1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * fs/libfs.c |
4 | * Library for filesystems writers. |
5 | */ |
6 | |
7 | #include <linux/blkdev.h> |
8 | #include <linux/export.h> |
9 | #include <linux/pagemap.h> |
10 | #include <linux/slab.h> |
11 | #include <linux/cred.h> |
12 | #include <linux/mount.h> |
13 | #include <linux/vfs.h> |
14 | #include <linux/quotaops.h> |
15 | #include <linux/mutex.h> |
16 | #include <linux/namei.h> |
17 | #include <linux/exportfs.h> |
18 | #include <linux/iversion.h> |
19 | #include <linux/writeback.h> |
20 | #include <linux/buffer_head.h> /* sync_mapping_buffers */ |
21 | #include <linux/fs_context.h> |
22 | #include <linux/pseudo_fs.h> |
23 | #include <linux/fsnotify.h> |
24 | #include <linux/unicode.h> |
25 | #include <linux/fscrypt.h> |
26 | #include <linux/pidfs.h> |
27 | |
28 | #include <linux/uaccess.h> |
29 | |
30 | #include "internal.h" |
31 | |
32 | int simple_getattr(struct mnt_idmap *idmap, const struct path *path, |
33 | struct kstat *stat, u32 request_mask, |
34 | unsigned int query_flags) |
35 | { |
36 | struct inode *inode = d_inode(dentry: path->dentry); |
37 | generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); |
38 | stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); |
39 | return 0; |
40 | } |
41 | EXPORT_SYMBOL(simple_getattr); |
42 | |
43 | int simple_statfs(struct dentry *dentry, struct kstatfs *buf) |
44 | { |
45 | u64 id = huge_encode_dev(dev: dentry->d_sb->s_dev); |
46 | |
47 | buf->f_fsid = u64_to_fsid(v: id); |
48 | buf->f_type = dentry->d_sb->s_magic; |
49 | buf->f_bsize = PAGE_SIZE; |
50 | buf->f_namelen = NAME_MAX; |
51 | return 0; |
52 | } |
53 | EXPORT_SYMBOL(simple_statfs); |
54 | |
55 | /* |
56 | * Retaining negative dentries for an in-memory filesystem just wastes |
57 | * memory and lookup time: arrange for them to be deleted immediately. |
58 | */ |
59 | int always_delete_dentry(const struct dentry *dentry) |
60 | { |
61 | return 1; |
62 | } |
63 | EXPORT_SYMBOL(always_delete_dentry); |
64 | |
65 | const struct dentry_operations simple_dentry_operations = { |
66 | .d_delete = always_delete_dentry, |
67 | }; |
68 | EXPORT_SYMBOL(simple_dentry_operations); |
69 | |
70 | /* |
71 | * Lookup the data. This is trivial - if the dentry didn't already |
72 | * exist, we know it is negative. Set d_op to delete negative dentries. |
73 | */ |
74 | struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) |
75 | { |
76 | if (dentry->d_name.len > NAME_MAX) |
77 | return ERR_PTR(error: -ENAMETOOLONG); |
78 | if (!dentry->d_sb->s_d_op) |
79 | d_set_d_op(dentry, op: &simple_dentry_operations); |
80 | d_add(dentry, NULL); |
81 | return NULL; |
82 | } |
83 | EXPORT_SYMBOL(simple_lookup); |
84 | |
85 | int dcache_dir_open(struct inode *inode, struct file *file) |
86 | { |
87 | file->private_data = d_alloc_cursor(file->f_path.dentry); |
88 | |
89 | return file->private_data ? 0 : -ENOMEM; |
90 | } |
91 | EXPORT_SYMBOL(dcache_dir_open); |
92 | |
93 | int dcache_dir_close(struct inode *inode, struct file *file) |
94 | { |
95 | dput(file->private_data); |
96 | return 0; |
97 | } |
98 | EXPORT_SYMBOL(dcache_dir_close); |
99 | |
100 | /* parent is locked at least shared */ |
101 | /* |
102 | * Returns an element of siblings' list. |
103 | * We are looking for <count>th positive after <p>; if |
104 | * found, dentry is grabbed and returned to caller. |
105 | * If no such element exists, NULL is returned. |
106 | */ |
107 | static struct dentry *scan_positives(struct dentry *cursor, |
108 | struct hlist_node **p, |
109 | loff_t count, |
110 | struct dentry *last) |
111 | { |
112 | struct dentry *dentry = cursor->d_parent, *found = NULL; |
113 | |
114 | spin_lock(lock: &dentry->d_lock); |
115 | while (*p) { |
116 | struct dentry *d = hlist_entry(*p, struct dentry, d_sib); |
117 | p = &d->d_sib.next; |
118 | // we must at least skip cursors, to avoid livelocks |
119 | if (d->d_flags & DCACHE_DENTRY_CURSOR) |
120 | continue; |
121 | if (simple_positive(dentry: d) && !--count) { |
122 | spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); |
123 | if (simple_positive(dentry: d)) |
124 | found = dget_dlock(dentry: d); |
125 | spin_unlock(lock: &d->d_lock); |
126 | if (likely(found)) |
127 | break; |
128 | count = 1; |
129 | } |
130 | if (need_resched()) { |
131 | if (!hlist_unhashed(h: &cursor->d_sib)) |
132 | __hlist_del(n: &cursor->d_sib); |
133 | hlist_add_behind(n: &cursor->d_sib, prev: &d->d_sib); |
134 | p = &cursor->d_sib.next; |
135 | spin_unlock(lock: &dentry->d_lock); |
136 | cond_resched(); |
137 | spin_lock(lock: &dentry->d_lock); |
138 | } |
139 | } |
140 | spin_unlock(lock: &dentry->d_lock); |
141 | dput(last); |
142 | return found; |
143 | } |
144 | |
145 | loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) |
146 | { |
147 | struct dentry *dentry = file->f_path.dentry; |
148 | switch (whence) { |
149 | case 1: |
150 | offset += file->f_pos; |
151 | fallthrough; |
152 | case 0: |
153 | if (offset >= 0) |
154 | break; |
155 | fallthrough; |
156 | default: |
157 | return -EINVAL; |
158 | } |
159 | if (offset != file->f_pos) { |
160 | struct dentry *cursor = file->private_data; |
161 | struct dentry *to = NULL; |
162 | |
163 | inode_lock_shared(inode: dentry->d_inode); |
164 | |
165 | if (offset > 2) |
166 | to = scan_positives(cursor, p: &dentry->d_children.first, |
167 | count: offset - 2, NULL); |
168 | spin_lock(lock: &dentry->d_lock); |
169 | hlist_del_init(n: &cursor->d_sib); |
170 | if (to) |
171 | hlist_add_behind(n: &cursor->d_sib, prev: &to->d_sib); |
172 | spin_unlock(lock: &dentry->d_lock); |
173 | dput(to); |
174 | |
175 | file->f_pos = offset; |
176 | |
177 | inode_unlock_shared(inode: dentry->d_inode); |
178 | } |
179 | return offset; |
180 | } |
181 | EXPORT_SYMBOL(dcache_dir_lseek); |
182 | |
183 | /* |
184 | * Directory is locked and all positive dentries in it are safe, since |
185 | * for ramfs-type trees they can't go away without unlink() or rmdir(), |
186 | * both impossible due to the lock on directory. |
187 | */ |
188 | |
189 | int dcache_readdir(struct file *file, struct dir_context *ctx) |
190 | { |
191 | struct dentry *dentry = file->f_path.dentry; |
192 | struct dentry *cursor = file->private_data; |
193 | struct dentry *next = NULL; |
194 | struct hlist_node **p; |
195 | |
196 | if (!dir_emit_dots(file, ctx)) |
197 | return 0; |
198 | |
199 | if (ctx->pos == 2) |
200 | p = &dentry->d_children.first; |
201 | else |
202 | p = &cursor->d_sib.next; |
203 | |
204 | while ((next = scan_positives(cursor, p, count: 1, last: next)) != NULL) { |
205 | if (!dir_emit(ctx, name: next->d_name.name, namelen: next->d_name.len, |
206 | ino: d_inode(dentry: next)->i_ino, |
207 | type: fs_umode_to_dtype(mode: d_inode(dentry: next)->i_mode))) |
208 | break; |
209 | ctx->pos++; |
210 | p = &next->d_sib.next; |
211 | } |
212 | spin_lock(lock: &dentry->d_lock); |
213 | hlist_del_init(n: &cursor->d_sib); |
214 | if (next) |
215 | hlist_add_before(n: &cursor->d_sib, next: &next->d_sib); |
216 | spin_unlock(lock: &dentry->d_lock); |
217 | dput(next); |
218 | |
219 | return 0; |
220 | } |
221 | EXPORT_SYMBOL(dcache_readdir); |
222 | |
223 | ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) |
224 | { |
225 | return -EISDIR; |
226 | } |
227 | EXPORT_SYMBOL(generic_read_dir); |
228 | |
229 | const struct file_operations simple_dir_operations = { |
230 | .open = dcache_dir_open, |
231 | .release = dcache_dir_close, |
232 | .llseek = dcache_dir_lseek, |
233 | .read = generic_read_dir, |
234 | .iterate_shared = dcache_readdir, |
235 | .fsync = noop_fsync, |
236 | }; |
237 | EXPORT_SYMBOL(simple_dir_operations); |
238 | |
239 | const struct inode_operations simple_dir_inode_operations = { |
240 | .lookup = simple_lookup, |
241 | }; |
242 | EXPORT_SYMBOL(simple_dir_inode_operations); |
243 | |
244 | /* 0 is '.', 1 is '..', so always start with offset 2 or more */ |
245 | enum { |
246 | DIR_OFFSET_MIN = 2, |
247 | }; |
248 | |
249 | static void offset_set(struct dentry *dentry, long offset) |
250 | { |
251 | dentry->d_fsdata = (void *)offset; |
252 | } |
253 | |
254 | static long dentry2offset(struct dentry *dentry) |
255 | { |
256 | return (long)dentry->d_fsdata; |
257 | } |
258 | |
259 | static struct lock_class_key simple_offset_lock_class; |
260 | |
261 | /** |
262 | * simple_offset_init - initialize an offset_ctx |
263 | * @octx: directory offset map to be initialized |
264 | * |
265 | */ |
266 | void simple_offset_init(struct offset_ctx *octx) |
267 | { |
268 | mt_init_flags(mt: &octx->mt, MT_FLAGS_ALLOC_RANGE); |
269 | lockdep_set_class(&octx->mt.ma_lock, &simple_offset_lock_class); |
270 | octx->next_offset = DIR_OFFSET_MIN; |
271 | } |
272 | |
273 | /** |
274 | * simple_offset_add - Add an entry to a directory's offset map |
275 | * @octx: directory offset ctx to be updated |
276 | * @dentry: new dentry being added |
277 | * |
278 | * Returns zero on success. @octx and the dentry's offset are updated. |
279 | * Otherwise, a negative errno value is returned. |
280 | */ |
281 | int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) |
282 | { |
283 | unsigned long offset; |
284 | int ret; |
285 | |
286 | if (dentry2offset(dentry) != 0) |
287 | return -EBUSY; |
288 | |
289 | ret = mtree_alloc_cyclic(mt: &octx->mt, startp: &offset, entry: dentry, range_lo: DIR_OFFSET_MIN, |
290 | LONG_MAX, next: &octx->next_offset, GFP_KERNEL); |
291 | if (ret < 0) |
292 | return ret; |
293 | |
294 | offset_set(dentry, offset); |
295 | return 0; |
296 | } |
297 | |
298 | /** |
299 | * simple_offset_remove - Remove an entry to a directory's offset map |
300 | * @octx: directory offset ctx to be updated |
301 | * @dentry: dentry being removed |
302 | * |
303 | */ |
304 | void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) |
305 | { |
306 | long offset; |
307 | |
308 | offset = dentry2offset(dentry); |
309 | if (offset == 0) |
310 | return; |
311 | |
312 | mtree_erase(mt: &octx->mt, index: offset); |
313 | offset_set(dentry, offset: 0); |
314 | } |
315 | |
316 | /** |
317 | * simple_offset_empty - Check if a dentry can be unlinked |
318 | * @dentry: dentry to be tested |
319 | * |
320 | * Returns 0 if @dentry is a non-empty directory; otherwise returns 1. |
321 | */ |
322 | int simple_offset_empty(struct dentry *dentry) |
323 | { |
324 | struct inode *inode = d_inode(dentry); |
325 | struct offset_ctx *octx; |
326 | struct dentry *child; |
327 | unsigned long index; |
328 | int ret = 1; |
329 | |
330 | if (!inode || !S_ISDIR(inode->i_mode)) |
331 | return ret; |
332 | |
333 | index = DIR_OFFSET_MIN; |
334 | octx = inode->i_op->get_offset_ctx(inode); |
335 | mt_for_each(&octx->mt, child, index, LONG_MAX) { |
336 | spin_lock(lock: &child->d_lock); |
337 | if (simple_positive(dentry: child)) { |
338 | spin_unlock(lock: &child->d_lock); |
339 | ret = 0; |
340 | break; |
341 | } |
342 | spin_unlock(lock: &child->d_lock); |
343 | } |
344 | |
345 | return ret; |
346 | } |
347 | |
348 | /** |
349 | * simple_offset_rename_exchange - exchange rename with directory offsets |
350 | * @old_dir: parent of dentry being moved |
351 | * @old_dentry: dentry being moved |
352 | * @new_dir: destination parent |
353 | * @new_dentry: destination dentry |
354 | * |
355 | * Returns zero on success. Otherwise a negative errno is returned and the |
356 | * rename is rolled back. |
357 | */ |
358 | int simple_offset_rename_exchange(struct inode *old_dir, |
359 | struct dentry *old_dentry, |
360 | struct inode *new_dir, |
361 | struct dentry *new_dentry) |
362 | { |
363 | struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); |
364 | struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); |
365 | long old_index = dentry2offset(dentry: old_dentry); |
366 | long new_index = dentry2offset(dentry: new_dentry); |
367 | int ret; |
368 | |
369 | simple_offset_remove(octx: old_ctx, dentry: old_dentry); |
370 | simple_offset_remove(octx: new_ctx, dentry: new_dentry); |
371 | |
372 | ret = simple_offset_add(octx: new_ctx, dentry: old_dentry); |
373 | if (ret) |
374 | goto out_restore; |
375 | |
376 | ret = simple_offset_add(octx: old_ctx, dentry: new_dentry); |
377 | if (ret) { |
378 | simple_offset_remove(octx: new_ctx, dentry: old_dentry); |
379 | goto out_restore; |
380 | } |
381 | |
382 | ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); |
383 | if (ret) { |
384 | simple_offset_remove(octx: new_ctx, dentry: old_dentry); |
385 | simple_offset_remove(octx: old_ctx, dentry: new_dentry); |
386 | goto out_restore; |
387 | } |
388 | return 0; |
389 | |
390 | out_restore: |
391 | offset_set(dentry: old_dentry, offset: old_index); |
392 | mtree_store(mt: &old_ctx->mt, index: old_index, entry: old_dentry, GFP_KERNEL); |
393 | offset_set(dentry: new_dentry, offset: new_index); |
394 | mtree_store(mt: &new_ctx->mt, index: new_index, entry: new_dentry, GFP_KERNEL); |
395 | return ret; |
396 | } |
397 | |
398 | /** |
399 | * simple_offset_destroy - Release offset map |
400 | * @octx: directory offset ctx that is about to be destroyed |
401 | * |
402 | * During fs teardown (eg. umount), a directory's offset map might still |
403 | * contain entries. xa_destroy() cleans out anything that remains. |
404 | */ |
405 | void simple_offset_destroy(struct offset_ctx *octx) |
406 | { |
407 | mtree_destroy(mt: &octx->mt); |
408 | } |
409 | |
410 | /** |
411 | * offset_dir_llseek - Advance the read position of a directory descriptor |
412 | * @file: an open directory whose position is to be updated |
413 | * @offset: a byte offset |
414 | * @whence: enumerator describing the starting position for this update |
415 | * |
416 | * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. |
417 | * |
418 | * Returns the updated read position if successful; otherwise a |
419 | * negative errno is returned and the read position remains unchanged. |
420 | */ |
421 | static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) |
422 | { |
423 | switch (whence) { |
424 | case SEEK_CUR: |
425 | offset += file->f_pos; |
426 | fallthrough; |
427 | case SEEK_SET: |
428 | if (offset >= 0) |
429 | break; |
430 | fallthrough; |
431 | default: |
432 | return -EINVAL; |
433 | } |
434 | |
435 | /* In this case, ->private_data is protected by f_pos_lock */ |
436 | file->private_data = NULL; |
437 | return vfs_setpos(file, offset, LONG_MAX); |
438 | } |
439 | |
440 | static struct dentry *offset_find_next(struct offset_ctx *octx, loff_t offset) |
441 | { |
442 | MA_STATE(mas, &octx->mt, offset, offset); |
443 | struct dentry *child, *found = NULL; |
444 | |
445 | rcu_read_lock(); |
446 | child = mas_find(mas: &mas, LONG_MAX); |
447 | if (!child) |
448 | goto out; |
449 | spin_lock(lock: &child->d_lock); |
450 | if (simple_positive(dentry: child)) |
451 | found = dget_dlock(dentry: child); |
452 | spin_unlock(lock: &child->d_lock); |
453 | out: |
454 | rcu_read_unlock(); |
455 | return found; |
456 | } |
457 | |
458 | static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) |
459 | { |
460 | struct inode *inode = d_inode(dentry); |
461 | long offset = dentry2offset(dentry); |
462 | |
463 | return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, |
464 | inode->i_ino, fs_umode_to_dtype(mode: inode->i_mode)); |
465 | } |
466 | |
467 | static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx) |
468 | { |
469 | struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode); |
470 | struct dentry *dentry; |
471 | |
472 | while (true) { |
473 | dentry = offset_find_next(octx, offset: ctx->pos); |
474 | if (!dentry) |
475 | return ERR_PTR(error: -ENOENT); |
476 | |
477 | if (!offset_dir_emit(ctx, dentry)) { |
478 | dput(dentry); |
479 | break; |
480 | } |
481 | |
482 | ctx->pos = dentry2offset(dentry) + 1; |
483 | dput(dentry); |
484 | } |
485 | return NULL; |
486 | } |
487 | |
488 | /** |
489 | * offset_readdir - Emit entries starting at offset @ctx->pos |
490 | * @file: an open directory to iterate over |
491 | * @ctx: directory iteration context |
492 | * |
493 | * Caller must hold @file's i_rwsem to prevent insertion or removal of |
494 | * entries during this call. |
495 | * |
496 | * On entry, @ctx->pos contains an offset that represents the first entry |
497 | * to be read from the directory. |
498 | * |
499 | * The operation continues until there are no more entries to read, or |
500 | * until the ctx->actor indicates there is no more space in the caller's |
501 | * output buffer. |
502 | * |
503 | * On return, @ctx->pos contains an offset that will read the next entry |
504 | * in this directory when offset_readdir() is called again with @ctx. |
505 | * |
506 | * Return values: |
507 | * %0 - Complete |
508 | */ |
509 | static int offset_readdir(struct file *file, struct dir_context *ctx) |
510 | { |
511 | struct dentry *dir = file->f_path.dentry; |
512 | |
513 | lockdep_assert_held(&d_inode(dir)->i_rwsem); |
514 | |
515 | if (!dir_emit_dots(file, ctx)) |
516 | return 0; |
517 | |
518 | /* In this case, ->private_data is protected by f_pos_lock */ |
519 | if (ctx->pos == DIR_OFFSET_MIN) |
520 | file->private_data = NULL; |
521 | else if (file->private_data == ERR_PTR(error: -ENOENT)) |
522 | return 0; |
523 | file->private_data = offset_iterate_dir(inode: d_inode(dentry: dir), ctx); |
524 | return 0; |
525 | } |
526 | |
527 | const struct file_operations simple_offset_dir_operations = { |
528 | .llseek = offset_dir_llseek, |
529 | .iterate_shared = offset_readdir, |
530 | .read = generic_read_dir, |
531 | .fsync = noop_fsync, |
532 | }; |
533 | |
534 | static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) |
535 | { |
536 | struct dentry *child = NULL, *d; |
537 | |
538 | spin_lock(lock: &parent->d_lock); |
539 | d = prev ? d_next_sibling(dentry: prev) : d_first_child(dentry: parent); |
540 | hlist_for_each_entry_from(d, d_sib) { |
541 | if (simple_positive(dentry: d)) { |
542 | spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); |
543 | if (simple_positive(dentry: d)) |
544 | child = dget_dlock(dentry: d); |
545 | spin_unlock(lock: &d->d_lock); |
546 | if (likely(child)) |
547 | break; |
548 | } |
549 | } |
550 | spin_unlock(lock: &parent->d_lock); |
551 | dput(prev); |
552 | return child; |
553 | } |
554 | |
555 | void simple_recursive_removal(struct dentry *dentry, |
556 | void (*callback)(struct dentry *)) |
557 | { |
558 | struct dentry *this = dget(dentry); |
559 | while (true) { |
560 | struct dentry *victim = NULL, *child; |
561 | struct inode *inode = this->d_inode; |
562 | |
563 | inode_lock(inode); |
564 | if (d_is_dir(dentry: this)) |
565 | inode->i_flags |= S_DEAD; |
566 | while ((child = find_next_child(parent: this, prev: victim)) == NULL) { |
567 | // kill and ascend |
568 | // update metadata while it's still locked |
569 | inode_set_ctime_current(inode); |
570 | clear_nlink(inode); |
571 | inode_unlock(inode); |
572 | victim = this; |
573 | this = this->d_parent; |
574 | inode = this->d_inode; |
575 | inode_lock(inode); |
576 | if (simple_positive(dentry: victim)) { |
577 | d_invalidate(victim); // avoid lost mounts |
578 | if (d_is_dir(dentry: victim)) |
579 | fsnotify_rmdir(dir: inode, dentry: victim); |
580 | else |
581 | fsnotify_unlink(dir: inode, dentry: victim); |
582 | if (callback) |
583 | callback(victim); |
584 | dput(victim); // unpin it |
585 | } |
586 | if (victim == dentry) { |
587 | inode_set_mtime_to_ts(inode, |
588 | ts: inode_set_ctime_current(inode)); |
589 | if (d_is_dir(dentry)) |
590 | drop_nlink(inode); |
591 | inode_unlock(inode); |
592 | dput(dentry); |
593 | return; |
594 | } |
595 | } |
596 | inode_unlock(inode); |
597 | this = child; |
598 | } |
599 | } |
600 | EXPORT_SYMBOL(simple_recursive_removal); |
601 | |
602 | static const struct super_operations simple_super_operations = { |
603 | .statfs = simple_statfs, |
604 | }; |
605 | |
606 | static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) |
607 | { |
608 | struct pseudo_fs_context *ctx = fc->fs_private; |
609 | struct inode *root; |
610 | |
611 | s->s_maxbytes = MAX_LFS_FILESIZE; |
612 | s->s_blocksize = PAGE_SIZE; |
613 | s->s_blocksize_bits = PAGE_SHIFT; |
614 | s->s_magic = ctx->magic; |
615 | s->s_op = ctx->ops ?: &simple_super_operations; |
616 | s->s_xattr = ctx->xattr; |
617 | s->s_time_gran = 1; |
618 | root = new_inode(sb: s); |
619 | if (!root) |
620 | return -ENOMEM; |
621 | |
622 | /* |
623 | * since this is the first inode, make it number 1. New inodes created |
624 | * after this must take care not to collide with it (by passing |
625 | * max_reserved of 1 to iunique). |
626 | */ |
627 | root->i_ino = 1; |
628 | root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; |
629 | simple_inode_init_ts(inode: root); |
630 | s->s_root = d_make_root(root); |
631 | if (!s->s_root) |
632 | return -ENOMEM; |
633 | s->s_d_op = ctx->dops; |
634 | return 0; |
635 | } |
636 | |
637 | static int pseudo_fs_get_tree(struct fs_context *fc) |
638 | { |
639 | return get_tree_nodev(fc, fill_super: pseudo_fs_fill_super); |
640 | } |
641 | |
642 | static void pseudo_fs_free(struct fs_context *fc) |
643 | { |
644 | kfree(objp: fc->fs_private); |
645 | } |
646 | |
647 | static const struct fs_context_operations pseudo_fs_context_ops = { |
648 | .free = pseudo_fs_free, |
649 | .get_tree = pseudo_fs_get_tree, |
650 | }; |
651 | |
652 | /* |
653 | * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that |
654 | * will never be mountable) |
655 | */ |
656 | struct pseudo_fs_context *init_pseudo(struct fs_context *fc, |
657 | unsigned long magic) |
658 | { |
659 | struct pseudo_fs_context *ctx; |
660 | |
661 | ctx = kzalloc(size: sizeof(struct pseudo_fs_context), GFP_KERNEL); |
662 | if (likely(ctx)) { |
663 | ctx->magic = magic; |
664 | fc->fs_private = ctx; |
665 | fc->ops = &pseudo_fs_context_ops; |
666 | fc->sb_flags |= SB_NOUSER; |
667 | fc->global = true; |
668 | } |
669 | return ctx; |
670 | } |
671 | EXPORT_SYMBOL(init_pseudo); |
672 | |
673 | int simple_open(struct inode *inode, struct file *file) |
674 | { |
675 | if (inode->i_private) |
676 | file->private_data = inode->i_private; |
677 | return 0; |
678 | } |
679 | EXPORT_SYMBOL(simple_open); |
680 | |
681 | int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) |
682 | { |
683 | struct inode *inode = d_inode(dentry: old_dentry); |
684 | |
685 | inode_set_mtime_to_ts(inode: dir, |
686 | ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode))); |
687 | inc_nlink(inode); |
688 | ihold(inode); |
689 | dget(dentry); |
690 | d_instantiate(dentry, inode); |
691 | return 0; |
692 | } |
693 | EXPORT_SYMBOL(simple_link); |
694 | |
695 | int simple_empty(struct dentry *dentry) |
696 | { |
697 | struct dentry *child; |
698 | int ret = 0; |
699 | |
700 | spin_lock(lock: &dentry->d_lock); |
701 | hlist_for_each_entry(child, &dentry->d_children, d_sib) { |
702 | spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); |
703 | if (simple_positive(dentry: child)) { |
704 | spin_unlock(lock: &child->d_lock); |
705 | goto out; |
706 | } |
707 | spin_unlock(lock: &child->d_lock); |
708 | } |
709 | ret = 1; |
710 | out: |
711 | spin_unlock(lock: &dentry->d_lock); |
712 | return ret; |
713 | } |
714 | EXPORT_SYMBOL(simple_empty); |
715 | |
716 | int simple_unlink(struct inode *dir, struct dentry *dentry) |
717 | { |
718 | struct inode *inode = d_inode(dentry); |
719 | |
720 | inode_set_mtime_to_ts(inode: dir, |
721 | ts: inode_set_ctime_to_ts(inode: dir, ts: inode_set_ctime_current(inode))); |
722 | drop_nlink(inode); |
723 | dput(dentry); |
724 | return 0; |
725 | } |
726 | EXPORT_SYMBOL(simple_unlink); |
727 | |
728 | int simple_rmdir(struct inode *dir, struct dentry *dentry) |
729 | { |
730 | if (!simple_empty(dentry)) |
731 | return -ENOTEMPTY; |
732 | |
733 | drop_nlink(inode: d_inode(dentry)); |
734 | simple_unlink(dir, dentry); |
735 | drop_nlink(inode: dir); |
736 | return 0; |
737 | } |
738 | EXPORT_SYMBOL(simple_rmdir); |
739 | |
740 | /** |
741 | * simple_rename_timestamp - update the various inode timestamps for rename |
742 | * @old_dir: old parent directory |
743 | * @old_dentry: dentry that is being renamed |
744 | * @new_dir: new parent directory |
745 | * @new_dentry: target for rename |
746 | * |
747 | * POSIX mandates that the old and new parent directories have their ctime and |
748 | * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have |
749 | * their ctime updated. |
750 | */ |
751 | void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, |
752 | struct inode *new_dir, struct dentry *new_dentry) |
753 | { |
754 | struct inode *newino = d_inode(dentry: new_dentry); |
755 | |
756 | inode_set_mtime_to_ts(inode: old_dir, ts: inode_set_ctime_current(inode: old_dir)); |
757 | if (new_dir != old_dir) |
758 | inode_set_mtime_to_ts(inode: new_dir, |
759 | ts: inode_set_ctime_current(inode: new_dir)); |
760 | inode_set_ctime_current(inode: d_inode(dentry: old_dentry)); |
761 | if (newino) |
762 | inode_set_ctime_current(inode: newino); |
763 | } |
764 | EXPORT_SYMBOL_GPL(simple_rename_timestamp); |
765 | |
766 | int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, |
767 | struct inode *new_dir, struct dentry *new_dentry) |
768 | { |
769 | bool old_is_dir = d_is_dir(dentry: old_dentry); |
770 | bool new_is_dir = d_is_dir(dentry: new_dentry); |
771 | |
772 | if (old_dir != new_dir && old_is_dir != new_is_dir) { |
773 | if (old_is_dir) { |
774 | drop_nlink(inode: old_dir); |
775 | inc_nlink(inode: new_dir); |
776 | } else { |
777 | drop_nlink(inode: new_dir); |
778 | inc_nlink(inode: old_dir); |
779 | } |
780 | } |
781 | simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); |
782 | return 0; |
783 | } |
784 | EXPORT_SYMBOL_GPL(simple_rename_exchange); |
785 | |
786 | int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, |
787 | struct dentry *old_dentry, struct inode *new_dir, |
788 | struct dentry *new_dentry, unsigned int flags) |
789 | { |
790 | int they_are_dirs = d_is_dir(dentry: old_dentry); |
791 | |
792 | if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) |
793 | return -EINVAL; |
794 | |
795 | if (flags & RENAME_EXCHANGE) |
796 | return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); |
797 | |
798 | if (!simple_empty(new_dentry)) |
799 | return -ENOTEMPTY; |
800 | |
801 | if (d_really_is_positive(dentry: new_dentry)) { |
802 | simple_unlink(new_dir, new_dentry); |
803 | if (they_are_dirs) { |
804 | drop_nlink(inode: d_inode(dentry: new_dentry)); |
805 | drop_nlink(inode: old_dir); |
806 | } |
807 | } else if (they_are_dirs) { |
808 | drop_nlink(inode: old_dir); |
809 | inc_nlink(inode: new_dir); |
810 | } |
811 | |
812 | simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); |
813 | return 0; |
814 | } |
815 | EXPORT_SYMBOL(simple_rename); |
816 | |
817 | /** |
818 | * simple_setattr - setattr for simple filesystem |
819 | * @idmap: idmap of the target mount |
820 | * @dentry: dentry |
821 | * @iattr: iattr structure |
822 | * |
823 | * Returns 0 on success, -error on failure. |
824 | * |
825 | * simple_setattr is a simple ->setattr implementation without a proper |
826 | * implementation of size changes. |
827 | * |
828 | * It can either be used for in-memory filesystems or special files |
829 | * on simple regular filesystems. Anything that needs to change on-disk |
830 | * or wire state on size changes needs its own setattr method. |
831 | */ |
832 | int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, |
833 | struct iattr *iattr) |
834 | { |
835 | struct inode *inode = d_inode(dentry); |
836 | int error; |
837 | |
838 | error = setattr_prepare(idmap, dentry, iattr); |
839 | if (error) |
840 | return error; |
841 | |
842 | if (iattr->ia_valid & ATTR_SIZE) |
843 | truncate_setsize(inode, newsize: iattr->ia_size); |
844 | setattr_copy(idmap, inode, attr: iattr); |
845 | mark_inode_dirty(inode); |
846 | return 0; |
847 | } |
848 | EXPORT_SYMBOL(simple_setattr); |
849 | |
850 | static int simple_read_folio(struct file *file, struct folio *folio) |
851 | { |
852 | folio_zero_range(folio, start: 0, length: folio_size(folio)); |
853 | flush_dcache_folio(folio); |
854 | folio_mark_uptodate(folio); |
855 | folio_unlock(folio); |
856 | return 0; |
857 | } |
858 | |
859 | int simple_write_begin(struct file *file, struct address_space *mapping, |
860 | loff_t pos, unsigned len, |
861 | struct page **pagep, void **fsdata) |
862 | { |
863 | struct folio *folio; |
864 | |
865 | folio = __filemap_get_folio(mapping, index: pos / PAGE_SIZE, FGP_WRITEBEGIN, |
866 | gfp: mapping_gfp_mask(mapping)); |
867 | if (IS_ERR(ptr: folio)) |
868 | return PTR_ERR(ptr: folio); |
869 | |
870 | *pagep = &folio->page; |
871 | |
872 | if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { |
873 | size_t from = offset_in_folio(folio, pos); |
874 | |
875 | folio_zero_segments(folio, start1: 0, xend1: from, |
876 | start2: from + len, xend2: folio_size(folio)); |
877 | } |
878 | return 0; |
879 | } |
880 | EXPORT_SYMBOL(simple_write_begin); |
881 | |
882 | /** |
883 | * simple_write_end - .write_end helper for non-block-device FSes |
884 | * @file: See .write_end of address_space_operations |
885 | * @mapping: " |
886 | * @pos: " |
887 | * @len: " |
888 | * @copied: " |
889 | * @page: " |
890 | * @fsdata: " |
891 | * |
892 | * simple_write_end does the minimum needed for updating a page after writing is |
893 | * done. It has the same API signature as the .write_end of |
894 | * address_space_operations vector. So it can just be set onto .write_end for |
895 | * FSes that don't need any other processing. i_mutex is assumed to be held. |
896 | * Block based filesystems should use generic_write_end(). |
897 | * NOTE: Even though i_size might get updated by this function, mark_inode_dirty |
898 | * is not called, so a filesystem that actually does store data in .write_inode |
899 | * should extend on what's done here with a call to mark_inode_dirty() in the |
900 | * case that i_size has changed. |
901 | * |
902 | * Use *ONLY* with simple_read_folio() |
903 | */ |
904 | static int simple_write_end(struct file *file, struct address_space *mapping, |
905 | loff_t pos, unsigned len, unsigned copied, |
906 | struct page *page, void *fsdata) |
907 | { |
908 | struct folio *folio = page_folio(page); |
909 | struct inode *inode = folio->mapping->host; |
910 | loff_t last_pos = pos + copied; |
911 | |
912 | /* zero the stale part of the folio if we did a short copy */ |
913 | if (!folio_test_uptodate(folio)) { |
914 | if (copied < len) { |
915 | size_t from = offset_in_folio(folio, pos); |
916 | |
917 | folio_zero_range(folio, start: from + copied, length: len - copied); |
918 | } |
919 | folio_mark_uptodate(folio); |
920 | } |
921 | /* |
922 | * No need to use i_size_read() here, the i_size |
923 | * cannot change under us because we hold the i_mutex. |
924 | */ |
925 | if (last_pos > inode->i_size) |
926 | i_size_write(inode, i_size: last_pos); |
927 | |
928 | folio_mark_dirty(folio); |
929 | folio_unlock(folio); |
930 | folio_put(folio); |
931 | |
932 | return copied; |
933 | } |
934 | |
935 | /* |
936 | * Provides ramfs-style behavior: data in the pagecache, but no writeback. |
937 | */ |
938 | const struct address_space_operations ram_aops = { |
939 | .read_folio = simple_read_folio, |
940 | .write_begin = simple_write_begin, |
941 | .write_end = simple_write_end, |
942 | .dirty_folio = noop_dirty_folio, |
943 | }; |
944 | EXPORT_SYMBOL(ram_aops); |
945 | |
946 | /* |
947 | * the inodes created here are not hashed. If you use iunique to generate |
948 | * unique inode values later for this filesystem, then you must take care |
949 | * to pass it an appropriate max_reserved value to avoid collisions. |
950 | */ |
951 | int simple_fill_super(struct super_block *s, unsigned long magic, |
952 | const struct tree_descr *files) |
953 | { |
954 | struct inode *inode; |
955 | struct dentry *dentry; |
956 | int i; |
957 | |
958 | s->s_blocksize = PAGE_SIZE; |
959 | s->s_blocksize_bits = PAGE_SHIFT; |
960 | s->s_magic = magic; |
961 | s->s_op = &simple_super_operations; |
962 | s->s_time_gran = 1; |
963 | |
964 | inode = new_inode(sb: s); |
965 | if (!inode) |
966 | return -ENOMEM; |
967 | /* |
968 | * because the root inode is 1, the files array must not contain an |
969 | * entry at index 1 |
970 | */ |
971 | inode->i_ino = 1; |
972 | inode->i_mode = S_IFDIR | 0755; |
973 | simple_inode_init_ts(inode); |
974 | inode->i_op = &simple_dir_inode_operations; |
975 | inode->i_fop = &simple_dir_operations; |
976 | set_nlink(inode, nlink: 2); |
977 | s->s_root = d_make_root(inode); |
978 | if (!s->s_root) |
979 | return -ENOMEM; |
980 | for (i = 0; !files->name || files->name[0]; i++, files++) { |
981 | if (!files->name) |
982 | continue; |
983 | |
984 | /* warn if it tries to conflict with the root inode */ |
985 | if (unlikely(i == 1)) |
986 | printk(KERN_WARNING "%s: %s passed in a files array" |
987 | "with an index of 1!\n" , __func__, |
988 | s->s_type->name); |
989 | |
990 | dentry = d_alloc_name(s->s_root, files->name); |
991 | if (!dentry) |
992 | return -ENOMEM; |
993 | inode = new_inode(sb: s); |
994 | if (!inode) { |
995 | dput(dentry); |
996 | return -ENOMEM; |
997 | } |
998 | inode->i_mode = S_IFREG | files->mode; |
999 | simple_inode_init_ts(inode); |
1000 | inode->i_fop = files->ops; |
1001 | inode->i_ino = i; |
1002 | d_add(dentry, inode); |
1003 | } |
1004 | return 0; |
1005 | } |
1006 | EXPORT_SYMBOL(simple_fill_super); |
1007 | |
1008 | static DEFINE_SPINLOCK(pin_fs_lock); |
1009 | |
1010 | int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) |
1011 | { |
1012 | struct vfsmount *mnt = NULL; |
1013 | spin_lock(lock: &pin_fs_lock); |
1014 | if (unlikely(!*mount)) { |
1015 | spin_unlock(lock: &pin_fs_lock); |
1016 | mnt = vfs_kern_mount(type, SB_KERNMOUNT, name: type->name, NULL); |
1017 | if (IS_ERR(ptr: mnt)) |
1018 | return PTR_ERR(ptr: mnt); |
1019 | spin_lock(lock: &pin_fs_lock); |
1020 | if (!*mount) |
1021 | *mount = mnt; |
1022 | } |
1023 | mntget(mnt: *mount); |
1024 | ++*count; |
1025 | spin_unlock(lock: &pin_fs_lock); |
1026 | mntput(mnt); |
1027 | return 0; |
1028 | } |
1029 | EXPORT_SYMBOL(simple_pin_fs); |
1030 | |
1031 | void simple_release_fs(struct vfsmount **mount, int *count) |
1032 | { |
1033 | struct vfsmount *mnt; |
1034 | spin_lock(lock: &pin_fs_lock); |
1035 | mnt = *mount; |
1036 | if (!--*count) |
1037 | *mount = NULL; |
1038 | spin_unlock(lock: &pin_fs_lock); |
1039 | mntput(mnt); |
1040 | } |
1041 | EXPORT_SYMBOL(simple_release_fs); |
1042 | |
1043 | /** |
1044 | * simple_read_from_buffer - copy data from the buffer to user space |
1045 | * @to: the user space buffer to read to |
1046 | * @count: the maximum number of bytes to read |
1047 | * @ppos: the current position in the buffer |
1048 | * @from: the buffer to read from |
1049 | * @available: the size of the buffer |
1050 | * |
1051 | * The simple_read_from_buffer() function reads up to @count bytes from the |
1052 | * buffer @from at offset @ppos into the user space address starting at @to. |
1053 | * |
1054 | * On success, the number of bytes read is returned and the offset @ppos is |
1055 | * advanced by this number, or negative value is returned on error. |
1056 | **/ |
1057 | ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, |
1058 | const void *from, size_t available) |
1059 | { |
1060 | loff_t pos = *ppos; |
1061 | size_t ret; |
1062 | |
1063 | if (pos < 0) |
1064 | return -EINVAL; |
1065 | if (pos >= available || !count) |
1066 | return 0; |
1067 | if (count > available - pos) |
1068 | count = available - pos; |
1069 | ret = copy_to_user(to, from: from + pos, n: count); |
1070 | if (ret == count) |
1071 | return -EFAULT; |
1072 | count -= ret; |
1073 | *ppos = pos + count; |
1074 | return count; |
1075 | } |
1076 | EXPORT_SYMBOL(simple_read_from_buffer); |
1077 | |
1078 | /** |
1079 | * simple_write_to_buffer - copy data from user space to the buffer |
1080 | * @to: the buffer to write to |
1081 | * @available: the size of the buffer |
1082 | * @ppos: the current position in the buffer |
1083 | * @from: the user space buffer to read from |
1084 | * @count: the maximum number of bytes to read |
1085 | * |
1086 | * The simple_write_to_buffer() function reads up to @count bytes from the user |
1087 | * space address starting at @from into the buffer @to at offset @ppos. |
1088 | * |
1089 | * On success, the number of bytes written is returned and the offset @ppos is |
1090 | * advanced by this number, or negative value is returned on error. |
1091 | **/ |
1092 | ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, |
1093 | const void __user *from, size_t count) |
1094 | { |
1095 | loff_t pos = *ppos; |
1096 | size_t res; |
1097 | |
1098 | if (pos < 0) |
1099 | return -EINVAL; |
1100 | if (pos >= available || !count) |
1101 | return 0; |
1102 | if (count > available - pos) |
1103 | count = available - pos; |
1104 | res = copy_from_user(to: to + pos, from, n: count); |
1105 | if (res == count) |
1106 | return -EFAULT; |
1107 | count -= res; |
1108 | *ppos = pos + count; |
1109 | return count; |
1110 | } |
1111 | EXPORT_SYMBOL(simple_write_to_buffer); |
1112 | |
1113 | /** |
1114 | * memory_read_from_buffer - copy data from the buffer |
1115 | * @to: the kernel space buffer to read to |
1116 | * @count: the maximum number of bytes to read |
1117 | * @ppos: the current position in the buffer |
1118 | * @from: the buffer to read from |
1119 | * @available: the size of the buffer |
1120 | * |
1121 | * The memory_read_from_buffer() function reads up to @count bytes from the |
1122 | * buffer @from at offset @ppos into the kernel space address starting at @to. |
1123 | * |
1124 | * On success, the number of bytes read is returned and the offset @ppos is |
1125 | * advanced by this number, or negative value is returned on error. |
1126 | **/ |
1127 | ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, |
1128 | const void *from, size_t available) |
1129 | { |
1130 | loff_t pos = *ppos; |
1131 | |
1132 | if (pos < 0) |
1133 | return -EINVAL; |
1134 | if (pos >= available) |
1135 | return 0; |
1136 | if (count > available - pos) |
1137 | count = available - pos; |
1138 | memcpy(to, from + pos, count); |
1139 | *ppos = pos + count; |
1140 | |
1141 | return count; |
1142 | } |
1143 | EXPORT_SYMBOL(memory_read_from_buffer); |
1144 | |
1145 | /* |
1146 | * Transaction based IO. |
1147 | * The file expects a single write which triggers the transaction, and then |
1148 | * possibly a read which collects the result - which is stored in a |
1149 | * file-local buffer. |
1150 | */ |
1151 | |
1152 | void simple_transaction_set(struct file *file, size_t n) |
1153 | { |
1154 | struct simple_transaction_argresp *ar = file->private_data; |
1155 | |
1156 | BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); |
1157 | |
1158 | /* |
1159 | * The barrier ensures that ar->size will really remain zero until |
1160 | * ar->data is ready for reading. |
1161 | */ |
1162 | smp_mb(); |
1163 | ar->size = n; |
1164 | } |
1165 | EXPORT_SYMBOL(simple_transaction_set); |
1166 | |
1167 | char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) |
1168 | { |
1169 | struct simple_transaction_argresp *ar; |
1170 | static DEFINE_SPINLOCK(simple_transaction_lock); |
1171 | |
1172 | if (size > SIMPLE_TRANSACTION_LIMIT - 1) |
1173 | return ERR_PTR(error: -EFBIG); |
1174 | |
1175 | ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); |
1176 | if (!ar) |
1177 | return ERR_PTR(error: -ENOMEM); |
1178 | |
1179 | spin_lock(lock: &simple_transaction_lock); |
1180 | |
1181 | /* only one write allowed per open */ |
1182 | if (file->private_data) { |
1183 | spin_unlock(lock: &simple_transaction_lock); |
1184 | free_page((unsigned long)ar); |
1185 | return ERR_PTR(error: -EBUSY); |
1186 | } |
1187 | |
1188 | file->private_data = ar; |
1189 | |
1190 | spin_unlock(lock: &simple_transaction_lock); |
1191 | |
1192 | if (copy_from_user(to: ar->data, from: buf, n: size)) |
1193 | return ERR_PTR(error: -EFAULT); |
1194 | |
1195 | return ar->data; |
1196 | } |
1197 | EXPORT_SYMBOL(simple_transaction_get); |
1198 | |
1199 | ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) |
1200 | { |
1201 | struct simple_transaction_argresp *ar = file->private_data; |
1202 | |
1203 | if (!ar) |
1204 | return 0; |
1205 | return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); |
1206 | } |
1207 | EXPORT_SYMBOL(simple_transaction_read); |
1208 | |
1209 | int simple_transaction_release(struct inode *inode, struct file *file) |
1210 | { |
1211 | free_page((unsigned long)file->private_data); |
1212 | return 0; |
1213 | } |
1214 | EXPORT_SYMBOL(simple_transaction_release); |
1215 | |
1216 | /* Simple attribute files */ |
1217 | |
1218 | struct simple_attr { |
1219 | int (*get)(void *, u64 *); |
1220 | int (*set)(void *, u64); |
1221 | char get_buf[24]; /* enough to store a u64 and "\n\0" */ |
1222 | char set_buf[24]; |
1223 | void *data; |
1224 | const char *fmt; /* format for read operation */ |
1225 | struct mutex mutex; /* protects access to these buffers */ |
1226 | }; |
1227 | |
1228 | /* simple_attr_open is called by an actual attribute open file operation |
1229 | * to set the attribute specific access operations. */ |
1230 | int simple_attr_open(struct inode *inode, struct file *file, |
1231 | int (*get)(void *, u64 *), int (*set)(void *, u64), |
1232 | const char *fmt) |
1233 | { |
1234 | struct simple_attr *attr; |
1235 | |
1236 | attr = kzalloc(size: sizeof(*attr), GFP_KERNEL); |
1237 | if (!attr) |
1238 | return -ENOMEM; |
1239 | |
1240 | attr->get = get; |
1241 | attr->set = set; |
1242 | attr->data = inode->i_private; |
1243 | attr->fmt = fmt; |
1244 | mutex_init(&attr->mutex); |
1245 | |
1246 | file->private_data = attr; |
1247 | |
1248 | return nonseekable_open(inode, filp: file); |
1249 | } |
1250 | EXPORT_SYMBOL_GPL(simple_attr_open); |
1251 | |
1252 | int simple_attr_release(struct inode *inode, struct file *file) |
1253 | { |
1254 | kfree(objp: file->private_data); |
1255 | return 0; |
1256 | } |
1257 | EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ |
1258 | |
1259 | /* read from the buffer that is filled with the get function */ |
1260 | ssize_t simple_attr_read(struct file *file, char __user *buf, |
1261 | size_t len, loff_t *ppos) |
1262 | { |
1263 | struct simple_attr *attr; |
1264 | size_t size; |
1265 | ssize_t ret; |
1266 | |
1267 | attr = file->private_data; |
1268 | |
1269 | if (!attr->get) |
1270 | return -EACCES; |
1271 | |
1272 | ret = mutex_lock_interruptible(&attr->mutex); |
1273 | if (ret) |
1274 | return ret; |
1275 | |
1276 | if (*ppos && attr->get_buf[0]) { |
1277 | /* continued read */ |
1278 | size = strlen(attr->get_buf); |
1279 | } else { |
1280 | /* first read */ |
1281 | u64 val; |
1282 | ret = attr->get(attr->data, &val); |
1283 | if (ret) |
1284 | goto out; |
1285 | |
1286 | size = scnprintf(buf: attr->get_buf, size: sizeof(attr->get_buf), |
1287 | fmt: attr->fmt, (unsigned long long)val); |
1288 | } |
1289 | |
1290 | ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); |
1291 | out: |
1292 | mutex_unlock(lock: &attr->mutex); |
1293 | return ret; |
1294 | } |
1295 | EXPORT_SYMBOL_GPL(simple_attr_read); |
1296 | |
1297 | /* interpret the buffer as a number to call the set function with */ |
1298 | static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, |
1299 | size_t len, loff_t *ppos, bool is_signed) |
1300 | { |
1301 | struct simple_attr *attr; |
1302 | unsigned long long val; |
1303 | size_t size; |
1304 | ssize_t ret; |
1305 | |
1306 | attr = file->private_data; |
1307 | if (!attr->set) |
1308 | return -EACCES; |
1309 | |
1310 | ret = mutex_lock_interruptible(&attr->mutex); |
1311 | if (ret) |
1312 | return ret; |
1313 | |
1314 | ret = -EFAULT; |
1315 | size = min(sizeof(attr->set_buf) - 1, len); |
1316 | if (copy_from_user(to: attr->set_buf, from: buf, n: size)) |
1317 | goto out; |
1318 | |
1319 | attr->set_buf[size] = '\0'; |
1320 | if (is_signed) |
1321 | ret = kstrtoll(s: attr->set_buf, base: 0, res: &val); |
1322 | else |
1323 | ret = kstrtoull(s: attr->set_buf, base: 0, res: &val); |
1324 | if (ret) |
1325 | goto out; |
1326 | ret = attr->set(attr->data, val); |
1327 | if (ret == 0) |
1328 | ret = len; /* on success, claim we got the whole input */ |
1329 | out: |
1330 | mutex_unlock(lock: &attr->mutex); |
1331 | return ret; |
1332 | } |
1333 | |
1334 | ssize_t simple_attr_write(struct file *file, const char __user *buf, |
1335 | size_t len, loff_t *ppos) |
1336 | { |
1337 | return simple_attr_write_xsigned(file, buf, len, ppos, is_signed: false); |
1338 | } |
1339 | EXPORT_SYMBOL_GPL(simple_attr_write); |
1340 | |
1341 | ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, |
1342 | size_t len, loff_t *ppos) |
1343 | { |
1344 | return simple_attr_write_xsigned(file, buf, len, ppos, is_signed: true); |
1345 | } |
1346 | EXPORT_SYMBOL_GPL(simple_attr_write_signed); |
1347 | |
1348 | /** |
1349 | * generic_encode_ino32_fh - generic export_operations->encode_fh function |
1350 | * @inode: the object to encode |
1351 | * @fh: where to store the file handle fragment |
1352 | * @max_len: maximum length to store there (in 4 byte units) |
1353 | * @parent: parent directory inode, if wanted |
1354 | * |
1355 | * This generic encode_fh function assumes that the 32 inode number |
1356 | * is suitable for locating an inode, and that the generation number |
1357 | * can be used to check that it is still valid. It places them in the |
1358 | * filehandle fragment where export_decode_fh expects to find them. |
1359 | */ |
1360 | int generic_encode_ino32_fh(struct inode *inode, __u32 *fh, int *max_len, |
1361 | struct inode *parent) |
1362 | { |
1363 | struct fid *fid = (void *)fh; |
1364 | int len = *max_len; |
1365 | int type = FILEID_INO32_GEN; |
1366 | |
1367 | if (parent && (len < 4)) { |
1368 | *max_len = 4; |
1369 | return FILEID_INVALID; |
1370 | } else if (len < 2) { |
1371 | *max_len = 2; |
1372 | return FILEID_INVALID; |
1373 | } |
1374 | |
1375 | len = 2; |
1376 | fid->i32.ino = inode->i_ino; |
1377 | fid->i32.gen = inode->i_generation; |
1378 | if (parent) { |
1379 | fid->i32.parent_ino = parent->i_ino; |
1380 | fid->i32.parent_gen = parent->i_generation; |
1381 | len = 4; |
1382 | type = FILEID_INO32_GEN_PARENT; |
1383 | } |
1384 | *max_len = len; |
1385 | return type; |
1386 | } |
1387 | EXPORT_SYMBOL_GPL(generic_encode_ino32_fh); |
1388 | |
1389 | /** |
1390 | * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation |
1391 | * @sb: filesystem to do the file handle conversion on |
1392 | * @fid: file handle to convert |
1393 | * @fh_len: length of the file handle in bytes |
1394 | * @fh_type: type of file handle |
1395 | * @get_inode: filesystem callback to retrieve inode |
1396 | * |
1397 | * This function decodes @fid as long as it has one of the well-known |
1398 | * Linux filehandle types and calls @get_inode on it to retrieve the |
1399 | * inode for the object specified in the file handle. |
1400 | */ |
1401 | struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, |
1402 | int fh_len, int fh_type, struct inode *(*get_inode) |
1403 | (struct super_block *sb, u64 ino, u32 gen)) |
1404 | { |
1405 | struct inode *inode = NULL; |
1406 | |
1407 | if (fh_len < 2) |
1408 | return NULL; |
1409 | |
1410 | switch (fh_type) { |
1411 | case FILEID_INO32_GEN: |
1412 | case FILEID_INO32_GEN_PARENT: |
1413 | inode = get_inode(sb, fid->i32.ino, fid->i32.gen); |
1414 | break; |
1415 | } |
1416 | |
1417 | return d_obtain_alias(inode); |
1418 | } |
1419 | EXPORT_SYMBOL_GPL(generic_fh_to_dentry); |
1420 | |
1421 | /** |
1422 | * generic_fh_to_parent - generic helper for the fh_to_parent export operation |
1423 | * @sb: filesystem to do the file handle conversion on |
1424 | * @fid: file handle to convert |
1425 | * @fh_len: length of the file handle in bytes |
1426 | * @fh_type: type of file handle |
1427 | * @get_inode: filesystem callback to retrieve inode |
1428 | * |
1429 | * This function decodes @fid as long as it has one of the well-known |
1430 | * Linux filehandle types and calls @get_inode on it to retrieve the |
1431 | * inode for the _parent_ object specified in the file handle if it |
1432 | * is specified in the file handle, or NULL otherwise. |
1433 | */ |
1434 | struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, |
1435 | int fh_len, int fh_type, struct inode *(*get_inode) |
1436 | (struct super_block *sb, u64 ino, u32 gen)) |
1437 | { |
1438 | struct inode *inode = NULL; |
1439 | |
1440 | if (fh_len <= 2) |
1441 | return NULL; |
1442 | |
1443 | switch (fh_type) { |
1444 | case FILEID_INO32_GEN_PARENT: |
1445 | inode = get_inode(sb, fid->i32.parent_ino, |
1446 | (fh_len > 3 ? fid->i32.parent_gen : 0)); |
1447 | break; |
1448 | } |
1449 | |
1450 | return d_obtain_alias(inode); |
1451 | } |
1452 | EXPORT_SYMBOL_GPL(generic_fh_to_parent); |
1453 | |
1454 | /** |
1455 | * __generic_file_fsync - generic fsync implementation for simple filesystems |
1456 | * |
1457 | * @file: file to synchronize |
1458 | * @start: start offset in bytes |
1459 | * @end: end offset in bytes (inclusive) |
1460 | * @datasync: only synchronize essential metadata if true |
1461 | * |
1462 | * This is a generic implementation of the fsync method for simple |
1463 | * filesystems which track all non-inode metadata in the buffers list |
1464 | * hanging off the address_space structure. |
1465 | */ |
1466 | int __generic_file_fsync(struct file *file, loff_t start, loff_t end, |
1467 | int datasync) |
1468 | { |
1469 | struct inode *inode = file->f_mapping->host; |
1470 | int err; |
1471 | int ret; |
1472 | |
1473 | err = file_write_and_wait_range(file, start, end); |
1474 | if (err) |
1475 | return err; |
1476 | |
1477 | inode_lock(inode); |
1478 | ret = sync_mapping_buffers(mapping: inode->i_mapping); |
1479 | if (!(inode->i_state & I_DIRTY_ALL)) |
1480 | goto out; |
1481 | if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) |
1482 | goto out; |
1483 | |
1484 | err = sync_inode_metadata(inode, wait: 1); |
1485 | if (ret == 0) |
1486 | ret = err; |
1487 | |
1488 | out: |
1489 | inode_unlock(inode); |
1490 | /* check and advance again to catch errors after syncing out buffers */ |
1491 | err = file_check_and_advance_wb_err(file); |
1492 | if (ret == 0) |
1493 | ret = err; |
1494 | return ret; |
1495 | } |
1496 | EXPORT_SYMBOL(__generic_file_fsync); |
1497 | |
1498 | /** |
1499 | * generic_file_fsync - generic fsync implementation for simple filesystems |
1500 | * with flush |
1501 | * @file: file to synchronize |
1502 | * @start: start offset in bytes |
1503 | * @end: end offset in bytes (inclusive) |
1504 | * @datasync: only synchronize essential metadata if true |
1505 | * |
1506 | */ |
1507 | |
1508 | int generic_file_fsync(struct file *file, loff_t start, loff_t end, |
1509 | int datasync) |
1510 | { |
1511 | struct inode *inode = file->f_mapping->host; |
1512 | int err; |
1513 | |
1514 | err = __generic_file_fsync(file, start, end, datasync); |
1515 | if (err) |
1516 | return err; |
1517 | return blkdev_issue_flush(bdev: inode->i_sb->s_bdev); |
1518 | } |
1519 | EXPORT_SYMBOL(generic_file_fsync); |
1520 | |
1521 | /** |
1522 | * generic_check_addressable - Check addressability of file system |
1523 | * @blocksize_bits: log of file system block size |
1524 | * @num_blocks: number of blocks in file system |
1525 | * |
1526 | * Determine whether a file system with @num_blocks blocks (and a |
1527 | * block size of 2**@blocksize_bits) is addressable by the sector_t |
1528 | * and page cache of the system. Return 0 if so and -EFBIG otherwise. |
1529 | */ |
1530 | int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) |
1531 | { |
1532 | u64 last_fs_block = num_blocks - 1; |
1533 | u64 last_fs_page = |
1534 | last_fs_block >> (PAGE_SHIFT - blocksize_bits); |
1535 | |
1536 | if (unlikely(num_blocks == 0)) |
1537 | return 0; |
1538 | |
1539 | if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) |
1540 | return -EINVAL; |
1541 | |
1542 | if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || |
1543 | (last_fs_page > (pgoff_t)(~0ULL))) { |
1544 | return -EFBIG; |
1545 | } |
1546 | return 0; |
1547 | } |
1548 | EXPORT_SYMBOL(generic_check_addressable); |
1549 | |
1550 | /* |
1551 | * No-op implementation of ->fsync for in-memory filesystems. |
1552 | */ |
1553 | int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) |
1554 | { |
1555 | return 0; |
1556 | } |
1557 | EXPORT_SYMBOL(noop_fsync); |
1558 | |
1559 | ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) |
1560 | { |
1561 | /* |
1562 | * iomap based filesystems support direct I/O without need for |
1563 | * this callback. However, it still needs to be set in |
1564 | * inode->a_ops so that open/fcntl know that direct I/O is |
1565 | * generally supported. |
1566 | */ |
1567 | return -EINVAL; |
1568 | } |
1569 | EXPORT_SYMBOL_GPL(noop_direct_IO); |
1570 | |
1571 | /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ |
1572 | void kfree_link(void *p) |
1573 | { |
1574 | kfree(objp: p); |
1575 | } |
1576 | EXPORT_SYMBOL(kfree_link); |
1577 | |
1578 | struct inode *alloc_anon_inode(struct super_block *s) |
1579 | { |
1580 | static const struct address_space_operations anon_aops = { |
1581 | .dirty_folio = noop_dirty_folio, |
1582 | }; |
1583 | struct inode *inode = new_inode_pseudo(sb: s); |
1584 | |
1585 | if (!inode) |
1586 | return ERR_PTR(error: -ENOMEM); |
1587 | |
1588 | inode->i_ino = get_next_ino(); |
1589 | inode->i_mapping->a_ops = &anon_aops; |
1590 | |
1591 | /* |
1592 | * Mark the inode dirty from the very beginning, |
1593 | * that way it will never be moved to the dirty |
1594 | * list because mark_inode_dirty() will think |
1595 | * that it already _is_ on the dirty list. |
1596 | */ |
1597 | inode->i_state = I_DIRTY; |
1598 | inode->i_mode = S_IRUSR | S_IWUSR; |
1599 | inode->i_uid = current_fsuid(); |
1600 | inode->i_gid = current_fsgid(); |
1601 | inode->i_flags |= S_PRIVATE; |
1602 | simple_inode_init_ts(inode); |
1603 | return inode; |
1604 | } |
1605 | EXPORT_SYMBOL(alloc_anon_inode); |
1606 | |
1607 | /** |
1608 | * simple_nosetlease - generic helper for prohibiting leases |
1609 | * @filp: file pointer |
1610 | * @arg: type of lease to obtain |
1611 | * @flp: new lease supplied for insertion |
1612 | * @priv: private data for lm_setup operation |
1613 | * |
1614 | * Generic helper for filesystems that do not wish to allow leases to be set. |
1615 | * All arguments are ignored and it just returns -EINVAL. |
1616 | */ |
1617 | int |
1618 | simple_nosetlease(struct file *filp, int arg, struct file_lease **flp, |
1619 | void **priv) |
1620 | { |
1621 | return -EINVAL; |
1622 | } |
1623 | EXPORT_SYMBOL(simple_nosetlease); |
1624 | |
1625 | /** |
1626 | * simple_get_link - generic helper to get the target of "fast" symlinks |
1627 | * @dentry: not used here |
1628 | * @inode: the symlink inode |
1629 | * @done: not used here |
1630 | * |
1631 | * Generic helper for filesystems to use for symlink inodes where a pointer to |
1632 | * the symlink target is stored in ->i_link. NOTE: this isn't normally called, |
1633 | * since as an optimization the path lookup code uses any non-NULL ->i_link |
1634 | * directly, without calling ->get_link(). But ->get_link() still must be set, |
1635 | * to mark the inode_operations as being for a symlink. |
1636 | * |
1637 | * Return: the symlink target |
1638 | */ |
1639 | const char *simple_get_link(struct dentry *dentry, struct inode *inode, |
1640 | struct delayed_call *done) |
1641 | { |
1642 | return inode->i_link; |
1643 | } |
1644 | EXPORT_SYMBOL(simple_get_link); |
1645 | |
1646 | const struct inode_operations simple_symlink_inode_operations = { |
1647 | .get_link = simple_get_link, |
1648 | }; |
1649 | EXPORT_SYMBOL(simple_symlink_inode_operations); |
1650 | |
1651 | /* |
1652 | * Operations for a permanently empty directory. |
1653 | */ |
1654 | static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) |
1655 | { |
1656 | return ERR_PTR(error: -ENOENT); |
1657 | } |
1658 | |
1659 | static int empty_dir_getattr(struct mnt_idmap *idmap, |
1660 | const struct path *path, struct kstat *stat, |
1661 | u32 request_mask, unsigned int query_flags) |
1662 | { |
1663 | struct inode *inode = d_inode(dentry: path->dentry); |
1664 | generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); |
1665 | return 0; |
1666 | } |
1667 | |
1668 | static int empty_dir_setattr(struct mnt_idmap *idmap, |
1669 | struct dentry *dentry, struct iattr *attr) |
1670 | { |
1671 | return -EPERM; |
1672 | } |
1673 | |
1674 | static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) |
1675 | { |
1676 | return -EOPNOTSUPP; |
1677 | } |
1678 | |
1679 | static const struct inode_operations empty_dir_inode_operations = { |
1680 | .lookup = empty_dir_lookup, |
1681 | .permission = generic_permission, |
1682 | .setattr = empty_dir_setattr, |
1683 | .getattr = empty_dir_getattr, |
1684 | .listxattr = empty_dir_listxattr, |
1685 | }; |
1686 | |
1687 | static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) |
1688 | { |
1689 | /* An empty directory has two entries . and .. at offsets 0 and 1 */ |
1690 | return generic_file_llseek_size(file, offset, whence, maxsize: 2, eof: 2); |
1691 | } |
1692 | |
1693 | static int empty_dir_readdir(struct file *file, struct dir_context *ctx) |
1694 | { |
1695 | dir_emit_dots(file, ctx); |
1696 | return 0; |
1697 | } |
1698 | |
1699 | static const struct file_operations empty_dir_operations = { |
1700 | .llseek = empty_dir_llseek, |
1701 | .read = generic_read_dir, |
1702 | .iterate_shared = empty_dir_readdir, |
1703 | .fsync = noop_fsync, |
1704 | }; |
1705 | |
1706 | |
1707 | void make_empty_dir_inode(struct inode *inode) |
1708 | { |
1709 | set_nlink(inode, nlink: 2); |
1710 | inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; |
1711 | inode->i_uid = GLOBAL_ROOT_UID; |
1712 | inode->i_gid = GLOBAL_ROOT_GID; |
1713 | inode->i_rdev = 0; |
1714 | inode->i_size = 0; |
1715 | inode->i_blkbits = PAGE_SHIFT; |
1716 | inode->i_blocks = 0; |
1717 | |
1718 | inode->i_op = &empty_dir_inode_operations; |
1719 | inode->i_opflags &= ~IOP_XATTR; |
1720 | inode->i_fop = &empty_dir_operations; |
1721 | } |
1722 | |
1723 | bool is_empty_dir_inode(struct inode *inode) |
1724 | { |
1725 | return (inode->i_fop == &empty_dir_operations) && |
1726 | (inode->i_op == &empty_dir_inode_operations); |
1727 | } |
1728 | |
1729 | #if IS_ENABLED(CONFIG_UNICODE) |
1730 | /** |
1731 | * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems |
1732 | * @dentry: dentry whose name we are checking against |
1733 | * @len: len of name of dentry |
1734 | * @str: str pointer to name of dentry |
1735 | * @name: Name to compare against |
1736 | * |
1737 | * Return: 0 if names match, 1 if mismatch, or -ERRNO |
1738 | */ |
1739 | static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, |
1740 | const char *str, const struct qstr *name) |
1741 | { |
1742 | const struct dentry *parent; |
1743 | const struct inode *dir; |
1744 | char strbuf[DNAME_INLINE_LEN]; |
1745 | struct qstr qstr; |
1746 | |
1747 | /* |
1748 | * Attempt a case-sensitive match first. It is cheaper and |
1749 | * should cover most lookups, including all the sane |
1750 | * applications that expect a case-sensitive filesystem. |
1751 | * |
1752 | * This comparison is safe under RCU because the caller |
1753 | * guarantees the consistency between str and len. See |
1754 | * __d_lookup_rcu_op_compare() for details. |
1755 | */ |
1756 | if (len == name->len && !memcmp(p: str, q: name->name, size: len)) |
1757 | return 0; |
1758 | |
1759 | parent = READ_ONCE(dentry->d_parent); |
1760 | dir = READ_ONCE(parent->d_inode); |
1761 | if (!dir || !IS_CASEFOLDED(dir)) |
1762 | return 1; |
1763 | |
1764 | /* |
1765 | * If the dentry name is stored in-line, then it may be concurrently |
1766 | * modified by a rename. If this happens, the VFS will eventually retry |
1767 | * the lookup, so it doesn't matter what ->d_compare() returns. |
1768 | * However, it's unsafe to call utf8_strncasecmp() with an unstable |
1769 | * string. Therefore, we have to copy the name into a temporary buffer. |
1770 | */ |
1771 | if (len <= DNAME_INLINE_LEN - 1) { |
1772 | memcpy(strbuf, str, len); |
1773 | strbuf[len] = 0; |
1774 | str = strbuf; |
1775 | /* prevent compiler from optimizing out the temporary buffer */ |
1776 | barrier(); |
1777 | } |
1778 | qstr.len = len; |
1779 | qstr.name = str; |
1780 | |
1781 | return utf8_strncasecmp(um: dentry->d_sb->s_encoding, s1: name, s2: &qstr); |
1782 | } |
1783 | |
1784 | /** |
1785 | * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems |
1786 | * @dentry: dentry of the parent directory |
1787 | * @str: qstr of name whose hash we should fill in |
1788 | * |
1789 | * Return: 0 if hash was successful or unchanged, and -EINVAL on error |
1790 | */ |
1791 | static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) |
1792 | { |
1793 | const struct inode *dir = READ_ONCE(dentry->d_inode); |
1794 | struct super_block *sb = dentry->d_sb; |
1795 | const struct unicode_map *um = sb->s_encoding; |
1796 | int ret; |
1797 | |
1798 | if (!dir || !IS_CASEFOLDED(dir)) |
1799 | return 0; |
1800 | |
1801 | ret = utf8_casefold_hash(um, salt: dentry, str); |
1802 | if (ret < 0 && sb_has_strict_encoding(sb)) |
1803 | return -EINVAL; |
1804 | return 0; |
1805 | } |
1806 | |
1807 | static const struct dentry_operations generic_ci_dentry_ops = { |
1808 | .d_hash = generic_ci_d_hash, |
1809 | .d_compare = generic_ci_d_compare, |
1810 | #ifdef CONFIG_FS_ENCRYPTION |
1811 | .d_revalidate = fscrypt_d_revalidate, |
1812 | #endif |
1813 | }; |
1814 | #endif |
1815 | |
1816 | #ifdef CONFIG_FS_ENCRYPTION |
1817 | static const struct dentry_operations generic_encrypted_dentry_ops = { |
1818 | .d_revalidate = fscrypt_d_revalidate, |
1819 | }; |
1820 | #endif |
1821 | |
1822 | /** |
1823 | * generic_set_sb_d_ops - helper for choosing the set of |
1824 | * filesystem-wide dentry operations for the enabled features |
1825 | * @sb: superblock to be configured |
1826 | * |
1827 | * Filesystems supporting casefolding and/or fscrypt can call this |
1828 | * helper at mount-time to configure sb->s_d_op to best set of dentry |
1829 | * operations required for the enabled features. The helper must be |
1830 | * called after these have been configured, but before the root dentry |
1831 | * is created. |
1832 | */ |
1833 | void generic_set_sb_d_ops(struct super_block *sb) |
1834 | { |
1835 | #if IS_ENABLED(CONFIG_UNICODE) |
1836 | if (sb->s_encoding) { |
1837 | sb->s_d_op = &generic_ci_dentry_ops; |
1838 | return; |
1839 | } |
1840 | #endif |
1841 | #ifdef CONFIG_FS_ENCRYPTION |
1842 | if (sb->s_cop) { |
1843 | sb->s_d_op = &generic_encrypted_dentry_ops; |
1844 | return; |
1845 | } |
1846 | #endif |
1847 | } |
1848 | EXPORT_SYMBOL(generic_set_sb_d_ops); |
1849 | |
1850 | /** |
1851 | * inode_maybe_inc_iversion - increments i_version |
1852 | * @inode: inode with the i_version that should be updated |
1853 | * @force: increment the counter even if it's not necessary? |
1854 | * |
1855 | * Every time the inode is modified, the i_version field must be seen to have |
1856 | * changed by any observer. |
1857 | * |
1858 | * If "force" is set or the QUERIED flag is set, then ensure that we increment |
1859 | * the value, and clear the queried flag. |
1860 | * |
1861 | * In the common case where neither is set, then we can return "false" without |
1862 | * updating i_version. |
1863 | * |
1864 | * If this function returns false, and no other metadata has changed, then we |
1865 | * can avoid logging the metadata. |
1866 | */ |
1867 | bool inode_maybe_inc_iversion(struct inode *inode, bool force) |
1868 | { |
1869 | u64 cur, new; |
1870 | |
1871 | /* |
1872 | * The i_version field is not strictly ordered with any other inode |
1873 | * information, but the legacy inode_inc_iversion code used a spinlock |
1874 | * to serialize increments. |
1875 | * |
1876 | * Here, we add full memory barriers to ensure that any de-facto |
1877 | * ordering with other info is preserved. |
1878 | * |
1879 | * This barrier pairs with the barrier in inode_query_iversion() |
1880 | */ |
1881 | smp_mb(); |
1882 | cur = inode_peek_iversion_raw(inode); |
1883 | do { |
1884 | /* If flag is clear then we needn't do anything */ |
1885 | if (!force && !(cur & I_VERSION_QUERIED)) |
1886 | return false; |
1887 | |
1888 | /* Since lowest bit is flag, add 2 to avoid it */ |
1889 | new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; |
1890 | } while (!atomic64_try_cmpxchg(v: &inode->i_version, old: &cur, new)); |
1891 | return true; |
1892 | } |
1893 | EXPORT_SYMBOL(inode_maybe_inc_iversion); |
1894 | |
1895 | /** |
1896 | * inode_query_iversion - read i_version for later use |
1897 | * @inode: inode from which i_version should be read |
1898 | * |
1899 | * Read the inode i_version counter. This should be used by callers that wish |
1900 | * to store the returned i_version for later comparison. This will guarantee |
1901 | * that a later query of the i_version will result in a different value if |
1902 | * anything has changed. |
1903 | * |
1904 | * In this implementation, we fetch the current value, set the QUERIED flag and |
1905 | * then try to swap it into place with a cmpxchg, if it wasn't already set. If |
1906 | * that fails, we try again with the newly fetched value from the cmpxchg. |
1907 | */ |
1908 | u64 inode_query_iversion(struct inode *inode) |
1909 | { |
1910 | u64 cur, new; |
1911 | |
1912 | cur = inode_peek_iversion_raw(inode); |
1913 | do { |
1914 | /* If flag is already set, then no need to swap */ |
1915 | if (cur & I_VERSION_QUERIED) { |
1916 | /* |
1917 | * This barrier (and the implicit barrier in the |
1918 | * cmpxchg below) pairs with the barrier in |
1919 | * inode_maybe_inc_iversion(). |
1920 | */ |
1921 | smp_mb(); |
1922 | break; |
1923 | } |
1924 | |
1925 | new = cur | I_VERSION_QUERIED; |
1926 | } while (!atomic64_try_cmpxchg(v: &inode->i_version, old: &cur, new)); |
1927 | return cur >> I_VERSION_QUERIED_SHIFT; |
1928 | } |
1929 | EXPORT_SYMBOL(inode_query_iversion); |
1930 | |
1931 | ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, |
1932 | ssize_t direct_written, ssize_t buffered_written) |
1933 | { |
1934 | struct address_space *mapping = iocb->ki_filp->f_mapping; |
1935 | loff_t pos = iocb->ki_pos - buffered_written; |
1936 | loff_t end = iocb->ki_pos - 1; |
1937 | int err; |
1938 | |
1939 | /* |
1940 | * If the buffered write fallback returned an error, we want to return |
1941 | * the number of bytes which were written by direct I/O, or the error |
1942 | * code if that was zero. |
1943 | * |
1944 | * Note that this differs from normal direct-io semantics, which will |
1945 | * return -EFOO even if some bytes were written. |
1946 | */ |
1947 | if (unlikely(buffered_written < 0)) { |
1948 | if (direct_written) |
1949 | return direct_written; |
1950 | return buffered_written; |
1951 | } |
1952 | |
1953 | /* |
1954 | * We need to ensure that the page cache pages are written to disk and |
1955 | * invalidated to preserve the expected O_DIRECT semantics. |
1956 | */ |
1957 | err = filemap_write_and_wait_range(mapping, lstart: pos, lend: end); |
1958 | if (err < 0) { |
1959 | /* |
1960 | * We don't know how much we wrote, so just return the number of |
1961 | * bytes which were direct-written |
1962 | */ |
1963 | iocb->ki_pos -= buffered_written; |
1964 | if (direct_written) |
1965 | return direct_written; |
1966 | return err; |
1967 | } |
1968 | invalidate_mapping_pages(mapping, start: pos >> PAGE_SHIFT, end: end >> PAGE_SHIFT); |
1969 | return direct_written + buffered_written; |
1970 | } |
1971 | EXPORT_SYMBOL_GPL(direct_write_fallback); |
1972 | |
1973 | /** |
1974 | * simple_inode_init_ts - initialize the timestamps for a new inode |
1975 | * @inode: inode to be initialized |
1976 | * |
1977 | * When a new inode is created, most filesystems set the timestamps to the |
1978 | * current time. Add a helper to do this. |
1979 | */ |
1980 | struct timespec64 simple_inode_init_ts(struct inode *inode) |
1981 | { |
1982 | struct timespec64 ts = inode_set_ctime_current(inode); |
1983 | |
1984 | inode_set_atime_to_ts(inode, ts); |
1985 | inode_set_mtime_to_ts(inode, ts); |
1986 | return ts; |
1987 | } |
1988 | EXPORT_SYMBOL(simple_inode_init_ts); |
1989 | |
1990 | static inline struct dentry *get_stashed_dentry(struct dentry *stashed) |
1991 | { |
1992 | struct dentry *dentry; |
1993 | |
1994 | guard(rcu)(); |
1995 | dentry = READ_ONCE(stashed); |
1996 | if (!dentry) |
1997 | return NULL; |
1998 | if (!lockref_get_not_dead(&dentry->d_lockref)) |
1999 | return NULL; |
2000 | return dentry; |
2001 | } |
2002 | |
2003 | static struct dentry *prepare_anon_dentry(struct dentry **stashed, |
2004 | struct super_block *sb, |
2005 | void *data) |
2006 | { |
2007 | struct dentry *dentry; |
2008 | struct inode *inode; |
2009 | const struct stashed_operations *sops = sb->s_fs_info; |
2010 | int ret; |
2011 | |
2012 | inode = new_inode_pseudo(sb); |
2013 | if (!inode) { |
2014 | sops->put_data(data); |
2015 | return ERR_PTR(error: -ENOMEM); |
2016 | } |
2017 | |
2018 | inode->i_flags |= S_IMMUTABLE; |
2019 | inode->i_mode = S_IFREG; |
2020 | simple_inode_init_ts(inode); |
2021 | |
2022 | ret = sops->init_inode(inode, data); |
2023 | if (ret < 0) { |
2024 | iput(inode); |
2025 | return ERR_PTR(error: ret); |
2026 | } |
2027 | |
2028 | /* Notice when this is changed. */ |
2029 | WARN_ON_ONCE(!S_ISREG(inode->i_mode)); |
2030 | WARN_ON_ONCE(!IS_IMMUTABLE(inode)); |
2031 | |
2032 | dentry = d_alloc_anon(sb); |
2033 | if (!dentry) { |
2034 | iput(inode); |
2035 | return ERR_PTR(error: -ENOMEM); |
2036 | } |
2037 | |
2038 | /* Store address of location where dentry's supposed to be stashed. */ |
2039 | dentry->d_fsdata = stashed; |
2040 | |
2041 | /* @data is now owned by the fs */ |
2042 | d_instantiate(dentry, inode); |
2043 | return dentry; |
2044 | } |
2045 | |
2046 | static struct dentry *stash_dentry(struct dentry **stashed, |
2047 | struct dentry *dentry) |
2048 | { |
2049 | guard(rcu)(); |
2050 | for (;;) { |
2051 | struct dentry *old; |
2052 | |
2053 | /* Assume any old dentry was cleared out. */ |
2054 | old = cmpxchg(stashed, NULL, dentry); |
2055 | if (likely(!old)) |
2056 | return dentry; |
2057 | |
2058 | /* Check if somebody else installed a reusable dentry. */ |
2059 | if (lockref_get_not_dead(&old->d_lockref)) |
2060 | return old; |
2061 | |
2062 | /* There's an old dead dentry there, try to take it over. */ |
2063 | if (likely(try_cmpxchg(stashed, &old, dentry))) |
2064 | return dentry; |
2065 | } |
2066 | } |
2067 | |
2068 | /** |
2069 | * path_from_stashed - create path from stashed or new dentry |
2070 | * @stashed: where to retrieve or stash dentry |
2071 | * @mnt: mnt of the filesystems to use |
2072 | * @data: data to store in inode->i_private |
2073 | * @path: path to create |
2074 | * |
2075 | * The function tries to retrieve a stashed dentry from @stashed. If the dentry |
2076 | * is still valid then it will be reused. If the dentry isn't able the function |
2077 | * will allocate a new dentry and inode. It will then check again whether it |
2078 | * can reuse an existing dentry in case one has been added in the meantime or |
2079 | * update @stashed with the newly added dentry. |
2080 | * |
2081 | * Special-purpose helper for nsfs and pidfs. |
2082 | * |
2083 | * Return: On success zero and on failure a negative error is returned. |
2084 | */ |
2085 | int path_from_stashed(struct dentry **stashed, struct vfsmount *mnt, void *data, |
2086 | struct path *path) |
2087 | { |
2088 | struct dentry *dentry; |
2089 | const struct stashed_operations *sops = mnt->mnt_sb->s_fs_info; |
2090 | |
2091 | /* See if dentry can be reused. */ |
2092 | path->dentry = get_stashed_dentry(stashed: *stashed); |
2093 | if (path->dentry) { |
2094 | sops->put_data(data); |
2095 | goto out_path; |
2096 | } |
2097 | |
2098 | /* Allocate a new dentry. */ |
2099 | dentry = prepare_anon_dentry(stashed, sb: mnt->mnt_sb, data); |
2100 | if (IS_ERR(ptr: dentry)) |
2101 | return PTR_ERR(ptr: dentry); |
2102 | |
2103 | /* Added a new dentry. @data is now owned by the filesystem. */ |
2104 | path->dentry = stash_dentry(stashed, dentry); |
2105 | if (path->dentry != dentry) |
2106 | dput(dentry); |
2107 | |
2108 | out_path: |
2109 | WARN_ON_ONCE(path->dentry->d_fsdata != stashed); |
2110 | WARN_ON_ONCE(d_inode(path->dentry)->i_private != data); |
2111 | path->mnt = mntget(mnt); |
2112 | return 0; |
2113 | } |
2114 | |
2115 | void stashed_dentry_prune(struct dentry *dentry) |
2116 | { |
2117 | struct dentry **stashed = dentry->d_fsdata; |
2118 | struct inode *inode = d_inode(dentry); |
2119 | |
2120 | if (WARN_ON_ONCE(!stashed)) |
2121 | return; |
2122 | |
2123 | if (!inode) |
2124 | return; |
2125 | |
2126 | /* |
2127 | * Only replace our own @dentry as someone else might've |
2128 | * already cleared out @dentry and stashed their own |
2129 | * dentry in there. |
2130 | */ |
2131 | cmpxchg(stashed, dentry, NULL); |
2132 | } |
2133 | |