1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6#include <linux/export.h>
7#include <linux/fs.h>
8#include <linux/filelock.h>
9#include <linux/mm.h>
10#include <linux/backing-dev.h>
11#include <linux/hash.h>
12#include <linux/swap.h>
13#include <linux/security.h>
14#include <linux/cdev.h>
15#include <linux/memblock.h>
16#include <linux/fsnotify.h>
17#include <linux/mount.h>
18#include <linux/posix_acl.h>
19#include <linux/buffer_head.h> /* for inode_has_buffers */
20#include <linux/ratelimit.h>
21#include <linux/list_lru.h>
22#include <linux/iversion.h>
23#include <linux/rw_hint.h>
24#include <linux/seq_file.h>
25#include <linux/debugfs.h>
26#include <trace/events/writeback.h>
27#define CREATE_TRACE_POINTS
28#include <trace/events/timestamp.h>
29
30#include "internal.h"
31
32/*
33 * Inode locking rules:
34 *
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
37 * Inode LRU list locks protect:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode->i_sb->s_inode_list_lock protects:
40 * inode->i_sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
45 *
46 * Lock ordering:
47 *
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 * Inode LRU list locks
51 *
52 * bdi->wb.list_lock
53 * inode->i_lock
54 *
55 * inode_hash_lock
56 * inode->i_sb->s_inode_list_lock
57 * inode->i_lock
58 *
59 * iunique_lock
60 * inode_hash_lock
61 */
62
63static unsigned int i_hash_mask __ro_after_init;
64static unsigned int i_hash_shift __ro_after_init;
65static struct hlist_head *inode_hashtable __ro_after_init;
66static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67
68/*
69 * Empty aops. Can be used for the cases where the user does not
70 * define any of the address_space operations.
71 */
72const struct address_space_operations empty_aops = {
73};
74EXPORT_SYMBOL(empty_aops);
75
76static DEFINE_PER_CPU(unsigned long, nr_inodes);
77static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79static struct kmem_cache *inode_cachep __ro_after_init;
80
81static long get_nr_inodes(void)
82{
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88}
89
90static inline long get_nr_inodes_unused(void)
91{
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97}
98
99long get_nr_dirty_inodes(void)
100{
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104}
105
106#ifdef CONFIG_DEBUG_FS
107static DEFINE_PER_CPU(long, mg_ctime_updates);
108static DEFINE_PER_CPU(long, mg_fine_stamps);
109static DEFINE_PER_CPU(long, mg_ctime_swaps);
110
111static unsigned long get_mg_ctime_updates(void)
112{
113 unsigned long sum = 0;
114 int i;
115
116 for_each_possible_cpu(i)
117 sum += data_race(per_cpu(mg_ctime_updates, i));
118 return sum;
119}
120
121static unsigned long get_mg_fine_stamps(void)
122{
123 unsigned long sum = 0;
124 int i;
125
126 for_each_possible_cpu(i)
127 sum += data_race(per_cpu(mg_fine_stamps, i));
128 return sum;
129}
130
131static unsigned long get_mg_ctime_swaps(void)
132{
133 unsigned long sum = 0;
134 int i;
135
136 for_each_possible_cpu(i)
137 sum += data_race(per_cpu(mg_ctime_swaps, i));
138 return sum;
139}
140
141#define mgtime_counter_inc(__var) this_cpu_inc(__var)
142
143static int mgts_show(struct seq_file *s, void *p)
144{
145 unsigned long ctime_updates = get_mg_ctime_updates();
146 unsigned long ctime_swaps = get_mg_ctime_swaps();
147 unsigned long fine_stamps = get_mg_fine_stamps();
148 unsigned long floor_swaps = timekeeping_get_mg_floor_swaps();
149
150 seq_printf(m: s, fmt: "%lu %lu %lu %lu\n",
151 ctime_updates, ctime_swaps, fine_stamps, floor_swaps);
152 return 0;
153}
154
155DEFINE_SHOW_ATTRIBUTE(mgts);
156
157static int __init mg_debugfs_init(void)
158{
159 debugfs_create_file("multigrain_timestamps", S_IFREG | S_IRUGO, NULL, NULL, &mgts_fops);
160 return 0;
161}
162late_initcall(mg_debugfs_init);
163
164#else /* ! CONFIG_DEBUG_FS */
165
166#define mgtime_counter_inc(__var) do { } while (0)
167
168#endif /* CONFIG_DEBUG_FS */
169
170/*
171 * Handle nr_inode sysctl
172 */
173#ifdef CONFIG_SYSCTL
174/*
175 * Statistics gathering..
176 */
177static struct inodes_stat_t inodes_stat;
178
179static int proc_nr_inodes(const struct ctl_table *table, int write, void *buffer,
180 size_t *lenp, loff_t *ppos)
181{
182 inodes_stat.nr_inodes = get_nr_inodes();
183 inodes_stat.nr_unused = get_nr_inodes_unused();
184 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
185}
186
187static const struct ctl_table inodes_sysctls[] = {
188 {
189 .procname = "inode-nr",
190 .data = &inodes_stat,
191 .maxlen = 2*sizeof(long),
192 .mode = 0444,
193 .proc_handler = proc_nr_inodes,
194 },
195 {
196 .procname = "inode-state",
197 .data = &inodes_stat,
198 .maxlen = 7*sizeof(long),
199 .mode = 0444,
200 .proc_handler = proc_nr_inodes,
201 },
202};
203
204static int __init init_fs_inode_sysctls(void)
205{
206 register_sysctl_init("fs", inodes_sysctls);
207 return 0;
208}
209early_initcall(init_fs_inode_sysctls);
210#endif
211
212static int no_open(struct inode *inode, struct file *file)
213{
214 return -ENXIO;
215}
216
217/**
218 * inode_init_always_gfp - perform inode structure initialisation
219 * @sb: superblock inode belongs to
220 * @inode: inode to initialise
221 * @gfp: allocation flags
222 *
223 * These are initializations that need to be done on every inode
224 * allocation as the fields are not initialised by slab allocation.
225 * If there are additional allocations required @gfp is used.
226 */
227int inode_init_always_gfp(struct super_block *sb, struct inode *inode, gfp_t gfp)
228{
229 static const struct inode_operations empty_iops;
230 static const struct file_operations no_open_fops = {.open = no_open};
231 struct address_space *const mapping = &inode->i_data;
232
233 inode->i_sb = sb;
234 inode->i_blkbits = sb->s_blocksize_bits;
235 inode->i_flags = 0;
236 inode->i_state = 0;
237 atomic64_set(v: &inode->i_sequence, i: 0);
238 atomic_set(v: &inode->i_count, i: 1);
239 inode->i_op = &empty_iops;
240 inode->i_fop = &no_open_fops;
241 inode->i_ino = 0;
242 inode->__i_nlink = 1;
243 inode->i_opflags = 0;
244 if (sb->s_xattr)
245 inode->i_opflags |= IOP_XATTR;
246 if (sb->s_type->fs_flags & FS_MGTIME)
247 inode->i_opflags |= IOP_MGTIME;
248 i_uid_write(inode, uid: 0);
249 i_gid_write(inode, gid: 0);
250 atomic_set(v: &inode->i_writecount, i: 0);
251 inode->i_size = 0;
252 inode->i_write_hint = WRITE_LIFE_NOT_SET;
253 inode->i_blocks = 0;
254 inode->i_bytes = 0;
255 inode->i_generation = 0;
256 inode->i_pipe = NULL;
257 inode->i_cdev = NULL;
258 inode->i_link = NULL;
259 inode->i_dir_seq = 0;
260 inode->i_rdev = 0;
261 inode->dirtied_when = 0;
262
263#ifdef CONFIG_CGROUP_WRITEBACK
264 inode->i_wb_frn_winner = 0;
265 inode->i_wb_frn_avg_time = 0;
266 inode->i_wb_frn_history = 0;
267#endif
268
269 spin_lock_init(&inode->i_lock);
270 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
271
272 init_rwsem(&inode->i_rwsem);
273 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
274
275 atomic_set(v: &inode->i_dio_count, i: 0);
276
277 mapping->a_ops = &empty_aops;
278 mapping->host = inode;
279 mapping->flags = 0;
280 mapping->wb_err = 0;
281 atomic_set(v: &mapping->i_mmap_writable, i: 0);
282#ifdef CONFIG_READ_ONLY_THP_FOR_FS
283 atomic_set(v: &mapping->nr_thps, i: 0);
284#endif
285 mapping_set_gfp_mask(m: mapping, GFP_HIGHUSER_MOVABLE);
286 mapping->i_private_data = NULL;
287 mapping->writeback_index = 0;
288 init_rwsem(&mapping->invalidate_lock);
289 lockdep_set_class_and_name(&mapping->invalidate_lock,
290 &sb->s_type->invalidate_lock_key,
291 "mapping.invalidate_lock");
292 if (sb->s_iflags & SB_I_STABLE_WRITES)
293 mapping_set_stable_writes(mapping);
294 inode->i_private = NULL;
295 inode->i_mapping = mapping;
296 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
297#ifdef CONFIG_FS_POSIX_ACL
298 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
299#endif
300
301#ifdef CONFIG_FSNOTIFY
302 inode->i_fsnotify_mask = 0;
303#endif
304 inode->i_flctx = NULL;
305
306 if (unlikely(security_inode_alloc(inode, gfp)))
307 return -ENOMEM;
308
309 this_cpu_inc(nr_inodes);
310
311 return 0;
312}
313EXPORT_SYMBOL(inode_init_always_gfp);
314
315void free_inode_nonrcu(struct inode *inode)
316{
317 kmem_cache_free(s: inode_cachep, objp: inode);
318}
319EXPORT_SYMBOL(free_inode_nonrcu);
320
321static void i_callback(struct rcu_head *head)
322{
323 struct inode *inode = container_of(head, struct inode, i_rcu);
324 if (inode->free_inode)
325 inode->free_inode(inode);
326 else
327 free_inode_nonrcu(inode);
328}
329
330/**
331 * alloc_inode - obtain an inode
332 * @sb: superblock
333 *
334 * Allocates a new inode for given superblock.
335 * Inode wont be chained in superblock s_inodes list
336 * This means :
337 * - fs can't be unmount
338 * - quotas, fsnotify, writeback can't work
339 */
340struct inode *alloc_inode(struct super_block *sb)
341{
342 const struct super_operations *ops = sb->s_op;
343 struct inode *inode;
344
345 if (ops->alloc_inode)
346 inode = ops->alloc_inode(sb);
347 else
348 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
349
350 if (!inode)
351 return NULL;
352
353 if (unlikely(inode_init_always(sb, inode))) {
354 if (ops->destroy_inode) {
355 ops->destroy_inode(inode);
356 if (!ops->free_inode)
357 return NULL;
358 }
359 inode->free_inode = ops->free_inode;
360 i_callback(head: &inode->i_rcu);
361 return NULL;
362 }
363
364 return inode;
365}
366
367void __destroy_inode(struct inode *inode)
368{
369 BUG_ON(inode_has_buffers(inode));
370 inode_detach_wb(inode);
371 security_inode_free(inode);
372 fsnotify_inode_delete(inode);
373 locks_free_lock_context(inode);
374 if (!inode->i_nlink) {
375 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
376 atomic_long_dec(v: &inode->i_sb->s_remove_count);
377 }
378
379#ifdef CONFIG_FS_POSIX_ACL
380 if (inode->i_acl && !is_uncached_acl(acl: inode->i_acl))
381 posix_acl_release(acl: inode->i_acl);
382 if (inode->i_default_acl && !is_uncached_acl(acl: inode->i_default_acl))
383 posix_acl_release(acl: inode->i_default_acl);
384#endif
385 this_cpu_dec(nr_inodes);
386}
387EXPORT_SYMBOL(__destroy_inode);
388
389static void destroy_inode(struct inode *inode)
390{
391 const struct super_operations *ops = inode->i_sb->s_op;
392
393 BUG_ON(!list_empty(&inode->i_lru));
394 __destroy_inode(inode);
395 if (ops->destroy_inode) {
396 ops->destroy_inode(inode);
397 if (!ops->free_inode)
398 return;
399 }
400 inode->free_inode = ops->free_inode;
401 call_rcu(head: &inode->i_rcu, func: i_callback);
402}
403
404/**
405 * drop_nlink - directly drop an inode's link count
406 * @inode: inode
407 *
408 * This is a low-level filesystem helper to replace any
409 * direct filesystem manipulation of i_nlink. In cases
410 * where we are attempting to track writes to the
411 * filesystem, a decrement to zero means an imminent
412 * write when the file is truncated and actually unlinked
413 * on the filesystem.
414 */
415void drop_nlink(struct inode *inode)
416{
417 WARN_ON(inode->i_nlink == 0);
418 inode->__i_nlink--;
419 if (!inode->i_nlink)
420 atomic_long_inc(v: &inode->i_sb->s_remove_count);
421}
422EXPORT_SYMBOL(drop_nlink);
423
424/**
425 * clear_nlink - directly zero an inode's link count
426 * @inode: inode
427 *
428 * This is a low-level filesystem helper to replace any
429 * direct filesystem manipulation of i_nlink. See
430 * drop_nlink() for why we care about i_nlink hitting zero.
431 */
432void clear_nlink(struct inode *inode)
433{
434 if (inode->i_nlink) {
435 inode->__i_nlink = 0;
436 atomic_long_inc(v: &inode->i_sb->s_remove_count);
437 }
438}
439EXPORT_SYMBOL(clear_nlink);
440
441/**
442 * set_nlink - directly set an inode's link count
443 * @inode: inode
444 * @nlink: new nlink (should be non-zero)
445 *
446 * This is a low-level filesystem helper to replace any
447 * direct filesystem manipulation of i_nlink.
448 */
449void set_nlink(struct inode *inode, unsigned int nlink)
450{
451 if (!nlink) {
452 clear_nlink(inode);
453 } else {
454 /* Yes, some filesystems do change nlink from zero to one */
455 if (inode->i_nlink == 0)
456 atomic_long_dec(v: &inode->i_sb->s_remove_count);
457
458 inode->__i_nlink = nlink;
459 }
460}
461EXPORT_SYMBOL(set_nlink);
462
463/**
464 * inc_nlink - directly increment an inode's link count
465 * @inode: inode
466 *
467 * This is a low-level filesystem helper to replace any
468 * direct filesystem manipulation of i_nlink. Currently,
469 * it is only here for parity with dec_nlink().
470 */
471void inc_nlink(struct inode *inode)
472{
473 if (unlikely(inode->i_nlink == 0)) {
474 WARN_ON(!(inode->i_state & I_LINKABLE));
475 atomic_long_dec(v: &inode->i_sb->s_remove_count);
476 }
477
478 inode->__i_nlink++;
479}
480EXPORT_SYMBOL(inc_nlink);
481
482static void __address_space_init_once(struct address_space *mapping)
483{
484 xa_init_flags(xa: &mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
485 init_rwsem(&mapping->i_mmap_rwsem);
486 INIT_LIST_HEAD(list: &mapping->i_private_list);
487 spin_lock_init(&mapping->i_private_lock);
488 mapping->i_mmap = RB_ROOT_CACHED;
489}
490
491void address_space_init_once(struct address_space *mapping)
492{
493 memset(mapping, 0, sizeof(*mapping));
494 __address_space_init_once(mapping);
495}
496EXPORT_SYMBOL(address_space_init_once);
497
498/*
499 * These are initializations that only need to be done
500 * once, because the fields are idempotent across use
501 * of the inode, so let the slab aware of that.
502 */
503void inode_init_once(struct inode *inode)
504{
505 memset(inode, 0, sizeof(*inode));
506 INIT_HLIST_NODE(h: &inode->i_hash);
507 INIT_LIST_HEAD(list: &inode->i_devices);
508 INIT_LIST_HEAD(list: &inode->i_io_list);
509 INIT_LIST_HEAD(list: &inode->i_wb_list);
510 INIT_LIST_HEAD(list: &inode->i_lru);
511 INIT_LIST_HEAD(list: &inode->i_sb_list);
512 __address_space_init_once(mapping: &inode->i_data);
513 i_size_ordered_init(inode);
514}
515EXPORT_SYMBOL(inode_init_once);
516
517static void init_once(void *foo)
518{
519 struct inode *inode = (struct inode *) foo;
520
521 inode_init_once(inode);
522}
523
524/*
525 * get additional reference to inode; caller must already hold one.
526 */
527void ihold(struct inode *inode)
528{
529 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
530}
531EXPORT_SYMBOL(ihold);
532
533static void __inode_add_lru(struct inode *inode, bool rotate)
534{
535 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
536 return;
537 if (atomic_read(v: &inode->i_count))
538 return;
539 if (!(inode->i_sb->s_flags & SB_ACTIVE))
540 return;
541 if (!mapping_shrinkable(mapping: &inode->i_data))
542 return;
543
544 if (list_lru_add_obj(lru: &inode->i_sb->s_inode_lru, item: &inode->i_lru))
545 this_cpu_inc(nr_unused);
546 else if (rotate)
547 inode->i_state |= I_REFERENCED;
548}
549
550struct wait_queue_head *inode_bit_waitqueue(struct wait_bit_queue_entry *wqe,
551 struct inode *inode, u32 bit)
552{
553 void *bit_address;
554
555 bit_address = inode_state_wait_address(inode, bit);
556 init_wait_var_entry(wbq_entry: wqe, var: bit_address, flags: 0);
557 return __var_waitqueue(p: bit_address);
558}
559EXPORT_SYMBOL(inode_bit_waitqueue);
560
561/*
562 * Add inode to LRU if needed (inode is unused and clean).
563 *
564 * Needs inode->i_lock held.
565 */
566void inode_add_lru(struct inode *inode)
567{
568 __inode_add_lru(inode, rotate: false);
569}
570
571static void inode_lru_list_del(struct inode *inode)
572{
573 if (list_lru_del_obj(lru: &inode->i_sb->s_inode_lru, item: &inode->i_lru))
574 this_cpu_dec(nr_unused);
575}
576
577static void inode_pin_lru_isolating(struct inode *inode)
578{
579 lockdep_assert_held(&inode->i_lock);
580 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE));
581 inode->i_state |= I_LRU_ISOLATING;
582}
583
584static void inode_unpin_lru_isolating(struct inode *inode)
585{
586 spin_lock(lock: &inode->i_lock);
587 WARN_ON(!(inode->i_state & I_LRU_ISOLATING));
588 inode->i_state &= ~I_LRU_ISOLATING;
589 /* Called with inode->i_lock which ensures memory ordering. */
590 inode_wake_up_bit(inode, __I_LRU_ISOLATING);
591 spin_unlock(lock: &inode->i_lock);
592}
593
594static void inode_wait_for_lru_isolating(struct inode *inode)
595{
596 struct wait_bit_queue_entry wqe;
597 struct wait_queue_head *wq_head;
598
599 lockdep_assert_held(&inode->i_lock);
600 if (!(inode->i_state & I_LRU_ISOLATING))
601 return;
602
603 wq_head = inode_bit_waitqueue(&wqe, inode, __I_LRU_ISOLATING);
604 for (;;) {
605 prepare_to_wait_event(wq_head, wq_entry: &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
606 /*
607 * Checking I_LRU_ISOLATING with inode->i_lock guarantees
608 * memory ordering.
609 */
610 if (!(inode->i_state & I_LRU_ISOLATING))
611 break;
612 spin_unlock(lock: &inode->i_lock);
613 schedule();
614 spin_lock(lock: &inode->i_lock);
615 }
616 finish_wait(wq_head, wq_entry: &wqe.wq_entry);
617 WARN_ON(inode->i_state & I_LRU_ISOLATING);
618}
619
620/**
621 * inode_sb_list_add - add inode to the superblock list of inodes
622 * @inode: inode to add
623 */
624void inode_sb_list_add(struct inode *inode)
625{
626 struct super_block *sb = inode->i_sb;
627
628 spin_lock(lock: &sb->s_inode_list_lock);
629 list_add(new: &inode->i_sb_list, head: &sb->s_inodes);
630 spin_unlock(lock: &sb->s_inode_list_lock);
631}
632EXPORT_SYMBOL_GPL(inode_sb_list_add);
633
634static inline void inode_sb_list_del(struct inode *inode)
635{
636 struct super_block *sb = inode->i_sb;
637
638 if (!list_empty(head: &inode->i_sb_list)) {
639 spin_lock(lock: &sb->s_inode_list_lock);
640 list_del_init(entry: &inode->i_sb_list);
641 spin_unlock(lock: &sb->s_inode_list_lock);
642 }
643}
644
645static unsigned long hash(struct super_block *sb, unsigned long hashval)
646{
647 unsigned long tmp;
648
649 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
650 L1_CACHE_BYTES;
651 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
652 return tmp & i_hash_mask;
653}
654
655/**
656 * __insert_inode_hash - hash an inode
657 * @inode: unhashed inode
658 * @hashval: unsigned long value used to locate this object in the
659 * inode_hashtable.
660 *
661 * Add an inode to the inode hash for this superblock.
662 */
663void __insert_inode_hash(struct inode *inode, unsigned long hashval)
664{
665 struct hlist_head *b = inode_hashtable + hash(sb: inode->i_sb, hashval);
666
667 spin_lock(lock: &inode_hash_lock);
668 spin_lock(lock: &inode->i_lock);
669 hlist_add_head_rcu(n: &inode->i_hash, h: b);
670 spin_unlock(lock: &inode->i_lock);
671 spin_unlock(lock: &inode_hash_lock);
672}
673EXPORT_SYMBOL(__insert_inode_hash);
674
675/**
676 * __remove_inode_hash - remove an inode from the hash
677 * @inode: inode to unhash
678 *
679 * Remove an inode from the superblock.
680 */
681void __remove_inode_hash(struct inode *inode)
682{
683 spin_lock(lock: &inode_hash_lock);
684 spin_lock(lock: &inode->i_lock);
685 hlist_del_init_rcu(n: &inode->i_hash);
686 spin_unlock(lock: &inode->i_lock);
687 spin_unlock(lock: &inode_hash_lock);
688}
689EXPORT_SYMBOL(__remove_inode_hash);
690
691void dump_mapping(const struct address_space *mapping)
692{
693 struct inode *host;
694 const struct address_space_operations *a_ops;
695 struct hlist_node *dentry_first;
696 struct dentry *dentry_ptr;
697 struct dentry dentry;
698 char fname[64] = {};
699 unsigned long ino;
700
701 /*
702 * If mapping is an invalid pointer, we don't want to crash
703 * accessing it, so probe everything depending on it carefully.
704 */
705 if (get_kernel_nofault(host, &mapping->host) ||
706 get_kernel_nofault(a_ops, &mapping->a_ops)) {
707 pr_warn("invalid mapping:%px\n", mapping);
708 return;
709 }
710
711 if (!host) {
712 pr_warn("aops:%ps\n", a_ops);
713 return;
714 }
715
716 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
717 get_kernel_nofault(ino, &host->i_ino)) {
718 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
719 return;
720 }
721
722 if (!dentry_first) {
723 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
724 return;
725 }
726
727 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
728 if (get_kernel_nofault(dentry, dentry_ptr) ||
729 !dentry.d_parent || !dentry.d_name.name) {
730 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
731 a_ops, ino, dentry_ptr);
732 return;
733 }
734
735 if (strncpy_from_kernel_nofault(dst: fname, unsafe_addr: dentry.d_name.name, count: 63) < 0)
736 strscpy(fname, "<invalid>");
737 /*
738 * Even if strncpy_from_kernel_nofault() succeeded,
739 * the fname could be unreliable
740 */
741 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n",
742 a_ops, ino, fname);
743}
744
745void clear_inode(struct inode *inode)
746{
747 /*
748 * We have to cycle the i_pages lock here because reclaim can be in the
749 * process of removing the last page (in __filemap_remove_folio())
750 * and we must not free the mapping under it.
751 */
752 xa_lock_irq(&inode->i_data.i_pages);
753 BUG_ON(inode->i_data.nrpages);
754 /*
755 * Almost always, mapping_empty(&inode->i_data) here; but there are
756 * two known and long-standing ways in which nodes may get left behind
757 * (when deep radix-tree node allocation failed partway; or when THP
758 * collapse_file() failed). Until those two known cases are cleaned up,
759 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
760 * nor even WARN_ON(!mapping_empty).
761 */
762 xa_unlock_irq(&inode->i_data.i_pages);
763 BUG_ON(!list_empty(&inode->i_data.i_private_list));
764 BUG_ON(!(inode->i_state & I_FREEING));
765 BUG_ON(inode->i_state & I_CLEAR);
766 BUG_ON(!list_empty(&inode->i_wb_list));
767 /* don't need i_lock here, no concurrent mods to i_state */
768 inode->i_state = I_FREEING | I_CLEAR;
769}
770EXPORT_SYMBOL(clear_inode);
771
772/*
773 * Free the inode passed in, removing it from the lists it is still connected
774 * to. We remove any pages still attached to the inode and wait for any IO that
775 * is still in progress before finally destroying the inode.
776 *
777 * An inode must already be marked I_FREEING so that we avoid the inode being
778 * moved back onto lists if we race with other code that manipulates the lists
779 * (e.g. writeback_single_inode). The caller is responsible for setting this.
780 *
781 * An inode must already be removed from the LRU list before being evicted from
782 * the cache. This should occur atomically with setting the I_FREEING state
783 * flag, so no inodes here should ever be on the LRU when being evicted.
784 */
785static void evict(struct inode *inode)
786{
787 const struct super_operations *op = inode->i_sb->s_op;
788
789 BUG_ON(!(inode->i_state & I_FREEING));
790 BUG_ON(!list_empty(&inode->i_lru));
791
792 if (!list_empty(head: &inode->i_io_list))
793 inode_io_list_del(inode);
794
795 inode_sb_list_del(inode);
796
797 spin_lock(lock: &inode->i_lock);
798 inode_wait_for_lru_isolating(inode);
799
800 /*
801 * Wait for flusher thread to be done with the inode so that filesystem
802 * does not start destroying it while writeback is still running. Since
803 * the inode has I_FREEING set, flusher thread won't start new work on
804 * the inode. We just have to wait for running writeback to finish.
805 */
806 inode_wait_for_writeback(inode);
807 spin_unlock(lock: &inode->i_lock);
808
809 if (op->evict_inode) {
810 op->evict_inode(inode);
811 } else {
812 truncate_inode_pages_final(&inode->i_data);
813 clear_inode(inode);
814 }
815 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
816 cd_forget(inode);
817
818 remove_inode_hash(inode);
819
820 /*
821 * Wake up waiters in __wait_on_freeing_inode().
822 *
823 * It is an invariant that any thread we need to wake up is already
824 * accounted for before remove_inode_hash() acquires ->i_lock -- both
825 * sides take the lock and sleep is aborted if the inode is found
826 * unhashed. Thus either the sleeper wins and goes off CPU, or removal
827 * wins and the sleeper aborts after testing with the lock.
828 *
829 * This also means we don't need any fences for the call below.
830 */
831 inode_wake_up_bit(inode, __I_NEW);
832 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
833
834 destroy_inode(inode);
835}
836
837/*
838 * dispose_list - dispose of the contents of a local list
839 * @head: the head of the list to free
840 *
841 * Dispose-list gets a local list with local inodes in it, so it doesn't
842 * need to worry about list corruption and SMP locks.
843 */
844static void dispose_list(struct list_head *head)
845{
846 while (!list_empty(head)) {
847 struct inode *inode;
848
849 inode = list_first_entry(head, struct inode, i_lru);
850 list_del_init(entry: &inode->i_lru);
851
852 evict(inode);
853 cond_resched();
854 }
855}
856
857/**
858 * evict_inodes - evict all evictable inodes for a superblock
859 * @sb: superblock to operate on
860 *
861 * Make sure that no inodes with zero refcount are retained. This is
862 * called by superblock shutdown after having SB_ACTIVE flag removed,
863 * so any inode reaching zero refcount during or after that call will
864 * be immediately evicted.
865 */
866void evict_inodes(struct super_block *sb)
867{
868 struct inode *inode, *next;
869 LIST_HEAD(dispose);
870
871again:
872 spin_lock(lock: &sb->s_inode_list_lock);
873 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
874 if (atomic_read(v: &inode->i_count))
875 continue;
876
877 spin_lock(lock: &inode->i_lock);
878 if (atomic_read(v: &inode->i_count)) {
879 spin_unlock(lock: &inode->i_lock);
880 continue;
881 }
882 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
883 spin_unlock(lock: &inode->i_lock);
884 continue;
885 }
886
887 inode->i_state |= I_FREEING;
888 inode_lru_list_del(inode);
889 spin_unlock(lock: &inode->i_lock);
890 list_add(new: &inode->i_lru, head: &dispose);
891
892 /*
893 * We can have a ton of inodes to evict at unmount time given
894 * enough memory, check to see if we need to go to sleep for a
895 * bit so we don't livelock.
896 */
897 if (need_resched()) {
898 spin_unlock(lock: &sb->s_inode_list_lock);
899 cond_resched();
900 dispose_list(head: &dispose);
901 goto again;
902 }
903 }
904 spin_unlock(lock: &sb->s_inode_list_lock);
905
906 dispose_list(head: &dispose);
907}
908EXPORT_SYMBOL_GPL(evict_inodes);
909
910/*
911 * Isolate the inode from the LRU in preparation for freeing it.
912 *
913 * If the inode has the I_REFERENCED flag set, then it means that it has been
914 * used recently - the flag is set in iput_final(). When we encounter such an
915 * inode, clear the flag and move it to the back of the LRU so it gets another
916 * pass through the LRU before it gets reclaimed. This is necessary because of
917 * the fact we are doing lazy LRU updates to minimise lock contention so the
918 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
919 * with this flag set because they are the inodes that are out of order.
920 */
921static enum lru_status inode_lru_isolate(struct list_head *item,
922 struct list_lru_one *lru, void *arg)
923{
924 struct list_head *freeable = arg;
925 struct inode *inode = container_of(item, struct inode, i_lru);
926
927 /*
928 * We are inverting the lru lock/inode->i_lock here, so use a
929 * trylock. If we fail to get the lock, just skip it.
930 */
931 if (!spin_trylock(lock: &inode->i_lock))
932 return LRU_SKIP;
933
934 /*
935 * Inodes can get referenced, redirtied, or repopulated while
936 * they're already on the LRU, and this can make them
937 * unreclaimable for a while. Remove them lazily here; iput,
938 * sync, or the last page cache deletion will requeue them.
939 */
940 if (atomic_read(v: &inode->i_count) ||
941 (inode->i_state & ~I_REFERENCED) ||
942 !mapping_shrinkable(mapping: &inode->i_data)) {
943 list_lru_isolate(list: lru, item: &inode->i_lru);
944 spin_unlock(lock: &inode->i_lock);
945 this_cpu_dec(nr_unused);
946 return LRU_REMOVED;
947 }
948
949 /* Recently referenced inodes get one more pass */
950 if (inode->i_state & I_REFERENCED) {
951 inode->i_state &= ~I_REFERENCED;
952 spin_unlock(lock: &inode->i_lock);
953 return LRU_ROTATE;
954 }
955
956 /*
957 * On highmem systems, mapping_shrinkable() permits dropping
958 * page cache in order to free up struct inodes: lowmem might
959 * be under pressure before the cache inside the highmem zone.
960 */
961 if (inode_has_buffers(inode) || !mapping_empty(mapping: &inode->i_data)) {
962 inode_pin_lru_isolating(inode);
963 spin_unlock(lock: &inode->i_lock);
964 spin_unlock(lock: &lru->lock);
965 if (remove_inode_buffers(inode)) {
966 unsigned long reap;
967 reap = invalidate_mapping_pages(mapping: &inode->i_data, start: 0, end: -1);
968 if (current_is_kswapd())
969 __count_vm_events(item: KSWAPD_INODESTEAL, delta: reap);
970 else
971 __count_vm_events(item: PGINODESTEAL, delta: reap);
972 mm_account_reclaimed_pages(pages: reap);
973 }
974 inode_unpin_lru_isolating(inode);
975 return LRU_RETRY;
976 }
977
978 WARN_ON(inode->i_state & I_NEW);
979 inode->i_state |= I_FREEING;
980 list_lru_isolate_move(list: lru, item: &inode->i_lru, head: freeable);
981 spin_unlock(lock: &inode->i_lock);
982
983 this_cpu_dec(nr_unused);
984 return LRU_REMOVED;
985}
986
987/*
988 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
989 * This is called from the superblock shrinker function with a number of inodes
990 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
991 * then are freed outside inode_lock by dispose_list().
992 */
993long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
994{
995 LIST_HEAD(freeable);
996 long freed;
997
998 freed = list_lru_shrink_walk(lru: &sb->s_inode_lru, sc,
999 isolate: inode_lru_isolate, cb_arg: &freeable);
1000 dispose_list(head: &freeable);
1001 return freed;
1002}
1003
1004static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked);
1005/*
1006 * Called with the inode lock held.
1007 */
1008static struct inode *find_inode(struct super_block *sb,
1009 struct hlist_head *head,
1010 int (*test)(struct inode *, void *),
1011 void *data, bool is_inode_hash_locked)
1012{
1013 struct inode *inode = NULL;
1014
1015 if (is_inode_hash_locked)
1016 lockdep_assert_held(&inode_hash_lock);
1017 else
1018 lockdep_assert_not_held(&inode_hash_lock);
1019
1020 rcu_read_lock();
1021repeat:
1022 hlist_for_each_entry_rcu(inode, head, i_hash) {
1023 if (inode->i_sb != sb)
1024 continue;
1025 if (!test(inode, data))
1026 continue;
1027 spin_lock(lock: &inode->i_lock);
1028 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1029 __wait_on_freeing_inode(inode, is_inode_hash_locked);
1030 goto repeat;
1031 }
1032 if (unlikely(inode->i_state & I_CREATING)) {
1033 spin_unlock(lock: &inode->i_lock);
1034 rcu_read_unlock();
1035 return ERR_PTR(error: -ESTALE);
1036 }
1037 __iget(inode);
1038 spin_unlock(lock: &inode->i_lock);
1039 rcu_read_unlock();
1040 return inode;
1041 }
1042 rcu_read_unlock();
1043 return NULL;
1044}
1045
1046/*
1047 * find_inode_fast is the fast path version of find_inode, see the comment at
1048 * iget_locked for details.
1049 */
1050static struct inode *find_inode_fast(struct super_block *sb,
1051 struct hlist_head *head, unsigned long ino,
1052 bool is_inode_hash_locked)
1053{
1054 struct inode *inode = NULL;
1055
1056 if (is_inode_hash_locked)
1057 lockdep_assert_held(&inode_hash_lock);
1058 else
1059 lockdep_assert_not_held(&inode_hash_lock);
1060
1061 rcu_read_lock();
1062repeat:
1063 hlist_for_each_entry_rcu(inode, head, i_hash) {
1064 if (inode->i_ino != ino)
1065 continue;
1066 if (inode->i_sb != sb)
1067 continue;
1068 spin_lock(lock: &inode->i_lock);
1069 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1070 __wait_on_freeing_inode(inode, is_inode_hash_locked);
1071 goto repeat;
1072 }
1073 if (unlikely(inode->i_state & I_CREATING)) {
1074 spin_unlock(lock: &inode->i_lock);
1075 rcu_read_unlock();
1076 return ERR_PTR(error: -ESTALE);
1077 }
1078 __iget(inode);
1079 spin_unlock(lock: &inode->i_lock);
1080 rcu_read_unlock();
1081 return inode;
1082 }
1083 rcu_read_unlock();
1084 return NULL;
1085}
1086
1087/*
1088 * Each cpu owns a range of LAST_INO_BATCH numbers.
1089 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
1090 * to renew the exhausted range.
1091 *
1092 * This does not significantly increase overflow rate because every CPU can
1093 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
1094 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
1095 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
1096 * overflow rate by 2x, which does not seem too significant.
1097 *
1098 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1099 * error if st_ino won't fit in target struct field. Use 32bit counter
1100 * here to attempt to avoid that.
1101 */
1102#define LAST_INO_BATCH 1024
1103static DEFINE_PER_CPU(unsigned int, last_ino);
1104
1105unsigned int get_next_ino(void)
1106{
1107 unsigned int *p = &get_cpu_var(last_ino);
1108 unsigned int res = *p;
1109
1110#ifdef CONFIG_SMP
1111 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
1112 static atomic_t shared_last_ino;
1113 int next = atomic_add_return(LAST_INO_BATCH, v: &shared_last_ino);
1114
1115 res = next - LAST_INO_BATCH;
1116 }
1117#endif
1118
1119 res++;
1120 /* get_next_ino should not provide a 0 inode number */
1121 if (unlikely(!res))
1122 res++;
1123 *p = res;
1124 put_cpu_var(last_ino);
1125 return res;
1126}
1127EXPORT_SYMBOL(get_next_ino);
1128
1129/**
1130 * new_inode - obtain an inode
1131 * @sb: superblock
1132 *
1133 * Allocates a new inode for given superblock. The default gfp_mask
1134 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1135 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1136 * for the page cache are not reclaimable or migratable,
1137 * mapping_set_gfp_mask() must be called with suitable flags on the
1138 * newly created inode's mapping
1139 *
1140 */
1141struct inode *new_inode(struct super_block *sb)
1142{
1143 struct inode *inode;
1144
1145 inode = alloc_inode(sb);
1146 if (inode)
1147 inode_sb_list_add(inode);
1148 return inode;
1149}
1150EXPORT_SYMBOL(new_inode);
1151
1152#ifdef CONFIG_DEBUG_LOCK_ALLOC
1153void lockdep_annotate_inode_mutex_key(struct inode *inode)
1154{
1155 if (S_ISDIR(inode->i_mode)) {
1156 struct file_system_type *type = inode->i_sb->s_type;
1157
1158 /* Set new key only if filesystem hasn't already changed it */
1159 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1160 /*
1161 * ensure nobody is actually holding i_mutex
1162 */
1163 // mutex_destroy(&inode->i_mutex);
1164 init_rwsem(&inode->i_rwsem);
1165 lockdep_set_class(&inode->i_rwsem,
1166 &type->i_mutex_dir_key);
1167 }
1168 }
1169}
1170EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1171#endif
1172
1173/**
1174 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1175 * @inode: new inode to unlock
1176 *
1177 * Called when the inode is fully initialised to clear the new state of the
1178 * inode and wake up anyone waiting for the inode to finish initialisation.
1179 */
1180void unlock_new_inode(struct inode *inode)
1181{
1182 lockdep_annotate_inode_mutex_key(inode);
1183 spin_lock(lock: &inode->i_lock);
1184 WARN_ON(!(inode->i_state & I_NEW));
1185 inode->i_state &= ~I_NEW & ~I_CREATING;
1186 /*
1187 * Pairs with the barrier in prepare_to_wait_event() to make sure
1188 * ___wait_var_event() either sees the bit cleared or
1189 * waitqueue_active() check in wake_up_var() sees the waiter.
1190 */
1191 smp_mb();
1192 inode_wake_up_bit(inode, __I_NEW);
1193 spin_unlock(lock: &inode->i_lock);
1194}
1195EXPORT_SYMBOL(unlock_new_inode);
1196
1197void discard_new_inode(struct inode *inode)
1198{
1199 lockdep_annotate_inode_mutex_key(inode);
1200 spin_lock(lock: &inode->i_lock);
1201 WARN_ON(!(inode->i_state & I_NEW));
1202 inode->i_state &= ~I_NEW;
1203 /*
1204 * Pairs with the barrier in prepare_to_wait_event() to make sure
1205 * ___wait_var_event() either sees the bit cleared or
1206 * waitqueue_active() check in wake_up_var() sees the waiter.
1207 */
1208 smp_mb();
1209 inode_wake_up_bit(inode, __I_NEW);
1210 spin_unlock(lock: &inode->i_lock);
1211 iput(inode);
1212}
1213EXPORT_SYMBOL(discard_new_inode);
1214
1215/**
1216 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1217 *
1218 * Lock any non-NULL argument. Passed objects must not be directories.
1219 * Zero, one or two objects may be locked by this function.
1220 *
1221 * @inode1: first inode to lock
1222 * @inode2: second inode to lock
1223 */
1224void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1225{
1226 if (inode1)
1227 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1228 if (inode2)
1229 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1230 if (inode1 > inode2)
1231 swap(inode1, inode2);
1232 if (inode1)
1233 inode_lock(inode: inode1);
1234 if (inode2 && inode2 != inode1)
1235 inode_lock_nested(inode: inode2, subclass: I_MUTEX_NONDIR2);
1236}
1237EXPORT_SYMBOL(lock_two_nondirectories);
1238
1239/**
1240 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1241 * @inode1: first inode to unlock
1242 * @inode2: second inode to unlock
1243 */
1244void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1245{
1246 if (inode1) {
1247 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1248 inode_unlock(inode: inode1);
1249 }
1250 if (inode2 && inode2 != inode1) {
1251 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1252 inode_unlock(inode: inode2);
1253 }
1254}
1255EXPORT_SYMBOL(unlock_two_nondirectories);
1256
1257/**
1258 * inode_insert5 - obtain an inode from a mounted file system
1259 * @inode: pre-allocated inode to use for insert to cache
1260 * @hashval: hash value (usually inode number) to get
1261 * @test: callback used for comparisons between inodes
1262 * @set: callback used to initialize a new struct inode
1263 * @data: opaque data pointer to pass to @test and @set
1264 *
1265 * Search for the inode specified by @hashval and @data in the inode cache,
1266 * and if present return it with an increased reference count. This is a
1267 * variant of iget5_locked() that doesn't allocate an inode.
1268 *
1269 * If the inode is not present in the cache, insert the pre-allocated inode and
1270 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1271 * to fill it in before unlocking it via unlock_new_inode().
1272 *
1273 * Note that both @test and @set are called with the inode_hash_lock held, so
1274 * they can't sleep.
1275 */
1276struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1277 int (*test)(struct inode *, void *),
1278 int (*set)(struct inode *, void *), void *data)
1279{
1280 struct hlist_head *head = inode_hashtable + hash(sb: inode->i_sb, hashval);
1281 struct inode *old;
1282
1283again:
1284 spin_lock(lock: &inode_hash_lock);
1285 old = find_inode(sb: inode->i_sb, head, test, data, is_inode_hash_locked: true);
1286 if (unlikely(old)) {
1287 /*
1288 * Uhhuh, somebody else created the same inode under us.
1289 * Use the old inode instead of the preallocated one.
1290 */
1291 spin_unlock(lock: &inode_hash_lock);
1292 if (IS_ERR(ptr: old))
1293 return NULL;
1294 wait_on_inode(inode: old);
1295 if (unlikely(inode_unhashed(old))) {
1296 iput(old);
1297 goto again;
1298 }
1299 return old;
1300 }
1301
1302 if (set && unlikely(set(inode, data))) {
1303 spin_unlock(lock: &inode_hash_lock);
1304 return NULL;
1305 }
1306
1307 /*
1308 * Return the locked inode with I_NEW set, the
1309 * caller is responsible for filling in the contents
1310 */
1311 spin_lock(lock: &inode->i_lock);
1312 inode->i_state |= I_NEW;
1313 hlist_add_head_rcu(n: &inode->i_hash, h: head);
1314 spin_unlock(lock: &inode->i_lock);
1315
1316 spin_unlock(lock: &inode_hash_lock);
1317
1318 /*
1319 * Add inode to the sb list if it's not already. It has I_NEW at this
1320 * point, so it should be safe to test i_sb_list locklessly.
1321 */
1322 if (list_empty(head: &inode->i_sb_list))
1323 inode_sb_list_add(inode);
1324
1325 return inode;
1326}
1327EXPORT_SYMBOL(inode_insert5);
1328
1329/**
1330 * iget5_locked - obtain an inode from a mounted file system
1331 * @sb: super block of file system
1332 * @hashval: hash value (usually inode number) to get
1333 * @test: callback used for comparisons between inodes
1334 * @set: callback used to initialize a new struct inode
1335 * @data: opaque data pointer to pass to @test and @set
1336 *
1337 * Search for the inode specified by @hashval and @data in the inode cache,
1338 * and if present return it with an increased reference count. This is a
1339 * generalized version of iget_locked() for file systems where the inode
1340 * number is not sufficient for unique identification of an inode.
1341 *
1342 * If the inode is not present in the cache, allocate and insert a new inode
1343 * and return it locked, hashed, and with the I_NEW flag set. The file system
1344 * gets to fill it in before unlocking it via unlock_new_inode().
1345 *
1346 * Note that both @test and @set are called with the inode_hash_lock held, so
1347 * they can't sleep.
1348 */
1349struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1350 int (*test)(struct inode *, void *),
1351 int (*set)(struct inode *, void *), void *data)
1352{
1353 struct inode *inode = ilookup5(sb, hashval, test, data);
1354
1355 if (!inode) {
1356 struct inode *new = alloc_inode(sb);
1357
1358 if (new) {
1359 inode = inode_insert5(new, hashval, test, set, data);
1360 if (unlikely(inode != new))
1361 destroy_inode(inode: new);
1362 }
1363 }
1364 return inode;
1365}
1366EXPORT_SYMBOL(iget5_locked);
1367
1368/**
1369 * iget5_locked_rcu - obtain an inode from a mounted file system
1370 * @sb: super block of file system
1371 * @hashval: hash value (usually inode number) to get
1372 * @test: callback used for comparisons between inodes
1373 * @set: callback used to initialize a new struct inode
1374 * @data: opaque data pointer to pass to @test and @set
1375 *
1376 * This is equivalent to iget5_locked, except the @test callback must
1377 * tolerate the inode not being stable, including being mid-teardown.
1378 */
1379struct inode *iget5_locked_rcu(struct super_block *sb, unsigned long hashval,
1380 int (*test)(struct inode *, void *),
1381 int (*set)(struct inode *, void *), void *data)
1382{
1383 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1384 struct inode *inode, *new;
1385
1386again:
1387 inode = find_inode(sb, head, test, data, is_inode_hash_locked: false);
1388 if (inode) {
1389 if (IS_ERR(ptr: inode))
1390 return NULL;
1391 wait_on_inode(inode);
1392 if (unlikely(inode_unhashed(inode))) {
1393 iput(inode);
1394 goto again;
1395 }
1396 return inode;
1397 }
1398
1399 new = alloc_inode(sb);
1400 if (new) {
1401 inode = inode_insert5(new, hashval, test, set, data);
1402 if (unlikely(inode != new))
1403 destroy_inode(inode: new);
1404 }
1405 return inode;
1406}
1407EXPORT_SYMBOL_GPL(iget5_locked_rcu);
1408
1409/**
1410 * iget_locked - obtain an inode from a mounted file system
1411 * @sb: super block of file system
1412 * @ino: inode number to get
1413 *
1414 * Search for the inode specified by @ino in the inode cache and if present
1415 * return it with an increased reference count. This is for file systems
1416 * where the inode number is sufficient for unique identification of an inode.
1417 *
1418 * If the inode is not in cache, allocate a new inode and return it locked,
1419 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1420 * before unlocking it via unlock_new_inode().
1421 */
1422struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1423{
1424 struct hlist_head *head = inode_hashtable + hash(sb, hashval: ino);
1425 struct inode *inode;
1426again:
1427 inode = find_inode_fast(sb, head, ino, is_inode_hash_locked: false);
1428 if (inode) {
1429 if (IS_ERR(ptr: inode))
1430 return NULL;
1431 wait_on_inode(inode);
1432 if (unlikely(inode_unhashed(inode))) {
1433 iput(inode);
1434 goto again;
1435 }
1436 return inode;
1437 }
1438
1439 inode = alloc_inode(sb);
1440 if (inode) {
1441 struct inode *old;
1442
1443 spin_lock(lock: &inode_hash_lock);
1444 /* We released the lock, so.. */
1445 old = find_inode_fast(sb, head, ino, is_inode_hash_locked: true);
1446 if (!old) {
1447 inode->i_ino = ino;
1448 spin_lock(lock: &inode->i_lock);
1449 inode->i_state = I_NEW;
1450 hlist_add_head_rcu(n: &inode->i_hash, h: head);
1451 spin_unlock(lock: &inode->i_lock);
1452 spin_unlock(lock: &inode_hash_lock);
1453 inode_sb_list_add(inode);
1454
1455 /* Return the locked inode with I_NEW set, the
1456 * caller is responsible for filling in the contents
1457 */
1458 return inode;
1459 }
1460
1461 /*
1462 * Uhhuh, somebody else created the same inode under
1463 * us. Use the old inode instead of the one we just
1464 * allocated.
1465 */
1466 spin_unlock(lock: &inode_hash_lock);
1467 destroy_inode(inode);
1468 if (IS_ERR(ptr: old))
1469 return NULL;
1470 inode = old;
1471 wait_on_inode(inode);
1472 if (unlikely(inode_unhashed(inode))) {
1473 iput(inode);
1474 goto again;
1475 }
1476 }
1477 return inode;
1478}
1479EXPORT_SYMBOL(iget_locked);
1480
1481/*
1482 * search the inode cache for a matching inode number.
1483 * If we find one, then the inode number we are trying to
1484 * allocate is not unique and so we should not use it.
1485 *
1486 * Returns 1 if the inode number is unique, 0 if it is not.
1487 */
1488static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1489{
1490 struct hlist_head *b = inode_hashtable + hash(sb, hashval: ino);
1491 struct inode *inode;
1492
1493 hlist_for_each_entry_rcu(inode, b, i_hash) {
1494 if (inode->i_ino == ino && inode->i_sb == sb)
1495 return 0;
1496 }
1497 return 1;
1498}
1499
1500/**
1501 * iunique - get a unique inode number
1502 * @sb: superblock
1503 * @max_reserved: highest reserved inode number
1504 *
1505 * Obtain an inode number that is unique on the system for a given
1506 * superblock. This is used by file systems that have no natural
1507 * permanent inode numbering system. An inode number is returned that
1508 * is higher than the reserved limit but unique.
1509 *
1510 * BUGS:
1511 * With a large number of inodes live on the file system this function
1512 * currently becomes quite slow.
1513 */
1514ino_t iunique(struct super_block *sb, ino_t max_reserved)
1515{
1516 /*
1517 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1518 * error if st_ino won't fit in target struct field. Use 32bit counter
1519 * here to attempt to avoid that.
1520 */
1521 static DEFINE_SPINLOCK(iunique_lock);
1522 static unsigned int counter;
1523 ino_t res;
1524
1525 rcu_read_lock();
1526 spin_lock(lock: &iunique_lock);
1527 do {
1528 if (counter <= max_reserved)
1529 counter = max_reserved + 1;
1530 res = counter++;
1531 } while (!test_inode_iunique(sb, ino: res));
1532 spin_unlock(lock: &iunique_lock);
1533 rcu_read_unlock();
1534
1535 return res;
1536}
1537EXPORT_SYMBOL(iunique);
1538
1539struct inode *igrab(struct inode *inode)
1540{
1541 spin_lock(lock: &inode->i_lock);
1542 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1543 __iget(inode);
1544 spin_unlock(lock: &inode->i_lock);
1545 } else {
1546 spin_unlock(lock: &inode->i_lock);
1547 /*
1548 * Handle the case where s_op->clear_inode is not been
1549 * called yet, and somebody is calling igrab
1550 * while the inode is getting freed.
1551 */
1552 inode = NULL;
1553 }
1554 return inode;
1555}
1556EXPORT_SYMBOL(igrab);
1557
1558/**
1559 * ilookup5_nowait - search for an inode in the inode cache
1560 * @sb: super block of file system to search
1561 * @hashval: hash value (usually inode number) to search for
1562 * @test: callback used for comparisons between inodes
1563 * @data: opaque data pointer to pass to @test
1564 *
1565 * Search for the inode specified by @hashval and @data in the inode cache.
1566 * If the inode is in the cache, the inode is returned with an incremented
1567 * reference count.
1568 *
1569 * Note: I_NEW is not waited upon so you have to be very careful what you do
1570 * with the returned inode. You probably should be using ilookup5() instead.
1571 *
1572 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1573 */
1574struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1575 int (*test)(struct inode *, void *), void *data)
1576{
1577 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1578 struct inode *inode;
1579
1580 spin_lock(lock: &inode_hash_lock);
1581 inode = find_inode(sb, head, test, data, is_inode_hash_locked: true);
1582 spin_unlock(lock: &inode_hash_lock);
1583
1584 return IS_ERR(ptr: inode) ? NULL : inode;
1585}
1586EXPORT_SYMBOL(ilookup5_nowait);
1587
1588/**
1589 * ilookup5 - search for an inode in the inode cache
1590 * @sb: super block of file system to search
1591 * @hashval: hash value (usually inode number) to search for
1592 * @test: callback used for comparisons between inodes
1593 * @data: opaque data pointer to pass to @test
1594 *
1595 * Search for the inode specified by @hashval and @data in the inode cache,
1596 * and if the inode is in the cache, return the inode with an incremented
1597 * reference count. Waits on I_NEW before returning the inode.
1598 * returned with an incremented reference count.
1599 *
1600 * This is a generalized version of ilookup() for file systems where the
1601 * inode number is not sufficient for unique identification of an inode.
1602 *
1603 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1604 */
1605struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1606 int (*test)(struct inode *, void *), void *data)
1607{
1608 struct inode *inode;
1609again:
1610 inode = ilookup5_nowait(sb, hashval, test, data);
1611 if (inode) {
1612 wait_on_inode(inode);
1613 if (unlikely(inode_unhashed(inode))) {
1614 iput(inode);
1615 goto again;
1616 }
1617 }
1618 return inode;
1619}
1620EXPORT_SYMBOL(ilookup5);
1621
1622/**
1623 * ilookup - search for an inode in the inode cache
1624 * @sb: super block of file system to search
1625 * @ino: inode number to search for
1626 *
1627 * Search for the inode @ino in the inode cache, and if the inode is in the
1628 * cache, the inode is returned with an incremented reference count.
1629 */
1630struct inode *ilookup(struct super_block *sb, unsigned long ino)
1631{
1632 struct hlist_head *head = inode_hashtable + hash(sb, hashval: ino);
1633 struct inode *inode;
1634again:
1635 inode = find_inode_fast(sb, head, ino, is_inode_hash_locked: false);
1636
1637 if (inode) {
1638 if (IS_ERR(ptr: inode))
1639 return NULL;
1640 wait_on_inode(inode);
1641 if (unlikely(inode_unhashed(inode))) {
1642 iput(inode);
1643 goto again;
1644 }
1645 }
1646 return inode;
1647}
1648EXPORT_SYMBOL(ilookup);
1649
1650/**
1651 * find_inode_nowait - find an inode in the inode cache
1652 * @sb: super block of file system to search
1653 * @hashval: hash value (usually inode number) to search for
1654 * @match: callback used for comparisons between inodes
1655 * @data: opaque data pointer to pass to @match
1656 *
1657 * Search for the inode specified by @hashval and @data in the inode
1658 * cache, where the helper function @match will return 0 if the inode
1659 * does not match, 1 if the inode does match, and -1 if the search
1660 * should be stopped. The @match function must be responsible for
1661 * taking the i_lock spin_lock and checking i_state for an inode being
1662 * freed or being initialized, and incrementing the reference count
1663 * before returning 1. It also must not sleep, since it is called with
1664 * the inode_hash_lock spinlock held.
1665 *
1666 * This is a even more generalized version of ilookup5() when the
1667 * function must never block --- find_inode() can block in
1668 * __wait_on_freeing_inode() --- or when the caller can not increment
1669 * the reference count because the resulting iput() might cause an
1670 * inode eviction. The tradeoff is that the @match funtion must be
1671 * very carefully implemented.
1672 */
1673struct inode *find_inode_nowait(struct super_block *sb,
1674 unsigned long hashval,
1675 int (*match)(struct inode *, unsigned long,
1676 void *),
1677 void *data)
1678{
1679 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1680 struct inode *inode, *ret_inode = NULL;
1681 int mval;
1682
1683 spin_lock(lock: &inode_hash_lock);
1684 hlist_for_each_entry(inode, head, i_hash) {
1685 if (inode->i_sb != sb)
1686 continue;
1687 mval = match(inode, hashval, data);
1688 if (mval == 0)
1689 continue;
1690 if (mval == 1)
1691 ret_inode = inode;
1692 goto out;
1693 }
1694out:
1695 spin_unlock(lock: &inode_hash_lock);
1696 return ret_inode;
1697}
1698EXPORT_SYMBOL(find_inode_nowait);
1699
1700/**
1701 * find_inode_rcu - find an inode in the inode cache
1702 * @sb: Super block of file system to search
1703 * @hashval: Key to hash
1704 * @test: Function to test match on an inode
1705 * @data: Data for test function
1706 *
1707 * Search for the inode specified by @hashval and @data in the inode cache,
1708 * where the helper function @test will return 0 if the inode does not match
1709 * and 1 if it does. The @test function must be responsible for taking the
1710 * i_lock spin_lock and checking i_state for an inode being freed or being
1711 * initialized.
1712 *
1713 * If successful, this will return the inode for which the @test function
1714 * returned 1 and NULL otherwise.
1715 *
1716 * The @test function is not permitted to take a ref on any inode presented.
1717 * It is also not permitted to sleep.
1718 *
1719 * The caller must hold the RCU read lock.
1720 */
1721struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1722 int (*test)(struct inode *, void *), void *data)
1723{
1724 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1725 struct inode *inode;
1726
1727 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1728 "suspicious find_inode_rcu() usage");
1729
1730 hlist_for_each_entry_rcu(inode, head, i_hash) {
1731 if (inode->i_sb == sb &&
1732 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1733 test(inode, data))
1734 return inode;
1735 }
1736 return NULL;
1737}
1738EXPORT_SYMBOL(find_inode_rcu);
1739
1740/**
1741 * find_inode_by_ino_rcu - Find an inode in the inode cache
1742 * @sb: Super block of file system to search
1743 * @ino: The inode number to match
1744 *
1745 * Search for the inode specified by @hashval and @data in the inode cache,
1746 * where the helper function @test will return 0 if the inode does not match
1747 * and 1 if it does. The @test function must be responsible for taking the
1748 * i_lock spin_lock and checking i_state for an inode being freed or being
1749 * initialized.
1750 *
1751 * If successful, this will return the inode for which the @test function
1752 * returned 1 and NULL otherwise.
1753 *
1754 * The @test function is not permitted to take a ref on any inode presented.
1755 * It is also not permitted to sleep.
1756 *
1757 * The caller must hold the RCU read lock.
1758 */
1759struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1760 unsigned long ino)
1761{
1762 struct hlist_head *head = inode_hashtable + hash(sb, hashval: ino);
1763 struct inode *inode;
1764
1765 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1766 "suspicious find_inode_by_ino_rcu() usage");
1767
1768 hlist_for_each_entry_rcu(inode, head, i_hash) {
1769 if (inode->i_ino == ino &&
1770 inode->i_sb == sb &&
1771 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1772 return inode;
1773 }
1774 return NULL;
1775}
1776EXPORT_SYMBOL(find_inode_by_ino_rcu);
1777
1778int insert_inode_locked(struct inode *inode)
1779{
1780 struct super_block *sb = inode->i_sb;
1781 ino_t ino = inode->i_ino;
1782 struct hlist_head *head = inode_hashtable + hash(sb, hashval: ino);
1783
1784 while (1) {
1785 struct inode *old = NULL;
1786 spin_lock(lock: &inode_hash_lock);
1787 hlist_for_each_entry(old, head, i_hash) {
1788 if (old->i_ino != ino)
1789 continue;
1790 if (old->i_sb != sb)
1791 continue;
1792 spin_lock(lock: &old->i_lock);
1793 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1794 spin_unlock(lock: &old->i_lock);
1795 continue;
1796 }
1797 break;
1798 }
1799 if (likely(!old)) {
1800 spin_lock(lock: &inode->i_lock);
1801 inode->i_state |= I_NEW | I_CREATING;
1802 hlist_add_head_rcu(n: &inode->i_hash, h: head);
1803 spin_unlock(lock: &inode->i_lock);
1804 spin_unlock(lock: &inode_hash_lock);
1805 return 0;
1806 }
1807 if (unlikely(old->i_state & I_CREATING)) {
1808 spin_unlock(lock: &old->i_lock);
1809 spin_unlock(lock: &inode_hash_lock);
1810 return -EBUSY;
1811 }
1812 __iget(inode: old);
1813 spin_unlock(lock: &old->i_lock);
1814 spin_unlock(lock: &inode_hash_lock);
1815 wait_on_inode(inode: old);
1816 if (unlikely(!inode_unhashed(old))) {
1817 iput(old);
1818 return -EBUSY;
1819 }
1820 iput(old);
1821 }
1822}
1823EXPORT_SYMBOL(insert_inode_locked);
1824
1825int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1826 int (*test)(struct inode *, void *), void *data)
1827{
1828 struct inode *old;
1829
1830 inode->i_state |= I_CREATING;
1831 old = inode_insert5(inode, hashval, test, NULL, data);
1832
1833 if (old != inode) {
1834 iput(old);
1835 return -EBUSY;
1836 }
1837 return 0;
1838}
1839EXPORT_SYMBOL(insert_inode_locked4);
1840
1841
1842int generic_delete_inode(struct inode *inode)
1843{
1844 return 1;
1845}
1846EXPORT_SYMBOL(generic_delete_inode);
1847
1848/*
1849 * Called when we're dropping the last reference
1850 * to an inode.
1851 *
1852 * Call the FS "drop_inode()" function, defaulting to
1853 * the legacy UNIX filesystem behaviour. If it tells
1854 * us to evict inode, do so. Otherwise, retain inode
1855 * in cache if fs is alive, sync and evict if fs is
1856 * shutting down.
1857 */
1858static void iput_final(struct inode *inode)
1859{
1860 struct super_block *sb = inode->i_sb;
1861 const struct super_operations *op = inode->i_sb->s_op;
1862 unsigned long state;
1863 int drop;
1864
1865 WARN_ON(inode->i_state & I_NEW);
1866
1867 if (op->drop_inode)
1868 drop = op->drop_inode(inode);
1869 else
1870 drop = generic_drop_inode(inode);
1871
1872 if (!drop &&
1873 !(inode->i_state & I_DONTCACHE) &&
1874 (sb->s_flags & SB_ACTIVE)) {
1875 __inode_add_lru(inode, rotate: true);
1876 spin_unlock(lock: &inode->i_lock);
1877 return;
1878 }
1879
1880 state = inode->i_state;
1881 if (!drop) {
1882 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1883 spin_unlock(lock: &inode->i_lock);
1884
1885 write_inode_now(inode, sync: 1);
1886
1887 spin_lock(lock: &inode->i_lock);
1888 state = inode->i_state;
1889 WARN_ON(state & I_NEW);
1890 state &= ~I_WILL_FREE;
1891 }
1892
1893 WRITE_ONCE(inode->i_state, state | I_FREEING);
1894 if (!list_empty(head: &inode->i_lru))
1895 inode_lru_list_del(inode);
1896 spin_unlock(lock: &inode->i_lock);
1897
1898 evict(inode);
1899}
1900
1901/**
1902 * iput - put an inode
1903 * @inode: inode to put
1904 *
1905 * Puts an inode, dropping its usage count. If the inode use count hits
1906 * zero, the inode is then freed and may also be destroyed.
1907 *
1908 * Consequently, iput() can sleep.
1909 */
1910void iput(struct inode *inode)
1911{
1912 if (!inode)
1913 return;
1914 BUG_ON(inode->i_state & I_CLEAR);
1915retry:
1916 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1917 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1918 atomic_inc(v: &inode->i_count);
1919 spin_unlock(lock: &inode->i_lock);
1920 trace_writeback_lazytime_iput(inode);
1921 mark_inode_dirty_sync(inode);
1922 goto retry;
1923 }
1924 iput_final(inode);
1925 }
1926}
1927EXPORT_SYMBOL(iput);
1928
1929#ifdef CONFIG_BLOCK
1930/**
1931 * bmap - find a block number in a file
1932 * @inode: inode owning the block number being requested
1933 * @block: pointer containing the block to find
1934 *
1935 * Replaces the value in ``*block`` with the block number on the device holding
1936 * corresponding to the requested block number in the file.
1937 * That is, asked for block 4 of inode 1 the function will replace the
1938 * 4 in ``*block``, with disk block relative to the disk start that holds that
1939 * block of the file.
1940 *
1941 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1942 * hole, returns 0 and ``*block`` is also set to 0.
1943 */
1944int bmap(struct inode *inode, sector_t *block)
1945{
1946 if (!inode->i_mapping->a_ops->bmap)
1947 return -EINVAL;
1948
1949 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1950 return 0;
1951}
1952EXPORT_SYMBOL(bmap);
1953#endif
1954
1955/*
1956 * With relative atime, only update atime if the previous atime is
1957 * earlier than or equal to either the ctime or mtime,
1958 * or if at least a day has passed since the last atime update.
1959 */
1960static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1961 struct timespec64 now)
1962{
1963 struct timespec64 atime, mtime, ctime;
1964
1965 if (!(mnt->mnt_flags & MNT_RELATIME))
1966 return true;
1967 /*
1968 * Is mtime younger than or equal to atime? If yes, update atime:
1969 */
1970 atime = inode_get_atime(inode);
1971 mtime = inode_get_mtime(inode);
1972 if (timespec64_compare(lhs: &mtime, rhs: &atime) >= 0)
1973 return true;
1974 /*
1975 * Is ctime younger than or equal to atime? If yes, update atime:
1976 */
1977 ctime = inode_get_ctime(inode);
1978 if (timespec64_compare(lhs: &ctime, rhs: &atime) >= 0)
1979 return true;
1980
1981 /*
1982 * Is the previous atime value older than a day? If yes,
1983 * update atime:
1984 */
1985 if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1986 return true;
1987 /*
1988 * Good, we can skip the atime update:
1989 */
1990 return false;
1991}
1992
1993/**
1994 * inode_update_timestamps - update the timestamps on the inode
1995 * @inode: inode to be updated
1996 * @flags: S_* flags that needed to be updated
1997 *
1998 * The update_time function is called when an inode's timestamps need to be
1999 * updated for a read or write operation. This function handles updating the
2000 * actual timestamps. It's up to the caller to ensure that the inode is marked
2001 * dirty appropriately.
2002 *
2003 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
2004 * attempt to update all three of them. S_ATIME updates can be handled
2005 * independently of the rest.
2006 *
2007 * Returns a set of S_* flags indicating which values changed.
2008 */
2009int inode_update_timestamps(struct inode *inode, int flags)
2010{
2011 int updated = 0;
2012 struct timespec64 now;
2013
2014 if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
2015 struct timespec64 ctime = inode_get_ctime(inode);
2016 struct timespec64 mtime = inode_get_mtime(inode);
2017
2018 now = inode_set_ctime_current(inode);
2019 if (!timespec64_equal(a: &now, b: &ctime))
2020 updated |= S_CTIME;
2021 if (!timespec64_equal(a: &now, b: &mtime)) {
2022 inode_set_mtime_to_ts(inode, ts: now);
2023 updated |= S_MTIME;
2024 }
2025 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, force: updated))
2026 updated |= S_VERSION;
2027 } else {
2028 now = current_time(inode);
2029 }
2030
2031 if (flags & S_ATIME) {
2032 struct timespec64 atime = inode_get_atime(inode);
2033
2034 if (!timespec64_equal(a: &now, b: &atime)) {
2035 inode_set_atime_to_ts(inode, ts: now);
2036 updated |= S_ATIME;
2037 }
2038 }
2039 return updated;
2040}
2041EXPORT_SYMBOL(inode_update_timestamps);
2042
2043/**
2044 * generic_update_time - update the timestamps on the inode
2045 * @inode: inode to be updated
2046 * @flags: S_* flags that needed to be updated
2047 *
2048 * The update_time function is called when an inode's timestamps need to be
2049 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
2050 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
2051 * updates can be handled done independently of the rest.
2052 *
2053 * Returns a S_* mask indicating which fields were updated.
2054 */
2055int generic_update_time(struct inode *inode, int flags)
2056{
2057 int updated = inode_update_timestamps(inode, flags);
2058 int dirty_flags = 0;
2059
2060 if (updated & (S_ATIME|S_MTIME|S_CTIME))
2061 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
2062 if (updated & S_VERSION)
2063 dirty_flags |= I_DIRTY_SYNC;
2064 __mark_inode_dirty(inode, dirty_flags);
2065 return updated;
2066}
2067EXPORT_SYMBOL(generic_update_time);
2068
2069/*
2070 * This does the actual work of updating an inodes time or version. Must have
2071 * had called mnt_want_write() before calling this.
2072 */
2073int inode_update_time(struct inode *inode, int flags)
2074{
2075 if (inode->i_op->update_time)
2076 return inode->i_op->update_time(inode, flags);
2077 generic_update_time(inode, flags);
2078 return 0;
2079}
2080EXPORT_SYMBOL(inode_update_time);
2081
2082/**
2083 * atime_needs_update - update the access time
2084 * @path: the &struct path to update
2085 * @inode: inode to update
2086 *
2087 * Update the accessed time on an inode and mark it for writeback.
2088 * This function automatically handles read only file systems and media,
2089 * as well as the "noatime" flag and inode specific "noatime" markers.
2090 */
2091bool atime_needs_update(const struct path *path, struct inode *inode)
2092{
2093 struct vfsmount *mnt = path->mnt;
2094 struct timespec64 now, atime;
2095
2096 if (inode->i_flags & S_NOATIME)
2097 return false;
2098
2099 /* Atime updates will likely cause i_uid and i_gid to be written
2100 * back improprely if their true value is unknown to the vfs.
2101 */
2102 if (HAS_UNMAPPED_ID(idmap: mnt_idmap(mnt), inode))
2103 return false;
2104
2105 if (IS_NOATIME(inode))
2106 return false;
2107 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
2108 return false;
2109
2110 if (mnt->mnt_flags & MNT_NOATIME)
2111 return false;
2112 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
2113 return false;
2114
2115 now = current_time(inode);
2116
2117 if (!relatime_need_update(mnt, inode, now))
2118 return false;
2119
2120 atime = inode_get_atime(inode);
2121 if (timespec64_equal(a: &atime, b: &now))
2122 return false;
2123
2124 return true;
2125}
2126
2127void touch_atime(const struct path *path)
2128{
2129 struct vfsmount *mnt = path->mnt;
2130 struct inode *inode = d_inode(dentry: path->dentry);
2131
2132 if (!atime_needs_update(path, inode))
2133 return;
2134
2135 if (!sb_start_write_trylock(sb: inode->i_sb))
2136 return;
2137
2138 if (mnt_get_write_access(mnt) != 0)
2139 goto skip_update;
2140 /*
2141 * File systems can error out when updating inodes if they need to
2142 * allocate new space to modify an inode (such is the case for
2143 * Btrfs), but since we touch atime while walking down the path we
2144 * really don't care if we failed to update the atime of the file,
2145 * so just ignore the return value.
2146 * We may also fail on filesystems that have the ability to make parts
2147 * of the fs read only, e.g. subvolumes in Btrfs.
2148 */
2149 inode_update_time(inode, S_ATIME);
2150 mnt_put_write_access(mnt);
2151skip_update:
2152 sb_end_write(sb: inode->i_sb);
2153}
2154EXPORT_SYMBOL(touch_atime);
2155
2156/*
2157 * Return mask of changes for notify_change() that need to be done as a
2158 * response to write or truncate. Return 0 if nothing has to be changed.
2159 * Negative value on error (change should be denied).
2160 */
2161int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2162 struct dentry *dentry)
2163{
2164 struct inode *inode = d_inode(dentry);
2165 int mask = 0;
2166 int ret;
2167
2168 if (IS_NOSEC(inode))
2169 return 0;
2170
2171 mask = setattr_should_drop_suidgid(idmap, inode);
2172 ret = security_inode_need_killpriv(dentry);
2173 if (ret < 0)
2174 return ret;
2175 if (ret)
2176 mask |= ATTR_KILL_PRIV;
2177 return mask;
2178}
2179
2180static int __remove_privs(struct mnt_idmap *idmap,
2181 struct dentry *dentry, int kill)
2182{
2183 struct iattr newattrs;
2184
2185 newattrs.ia_valid = ATTR_FORCE | kill;
2186 /*
2187 * Note we call this on write, so notify_change will not
2188 * encounter any conflicting delegations:
2189 */
2190 return notify_change(idmap, dentry, &newattrs, NULL);
2191}
2192
2193int file_remove_privs_flags(struct file *file, unsigned int flags)
2194{
2195 struct dentry *dentry = file_dentry(file);
2196 struct inode *inode = file_inode(f: file);
2197 int error = 0;
2198 int kill;
2199
2200 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2201 return 0;
2202
2203 kill = dentry_needs_remove_privs(idmap: file_mnt_idmap(file), dentry);
2204 if (kill < 0)
2205 return kill;
2206
2207 if (kill) {
2208 if (flags & IOCB_NOWAIT)
2209 return -EAGAIN;
2210
2211 error = __remove_privs(idmap: file_mnt_idmap(file), dentry, kill);
2212 }
2213
2214 if (!error)
2215 inode_has_no_xattr(inode);
2216 return error;
2217}
2218EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2219
2220/**
2221 * file_remove_privs - remove special file privileges (suid, capabilities)
2222 * @file: file to remove privileges from
2223 *
2224 * When file is modified by a write or truncation ensure that special
2225 * file privileges are removed.
2226 *
2227 * Return: 0 on success, negative errno on failure.
2228 */
2229int file_remove_privs(struct file *file)
2230{
2231 return file_remove_privs_flags(file, 0);
2232}
2233EXPORT_SYMBOL(file_remove_privs);
2234
2235/**
2236 * current_time - Return FS time (possibly fine-grained)
2237 * @inode: inode.
2238 *
2239 * Return the current time truncated to the time granularity supported by
2240 * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
2241 * as having been QUERIED, get a fine-grained timestamp, but don't update
2242 * the floor.
2243 *
2244 * For a multigrain inode, this is effectively an estimate of the timestamp
2245 * that a file would receive. An actual update must go through
2246 * inode_set_ctime_current().
2247 */
2248struct timespec64 current_time(struct inode *inode)
2249{
2250 struct timespec64 now;
2251 u32 cns;
2252
2253 ktime_get_coarse_real_ts64_mg(ts: &now);
2254
2255 if (!is_mgtime(inode))
2256 goto out;
2257
2258 /* If nothing has queried it, then coarse time is fine */
2259 cns = smp_load_acquire(&inode->i_ctime_nsec);
2260 if (cns & I_CTIME_QUERIED) {
2261 /*
2262 * If there is no apparent change, then get a fine-grained
2263 * timestamp.
2264 */
2265 if (now.tv_nsec == (cns & ~I_CTIME_QUERIED))
2266 ktime_get_real_ts64(tv: &now);
2267 }
2268out:
2269 return timestamp_truncate(t: now, inode);
2270}
2271EXPORT_SYMBOL(current_time);
2272
2273static int inode_needs_update_time(struct inode *inode)
2274{
2275 struct timespec64 now, ts;
2276 int sync_it = 0;
2277
2278 /* First try to exhaust all avenues to not sync */
2279 if (IS_NOCMTIME(inode))
2280 return 0;
2281
2282 now = current_time(inode);
2283
2284 ts = inode_get_mtime(inode);
2285 if (!timespec64_equal(a: &ts, b: &now))
2286 sync_it |= S_MTIME;
2287
2288 ts = inode_get_ctime(inode);
2289 if (!timespec64_equal(a: &ts, b: &now))
2290 sync_it |= S_CTIME;
2291
2292 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2293 sync_it |= S_VERSION;
2294
2295 return sync_it;
2296}
2297
2298static int __file_update_time(struct file *file, int sync_mode)
2299{
2300 int ret = 0;
2301 struct inode *inode = file_inode(f: file);
2302
2303 /* try to update time settings */
2304 if (!mnt_get_write_access_file(file)) {
2305 ret = inode_update_time(inode, sync_mode);
2306 mnt_put_write_access_file(file);
2307 }
2308
2309 return ret;
2310}
2311
2312/**
2313 * file_update_time - update mtime and ctime time
2314 * @file: file accessed
2315 *
2316 * Update the mtime and ctime members of an inode and mark the inode for
2317 * writeback. Note that this function is meant exclusively for usage in
2318 * the file write path of filesystems, and filesystems may choose to
2319 * explicitly ignore updates via this function with the _NOCMTIME inode
2320 * flag, e.g. for network filesystem where these imestamps are handled
2321 * by the server. This can return an error for file systems who need to
2322 * allocate space in order to update an inode.
2323 *
2324 * Return: 0 on success, negative errno on failure.
2325 */
2326int file_update_time(struct file *file)
2327{
2328 int ret;
2329 struct inode *inode = file_inode(f: file);
2330
2331 ret = inode_needs_update_time(inode);
2332 if (ret <= 0)
2333 return ret;
2334
2335 return __file_update_time(file, sync_mode: ret);
2336}
2337EXPORT_SYMBOL(file_update_time);
2338
2339/**
2340 * file_modified_flags - handle mandated vfs changes when modifying a file
2341 * @file: file that was modified
2342 * @flags: kiocb flags
2343 *
2344 * When file has been modified ensure that special
2345 * file privileges are removed and time settings are updated.
2346 *
2347 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2348 * time settings will not be updated. It will return -EAGAIN.
2349 *
2350 * Context: Caller must hold the file's inode lock.
2351 *
2352 * Return: 0 on success, negative errno on failure.
2353 */
2354static int file_modified_flags(struct file *file, int flags)
2355{
2356 int ret;
2357 struct inode *inode = file_inode(f: file);
2358
2359 /*
2360 * Clear the security bits if the process is not being run by root.
2361 * This keeps people from modifying setuid and setgid binaries.
2362 */
2363 ret = file_remove_privs_flags(file, flags);
2364 if (ret)
2365 return ret;
2366
2367 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2368 return 0;
2369
2370 ret = inode_needs_update_time(inode);
2371 if (ret <= 0)
2372 return ret;
2373 if (flags & IOCB_NOWAIT)
2374 return -EAGAIN;
2375
2376 return __file_update_time(file, sync_mode: ret);
2377}
2378
2379/**
2380 * file_modified - handle mandated vfs changes when modifying a file
2381 * @file: file that was modified
2382 *
2383 * When file has been modified ensure that special
2384 * file privileges are removed and time settings are updated.
2385 *
2386 * Context: Caller must hold the file's inode lock.
2387 *
2388 * Return: 0 on success, negative errno on failure.
2389 */
2390int file_modified(struct file *file)
2391{
2392 return file_modified_flags(file, flags: 0);
2393}
2394EXPORT_SYMBOL(file_modified);
2395
2396/**
2397 * kiocb_modified - handle mandated vfs changes when modifying a file
2398 * @iocb: iocb that was modified
2399 *
2400 * When file has been modified ensure that special
2401 * file privileges are removed and time settings are updated.
2402 *
2403 * Context: Caller must hold the file's inode lock.
2404 *
2405 * Return: 0 on success, negative errno on failure.
2406 */
2407int kiocb_modified(struct kiocb *iocb)
2408{
2409 return file_modified_flags(file: iocb->ki_filp, flags: iocb->ki_flags);
2410}
2411EXPORT_SYMBOL_GPL(kiocb_modified);
2412
2413int inode_needs_sync(struct inode *inode)
2414{
2415 if (IS_SYNC(inode))
2416 return 1;
2417 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2418 return 1;
2419 return 0;
2420}
2421EXPORT_SYMBOL(inode_needs_sync);
2422
2423/*
2424 * If we try to find an inode in the inode hash while it is being
2425 * deleted, we have to wait until the filesystem completes its
2426 * deletion before reporting that it isn't found. This function waits
2427 * until the deletion _might_ have completed. Callers are responsible
2428 * to recheck inode state.
2429 *
2430 * It doesn't matter if I_NEW is not set initially, a call to
2431 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2432 * will DTRT.
2433 */
2434static void __wait_on_freeing_inode(struct inode *inode, bool is_inode_hash_locked)
2435{
2436 struct wait_bit_queue_entry wqe;
2437 struct wait_queue_head *wq_head;
2438
2439 /*
2440 * Handle racing against evict(), see that routine for more details.
2441 */
2442 if (unlikely(inode_unhashed(inode))) {
2443 WARN_ON(is_inode_hash_locked);
2444 spin_unlock(lock: &inode->i_lock);
2445 return;
2446 }
2447
2448 wq_head = inode_bit_waitqueue(&wqe, inode, __I_NEW);
2449 prepare_to_wait_event(wq_head, wq_entry: &wqe.wq_entry, TASK_UNINTERRUPTIBLE);
2450 spin_unlock(lock: &inode->i_lock);
2451 rcu_read_unlock();
2452 if (is_inode_hash_locked)
2453 spin_unlock(lock: &inode_hash_lock);
2454 schedule();
2455 finish_wait(wq_head, wq_entry: &wqe.wq_entry);
2456 if (is_inode_hash_locked)
2457 spin_lock(lock: &inode_hash_lock);
2458 rcu_read_lock();
2459}
2460
2461static __initdata unsigned long ihash_entries;
2462static int __init set_ihash_entries(char *str)
2463{
2464 if (!str)
2465 return 0;
2466 ihash_entries = simple_strtoul(str, &str, 0);
2467 return 1;
2468}
2469__setup("ihash_entries=", set_ihash_entries);
2470
2471/*
2472 * Initialize the waitqueues and inode hash table.
2473 */
2474void __init inode_init_early(void)
2475{
2476 /* If hashes are distributed across NUMA nodes, defer
2477 * hash allocation until vmalloc space is available.
2478 */
2479 if (hashdist)
2480 return;
2481
2482 inode_hashtable =
2483 alloc_large_system_hash(tablename: "Inode-cache",
2484 bucketsize: sizeof(struct hlist_head),
2485 numentries: ihash_entries,
2486 scale: 14,
2487 HASH_EARLY | HASH_ZERO,
2488 hash_shift: &i_hash_shift,
2489 hash_mask: &i_hash_mask,
2490 low_limit: 0,
2491 high_limit: 0);
2492}
2493
2494void __init inode_init(void)
2495{
2496 /* inode slab cache */
2497 inode_cachep = kmem_cache_create("inode_cache",
2498 sizeof(struct inode),
2499 0,
2500 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2501 SLAB_ACCOUNT),
2502 init_once);
2503
2504 /* Hash may have been set up in inode_init_early */
2505 if (!hashdist)
2506 return;
2507
2508 inode_hashtable =
2509 alloc_large_system_hash(tablename: "Inode-cache",
2510 bucketsize: sizeof(struct hlist_head),
2511 numentries: ihash_entries,
2512 scale: 14,
2513 HASH_ZERO,
2514 hash_shift: &i_hash_shift,
2515 hash_mask: &i_hash_mask,
2516 low_limit: 0,
2517 high_limit: 0);
2518}
2519
2520void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2521{
2522 inode->i_mode = mode;
2523 if (S_ISCHR(mode)) {
2524 inode->i_fop = &def_chr_fops;
2525 inode->i_rdev = rdev;
2526 } else if (S_ISBLK(mode)) {
2527 if (IS_ENABLED(CONFIG_BLOCK))
2528 inode->i_fop = &def_blk_fops;
2529 inode->i_rdev = rdev;
2530 } else if (S_ISFIFO(mode))
2531 inode->i_fop = &pipefifo_fops;
2532 else if (S_ISSOCK(mode))
2533 ; /* leave it no_open_fops */
2534 else
2535 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2536 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2537 inode->i_ino);
2538}
2539EXPORT_SYMBOL(init_special_inode);
2540
2541/**
2542 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2543 * @idmap: idmap of the mount the inode was created from
2544 * @inode: New inode
2545 * @dir: Directory inode
2546 * @mode: mode of the new inode
2547 *
2548 * If the inode has been created through an idmapped mount the idmap of
2549 * the vfsmount must be passed through @idmap. This function will then take
2550 * care to map the inode according to @idmap before checking permissions
2551 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2552 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2553 */
2554void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2555 const struct inode *dir, umode_t mode)
2556{
2557 inode_fsuid_set(inode, idmap);
2558 if (dir && dir->i_mode & S_ISGID) {
2559 inode->i_gid = dir->i_gid;
2560
2561 /* Directories are special, and always inherit S_ISGID */
2562 if (S_ISDIR(mode))
2563 mode |= S_ISGID;
2564 } else
2565 inode_fsgid_set(inode, idmap);
2566 inode->i_mode = mode;
2567}
2568EXPORT_SYMBOL(inode_init_owner);
2569
2570/**
2571 * inode_owner_or_capable - check current task permissions to inode
2572 * @idmap: idmap of the mount the inode was found from
2573 * @inode: inode being checked
2574 *
2575 * Return true if current either has CAP_FOWNER in a namespace with the
2576 * inode owner uid mapped, or owns the file.
2577 *
2578 * If the inode has been found through an idmapped mount the idmap of
2579 * the vfsmount must be passed through @idmap. This function will then take
2580 * care to map the inode according to @idmap before checking permissions.
2581 * On non-idmapped mounts or if permission checking is to be performed on the
2582 * raw inode simply pass @nop_mnt_idmap.
2583 */
2584bool inode_owner_or_capable(struct mnt_idmap *idmap,
2585 const struct inode *inode)
2586{
2587 vfsuid_t vfsuid;
2588 struct user_namespace *ns;
2589
2590 vfsuid = i_uid_into_vfsuid(idmap, inode);
2591 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2592 return true;
2593
2594 ns = current_user_ns();
2595 if (vfsuid_has_mapping(userns: ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2596 return true;
2597 return false;
2598}
2599EXPORT_SYMBOL(inode_owner_or_capable);
2600
2601/*
2602 * Direct i/o helper functions
2603 */
2604bool inode_dio_finished(const struct inode *inode)
2605{
2606 return atomic_read(v: &inode->i_dio_count) == 0;
2607}
2608EXPORT_SYMBOL(inode_dio_finished);
2609
2610/**
2611 * inode_dio_wait - wait for outstanding DIO requests to finish
2612 * @inode: inode to wait for
2613 *
2614 * Waits for all pending direct I/O requests to finish so that we can
2615 * proceed with a truncate or equivalent operation.
2616 *
2617 * Must be called under a lock that serializes taking new references
2618 * to i_dio_count, usually by inode->i_mutex.
2619 */
2620void inode_dio_wait(struct inode *inode)
2621{
2622 wait_var_event(&inode->i_dio_count, inode_dio_finished(inode));
2623}
2624EXPORT_SYMBOL(inode_dio_wait);
2625
2626void inode_dio_wait_interruptible(struct inode *inode)
2627{
2628 wait_var_event_interruptible(&inode->i_dio_count,
2629 inode_dio_finished(inode));
2630}
2631EXPORT_SYMBOL(inode_dio_wait_interruptible);
2632
2633/*
2634 * inode_set_flags - atomically set some inode flags
2635 *
2636 * Note: the caller should be holding i_mutex, or else be sure that
2637 * they have exclusive access to the inode structure (i.e., while the
2638 * inode is being instantiated). The reason for the cmpxchg() loop
2639 * --- which wouldn't be necessary if all code paths which modify
2640 * i_flags actually followed this rule, is that there is at least one
2641 * code path which doesn't today so we use cmpxchg() out of an abundance
2642 * of caution.
2643 *
2644 * In the long run, i_mutex is overkill, and we should probably look
2645 * at using the i_lock spinlock to protect i_flags, and then make sure
2646 * it is so documented in include/linux/fs.h and that all code follows
2647 * the locking convention!!
2648 */
2649void inode_set_flags(struct inode *inode, unsigned int flags,
2650 unsigned int mask)
2651{
2652 WARN_ON_ONCE(flags & ~mask);
2653 set_mask_bits(&inode->i_flags, mask, flags);
2654}
2655EXPORT_SYMBOL(inode_set_flags);
2656
2657void inode_nohighmem(struct inode *inode)
2658{
2659 mapping_set_gfp_mask(m: inode->i_mapping, GFP_USER);
2660}
2661EXPORT_SYMBOL(inode_nohighmem);
2662
2663struct timespec64 inode_set_ctime_to_ts(struct inode *inode, struct timespec64 ts)
2664{
2665 trace_inode_set_ctime_to_ts(inode, ctime: &ts);
2666 set_normalized_timespec64(ts: &ts, sec: ts.tv_sec, nsec: ts.tv_nsec);
2667 inode->i_ctime_sec = ts.tv_sec;
2668 inode->i_ctime_nsec = ts.tv_nsec;
2669 return ts;
2670}
2671EXPORT_SYMBOL(inode_set_ctime_to_ts);
2672
2673/**
2674 * timestamp_truncate - Truncate timespec to a granularity
2675 * @t: Timespec
2676 * @inode: inode being updated
2677 *
2678 * Truncate a timespec to the granularity supported by the fs
2679 * containing the inode. Always rounds down. gran must
2680 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2681 */
2682struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2683{
2684 struct super_block *sb = inode->i_sb;
2685 unsigned int gran = sb->s_time_gran;
2686
2687 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2688 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2689 t.tv_nsec = 0;
2690
2691 /* Avoid division in the common cases 1 ns and 1 s. */
2692 if (gran == 1)
2693 ; /* nothing */
2694 else if (gran == NSEC_PER_SEC)
2695 t.tv_nsec = 0;
2696 else if (gran > 1 && gran < NSEC_PER_SEC)
2697 t.tv_nsec -= t.tv_nsec % gran;
2698 else
2699 WARN(1, "invalid file time granularity: %u", gran);
2700 return t;
2701}
2702EXPORT_SYMBOL(timestamp_truncate);
2703
2704/**
2705 * inode_set_ctime_current - set the ctime to current_time
2706 * @inode: inode
2707 *
2708 * Set the inode's ctime to the current value for the inode. Returns the
2709 * current value that was assigned. If this is not a multigrain inode, then we
2710 * set it to the later of the coarse time and floor value.
2711 *
2712 * If it is multigrain, then we first see if the coarse-grained timestamp is
2713 * distinct from what is already there. If so, then use that. Otherwise, get a
2714 * fine-grained timestamp.
2715 *
2716 * After that, try to swap the new value into i_ctime_nsec. Accept the
2717 * resulting ctime, regardless of the outcome of the swap. If it has
2718 * already been replaced, then that timestamp is later than the earlier
2719 * unacceptable one, and is thus acceptable.
2720 */
2721struct timespec64 inode_set_ctime_current(struct inode *inode)
2722{
2723 struct timespec64 now;
2724 u32 cns, cur;
2725
2726 ktime_get_coarse_real_ts64_mg(ts: &now);
2727 now = timestamp_truncate(now, inode);
2728
2729 /* Just return that if this is not a multigrain fs */
2730 if (!is_mgtime(inode)) {
2731 inode_set_ctime_to_ts(inode, now);
2732 goto out;
2733 }
2734
2735 /*
2736 * A fine-grained time is only needed if someone has queried
2737 * for timestamps, and the current coarse grained time isn't
2738 * later than what's already there.
2739 */
2740 cns = smp_load_acquire(&inode->i_ctime_nsec);
2741 if (cns & I_CTIME_QUERIED) {
2742 struct timespec64 ctime = { .tv_sec = inode->i_ctime_sec,
2743 .tv_nsec = cns & ~I_CTIME_QUERIED };
2744
2745 if (timespec64_compare(lhs: &now, rhs: &ctime) <= 0) {
2746 ktime_get_real_ts64_mg(ts: &now);
2747 now = timestamp_truncate(now, inode);
2748 mgtime_counter_inc(mg_fine_stamps);
2749 }
2750 }
2751 mgtime_counter_inc(mg_ctime_updates);
2752
2753 /* No need to cmpxchg if it's exactly the same */
2754 if (cns == now.tv_nsec && inode->i_ctime_sec == now.tv_sec) {
2755 trace_ctime_xchg_skip(inode, ctime: &now);
2756 goto out;
2757 }
2758 cur = cns;
2759retry:
2760 /* Try to swap the nsec value into place. */
2761 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, now.tv_nsec)) {
2762 /* If swap occurred, then we're (mostly) done */
2763 inode->i_ctime_sec = now.tv_sec;
2764 trace_ctime_ns_xchg(inode, old: cns, new: now.tv_nsec, cur);
2765 mgtime_counter_inc(mg_ctime_swaps);
2766 } else {
2767 /*
2768 * Was the change due to someone marking the old ctime QUERIED?
2769 * If so then retry the swap. This can only happen once since
2770 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2771 * with a new ctime.
2772 */
2773 if (!(cns & I_CTIME_QUERIED) && (cns | I_CTIME_QUERIED) == cur) {
2774 cns = cur;
2775 goto retry;
2776 }
2777 /* Otherwise, keep the existing ctime */
2778 now.tv_sec = inode->i_ctime_sec;
2779 now.tv_nsec = cur & ~I_CTIME_QUERIED;
2780 }
2781out:
2782 return now;
2783}
2784EXPORT_SYMBOL(inode_set_ctime_current);
2785
2786/**
2787 * inode_set_ctime_deleg - try to update the ctime on a delegated inode
2788 * @inode: inode to update
2789 * @update: timespec64 to set the ctime
2790 *
2791 * Attempt to atomically update the ctime on behalf of a delegation holder.
2792 *
2793 * The nfs server can call back the holder of a delegation to get updated
2794 * inode attributes, including the mtime. When updating the mtime, update
2795 * the ctime to a value at least equal to that.
2796 *
2797 * This can race with concurrent updates to the inode, in which
2798 * case the update is skipped.
2799 *
2800 * Note that this works even when multigrain timestamps are not enabled,
2801 * so it is used in either case.
2802 */
2803struct timespec64 inode_set_ctime_deleg(struct inode *inode, struct timespec64 update)
2804{
2805 struct timespec64 now, cur_ts;
2806 u32 cur, old;
2807
2808 /* pairs with try_cmpxchg below */
2809 cur = smp_load_acquire(&inode->i_ctime_nsec);
2810 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2811 cur_ts.tv_sec = inode->i_ctime_sec;
2812
2813 /* If the update is older than the existing value, skip it. */
2814 if (timespec64_compare(lhs: &update, rhs: &cur_ts) <= 0)
2815 return cur_ts;
2816
2817 ktime_get_coarse_real_ts64_mg(ts: &now);
2818
2819 /* Clamp the update to "now" if it's in the future */
2820 if (timespec64_compare(lhs: &update, rhs: &now) > 0)
2821 update = now;
2822
2823 update = timestamp_truncate(update, inode);
2824
2825 /* No need to update if the values are already the same */
2826 if (timespec64_equal(a: &update, b: &cur_ts))
2827 return cur_ts;
2828
2829 /*
2830 * Try to swap the nsec value into place. If it fails, that means
2831 * it raced with an update due to a write or similar activity. That
2832 * stamp takes precedence, so just skip the update.
2833 */
2834retry:
2835 old = cur;
2836 if (try_cmpxchg(&inode->i_ctime_nsec, &cur, update.tv_nsec)) {
2837 inode->i_ctime_sec = update.tv_sec;
2838 mgtime_counter_inc(mg_ctime_swaps);
2839 return update;
2840 }
2841
2842 /*
2843 * Was the change due to another task marking the old ctime QUERIED?
2844 *
2845 * If so, then retry the swap. This can only happen once since
2846 * the only way to clear I_CTIME_QUERIED is to stamp the inode
2847 * with a new ctime.
2848 */
2849 if (!(old & I_CTIME_QUERIED) && (cur == (old | I_CTIME_QUERIED)))
2850 goto retry;
2851
2852 /* Otherwise, it was a new timestamp. */
2853 cur_ts.tv_sec = inode->i_ctime_sec;
2854 cur_ts.tv_nsec = cur & ~I_CTIME_QUERIED;
2855 return cur_ts;
2856}
2857EXPORT_SYMBOL(inode_set_ctime_deleg);
2858
2859/**
2860 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2861 * @idmap: idmap of the mount @inode was found from
2862 * @inode: inode to check
2863 * @vfsgid: the new/current vfsgid of @inode
2864 *
2865 * Check whether @vfsgid is in the caller's group list or if the caller is
2866 * privileged with CAP_FSETID over @inode. This can be used to determine
2867 * whether the setgid bit can be kept or must be dropped.
2868 *
2869 * Return: true if the caller is sufficiently privileged, false if not.
2870 */
2871bool in_group_or_capable(struct mnt_idmap *idmap,
2872 const struct inode *inode, vfsgid_t vfsgid)
2873{
2874 if (vfsgid_in_group_p(vfsgid))
2875 return true;
2876 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2877 return true;
2878 return false;
2879}
2880EXPORT_SYMBOL(in_group_or_capable);
2881
2882/**
2883 * mode_strip_sgid - handle the sgid bit for non-directories
2884 * @idmap: idmap of the mount the inode was created from
2885 * @dir: parent directory inode
2886 * @mode: mode of the file to be created in @dir
2887 *
2888 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2889 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2890 * either in the group of the parent directory or they have CAP_FSETID
2891 * in their user namespace and are privileged over the parent directory.
2892 * In all other cases, strip the S_ISGID bit from @mode.
2893 *
2894 * Return: the new mode to use for the file
2895 */
2896umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2897 const struct inode *dir, umode_t mode)
2898{
2899 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2900 return mode;
2901 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2902 return mode;
2903 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, inode: dir)))
2904 return mode;
2905 return mode & ~S_ISGID;
2906}
2907EXPORT_SYMBOL(mode_strip_sgid);
2908
2909#ifdef CONFIG_DEBUG_VFS
2910/*
2911 * Dump an inode.
2912 *
2913 * TODO: add a proper inode dumping routine, this is a stub to get debug off the
2914 * ground.
2915 */
2916void dump_inode(struct inode *inode, const char *reason)
2917{
2918 pr_warn("%s encountered for inode %px", reason, inode);
2919}
2920
2921EXPORT_SYMBOL(dump_inode);
2922#endif
2923

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/fs/inode.c