| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * Kernel internal timers |
| 4 | * |
| 5 | * Copyright (C) 1991, 1992 Linus Torvalds |
| 6 | * |
| 7 | * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. |
| 8 | * |
| 9 | * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| 10 | * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| 11 | * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to |
| 12 | * serialize accesses to xtime/lost_ticks). |
| 13 | * Copyright (C) 1998 Andrea Arcangeli |
| 14 | * 1999-03-10 Improved NTP compatibility by Ulrich Windl |
| 15 | * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love |
| 16 | * 2000-10-05 Implemented scalable SMP per-CPU timer handling. |
| 17 | * Copyright (C) 2000, 2001, 2002 Ingo Molnar |
| 18 | * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar |
| 19 | */ |
| 20 | |
| 21 | #include <linux/kernel_stat.h> |
| 22 | #include <linux/export.h> |
| 23 | #include <linux/interrupt.h> |
| 24 | #include <linux/percpu.h> |
| 25 | #include <linux/init.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/swap.h> |
| 28 | #include <linux/pid_namespace.h> |
| 29 | #include <linux/notifier.h> |
| 30 | #include <linux/thread_info.h> |
| 31 | #include <linux/time.h> |
| 32 | #include <linux/jiffies.h> |
| 33 | #include <linux/posix-timers.h> |
| 34 | #include <linux/cpu.h> |
| 35 | #include <linux/syscalls.h> |
| 36 | #include <linux/delay.h> |
| 37 | #include <linux/tick.h> |
| 38 | #include <linux/kallsyms.h> |
| 39 | #include <linux/irq_work.h> |
| 40 | #include <linux/sched/sysctl.h> |
| 41 | #include <linux/sched/nohz.h> |
| 42 | #include <linux/sched/debug.h> |
| 43 | #include <linux/slab.h> |
| 44 | #include <linux/compat.h> |
| 45 | #include <linux/random.h> |
| 46 | #include <linux/sysctl.h> |
| 47 | |
| 48 | #include <linux/uaccess.h> |
| 49 | #include <asm/unistd.h> |
| 50 | #include <asm/div64.h> |
| 51 | #include <asm/timex.h> |
| 52 | #include <asm/io.h> |
| 53 | |
| 54 | #include "tick-internal.h" |
| 55 | #include "timer_migration.h" |
| 56 | |
| 57 | #define CREATE_TRACE_POINTS |
| 58 | #include <trace/events/timer.h> |
| 59 | |
| 60 | __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; |
| 61 | |
| 62 | EXPORT_SYMBOL(jiffies_64); |
| 63 | |
| 64 | /* |
| 65 | * The timer wheel has LVL_DEPTH array levels. Each level provides an array of |
| 66 | * LVL_SIZE buckets. Each level is driven by its own clock and therefore each |
| 67 | * level has a different granularity. |
| 68 | * |
| 69 | * The level granularity is: LVL_CLK_DIV ^ level |
| 70 | * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level) |
| 71 | * |
| 72 | * The array level of a newly armed timer depends on the relative expiry |
| 73 | * time. The farther the expiry time is away the higher the array level and |
| 74 | * therefore the granularity becomes. |
| 75 | * |
| 76 | * Contrary to the original timer wheel implementation, which aims for 'exact' |
| 77 | * expiry of the timers, this implementation removes the need for recascading |
| 78 | * the timers into the lower array levels. The previous 'classic' timer wheel |
| 79 | * implementation of the kernel already violated the 'exact' expiry by adding |
| 80 | * slack to the expiry time to provide batched expiration. The granularity |
| 81 | * levels provide implicit batching. |
| 82 | * |
| 83 | * This is an optimization of the original timer wheel implementation for the |
| 84 | * majority of the timer wheel use cases: timeouts. The vast majority of |
| 85 | * timeout timers (networking, disk I/O ...) are canceled before expiry. If |
| 86 | * the timeout expires it indicates that normal operation is disturbed, so it |
| 87 | * does not matter much whether the timeout comes with a slight delay. |
| 88 | * |
| 89 | * The only exception to this are networking timers with a small expiry |
| 90 | * time. They rely on the granularity. Those fit into the first wheel level, |
| 91 | * which has HZ granularity. |
| 92 | * |
| 93 | * We don't have cascading anymore. timers with a expiry time above the |
| 94 | * capacity of the last wheel level are force expired at the maximum timeout |
| 95 | * value of the last wheel level. From data sampling we know that the maximum |
| 96 | * value observed is 5 days (network connection tracking), so this should not |
| 97 | * be an issue. |
| 98 | * |
| 99 | * The currently chosen array constants values are a good compromise between |
| 100 | * array size and granularity. |
| 101 | * |
| 102 | * This results in the following granularity and range levels: |
| 103 | * |
| 104 | * HZ 1000 steps |
| 105 | * Level Offset Granularity Range |
| 106 | * 0 0 1 ms 0 ms - 63 ms |
| 107 | * 1 64 8 ms 64 ms - 511 ms |
| 108 | * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s) |
| 109 | * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s) |
| 110 | * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m) |
| 111 | * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m) |
| 112 | * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h) |
| 113 | * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d) |
| 114 | * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d) |
| 115 | * |
| 116 | * HZ 300 |
| 117 | * Level Offset Granularity Range |
| 118 | * 0 0 3 ms 0 ms - 210 ms |
| 119 | * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s) |
| 120 | * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s) |
| 121 | * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m) |
| 122 | * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m) |
| 123 | * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h) |
| 124 | * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h) |
| 125 | * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d) |
| 126 | * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d) |
| 127 | * |
| 128 | * HZ 250 |
| 129 | * Level Offset Granularity Range |
| 130 | * 0 0 4 ms 0 ms - 255 ms |
| 131 | * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s) |
| 132 | * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s) |
| 133 | * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m) |
| 134 | * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m) |
| 135 | * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h) |
| 136 | * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h) |
| 137 | * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d) |
| 138 | * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d) |
| 139 | * |
| 140 | * HZ 100 |
| 141 | * Level Offset Granularity Range |
| 142 | * 0 0 10 ms 0 ms - 630 ms |
| 143 | * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s) |
| 144 | * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s) |
| 145 | * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m) |
| 146 | * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m) |
| 147 | * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h) |
| 148 | * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d) |
| 149 | * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d) |
| 150 | */ |
| 151 | |
| 152 | /* Clock divisor for the next level */ |
| 153 | #define LVL_CLK_SHIFT 3 |
| 154 | #define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT) |
| 155 | #define LVL_CLK_MASK (LVL_CLK_DIV - 1) |
| 156 | #define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT) |
| 157 | #define LVL_GRAN(n) (1UL << LVL_SHIFT(n)) |
| 158 | |
| 159 | /* |
| 160 | * The time start value for each level to select the bucket at enqueue |
| 161 | * time. We start from the last possible delta of the previous level |
| 162 | * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()). |
| 163 | */ |
| 164 | #define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT)) |
| 165 | |
| 166 | /* Size of each clock level */ |
| 167 | #define LVL_BITS 6 |
| 168 | #define LVL_SIZE (1UL << LVL_BITS) |
| 169 | #define LVL_MASK (LVL_SIZE - 1) |
| 170 | #define LVL_OFFS(n) ((n) * LVL_SIZE) |
| 171 | |
| 172 | /* Level depth */ |
| 173 | #if HZ > 100 |
| 174 | # define LVL_DEPTH 9 |
| 175 | # else |
| 176 | # define LVL_DEPTH 8 |
| 177 | #endif |
| 178 | |
| 179 | /* The cutoff (max. capacity of the wheel) */ |
| 180 | #define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH)) |
| 181 | #define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1)) |
| 182 | |
| 183 | /* |
| 184 | * The resulting wheel size. If NOHZ is configured we allocate two |
| 185 | * wheels so we have a separate storage for the deferrable timers. |
| 186 | */ |
| 187 | #define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH) |
| 188 | |
| 189 | #ifdef CONFIG_NO_HZ_COMMON |
| 190 | /* |
| 191 | * If multiple bases need to be locked, use the base ordering for lock |
| 192 | * nesting, i.e. lowest number first. |
| 193 | */ |
| 194 | # define NR_BASES 3 |
| 195 | # define BASE_LOCAL 0 |
| 196 | # define BASE_GLOBAL 1 |
| 197 | # define BASE_DEF 2 |
| 198 | #else |
| 199 | # define NR_BASES 1 |
| 200 | # define BASE_LOCAL 0 |
| 201 | # define BASE_GLOBAL 0 |
| 202 | # define BASE_DEF 0 |
| 203 | #endif |
| 204 | |
| 205 | /** |
| 206 | * struct timer_base - Per CPU timer base (number of base depends on config) |
| 207 | * @lock: Lock protecting the timer_base |
| 208 | * @running_timer: When expiring timers, the lock is dropped. To make |
| 209 | * sure not to race against deleting/modifying a |
| 210 | * currently running timer, the pointer is set to the |
| 211 | * timer, which expires at the moment. If no timer is |
| 212 | * running, the pointer is NULL. |
| 213 | * @expiry_lock: PREEMPT_RT only: Lock is taken in softirq around |
| 214 | * timer expiry callback execution and when trying to |
| 215 | * delete a running timer and it wasn't successful in |
| 216 | * the first glance. It prevents priority inversion |
| 217 | * when callback was preempted on a remote CPU and a |
| 218 | * caller tries to delete the running timer. It also |
| 219 | * prevents a life lock, when the task which tries to |
| 220 | * delete a timer preempted the softirq thread which |
| 221 | * is running the timer callback function. |
| 222 | * @timer_waiters: PREEMPT_RT only: Tells, if there is a waiter |
| 223 | * waiting for the end of the timer callback function |
| 224 | * execution. |
| 225 | * @clk: clock of the timer base; is updated before enqueue |
| 226 | * of a timer; during expiry, it is 1 offset ahead of |
| 227 | * jiffies to avoid endless requeuing to current |
| 228 | * jiffies |
| 229 | * @next_expiry: expiry value of the first timer; it is updated when |
| 230 | * finding the next timer and during enqueue; the |
| 231 | * value is not valid, when next_expiry_recalc is set |
| 232 | * @cpu: Number of CPU the timer base belongs to |
| 233 | * @next_expiry_recalc: States, whether a recalculation of next_expiry is |
| 234 | * required. Value is set true, when a timer was |
| 235 | * deleted. |
| 236 | * @is_idle: Is set, when timer_base is idle. It is triggered by NOHZ |
| 237 | * code. This state is only used in standard |
| 238 | * base. Deferrable timers, which are enqueued remotely |
| 239 | * never wake up an idle CPU. So no matter of supporting it |
| 240 | * for this base. |
| 241 | * @timers_pending: Is set, when a timer is pending in the base. It is only |
| 242 | * reliable when next_expiry_recalc is not set. |
| 243 | * @pending_map: bitmap of the timer wheel; each bit reflects a |
| 244 | * bucket of the wheel. When a bit is set, at least a |
| 245 | * single timer is enqueued in the related bucket. |
| 246 | * @vectors: Array of lists; Each array member reflects a bucket |
| 247 | * of the timer wheel. The list contains all timers |
| 248 | * which are enqueued into a specific bucket. |
| 249 | */ |
| 250 | struct timer_base { |
| 251 | raw_spinlock_t lock; |
| 252 | struct timer_list *running_timer; |
| 253 | #ifdef CONFIG_PREEMPT_RT |
| 254 | spinlock_t expiry_lock; |
| 255 | atomic_t timer_waiters; |
| 256 | #endif |
| 257 | unsigned long clk; |
| 258 | unsigned long next_expiry; |
| 259 | unsigned int cpu; |
| 260 | bool next_expiry_recalc; |
| 261 | bool is_idle; |
| 262 | bool timers_pending; |
| 263 | DECLARE_BITMAP(pending_map, WHEEL_SIZE); |
| 264 | struct hlist_head vectors[WHEEL_SIZE]; |
| 265 | } ____cacheline_aligned; |
| 266 | |
| 267 | static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]); |
| 268 | |
| 269 | #ifdef CONFIG_NO_HZ_COMMON |
| 270 | |
| 271 | static DEFINE_STATIC_KEY_FALSE(timers_nohz_active); |
| 272 | static DEFINE_MUTEX(timer_keys_mutex); |
| 273 | |
| 274 | static void timer_update_keys(struct work_struct *work); |
| 275 | static DECLARE_WORK(timer_update_work, timer_update_keys); |
| 276 | |
| 277 | #ifdef CONFIG_SMP |
| 278 | static unsigned int sysctl_timer_migration = 1; |
| 279 | |
| 280 | DEFINE_STATIC_KEY_FALSE(timers_migration_enabled); |
| 281 | |
| 282 | static void timers_update_migration(void) |
| 283 | { |
| 284 | if (sysctl_timer_migration && tick_nohz_active) |
| 285 | static_branch_enable(&timers_migration_enabled); |
| 286 | else |
| 287 | static_branch_disable(&timers_migration_enabled); |
| 288 | } |
| 289 | |
| 290 | #ifdef CONFIG_SYSCTL |
| 291 | static int timer_migration_handler(const struct ctl_table *table, int write, |
| 292 | void *buffer, size_t *lenp, loff_t *ppos) |
| 293 | { |
| 294 | int ret; |
| 295 | |
| 296 | mutex_lock(&timer_keys_mutex); |
| 297 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
| 298 | if (!ret && write) |
| 299 | timers_update_migration(); |
| 300 | mutex_unlock(lock: &timer_keys_mutex); |
| 301 | return ret; |
| 302 | } |
| 303 | |
| 304 | static const struct ctl_table timer_sysctl[] = { |
| 305 | { |
| 306 | .procname = "timer_migration" , |
| 307 | .data = &sysctl_timer_migration, |
| 308 | .maxlen = sizeof(unsigned int), |
| 309 | .mode = 0644, |
| 310 | .proc_handler = timer_migration_handler, |
| 311 | .extra1 = SYSCTL_ZERO, |
| 312 | .extra2 = SYSCTL_ONE, |
| 313 | }, |
| 314 | }; |
| 315 | |
| 316 | static int __init timer_sysctl_init(void) |
| 317 | { |
| 318 | register_sysctl("kernel" , timer_sysctl); |
| 319 | return 0; |
| 320 | } |
| 321 | device_initcall(timer_sysctl_init); |
| 322 | #endif /* CONFIG_SYSCTL */ |
| 323 | #else /* CONFIG_SMP */ |
| 324 | static inline void timers_update_migration(void) { } |
| 325 | #endif /* !CONFIG_SMP */ |
| 326 | |
| 327 | static void timer_update_keys(struct work_struct *work) |
| 328 | { |
| 329 | mutex_lock(&timer_keys_mutex); |
| 330 | timers_update_migration(); |
| 331 | static_branch_enable(&timers_nohz_active); |
| 332 | mutex_unlock(lock: &timer_keys_mutex); |
| 333 | } |
| 334 | |
| 335 | void timers_update_nohz(void) |
| 336 | { |
| 337 | schedule_work(work: &timer_update_work); |
| 338 | } |
| 339 | |
| 340 | static inline bool is_timers_nohz_active(void) |
| 341 | { |
| 342 | return static_branch_unlikely(&timers_nohz_active); |
| 343 | } |
| 344 | #else |
| 345 | static inline bool is_timers_nohz_active(void) { return false; } |
| 346 | #endif /* NO_HZ_COMMON */ |
| 347 | |
| 348 | static unsigned long round_jiffies_common(unsigned long j, int cpu, |
| 349 | bool force_up) |
| 350 | { |
| 351 | int rem; |
| 352 | unsigned long original = j; |
| 353 | |
| 354 | /* |
| 355 | * We don't want all cpus firing their timers at once hitting the |
| 356 | * same lock or cachelines, so we skew each extra cpu with an extra |
| 357 | * 3 jiffies. This 3 jiffies came originally from the mm/ code which |
| 358 | * already did this. |
| 359 | * The skew is done by adding 3*cpunr, then round, then subtract this |
| 360 | * extra offset again. |
| 361 | */ |
| 362 | j += cpu * 3; |
| 363 | |
| 364 | rem = j % HZ; |
| 365 | |
| 366 | /* |
| 367 | * If the target jiffy is just after a whole second (which can happen |
| 368 | * due to delays of the timer irq, long irq off times etc etc) then |
| 369 | * we should round down to the whole second, not up. Use 1/4th second |
| 370 | * as cutoff for this rounding as an extreme upper bound for this. |
| 371 | * But never round down if @force_up is set. |
| 372 | */ |
| 373 | if (rem < HZ/4 && !force_up) /* round down */ |
| 374 | j = j - rem; |
| 375 | else /* round up */ |
| 376 | j = j - rem + HZ; |
| 377 | |
| 378 | /* now that we have rounded, subtract the extra skew again */ |
| 379 | j -= cpu * 3; |
| 380 | |
| 381 | /* |
| 382 | * Make sure j is still in the future. Otherwise return the |
| 383 | * unmodified value. |
| 384 | */ |
| 385 | return time_is_after_jiffies(j) ? j : original; |
| 386 | } |
| 387 | |
| 388 | /** |
| 389 | * __round_jiffies_relative - function to round jiffies to a full second |
| 390 | * @j: the time in (relative) jiffies that should be rounded |
| 391 | * @cpu: the processor number on which the timeout will happen |
| 392 | * |
| 393 | * __round_jiffies_relative() rounds a time delta in the future (in jiffies) |
| 394 | * up or down to (approximately) full seconds. This is useful for timers |
| 395 | * for which the exact time they fire does not matter too much, as long as |
| 396 | * they fire approximately every X seconds. |
| 397 | * |
| 398 | * By rounding these timers to whole seconds, all such timers will fire |
| 399 | * at the same time, rather than at various times spread out. The goal |
| 400 | * of this is to have the CPU wake up less, which saves power. |
| 401 | * |
| 402 | * The exact rounding is skewed for each processor to avoid all |
| 403 | * processors firing at the exact same time, which could lead |
| 404 | * to lock contention or spurious cache line bouncing. |
| 405 | * |
| 406 | * The return value is the rounded version of the @j parameter. |
| 407 | */ |
| 408 | unsigned long __round_jiffies_relative(unsigned long j, int cpu) |
| 409 | { |
| 410 | unsigned long j0 = jiffies; |
| 411 | |
| 412 | /* Use j0 because jiffies might change while we run */ |
| 413 | return round_jiffies_common(j: j + j0, cpu, force_up: false) - j0; |
| 414 | } |
| 415 | EXPORT_SYMBOL_GPL(__round_jiffies_relative); |
| 416 | |
| 417 | /** |
| 418 | * round_jiffies - function to round jiffies to a full second |
| 419 | * @j: the time in (absolute) jiffies that should be rounded |
| 420 | * |
| 421 | * round_jiffies() rounds an absolute time in the future (in jiffies) |
| 422 | * up or down to (approximately) full seconds. This is useful for timers |
| 423 | * for which the exact time they fire does not matter too much, as long as |
| 424 | * they fire approximately every X seconds. |
| 425 | * |
| 426 | * By rounding these timers to whole seconds, all such timers will fire |
| 427 | * at the same time, rather than at various times spread out. The goal |
| 428 | * of this is to have the CPU wake up less, which saves power. |
| 429 | * |
| 430 | * The return value is the rounded version of the @j parameter. |
| 431 | */ |
| 432 | unsigned long round_jiffies(unsigned long j) |
| 433 | { |
| 434 | return round_jiffies_common(j, raw_smp_processor_id(), force_up: false); |
| 435 | } |
| 436 | EXPORT_SYMBOL_GPL(round_jiffies); |
| 437 | |
| 438 | /** |
| 439 | * round_jiffies_relative - function to round jiffies to a full second |
| 440 | * @j: the time in (relative) jiffies that should be rounded |
| 441 | * |
| 442 | * round_jiffies_relative() rounds a time delta in the future (in jiffies) |
| 443 | * up or down to (approximately) full seconds. This is useful for timers |
| 444 | * for which the exact time they fire does not matter too much, as long as |
| 445 | * they fire approximately every X seconds. |
| 446 | * |
| 447 | * By rounding these timers to whole seconds, all such timers will fire |
| 448 | * at the same time, rather than at various times spread out. The goal |
| 449 | * of this is to have the CPU wake up less, which saves power. |
| 450 | * |
| 451 | * The return value is the rounded version of the @j parameter. |
| 452 | */ |
| 453 | unsigned long round_jiffies_relative(unsigned long j) |
| 454 | { |
| 455 | return __round_jiffies_relative(j, raw_smp_processor_id()); |
| 456 | } |
| 457 | EXPORT_SYMBOL_GPL(round_jiffies_relative); |
| 458 | |
| 459 | /** |
| 460 | * __round_jiffies_up_relative - function to round jiffies up to a full second |
| 461 | * @j: the time in (relative) jiffies that should be rounded |
| 462 | * @cpu: the processor number on which the timeout will happen |
| 463 | * |
| 464 | * This is the same as __round_jiffies_relative() except that it will never |
| 465 | * round down. This is useful for timeouts for which the exact time |
| 466 | * of firing does not matter too much, as long as they don't fire too |
| 467 | * early. |
| 468 | */ |
| 469 | unsigned long __round_jiffies_up_relative(unsigned long j, int cpu) |
| 470 | { |
| 471 | unsigned long j0 = jiffies; |
| 472 | |
| 473 | /* Use j0 because jiffies might change while we run */ |
| 474 | return round_jiffies_common(j: j + j0, cpu, force_up: true) - j0; |
| 475 | } |
| 476 | EXPORT_SYMBOL_GPL(__round_jiffies_up_relative); |
| 477 | |
| 478 | /** |
| 479 | * round_jiffies_up - function to round jiffies up to a full second |
| 480 | * @j: the time in (absolute) jiffies that should be rounded |
| 481 | * |
| 482 | * This is the same as round_jiffies() except that it will never |
| 483 | * round down. This is useful for timeouts for which the exact time |
| 484 | * of firing does not matter too much, as long as they don't fire too |
| 485 | * early. |
| 486 | */ |
| 487 | unsigned long round_jiffies_up(unsigned long j) |
| 488 | { |
| 489 | return round_jiffies_common(j, raw_smp_processor_id(), force_up: true); |
| 490 | } |
| 491 | EXPORT_SYMBOL_GPL(round_jiffies_up); |
| 492 | |
| 493 | /** |
| 494 | * round_jiffies_up_relative - function to round jiffies up to a full second |
| 495 | * @j: the time in (relative) jiffies that should be rounded |
| 496 | * |
| 497 | * This is the same as round_jiffies_relative() except that it will never |
| 498 | * round down. This is useful for timeouts for which the exact time |
| 499 | * of firing does not matter too much, as long as they don't fire too |
| 500 | * early. |
| 501 | */ |
| 502 | unsigned long round_jiffies_up_relative(unsigned long j) |
| 503 | { |
| 504 | return __round_jiffies_up_relative(j, raw_smp_processor_id()); |
| 505 | } |
| 506 | EXPORT_SYMBOL_GPL(round_jiffies_up_relative); |
| 507 | |
| 508 | |
| 509 | static inline unsigned int timer_get_idx(struct timer_list *timer) |
| 510 | { |
| 511 | return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT; |
| 512 | } |
| 513 | |
| 514 | static inline void timer_set_idx(struct timer_list *timer, unsigned int idx) |
| 515 | { |
| 516 | timer->flags = (timer->flags & ~TIMER_ARRAYMASK) | |
| 517 | idx << TIMER_ARRAYSHIFT; |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * Helper function to calculate the array index for a given expiry |
| 522 | * time. |
| 523 | */ |
| 524 | static inline unsigned calc_index(unsigned long expires, unsigned lvl, |
| 525 | unsigned long *bucket_expiry) |
| 526 | { |
| 527 | |
| 528 | /* |
| 529 | * The timer wheel has to guarantee that a timer does not fire |
| 530 | * early. Early expiry can happen due to: |
| 531 | * - Timer is armed at the edge of a tick |
| 532 | * - Truncation of the expiry time in the outer wheel levels |
| 533 | * |
| 534 | * Round up with level granularity to prevent this. |
| 535 | */ |
| 536 | expires = (expires >> LVL_SHIFT(lvl)) + 1; |
| 537 | *bucket_expiry = expires << LVL_SHIFT(lvl); |
| 538 | return LVL_OFFS(lvl) + (expires & LVL_MASK); |
| 539 | } |
| 540 | |
| 541 | static int calc_wheel_index(unsigned long expires, unsigned long clk, |
| 542 | unsigned long *bucket_expiry) |
| 543 | { |
| 544 | unsigned long delta = expires - clk; |
| 545 | unsigned int idx; |
| 546 | |
| 547 | if (delta < LVL_START(1)) { |
| 548 | idx = calc_index(expires, lvl: 0, bucket_expiry); |
| 549 | } else if (delta < LVL_START(2)) { |
| 550 | idx = calc_index(expires, lvl: 1, bucket_expiry); |
| 551 | } else if (delta < LVL_START(3)) { |
| 552 | idx = calc_index(expires, lvl: 2, bucket_expiry); |
| 553 | } else if (delta < LVL_START(4)) { |
| 554 | idx = calc_index(expires, lvl: 3, bucket_expiry); |
| 555 | } else if (delta < LVL_START(5)) { |
| 556 | idx = calc_index(expires, lvl: 4, bucket_expiry); |
| 557 | } else if (delta < LVL_START(6)) { |
| 558 | idx = calc_index(expires, lvl: 5, bucket_expiry); |
| 559 | } else if (delta < LVL_START(7)) { |
| 560 | idx = calc_index(expires, lvl: 6, bucket_expiry); |
| 561 | } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) { |
| 562 | idx = calc_index(expires, lvl: 7, bucket_expiry); |
| 563 | } else if ((long) delta < 0) { |
| 564 | idx = clk & LVL_MASK; |
| 565 | *bucket_expiry = clk; |
| 566 | } else { |
| 567 | /* |
| 568 | * Force expire obscene large timeouts to expire at the |
| 569 | * capacity limit of the wheel. |
| 570 | */ |
| 571 | if (delta >= WHEEL_TIMEOUT_CUTOFF) |
| 572 | expires = clk + WHEEL_TIMEOUT_MAX; |
| 573 | |
| 574 | idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry); |
| 575 | } |
| 576 | return idx; |
| 577 | } |
| 578 | |
| 579 | static void |
| 580 | trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer) |
| 581 | { |
| 582 | /* |
| 583 | * Deferrable timers do not prevent the CPU from entering dynticks and |
| 584 | * are not taken into account on the idle/nohz_full path. An IPI when a |
| 585 | * new deferrable timer is enqueued will wake up the remote CPU but |
| 586 | * nothing will be done with the deferrable timer base. Therefore skip |
| 587 | * the remote IPI for deferrable timers completely. |
| 588 | */ |
| 589 | if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE) |
| 590 | return; |
| 591 | |
| 592 | /* |
| 593 | * We might have to IPI the remote CPU if the base is idle and the |
| 594 | * timer is pinned. If it is a non pinned timer, it is only queued |
| 595 | * on the remote CPU, when timer was running during queueing. Then |
| 596 | * everything is handled by remote CPU anyway. If the other CPU is |
| 597 | * on the way to idle then it can't set base->is_idle as we hold |
| 598 | * the base lock: |
| 599 | */ |
| 600 | if (base->is_idle) { |
| 601 | WARN_ON_ONCE(!(timer->flags & TIMER_PINNED || |
| 602 | tick_nohz_full_cpu(base->cpu))); |
| 603 | wake_up_nohz_cpu(cpu: base->cpu); |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | /* |
| 608 | * Enqueue the timer into the hash bucket, mark it pending in |
| 609 | * the bitmap, store the index in the timer flags then wake up |
| 610 | * the target CPU if needed. |
| 611 | */ |
| 612 | static void enqueue_timer(struct timer_base *base, struct timer_list *timer, |
| 613 | unsigned int idx, unsigned long bucket_expiry) |
| 614 | { |
| 615 | |
| 616 | hlist_add_head(n: &timer->entry, h: base->vectors + idx); |
| 617 | __set_bit(idx, base->pending_map); |
| 618 | timer_set_idx(timer, idx); |
| 619 | |
| 620 | trace_timer_start(timer, bucket_expiry); |
| 621 | |
| 622 | /* |
| 623 | * Check whether this is the new first expiring timer. The |
| 624 | * effective expiry time of the timer is required here |
| 625 | * (bucket_expiry) instead of timer->expires. |
| 626 | */ |
| 627 | if (time_before(bucket_expiry, base->next_expiry)) { |
| 628 | /* |
| 629 | * Set the next expiry time and kick the CPU so it |
| 630 | * can reevaluate the wheel: |
| 631 | */ |
| 632 | WRITE_ONCE(base->next_expiry, bucket_expiry); |
| 633 | base->timers_pending = true; |
| 634 | base->next_expiry_recalc = false; |
| 635 | trigger_dyntick_cpu(base, timer); |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | static void internal_add_timer(struct timer_base *base, struct timer_list *timer) |
| 640 | { |
| 641 | unsigned long bucket_expiry; |
| 642 | unsigned int idx; |
| 643 | |
| 644 | idx = calc_wheel_index(expires: timer->expires, clk: base->clk, bucket_expiry: &bucket_expiry); |
| 645 | enqueue_timer(base, timer, idx, bucket_expiry); |
| 646 | } |
| 647 | |
| 648 | #ifdef CONFIG_DEBUG_OBJECTS_TIMERS |
| 649 | |
| 650 | static const struct debug_obj_descr timer_debug_descr; |
| 651 | |
| 652 | struct timer_hint { |
| 653 | void (*function)(struct timer_list *t); |
| 654 | long offset; |
| 655 | }; |
| 656 | |
| 657 | #define TIMER_HINT(fn, container, timr, hintfn) \ |
| 658 | { \ |
| 659 | .function = fn, \ |
| 660 | .offset = offsetof(container, hintfn) - \ |
| 661 | offsetof(container, timr) \ |
| 662 | } |
| 663 | |
| 664 | static const struct timer_hint timer_hints[] = { |
| 665 | TIMER_HINT(delayed_work_timer_fn, |
| 666 | struct delayed_work, timer, work.func), |
| 667 | TIMER_HINT(kthread_delayed_work_timer_fn, |
| 668 | struct kthread_delayed_work, timer, work.func), |
| 669 | }; |
| 670 | |
| 671 | static void *timer_debug_hint(void *addr) |
| 672 | { |
| 673 | struct timer_list *timer = addr; |
| 674 | int i; |
| 675 | |
| 676 | for (i = 0; i < ARRAY_SIZE(timer_hints); i++) { |
| 677 | if (timer_hints[i].function == timer->function) { |
| 678 | void (**fn)(void) = addr + timer_hints[i].offset; |
| 679 | |
| 680 | return *fn; |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | return timer->function; |
| 685 | } |
| 686 | |
| 687 | static bool timer_is_static_object(void *addr) |
| 688 | { |
| 689 | struct timer_list *timer = addr; |
| 690 | |
| 691 | return (timer->entry.pprev == NULL && |
| 692 | timer->entry.next == TIMER_ENTRY_STATIC); |
| 693 | } |
| 694 | |
| 695 | /* |
| 696 | * timer_fixup_init is called when: |
| 697 | * - an active object is initialized |
| 698 | */ |
| 699 | static bool timer_fixup_init(void *addr, enum debug_obj_state state) |
| 700 | { |
| 701 | struct timer_list *timer = addr; |
| 702 | |
| 703 | switch (state) { |
| 704 | case ODEBUG_STATE_ACTIVE: |
| 705 | timer_delete_sync(timer); |
| 706 | debug_object_init(addr: timer, descr: &timer_debug_descr); |
| 707 | return true; |
| 708 | default: |
| 709 | return false; |
| 710 | } |
| 711 | } |
| 712 | |
| 713 | /* Stub timer callback for improperly used timers. */ |
| 714 | static void stub_timer(struct timer_list *unused) |
| 715 | { |
| 716 | WARN_ON(1); |
| 717 | } |
| 718 | |
| 719 | /* |
| 720 | * timer_fixup_activate is called when: |
| 721 | * - an active object is activated |
| 722 | * - an unknown non-static object is activated |
| 723 | */ |
| 724 | static bool timer_fixup_activate(void *addr, enum debug_obj_state state) |
| 725 | { |
| 726 | struct timer_list *timer = addr; |
| 727 | |
| 728 | switch (state) { |
| 729 | case ODEBUG_STATE_NOTAVAILABLE: |
| 730 | timer_setup(timer, stub_timer, 0); |
| 731 | return true; |
| 732 | |
| 733 | case ODEBUG_STATE_ACTIVE: |
| 734 | WARN_ON(1); |
| 735 | fallthrough; |
| 736 | default: |
| 737 | return false; |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | /* |
| 742 | * timer_fixup_free is called when: |
| 743 | * - an active object is freed |
| 744 | */ |
| 745 | static bool timer_fixup_free(void *addr, enum debug_obj_state state) |
| 746 | { |
| 747 | struct timer_list *timer = addr; |
| 748 | |
| 749 | switch (state) { |
| 750 | case ODEBUG_STATE_ACTIVE: |
| 751 | timer_delete_sync(timer); |
| 752 | debug_object_free(addr: timer, descr: &timer_debug_descr); |
| 753 | return true; |
| 754 | default: |
| 755 | return false; |
| 756 | } |
| 757 | } |
| 758 | |
| 759 | /* |
| 760 | * timer_fixup_assert_init is called when: |
| 761 | * - an untracked/uninit-ed object is found |
| 762 | */ |
| 763 | static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state) |
| 764 | { |
| 765 | struct timer_list *timer = addr; |
| 766 | |
| 767 | switch (state) { |
| 768 | case ODEBUG_STATE_NOTAVAILABLE: |
| 769 | timer_setup(timer, stub_timer, 0); |
| 770 | return true; |
| 771 | default: |
| 772 | return false; |
| 773 | } |
| 774 | } |
| 775 | |
| 776 | static const struct debug_obj_descr timer_debug_descr = { |
| 777 | .name = "timer_list" , |
| 778 | .debug_hint = timer_debug_hint, |
| 779 | .is_static_object = timer_is_static_object, |
| 780 | .fixup_init = timer_fixup_init, |
| 781 | .fixup_activate = timer_fixup_activate, |
| 782 | .fixup_free = timer_fixup_free, |
| 783 | .fixup_assert_init = timer_fixup_assert_init, |
| 784 | }; |
| 785 | |
| 786 | static inline void debug_timer_init(struct timer_list *timer) |
| 787 | { |
| 788 | debug_object_init(addr: timer, descr: &timer_debug_descr); |
| 789 | } |
| 790 | |
| 791 | static inline void debug_timer_activate(struct timer_list *timer) |
| 792 | { |
| 793 | debug_object_activate(addr: timer, descr: &timer_debug_descr); |
| 794 | } |
| 795 | |
| 796 | static inline void debug_timer_deactivate(struct timer_list *timer) |
| 797 | { |
| 798 | debug_object_deactivate(addr: timer, descr: &timer_debug_descr); |
| 799 | } |
| 800 | |
| 801 | static inline void debug_timer_assert_init(struct timer_list *timer) |
| 802 | { |
| 803 | debug_object_assert_init(addr: timer, descr: &timer_debug_descr); |
| 804 | } |
| 805 | |
| 806 | static void do_init_timer(struct timer_list *timer, |
| 807 | void (*func)(struct timer_list *), |
| 808 | unsigned int flags, |
| 809 | const char *name, struct lock_class_key *key); |
| 810 | |
| 811 | void timer_init_key_on_stack(struct timer_list *timer, |
| 812 | void (*func)(struct timer_list *), |
| 813 | unsigned int flags, |
| 814 | const char *name, struct lock_class_key *key) |
| 815 | { |
| 816 | debug_object_init_on_stack(addr: timer, descr: &timer_debug_descr); |
| 817 | do_init_timer(timer, func, flags, name, key); |
| 818 | } |
| 819 | EXPORT_SYMBOL_GPL(timer_init_key_on_stack); |
| 820 | |
| 821 | void timer_destroy_on_stack(struct timer_list *timer) |
| 822 | { |
| 823 | debug_object_free(addr: timer, descr: &timer_debug_descr); |
| 824 | } |
| 825 | EXPORT_SYMBOL_GPL(timer_destroy_on_stack); |
| 826 | |
| 827 | #else |
| 828 | static inline void debug_timer_init(struct timer_list *timer) { } |
| 829 | static inline void debug_timer_activate(struct timer_list *timer) { } |
| 830 | static inline void debug_timer_deactivate(struct timer_list *timer) { } |
| 831 | static inline void debug_timer_assert_init(struct timer_list *timer) { } |
| 832 | #endif |
| 833 | |
| 834 | static inline void debug_init(struct timer_list *timer) |
| 835 | { |
| 836 | debug_timer_init(timer); |
| 837 | trace_timer_init(timer); |
| 838 | } |
| 839 | |
| 840 | static inline void debug_deactivate(struct timer_list *timer) |
| 841 | { |
| 842 | debug_timer_deactivate(timer); |
| 843 | trace_timer_cancel(timer); |
| 844 | } |
| 845 | |
| 846 | static inline void debug_assert_init(struct timer_list *timer) |
| 847 | { |
| 848 | debug_timer_assert_init(timer); |
| 849 | } |
| 850 | |
| 851 | static void do_init_timer(struct timer_list *timer, |
| 852 | void (*func)(struct timer_list *), |
| 853 | unsigned int flags, |
| 854 | const char *name, struct lock_class_key *key) |
| 855 | { |
| 856 | timer->entry.pprev = NULL; |
| 857 | timer->function = func; |
| 858 | if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS)) |
| 859 | flags &= TIMER_INIT_FLAGS; |
| 860 | timer->flags = flags | raw_smp_processor_id(); |
| 861 | lockdep_init_map(lock: &timer->lockdep_map, name, key, subclass: 0); |
| 862 | } |
| 863 | |
| 864 | /** |
| 865 | * timer_init_key - initialize a timer |
| 866 | * @timer: the timer to be initialized |
| 867 | * @func: timer callback function |
| 868 | * @flags: timer flags |
| 869 | * @name: name of the timer |
| 870 | * @key: lockdep class key of the fake lock used for tracking timer |
| 871 | * sync lock dependencies |
| 872 | * |
| 873 | * timer_init_key() must be done to a timer prior to calling *any* of the |
| 874 | * other timer functions. |
| 875 | */ |
| 876 | void timer_init_key(struct timer_list *timer, |
| 877 | void (*func)(struct timer_list *), unsigned int flags, |
| 878 | const char *name, struct lock_class_key *key) |
| 879 | { |
| 880 | debug_init(timer); |
| 881 | do_init_timer(timer, func, flags, name, key); |
| 882 | } |
| 883 | EXPORT_SYMBOL(timer_init_key); |
| 884 | |
| 885 | static inline void detach_timer(struct timer_list *timer, bool clear_pending) |
| 886 | { |
| 887 | struct hlist_node *entry = &timer->entry; |
| 888 | |
| 889 | debug_deactivate(timer); |
| 890 | |
| 891 | __hlist_del(n: entry); |
| 892 | if (clear_pending) |
| 893 | entry->pprev = NULL; |
| 894 | entry->next = LIST_POISON2; |
| 895 | } |
| 896 | |
| 897 | static int detach_if_pending(struct timer_list *timer, struct timer_base *base, |
| 898 | bool clear_pending) |
| 899 | { |
| 900 | unsigned idx = timer_get_idx(timer); |
| 901 | |
| 902 | if (!timer_pending(timer)) |
| 903 | return 0; |
| 904 | |
| 905 | if (hlist_is_singular_node(n: &timer->entry, h: base->vectors + idx)) { |
| 906 | __clear_bit(idx, base->pending_map); |
| 907 | base->next_expiry_recalc = true; |
| 908 | } |
| 909 | |
| 910 | detach_timer(timer, clear_pending); |
| 911 | return 1; |
| 912 | } |
| 913 | |
| 914 | static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu) |
| 915 | { |
| 916 | int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; |
| 917 | |
| 918 | /* |
| 919 | * If the timer is deferrable and NO_HZ_COMMON is set then we need |
| 920 | * to use the deferrable base. |
| 921 | */ |
| 922 | if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) |
| 923 | index = BASE_DEF; |
| 924 | |
| 925 | return per_cpu_ptr(&timer_bases[index], cpu); |
| 926 | } |
| 927 | |
| 928 | static inline struct timer_base *get_timer_this_cpu_base(u32 tflags) |
| 929 | { |
| 930 | int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL; |
| 931 | |
| 932 | /* |
| 933 | * If the timer is deferrable and NO_HZ_COMMON is set then we need |
| 934 | * to use the deferrable base. |
| 935 | */ |
| 936 | if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE)) |
| 937 | index = BASE_DEF; |
| 938 | |
| 939 | return this_cpu_ptr(&timer_bases[index]); |
| 940 | } |
| 941 | |
| 942 | static inline struct timer_base *get_timer_base(u32 tflags) |
| 943 | { |
| 944 | return get_timer_cpu_base(tflags, cpu: tflags & TIMER_CPUMASK); |
| 945 | } |
| 946 | |
| 947 | static inline void __forward_timer_base(struct timer_base *base, |
| 948 | unsigned long basej) |
| 949 | { |
| 950 | /* |
| 951 | * Check whether we can forward the base. We can only do that when |
| 952 | * @basej is past base->clk otherwise we might rewind base->clk. |
| 953 | */ |
| 954 | if (time_before_eq(basej, base->clk)) |
| 955 | return; |
| 956 | |
| 957 | /* |
| 958 | * If the next expiry value is > jiffies, then we fast forward to |
| 959 | * jiffies otherwise we forward to the next expiry value. |
| 960 | */ |
| 961 | if (time_after(base->next_expiry, basej)) { |
| 962 | base->clk = basej; |
| 963 | } else { |
| 964 | if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk))) |
| 965 | return; |
| 966 | base->clk = base->next_expiry; |
| 967 | } |
| 968 | |
| 969 | } |
| 970 | |
| 971 | static inline void forward_timer_base(struct timer_base *base) |
| 972 | { |
| 973 | __forward_timer_base(base, READ_ONCE(jiffies)); |
| 974 | } |
| 975 | |
| 976 | /* |
| 977 | * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means |
| 978 | * that all timers which are tied to this base are locked, and the base itself |
| 979 | * is locked too. |
| 980 | * |
| 981 | * So __run_timers/migrate_timers can safely modify all timers which could |
| 982 | * be found in the base->vectors array. |
| 983 | * |
| 984 | * When a timer is migrating then the TIMER_MIGRATING flag is set and we need |
| 985 | * to wait until the migration is done. |
| 986 | */ |
| 987 | static struct timer_base *lock_timer_base(struct timer_list *timer, |
| 988 | unsigned long *flags) |
| 989 | __acquires(timer->base->lock) |
| 990 | { |
| 991 | for (;;) { |
| 992 | struct timer_base *base; |
| 993 | u32 tf; |
| 994 | |
| 995 | /* |
| 996 | * We need to use READ_ONCE() here, otherwise the compiler |
| 997 | * might re-read @tf between the check for TIMER_MIGRATING |
| 998 | * and spin_lock(). |
| 999 | */ |
| 1000 | tf = READ_ONCE(timer->flags); |
| 1001 | |
| 1002 | if (!(tf & TIMER_MIGRATING)) { |
| 1003 | base = get_timer_base(tflags: tf); |
| 1004 | raw_spin_lock_irqsave(&base->lock, *flags); |
| 1005 | if (timer->flags == tf) |
| 1006 | return base; |
| 1007 | raw_spin_unlock_irqrestore(&base->lock, *flags); |
| 1008 | } |
| 1009 | cpu_relax(); |
| 1010 | } |
| 1011 | } |
| 1012 | |
| 1013 | #define MOD_TIMER_PENDING_ONLY 0x01 |
| 1014 | #define MOD_TIMER_REDUCE 0x02 |
| 1015 | #define MOD_TIMER_NOTPENDING 0x04 |
| 1016 | |
| 1017 | static inline int |
| 1018 | __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options) |
| 1019 | { |
| 1020 | unsigned long clk = 0, flags, bucket_expiry; |
| 1021 | struct timer_base *base, *new_base; |
| 1022 | unsigned int idx = UINT_MAX; |
| 1023 | int ret = 0; |
| 1024 | |
| 1025 | debug_assert_init(timer); |
| 1026 | |
| 1027 | /* |
| 1028 | * This is a common optimization triggered by the networking code - if |
| 1029 | * the timer is re-modified to have the same timeout or ends up in the |
| 1030 | * same array bucket then just return: |
| 1031 | */ |
| 1032 | if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) { |
| 1033 | /* |
| 1034 | * The downside of this optimization is that it can result in |
| 1035 | * larger granularity than you would get from adding a new |
| 1036 | * timer with this expiry. |
| 1037 | */ |
| 1038 | long diff = timer->expires - expires; |
| 1039 | |
| 1040 | if (!diff) |
| 1041 | return 1; |
| 1042 | if (options & MOD_TIMER_REDUCE && diff <= 0) |
| 1043 | return 1; |
| 1044 | |
| 1045 | /* |
| 1046 | * We lock timer base and calculate the bucket index right |
| 1047 | * here. If the timer ends up in the same bucket, then we |
| 1048 | * just update the expiry time and avoid the whole |
| 1049 | * dequeue/enqueue dance. |
| 1050 | */ |
| 1051 | base = lock_timer_base(timer, flags: &flags); |
| 1052 | /* |
| 1053 | * Has @timer been shutdown? This needs to be evaluated |
| 1054 | * while holding base lock to prevent a race against the |
| 1055 | * shutdown code. |
| 1056 | */ |
| 1057 | if (!timer->function) |
| 1058 | goto out_unlock; |
| 1059 | |
| 1060 | forward_timer_base(base); |
| 1061 | |
| 1062 | if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) && |
| 1063 | time_before_eq(timer->expires, expires)) { |
| 1064 | ret = 1; |
| 1065 | goto out_unlock; |
| 1066 | } |
| 1067 | |
| 1068 | clk = base->clk; |
| 1069 | idx = calc_wheel_index(expires, clk, bucket_expiry: &bucket_expiry); |
| 1070 | |
| 1071 | /* |
| 1072 | * Retrieve and compare the array index of the pending |
| 1073 | * timer. If it matches set the expiry to the new value so a |
| 1074 | * subsequent call will exit in the expires check above. |
| 1075 | */ |
| 1076 | if (idx == timer_get_idx(timer)) { |
| 1077 | if (!(options & MOD_TIMER_REDUCE)) |
| 1078 | timer->expires = expires; |
| 1079 | else if (time_after(timer->expires, expires)) |
| 1080 | timer->expires = expires; |
| 1081 | ret = 1; |
| 1082 | goto out_unlock; |
| 1083 | } |
| 1084 | } else { |
| 1085 | base = lock_timer_base(timer, flags: &flags); |
| 1086 | /* |
| 1087 | * Has @timer been shutdown? This needs to be evaluated |
| 1088 | * while holding base lock to prevent a race against the |
| 1089 | * shutdown code. |
| 1090 | */ |
| 1091 | if (!timer->function) |
| 1092 | goto out_unlock; |
| 1093 | |
| 1094 | forward_timer_base(base); |
| 1095 | } |
| 1096 | |
| 1097 | ret = detach_if_pending(timer, base, clear_pending: false); |
| 1098 | if (!ret && (options & MOD_TIMER_PENDING_ONLY)) |
| 1099 | goto out_unlock; |
| 1100 | |
| 1101 | new_base = get_timer_this_cpu_base(tflags: timer->flags); |
| 1102 | |
| 1103 | if (base != new_base) { |
| 1104 | /* |
| 1105 | * We are trying to schedule the timer on the new base. |
| 1106 | * However we can't change timer's base while it is running, |
| 1107 | * otherwise timer_delete_sync() can't detect that the timer's |
| 1108 | * handler yet has not finished. This also guarantees that the |
| 1109 | * timer is serialized wrt itself. |
| 1110 | */ |
| 1111 | if (likely(base->running_timer != timer)) { |
| 1112 | /* See the comment in lock_timer_base() */ |
| 1113 | timer->flags |= TIMER_MIGRATING; |
| 1114 | |
| 1115 | raw_spin_unlock(&base->lock); |
| 1116 | base = new_base; |
| 1117 | raw_spin_lock(&base->lock); |
| 1118 | WRITE_ONCE(timer->flags, |
| 1119 | (timer->flags & ~TIMER_BASEMASK) | base->cpu); |
| 1120 | forward_timer_base(base); |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | debug_timer_activate(timer); |
| 1125 | |
| 1126 | timer->expires = expires; |
| 1127 | /* |
| 1128 | * If 'idx' was calculated above and the base time did not advance |
| 1129 | * between calculating 'idx' and possibly switching the base, only |
| 1130 | * enqueue_timer() is required. Otherwise we need to (re)calculate |
| 1131 | * the wheel index via internal_add_timer(). |
| 1132 | */ |
| 1133 | if (idx != UINT_MAX && clk == base->clk) |
| 1134 | enqueue_timer(base, timer, idx, bucket_expiry); |
| 1135 | else |
| 1136 | internal_add_timer(base, timer); |
| 1137 | |
| 1138 | out_unlock: |
| 1139 | raw_spin_unlock_irqrestore(&base->lock, flags); |
| 1140 | |
| 1141 | return ret; |
| 1142 | } |
| 1143 | |
| 1144 | /** |
| 1145 | * mod_timer_pending - Modify a pending timer's timeout |
| 1146 | * @timer: The pending timer to be modified |
| 1147 | * @expires: New absolute timeout in jiffies |
| 1148 | * |
| 1149 | * mod_timer_pending() is the same for pending timers as mod_timer(), but |
| 1150 | * will not activate inactive timers. |
| 1151 | * |
| 1152 | * If @timer->function == NULL then the start operation is silently |
| 1153 | * discarded. |
| 1154 | * |
| 1155 | * Return: |
| 1156 | * * %0 - The timer was inactive and not modified or was in |
| 1157 | * shutdown state and the operation was discarded |
| 1158 | * * %1 - The timer was active and requeued to expire at @expires |
| 1159 | */ |
| 1160 | int mod_timer_pending(struct timer_list *timer, unsigned long expires) |
| 1161 | { |
| 1162 | return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY); |
| 1163 | } |
| 1164 | EXPORT_SYMBOL(mod_timer_pending); |
| 1165 | |
| 1166 | /** |
| 1167 | * mod_timer - Modify a timer's timeout |
| 1168 | * @timer: The timer to be modified |
| 1169 | * @expires: New absolute timeout in jiffies |
| 1170 | * |
| 1171 | * mod_timer(timer, expires) is equivalent to: |
| 1172 | * |
| 1173 | * timer_delete(timer); timer->expires = expires; add_timer(timer); |
| 1174 | * |
| 1175 | * mod_timer() is more efficient than the above open coded sequence. In |
| 1176 | * case that the timer is inactive, the timer_delete() part is a NOP. The |
| 1177 | * timer is in any case activated with the new expiry time @expires. |
| 1178 | * |
| 1179 | * Note that if there are multiple unserialized concurrent users of the |
| 1180 | * same timer, then mod_timer() is the only safe way to modify the timeout, |
| 1181 | * since add_timer() cannot modify an already running timer. |
| 1182 | * |
| 1183 | * If @timer->function == NULL then the start operation is silently |
| 1184 | * discarded. In this case the return value is 0 and meaningless. |
| 1185 | * |
| 1186 | * Return: |
| 1187 | * * %0 - The timer was inactive and started or was in shutdown |
| 1188 | * state and the operation was discarded |
| 1189 | * * %1 - The timer was active and requeued to expire at @expires or |
| 1190 | * the timer was active and not modified because @expires did |
| 1191 | * not change the effective expiry time |
| 1192 | */ |
| 1193 | int mod_timer(struct timer_list *timer, unsigned long expires) |
| 1194 | { |
| 1195 | return __mod_timer(timer, expires, options: 0); |
| 1196 | } |
| 1197 | EXPORT_SYMBOL(mod_timer); |
| 1198 | |
| 1199 | /** |
| 1200 | * timer_reduce - Modify a timer's timeout if it would reduce the timeout |
| 1201 | * @timer: The timer to be modified |
| 1202 | * @expires: New absolute timeout in jiffies |
| 1203 | * |
| 1204 | * timer_reduce() is very similar to mod_timer(), except that it will only |
| 1205 | * modify an enqueued timer if that would reduce the expiration time. If |
| 1206 | * @timer is not enqueued it starts the timer. |
| 1207 | * |
| 1208 | * If @timer->function == NULL then the start operation is silently |
| 1209 | * discarded. |
| 1210 | * |
| 1211 | * Return: |
| 1212 | * * %0 - The timer was inactive and started or was in shutdown |
| 1213 | * state and the operation was discarded |
| 1214 | * * %1 - The timer was active and requeued to expire at @expires or |
| 1215 | * the timer was active and not modified because @expires |
| 1216 | * did not change the effective expiry time such that the |
| 1217 | * timer would expire earlier than already scheduled |
| 1218 | */ |
| 1219 | int timer_reduce(struct timer_list *timer, unsigned long expires) |
| 1220 | { |
| 1221 | return __mod_timer(timer, expires, MOD_TIMER_REDUCE); |
| 1222 | } |
| 1223 | EXPORT_SYMBOL(timer_reduce); |
| 1224 | |
| 1225 | /** |
| 1226 | * add_timer - Start a timer |
| 1227 | * @timer: The timer to be started |
| 1228 | * |
| 1229 | * Start @timer to expire at @timer->expires in the future. @timer->expires |
| 1230 | * is the absolute expiry time measured in 'jiffies'. When the timer expires |
| 1231 | * timer->function(timer) will be invoked from soft interrupt context. |
| 1232 | * |
| 1233 | * The @timer->expires and @timer->function fields must be set prior |
| 1234 | * to calling this function. |
| 1235 | * |
| 1236 | * If @timer->function == NULL then the start operation is silently |
| 1237 | * discarded. |
| 1238 | * |
| 1239 | * If @timer->expires is already in the past @timer will be queued to |
| 1240 | * expire at the next timer tick. |
| 1241 | * |
| 1242 | * This can only operate on an inactive timer. Attempts to invoke this on |
| 1243 | * an active timer are rejected with a warning. |
| 1244 | */ |
| 1245 | void add_timer(struct timer_list *timer) |
| 1246 | { |
| 1247 | if (WARN_ON_ONCE(timer_pending(timer))) |
| 1248 | return; |
| 1249 | __mod_timer(timer, expires: timer->expires, MOD_TIMER_NOTPENDING); |
| 1250 | } |
| 1251 | EXPORT_SYMBOL(add_timer); |
| 1252 | |
| 1253 | /** |
| 1254 | * add_timer_local() - Start a timer on the local CPU |
| 1255 | * @timer: The timer to be started |
| 1256 | * |
| 1257 | * Same as add_timer() except that the timer flag TIMER_PINNED is set. |
| 1258 | * |
| 1259 | * See add_timer() for further details. |
| 1260 | */ |
| 1261 | void add_timer_local(struct timer_list *timer) |
| 1262 | { |
| 1263 | if (WARN_ON_ONCE(timer_pending(timer))) |
| 1264 | return; |
| 1265 | timer->flags |= TIMER_PINNED; |
| 1266 | __mod_timer(timer, expires: timer->expires, MOD_TIMER_NOTPENDING); |
| 1267 | } |
| 1268 | EXPORT_SYMBOL(add_timer_local); |
| 1269 | |
| 1270 | /** |
| 1271 | * add_timer_global() - Start a timer without TIMER_PINNED flag set |
| 1272 | * @timer: The timer to be started |
| 1273 | * |
| 1274 | * Same as add_timer() except that the timer flag TIMER_PINNED is unset. |
| 1275 | * |
| 1276 | * See add_timer() for further details. |
| 1277 | */ |
| 1278 | void add_timer_global(struct timer_list *timer) |
| 1279 | { |
| 1280 | if (WARN_ON_ONCE(timer_pending(timer))) |
| 1281 | return; |
| 1282 | timer->flags &= ~TIMER_PINNED; |
| 1283 | __mod_timer(timer, expires: timer->expires, MOD_TIMER_NOTPENDING); |
| 1284 | } |
| 1285 | EXPORT_SYMBOL(add_timer_global); |
| 1286 | |
| 1287 | /** |
| 1288 | * add_timer_on - Start a timer on a particular CPU |
| 1289 | * @timer: The timer to be started |
| 1290 | * @cpu: The CPU to start it on |
| 1291 | * |
| 1292 | * Same as add_timer() except that it starts the timer on the given CPU and |
| 1293 | * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in |
| 1294 | * the next round, add_timer_global() should be used instead as it unsets |
| 1295 | * the TIMER_PINNED flag. |
| 1296 | * |
| 1297 | * See add_timer() for further details. |
| 1298 | */ |
| 1299 | void add_timer_on(struct timer_list *timer, int cpu) |
| 1300 | { |
| 1301 | struct timer_base *new_base, *base; |
| 1302 | unsigned long flags; |
| 1303 | |
| 1304 | debug_assert_init(timer); |
| 1305 | |
| 1306 | if (WARN_ON_ONCE(timer_pending(timer))) |
| 1307 | return; |
| 1308 | |
| 1309 | /* Make sure timer flags have TIMER_PINNED flag set */ |
| 1310 | timer->flags |= TIMER_PINNED; |
| 1311 | |
| 1312 | new_base = get_timer_cpu_base(tflags: timer->flags, cpu); |
| 1313 | |
| 1314 | /* |
| 1315 | * If @timer was on a different CPU, it should be migrated with the |
| 1316 | * old base locked to prevent other operations proceeding with the |
| 1317 | * wrong base locked. See lock_timer_base(). |
| 1318 | */ |
| 1319 | base = lock_timer_base(timer, flags: &flags); |
| 1320 | /* |
| 1321 | * Has @timer been shutdown? This needs to be evaluated while |
| 1322 | * holding base lock to prevent a race against the shutdown code. |
| 1323 | */ |
| 1324 | if (!timer->function) |
| 1325 | goto out_unlock; |
| 1326 | |
| 1327 | if (base != new_base) { |
| 1328 | timer->flags |= TIMER_MIGRATING; |
| 1329 | |
| 1330 | raw_spin_unlock(&base->lock); |
| 1331 | base = new_base; |
| 1332 | raw_spin_lock(&base->lock); |
| 1333 | WRITE_ONCE(timer->flags, |
| 1334 | (timer->flags & ~TIMER_BASEMASK) | cpu); |
| 1335 | } |
| 1336 | forward_timer_base(base); |
| 1337 | |
| 1338 | debug_timer_activate(timer); |
| 1339 | internal_add_timer(base, timer); |
| 1340 | out_unlock: |
| 1341 | raw_spin_unlock_irqrestore(&base->lock, flags); |
| 1342 | } |
| 1343 | EXPORT_SYMBOL_GPL(add_timer_on); |
| 1344 | |
| 1345 | /** |
| 1346 | * __timer_delete - Internal function: Deactivate a timer |
| 1347 | * @timer: The timer to be deactivated |
| 1348 | * @shutdown: If true, this indicates that the timer is about to be |
| 1349 | * shutdown permanently. |
| 1350 | * |
| 1351 | * If @shutdown is true then @timer->function is set to NULL under the |
| 1352 | * timer base lock which prevents further rearming of the time. In that |
| 1353 | * case any attempt to rearm @timer after this function returns will be |
| 1354 | * silently ignored. |
| 1355 | * |
| 1356 | * Return: |
| 1357 | * * %0 - The timer was not pending |
| 1358 | * * %1 - The timer was pending and deactivated |
| 1359 | */ |
| 1360 | static int __timer_delete(struct timer_list *timer, bool shutdown) |
| 1361 | { |
| 1362 | struct timer_base *base; |
| 1363 | unsigned long flags; |
| 1364 | int ret = 0; |
| 1365 | |
| 1366 | debug_assert_init(timer); |
| 1367 | |
| 1368 | /* |
| 1369 | * If @shutdown is set then the lock has to be taken whether the |
| 1370 | * timer is pending or not to protect against a concurrent rearm |
| 1371 | * which might hit between the lockless pending check and the lock |
| 1372 | * acquisition. By taking the lock it is ensured that such a newly |
| 1373 | * enqueued timer is dequeued and cannot end up with |
| 1374 | * timer->function == NULL in the expiry code. |
| 1375 | * |
| 1376 | * If timer->function is currently executed, then this makes sure |
| 1377 | * that the callback cannot requeue the timer. |
| 1378 | */ |
| 1379 | if (timer_pending(timer) || shutdown) { |
| 1380 | base = lock_timer_base(timer, flags: &flags); |
| 1381 | ret = detach_if_pending(timer, base, clear_pending: true); |
| 1382 | if (shutdown) |
| 1383 | timer->function = NULL; |
| 1384 | raw_spin_unlock_irqrestore(&base->lock, flags); |
| 1385 | } |
| 1386 | |
| 1387 | return ret; |
| 1388 | } |
| 1389 | |
| 1390 | /** |
| 1391 | * timer_delete - Deactivate a timer |
| 1392 | * @timer: The timer to be deactivated |
| 1393 | * |
| 1394 | * The function only deactivates a pending timer, but contrary to |
| 1395 | * timer_delete_sync() it does not take into account whether the timer's |
| 1396 | * callback function is concurrently executed on a different CPU or not. |
| 1397 | * It neither prevents rearming of the timer. If @timer can be rearmed |
| 1398 | * concurrently then the return value of this function is meaningless. |
| 1399 | * |
| 1400 | * Return: |
| 1401 | * * %0 - The timer was not pending |
| 1402 | * * %1 - The timer was pending and deactivated |
| 1403 | */ |
| 1404 | int timer_delete(struct timer_list *timer) |
| 1405 | { |
| 1406 | return __timer_delete(timer, shutdown: false); |
| 1407 | } |
| 1408 | EXPORT_SYMBOL(timer_delete); |
| 1409 | |
| 1410 | /** |
| 1411 | * timer_shutdown - Deactivate a timer and prevent rearming |
| 1412 | * @timer: The timer to be deactivated |
| 1413 | * |
| 1414 | * The function does not wait for an eventually running timer callback on a |
| 1415 | * different CPU but it prevents rearming of the timer. Any attempt to arm |
| 1416 | * @timer after this function returns will be silently ignored. |
| 1417 | * |
| 1418 | * This function is useful for teardown code and should only be used when |
| 1419 | * timer_shutdown_sync() cannot be invoked due to locking or context constraints. |
| 1420 | * |
| 1421 | * Return: |
| 1422 | * * %0 - The timer was not pending |
| 1423 | * * %1 - The timer was pending |
| 1424 | */ |
| 1425 | int timer_shutdown(struct timer_list *timer) |
| 1426 | { |
| 1427 | return __timer_delete(timer, shutdown: true); |
| 1428 | } |
| 1429 | EXPORT_SYMBOL_GPL(timer_shutdown); |
| 1430 | |
| 1431 | /** |
| 1432 | * __try_to_del_timer_sync - Internal function: Try to deactivate a timer |
| 1433 | * @timer: Timer to deactivate |
| 1434 | * @shutdown: If true, this indicates that the timer is about to be |
| 1435 | * shutdown permanently. |
| 1436 | * |
| 1437 | * If @shutdown is true then @timer->function is set to NULL under the |
| 1438 | * timer base lock which prevents further rearming of the timer. Any |
| 1439 | * attempt to rearm @timer after this function returns will be silently |
| 1440 | * ignored. |
| 1441 | * |
| 1442 | * This function cannot guarantee that the timer cannot be rearmed |
| 1443 | * right after dropping the base lock if @shutdown is false. That |
| 1444 | * needs to be prevented by the calling code if necessary. |
| 1445 | * |
| 1446 | * Return: |
| 1447 | * * %0 - The timer was not pending |
| 1448 | * * %1 - The timer was pending and deactivated |
| 1449 | * * %-1 - The timer callback function is running on a different CPU |
| 1450 | */ |
| 1451 | static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown) |
| 1452 | { |
| 1453 | struct timer_base *base; |
| 1454 | unsigned long flags; |
| 1455 | int ret = -1; |
| 1456 | |
| 1457 | debug_assert_init(timer); |
| 1458 | |
| 1459 | base = lock_timer_base(timer, flags: &flags); |
| 1460 | |
| 1461 | if (base->running_timer != timer) |
| 1462 | ret = detach_if_pending(timer, base, clear_pending: true); |
| 1463 | if (shutdown) |
| 1464 | timer->function = NULL; |
| 1465 | |
| 1466 | raw_spin_unlock_irqrestore(&base->lock, flags); |
| 1467 | |
| 1468 | return ret; |
| 1469 | } |
| 1470 | |
| 1471 | /** |
| 1472 | * timer_delete_sync_try - Try to deactivate a timer |
| 1473 | * @timer: Timer to deactivate |
| 1474 | * |
| 1475 | * This function tries to deactivate a timer. On success the timer is not |
| 1476 | * queued and the timer callback function is not running on any CPU. |
| 1477 | * |
| 1478 | * This function does not guarantee that the timer cannot be rearmed right |
| 1479 | * after dropping the base lock. That needs to be prevented by the calling |
| 1480 | * code if necessary. |
| 1481 | * |
| 1482 | * Return: |
| 1483 | * * %0 - The timer was not pending |
| 1484 | * * %1 - The timer was pending and deactivated |
| 1485 | * * %-1 - The timer callback function is running on a different CPU |
| 1486 | */ |
| 1487 | int timer_delete_sync_try(struct timer_list *timer) |
| 1488 | { |
| 1489 | return __try_to_del_timer_sync(timer, shutdown: false); |
| 1490 | } |
| 1491 | EXPORT_SYMBOL(timer_delete_sync_try); |
| 1492 | |
| 1493 | #ifdef CONFIG_PREEMPT_RT |
| 1494 | static __init void timer_base_init_expiry_lock(struct timer_base *base) |
| 1495 | { |
| 1496 | spin_lock_init(&base->expiry_lock); |
| 1497 | } |
| 1498 | |
| 1499 | static inline void timer_base_lock_expiry(struct timer_base *base) |
| 1500 | { |
| 1501 | spin_lock(&base->expiry_lock); |
| 1502 | } |
| 1503 | |
| 1504 | static inline void timer_base_unlock_expiry(struct timer_base *base) |
| 1505 | { |
| 1506 | spin_unlock(&base->expiry_lock); |
| 1507 | } |
| 1508 | |
| 1509 | /* |
| 1510 | * The counterpart to del_timer_wait_running(). |
| 1511 | * |
| 1512 | * If there is a waiter for base->expiry_lock, then it was waiting for the |
| 1513 | * timer callback to finish. Drop expiry_lock and reacquire it. That allows |
| 1514 | * the waiter to acquire the lock and make progress. |
| 1515 | */ |
| 1516 | static void timer_sync_wait_running(struct timer_base *base) |
| 1517 | __releases(&base->lock) __releases(&base->expiry_lock) |
| 1518 | __acquires(&base->expiry_lock) __acquires(&base->lock) |
| 1519 | { |
| 1520 | if (atomic_read(&base->timer_waiters)) { |
| 1521 | raw_spin_unlock_irq(&base->lock); |
| 1522 | spin_unlock(&base->expiry_lock); |
| 1523 | spin_lock(&base->expiry_lock); |
| 1524 | raw_spin_lock_irq(&base->lock); |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | /* |
| 1529 | * This function is called on PREEMPT_RT kernels when the fast path |
| 1530 | * deletion of a timer failed because the timer callback function was |
| 1531 | * running. |
| 1532 | * |
| 1533 | * This prevents priority inversion, if the softirq thread on a remote CPU |
| 1534 | * got preempted, and it prevents a life lock when the task which tries to |
| 1535 | * delete a timer preempted the softirq thread running the timer callback |
| 1536 | * function. |
| 1537 | */ |
| 1538 | static void del_timer_wait_running(struct timer_list *timer) |
| 1539 | { |
| 1540 | u32 tf; |
| 1541 | |
| 1542 | tf = READ_ONCE(timer->flags); |
| 1543 | if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) { |
| 1544 | struct timer_base *base = get_timer_base(tf); |
| 1545 | |
| 1546 | /* |
| 1547 | * Mark the base as contended and grab the expiry lock, |
| 1548 | * which is held by the softirq across the timer |
| 1549 | * callback. Drop the lock immediately so the softirq can |
| 1550 | * expire the next timer. In theory the timer could already |
| 1551 | * be running again, but that's more than unlikely and just |
| 1552 | * causes another wait loop. |
| 1553 | */ |
| 1554 | atomic_inc(&base->timer_waiters); |
| 1555 | spin_lock_bh(&base->expiry_lock); |
| 1556 | atomic_dec(&base->timer_waiters); |
| 1557 | spin_unlock_bh(&base->expiry_lock); |
| 1558 | } |
| 1559 | } |
| 1560 | #else |
| 1561 | static inline void timer_base_init_expiry_lock(struct timer_base *base) { } |
| 1562 | static inline void timer_base_lock_expiry(struct timer_base *base) { } |
| 1563 | static inline void timer_base_unlock_expiry(struct timer_base *base) { } |
| 1564 | static inline void timer_sync_wait_running(struct timer_base *base) { } |
| 1565 | static inline void del_timer_wait_running(struct timer_list *timer) { } |
| 1566 | #endif |
| 1567 | |
| 1568 | /** |
| 1569 | * __timer_delete_sync - Internal function: Deactivate a timer and wait |
| 1570 | * for the handler to finish. |
| 1571 | * @timer: The timer to be deactivated |
| 1572 | * @shutdown: If true, @timer->function will be set to NULL under the |
| 1573 | * timer base lock which prevents rearming of @timer |
| 1574 | * |
| 1575 | * If @shutdown is not set the timer can be rearmed later. If the timer can |
| 1576 | * be rearmed concurrently, i.e. after dropping the base lock then the |
| 1577 | * return value is meaningless. |
| 1578 | * |
| 1579 | * If @shutdown is set then @timer->function is set to NULL under timer |
| 1580 | * base lock which prevents rearming of the timer. Any attempt to rearm |
| 1581 | * a shutdown timer is silently ignored. |
| 1582 | * |
| 1583 | * If the timer should be reused after shutdown it has to be initialized |
| 1584 | * again. |
| 1585 | * |
| 1586 | * Return: |
| 1587 | * * %0 - The timer was not pending |
| 1588 | * * %1 - The timer was pending and deactivated |
| 1589 | */ |
| 1590 | static int __timer_delete_sync(struct timer_list *timer, bool shutdown) |
| 1591 | { |
| 1592 | int ret; |
| 1593 | |
| 1594 | #ifdef CONFIG_LOCKDEP |
| 1595 | unsigned long flags; |
| 1596 | |
| 1597 | /* |
| 1598 | * If lockdep gives a backtrace here, please reference |
| 1599 | * the synchronization rules above. |
| 1600 | */ |
| 1601 | local_irq_save(flags); |
| 1602 | lock_map_acquire(&timer->lockdep_map); |
| 1603 | lock_map_release(&timer->lockdep_map); |
| 1604 | local_irq_restore(flags); |
| 1605 | #endif |
| 1606 | /* |
| 1607 | * don't use it in hardirq context, because it |
| 1608 | * could lead to deadlock. |
| 1609 | */ |
| 1610 | WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE)); |
| 1611 | |
| 1612 | /* |
| 1613 | * Must be able to sleep on PREEMPT_RT because of the slowpath in |
| 1614 | * del_timer_wait_running(). |
| 1615 | */ |
| 1616 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE)) |
| 1617 | lockdep_assert_preemption_enabled(); |
| 1618 | |
| 1619 | do { |
| 1620 | ret = __try_to_del_timer_sync(timer, shutdown); |
| 1621 | |
| 1622 | if (unlikely(ret < 0)) { |
| 1623 | del_timer_wait_running(timer); |
| 1624 | cpu_relax(); |
| 1625 | } |
| 1626 | } while (ret < 0); |
| 1627 | |
| 1628 | return ret; |
| 1629 | } |
| 1630 | |
| 1631 | /** |
| 1632 | * timer_delete_sync - Deactivate a timer and wait for the handler to finish. |
| 1633 | * @timer: The timer to be deactivated |
| 1634 | * |
| 1635 | * Synchronization rules: Callers must prevent restarting of the timer, |
| 1636 | * otherwise this function is meaningless. It must not be called from |
| 1637 | * interrupt contexts unless the timer is an irqsafe one. The caller must |
| 1638 | * not hold locks which would prevent completion of the timer's callback |
| 1639 | * function. The timer's handler must not call add_timer_on(). Upon exit |
| 1640 | * the timer is not queued and the handler is not running on any CPU. |
| 1641 | * |
| 1642 | * For !irqsafe timers, the caller must not hold locks that are held in |
| 1643 | * interrupt context. Even if the lock has nothing to do with the timer in |
| 1644 | * question. Here's why:: |
| 1645 | * |
| 1646 | * CPU0 CPU1 |
| 1647 | * ---- ---- |
| 1648 | * <SOFTIRQ> |
| 1649 | * call_timer_fn(); |
| 1650 | * base->running_timer = mytimer; |
| 1651 | * spin_lock_irq(somelock); |
| 1652 | * <IRQ> |
| 1653 | * spin_lock(somelock); |
| 1654 | * timer_delete_sync(mytimer); |
| 1655 | * while (base->running_timer == mytimer); |
| 1656 | * |
| 1657 | * Now timer_delete_sync() will never return and never release somelock. |
| 1658 | * The interrupt on the other CPU is waiting to grab somelock but it has |
| 1659 | * interrupted the softirq that CPU0 is waiting to finish. |
| 1660 | * |
| 1661 | * This function cannot guarantee that the timer is not rearmed again by |
| 1662 | * some concurrent or preempting code, right after it dropped the base |
| 1663 | * lock. If there is the possibility of a concurrent rearm then the return |
| 1664 | * value of the function is meaningless. |
| 1665 | * |
| 1666 | * If such a guarantee is needed, e.g. for teardown situations then use |
| 1667 | * timer_shutdown_sync() instead. |
| 1668 | * |
| 1669 | * Return: |
| 1670 | * * %0 - The timer was not pending |
| 1671 | * * %1 - The timer was pending and deactivated |
| 1672 | */ |
| 1673 | int timer_delete_sync(struct timer_list *timer) |
| 1674 | { |
| 1675 | return __timer_delete_sync(timer, shutdown: false); |
| 1676 | } |
| 1677 | EXPORT_SYMBOL(timer_delete_sync); |
| 1678 | |
| 1679 | /** |
| 1680 | * timer_shutdown_sync - Shutdown a timer and prevent rearming |
| 1681 | * @timer: The timer to be shutdown |
| 1682 | * |
| 1683 | * When the function returns it is guaranteed that: |
| 1684 | * - @timer is not queued |
| 1685 | * - The callback function of @timer is not running |
| 1686 | * - @timer cannot be enqueued again. Any attempt to rearm |
| 1687 | * @timer is silently ignored. |
| 1688 | * |
| 1689 | * See timer_delete_sync() for synchronization rules. |
| 1690 | * |
| 1691 | * This function is useful for final teardown of an infrastructure where |
| 1692 | * the timer is subject to a circular dependency problem. |
| 1693 | * |
| 1694 | * A common pattern for this is a timer and a workqueue where the timer can |
| 1695 | * schedule work and work can arm the timer. On shutdown the workqueue must |
| 1696 | * be destroyed and the timer must be prevented from rearming. Unless the |
| 1697 | * code has conditionals like 'if (mything->in_shutdown)' to prevent that |
| 1698 | * there is no way to get this correct with timer_delete_sync(). |
| 1699 | * |
| 1700 | * timer_shutdown_sync() is solving the problem. The correct ordering of |
| 1701 | * calls in this case is: |
| 1702 | * |
| 1703 | * timer_shutdown_sync(&mything->timer); |
| 1704 | * workqueue_destroy(&mything->workqueue); |
| 1705 | * |
| 1706 | * After this 'mything' can be safely freed. |
| 1707 | * |
| 1708 | * This obviously implies that the timer is not required to be functional |
| 1709 | * for the rest of the shutdown operation. |
| 1710 | * |
| 1711 | * Return: |
| 1712 | * * %0 - The timer was not pending |
| 1713 | * * %1 - The timer was pending |
| 1714 | */ |
| 1715 | int timer_shutdown_sync(struct timer_list *timer) |
| 1716 | { |
| 1717 | return __timer_delete_sync(timer, shutdown: true); |
| 1718 | } |
| 1719 | EXPORT_SYMBOL_GPL(timer_shutdown_sync); |
| 1720 | |
| 1721 | static void call_timer_fn(struct timer_list *timer, |
| 1722 | void (*fn)(struct timer_list *), |
| 1723 | unsigned long baseclk) |
| 1724 | { |
| 1725 | int count = preempt_count(); |
| 1726 | |
| 1727 | #ifdef CONFIG_LOCKDEP |
| 1728 | /* |
| 1729 | * It is permissible to free the timer from inside the |
| 1730 | * function that is called from it, this we need to take into |
| 1731 | * account for lockdep too. To avoid bogus "held lock freed" |
| 1732 | * warnings as well as problems when looking into |
| 1733 | * timer->lockdep_map, make a copy and use that here. |
| 1734 | */ |
| 1735 | struct lockdep_map lockdep_map; |
| 1736 | |
| 1737 | lockdep_copy_map(to: &lockdep_map, from: &timer->lockdep_map); |
| 1738 | #endif |
| 1739 | /* |
| 1740 | * Couple the lock chain with the lock chain at |
| 1741 | * timer_delete_sync() by acquiring the lock_map around the fn() |
| 1742 | * call here and in timer_delete_sync(). |
| 1743 | */ |
| 1744 | lock_map_acquire(&lockdep_map); |
| 1745 | |
| 1746 | trace_timer_expire_entry(timer, baseclk); |
| 1747 | fn(timer); |
| 1748 | trace_timer_expire_exit(timer); |
| 1749 | |
| 1750 | lock_map_release(&lockdep_map); |
| 1751 | |
| 1752 | if (count != preempt_count()) { |
| 1753 | WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n" , |
| 1754 | fn, count, preempt_count()); |
| 1755 | /* |
| 1756 | * Restore the preempt count. That gives us a decent |
| 1757 | * chance to survive and extract information. If the |
| 1758 | * callback kept a lock held, bad luck, but not worse |
| 1759 | * than the BUG() we had. |
| 1760 | */ |
| 1761 | preempt_count_set(pc: count); |
| 1762 | } |
| 1763 | } |
| 1764 | |
| 1765 | static void expire_timers(struct timer_base *base, struct hlist_head *head) |
| 1766 | { |
| 1767 | /* |
| 1768 | * This value is required only for tracing. base->clk was |
| 1769 | * incremented directly before expire_timers was called. But expiry |
| 1770 | * is related to the old base->clk value. |
| 1771 | */ |
| 1772 | unsigned long baseclk = base->clk - 1; |
| 1773 | |
| 1774 | while (!hlist_empty(h: head)) { |
| 1775 | struct timer_list *timer; |
| 1776 | void (*fn)(struct timer_list *); |
| 1777 | |
| 1778 | timer = hlist_entry(head->first, struct timer_list, entry); |
| 1779 | |
| 1780 | base->running_timer = timer; |
| 1781 | detach_timer(timer, clear_pending: true); |
| 1782 | |
| 1783 | fn = timer->function; |
| 1784 | |
| 1785 | if (WARN_ON_ONCE(!fn)) { |
| 1786 | /* Should never happen. Emphasis on should! */ |
| 1787 | base->running_timer = NULL; |
| 1788 | continue; |
| 1789 | } |
| 1790 | |
| 1791 | if (timer->flags & TIMER_IRQSAFE) { |
| 1792 | raw_spin_unlock(&base->lock); |
| 1793 | call_timer_fn(timer, fn, baseclk); |
| 1794 | raw_spin_lock(&base->lock); |
| 1795 | base->running_timer = NULL; |
| 1796 | } else { |
| 1797 | raw_spin_unlock_irq(&base->lock); |
| 1798 | call_timer_fn(timer, fn, baseclk); |
| 1799 | raw_spin_lock_irq(&base->lock); |
| 1800 | base->running_timer = NULL; |
| 1801 | timer_sync_wait_running(base); |
| 1802 | } |
| 1803 | } |
| 1804 | } |
| 1805 | |
| 1806 | static int collect_expired_timers(struct timer_base *base, |
| 1807 | struct hlist_head *heads) |
| 1808 | { |
| 1809 | unsigned long clk = base->clk = base->next_expiry; |
| 1810 | struct hlist_head *vec; |
| 1811 | int i, levels = 0; |
| 1812 | unsigned int idx; |
| 1813 | |
| 1814 | for (i = 0; i < LVL_DEPTH; i++) { |
| 1815 | idx = (clk & LVL_MASK) + i * LVL_SIZE; |
| 1816 | |
| 1817 | if (__test_and_clear_bit(idx, base->pending_map)) { |
| 1818 | vec = base->vectors + idx; |
| 1819 | hlist_move_list(old: vec, new: heads++); |
| 1820 | levels++; |
| 1821 | } |
| 1822 | /* Is it time to look at the next level? */ |
| 1823 | if (clk & LVL_CLK_MASK) |
| 1824 | break; |
| 1825 | /* Shift clock for the next level granularity */ |
| 1826 | clk >>= LVL_CLK_SHIFT; |
| 1827 | } |
| 1828 | return levels; |
| 1829 | } |
| 1830 | |
| 1831 | /* |
| 1832 | * Find the next pending bucket of a level. Search from level start (@offset) |
| 1833 | * + @clk upwards and if nothing there, search from start of the level |
| 1834 | * (@offset) up to @offset + clk. |
| 1835 | */ |
| 1836 | static int next_pending_bucket(struct timer_base *base, unsigned offset, |
| 1837 | unsigned clk) |
| 1838 | { |
| 1839 | unsigned pos, start = offset + clk; |
| 1840 | unsigned end = offset + LVL_SIZE; |
| 1841 | |
| 1842 | pos = find_next_bit(addr: base->pending_map, size: end, offset: start); |
| 1843 | if (pos < end) |
| 1844 | return pos - start; |
| 1845 | |
| 1846 | pos = find_next_bit(addr: base->pending_map, size: start, offset); |
| 1847 | return pos < start ? pos + LVL_SIZE - start : -1; |
| 1848 | } |
| 1849 | |
| 1850 | /* |
| 1851 | * Search the first expiring timer in the various clock levels. Caller must |
| 1852 | * hold base->lock. |
| 1853 | * |
| 1854 | * Store next expiry time in base->next_expiry. |
| 1855 | */ |
| 1856 | static void timer_recalc_next_expiry(struct timer_base *base) |
| 1857 | { |
| 1858 | unsigned long clk, next, adj; |
| 1859 | unsigned lvl, offset = 0; |
| 1860 | |
| 1861 | next = base->clk + TIMER_NEXT_MAX_DELTA; |
| 1862 | clk = base->clk; |
| 1863 | for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) { |
| 1864 | int pos = next_pending_bucket(base, offset, clk: clk & LVL_MASK); |
| 1865 | unsigned long lvl_clk = clk & LVL_CLK_MASK; |
| 1866 | |
| 1867 | if (pos >= 0) { |
| 1868 | unsigned long tmp = clk + (unsigned long) pos; |
| 1869 | |
| 1870 | tmp <<= LVL_SHIFT(lvl); |
| 1871 | if (time_before(tmp, next)) |
| 1872 | next = tmp; |
| 1873 | |
| 1874 | /* |
| 1875 | * If the next expiration happens before we reach |
| 1876 | * the next level, no need to check further. |
| 1877 | */ |
| 1878 | if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK)) |
| 1879 | break; |
| 1880 | } |
| 1881 | /* |
| 1882 | * Clock for the next level. If the current level clock lower |
| 1883 | * bits are zero, we look at the next level as is. If not we |
| 1884 | * need to advance it by one because that's going to be the |
| 1885 | * next expiring bucket in that level. base->clk is the next |
| 1886 | * expiring jiffy. So in case of: |
| 1887 | * |
| 1888 | * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 |
| 1889 | * 0 0 0 0 0 0 |
| 1890 | * |
| 1891 | * we have to look at all levels @index 0. With |
| 1892 | * |
| 1893 | * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 |
| 1894 | * 0 0 0 0 0 2 |
| 1895 | * |
| 1896 | * LVL0 has the next expiring bucket @index 2. The upper |
| 1897 | * levels have the next expiring bucket @index 1. |
| 1898 | * |
| 1899 | * In case that the propagation wraps the next level the same |
| 1900 | * rules apply: |
| 1901 | * |
| 1902 | * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0 |
| 1903 | * 0 0 0 0 F 2 |
| 1904 | * |
| 1905 | * So after looking at LVL0 we get: |
| 1906 | * |
| 1907 | * LVL5 LVL4 LVL3 LVL2 LVL1 |
| 1908 | * 0 0 0 1 0 |
| 1909 | * |
| 1910 | * So no propagation from LVL1 to LVL2 because that happened |
| 1911 | * with the add already, but then we need to propagate further |
| 1912 | * from LVL2 to LVL3. |
| 1913 | * |
| 1914 | * So the simple check whether the lower bits of the current |
| 1915 | * level are 0 or not is sufficient for all cases. |
| 1916 | */ |
| 1917 | adj = lvl_clk ? 1 : 0; |
| 1918 | clk >>= LVL_CLK_SHIFT; |
| 1919 | clk += adj; |
| 1920 | } |
| 1921 | |
| 1922 | WRITE_ONCE(base->next_expiry, next); |
| 1923 | base->next_expiry_recalc = false; |
| 1924 | base->timers_pending = !(next == base->clk + TIMER_NEXT_MAX_DELTA); |
| 1925 | } |
| 1926 | |
| 1927 | #ifdef CONFIG_NO_HZ_COMMON |
| 1928 | /* |
| 1929 | * Check, if the next hrtimer event is before the next timer wheel |
| 1930 | * event: |
| 1931 | */ |
| 1932 | static u64 cmp_next_hrtimer_event(u64 basem, u64 expires) |
| 1933 | { |
| 1934 | u64 nextevt = hrtimer_get_next_event(); |
| 1935 | |
| 1936 | /* |
| 1937 | * If high resolution timers are enabled |
| 1938 | * hrtimer_get_next_event() returns KTIME_MAX. |
| 1939 | */ |
| 1940 | if (expires <= nextevt) |
| 1941 | return expires; |
| 1942 | |
| 1943 | /* |
| 1944 | * If the next timer is already expired, return the tick base |
| 1945 | * time so the tick is fired immediately. |
| 1946 | */ |
| 1947 | if (nextevt <= basem) |
| 1948 | return basem; |
| 1949 | |
| 1950 | /* |
| 1951 | * Round up to the next jiffy. High resolution timers are |
| 1952 | * off, so the hrtimers are expired in the tick and we need to |
| 1953 | * make sure that this tick really expires the timer to avoid |
| 1954 | * a ping pong of the nohz stop code. |
| 1955 | * |
| 1956 | * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3 |
| 1957 | */ |
| 1958 | return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC; |
| 1959 | } |
| 1960 | |
| 1961 | static unsigned long next_timer_interrupt(struct timer_base *base, |
| 1962 | unsigned long basej) |
| 1963 | { |
| 1964 | if (base->next_expiry_recalc) |
| 1965 | timer_recalc_next_expiry(base); |
| 1966 | |
| 1967 | /* |
| 1968 | * Move next_expiry for the empty base into the future to prevent an |
| 1969 | * unnecessary raise of the timer softirq when the next_expiry value |
| 1970 | * will be reached even if there is no timer pending. |
| 1971 | * |
| 1972 | * This update is also required to make timer_base::next_expiry values |
| 1973 | * easy comparable to find out which base holds the first pending timer. |
| 1974 | */ |
| 1975 | if (!base->timers_pending) |
| 1976 | WRITE_ONCE(base->next_expiry, basej + TIMER_NEXT_MAX_DELTA); |
| 1977 | |
| 1978 | return base->next_expiry; |
| 1979 | } |
| 1980 | |
| 1981 | static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem, |
| 1982 | struct timer_base *base_local, |
| 1983 | struct timer_base *base_global, |
| 1984 | struct timer_events *tevt) |
| 1985 | { |
| 1986 | unsigned long nextevt, nextevt_local, nextevt_global; |
| 1987 | bool local_first; |
| 1988 | |
| 1989 | nextevt_local = next_timer_interrupt(base: base_local, basej); |
| 1990 | nextevt_global = next_timer_interrupt(base: base_global, basej); |
| 1991 | |
| 1992 | local_first = time_before_eq(nextevt_local, nextevt_global); |
| 1993 | |
| 1994 | nextevt = local_first ? nextevt_local : nextevt_global; |
| 1995 | |
| 1996 | /* |
| 1997 | * If the @nextevt is at max. one tick away, use @nextevt and store |
| 1998 | * it in the local expiry value. The next global event is irrelevant in |
| 1999 | * this case and can be left as KTIME_MAX. |
| 2000 | */ |
| 2001 | if (time_before_eq(nextevt, basej + 1)) { |
| 2002 | /* If we missed a tick already, force 0 delta */ |
| 2003 | if (time_before(nextevt, basej)) |
| 2004 | nextevt = basej; |
| 2005 | tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC; |
| 2006 | |
| 2007 | /* |
| 2008 | * This is required for the remote check only but it doesn't |
| 2009 | * hurt, when it is done for both call sites: |
| 2010 | * |
| 2011 | * * The remote callers will only take care of the global timers |
| 2012 | * as local timers will be handled by CPU itself. When not |
| 2013 | * updating tevt->global with the already missed first global |
| 2014 | * timer, it is possible that it will be missed completely. |
| 2015 | * |
| 2016 | * * The local callers will ignore the tevt->global anyway, when |
| 2017 | * nextevt is max. one tick away. |
| 2018 | */ |
| 2019 | if (!local_first) |
| 2020 | tevt->global = tevt->local; |
| 2021 | return nextevt; |
| 2022 | } |
| 2023 | |
| 2024 | /* |
| 2025 | * Update tevt.* values: |
| 2026 | * |
| 2027 | * If the local queue expires first, then the global event can be |
| 2028 | * ignored. If the global queue is empty, nothing to do either. |
| 2029 | */ |
| 2030 | if (!local_first && base_global->timers_pending) |
| 2031 | tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC; |
| 2032 | |
| 2033 | if (base_local->timers_pending) |
| 2034 | tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC; |
| 2035 | |
| 2036 | return nextevt; |
| 2037 | } |
| 2038 | |
| 2039 | # ifdef CONFIG_SMP |
| 2040 | /** |
| 2041 | * fetch_next_timer_interrupt_remote() - Store next timers into @tevt |
| 2042 | * @basej: base time jiffies |
| 2043 | * @basem: base time clock monotonic |
| 2044 | * @tevt: Pointer to the storage for the expiry values |
| 2045 | * @cpu: Remote CPU |
| 2046 | * |
| 2047 | * Stores the next pending local and global timer expiry values in the |
| 2048 | * struct pointed to by @tevt. If a queue is empty the corresponding |
| 2049 | * field is set to KTIME_MAX. If local event expires before global |
| 2050 | * event, global event is set to KTIME_MAX as well. |
| 2051 | * |
| 2052 | * Caller needs to make sure timer base locks are held (use |
| 2053 | * timer_lock_remote_bases() for this purpose). |
| 2054 | */ |
| 2055 | void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem, |
| 2056 | struct timer_events *tevt, |
| 2057 | unsigned int cpu) |
| 2058 | { |
| 2059 | struct timer_base *base_local, *base_global; |
| 2060 | |
| 2061 | /* Preset local / global events */ |
| 2062 | tevt->local = tevt->global = KTIME_MAX; |
| 2063 | |
| 2064 | base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); |
| 2065 | base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); |
| 2066 | |
| 2067 | lockdep_assert_held(&base_local->lock); |
| 2068 | lockdep_assert_held(&base_global->lock); |
| 2069 | |
| 2070 | fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt); |
| 2071 | } |
| 2072 | |
| 2073 | /** |
| 2074 | * timer_unlock_remote_bases - unlock timer bases of cpu |
| 2075 | * @cpu: Remote CPU |
| 2076 | * |
| 2077 | * Unlocks the remote timer bases. |
| 2078 | */ |
| 2079 | void timer_unlock_remote_bases(unsigned int cpu) |
| 2080 | __releases(timer_bases[BASE_LOCAL]->lock) |
| 2081 | __releases(timer_bases[BASE_GLOBAL]->lock) |
| 2082 | { |
| 2083 | struct timer_base *base_local, *base_global; |
| 2084 | |
| 2085 | base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); |
| 2086 | base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); |
| 2087 | |
| 2088 | raw_spin_unlock(&base_global->lock); |
| 2089 | raw_spin_unlock(&base_local->lock); |
| 2090 | } |
| 2091 | |
| 2092 | /** |
| 2093 | * timer_lock_remote_bases - lock timer bases of cpu |
| 2094 | * @cpu: Remote CPU |
| 2095 | * |
| 2096 | * Locks the remote timer bases. |
| 2097 | */ |
| 2098 | void timer_lock_remote_bases(unsigned int cpu) |
| 2099 | __acquires(timer_bases[BASE_LOCAL]->lock) |
| 2100 | __acquires(timer_bases[BASE_GLOBAL]->lock) |
| 2101 | { |
| 2102 | struct timer_base *base_local, *base_global; |
| 2103 | |
| 2104 | base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu); |
| 2105 | base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); |
| 2106 | |
| 2107 | lockdep_assert_irqs_disabled(); |
| 2108 | |
| 2109 | raw_spin_lock(&base_local->lock); |
| 2110 | raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); |
| 2111 | } |
| 2112 | |
| 2113 | /** |
| 2114 | * timer_base_is_idle() - Return whether timer base is set idle |
| 2115 | * |
| 2116 | * Returns value of local timer base is_idle value. |
| 2117 | */ |
| 2118 | bool timer_base_is_idle(void) |
| 2119 | { |
| 2120 | return __this_cpu_read(timer_bases[BASE_LOCAL].is_idle); |
| 2121 | } |
| 2122 | |
| 2123 | static void __run_timer_base(struct timer_base *base); |
| 2124 | |
| 2125 | /** |
| 2126 | * timer_expire_remote() - expire global timers of cpu |
| 2127 | * @cpu: Remote CPU |
| 2128 | * |
| 2129 | * Expire timers of global base of remote CPU. |
| 2130 | */ |
| 2131 | void timer_expire_remote(unsigned int cpu) |
| 2132 | { |
| 2133 | struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu); |
| 2134 | |
| 2135 | __run_timer_base(base); |
| 2136 | } |
| 2137 | |
| 2138 | static void timer_use_tmigr(unsigned long basej, u64 basem, |
| 2139 | unsigned long *nextevt, bool *tick_stop_path, |
| 2140 | bool timer_base_idle, struct timer_events *tevt) |
| 2141 | { |
| 2142 | u64 next_tmigr; |
| 2143 | |
| 2144 | if (timer_base_idle) |
| 2145 | next_tmigr = tmigr_cpu_new_timer(nextevt: tevt->global); |
| 2146 | else if (tick_stop_path) |
| 2147 | next_tmigr = tmigr_cpu_deactivate(nextevt: tevt->global); |
| 2148 | else |
| 2149 | next_tmigr = tmigr_quick_check(nextevt: tevt->global); |
| 2150 | |
| 2151 | /* |
| 2152 | * If the CPU is the last going idle in timer migration hierarchy, make |
| 2153 | * sure the CPU will wake up in time to handle remote timers. |
| 2154 | * next_tmigr == KTIME_MAX if other CPUs are still active. |
| 2155 | */ |
| 2156 | if (next_tmigr < tevt->local) { |
| 2157 | u64 tmp; |
| 2158 | |
| 2159 | /* If we missed a tick already, force 0 delta */ |
| 2160 | if (next_tmigr < basem) |
| 2161 | next_tmigr = basem; |
| 2162 | |
| 2163 | tmp = div_u64(dividend: next_tmigr - basem, TICK_NSEC); |
| 2164 | |
| 2165 | *nextevt = basej + (unsigned long)tmp; |
| 2166 | tevt->local = next_tmigr; |
| 2167 | } |
| 2168 | } |
| 2169 | # else |
| 2170 | static void timer_use_tmigr(unsigned long basej, u64 basem, |
| 2171 | unsigned long *nextevt, bool *tick_stop_path, |
| 2172 | bool timer_base_idle, struct timer_events *tevt) |
| 2173 | { |
| 2174 | /* |
| 2175 | * Make sure first event is written into tevt->local to not miss a |
| 2176 | * timer on !SMP systems. |
| 2177 | */ |
| 2178 | tevt->local = min_t(u64, tevt->local, tevt->global); |
| 2179 | } |
| 2180 | # endif /* CONFIG_SMP */ |
| 2181 | |
| 2182 | static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem, |
| 2183 | bool *idle) |
| 2184 | { |
| 2185 | struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX }; |
| 2186 | struct timer_base *base_local, *base_global; |
| 2187 | unsigned long nextevt; |
| 2188 | bool idle_is_possible; |
| 2189 | |
| 2190 | /* |
| 2191 | * When the CPU is offline, the tick is cancelled and nothing is supposed |
| 2192 | * to try to stop it. |
| 2193 | */ |
| 2194 | if (WARN_ON_ONCE(cpu_is_offline(smp_processor_id()))) { |
| 2195 | if (idle) |
| 2196 | *idle = true; |
| 2197 | return tevt.local; |
| 2198 | } |
| 2199 | |
| 2200 | base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]); |
| 2201 | base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]); |
| 2202 | |
| 2203 | raw_spin_lock(&base_local->lock); |
| 2204 | raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING); |
| 2205 | |
| 2206 | nextevt = fetch_next_timer_interrupt(basej, basem, base_local, |
| 2207 | base_global, tevt: &tevt); |
| 2208 | |
| 2209 | /* |
| 2210 | * If the next event is only one jiffy ahead there is no need to call |
| 2211 | * timer migration hierarchy related functions. The value for the next |
| 2212 | * global timer in @tevt struct equals then KTIME_MAX. This is also |
| 2213 | * true, when the timer base is idle. |
| 2214 | * |
| 2215 | * The proper timer migration hierarchy function depends on the callsite |
| 2216 | * and whether timer base is idle or not. @nextevt will be updated when |
| 2217 | * this CPU needs to handle the first timer migration hierarchy |
| 2218 | * event. See timer_use_tmigr() for detailed information. |
| 2219 | */ |
| 2220 | idle_is_possible = time_after(nextevt, basej + 1); |
| 2221 | if (idle_is_possible) |
| 2222 | timer_use_tmigr(basej, basem, nextevt: &nextevt, tick_stop_path: idle, |
| 2223 | timer_base_idle: base_local->is_idle, tevt: &tevt); |
| 2224 | |
| 2225 | /* |
| 2226 | * We have a fresh next event. Check whether we can forward the |
| 2227 | * base. |
| 2228 | */ |
| 2229 | __forward_timer_base(base: base_local, basej); |
| 2230 | __forward_timer_base(base: base_global, basej); |
| 2231 | |
| 2232 | /* |
| 2233 | * Set base->is_idle only when caller is timer_base_try_to_set_idle() |
| 2234 | */ |
| 2235 | if (idle) { |
| 2236 | /* |
| 2237 | * Bases are idle if the next event is more than a tick |
| 2238 | * away. Caution: @nextevt could have changed by enqueueing a |
| 2239 | * global timer into timer migration hierarchy. Therefore a new |
| 2240 | * check is required here. |
| 2241 | * |
| 2242 | * If the base is marked idle then any timer add operation must |
| 2243 | * forward the base clk itself to keep granularity small. This |
| 2244 | * idle logic is only maintained for the BASE_LOCAL and |
| 2245 | * BASE_GLOBAL base, deferrable timers may still see large |
| 2246 | * granularity skew (by design). |
| 2247 | */ |
| 2248 | if (!base_local->is_idle && time_after(nextevt, basej + 1)) { |
| 2249 | base_local->is_idle = true; |
| 2250 | /* |
| 2251 | * Global timers queued locally while running in a task |
| 2252 | * in nohz_full mode need a self-IPI to kick reprogramming |
| 2253 | * in IRQ tail. |
| 2254 | */ |
| 2255 | if (tick_nohz_full_cpu(cpu: base_local->cpu)) |
| 2256 | base_global->is_idle = true; |
| 2257 | trace_timer_base_idle(is_idle: true, cpu: base_local->cpu); |
| 2258 | } |
| 2259 | *idle = base_local->is_idle; |
| 2260 | |
| 2261 | /* |
| 2262 | * When timer base is not set idle, undo the effect of |
| 2263 | * tmigr_cpu_deactivate() to prevent inconsistent states - active |
| 2264 | * timer base but inactive timer migration hierarchy. |
| 2265 | * |
| 2266 | * When timer base was already marked idle, nothing will be |
| 2267 | * changed here. |
| 2268 | */ |
| 2269 | if (!base_local->is_idle && idle_is_possible) |
| 2270 | tmigr_cpu_activate(); |
| 2271 | } |
| 2272 | |
| 2273 | raw_spin_unlock(&base_global->lock); |
| 2274 | raw_spin_unlock(&base_local->lock); |
| 2275 | |
| 2276 | return cmp_next_hrtimer_event(basem, expires: tevt.local); |
| 2277 | } |
| 2278 | |
| 2279 | /** |
| 2280 | * get_next_timer_interrupt() - return the time (clock mono) of the next timer |
| 2281 | * @basej: base time jiffies |
| 2282 | * @basem: base time clock monotonic |
| 2283 | * |
| 2284 | * Returns the tick aligned clock monotonic time of the next pending timer or |
| 2285 | * KTIME_MAX if no timer is pending. If timer of global base was queued into |
| 2286 | * timer migration hierarchy, first global timer is not taken into account. If |
| 2287 | * it was the last CPU of timer migration hierarchy going idle, first global |
| 2288 | * event is taken into account. |
| 2289 | */ |
| 2290 | u64 get_next_timer_interrupt(unsigned long basej, u64 basem) |
| 2291 | { |
| 2292 | return __get_next_timer_interrupt(basej, basem, NULL); |
| 2293 | } |
| 2294 | |
| 2295 | /** |
| 2296 | * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases |
| 2297 | * @basej: base time jiffies |
| 2298 | * @basem: base time clock monotonic |
| 2299 | * @idle: pointer to store the value of timer_base->is_idle on return; |
| 2300 | * *idle contains the information whether tick was already stopped |
| 2301 | * |
| 2302 | * Returns the tick aligned clock monotonic time of the next pending timer or |
| 2303 | * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is |
| 2304 | * returned as well. |
| 2305 | */ |
| 2306 | u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle) |
| 2307 | { |
| 2308 | if (*idle) |
| 2309 | return KTIME_MAX; |
| 2310 | |
| 2311 | return __get_next_timer_interrupt(basej, basem, idle); |
| 2312 | } |
| 2313 | |
| 2314 | /** |
| 2315 | * timer_clear_idle - Clear the idle state of the timer base |
| 2316 | * |
| 2317 | * Called with interrupts disabled |
| 2318 | */ |
| 2319 | void timer_clear_idle(void) |
| 2320 | { |
| 2321 | /* |
| 2322 | * We do this unlocked. The worst outcome is a remote pinned timer |
| 2323 | * enqueue sending a pointless IPI, but taking the lock would just |
| 2324 | * make the window for sending the IPI a few instructions smaller |
| 2325 | * for the cost of taking the lock in the exit from idle |
| 2326 | * path. Required for BASE_LOCAL only. |
| 2327 | */ |
| 2328 | __this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false); |
| 2329 | if (tick_nohz_full_cpu(smp_processor_id())) |
| 2330 | __this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false); |
| 2331 | trace_timer_base_idle(is_idle: false, smp_processor_id()); |
| 2332 | |
| 2333 | /* Activate without holding the timer_base->lock */ |
| 2334 | tmigr_cpu_activate(); |
| 2335 | } |
| 2336 | #endif |
| 2337 | |
| 2338 | /** |
| 2339 | * __run_timers - run all expired timers (if any) on this CPU. |
| 2340 | * @base: the timer vector to be processed. |
| 2341 | */ |
| 2342 | static inline void __run_timers(struct timer_base *base) |
| 2343 | { |
| 2344 | struct hlist_head heads[LVL_DEPTH]; |
| 2345 | int levels; |
| 2346 | |
| 2347 | lockdep_assert_held(&base->lock); |
| 2348 | |
| 2349 | if (base->running_timer) |
| 2350 | return; |
| 2351 | |
| 2352 | while (time_after_eq(jiffies, base->clk) && |
| 2353 | time_after_eq(jiffies, base->next_expiry)) { |
| 2354 | levels = collect_expired_timers(base, heads); |
| 2355 | /* |
| 2356 | * The two possible reasons for not finding any expired |
| 2357 | * timer at this clk are that all matching timers have been |
| 2358 | * dequeued or no timer has been queued since |
| 2359 | * base::next_expiry was set to base::clk + |
| 2360 | * TIMER_NEXT_MAX_DELTA. |
| 2361 | */ |
| 2362 | WARN_ON_ONCE(!levels && !base->next_expiry_recalc |
| 2363 | && base->timers_pending); |
| 2364 | /* |
| 2365 | * While executing timers, base->clk is set 1 offset ahead of |
| 2366 | * jiffies to avoid endless requeuing to current jiffies. |
| 2367 | */ |
| 2368 | base->clk++; |
| 2369 | timer_recalc_next_expiry(base); |
| 2370 | |
| 2371 | while (levels--) |
| 2372 | expire_timers(base, head: heads + levels); |
| 2373 | } |
| 2374 | } |
| 2375 | |
| 2376 | static void __run_timer_base(struct timer_base *base) |
| 2377 | { |
| 2378 | /* Can race against a remote CPU updating next_expiry under the lock */ |
| 2379 | if (time_before(jiffies, READ_ONCE(base->next_expiry))) |
| 2380 | return; |
| 2381 | |
| 2382 | timer_base_lock_expiry(base); |
| 2383 | raw_spin_lock_irq(&base->lock); |
| 2384 | __run_timers(base); |
| 2385 | raw_spin_unlock_irq(&base->lock); |
| 2386 | timer_base_unlock_expiry(base); |
| 2387 | } |
| 2388 | |
| 2389 | static void run_timer_base(int index) |
| 2390 | { |
| 2391 | struct timer_base *base = this_cpu_ptr(&timer_bases[index]); |
| 2392 | |
| 2393 | __run_timer_base(base); |
| 2394 | } |
| 2395 | |
| 2396 | /* |
| 2397 | * This function runs timers and the timer-tq in bottom half context. |
| 2398 | */ |
| 2399 | static __latent_entropy void run_timer_softirq(void) |
| 2400 | { |
| 2401 | run_timer_base(BASE_LOCAL); |
| 2402 | if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) { |
| 2403 | run_timer_base(BASE_GLOBAL); |
| 2404 | run_timer_base(BASE_DEF); |
| 2405 | |
| 2406 | if (is_timers_nohz_active()) |
| 2407 | tmigr_handle_remote(); |
| 2408 | } |
| 2409 | } |
| 2410 | |
| 2411 | /* |
| 2412 | * Called by the local, per-CPU timer interrupt on SMP. |
| 2413 | */ |
| 2414 | static void run_local_timers(void) |
| 2415 | { |
| 2416 | struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]); |
| 2417 | |
| 2418 | hrtimer_run_queues(); |
| 2419 | |
| 2420 | for (int i = 0; i < NR_BASES; i++, base++) { |
| 2421 | /* |
| 2422 | * Raise the softirq only if required. |
| 2423 | * |
| 2424 | * timer_base::next_expiry can be written by a remote CPU while |
| 2425 | * holding the lock. If this write happens at the same time than |
| 2426 | * the lockless local read, sanity checker could complain about |
| 2427 | * data corruption. |
| 2428 | * |
| 2429 | * There are two possible situations where |
| 2430 | * timer_base::next_expiry is written by a remote CPU: |
| 2431 | * |
| 2432 | * 1. Remote CPU expires global timers of this CPU and updates |
| 2433 | * timer_base::next_expiry of BASE_GLOBAL afterwards in |
| 2434 | * next_timer_interrupt() or timer_recalc_next_expiry(). The |
| 2435 | * worst outcome is a superfluous raise of the timer softirq |
| 2436 | * when the not yet updated value is read. |
| 2437 | * |
| 2438 | * 2. A new first pinned timer is enqueued by a remote CPU |
| 2439 | * and therefore timer_base::next_expiry of BASE_LOCAL is |
| 2440 | * updated. When this update is missed, this isn't a |
| 2441 | * problem, as an IPI is executed nevertheless when the CPU |
| 2442 | * was idle before. When the CPU wasn't idle but the update |
| 2443 | * is missed, then the timer would expire one jiffy late - |
| 2444 | * bad luck. |
| 2445 | * |
| 2446 | * Those unlikely corner cases where the worst outcome is only a |
| 2447 | * one jiffy delay or a superfluous raise of the softirq are |
| 2448 | * not that expensive as doing the check always while holding |
| 2449 | * the lock. |
| 2450 | * |
| 2451 | * Possible remote writers are using WRITE_ONCE(). Local reader |
| 2452 | * uses therefore READ_ONCE(). |
| 2453 | */ |
| 2454 | if (time_after_eq(jiffies, READ_ONCE(base->next_expiry)) || |
| 2455 | (i == BASE_DEF && tmigr_requires_handle_remote())) { |
| 2456 | raise_timer_softirq(nr: TIMER_SOFTIRQ); |
| 2457 | return; |
| 2458 | } |
| 2459 | } |
| 2460 | } |
| 2461 | |
| 2462 | /* |
| 2463 | * Called from the timer interrupt handler to charge one tick to the current |
| 2464 | * process. user_tick is 1 if the tick is user time, 0 for system. |
| 2465 | */ |
| 2466 | void update_process_times(int user_tick) |
| 2467 | { |
| 2468 | struct task_struct *p = current; |
| 2469 | |
| 2470 | /* Note: this timer irq context must be accounted for as well. */ |
| 2471 | account_process_tick(p, user: user_tick); |
| 2472 | run_local_timers(); |
| 2473 | rcu_sched_clock_irq(user: user_tick); |
| 2474 | #ifdef CONFIG_IRQ_WORK |
| 2475 | if (in_irq()) |
| 2476 | irq_work_tick(); |
| 2477 | #endif |
| 2478 | sched_tick(); |
| 2479 | if (IS_ENABLED(CONFIG_POSIX_TIMERS)) |
| 2480 | run_posix_cpu_timers(); |
| 2481 | } |
| 2482 | |
| 2483 | #ifdef CONFIG_HOTPLUG_CPU |
| 2484 | static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head) |
| 2485 | { |
| 2486 | struct timer_list *timer; |
| 2487 | int cpu = new_base->cpu; |
| 2488 | |
| 2489 | while (!hlist_empty(h: head)) { |
| 2490 | timer = hlist_entry(head->first, struct timer_list, entry); |
| 2491 | detach_timer(timer, clear_pending: false); |
| 2492 | timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu; |
| 2493 | internal_add_timer(base: new_base, timer); |
| 2494 | } |
| 2495 | } |
| 2496 | |
| 2497 | int timers_prepare_cpu(unsigned int cpu) |
| 2498 | { |
| 2499 | struct timer_base *base; |
| 2500 | int b; |
| 2501 | |
| 2502 | for (b = 0; b < NR_BASES; b++) { |
| 2503 | base = per_cpu_ptr(&timer_bases[b], cpu); |
| 2504 | base->clk = jiffies; |
| 2505 | base->next_expiry = base->clk + TIMER_NEXT_MAX_DELTA; |
| 2506 | base->next_expiry_recalc = false; |
| 2507 | base->timers_pending = false; |
| 2508 | base->is_idle = false; |
| 2509 | } |
| 2510 | return 0; |
| 2511 | } |
| 2512 | |
| 2513 | int timers_dead_cpu(unsigned int cpu) |
| 2514 | { |
| 2515 | struct timer_base *old_base; |
| 2516 | struct timer_base *new_base; |
| 2517 | int b, i; |
| 2518 | |
| 2519 | for (b = 0; b < NR_BASES; b++) { |
| 2520 | old_base = per_cpu_ptr(&timer_bases[b], cpu); |
| 2521 | new_base = get_cpu_ptr(&timer_bases[b]); |
| 2522 | /* |
| 2523 | * The caller is globally serialized and nobody else |
| 2524 | * takes two locks at once, deadlock is not possible. |
| 2525 | */ |
| 2526 | raw_spin_lock_irq(&new_base->lock); |
| 2527 | raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); |
| 2528 | |
| 2529 | /* |
| 2530 | * The current CPUs base clock might be stale. Update it |
| 2531 | * before moving the timers over. |
| 2532 | */ |
| 2533 | forward_timer_base(base: new_base); |
| 2534 | |
| 2535 | WARN_ON_ONCE(old_base->running_timer); |
| 2536 | old_base->running_timer = NULL; |
| 2537 | |
| 2538 | for (i = 0; i < WHEEL_SIZE; i++) |
| 2539 | migrate_timer_list(new_base, head: old_base->vectors + i); |
| 2540 | |
| 2541 | raw_spin_unlock(&old_base->lock); |
| 2542 | raw_spin_unlock_irq(&new_base->lock); |
| 2543 | put_cpu_ptr(&timer_bases); |
| 2544 | } |
| 2545 | return 0; |
| 2546 | } |
| 2547 | |
| 2548 | #endif /* CONFIG_HOTPLUG_CPU */ |
| 2549 | |
| 2550 | static void __init init_timer_cpu(int cpu) |
| 2551 | { |
| 2552 | struct timer_base *base; |
| 2553 | int i; |
| 2554 | |
| 2555 | for (i = 0; i < NR_BASES; i++) { |
| 2556 | base = per_cpu_ptr(&timer_bases[i], cpu); |
| 2557 | base->cpu = cpu; |
| 2558 | raw_spin_lock_init(&base->lock); |
| 2559 | base->clk = jiffies; |
| 2560 | base->next_expiry = base->clk + TIMER_NEXT_MAX_DELTA; |
| 2561 | timer_base_init_expiry_lock(base); |
| 2562 | } |
| 2563 | } |
| 2564 | |
| 2565 | static void __init init_timer_cpus(void) |
| 2566 | { |
| 2567 | int cpu; |
| 2568 | |
| 2569 | for_each_possible_cpu(cpu) |
| 2570 | init_timer_cpu(cpu); |
| 2571 | } |
| 2572 | |
| 2573 | void __init timers_init(void) |
| 2574 | { |
| 2575 | init_timer_cpus(); |
| 2576 | posix_cputimers_init_work(); |
| 2577 | open_softirq(nr: TIMER_SOFTIRQ, action: run_timer_softirq); |
| 2578 | } |
| 2579 | |