1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7#include <linux/blkdev.h>
8#include <linux/export.h>
9#include <linux/pagemap.h>
10#include <linux/slab.h>
11#include <linux/cred.h>
12#include <linux/mount.h>
13#include <linux/vfs.h>
14#include <linux/quotaops.h>
15#include <linux/mutex.h>
16#include <linux/namei.h>
17#include <linux/exportfs.h>
18#include <linux/iversion.h>
19#include <linux/writeback.h>
20#include <linux/buffer_head.h> /* sync_mapping_buffers */
21#include <linux/fs_context.h>
22#include <linux/pseudo_fs.h>
23#include <linux/fsnotify.h>
24#include <linux/unicode.h>
25#include <linux/fscrypt.h>
26
27#include <linux/uaccess.h>
28
29#include "internal.h"
30
31int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
34{
35 struct inode *inode = d_inode(dentry: path->dentry);
36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 return 0;
39}
40EXPORT_SYMBOL(simple_getattr);
41
42int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43{
44 u64 id = huge_encode_dev(dev: dentry->d_sb->s_dev);
45
46 buf->f_fsid = u64_to_fsid(v: id);
47 buf->f_type = dentry->d_sb->s_magic;
48 buf->f_bsize = PAGE_SIZE;
49 buf->f_namelen = NAME_MAX;
50 return 0;
51}
52EXPORT_SYMBOL(simple_statfs);
53
54/*
55 * Retaining negative dentries for an in-memory filesystem just wastes
56 * memory and lookup time: arrange for them to be deleted immediately.
57 */
58int always_delete_dentry(const struct dentry *dentry)
59{
60 return 1;
61}
62EXPORT_SYMBOL(always_delete_dentry);
63
64const struct dentry_operations simple_dentry_operations = {
65 .d_delete = always_delete_dentry,
66};
67EXPORT_SYMBOL(simple_dentry_operations);
68
69/*
70 * Lookup the data. This is trivial - if the dentry didn't already
71 * exist, we know it is negative. Set d_op to delete negative dentries.
72 */
73struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
74{
75 if (dentry->d_name.len > NAME_MAX)
76 return ERR_PTR(error: -ENAMETOOLONG);
77 if (!dentry->d_sb->s_d_op)
78 d_set_d_op(dentry, op: &simple_dentry_operations);
79 d_add(dentry, NULL);
80 return NULL;
81}
82EXPORT_SYMBOL(simple_lookup);
83
84int dcache_dir_open(struct inode *inode, struct file *file)
85{
86 file->private_data = d_alloc_cursor(file->f_path.dentry);
87
88 return file->private_data ? 0 : -ENOMEM;
89}
90EXPORT_SYMBOL(dcache_dir_open);
91
92int dcache_dir_close(struct inode *inode, struct file *file)
93{
94 dput(file->private_data);
95 return 0;
96}
97EXPORT_SYMBOL(dcache_dir_close);
98
99/* parent is locked at least shared */
100/*
101 * Returns an element of siblings' list.
102 * We are looking for <count>th positive after <p>; if
103 * found, dentry is grabbed and returned to caller.
104 * If no such element exists, NULL is returned.
105 */
106static struct dentry *scan_positives(struct dentry *cursor,
107 struct list_head *p,
108 loff_t count,
109 struct dentry *last)
110{
111 struct dentry *dentry = cursor->d_parent, *found = NULL;
112
113 spin_lock(lock: &dentry->d_lock);
114 while ((p = p->next) != &dentry->d_subdirs) {
115 struct dentry *d = list_entry(p, struct dentry, d_child);
116 // we must at least skip cursors, to avoid livelocks
117 if (d->d_flags & DCACHE_DENTRY_CURSOR)
118 continue;
119 if (simple_positive(dentry: d) && !--count) {
120 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
121 if (simple_positive(dentry: d))
122 found = dget_dlock(dentry: d);
123 spin_unlock(lock: &d->d_lock);
124 if (likely(found))
125 break;
126 count = 1;
127 }
128 if (need_resched()) {
129 list_move(list: &cursor->d_child, head: p);
130 p = &cursor->d_child;
131 spin_unlock(lock: &dentry->d_lock);
132 cond_resched();
133 spin_lock(lock: &dentry->d_lock);
134 }
135 }
136 spin_unlock(lock: &dentry->d_lock);
137 dput(last);
138 return found;
139}
140
141loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
142{
143 struct dentry *dentry = file->f_path.dentry;
144 switch (whence) {
145 case 1:
146 offset += file->f_pos;
147 fallthrough;
148 case 0:
149 if (offset >= 0)
150 break;
151 fallthrough;
152 default:
153 return -EINVAL;
154 }
155 if (offset != file->f_pos) {
156 struct dentry *cursor = file->private_data;
157 struct dentry *to = NULL;
158
159 inode_lock_shared(inode: dentry->d_inode);
160
161 if (offset > 2)
162 to = scan_positives(cursor, p: &dentry->d_subdirs,
163 count: offset - 2, NULL);
164 spin_lock(lock: &dentry->d_lock);
165 if (to)
166 list_move(list: &cursor->d_child, head: &to->d_child);
167 else
168 list_del_init(entry: &cursor->d_child);
169 spin_unlock(lock: &dentry->d_lock);
170 dput(to);
171
172 file->f_pos = offset;
173
174 inode_unlock_shared(inode: dentry->d_inode);
175 }
176 return offset;
177}
178EXPORT_SYMBOL(dcache_dir_lseek);
179
180/*
181 * Directory is locked and all positive dentries in it are safe, since
182 * for ramfs-type trees they can't go away without unlink() or rmdir(),
183 * both impossible due to the lock on directory.
184 */
185
186int dcache_readdir(struct file *file, struct dir_context *ctx)
187{
188 struct dentry *dentry = file->f_path.dentry;
189 struct dentry *cursor = file->private_data;
190 struct list_head *anchor = &dentry->d_subdirs;
191 struct dentry *next = NULL;
192 struct list_head *p;
193
194 if (!dir_emit_dots(file, ctx))
195 return 0;
196
197 if (ctx->pos == 2)
198 p = anchor;
199 else if (!list_empty(head: &cursor->d_child))
200 p = &cursor->d_child;
201 else
202 return 0;
203
204 while ((next = scan_positives(cursor, p, count: 1, last: next)) != NULL) {
205 if (!dir_emit(ctx, name: next->d_name.name, namelen: next->d_name.len,
206 ino: d_inode(dentry: next)->i_ino,
207 type: fs_umode_to_dtype(mode: d_inode(dentry: next)->i_mode)))
208 break;
209 ctx->pos++;
210 p = &next->d_child;
211 }
212 spin_lock(lock: &dentry->d_lock);
213 if (next)
214 list_move_tail(list: &cursor->d_child, head: &next->d_child);
215 else
216 list_del_init(entry: &cursor->d_child);
217 spin_unlock(lock: &dentry->d_lock);
218 dput(next);
219
220 return 0;
221}
222EXPORT_SYMBOL(dcache_readdir);
223
224ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225{
226 return -EISDIR;
227}
228EXPORT_SYMBOL(generic_read_dir);
229
230const struct file_operations simple_dir_operations = {
231 .open = dcache_dir_open,
232 .release = dcache_dir_close,
233 .llseek = dcache_dir_lseek,
234 .read = generic_read_dir,
235 .iterate_shared = dcache_readdir,
236 .fsync = noop_fsync,
237};
238EXPORT_SYMBOL(simple_dir_operations);
239
240const struct inode_operations simple_dir_inode_operations = {
241 .lookup = simple_lookup,
242};
243EXPORT_SYMBOL(simple_dir_inode_operations);
244
245static void offset_set(struct dentry *dentry, u32 offset)
246{
247 dentry->d_fsdata = (void *)((uintptr_t)(offset));
248}
249
250static u32 dentry2offset(struct dentry *dentry)
251{
252 return (u32)((uintptr_t)(dentry->d_fsdata));
253}
254
255static struct lock_class_key simple_offset_xa_lock;
256
257/**
258 * simple_offset_init - initialize an offset_ctx
259 * @octx: directory offset map to be initialized
260 *
261 */
262void simple_offset_init(struct offset_ctx *octx)
263{
264 xa_init_flags(xa: &octx->xa, XA_FLAGS_ALLOC1);
265 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
266
267 /* 0 is '.', 1 is '..', so always start with offset 2 */
268 octx->next_offset = 2;
269}
270
271/**
272 * simple_offset_add - Add an entry to a directory's offset map
273 * @octx: directory offset ctx to be updated
274 * @dentry: new dentry being added
275 *
276 * Returns zero on success. @so_ctx and the dentry offset are updated.
277 * Otherwise, a negative errno value is returned.
278 */
279int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
280{
281 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
282 u32 offset;
283 int ret;
284
285 if (dentry2offset(dentry) != 0)
286 return -EBUSY;
287
288 ret = xa_alloc_cyclic(xa: &octx->xa, id: &offset, entry: dentry, limit,
289 next: &octx->next_offset, GFP_KERNEL);
290 if (ret < 0)
291 return ret;
292
293 offset_set(dentry, offset);
294 return 0;
295}
296
297/**
298 * simple_offset_remove - Remove an entry to a directory's offset map
299 * @octx: directory offset ctx to be updated
300 * @dentry: dentry being removed
301 *
302 */
303void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
304{
305 u32 offset;
306
307 offset = dentry2offset(dentry);
308 if (offset == 0)
309 return;
310
311 xa_erase(&octx->xa, index: offset);
312 offset_set(dentry, offset: 0);
313}
314
315/**
316 * simple_offset_rename_exchange - exchange rename with directory offsets
317 * @old_dir: parent of dentry being moved
318 * @old_dentry: dentry being moved
319 * @new_dir: destination parent
320 * @new_dentry: destination dentry
321 *
322 * Returns zero on success. Otherwise a negative errno is returned and the
323 * rename is rolled back.
324 */
325int simple_offset_rename_exchange(struct inode *old_dir,
326 struct dentry *old_dentry,
327 struct inode *new_dir,
328 struct dentry *new_dentry)
329{
330 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
331 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
332 u32 old_index = dentry2offset(dentry: old_dentry);
333 u32 new_index = dentry2offset(dentry: new_dentry);
334 int ret;
335
336 simple_offset_remove(octx: old_ctx, dentry: old_dentry);
337 simple_offset_remove(octx: new_ctx, dentry: new_dentry);
338
339 ret = simple_offset_add(octx: new_ctx, dentry: old_dentry);
340 if (ret)
341 goto out_restore;
342
343 ret = simple_offset_add(octx: old_ctx, dentry: new_dentry);
344 if (ret) {
345 simple_offset_remove(octx: new_ctx, dentry: old_dentry);
346 goto out_restore;
347 }
348
349 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
350 if (ret) {
351 simple_offset_remove(octx: new_ctx, dentry: old_dentry);
352 simple_offset_remove(octx: old_ctx, dentry: new_dentry);
353 goto out_restore;
354 }
355 return 0;
356
357out_restore:
358 offset_set(dentry: old_dentry, offset: old_index);
359 xa_store(&old_ctx->xa, index: old_index, entry: old_dentry, GFP_KERNEL);
360 offset_set(dentry: new_dentry, offset: new_index);
361 xa_store(&new_ctx->xa, index: new_index, entry: new_dentry, GFP_KERNEL);
362 return ret;
363}
364
365/**
366 * simple_offset_destroy - Release offset map
367 * @octx: directory offset ctx that is about to be destroyed
368 *
369 * During fs teardown (eg. umount), a directory's offset map might still
370 * contain entries. xa_destroy() cleans out anything that remains.
371 */
372void simple_offset_destroy(struct offset_ctx *octx)
373{
374 xa_destroy(&octx->xa);
375}
376
377/**
378 * offset_dir_llseek - Advance the read position of a directory descriptor
379 * @file: an open directory whose position is to be updated
380 * @offset: a byte offset
381 * @whence: enumerator describing the starting position for this update
382 *
383 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
384 *
385 * Returns the updated read position if successful; otherwise a
386 * negative errno is returned and the read position remains unchanged.
387 */
388static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
389{
390 switch (whence) {
391 case SEEK_CUR:
392 offset += file->f_pos;
393 fallthrough;
394 case SEEK_SET:
395 if (offset >= 0)
396 break;
397 fallthrough;
398 default:
399 return -EINVAL;
400 }
401
402 return vfs_setpos(file, offset, U32_MAX);
403}
404
405static struct dentry *offset_find_next(struct xa_state *xas)
406{
407 struct dentry *child, *found = NULL;
408
409 rcu_read_lock();
410 child = xas_next_entry(xas, U32_MAX);
411 if (!child)
412 goto out;
413 spin_lock(lock: &child->d_lock);
414 if (simple_positive(dentry: child))
415 found = dget_dlock(dentry: child);
416 spin_unlock(lock: &child->d_lock);
417out:
418 rcu_read_unlock();
419 return found;
420}
421
422static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
423{
424 u32 offset = dentry2offset(dentry);
425 struct inode *inode = d_inode(dentry);
426
427 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
428 inode->i_ino, fs_umode_to_dtype(mode: inode->i_mode));
429}
430
431static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
432{
433 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
434 XA_STATE(xas, &so_ctx->xa, ctx->pos);
435 struct dentry *dentry;
436
437 while (true) {
438 dentry = offset_find_next(xas: &xas);
439 if (!dentry)
440 break;
441
442 if (!offset_dir_emit(ctx, dentry)) {
443 dput(dentry);
444 break;
445 }
446
447 dput(dentry);
448 ctx->pos = xas.xa_index + 1;
449 }
450}
451
452/**
453 * offset_readdir - Emit entries starting at offset @ctx->pos
454 * @file: an open directory to iterate over
455 * @ctx: directory iteration context
456 *
457 * Caller must hold @file's i_rwsem to prevent insertion or removal of
458 * entries during this call.
459 *
460 * On entry, @ctx->pos contains an offset that represents the first entry
461 * to be read from the directory.
462 *
463 * The operation continues until there are no more entries to read, or
464 * until the ctx->actor indicates there is no more space in the caller's
465 * output buffer.
466 *
467 * On return, @ctx->pos contains an offset that will read the next entry
468 * in this directory when offset_readdir() is called again with @ctx.
469 *
470 * Return values:
471 * %0 - Complete
472 */
473static int offset_readdir(struct file *file, struct dir_context *ctx)
474{
475 struct dentry *dir = file->f_path.dentry;
476
477 lockdep_assert_held(&d_inode(dir)->i_rwsem);
478
479 if (!dir_emit_dots(file, ctx))
480 return 0;
481
482 offset_iterate_dir(inode: d_inode(dentry: dir), ctx);
483 return 0;
484}
485
486const struct file_operations simple_offset_dir_operations = {
487 .llseek = offset_dir_llseek,
488 .iterate_shared = offset_readdir,
489 .read = generic_read_dir,
490 .fsync = noop_fsync,
491};
492
493static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
494{
495 struct dentry *child = NULL;
496 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
497
498 spin_lock(lock: &parent->d_lock);
499 while ((p = p->next) != &parent->d_subdirs) {
500 struct dentry *d = container_of(p, struct dentry, d_child);
501 if (simple_positive(dentry: d)) {
502 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
503 if (simple_positive(dentry: d))
504 child = dget_dlock(dentry: d);
505 spin_unlock(lock: &d->d_lock);
506 if (likely(child))
507 break;
508 }
509 }
510 spin_unlock(lock: &parent->d_lock);
511 dput(prev);
512 return child;
513}
514
515void simple_recursive_removal(struct dentry *dentry,
516 void (*callback)(struct dentry *))
517{
518 struct dentry *this = dget(dentry);
519 while (true) {
520 struct dentry *victim = NULL, *child;
521 struct inode *inode = this->d_inode;
522
523 inode_lock(inode);
524 if (d_is_dir(dentry: this))
525 inode->i_flags |= S_DEAD;
526 while ((child = find_next_child(parent: this, prev: victim)) == NULL) {
527 // kill and ascend
528 // update metadata while it's still locked
529 inode_set_ctime_current(inode);
530 clear_nlink(inode);
531 inode_unlock(inode);
532 victim = this;
533 this = this->d_parent;
534 inode = this->d_inode;
535 inode_lock(inode);
536 if (simple_positive(dentry: victim)) {
537 d_invalidate(victim); // avoid lost mounts
538 if (d_is_dir(dentry: victim))
539 fsnotify_rmdir(dir: inode, dentry: victim);
540 else
541 fsnotify_unlink(dir: inode, dentry: victim);
542 if (callback)
543 callback(victim);
544 dput(victim); // unpin it
545 }
546 if (victim == dentry) {
547 inode_set_mtime_to_ts(inode,
548 ts: inode_set_ctime_current(inode));
549 if (d_is_dir(dentry))
550 drop_nlink(inode);
551 inode_unlock(inode);
552 dput(dentry);
553 return;
554 }
555 }
556 inode_unlock(inode);
557 this = child;
558 }
559}
560EXPORT_SYMBOL(simple_recursive_removal);
561
562static const struct super_operations simple_super_operations = {
563 .statfs = simple_statfs,
564};
565
566static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
567{
568 struct pseudo_fs_context *ctx = fc->fs_private;
569 struct inode *root;
570
571 s->s_maxbytes = MAX_LFS_FILESIZE;
572 s->s_blocksize = PAGE_SIZE;
573 s->s_blocksize_bits = PAGE_SHIFT;
574 s->s_magic = ctx->magic;
575 s->s_op = ctx->ops ?: &simple_super_operations;
576 s->s_xattr = ctx->xattr;
577 s->s_time_gran = 1;
578 root = new_inode(sb: s);
579 if (!root)
580 return -ENOMEM;
581
582 /*
583 * since this is the first inode, make it number 1. New inodes created
584 * after this must take care not to collide with it (by passing
585 * max_reserved of 1 to iunique).
586 */
587 root->i_ino = 1;
588 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
589 simple_inode_init_ts(inode: root);
590 s->s_root = d_make_root(root);
591 if (!s->s_root)
592 return -ENOMEM;
593 s->s_d_op = ctx->dops;
594 return 0;
595}
596
597static int pseudo_fs_get_tree(struct fs_context *fc)
598{
599 return get_tree_nodev(fc, fill_super: pseudo_fs_fill_super);
600}
601
602static void pseudo_fs_free(struct fs_context *fc)
603{
604 kfree(objp: fc->fs_private);
605}
606
607static const struct fs_context_operations pseudo_fs_context_ops = {
608 .free = pseudo_fs_free,
609 .get_tree = pseudo_fs_get_tree,
610};
611
612/*
613 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
614 * will never be mountable)
615 */
616struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
617 unsigned long magic)
618{
619 struct pseudo_fs_context *ctx;
620
621 ctx = kzalloc(size: sizeof(struct pseudo_fs_context), GFP_KERNEL);
622 if (likely(ctx)) {
623 ctx->magic = magic;
624 fc->fs_private = ctx;
625 fc->ops = &pseudo_fs_context_ops;
626 fc->sb_flags |= SB_NOUSER;
627 fc->global = true;
628 }
629 return ctx;
630}
631EXPORT_SYMBOL(init_pseudo);
632
633int simple_open(struct inode *inode, struct file *file)
634{
635 if (inode->i_private)
636 file->private_data = inode->i_private;
637 return 0;
638}
639EXPORT_SYMBOL(simple_open);
640
641int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
642{
643 struct inode *inode = d_inode(dentry: old_dentry);
644
645 inode_set_mtime_to_ts(inode: dir,
646 ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode)));
647 inc_nlink(inode);
648 ihold(inode);
649 dget(dentry);
650 d_instantiate(dentry, inode);
651 return 0;
652}
653EXPORT_SYMBOL(simple_link);
654
655int simple_empty(struct dentry *dentry)
656{
657 struct dentry *child;
658 int ret = 0;
659
660 spin_lock(lock: &dentry->d_lock);
661 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
662 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
663 if (simple_positive(dentry: child)) {
664 spin_unlock(lock: &child->d_lock);
665 goto out;
666 }
667 spin_unlock(lock: &child->d_lock);
668 }
669 ret = 1;
670out:
671 spin_unlock(lock: &dentry->d_lock);
672 return ret;
673}
674EXPORT_SYMBOL(simple_empty);
675
676int simple_unlink(struct inode *dir, struct dentry *dentry)
677{
678 struct inode *inode = d_inode(dentry);
679
680 inode_set_mtime_to_ts(inode: dir,
681 ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode)));
682 drop_nlink(inode);
683 dput(dentry);
684 return 0;
685}
686EXPORT_SYMBOL(simple_unlink);
687
688int simple_rmdir(struct inode *dir, struct dentry *dentry)
689{
690 if (!simple_empty(dentry))
691 return -ENOTEMPTY;
692
693 drop_nlink(inode: d_inode(dentry));
694 simple_unlink(dir, dentry);
695 drop_nlink(inode: dir);
696 return 0;
697}
698EXPORT_SYMBOL(simple_rmdir);
699
700/**
701 * simple_rename_timestamp - update the various inode timestamps for rename
702 * @old_dir: old parent directory
703 * @old_dentry: dentry that is being renamed
704 * @new_dir: new parent directory
705 * @new_dentry: target for rename
706 *
707 * POSIX mandates that the old and new parent directories have their ctime and
708 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
709 * their ctime updated.
710 */
711void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
712 struct inode *new_dir, struct dentry *new_dentry)
713{
714 struct inode *newino = d_inode(dentry: new_dentry);
715
716 inode_set_mtime_to_ts(inode: old_dir, ts: inode_set_ctime_current(inode: old_dir));
717 if (new_dir != old_dir)
718 inode_set_mtime_to_ts(inode: new_dir,
719 ts: inode_set_ctime_current(inode: new_dir));
720 inode_set_ctime_current(inode: d_inode(dentry: old_dentry));
721 if (newino)
722 inode_set_ctime_current(inode: newino);
723}
724EXPORT_SYMBOL_GPL(simple_rename_timestamp);
725
726int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
727 struct inode *new_dir, struct dentry *new_dentry)
728{
729 bool old_is_dir = d_is_dir(dentry: old_dentry);
730 bool new_is_dir = d_is_dir(dentry: new_dentry);
731
732 if (old_dir != new_dir && old_is_dir != new_is_dir) {
733 if (old_is_dir) {
734 drop_nlink(inode: old_dir);
735 inc_nlink(inode: new_dir);
736 } else {
737 drop_nlink(inode: new_dir);
738 inc_nlink(inode: old_dir);
739 }
740 }
741 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
742 return 0;
743}
744EXPORT_SYMBOL_GPL(simple_rename_exchange);
745
746int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
747 struct dentry *old_dentry, struct inode *new_dir,
748 struct dentry *new_dentry, unsigned int flags)
749{
750 int they_are_dirs = d_is_dir(dentry: old_dentry);
751
752 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
753 return -EINVAL;
754
755 if (flags & RENAME_EXCHANGE)
756 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
757
758 if (!simple_empty(new_dentry))
759 return -ENOTEMPTY;
760
761 if (d_really_is_positive(dentry: new_dentry)) {
762 simple_unlink(new_dir, new_dentry);
763 if (they_are_dirs) {
764 drop_nlink(inode: d_inode(dentry: new_dentry));
765 drop_nlink(inode: old_dir);
766 }
767 } else if (they_are_dirs) {
768 drop_nlink(inode: old_dir);
769 inc_nlink(inode: new_dir);
770 }
771
772 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
773 return 0;
774}
775EXPORT_SYMBOL(simple_rename);
776
777/**
778 * simple_setattr - setattr for simple filesystem
779 * @idmap: idmap of the target mount
780 * @dentry: dentry
781 * @iattr: iattr structure
782 *
783 * Returns 0 on success, -error on failure.
784 *
785 * simple_setattr is a simple ->setattr implementation without a proper
786 * implementation of size changes.
787 *
788 * It can either be used for in-memory filesystems or special files
789 * on simple regular filesystems. Anything that needs to change on-disk
790 * or wire state on size changes needs its own setattr method.
791 */
792int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
793 struct iattr *iattr)
794{
795 struct inode *inode = d_inode(dentry);
796 int error;
797
798 error = setattr_prepare(idmap, dentry, iattr);
799 if (error)
800 return error;
801
802 if (iattr->ia_valid & ATTR_SIZE)
803 truncate_setsize(inode, newsize: iattr->ia_size);
804 setattr_copy(idmap, inode, attr: iattr);
805 mark_inode_dirty(inode);
806 return 0;
807}
808EXPORT_SYMBOL(simple_setattr);
809
810static int simple_read_folio(struct file *file, struct folio *folio)
811{
812 folio_zero_range(folio, start: 0, length: folio_size(folio));
813 flush_dcache_folio(folio);
814 folio_mark_uptodate(folio);
815 folio_unlock(folio);
816 return 0;
817}
818
819int simple_write_begin(struct file *file, struct address_space *mapping,
820 loff_t pos, unsigned len,
821 struct page **pagep, void **fsdata)
822{
823 struct folio *folio;
824
825 folio = __filemap_get_folio(mapping, index: pos / PAGE_SIZE, FGP_WRITEBEGIN,
826 gfp: mapping_gfp_mask(mapping));
827 if (IS_ERR(ptr: folio))
828 return PTR_ERR(ptr: folio);
829
830 *pagep = &folio->page;
831
832 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
833 size_t from = offset_in_folio(folio, pos);
834
835 folio_zero_segments(folio, start1: 0, xend1: from,
836 start2: from + len, xend2: folio_size(folio));
837 }
838 return 0;
839}
840EXPORT_SYMBOL(simple_write_begin);
841
842/**
843 * simple_write_end - .write_end helper for non-block-device FSes
844 * @file: See .write_end of address_space_operations
845 * @mapping: "
846 * @pos: "
847 * @len: "
848 * @copied: "
849 * @page: "
850 * @fsdata: "
851 *
852 * simple_write_end does the minimum needed for updating a page after writing is
853 * done. It has the same API signature as the .write_end of
854 * address_space_operations vector. So it can just be set onto .write_end for
855 * FSes that don't need any other processing. i_mutex is assumed to be held.
856 * Block based filesystems should use generic_write_end().
857 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
858 * is not called, so a filesystem that actually does store data in .write_inode
859 * should extend on what's done here with a call to mark_inode_dirty() in the
860 * case that i_size has changed.
861 *
862 * Use *ONLY* with simple_read_folio()
863 */
864static int simple_write_end(struct file *file, struct address_space *mapping,
865 loff_t pos, unsigned len, unsigned copied,
866 struct page *page, void *fsdata)
867{
868 struct folio *folio = page_folio(page);
869 struct inode *inode = folio->mapping->host;
870 loff_t last_pos = pos + copied;
871
872 /* zero the stale part of the folio if we did a short copy */
873 if (!folio_test_uptodate(folio)) {
874 if (copied < len) {
875 size_t from = offset_in_folio(folio, pos);
876
877 folio_zero_range(folio, start: from + copied, length: len - copied);
878 }
879 folio_mark_uptodate(folio);
880 }
881 /*
882 * No need to use i_size_read() here, the i_size
883 * cannot change under us because we hold the i_mutex.
884 */
885 if (last_pos > inode->i_size)
886 i_size_write(inode, i_size: last_pos);
887
888 folio_mark_dirty(folio);
889 folio_unlock(folio);
890 folio_put(folio);
891
892 return copied;
893}
894
895/*
896 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
897 */
898const struct address_space_operations ram_aops = {
899 .read_folio = simple_read_folio,
900 .write_begin = simple_write_begin,
901 .write_end = simple_write_end,
902 .dirty_folio = noop_dirty_folio,
903};
904EXPORT_SYMBOL(ram_aops);
905
906/*
907 * the inodes created here are not hashed. If you use iunique to generate
908 * unique inode values later for this filesystem, then you must take care
909 * to pass it an appropriate max_reserved value to avoid collisions.
910 */
911int simple_fill_super(struct super_block *s, unsigned long magic,
912 const struct tree_descr *files)
913{
914 struct inode *inode;
915 struct dentry *root;
916 struct dentry *dentry;
917 int i;
918
919 s->s_blocksize = PAGE_SIZE;
920 s->s_blocksize_bits = PAGE_SHIFT;
921 s->s_magic = magic;
922 s->s_op = &simple_super_operations;
923 s->s_time_gran = 1;
924
925 inode = new_inode(sb: s);
926 if (!inode)
927 return -ENOMEM;
928 /*
929 * because the root inode is 1, the files array must not contain an
930 * entry at index 1
931 */
932 inode->i_ino = 1;
933 inode->i_mode = S_IFDIR | 0755;
934 simple_inode_init_ts(inode);
935 inode->i_op = &simple_dir_inode_operations;
936 inode->i_fop = &simple_dir_operations;
937 set_nlink(inode, nlink: 2);
938 root = d_make_root(inode);
939 if (!root)
940 return -ENOMEM;
941 for (i = 0; !files->name || files->name[0]; i++, files++) {
942 if (!files->name)
943 continue;
944
945 /* warn if it tries to conflict with the root inode */
946 if (unlikely(i == 1))
947 printk(KERN_WARNING "%s: %s passed in a files array"
948 "with an index of 1!\n", __func__,
949 s->s_type->name);
950
951 dentry = d_alloc_name(root, files->name);
952 if (!dentry)
953 goto out;
954 inode = new_inode(sb: s);
955 if (!inode) {
956 dput(dentry);
957 goto out;
958 }
959 inode->i_mode = S_IFREG | files->mode;
960 simple_inode_init_ts(inode);
961 inode->i_fop = files->ops;
962 inode->i_ino = i;
963 d_add(dentry, inode);
964 }
965 s->s_root = root;
966 return 0;
967out:
968 d_genocide(root);
969 shrink_dcache_parent(root);
970 dput(root);
971 return -ENOMEM;
972}
973EXPORT_SYMBOL(simple_fill_super);
974
975static DEFINE_SPINLOCK(pin_fs_lock);
976
977int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
978{
979 struct vfsmount *mnt = NULL;
980 spin_lock(lock: &pin_fs_lock);
981 if (unlikely(!*mount)) {
982 spin_unlock(lock: &pin_fs_lock);
983 mnt = vfs_kern_mount(type, SB_KERNMOUNT, name: type->name, NULL);
984 if (IS_ERR(ptr: mnt))
985 return PTR_ERR(ptr: mnt);
986 spin_lock(lock: &pin_fs_lock);
987 if (!*mount)
988 *mount = mnt;
989 }
990 mntget(mnt: *mount);
991 ++*count;
992 spin_unlock(lock: &pin_fs_lock);
993 mntput(mnt);
994 return 0;
995}
996EXPORT_SYMBOL(simple_pin_fs);
997
998void simple_release_fs(struct vfsmount **mount, int *count)
999{
1000 struct vfsmount *mnt;
1001 spin_lock(lock: &pin_fs_lock);
1002 mnt = *mount;
1003 if (!--*count)
1004 *mount = NULL;
1005 spin_unlock(lock: &pin_fs_lock);
1006 mntput(mnt);
1007}
1008EXPORT_SYMBOL(simple_release_fs);
1009
1010/**
1011 * simple_read_from_buffer - copy data from the buffer to user space
1012 * @to: the user space buffer to read to
1013 * @count: the maximum number of bytes to read
1014 * @ppos: the current position in the buffer
1015 * @from: the buffer to read from
1016 * @available: the size of the buffer
1017 *
1018 * The simple_read_from_buffer() function reads up to @count bytes from the
1019 * buffer @from at offset @ppos into the user space address starting at @to.
1020 *
1021 * On success, the number of bytes read is returned and the offset @ppos is
1022 * advanced by this number, or negative value is returned on error.
1023 **/
1024ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1025 const void *from, size_t available)
1026{
1027 loff_t pos = *ppos;
1028 size_t ret;
1029
1030 if (pos < 0)
1031 return -EINVAL;
1032 if (pos >= available || !count)
1033 return 0;
1034 if (count > available - pos)
1035 count = available - pos;
1036 ret = copy_to_user(to, from: from + pos, n: count);
1037 if (ret == count)
1038 return -EFAULT;
1039 count -= ret;
1040 *ppos = pos + count;
1041 return count;
1042}
1043EXPORT_SYMBOL(simple_read_from_buffer);
1044
1045/**
1046 * simple_write_to_buffer - copy data from user space to the buffer
1047 * @to: the buffer to write to
1048 * @available: the size of the buffer
1049 * @ppos: the current position in the buffer
1050 * @from: the user space buffer to read from
1051 * @count: the maximum number of bytes to read
1052 *
1053 * The simple_write_to_buffer() function reads up to @count bytes from the user
1054 * space address starting at @from into the buffer @to at offset @ppos.
1055 *
1056 * On success, the number of bytes written is returned and the offset @ppos is
1057 * advanced by this number, or negative value is returned on error.
1058 **/
1059ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1060 const void __user *from, size_t count)
1061{
1062 loff_t pos = *ppos;
1063 size_t res;
1064
1065 if (pos < 0)
1066 return -EINVAL;
1067 if (pos >= available || !count)
1068 return 0;
1069 if (count > available - pos)
1070 count = available - pos;
1071 res = copy_from_user(to: to + pos, from, n: count);
1072 if (res == count)
1073 return -EFAULT;
1074 count -= res;
1075 *ppos = pos + count;
1076 return count;
1077}
1078EXPORT_SYMBOL(simple_write_to_buffer);
1079
1080/**
1081 * memory_read_from_buffer - copy data from the buffer
1082 * @to: the kernel space buffer to read to
1083 * @count: the maximum number of bytes to read
1084 * @ppos: the current position in the buffer
1085 * @from: the buffer to read from
1086 * @available: the size of the buffer
1087 *
1088 * The memory_read_from_buffer() function reads up to @count bytes from the
1089 * buffer @from at offset @ppos into the kernel space address starting at @to.
1090 *
1091 * On success, the number of bytes read is returned and the offset @ppos is
1092 * advanced by this number, or negative value is returned on error.
1093 **/
1094ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1095 const void *from, size_t available)
1096{
1097 loff_t pos = *ppos;
1098
1099 if (pos < 0)
1100 return -EINVAL;
1101 if (pos >= available)
1102 return 0;
1103 if (count > available - pos)
1104 count = available - pos;
1105 memcpy(to, from + pos, count);
1106 *ppos = pos + count;
1107
1108 return count;
1109}
1110EXPORT_SYMBOL(memory_read_from_buffer);
1111
1112/*
1113 * Transaction based IO.
1114 * The file expects a single write which triggers the transaction, and then
1115 * possibly a read which collects the result - which is stored in a
1116 * file-local buffer.
1117 */
1118
1119void simple_transaction_set(struct file *file, size_t n)
1120{
1121 struct simple_transaction_argresp *ar = file->private_data;
1122
1123 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1124
1125 /*
1126 * The barrier ensures that ar->size will really remain zero until
1127 * ar->data is ready for reading.
1128 */
1129 smp_mb();
1130 ar->size = n;
1131}
1132EXPORT_SYMBOL(simple_transaction_set);
1133
1134char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1135{
1136 struct simple_transaction_argresp *ar;
1137 static DEFINE_SPINLOCK(simple_transaction_lock);
1138
1139 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1140 return ERR_PTR(error: -EFBIG);
1141
1142 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1143 if (!ar)
1144 return ERR_PTR(error: -ENOMEM);
1145
1146 spin_lock(lock: &simple_transaction_lock);
1147
1148 /* only one write allowed per open */
1149 if (file->private_data) {
1150 spin_unlock(lock: &simple_transaction_lock);
1151 free_page((unsigned long)ar);
1152 return ERR_PTR(error: -EBUSY);
1153 }
1154
1155 file->private_data = ar;
1156
1157 spin_unlock(lock: &simple_transaction_lock);
1158
1159 if (copy_from_user(to: ar->data, from: buf, n: size))
1160 return ERR_PTR(error: -EFAULT);
1161
1162 return ar->data;
1163}
1164EXPORT_SYMBOL(simple_transaction_get);
1165
1166ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1167{
1168 struct simple_transaction_argresp *ar = file->private_data;
1169
1170 if (!ar)
1171 return 0;
1172 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1173}
1174EXPORT_SYMBOL(simple_transaction_read);
1175
1176int simple_transaction_release(struct inode *inode, struct file *file)
1177{
1178 free_page((unsigned long)file->private_data);
1179 return 0;
1180}
1181EXPORT_SYMBOL(simple_transaction_release);
1182
1183/* Simple attribute files */
1184
1185struct simple_attr {
1186 int (*get)(void *, u64 *);
1187 int (*set)(void *, u64);
1188 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1189 char set_buf[24];
1190 void *data;
1191 const char *fmt; /* format for read operation */
1192 struct mutex mutex; /* protects access to these buffers */
1193};
1194
1195/* simple_attr_open is called by an actual attribute open file operation
1196 * to set the attribute specific access operations. */
1197int simple_attr_open(struct inode *inode, struct file *file,
1198 int (*get)(void *, u64 *), int (*set)(void *, u64),
1199 const char *fmt)
1200{
1201 struct simple_attr *attr;
1202
1203 attr = kzalloc(size: sizeof(*attr), GFP_KERNEL);
1204 if (!attr)
1205 return -ENOMEM;
1206
1207 attr->get = get;
1208 attr->set = set;
1209 attr->data = inode->i_private;
1210 attr->fmt = fmt;
1211 mutex_init(&attr->mutex);
1212
1213 file->private_data = attr;
1214
1215 return nonseekable_open(inode, filp: file);
1216}
1217EXPORT_SYMBOL_GPL(simple_attr_open);
1218
1219int simple_attr_release(struct inode *inode, struct file *file)
1220{
1221 kfree(objp: file->private_data);
1222 return 0;
1223}
1224EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1225
1226/* read from the buffer that is filled with the get function */
1227ssize_t simple_attr_read(struct file *file, char __user *buf,
1228 size_t len, loff_t *ppos)
1229{
1230 struct simple_attr *attr;
1231 size_t size;
1232 ssize_t ret;
1233
1234 attr = file->private_data;
1235
1236 if (!attr->get)
1237 return -EACCES;
1238
1239 ret = mutex_lock_interruptible(&attr->mutex);
1240 if (ret)
1241 return ret;
1242
1243 if (*ppos && attr->get_buf[0]) {
1244 /* continued read */
1245 size = strlen(attr->get_buf);
1246 } else {
1247 /* first read */
1248 u64 val;
1249 ret = attr->get(attr->data, &val);
1250 if (ret)
1251 goto out;
1252
1253 size = scnprintf(buf: attr->get_buf, size: sizeof(attr->get_buf),
1254 fmt: attr->fmt, (unsigned long long)val);
1255 }
1256
1257 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1258out:
1259 mutex_unlock(lock: &attr->mutex);
1260 return ret;
1261}
1262EXPORT_SYMBOL_GPL(simple_attr_read);
1263
1264/* interpret the buffer as a number to call the set function with */
1265static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1266 size_t len, loff_t *ppos, bool is_signed)
1267{
1268 struct simple_attr *attr;
1269 unsigned long long val;
1270 size_t size;
1271 ssize_t ret;
1272
1273 attr = file->private_data;
1274 if (!attr->set)
1275 return -EACCES;
1276
1277 ret = mutex_lock_interruptible(&attr->mutex);
1278 if (ret)
1279 return ret;
1280
1281 ret = -EFAULT;
1282 size = min(sizeof(attr->set_buf) - 1, len);
1283 if (copy_from_user(to: attr->set_buf, from: buf, n: size))
1284 goto out;
1285
1286 attr->set_buf[size] = '\0';
1287 if (is_signed)
1288 ret = kstrtoll(s: attr->set_buf, base: 0, res: &val);
1289 else
1290 ret = kstrtoull(s: attr->set_buf, base: 0, res: &val);
1291 if (ret)
1292 goto out;
1293 ret = attr->set(attr->data, val);
1294 if (ret == 0)
1295 ret = len; /* on success, claim we got the whole input */
1296out:
1297 mutex_unlock(lock: &attr->mutex);
1298 return ret;
1299}
1300
1301ssize_t simple_attr_write(struct file *file, const char __user *buf,
1302 size_t len, loff_t *ppos)
1303{
1304 return simple_attr_write_xsigned(file, buf, len, ppos, is_signed: false);
1305}
1306EXPORT_SYMBOL_GPL(simple_attr_write);
1307
1308ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1309 size_t len, loff_t *ppos)
1310{
1311 return simple_attr_write_xsigned(file, buf, len, ppos, is_signed: true);
1312}
1313EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1314
1315/**
1316 * generic_encode_ino32_fh - generic export_operations->encode_fh function
1317 * @inode: the object to encode
1318 * @fh: where to store the file handle fragment
1319 * @max_len: maximum length to store there (in 4 byte units)
1320 * @parent: parent directory inode, if wanted
1321 *
1322 * This generic encode_fh function assumes that the 32 inode number
1323 * is suitable for locating an inode, and that the generation number
1324 * can be used to check that it is still valid. It places them in the
1325 * filehandle fragment where export_decode_fh expects to find them.
1326 */
1327int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len,
1328 struct inode *parent)
1329{
1330 struct fid *fid = (void *)fh;
1331 int len = *max_len;
1332 int type = FILEID_INO32_GEN;
1333
1334 if (parent && (len < 4)) {
1335 *max_len = 4;
1336 return FILEID_INVALID;
1337 } else if (len < 2) {
1338 *max_len = 2;
1339 return FILEID_INVALID;
1340 }
1341
1342 len = 2;
1343 fid->i32.ino = inode->i_ino;
1344 fid->i32.gen = inode->i_generation;
1345 if (parent) {
1346 fid->i32.parent_ino = parent->i_ino;
1347 fid->i32.parent_gen = parent->i_generation;
1348 len = 4;
1349 type = FILEID_INO32_GEN_PARENT;
1350 }
1351 *max_len = len;
1352 return type;
1353}
1354EXPORT_SYMBOL_GPL(generic_encode_ino32_fh);
1355
1356/**
1357 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1358 * @sb: filesystem to do the file handle conversion on
1359 * @fid: file handle to convert
1360 * @fh_len: length of the file handle in bytes
1361 * @fh_type: type of file handle
1362 * @get_inode: filesystem callback to retrieve inode
1363 *
1364 * This function decodes @fid as long as it has one of the well-known
1365 * Linux filehandle types and calls @get_inode on it to retrieve the
1366 * inode for the object specified in the file handle.
1367 */
1368struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1369 int fh_len, int fh_type, struct inode *(*get_inode)
1370 (struct super_block *sb, u64 ino, u32 gen))
1371{
1372 struct inode *inode = NULL;
1373
1374 if (fh_len < 2)
1375 return NULL;
1376
1377 switch (fh_type) {
1378 case FILEID_INO32_GEN:
1379 case FILEID_INO32_GEN_PARENT:
1380 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1381 break;
1382 }
1383
1384 return d_obtain_alias(inode);
1385}
1386EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1387
1388/**
1389 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1390 * @sb: filesystem to do the file handle conversion on
1391 * @fid: file handle to convert
1392 * @fh_len: length of the file handle in bytes
1393 * @fh_type: type of file handle
1394 * @get_inode: filesystem callback to retrieve inode
1395 *
1396 * This function decodes @fid as long as it has one of the well-known
1397 * Linux filehandle types and calls @get_inode on it to retrieve the
1398 * inode for the _parent_ object specified in the file handle if it
1399 * is specified in the file handle, or NULL otherwise.
1400 */
1401struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1402 int fh_len, int fh_type, struct inode *(*get_inode)
1403 (struct super_block *sb, u64 ino, u32 gen))
1404{
1405 struct inode *inode = NULL;
1406
1407 if (fh_len <= 2)
1408 return NULL;
1409
1410 switch (fh_type) {
1411 case FILEID_INO32_GEN_PARENT:
1412 inode = get_inode(sb, fid->i32.parent_ino,
1413 (fh_len > 3 ? fid->i32.parent_gen : 0));
1414 break;
1415 }
1416
1417 return d_obtain_alias(inode);
1418}
1419EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1420
1421/**
1422 * __generic_file_fsync - generic fsync implementation for simple filesystems
1423 *
1424 * @file: file to synchronize
1425 * @start: start offset in bytes
1426 * @end: end offset in bytes (inclusive)
1427 * @datasync: only synchronize essential metadata if true
1428 *
1429 * This is a generic implementation of the fsync method for simple
1430 * filesystems which track all non-inode metadata in the buffers list
1431 * hanging off the address_space structure.
1432 */
1433int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1434 int datasync)
1435{
1436 struct inode *inode = file->f_mapping->host;
1437 int err;
1438 int ret;
1439
1440 err = file_write_and_wait_range(file, start, end);
1441 if (err)
1442 return err;
1443
1444 inode_lock(inode);
1445 ret = sync_mapping_buffers(mapping: inode->i_mapping);
1446 if (!(inode->i_state & I_DIRTY_ALL))
1447 goto out;
1448 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1449 goto out;
1450
1451 err = sync_inode_metadata(inode, wait: 1);
1452 if (ret == 0)
1453 ret = err;
1454
1455out:
1456 inode_unlock(inode);
1457 /* check and advance again to catch errors after syncing out buffers */
1458 err = file_check_and_advance_wb_err(file);
1459 if (ret == 0)
1460 ret = err;
1461 return ret;
1462}
1463EXPORT_SYMBOL(__generic_file_fsync);
1464
1465/**
1466 * generic_file_fsync - generic fsync implementation for simple filesystems
1467 * with flush
1468 * @file: file to synchronize
1469 * @start: start offset in bytes
1470 * @end: end offset in bytes (inclusive)
1471 * @datasync: only synchronize essential metadata if true
1472 *
1473 */
1474
1475int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1476 int datasync)
1477{
1478 struct inode *inode = file->f_mapping->host;
1479 int err;
1480
1481 err = __generic_file_fsync(file, start, end, datasync);
1482 if (err)
1483 return err;
1484 return blkdev_issue_flush(bdev: inode->i_sb->s_bdev);
1485}
1486EXPORT_SYMBOL(generic_file_fsync);
1487
1488/**
1489 * generic_check_addressable - Check addressability of file system
1490 * @blocksize_bits: log of file system block size
1491 * @num_blocks: number of blocks in file system
1492 *
1493 * Determine whether a file system with @num_blocks blocks (and a
1494 * block size of 2**@blocksize_bits) is addressable by the sector_t
1495 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1496 */
1497int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1498{
1499 u64 last_fs_block = num_blocks - 1;
1500 u64 last_fs_page =
1501 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1502
1503 if (unlikely(num_blocks == 0))
1504 return 0;
1505
1506 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1507 return -EINVAL;
1508
1509 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1510 (last_fs_page > (pgoff_t)(~0ULL))) {
1511 return -EFBIG;
1512 }
1513 return 0;
1514}
1515EXPORT_SYMBOL(generic_check_addressable);
1516
1517/*
1518 * No-op implementation of ->fsync for in-memory filesystems.
1519 */
1520int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1521{
1522 return 0;
1523}
1524EXPORT_SYMBOL(noop_fsync);
1525
1526ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1527{
1528 /*
1529 * iomap based filesystems support direct I/O without need for
1530 * this callback. However, it still needs to be set in
1531 * inode->a_ops so that open/fcntl know that direct I/O is
1532 * generally supported.
1533 */
1534 return -EINVAL;
1535}
1536EXPORT_SYMBOL_GPL(noop_direct_IO);
1537
1538/* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1539void kfree_link(void *p)
1540{
1541 kfree(objp: p);
1542}
1543EXPORT_SYMBOL(kfree_link);
1544
1545struct inode *alloc_anon_inode(struct super_block *s)
1546{
1547 static const struct address_space_operations anon_aops = {
1548 .dirty_folio = noop_dirty_folio,
1549 };
1550 struct inode *inode = new_inode_pseudo(sb: s);
1551
1552 if (!inode)
1553 return ERR_PTR(error: -ENOMEM);
1554
1555 inode->i_ino = get_next_ino();
1556 inode->i_mapping->a_ops = &anon_aops;
1557
1558 /*
1559 * Mark the inode dirty from the very beginning,
1560 * that way it will never be moved to the dirty
1561 * list because mark_inode_dirty() will think
1562 * that it already _is_ on the dirty list.
1563 */
1564 inode->i_state = I_DIRTY;
1565 inode->i_mode = S_IRUSR | S_IWUSR;
1566 inode->i_uid = current_fsuid();
1567 inode->i_gid = current_fsgid();
1568 inode->i_flags |= S_PRIVATE;
1569 simple_inode_init_ts(inode);
1570 return inode;
1571}
1572EXPORT_SYMBOL(alloc_anon_inode);
1573
1574/**
1575 * simple_nosetlease - generic helper for prohibiting leases
1576 * @filp: file pointer
1577 * @arg: type of lease to obtain
1578 * @flp: new lease supplied for insertion
1579 * @priv: private data for lm_setup operation
1580 *
1581 * Generic helper for filesystems that do not wish to allow leases to be set.
1582 * All arguments are ignored and it just returns -EINVAL.
1583 */
1584int
1585simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1586 void **priv)
1587{
1588 return -EINVAL;
1589}
1590EXPORT_SYMBOL(simple_nosetlease);
1591
1592/**
1593 * simple_get_link - generic helper to get the target of "fast" symlinks
1594 * @dentry: not used here
1595 * @inode: the symlink inode
1596 * @done: not used here
1597 *
1598 * Generic helper for filesystems to use for symlink inodes where a pointer to
1599 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1600 * since as an optimization the path lookup code uses any non-NULL ->i_link
1601 * directly, without calling ->get_link(). But ->get_link() still must be set,
1602 * to mark the inode_operations as being for a symlink.
1603 *
1604 * Return: the symlink target
1605 */
1606const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1607 struct delayed_call *done)
1608{
1609 return inode->i_link;
1610}
1611EXPORT_SYMBOL(simple_get_link);
1612
1613const struct inode_operations simple_symlink_inode_operations = {
1614 .get_link = simple_get_link,
1615};
1616EXPORT_SYMBOL(simple_symlink_inode_operations);
1617
1618/*
1619 * Operations for a permanently empty directory.
1620 */
1621static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1622{
1623 return ERR_PTR(error: -ENOENT);
1624}
1625
1626static int empty_dir_getattr(struct mnt_idmap *idmap,
1627 const struct path *path, struct kstat *stat,
1628 u32 request_mask, unsigned int query_flags)
1629{
1630 struct inode *inode = d_inode(dentry: path->dentry);
1631 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1632 return 0;
1633}
1634
1635static int empty_dir_setattr(struct mnt_idmap *idmap,
1636 struct dentry *dentry, struct iattr *attr)
1637{
1638 return -EPERM;
1639}
1640
1641static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1642{
1643 return -EOPNOTSUPP;
1644}
1645
1646static const struct inode_operations empty_dir_inode_operations = {
1647 .lookup = empty_dir_lookup,
1648 .permission = generic_permission,
1649 .setattr = empty_dir_setattr,
1650 .getattr = empty_dir_getattr,
1651 .listxattr = empty_dir_listxattr,
1652};
1653
1654static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1655{
1656 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1657 return generic_file_llseek_size(file, offset, whence, maxsize: 2, eof: 2);
1658}
1659
1660static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1661{
1662 dir_emit_dots(file, ctx);
1663 return 0;
1664}
1665
1666static const struct file_operations empty_dir_operations = {
1667 .llseek = empty_dir_llseek,
1668 .read = generic_read_dir,
1669 .iterate_shared = empty_dir_readdir,
1670 .fsync = noop_fsync,
1671};
1672
1673
1674void make_empty_dir_inode(struct inode *inode)
1675{
1676 set_nlink(inode, nlink: 2);
1677 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1678 inode->i_uid = GLOBAL_ROOT_UID;
1679 inode->i_gid = GLOBAL_ROOT_GID;
1680 inode->i_rdev = 0;
1681 inode->i_size = 0;
1682 inode->i_blkbits = PAGE_SHIFT;
1683 inode->i_blocks = 0;
1684
1685 inode->i_op = &empty_dir_inode_operations;
1686 inode->i_opflags &= ~IOP_XATTR;
1687 inode->i_fop = &empty_dir_operations;
1688}
1689
1690bool is_empty_dir_inode(struct inode *inode)
1691{
1692 return (inode->i_fop == &empty_dir_operations) &&
1693 (inode->i_op == &empty_dir_inode_operations);
1694}
1695
1696#if IS_ENABLED(CONFIG_UNICODE)
1697/**
1698 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1699 * @dentry: dentry whose name we are checking against
1700 * @len: len of name of dentry
1701 * @str: str pointer to name of dentry
1702 * @name: Name to compare against
1703 *
1704 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1705 */
1706static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1707 const char *str, const struct qstr *name)
1708{
1709 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1710 const struct inode *dir = READ_ONCE(parent->d_inode);
1711 const struct super_block *sb = dentry->d_sb;
1712 const struct unicode_map *um = sb->s_encoding;
1713 struct qstr qstr = QSTR_INIT(str, len);
1714 char strbuf[DNAME_INLINE_LEN];
1715 int ret;
1716
1717 if (!dir || !IS_CASEFOLDED(dir))
1718 goto fallback;
1719 /*
1720 * If the dentry name is stored in-line, then it may be concurrently
1721 * modified by a rename. If this happens, the VFS will eventually retry
1722 * the lookup, so it doesn't matter what ->d_compare() returns.
1723 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1724 * string. Therefore, we have to copy the name into a temporary buffer.
1725 */
1726 if (len <= DNAME_INLINE_LEN - 1) {
1727 memcpy(strbuf, str, len);
1728 strbuf[len] = 0;
1729 qstr.name = strbuf;
1730 /* prevent compiler from optimizing out the temporary buffer */
1731 barrier();
1732 }
1733 ret = utf8_strncasecmp(um, s1: name, s2: &qstr);
1734 if (ret >= 0)
1735 return ret;
1736
1737 if (sb_has_strict_encoding(sb))
1738 return -EINVAL;
1739fallback:
1740 if (len != name->len)
1741 return 1;
1742 return !!memcmp(p: str, q: name->name, size: len);
1743}
1744
1745/**
1746 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1747 * @dentry: dentry of the parent directory
1748 * @str: qstr of name whose hash we should fill in
1749 *
1750 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1751 */
1752static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1753{
1754 const struct inode *dir = READ_ONCE(dentry->d_inode);
1755 struct super_block *sb = dentry->d_sb;
1756 const struct unicode_map *um = sb->s_encoding;
1757 int ret = 0;
1758
1759 if (!dir || !IS_CASEFOLDED(dir))
1760 return 0;
1761
1762 ret = utf8_casefold_hash(um, salt: dentry, str);
1763 if (ret < 0 && sb_has_strict_encoding(sb))
1764 return -EINVAL;
1765 return 0;
1766}
1767
1768static const struct dentry_operations generic_ci_dentry_ops = {
1769 .d_hash = generic_ci_d_hash,
1770 .d_compare = generic_ci_d_compare,
1771};
1772#endif
1773
1774#ifdef CONFIG_FS_ENCRYPTION
1775static const struct dentry_operations generic_encrypted_dentry_ops = {
1776 .d_revalidate = fscrypt_d_revalidate,
1777};
1778#endif
1779
1780#if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1781static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1782 .d_hash = generic_ci_d_hash,
1783 .d_compare = generic_ci_d_compare,
1784 .d_revalidate = fscrypt_d_revalidate,
1785};
1786#endif
1787
1788/**
1789 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1790 * @dentry: dentry to set ops on
1791 *
1792 * Casefolded directories need d_hash and d_compare set, so that the dentries
1793 * contained in them are handled case-insensitively. Note that these operations
1794 * are needed on the parent directory rather than on the dentries in it, and
1795 * while the casefolding flag can be toggled on and off on an empty directory,
1796 * dentry_operations can't be changed later. As a result, if the filesystem has
1797 * casefolding support enabled at all, we have to give all dentries the
1798 * casefolding operations even if their inode doesn't have the casefolding flag
1799 * currently (and thus the casefolding ops would be no-ops for now).
1800 *
1801 * Encryption works differently in that the only dentry operation it needs is
1802 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1803 * The no-key flag can't be set "later", so we don't have to worry about that.
1804 *
1805 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1806 * with certain dentry operations) and to avoid taking an unnecessary
1807 * performance hit, we use custom dentry_operations for each possible
1808 * combination rather than always installing all operations.
1809 */
1810void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1811{
1812#ifdef CONFIG_FS_ENCRYPTION
1813 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1814#endif
1815#if IS_ENABLED(CONFIG_UNICODE)
1816 bool needs_ci_ops = dentry->d_sb->s_encoding;
1817#endif
1818#if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1819 if (needs_encrypt_ops && needs_ci_ops) {
1820 d_set_d_op(dentry, op: &generic_encrypted_ci_dentry_ops);
1821 return;
1822 }
1823#endif
1824#ifdef CONFIG_FS_ENCRYPTION
1825 if (needs_encrypt_ops) {
1826 d_set_d_op(dentry, op: &generic_encrypted_dentry_ops);
1827 return;
1828 }
1829#endif
1830#if IS_ENABLED(CONFIG_UNICODE)
1831 if (needs_ci_ops) {
1832 d_set_d_op(dentry, op: &generic_ci_dentry_ops);
1833 return;
1834 }
1835#endif
1836}
1837EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1838
1839/**
1840 * inode_maybe_inc_iversion - increments i_version
1841 * @inode: inode with the i_version that should be updated
1842 * @force: increment the counter even if it's not necessary?
1843 *
1844 * Every time the inode is modified, the i_version field must be seen to have
1845 * changed by any observer.
1846 *
1847 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1848 * the value, and clear the queried flag.
1849 *
1850 * In the common case where neither is set, then we can return "false" without
1851 * updating i_version.
1852 *
1853 * If this function returns false, and no other metadata has changed, then we
1854 * can avoid logging the metadata.
1855 */
1856bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1857{
1858 u64 cur, new;
1859
1860 /*
1861 * The i_version field is not strictly ordered with any other inode
1862 * information, but the legacy inode_inc_iversion code used a spinlock
1863 * to serialize increments.
1864 *
1865 * Here, we add full memory barriers to ensure that any de-facto
1866 * ordering with other info is preserved.
1867 *
1868 * This barrier pairs with the barrier in inode_query_iversion()
1869 */
1870 smp_mb();
1871 cur = inode_peek_iversion_raw(inode);
1872 do {
1873 /* If flag is clear then we needn't do anything */
1874 if (!force && !(cur & I_VERSION_QUERIED))
1875 return false;
1876
1877 /* Since lowest bit is flag, add 2 to avoid it */
1878 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1879 } while (!atomic64_try_cmpxchg(v: &inode->i_version, old: &cur, new));
1880 return true;
1881}
1882EXPORT_SYMBOL(inode_maybe_inc_iversion);
1883
1884/**
1885 * inode_query_iversion - read i_version for later use
1886 * @inode: inode from which i_version should be read
1887 *
1888 * Read the inode i_version counter. This should be used by callers that wish
1889 * to store the returned i_version for later comparison. This will guarantee
1890 * that a later query of the i_version will result in a different value if
1891 * anything has changed.
1892 *
1893 * In this implementation, we fetch the current value, set the QUERIED flag and
1894 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1895 * that fails, we try again with the newly fetched value from the cmpxchg.
1896 */
1897u64 inode_query_iversion(struct inode *inode)
1898{
1899 u64 cur, new;
1900
1901 cur = inode_peek_iversion_raw(inode);
1902 do {
1903 /* If flag is already set, then no need to swap */
1904 if (cur & I_VERSION_QUERIED) {
1905 /*
1906 * This barrier (and the implicit barrier in the
1907 * cmpxchg below) pairs with the barrier in
1908 * inode_maybe_inc_iversion().
1909 */
1910 smp_mb();
1911 break;
1912 }
1913
1914 new = cur | I_VERSION_QUERIED;
1915 } while (!atomic64_try_cmpxchg(v: &inode->i_version, old: &cur, new));
1916 return cur >> I_VERSION_QUERIED_SHIFT;
1917}
1918EXPORT_SYMBOL(inode_query_iversion);
1919
1920ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1921 ssize_t direct_written, ssize_t buffered_written)
1922{
1923 struct address_space *mapping = iocb->ki_filp->f_mapping;
1924 loff_t pos = iocb->ki_pos - buffered_written;
1925 loff_t end = iocb->ki_pos - 1;
1926 int err;
1927
1928 /*
1929 * If the buffered write fallback returned an error, we want to return
1930 * the number of bytes which were written by direct I/O, or the error
1931 * code if that was zero.
1932 *
1933 * Note that this differs from normal direct-io semantics, which will
1934 * return -EFOO even if some bytes were written.
1935 */
1936 if (unlikely(buffered_written < 0)) {
1937 if (direct_written)
1938 return direct_written;
1939 return buffered_written;
1940 }
1941
1942 /*
1943 * We need to ensure that the page cache pages are written to disk and
1944 * invalidated to preserve the expected O_DIRECT semantics.
1945 */
1946 err = filemap_write_and_wait_range(mapping, lstart: pos, lend: end);
1947 if (err < 0) {
1948 /*
1949 * We don't know how much we wrote, so just return the number of
1950 * bytes which were direct-written
1951 */
1952 iocb->ki_pos -= buffered_written;
1953 if (direct_written)
1954 return direct_written;
1955 return err;
1956 }
1957 invalidate_mapping_pages(mapping, start: pos >> PAGE_SHIFT, end: end >> PAGE_SHIFT);
1958 return direct_written + buffered_written;
1959}
1960EXPORT_SYMBOL_GPL(direct_write_fallback);
1961
1962/**
1963 * simple_inode_init_ts - initialize the timestamps for a new inode
1964 * @inode: inode to be initialized
1965 *
1966 * When a new inode is created, most filesystems set the timestamps to the
1967 * current time. Add a helper to do this.
1968 */
1969struct timespec64 simple_inode_init_ts(struct inode *inode)
1970{
1971 struct timespec64 ts = inode_set_ctime_current(inode);
1972
1973 inode_set_atime_to_ts(inode, ts);
1974 inode_set_mtime_to_ts(inode, ts);
1975 return ts;
1976}
1977EXPORT_SYMBOL(simple_inode_init_ts);
1978

source code of linux/fs/libfs.c