1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/gc.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/module.h>
10#include <linux/init.h>
11#include <linux/f2fs_fs.h>
12#include <linux/kthread.h>
13#include <linux/delay.h>
14#include <linux/freezer.h>
15#include <linux/sched/signal.h>
16#include <linux/random.h>
17#include <linux/sched/mm.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22#include "gc.h"
23#include "iostat.h"
24#include <trace/events/f2fs.h>
25
26static struct kmem_cache *victim_entry_slab;
27
28static unsigned int count_bits(const unsigned long *addr,
29 unsigned int offset, unsigned int len);
30
31static int gc_thread_func(void *data)
32{
33 struct f2fs_sb_info *sbi = data;
34 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
35 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
36 wait_queue_head_t *fggc_wq = &sbi->gc_thread->fggc_wq;
37 unsigned int wait_ms;
38 struct f2fs_gc_control gc_control = {
39 .victim_segno = NULL_SEGNO,
40 .should_migrate_blocks = false,
41 .err_gc_skipped = false };
42
43 wait_ms = gc_th->min_sleep_time;
44
45 set_freezable();
46 do {
47 bool sync_mode, foreground = false;
48
49 wait_event_freezable_timeout(*wq,
50 kthread_should_stop() ||
51 waitqueue_active(fggc_wq) ||
52 gc_th->gc_wake,
53 msecs_to_jiffies(wait_ms));
54
55 if (test_opt(sbi, GC_MERGE) && waitqueue_active(wq_head: fggc_wq))
56 foreground = true;
57
58 /* give it a try one time */
59 if (gc_th->gc_wake)
60 gc_th->gc_wake = false;
61
62 if (f2fs_readonly(sb: sbi->sb)) {
63 stat_other_skip_bggc_count(sbi);
64 continue;
65 }
66 if (kthread_should_stop())
67 break;
68
69 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
70 increase_sleep_time(gc_th, wait: &wait_ms);
71 stat_other_skip_bggc_count(sbi);
72 continue;
73 }
74
75 if (time_to_inject(sbi, FAULT_CHECKPOINT))
76 f2fs_stop_checkpoint(sbi, end_io: false,
77 reason: STOP_CP_REASON_FAULT_INJECT);
78
79 if (!sb_start_write_trylock(sb: sbi->sb)) {
80 stat_other_skip_bggc_count(sbi);
81 continue;
82 }
83
84 /*
85 * [GC triggering condition]
86 * 0. GC is not conducted currently.
87 * 1. There are enough dirty segments.
88 * 2. IO subsystem is idle by checking the # of writeback pages.
89 * 3. IO subsystem is idle by checking the # of requests in
90 * bdev's request list.
91 *
92 * Note) We have to avoid triggering GCs frequently.
93 * Because it is possible that some segments can be
94 * invalidated soon after by user update or deletion.
95 * So, I'd like to wait some time to collect dirty segments.
96 */
97 if (sbi->gc_mode == GC_URGENT_HIGH ||
98 sbi->gc_mode == GC_URGENT_MID) {
99 wait_ms = gc_th->urgent_sleep_time;
100 f2fs_down_write(sem: &sbi->gc_lock);
101 goto do_gc;
102 }
103
104 if (foreground) {
105 f2fs_down_write(sem: &sbi->gc_lock);
106 goto do_gc;
107 } else if (!f2fs_down_write_trylock(sem: &sbi->gc_lock)) {
108 stat_other_skip_bggc_count(sbi);
109 goto next;
110 }
111
112 if (!is_idle(sbi, type: GC_TIME)) {
113 increase_sleep_time(gc_th, wait: &wait_ms);
114 f2fs_up_write(sem: &sbi->gc_lock);
115 stat_io_skip_bggc_count(sbi);
116 goto next;
117 }
118
119 if (has_enough_invalid_blocks(sbi))
120 decrease_sleep_time(gc_th, wait: &wait_ms);
121 else
122 increase_sleep_time(gc_th, wait: &wait_ms);
123do_gc:
124 stat_inc_gc_call_count(sbi, foreground ?
125 FOREGROUND : BACKGROUND);
126
127 sync_mode = F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC;
128
129 /* foreground GC was been triggered via f2fs_balance_fs() */
130 if (foreground)
131 sync_mode = false;
132
133 gc_control.init_gc_type = sync_mode ? FG_GC : BG_GC;
134 gc_control.no_bg_gc = foreground;
135 gc_control.nr_free_secs = foreground ? 1 : 0;
136
137 /* if return value is not zero, no victim was selected */
138 if (f2fs_gc(sbi, gc_control: &gc_control)) {
139 /* don't bother wait_ms by foreground gc */
140 if (!foreground)
141 wait_ms = gc_th->no_gc_sleep_time;
142 } else {
143 /* reset wait_ms to default sleep time */
144 if (wait_ms == gc_th->no_gc_sleep_time)
145 wait_ms = gc_th->min_sleep_time;
146 }
147
148 if (foreground)
149 wake_up_all(&gc_th->fggc_wq);
150
151 trace_f2fs_background_gc(sb: sbi->sb, wait_ms,
152 prefree: prefree_segments(sbi), free: free_segments(sbi));
153
154 /* balancing f2fs's metadata periodically */
155 f2fs_balance_fs_bg(sbi, from_bg: true);
156next:
157 if (sbi->gc_mode != GC_NORMAL) {
158 spin_lock(lock: &sbi->gc_remaining_trials_lock);
159 if (sbi->gc_remaining_trials) {
160 sbi->gc_remaining_trials--;
161 if (!sbi->gc_remaining_trials)
162 sbi->gc_mode = GC_NORMAL;
163 }
164 spin_unlock(lock: &sbi->gc_remaining_trials_lock);
165 }
166 sb_end_write(sb: sbi->sb);
167
168 } while (!kthread_should_stop());
169 return 0;
170}
171
172int f2fs_start_gc_thread(struct f2fs_sb_info *sbi)
173{
174 struct f2fs_gc_kthread *gc_th;
175 dev_t dev = sbi->sb->s_bdev->bd_dev;
176
177 gc_th = f2fs_kmalloc(sbi, size: sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
178 if (!gc_th)
179 return -ENOMEM;
180
181 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
182 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
183 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
184 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
185
186 gc_th->gc_wake = false;
187
188 sbi->gc_thread = gc_th;
189 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
190 init_waitqueue_head(&sbi->gc_thread->fggc_wq);
191 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
192 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
193 if (IS_ERR(ptr: gc_th->f2fs_gc_task)) {
194 int err = PTR_ERR(ptr: gc_th->f2fs_gc_task);
195
196 kfree(objp: gc_th);
197 sbi->gc_thread = NULL;
198 return err;
199 }
200
201 return 0;
202}
203
204void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi)
205{
206 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
207
208 if (!gc_th)
209 return;
210 kthread_stop(k: gc_th->f2fs_gc_task);
211 wake_up_all(&gc_th->fggc_wq);
212 kfree(objp: gc_th);
213 sbi->gc_thread = NULL;
214}
215
216static int select_gc_type(struct f2fs_sb_info *sbi, int gc_type)
217{
218 int gc_mode;
219
220 if (gc_type == BG_GC) {
221 if (sbi->am.atgc_enabled)
222 gc_mode = GC_AT;
223 else
224 gc_mode = GC_CB;
225 } else {
226 gc_mode = GC_GREEDY;
227 }
228
229 switch (sbi->gc_mode) {
230 case GC_IDLE_CB:
231 gc_mode = GC_CB;
232 break;
233 case GC_IDLE_GREEDY:
234 case GC_URGENT_HIGH:
235 gc_mode = GC_GREEDY;
236 break;
237 case GC_IDLE_AT:
238 gc_mode = GC_AT;
239 break;
240 }
241
242 return gc_mode;
243}
244
245static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
246 int type, struct victim_sel_policy *p)
247{
248 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
249
250 if (p->alloc_mode == SSR) {
251 p->gc_mode = GC_GREEDY;
252 p->dirty_bitmap = dirty_i->dirty_segmap[type];
253 p->max_search = dirty_i->nr_dirty[type];
254 p->ofs_unit = 1;
255 } else if (p->alloc_mode == AT_SSR) {
256 p->gc_mode = GC_GREEDY;
257 p->dirty_bitmap = dirty_i->dirty_segmap[type];
258 p->max_search = dirty_i->nr_dirty[type];
259 p->ofs_unit = 1;
260 } else {
261 p->gc_mode = select_gc_type(sbi, gc_type);
262 p->ofs_unit = SEGS_PER_SEC(sbi);
263 if (__is_large_section(sbi)) {
264 p->dirty_bitmap = dirty_i->dirty_secmap;
265 p->max_search = count_bits(addr: p->dirty_bitmap,
266 offset: 0, MAIN_SECS(sbi));
267 } else {
268 p->dirty_bitmap = dirty_i->dirty_segmap[DIRTY];
269 p->max_search = dirty_i->nr_dirty[DIRTY];
270 }
271 }
272
273 /*
274 * adjust candidates range, should select all dirty segments for
275 * foreground GC and urgent GC cases.
276 */
277 if (gc_type != FG_GC &&
278 (sbi->gc_mode != GC_URGENT_HIGH) &&
279 (p->gc_mode != GC_AT && p->alloc_mode != AT_SSR) &&
280 p->max_search > sbi->max_victim_search)
281 p->max_search = sbi->max_victim_search;
282
283 /* let's select beginning hot/small space first. */
284 if (f2fs_need_rand_seg(sbi))
285 p->offset = get_random_u32_below(MAIN_SECS(sbi) *
286 SEGS_PER_SEC(sbi));
287 else if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
288 p->offset = 0;
289 else
290 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
291}
292
293static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
294 struct victim_sel_policy *p)
295{
296 /* SSR allocates in a segment unit */
297 if (p->alloc_mode == SSR)
298 return BLKS_PER_SEG(sbi);
299 else if (p->alloc_mode == AT_SSR)
300 return UINT_MAX;
301
302 /* LFS */
303 if (p->gc_mode == GC_GREEDY)
304 return SEGS_TO_BLKS(sbi, 2 * p->ofs_unit);
305 else if (p->gc_mode == GC_CB)
306 return UINT_MAX;
307 else if (p->gc_mode == GC_AT)
308 return UINT_MAX;
309 else /* No other gc_mode */
310 return 0;
311}
312
313static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
314{
315 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
316 unsigned int secno;
317
318 /*
319 * If the gc_type is FG_GC, we can select victim segments
320 * selected by background GC before.
321 * Those segments guarantee they have small valid blocks.
322 */
323 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
324 if (sec_usage_check(sbi, secno))
325 continue;
326 clear_bit(nr: secno, addr: dirty_i->victim_secmap);
327 return GET_SEG_FROM_SEC(sbi, secno);
328 }
329 return NULL_SEGNO;
330}
331
332static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
333{
334 struct sit_info *sit_i = SIT_I(sbi);
335 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
336 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
337 unsigned long long mtime = 0;
338 unsigned int vblocks;
339 unsigned char age = 0;
340 unsigned char u;
341 unsigned int i;
342 unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
343
344 for (i = 0; i < usable_segs_per_sec; i++)
345 mtime += get_seg_entry(sbi, segno: start + i)->mtime;
346 vblocks = get_valid_blocks(sbi, segno, use_section: true);
347
348 mtime = div_u64(dividend: mtime, divisor: usable_segs_per_sec);
349 vblocks = div_u64(dividend: vblocks, divisor: usable_segs_per_sec);
350
351 u = BLKS_TO_SEGS(sbi, vblocks * 100);
352
353 /* Handle if the system time has changed by the user */
354 if (mtime < sit_i->min_mtime)
355 sit_i->min_mtime = mtime;
356 if (mtime > sit_i->max_mtime)
357 sit_i->max_mtime = mtime;
358 if (sit_i->max_mtime != sit_i->min_mtime)
359 age = 100 - div64_u64(dividend: 100 * (mtime - sit_i->min_mtime),
360 divisor: sit_i->max_mtime - sit_i->min_mtime);
361
362 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
363}
364
365static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
366 unsigned int segno, struct victim_sel_policy *p)
367{
368 if (p->alloc_mode == SSR)
369 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
370
371 /* alloc_mode == LFS */
372 if (p->gc_mode == GC_GREEDY)
373 return get_valid_blocks(sbi, segno, use_section: true);
374 else if (p->gc_mode == GC_CB)
375 return get_cb_cost(sbi, segno);
376
377 f2fs_bug_on(sbi, 1);
378 return 0;
379}
380
381static unsigned int count_bits(const unsigned long *addr,
382 unsigned int offset, unsigned int len)
383{
384 unsigned int end = offset + len, sum = 0;
385
386 while (offset < end) {
387 if (test_bit(offset++, addr))
388 ++sum;
389 }
390 return sum;
391}
392
393static bool f2fs_check_victim_tree(struct f2fs_sb_info *sbi,
394 struct rb_root_cached *root)
395{
396#ifdef CONFIG_F2FS_CHECK_FS
397 struct rb_node *cur = rb_first_cached(root), *next;
398 struct victim_entry *cur_ve, *next_ve;
399
400 while (cur) {
401 next = rb_next(cur);
402 if (!next)
403 return true;
404
405 cur_ve = rb_entry(cur, struct victim_entry, rb_node);
406 next_ve = rb_entry(next, struct victim_entry, rb_node);
407
408 if (cur_ve->mtime > next_ve->mtime) {
409 f2fs_info(sbi, "broken victim_rbtree, "
410 "cur_mtime(%llu) next_mtime(%llu)",
411 cur_ve->mtime, next_ve->mtime);
412 return false;
413 }
414 cur = next;
415 }
416#endif
417 return true;
418}
419
420static struct victim_entry *__lookup_victim_entry(struct f2fs_sb_info *sbi,
421 unsigned long long mtime)
422{
423 struct atgc_management *am = &sbi->am;
424 struct rb_node *node = am->root.rb_root.rb_node;
425 struct victim_entry *ve = NULL;
426
427 while (node) {
428 ve = rb_entry(node, struct victim_entry, rb_node);
429
430 if (mtime < ve->mtime)
431 node = node->rb_left;
432 else
433 node = node->rb_right;
434 }
435 return ve;
436}
437
438static struct victim_entry *__create_victim_entry(struct f2fs_sb_info *sbi,
439 unsigned long long mtime, unsigned int segno)
440{
441 struct atgc_management *am = &sbi->am;
442 struct victim_entry *ve;
443
444 ve = f2fs_kmem_cache_alloc(cachep: victim_entry_slab, GFP_NOFS, nofail: true, NULL);
445
446 ve->mtime = mtime;
447 ve->segno = segno;
448
449 list_add_tail(new: &ve->list, head: &am->victim_list);
450 am->victim_count++;
451
452 return ve;
453}
454
455static void __insert_victim_entry(struct f2fs_sb_info *sbi,
456 unsigned long long mtime, unsigned int segno)
457{
458 struct atgc_management *am = &sbi->am;
459 struct rb_root_cached *root = &am->root;
460 struct rb_node **p = &root->rb_root.rb_node;
461 struct rb_node *parent = NULL;
462 struct victim_entry *ve;
463 bool left_most = true;
464
465 /* look up rb tree to find parent node */
466 while (*p) {
467 parent = *p;
468 ve = rb_entry(parent, struct victim_entry, rb_node);
469
470 if (mtime < ve->mtime) {
471 p = &(*p)->rb_left;
472 } else {
473 p = &(*p)->rb_right;
474 left_most = false;
475 }
476 }
477
478 ve = __create_victim_entry(sbi, mtime, segno);
479
480 rb_link_node(node: &ve->rb_node, parent, rb_link: p);
481 rb_insert_color_cached(node: &ve->rb_node, root, leftmost: left_most);
482}
483
484static void add_victim_entry(struct f2fs_sb_info *sbi,
485 struct victim_sel_policy *p, unsigned int segno)
486{
487 struct sit_info *sit_i = SIT_I(sbi);
488 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
489 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
490 unsigned long long mtime = 0;
491 unsigned int i;
492
493 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
494 if (p->gc_mode == GC_AT &&
495 get_valid_blocks(sbi, segno, use_section: true) == 0)
496 return;
497 }
498
499 for (i = 0; i < SEGS_PER_SEC(sbi); i++)
500 mtime += get_seg_entry(sbi, segno: start + i)->mtime;
501 mtime = div_u64(dividend: mtime, SEGS_PER_SEC(sbi));
502
503 /* Handle if the system time has changed by the user */
504 if (mtime < sit_i->min_mtime)
505 sit_i->min_mtime = mtime;
506 if (mtime > sit_i->max_mtime)
507 sit_i->max_mtime = mtime;
508 if (mtime < sit_i->dirty_min_mtime)
509 sit_i->dirty_min_mtime = mtime;
510 if (mtime > sit_i->dirty_max_mtime)
511 sit_i->dirty_max_mtime = mtime;
512
513 /* don't choose young section as candidate */
514 if (sit_i->dirty_max_mtime - mtime < p->age_threshold)
515 return;
516
517 __insert_victim_entry(sbi, mtime, segno);
518}
519
520static void atgc_lookup_victim(struct f2fs_sb_info *sbi,
521 struct victim_sel_policy *p)
522{
523 struct sit_info *sit_i = SIT_I(sbi);
524 struct atgc_management *am = &sbi->am;
525 struct rb_root_cached *root = &am->root;
526 struct rb_node *node;
527 struct victim_entry *ve;
528 unsigned long long total_time;
529 unsigned long long age, u, accu;
530 unsigned long long max_mtime = sit_i->dirty_max_mtime;
531 unsigned long long min_mtime = sit_i->dirty_min_mtime;
532 unsigned int sec_blocks = CAP_BLKS_PER_SEC(sbi);
533 unsigned int vblocks;
534 unsigned int dirty_threshold = max(am->max_candidate_count,
535 am->candidate_ratio *
536 am->victim_count / 100);
537 unsigned int age_weight = am->age_weight;
538 unsigned int cost;
539 unsigned int iter = 0;
540
541 if (max_mtime < min_mtime)
542 return;
543
544 max_mtime += 1;
545 total_time = max_mtime - min_mtime;
546
547 accu = div64_u64(ULLONG_MAX, divisor: total_time);
548 accu = min_t(unsigned long long, div_u64(accu, 100),
549 DEFAULT_ACCURACY_CLASS);
550
551 node = rb_first_cached(root);
552next:
553 ve = rb_entry_safe(node, struct victim_entry, rb_node);
554 if (!ve)
555 return;
556
557 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
558 goto skip;
559
560 /* age = 10000 * x% * 60 */
561 age = div64_u64(dividend: accu * (max_mtime - ve->mtime), divisor: total_time) *
562 age_weight;
563
564 vblocks = get_valid_blocks(sbi, segno: ve->segno, use_section: true);
565 f2fs_bug_on(sbi, !vblocks || vblocks == sec_blocks);
566
567 /* u = 10000 * x% * 40 */
568 u = div64_u64(dividend: accu * (sec_blocks - vblocks), divisor: sec_blocks) *
569 (100 - age_weight);
570
571 f2fs_bug_on(sbi, age + u >= UINT_MAX);
572
573 cost = UINT_MAX - (age + u);
574 iter++;
575
576 if (cost < p->min_cost ||
577 (cost == p->min_cost && age > p->oldest_age)) {
578 p->min_cost = cost;
579 p->oldest_age = age;
580 p->min_segno = ve->segno;
581 }
582skip:
583 if (iter < dirty_threshold) {
584 node = rb_next(node);
585 goto next;
586 }
587}
588
589/*
590 * select candidates around source section in range of
591 * [target - dirty_threshold, target + dirty_threshold]
592 */
593static void atssr_lookup_victim(struct f2fs_sb_info *sbi,
594 struct victim_sel_policy *p)
595{
596 struct sit_info *sit_i = SIT_I(sbi);
597 struct atgc_management *am = &sbi->am;
598 struct victim_entry *ve;
599 unsigned long long age;
600 unsigned long long max_mtime = sit_i->dirty_max_mtime;
601 unsigned long long min_mtime = sit_i->dirty_min_mtime;
602 unsigned int vblocks;
603 unsigned int dirty_threshold = max(am->max_candidate_count,
604 am->candidate_ratio *
605 am->victim_count / 100);
606 unsigned int cost, iter;
607 int stage = 0;
608
609 if (max_mtime < min_mtime)
610 return;
611 max_mtime += 1;
612next_stage:
613 iter = 0;
614 ve = __lookup_victim_entry(sbi, mtime: p->age);
615next_node:
616 if (!ve) {
617 if (stage++ == 0)
618 goto next_stage;
619 return;
620 }
621
622 if (ve->mtime >= max_mtime || ve->mtime < min_mtime)
623 goto skip_node;
624
625 age = max_mtime - ve->mtime;
626
627 vblocks = get_seg_entry(sbi, segno: ve->segno)->ckpt_valid_blocks;
628 f2fs_bug_on(sbi, !vblocks);
629
630 /* rare case */
631 if (vblocks == BLKS_PER_SEG(sbi))
632 goto skip_node;
633
634 iter++;
635
636 age = max_mtime - abs(p->age - age);
637 cost = UINT_MAX - vblocks;
638
639 if (cost < p->min_cost ||
640 (cost == p->min_cost && age > p->oldest_age)) {
641 p->min_cost = cost;
642 p->oldest_age = age;
643 p->min_segno = ve->segno;
644 }
645skip_node:
646 if (iter < dirty_threshold) {
647 ve = rb_entry(stage == 0 ? rb_prev(&ve->rb_node) :
648 rb_next(&ve->rb_node),
649 struct victim_entry, rb_node);
650 goto next_node;
651 }
652
653 if (stage++ == 0)
654 goto next_stage;
655}
656
657static void lookup_victim_by_age(struct f2fs_sb_info *sbi,
658 struct victim_sel_policy *p)
659{
660 f2fs_bug_on(sbi, !f2fs_check_victim_tree(sbi, &sbi->am.root));
661
662 if (p->gc_mode == GC_AT)
663 atgc_lookup_victim(sbi, p);
664 else if (p->alloc_mode == AT_SSR)
665 atssr_lookup_victim(sbi, p);
666 else
667 f2fs_bug_on(sbi, 1);
668}
669
670static void release_victim_entry(struct f2fs_sb_info *sbi)
671{
672 struct atgc_management *am = &sbi->am;
673 struct victim_entry *ve, *tmp;
674
675 list_for_each_entry_safe(ve, tmp, &am->victim_list, list) {
676 list_del(entry: &ve->list);
677 kmem_cache_free(s: victim_entry_slab, objp: ve);
678 am->victim_count--;
679 }
680
681 am->root = RB_ROOT_CACHED;
682
683 f2fs_bug_on(sbi, am->victim_count);
684 f2fs_bug_on(sbi, !list_empty(&am->victim_list));
685}
686
687static bool f2fs_pin_section(struct f2fs_sb_info *sbi, unsigned int segno)
688{
689 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
690 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
691
692 if (!dirty_i->enable_pin_section)
693 return false;
694 if (!test_and_set_bit(nr: secno, addr: dirty_i->pinned_secmap))
695 dirty_i->pinned_secmap_cnt++;
696 return true;
697}
698
699static bool f2fs_pinned_section_exists(struct dirty_seglist_info *dirty_i)
700{
701 return dirty_i->pinned_secmap_cnt;
702}
703
704static bool f2fs_section_is_pinned(struct dirty_seglist_info *dirty_i,
705 unsigned int secno)
706{
707 return dirty_i->enable_pin_section &&
708 f2fs_pinned_section_exists(dirty_i) &&
709 test_bit(secno, dirty_i->pinned_secmap);
710}
711
712static void f2fs_unpin_all_sections(struct f2fs_sb_info *sbi, bool enable)
713{
714 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
715
716 if (f2fs_pinned_section_exists(dirty_i: DIRTY_I(sbi))) {
717 memset(DIRTY_I(sbi)->pinned_secmap, 0, bitmap_size);
718 DIRTY_I(sbi)->pinned_secmap_cnt = 0;
719 }
720 DIRTY_I(sbi)->enable_pin_section = enable;
721}
722
723static int f2fs_gc_pinned_control(struct inode *inode, int gc_type,
724 unsigned int segno)
725{
726 if (!f2fs_is_pinned_file(inode))
727 return 0;
728 if (gc_type != FG_GC)
729 return -EBUSY;
730 if (!f2fs_pin_section(sbi: F2FS_I_SB(inode), segno))
731 f2fs_pin_file_control(inode, inc: true);
732 return -EAGAIN;
733}
734
735/*
736 * This function is called from two paths.
737 * One is garbage collection and the other is SSR segment selection.
738 * When it is called during GC, it just gets a victim segment
739 * and it does not remove it from dirty seglist.
740 * When it is called from SSR segment selection, it finds a segment
741 * which has minimum valid blocks and removes it from dirty seglist.
742 */
743int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
744 int gc_type, int type, char alloc_mode,
745 unsigned long long age)
746{
747 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
748 struct sit_info *sm = SIT_I(sbi);
749 struct victim_sel_policy p;
750 unsigned int secno, last_victim;
751 unsigned int last_segment;
752 unsigned int nsearched;
753 bool is_atgc;
754 int ret = 0;
755
756 mutex_lock(&dirty_i->seglist_lock);
757 last_segment = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
758
759 p.alloc_mode = alloc_mode;
760 p.age = age;
761 p.age_threshold = sbi->am.age_threshold;
762
763retry:
764 select_policy(sbi, gc_type, type, p: &p);
765 p.min_segno = NULL_SEGNO;
766 p.oldest_age = 0;
767 p.min_cost = get_max_cost(sbi, p: &p);
768
769 is_atgc = (p.gc_mode == GC_AT || p.alloc_mode == AT_SSR);
770 nsearched = 0;
771
772 if (is_atgc)
773 SIT_I(sbi)->dirty_min_mtime = ULLONG_MAX;
774
775 if (*result != NULL_SEGNO) {
776 if (!get_valid_blocks(sbi, segno: *result, use_section: false)) {
777 ret = -ENODATA;
778 goto out;
779 }
780
781 if (sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
782 ret = -EBUSY;
783 else
784 p.min_segno = *result;
785 goto out;
786 }
787
788 ret = -ENODATA;
789 if (p.max_search == 0)
790 goto out;
791
792 if (__is_large_section(sbi) && p.alloc_mode == LFS) {
793 if (sbi->next_victim_seg[BG_GC] != NULL_SEGNO) {
794 p.min_segno = sbi->next_victim_seg[BG_GC];
795 *result = p.min_segno;
796 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
797 goto got_result;
798 }
799 if (gc_type == FG_GC &&
800 sbi->next_victim_seg[FG_GC] != NULL_SEGNO) {
801 p.min_segno = sbi->next_victim_seg[FG_GC];
802 *result = p.min_segno;
803 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
804 goto got_result;
805 }
806 }
807
808 last_victim = sm->last_victim[p.gc_mode];
809 if (p.alloc_mode == LFS && gc_type == FG_GC) {
810 p.min_segno = check_bg_victims(sbi);
811 if (p.min_segno != NULL_SEGNO)
812 goto got_it;
813 }
814
815 while (1) {
816 unsigned long cost, *dirty_bitmap;
817 unsigned int unit_no, segno;
818
819 dirty_bitmap = p.dirty_bitmap;
820 unit_no = find_next_bit(addr: dirty_bitmap,
821 size: last_segment / p.ofs_unit,
822 offset: p.offset / p.ofs_unit);
823 segno = unit_no * p.ofs_unit;
824 if (segno >= last_segment) {
825 if (sm->last_victim[p.gc_mode]) {
826 last_segment =
827 sm->last_victim[p.gc_mode];
828 sm->last_victim[p.gc_mode] = 0;
829 p.offset = 0;
830 continue;
831 }
832 break;
833 }
834
835 p.offset = segno + p.ofs_unit;
836 nsearched++;
837
838#ifdef CONFIG_F2FS_CHECK_FS
839 /*
840 * skip selecting the invalid segno (that is failed due to block
841 * validity check failure during GC) to avoid endless GC loop in
842 * such cases.
843 */
844 if (test_bit(segno, sm->invalid_segmap))
845 goto next;
846#endif
847
848 secno = GET_SEC_FROM_SEG(sbi, segno);
849
850 if (sec_usage_check(sbi, secno))
851 goto next;
852
853 /* Don't touch checkpointed data */
854 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
855 if (p.alloc_mode == LFS) {
856 /*
857 * LFS is set to find source section during GC.
858 * The victim should have no checkpointed data.
859 */
860 if (get_ckpt_valid_blocks(sbi, segno, use_section: true))
861 goto next;
862 } else {
863 /*
864 * SSR | AT_SSR are set to find target segment
865 * for writes which can be full by checkpointed
866 * and newly written blocks.
867 */
868 if (!f2fs_segment_has_free_slot(sbi, segno))
869 goto next;
870 }
871 }
872
873 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
874 goto next;
875
876 if (gc_type == FG_GC && f2fs_section_is_pinned(dirty_i, secno))
877 goto next;
878
879 if (is_atgc) {
880 add_victim_entry(sbi, p: &p, segno);
881 goto next;
882 }
883
884 cost = get_gc_cost(sbi, segno, p: &p);
885
886 if (p.min_cost > cost) {
887 p.min_segno = segno;
888 p.min_cost = cost;
889 }
890next:
891 if (nsearched >= p.max_search) {
892 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
893 sm->last_victim[p.gc_mode] =
894 last_victim + p.ofs_unit;
895 else
896 sm->last_victim[p.gc_mode] = segno + p.ofs_unit;
897 sm->last_victim[p.gc_mode] %=
898 (MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
899 break;
900 }
901 }
902
903 /* get victim for GC_AT/AT_SSR */
904 if (is_atgc) {
905 lookup_victim_by_age(sbi, p: &p);
906 release_victim_entry(sbi);
907 }
908
909 if (is_atgc && p.min_segno == NULL_SEGNO &&
910 sm->elapsed_time < p.age_threshold) {
911 p.age_threshold = 0;
912 goto retry;
913 }
914
915 if (p.min_segno != NULL_SEGNO) {
916got_it:
917 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
918got_result:
919 if (p.alloc_mode == LFS) {
920 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
921 if (gc_type == FG_GC)
922 sbi->cur_victim_sec = secno;
923 else
924 set_bit(nr: secno, addr: dirty_i->victim_secmap);
925 }
926 ret = 0;
927
928 }
929out:
930 if (p.min_segno != NULL_SEGNO)
931 trace_f2fs_get_victim(sb: sbi->sb, type, gc_type, p: &p,
932 pre_victim: sbi->cur_victim_sec,
933 prefree: prefree_segments(sbi), free: free_segments(sbi));
934 mutex_unlock(lock: &dirty_i->seglist_lock);
935
936 return ret;
937}
938
939static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
940{
941 struct inode_entry *ie;
942
943 ie = radix_tree_lookup(&gc_list->iroot, ino);
944 if (ie)
945 return ie->inode;
946 return NULL;
947}
948
949static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
950{
951 struct inode_entry *new_ie;
952
953 if (inode == find_gc_inode(gc_list, ino: inode->i_ino)) {
954 iput(inode);
955 return;
956 }
957 new_ie = f2fs_kmem_cache_alloc(cachep: f2fs_inode_entry_slab,
958 GFP_NOFS, nofail: true, NULL);
959 new_ie->inode = inode;
960
961 f2fs_radix_tree_insert(root: &gc_list->iroot, index: inode->i_ino, item: new_ie);
962 list_add_tail(new: &new_ie->list, head: &gc_list->ilist);
963}
964
965static void put_gc_inode(struct gc_inode_list *gc_list)
966{
967 struct inode_entry *ie, *next_ie;
968
969 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
970 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
971 iput(ie->inode);
972 list_del(entry: &ie->list);
973 kmem_cache_free(s: f2fs_inode_entry_slab, objp: ie);
974 }
975}
976
977static int check_valid_map(struct f2fs_sb_info *sbi,
978 unsigned int segno, int offset)
979{
980 struct sit_info *sit_i = SIT_I(sbi);
981 struct seg_entry *sentry;
982 int ret;
983
984 down_read(sem: &sit_i->sentry_lock);
985 sentry = get_seg_entry(sbi, segno);
986 ret = f2fs_test_bit(nr: offset, addr: sentry->cur_valid_map);
987 up_read(sem: &sit_i->sentry_lock);
988 return ret;
989}
990
991/*
992 * This function compares node address got in summary with that in NAT.
993 * On validity, copy that node with cold status, otherwise (invalid node)
994 * ignore that.
995 */
996static int gc_node_segment(struct f2fs_sb_info *sbi,
997 struct f2fs_summary *sum, unsigned int segno, int gc_type)
998{
999 struct f2fs_summary *entry;
1000 block_t start_addr;
1001 int off;
1002 int phase = 0;
1003 bool fggc = (gc_type == FG_GC);
1004 int submitted = 0;
1005 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1006
1007 start_addr = START_BLOCK(sbi, segno);
1008
1009next_step:
1010 entry = sum;
1011
1012 if (fggc && phase == 2)
1013 atomic_inc(v: &sbi->wb_sync_req[NODE]);
1014
1015 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1016 nid_t nid = le32_to_cpu(entry->nid);
1017 struct page *node_page;
1018 struct node_info ni;
1019 int err;
1020
1021 /* stop BG_GC if there is not enough free sections. */
1022 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, freed: 0, needed: 0))
1023 return submitted;
1024
1025 if (check_valid_map(sbi, segno, offset: off) == 0)
1026 continue;
1027
1028 if (phase == 0) {
1029 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), nrpages: 1,
1030 type: META_NAT, sync: true);
1031 continue;
1032 }
1033
1034 if (phase == 1) {
1035 f2fs_ra_node_page(sbi, nid);
1036 continue;
1037 }
1038
1039 /* phase == 2 */
1040 node_page = f2fs_get_node_page(sbi, nid);
1041 if (IS_ERR(ptr: node_page))
1042 continue;
1043
1044 /* block may become invalid during f2fs_get_node_page */
1045 if (check_valid_map(sbi, segno, offset: off) == 0) {
1046 f2fs_put_page(page: node_page, unlock: 1);
1047 continue;
1048 }
1049
1050 if (f2fs_get_node_info(sbi, nid, ni: &ni, checkpoint_context: false)) {
1051 f2fs_put_page(page: node_page, unlock: 1);
1052 continue;
1053 }
1054
1055 if (ni.blk_addr != start_addr + off) {
1056 f2fs_put_page(page: node_page, unlock: 1);
1057 continue;
1058 }
1059
1060 err = f2fs_move_node_page(node_page, gc_type);
1061 if (!err && gc_type == FG_GC)
1062 submitted++;
1063 stat_inc_node_blk_count(sbi, 1, gc_type);
1064 }
1065
1066 if (++phase < 3)
1067 goto next_step;
1068
1069 if (fggc)
1070 atomic_dec(v: &sbi->wb_sync_req[NODE]);
1071 return submitted;
1072}
1073
1074/*
1075 * Calculate start block index indicating the given node offset.
1076 * Be careful, caller should give this node offset only indicating direct node
1077 * blocks. If any node offsets, which point the other types of node blocks such
1078 * as indirect or double indirect node blocks, are given, it must be a caller's
1079 * bug.
1080 */
1081block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
1082{
1083 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
1084 unsigned int bidx;
1085
1086 if (node_ofs == 0)
1087 return 0;
1088
1089 if (node_ofs <= 2) {
1090 bidx = node_ofs - 1;
1091 } else if (node_ofs <= indirect_blks) {
1092 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
1093
1094 bidx = node_ofs - 2 - dec;
1095 } else {
1096 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
1097
1098 bidx = node_ofs - 5 - dec;
1099 }
1100 return bidx * ADDRS_PER_BLOCK(inode) + ADDRS_PER_INODE(inode);
1101}
1102
1103static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1104 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
1105{
1106 struct page *node_page;
1107 nid_t nid;
1108 unsigned int ofs_in_node, max_addrs, base;
1109 block_t source_blkaddr;
1110
1111 nid = le32_to_cpu(sum->nid);
1112 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
1113
1114 node_page = f2fs_get_node_page(sbi, nid);
1115 if (IS_ERR(ptr: node_page))
1116 return false;
1117
1118 if (f2fs_get_node_info(sbi, nid, ni: dni, checkpoint_context: false)) {
1119 f2fs_put_page(page: node_page, unlock: 1);
1120 return false;
1121 }
1122
1123 if (sum->version != dni->version) {
1124 f2fs_warn(sbi, "%s: valid data with mismatched node version.",
1125 __func__);
1126 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
1127 }
1128
1129 if (f2fs_check_nid_range(sbi, nid: dni->ino)) {
1130 f2fs_put_page(page: node_page, unlock: 1);
1131 return false;
1132 }
1133
1134 if (IS_INODE(page: node_page)) {
1135 base = offset_in_addr(i: F2FS_INODE(page: node_page));
1136 max_addrs = DEF_ADDRS_PER_INODE;
1137 } else {
1138 base = 0;
1139 max_addrs = DEF_ADDRS_PER_BLOCK;
1140 }
1141
1142 if (base + ofs_in_node >= max_addrs) {
1143 f2fs_err(sbi, "Inconsistent blkaddr offset: base:%u, ofs_in_node:%u, max:%u, ino:%u, nid:%u",
1144 base, ofs_in_node, max_addrs, dni->ino, dni->nid);
1145 f2fs_put_page(page: node_page, unlock: 1);
1146 return false;
1147 }
1148
1149 *nofs = ofs_of_node(node_page);
1150 source_blkaddr = data_blkaddr(NULL, node_page, offset: ofs_in_node);
1151 f2fs_put_page(page: node_page, unlock: 1);
1152
1153 if (source_blkaddr != blkaddr) {
1154#ifdef CONFIG_F2FS_CHECK_FS
1155 unsigned int segno = GET_SEGNO(sbi, blkaddr);
1156 unsigned long offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1157
1158 if (unlikely(check_valid_map(sbi, segno, offset))) {
1159 if (!test_and_set_bit(nr: segno, addr: SIT_I(sbi)->invalid_segmap)) {
1160 f2fs_err(sbi, "mismatched blkaddr %u (source_blkaddr %u) in seg %u",
1161 blkaddr, source_blkaddr, segno);
1162 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
1163 }
1164 }
1165#endif
1166 return false;
1167 }
1168 return true;
1169}
1170
1171static int ra_data_block(struct inode *inode, pgoff_t index)
1172{
1173 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1174 struct address_space *mapping = inode->i_mapping;
1175 struct dnode_of_data dn;
1176 struct page *page;
1177 struct f2fs_io_info fio = {
1178 .sbi = sbi,
1179 .ino = inode->i_ino,
1180 .type = DATA,
1181 .temp = COLD,
1182 .op = REQ_OP_READ,
1183 .op_flags = 0,
1184 .encrypted_page = NULL,
1185 .in_list = 0,
1186 };
1187 int err;
1188
1189 page = f2fs_grab_cache_page(mapping, index, for_write: true);
1190 if (!page)
1191 return -ENOMEM;
1192
1193 if (f2fs_lookup_read_extent_cache_block(inode, index,
1194 blkaddr: &dn.data_blkaddr)) {
1195 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1196 DATA_GENERIC_ENHANCE_READ))) {
1197 err = -EFSCORRUPTED;
1198 goto put_page;
1199 }
1200 goto got_it;
1201 }
1202
1203 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
1204 err = f2fs_get_dnode_of_data(dn: &dn, index, mode: LOOKUP_NODE);
1205 if (err)
1206 goto put_page;
1207 f2fs_put_dnode(dn: &dn);
1208
1209 if (!__is_valid_data_blkaddr(blkaddr: dn.data_blkaddr)) {
1210 err = -ENOENT;
1211 goto put_page;
1212 }
1213 if (unlikely(!f2fs_is_valid_blkaddr(sbi, dn.data_blkaddr,
1214 DATA_GENERIC_ENHANCE))) {
1215 err = -EFSCORRUPTED;
1216 goto put_page;
1217 }
1218got_it:
1219 /* read page */
1220 fio.page = page;
1221 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1222
1223 /*
1224 * don't cache encrypted data into meta inode until previous dirty
1225 * data were writebacked to avoid racing between GC and flush.
1226 */
1227 f2fs_wait_on_page_writeback(page, type: DATA, ordered: true, locked: true);
1228
1229 f2fs_wait_on_block_writeback(inode, blkaddr: dn.data_blkaddr);
1230
1231 fio.encrypted_page = f2fs_pagecache_get_page(mapping: META_MAPPING(sbi),
1232 index: dn.data_blkaddr,
1233 FGP_LOCK | FGP_CREAT, GFP_NOFS);
1234 if (!fio.encrypted_page) {
1235 err = -ENOMEM;
1236 goto put_page;
1237 }
1238
1239 err = f2fs_submit_page_bio(fio: &fio);
1240 if (err)
1241 goto put_encrypted_page;
1242 f2fs_put_page(page: fio.encrypted_page, unlock: 0);
1243 f2fs_put_page(page, unlock: 1);
1244
1245 f2fs_update_iostat(sbi, inode, type: FS_DATA_READ_IO, F2FS_BLKSIZE);
1246 f2fs_update_iostat(sbi, NULL, type: FS_GDATA_READ_IO, F2FS_BLKSIZE);
1247
1248 return 0;
1249put_encrypted_page:
1250 f2fs_put_page(page: fio.encrypted_page, unlock: 1);
1251put_page:
1252 f2fs_put_page(page, unlock: 1);
1253 return err;
1254}
1255
1256/*
1257 * Move data block via META_MAPPING while keeping locked data page.
1258 * This can be used to move blocks, aka LBAs, directly on disk.
1259 */
1260static int move_data_block(struct inode *inode, block_t bidx,
1261 int gc_type, unsigned int segno, int off)
1262{
1263 struct f2fs_io_info fio = {
1264 .sbi = F2FS_I_SB(inode),
1265 .ino = inode->i_ino,
1266 .type = DATA,
1267 .temp = COLD,
1268 .op = REQ_OP_READ,
1269 .op_flags = 0,
1270 .encrypted_page = NULL,
1271 .in_list = 0,
1272 };
1273 struct dnode_of_data dn;
1274 struct f2fs_summary sum;
1275 struct node_info ni;
1276 struct page *page, *mpage;
1277 block_t newaddr;
1278 int err = 0;
1279 bool lfs_mode = f2fs_lfs_mode(sbi: fio.sbi);
1280 int type = fio.sbi->am.atgc_enabled && (gc_type == BG_GC) &&
1281 (fio.sbi->gc_mode != GC_URGENT_HIGH) ?
1282 CURSEG_ALL_DATA_ATGC : CURSEG_COLD_DATA;
1283
1284 /* do not read out */
1285 page = f2fs_grab_cache_page(mapping: inode->i_mapping, index: bidx, for_write: false);
1286 if (!page)
1287 return -ENOMEM;
1288
1289 if (!check_valid_map(sbi: F2FS_I_SB(inode), segno, offset: off)) {
1290 err = -ENOENT;
1291 goto out;
1292 }
1293
1294 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1295 if (err)
1296 goto out;
1297
1298 set_new_dnode(dn: &dn, inode, NULL, NULL, nid: 0);
1299 err = f2fs_get_dnode_of_data(dn: &dn, index: bidx, mode: LOOKUP_NODE);
1300 if (err)
1301 goto out;
1302
1303 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1304 ClearPageUptodate(page);
1305 err = -ENOENT;
1306 goto put_out;
1307 }
1308
1309 /*
1310 * don't cache encrypted data into meta inode until previous dirty
1311 * data were writebacked to avoid racing between GC and flush.
1312 */
1313 f2fs_wait_on_page_writeback(page, type: DATA, ordered: true, locked: true);
1314
1315 f2fs_wait_on_block_writeback(inode, blkaddr: dn.data_blkaddr);
1316
1317 err = f2fs_get_node_info(sbi: fio.sbi, nid: dn.nid, ni: &ni, checkpoint_context: false);
1318 if (err)
1319 goto put_out;
1320
1321 /* read page */
1322 fio.page = page;
1323 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
1324
1325 if (lfs_mode)
1326 f2fs_down_write(sem: &fio.sbi->io_order_lock);
1327
1328 mpage = f2fs_grab_cache_page(mapping: META_MAPPING(sbi: fio.sbi),
1329 index: fio.old_blkaddr, for_write: false);
1330 if (!mpage) {
1331 err = -ENOMEM;
1332 goto up_out;
1333 }
1334
1335 fio.encrypted_page = mpage;
1336
1337 /* read source block in mpage */
1338 if (!PageUptodate(page: mpage)) {
1339 err = f2fs_submit_page_bio(fio: &fio);
1340 if (err) {
1341 f2fs_put_page(page: mpage, unlock: 1);
1342 goto up_out;
1343 }
1344
1345 f2fs_update_iostat(sbi: fio.sbi, inode, type: FS_DATA_READ_IO,
1346 F2FS_BLKSIZE);
1347 f2fs_update_iostat(sbi: fio.sbi, NULL, type: FS_GDATA_READ_IO,
1348 F2FS_BLKSIZE);
1349
1350 lock_page(page: mpage);
1351 if (unlikely(mpage->mapping != META_MAPPING(fio.sbi) ||
1352 !PageUptodate(mpage))) {
1353 err = -EIO;
1354 f2fs_put_page(page: mpage, unlock: 1);
1355 goto up_out;
1356 }
1357 }
1358
1359 set_summary(sum: &sum, nid: dn.nid, ofs_in_node: dn.ofs_in_node, version: ni.version);
1360
1361 /* allocate block address */
1362 err = f2fs_allocate_data_block(sbi: fio.sbi, NULL, old_blkaddr: fio.old_blkaddr, new_blkaddr: &newaddr,
1363 sum: &sum, type, NULL);
1364 if (err) {
1365 f2fs_put_page(page: mpage, unlock: 1);
1366 /* filesystem should shutdown, no need to recovery block */
1367 goto up_out;
1368 }
1369
1370 fio.encrypted_page = f2fs_pagecache_get_page(mapping: META_MAPPING(sbi: fio.sbi),
1371 index: newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
1372 if (!fio.encrypted_page) {
1373 err = -ENOMEM;
1374 f2fs_put_page(page: mpage, unlock: 1);
1375 goto recover_block;
1376 }
1377
1378 /* write target block */
1379 f2fs_wait_on_page_writeback(page: fio.encrypted_page, type: DATA, ordered: true, locked: true);
1380 memcpy(page_address(fio.encrypted_page),
1381 page_address(mpage), PAGE_SIZE);
1382 f2fs_put_page(page: mpage, unlock: 1);
1383
1384 f2fs_invalidate_internal_cache(sbi: fio.sbi, blkaddr: fio.old_blkaddr);
1385
1386 set_page_dirty(fio.encrypted_page);
1387 if (clear_page_dirty_for_io(page: fio.encrypted_page))
1388 dec_page_count(sbi: fio.sbi, count_type: F2FS_DIRTY_META);
1389
1390 set_page_writeback(fio.encrypted_page);
1391
1392 fio.op = REQ_OP_WRITE;
1393 fio.op_flags = REQ_SYNC;
1394 fio.new_blkaddr = newaddr;
1395 f2fs_submit_page_write(fio: &fio);
1396
1397 f2fs_update_iostat(sbi: fio.sbi, NULL, type: FS_GC_DATA_IO, F2FS_BLKSIZE);
1398
1399 f2fs_update_data_blkaddr(dn: &dn, blkaddr: newaddr);
1400 set_inode_flag(inode, flag: FI_APPEND_WRITE);
1401
1402 f2fs_put_page(page: fio.encrypted_page, unlock: 1);
1403recover_block:
1404 if (err)
1405 f2fs_do_replace_block(sbi: fio.sbi, sum: &sum, old_blkaddr: newaddr, new_blkaddr: fio.old_blkaddr,
1406 recover_curseg: true, recover_newaddr: true, from_gc: true);
1407up_out:
1408 if (lfs_mode)
1409 f2fs_up_write(sem: &fio.sbi->io_order_lock);
1410put_out:
1411 f2fs_put_dnode(dn: &dn);
1412out:
1413 f2fs_put_page(page, unlock: 1);
1414 return err;
1415}
1416
1417static int move_data_page(struct inode *inode, block_t bidx, int gc_type,
1418 unsigned int segno, int off)
1419{
1420 struct page *page;
1421 int err = 0;
1422
1423 page = f2fs_get_lock_data_page(inode, index: bidx, for_write: true);
1424 if (IS_ERR(ptr: page))
1425 return PTR_ERR(ptr: page);
1426
1427 if (!check_valid_map(sbi: F2FS_I_SB(inode), segno, offset: off)) {
1428 err = -ENOENT;
1429 goto out;
1430 }
1431
1432 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1433 if (err)
1434 goto out;
1435
1436 if (gc_type == BG_GC) {
1437 if (PageWriteback(page)) {
1438 err = -EAGAIN;
1439 goto out;
1440 }
1441 set_page_dirty(page);
1442 set_page_private_gcing(page);
1443 } else {
1444 struct f2fs_io_info fio = {
1445 .sbi = F2FS_I_SB(inode),
1446 .ino = inode->i_ino,
1447 .type = DATA,
1448 .temp = COLD,
1449 .op = REQ_OP_WRITE,
1450 .op_flags = REQ_SYNC,
1451 .old_blkaddr = NULL_ADDR,
1452 .page = page,
1453 .encrypted_page = NULL,
1454 .need_lock = LOCK_REQ,
1455 .io_type = FS_GC_DATA_IO,
1456 };
1457 bool is_dirty = PageDirty(page);
1458
1459retry:
1460 f2fs_wait_on_page_writeback(page, type: DATA, ordered: true, locked: true);
1461
1462 set_page_dirty(page);
1463 if (clear_page_dirty_for_io(page)) {
1464 inode_dec_dirty_pages(inode);
1465 f2fs_remove_dirty_inode(inode);
1466 }
1467
1468 set_page_private_gcing(page);
1469
1470 err = f2fs_do_write_data_page(fio: &fio);
1471 if (err) {
1472 clear_page_private_gcing(page);
1473 if (err == -ENOMEM) {
1474 memalloc_retry_wait(GFP_NOFS);
1475 goto retry;
1476 }
1477 if (is_dirty)
1478 set_page_dirty(page);
1479 }
1480 }
1481out:
1482 f2fs_put_page(page, unlock: 1);
1483 return err;
1484}
1485
1486/*
1487 * This function tries to get parent node of victim data block, and identifies
1488 * data block validity. If the block is valid, copy that with cold status and
1489 * modify parent node.
1490 * If the parent node is not valid or the data block address is different,
1491 * the victim data block is ignored.
1492 */
1493static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1494 struct gc_inode_list *gc_list, unsigned int segno, int gc_type,
1495 bool force_migrate)
1496{
1497 struct super_block *sb = sbi->sb;
1498 struct f2fs_summary *entry;
1499 block_t start_addr;
1500 int off;
1501 int phase = 0;
1502 int submitted = 0;
1503 unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
1504
1505 start_addr = START_BLOCK(sbi, segno);
1506
1507next_step:
1508 entry = sum;
1509
1510 for (off = 0; off < usable_blks_in_seg; off++, entry++) {
1511 struct page *data_page;
1512 struct inode *inode;
1513 struct node_info dni; /* dnode info for the data */
1514 unsigned int ofs_in_node, nofs;
1515 block_t start_bidx;
1516 nid_t nid = le32_to_cpu(entry->nid);
1517
1518 /*
1519 * stop BG_GC if there is not enough free sections.
1520 * Or, stop GC if the segment becomes fully valid caused by
1521 * race condition along with SSR block allocation.
1522 */
1523 if ((gc_type == BG_GC && has_not_enough_free_secs(sbi, freed: 0, needed: 0)) ||
1524 (!force_migrate && get_valid_blocks(sbi, segno, use_section: true) ==
1525 CAP_BLKS_PER_SEC(sbi)))
1526 return submitted;
1527
1528 if (check_valid_map(sbi, segno, offset: off) == 0)
1529 continue;
1530
1531 if (phase == 0) {
1532 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), nrpages: 1,
1533 type: META_NAT, sync: true);
1534 continue;
1535 }
1536
1537 if (phase == 1) {
1538 f2fs_ra_node_page(sbi, nid);
1539 continue;
1540 }
1541
1542 /* Get an inode by ino with checking validity */
1543 if (!is_alive(sbi, sum: entry, dni: &dni, blkaddr: start_addr + off, nofs: &nofs))
1544 continue;
1545
1546 if (phase == 2) {
1547 f2fs_ra_node_page(sbi, nid: dni.ino);
1548 continue;
1549 }
1550
1551 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
1552
1553 if (phase == 3) {
1554 int err;
1555
1556 inode = f2fs_iget(sb, ino: dni.ino);
1557 if (IS_ERR(ptr: inode) || is_bad_inode(inode) ||
1558 special_file(inode->i_mode))
1559 continue;
1560
1561 err = f2fs_gc_pinned_control(inode, gc_type, segno);
1562 if (err == -EAGAIN) {
1563 iput(inode);
1564 return submitted;
1565 }
1566
1567 if (!f2fs_down_write_trylock(
1568 sem: &F2FS_I(inode)->i_gc_rwsem[WRITE])) {
1569 iput(inode);
1570 sbi->skipped_gc_rwsem++;
1571 continue;
1572 }
1573
1574 start_bidx = f2fs_start_bidx_of_node(node_ofs: nofs, inode) +
1575 ofs_in_node;
1576
1577 if (f2fs_post_read_required(inode)) {
1578 int err = ra_data_block(inode, index: start_bidx);
1579
1580 f2fs_up_write(sem: &F2FS_I(inode)->i_gc_rwsem[WRITE]);
1581 if (err) {
1582 iput(inode);
1583 continue;
1584 }
1585 add_gc_inode(gc_list, inode);
1586 continue;
1587 }
1588
1589 data_page = f2fs_get_read_data_page(inode, index: start_bidx,
1590 REQ_RAHEAD, for_write: true, NULL);
1591 f2fs_up_write(sem: &F2FS_I(inode)->i_gc_rwsem[WRITE]);
1592 if (IS_ERR(ptr: data_page)) {
1593 iput(inode);
1594 continue;
1595 }
1596
1597 f2fs_put_page(page: data_page, unlock: 0);
1598 add_gc_inode(gc_list, inode);
1599 continue;
1600 }
1601
1602 /* phase 4 */
1603 inode = find_gc_inode(gc_list, ino: dni.ino);
1604 if (inode) {
1605 struct f2fs_inode_info *fi = F2FS_I(inode);
1606 bool locked = false;
1607 int err;
1608
1609 if (S_ISREG(inode->i_mode)) {
1610 if (!f2fs_down_write_trylock(sem: &fi->i_gc_rwsem[WRITE])) {
1611 sbi->skipped_gc_rwsem++;
1612 continue;
1613 }
1614 if (!f2fs_down_write_trylock(
1615 sem: &fi->i_gc_rwsem[READ])) {
1616 sbi->skipped_gc_rwsem++;
1617 f2fs_up_write(sem: &fi->i_gc_rwsem[WRITE]);
1618 continue;
1619 }
1620 locked = true;
1621
1622 /* wait for all inflight aio data */
1623 inode_dio_wait(inode);
1624 }
1625
1626 start_bidx = f2fs_start_bidx_of_node(node_ofs: nofs, inode)
1627 + ofs_in_node;
1628 if (f2fs_post_read_required(inode))
1629 err = move_data_block(inode, bidx: start_bidx,
1630 gc_type, segno, off);
1631 else
1632 err = move_data_page(inode, bidx: start_bidx, gc_type,
1633 segno, off);
1634
1635 if (!err && (gc_type == FG_GC ||
1636 f2fs_post_read_required(inode)))
1637 submitted++;
1638
1639 if (locked) {
1640 f2fs_up_write(sem: &fi->i_gc_rwsem[READ]);
1641 f2fs_up_write(sem: &fi->i_gc_rwsem[WRITE]);
1642 }
1643
1644 stat_inc_data_blk_count(sbi, 1, gc_type);
1645 }
1646 }
1647
1648 if (++phase < 5)
1649 goto next_step;
1650
1651 return submitted;
1652}
1653
1654static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
1655 int gc_type)
1656{
1657 struct sit_info *sit_i = SIT_I(sbi);
1658 int ret;
1659
1660 down_write(sem: &sit_i->sentry_lock);
1661 ret = f2fs_get_victim(sbi, result: victim, gc_type, type: NO_CHECK_TYPE, alloc_mode: LFS, age: 0);
1662 up_write(sem: &sit_i->sentry_lock);
1663 return ret;
1664}
1665
1666static int do_garbage_collect(struct f2fs_sb_info *sbi,
1667 unsigned int start_segno,
1668 struct gc_inode_list *gc_list, int gc_type,
1669 bool force_migrate)
1670{
1671 struct page *sum_page;
1672 struct f2fs_summary_block *sum;
1673 struct blk_plug plug;
1674 unsigned int segno = start_segno;
1675 unsigned int end_segno = start_segno + SEGS_PER_SEC(sbi);
1676 int seg_freed = 0, migrated = 0;
1677 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
1678 SUM_TYPE_DATA : SUM_TYPE_NODE;
1679 unsigned char data_type = (type == SUM_TYPE_DATA) ? DATA : NODE;
1680 int submitted = 0;
1681
1682 if (__is_large_section(sbi))
1683 end_segno = rounddown(end_segno, SEGS_PER_SEC(sbi));
1684
1685 /*
1686 * zone-capacity can be less than zone-size in zoned devices,
1687 * resulting in less than expected usable segments in the zone,
1688 * calculate the end segno in the zone which can be garbage collected
1689 */
1690 if (f2fs_sb_has_blkzoned(sbi))
1691 end_segno -= SEGS_PER_SEC(sbi) -
1692 f2fs_usable_segs_in_sec(sbi, segno);
1693
1694 sanity_check_seg_type(sbi, seg_type: get_seg_entry(sbi, segno)->type);
1695
1696 /* readahead multi ssa blocks those have contiguous address */
1697 if (__is_large_section(sbi))
1698 f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
1699 nrpages: end_segno - segno, type: META_SSA, sync: true);
1700
1701 /* reference all summary page */
1702 while (segno < end_segno) {
1703 sum_page = f2fs_get_sum_page(sbi, segno: segno++);
1704 if (IS_ERR(ptr: sum_page)) {
1705 int err = PTR_ERR(ptr: sum_page);
1706
1707 end_segno = segno - 1;
1708 for (segno = start_segno; segno < end_segno; segno++) {
1709 sum_page = find_get_page(mapping: META_MAPPING(sbi),
1710 GET_SUM_BLOCK(sbi, segno));
1711 f2fs_put_page(page: sum_page, unlock: 0);
1712 f2fs_put_page(page: sum_page, unlock: 0);
1713 }
1714 return err;
1715 }
1716 unlock_page(page: sum_page);
1717 }
1718
1719 blk_start_plug(&plug);
1720
1721 for (segno = start_segno; segno < end_segno; segno++) {
1722
1723 /* find segment summary of victim */
1724 sum_page = find_get_page(mapping: META_MAPPING(sbi),
1725 GET_SUM_BLOCK(sbi, segno));
1726 f2fs_put_page(page: sum_page, unlock: 0);
1727
1728 if (get_valid_blocks(sbi, segno, use_section: false) == 0)
1729 goto freed;
1730 if (gc_type == BG_GC && __is_large_section(sbi) &&
1731 migrated >= sbi->migration_granularity)
1732 goto skip;
1733 if (!PageUptodate(page: sum_page) || unlikely(f2fs_cp_error(sbi)))
1734 goto skip;
1735
1736 sum = page_address(sum_page);
1737 if (type != GET_SUM_TYPE((&sum->footer))) {
1738 f2fs_err(sbi, "Inconsistent segment (%u) type [%d, %d] in SSA and SIT",
1739 segno, type, GET_SUM_TYPE((&sum->footer)));
1740 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
1741 f2fs_stop_checkpoint(sbi, end_io: false,
1742 reason: STOP_CP_REASON_CORRUPTED_SUMMARY);
1743 goto skip;
1744 }
1745
1746 /*
1747 * this is to avoid deadlock:
1748 * - lock_page(sum_page) - f2fs_replace_block
1749 * - check_valid_map() - down_write(sentry_lock)
1750 * - down_read(sentry_lock) - change_curseg()
1751 * - lock_page(sum_page)
1752 */
1753 if (type == SUM_TYPE_NODE)
1754 submitted += gc_node_segment(sbi, sum: sum->entries, segno,
1755 gc_type);
1756 else
1757 submitted += gc_data_segment(sbi, sum: sum->entries, gc_list,
1758 segno, gc_type,
1759 force_migrate);
1760
1761 stat_inc_gc_seg_count(sbi, data_type, gc_type);
1762 sbi->gc_reclaimed_segs[sbi->gc_mode]++;
1763 migrated++;
1764
1765freed:
1766 if (gc_type == FG_GC &&
1767 get_valid_blocks(sbi, segno, use_section: false) == 0)
1768 seg_freed++;
1769
1770 if (__is_large_section(sbi))
1771 sbi->next_victim_seg[gc_type] =
1772 (segno + 1 < end_segno) ? segno + 1 : NULL_SEGNO;
1773skip:
1774 f2fs_put_page(page: sum_page, unlock: 0);
1775 }
1776
1777 if (submitted)
1778 f2fs_submit_merged_write(sbi, type: data_type);
1779
1780 blk_finish_plug(&plug);
1781
1782 if (migrated)
1783 stat_inc_gc_sec_count(sbi, data_type, gc_type);
1784
1785 return seg_freed;
1786}
1787
1788int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control)
1789{
1790 int gc_type = gc_control->init_gc_type;
1791 unsigned int segno = gc_control->victim_segno;
1792 int sec_freed = 0, seg_freed = 0, total_freed = 0, total_sec_freed = 0;
1793 int ret = 0;
1794 struct cp_control cpc;
1795 struct gc_inode_list gc_list = {
1796 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1797 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1798 };
1799 unsigned int skipped_round = 0, round = 0;
1800 unsigned int upper_secs;
1801
1802 trace_f2fs_gc_begin(sb: sbi->sb, gc_type, no_bg_gc: gc_control->no_bg_gc,
1803 nr_free_secs: gc_control->nr_free_secs,
1804 dirty_nodes: get_pages(sbi, count_type: F2FS_DIRTY_NODES),
1805 dirty_dents: get_pages(sbi, count_type: F2FS_DIRTY_DENTS),
1806 dirty_imeta: get_pages(sbi, count_type: F2FS_DIRTY_IMETA),
1807 free_sec: free_sections(sbi),
1808 free_seg: free_segments(sbi),
1809 reserved_seg: reserved_segments(sbi),
1810 prefree_seg: prefree_segments(sbi));
1811
1812 cpc.reason = __get_cp_reason(sbi);
1813gc_more:
1814 sbi->skipped_gc_rwsem = 0;
1815 if (unlikely(!(sbi->sb->s_flags & SB_ACTIVE))) {
1816 ret = -EINVAL;
1817 goto stop;
1818 }
1819 if (unlikely(f2fs_cp_error(sbi))) {
1820 ret = -EIO;
1821 goto stop;
1822 }
1823
1824 /* Let's run FG_GC, if we don't have enough space. */
1825 if (has_not_enough_free_secs(sbi, freed: 0, needed: 0)) {
1826 gc_type = FG_GC;
1827
1828 /*
1829 * For example, if there are many prefree_segments below given
1830 * threshold, we can make them free by checkpoint. Then, we
1831 * secure free segments which doesn't need fggc any more.
1832 */
1833 if (prefree_segments(sbi)) {
1834 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1835 ret = f2fs_write_checkpoint(sbi, cpc: &cpc);
1836 if (ret)
1837 goto stop;
1838 /* Reset due to checkpoint */
1839 sec_freed = 0;
1840 }
1841 }
1842
1843 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1844 if (gc_type == BG_GC && gc_control->no_bg_gc) {
1845 ret = -EINVAL;
1846 goto stop;
1847 }
1848retry:
1849 ret = __get_victim(sbi, victim: &segno, gc_type);
1850 if (ret) {
1851 /* allow to search victim from sections has pinned data */
1852 if (ret == -ENODATA && gc_type == FG_GC &&
1853 f2fs_pinned_section_exists(dirty_i: DIRTY_I(sbi))) {
1854 f2fs_unpin_all_sections(sbi, enable: false);
1855 goto retry;
1856 }
1857 goto stop;
1858 }
1859
1860 seg_freed = do_garbage_collect(sbi, start_segno: segno, gc_list: &gc_list, gc_type,
1861 force_migrate: gc_control->should_migrate_blocks);
1862 if (seg_freed < 0)
1863 goto stop;
1864
1865 total_freed += seg_freed;
1866
1867 if (seg_freed == f2fs_usable_segs_in_sec(sbi, segno)) {
1868 sec_freed++;
1869 total_sec_freed++;
1870 }
1871
1872 if (gc_type == FG_GC) {
1873 sbi->cur_victim_sec = NULL_SEGNO;
1874
1875 if (has_enough_free_secs(sbi, freed: sec_freed, needed: 0)) {
1876 if (!gc_control->no_bg_gc &&
1877 total_sec_freed < gc_control->nr_free_secs)
1878 goto go_gc_more;
1879 goto stop;
1880 }
1881 if (sbi->skipped_gc_rwsem)
1882 skipped_round++;
1883 round++;
1884 if (skipped_round > MAX_SKIP_GC_COUNT &&
1885 skipped_round * 2 >= round) {
1886 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1887 ret = f2fs_write_checkpoint(sbi, cpc: &cpc);
1888 goto stop;
1889 }
1890 } else if (has_enough_free_secs(sbi, freed: 0, needed: 0)) {
1891 goto stop;
1892 }
1893
1894 __get_secs_required(sbi, NULL, upper_p: &upper_secs, NULL);
1895
1896 /*
1897 * Write checkpoint to reclaim prefree segments.
1898 * We need more three extra sections for writer's data/node/dentry.
1899 */
1900 if (free_sections(sbi) <= upper_secs + NR_GC_CHECKPOINT_SECS &&
1901 prefree_segments(sbi)) {
1902 stat_inc_cp_call_count(sbi, TOTAL_CALL);
1903 ret = f2fs_write_checkpoint(sbi, cpc: &cpc);
1904 if (ret)
1905 goto stop;
1906 /* Reset due to checkpoint */
1907 sec_freed = 0;
1908 }
1909go_gc_more:
1910 segno = NULL_SEGNO;
1911 goto gc_more;
1912
1913stop:
1914 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1915 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = gc_control->victim_segno;
1916
1917 if (gc_type == FG_GC)
1918 f2fs_unpin_all_sections(sbi, enable: true);
1919
1920 trace_f2fs_gc_end(sb: sbi->sb, ret, seg_freed: total_freed, sec_freed: total_sec_freed,
1921 dirty_nodes: get_pages(sbi, count_type: F2FS_DIRTY_NODES),
1922 dirty_dents: get_pages(sbi, count_type: F2FS_DIRTY_DENTS),
1923 dirty_imeta: get_pages(sbi, count_type: F2FS_DIRTY_IMETA),
1924 free_sec: free_sections(sbi),
1925 free_seg: free_segments(sbi),
1926 reserved_seg: reserved_segments(sbi),
1927 prefree_seg: prefree_segments(sbi));
1928
1929 f2fs_up_write(sem: &sbi->gc_lock);
1930
1931 put_gc_inode(gc_list: &gc_list);
1932
1933 if (gc_control->err_gc_skipped && !ret)
1934 ret = total_sec_freed ? 0 : -EAGAIN;
1935 return ret;
1936}
1937
1938int __init f2fs_create_garbage_collection_cache(void)
1939{
1940 victim_entry_slab = f2fs_kmem_cache_create(name: "f2fs_victim_entry",
1941 size: sizeof(struct victim_entry));
1942 return victim_entry_slab ? 0 : -ENOMEM;
1943}
1944
1945void f2fs_destroy_garbage_collection_cache(void)
1946{
1947 kmem_cache_destroy(s: victim_entry_slab);
1948}
1949
1950static void init_atgc_management(struct f2fs_sb_info *sbi)
1951{
1952 struct atgc_management *am = &sbi->am;
1953
1954 if (test_opt(sbi, ATGC) &&
1955 SIT_I(sbi)->elapsed_time >= DEF_GC_THREAD_AGE_THRESHOLD)
1956 am->atgc_enabled = true;
1957
1958 am->root = RB_ROOT_CACHED;
1959 INIT_LIST_HEAD(list: &am->victim_list);
1960 am->victim_count = 0;
1961
1962 am->candidate_ratio = DEF_GC_THREAD_CANDIDATE_RATIO;
1963 am->max_candidate_count = DEF_GC_THREAD_MAX_CANDIDATE_COUNT;
1964 am->age_weight = DEF_GC_THREAD_AGE_WEIGHT;
1965 am->age_threshold = DEF_GC_THREAD_AGE_THRESHOLD;
1966}
1967
1968void f2fs_build_gc_manager(struct f2fs_sb_info *sbi)
1969{
1970 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1971
1972 /* give warm/cold data area from slower device */
1973 if (f2fs_is_multi_device(sbi) && !__is_large_section(sbi))
1974 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1975 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1976
1977 init_atgc_management(sbi);
1978}
1979
1980int f2fs_gc_range(struct f2fs_sb_info *sbi,
1981 unsigned int start_seg, unsigned int end_seg,
1982 bool dry_run, unsigned int dry_run_sections)
1983{
1984 unsigned int segno;
1985 unsigned int gc_secs = dry_run_sections;
1986
1987 if (unlikely(f2fs_cp_error(sbi)))
1988 return -EIO;
1989
1990 for (segno = start_seg; segno <= end_seg; segno += SEGS_PER_SEC(sbi)) {
1991 struct gc_inode_list gc_list = {
1992 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1993 .iroot = RADIX_TREE_INIT(gc_list.iroot, GFP_NOFS),
1994 };
1995
1996 do_garbage_collect(sbi, start_segno: segno, gc_list: &gc_list, gc_type: FG_GC,
1997 force_migrate: dry_run_sections == 0);
1998 put_gc_inode(gc_list: &gc_list);
1999
2000 if (!dry_run && get_valid_blocks(sbi, segno, use_section: true))
2001 return -EAGAIN;
2002 if (dry_run && dry_run_sections &&
2003 !get_valid_blocks(sbi, segno, use_section: true) && --gc_secs == 0)
2004 break;
2005
2006 if (fatal_signal_pending(current))
2007 return -ERESTARTSYS;
2008 }
2009
2010 return 0;
2011}
2012
2013static int free_segment_range(struct f2fs_sb_info *sbi,
2014 unsigned int secs, bool dry_run)
2015{
2016 unsigned int next_inuse, start, end;
2017 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2018 int gc_mode, gc_type;
2019 int err = 0;
2020 int type;
2021
2022 /* Force block allocation for GC */
2023 MAIN_SECS(sbi) -= secs;
2024 start = MAIN_SECS(sbi) * SEGS_PER_SEC(sbi);
2025 end = MAIN_SEGS(sbi) - 1;
2026
2027 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2028 for (gc_mode = 0; gc_mode < MAX_GC_POLICY; gc_mode++)
2029 if (SIT_I(sbi)->last_victim[gc_mode] >= start)
2030 SIT_I(sbi)->last_victim[gc_mode] = 0;
2031
2032 for (gc_type = BG_GC; gc_type <= FG_GC; gc_type++)
2033 if (sbi->next_victim_seg[gc_type] >= start)
2034 sbi->next_victim_seg[gc_type] = NULL_SEGNO;
2035 mutex_unlock(lock: &DIRTY_I(sbi)->seglist_lock);
2036
2037 /* Move out cursegs from the target range */
2038 for (type = CURSEG_HOT_DATA; type < NR_CURSEG_PERSIST_TYPE; type++) {
2039 err = f2fs_allocate_segment_for_resize(sbi, type, start, end);
2040 if (err)
2041 goto out;
2042 }
2043
2044 /* do GC to move out valid blocks in the range */
2045 err = f2fs_gc_range(sbi, start_seg: start, end_seg: end, dry_run, dry_run_sections: 0);
2046 if (err || dry_run)
2047 goto out;
2048
2049 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2050 err = f2fs_write_checkpoint(sbi, cpc: &cpc);
2051 if (err)
2052 goto out;
2053
2054 next_inuse = find_next_inuse(free_i: FREE_I(sbi), max: end + 1, segno: start);
2055 if (next_inuse <= end) {
2056 f2fs_err(sbi, "segno %u should be free but still inuse!",
2057 next_inuse);
2058 f2fs_bug_on(sbi, 1);
2059 }
2060out:
2061 MAIN_SECS(sbi) += secs;
2062 return err;
2063}
2064
2065static void update_sb_metadata(struct f2fs_sb_info *sbi, int secs)
2066{
2067 struct f2fs_super_block *raw_sb = F2FS_RAW_SUPER(sbi);
2068 int section_count;
2069 int segment_count;
2070 int segment_count_main;
2071 long long block_count;
2072 int segs = secs * SEGS_PER_SEC(sbi);
2073
2074 f2fs_down_write(sem: &sbi->sb_lock);
2075
2076 section_count = le32_to_cpu(raw_sb->section_count);
2077 segment_count = le32_to_cpu(raw_sb->segment_count);
2078 segment_count_main = le32_to_cpu(raw_sb->segment_count_main);
2079 block_count = le64_to_cpu(raw_sb->block_count);
2080
2081 raw_sb->section_count = cpu_to_le32(section_count + secs);
2082 raw_sb->segment_count = cpu_to_le32(segment_count + segs);
2083 raw_sb->segment_count_main = cpu_to_le32(segment_count_main + segs);
2084 raw_sb->block_count = cpu_to_le64(block_count +
2085 (long long)SEGS_TO_BLKS(sbi, segs));
2086 if (f2fs_is_multi_device(sbi)) {
2087 int last_dev = sbi->s_ndevs - 1;
2088 int dev_segs =
2089 le32_to_cpu(raw_sb->devs[last_dev].total_segments);
2090
2091 raw_sb->devs[last_dev].total_segments =
2092 cpu_to_le32(dev_segs + segs);
2093 }
2094
2095 f2fs_up_write(sem: &sbi->sb_lock);
2096}
2097
2098static void update_fs_metadata(struct f2fs_sb_info *sbi, int secs)
2099{
2100 int segs = secs * SEGS_PER_SEC(sbi);
2101 long long blks = SEGS_TO_BLKS(sbi, segs);
2102 long long user_block_count =
2103 le64_to_cpu(F2FS_CKPT(sbi)->user_block_count);
2104
2105 SM_I(sbi)->segment_count = (int)SM_I(sbi)->segment_count + segs;
2106 MAIN_SEGS(sbi) = (int)MAIN_SEGS(sbi) + segs;
2107 MAIN_SECS(sbi) += secs;
2108 FREE_I(sbi)->free_sections = (int)FREE_I(sbi)->free_sections + secs;
2109 FREE_I(sbi)->free_segments = (int)FREE_I(sbi)->free_segments + segs;
2110 F2FS_CKPT(sbi)->user_block_count = cpu_to_le64(user_block_count + blks);
2111
2112 if (f2fs_is_multi_device(sbi)) {
2113 int last_dev = sbi->s_ndevs - 1;
2114
2115 FDEV(last_dev).total_segments =
2116 (int)FDEV(last_dev).total_segments + segs;
2117 FDEV(last_dev).end_blk =
2118 (long long)FDEV(last_dev).end_blk + blks;
2119#ifdef CONFIG_BLK_DEV_ZONED
2120 FDEV(last_dev).nr_blkz = FDEV(last_dev).nr_blkz +
2121 div_u64(dividend: blks, divisor: sbi->blocks_per_blkz);
2122#endif
2123 }
2124}
2125
2126int f2fs_resize_fs(struct file *filp, __u64 block_count)
2127{
2128 struct f2fs_sb_info *sbi = F2FS_I_SB(inode: file_inode(f: filp));
2129 __u64 old_block_count, shrunk_blocks;
2130 struct cp_control cpc = { CP_RESIZE, 0, 0, 0 };
2131 unsigned int secs;
2132 int err = 0;
2133 __u32 rem;
2134
2135 old_block_count = le64_to_cpu(F2FS_RAW_SUPER(sbi)->block_count);
2136 if (block_count > old_block_count)
2137 return -EINVAL;
2138
2139 if (f2fs_is_multi_device(sbi)) {
2140 int last_dev = sbi->s_ndevs - 1;
2141 __u64 last_segs = FDEV(last_dev).total_segments;
2142
2143 if (block_count + SEGS_TO_BLKS(sbi, last_segs) <=
2144 old_block_count)
2145 return -EINVAL;
2146 }
2147
2148 /* new fs size should align to section size */
2149 div_u64_rem(dividend: block_count, BLKS_PER_SEC(sbi), remainder: &rem);
2150 if (rem)
2151 return -EINVAL;
2152
2153 if (block_count == old_block_count)
2154 return 0;
2155
2156 if (is_sbi_flag_set(sbi, type: SBI_NEED_FSCK)) {
2157 f2fs_err(sbi, "Should run fsck to repair first.");
2158 return -EFSCORRUPTED;
2159 }
2160
2161 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2162 f2fs_err(sbi, "Checkpoint should be enabled.");
2163 return -EINVAL;
2164 }
2165
2166 err = mnt_want_write_file(file: filp);
2167 if (err)
2168 return err;
2169
2170 shrunk_blocks = old_block_count - block_count;
2171 secs = div_u64(dividend: shrunk_blocks, BLKS_PER_SEC(sbi));
2172
2173 /* stop other GC */
2174 if (!f2fs_down_write_trylock(sem: &sbi->gc_lock)) {
2175 err = -EAGAIN;
2176 goto out_drop_write;
2177 }
2178
2179 /* stop CP to protect MAIN_SEC in free_segment_range */
2180 f2fs_lock_op(sbi);
2181
2182 spin_lock(lock: &sbi->stat_lock);
2183 if (shrunk_blocks + valid_user_blocks(sbi) +
2184 sbi->current_reserved_blocks + sbi->unusable_block_count +
2185 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2186 err = -ENOSPC;
2187 spin_unlock(lock: &sbi->stat_lock);
2188
2189 if (err)
2190 goto out_unlock;
2191
2192 err = free_segment_range(sbi, secs, dry_run: true);
2193
2194out_unlock:
2195 f2fs_unlock_op(sbi);
2196 f2fs_up_write(sem: &sbi->gc_lock);
2197out_drop_write:
2198 mnt_drop_write_file(file: filp);
2199 if (err)
2200 return err;
2201
2202 err = freeze_super(super: sbi->sb, who: FREEZE_HOLDER_USERSPACE);
2203 if (err)
2204 return err;
2205
2206 if (f2fs_readonly(sb: sbi->sb)) {
2207 err = thaw_super(super: sbi->sb, who: FREEZE_HOLDER_USERSPACE);
2208 if (err)
2209 return err;
2210 return -EROFS;
2211 }
2212
2213 f2fs_down_write(sem: &sbi->gc_lock);
2214 f2fs_down_write(sem: &sbi->cp_global_sem);
2215
2216 spin_lock(lock: &sbi->stat_lock);
2217 if (shrunk_blocks + valid_user_blocks(sbi) +
2218 sbi->current_reserved_blocks + sbi->unusable_block_count +
2219 F2FS_OPTION(sbi).root_reserved_blocks > sbi->user_block_count)
2220 err = -ENOSPC;
2221 else
2222 sbi->user_block_count -= shrunk_blocks;
2223 spin_unlock(lock: &sbi->stat_lock);
2224 if (err)
2225 goto out_err;
2226
2227 set_sbi_flag(sbi, type: SBI_IS_RESIZEFS);
2228 err = free_segment_range(sbi, secs, dry_run: false);
2229 if (err)
2230 goto recover_out;
2231
2232 update_sb_metadata(sbi, secs: -secs);
2233
2234 err = f2fs_commit_super(sbi, recover: false);
2235 if (err) {
2236 update_sb_metadata(sbi, secs);
2237 goto recover_out;
2238 }
2239
2240 update_fs_metadata(sbi, secs: -secs);
2241 clear_sbi_flag(sbi, type: SBI_IS_RESIZEFS);
2242 set_sbi_flag(sbi, type: SBI_IS_DIRTY);
2243
2244 stat_inc_cp_call_count(sbi, TOTAL_CALL);
2245 err = f2fs_write_checkpoint(sbi, cpc: &cpc);
2246 if (err) {
2247 update_fs_metadata(sbi, secs);
2248 update_sb_metadata(sbi, secs);
2249 f2fs_commit_super(sbi, recover: false);
2250 }
2251recover_out:
2252 clear_sbi_flag(sbi, type: SBI_IS_RESIZEFS);
2253 if (err) {
2254 set_sbi_flag(sbi, type: SBI_NEED_FSCK);
2255 f2fs_err(sbi, "resize_fs failed, should run fsck to repair!");
2256
2257 spin_lock(lock: &sbi->stat_lock);
2258 sbi->user_block_count += shrunk_blocks;
2259 spin_unlock(lock: &sbi->stat_lock);
2260 }
2261out_err:
2262 f2fs_up_write(sem: &sbi->cp_global_sem);
2263 f2fs_up_write(sem: &sbi->gc_lock);
2264 thaw_super(super: sbi->sb, who: FREEZE_HOLDER_USERSPACE);
2265 return err;
2266}
2267

source code of linux/fs/f2fs/gc.c