1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Driver for AMBA serial ports
4 *
5 * Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
6 *
7 * Copyright 1999 ARM Limited
8 * Copyright (C) 2000 Deep Blue Solutions Ltd.
9 * Copyright (C) 2010 ST-Ericsson SA
10 *
11 * This is a generic driver for ARM AMBA-type serial ports. They
12 * have a lot of 16550-like features, but are not register compatible.
13 * Note that although they do have CTS, DCD and DSR inputs, they do
14 * not have an RI input, nor do they have DTR or RTS outputs. If
15 * required, these have to be supplied via some other means (eg, GPIO)
16 * and hooked into this driver.
17 */
18
19#include <linux/module.h>
20#include <linux/ioport.h>
21#include <linux/init.h>
22#include <linux/console.h>
23#include <linux/platform_device.h>
24#include <linux/sysrq.h>
25#include <linux/device.h>
26#include <linux/tty.h>
27#include <linux/tty_flip.h>
28#include <linux/serial_core.h>
29#include <linux/serial.h>
30#include <linux/amba/bus.h>
31#include <linux/amba/serial.h>
32#include <linux/clk.h>
33#include <linux/slab.h>
34#include <linux/dmaengine.h>
35#include <linux/dma-mapping.h>
36#include <linux/scatterlist.h>
37#include <linux/delay.h>
38#include <linux/types.h>
39#include <linux/of.h>
40#include <linux/pinctrl/consumer.h>
41#include <linux/sizes.h>
42#include <linux/io.h>
43#include <linux/acpi.h>
44
45#define UART_NR 14
46
47#define SERIAL_AMBA_MAJOR 204
48#define SERIAL_AMBA_MINOR 64
49#define SERIAL_AMBA_NR UART_NR
50
51#define AMBA_ISR_PASS_LIMIT 256
52
53#define UART_DR_ERROR (UART011_DR_OE | UART011_DR_BE | UART011_DR_PE | UART011_DR_FE)
54#define UART_DUMMY_DR_RX BIT(16)
55
56enum {
57 REG_DR,
58 REG_ST_DMAWM,
59 REG_ST_TIMEOUT,
60 REG_FR,
61 REG_LCRH_RX,
62 REG_LCRH_TX,
63 REG_IBRD,
64 REG_FBRD,
65 REG_CR,
66 REG_IFLS,
67 REG_IMSC,
68 REG_RIS,
69 REG_MIS,
70 REG_ICR,
71 REG_DMACR,
72 REG_ST_XFCR,
73 REG_ST_XON1,
74 REG_ST_XON2,
75 REG_ST_XOFF1,
76 REG_ST_XOFF2,
77 REG_ST_ITCR,
78 REG_ST_ITIP,
79 REG_ST_ABCR,
80 REG_ST_ABIMSC,
81
82 /* The size of the array - must be last */
83 REG_ARRAY_SIZE,
84};
85
86static u16 pl011_std_offsets[REG_ARRAY_SIZE] = {
87 [REG_DR] = UART01x_DR,
88 [REG_FR] = UART01x_FR,
89 [REG_LCRH_RX] = UART011_LCRH,
90 [REG_LCRH_TX] = UART011_LCRH,
91 [REG_IBRD] = UART011_IBRD,
92 [REG_FBRD] = UART011_FBRD,
93 [REG_CR] = UART011_CR,
94 [REG_IFLS] = UART011_IFLS,
95 [REG_IMSC] = UART011_IMSC,
96 [REG_RIS] = UART011_RIS,
97 [REG_MIS] = UART011_MIS,
98 [REG_ICR] = UART011_ICR,
99 [REG_DMACR] = UART011_DMACR,
100};
101
102/* There is by now at least one vendor with differing details, so handle it */
103struct vendor_data {
104 const u16 *reg_offset;
105 unsigned int ifls;
106 unsigned int fr_busy;
107 unsigned int fr_dsr;
108 unsigned int fr_cts;
109 unsigned int fr_ri;
110 unsigned int inv_fr;
111 bool access_32b;
112 bool oversampling;
113 bool dma_threshold;
114 bool cts_event_workaround;
115 bool always_enabled;
116 bool fixed_options;
117
118 unsigned int (*get_fifosize)(struct amba_device *dev);
119};
120
121static unsigned int get_fifosize_arm(struct amba_device *dev)
122{
123 return amba_rev(dev) < 3 ? 16 : 32;
124}
125
126static struct vendor_data vendor_arm = {
127 .reg_offset = pl011_std_offsets,
128 .ifls = UART011_IFLS_RX4_8 | UART011_IFLS_TX4_8,
129 .fr_busy = UART01x_FR_BUSY,
130 .fr_dsr = UART01x_FR_DSR,
131 .fr_cts = UART01x_FR_CTS,
132 .fr_ri = UART011_FR_RI,
133 .oversampling = false,
134 .dma_threshold = false,
135 .cts_event_workaround = false,
136 .always_enabled = false,
137 .fixed_options = false,
138 .get_fifosize = get_fifosize_arm,
139};
140
141static const struct vendor_data vendor_sbsa = {
142 .reg_offset = pl011_std_offsets,
143 .fr_busy = UART01x_FR_BUSY,
144 .fr_dsr = UART01x_FR_DSR,
145 .fr_cts = UART01x_FR_CTS,
146 .fr_ri = UART011_FR_RI,
147 .access_32b = true,
148 .oversampling = false,
149 .dma_threshold = false,
150 .cts_event_workaround = false,
151 .always_enabled = true,
152 .fixed_options = true,
153};
154
155#ifdef CONFIG_ACPI_SPCR_TABLE
156static const struct vendor_data vendor_qdt_qdf2400_e44 = {
157 .reg_offset = pl011_std_offsets,
158 .fr_busy = UART011_FR_TXFE,
159 .fr_dsr = UART01x_FR_DSR,
160 .fr_cts = UART01x_FR_CTS,
161 .fr_ri = UART011_FR_RI,
162 .inv_fr = UART011_FR_TXFE,
163 .access_32b = true,
164 .oversampling = false,
165 .dma_threshold = false,
166 .cts_event_workaround = false,
167 .always_enabled = true,
168 .fixed_options = true,
169};
170#endif
171
172static u16 pl011_st_offsets[REG_ARRAY_SIZE] = {
173 [REG_DR] = UART01x_DR,
174 [REG_ST_DMAWM] = ST_UART011_DMAWM,
175 [REG_ST_TIMEOUT] = ST_UART011_TIMEOUT,
176 [REG_FR] = UART01x_FR,
177 [REG_LCRH_RX] = ST_UART011_LCRH_RX,
178 [REG_LCRH_TX] = ST_UART011_LCRH_TX,
179 [REG_IBRD] = UART011_IBRD,
180 [REG_FBRD] = UART011_FBRD,
181 [REG_CR] = UART011_CR,
182 [REG_IFLS] = UART011_IFLS,
183 [REG_IMSC] = UART011_IMSC,
184 [REG_RIS] = UART011_RIS,
185 [REG_MIS] = UART011_MIS,
186 [REG_ICR] = UART011_ICR,
187 [REG_DMACR] = UART011_DMACR,
188 [REG_ST_XFCR] = ST_UART011_XFCR,
189 [REG_ST_XON1] = ST_UART011_XON1,
190 [REG_ST_XON2] = ST_UART011_XON2,
191 [REG_ST_XOFF1] = ST_UART011_XOFF1,
192 [REG_ST_XOFF2] = ST_UART011_XOFF2,
193 [REG_ST_ITCR] = ST_UART011_ITCR,
194 [REG_ST_ITIP] = ST_UART011_ITIP,
195 [REG_ST_ABCR] = ST_UART011_ABCR,
196 [REG_ST_ABIMSC] = ST_UART011_ABIMSC,
197};
198
199static unsigned int get_fifosize_st(struct amba_device *dev)
200{
201 return 64;
202}
203
204static struct vendor_data vendor_st = {
205 .reg_offset = pl011_st_offsets,
206 .ifls = UART011_IFLS_RX_HALF | UART011_IFLS_TX_HALF,
207 .fr_busy = UART01x_FR_BUSY,
208 .fr_dsr = UART01x_FR_DSR,
209 .fr_cts = UART01x_FR_CTS,
210 .fr_ri = UART011_FR_RI,
211 .oversampling = true,
212 .dma_threshold = true,
213 .cts_event_workaround = true,
214 .always_enabled = false,
215 .fixed_options = false,
216 .get_fifosize = get_fifosize_st,
217};
218
219/* Deals with DMA transactions */
220
221struct pl011_dmabuf {
222 dma_addr_t dma;
223 size_t len;
224 char *buf;
225};
226
227struct pl011_dmarx_data {
228 struct dma_chan *chan;
229 struct completion complete;
230 bool use_buf_b;
231 struct pl011_dmabuf dbuf_a;
232 struct pl011_dmabuf dbuf_b;
233 dma_cookie_t cookie;
234 bool running;
235 struct timer_list timer;
236 unsigned int last_residue;
237 unsigned long last_jiffies;
238 bool auto_poll_rate;
239 unsigned int poll_rate;
240 unsigned int poll_timeout;
241};
242
243struct pl011_dmatx_data {
244 struct dma_chan *chan;
245 dma_addr_t dma;
246 size_t len;
247 char *buf;
248 bool queued;
249};
250
251/*
252 * We wrap our port structure around the generic uart_port.
253 */
254struct uart_amba_port {
255 struct uart_port port;
256 const u16 *reg_offset;
257 struct clk *clk;
258 const struct vendor_data *vendor;
259 unsigned int dmacr; /* dma control reg */
260 unsigned int im; /* interrupt mask */
261 unsigned int old_status;
262 unsigned int fifosize; /* vendor-specific */
263 unsigned int fixed_baud; /* vendor-set fixed baud rate */
264 char type[12];
265 bool rs485_tx_started;
266 unsigned int rs485_tx_drain_interval; /* usecs */
267#ifdef CONFIG_DMA_ENGINE
268 /* DMA stuff */
269 bool using_tx_dma;
270 bool using_rx_dma;
271 struct pl011_dmarx_data dmarx;
272 struct pl011_dmatx_data dmatx;
273 bool dma_probed;
274#endif
275};
276
277static unsigned int pl011_tx_empty(struct uart_port *port);
278
279static unsigned int pl011_reg_to_offset(const struct uart_amba_port *uap,
280 unsigned int reg)
281{
282 return uap->reg_offset[reg];
283}
284
285static unsigned int pl011_read(const struct uart_amba_port *uap,
286 unsigned int reg)
287{
288 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
289
290 return (uap->port.iotype == UPIO_MEM32) ?
291 readl_relaxed(addr) : readw_relaxed(addr);
292}
293
294static void pl011_write(unsigned int val, const struct uart_amba_port *uap,
295 unsigned int reg)
296{
297 void __iomem *addr = uap->port.membase + pl011_reg_to_offset(uap, reg);
298
299 if (uap->port.iotype == UPIO_MEM32)
300 writel_relaxed(val, addr);
301 else
302 writew_relaxed(val, addr);
303}
304
305/*
306 * Reads up to 256 characters from the FIFO or until it's empty and
307 * inserts them into the TTY layer. Returns the number of characters
308 * read from the FIFO.
309 */
310static int pl011_fifo_to_tty(struct uart_amba_port *uap)
311{
312 unsigned int ch, fifotaken;
313 int sysrq;
314 u16 status;
315 u8 flag;
316
317 for (fifotaken = 0; fifotaken != 256; fifotaken++) {
318 status = pl011_read(uap, reg: REG_FR);
319 if (status & UART01x_FR_RXFE)
320 break;
321
322 /* Take chars from the FIFO and update status */
323 ch = pl011_read(uap, reg: REG_DR) | UART_DUMMY_DR_RX;
324 flag = TTY_NORMAL;
325 uap->port.icount.rx++;
326
327 if (unlikely(ch & UART_DR_ERROR)) {
328 if (ch & UART011_DR_BE) {
329 ch &= ~(UART011_DR_FE | UART011_DR_PE);
330 uap->port.icount.brk++;
331 if (uart_handle_break(port: &uap->port))
332 continue;
333 } else if (ch & UART011_DR_PE) {
334 uap->port.icount.parity++;
335 } else if (ch & UART011_DR_FE) {
336 uap->port.icount.frame++;
337 }
338 if (ch & UART011_DR_OE)
339 uap->port.icount.overrun++;
340
341 ch &= uap->port.read_status_mask;
342
343 if (ch & UART011_DR_BE)
344 flag = TTY_BREAK;
345 else if (ch & UART011_DR_PE)
346 flag = TTY_PARITY;
347 else if (ch & UART011_DR_FE)
348 flag = TTY_FRAME;
349 }
350
351 sysrq = uart_prepare_sysrq_char(port: &uap->port, ch: ch & 255);
352 if (!sysrq)
353 uart_insert_char(port: &uap->port, status: ch, UART011_DR_OE, ch, flag);
354 }
355
356 return fifotaken;
357}
358
359/*
360 * All the DMA operation mode stuff goes inside this ifdef.
361 * This assumes that you have a generic DMA device interface,
362 * no custom DMA interfaces are supported.
363 */
364#ifdef CONFIG_DMA_ENGINE
365
366#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
367
368static int pl011_dmabuf_init(struct dma_chan *chan, struct pl011_dmabuf *db,
369 enum dma_data_direction dir)
370{
371 db->buf = dma_alloc_coherent(dev: chan->device->dev, PL011_DMA_BUFFER_SIZE,
372 dma_handle: &db->dma, GFP_KERNEL);
373 if (!db->buf)
374 return -ENOMEM;
375 db->len = PL011_DMA_BUFFER_SIZE;
376
377 return 0;
378}
379
380static void pl011_dmabuf_free(struct dma_chan *chan, struct pl011_dmabuf *db,
381 enum dma_data_direction dir)
382{
383 if (db->buf) {
384 dma_free_coherent(dev: chan->device->dev,
385 PL011_DMA_BUFFER_SIZE, cpu_addr: db->buf, dma_handle: db->dma);
386 }
387}
388
389static void pl011_dma_probe(struct uart_amba_port *uap)
390{
391 /* DMA is the sole user of the platform data right now */
392 struct amba_pl011_data *plat = dev_get_platdata(dev: uap->port.dev);
393 struct device *dev = uap->port.dev;
394 struct dma_slave_config tx_conf = {
395 .dst_addr = uap->port.mapbase +
396 pl011_reg_to_offset(uap, reg: REG_DR),
397 .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
398 .direction = DMA_MEM_TO_DEV,
399 .dst_maxburst = uap->fifosize >> 1,
400 .device_fc = false,
401 };
402 struct dma_chan *chan;
403 dma_cap_mask_t mask;
404
405 uap->dma_probed = true;
406 chan = dma_request_chan(dev, name: "tx");
407 if (IS_ERR(ptr: chan)) {
408 if (PTR_ERR(ptr: chan) == -EPROBE_DEFER) {
409 uap->dma_probed = false;
410 return;
411 }
412
413 /* We need platform data */
414 if (!plat || !plat->dma_filter) {
415 dev_dbg(uap->port.dev, "no DMA platform data\n");
416 return;
417 }
418
419 /* Try to acquire a generic DMA engine slave TX channel */
420 dma_cap_zero(mask);
421 dma_cap_set(DMA_SLAVE, mask);
422
423 chan = dma_request_channel(mask, plat->dma_filter,
424 plat->dma_tx_param);
425 if (!chan) {
426 dev_err(uap->port.dev, "no TX DMA channel!\n");
427 return;
428 }
429 }
430
431 dmaengine_slave_config(chan, config: &tx_conf);
432 uap->dmatx.chan = chan;
433
434 dev_info(uap->port.dev, "DMA channel TX %s\n",
435 dma_chan_name(uap->dmatx.chan));
436
437 /* Optionally make use of an RX channel as well */
438 chan = dma_request_chan(dev, name: "rx");
439
440 if (IS_ERR(ptr: chan) && plat && plat->dma_rx_param) {
441 chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
442
443 if (!chan) {
444 dev_err(uap->port.dev, "no RX DMA channel!\n");
445 return;
446 }
447 }
448
449 if (!IS_ERR(ptr: chan)) {
450 struct dma_slave_config rx_conf = {
451 .src_addr = uap->port.mapbase +
452 pl011_reg_to_offset(uap, reg: REG_DR),
453 .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
454 .direction = DMA_DEV_TO_MEM,
455 .src_maxburst = uap->fifosize >> 2,
456 .device_fc = false,
457 };
458 struct dma_slave_caps caps;
459
460 /*
461 * Some DMA controllers provide information on their capabilities.
462 * If the controller does, check for suitable residue processing
463 * otherwise assime all is well.
464 */
465 if (dma_get_slave_caps(chan, caps: &caps) == 0) {
466 if (caps.residue_granularity ==
467 DMA_RESIDUE_GRANULARITY_DESCRIPTOR) {
468 dma_release_channel(chan);
469 dev_info(uap->port.dev,
470 "RX DMA disabled - no residue processing\n");
471 return;
472 }
473 }
474 dmaengine_slave_config(chan, config: &rx_conf);
475 uap->dmarx.chan = chan;
476
477 uap->dmarx.auto_poll_rate = false;
478 if (plat && plat->dma_rx_poll_enable) {
479 /* Set poll rate if specified. */
480 if (plat->dma_rx_poll_rate) {
481 uap->dmarx.auto_poll_rate = false;
482 uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
483 } else {
484 /*
485 * 100 ms defaults to poll rate if not
486 * specified. This will be adjusted with
487 * the baud rate at set_termios.
488 */
489 uap->dmarx.auto_poll_rate = true;
490 uap->dmarx.poll_rate = 100;
491 }
492 /* 3 secs defaults poll_timeout if not specified. */
493 if (plat->dma_rx_poll_timeout)
494 uap->dmarx.poll_timeout =
495 plat->dma_rx_poll_timeout;
496 else
497 uap->dmarx.poll_timeout = 3000;
498 } else if (!plat && dev->of_node) {
499 uap->dmarx.auto_poll_rate =
500 of_property_read_bool(np: dev->of_node, propname: "auto-poll");
501 if (uap->dmarx.auto_poll_rate) {
502 u32 x;
503
504 if (of_property_read_u32(np: dev->of_node, propname: "poll-rate-ms", out_value: &x) == 0)
505 uap->dmarx.poll_rate = x;
506 else
507 uap->dmarx.poll_rate = 100;
508 if (of_property_read_u32(np: dev->of_node, propname: "poll-timeout-ms", out_value: &x) == 0)
509 uap->dmarx.poll_timeout = x;
510 else
511 uap->dmarx.poll_timeout = 3000;
512 }
513 }
514 dev_info(uap->port.dev, "DMA channel RX %s\n",
515 dma_chan_name(uap->dmarx.chan));
516 }
517}
518
519static void pl011_dma_remove(struct uart_amba_port *uap)
520{
521 if (uap->dmatx.chan)
522 dma_release_channel(chan: uap->dmatx.chan);
523 if (uap->dmarx.chan)
524 dma_release_channel(chan: uap->dmarx.chan);
525}
526
527/* Forward declare these for the refill routine */
528static int pl011_dma_tx_refill(struct uart_amba_port *uap);
529static void pl011_start_tx_pio(struct uart_amba_port *uap);
530
531/*
532 * The current DMA TX buffer has been sent.
533 * Try to queue up another DMA buffer.
534 */
535static void pl011_dma_tx_callback(void *data)
536{
537 struct uart_amba_port *uap = data;
538 struct pl011_dmatx_data *dmatx = &uap->dmatx;
539 unsigned long flags;
540 u16 dmacr;
541
542 uart_port_lock_irqsave(up: &uap->port, flags: &flags);
543 if (uap->dmatx.queued)
544 dma_unmap_single(dmatx->chan->device->dev, dmatx->dma,
545 dmatx->len, DMA_TO_DEVICE);
546
547 dmacr = uap->dmacr;
548 uap->dmacr = dmacr & ~UART011_TXDMAE;
549 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
550
551 /*
552 * If TX DMA was disabled, it means that we've stopped the DMA for
553 * some reason (eg, XOFF received, or we want to send an X-char.)
554 *
555 * Note: we need to be careful here of a potential race between DMA
556 * and the rest of the driver - if the driver disables TX DMA while
557 * a TX buffer completing, we must update the tx queued status to
558 * get further refills (hence we check dmacr).
559 */
560 if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(port: &uap->port) ||
561 uart_circ_empty(&uap->port.state->xmit)) {
562 uap->dmatx.queued = false;
563 uart_port_unlock_irqrestore(up: &uap->port, flags);
564 return;
565 }
566
567 if (pl011_dma_tx_refill(uap) <= 0)
568 /*
569 * We didn't queue a DMA buffer for some reason, but we
570 * have data pending to be sent. Re-enable the TX IRQ.
571 */
572 pl011_start_tx_pio(uap);
573
574 uart_port_unlock_irqrestore(up: &uap->port, flags);
575}
576
577/*
578 * Try to refill the TX DMA buffer.
579 * Locking: called with port lock held and IRQs disabled.
580 * Returns:
581 * 1 if we queued up a TX DMA buffer.
582 * 0 if we didn't want to handle this by DMA
583 * <0 on error
584 */
585static int pl011_dma_tx_refill(struct uart_amba_port *uap)
586{
587 struct pl011_dmatx_data *dmatx = &uap->dmatx;
588 struct dma_chan *chan = dmatx->chan;
589 struct dma_device *dma_dev = chan->device;
590 struct dma_async_tx_descriptor *desc;
591 struct circ_buf *xmit = &uap->port.state->xmit;
592 unsigned int count;
593
594 /*
595 * Try to avoid the overhead involved in using DMA if the
596 * transaction fits in the first half of the FIFO, by using
597 * the standard interrupt handling. This ensures that we
598 * issue a uart_write_wakeup() at the appropriate time.
599 */
600 count = uart_circ_chars_pending(xmit);
601 if (count < (uap->fifosize >> 1)) {
602 uap->dmatx.queued = false;
603 return 0;
604 }
605
606 /*
607 * Bodge: don't send the last character by DMA, as this
608 * will prevent XON from notifying us to restart DMA.
609 */
610 count -= 1;
611
612 /* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
613 if (count > PL011_DMA_BUFFER_SIZE)
614 count = PL011_DMA_BUFFER_SIZE;
615
616 if (xmit->tail < xmit->head) {
617 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
618 } else {
619 size_t first = UART_XMIT_SIZE - xmit->tail;
620 size_t second;
621
622 if (first > count)
623 first = count;
624 second = count - first;
625
626 memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
627 if (second)
628 memcpy(&dmatx->buf[first], &xmit->buf[0], second);
629 }
630
631 dmatx->len = count;
632 dmatx->dma = dma_map_single(dma_dev->dev, dmatx->buf, count,
633 DMA_TO_DEVICE);
634 if (dmatx->dma == DMA_MAPPING_ERROR) {
635 uap->dmatx.queued = false;
636 dev_dbg(uap->port.dev, "unable to map TX DMA\n");
637 return -EBUSY;
638 }
639
640 desc = dmaengine_prep_slave_single(chan, buf: dmatx->dma, len: dmatx->len, dir: DMA_MEM_TO_DEV,
641 flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
642 if (!desc) {
643 dma_unmap_single(dma_dev->dev, dmatx->dma, dmatx->len, DMA_TO_DEVICE);
644 uap->dmatx.queued = false;
645 /*
646 * If DMA cannot be used right now, we complete this
647 * transaction via IRQ and let the TTY layer retry.
648 */
649 dev_dbg(uap->port.dev, "TX DMA busy\n");
650 return -EBUSY;
651 }
652
653 /* Some data to go along to the callback */
654 desc->callback = pl011_dma_tx_callback;
655 desc->callback_param = uap;
656
657 /* All errors should happen at prepare time */
658 dmaengine_submit(desc);
659
660 /* Fire the DMA transaction */
661 dma_dev->device_issue_pending(chan);
662
663 uap->dmacr |= UART011_TXDMAE;
664 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
665 uap->dmatx.queued = true;
666
667 /*
668 * Now we know that DMA will fire, so advance the ring buffer
669 * with the stuff we just dispatched.
670 */
671 uart_xmit_advance(up: &uap->port, chars: count);
672
673 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
674 uart_write_wakeup(port: &uap->port);
675
676 return 1;
677}
678
679/*
680 * We received a transmit interrupt without a pending X-char but with
681 * pending characters.
682 * Locking: called with port lock held and IRQs disabled.
683 * Returns:
684 * false if we want to use PIO to transmit
685 * true if we queued a DMA buffer
686 */
687static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
688{
689 if (!uap->using_tx_dma)
690 return false;
691
692 /*
693 * If we already have a TX buffer queued, but received a
694 * TX interrupt, it will be because we've just sent an X-char.
695 * Ensure the TX DMA is enabled and the TX IRQ is disabled.
696 */
697 if (uap->dmatx.queued) {
698 uap->dmacr |= UART011_TXDMAE;
699 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
700 uap->im &= ~UART011_TXIM;
701 pl011_write(val: uap->im, uap, reg: REG_IMSC);
702 return true;
703 }
704
705 /*
706 * We don't have a TX buffer queued, so try to queue one.
707 * If we successfully queued a buffer, mask the TX IRQ.
708 */
709 if (pl011_dma_tx_refill(uap) > 0) {
710 uap->im &= ~UART011_TXIM;
711 pl011_write(val: uap->im, uap, reg: REG_IMSC);
712 return true;
713 }
714 return false;
715}
716
717/*
718 * Stop the DMA transmit (eg, due to received XOFF).
719 * Locking: called with port lock held and IRQs disabled.
720 */
721static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
722{
723 if (uap->dmatx.queued) {
724 uap->dmacr &= ~UART011_TXDMAE;
725 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
726 }
727}
728
729/*
730 * Try to start a DMA transmit, or in the case of an XON/OFF
731 * character queued for send, try to get that character out ASAP.
732 * Locking: called with port lock held and IRQs disabled.
733 * Returns:
734 * false if we want the TX IRQ to be enabled
735 * true if we have a buffer queued
736 */
737static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
738{
739 u16 dmacr;
740
741 if (!uap->using_tx_dma)
742 return false;
743
744 if (!uap->port.x_char) {
745 /* no X-char, try to push chars out in DMA mode */
746 bool ret = true;
747
748 if (!uap->dmatx.queued) {
749 if (pl011_dma_tx_refill(uap) > 0) {
750 uap->im &= ~UART011_TXIM;
751 pl011_write(val: uap->im, uap, reg: REG_IMSC);
752 } else {
753 ret = false;
754 }
755 } else if (!(uap->dmacr & UART011_TXDMAE)) {
756 uap->dmacr |= UART011_TXDMAE;
757 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
758 }
759 return ret;
760 }
761
762 /*
763 * We have an X-char to send. Disable DMA to prevent it loading
764 * the TX fifo, and then see if we can stuff it into the FIFO.
765 */
766 dmacr = uap->dmacr;
767 uap->dmacr &= ~UART011_TXDMAE;
768 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
769
770 if (pl011_read(uap, reg: REG_FR) & UART01x_FR_TXFF) {
771 /*
772 * No space in the FIFO, so enable the transmit interrupt
773 * so we know when there is space. Note that once we've
774 * loaded the character, we should just re-enable DMA.
775 */
776 return false;
777 }
778
779 pl011_write(val: uap->port.x_char, uap, reg: REG_DR);
780 uap->port.icount.tx++;
781 uap->port.x_char = 0;
782
783 /* Success - restore the DMA state */
784 uap->dmacr = dmacr;
785 pl011_write(val: dmacr, uap, reg: REG_DMACR);
786
787 return true;
788}
789
790/*
791 * Flush the transmit buffer.
792 * Locking: called with port lock held and IRQs disabled.
793 */
794static void pl011_dma_flush_buffer(struct uart_port *port)
795__releases(&uap->port.lock)
796__acquires(&uap->port.lock)
797{
798 struct uart_amba_port *uap =
799 container_of(port, struct uart_amba_port, port);
800
801 if (!uap->using_tx_dma)
802 return;
803
804 dmaengine_terminate_async(chan: uap->dmatx.chan);
805
806 if (uap->dmatx.queued) {
807 dma_unmap_single(uap->dmatx.chan->device->dev, uap->dmatx.dma,
808 uap->dmatx.len, DMA_TO_DEVICE);
809 uap->dmatx.queued = false;
810 uap->dmacr &= ~UART011_TXDMAE;
811 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
812 }
813}
814
815static void pl011_dma_rx_callback(void *data);
816
817static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
818{
819 struct dma_chan *rxchan = uap->dmarx.chan;
820 struct pl011_dmarx_data *dmarx = &uap->dmarx;
821 struct dma_async_tx_descriptor *desc;
822 struct pl011_dmabuf *dbuf;
823
824 if (!rxchan)
825 return -EIO;
826
827 /* Start the RX DMA job */
828 dbuf = uap->dmarx.use_buf_b ?
829 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
830 desc = dmaengine_prep_slave_single(chan: rxchan, buf: dbuf->dma, len: dbuf->len,
831 dir: DMA_DEV_TO_MEM,
832 flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
833 /*
834 * If the DMA engine is busy and cannot prepare a
835 * channel, no big deal, the driver will fall back
836 * to interrupt mode as a result of this error code.
837 */
838 if (!desc) {
839 uap->dmarx.running = false;
840 dmaengine_terminate_all(chan: rxchan);
841 return -EBUSY;
842 }
843
844 /* Some data to go along to the callback */
845 desc->callback = pl011_dma_rx_callback;
846 desc->callback_param = uap;
847 dmarx->cookie = dmaengine_submit(desc);
848 dma_async_issue_pending(chan: rxchan);
849
850 uap->dmacr |= UART011_RXDMAE;
851 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
852 uap->dmarx.running = true;
853
854 uap->im &= ~UART011_RXIM;
855 pl011_write(val: uap->im, uap, reg: REG_IMSC);
856
857 return 0;
858}
859
860/*
861 * This is called when either the DMA job is complete, or
862 * the FIFO timeout interrupt occurred. This must be called
863 * with the port spinlock uap->port.lock held.
864 */
865static void pl011_dma_rx_chars(struct uart_amba_port *uap,
866 u32 pending, bool use_buf_b,
867 bool readfifo)
868{
869 struct tty_port *port = &uap->port.state->port;
870 struct pl011_dmabuf *dbuf = use_buf_b ?
871 &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
872 int dma_count = 0;
873 u32 fifotaken = 0; /* only used for vdbg() */
874
875 struct pl011_dmarx_data *dmarx = &uap->dmarx;
876 int dmataken = 0;
877
878 if (uap->dmarx.poll_rate) {
879 /* The data can be taken by polling */
880 dmataken = dbuf->len - dmarx->last_residue;
881 /* Recalculate the pending size */
882 if (pending >= dmataken)
883 pending -= dmataken;
884 }
885
886 /* Pick the remain data from the DMA */
887 if (pending) {
888 /*
889 * First take all chars in the DMA pipe, then look in the FIFO.
890 * Note that tty_insert_flip_buf() tries to take as many chars
891 * as it can.
892 */
893 dma_count = tty_insert_flip_string(port, chars: dbuf->buf + dmataken, size: pending);
894
895 uap->port.icount.rx += dma_count;
896 if (dma_count < pending)
897 dev_warn(uap->port.dev,
898 "couldn't insert all characters (TTY is full?)\n");
899 }
900
901 /* Reset the last_residue for Rx DMA poll */
902 if (uap->dmarx.poll_rate)
903 dmarx->last_residue = dbuf->len;
904
905 /*
906 * Only continue with trying to read the FIFO if all DMA chars have
907 * been taken first.
908 */
909 if (dma_count == pending && readfifo) {
910 /* Clear any error flags */
911 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
912 UART011_FEIS, uap, reg: REG_ICR);
913
914 /*
915 * If we read all the DMA'd characters, and we had an
916 * incomplete buffer, that could be due to an rx error, or
917 * maybe we just timed out. Read any pending chars and check
918 * the error status.
919 *
920 * Error conditions will only occur in the FIFO, these will
921 * trigger an immediate interrupt and stop the DMA job, so we
922 * will always find the error in the FIFO, never in the DMA
923 * buffer.
924 */
925 fifotaken = pl011_fifo_to_tty(uap);
926 }
927
928 dev_vdbg(uap->port.dev,
929 "Took %d chars from DMA buffer and %d chars from the FIFO\n",
930 dma_count, fifotaken);
931 tty_flip_buffer_push(port);
932}
933
934static void pl011_dma_rx_irq(struct uart_amba_port *uap)
935{
936 struct pl011_dmarx_data *dmarx = &uap->dmarx;
937 struct dma_chan *rxchan = dmarx->chan;
938 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
939 &dmarx->dbuf_b : &dmarx->dbuf_a;
940 size_t pending;
941 struct dma_tx_state state;
942 enum dma_status dmastat;
943
944 /*
945 * Pause the transfer so we can trust the current counter,
946 * do this before we pause the PL011 block, else we may
947 * overflow the FIFO.
948 */
949 if (dmaengine_pause(chan: rxchan))
950 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
951 dmastat = rxchan->device->device_tx_status(rxchan,
952 dmarx->cookie, &state);
953 if (dmastat != DMA_PAUSED)
954 dev_err(uap->port.dev, "unable to pause DMA transfer\n");
955
956 /* Disable RX DMA - incoming data will wait in the FIFO */
957 uap->dmacr &= ~UART011_RXDMAE;
958 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
959 uap->dmarx.running = false;
960
961 pending = dbuf->len - state.residue;
962 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
963 /* Then we terminate the transfer - we now know our residue */
964 dmaengine_terminate_all(chan: rxchan);
965
966 /*
967 * This will take the chars we have so far and insert
968 * into the framework.
969 */
970 pl011_dma_rx_chars(uap, pending, use_buf_b: dmarx->use_buf_b, readfifo: true);
971
972 /* Switch buffer & re-trigger DMA job */
973 dmarx->use_buf_b = !dmarx->use_buf_b;
974 if (pl011_dma_rx_trigger_dma(uap)) {
975 dev_dbg(uap->port.dev,
976 "could not retrigger RX DMA job fall back to interrupt mode\n");
977 uap->im |= UART011_RXIM;
978 pl011_write(val: uap->im, uap, reg: REG_IMSC);
979 }
980}
981
982static void pl011_dma_rx_callback(void *data)
983{
984 struct uart_amba_port *uap = data;
985 struct pl011_dmarx_data *dmarx = &uap->dmarx;
986 struct dma_chan *rxchan = dmarx->chan;
987 bool lastbuf = dmarx->use_buf_b;
988 struct pl011_dmabuf *dbuf = dmarx->use_buf_b ?
989 &dmarx->dbuf_b : &dmarx->dbuf_a;
990 size_t pending;
991 struct dma_tx_state state;
992 int ret;
993
994 /*
995 * This completion interrupt occurs typically when the
996 * RX buffer is totally stuffed but no timeout has yet
997 * occurred. When that happens, we just want the RX
998 * routine to flush out the secondary DMA buffer while
999 * we immediately trigger the next DMA job.
1000 */
1001 uart_port_lock_irq(up: &uap->port);
1002 /*
1003 * Rx data can be taken by the UART interrupts during
1004 * the DMA irq handler. So we check the residue here.
1005 */
1006 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1007 pending = dbuf->len - state.residue;
1008 BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
1009 /* Then we terminate the transfer - we now know our residue */
1010 dmaengine_terminate_all(chan: rxchan);
1011
1012 uap->dmarx.running = false;
1013 dmarx->use_buf_b = !lastbuf;
1014 ret = pl011_dma_rx_trigger_dma(uap);
1015
1016 pl011_dma_rx_chars(uap, pending, use_buf_b: lastbuf, readfifo: false);
1017 uart_unlock_and_check_sysrq(port: &uap->port);
1018 /*
1019 * Do this check after we picked the DMA chars so we don't
1020 * get some IRQ immediately from RX.
1021 */
1022 if (ret) {
1023 dev_dbg(uap->port.dev,
1024 "could not retrigger RX DMA job fall back to interrupt mode\n");
1025 uap->im |= UART011_RXIM;
1026 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1027 }
1028}
1029
1030/*
1031 * Stop accepting received characters, when we're shutting down or
1032 * suspending this port.
1033 * Locking: called with port lock held and IRQs disabled.
1034 */
1035static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1036{
1037 if (!uap->using_rx_dma)
1038 return;
1039
1040 /* FIXME. Just disable the DMA enable */
1041 uap->dmacr &= ~UART011_RXDMAE;
1042 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
1043}
1044
1045/*
1046 * Timer handler for Rx DMA polling.
1047 * Every polling, It checks the residue in the dma buffer and transfer
1048 * data to the tty. Also, last_residue is updated for the next polling.
1049 */
1050static void pl011_dma_rx_poll(struct timer_list *t)
1051{
1052 struct uart_amba_port *uap = from_timer(uap, t, dmarx.timer);
1053 struct tty_port *port = &uap->port.state->port;
1054 struct pl011_dmarx_data *dmarx = &uap->dmarx;
1055 struct dma_chan *rxchan = uap->dmarx.chan;
1056 unsigned long flags;
1057 unsigned int dmataken = 0;
1058 unsigned int size = 0;
1059 struct pl011_dmabuf *dbuf;
1060 int dma_count;
1061 struct dma_tx_state state;
1062
1063 dbuf = dmarx->use_buf_b ? &uap->dmarx.dbuf_b : &uap->dmarx.dbuf_a;
1064 rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
1065 if (likely(state.residue < dmarx->last_residue)) {
1066 dmataken = dbuf->len - dmarx->last_residue;
1067 size = dmarx->last_residue - state.residue;
1068 dma_count = tty_insert_flip_string(port, chars: dbuf->buf + dmataken,
1069 size);
1070 if (dma_count == size)
1071 dmarx->last_residue = state.residue;
1072 dmarx->last_jiffies = jiffies;
1073 }
1074 tty_flip_buffer_push(port);
1075
1076 /*
1077 * If no data is received in poll_timeout, the driver will fall back
1078 * to interrupt mode. We will retrigger DMA at the first interrupt.
1079 */
1080 if (jiffies_to_msecs(j: jiffies - dmarx->last_jiffies)
1081 > uap->dmarx.poll_timeout) {
1082 uart_port_lock_irqsave(up: &uap->port, flags: &flags);
1083 pl011_dma_rx_stop(uap);
1084 uap->im |= UART011_RXIM;
1085 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1086 uart_port_unlock_irqrestore(up: &uap->port, flags);
1087
1088 uap->dmarx.running = false;
1089 dmaengine_terminate_all(chan: rxchan);
1090 del_timer(timer: &uap->dmarx.timer);
1091 } else {
1092 mod_timer(timer: &uap->dmarx.timer,
1093 expires: jiffies + msecs_to_jiffies(m: uap->dmarx.poll_rate));
1094 }
1095}
1096
1097static void pl011_dma_startup(struct uart_amba_port *uap)
1098{
1099 int ret;
1100
1101 if (!uap->dma_probed)
1102 pl011_dma_probe(uap);
1103
1104 if (!uap->dmatx.chan)
1105 return;
1106
1107 uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL | __GFP_DMA);
1108 if (!uap->dmatx.buf) {
1109 uap->port.fifosize = uap->fifosize;
1110 return;
1111 }
1112
1113 uap->dmatx.len = PL011_DMA_BUFFER_SIZE;
1114
1115 /* The DMA buffer is now the FIFO the TTY subsystem can use */
1116 uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
1117 uap->using_tx_dma = true;
1118
1119 if (!uap->dmarx.chan)
1120 goto skip_rx;
1121
1122 /* Allocate and map DMA RX buffers */
1123 ret = pl011_dmabuf_init(chan: uap->dmarx.chan, db: &uap->dmarx.dbuf_a,
1124 dir: DMA_FROM_DEVICE);
1125 if (ret) {
1126 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1127 "RX buffer A", ret);
1128 goto skip_rx;
1129 }
1130
1131 ret = pl011_dmabuf_init(chan: uap->dmarx.chan, db: &uap->dmarx.dbuf_b,
1132 dir: DMA_FROM_DEVICE);
1133 if (ret) {
1134 dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
1135 "RX buffer B", ret);
1136 pl011_dmabuf_free(chan: uap->dmarx.chan, db: &uap->dmarx.dbuf_a,
1137 dir: DMA_FROM_DEVICE);
1138 goto skip_rx;
1139 }
1140
1141 uap->using_rx_dma = true;
1142
1143skip_rx:
1144 /* Turn on DMA error (RX/TX will be enabled on demand) */
1145 uap->dmacr |= UART011_DMAONERR;
1146 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
1147
1148 /*
1149 * ST Micro variants has some specific dma burst threshold
1150 * compensation. Set this to 16 bytes, so burst will only
1151 * be issued above/below 16 bytes.
1152 */
1153 if (uap->vendor->dma_threshold)
1154 pl011_write(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
1155 uap, reg: REG_ST_DMAWM);
1156
1157 if (uap->using_rx_dma) {
1158 if (pl011_dma_rx_trigger_dma(uap))
1159 dev_dbg(uap->port.dev,
1160 "could not trigger initial RX DMA job, fall back to interrupt mode\n");
1161 if (uap->dmarx.poll_rate) {
1162 timer_setup(&uap->dmarx.timer, pl011_dma_rx_poll, 0);
1163 mod_timer(timer: &uap->dmarx.timer,
1164 expires: jiffies + msecs_to_jiffies(m: uap->dmarx.poll_rate));
1165 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1166 uap->dmarx.last_jiffies = jiffies;
1167 }
1168 }
1169}
1170
1171static void pl011_dma_shutdown(struct uart_amba_port *uap)
1172{
1173 if (!(uap->using_tx_dma || uap->using_rx_dma))
1174 return;
1175
1176 /* Disable RX and TX DMA */
1177 while (pl011_read(uap, reg: REG_FR) & uap->vendor->fr_busy)
1178 cpu_relax();
1179
1180 uart_port_lock_irq(up: &uap->port);
1181 uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
1182 pl011_write(val: uap->dmacr, uap, reg: REG_DMACR);
1183 uart_port_unlock_irq(up: &uap->port);
1184
1185 if (uap->using_tx_dma) {
1186 /* In theory, this should already be done by pl011_dma_flush_buffer */
1187 dmaengine_terminate_all(chan: uap->dmatx.chan);
1188 if (uap->dmatx.queued) {
1189 dma_unmap_single(uap->dmatx.chan->device->dev,
1190 uap->dmatx.dma, uap->dmatx.len,
1191 DMA_TO_DEVICE);
1192 uap->dmatx.queued = false;
1193 }
1194
1195 kfree(objp: uap->dmatx.buf);
1196 uap->using_tx_dma = false;
1197 }
1198
1199 if (uap->using_rx_dma) {
1200 dmaengine_terminate_all(chan: uap->dmarx.chan);
1201 /* Clean up the RX DMA */
1202 pl011_dmabuf_free(chan: uap->dmarx.chan, db: &uap->dmarx.dbuf_a, dir: DMA_FROM_DEVICE);
1203 pl011_dmabuf_free(chan: uap->dmarx.chan, db: &uap->dmarx.dbuf_b, dir: DMA_FROM_DEVICE);
1204 if (uap->dmarx.poll_rate)
1205 del_timer_sync(timer: &uap->dmarx.timer);
1206 uap->using_rx_dma = false;
1207 }
1208}
1209
1210static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1211{
1212 return uap->using_rx_dma;
1213}
1214
1215static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1216{
1217 return uap->using_rx_dma && uap->dmarx.running;
1218}
1219
1220#else
1221/* Blank functions if the DMA engine is not available */
1222static inline void pl011_dma_remove(struct uart_amba_port *uap)
1223{
1224}
1225
1226static inline void pl011_dma_startup(struct uart_amba_port *uap)
1227{
1228}
1229
1230static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
1231{
1232}
1233
1234static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
1235{
1236 return false;
1237}
1238
1239static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
1240{
1241}
1242
1243static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
1244{
1245 return false;
1246}
1247
1248static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
1249{
1250}
1251
1252static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
1253{
1254}
1255
1256static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
1257{
1258 return -EIO;
1259}
1260
1261static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
1262{
1263 return false;
1264}
1265
1266static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
1267{
1268 return false;
1269}
1270
1271#define pl011_dma_flush_buffer NULL
1272#endif
1273
1274static void pl011_rs485_tx_stop(struct uart_amba_port *uap)
1275{
1276 /*
1277 * To be on the safe side only time out after twice as many iterations
1278 * as fifo size.
1279 */
1280 const int MAX_TX_DRAIN_ITERS = uap->port.fifosize * 2;
1281 struct uart_port *port = &uap->port;
1282 int i = 0;
1283 u32 cr;
1284
1285 /* Wait until hardware tx queue is empty */
1286 while (!pl011_tx_empty(port)) {
1287 if (i > MAX_TX_DRAIN_ITERS) {
1288 dev_warn(port->dev,
1289 "timeout while draining hardware tx queue\n");
1290 break;
1291 }
1292
1293 udelay(uap->rs485_tx_drain_interval);
1294 i++;
1295 }
1296
1297 if (port->rs485.delay_rts_after_send)
1298 mdelay(port->rs485.delay_rts_after_send);
1299
1300 cr = pl011_read(uap, reg: REG_CR);
1301
1302 if (port->rs485.flags & SER_RS485_RTS_AFTER_SEND)
1303 cr &= ~UART011_CR_RTS;
1304 else
1305 cr |= UART011_CR_RTS;
1306
1307 /* Disable the transmitter and reenable the transceiver */
1308 cr &= ~UART011_CR_TXE;
1309 cr |= UART011_CR_RXE;
1310 pl011_write(val: cr, uap, reg: REG_CR);
1311
1312 uap->rs485_tx_started = false;
1313}
1314
1315static void pl011_stop_tx(struct uart_port *port)
1316{
1317 struct uart_amba_port *uap =
1318 container_of(port, struct uart_amba_port, port);
1319
1320 uap->im &= ~UART011_TXIM;
1321 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1322 pl011_dma_tx_stop(uap);
1323
1324 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1325 pl011_rs485_tx_stop(uap);
1326}
1327
1328static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq);
1329
1330/* Start TX with programmed I/O only (no DMA) */
1331static void pl011_start_tx_pio(struct uart_amba_port *uap)
1332{
1333 if (pl011_tx_chars(uap, from_irq: false)) {
1334 uap->im |= UART011_TXIM;
1335 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1336 }
1337}
1338
1339static void pl011_rs485_tx_start(struct uart_amba_port *uap)
1340{
1341 struct uart_port *port = &uap->port;
1342 u32 cr;
1343
1344 /* Enable transmitter */
1345 cr = pl011_read(uap, reg: REG_CR);
1346 cr |= UART011_CR_TXE;
1347
1348 /* Disable receiver if half-duplex */
1349 if (!(port->rs485.flags & SER_RS485_RX_DURING_TX))
1350 cr &= ~UART011_CR_RXE;
1351
1352 if (port->rs485.flags & SER_RS485_RTS_ON_SEND)
1353 cr &= ~UART011_CR_RTS;
1354 else
1355 cr |= UART011_CR_RTS;
1356
1357 pl011_write(val: cr, uap, reg: REG_CR);
1358
1359 if (port->rs485.delay_rts_before_send)
1360 mdelay(port->rs485.delay_rts_before_send);
1361
1362 uap->rs485_tx_started = true;
1363}
1364
1365static void pl011_start_tx(struct uart_port *port)
1366{
1367 struct uart_amba_port *uap =
1368 container_of(port, struct uart_amba_port, port);
1369
1370 if ((uap->port.rs485.flags & SER_RS485_ENABLED) &&
1371 !uap->rs485_tx_started)
1372 pl011_rs485_tx_start(uap);
1373
1374 if (!pl011_dma_tx_start(uap))
1375 pl011_start_tx_pio(uap);
1376}
1377
1378static void pl011_stop_rx(struct uart_port *port)
1379{
1380 struct uart_amba_port *uap =
1381 container_of(port, struct uart_amba_port, port);
1382
1383 uap->im &= ~(UART011_RXIM | UART011_RTIM | UART011_FEIM |
1384 UART011_PEIM | UART011_BEIM | UART011_OEIM);
1385 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1386
1387 pl011_dma_rx_stop(uap);
1388}
1389
1390static void pl011_throttle_rx(struct uart_port *port)
1391{
1392 unsigned long flags;
1393
1394 uart_port_lock_irqsave(up: port, flags: &flags);
1395 pl011_stop_rx(port);
1396 uart_port_unlock_irqrestore(up: port, flags);
1397}
1398
1399static void pl011_enable_ms(struct uart_port *port)
1400{
1401 struct uart_amba_port *uap =
1402 container_of(port, struct uart_amba_port, port);
1403
1404 uap->im |= UART011_RIMIM | UART011_CTSMIM | UART011_DCDMIM | UART011_DSRMIM;
1405 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1406}
1407
1408static void pl011_rx_chars(struct uart_amba_port *uap)
1409__releases(&uap->port.lock)
1410__acquires(&uap->port.lock)
1411{
1412 pl011_fifo_to_tty(uap);
1413
1414 uart_port_unlock(up: &uap->port);
1415 tty_flip_buffer_push(port: &uap->port.state->port);
1416 /*
1417 * If we were temporarily out of DMA mode for a while,
1418 * attempt to switch back to DMA mode again.
1419 */
1420 if (pl011_dma_rx_available(uap)) {
1421 if (pl011_dma_rx_trigger_dma(uap)) {
1422 dev_dbg(uap->port.dev,
1423 "could not trigger RX DMA job fall back to interrupt mode again\n");
1424 uap->im |= UART011_RXIM;
1425 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1426 } else {
1427#ifdef CONFIG_DMA_ENGINE
1428 /* Start Rx DMA poll */
1429 if (uap->dmarx.poll_rate) {
1430 uap->dmarx.last_jiffies = jiffies;
1431 uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
1432 mod_timer(timer: &uap->dmarx.timer,
1433 expires: jiffies + msecs_to_jiffies(m: uap->dmarx.poll_rate));
1434 }
1435#endif
1436 }
1437 }
1438 uart_port_lock(up: &uap->port);
1439}
1440
1441static bool pl011_tx_char(struct uart_amba_port *uap, unsigned char c,
1442 bool from_irq)
1443{
1444 if (unlikely(!from_irq) &&
1445 pl011_read(uap, reg: REG_FR) & UART01x_FR_TXFF)
1446 return false; /* unable to transmit character */
1447
1448 pl011_write(val: c, uap, reg: REG_DR);
1449 uap->port.icount.tx++;
1450
1451 return true;
1452}
1453
1454/* Returns true if tx interrupts have to be (kept) enabled */
1455static bool pl011_tx_chars(struct uart_amba_port *uap, bool from_irq)
1456{
1457 struct circ_buf *xmit = &uap->port.state->xmit;
1458 int count = uap->fifosize >> 1;
1459
1460 if (uap->port.x_char) {
1461 if (!pl011_tx_char(uap, c: uap->port.x_char, from_irq))
1462 return true;
1463 uap->port.x_char = 0;
1464 --count;
1465 }
1466 if (uart_circ_empty(xmit) || uart_tx_stopped(port: &uap->port)) {
1467 pl011_stop_tx(port: &uap->port);
1468 return false;
1469 }
1470
1471 /* If we are using DMA mode, try to send some characters. */
1472 if (pl011_dma_tx_irq(uap))
1473 return true;
1474
1475 do {
1476 if (likely(from_irq) && count-- == 0)
1477 break;
1478
1479 if (!pl011_tx_char(uap, c: xmit->buf[xmit->tail], from_irq))
1480 break;
1481
1482 xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
1483 } while (!uart_circ_empty(xmit));
1484
1485 if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1486 uart_write_wakeup(port: &uap->port);
1487
1488 if (uart_circ_empty(xmit)) {
1489 pl011_stop_tx(port: &uap->port);
1490 return false;
1491 }
1492 return true;
1493}
1494
1495static void pl011_modem_status(struct uart_amba_port *uap)
1496{
1497 unsigned int status, delta;
1498
1499 status = pl011_read(uap, reg: REG_FR) & UART01x_FR_MODEM_ANY;
1500
1501 delta = status ^ uap->old_status;
1502 uap->old_status = status;
1503
1504 if (!delta)
1505 return;
1506
1507 if (delta & UART01x_FR_DCD)
1508 uart_handle_dcd_change(uport: &uap->port, active: status & UART01x_FR_DCD);
1509
1510 if (delta & uap->vendor->fr_dsr)
1511 uap->port.icount.dsr++;
1512
1513 if (delta & uap->vendor->fr_cts)
1514 uart_handle_cts_change(uport: &uap->port,
1515 active: status & uap->vendor->fr_cts);
1516
1517 wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
1518}
1519
1520static void check_apply_cts_event_workaround(struct uart_amba_port *uap)
1521{
1522 if (!uap->vendor->cts_event_workaround)
1523 return;
1524
1525 /* workaround to make sure that all bits are unlocked.. */
1526 pl011_write(val: 0x00, uap, reg: REG_ICR);
1527
1528 /*
1529 * WA: introduce 26ns(1 uart clk) delay before W1C;
1530 * single apb access will incur 2 pclk(133.12Mhz) delay,
1531 * so add 2 dummy reads
1532 */
1533 pl011_read(uap, reg: REG_ICR);
1534 pl011_read(uap, reg: REG_ICR);
1535}
1536
1537static irqreturn_t pl011_int(int irq, void *dev_id)
1538{
1539 struct uart_amba_port *uap = dev_id;
1540 unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
1541 int handled = 0;
1542
1543 uart_port_lock(up: &uap->port);
1544 status = pl011_read(uap, reg: REG_RIS) & uap->im;
1545 if (status) {
1546 do {
1547 check_apply_cts_event_workaround(uap);
1548
1549 pl011_write(val: status & ~(UART011_TXIS | UART011_RTIS | UART011_RXIS),
1550 uap, reg: REG_ICR);
1551
1552 if (status & (UART011_RTIS | UART011_RXIS)) {
1553 if (pl011_dma_rx_running(uap))
1554 pl011_dma_rx_irq(uap);
1555 else
1556 pl011_rx_chars(uap);
1557 }
1558 if (status & (UART011_DSRMIS | UART011_DCDMIS |
1559 UART011_CTSMIS | UART011_RIMIS))
1560 pl011_modem_status(uap);
1561 if (status & UART011_TXIS)
1562 pl011_tx_chars(uap, from_irq: true);
1563
1564 if (pass_counter-- == 0)
1565 break;
1566
1567 status = pl011_read(uap, reg: REG_RIS) & uap->im;
1568 } while (status != 0);
1569 handled = 1;
1570 }
1571
1572 uart_unlock_and_check_sysrq(port: &uap->port);
1573
1574 return IRQ_RETVAL(handled);
1575}
1576
1577static unsigned int pl011_tx_empty(struct uart_port *port)
1578{
1579 struct uart_amba_port *uap =
1580 container_of(port, struct uart_amba_port, port);
1581
1582 /* Allow feature register bits to be inverted to work around errata */
1583 unsigned int status = pl011_read(uap, reg: REG_FR) ^ uap->vendor->inv_fr;
1584
1585 return status & (uap->vendor->fr_busy | UART01x_FR_TXFF) ?
1586 0 : TIOCSER_TEMT;
1587}
1588
1589static void pl011_maybe_set_bit(bool cond, unsigned int *ptr, unsigned int mask)
1590{
1591 if (cond)
1592 *ptr |= mask;
1593}
1594
1595static unsigned int pl011_get_mctrl(struct uart_port *port)
1596{
1597 struct uart_amba_port *uap =
1598 container_of(port, struct uart_amba_port, port);
1599 unsigned int result = 0;
1600 unsigned int status = pl011_read(uap, reg: REG_FR);
1601
1602 pl011_maybe_set_bit(cond: status & UART01x_FR_DCD, ptr: &result, TIOCM_CAR);
1603 pl011_maybe_set_bit(cond: status & uap->vendor->fr_dsr, ptr: &result, TIOCM_DSR);
1604 pl011_maybe_set_bit(cond: status & uap->vendor->fr_cts, ptr: &result, TIOCM_CTS);
1605 pl011_maybe_set_bit(cond: status & uap->vendor->fr_ri, ptr: &result, TIOCM_RNG);
1606
1607 return result;
1608}
1609
1610static void pl011_assign_bit(bool cond, unsigned int *ptr, unsigned int mask)
1611{
1612 if (cond)
1613 *ptr |= mask;
1614 else
1615 *ptr &= ~mask;
1616}
1617
1618static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
1619{
1620 struct uart_amba_port *uap =
1621 container_of(port, struct uart_amba_port, port);
1622 unsigned int cr;
1623
1624 cr = pl011_read(uap, reg: REG_CR);
1625
1626 pl011_assign_bit(cond: mctrl & TIOCM_RTS, ptr: &cr, UART011_CR_RTS);
1627 pl011_assign_bit(cond: mctrl & TIOCM_DTR, ptr: &cr, UART011_CR_DTR);
1628 pl011_assign_bit(cond: mctrl & TIOCM_OUT1, ptr: &cr, UART011_CR_OUT1);
1629 pl011_assign_bit(cond: mctrl & TIOCM_OUT2, ptr: &cr, UART011_CR_OUT2);
1630 pl011_assign_bit(cond: mctrl & TIOCM_LOOP, ptr: &cr, UART011_CR_LBE);
1631
1632 if (port->status & UPSTAT_AUTORTS) {
1633 /* We need to disable auto-RTS if we want to turn RTS off */
1634 pl011_assign_bit(cond: mctrl & TIOCM_RTS, ptr: &cr, UART011_CR_RTSEN);
1635 }
1636
1637 pl011_write(val: cr, uap, reg: REG_CR);
1638}
1639
1640static void pl011_break_ctl(struct uart_port *port, int break_state)
1641{
1642 struct uart_amba_port *uap =
1643 container_of(port, struct uart_amba_port, port);
1644 unsigned long flags;
1645 unsigned int lcr_h;
1646
1647 uart_port_lock_irqsave(up: &uap->port, flags: &flags);
1648 lcr_h = pl011_read(uap, reg: REG_LCRH_TX);
1649 if (break_state == -1)
1650 lcr_h |= UART01x_LCRH_BRK;
1651 else
1652 lcr_h &= ~UART01x_LCRH_BRK;
1653 pl011_write(val: lcr_h, uap, reg: REG_LCRH_TX);
1654 uart_port_unlock_irqrestore(up: &uap->port, flags);
1655}
1656
1657#ifdef CONFIG_CONSOLE_POLL
1658
1659static void pl011_quiesce_irqs(struct uart_port *port)
1660{
1661 struct uart_amba_port *uap =
1662 container_of(port, struct uart_amba_port, port);
1663
1664 pl011_write(val: pl011_read(uap, reg: REG_MIS), uap, reg: REG_ICR);
1665 /*
1666 * There is no way to clear TXIM as this is "ready to transmit IRQ", so
1667 * we simply mask it. start_tx() will unmask it.
1668 *
1669 * Note we can race with start_tx(), and if the race happens, the
1670 * polling user might get another interrupt just after we clear it.
1671 * But it should be OK and can happen even w/o the race, e.g.
1672 * controller immediately got some new data and raised the IRQ.
1673 *
1674 * And whoever uses polling routines assumes that it manages the device
1675 * (including tx queue), so we're also fine with start_tx()'s caller
1676 * side.
1677 */
1678 pl011_write(val: pl011_read(uap, reg: REG_IMSC) & ~UART011_TXIM, uap,
1679 reg: REG_IMSC);
1680}
1681
1682static int pl011_get_poll_char(struct uart_port *port)
1683{
1684 struct uart_amba_port *uap =
1685 container_of(port, struct uart_amba_port, port);
1686 unsigned int status;
1687
1688 /*
1689 * The caller might need IRQs lowered, e.g. if used with KDB NMI
1690 * debugger.
1691 */
1692 pl011_quiesce_irqs(port);
1693
1694 status = pl011_read(uap, reg: REG_FR);
1695 if (status & UART01x_FR_RXFE)
1696 return NO_POLL_CHAR;
1697
1698 return pl011_read(uap, reg: REG_DR);
1699}
1700
1701static void pl011_put_poll_char(struct uart_port *port, unsigned char ch)
1702{
1703 struct uart_amba_port *uap =
1704 container_of(port, struct uart_amba_port, port);
1705
1706 while (pl011_read(uap, reg: REG_FR) & UART01x_FR_TXFF)
1707 cpu_relax();
1708
1709 pl011_write(val: ch, uap, reg: REG_DR);
1710}
1711
1712#endif /* CONFIG_CONSOLE_POLL */
1713
1714static int pl011_hwinit(struct uart_port *port)
1715{
1716 struct uart_amba_port *uap =
1717 container_of(port, struct uart_amba_port, port);
1718 int retval;
1719
1720 /* Optionaly enable pins to be muxed in and configured */
1721 pinctrl_pm_select_default_state(dev: port->dev);
1722
1723 /*
1724 * Try to enable the clock producer.
1725 */
1726 retval = clk_prepare_enable(clk: uap->clk);
1727 if (retval)
1728 return retval;
1729
1730 uap->port.uartclk = clk_get_rate(clk: uap->clk);
1731
1732 /* Clear pending error and receive interrupts */
1733 pl011_write(UART011_OEIS | UART011_BEIS | UART011_PEIS |
1734 UART011_FEIS | UART011_RTIS | UART011_RXIS,
1735 uap, reg: REG_ICR);
1736
1737 /*
1738 * Save interrupts enable mask, and enable RX interrupts in case if
1739 * the interrupt is used for NMI entry.
1740 */
1741 uap->im = pl011_read(uap, reg: REG_IMSC);
1742 pl011_write(UART011_RTIM | UART011_RXIM, uap, reg: REG_IMSC);
1743
1744 if (dev_get_platdata(dev: uap->port.dev)) {
1745 struct amba_pl011_data *plat;
1746
1747 plat = dev_get_platdata(dev: uap->port.dev);
1748 if (plat->init)
1749 plat->init();
1750 }
1751 return 0;
1752}
1753
1754static bool pl011_split_lcrh(const struct uart_amba_port *uap)
1755{
1756 return pl011_reg_to_offset(uap, reg: REG_LCRH_RX) !=
1757 pl011_reg_to_offset(uap, reg: REG_LCRH_TX);
1758}
1759
1760static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
1761{
1762 pl011_write(val: lcr_h, uap, reg: REG_LCRH_RX);
1763 if (pl011_split_lcrh(uap)) {
1764 int i;
1765 /*
1766 * Wait 10 PCLKs before writing LCRH_TX register,
1767 * to get this delay write read only register 10 times
1768 */
1769 for (i = 0; i < 10; ++i)
1770 pl011_write(val: 0xff, uap, reg: REG_MIS);
1771 pl011_write(val: lcr_h, uap, reg: REG_LCRH_TX);
1772 }
1773}
1774
1775static int pl011_allocate_irq(struct uart_amba_port *uap)
1776{
1777 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1778
1779 return request_irq(irq: uap->port.irq, handler: pl011_int, IRQF_SHARED, name: "uart-pl011", dev: uap);
1780}
1781
1782/*
1783 * Enable interrupts, only timeouts when using DMA
1784 * if initial RX DMA job failed, start in interrupt mode
1785 * as well.
1786 */
1787static void pl011_enable_interrupts(struct uart_amba_port *uap)
1788{
1789 unsigned long flags;
1790 unsigned int i;
1791
1792 uart_port_lock_irqsave(up: &uap->port, flags: &flags);
1793
1794 /* Clear out any spuriously appearing RX interrupts */
1795 pl011_write(UART011_RTIS | UART011_RXIS, uap, reg: REG_ICR);
1796
1797 /*
1798 * RXIS is asserted only when the RX FIFO transitions from below
1799 * to above the trigger threshold. If the RX FIFO is already
1800 * full to the threshold this can't happen and RXIS will now be
1801 * stuck off. Drain the RX FIFO explicitly to fix this:
1802 */
1803 for (i = 0; i < uap->fifosize * 2; ++i) {
1804 if (pl011_read(uap, reg: REG_FR) & UART01x_FR_RXFE)
1805 break;
1806
1807 pl011_read(uap, reg: REG_DR);
1808 }
1809
1810 uap->im = UART011_RTIM;
1811 if (!pl011_dma_rx_running(uap))
1812 uap->im |= UART011_RXIM;
1813 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1814 uart_port_unlock_irqrestore(up: &uap->port, flags);
1815}
1816
1817static void pl011_unthrottle_rx(struct uart_port *port)
1818{
1819 struct uart_amba_port *uap = container_of(port, struct uart_amba_port, port);
1820 unsigned long flags;
1821
1822 uart_port_lock_irqsave(up: &uap->port, flags: &flags);
1823
1824 uap->im = UART011_RTIM;
1825 if (!pl011_dma_rx_running(uap))
1826 uap->im |= UART011_RXIM;
1827
1828 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1829
1830 uart_port_unlock_irqrestore(up: &uap->port, flags);
1831}
1832
1833static int pl011_startup(struct uart_port *port)
1834{
1835 struct uart_amba_port *uap =
1836 container_of(port, struct uart_amba_port, port);
1837 unsigned int cr;
1838 int retval;
1839
1840 retval = pl011_hwinit(port);
1841 if (retval)
1842 goto clk_dis;
1843
1844 retval = pl011_allocate_irq(uap);
1845 if (retval)
1846 goto clk_dis;
1847
1848 pl011_write(val: uap->vendor->ifls, uap, reg: REG_IFLS);
1849
1850 uart_port_lock_irq(up: &uap->port);
1851
1852 cr = pl011_read(uap, reg: REG_CR);
1853 cr &= UART011_CR_RTS | UART011_CR_DTR;
1854 cr |= UART01x_CR_UARTEN | UART011_CR_RXE;
1855
1856 if (!(port->rs485.flags & SER_RS485_ENABLED))
1857 cr |= UART011_CR_TXE;
1858
1859 pl011_write(val: cr, uap, reg: REG_CR);
1860
1861 uart_port_unlock_irq(up: &uap->port);
1862
1863 /*
1864 * initialise the old status of the modem signals
1865 */
1866 uap->old_status = pl011_read(uap, reg: REG_FR) & UART01x_FR_MODEM_ANY;
1867
1868 /* Startup DMA */
1869 pl011_dma_startup(uap);
1870
1871 pl011_enable_interrupts(uap);
1872
1873 return 0;
1874
1875 clk_dis:
1876 clk_disable_unprepare(clk: uap->clk);
1877 return retval;
1878}
1879
1880static int sbsa_uart_startup(struct uart_port *port)
1881{
1882 struct uart_amba_port *uap =
1883 container_of(port, struct uart_amba_port, port);
1884 int retval;
1885
1886 retval = pl011_hwinit(port);
1887 if (retval)
1888 return retval;
1889
1890 retval = pl011_allocate_irq(uap);
1891 if (retval)
1892 return retval;
1893
1894 /* The SBSA UART does not support any modem status lines. */
1895 uap->old_status = 0;
1896
1897 pl011_enable_interrupts(uap);
1898
1899 return 0;
1900}
1901
1902static void pl011_shutdown_channel(struct uart_amba_port *uap, unsigned int lcrh)
1903{
1904 unsigned long val;
1905
1906 val = pl011_read(uap, reg: lcrh);
1907 val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
1908 pl011_write(val, uap, reg: lcrh);
1909}
1910
1911/*
1912 * disable the port. It should not disable RTS and DTR.
1913 * Also RTS and DTR state should be preserved to restore
1914 * it during startup().
1915 */
1916static void pl011_disable_uart(struct uart_amba_port *uap)
1917{
1918 unsigned int cr;
1919
1920 uap->port.status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
1921 uart_port_lock_irq(up: &uap->port);
1922 cr = pl011_read(uap, reg: REG_CR);
1923 cr &= UART011_CR_RTS | UART011_CR_DTR;
1924 cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
1925 pl011_write(val: cr, uap, reg: REG_CR);
1926 uart_port_unlock_irq(up: &uap->port);
1927
1928 /*
1929 * disable break condition and fifos
1930 */
1931 pl011_shutdown_channel(uap, lcrh: REG_LCRH_RX);
1932 if (pl011_split_lcrh(uap))
1933 pl011_shutdown_channel(uap, lcrh: REG_LCRH_TX);
1934}
1935
1936static void pl011_disable_interrupts(struct uart_amba_port *uap)
1937{
1938 uart_port_lock_irq(up: &uap->port);
1939
1940 /* mask all interrupts and clear all pending ones */
1941 uap->im = 0;
1942 pl011_write(val: uap->im, uap, reg: REG_IMSC);
1943 pl011_write(val: 0xffff, uap, reg: REG_ICR);
1944
1945 uart_port_unlock_irq(up: &uap->port);
1946}
1947
1948static void pl011_shutdown(struct uart_port *port)
1949{
1950 struct uart_amba_port *uap =
1951 container_of(port, struct uart_amba_port, port);
1952
1953 pl011_disable_interrupts(uap);
1954
1955 pl011_dma_shutdown(uap);
1956
1957 if ((port->rs485.flags & SER_RS485_ENABLED) && uap->rs485_tx_started)
1958 pl011_rs485_tx_stop(uap);
1959
1960 free_irq(uap->port.irq, uap);
1961
1962 pl011_disable_uart(uap);
1963
1964 /*
1965 * Shut down the clock producer
1966 */
1967 clk_disable_unprepare(clk: uap->clk);
1968 /* Optionally let pins go into sleep states */
1969 pinctrl_pm_select_sleep_state(dev: port->dev);
1970
1971 if (dev_get_platdata(dev: uap->port.dev)) {
1972 struct amba_pl011_data *plat;
1973
1974 plat = dev_get_platdata(dev: uap->port.dev);
1975 if (plat->exit)
1976 plat->exit();
1977 }
1978
1979 if (uap->port.ops->flush_buffer)
1980 uap->port.ops->flush_buffer(port);
1981}
1982
1983static void sbsa_uart_shutdown(struct uart_port *port)
1984{
1985 struct uart_amba_port *uap =
1986 container_of(port, struct uart_amba_port, port);
1987
1988 pl011_disable_interrupts(uap);
1989
1990 free_irq(uap->port.irq, uap);
1991
1992 if (uap->port.ops->flush_buffer)
1993 uap->port.ops->flush_buffer(port);
1994}
1995
1996static void
1997pl011_setup_status_masks(struct uart_port *port, struct ktermios *termios)
1998{
1999 port->read_status_mask = UART011_DR_OE | 255;
2000 if (termios->c_iflag & INPCK)
2001 port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
2002 if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
2003 port->read_status_mask |= UART011_DR_BE;
2004
2005 /*
2006 * Characters to ignore
2007 */
2008 port->ignore_status_mask = 0;
2009 if (termios->c_iflag & IGNPAR)
2010 port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
2011 if (termios->c_iflag & IGNBRK) {
2012 port->ignore_status_mask |= UART011_DR_BE;
2013 /*
2014 * If we're ignoring parity and break indicators,
2015 * ignore overruns too (for real raw support).
2016 */
2017 if (termios->c_iflag & IGNPAR)
2018 port->ignore_status_mask |= UART011_DR_OE;
2019 }
2020
2021 /*
2022 * Ignore all characters if CREAD is not set.
2023 */
2024 if ((termios->c_cflag & CREAD) == 0)
2025 port->ignore_status_mask |= UART_DUMMY_DR_RX;
2026}
2027
2028static void
2029pl011_set_termios(struct uart_port *port, struct ktermios *termios,
2030 const struct ktermios *old)
2031{
2032 struct uart_amba_port *uap =
2033 container_of(port, struct uart_amba_port, port);
2034 unsigned int lcr_h, old_cr;
2035 unsigned long flags;
2036 unsigned int baud, quot, clkdiv;
2037 unsigned int bits;
2038
2039 if (uap->vendor->oversampling)
2040 clkdiv = 8;
2041 else
2042 clkdiv = 16;
2043
2044 /*
2045 * Ask the core to calculate the divisor for us.
2046 */
2047 baud = uart_get_baud_rate(port, termios, old, min: 0,
2048 max: port->uartclk / clkdiv);
2049#ifdef CONFIG_DMA_ENGINE
2050 /*
2051 * Adjust RX DMA polling rate with baud rate if not specified.
2052 */
2053 if (uap->dmarx.auto_poll_rate)
2054 uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
2055#endif
2056
2057 if (baud > port->uartclk / 16)
2058 quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
2059 else
2060 quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
2061
2062 switch (termios->c_cflag & CSIZE) {
2063 case CS5:
2064 lcr_h = UART01x_LCRH_WLEN_5;
2065 break;
2066 case CS6:
2067 lcr_h = UART01x_LCRH_WLEN_6;
2068 break;
2069 case CS7:
2070 lcr_h = UART01x_LCRH_WLEN_7;
2071 break;
2072 default: // CS8
2073 lcr_h = UART01x_LCRH_WLEN_8;
2074 break;
2075 }
2076 if (termios->c_cflag & CSTOPB)
2077 lcr_h |= UART01x_LCRH_STP2;
2078 if (termios->c_cflag & PARENB) {
2079 lcr_h |= UART01x_LCRH_PEN;
2080 if (!(termios->c_cflag & PARODD))
2081 lcr_h |= UART01x_LCRH_EPS;
2082 if (termios->c_cflag & CMSPAR)
2083 lcr_h |= UART011_LCRH_SPS;
2084 }
2085 if (uap->fifosize > 1)
2086 lcr_h |= UART01x_LCRH_FEN;
2087
2088 bits = tty_get_frame_size(cflag: termios->c_cflag);
2089
2090 uart_port_lock_irqsave(up: port, flags: &flags);
2091
2092 /*
2093 * Update the per-port timeout.
2094 */
2095 uart_update_timeout(port, cflag: termios->c_cflag, baud);
2096
2097 /*
2098 * Calculate the approximated time it takes to transmit one character
2099 * with the given baud rate. We use this as the poll interval when we
2100 * wait for the tx queue to empty.
2101 */
2102 uap->rs485_tx_drain_interval = DIV_ROUND_UP(bits * 1000 * 1000, baud);
2103
2104 pl011_setup_status_masks(port, termios);
2105
2106 if (UART_ENABLE_MS(port, termios->c_cflag))
2107 pl011_enable_ms(port);
2108
2109 if (port->rs485.flags & SER_RS485_ENABLED)
2110 termios->c_cflag &= ~CRTSCTS;
2111
2112 old_cr = pl011_read(uap, reg: REG_CR);
2113
2114 if (termios->c_cflag & CRTSCTS) {
2115 if (old_cr & UART011_CR_RTS)
2116 old_cr |= UART011_CR_RTSEN;
2117
2118 old_cr |= UART011_CR_CTSEN;
2119 port->status |= UPSTAT_AUTOCTS | UPSTAT_AUTORTS;
2120 } else {
2121 old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
2122 port->status &= ~(UPSTAT_AUTOCTS | UPSTAT_AUTORTS);
2123 }
2124
2125 if (uap->vendor->oversampling) {
2126 if (baud > port->uartclk / 16)
2127 old_cr |= ST_UART011_CR_OVSFACT;
2128 else
2129 old_cr &= ~ST_UART011_CR_OVSFACT;
2130 }
2131
2132 /*
2133 * Workaround for the ST Micro oversampling variants to
2134 * increase the bitrate slightly, by lowering the divisor,
2135 * to avoid delayed sampling of start bit at high speeds,
2136 * else we see data corruption.
2137 */
2138 if (uap->vendor->oversampling) {
2139 if (baud >= 3000000 && baud < 3250000 && quot > 1)
2140 quot -= 1;
2141 else if (baud > 3250000 && quot > 2)
2142 quot -= 2;
2143 }
2144 /* Set baud rate */
2145 pl011_write(val: quot & 0x3f, uap, reg: REG_FBRD);
2146 pl011_write(val: quot >> 6, uap, reg: REG_IBRD);
2147
2148 /*
2149 * ----------v----------v----------v----------v-----
2150 * NOTE: REG_LCRH_TX and REG_LCRH_RX MUST BE WRITTEN AFTER
2151 * REG_FBRD & REG_IBRD.
2152 * ----------^----------^----------^----------^-----
2153 */
2154 pl011_write_lcr_h(uap, lcr_h);
2155
2156 /*
2157 * Receive was disabled by pl011_disable_uart during shutdown.
2158 * Need to reenable receive if you need to use a tty_driver
2159 * returns from tty_find_polling_driver() after a port shutdown.
2160 */
2161 old_cr |= UART011_CR_RXE;
2162 pl011_write(val: old_cr, uap, reg: REG_CR);
2163
2164 uart_port_unlock_irqrestore(up: port, flags);
2165}
2166
2167static void
2168sbsa_uart_set_termios(struct uart_port *port, struct ktermios *termios,
2169 const struct ktermios *old)
2170{
2171 struct uart_amba_port *uap =
2172 container_of(port, struct uart_amba_port, port);
2173 unsigned long flags;
2174
2175 tty_termios_encode_baud_rate(termios, ibaud: uap->fixed_baud, obaud: uap->fixed_baud);
2176
2177 /* The SBSA UART only supports 8n1 without hardware flow control. */
2178 termios->c_cflag &= ~(CSIZE | CSTOPB | PARENB | PARODD);
2179 termios->c_cflag &= ~(CMSPAR | CRTSCTS);
2180 termios->c_cflag |= CS8 | CLOCAL;
2181
2182 uart_port_lock_irqsave(up: port, flags: &flags);
2183 uart_update_timeout(port, CS8, baud: uap->fixed_baud);
2184 pl011_setup_status_masks(port, termios);
2185 uart_port_unlock_irqrestore(up: port, flags);
2186}
2187
2188static const char *pl011_type(struct uart_port *port)
2189{
2190 struct uart_amba_port *uap =
2191 container_of(port, struct uart_amba_port, port);
2192 return uap->port.type == PORT_AMBA ? uap->type : NULL;
2193}
2194
2195/*
2196 * Configure/autoconfigure the port.
2197 */
2198static void pl011_config_port(struct uart_port *port, int flags)
2199{
2200 if (flags & UART_CONFIG_TYPE)
2201 port->type = PORT_AMBA;
2202}
2203
2204/*
2205 * verify the new serial_struct (for TIOCSSERIAL).
2206 */
2207static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
2208{
2209 int ret = 0;
2210
2211 if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
2212 ret = -EINVAL;
2213 if (ser->irq < 0 || ser->irq >= nr_irqs)
2214 ret = -EINVAL;
2215 if (ser->baud_base < 9600)
2216 ret = -EINVAL;
2217 if (port->mapbase != (unsigned long)ser->iomem_base)
2218 ret = -EINVAL;
2219 return ret;
2220}
2221
2222static int pl011_rs485_config(struct uart_port *port, struct ktermios *termios,
2223 struct serial_rs485 *rs485)
2224{
2225 struct uart_amba_port *uap =
2226 container_of(port, struct uart_amba_port, port);
2227
2228 if (port->rs485.flags & SER_RS485_ENABLED)
2229 pl011_rs485_tx_stop(uap);
2230
2231 /* Make sure auto RTS is disabled */
2232 if (rs485->flags & SER_RS485_ENABLED) {
2233 u32 cr = pl011_read(uap, reg: REG_CR);
2234
2235 cr &= ~UART011_CR_RTSEN;
2236 pl011_write(val: cr, uap, reg: REG_CR);
2237 port->status &= ~UPSTAT_AUTORTS;
2238 }
2239
2240 return 0;
2241}
2242
2243static const struct uart_ops amba_pl011_pops = {
2244 .tx_empty = pl011_tx_empty,
2245 .set_mctrl = pl011_set_mctrl,
2246 .get_mctrl = pl011_get_mctrl,
2247 .stop_tx = pl011_stop_tx,
2248 .start_tx = pl011_start_tx,
2249 .stop_rx = pl011_stop_rx,
2250 .throttle = pl011_throttle_rx,
2251 .unthrottle = pl011_unthrottle_rx,
2252 .enable_ms = pl011_enable_ms,
2253 .break_ctl = pl011_break_ctl,
2254 .startup = pl011_startup,
2255 .shutdown = pl011_shutdown,
2256 .flush_buffer = pl011_dma_flush_buffer,
2257 .set_termios = pl011_set_termios,
2258 .type = pl011_type,
2259 .config_port = pl011_config_port,
2260 .verify_port = pl011_verify_port,
2261#ifdef CONFIG_CONSOLE_POLL
2262 .poll_init = pl011_hwinit,
2263 .poll_get_char = pl011_get_poll_char,
2264 .poll_put_char = pl011_put_poll_char,
2265#endif
2266};
2267
2268static void sbsa_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
2269{
2270}
2271
2272static unsigned int sbsa_uart_get_mctrl(struct uart_port *port)
2273{
2274 return 0;
2275}
2276
2277static const struct uart_ops sbsa_uart_pops = {
2278 .tx_empty = pl011_tx_empty,
2279 .set_mctrl = sbsa_uart_set_mctrl,
2280 .get_mctrl = sbsa_uart_get_mctrl,
2281 .stop_tx = pl011_stop_tx,
2282 .start_tx = pl011_start_tx,
2283 .stop_rx = pl011_stop_rx,
2284 .startup = sbsa_uart_startup,
2285 .shutdown = sbsa_uart_shutdown,
2286 .set_termios = sbsa_uart_set_termios,
2287 .type = pl011_type,
2288 .config_port = pl011_config_port,
2289 .verify_port = pl011_verify_port,
2290#ifdef CONFIG_CONSOLE_POLL
2291 .poll_init = pl011_hwinit,
2292 .poll_get_char = pl011_get_poll_char,
2293 .poll_put_char = pl011_put_poll_char,
2294#endif
2295};
2296
2297static struct uart_amba_port *amba_ports[UART_NR];
2298
2299#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
2300
2301static void pl011_console_putchar(struct uart_port *port, unsigned char ch)
2302{
2303 struct uart_amba_port *uap =
2304 container_of(port, struct uart_amba_port, port);
2305
2306 while (pl011_read(uap, REG_FR) & UART01x_FR_TXFF)
2307 cpu_relax();
2308 pl011_write(ch, uap, REG_DR);
2309}
2310
2311static void
2312pl011_console_write(struct console *co, const char *s, unsigned int count)
2313{
2314 struct uart_amba_port *uap = amba_ports[co->index];
2315 unsigned int old_cr = 0, new_cr;
2316 unsigned long flags;
2317 int locked = 1;
2318
2319 clk_enable(uap->clk);
2320
2321 if (oops_in_progress)
2322 locked = uart_port_trylock_irqsave(&uap->port, &flags);
2323 else
2324 uart_port_lock_irqsave(&uap->port, &flags);
2325
2326 /*
2327 * First save the CR then disable the interrupts
2328 */
2329 if (!uap->vendor->always_enabled) {
2330 old_cr = pl011_read(uap, REG_CR);
2331 new_cr = old_cr & ~UART011_CR_CTSEN;
2332 new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
2333 pl011_write(new_cr, uap, REG_CR);
2334 }
2335
2336 uart_console_write(&uap->port, s, count, pl011_console_putchar);
2337
2338 /*
2339 * Finally, wait for transmitter to become empty and restore the
2340 * TCR. Allow feature register bits to be inverted to work around
2341 * errata.
2342 */
2343 while ((pl011_read(uap, REG_FR) ^ uap->vendor->inv_fr)
2344 & uap->vendor->fr_busy)
2345 cpu_relax();
2346 if (!uap->vendor->always_enabled)
2347 pl011_write(old_cr, uap, REG_CR);
2348
2349 if (locked)
2350 uart_port_unlock_irqrestore(&uap->port, flags);
2351
2352 clk_disable(uap->clk);
2353}
2354
2355static void pl011_console_get_options(struct uart_amba_port *uap, int *baud,
2356 int *parity, int *bits)
2357{
2358 unsigned int lcr_h, ibrd, fbrd;
2359
2360 if (!(pl011_read(uap, REG_CR) & UART01x_CR_UARTEN))
2361 return;
2362
2363 lcr_h = pl011_read(uap, REG_LCRH_TX);
2364
2365 *parity = 'n';
2366 if (lcr_h & UART01x_LCRH_PEN) {
2367 if (lcr_h & UART01x_LCRH_EPS)
2368 *parity = 'e';
2369 else
2370 *parity = 'o';
2371 }
2372
2373 if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
2374 *bits = 7;
2375 else
2376 *bits = 8;
2377
2378 ibrd = pl011_read(uap, REG_IBRD);
2379 fbrd = pl011_read(uap, REG_FBRD);
2380
2381 *baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
2382
2383 if (uap->vendor->oversampling &&
2384 (pl011_read(uap, REG_CR) & ST_UART011_CR_OVSFACT))
2385 *baud *= 2;
2386}
2387
2388static int pl011_console_setup(struct console *co, char *options)
2389{
2390 struct uart_amba_port *uap;
2391 int baud = 38400;
2392 int bits = 8;
2393 int parity = 'n';
2394 int flow = 'n';
2395 int ret;
2396
2397 /*
2398 * Check whether an invalid uart number has been specified, and
2399 * if so, search for the first available port that does have
2400 * console support.
2401 */
2402 if (co->index >= UART_NR)
2403 co->index = 0;
2404 uap = amba_ports[co->index];
2405 if (!uap)
2406 return -ENODEV;
2407
2408 /* Allow pins to be muxed in and configured */
2409 pinctrl_pm_select_default_state(uap->port.dev);
2410
2411 ret = clk_prepare(uap->clk);
2412 if (ret)
2413 return ret;
2414
2415 if (dev_get_platdata(uap->port.dev)) {
2416 struct amba_pl011_data *plat;
2417
2418 plat = dev_get_platdata(uap->port.dev);
2419 if (plat->init)
2420 plat->init();
2421 }
2422
2423 uap->port.uartclk = clk_get_rate(uap->clk);
2424
2425 if (uap->vendor->fixed_options) {
2426 baud = uap->fixed_baud;
2427 } else {
2428 if (options)
2429 uart_parse_options(options,
2430 &baud, &parity, &bits, &flow);
2431 else
2432 pl011_console_get_options(uap, &baud, &parity, &bits);
2433 }
2434
2435 return uart_set_options(&uap->port, co, baud, parity, bits, flow);
2436}
2437
2438/**
2439 * pl011_console_match - non-standard console matching
2440 * @co: registering console
2441 * @name: name from console command line
2442 * @idx: index from console command line
2443 * @options: ptr to option string from console command line
2444 *
2445 * Only attempts to match console command lines of the form:
2446 * console=pl011,mmio|mmio32,<addr>[,<options>]
2447 * console=pl011,0x<addr>[,<options>]
2448 * This form is used to register an initial earlycon boot console and
2449 * replace it with the amba_console at pl011 driver init.
2450 *
2451 * Performs console setup for a match (as required by interface)
2452 * If no <options> are specified, then assume the h/w is already setup.
2453 *
2454 * Returns 0 if console matches; otherwise non-zero to use default matching
2455 */
2456static int pl011_console_match(struct console *co, char *name, int idx,
2457 char *options)
2458{
2459 unsigned char iotype;
2460 resource_size_t addr;
2461 int i;
2462
2463 /*
2464 * Systems affected by the Qualcomm Technologies QDF2400 E44 erratum
2465 * have a distinct console name, so make sure we check for that.
2466 * The actual implementation of the erratum occurs in the probe
2467 * function.
2468 */
2469 if ((strcmp(name, "qdf2400_e44") != 0) && (strcmp(name, "pl011") != 0))
2470 return -ENODEV;
2471
2472 if (uart_parse_earlycon(options, &iotype, &addr, &options))
2473 return -ENODEV;
2474
2475 if (iotype != UPIO_MEM && iotype != UPIO_MEM32)
2476 return -ENODEV;
2477
2478 /* try to match the port specified on the command line */
2479 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2480 struct uart_port *port;
2481
2482 if (!amba_ports[i])
2483 continue;
2484
2485 port = &amba_ports[i]->port;
2486
2487 if (port->mapbase != addr)
2488 continue;
2489
2490 co->index = i;
2491 port->cons = co;
2492 return pl011_console_setup(co, options);
2493 }
2494
2495 return -ENODEV;
2496}
2497
2498static struct uart_driver amba_reg;
2499static struct console amba_console = {
2500 .name = "ttyAMA",
2501 .write = pl011_console_write,
2502 .device = uart_console_device,
2503 .setup = pl011_console_setup,
2504 .match = pl011_console_match,
2505 .flags = CON_PRINTBUFFER | CON_ANYTIME,
2506 .index = -1,
2507 .data = &amba_reg,
2508};
2509
2510#define AMBA_CONSOLE (&amba_console)
2511
2512static void qdf2400_e44_putc(struct uart_port *port, unsigned char c)
2513{
2514 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2515 cpu_relax();
2516 writel(c, port->membase + UART01x_DR);
2517 while (!(readl(port->membase + UART01x_FR) & UART011_FR_TXFE))
2518 cpu_relax();
2519}
2520
2521static void qdf2400_e44_early_write(struct console *con, const char *s, unsigned int n)
2522{
2523 struct earlycon_device *dev = con->data;
2524
2525 uart_console_write(&dev->port, s, n, qdf2400_e44_putc);
2526}
2527
2528static void pl011_putc(struct uart_port *port, unsigned char c)
2529{
2530 while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
2531 cpu_relax();
2532 if (port->iotype == UPIO_MEM32)
2533 writel(c, port->membase + UART01x_DR);
2534 else
2535 writeb(c, port->membase + UART01x_DR);
2536 while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
2537 cpu_relax();
2538}
2539
2540static void pl011_early_write(struct console *con, const char *s, unsigned int n)
2541{
2542 struct earlycon_device *dev = con->data;
2543
2544 uart_console_write(&dev->port, s, n, pl011_putc);
2545}
2546
2547#ifdef CONFIG_CONSOLE_POLL
2548static int pl011_getc(struct uart_port *port)
2549{
2550 if (readl(port->membase + UART01x_FR) & UART01x_FR_RXFE)
2551 return NO_POLL_CHAR;
2552
2553 if (port->iotype == UPIO_MEM32)
2554 return readl(port->membase + UART01x_DR);
2555 else
2556 return readb(port->membase + UART01x_DR);
2557}
2558
2559static int pl011_early_read(struct console *con, char *s, unsigned int n)
2560{
2561 struct earlycon_device *dev = con->data;
2562 int ch, num_read = 0;
2563
2564 while (num_read < n) {
2565 ch = pl011_getc(&dev->port);
2566 if (ch == NO_POLL_CHAR)
2567 break;
2568
2569 s[num_read++] = ch;
2570 }
2571
2572 return num_read;
2573}
2574#else
2575#define pl011_early_read NULL
2576#endif
2577
2578/*
2579 * On non-ACPI systems, earlycon is enabled by specifying
2580 * "earlycon=pl011,<address>" on the kernel command line.
2581 *
2582 * On ACPI ARM64 systems, an "early" console is enabled via the SPCR table,
2583 * by specifying only "earlycon" on the command line. Because it requires
2584 * SPCR, the console starts after ACPI is parsed, which is later than a
2585 * traditional early console.
2586 *
2587 * To get the traditional early console that starts before ACPI is parsed,
2588 * specify the full "earlycon=pl011,<address>" option.
2589 */
2590static int __init pl011_early_console_setup(struct earlycon_device *device,
2591 const char *opt)
2592{
2593 if (!device->port.membase)
2594 return -ENODEV;
2595
2596 device->con->write = pl011_early_write;
2597 device->con->read = pl011_early_read;
2598
2599 return 0;
2600}
2601
2602OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
2603
2604OF_EARLYCON_DECLARE(pl011, "arm,sbsa-uart", pl011_early_console_setup);
2605
2606/*
2607 * On Qualcomm Datacenter Technologies QDF2400 SOCs affected by
2608 * Erratum 44, traditional earlycon can be enabled by specifying
2609 * "earlycon=qdf2400_e44,<address>". Any options are ignored.
2610 *
2611 * Alternatively, you can just specify "earlycon", and the early console
2612 * will be enabled with the information from the SPCR table. In this
2613 * case, the SPCR code will detect the need for the E44 work-around,
2614 * and set the console name to "qdf2400_e44".
2615 */
2616static int __init
2617qdf2400_e44_early_console_setup(struct earlycon_device *device,
2618 const char *opt)
2619{
2620 if (!device->port.membase)
2621 return -ENODEV;
2622
2623 device->con->write = qdf2400_e44_early_write;
2624 return 0;
2625}
2626
2627EARLYCON_DECLARE(qdf2400_e44, qdf2400_e44_early_console_setup);
2628
2629#else
2630#define AMBA_CONSOLE NULL
2631#endif
2632
2633static struct uart_driver amba_reg = {
2634 .owner = THIS_MODULE,
2635 .driver_name = "ttyAMA",
2636 .dev_name = "ttyAMA",
2637 .major = SERIAL_AMBA_MAJOR,
2638 .minor = SERIAL_AMBA_MINOR,
2639 .nr = UART_NR,
2640 .cons = AMBA_CONSOLE,
2641};
2642
2643static int pl011_probe_dt_alias(int index, struct device *dev)
2644{
2645 struct device_node *np;
2646 static bool seen_dev_with_alias;
2647 static bool seen_dev_without_alias;
2648 int ret = index;
2649
2650 if (!IS_ENABLED(CONFIG_OF))
2651 return ret;
2652
2653 np = dev->of_node;
2654 if (!np)
2655 return ret;
2656
2657 ret = of_alias_get_id(np, stem: "serial");
2658 if (ret < 0) {
2659 seen_dev_without_alias = true;
2660 ret = index;
2661 } else {
2662 seen_dev_with_alias = true;
2663 if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret]) {
2664 dev_warn(dev, "requested serial port %d not available.\n", ret);
2665 ret = index;
2666 }
2667 }
2668
2669 if (seen_dev_with_alias && seen_dev_without_alias)
2670 dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
2671
2672 return ret;
2673}
2674
2675/* unregisters the driver also if no more ports are left */
2676static void pl011_unregister_port(struct uart_amba_port *uap)
2677{
2678 int i;
2679 bool busy = false;
2680
2681 for (i = 0; i < ARRAY_SIZE(amba_ports); i++) {
2682 if (amba_ports[i] == uap)
2683 amba_ports[i] = NULL;
2684 else if (amba_ports[i])
2685 busy = true;
2686 }
2687 pl011_dma_remove(uap);
2688 if (!busy)
2689 uart_unregister_driver(uart: &amba_reg);
2690}
2691
2692static int pl011_find_free_port(void)
2693{
2694 int i;
2695
2696 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2697 if (!amba_ports[i])
2698 return i;
2699
2700 return -EBUSY;
2701}
2702
2703static int pl011_get_rs485_mode(struct uart_amba_port *uap)
2704{
2705 struct uart_port *port = &uap->port;
2706 int ret;
2707
2708 ret = uart_get_rs485_mode(port);
2709 if (ret)
2710 return ret;
2711
2712 return 0;
2713}
2714
2715static int pl011_setup_port(struct device *dev, struct uart_amba_port *uap,
2716 struct resource *mmiobase, int index)
2717{
2718 void __iomem *base;
2719 int ret;
2720
2721 base = devm_ioremap_resource(dev, res: mmiobase);
2722 if (IS_ERR(ptr: base))
2723 return PTR_ERR(ptr: base);
2724
2725 index = pl011_probe_dt_alias(index, dev);
2726
2727 uap->port.dev = dev;
2728 uap->port.mapbase = mmiobase->start;
2729 uap->port.membase = base;
2730 uap->port.fifosize = uap->fifosize;
2731 uap->port.has_sysrq = IS_ENABLED(CONFIG_SERIAL_AMBA_PL011_CONSOLE);
2732 uap->port.flags = UPF_BOOT_AUTOCONF;
2733 uap->port.line = index;
2734
2735 ret = pl011_get_rs485_mode(uap);
2736 if (ret)
2737 return ret;
2738
2739 amba_ports[index] = uap;
2740
2741 return 0;
2742}
2743
2744static int pl011_register_port(struct uart_amba_port *uap)
2745{
2746 int ret, i;
2747
2748 /* Ensure interrupts from this UART are masked and cleared */
2749 pl011_write(val: 0, uap, reg: REG_IMSC);
2750 pl011_write(val: 0xffff, uap, reg: REG_ICR);
2751
2752 if (!amba_reg.state) {
2753 ret = uart_register_driver(uart: &amba_reg);
2754 if (ret < 0) {
2755 dev_err(uap->port.dev,
2756 "Failed to register AMBA-PL011 driver\n");
2757 for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
2758 if (amba_ports[i] == uap)
2759 amba_ports[i] = NULL;
2760 return ret;
2761 }
2762 }
2763
2764 ret = uart_add_one_port(reg: &amba_reg, port: &uap->port);
2765 if (ret)
2766 pl011_unregister_port(uap);
2767
2768 return ret;
2769}
2770
2771static const struct serial_rs485 pl011_rs485_supported = {
2772 .flags = SER_RS485_ENABLED | SER_RS485_RTS_ON_SEND | SER_RS485_RTS_AFTER_SEND |
2773 SER_RS485_RX_DURING_TX,
2774 .delay_rts_before_send = 1,
2775 .delay_rts_after_send = 1,
2776};
2777
2778static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
2779{
2780 struct uart_amba_port *uap;
2781 struct vendor_data *vendor = id->data;
2782 int portnr, ret;
2783 u32 val;
2784
2785 portnr = pl011_find_free_port();
2786 if (portnr < 0)
2787 return portnr;
2788
2789 uap = devm_kzalloc(dev: &dev->dev, size: sizeof(struct uart_amba_port),
2790 GFP_KERNEL);
2791 if (!uap)
2792 return -ENOMEM;
2793
2794 uap->clk = devm_clk_get(dev: &dev->dev, NULL);
2795 if (IS_ERR(ptr: uap->clk))
2796 return PTR_ERR(ptr: uap->clk);
2797
2798 uap->reg_offset = vendor->reg_offset;
2799 uap->vendor = vendor;
2800 uap->fifosize = vendor->get_fifosize(dev);
2801 uap->port.iotype = vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2802 uap->port.irq = dev->irq[0];
2803 uap->port.ops = &amba_pl011_pops;
2804 uap->port.rs485_config = pl011_rs485_config;
2805 uap->port.rs485_supported = pl011_rs485_supported;
2806 snprintf(buf: uap->type, size: sizeof(uap->type), fmt: "PL011 rev%u", amba_rev(dev));
2807
2808 if (device_property_read_u32(dev: &dev->dev, propname: "reg-io-width", val: &val) == 0) {
2809 switch (val) {
2810 case 1:
2811 uap->port.iotype = UPIO_MEM;
2812 break;
2813 case 4:
2814 uap->port.iotype = UPIO_MEM32;
2815 break;
2816 default:
2817 dev_warn(&dev->dev, "unsupported reg-io-width (%d)\n",
2818 val);
2819 return -EINVAL;
2820 }
2821 }
2822
2823 ret = pl011_setup_port(dev: &dev->dev, uap, mmiobase: &dev->res, index: portnr);
2824 if (ret)
2825 return ret;
2826
2827 amba_set_drvdata(dev, uap);
2828
2829 return pl011_register_port(uap);
2830}
2831
2832static void pl011_remove(struct amba_device *dev)
2833{
2834 struct uart_amba_port *uap = amba_get_drvdata(dev);
2835
2836 uart_remove_one_port(reg: &amba_reg, port: &uap->port);
2837 pl011_unregister_port(uap);
2838}
2839
2840#ifdef CONFIG_PM_SLEEP
2841static int pl011_suspend(struct device *dev)
2842{
2843 struct uart_amba_port *uap = dev_get_drvdata(dev);
2844
2845 if (!uap)
2846 return -EINVAL;
2847
2848 return uart_suspend_port(reg: &amba_reg, port: &uap->port);
2849}
2850
2851static int pl011_resume(struct device *dev)
2852{
2853 struct uart_amba_port *uap = dev_get_drvdata(dev);
2854
2855 if (!uap)
2856 return -EINVAL;
2857
2858 return uart_resume_port(reg: &amba_reg, port: &uap->port);
2859}
2860#endif
2861
2862static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
2863
2864#ifdef CONFIG_ACPI_SPCR_TABLE
2865static void qpdf2400_erratum44_workaround(struct device *dev,
2866 struct uart_amba_port *uap)
2867{
2868 if (!qdf2400_e44_present)
2869 return;
2870
2871 dev_info(dev, "working around QDF2400 SoC erratum 44\n");
2872 uap->vendor = &vendor_qdt_qdf2400_e44;
2873}
2874#else
2875static void qpdf2400_erratum44_workaround(struct device *dev,
2876 struct uart_amba_port *uap)
2877{ /* empty */ }
2878#endif
2879
2880static int sbsa_uart_probe(struct platform_device *pdev)
2881{
2882 struct uart_amba_port *uap;
2883 struct resource *r;
2884 int portnr, ret;
2885 int baudrate;
2886
2887 /*
2888 * Check the mandatory baud rate parameter in the DT node early
2889 * so that we can easily exit with the error.
2890 */
2891 if (pdev->dev.of_node) {
2892 struct device_node *np = pdev->dev.of_node;
2893
2894 ret = of_property_read_u32(np, propname: "current-speed", out_value: &baudrate);
2895 if (ret)
2896 return ret;
2897 } else {
2898 baudrate = 115200;
2899 }
2900
2901 portnr = pl011_find_free_port();
2902 if (portnr < 0)
2903 return portnr;
2904
2905 uap = devm_kzalloc(dev: &pdev->dev, size: sizeof(struct uart_amba_port),
2906 GFP_KERNEL);
2907 if (!uap)
2908 return -ENOMEM;
2909
2910 ret = platform_get_irq(pdev, 0);
2911 if (ret < 0)
2912 return ret;
2913 uap->port.irq = ret;
2914
2915 uap->vendor = &vendor_sbsa;
2916 qpdf2400_erratum44_workaround(dev: &pdev->dev, uap);
2917
2918 uap->reg_offset = uap->vendor->reg_offset;
2919 uap->fifosize = 32;
2920 uap->port.iotype = uap->vendor->access_32b ? UPIO_MEM32 : UPIO_MEM;
2921 uap->port.ops = &sbsa_uart_pops;
2922 uap->fixed_baud = baudrate;
2923
2924 snprintf(buf: uap->type, size: sizeof(uap->type), fmt: "SBSA");
2925
2926 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2927
2928 ret = pl011_setup_port(dev: &pdev->dev, uap, mmiobase: r, index: portnr);
2929 if (ret)
2930 return ret;
2931
2932 platform_set_drvdata(pdev, data: uap);
2933
2934 return pl011_register_port(uap);
2935}
2936
2937static void sbsa_uart_remove(struct platform_device *pdev)
2938{
2939 struct uart_amba_port *uap = platform_get_drvdata(pdev);
2940
2941 uart_remove_one_port(reg: &amba_reg, port: &uap->port);
2942 pl011_unregister_port(uap);
2943}
2944
2945static const struct of_device_id sbsa_uart_of_match[] = {
2946 { .compatible = "arm,sbsa-uart", },
2947 {},
2948};
2949MODULE_DEVICE_TABLE(of, sbsa_uart_of_match);
2950
2951static const struct acpi_device_id __maybe_unused sbsa_uart_acpi_match[] = {
2952 { "ARMH0011", 0 },
2953 { "ARMHB000", 0 },
2954 {},
2955};
2956MODULE_DEVICE_TABLE(acpi, sbsa_uart_acpi_match);
2957
2958static struct platform_driver arm_sbsa_uart_platform_driver = {
2959 .probe = sbsa_uart_probe,
2960 .remove_new = sbsa_uart_remove,
2961 .driver = {
2962 .name = "sbsa-uart",
2963 .pm = &pl011_dev_pm_ops,
2964 .of_match_table = of_match_ptr(sbsa_uart_of_match),
2965 .acpi_match_table = ACPI_PTR(sbsa_uart_acpi_match),
2966 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2967 },
2968};
2969
2970static const struct amba_id pl011_ids[] = {
2971 {
2972 .id = 0x00041011,
2973 .mask = 0x000fffff,
2974 .data = &vendor_arm,
2975 },
2976 {
2977 .id = 0x00380802,
2978 .mask = 0x00ffffff,
2979 .data = &vendor_st,
2980 },
2981 { 0, 0 },
2982};
2983
2984MODULE_DEVICE_TABLE(amba, pl011_ids);
2985
2986static struct amba_driver pl011_driver = {
2987 .drv = {
2988 .name = "uart-pl011",
2989 .pm = &pl011_dev_pm_ops,
2990 .suppress_bind_attrs = IS_BUILTIN(CONFIG_SERIAL_AMBA_PL011),
2991 },
2992 .id_table = pl011_ids,
2993 .probe = pl011_probe,
2994 .remove = pl011_remove,
2995};
2996
2997static int __init pl011_init(void)
2998{
2999 pr_info("Serial: AMBA PL011 UART driver\n");
3000
3001 if (platform_driver_register(&arm_sbsa_uart_platform_driver))
3002 pr_warn("could not register SBSA UART platform driver\n");
3003 return amba_driver_register(drv: &pl011_driver);
3004}
3005
3006static void __exit pl011_exit(void)
3007{
3008 platform_driver_unregister(&arm_sbsa_uart_platform_driver);
3009 amba_driver_unregister(drv: &pl011_driver);
3010}
3011
3012/*
3013 * While this can be a module, if builtin it's most likely the console
3014 * So let's leave module_exit but move module_init to an earlier place
3015 */
3016arch_initcall(pl011_init);
3017module_exit(pl011_exit);
3018
3019MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
3020MODULE_DESCRIPTION("ARM AMBA serial port driver");
3021MODULE_LICENSE("GPL");
3022

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/tty/serial/amba-pl011.c