1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VFIO: IOMMU DMA mapping support for Type1 IOMMU
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 *
12 * We arbitrarily define a Type1 IOMMU as one matching the below code.
13 * It could be called the x86 IOMMU as it's designed for AMD-Vi & Intel
14 * VT-d, but that makes it harder to re-use as theoretically anyone
15 * implementing a similar IOMMU could make use of this. We expect the
16 * IOMMU to support the IOMMU API and have few to no restrictions around
17 * the IOVA range that can be mapped. The Type1 IOMMU is currently
18 * optimized for relatively static mappings of a userspace process with
19 * userspace pages pinned into memory. We also assume devices and IOMMU
20 * domains are PCI based as the IOMMU API is still centered around a
21 * device/bus interface rather than a group interface.
22 */
23
24#include <linux/compat.h>
25#include <linux/device.h>
26#include <linux/fs.h>
27#include <linux/highmem.h>
28#include <linux/iommu.h>
29#include <linux/module.h>
30#include <linux/mm.h>
31#include <linux/kthread.h>
32#include <linux/rbtree.h>
33#include <linux/sched/signal.h>
34#include <linux/sched/mm.h>
35#include <linux/slab.h>
36#include <linux/uaccess.h>
37#include <linux/vfio.h>
38#include <linux/workqueue.h>
39#include <linux/notifier.h>
40#include "vfio.h"
41
42#define DRIVER_VERSION "0.2"
43#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
44#define DRIVER_DESC "Type1 IOMMU driver for VFIO"
45
46static bool allow_unsafe_interrupts;
47module_param_named(allow_unsafe_interrupts,
48 allow_unsafe_interrupts, bool, S_IRUGO | S_IWUSR);
49MODULE_PARM_DESC(allow_unsafe_interrupts,
50 "Enable VFIO IOMMU support for on platforms without interrupt remapping support.");
51
52static bool disable_hugepages;
53module_param_named(disable_hugepages,
54 disable_hugepages, bool, S_IRUGO | S_IWUSR);
55MODULE_PARM_DESC(disable_hugepages,
56 "Disable VFIO IOMMU support for IOMMU hugepages.");
57
58static unsigned int dma_entry_limit __read_mostly = U16_MAX;
59module_param_named(dma_entry_limit, dma_entry_limit, uint, 0644);
60MODULE_PARM_DESC(dma_entry_limit,
61 "Maximum number of user DMA mappings per container (65535).");
62
63struct vfio_iommu {
64 struct list_head domain_list;
65 struct list_head iova_list;
66 struct mutex lock;
67 struct rb_root dma_list;
68 struct list_head device_list;
69 struct mutex device_list_lock;
70 unsigned int dma_avail;
71 unsigned int vaddr_invalid_count;
72 uint64_t pgsize_bitmap;
73 uint64_t num_non_pinned_groups;
74 bool v2;
75 bool nesting;
76 bool dirty_page_tracking;
77 struct list_head emulated_iommu_groups;
78};
79
80struct vfio_domain {
81 struct iommu_domain *domain;
82 struct list_head next;
83 struct list_head group_list;
84 bool fgsp : 1; /* Fine-grained super pages */
85 bool enforce_cache_coherency : 1;
86};
87
88struct vfio_dma {
89 struct rb_node node;
90 dma_addr_t iova; /* Device address */
91 unsigned long vaddr; /* Process virtual addr */
92 size_t size; /* Map size (bytes) */
93 int prot; /* IOMMU_READ/WRITE */
94 bool iommu_mapped;
95 bool lock_cap; /* capable(CAP_IPC_LOCK) */
96 bool vaddr_invalid;
97 struct task_struct *task;
98 struct rb_root pfn_list; /* Ex-user pinned pfn list */
99 unsigned long *bitmap;
100 struct mm_struct *mm;
101 size_t locked_vm;
102};
103
104struct vfio_batch {
105 struct page **pages; /* for pin_user_pages_remote */
106 struct page *fallback_page; /* if pages alloc fails */
107 int capacity; /* length of pages array */
108 int size; /* of batch currently */
109 int offset; /* of next entry in pages */
110};
111
112struct vfio_iommu_group {
113 struct iommu_group *iommu_group;
114 struct list_head next;
115 bool pinned_page_dirty_scope;
116};
117
118struct vfio_iova {
119 struct list_head list;
120 dma_addr_t start;
121 dma_addr_t end;
122};
123
124/*
125 * Guest RAM pinning working set or DMA target
126 */
127struct vfio_pfn {
128 struct rb_node node;
129 dma_addr_t iova; /* Device address */
130 unsigned long pfn; /* Host pfn */
131 unsigned int ref_count;
132};
133
134struct vfio_regions {
135 struct list_head list;
136 dma_addr_t iova;
137 phys_addr_t phys;
138 size_t len;
139};
140
141#define DIRTY_BITMAP_BYTES(n) (ALIGN(n, BITS_PER_TYPE(u64)) / BITS_PER_BYTE)
142
143/*
144 * Input argument of number of bits to bitmap_set() is unsigned integer, which
145 * further casts to signed integer for unaligned multi-bit operation,
146 * __bitmap_set().
147 * Then maximum bitmap size supported is 2^31 bits divided by 2^3 bits/byte,
148 * that is 2^28 (256 MB) which maps to 2^31 * 2^12 = 2^43 (8TB) on 4K page
149 * system.
150 */
151#define DIRTY_BITMAP_PAGES_MAX ((u64)INT_MAX)
152#define DIRTY_BITMAP_SIZE_MAX DIRTY_BITMAP_BYTES(DIRTY_BITMAP_PAGES_MAX)
153
154static int put_pfn(unsigned long pfn, int prot);
155
156static struct vfio_iommu_group*
157vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
158 struct iommu_group *iommu_group);
159
160/*
161 * This code handles mapping and unmapping of user data buffers
162 * into DMA'ble space using the IOMMU
163 */
164
165static struct vfio_dma *vfio_find_dma(struct vfio_iommu *iommu,
166 dma_addr_t start, size_t size)
167{
168 struct rb_node *node = iommu->dma_list.rb_node;
169
170 while (node) {
171 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
172
173 if (start + size <= dma->iova)
174 node = node->rb_left;
175 else if (start >= dma->iova + dma->size)
176 node = node->rb_right;
177 else
178 return dma;
179 }
180
181 return NULL;
182}
183
184static struct rb_node *vfio_find_dma_first_node(struct vfio_iommu *iommu,
185 dma_addr_t start, u64 size)
186{
187 struct rb_node *res = NULL;
188 struct rb_node *node = iommu->dma_list.rb_node;
189 struct vfio_dma *dma_res = NULL;
190
191 while (node) {
192 struct vfio_dma *dma = rb_entry(node, struct vfio_dma, node);
193
194 if (start < dma->iova + dma->size) {
195 res = node;
196 dma_res = dma;
197 if (start >= dma->iova)
198 break;
199 node = node->rb_left;
200 } else {
201 node = node->rb_right;
202 }
203 }
204 if (res && size && dma_res->iova >= start + size)
205 res = NULL;
206 return res;
207}
208
209static void vfio_link_dma(struct vfio_iommu *iommu, struct vfio_dma *new)
210{
211 struct rb_node **link = &iommu->dma_list.rb_node, *parent = NULL;
212 struct vfio_dma *dma;
213
214 while (*link) {
215 parent = *link;
216 dma = rb_entry(parent, struct vfio_dma, node);
217
218 if (new->iova + new->size <= dma->iova)
219 link = &(*link)->rb_left;
220 else
221 link = &(*link)->rb_right;
222 }
223
224 rb_link_node(node: &new->node, parent, rb_link: link);
225 rb_insert_color(&new->node, &iommu->dma_list);
226}
227
228static void vfio_unlink_dma(struct vfio_iommu *iommu, struct vfio_dma *old)
229{
230 rb_erase(&old->node, &iommu->dma_list);
231}
232
233
234static int vfio_dma_bitmap_alloc(struct vfio_dma *dma, size_t pgsize)
235{
236 uint64_t npages = dma->size / pgsize;
237
238 if (npages > DIRTY_BITMAP_PAGES_MAX)
239 return -EINVAL;
240
241 /*
242 * Allocate extra 64 bits that are used to calculate shift required for
243 * bitmap_shift_left() to manipulate and club unaligned number of pages
244 * in adjacent vfio_dma ranges.
245 */
246 dma->bitmap = kvzalloc(DIRTY_BITMAP_BYTES(npages) + sizeof(u64),
247 GFP_KERNEL);
248 if (!dma->bitmap)
249 return -ENOMEM;
250
251 return 0;
252}
253
254static void vfio_dma_bitmap_free(struct vfio_dma *dma)
255{
256 kvfree(addr: dma->bitmap);
257 dma->bitmap = NULL;
258}
259
260static void vfio_dma_populate_bitmap(struct vfio_dma *dma, size_t pgsize)
261{
262 struct rb_node *p;
263 unsigned long pgshift = __ffs(pgsize);
264
265 for (p = rb_first(&dma->pfn_list); p; p = rb_next(p)) {
266 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn, node);
267
268 bitmap_set(map: dma->bitmap, start: (vpfn->iova - dma->iova) >> pgshift, nbits: 1);
269 }
270}
271
272static void vfio_iommu_populate_bitmap_full(struct vfio_iommu *iommu)
273{
274 struct rb_node *n;
275 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
276
277 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
278 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
279
280 bitmap_set(map: dma->bitmap, start: 0, nbits: dma->size >> pgshift);
281 }
282}
283
284static int vfio_dma_bitmap_alloc_all(struct vfio_iommu *iommu, size_t pgsize)
285{
286 struct rb_node *n;
287
288 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
289 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
290 int ret;
291
292 ret = vfio_dma_bitmap_alloc(dma, pgsize);
293 if (ret) {
294 struct rb_node *p;
295
296 for (p = rb_prev(n); p; p = rb_prev(p)) {
297 struct vfio_dma *dma = rb_entry(n,
298 struct vfio_dma, node);
299
300 vfio_dma_bitmap_free(dma);
301 }
302 return ret;
303 }
304 vfio_dma_populate_bitmap(dma, pgsize);
305 }
306 return 0;
307}
308
309static void vfio_dma_bitmap_free_all(struct vfio_iommu *iommu)
310{
311 struct rb_node *n;
312
313 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
314 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
315
316 vfio_dma_bitmap_free(dma);
317 }
318}
319
320/*
321 * Helper Functions for host iova-pfn list
322 */
323static struct vfio_pfn *vfio_find_vpfn(struct vfio_dma *dma, dma_addr_t iova)
324{
325 struct vfio_pfn *vpfn;
326 struct rb_node *node = dma->pfn_list.rb_node;
327
328 while (node) {
329 vpfn = rb_entry(node, struct vfio_pfn, node);
330
331 if (iova < vpfn->iova)
332 node = node->rb_left;
333 else if (iova > vpfn->iova)
334 node = node->rb_right;
335 else
336 return vpfn;
337 }
338 return NULL;
339}
340
341static void vfio_link_pfn(struct vfio_dma *dma,
342 struct vfio_pfn *new)
343{
344 struct rb_node **link, *parent = NULL;
345 struct vfio_pfn *vpfn;
346
347 link = &dma->pfn_list.rb_node;
348 while (*link) {
349 parent = *link;
350 vpfn = rb_entry(parent, struct vfio_pfn, node);
351
352 if (new->iova < vpfn->iova)
353 link = &(*link)->rb_left;
354 else
355 link = &(*link)->rb_right;
356 }
357
358 rb_link_node(node: &new->node, parent, rb_link: link);
359 rb_insert_color(&new->node, &dma->pfn_list);
360}
361
362static void vfio_unlink_pfn(struct vfio_dma *dma, struct vfio_pfn *old)
363{
364 rb_erase(&old->node, &dma->pfn_list);
365}
366
367static int vfio_add_to_pfn_list(struct vfio_dma *dma, dma_addr_t iova,
368 unsigned long pfn)
369{
370 struct vfio_pfn *vpfn;
371
372 vpfn = kzalloc(size: sizeof(*vpfn), GFP_KERNEL);
373 if (!vpfn)
374 return -ENOMEM;
375
376 vpfn->iova = iova;
377 vpfn->pfn = pfn;
378 vpfn->ref_count = 1;
379 vfio_link_pfn(dma, new: vpfn);
380 return 0;
381}
382
383static void vfio_remove_from_pfn_list(struct vfio_dma *dma,
384 struct vfio_pfn *vpfn)
385{
386 vfio_unlink_pfn(dma, old: vpfn);
387 kfree(objp: vpfn);
388}
389
390static struct vfio_pfn *vfio_iova_get_vfio_pfn(struct vfio_dma *dma,
391 unsigned long iova)
392{
393 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
394
395 if (vpfn)
396 vpfn->ref_count++;
397 return vpfn;
398}
399
400static int vfio_iova_put_vfio_pfn(struct vfio_dma *dma, struct vfio_pfn *vpfn)
401{
402 int ret = 0;
403
404 vpfn->ref_count--;
405 if (!vpfn->ref_count) {
406 ret = put_pfn(pfn: vpfn->pfn, prot: dma->prot);
407 vfio_remove_from_pfn_list(dma, vpfn);
408 }
409 return ret;
410}
411
412static int mm_lock_acct(struct task_struct *task, struct mm_struct *mm,
413 bool lock_cap, long npage)
414{
415 int ret = mmap_write_lock_killable(mm);
416
417 if (ret)
418 return ret;
419
420 ret = __account_locked_vm(mm, abs(npage), inc: npage > 0, task, bypass_rlim: lock_cap);
421 mmap_write_unlock(mm);
422 return ret;
423}
424
425static int vfio_lock_acct(struct vfio_dma *dma, long npage, bool async)
426{
427 struct mm_struct *mm;
428 int ret;
429
430 if (!npage)
431 return 0;
432
433 mm = dma->mm;
434 if (async && !mmget_not_zero(mm))
435 return -ESRCH; /* process exited */
436
437 ret = mm_lock_acct(task: dma->task, mm, lock_cap: dma->lock_cap, npage);
438 if (!ret)
439 dma->locked_vm += npage;
440
441 if (async)
442 mmput(mm);
443
444 return ret;
445}
446
447/*
448 * Some mappings aren't backed by a struct page, for example an mmap'd
449 * MMIO range for our own or another device. These use a different
450 * pfn conversion and shouldn't be tracked as locked pages.
451 * For compound pages, any driver that sets the reserved bit in head
452 * page needs to set the reserved bit in all subpages to be safe.
453 */
454static bool is_invalid_reserved_pfn(unsigned long pfn)
455{
456 if (pfn_valid(pfn))
457 return PageReserved(pfn_to_page(pfn));
458
459 return true;
460}
461
462static int put_pfn(unsigned long pfn, int prot)
463{
464 if (!is_invalid_reserved_pfn(pfn)) {
465 struct page *page = pfn_to_page(pfn);
466
467 unpin_user_pages_dirty_lock(pages: &page, npages: 1, make_dirty: prot & IOMMU_WRITE);
468 return 1;
469 }
470 return 0;
471}
472
473#define VFIO_BATCH_MAX_CAPACITY (PAGE_SIZE / sizeof(struct page *))
474
475static void vfio_batch_init(struct vfio_batch *batch)
476{
477 batch->size = 0;
478 batch->offset = 0;
479
480 if (unlikely(disable_hugepages))
481 goto fallback;
482
483 batch->pages = (struct page **) __get_free_page(GFP_KERNEL);
484 if (!batch->pages)
485 goto fallback;
486
487 batch->capacity = VFIO_BATCH_MAX_CAPACITY;
488 return;
489
490fallback:
491 batch->pages = &batch->fallback_page;
492 batch->capacity = 1;
493}
494
495static void vfio_batch_unpin(struct vfio_batch *batch, struct vfio_dma *dma)
496{
497 while (batch->size) {
498 unsigned long pfn = page_to_pfn(batch->pages[batch->offset]);
499
500 put_pfn(pfn, prot: dma->prot);
501 batch->offset++;
502 batch->size--;
503 }
504}
505
506static void vfio_batch_fini(struct vfio_batch *batch)
507{
508 if (batch->capacity == VFIO_BATCH_MAX_CAPACITY)
509 free_page((unsigned long)batch->pages);
510}
511
512static int follow_fault_pfn(struct vm_area_struct *vma, struct mm_struct *mm,
513 unsigned long vaddr, unsigned long *pfn,
514 bool write_fault)
515{
516 pte_t *ptep;
517 pte_t pte;
518 spinlock_t *ptl;
519 int ret;
520
521 ret = follow_pte(mm: vma->vm_mm, address: vaddr, ptepp: &ptep, ptlp: &ptl);
522 if (ret) {
523 bool unlocked = false;
524
525 ret = fixup_user_fault(mm, address: vaddr,
526 fault_flags: FAULT_FLAG_REMOTE |
527 (write_fault ? FAULT_FLAG_WRITE : 0),
528 unlocked: &unlocked);
529 if (unlocked)
530 return -EAGAIN;
531
532 if (ret)
533 return ret;
534
535 ret = follow_pte(mm: vma->vm_mm, address: vaddr, ptepp: &ptep, ptlp: &ptl);
536 if (ret)
537 return ret;
538 }
539
540 pte = ptep_get(ptep);
541
542 if (write_fault && !pte_write(pte))
543 ret = -EFAULT;
544 else
545 *pfn = pte_pfn(pte);
546
547 pte_unmap_unlock(ptep, ptl);
548 return ret;
549}
550
551/*
552 * Returns the positive number of pfns successfully obtained or a negative
553 * error code.
554 */
555static int vaddr_get_pfns(struct mm_struct *mm, unsigned long vaddr,
556 long npages, int prot, unsigned long *pfn,
557 struct page **pages)
558{
559 struct vm_area_struct *vma;
560 unsigned int flags = 0;
561 int ret;
562
563 if (prot & IOMMU_WRITE)
564 flags |= FOLL_WRITE;
565
566 mmap_read_lock(mm);
567 ret = pin_user_pages_remote(mm, start: vaddr, nr_pages: npages, gup_flags: flags | FOLL_LONGTERM,
568 pages, NULL);
569 if (ret > 0) {
570 *pfn = page_to_pfn(pages[0]);
571 goto done;
572 }
573
574 vaddr = untagged_addr_remote(mm, vaddr);
575
576retry:
577 vma = vma_lookup(mm, addr: vaddr);
578
579 if (vma && vma->vm_flags & VM_PFNMAP) {
580 ret = follow_fault_pfn(vma, mm, vaddr, pfn, write_fault: prot & IOMMU_WRITE);
581 if (ret == -EAGAIN)
582 goto retry;
583
584 if (!ret) {
585 if (is_invalid_reserved_pfn(pfn: *pfn))
586 ret = 1;
587 else
588 ret = -EFAULT;
589 }
590 }
591done:
592 mmap_read_unlock(mm);
593 return ret;
594}
595
596/*
597 * Attempt to pin pages. We really don't want to track all the pfns and
598 * the iommu can only map chunks of consecutive pfns anyway, so get the
599 * first page and all consecutive pages with the same locking.
600 */
601static long vfio_pin_pages_remote(struct vfio_dma *dma, unsigned long vaddr,
602 long npage, unsigned long *pfn_base,
603 unsigned long limit, struct vfio_batch *batch)
604{
605 unsigned long pfn;
606 struct mm_struct *mm = current->mm;
607 long ret, pinned = 0, lock_acct = 0;
608 bool rsvd;
609 dma_addr_t iova = vaddr - dma->vaddr + dma->iova;
610
611 /* This code path is only user initiated */
612 if (!mm)
613 return -ENODEV;
614
615 if (batch->size) {
616 /* Leftover pages in batch from an earlier call. */
617 *pfn_base = page_to_pfn(batch->pages[batch->offset]);
618 pfn = *pfn_base;
619 rsvd = is_invalid_reserved_pfn(pfn: *pfn_base);
620 } else {
621 *pfn_base = 0;
622 }
623
624 while (npage) {
625 if (!batch->size) {
626 /* Empty batch, so refill it. */
627 long req_pages = min_t(long, npage, batch->capacity);
628
629 ret = vaddr_get_pfns(mm, vaddr, npages: req_pages, prot: dma->prot,
630 pfn: &pfn, pages: batch->pages);
631 if (ret < 0)
632 goto unpin_out;
633
634 batch->size = ret;
635 batch->offset = 0;
636
637 if (!*pfn_base) {
638 *pfn_base = pfn;
639 rsvd = is_invalid_reserved_pfn(pfn: *pfn_base);
640 }
641 }
642
643 /*
644 * pfn is preset for the first iteration of this inner loop and
645 * updated at the end to handle a VM_PFNMAP pfn. In that case,
646 * batch->pages isn't valid (there's no struct page), so allow
647 * batch->pages to be touched only when there's more than one
648 * pfn to check, which guarantees the pfns are from a
649 * !VM_PFNMAP vma.
650 */
651 while (true) {
652 if (pfn != *pfn_base + pinned ||
653 rsvd != is_invalid_reserved_pfn(pfn))
654 goto out;
655
656 /*
657 * Reserved pages aren't counted against the user,
658 * externally pinned pages are already counted against
659 * the user.
660 */
661 if (!rsvd && !vfio_find_vpfn(dma, iova)) {
662 if (!dma->lock_cap &&
663 mm->locked_vm + lock_acct + 1 > limit) {
664 pr_warn("%s: RLIMIT_MEMLOCK (%ld) exceeded\n",
665 __func__, limit << PAGE_SHIFT);
666 ret = -ENOMEM;
667 goto unpin_out;
668 }
669 lock_acct++;
670 }
671
672 pinned++;
673 npage--;
674 vaddr += PAGE_SIZE;
675 iova += PAGE_SIZE;
676 batch->offset++;
677 batch->size--;
678
679 if (!batch->size)
680 break;
681
682 pfn = page_to_pfn(batch->pages[batch->offset]);
683 }
684
685 if (unlikely(disable_hugepages))
686 break;
687 }
688
689out:
690 ret = vfio_lock_acct(dma, npage: lock_acct, async: false);
691
692unpin_out:
693 if (batch->size == 1 && !batch->offset) {
694 /* May be a VM_PFNMAP pfn, which the batch can't remember. */
695 put_pfn(pfn, prot: dma->prot);
696 batch->size = 0;
697 }
698
699 if (ret < 0) {
700 if (pinned && !rsvd) {
701 for (pfn = *pfn_base ; pinned ; pfn++, pinned--)
702 put_pfn(pfn, prot: dma->prot);
703 }
704 vfio_batch_unpin(batch, dma);
705
706 return ret;
707 }
708
709 return pinned;
710}
711
712static long vfio_unpin_pages_remote(struct vfio_dma *dma, dma_addr_t iova,
713 unsigned long pfn, long npage,
714 bool do_accounting)
715{
716 long unlocked = 0, locked = 0;
717 long i;
718
719 for (i = 0; i < npage; i++, iova += PAGE_SIZE) {
720 if (put_pfn(pfn: pfn++, prot: dma->prot)) {
721 unlocked++;
722 if (vfio_find_vpfn(dma, iova))
723 locked++;
724 }
725 }
726
727 if (do_accounting)
728 vfio_lock_acct(dma, npage: locked - unlocked, async: true);
729
730 return unlocked;
731}
732
733static int vfio_pin_page_external(struct vfio_dma *dma, unsigned long vaddr,
734 unsigned long *pfn_base, bool do_accounting)
735{
736 struct page *pages[1];
737 struct mm_struct *mm;
738 int ret;
739
740 mm = dma->mm;
741 if (!mmget_not_zero(mm))
742 return -ENODEV;
743
744 ret = vaddr_get_pfns(mm, vaddr, npages: 1, prot: dma->prot, pfn: pfn_base, pages);
745 if (ret != 1)
746 goto out;
747
748 ret = 0;
749
750 if (do_accounting && !is_invalid_reserved_pfn(pfn: *pfn_base)) {
751 ret = vfio_lock_acct(dma, npage: 1, async: false);
752 if (ret) {
753 put_pfn(pfn: *pfn_base, prot: dma->prot);
754 if (ret == -ENOMEM)
755 pr_warn("%s: Task %s (%d) RLIMIT_MEMLOCK "
756 "(%ld) exceeded\n", __func__,
757 dma->task->comm, task_pid_nr(dma->task),
758 task_rlimit(dma->task, RLIMIT_MEMLOCK));
759 }
760 }
761
762out:
763 mmput(mm);
764 return ret;
765}
766
767static int vfio_unpin_page_external(struct vfio_dma *dma, dma_addr_t iova,
768 bool do_accounting)
769{
770 int unlocked;
771 struct vfio_pfn *vpfn = vfio_find_vpfn(dma, iova);
772
773 if (!vpfn)
774 return 0;
775
776 unlocked = vfio_iova_put_vfio_pfn(dma, vpfn);
777
778 if (do_accounting)
779 vfio_lock_acct(dma, npage: -unlocked, async: true);
780
781 return unlocked;
782}
783
784static int vfio_iommu_type1_pin_pages(void *iommu_data,
785 struct iommu_group *iommu_group,
786 dma_addr_t user_iova,
787 int npage, int prot,
788 struct page **pages)
789{
790 struct vfio_iommu *iommu = iommu_data;
791 struct vfio_iommu_group *group;
792 int i, j, ret;
793 unsigned long remote_vaddr;
794 struct vfio_dma *dma;
795 bool do_accounting;
796
797 if (!iommu || !pages)
798 return -EINVAL;
799
800 /* Supported for v2 version only */
801 if (!iommu->v2)
802 return -EACCES;
803
804 mutex_lock(&iommu->lock);
805
806 if (WARN_ONCE(iommu->vaddr_invalid_count,
807 "vfio_pin_pages not allowed with VFIO_UPDATE_VADDR\n")) {
808 ret = -EBUSY;
809 goto pin_done;
810 }
811
812 /* Fail if no dma_umap notifier is registered */
813 if (list_empty(head: &iommu->device_list)) {
814 ret = -EINVAL;
815 goto pin_done;
816 }
817
818 /*
819 * If iommu capable domain exist in the container then all pages are
820 * already pinned and accounted. Accounting should be done if there is no
821 * iommu capable domain in the container.
822 */
823 do_accounting = list_empty(head: &iommu->domain_list);
824
825 for (i = 0; i < npage; i++) {
826 unsigned long phys_pfn;
827 dma_addr_t iova;
828 struct vfio_pfn *vpfn;
829
830 iova = user_iova + PAGE_SIZE * i;
831 dma = vfio_find_dma(iommu, start: iova, PAGE_SIZE);
832 if (!dma) {
833 ret = -EINVAL;
834 goto pin_unwind;
835 }
836
837 if ((dma->prot & prot) != prot) {
838 ret = -EPERM;
839 goto pin_unwind;
840 }
841
842 vpfn = vfio_iova_get_vfio_pfn(dma, iova);
843 if (vpfn) {
844 pages[i] = pfn_to_page(vpfn->pfn);
845 continue;
846 }
847
848 remote_vaddr = dma->vaddr + (iova - dma->iova);
849 ret = vfio_pin_page_external(dma, vaddr: remote_vaddr, pfn_base: &phys_pfn,
850 do_accounting);
851 if (ret)
852 goto pin_unwind;
853
854 if (!pfn_valid(pfn: phys_pfn)) {
855 ret = -EINVAL;
856 goto pin_unwind;
857 }
858
859 ret = vfio_add_to_pfn_list(dma, iova, pfn: phys_pfn);
860 if (ret) {
861 if (put_pfn(pfn: phys_pfn, prot: dma->prot) && do_accounting)
862 vfio_lock_acct(dma, npage: -1, async: true);
863 goto pin_unwind;
864 }
865
866 pages[i] = pfn_to_page(phys_pfn);
867
868 if (iommu->dirty_page_tracking) {
869 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
870
871 /*
872 * Bitmap populated with the smallest supported page
873 * size
874 */
875 bitmap_set(map: dma->bitmap,
876 start: (iova - dma->iova) >> pgshift, nbits: 1);
877 }
878 }
879 ret = i;
880
881 group = vfio_iommu_find_iommu_group(iommu, iommu_group);
882 if (!group->pinned_page_dirty_scope) {
883 group->pinned_page_dirty_scope = true;
884 iommu->num_non_pinned_groups--;
885 }
886
887 goto pin_done;
888
889pin_unwind:
890 pages[i] = NULL;
891 for (j = 0; j < i; j++) {
892 dma_addr_t iova;
893
894 iova = user_iova + PAGE_SIZE * j;
895 dma = vfio_find_dma(iommu, start: iova, PAGE_SIZE);
896 vfio_unpin_page_external(dma, iova, do_accounting);
897 pages[j] = NULL;
898 }
899pin_done:
900 mutex_unlock(lock: &iommu->lock);
901 return ret;
902}
903
904static void vfio_iommu_type1_unpin_pages(void *iommu_data,
905 dma_addr_t user_iova, int npage)
906{
907 struct vfio_iommu *iommu = iommu_data;
908 bool do_accounting;
909 int i;
910
911 /* Supported for v2 version only */
912 if (WARN_ON(!iommu->v2))
913 return;
914
915 mutex_lock(&iommu->lock);
916
917 do_accounting = list_empty(head: &iommu->domain_list);
918 for (i = 0; i < npage; i++) {
919 dma_addr_t iova = user_iova + PAGE_SIZE * i;
920 struct vfio_dma *dma;
921
922 dma = vfio_find_dma(iommu, start: iova, PAGE_SIZE);
923 if (!dma)
924 break;
925
926 vfio_unpin_page_external(dma, iova, do_accounting);
927 }
928
929 mutex_unlock(lock: &iommu->lock);
930
931 WARN_ON(i != npage);
932}
933
934static long vfio_sync_unpin(struct vfio_dma *dma, struct vfio_domain *domain,
935 struct list_head *regions,
936 struct iommu_iotlb_gather *iotlb_gather)
937{
938 long unlocked = 0;
939 struct vfio_regions *entry, *next;
940
941 iommu_iotlb_sync(domain: domain->domain, iotlb_gather);
942
943 list_for_each_entry_safe(entry, next, regions, list) {
944 unlocked += vfio_unpin_pages_remote(dma,
945 iova: entry->iova,
946 pfn: entry->phys >> PAGE_SHIFT,
947 npage: entry->len >> PAGE_SHIFT,
948 do_accounting: false);
949 list_del(entry: &entry->list);
950 kfree(objp: entry);
951 }
952
953 cond_resched();
954
955 return unlocked;
956}
957
958/*
959 * Generally, VFIO needs to unpin remote pages after each IOTLB flush.
960 * Therefore, when using IOTLB flush sync interface, VFIO need to keep track
961 * of these regions (currently using a list).
962 *
963 * This value specifies maximum number of regions for each IOTLB flush sync.
964 */
965#define VFIO_IOMMU_TLB_SYNC_MAX 512
966
967static size_t unmap_unpin_fast(struct vfio_domain *domain,
968 struct vfio_dma *dma, dma_addr_t *iova,
969 size_t len, phys_addr_t phys, long *unlocked,
970 struct list_head *unmapped_list,
971 int *unmapped_cnt,
972 struct iommu_iotlb_gather *iotlb_gather)
973{
974 size_t unmapped = 0;
975 struct vfio_regions *entry = kzalloc(size: sizeof(*entry), GFP_KERNEL);
976
977 if (entry) {
978 unmapped = iommu_unmap_fast(domain: domain->domain, iova: *iova, size: len,
979 iotlb_gather);
980
981 if (!unmapped) {
982 kfree(objp: entry);
983 } else {
984 entry->iova = *iova;
985 entry->phys = phys;
986 entry->len = unmapped;
987 list_add_tail(new: &entry->list, head: unmapped_list);
988
989 *iova += unmapped;
990 (*unmapped_cnt)++;
991 }
992 }
993
994 /*
995 * Sync if the number of fast-unmap regions hits the limit
996 * or in case of errors.
997 */
998 if (*unmapped_cnt >= VFIO_IOMMU_TLB_SYNC_MAX || !unmapped) {
999 *unlocked += vfio_sync_unpin(dma, domain, regions: unmapped_list,
1000 iotlb_gather);
1001 *unmapped_cnt = 0;
1002 }
1003
1004 return unmapped;
1005}
1006
1007static size_t unmap_unpin_slow(struct vfio_domain *domain,
1008 struct vfio_dma *dma, dma_addr_t *iova,
1009 size_t len, phys_addr_t phys,
1010 long *unlocked)
1011{
1012 size_t unmapped = iommu_unmap(domain: domain->domain, iova: *iova, size: len);
1013
1014 if (unmapped) {
1015 *unlocked += vfio_unpin_pages_remote(dma, iova: *iova,
1016 pfn: phys >> PAGE_SHIFT,
1017 npage: unmapped >> PAGE_SHIFT,
1018 do_accounting: false);
1019 *iova += unmapped;
1020 cond_resched();
1021 }
1022 return unmapped;
1023}
1024
1025static long vfio_unmap_unpin(struct vfio_iommu *iommu, struct vfio_dma *dma,
1026 bool do_accounting)
1027{
1028 dma_addr_t iova = dma->iova, end = dma->iova + dma->size;
1029 struct vfio_domain *domain, *d;
1030 LIST_HEAD(unmapped_region_list);
1031 struct iommu_iotlb_gather iotlb_gather;
1032 int unmapped_region_cnt = 0;
1033 long unlocked = 0;
1034
1035 if (!dma->size)
1036 return 0;
1037
1038 if (list_empty(head: &iommu->domain_list))
1039 return 0;
1040
1041 /*
1042 * We use the IOMMU to track the physical addresses, otherwise we'd
1043 * need a much more complicated tracking system. Unfortunately that
1044 * means we need to use one of the iommu domains to figure out the
1045 * pfns to unpin. The rest need to be unmapped in advance so we have
1046 * no iommu translations remaining when the pages are unpinned.
1047 */
1048 domain = d = list_first_entry(&iommu->domain_list,
1049 struct vfio_domain, next);
1050
1051 list_for_each_entry_continue(d, &iommu->domain_list, next) {
1052 iommu_unmap(domain: d->domain, iova: dma->iova, size: dma->size);
1053 cond_resched();
1054 }
1055
1056 iommu_iotlb_gather_init(gather: &iotlb_gather);
1057 while (iova < end) {
1058 size_t unmapped, len;
1059 phys_addr_t phys, next;
1060
1061 phys = iommu_iova_to_phys(domain: domain->domain, iova);
1062 if (WARN_ON(!phys)) {
1063 iova += PAGE_SIZE;
1064 continue;
1065 }
1066
1067 /*
1068 * To optimize for fewer iommu_unmap() calls, each of which
1069 * may require hardware cache flushing, try to find the
1070 * largest contiguous physical memory chunk to unmap.
1071 */
1072 for (len = PAGE_SIZE;
1073 !domain->fgsp && iova + len < end; len += PAGE_SIZE) {
1074 next = iommu_iova_to_phys(domain: domain->domain, iova: iova + len);
1075 if (next != phys + len)
1076 break;
1077 }
1078
1079 /*
1080 * First, try to use fast unmap/unpin. In case of failure,
1081 * switch to slow unmap/unpin path.
1082 */
1083 unmapped = unmap_unpin_fast(domain, dma, iova: &iova, len, phys,
1084 unlocked: &unlocked, unmapped_list: &unmapped_region_list,
1085 unmapped_cnt: &unmapped_region_cnt,
1086 iotlb_gather: &iotlb_gather);
1087 if (!unmapped) {
1088 unmapped = unmap_unpin_slow(domain, dma, iova: &iova, len,
1089 phys, unlocked: &unlocked);
1090 if (WARN_ON(!unmapped))
1091 break;
1092 }
1093 }
1094
1095 dma->iommu_mapped = false;
1096
1097 if (unmapped_region_cnt) {
1098 unlocked += vfio_sync_unpin(dma, domain, regions: &unmapped_region_list,
1099 iotlb_gather: &iotlb_gather);
1100 }
1101
1102 if (do_accounting) {
1103 vfio_lock_acct(dma, npage: -unlocked, async: true);
1104 return 0;
1105 }
1106 return unlocked;
1107}
1108
1109static void vfio_remove_dma(struct vfio_iommu *iommu, struct vfio_dma *dma)
1110{
1111 WARN_ON(!RB_EMPTY_ROOT(&dma->pfn_list));
1112 vfio_unmap_unpin(iommu, dma, do_accounting: true);
1113 vfio_unlink_dma(iommu, old: dma);
1114 put_task_struct(t: dma->task);
1115 mmdrop(mm: dma->mm);
1116 vfio_dma_bitmap_free(dma);
1117 if (dma->vaddr_invalid)
1118 iommu->vaddr_invalid_count--;
1119 kfree(objp: dma);
1120 iommu->dma_avail++;
1121}
1122
1123static void vfio_update_pgsize_bitmap(struct vfio_iommu *iommu)
1124{
1125 struct vfio_domain *domain;
1126
1127 iommu->pgsize_bitmap = ULONG_MAX;
1128
1129 list_for_each_entry(domain, &iommu->domain_list, next)
1130 iommu->pgsize_bitmap &= domain->domain->pgsize_bitmap;
1131
1132 /*
1133 * In case the IOMMU supports page sizes smaller than PAGE_SIZE
1134 * we pretend PAGE_SIZE is supported and hide sub-PAGE_SIZE sizes.
1135 * That way the user will be able to map/unmap buffers whose size/
1136 * start address is aligned with PAGE_SIZE. Pinning code uses that
1137 * granularity while iommu driver can use the sub-PAGE_SIZE size
1138 * to map the buffer.
1139 */
1140 if (iommu->pgsize_bitmap & ~PAGE_MASK) {
1141 iommu->pgsize_bitmap &= PAGE_MASK;
1142 iommu->pgsize_bitmap |= PAGE_SIZE;
1143 }
1144}
1145
1146static int update_user_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1147 struct vfio_dma *dma, dma_addr_t base_iova,
1148 size_t pgsize)
1149{
1150 unsigned long pgshift = __ffs(pgsize);
1151 unsigned long nbits = dma->size >> pgshift;
1152 unsigned long bit_offset = (dma->iova - base_iova) >> pgshift;
1153 unsigned long copy_offset = bit_offset / BITS_PER_LONG;
1154 unsigned long shift = bit_offset % BITS_PER_LONG;
1155 unsigned long leftover;
1156
1157 /*
1158 * mark all pages dirty if any IOMMU capable device is not able
1159 * to report dirty pages and all pages are pinned and mapped.
1160 */
1161 if (iommu->num_non_pinned_groups && dma->iommu_mapped)
1162 bitmap_set(map: dma->bitmap, start: 0, nbits);
1163
1164 if (shift) {
1165 bitmap_shift_left(dst: dma->bitmap, src: dma->bitmap, shift,
1166 nbits: nbits + shift);
1167
1168 if (copy_from_user(to: &leftover,
1169 from: (void __user *)(bitmap + copy_offset),
1170 n: sizeof(leftover)))
1171 return -EFAULT;
1172
1173 bitmap_or(dst: dma->bitmap, src1: dma->bitmap, src2: &leftover, nbits: shift);
1174 }
1175
1176 if (copy_to_user(to: (void __user *)(bitmap + copy_offset), from: dma->bitmap,
1177 DIRTY_BITMAP_BYTES(nbits + shift)))
1178 return -EFAULT;
1179
1180 return 0;
1181}
1182
1183static int vfio_iova_dirty_bitmap(u64 __user *bitmap, struct vfio_iommu *iommu,
1184 dma_addr_t iova, size_t size, size_t pgsize)
1185{
1186 struct vfio_dma *dma;
1187 struct rb_node *n;
1188 unsigned long pgshift = __ffs(pgsize);
1189 int ret;
1190
1191 /*
1192 * GET_BITMAP request must fully cover vfio_dma mappings. Multiple
1193 * vfio_dma mappings may be clubbed by specifying large ranges, but
1194 * there must not be any previous mappings bisected by the range.
1195 * An error will be returned if these conditions are not met.
1196 */
1197 dma = vfio_find_dma(iommu, start: iova, size: 1);
1198 if (dma && dma->iova != iova)
1199 return -EINVAL;
1200
1201 dma = vfio_find_dma(iommu, start: iova + size - 1, size: 0);
1202 if (dma && dma->iova + dma->size != iova + size)
1203 return -EINVAL;
1204
1205 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1206 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1207
1208 if (dma->iova < iova)
1209 continue;
1210
1211 if (dma->iova > iova + size - 1)
1212 break;
1213
1214 ret = update_user_bitmap(bitmap, iommu, dma, base_iova: iova, pgsize);
1215 if (ret)
1216 return ret;
1217
1218 /*
1219 * Re-populate bitmap to include all pinned pages which are
1220 * considered as dirty but exclude pages which are unpinned and
1221 * pages which are marked dirty by vfio_dma_rw()
1222 */
1223 bitmap_clear(map: dma->bitmap, start: 0, nbits: dma->size >> pgshift);
1224 vfio_dma_populate_bitmap(dma, pgsize);
1225 }
1226 return 0;
1227}
1228
1229static int verify_bitmap_size(uint64_t npages, uint64_t bitmap_size)
1230{
1231 if (!npages || !bitmap_size || (bitmap_size > DIRTY_BITMAP_SIZE_MAX) ||
1232 (bitmap_size < DIRTY_BITMAP_BYTES(npages)))
1233 return -EINVAL;
1234
1235 return 0;
1236}
1237
1238/*
1239 * Notify VFIO drivers using vfio_register_emulated_iommu_dev() to invalidate
1240 * and unmap iovas within the range we're about to unmap. Drivers MUST unpin
1241 * pages in response to an invalidation.
1242 */
1243static void vfio_notify_dma_unmap(struct vfio_iommu *iommu,
1244 struct vfio_dma *dma)
1245{
1246 struct vfio_device *device;
1247
1248 if (list_empty(head: &iommu->device_list))
1249 return;
1250
1251 /*
1252 * The device is expected to call vfio_unpin_pages() for any IOVA it has
1253 * pinned within the range. Since vfio_unpin_pages() will eventually
1254 * call back down to this code and try to obtain the iommu->lock we must
1255 * drop it.
1256 */
1257 mutex_lock(&iommu->device_list_lock);
1258 mutex_unlock(lock: &iommu->lock);
1259
1260 list_for_each_entry(device, &iommu->device_list, iommu_entry)
1261 device->ops->dma_unmap(device, dma->iova, dma->size);
1262
1263 mutex_unlock(lock: &iommu->device_list_lock);
1264 mutex_lock(&iommu->lock);
1265}
1266
1267static int vfio_dma_do_unmap(struct vfio_iommu *iommu,
1268 struct vfio_iommu_type1_dma_unmap *unmap,
1269 struct vfio_bitmap *bitmap)
1270{
1271 struct vfio_dma *dma, *dma_last = NULL;
1272 size_t unmapped = 0, pgsize;
1273 int ret = -EINVAL, retries = 0;
1274 unsigned long pgshift;
1275 dma_addr_t iova = unmap->iova;
1276 u64 size = unmap->size;
1277 bool unmap_all = unmap->flags & VFIO_DMA_UNMAP_FLAG_ALL;
1278 bool invalidate_vaddr = unmap->flags & VFIO_DMA_UNMAP_FLAG_VADDR;
1279 struct rb_node *n, *first_n;
1280
1281 mutex_lock(&iommu->lock);
1282
1283 /* Cannot update vaddr if mdev is present. */
1284 if (invalidate_vaddr && !list_empty(head: &iommu->emulated_iommu_groups)) {
1285 ret = -EBUSY;
1286 goto unlock;
1287 }
1288
1289 pgshift = __ffs(iommu->pgsize_bitmap);
1290 pgsize = (size_t)1 << pgshift;
1291
1292 if (iova & (pgsize - 1))
1293 goto unlock;
1294
1295 if (unmap_all) {
1296 if (iova || size)
1297 goto unlock;
1298 size = U64_MAX;
1299 } else if (!size || size & (pgsize - 1) ||
1300 iova + size - 1 < iova || size > SIZE_MAX) {
1301 goto unlock;
1302 }
1303
1304 /* When dirty tracking is enabled, allow only min supported pgsize */
1305 if ((unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
1306 (!iommu->dirty_page_tracking || (bitmap->pgsize != pgsize))) {
1307 goto unlock;
1308 }
1309
1310 WARN_ON((pgsize - 1) & PAGE_MASK);
1311again:
1312 /*
1313 * vfio-iommu-type1 (v1) - User mappings were coalesced together to
1314 * avoid tracking individual mappings. This means that the granularity
1315 * of the original mapping was lost and the user was allowed to attempt
1316 * to unmap any range. Depending on the contiguousness of physical
1317 * memory and page sizes supported by the IOMMU, arbitrary unmaps may
1318 * or may not have worked. We only guaranteed unmap granularity
1319 * matching the original mapping; even though it was untracked here,
1320 * the original mappings are reflected in IOMMU mappings. This
1321 * resulted in a couple unusual behaviors. First, if a range is not
1322 * able to be unmapped, ex. a set of 4k pages that was mapped as a
1323 * 2M hugepage into the IOMMU, the unmap ioctl returns success but with
1324 * a zero sized unmap. Also, if an unmap request overlaps the first
1325 * address of a hugepage, the IOMMU will unmap the entire hugepage.
1326 * This also returns success and the returned unmap size reflects the
1327 * actual size unmapped.
1328 *
1329 * We attempt to maintain compatibility with this "v1" interface, but
1330 * we take control out of the hands of the IOMMU. Therefore, an unmap
1331 * request offset from the beginning of the original mapping will
1332 * return success with zero sized unmap. And an unmap request covering
1333 * the first iova of mapping will unmap the entire range.
1334 *
1335 * The v2 version of this interface intends to be more deterministic.
1336 * Unmap requests must fully cover previous mappings. Multiple
1337 * mappings may still be unmaped by specifying large ranges, but there
1338 * must not be any previous mappings bisected by the range. An error
1339 * will be returned if these conditions are not met. The v2 interface
1340 * will only return success and a size of zero if there were no
1341 * mappings within the range.
1342 */
1343 if (iommu->v2 && !unmap_all) {
1344 dma = vfio_find_dma(iommu, start: iova, size: 1);
1345 if (dma && dma->iova != iova)
1346 goto unlock;
1347
1348 dma = vfio_find_dma(iommu, start: iova + size - 1, size: 0);
1349 if (dma && dma->iova + dma->size != iova + size)
1350 goto unlock;
1351 }
1352
1353 ret = 0;
1354 n = first_n = vfio_find_dma_first_node(iommu, start: iova, size);
1355
1356 while (n) {
1357 dma = rb_entry(n, struct vfio_dma, node);
1358 if (dma->iova >= iova + size)
1359 break;
1360
1361 if (!iommu->v2 && iova > dma->iova)
1362 break;
1363
1364 if (invalidate_vaddr) {
1365 if (dma->vaddr_invalid) {
1366 struct rb_node *last_n = n;
1367
1368 for (n = first_n; n != last_n; n = rb_next(n)) {
1369 dma = rb_entry(n,
1370 struct vfio_dma, node);
1371 dma->vaddr_invalid = false;
1372 iommu->vaddr_invalid_count--;
1373 }
1374 ret = -EINVAL;
1375 unmapped = 0;
1376 break;
1377 }
1378 dma->vaddr_invalid = true;
1379 iommu->vaddr_invalid_count++;
1380 unmapped += dma->size;
1381 n = rb_next(n);
1382 continue;
1383 }
1384
1385 if (!RB_EMPTY_ROOT(&dma->pfn_list)) {
1386 if (dma_last == dma) {
1387 BUG_ON(++retries > 10);
1388 } else {
1389 dma_last = dma;
1390 retries = 0;
1391 }
1392
1393 vfio_notify_dma_unmap(iommu, dma);
1394 goto again;
1395 }
1396
1397 if (unmap->flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
1398 ret = update_user_bitmap(bitmap: bitmap->data, iommu, dma,
1399 base_iova: iova, pgsize);
1400 if (ret)
1401 break;
1402 }
1403
1404 unmapped += dma->size;
1405 n = rb_next(n);
1406 vfio_remove_dma(iommu, dma);
1407 }
1408
1409unlock:
1410 mutex_unlock(lock: &iommu->lock);
1411
1412 /* Report how much was unmapped */
1413 unmap->size = unmapped;
1414
1415 return ret;
1416}
1417
1418static int vfio_iommu_map(struct vfio_iommu *iommu, dma_addr_t iova,
1419 unsigned long pfn, long npage, int prot)
1420{
1421 struct vfio_domain *d;
1422 int ret;
1423
1424 list_for_each_entry(d, &iommu->domain_list, next) {
1425 ret = iommu_map(domain: d->domain, iova, paddr: (phys_addr_t)pfn << PAGE_SHIFT,
1426 size: npage << PAGE_SHIFT, prot: prot | IOMMU_CACHE,
1427 GFP_KERNEL_ACCOUNT);
1428 if (ret)
1429 goto unwind;
1430
1431 cond_resched();
1432 }
1433
1434 return 0;
1435
1436unwind:
1437 list_for_each_entry_continue_reverse(d, &iommu->domain_list, next) {
1438 iommu_unmap(domain: d->domain, iova, size: npage << PAGE_SHIFT);
1439 cond_resched();
1440 }
1441
1442 return ret;
1443}
1444
1445static int vfio_pin_map_dma(struct vfio_iommu *iommu, struct vfio_dma *dma,
1446 size_t map_size)
1447{
1448 dma_addr_t iova = dma->iova;
1449 unsigned long vaddr = dma->vaddr;
1450 struct vfio_batch batch;
1451 size_t size = map_size;
1452 long npage;
1453 unsigned long pfn, limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1454 int ret = 0;
1455
1456 vfio_batch_init(batch: &batch);
1457
1458 while (size) {
1459 /* Pin a contiguous chunk of memory */
1460 npage = vfio_pin_pages_remote(dma, vaddr: vaddr + dma->size,
1461 npage: size >> PAGE_SHIFT, pfn_base: &pfn, limit,
1462 batch: &batch);
1463 if (npage <= 0) {
1464 WARN_ON(!npage);
1465 ret = (int)npage;
1466 break;
1467 }
1468
1469 /* Map it! */
1470 ret = vfio_iommu_map(iommu, iova: iova + dma->size, pfn, npage,
1471 prot: dma->prot);
1472 if (ret) {
1473 vfio_unpin_pages_remote(dma, iova: iova + dma->size, pfn,
1474 npage, do_accounting: true);
1475 vfio_batch_unpin(batch: &batch, dma);
1476 break;
1477 }
1478
1479 size -= npage << PAGE_SHIFT;
1480 dma->size += npage << PAGE_SHIFT;
1481 }
1482
1483 vfio_batch_fini(batch: &batch);
1484 dma->iommu_mapped = true;
1485
1486 if (ret)
1487 vfio_remove_dma(iommu, dma);
1488
1489 return ret;
1490}
1491
1492/*
1493 * Check dma map request is within a valid iova range
1494 */
1495static bool vfio_iommu_iova_dma_valid(struct vfio_iommu *iommu,
1496 dma_addr_t start, dma_addr_t end)
1497{
1498 struct list_head *iova = &iommu->iova_list;
1499 struct vfio_iova *node;
1500
1501 list_for_each_entry(node, iova, list) {
1502 if (start >= node->start && end <= node->end)
1503 return true;
1504 }
1505
1506 /*
1507 * Check for list_empty() as well since a container with
1508 * a single mdev device will have an empty list.
1509 */
1510 return list_empty(head: iova);
1511}
1512
1513static int vfio_change_dma_owner(struct vfio_dma *dma)
1514{
1515 struct task_struct *task = current->group_leader;
1516 struct mm_struct *mm = current->mm;
1517 long npage = dma->locked_vm;
1518 bool lock_cap;
1519 int ret;
1520
1521 if (mm == dma->mm)
1522 return 0;
1523
1524 lock_cap = capable(CAP_IPC_LOCK);
1525 ret = mm_lock_acct(task, mm, lock_cap, npage);
1526 if (ret)
1527 return ret;
1528
1529 if (mmget_not_zero(mm: dma->mm)) {
1530 mm_lock_acct(task: dma->task, mm: dma->mm, lock_cap: dma->lock_cap, npage: -npage);
1531 mmput(dma->mm);
1532 }
1533
1534 if (dma->task != task) {
1535 put_task_struct(t: dma->task);
1536 dma->task = get_task_struct(t: task);
1537 }
1538 mmdrop(mm: dma->mm);
1539 dma->mm = mm;
1540 mmgrab(mm: dma->mm);
1541 dma->lock_cap = lock_cap;
1542 return 0;
1543}
1544
1545static int vfio_dma_do_map(struct vfio_iommu *iommu,
1546 struct vfio_iommu_type1_dma_map *map)
1547{
1548 bool set_vaddr = map->flags & VFIO_DMA_MAP_FLAG_VADDR;
1549 dma_addr_t iova = map->iova;
1550 unsigned long vaddr = map->vaddr;
1551 size_t size = map->size;
1552 int ret = 0, prot = 0;
1553 size_t pgsize;
1554 struct vfio_dma *dma;
1555
1556 /* Verify that none of our __u64 fields overflow */
1557 if (map->size != size || map->vaddr != vaddr || map->iova != iova)
1558 return -EINVAL;
1559
1560 /* READ/WRITE from device perspective */
1561 if (map->flags & VFIO_DMA_MAP_FLAG_WRITE)
1562 prot |= IOMMU_WRITE;
1563 if (map->flags & VFIO_DMA_MAP_FLAG_READ)
1564 prot |= IOMMU_READ;
1565
1566 if ((prot && set_vaddr) || (!prot && !set_vaddr))
1567 return -EINVAL;
1568
1569 mutex_lock(&iommu->lock);
1570
1571 pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
1572
1573 WARN_ON((pgsize - 1) & PAGE_MASK);
1574
1575 if (!size || (size | iova | vaddr) & (pgsize - 1)) {
1576 ret = -EINVAL;
1577 goto out_unlock;
1578 }
1579
1580 /* Don't allow IOVA or virtual address wrap */
1581 if (iova + size - 1 < iova || vaddr + size - 1 < vaddr) {
1582 ret = -EINVAL;
1583 goto out_unlock;
1584 }
1585
1586 dma = vfio_find_dma(iommu, start: iova, size);
1587 if (set_vaddr) {
1588 if (!dma) {
1589 ret = -ENOENT;
1590 } else if (!dma->vaddr_invalid || dma->iova != iova ||
1591 dma->size != size) {
1592 ret = -EINVAL;
1593 } else {
1594 ret = vfio_change_dma_owner(dma);
1595 if (ret)
1596 goto out_unlock;
1597 dma->vaddr = vaddr;
1598 dma->vaddr_invalid = false;
1599 iommu->vaddr_invalid_count--;
1600 }
1601 goto out_unlock;
1602 } else if (dma) {
1603 ret = -EEXIST;
1604 goto out_unlock;
1605 }
1606
1607 if (!iommu->dma_avail) {
1608 ret = -ENOSPC;
1609 goto out_unlock;
1610 }
1611
1612 if (!vfio_iommu_iova_dma_valid(iommu, start: iova, end: iova + size - 1)) {
1613 ret = -EINVAL;
1614 goto out_unlock;
1615 }
1616
1617 dma = kzalloc(size: sizeof(*dma), GFP_KERNEL);
1618 if (!dma) {
1619 ret = -ENOMEM;
1620 goto out_unlock;
1621 }
1622
1623 iommu->dma_avail--;
1624 dma->iova = iova;
1625 dma->vaddr = vaddr;
1626 dma->prot = prot;
1627
1628 /*
1629 * We need to be able to both add to a task's locked memory and test
1630 * against the locked memory limit and we need to be able to do both
1631 * outside of this call path as pinning can be asynchronous via the
1632 * external interfaces for mdev devices. RLIMIT_MEMLOCK requires a
1633 * task_struct. Save the group_leader so that all DMA tracking uses
1634 * the same task, to make debugging easier. VM locked pages requires
1635 * an mm_struct, so grab the mm in case the task dies.
1636 */
1637 get_task_struct(current->group_leader);
1638 dma->task = current->group_leader;
1639 dma->lock_cap = capable(CAP_IPC_LOCK);
1640 dma->mm = current->mm;
1641 mmgrab(mm: dma->mm);
1642
1643 dma->pfn_list = RB_ROOT;
1644
1645 /* Insert zero-sized and grow as we map chunks of it */
1646 vfio_link_dma(iommu, new: dma);
1647
1648 /* Don't pin and map if container doesn't contain IOMMU capable domain*/
1649 if (list_empty(head: &iommu->domain_list))
1650 dma->size = size;
1651 else
1652 ret = vfio_pin_map_dma(iommu, dma, map_size: size);
1653
1654 if (!ret && iommu->dirty_page_tracking) {
1655 ret = vfio_dma_bitmap_alloc(dma, pgsize);
1656 if (ret)
1657 vfio_remove_dma(iommu, dma);
1658 }
1659
1660out_unlock:
1661 mutex_unlock(lock: &iommu->lock);
1662 return ret;
1663}
1664
1665static int vfio_iommu_replay(struct vfio_iommu *iommu,
1666 struct vfio_domain *domain)
1667{
1668 struct vfio_batch batch;
1669 struct vfio_domain *d = NULL;
1670 struct rb_node *n;
1671 unsigned long limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1672 int ret;
1673
1674 /* Arbitrarily pick the first domain in the list for lookups */
1675 if (!list_empty(head: &iommu->domain_list))
1676 d = list_first_entry(&iommu->domain_list,
1677 struct vfio_domain, next);
1678
1679 vfio_batch_init(batch: &batch);
1680
1681 n = rb_first(&iommu->dma_list);
1682
1683 for (; n; n = rb_next(n)) {
1684 struct vfio_dma *dma;
1685 dma_addr_t iova;
1686
1687 dma = rb_entry(n, struct vfio_dma, node);
1688 iova = dma->iova;
1689
1690 while (iova < dma->iova + dma->size) {
1691 phys_addr_t phys;
1692 size_t size;
1693
1694 if (dma->iommu_mapped) {
1695 phys_addr_t p;
1696 dma_addr_t i;
1697
1698 if (WARN_ON(!d)) { /* mapped w/o a domain?! */
1699 ret = -EINVAL;
1700 goto unwind;
1701 }
1702
1703 phys = iommu_iova_to_phys(domain: d->domain, iova);
1704
1705 if (WARN_ON(!phys)) {
1706 iova += PAGE_SIZE;
1707 continue;
1708 }
1709
1710 size = PAGE_SIZE;
1711 p = phys + size;
1712 i = iova + size;
1713 while (i < dma->iova + dma->size &&
1714 p == iommu_iova_to_phys(domain: d->domain, iova: i)) {
1715 size += PAGE_SIZE;
1716 p += PAGE_SIZE;
1717 i += PAGE_SIZE;
1718 }
1719 } else {
1720 unsigned long pfn;
1721 unsigned long vaddr = dma->vaddr +
1722 (iova - dma->iova);
1723 size_t n = dma->iova + dma->size - iova;
1724 long npage;
1725
1726 npage = vfio_pin_pages_remote(dma, vaddr,
1727 npage: n >> PAGE_SHIFT,
1728 pfn_base: &pfn, limit,
1729 batch: &batch);
1730 if (npage <= 0) {
1731 WARN_ON(!npage);
1732 ret = (int)npage;
1733 goto unwind;
1734 }
1735
1736 phys = pfn << PAGE_SHIFT;
1737 size = npage << PAGE_SHIFT;
1738 }
1739
1740 ret = iommu_map(domain: domain->domain, iova, paddr: phys, size,
1741 prot: dma->prot | IOMMU_CACHE,
1742 GFP_KERNEL_ACCOUNT);
1743 if (ret) {
1744 if (!dma->iommu_mapped) {
1745 vfio_unpin_pages_remote(dma, iova,
1746 pfn: phys >> PAGE_SHIFT,
1747 npage: size >> PAGE_SHIFT,
1748 do_accounting: true);
1749 vfio_batch_unpin(batch: &batch, dma);
1750 }
1751 goto unwind;
1752 }
1753
1754 iova += size;
1755 }
1756 }
1757
1758 /* All dmas are now mapped, defer to second tree walk for unwind */
1759 for (n = rb_first(&iommu->dma_list); n; n = rb_next(n)) {
1760 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1761
1762 dma->iommu_mapped = true;
1763 }
1764
1765 vfio_batch_fini(batch: &batch);
1766 return 0;
1767
1768unwind:
1769 for (; n; n = rb_prev(n)) {
1770 struct vfio_dma *dma = rb_entry(n, struct vfio_dma, node);
1771 dma_addr_t iova;
1772
1773 if (dma->iommu_mapped) {
1774 iommu_unmap(domain: domain->domain, iova: dma->iova, size: dma->size);
1775 continue;
1776 }
1777
1778 iova = dma->iova;
1779 while (iova < dma->iova + dma->size) {
1780 phys_addr_t phys, p;
1781 size_t size;
1782 dma_addr_t i;
1783
1784 phys = iommu_iova_to_phys(domain: domain->domain, iova);
1785 if (!phys) {
1786 iova += PAGE_SIZE;
1787 continue;
1788 }
1789
1790 size = PAGE_SIZE;
1791 p = phys + size;
1792 i = iova + size;
1793 while (i < dma->iova + dma->size &&
1794 p == iommu_iova_to_phys(domain: domain->domain, iova: i)) {
1795 size += PAGE_SIZE;
1796 p += PAGE_SIZE;
1797 i += PAGE_SIZE;
1798 }
1799
1800 iommu_unmap(domain: domain->domain, iova, size);
1801 vfio_unpin_pages_remote(dma, iova, pfn: phys >> PAGE_SHIFT,
1802 npage: size >> PAGE_SHIFT, do_accounting: true);
1803 }
1804 }
1805
1806 vfio_batch_fini(batch: &batch);
1807 return ret;
1808}
1809
1810/*
1811 * We change our unmap behavior slightly depending on whether the IOMMU
1812 * supports fine-grained superpages. IOMMUs like AMD-Vi will use a superpage
1813 * for practically any contiguous power-of-two mapping we give it. This means
1814 * we don't need to look for contiguous chunks ourselves to make unmapping
1815 * more efficient. On IOMMUs with coarse-grained super pages, like Intel VT-d
1816 * with discrete 2M/1G/512G/1T superpages, identifying contiguous chunks
1817 * significantly boosts non-hugetlbfs mappings and doesn't seem to hurt when
1818 * hugetlbfs is in use.
1819 */
1820static void vfio_test_domain_fgsp(struct vfio_domain *domain, struct list_head *regions)
1821{
1822 int ret, order = get_order(PAGE_SIZE * 2);
1823 struct vfio_iova *region;
1824 struct page *pages;
1825 dma_addr_t start;
1826
1827 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, order);
1828 if (!pages)
1829 return;
1830
1831 list_for_each_entry(region, regions, list) {
1832 start = ALIGN(region->start, PAGE_SIZE * 2);
1833 if (start >= region->end || (region->end - start < PAGE_SIZE * 2))
1834 continue;
1835
1836 ret = iommu_map(domain: domain->domain, iova: start, page_to_phys(pages), PAGE_SIZE * 2,
1837 IOMMU_READ | IOMMU_WRITE | IOMMU_CACHE,
1838 GFP_KERNEL_ACCOUNT);
1839 if (!ret) {
1840 size_t unmapped = iommu_unmap(domain: domain->domain, iova: start, PAGE_SIZE);
1841
1842 if (unmapped == PAGE_SIZE)
1843 iommu_unmap(domain: domain->domain, iova: start + PAGE_SIZE, PAGE_SIZE);
1844 else
1845 domain->fgsp = true;
1846 }
1847 break;
1848 }
1849
1850 __free_pages(page: pages, order);
1851}
1852
1853static struct vfio_iommu_group *find_iommu_group(struct vfio_domain *domain,
1854 struct iommu_group *iommu_group)
1855{
1856 struct vfio_iommu_group *g;
1857
1858 list_for_each_entry(g, &domain->group_list, next) {
1859 if (g->iommu_group == iommu_group)
1860 return g;
1861 }
1862
1863 return NULL;
1864}
1865
1866static struct vfio_iommu_group*
1867vfio_iommu_find_iommu_group(struct vfio_iommu *iommu,
1868 struct iommu_group *iommu_group)
1869{
1870 struct vfio_iommu_group *group;
1871 struct vfio_domain *domain;
1872
1873 list_for_each_entry(domain, &iommu->domain_list, next) {
1874 group = find_iommu_group(domain, iommu_group);
1875 if (group)
1876 return group;
1877 }
1878
1879 list_for_each_entry(group, &iommu->emulated_iommu_groups, next)
1880 if (group->iommu_group == iommu_group)
1881 return group;
1882 return NULL;
1883}
1884
1885static bool vfio_iommu_has_sw_msi(struct list_head *group_resv_regions,
1886 phys_addr_t *base)
1887{
1888 struct iommu_resv_region *region;
1889 bool ret = false;
1890
1891 list_for_each_entry(region, group_resv_regions, list) {
1892 /*
1893 * The presence of any 'real' MSI regions should take
1894 * precedence over the software-managed one if the
1895 * IOMMU driver happens to advertise both types.
1896 */
1897 if (region->type == IOMMU_RESV_MSI) {
1898 ret = false;
1899 break;
1900 }
1901
1902 if (region->type == IOMMU_RESV_SW_MSI) {
1903 *base = region->start;
1904 ret = true;
1905 }
1906 }
1907
1908 return ret;
1909}
1910
1911/*
1912 * This is a helper function to insert an address range to iova list.
1913 * The list is initially created with a single entry corresponding to
1914 * the IOMMU domain geometry to which the device group is attached.
1915 * The list aperture gets modified when a new domain is added to the
1916 * container if the new aperture doesn't conflict with the current one
1917 * or with any existing dma mappings. The list is also modified to
1918 * exclude any reserved regions associated with the device group.
1919 */
1920static int vfio_iommu_iova_insert(struct list_head *head,
1921 dma_addr_t start, dma_addr_t end)
1922{
1923 struct vfio_iova *region;
1924
1925 region = kmalloc(size: sizeof(*region), GFP_KERNEL);
1926 if (!region)
1927 return -ENOMEM;
1928
1929 INIT_LIST_HEAD(list: &region->list);
1930 region->start = start;
1931 region->end = end;
1932
1933 list_add_tail(new: &region->list, head);
1934 return 0;
1935}
1936
1937/*
1938 * Check the new iommu aperture conflicts with existing aper or with any
1939 * existing dma mappings.
1940 */
1941static bool vfio_iommu_aper_conflict(struct vfio_iommu *iommu,
1942 dma_addr_t start, dma_addr_t end)
1943{
1944 struct vfio_iova *first, *last;
1945 struct list_head *iova = &iommu->iova_list;
1946
1947 if (list_empty(head: iova))
1948 return false;
1949
1950 /* Disjoint sets, return conflict */
1951 first = list_first_entry(iova, struct vfio_iova, list);
1952 last = list_last_entry(iova, struct vfio_iova, list);
1953 if (start > last->end || end < first->start)
1954 return true;
1955
1956 /* Check for any existing dma mappings below the new start */
1957 if (start > first->start) {
1958 if (vfio_find_dma(iommu, start: first->start, size: start - first->start))
1959 return true;
1960 }
1961
1962 /* Check for any existing dma mappings beyond the new end */
1963 if (end < last->end) {
1964 if (vfio_find_dma(iommu, start: end + 1, size: last->end - end))
1965 return true;
1966 }
1967
1968 return false;
1969}
1970
1971/*
1972 * Resize iommu iova aperture window. This is called only if the new
1973 * aperture has no conflict with existing aperture and dma mappings.
1974 */
1975static int vfio_iommu_aper_resize(struct list_head *iova,
1976 dma_addr_t start, dma_addr_t end)
1977{
1978 struct vfio_iova *node, *next;
1979
1980 if (list_empty(head: iova))
1981 return vfio_iommu_iova_insert(head: iova, start, end);
1982
1983 /* Adjust iova list start */
1984 list_for_each_entry_safe(node, next, iova, list) {
1985 if (start < node->start)
1986 break;
1987 if (start >= node->start && start < node->end) {
1988 node->start = start;
1989 break;
1990 }
1991 /* Delete nodes before new start */
1992 list_del(entry: &node->list);
1993 kfree(objp: node);
1994 }
1995
1996 /* Adjust iova list end */
1997 list_for_each_entry_safe(node, next, iova, list) {
1998 if (end > node->end)
1999 continue;
2000 if (end > node->start && end <= node->end) {
2001 node->end = end;
2002 continue;
2003 }
2004 /* Delete nodes after new end */
2005 list_del(entry: &node->list);
2006 kfree(objp: node);
2007 }
2008
2009 return 0;
2010}
2011
2012/*
2013 * Check reserved region conflicts with existing dma mappings
2014 */
2015static bool vfio_iommu_resv_conflict(struct vfio_iommu *iommu,
2016 struct list_head *resv_regions)
2017{
2018 struct iommu_resv_region *region;
2019
2020 /* Check for conflict with existing dma mappings */
2021 list_for_each_entry(region, resv_regions, list) {
2022 if (region->type == IOMMU_RESV_DIRECT_RELAXABLE)
2023 continue;
2024
2025 if (vfio_find_dma(iommu, start: region->start, size: region->length))
2026 return true;
2027 }
2028
2029 return false;
2030}
2031
2032/*
2033 * Check iova region overlap with reserved regions and
2034 * exclude them from the iommu iova range
2035 */
2036static int vfio_iommu_resv_exclude(struct list_head *iova,
2037 struct list_head *resv_regions)
2038{
2039 struct iommu_resv_region *resv;
2040 struct vfio_iova *n, *next;
2041
2042 list_for_each_entry(resv, resv_regions, list) {
2043 phys_addr_t start, end;
2044
2045 if (resv->type == IOMMU_RESV_DIRECT_RELAXABLE)
2046 continue;
2047
2048 start = resv->start;
2049 end = resv->start + resv->length - 1;
2050
2051 list_for_each_entry_safe(n, next, iova, list) {
2052 int ret = 0;
2053
2054 /* No overlap */
2055 if (start > n->end || end < n->start)
2056 continue;
2057 /*
2058 * Insert a new node if current node overlaps with the
2059 * reserve region to exclude that from valid iova range.
2060 * Note that, new node is inserted before the current
2061 * node and finally the current node is deleted keeping
2062 * the list updated and sorted.
2063 */
2064 if (start > n->start)
2065 ret = vfio_iommu_iova_insert(head: &n->list, start: n->start,
2066 end: start - 1);
2067 if (!ret && end < n->end)
2068 ret = vfio_iommu_iova_insert(head: &n->list, start: end + 1,
2069 end: n->end);
2070 if (ret)
2071 return ret;
2072
2073 list_del(entry: &n->list);
2074 kfree(objp: n);
2075 }
2076 }
2077
2078 if (list_empty(head: iova))
2079 return -EINVAL;
2080
2081 return 0;
2082}
2083
2084static void vfio_iommu_resv_free(struct list_head *resv_regions)
2085{
2086 struct iommu_resv_region *n, *next;
2087
2088 list_for_each_entry_safe(n, next, resv_regions, list) {
2089 list_del(entry: &n->list);
2090 kfree(objp: n);
2091 }
2092}
2093
2094static void vfio_iommu_iova_free(struct list_head *iova)
2095{
2096 struct vfio_iova *n, *next;
2097
2098 list_for_each_entry_safe(n, next, iova, list) {
2099 list_del(entry: &n->list);
2100 kfree(objp: n);
2101 }
2102}
2103
2104static int vfio_iommu_iova_get_copy(struct vfio_iommu *iommu,
2105 struct list_head *iova_copy)
2106{
2107 struct list_head *iova = &iommu->iova_list;
2108 struct vfio_iova *n;
2109 int ret;
2110
2111 list_for_each_entry(n, iova, list) {
2112 ret = vfio_iommu_iova_insert(head: iova_copy, start: n->start, end: n->end);
2113 if (ret)
2114 goto out_free;
2115 }
2116
2117 return 0;
2118
2119out_free:
2120 vfio_iommu_iova_free(iova: iova_copy);
2121 return ret;
2122}
2123
2124static void vfio_iommu_iova_insert_copy(struct vfio_iommu *iommu,
2125 struct list_head *iova_copy)
2126{
2127 struct list_head *iova = &iommu->iova_list;
2128
2129 vfio_iommu_iova_free(iova);
2130
2131 list_splice_tail(list: iova_copy, head: iova);
2132}
2133
2134static int vfio_iommu_domain_alloc(struct device *dev, void *data)
2135{
2136 struct iommu_domain **domain = data;
2137
2138 *domain = iommu_domain_alloc(bus: dev->bus);
2139 return 1; /* Don't iterate */
2140}
2141
2142static int vfio_iommu_type1_attach_group(void *iommu_data,
2143 struct iommu_group *iommu_group, enum vfio_group_type type)
2144{
2145 struct vfio_iommu *iommu = iommu_data;
2146 struct vfio_iommu_group *group;
2147 struct vfio_domain *domain, *d;
2148 bool resv_msi;
2149 phys_addr_t resv_msi_base = 0;
2150 struct iommu_domain_geometry *geo;
2151 LIST_HEAD(iova_copy);
2152 LIST_HEAD(group_resv_regions);
2153 int ret = -EBUSY;
2154
2155 mutex_lock(&iommu->lock);
2156
2157 /* Attach could require pinning, so disallow while vaddr is invalid. */
2158 if (iommu->vaddr_invalid_count)
2159 goto out_unlock;
2160
2161 /* Check for duplicates */
2162 ret = -EINVAL;
2163 if (vfio_iommu_find_iommu_group(iommu, iommu_group))
2164 goto out_unlock;
2165
2166 ret = -ENOMEM;
2167 group = kzalloc(size: sizeof(*group), GFP_KERNEL);
2168 if (!group)
2169 goto out_unlock;
2170 group->iommu_group = iommu_group;
2171
2172 if (type == VFIO_EMULATED_IOMMU) {
2173 list_add(new: &group->next, head: &iommu->emulated_iommu_groups);
2174 /*
2175 * An emulated IOMMU group cannot dirty memory directly, it can
2176 * only use interfaces that provide dirty tracking.
2177 * The iommu scope can only be promoted with the addition of a
2178 * dirty tracking group.
2179 */
2180 group->pinned_page_dirty_scope = true;
2181 ret = 0;
2182 goto out_unlock;
2183 }
2184
2185 ret = -ENOMEM;
2186 domain = kzalloc(size: sizeof(*domain), GFP_KERNEL);
2187 if (!domain)
2188 goto out_free_group;
2189
2190 /*
2191 * Going via the iommu_group iterator avoids races, and trivially gives
2192 * us a representative device for the IOMMU API call. We don't actually
2193 * want to iterate beyond the first device (if any).
2194 */
2195 ret = -EIO;
2196 iommu_group_for_each_dev(group: iommu_group, data: &domain->domain,
2197 fn: vfio_iommu_domain_alloc);
2198 if (!domain->domain)
2199 goto out_free_domain;
2200
2201 if (iommu->nesting) {
2202 ret = iommu_enable_nesting(domain: domain->domain);
2203 if (ret)
2204 goto out_domain;
2205 }
2206
2207 ret = iommu_attach_group(domain: domain->domain, group: group->iommu_group);
2208 if (ret)
2209 goto out_domain;
2210
2211 /* Get aperture info */
2212 geo = &domain->domain->geometry;
2213 if (vfio_iommu_aper_conflict(iommu, start: geo->aperture_start,
2214 end: geo->aperture_end)) {
2215 ret = -EINVAL;
2216 goto out_detach;
2217 }
2218
2219 ret = iommu_get_group_resv_regions(group: iommu_group, head: &group_resv_regions);
2220 if (ret)
2221 goto out_detach;
2222
2223 if (vfio_iommu_resv_conflict(iommu, resv_regions: &group_resv_regions)) {
2224 ret = -EINVAL;
2225 goto out_detach;
2226 }
2227
2228 /*
2229 * We don't want to work on the original iova list as the list
2230 * gets modified and in case of failure we have to retain the
2231 * original list. Get a copy here.
2232 */
2233 ret = vfio_iommu_iova_get_copy(iommu, iova_copy: &iova_copy);
2234 if (ret)
2235 goto out_detach;
2236
2237 ret = vfio_iommu_aper_resize(iova: &iova_copy, start: geo->aperture_start,
2238 end: geo->aperture_end);
2239 if (ret)
2240 goto out_detach;
2241
2242 ret = vfio_iommu_resv_exclude(iova: &iova_copy, resv_regions: &group_resv_regions);
2243 if (ret)
2244 goto out_detach;
2245
2246 resv_msi = vfio_iommu_has_sw_msi(group_resv_regions: &group_resv_regions, base: &resv_msi_base);
2247
2248 INIT_LIST_HEAD(list: &domain->group_list);
2249 list_add(new: &group->next, head: &domain->group_list);
2250
2251 if (!allow_unsafe_interrupts &&
2252 !iommu_group_has_isolated_msi(group: iommu_group)) {
2253 pr_warn("%s: No interrupt remapping support. Use the module param \"allow_unsafe_interrupts\" to enable VFIO IOMMU support on this platform\n",
2254 __func__);
2255 ret = -EPERM;
2256 goto out_detach;
2257 }
2258
2259 /*
2260 * If the IOMMU can block non-coherent operations (ie PCIe TLPs with
2261 * no-snoop set) then VFIO always turns this feature on because on Intel
2262 * platforms it optimizes KVM to disable wbinvd emulation.
2263 */
2264 if (domain->domain->ops->enforce_cache_coherency)
2265 domain->enforce_cache_coherency =
2266 domain->domain->ops->enforce_cache_coherency(
2267 domain->domain);
2268
2269 /*
2270 * Try to match an existing compatible domain. We don't want to
2271 * preclude an IOMMU driver supporting multiple bus_types and being
2272 * able to include different bus_types in the same IOMMU domain, so
2273 * we test whether the domains use the same iommu_ops rather than
2274 * testing if they're on the same bus_type.
2275 */
2276 list_for_each_entry(d, &iommu->domain_list, next) {
2277 if (d->domain->ops == domain->domain->ops &&
2278 d->enforce_cache_coherency ==
2279 domain->enforce_cache_coherency) {
2280 iommu_detach_group(domain: domain->domain, group: group->iommu_group);
2281 if (!iommu_attach_group(domain: d->domain,
2282 group: group->iommu_group)) {
2283 list_add(new: &group->next, head: &d->group_list);
2284 iommu_domain_free(domain: domain->domain);
2285 kfree(objp: domain);
2286 goto done;
2287 }
2288
2289 ret = iommu_attach_group(domain: domain->domain,
2290 group: group->iommu_group);
2291 if (ret)
2292 goto out_domain;
2293 }
2294 }
2295
2296 vfio_test_domain_fgsp(domain, regions: &iova_copy);
2297
2298 /* replay mappings on new domains */
2299 ret = vfio_iommu_replay(iommu, domain);
2300 if (ret)
2301 goto out_detach;
2302
2303 if (resv_msi) {
2304 ret = iommu_get_msi_cookie(domain: domain->domain, base: resv_msi_base);
2305 if (ret && ret != -ENODEV)
2306 goto out_detach;
2307 }
2308
2309 list_add(new: &domain->next, head: &iommu->domain_list);
2310 vfio_update_pgsize_bitmap(iommu);
2311done:
2312 /* Delete the old one and insert new iova list */
2313 vfio_iommu_iova_insert_copy(iommu, iova_copy: &iova_copy);
2314
2315 /*
2316 * An iommu backed group can dirty memory directly and therefore
2317 * demotes the iommu scope until it declares itself dirty tracking
2318 * capable via the page pinning interface.
2319 */
2320 iommu->num_non_pinned_groups++;
2321 mutex_unlock(lock: &iommu->lock);
2322 vfio_iommu_resv_free(resv_regions: &group_resv_regions);
2323
2324 return 0;
2325
2326out_detach:
2327 iommu_detach_group(domain: domain->domain, group: group->iommu_group);
2328out_domain:
2329 iommu_domain_free(domain: domain->domain);
2330 vfio_iommu_iova_free(iova: &iova_copy);
2331 vfio_iommu_resv_free(resv_regions: &group_resv_regions);
2332out_free_domain:
2333 kfree(objp: domain);
2334out_free_group:
2335 kfree(objp: group);
2336out_unlock:
2337 mutex_unlock(lock: &iommu->lock);
2338 return ret;
2339}
2340
2341static void vfio_iommu_unmap_unpin_all(struct vfio_iommu *iommu)
2342{
2343 struct rb_node *node;
2344
2345 while ((node = rb_first(&iommu->dma_list)))
2346 vfio_remove_dma(iommu, rb_entry(node, struct vfio_dma, node));
2347}
2348
2349static void vfio_iommu_unmap_unpin_reaccount(struct vfio_iommu *iommu)
2350{
2351 struct rb_node *n, *p;
2352
2353 n = rb_first(&iommu->dma_list);
2354 for (; n; n = rb_next(n)) {
2355 struct vfio_dma *dma;
2356 long locked = 0, unlocked = 0;
2357
2358 dma = rb_entry(n, struct vfio_dma, node);
2359 unlocked += vfio_unmap_unpin(iommu, dma, do_accounting: false);
2360 p = rb_first(&dma->pfn_list);
2361 for (; p; p = rb_next(p)) {
2362 struct vfio_pfn *vpfn = rb_entry(p, struct vfio_pfn,
2363 node);
2364
2365 if (!is_invalid_reserved_pfn(pfn: vpfn->pfn))
2366 locked++;
2367 }
2368 vfio_lock_acct(dma, npage: locked - unlocked, async: true);
2369 }
2370}
2371
2372/*
2373 * Called when a domain is removed in detach. It is possible that
2374 * the removed domain decided the iova aperture window. Modify the
2375 * iova aperture with the smallest window among existing domains.
2376 */
2377static void vfio_iommu_aper_expand(struct vfio_iommu *iommu,
2378 struct list_head *iova_copy)
2379{
2380 struct vfio_domain *domain;
2381 struct vfio_iova *node;
2382 dma_addr_t start = 0;
2383 dma_addr_t end = (dma_addr_t)~0;
2384
2385 if (list_empty(head: iova_copy))
2386 return;
2387
2388 list_for_each_entry(domain, &iommu->domain_list, next) {
2389 struct iommu_domain_geometry *geo = &domain->domain->geometry;
2390
2391 if (geo->aperture_start > start)
2392 start = geo->aperture_start;
2393 if (geo->aperture_end < end)
2394 end = geo->aperture_end;
2395 }
2396
2397 /* Modify aperture limits. The new aper is either same or bigger */
2398 node = list_first_entry(iova_copy, struct vfio_iova, list);
2399 node->start = start;
2400 node = list_last_entry(iova_copy, struct vfio_iova, list);
2401 node->end = end;
2402}
2403
2404/*
2405 * Called when a group is detached. The reserved regions for that
2406 * group can be part of valid iova now. But since reserved regions
2407 * may be duplicated among groups, populate the iova valid regions
2408 * list again.
2409 */
2410static int vfio_iommu_resv_refresh(struct vfio_iommu *iommu,
2411 struct list_head *iova_copy)
2412{
2413 struct vfio_domain *d;
2414 struct vfio_iommu_group *g;
2415 struct vfio_iova *node;
2416 dma_addr_t start, end;
2417 LIST_HEAD(resv_regions);
2418 int ret;
2419
2420 if (list_empty(head: iova_copy))
2421 return -EINVAL;
2422
2423 list_for_each_entry(d, &iommu->domain_list, next) {
2424 list_for_each_entry(g, &d->group_list, next) {
2425 ret = iommu_get_group_resv_regions(group: g->iommu_group,
2426 head: &resv_regions);
2427 if (ret)
2428 goto done;
2429 }
2430 }
2431
2432 node = list_first_entry(iova_copy, struct vfio_iova, list);
2433 start = node->start;
2434 node = list_last_entry(iova_copy, struct vfio_iova, list);
2435 end = node->end;
2436
2437 /* purge the iova list and create new one */
2438 vfio_iommu_iova_free(iova: iova_copy);
2439
2440 ret = vfio_iommu_aper_resize(iova: iova_copy, start, end);
2441 if (ret)
2442 goto done;
2443
2444 /* Exclude current reserved regions from iova ranges */
2445 ret = vfio_iommu_resv_exclude(iova: iova_copy, resv_regions: &resv_regions);
2446done:
2447 vfio_iommu_resv_free(resv_regions: &resv_regions);
2448 return ret;
2449}
2450
2451static void vfio_iommu_type1_detach_group(void *iommu_data,
2452 struct iommu_group *iommu_group)
2453{
2454 struct vfio_iommu *iommu = iommu_data;
2455 struct vfio_domain *domain;
2456 struct vfio_iommu_group *group;
2457 bool update_dirty_scope = false;
2458 LIST_HEAD(iova_copy);
2459
2460 mutex_lock(&iommu->lock);
2461 list_for_each_entry(group, &iommu->emulated_iommu_groups, next) {
2462 if (group->iommu_group != iommu_group)
2463 continue;
2464 update_dirty_scope = !group->pinned_page_dirty_scope;
2465 list_del(entry: &group->next);
2466 kfree(objp: group);
2467
2468 if (list_empty(head: &iommu->emulated_iommu_groups) &&
2469 list_empty(head: &iommu->domain_list)) {
2470 WARN_ON(!list_empty(&iommu->device_list));
2471 vfio_iommu_unmap_unpin_all(iommu);
2472 }
2473 goto detach_group_done;
2474 }
2475
2476 /*
2477 * Get a copy of iova list. This will be used to update
2478 * and to replace the current one later. Please note that
2479 * we will leave the original list as it is if update fails.
2480 */
2481 vfio_iommu_iova_get_copy(iommu, iova_copy: &iova_copy);
2482
2483 list_for_each_entry(domain, &iommu->domain_list, next) {
2484 group = find_iommu_group(domain, iommu_group);
2485 if (!group)
2486 continue;
2487
2488 iommu_detach_group(domain: domain->domain, group: group->iommu_group);
2489 update_dirty_scope = !group->pinned_page_dirty_scope;
2490 list_del(entry: &group->next);
2491 kfree(objp: group);
2492 /*
2493 * Group ownership provides privilege, if the group list is
2494 * empty, the domain goes away. If it's the last domain with
2495 * iommu and external domain doesn't exist, then all the
2496 * mappings go away too. If it's the last domain with iommu and
2497 * external domain exist, update accounting
2498 */
2499 if (list_empty(head: &domain->group_list)) {
2500 if (list_is_singular(head: &iommu->domain_list)) {
2501 if (list_empty(head: &iommu->emulated_iommu_groups)) {
2502 WARN_ON(!list_empty(
2503 &iommu->device_list));
2504 vfio_iommu_unmap_unpin_all(iommu);
2505 } else {
2506 vfio_iommu_unmap_unpin_reaccount(iommu);
2507 }
2508 }
2509 iommu_domain_free(domain: domain->domain);
2510 list_del(entry: &domain->next);
2511 kfree(objp: domain);
2512 vfio_iommu_aper_expand(iommu, iova_copy: &iova_copy);
2513 vfio_update_pgsize_bitmap(iommu);
2514 }
2515 break;
2516 }
2517
2518 if (!vfio_iommu_resv_refresh(iommu, iova_copy: &iova_copy))
2519 vfio_iommu_iova_insert_copy(iommu, iova_copy: &iova_copy);
2520 else
2521 vfio_iommu_iova_free(iova: &iova_copy);
2522
2523detach_group_done:
2524 /*
2525 * Removal of a group without dirty tracking may allow the iommu scope
2526 * to be promoted.
2527 */
2528 if (update_dirty_scope) {
2529 iommu->num_non_pinned_groups--;
2530 if (iommu->dirty_page_tracking)
2531 vfio_iommu_populate_bitmap_full(iommu);
2532 }
2533 mutex_unlock(lock: &iommu->lock);
2534}
2535
2536static void *vfio_iommu_type1_open(unsigned long arg)
2537{
2538 struct vfio_iommu *iommu;
2539
2540 iommu = kzalloc(size: sizeof(*iommu), GFP_KERNEL);
2541 if (!iommu)
2542 return ERR_PTR(error: -ENOMEM);
2543
2544 switch (arg) {
2545 case VFIO_TYPE1_IOMMU:
2546 break;
2547 case VFIO_TYPE1_NESTING_IOMMU:
2548 iommu->nesting = true;
2549 fallthrough;
2550 case VFIO_TYPE1v2_IOMMU:
2551 iommu->v2 = true;
2552 break;
2553 default:
2554 kfree(objp: iommu);
2555 return ERR_PTR(error: -EINVAL);
2556 }
2557
2558 INIT_LIST_HEAD(list: &iommu->domain_list);
2559 INIT_LIST_HEAD(list: &iommu->iova_list);
2560 iommu->dma_list = RB_ROOT;
2561 iommu->dma_avail = dma_entry_limit;
2562 mutex_init(&iommu->lock);
2563 mutex_init(&iommu->device_list_lock);
2564 INIT_LIST_HEAD(list: &iommu->device_list);
2565 iommu->pgsize_bitmap = PAGE_MASK;
2566 INIT_LIST_HEAD(list: &iommu->emulated_iommu_groups);
2567
2568 return iommu;
2569}
2570
2571static void vfio_release_domain(struct vfio_domain *domain)
2572{
2573 struct vfio_iommu_group *group, *group_tmp;
2574
2575 list_for_each_entry_safe(group, group_tmp,
2576 &domain->group_list, next) {
2577 iommu_detach_group(domain: domain->domain, group: group->iommu_group);
2578 list_del(entry: &group->next);
2579 kfree(objp: group);
2580 }
2581
2582 iommu_domain_free(domain: domain->domain);
2583}
2584
2585static void vfio_iommu_type1_release(void *iommu_data)
2586{
2587 struct vfio_iommu *iommu = iommu_data;
2588 struct vfio_domain *domain, *domain_tmp;
2589 struct vfio_iommu_group *group, *next_group;
2590
2591 list_for_each_entry_safe(group, next_group,
2592 &iommu->emulated_iommu_groups, next) {
2593 list_del(entry: &group->next);
2594 kfree(objp: group);
2595 }
2596
2597 vfio_iommu_unmap_unpin_all(iommu);
2598
2599 list_for_each_entry_safe(domain, domain_tmp,
2600 &iommu->domain_list, next) {
2601 vfio_release_domain(domain);
2602 list_del(entry: &domain->next);
2603 kfree(objp: domain);
2604 }
2605
2606 vfio_iommu_iova_free(iova: &iommu->iova_list);
2607
2608 kfree(objp: iommu);
2609}
2610
2611static int vfio_domains_have_enforce_cache_coherency(struct vfio_iommu *iommu)
2612{
2613 struct vfio_domain *domain;
2614 int ret = 1;
2615
2616 mutex_lock(&iommu->lock);
2617 list_for_each_entry(domain, &iommu->domain_list, next) {
2618 if (!(domain->enforce_cache_coherency)) {
2619 ret = 0;
2620 break;
2621 }
2622 }
2623 mutex_unlock(lock: &iommu->lock);
2624
2625 return ret;
2626}
2627
2628static bool vfio_iommu_has_emulated(struct vfio_iommu *iommu)
2629{
2630 bool ret;
2631
2632 mutex_lock(&iommu->lock);
2633 ret = !list_empty(head: &iommu->emulated_iommu_groups);
2634 mutex_unlock(lock: &iommu->lock);
2635 return ret;
2636}
2637
2638static int vfio_iommu_type1_check_extension(struct vfio_iommu *iommu,
2639 unsigned long arg)
2640{
2641 switch (arg) {
2642 case VFIO_TYPE1_IOMMU:
2643 case VFIO_TYPE1v2_IOMMU:
2644 case VFIO_TYPE1_NESTING_IOMMU:
2645 case VFIO_UNMAP_ALL:
2646 return 1;
2647 case VFIO_UPDATE_VADDR:
2648 /*
2649 * Disable this feature if mdevs are present. They cannot
2650 * safely pin/unpin/rw while vaddrs are being updated.
2651 */
2652 return iommu && !vfio_iommu_has_emulated(iommu);
2653 case VFIO_DMA_CC_IOMMU:
2654 if (!iommu)
2655 return 0;
2656 return vfio_domains_have_enforce_cache_coherency(iommu);
2657 default:
2658 return 0;
2659 }
2660}
2661
2662static int vfio_iommu_iova_add_cap(struct vfio_info_cap *caps,
2663 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas,
2664 size_t size)
2665{
2666 struct vfio_info_cap_header *header;
2667 struct vfio_iommu_type1_info_cap_iova_range *iova_cap;
2668
2669 header = vfio_info_cap_add(caps, size,
2670 VFIO_IOMMU_TYPE1_INFO_CAP_IOVA_RANGE, version: 1);
2671 if (IS_ERR(ptr: header))
2672 return PTR_ERR(ptr: header);
2673
2674 iova_cap = container_of(header,
2675 struct vfio_iommu_type1_info_cap_iova_range,
2676 header);
2677 iova_cap->nr_iovas = cap_iovas->nr_iovas;
2678 memcpy(iova_cap->iova_ranges, cap_iovas->iova_ranges,
2679 cap_iovas->nr_iovas * sizeof(*cap_iovas->iova_ranges));
2680 return 0;
2681}
2682
2683static int vfio_iommu_iova_build_caps(struct vfio_iommu *iommu,
2684 struct vfio_info_cap *caps)
2685{
2686 struct vfio_iommu_type1_info_cap_iova_range *cap_iovas;
2687 struct vfio_iova *iova;
2688 size_t size;
2689 int iovas = 0, i = 0, ret;
2690
2691 list_for_each_entry(iova, &iommu->iova_list, list)
2692 iovas++;
2693
2694 if (!iovas) {
2695 /*
2696 * Return 0 as a container with a single mdev device
2697 * will have an empty list
2698 */
2699 return 0;
2700 }
2701
2702 size = struct_size(cap_iovas, iova_ranges, iovas);
2703
2704 cap_iovas = kzalloc(size, GFP_KERNEL);
2705 if (!cap_iovas)
2706 return -ENOMEM;
2707
2708 cap_iovas->nr_iovas = iovas;
2709
2710 list_for_each_entry(iova, &iommu->iova_list, list) {
2711 cap_iovas->iova_ranges[i].start = iova->start;
2712 cap_iovas->iova_ranges[i].end = iova->end;
2713 i++;
2714 }
2715
2716 ret = vfio_iommu_iova_add_cap(caps, cap_iovas, size);
2717
2718 kfree(objp: cap_iovas);
2719 return ret;
2720}
2721
2722static int vfio_iommu_migration_build_caps(struct vfio_iommu *iommu,
2723 struct vfio_info_cap *caps)
2724{
2725 struct vfio_iommu_type1_info_cap_migration cap_mig = {};
2726
2727 cap_mig.header.id = VFIO_IOMMU_TYPE1_INFO_CAP_MIGRATION;
2728 cap_mig.header.version = 1;
2729
2730 cap_mig.flags = 0;
2731 /* support minimum pgsize */
2732 cap_mig.pgsize_bitmap = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2733 cap_mig.max_dirty_bitmap_size = DIRTY_BITMAP_SIZE_MAX;
2734
2735 return vfio_info_add_capability(caps, cap: &cap_mig.header, size: sizeof(cap_mig));
2736}
2737
2738static int vfio_iommu_dma_avail_build_caps(struct vfio_iommu *iommu,
2739 struct vfio_info_cap *caps)
2740{
2741 struct vfio_iommu_type1_info_dma_avail cap_dma_avail;
2742
2743 cap_dma_avail.header.id = VFIO_IOMMU_TYPE1_INFO_DMA_AVAIL;
2744 cap_dma_avail.header.version = 1;
2745
2746 cap_dma_avail.avail = iommu->dma_avail;
2747
2748 return vfio_info_add_capability(caps, cap: &cap_dma_avail.header,
2749 size: sizeof(cap_dma_avail));
2750}
2751
2752static int vfio_iommu_type1_get_info(struct vfio_iommu *iommu,
2753 unsigned long arg)
2754{
2755 struct vfio_iommu_type1_info info = {};
2756 unsigned long minsz;
2757 struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
2758 int ret;
2759
2760 minsz = offsetofend(struct vfio_iommu_type1_info, iova_pgsizes);
2761
2762 if (copy_from_user(to: &info, from: (void __user *)arg, n: minsz))
2763 return -EFAULT;
2764
2765 if (info.argsz < minsz)
2766 return -EINVAL;
2767
2768 minsz = min_t(size_t, info.argsz, sizeof(info));
2769
2770 mutex_lock(&iommu->lock);
2771 info.flags = VFIO_IOMMU_INFO_PGSIZES;
2772
2773 info.iova_pgsizes = iommu->pgsize_bitmap;
2774
2775 ret = vfio_iommu_migration_build_caps(iommu, caps: &caps);
2776
2777 if (!ret)
2778 ret = vfio_iommu_dma_avail_build_caps(iommu, caps: &caps);
2779
2780 if (!ret)
2781 ret = vfio_iommu_iova_build_caps(iommu, caps: &caps);
2782
2783 mutex_unlock(lock: &iommu->lock);
2784
2785 if (ret)
2786 return ret;
2787
2788 if (caps.size) {
2789 info.flags |= VFIO_IOMMU_INFO_CAPS;
2790
2791 if (info.argsz < sizeof(info) + caps.size) {
2792 info.argsz = sizeof(info) + caps.size;
2793 } else {
2794 vfio_info_cap_shift(caps: &caps, offset: sizeof(info));
2795 if (copy_to_user(to: (void __user *)arg +
2796 sizeof(info), from: caps.buf,
2797 n: caps.size)) {
2798 kfree(objp: caps.buf);
2799 return -EFAULT;
2800 }
2801 info.cap_offset = sizeof(info);
2802 }
2803
2804 kfree(objp: caps.buf);
2805 }
2806
2807 return copy_to_user(to: (void __user *)arg, from: &info, n: minsz) ?
2808 -EFAULT : 0;
2809}
2810
2811static int vfio_iommu_type1_map_dma(struct vfio_iommu *iommu,
2812 unsigned long arg)
2813{
2814 struct vfio_iommu_type1_dma_map map;
2815 unsigned long minsz;
2816 uint32_t mask = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE |
2817 VFIO_DMA_MAP_FLAG_VADDR;
2818
2819 minsz = offsetofend(struct vfio_iommu_type1_dma_map, size);
2820
2821 if (copy_from_user(to: &map, from: (void __user *)arg, n: minsz))
2822 return -EFAULT;
2823
2824 if (map.argsz < minsz || map.flags & ~mask)
2825 return -EINVAL;
2826
2827 return vfio_dma_do_map(iommu, map: &map);
2828}
2829
2830static int vfio_iommu_type1_unmap_dma(struct vfio_iommu *iommu,
2831 unsigned long arg)
2832{
2833 struct vfio_iommu_type1_dma_unmap unmap;
2834 struct vfio_bitmap bitmap = { 0 };
2835 uint32_t mask = VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP |
2836 VFIO_DMA_UNMAP_FLAG_VADDR |
2837 VFIO_DMA_UNMAP_FLAG_ALL;
2838 unsigned long minsz;
2839 int ret;
2840
2841 minsz = offsetofend(struct vfio_iommu_type1_dma_unmap, size);
2842
2843 if (copy_from_user(to: &unmap, from: (void __user *)arg, n: minsz))
2844 return -EFAULT;
2845
2846 if (unmap.argsz < minsz || unmap.flags & ~mask)
2847 return -EINVAL;
2848
2849 if ((unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) &&
2850 (unmap.flags & (VFIO_DMA_UNMAP_FLAG_ALL |
2851 VFIO_DMA_UNMAP_FLAG_VADDR)))
2852 return -EINVAL;
2853
2854 if (unmap.flags & VFIO_DMA_UNMAP_FLAG_GET_DIRTY_BITMAP) {
2855 unsigned long pgshift;
2856
2857 if (unmap.argsz < (minsz + sizeof(bitmap)))
2858 return -EINVAL;
2859
2860 if (copy_from_user(to: &bitmap,
2861 from: (void __user *)(arg + minsz),
2862 n: sizeof(bitmap)))
2863 return -EFAULT;
2864
2865 if (!access_ok((void __user *)bitmap.data, bitmap.size))
2866 return -EINVAL;
2867
2868 pgshift = __ffs(bitmap.pgsize);
2869 ret = verify_bitmap_size(npages: unmap.size >> pgshift,
2870 bitmap_size: bitmap.size);
2871 if (ret)
2872 return ret;
2873 }
2874
2875 ret = vfio_dma_do_unmap(iommu, unmap: &unmap, bitmap: &bitmap);
2876 if (ret)
2877 return ret;
2878
2879 return copy_to_user(to: (void __user *)arg, from: &unmap, n: minsz) ?
2880 -EFAULT : 0;
2881}
2882
2883static int vfio_iommu_type1_dirty_pages(struct vfio_iommu *iommu,
2884 unsigned long arg)
2885{
2886 struct vfio_iommu_type1_dirty_bitmap dirty;
2887 uint32_t mask = VFIO_IOMMU_DIRTY_PAGES_FLAG_START |
2888 VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP |
2889 VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP;
2890 unsigned long minsz;
2891 int ret = 0;
2892
2893 if (!iommu->v2)
2894 return -EACCES;
2895
2896 minsz = offsetofend(struct vfio_iommu_type1_dirty_bitmap, flags);
2897
2898 if (copy_from_user(to: &dirty, from: (void __user *)arg, n: minsz))
2899 return -EFAULT;
2900
2901 if (dirty.argsz < minsz || dirty.flags & ~mask)
2902 return -EINVAL;
2903
2904 /* only one flag should be set at a time */
2905 if (__ffs(dirty.flags) != __fls(word: dirty.flags))
2906 return -EINVAL;
2907
2908 if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_START) {
2909 size_t pgsize;
2910
2911 mutex_lock(&iommu->lock);
2912 pgsize = 1 << __ffs(iommu->pgsize_bitmap);
2913 if (!iommu->dirty_page_tracking) {
2914 ret = vfio_dma_bitmap_alloc_all(iommu, pgsize);
2915 if (!ret)
2916 iommu->dirty_page_tracking = true;
2917 }
2918 mutex_unlock(lock: &iommu->lock);
2919 return ret;
2920 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_STOP) {
2921 mutex_lock(&iommu->lock);
2922 if (iommu->dirty_page_tracking) {
2923 iommu->dirty_page_tracking = false;
2924 vfio_dma_bitmap_free_all(iommu);
2925 }
2926 mutex_unlock(lock: &iommu->lock);
2927 return 0;
2928 } else if (dirty.flags & VFIO_IOMMU_DIRTY_PAGES_FLAG_GET_BITMAP) {
2929 struct vfio_iommu_type1_dirty_bitmap_get range;
2930 unsigned long pgshift;
2931 size_t data_size = dirty.argsz - minsz;
2932 size_t iommu_pgsize;
2933
2934 if (!data_size || data_size < sizeof(range))
2935 return -EINVAL;
2936
2937 if (copy_from_user(to: &range, from: (void __user *)(arg + minsz),
2938 n: sizeof(range)))
2939 return -EFAULT;
2940
2941 if (range.iova + range.size < range.iova)
2942 return -EINVAL;
2943 if (!access_ok((void __user *)range.bitmap.data,
2944 range.bitmap.size))
2945 return -EINVAL;
2946
2947 pgshift = __ffs(range.bitmap.pgsize);
2948 ret = verify_bitmap_size(npages: range.size >> pgshift,
2949 bitmap_size: range.bitmap.size);
2950 if (ret)
2951 return ret;
2952
2953 mutex_lock(&iommu->lock);
2954
2955 iommu_pgsize = (size_t)1 << __ffs(iommu->pgsize_bitmap);
2956
2957 /* allow only smallest supported pgsize */
2958 if (range.bitmap.pgsize != iommu_pgsize) {
2959 ret = -EINVAL;
2960 goto out_unlock;
2961 }
2962 if (range.iova & (iommu_pgsize - 1)) {
2963 ret = -EINVAL;
2964 goto out_unlock;
2965 }
2966 if (!range.size || range.size & (iommu_pgsize - 1)) {
2967 ret = -EINVAL;
2968 goto out_unlock;
2969 }
2970
2971 if (iommu->dirty_page_tracking)
2972 ret = vfio_iova_dirty_bitmap(bitmap: range.bitmap.data,
2973 iommu, iova: range.iova,
2974 size: range.size,
2975 pgsize: range.bitmap.pgsize);
2976 else
2977 ret = -EINVAL;
2978out_unlock:
2979 mutex_unlock(lock: &iommu->lock);
2980
2981 return ret;
2982 }
2983
2984 return -EINVAL;
2985}
2986
2987static long vfio_iommu_type1_ioctl(void *iommu_data,
2988 unsigned int cmd, unsigned long arg)
2989{
2990 struct vfio_iommu *iommu = iommu_data;
2991
2992 switch (cmd) {
2993 case VFIO_CHECK_EXTENSION:
2994 return vfio_iommu_type1_check_extension(iommu, arg);
2995 case VFIO_IOMMU_GET_INFO:
2996 return vfio_iommu_type1_get_info(iommu, arg);
2997 case VFIO_IOMMU_MAP_DMA:
2998 return vfio_iommu_type1_map_dma(iommu, arg);
2999 case VFIO_IOMMU_UNMAP_DMA:
3000 return vfio_iommu_type1_unmap_dma(iommu, arg);
3001 case VFIO_IOMMU_DIRTY_PAGES:
3002 return vfio_iommu_type1_dirty_pages(iommu, arg);
3003 default:
3004 return -ENOTTY;
3005 }
3006}
3007
3008static void vfio_iommu_type1_register_device(void *iommu_data,
3009 struct vfio_device *vdev)
3010{
3011 struct vfio_iommu *iommu = iommu_data;
3012
3013 if (!vdev->ops->dma_unmap)
3014 return;
3015
3016 /*
3017 * list_empty(&iommu->device_list) is tested under the iommu->lock while
3018 * iteration for dma_unmap must be done under the device_list_lock.
3019 * Holding both locks here allows avoiding the device_list_lock in
3020 * several fast paths. See vfio_notify_dma_unmap()
3021 */
3022 mutex_lock(&iommu->lock);
3023 mutex_lock(&iommu->device_list_lock);
3024 list_add(new: &vdev->iommu_entry, head: &iommu->device_list);
3025 mutex_unlock(lock: &iommu->device_list_lock);
3026 mutex_unlock(lock: &iommu->lock);
3027}
3028
3029static void vfio_iommu_type1_unregister_device(void *iommu_data,
3030 struct vfio_device *vdev)
3031{
3032 struct vfio_iommu *iommu = iommu_data;
3033
3034 if (!vdev->ops->dma_unmap)
3035 return;
3036
3037 mutex_lock(&iommu->lock);
3038 mutex_lock(&iommu->device_list_lock);
3039 list_del(entry: &vdev->iommu_entry);
3040 mutex_unlock(lock: &iommu->device_list_lock);
3041 mutex_unlock(lock: &iommu->lock);
3042}
3043
3044static int vfio_iommu_type1_dma_rw_chunk(struct vfio_iommu *iommu,
3045 dma_addr_t user_iova, void *data,
3046 size_t count, bool write,
3047 size_t *copied)
3048{
3049 struct mm_struct *mm;
3050 unsigned long vaddr;
3051 struct vfio_dma *dma;
3052 bool kthread = current->mm == NULL;
3053 size_t offset;
3054
3055 *copied = 0;
3056
3057 dma = vfio_find_dma(iommu, start: user_iova, size: 1);
3058 if (!dma)
3059 return -EINVAL;
3060
3061 if ((write && !(dma->prot & IOMMU_WRITE)) ||
3062 !(dma->prot & IOMMU_READ))
3063 return -EPERM;
3064
3065 mm = dma->mm;
3066 if (!mmget_not_zero(mm))
3067 return -EPERM;
3068
3069 if (kthread)
3070 kthread_use_mm(mm);
3071 else if (current->mm != mm)
3072 goto out;
3073
3074 offset = user_iova - dma->iova;
3075
3076 if (count > dma->size - offset)
3077 count = dma->size - offset;
3078
3079 vaddr = dma->vaddr + offset;
3080
3081 if (write) {
3082 *copied = copy_to_user(to: (void __user *)vaddr, from: data,
3083 n: count) ? 0 : count;
3084 if (*copied && iommu->dirty_page_tracking) {
3085 unsigned long pgshift = __ffs(iommu->pgsize_bitmap);
3086 /*
3087 * Bitmap populated with the smallest supported page
3088 * size
3089 */
3090 bitmap_set(map: dma->bitmap, start: offset >> pgshift,
3091 nbits: ((offset + *copied - 1) >> pgshift) -
3092 (offset >> pgshift) + 1);
3093 }
3094 } else
3095 *copied = copy_from_user(to: data, from: (void __user *)vaddr,
3096 n: count) ? 0 : count;
3097 if (kthread)
3098 kthread_unuse_mm(mm);
3099out:
3100 mmput(mm);
3101 return *copied ? 0 : -EFAULT;
3102}
3103
3104static int vfio_iommu_type1_dma_rw(void *iommu_data, dma_addr_t user_iova,
3105 void *data, size_t count, bool write)
3106{
3107 struct vfio_iommu *iommu = iommu_data;
3108 int ret = 0;
3109 size_t done;
3110
3111 mutex_lock(&iommu->lock);
3112
3113 if (WARN_ONCE(iommu->vaddr_invalid_count,
3114 "vfio_dma_rw not allowed with VFIO_UPDATE_VADDR\n")) {
3115 ret = -EBUSY;
3116 goto out;
3117 }
3118
3119 while (count > 0) {
3120 ret = vfio_iommu_type1_dma_rw_chunk(iommu, user_iova, data,
3121 count, write, copied: &done);
3122 if (ret)
3123 break;
3124
3125 count -= done;
3126 data += done;
3127 user_iova += done;
3128 }
3129
3130out:
3131 mutex_unlock(lock: &iommu->lock);
3132 return ret;
3133}
3134
3135static struct iommu_domain *
3136vfio_iommu_type1_group_iommu_domain(void *iommu_data,
3137 struct iommu_group *iommu_group)
3138{
3139 struct iommu_domain *domain = ERR_PTR(error: -ENODEV);
3140 struct vfio_iommu *iommu = iommu_data;
3141 struct vfio_domain *d;
3142
3143 if (!iommu || !iommu_group)
3144 return ERR_PTR(error: -EINVAL);
3145
3146 mutex_lock(&iommu->lock);
3147 list_for_each_entry(d, &iommu->domain_list, next) {
3148 if (find_iommu_group(domain: d, iommu_group)) {
3149 domain = d->domain;
3150 break;
3151 }
3152 }
3153 mutex_unlock(lock: &iommu->lock);
3154
3155 return domain;
3156}
3157
3158static const struct vfio_iommu_driver_ops vfio_iommu_driver_ops_type1 = {
3159 .name = "vfio-iommu-type1",
3160 .owner = THIS_MODULE,
3161 .open = vfio_iommu_type1_open,
3162 .release = vfio_iommu_type1_release,
3163 .ioctl = vfio_iommu_type1_ioctl,
3164 .attach_group = vfio_iommu_type1_attach_group,
3165 .detach_group = vfio_iommu_type1_detach_group,
3166 .pin_pages = vfio_iommu_type1_pin_pages,
3167 .unpin_pages = vfio_iommu_type1_unpin_pages,
3168 .register_device = vfio_iommu_type1_register_device,
3169 .unregister_device = vfio_iommu_type1_unregister_device,
3170 .dma_rw = vfio_iommu_type1_dma_rw,
3171 .group_iommu_domain = vfio_iommu_type1_group_iommu_domain,
3172};
3173
3174static int __init vfio_iommu_type1_init(void)
3175{
3176 return vfio_register_iommu_driver(ops: &vfio_iommu_driver_ops_type1);
3177}
3178
3179static void __exit vfio_iommu_type1_cleanup(void)
3180{
3181 vfio_unregister_iommu_driver(ops: &vfio_iommu_driver_ops_type1);
3182}
3183
3184module_init(vfio_iommu_type1_init);
3185module_exit(vfio_iommu_type1_cleanup);
3186
3187MODULE_VERSION(DRIVER_VERSION);
3188MODULE_LICENSE("GPL v2");
3189MODULE_AUTHOR(DRIVER_AUTHOR);
3190MODULE_DESCRIPTION(DRIVER_DESC);
3191

source code of linux/drivers/vfio/vfio_iommu_type1.c