611 mas->tx = dma_request_chan(dev: mas->dev, name: "tx");
612 if (IS_ERR(ptr: mas->tx)) {
613 ret = dev_err_probe(dev: mas->dev, err: PTR_ERR(ptr: mas->tx),
614 fmt: "Failed to get tx DMA ch\n");
615 goto err_tx;
616 }
617
618 mas->rx = dma_request_chan(dev: mas->dev, name: "rx");
619 if (IS_ERR(ptr: mas->rx)) {
620 ret = dev_err_probe(dev: mas->dev, err: PTR_ERR(ptr: mas->rx),
621 fmt: "Failed to get rx DMA ch\n");
622 goto err_rx;
623 }
624
625 return 0;
626
627err_rx:
628 mas->rx = NULL;
629 dma_release_channel(chan: mas->tx);
630err_tx:
631 mas->tx = NULL;
632 return ret;
633}
634
635static void spi_geni_release_dma_chan(struct spi_geni_master *mas)
636{
637 if (mas->rx) {
638 dma_release_channel(chan: mas->rx);
639 mas->rx = NULL;
640 }
641
642 if (mas->tx) {
643 dma_release_channel(chan: mas->tx);
644 mas->tx = NULL;
645 }
646}
647
648static int spi_geni_init(struct spi_geni_master *mas)
649{
650 struct spi_controller *spi = dev_get_drvdata(dev: mas->dev);
651 struct geni_se *se = &mas->se;
652 unsigned int proto, major, minor, ver;
653 u32 spi_tx_cfg, fifo_disable;
654 int ret = -ENXIO;
655
656 pm_runtime_get_sync(dev: mas->dev);
657
658 proto = geni_se_read_proto(se);
659
660 if (spi->target) {
661 if (proto != GENI_SE_SPI_SLAVE) {
662 dev_err(mas->dev, "Invalid proto %d\n", proto);
663 goto out_pm;
664 }
665 spi_slv_setup(mas);
666 } else if (proto != GENI_SE_SPI) {
667 dev_err(mas->dev, "Invalid proto %d\n", proto);
668 goto out_pm;
669 }
670 mas->tx_fifo_depth = geni_se_get_tx_fifo_depth(se);
671
672 /* Width of Tx and Rx FIFO is same */
673 mas->fifo_width_bits = geni_se_get_tx_fifo_width(se);
674
675 /*
676 * Hardware programming guide suggests to configure
677 * RX FIFO RFR level to fifo_depth-2.
678 */
679 geni_se_init(se, rx_wm: mas->tx_fifo_depth - 3, rx_rfr: mas->tx_fifo_depth - 2);
680 /* Transmit an entire FIFO worth of data per IRQ */
681 mas->tx_wm = 1;
682 ver = geni_se_get_qup_hw_version(se);
683 major = GENI_SE_VERSION_MAJOR(ver);
684 minor = GENI_SE_VERSION_MINOR(ver);
685
686 if (major == 1 && minor == 0)
687 mas->oversampling = 2;
688 else
689 mas->oversampling = 1;
690
691 fifo_disable = readl(addr: se->base + GENI_IF_DISABLE_RO) & FIFO_IF_DISABLE;
692 switch (fifo_disable) {
693 case 1:
694 ret = spi_geni_grab_gpi_chan(mas);
695 if (!ret) { /* success case */
696 mas->cur_xfer_mode = GENI_GPI_DMA;
697 geni_se_select_mode(se, mode: GENI_GPI_DMA);
698 dev_dbg(mas->dev, "Using GPI DMA mode for SPI\n");
699 break;
700 } else if (ret == -EPROBE_DEFER) {
701 goto out_pm;
702 }
703 /*
704 * in case of failure to get gpi dma channel, we can still do the
705 * FIFO mode, so fallthrough
706 */
707 dev_warn(mas->dev, "FIFO mode disabled, but couldn't get DMA, fall back to FIFO mode\n");
708 fallthrough;
709
710 case 0:
711 mas->cur_xfer_mode = GENI_SE_FIFO;
712 geni_se_select_mode(se, mode: GENI_SE_FIFO);
713 ret = 0;
714 break;
715 }
716
717 /* We always control CS manually */
718 if (!spi->target) {
719 spi_tx_cfg = readl(addr: se->base + SE_SPI_TRANS_CFG);
720 spi_tx_cfg &= ~CS_TOGGLE;
721 writel(val: spi_tx_cfg, addr: se->base + SE_SPI_TRANS_CFG);
722 }
723
724out_pm:
725 pm_runtime_put(dev: mas->dev);
726 return ret;
727}
728
729static unsigned int geni_byte_per_fifo_word(struct spi_geni_master *mas)
730{
731 /*
732 * Calculate how many bytes we'll put in each FIFO word. If the
733 * transfer words don't pack cleanly into a FIFO word we'll just put
734 * one transfer word in each FIFO word. If they do pack we'll pack 'em.
735 */
736 if (mas->fifo_width_bits % mas->cur_bits_per_word)
737 return roundup_pow_of_two(DIV_ROUND_UP(mas->cur_bits_per_word,
738 BITS_PER_BYTE));
739
740 return mas->fifo_width_bits / BITS_PER_BYTE;
741}
742
743static bool geni_spi_handle_tx(struct spi_geni_master *mas)
744{
745 struct geni_se *se = &mas->se;
746 unsigned int max_bytes;
747 const u8 *tx_buf;
748 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
749 unsigned int i = 0;
750
751 /* Stop the watermark IRQ if nothing to send */
752 if (!mas->cur_xfer) {
753 writel(val: 0, addr: se->base + SE_GENI_TX_WATERMARK_REG);
754 return false;
755 }
756
757 max_bytes = (mas->tx_fifo_depth - mas->tx_wm) * bytes_per_fifo_word;
758 if (mas->tx_rem_bytes < max_bytes)
759 max_bytes = mas->tx_rem_bytes;
760
761 tx_buf = mas->cur_xfer->tx_buf + mas->cur_xfer->len - mas->tx_rem_bytes;
762 while (i < max_bytes) {
763 unsigned int j;
764 unsigned int bytes_to_write;
765 u32 fifo_word = 0;
766 u8 *fifo_byte = (u8 *)&fifo_word;
767
768 bytes_to_write = min(bytes_per_fifo_word, max_bytes - i);
769 for (j = 0; j < bytes_to_write; j++)
770 fifo_byte[j] = tx_buf[i++];
771 iowrite32_rep(port: se->base + SE_GENI_TX_FIFOn, buf: &fifo_word, count: 1);
772 }
773 mas->tx_rem_bytes -= max_bytes;
774 if (!mas->tx_rem_bytes) {
775 writel(val: 0, addr: se->base + SE_GENI_TX_WATERMARK_REG);
776 return false;
777 }
778 return true;
779}
780
781static void geni_spi_handle_rx(struct spi_geni_master *mas)
782{
783 struct geni_se *se = &mas->se;
784 u32 rx_fifo_status;
785 unsigned int rx_bytes;
786 unsigned int rx_last_byte_valid;
787 u8 *rx_buf;
788 unsigned int bytes_per_fifo_word = geni_byte_per_fifo_word(mas);
789 unsigned int i = 0;
790
791 rx_fifo_status = readl(addr: se->base + SE_GENI_RX_FIFO_STATUS);
792 rx_bytes = (rx_fifo_status & RX_FIFO_WC_MSK) * bytes_per_fifo_word;
793 if (rx_fifo_status & RX_LAST) {
794 rx_last_byte_valid = rx_fifo_status & RX_LAST_BYTE_VALID_MSK;
795 rx_last_byte_valid >>= RX_LAST_BYTE_VALID_SHFT;
796 if (rx_last_byte_valid && rx_last_byte_valid < 4)
797 rx_bytes -= bytes_per_fifo_word - rx_last_byte_valid;
798 }
799
800 /* Clear out the FIFO and bail if nowhere to put it */
801 if (!mas->cur_xfer) {
802 for (i = 0; i < DIV_ROUND_UP(rx_bytes, bytes_per_fifo_word); i++)
803 readl(addr: se->base + SE_GENI_RX_FIFOn);
804 return;
805 }
806
807 if (mas->rx_rem_bytes < rx_bytes)
808 rx_bytes = mas->rx_rem_bytes;
809
810 rx_buf = mas->cur_xfer->rx_buf + mas->cur_xfer->len - mas->rx_rem_bytes;
811 while (i < rx_bytes) {
812 u32 fifo_word = 0;
813 u8 *fifo_byte = (u8 *)&fifo_word;
814 unsigned int bytes_to_read;
815 unsigned int j;
816
817 bytes_to_read = min(bytes_per_fifo_word, rx_bytes - i);
818 ioread32_rep(port: se->base + SE_GENI_RX_FIFOn, buf: &fifo_word, count: 1);
819 for (j = 0; j < bytes_to_read; j++)
820 rx_buf[i++] = fifo_byte[j];
821 }
822 mas->rx_rem_bytes -= rx_bytes;
823}
824
825static int setup_se_xfer(struct spi_transfer *xfer,
826 struct spi_geni_master *mas,
827 u16 mode, struct spi_controller *spi)
828{
829 u32 m_cmd = 0;
830 u32 len;
831 struct geni_se *se = &mas->se;
832 int ret;
833
834 /*
835 * Ensure that our interrupt handler isn't still running from some
836 * prior command before we start messing with the hardware behind
837 * its back. We don't need to _keep_ the lock here since we're only
838 * worried about racing with out interrupt handler. The SPI core
839 * already handles making sure that we're not trying to do two
840 * transfers at once or setting a chip select and doing a transfer
841 * concurrently.
842 *
843 * NOTE: we actually _can't_ hold the lock here because possibly we
844 * might call clk_set_rate() which needs to be able to sleep.
845 */
846 spin_lock_irq(lock: &mas->lock);
847 spin_unlock_irq(lock: &mas->lock);
848
849 if (xfer->bits_per_word != mas->cur_bits_per_word) {
850 spi_setup_word_len(mas, mode, bits_per_word: xfer->bits_per_word);
851 mas->cur_bits_per_word = xfer->bits_per_word;
852 }
853
854 /* Speed and bits per word can be overridden per transfer */
855 ret = geni_spi_set_clock_and_bw(mas, clk_hz: xfer->speed_hz);
856 if (ret)
857 return ret;
858
859 mas->tx_rem_bytes = 0;
860 mas->rx_rem_bytes = 0;
861
862 len = get_xfer_len_in_words(xfer, mas);
863
864 mas->cur_xfer = xfer;
865 if (xfer->tx_buf) {
866 m_cmd |= SPI_TX_ONLY;
867 mas->tx_rem_bytes = xfer->len;
868 writel(val: len, addr: se->base + SE_SPI_TX_TRANS_LEN);
869 }
870
871 if (xfer->rx_buf) {
872 m_cmd |= SPI_RX_ONLY;
873 writel(val: len, addr: se->base + SE_SPI_RX_TRANS_LEN);
874 mas->rx_rem_bytes = xfer->len;
875 }
876
877 /*
878 * Select DMA mode if sgt are present; and with only 1 entry
879 * This is not a serious limitation because the xfer buffers are
880 * expected to fit into in 1 entry almost always, and if any
881 * doesn't for any reason we fall back to FIFO mode anyway
882 */
883 if (!xfer->tx_sg.nents && !xfer->rx_sg.nents)
884 mas->cur_xfer_mode = GENI_SE_FIFO;
885 else if (xfer->tx_sg.nents > 1 || xfer->rx_sg.nents > 1) {
886 dev_warn_once(mas->dev, "Doing FIFO, cannot handle tx_nents-%d, rx_nents-%d\n",
887 xfer->tx_sg.nents, xfer->rx_sg.nents);
888 mas->cur_xfer_mode = GENI_SE_FIFO;
889 } else
890 mas->cur_xfer_mode = GENI_SE_DMA;
891 geni_se_select_mode(se, mode: mas->cur_xfer_mode);
892
893 /*
894 * Lock around right before we start the transfer since our
895 * interrupt could come in at any time now.
896 */
897 spin_lock_irq(lock: &mas->lock);
898 geni_se_setup_m_cmd(se, cmd: m_cmd, FRAGMENTATION);
899
900 if (mas->cur_xfer_mode == GENI_SE_DMA) {
901 if (m_cmd & SPI_RX_ONLY)
902 geni_se_rx_init_dma(se, sg_dma_address(xfer->rx_sg.sgl),
903 sg_dma_len(xfer->rx_sg.sgl));
904 if (m_cmd & SPI_TX_ONLY)
905 geni_se_tx_init_dma(se, sg_dma_address(xfer->tx_sg.sgl),
906 sg_dma_len(xfer->tx_sg.sgl));
907 } else if (m_cmd & SPI_TX_ONLY) {
908 if (geni_spi_handle_tx(mas))
909 writel(val: mas->tx_wm, addr: se->base + SE_GENI_TX_WATERMARK_REG);
910 }
911
912 spin_unlock_irq(lock: &mas->lock);
913 return ret;
914}
915
916static int spi_geni_transfer_one(struct spi_controller *spi,
917 struct spi_device *slv,
918 struct spi_transfer *xfer)
919{
920 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
921 int ret;
922
923 if (spi_geni_is_abort_still_pending(mas))
924 return -EBUSY;
925
926 /* Terminate and return success for 0 byte length transfer */
927 if (!xfer->len)
928 return 0;
929
930 if (mas->cur_xfer_mode == GENI_SE_FIFO || mas->cur_xfer_mode == GENI_SE_DMA) {
931 ret = setup_se_xfer(xfer, mas, mode: slv->mode, spi);
932 /* SPI framework expects +ve ret code to wait for transfer complete */
933 if (!ret)
934 ret = 1;
935 return ret;
936 }
937 return setup_gsi_xfer(xfer, mas, spi_slv: slv, spi);
938}
939
940static irqreturn_t geni_spi_isr(int irq, void *data)
941{
942 struct spi_controller *spi = data;
943 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
944 struct geni_se *se = &mas->se;
945 u32 m_irq;
946
947 m_irq = readl(addr: se->base + SE_GENI_M_IRQ_STATUS);
948 if (!m_irq)
949 return IRQ_NONE;
950
951 if (m_irq & (M_CMD_OVERRUN_EN | M_ILLEGAL_CMD_EN | M_CMD_FAILURE_EN |
952 M_RX_FIFO_RD_ERR_EN | M_RX_FIFO_WR_ERR_EN |
953 M_TX_FIFO_RD_ERR_EN | M_TX_FIFO_WR_ERR_EN))
954 dev_warn(mas->dev, "Unexpected IRQ err status %#010x\n", m_irq);
955
956 spin_lock(lock: &mas->lock);
957
958 if (mas->cur_xfer_mode == GENI_SE_FIFO) {
959 if ((m_irq & M_RX_FIFO_WATERMARK_EN) || (m_irq & M_RX_FIFO_LAST_EN))
960 geni_spi_handle_rx(mas);
961
962 if (m_irq & M_TX_FIFO_WATERMARK_EN)
963 geni_spi_handle_tx(mas);
964
965 if (m_irq & M_CMD_DONE_EN) {
966 if (mas->cur_xfer) {
967 spi_finalize_current_transfer(ctlr: spi);
968 mas->cur_xfer = NULL;
969 /*
970 * If this happens, then a CMD_DONE came before all the
971 * Tx buffer bytes were sent out. This is unusual, log
972 * this condition and disable the WM interrupt to
973 * prevent the system from stalling due an interrupt
974 * storm.
975 *
976 * If this happens when all Rx bytes haven't been
977 * received, log the condition. The only known time
978 * this can happen is if bits_per_word != 8 and some
979 * registers that expect xfer lengths in num spi_words
980 * weren't written correctly.
981 */
982 if (mas->tx_rem_bytes) {
983 writel(val: 0, addr: se->base + SE_GENI_TX_WATERMARK_REG);
984 dev_err(mas->dev, "Premature done. tx_rem = %d bpw%d\n",
985 mas->tx_rem_bytes, mas->cur_bits_per_word);
986 }
987 if (mas->rx_rem_bytes)
988 dev_err(mas->dev, "Premature done. rx_rem = %d bpw%d\n",
989 mas->rx_rem_bytes, mas->cur_bits_per_word);
990 } else {
991 complete(&mas->cs_done);
992 }
993 }
994 } else if (mas->cur_xfer_mode == GENI_SE_DMA) {
995 const struct spi_transfer *xfer = mas->cur_xfer;
996 u32 dma_tx_status = readl_relaxed(se->base + SE_DMA_TX_IRQ_STAT);
997 u32 dma_rx_status = readl_relaxed(se->base + SE_DMA_RX_IRQ_STAT);
998
999 if (dma_tx_status)
1000 writel(val: dma_tx_status, addr: se->base + SE_DMA_TX_IRQ_CLR);
1001 if (dma_rx_status)
1002 writel(val: dma_rx_status, addr: se->base + SE_DMA_RX_IRQ_CLR);
1003 if (dma_tx_status & TX_DMA_DONE)
1004 mas->tx_rem_bytes = 0;
1005 if (dma_rx_status & RX_DMA_DONE)
1006 mas->rx_rem_bytes = 0;
1007 if (dma_tx_status & TX_RESET_DONE)
1008 complete(&mas->tx_reset_done);
1009 if (dma_rx_status & RX_RESET_DONE)
1010 complete(&mas->rx_reset_done);
1011 if (!mas->tx_rem_bytes && !mas->rx_rem_bytes && xfer) {
1012 spi_finalize_current_transfer(ctlr: spi);
1013 mas->cur_xfer = NULL;
1014 }
1015 }
1016
1017 if (m_irq & M_CMD_CANCEL_EN)
1018 complete(&mas->cancel_done);
1019 if (m_irq & M_CMD_ABORT_EN)
1020 complete(&mas->abort_done);
1021
1022 /*
1023 * It's safe or a good idea to Ack all of our interrupts at the end
1024 * of the function. Specifically:
1025 * - M_CMD_DONE_EN / M_RX_FIFO_LAST_EN: Edge triggered interrupts and
1026 * clearing Acks. Clearing at the end relies on nobody else having
1027 * started a new transfer yet or else we could be clearing _their_
1028 * done bit, but everyone grabs the spinlock before starting a new
1029 * transfer.
1030 * - M_RX_FIFO_WATERMARK_EN / M_TX_FIFO_WATERMARK_EN: These appear
1031 * to be "latched level" interrupts so it's important to clear them
1032 * _after_ you've handled the condition and always safe to do so
1033 * since they'll re-assert if they're still happening.
1034 */
1035 writel(val: m_irq, addr: se->base + SE_GENI_M_IRQ_CLEAR);
1036
1037 spin_unlock(lock: &mas->lock);
1038
1039 return IRQ_HANDLED;
1040}
1041
1042static int spi_geni_probe(struct platform_device *pdev)
1043{
1044 int ret, irq;
1045 struct spi_controller *spi;
1046 struct spi_geni_master *mas;
1047 void __iomem *base;
1048 struct clk *clk;
1049 struct device *dev = &pdev->dev;
1050
1051 irq = platform_get_irq(pdev, 0);
1052 if (irq < 0)
1053 return irq;
1054
1055 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1056 if (ret)
1057 return dev_err_probe(dev, err: ret, fmt: "could not set DMA mask\n");
1058
1059 base = devm_platform_ioremap_resource(pdev, index: 0);
1060 if (IS_ERR(ptr: base))
1061 return PTR_ERR(ptr: base);
1062
1063 clk = devm_clk_get(dev, id: "se");
1064 if (IS_ERR(ptr: clk))
1065 return PTR_ERR(ptr: clk);
1066
1067 spi = devm_spi_alloc_host(dev, size: sizeof(*mas));
1068 if (!spi)
1069 return -ENOMEM;
1070
1071 platform_set_drvdata(pdev, data: spi);
1072 mas = spi_controller_get_devdata(ctlr: spi);
1073 mas->irq = irq;
1074 mas->dev = dev;
1075 mas->se.dev = dev;
1076 mas->se.wrapper = dev_get_drvdata(dev: dev->parent);
1077 mas->se.base = base;
1078 mas->se.clk = clk;
1079
1080 ret = devm_pm_opp_set_clkname(dev: &pdev->dev, name: "se");
1081 if (ret)
1082 return ret;
1083 /* OPP table is optional */
1084 ret = devm_pm_opp_of_add_table(dev: &pdev->dev);
1085 if (ret && ret != -ENODEV) {
1086 dev_err(&pdev->dev, "invalid OPP table in device tree\n");
1087 return ret;
1088 }
1089
1090 spi->bus_num = -1;
1091 spi->dev.of_node = dev->of_node;
1092 spi->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_CS_HIGH;
1093 spi->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1094 spi->num_chipselect = 4;
1095 spi->max_speed_hz = 50000000;
1096 spi->max_dma_len = 0xffff0; /* 24 bits for tx/rx dma length */
1097 spi->prepare_message = spi_geni_prepare_message;
1098 spi->transfer_one = spi_geni_transfer_one;
1099 spi->can_dma = geni_can_dma;
1100 spi->dma_map_dev = dev->parent;
1101 spi->auto_runtime_pm = true;
1102 spi->handle_err = spi_geni_handle_err;
1103 spi->use_gpio_descriptors = true;
1104
1105 init_completion(x: &mas->cs_done);
1106 init_completion(x: &mas->cancel_done);
1107 init_completion(x: &mas->abort_done);
1108 init_completion(x: &mas->tx_reset_done);
1109 init_completion(x: &mas->rx_reset_done);
1110 spin_lock_init(&mas->lock);
1111 pm_runtime_use_autosuspend(dev: &pdev->dev);
1112 pm_runtime_set_autosuspend_delay(dev: &pdev->dev, delay: 250);
1113 pm_runtime_enable(dev);
1114
1115 if (device_property_read_bool(dev: &pdev->dev, propname: "spi-slave"))
1116 spi->target = true;
1117
1118 ret = geni_icc_get(se: &mas->se, NULL);
1119 if (ret)
1120 goto spi_geni_probe_runtime_disable;
1121 /* Set the bus quota to a reasonable value for register access */
1122 mas->se.icc_paths[GENI_TO_CORE].avg_bw = Bps_to_icc(CORE_2X_50_MHZ);
1123 mas->se.icc_paths[CPU_TO_GENI].avg_bw = GENI_DEFAULT_BW;
1124
1125 ret = geni_icc_set_bw(se: &mas->se);
1126 if (ret)
1127 goto spi_geni_probe_runtime_disable;
1128
1129 ret = spi_geni_init(mas);
1130 if (ret)
1131 goto spi_geni_probe_runtime_disable;
1132
1133 /*
1134 * check the mode supported and set_cs for fifo mode only
1135 * for dma (gsi) mode, the gsi will set cs based on params passed in
1136 * TRE
1137 */
1138 if (!spi->target && mas->cur_xfer_mode == GENI_SE_FIFO)
1139 spi->set_cs = spi_geni_set_cs;
1140
1141 /*
1142 * TX is required per GSI spec, see setup_gsi_xfer().
1143 */
1144 if (mas->cur_xfer_mode == GENI_GPI_DMA)
1145 spi->flags = SPI_CONTROLLER_MUST_TX;
1146
1147 ret = request_irq(irq: mas->irq, handler: geni_spi_isr, flags: 0, name: dev_name(dev), dev: spi);
1148 if (ret)
1149 goto spi_geni_release_dma;
1150
1151 ret = spi_register_controller(ctlr: spi);
1152 if (ret)
1153 goto spi_geni_probe_free_irq;
1154
1155 return 0;
1156spi_geni_probe_free_irq:
1157 free_irq(mas->irq, spi);
1158spi_geni_release_dma:
1159 spi_geni_release_dma_chan(mas);
1160spi_geni_probe_runtime_disable:
1161 pm_runtime_disable(dev);
1162 return ret;
1163}
1164
1165static void spi_geni_remove(struct platform_device *pdev)
1166{
1167 struct spi_controller *spi = platform_get_drvdata(pdev);
1168 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
1169
1170 /* Unregister _before_ disabling pm_runtime() so we stop transfers */
1171 spi_unregister_controller(ctlr: spi);
1172
1173 spi_geni_release_dma_chan(mas);
1174
1175 free_irq(mas->irq, spi);
1176 pm_runtime_disable(dev: &pdev->dev);
1177}
1178
1179static int __maybe_unused spi_geni_runtime_suspend(struct device *dev)
1180{
1181 struct spi_controller *spi = dev_get_drvdata(dev);
1182 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
1183 int ret;
1184
1185 /* Drop the performance state vote */
1186 dev_pm_opp_set_rate(dev, target_freq: 0);
1187
1188 ret = geni_se_resources_off(se: &mas->se);
1189 if (ret)
1190 return ret;
1191
1192 return geni_icc_disable(se: &mas->se);
1193}
1194
1195static int __maybe_unused spi_geni_runtime_resume(struct device *dev)
1196{
1197 struct spi_controller *spi = dev_get_drvdata(dev);
1198 struct spi_geni_master *mas = spi_controller_get_devdata(ctlr: spi);
1199 int ret;
1200
1201 ret = geni_icc_enable(se: &mas->se);
1202 if (ret)
1203 return ret;
1204
1205 ret = geni_se_resources_on(se: &mas->se);
1206 if (ret)
1207 return ret;
1208
1209 return dev_pm_opp_set_rate(dev: mas->dev, target_freq: mas->cur_sclk_hz);
1210}
1211
1212static int __maybe_unused spi_geni_suspend(struct device *dev)
1213{
1214 struct spi_controller *spi = dev_get_drvdata(dev);
1215 int ret;
1216
1217 ret = spi_controller_suspend(ctlr: spi);
1218 if (ret)
1219 return ret;
1220
1221 ret = pm_runtime_force_suspend(dev);
1222 if (ret)
1223 spi_controller_resume(ctlr: spi);
1224
1225 return ret;
1226}
1227
1228static int __maybe_unused spi_geni_resume(struct device *dev)
1229{
1230 struct spi_controller *spi = dev_get_drvdata(dev);
1231 int ret;
1232
1233 ret = pm_runtime_force_resume(dev);
1234 if (ret)
1235 return ret;
1236
1237 ret = spi_controller_resume(ctlr: spi);
1238 if (ret)
1239 pm_runtime_force_suspend(dev);
1240
1241 return ret;
1242}
1243
1244static const struct dev_pm_ops spi_geni_pm_ops = {
1245 SET_RUNTIME_PM_OPS(spi_geni_runtime_suspend,
1246 spi_geni_runtime_resume, NULL)
1247 SET_SYSTEM_SLEEP_PM_OPS(spi_geni_suspend, spi_geni_resume)
1248};
1249
1250static const struct of_device_id spi_geni_dt_match[] = {
1251 { .compatible = "qcom,geni-spi" },
1252 {}
1253};
1254MODULE_DEVICE_TABLE(of, spi_geni_dt_match);
1255
1256static struct platform_driver spi_geni_driver = {
1257 .probe = spi_geni_probe,
1258 .remove_new = spi_geni_remove,
1259 .driver = {
1260 .name = "geni_spi",
1261 .pm = &spi_geni_pm_ops,
1262 .of_match_table = spi_geni_dt_match,
1263 },
1264};
1265module_platform_driver(spi_geni_driver);
1266
1267MODULE_DESCRIPTION("SPI driver for GENI based QUP cores");
1268MODULE_LICENSE("GPL v2");
1269

source code of linux/drivers/spi/spi-geni-qcom.c