1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * mm/page-writeback.c |
4 | * |
5 | * Copyright (C) 2002, Linus Torvalds. |
6 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
7 | * |
8 | * Contains functions related to writing back dirty pages at the |
9 | * address_space level. |
10 | * |
11 | * 10Apr2002 Andrew Morton |
12 | * Initial version |
13 | */ |
14 | |
15 | #include <linux/kernel.h> |
16 | #include <linux/math64.h> |
17 | #include <linux/export.h> |
18 | #include <linux/spinlock.h> |
19 | #include <linux/fs.h> |
20 | #include <linux/mm.h> |
21 | #include <linux/swap.h> |
22 | #include <linux/slab.h> |
23 | #include <linux/pagemap.h> |
24 | #include <linux/writeback.h> |
25 | #include <linux/init.h> |
26 | #include <linux/backing-dev.h> |
27 | #include <linux/task_io_accounting_ops.h> |
28 | #include <linux/blkdev.h> |
29 | #include <linux/mpage.h> |
30 | #include <linux/rmap.h> |
31 | #include <linux/percpu.h> |
32 | #include <linux/smp.h> |
33 | #include <linux/sysctl.h> |
34 | #include <linux/cpu.h> |
35 | #include <linux/syscalls.h> |
36 | #include <linux/pagevec.h> |
37 | #include <linux/timer.h> |
38 | #include <linux/sched/rt.h> |
39 | #include <linux/sched/signal.h> |
40 | #include <linux/mm_inline.h> |
41 | #include <trace/events/writeback.h> |
42 | |
43 | #include "internal.h" |
44 | |
45 | /* |
46 | * Sleep at most 200ms at a time in balance_dirty_pages(). |
47 | */ |
48 | #define MAX_PAUSE max(HZ/5, 1) |
49 | |
50 | /* |
51 | * Try to keep balance_dirty_pages() call intervals higher than this many pages |
52 | * by raising pause time to max_pause when falls below it. |
53 | */ |
54 | #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) |
55 | |
56 | /* |
57 | * Estimate write bandwidth at 200ms intervals. |
58 | */ |
59 | #define BANDWIDTH_INTERVAL max(HZ/5, 1) |
60 | |
61 | #define RATELIMIT_CALC_SHIFT 10 |
62 | |
63 | /* |
64 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited |
65 | * will look to see if it needs to force writeback or throttling. |
66 | */ |
67 | static long ratelimit_pages = 32; |
68 | |
69 | /* The following parameters are exported via /proc/sys/vm */ |
70 | |
71 | /* |
72 | * Start background writeback (via writeback threads) at this percentage |
73 | */ |
74 | static int dirty_background_ratio = 10; |
75 | |
76 | /* |
77 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of |
78 | * dirty_background_ratio * the amount of dirtyable memory |
79 | */ |
80 | static unsigned long dirty_background_bytes; |
81 | |
82 | /* |
83 | * free highmem will not be subtracted from the total free memory |
84 | * for calculating free ratios if vm_highmem_is_dirtyable is true |
85 | */ |
86 | static int vm_highmem_is_dirtyable; |
87 | |
88 | /* |
89 | * The generator of dirty data starts writeback at this percentage |
90 | */ |
91 | static int vm_dirty_ratio = 20; |
92 | |
93 | /* |
94 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of |
95 | * vm_dirty_ratio * the amount of dirtyable memory |
96 | */ |
97 | static unsigned long vm_dirty_bytes; |
98 | |
99 | /* |
100 | * The interval between `kupdate'-style writebacks |
101 | */ |
102 | unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ |
103 | |
104 | EXPORT_SYMBOL_GPL(dirty_writeback_interval); |
105 | |
106 | /* |
107 | * The longest time for which data is allowed to remain dirty |
108 | */ |
109 | unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ |
110 | |
111 | /* |
112 | * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: |
113 | * a full sync is triggered after this time elapses without any disk activity. |
114 | */ |
115 | int laptop_mode; |
116 | |
117 | EXPORT_SYMBOL(laptop_mode); |
118 | |
119 | /* End of sysctl-exported parameters */ |
120 | |
121 | struct wb_domain global_wb_domain; |
122 | |
123 | /* consolidated parameters for balance_dirty_pages() and its subroutines */ |
124 | struct dirty_throttle_control { |
125 | #ifdef CONFIG_CGROUP_WRITEBACK |
126 | struct wb_domain *dom; |
127 | struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ |
128 | #endif |
129 | struct bdi_writeback *wb; |
130 | struct fprop_local_percpu *wb_completions; |
131 | |
132 | unsigned long avail; /* dirtyable */ |
133 | unsigned long dirty; /* file_dirty + write + nfs */ |
134 | unsigned long thresh; /* dirty threshold */ |
135 | unsigned long bg_thresh; /* dirty background threshold */ |
136 | |
137 | unsigned long wb_dirty; /* per-wb counterparts */ |
138 | unsigned long wb_thresh; |
139 | unsigned long wb_bg_thresh; |
140 | |
141 | unsigned long pos_ratio; |
142 | }; |
143 | |
144 | /* |
145 | * Length of period for aging writeout fractions of bdis. This is an |
146 | * arbitrarily chosen number. The longer the period, the slower fractions will |
147 | * reflect changes in current writeout rate. |
148 | */ |
149 | #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) |
150 | |
151 | #ifdef CONFIG_CGROUP_WRITEBACK |
152 | |
153 | #define GDTC_INIT(__wb) .wb = (__wb), \ |
154 | .dom = &global_wb_domain, \ |
155 | .wb_completions = &(__wb)->completions |
156 | |
157 | #define GDTC_INIT_NO_WB .dom = &global_wb_domain |
158 | |
159 | #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ |
160 | .dom = mem_cgroup_wb_domain(__wb), \ |
161 | .wb_completions = &(__wb)->memcg_completions, \ |
162 | .gdtc = __gdtc |
163 | |
164 | static bool mdtc_valid(struct dirty_throttle_control *dtc) |
165 | { |
166 | return dtc->dom; |
167 | } |
168 | |
169 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) |
170 | { |
171 | return dtc->dom; |
172 | } |
173 | |
174 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) |
175 | { |
176 | return mdtc->gdtc; |
177 | } |
178 | |
179 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) |
180 | { |
181 | return &wb->memcg_completions; |
182 | } |
183 | |
184 | static void wb_min_max_ratio(struct bdi_writeback *wb, |
185 | unsigned long *minp, unsigned long *maxp) |
186 | { |
187 | unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); |
188 | unsigned long tot_bw = atomic_long_read(v: &wb->bdi->tot_write_bandwidth); |
189 | unsigned long long min = wb->bdi->min_ratio; |
190 | unsigned long long max = wb->bdi->max_ratio; |
191 | |
192 | /* |
193 | * @wb may already be clean by the time control reaches here and |
194 | * the total may not include its bw. |
195 | */ |
196 | if (this_bw < tot_bw) { |
197 | if (min) { |
198 | min *= this_bw; |
199 | min = div64_ul(min, tot_bw); |
200 | } |
201 | if (max < 100 * BDI_RATIO_SCALE) { |
202 | max *= this_bw; |
203 | max = div64_ul(max, tot_bw); |
204 | } |
205 | } |
206 | |
207 | *minp = min; |
208 | *maxp = max; |
209 | } |
210 | |
211 | #else /* CONFIG_CGROUP_WRITEBACK */ |
212 | |
213 | #define GDTC_INIT(__wb) .wb = (__wb), \ |
214 | .wb_completions = &(__wb)->completions |
215 | #define GDTC_INIT_NO_WB |
216 | #define MDTC_INIT(__wb, __gdtc) |
217 | |
218 | static bool mdtc_valid(struct dirty_throttle_control *dtc) |
219 | { |
220 | return false; |
221 | } |
222 | |
223 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) |
224 | { |
225 | return &global_wb_domain; |
226 | } |
227 | |
228 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) |
229 | { |
230 | return NULL; |
231 | } |
232 | |
233 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) |
234 | { |
235 | return NULL; |
236 | } |
237 | |
238 | static void wb_min_max_ratio(struct bdi_writeback *wb, |
239 | unsigned long *minp, unsigned long *maxp) |
240 | { |
241 | *minp = wb->bdi->min_ratio; |
242 | *maxp = wb->bdi->max_ratio; |
243 | } |
244 | |
245 | #endif /* CONFIG_CGROUP_WRITEBACK */ |
246 | |
247 | /* |
248 | * In a memory zone, there is a certain amount of pages we consider |
249 | * available for the page cache, which is essentially the number of |
250 | * free and reclaimable pages, minus some zone reserves to protect |
251 | * lowmem and the ability to uphold the zone's watermarks without |
252 | * requiring writeback. |
253 | * |
254 | * This number of dirtyable pages is the base value of which the |
255 | * user-configurable dirty ratio is the effective number of pages that |
256 | * are allowed to be actually dirtied. Per individual zone, or |
257 | * globally by using the sum of dirtyable pages over all zones. |
258 | * |
259 | * Because the user is allowed to specify the dirty limit globally as |
260 | * absolute number of bytes, calculating the per-zone dirty limit can |
261 | * require translating the configured limit into a percentage of |
262 | * global dirtyable memory first. |
263 | */ |
264 | |
265 | /** |
266 | * node_dirtyable_memory - number of dirtyable pages in a node |
267 | * @pgdat: the node |
268 | * |
269 | * Return: the node's number of pages potentially available for dirty |
270 | * page cache. This is the base value for the per-node dirty limits. |
271 | */ |
272 | static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) |
273 | { |
274 | unsigned long nr_pages = 0; |
275 | int z; |
276 | |
277 | for (z = 0; z < MAX_NR_ZONES; z++) { |
278 | struct zone *zone = pgdat->node_zones + z; |
279 | |
280 | if (!populated_zone(zone)) |
281 | continue; |
282 | |
283 | nr_pages += zone_page_state(zone, item: NR_FREE_PAGES); |
284 | } |
285 | |
286 | /* |
287 | * Pages reserved for the kernel should not be considered |
288 | * dirtyable, to prevent a situation where reclaim has to |
289 | * clean pages in order to balance the zones. |
290 | */ |
291 | nr_pages -= min(nr_pages, pgdat->totalreserve_pages); |
292 | |
293 | nr_pages += node_page_state(pgdat, item: NR_INACTIVE_FILE); |
294 | nr_pages += node_page_state(pgdat, item: NR_ACTIVE_FILE); |
295 | |
296 | return nr_pages; |
297 | } |
298 | |
299 | static unsigned long highmem_dirtyable_memory(unsigned long total) |
300 | { |
301 | #ifdef CONFIG_HIGHMEM |
302 | int node; |
303 | unsigned long x = 0; |
304 | int i; |
305 | |
306 | for_each_node_state(node, N_HIGH_MEMORY) { |
307 | for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { |
308 | struct zone *z; |
309 | unsigned long nr_pages; |
310 | |
311 | if (!is_highmem_idx(i)) |
312 | continue; |
313 | |
314 | z = &NODE_DATA(node)->node_zones[i]; |
315 | if (!populated_zone(z)) |
316 | continue; |
317 | |
318 | nr_pages = zone_page_state(z, NR_FREE_PAGES); |
319 | /* watch for underflows */ |
320 | nr_pages -= min(nr_pages, high_wmark_pages(z)); |
321 | nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); |
322 | nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); |
323 | x += nr_pages; |
324 | } |
325 | } |
326 | |
327 | /* |
328 | * Make sure that the number of highmem pages is never larger |
329 | * than the number of the total dirtyable memory. This can only |
330 | * occur in very strange VM situations but we want to make sure |
331 | * that this does not occur. |
332 | */ |
333 | return min(x, total); |
334 | #else |
335 | return 0; |
336 | #endif |
337 | } |
338 | |
339 | /** |
340 | * global_dirtyable_memory - number of globally dirtyable pages |
341 | * |
342 | * Return: the global number of pages potentially available for dirty |
343 | * page cache. This is the base value for the global dirty limits. |
344 | */ |
345 | static unsigned long global_dirtyable_memory(void) |
346 | { |
347 | unsigned long x; |
348 | |
349 | x = global_zone_page_state(item: NR_FREE_PAGES); |
350 | /* |
351 | * Pages reserved for the kernel should not be considered |
352 | * dirtyable, to prevent a situation where reclaim has to |
353 | * clean pages in order to balance the zones. |
354 | */ |
355 | x -= min(x, totalreserve_pages); |
356 | |
357 | x += global_node_page_state(item: NR_INACTIVE_FILE); |
358 | x += global_node_page_state(item: NR_ACTIVE_FILE); |
359 | |
360 | if (!vm_highmem_is_dirtyable) |
361 | x -= highmem_dirtyable_memory(total: x); |
362 | |
363 | return x + 1; /* Ensure that we never return 0 */ |
364 | } |
365 | |
366 | /** |
367 | * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain |
368 | * @dtc: dirty_throttle_control of interest |
369 | * |
370 | * Calculate @dtc->thresh and ->bg_thresh considering |
371 | * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller |
372 | * must ensure that @dtc->avail is set before calling this function. The |
373 | * dirty limits will be lifted by 1/4 for real-time tasks. |
374 | */ |
375 | static void domain_dirty_limits(struct dirty_throttle_control *dtc) |
376 | { |
377 | const unsigned long available_memory = dtc->avail; |
378 | struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc: dtc); |
379 | unsigned long bytes = vm_dirty_bytes; |
380 | unsigned long bg_bytes = dirty_background_bytes; |
381 | /* convert ratios to per-PAGE_SIZE for higher precision */ |
382 | unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; |
383 | unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; |
384 | unsigned long thresh; |
385 | unsigned long bg_thresh; |
386 | struct task_struct *tsk; |
387 | |
388 | /* gdtc is !NULL iff @dtc is for memcg domain */ |
389 | if (gdtc) { |
390 | unsigned long global_avail = gdtc->avail; |
391 | |
392 | /* |
393 | * The byte settings can't be applied directly to memcg |
394 | * domains. Convert them to ratios by scaling against |
395 | * globally available memory. As the ratios are in |
396 | * per-PAGE_SIZE, they can be obtained by dividing bytes by |
397 | * number of pages. |
398 | */ |
399 | if (bytes) |
400 | ratio = min(DIV_ROUND_UP(bytes, global_avail), |
401 | PAGE_SIZE); |
402 | if (bg_bytes) |
403 | bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), |
404 | PAGE_SIZE); |
405 | bytes = bg_bytes = 0; |
406 | } |
407 | |
408 | if (bytes) |
409 | thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); |
410 | else |
411 | thresh = (ratio * available_memory) / PAGE_SIZE; |
412 | |
413 | if (bg_bytes) |
414 | bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); |
415 | else |
416 | bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; |
417 | |
418 | if (bg_thresh >= thresh) |
419 | bg_thresh = thresh / 2; |
420 | tsk = current; |
421 | if (rt_task(p: tsk)) { |
422 | bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; |
423 | thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; |
424 | } |
425 | dtc->thresh = thresh; |
426 | dtc->bg_thresh = bg_thresh; |
427 | |
428 | /* we should eventually report the domain in the TP */ |
429 | if (!gdtc) |
430 | trace_global_dirty_state(background_thresh: bg_thresh, dirty_thresh: thresh); |
431 | } |
432 | |
433 | /** |
434 | * global_dirty_limits - background-writeback and dirty-throttling thresholds |
435 | * @pbackground: out parameter for bg_thresh |
436 | * @pdirty: out parameter for thresh |
437 | * |
438 | * Calculate bg_thresh and thresh for global_wb_domain. See |
439 | * domain_dirty_limits() for details. |
440 | */ |
441 | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) |
442 | { |
443 | struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; |
444 | |
445 | gdtc.avail = global_dirtyable_memory(); |
446 | domain_dirty_limits(dtc: &gdtc); |
447 | |
448 | *pbackground = gdtc.bg_thresh; |
449 | *pdirty = gdtc.thresh; |
450 | } |
451 | |
452 | /** |
453 | * node_dirty_limit - maximum number of dirty pages allowed in a node |
454 | * @pgdat: the node |
455 | * |
456 | * Return: the maximum number of dirty pages allowed in a node, based |
457 | * on the node's dirtyable memory. |
458 | */ |
459 | static unsigned long node_dirty_limit(struct pglist_data *pgdat) |
460 | { |
461 | unsigned long node_memory = node_dirtyable_memory(pgdat); |
462 | struct task_struct *tsk = current; |
463 | unsigned long dirty; |
464 | |
465 | if (vm_dirty_bytes) |
466 | dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * |
467 | node_memory / global_dirtyable_memory(); |
468 | else |
469 | dirty = vm_dirty_ratio * node_memory / 100; |
470 | |
471 | if (rt_task(p: tsk)) |
472 | dirty += dirty / 4; |
473 | |
474 | return dirty; |
475 | } |
476 | |
477 | /** |
478 | * node_dirty_ok - tells whether a node is within its dirty limits |
479 | * @pgdat: the node to check |
480 | * |
481 | * Return: %true when the dirty pages in @pgdat are within the node's |
482 | * dirty limit, %false if the limit is exceeded. |
483 | */ |
484 | bool node_dirty_ok(struct pglist_data *pgdat) |
485 | { |
486 | unsigned long limit = node_dirty_limit(pgdat); |
487 | unsigned long nr_pages = 0; |
488 | |
489 | nr_pages += node_page_state(pgdat, item: NR_FILE_DIRTY); |
490 | nr_pages += node_page_state(pgdat, item: NR_WRITEBACK); |
491 | |
492 | return nr_pages <= limit; |
493 | } |
494 | |
495 | #ifdef CONFIG_SYSCTL |
496 | static int dirty_background_ratio_handler(struct ctl_table *table, int write, |
497 | void *buffer, size_t *lenp, loff_t *ppos) |
498 | { |
499 | int ret; |
500 | |
501 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
502 | if (ret == 0 && write) |
503 | dirty_background_bytes = 0; |
504 | return ret; |
505 | } |
506 | |
507 | static int dirty_background_bytes_handler(struct ctl_table *table, int write, |
508 | void *buffer, size_t *lenp, loff_t *ppos) |
509 | { |
510 | int ret; |
511 | |
512 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
513 | if (ret == 0 && write) |
514 | dirty_background_ratio = 0; |
515 | return ret; |
516 | } |
517 | |
518 | static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, |
519 | size_t *lenp, loff_t *ppos) |
520 | { |
521 | int old_ratio = vm_dirty_ratio; |
522 | int ret; |
523 | |
524 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
525 | if (ret == 0 && write && vm_dirty_ratio != old_ratio) { |
526 | writeback_set_ratelimit(); |
527 | vm_dirty_bytes = 0; |
528 | } |
529 | return ret; |
530 | } |
531 | |
532 | static int dirty_bytes_handler(struct ctl_table *table, int write, |
533 | void *buffer, size_t *lenp, loff_t *ppos) |
534 | { |
535 | unsigned long old_bytes = vm_dirty_bytes; |
536 | int ret; |
537 | |
538 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
539 | if (ret == 0 && write && vm_dirty_bytes != old_bytes) { |
540 | writeback_set_ratelimit(); |
541 | vm_dirty_ratio = 0; |
542 | } |
543 | return ret; |
544 | } |
545 | #endif |
546 | |
547 | static unsigned long wp_next_time(unsigned long cur_time) |
548 | { |
549 | cur_time += VM_COMPLETIONS_PERIOD_LEN; |
550 | /* 0 has a special meaning... */ |
551 | if (!cur_time) |
552 | return 1; |
553 | return cur_time; |
554 | } |
555 | |
556 | static void wb_domain_writeout_add(struct wb_domain *dom, |
557 | struct fprop_local_percpu *completions, |
558 | unsigned int max_prop_frac, long nr) |
559 | { |
560 | __fprop_add_percpu_max(p: &dom->completions, pl: completions, |
561 | max_frac: max_prop_frac, nr); |
562 | /* First event after period switching was turned off? */ |
563 | if (unlikely(!dom->period_time)) { |
564 | /* |
565 | * We can race with other __bdi_writeout_inc calls here but |
566 | * it does not cause any harm since the resulting time when |
567 | * timer will fire and what is in writeout_period_time will be |
568 | * roughly the same. |
569 | */ |
570 | dom->period_time = wp_next_time(cur_time: jiffies); |
571 | mod_timer(timer: &dom->period_timer, expires: dom->period_time); |
572 | } |
573 | } |
574 | |
575 | /* |
576 | * Increment @wb's writeout completion count and the global writeout |
577 | * completion count. Called from __folio_end_writeback(). |
578 | */ |
579 | static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) |
580 | { |
581 | struct wb_domain *cgdom; |
582 | |
583 | wb_stat_mod(wb, item: WB_WRITTEN, amount: nr); |
584 | wb_domain_writeout_add(dom: &global_wb_domain, completions: &wb->completions, |
585 | max_prop_frac: wb->bdi->max_prop_frac, nr); |
586 | |
587 | cgdom = mem_cgroup_wb_domain(wb); |
588 | if (cgdom) |
589 | wb_domain_writeout_add(dom: cgdom, completions: wb_memcg_completions(wb), |
590 | max_prop_frac: wb->bdi->max_prop_frac, nr); |
591 | } |
592 | |
593 | void wb_writeout_inc(struct bdi_writeback *wb) |
594 | { |
595 | unsigned long flags; |
596 | |
597 | local_irq_save(flags); |
598 | __wb_writeout_add(wb, nr: 1); |
599 | local_irq_restore(flags); |
600 | } |
601 | EXPORT_SYMBOL_GPL(wb_writeout_inc); |
602 | |
603 | /* |
604 | * On idle system, we can be called long after we scheduled because we use |
605 | * deferred timers so count with missed periods. |
606 | */ |
607 | static void writeout_period(struct timer_list *t) |
608 | { |
609 | struct wb_domain *dom = from_timer(dom, t, period_timer); |
610 | int miss_periods = (jiffies - dom->period_time) / |
611 | VM_COMPLETIONS_PERIOD_LEN; |
612 | |
613 | if (fprop_new_period(p: &dom->completions, periods: miss_periods + 1)) { |
614 | dom->period_time = wp_next_time(cur_time: dom->period_time + |
615 | miss_periods * VM_COMPLETIONS_PERIOD_LEN); |
616 | mod_timer(timer: &dom->period_timer, expires: dom->period_time); |
617 | } else { |
618 | /* |
619 | * Aging has zeroed all fractions. Stop wasting CPU on period |
620 | * updates. |
621 | */ |
622 | dom->period_time = 0; |
623 | } |
624 | } |
625 | |
626 | int wb_domain_init(struct wb_domain *dom, gfp_t gfp) |
627 | { |
628 | memset(dom, 0, sizeof(*dom)); |
629 | |
630 | spin_lock_init(&dom->lock); |
631 | |
632 | timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); |
633 | |
634 | dom->dirty_limit_tstamp = jiffies; |
635 | |
636 | return fprop_global_init(p: &dom->completions, gfp); |
637 | } |
638 | |
639 | #ifdef CONFIG_CGROUP_WRITEBACK |
640 | void wb_domain_exit(struct wb_domain *dom) |
641 | { |
642 | del_timer_sync(timer: &dom->period_timer); |
643 | fprop_global_destroy(p: &dom->completions); |
644 | } |
645 | #endif |
646 | |
647 | /* |
648 | * bdi_min_ratio keeps the sum of the minimum dirty shares of all |
649 | * registered backing devices, which, for obvious reasons, can not |
650 | * exceed 100%. |
651 | */ |
652 | static unsigned int bdi_min_ratio; |
653 | |
654 | static int bdi_check_pages_limit(unsigned long pages) |
655 | { |
656 | unsigned long max_dirty_pages = global_dirtyable_memory(); |
657 | |
658 | if (pages > max_dirty_pages) |
659 | return -EINVAL; |
660 | |
661 | return 0; |
662 | } |
663 | |
664 | static unsigned long bdi_ratio_from_pages(unsigned long pages) |
665 | { |
666 | unsigned long background_thresh; |
667 | unsigned long dirty_thresh; |
668 | unsigned long ratio; |
669 | |
670 | global_dirty_limits(pbackground: &background_thresh, pdirty: &dirty_thresh); |
671 | ratio = div64_u64(dividend: pages * 100ULL * BDI_RATIO_SCALE, divisor: dirty_thresh); |
672 | |
673 | return ratio; |
674 | } |
675 | |
676 | static u64 bdi_get_bytes(unsigned int ratio) |
677 | { |
678 | unsigned long background_thresh; |
679 | unsigned long dirty_thresh; |
680 | u64 bytes; |
681 | |
682 | global_dirty_limits(pbackground: &background_thresh, pdirty: &dirty_thresh); |
683 | bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; |
684 | |
685 | return bytes; |
686 | } |
687 | |
688 | static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) |
689 | { |
690 | unsigned int delta; |
691 | int ret = 0; |
692 | |
693 | if (min_ratio > 100 * BDI_RATIO_SCALE) |
694 | return -EINVAL; |
695 | |
696 | spin_lock_bh(lock: &bdi_lock); |
697 | if (min_ratio > bdi->max_ratio) { |
698 | ret = -EINVAL; |
699 | } else { |
700 | if (min_ratio < bdi->min_ratio) { |
701 | delta = bdi->min_ratio - min_ratio; |
702 | bdi_min_ratio -= delta; |
703 | bdi->min_ratio = min_ratio; |
704 | } else { |
705 | delta = min_ratio - bdi->min_ratio; |
706 | if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { |
707 | bdi_min_ratio += delta; |
708 | bdi->min_ratio = min_ratio; |
709 | } else { |
710 | ret = -EINVAL; |
711 | } |
712 | } |
713 | } |
714 | spin_unlock_bh(lock: &bdi_lock); |
715 | |
716 | return ret; |
717 | } |
718 | |
719 | static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) |
720 | { |
721 | int ret = 0; |
722 | |
723 | if (max_ratio > 100 * BDI_RATIO_SCALE) |
724 | return -EINVAL; |
725 | |
726 | spin_lock_bh(lock: &bdi_lock); |
727 | if (bdi->min_ratio > max_ratio) { |
728 | ret = -EINVAL; |
729 | } else { |
730 | bdi->max_ratio = max_ratio; |
731 | bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / |
732 | (100 * BDI_RATIO_SCALE); |
733 | } |
734 | spin_unlock_bh(lock: &bdi_lock); |
735 | |
736 | return ret; |
737 | } |
738 | |
739 | int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) |
740 | { |
741 | return __bdi_set_min_ratio(bdi, min_ratio); |
742 | } |
743 | |
744 | int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) |
745 | { |
746 | return __bdi_set_max_ratio(bdi, max_ratio); |
747 | } |
748 | |
749 | int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) |
750 | { |
751 | return __bdi_set_min_ratio(bdi, min_ratio: min_ratio * BDI_RATIO_SCALE); |
752 | } |
753 | |
754 | int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) |
755 | { |
756 | return __bdi_set_max_ratio(bdi, max_ratio: max_ratio * BDI_RATIO_SCALE); |
757 | } |
758 | EXPORT_SYMBOL(bdi_set_max_ratio); |
759 | |
760 | u64 bdi_get_min_bytes(struct backing_dev_info *bdi) |
761 | { |
762 | return bdi_get_bytes(ratio: bdi->min_ratio); |
763 | } |
764 | |
765 | int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) |
766 | { |
767 | int ret; |
768 | unsigned long pages = min_bytes >> PAGE_SHIFT; |
769 | unsigned long min_ratio; |
770 | |
771 | ret = bdi_check_pages_limit(pages); |
772 | if (ret) |
773 | return ret; |
774 | |
775 | min_ratio = bdi_ratio_from_pages(pages); |
776 | return __bdi_set_min_ratio(bdi, min_ratio); |
777 | } |
778 | |
779 | u64 bdi_get_max_bytes(struct backing_dev_info *bdi) |
780 | { |
781 | return bdi_get_bytes(ratio: bdi->max_ratio); |
782 | } |
783 | |
784 | int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) |
785 | { |
786 | int ret; |
787 | unsigned long pages = max_bytes >> PAGE_SHIFT; |
788 | unsigned long max_ratio; |
789 | |
790 | ret = bdi_check_pages_limit(pages); |
791 | if (ret) |
792 | return ret; |
793 | |
794 | max_ratio = bdi_ratio_from_pages(pages); |
795 | return __bdi_set_max_ratio(bdi, max_ratio); |
796 | } |
797 | |
798 | int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) |
799 | { |
800 | if (strict_limit > 1) |
801 | return -EINVAL; |
802 | |
803 | spin_lock_bh(lock: &bdi_lock); |
804 | if (strict_limit) |
805 | bdi->capabilities |= BDI_CAP_STRICTLIMIT; |
806 | else |
807 | bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; |
808 | spin_unlock_bh(lock: &bdi_lock); |
809 | |
810 | return 0; |
811 | } |
812 | |
813 | static unsigned long dirty_freerun_ceiling(unsigned long thresh, |
814 | unsigned long bg_thresh) |
815 | { |
816 | return (thresh + bg_thresh) / 2; |
817 | } |
818 | |
819 | static unsigned long hard_dirty_limit(struct wb_domain *dom, |
820 | unsigned long thresh) |
821 | { |
822 | return max(thresh, dom->dirty_limit); |
823 | } |
824 | |
825 | /* |
826 | * Memory which can be further allocated to a memcg domain is capped by |
827 | * system-wide clean memory excluding the amount being used in the domain. |
828 | */ |
829 | static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, |
830 | unsigned long filepages, unsigned long headroom) |
831 | { |
832 | struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); |
833 | unsigned long clean = filepages - min(filepages, mdtc->dirty); |
834 | unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); |
835 | unsigned long other_clean = global_clean - min(global_clean, clean); |
836 | |
837 | mdtc->avail = filepages + min(headroom, other_clean); |
838 | } |
839 | |
840 | /** |
841 | * __wb_calc_thresh - @wb's share of dirty throttling threshold |
842 | * @dtc: dirty_throttle_context of interest |
843 | * |
844 | * Note that balance_dirty_pages() will only seriously take it as a hard limit |
845 | * when sleeping max_pause per page is not enough to keep the dirty pages under |
846 | * control. For example, when the device is completely stalled due to some error |
847 | * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. |
848 | * In the other normal situations, it acts more gently by throttling the tasks |
849 | * more (rather than completely block them) when the wb dirty pages go high. |
850 | * |
851 | * It allocates high/low dirty limits to fast/slow devices, in order to prevent |
852 | * - starving fast devices |
853 | * - piling up dirty pages (that will take long time to sync) on slow devices |
854 | * |
855 | * The wb's share of dirty limit will be adapting to its throughput and |
856 | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. |
857 | * |
858 | * Return: @wb's dirty limit in pages. The term "dirty" in the context of |
859 | * dirty balancing includes all PG_dirty and PG_writeback pages. |
860 | */ |
861 | static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) |
862 | { |
863 | struct wb_domain *dom = dtc_dom(dtc); |
864 | unsigned long thresh = dtc->thresh; |
865 | u64 wb_thresh; |
866 | unsigned long numerator, denominator; |
867 | unsigned long wb_min_ratio, wb_max_ratio; |
868 | |
869 | /* |
870 | * Calculate this BDI's share of the thresh ratio. |
871 | */ |
872 | fprop_fraction_percpu(p: &dom->completions, pl: dtc->wb_completions, |
873 | numerator: &numerator, denominator: &denominator); |
874 | |
875 | wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); |
876 | wb_thresh *= numerator; |
877 | wb_thresh = div64_ul(wb_thresh, denominator); |
878 | |
879 | wb_min_max_ratio(wb: dtc->wb, minp: &wb_min_ratio, maxp: &wb_max_ratio); |
880 | |
881 | wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); |
882 | if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE)) |
883 | wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); |
884 | |
885 | return wb_thresh; |
886 | } |
887 | |
888 | unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) |
889 | { |
890 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb), |
891 | .thresh = thresh }; |
892 | return __wb_calc_thresh(dtc: &gdtc); |
893 | } |
894 | |
895 | /* |
896 | * setpoint - dirty 3 |
897 | * f(dirty) := 1.0 + (----------------) |
898 | * limit - setpoint |
899 | * |
900 | * it's a 3rd order polynomial that subjects to |
901 | * |
902 | * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast |
903 | * (2) f(setpoint) = 1.0 => the balance point |
904 | * (3) f(limit) = 0 => the hard limit |
905 | * (4) df/dx <= 0 => negative feedback control |
906 | * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) |
907 | * => fast response on large errors; small oscillation near setpoint |
908 | */ |
909 | static long long pos_ratio_polynom(unsigned long setpoint, |
910 | unsigned long dirty, |
911 | unsigned long limit) |
912 | { |
913 | long long pos_ratio; |
914 | long x; |
915 | |
916 | x = div64_s64(dividend: ((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, |
917 | divisor: (limit - setpoint) | 1); |
918 | pos_ratio = x; |
919 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; |
920 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; |
921 | pos_ratio += 1 << RATELIMIT_CALC_SHIFT; |
922 | |
923 | return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); |
924 | } |
925 | |
926 | /* |
927 | * Dirty position control. |
928 | * |
929 | * (o) global/bdi setpoints |
930 | * |
931 | * We want the dirty pages be balanced around the global/wb setpoints. |
932 | * When the number of dirty pages is higher/lower than the setpoint, the |
933 | * dirty position control ratio (and hence task dirty ratelimit) will be |
934 | * decreased/increased to bring the dirty pages back to the setpoint. |
935 | * |
936 | * pos_ratio = 1 << RATELIMIT_CALC_SHIFT |
937 | * |
938 | * if (dirty < setpoint) scale up pos_ratio |
939 | * if (dirty > setpoint) scale down pos_ratio |
940 | * |
941 | * if (wb_dirty < wb_setpoint) scale up pos_ratio |
942 | * if (wb_dirty > wb_setpoint) scale down pos_ratio |
943 | * |
944 | * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT |
945 | * |
946 | * (o) global control line |
947 | * |
948 | * ^ pos_ratio |
949 | * | |
950 | * | |<===== global dirty control scope ======>| |
951 | * 2.0 * * * * * * * |
952 | * | .* |
953 | * | . * |
954 | * | . * |
955 | * | . * |
956 | * | . * |
957 | * | . * |
958 | * 1.0 ................................* |
959 | * | . . * |
960 | * | . . * |
961 | * | . . * |
962 | * | . . * |
963 | * | . . * |
964 | * 0 +------------.------------------.----------------------*-------------> |
965 | * freerun^ setpoint^ limit^ dirty pages |
966 | * |
967 | * (o) wb control line |
968 | * |
969 | * ^ pos_ratio |
970 | * | |
971 | * | * |
972 | * | * |
973 | * | * |
974 | * | * |
975 | * | * |<=========== span ============>| |
976 | * 1.0 .......................* |
977 | * | . * |
978 | * | . * |
979 | * | . * |
980 | * | . * |
981 | * | . * |
982 | * | . * |
983 | * | . * |
984 | * | . * |
985 | * | . * |
986 | * | . * |
987 | * | . * |
988 | * 1/4 ...............................................* * * * * * * * * * * * |
989 | * | . . |
990 | * | . . |
991 | * | . . |
992 | * 0 +----------------------.-------------------------------.-------------> |
993 | * wb_setpoint^ x_intercept^ |
994 | * |
995 | * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can |
996 | * be smoothly throttled down to normal if it starts high in situations like |
997 | * - start writing to a slow SD card and a fast disk at the same time. The SD |
998 | * card's wb_dirty may rush to many times higher than wb_setpoint. |
999 | * - the wb dirty thresh drops quickly due to change of JBOD workload |
1000 | */ |
1001 | static void wb_position_ratio(struct dirty_throttle_control *dtc) |
1002 | { |
1003 | struct bdi_writeback *wb = dtc->wb; |
1004 | unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); |
1005 | unsigned long freerun = dirty_freerun_ceiling(thresh: dtc->thresh, bg_thresh: dtc->bg_thresh); |
1006 | unsigned long limit = hard_dirty_limit(dom: dtc_dom(dtc), thresh: dtc->thresh); |
1007 | unsigned long wb_thresh = dtc->wb_thresh; |
1008 | unsigned long x_intercept; |
1009 | unsigned long setpoint; /* dirty pages' target balance point */ |
1010 | unsigned long wb_setpoint; |
1011 | unsigned long span; |
1012 | long long pos_ratio; /* for scaling up/down the rate limit */ |
1013 | long x; |
1014 | |
1015 | dtc->pos_ratio = 0; |
1016 | |
1017 | if (unlikely(dtc->dirty >= limit)) |
1018 | return; |
1019 | |
1020 | /* |
1021 | * global setpoint |
1022 | * |
1023 | * See comment for pos_ratio_polynom(). |
1024 | */ |
1025 | setpoint = (freerun + limit) / 2; |
1026 | pos_ratio = pos_ratio_polynom(setpoint, dirty: dtc->dirty, limit); |
1027 | |
1028 | /* |
1029 | * The strictlimit feature is a tool preventing mistrusted filesystems |
1030 | * from growing a large number of dirty pages before throttling. For |
1031 | * such filesystems balance_dirty_pages always checks wb counters |
1032 | * against wb limits. Even if global "nr_dirty" is under "freerun". |
1033 | * This is especially important for fuse which sets bdi->max_ratio to |
1034 | * 1% by default. Without strictlimit feature, fuse writeback may |
1035 | * consume arbitrary amount of RAM because it is accounted in |
1036 | * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". |
1037 | * |
1038 | * Here, in wb_position_ratio(), we calculate pos_ratio based on |
1039 | * two values: wb_dirty and wb_thresh. Let's consider an example: |
1040 | * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global |
1041 | * limits are set by default to 10% and 20% (background and throttle). |
1042 | * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. |
1043 | * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is |
1044 | * about ~6K pages (as the average of background and throttle wb |
1045 | * limits). The 3rd order polynomial will provide positive feedback if |
1046 | * wb_dirty is under wb_setpoint and vice versa. |
1047 | * |
1048 | * Note, that we cannot use global counters in these calculations |
1049 | * because we want to throttle process writing to a strictlimit wb |
1050 | * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB |
1051 | * in the example above). |
1052 | */ |
1053 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { |
1054 | long long wb_pos_ratio; |
1055 | |
1056 | if (dtc->wb_dirty < 8) { |
1057 | dtc->pos_ratio = min_t(long long, pos_ratio * 2, |
1058 | 2 << RATELIMIT_CALC_SHIFT); |
1059 | return; |
1060 | } |
1061 | |
1062 | if (dtc->wb_dirty >= wb_thresh) |
1063 | return; |
1064 | |
1065 | wb_setpoint = dirty_freerun_ceiling(thresh: wb_thresh, |
1066 | bg_thresh: dtc->wb_bg_thresh); |
1067 | |
1068 | if (wb_setpoint == 0 || wb_setpoint == wb_thresh) |
1069 | return; |
1070 | |
1071 | wb_pos_ratio = pos_ratio_polynom(setpoint: wb_setpoint, dirty: dtc->wb_dirty, |
1072 | limit: wb_thresh); |
1073 | |
1074 | /* |
1075 | * Typically, for strictlimit case, wb_setpoint << setpoint |
1076 | * and pos_ratio >> wb_pos_ratio. In the other words global |
1077 | * state ("dirty") is not limiting factor and we have to |
1078 | * make decision based on wb counters. But there is an |
1079 | * important case when global pos_ratio should get precedence: |
1080 | * global limits are exceeded (e.g. due to activities on other |
1081 | * wb's) while given strictlimit wb is below limit. |
1082 | * |
1083 | * "pos_ratio * wb_pos_ratio" would work for the case above, |
1084 | * but it would look too non-natural for the case of all |
1085 | * activity in the system coming from a single strictlimit wb |
1086 | * with bdi->max_ratio == 100%. |
1087 | * |
1088 | * Note that min() below somewhat changes the dynamics of the |
1089 | * control system. Normally, pos_ratio value can be well over 3 |
1090 | * (when globally we are at freerun and wb is well below wb |
1091 | * setpoint). Now the maximum pos_ratio in the same situation |
1092 | * is 2. We might want to tweak this if we observe the control |
1093 | * system is too slow to adapt. |
1094 | */ |
1095 | dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); |
1096 | return; |
1097 | } |
1098 | |
1099 | /* |
1100 | * We have computed basic pos_ratio above based on global situation. If |
1101 | * the wb is over/under its share of dirty pages, we want to scale |
1102 | * pos_ratio further down/up. That is done by the following mechanism. |
1103 | */ |
1104 | |
1105 | /* |
1106 | * wb setpoint |
1107 | * |
1108 | * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) |
1109 | * |
1110 | * x_intercept - wb_dirty |
1111 | * := -------------------------- |
1112 | * x_intercept - wb_setpoint |
1113 | * |
1114 | * The main wb control line is a linear function that subjects to |
1115 | * |
1116 | * (1) f(wb_setpoint) = 1.0 |
1117 | * (2) k = - 1 / (8 * write_bw) (in single wb case) |
1118 | * or equally: x_intercept = wb_setpoint + 8 * write_bw |
1119 | * |
1120 | * For single wb case, the dirty pages are observed to fluctuate |
1121 | * regularly within range |
1122 | * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] |
1123 | * for various filesystems, where (2) can yield in a reasonable 12.5% |
1124 | * fluctuation range for pos_ratio. |
1125 | * |
1126 | * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its |
1127 | * own size, so move the slope over accordingly and choose a slope that |
1128 | * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. |
1129 | */ |
1130 | if (unlikely(wb_thresh > dtc->thresh)) |
1131 | wb_thresh = dtc->thresh; |
1132 | /* |
1133 | * It's very possible that wb_thresh is close to 0 not because the |
1134 | * device is slow, but that it has remained inactive for long time. |
1135 | * Honour such devices a reasonable good (hopefully IO efficient) |
1136 | * threshold, so that the occasional writes won't be blocked and active |
1137 | * writes can rampup the threshold quickly. |
1138 | */ |
1139 | wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); |
1140 | /* |
1141 | * scale global setpoint to wb's: |
1142 | * wb_setpoint = setpoint * wb_thresh / thresh |
1143 | */ |
1144 | x = div_u64(dividend: (u64)wb_thresh << 16, divisor: dtc->thresh | 1); |
1145 | wb_setpoint = setpoint * (u64)x >> 16; |
1146 | /* |
1147 | * Use span=(8*write_bw) in single wb case as indicated by |
1148 | * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. |
1149 | * |
1150 | * wb_thresh thresh - wb_thresh |
1151 | * span = --------- * (8 * write_bw) + ------------------ * wb_thresh |
1152 | * thresh thresh |
1153 | */ |
1154 | span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; |
1155 | x_intercept = wb_setpoint + span; |
1156 | |
1157 | if (dtc->wb_dirty < x_intercept - span / 4) { |
1158 | pos_ratio = div64_u64(dividend: pos_ratio * (x_intercept - dtc->wb_dirty), |
1159 | divisor: (x_intercept - wb_setpoint) | 1); |
1160 | } else |
1161 | pos_ratio /= 4; |
1162 | |
1163 | /* |
1164 | * wb reserve area, safeguard against dirty pool underrun and disk idle |
1165 | * It may push the desired control point of global dirty pages higher |
1166 | * than setpoint. |
1167 | */ |
1168 | x_intercept = wb_thresh / 2; |
1169 | if (dtc->wb_dirty < x_intercept) { |
1170 | if (dtc->wb_dirty > x_intercept / 8) |
1171 | pos_ratio = div_u64(dividend: pos_ratio * x_intercept, |
1172 | divisor: dtc->wb_dirty); |
1173 | else |
1174 | pos_ratio *= 8; |
1175 | } |
1176 | |
1177 | dtc->pos_ratio = pos_ratio; |
1178 | } |
1179 | |
1180 | static void wb_update_write_bandwidth(struct bdi_writeback *wb, |
1181 | unsigned long elapsed, |
1182 | unsigned long written) |
1183 | { |
1184 | const unsigned long period = roundup_pow_of_two(3 * HZ); |
1185 | unsigned long avg = wb->avg_write_bandwidth; |
1186 | unsigned long old = wb->write_bandwidth; |
1187 | u64 bw; |
1188 | |
1189 | /* |
1190 | * bw = written * HZ / elapsed |
1191 | * |
1192 | * bw * elapsed + write_bandwidth * (period - elapsed) |
1193 | * write_bandwidth = --------------------------------------------------- |
1194 | * period |
1195 | * |
1196 | * @written may have decreased due to folio_redirty_for_writepage(). |
1197 | * Avoid underflowing @bw calculation. |
1198 | */ |
1199 | bw = written - min(written, wb->written_stamp); |
1200 | bw *= HZ; |
1201 | if (unlikely(elapsed > period)) { |
1202 | bw = div64_ul(bw, elapsed); |
1203 | avg = bw; |
1204 | goto out; |
1205 | } |
1206 | bw += (u64)wb->write_bandwidth * (period - elapsed); |
1207 | bw >>= ilog2(period); |
1208 | |
1209 | /* |
1210 | * one more level of smoothing, for filtering out sudden spikes |
1211 | */ |
1212 | if (avg > old && old >= (unsigned long)bw) |
1213 | avg -= (avg - old) >> 3; |
1214 | |
1215 | if (avg < old && old <= (unsigned long)bw) |
1216 | avg += (old - avg) >> 3; |
1217 | |
1218 | out: |
1219 | /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ |
1220 | avg = max(avg, 1LU); |
1221 | if (wb_has_dirty_io(wb)) { |
1222 | long delta = avg - wb->avg_write_bandwidth; |
1223 | WARN_ON_ONCE(atomic_long_add_return(delta, |
1224 | &wb->bdi->tot_write_bandwidth) <= 0); |
1225 | } |
1226 | wb->write_bandwidth = bw; |
1227 | WRITE_ONCE(wb->avg_write_bandwidth, avg); |
1228 | } |
1229 | |
1230 | static void update_dirty_limit(struct dirty_throttle_control *dtc) |
1231 | { |
1232 | struct wb_domain *dom = dtc_dom(dtc); |
1233 | unsigned long thresh = dtc->thresh; |
1234 | unsigned long limit = dom->dirty_limit; |
1235 | |
1236 | /* |
1237 | * Follow up in one step. |
1238 | */ |
1239 | if (limit < thresh) { |
1240 | limit = thresh; |
1241 | goto update; |
1242 | } |
1243 | |
1244 | /* |
1245 | * Follow down slowly. Use the higher one as the target, because thresh |
1246 | * may drop below dirty. This is exactly the reason to introduce |
1247 | * dom->dirty_limit which is guaranteed to lie above the dirty pages. |
1248 | */ |
1249 | thresh = max(thresh, dtc->dirty); |
1250 | if (limit > thresh) { |
1251 | limit -= (limit - thresh) >> 5; |
1252 | goto update; |
1253 | } |
1254 | return; |
1255 | update: |
1256 | dom->dirty_limit = limit; |
1257 | } |
1258 | |
1259 | static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, |
1260 | unsigned long now) |
1261 | { |
1262 | struct wb_domain *dom = dtc_dom(dtc); |
1263 | |
1264 | /* |
1265 | * check locklessly first to optimize away locking for the most time |
1266 | */ |
1267 | if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) |
1268 | return; |
1269 | |
1270 | spin_lock(lock: &dom->lock); |
1271 | if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { |
1272 | update_dirty_limit(dtc); |
1273 | dom->dirty_limit_tstamp = now; |
1274 | } |
1275 | spin_unlock(lock: &dom->lock); |
1276 | } |
1277 | |
1278 | /* |
1279 | * Maintain wb->dirty_ratelimit, the base dirty throttle rate. |
1280 | * |
1281 | * Normal wb tasks will be curbed at or below it in long term. |
1282 | * Obviously it should be around (write_bw / N) when there are N dd tasks. |
1283 | */ |
1284 | static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, |
1285 | unsigned long dirtied, |
1286 | unsigned long elapsed) |
1287 | { |
1288 | struct bdi_writeback *wb = dtc->wb; |
1289 | unsigned long dirty = dtc->dirty; |
1290 | unsigned long freerun = dirty_freerun_ceiling(thresh: dtc->thresh, bg_thresh: dtc->bg_thresh); |
1291 | unsigned long limit = hard_dirty_limit(dom: dtc_dom(dtc), thresh: dtc->thresh); |
1292 | unsigned long setpoint = (freerun + limit) / 2; |
1293 | unsigned long write_bw = wb->avg_write_bandwidth; |
1294 | unsigned long dirty_ratelimit = wb->dirty_ratelimit; |
1295 | unsigned long dirty_rate; |
1296 | unsigned long task_ratelimit; |
1297 | unsigned long balanced_dirty_ratelimit; |
1298 | unsigned long step; |
1299 | unsigned long x; |
1300 | unsigned long shift; |
1301 | |
1302 | /* |
1303 | * The dirty rate will match the writeout rate in long term, except |
1304 | * when dirty pages are truncated by userspace or re-dirtied by FS. |
1305 | */ |
1306 | dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; |
1307 | |
1308 | /* |
1309 | * task_ratelimit reflects each dd's dirty rate for the past 200ms. |
1310 | */ |
1311 | task_ratelimit = (u64)dirty_ratelimit * |
1312 | dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; |
1313 | task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ |
1314 | |
1315 | /* |
1316 | * A linear estimation of the "balanced" throttle rate. The theory is, |
1317 | * if there are N dd tasks, each throttled at task_ratelimit, the wb's |
1318 | * dirty_rate will be measured to be (N * task_ratelimit). So the below |
1319 | * formula will yield the balanced rate limit (write_bw / N). |
1320 | * |
1321 | * Note that the expanded form is not a pure rate feedback: |
1322 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) |
1323 | * but also takes pos_ratio into account: |
1324 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) |
1325 | * |
1326 | * (1) is not realistic because pos_ratio also takes part in balancing |
1327 | * the dirty rate. Consider the state |
1328 | * pos_ratio = 0.5 (3) |
1329 | * rate = 2 * (write_bw / N) (4) |
1330 | * If (1) is used, it will stuck in that state! Because each dd will |
1331 | * be throttled at |
1332 | * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) |
1333 | * yielding |
1334 | * dirty_rate = N * task_ratelimit = write_bw (6) |
1335 | * put (6) into (1) we get |
1336 | * rate_(i+1) = rate_(i) (7) |
1337 | * |
1338 | * So we end up using (2) to always keep |
1339 | * rate_(i+1) ~= (write_bw / N) (8) |
1340 | * regardless of the value of pos_ratio. As long as (8) is satisfied, |
1341 | * pos_ratio is able to drive itself to 1.0, which is not only where |
1342 | * the dirty count meet the setpoint, but also where the slope of |
1343 | * pos_ratio is most flat and hence task_ratelimit is least fluctuated. |
1344 | */ |
1345 | balanced_dirty_ratelimit = div_u64(dividend: (u64)task_ratelimit * write_bw, |
1346 | divisor: dirty_rate | 1); |
1347 | /* |
1348 | * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw |
1349 | */ |
1350 | if (unlikely(balanced_dirty_ratelimit > write_bw)) |
1351 | balanced_dirty_ratelimit = write_bw; |
1352 | |
1353 | /* |
1354 | * We could safely do this and return immediately: |
1355 | * |
1356 | * wb->dirty_ratelimit = balanced_dirty_ratelimit; |
1357 | * |
1358 | * However to get a more stable dirty_ratelimit, the below elaborated |
1359 | * code makes use of task_ratelimit to filter out singular points and |
1360 | * limit the step size. |
1361 | * |
1362 | * The below code essentially only uses the relative value of |
1363 | * |
1364 | * task_ratelimit - dirty_ratelimit |
1365 | * = (pos_ratio - 1) * dirty_ratelimit |
1366 | * |
1367 | * which reflects the direction and size of dirty position error. |
1368 | */ |
1369 | |
1370 | /* |
1371 | * dirty_ratelimit will follow balanced_dirty_ratelimit iff |
1372 | * task_ratelimit is on the same side of dirty_ratelimit, too. |
1373 | * For example, when |
1374 | * - dirty_ratelimit > balanced_dirty_ratelimit |
1375 | * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) |
1376 | * lowering dirty_ratelimit will help meet both the position and rate |
1377 | * control targets. Otherwise, don't update dirty_ratelimit if it will |
1378 | * only help meet the rate target. After all, what the users ultimately |
1379 | * feel and care are stable dirty rate and small position error. |
1380 | * |
1381 | * |task_ratelimit - dirty_ratelimit| is used to limit the step size |
1382 | * and filter out the singular points of balanced_dirty_ratelimit. Which |
1383 | * keeps jumping around randomly and can even leap far away at times |
1384 | * due to the small 200ms estimation period of dirty_rate (we want to |
1385 | * keep that period small to reduce time lags). |
1386 | */ |
1387 | step = 0; |
1388 | |
1389 | /* |
1390 | * For strictlimit case, calculations above were based on wb counters |
1391 | * and limits (starting from pos_ratio = wb_position_ratio() and up to |
1392 | * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). |
1393 | * Hence, to calculate "step" properly, we have to use wb_dirty as |
1394 | * "dirty" and wb_setpoint as "setpoint". |
1395 | * |
1396 | * We rampup dirty_ratelimit forcibly if wb_dirty is low because |
1397 | * it's possible that wb_thresh is close to zero due to inactivity |
1398 | * of backing device. |
1399 | */ |
1400 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { |
1401 | dirty = dtc->wb_dirty; |
1402 | if (dtc->wb_dirty < 8) |
1403 | setpoint = dtc->wb_dirty + 1; |
1404 | else |
1405 | setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; |
1406 | } |
1407 | |
1408 | if (dirty < setpoint) { |
1409 | x = min3(wb->balanced_dirty_ratelimit, |
1410 | balanced_dirty_ratelimit, task_ratelimit); |
1411 | if (dirty_ratelimit < x) |
1412 | step = x - dirty_ratelimit; |
1413 | } else { |
1414 | x = max3(wb->balanced_dirty_ratelimit, |
1415 | balanced_dirty_ratelimit, task_ratelimit); |
1416 | if (dirty_ratelimit > x) |
1417 | step = dirty_ratelimit - x; |
1418 | } |
1419 | |
1420 | /* |
1421 | * Don't pursue 100% rate matching. It's impossible since the balanced |
1422 | * rate itself is constantly fluctuating. So decrease the track speed |
1423 | * when it gets close to the target. Helps eliminate pointless tremors. |
1424 | */ |
1425 | shift = dirty_ratelimit / (2 * step + 1); |
1426 | if (shift < BITS_PER_LONG) |
1427 | step = DIV_ROUND_UP(step >> shift, 8); |
1428 | else |
1429 | step = 0; |
1430 | |
1431 | if (dirty_ratelimit < balanced_dirty_ratelimit) |
1432 | dirty_ratelimit += step; |
1433 | else |
1434 | dirty_ratelimit -= step; |
1435 | |
1436 | WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); |
1437 | wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; |
1438 | |
1439 | trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); |
1440 | } |
1441 | |
1442 | static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, |
1443 | struct dirty_throttle_control *mdtc, |
1444 | bool update_ratelimit) |
1445 | { |
1446 | struct bdi_writeback *wb = gdtc->wb; |
1447 | unsigned long now = jiffies; |
1448 | unsigned long elapsed; |
1449 | unsigned long dirtied; |
1450 | unsigned long written; |
1451 | |
1452 | spin_lock(lock: &wb->list_lock); |
1453 | |
1454 | /* |
1455 | * Lockless checks for elapsed time are racy and delayed update after |
1456 | * IO completion doesn't do it at all (to make sure written pages are |
1457 | * accounted reasonably quickly). Make sure elapsed >= 1 to avoid |
1458 | * division errors. |
1459 | */ |
1460 | elapsed = max(now - wb->bw_time_stamp, 1UL); |
1461 | dirtied = percpu_counter_read(fbc: &wb->stat[WB_DIRTIED]); |
1462 | written = percpu_counter_read(fbc: &wb->stat[WB_WRITTEN]); |
1463 | |
1464 | if (update_ratelimit) { |
1465 | domain_update_dirty_limit(dtc: gdtc, now); |
1466 | wb_update_dirty_ratelimit(dtc: gdtc, dirtied, elapsed); |
1467 | |
1468 | /* |
1469 | * @mdtc is always NULL if !CGROUP_WRITEBACK but the |
1470 | * compiler has no way to figure that out. Help it. |
1471 | */ |
1472 | if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { |
1473 | domain_update_dirty_limit(dtc: mdtc, now); |
1474 | wb_update_dirty_ratelimit(dtc: mdtc, dirtied, elapsed); |
1475 | } |
1476 | } |
1477 | wb_update_write_bandwidth(wb, elapsed, written); |
1478 | |
1479 | wb->dirtied_stamp = dirtied; |
1480 | wb->written_stamp = written; |
1481 | WRITE_ONCE(wb->bw_time_stamp, now); |
1482 | spin_unlock(lock: &wb->list_lock); |
1483 | } |
1484 | |
1485 | void wb_update_bandwidth(struct bdi_writeback *wb) |
1486 | { |
1487 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; |
1488 | |
1489 | __wb_update_bandwidth(gdtc: &gdtc, NULL, update_ratelimit: false); |
1490 | } |
1491 | |
1492 | /* Interval after which we consider wb idle and don't estimate bandwidth */ |
1493 | #define WB_BANDWIDTH_IDLE_JIF (HZ) |
1494 | |
1495 | static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) |
1496 | { |
1497 | unsigned long now = jiffies; |
1498 | unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); |
1499 | |
1500 | if (elapsed > WB_BANDWIDTH_IDLE_JIF && |
1501 | !atomic_read(v: &wb->writeback_inodes)) { |
1502 | spin_lock(lock: &wb->list_lock); |
1503 | wb->dirtied_stamp = wb_stat(wb, item: WB_DIRTIED); |
1504 | wb->written_stamp = wb_stat(wb, item: WB_WRITTEN); |
1505 | WRITE_ONCE(wb->bw_time_stamp, now); |
1506 | spin_unlock(lock: &wb->list_lock); |
1507 | } |
1508 | } |
1509 | |
1510 | /* |
1511 | * After a task dirtied this many pages, balance_dirty_pages_ratelimited() |
1512 | * will look to see if it needs to start dirty throttling. |
1513 | * |
1514 | * If dirty_poll_interval is too low, big NUMA machines will call the expensive |
1515 | * global_zone_page_state() too often. So scale it near-sqrt to the safety margin |
1516 | * (the number of pages we may dirty without exceeding the dirty limits). |
1517 | */ |
1518 | static unsigned long dirty_poll_interval(unsigned long dirty, |
1519 | unsigned long thresh) |
1520 | { |
1521 | if (thresh > dirty) |
1522 | return 1UL << (ilog2(thresh - dirty) >> 1); |
1523 | |
1524 | return 1; |
1525 | } |
1526 | |
1527 | static unsigned long wb_max_pause(struct bdi_writeback *wb, |
1528 | unsigned long wb_dirty) |
1529 | { |
1530 | unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); |
1531 | unsigned long t; |
1532 | |
1533 | /* |
1534 | * Limit pause time for small memory systems. If sleeping for too long |
1535 | * time, a small pool of dirty/writeback pages may go empty and disk go |
1536 | * idle. |
1537 | * |
1538 | * 8 serves as the safety ratio. |
1539 | */ |
1540 | t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); |
1541 | t++; |
1542 | |
1543 | return min_t(unsigned long, t, MAX_PAUSE); |
1544 | } |
1545 | |
1546 | static long wb_min_pause(struct bdi_writeback *wb, |
1547 | long max_pause, |
1548 | unsigned long task_ratelimit, |
1549 | unsigned long dirty_ratelimit, |
1550 | int *nr_dirtied_pause) |
1551 | { |
1552 | long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); |
1553 | long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); |
1554 | long t; /* target pause */ |
1555 | long pause; /* estimated next pause */ |
1556 | int pages; /* target nr_dirtied_pause */ |
1557 | |
1558 | /* target for 10ms pause on 1-dd case */ |
1559 | t = max(1, HZ / 100); |
1560 | |
1561 | /* |
1562 | * Scale up pause time for concurrent dirtiers in order to reduce CPU |
1563 | * overheads. |
1564 | * |
1565 | * (N * 10ms) on 2^N concurrent tasks. |
1566 | */ |
1567 | if (hi > lo) |
1568 | t += (hi - lo) * (10 * HZ) / 1024; |
1569 | |
1570 | /* |
1571 | * This is a bit convoluted. We try to base the next nr_dirtied_pause |
1572 | * on the much more stable dirty_ratelimit. However the next pause time |
1573 | * will be computed based on task_ratelimit and the two rate limits may |
1574 | * depart considerably at some time. Especially if task_ratelimit goes |
1575 | * below dirty_ratelimit/2 and the target pause is max_pause, the next |
1576 | * pause time will be max_pause*2 _trimmed down_ to max_pause. As a |
1577 | * result task_ratelimit won't be executed faithfully, which could |
1578 | * eventually bring down dirty_ratelimit. |
1579 | * |
1580 | * We apply two rules to fix it up: |
1581 | * 1) try to estimate the next pause time and if necessary, use a lower |
1582 | * nr_dirtied_pause so as not to exceed max_pause. When this happens, |
1583 | * nr_dirtied_pause will be "dancing" with task_ratelimit. |
1584 | * 2) limit the target pause time to max_pause/2, so that the normal |
1585 | * small fluctuations of task_ratelimit won't trigger rule (1) and |
1586 | * nr_dirtied_pause will remain as stable as dirty_ratelimit. |
1587 | */ |
1588 | t = min(t, 1 + max_pause / 2); |
1589 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); |
1590 | |
1591 | /* |
1592 | * Tiny nr_dirtied_pause is found to hurt I/O performance in the test |
1593 | * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. |
1594 | * When the 16 consecutive reads are often interrupted by some dirty |
1595 | * throttling pause during the async writes, cfq will go into idles |
1596 | * (deadline is fine). So push nr_dirtied_pause as high as possible |
1597 | * until reaches DIRTY_POLL_THRESH=32 pages. |
1598 | */ |
1599 | if (pages < DIRTY_POLL_THRESH) { |
1600 | t = max_pause; |
1601 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); |
1602 | if (pages > DIRTY_POLL_THRESH) { |
1603 | pages = DIRTY_POLL_THRESH; |
1604 | t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; |
1605 | } |
1606 | } |
1607 | |
1608 | pause = HZ * pages / (task_ratelimit + 1); |
1609 | if (pause > max_pause) { |
1610 | t = max_pause; |
1611 | pages = task_ratelimit * t / roundup_pow_of_two(HZ); |
1612 | } |
1613 | |
1614 | *nr_dirtied_pause = pages; |
1615 | /* |
1616 | * The minimal pause time will normally be half the target pause time. |
1617 | */ |
1618 | return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; |
1619 | } |
1620 | |
1621 | static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) |
1622 | { |
1623 | struct bdi_writeback *wb = dtc->wb; |
1624 | unsigned long wb_reclaimable; |
1625 | |
1626 | /* |
1627 | * wb_thresh is not treated as some limiting factor as |
1628 | * dirty_thresh, due to reasons |
1629 | * - in JBOD setup, wb_thresh can fluctuate a lot |
1630 | * - in a system with HDD and USB key, the USB key may somehow |
1631 | * go into state (wb_dirty >> wb_thresh) either because |
1632 | * wb_dirty starts high, or because wb_thresh drops low. |
1633 | * In this case we don't want to hard throttle the USB key |
1634 | * dirtiers for 100 seconds until wb_dirty drops under |
1635 | * wb_thresh. Instead the auxiliary wb control line in |
1636 | * wb_position_ratio() will let the dirtier task progress |
1637 | * at some rate <= (write_bw / 2) for bringing down wb_dirty. |
1638 | */ |
1639 | dtc->wb_thresh = __wb_calc_thresh(dtc); |
1640 | dtc->wb_bg_thresh = dtc->thresh ? |
1641 | div64_u64(dividend: dtc->wb_thresh * dtc->bg_thresh, divisor: dtc->thresh) : 0; |
1642 | |
1643 | /* |
1644 | * In order to avoid the stacked BDI deadlock we need |
1645 | * to ensure we accurately count the 'dirty' pages when |
1646 | * the threshold is low. |
1647 | * |
1648 | * Otherwise it would be possible to get thresh+n pages |
1649 | * reported dirty, even though there are thresh-m pages |
1650 | * actually dirty; with m+n sitting in the percpu |
1651 | * deltas. |
1652 | */ |
1653 | if (dtc->wb_thresh < 2 * wb_stat_error()) { |
1654 | wb_reclaimable = wb_stat_sum(wb, item: WB_RECLAIMABLE); |
1655 | dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, item: WB_WRITEBACK); |
1656 | } else { |
1657 | wb_reclaimable = wb_stat(wb, item: WB_RECLAIMABLE); |
1658 | dtc->wb_dirty = wb_reclaimable + wb_stat(wb, item: WB_WRITEBACK); |
1659 | } |
1660 | } |
1661 | |
1662 | /* |
1663 | * balance_dirty_pages() must be called by processes which are generating dirty |
1664 | * data. It looks at the number of dirty pages in the machine and will force |
1665 | * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. |
1666 | * If we're over `background_thresh' then the writeback threads are woken to |
1667 | * perform some writeout. |
1668 | */ |
1669 | static int balance_dirty_pages(struct bdi_writeback *wb, |
1670 | unsigned long pages_dirtied, unsigned int flags) |
1671 | { |
1672 | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; |
1673 | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; |
1674 | struct dirty_throttle_control * const gdtc = &gdtc_stor; |
1675 | struct dirty_throttle_control * const mdtc = mdtc_valid(dtc: &mdtc_stor) ? |
1676 | &mdtc_stor : NULL; |
1677 | struct dirty_throttle_control *sdtc; |
1678 | unsigned long nr_reclaimable; /* = file_dirty */ |
1679 | long period; |
1680 | long pause; |
1681 | long max_pause; |
1682 | long min_pause; |
1683 | int nr_dirtied_pause; |
1684 | bool dirty_exceeded = false; |
1685 | unsigned long task_ratelimit; |
1686 | unsigned long dirty_ratelimit; |
1687 | struct backing_dev_info *bdi = wb->bdi; |
1688 | bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; |
1689 | unsigned long start_time = jiffies; |
1690 | int ret = 0; |
1691 | |
1692 | for (;;) { |
1693 | unsigned long now = jiffies; |
1694 | unsigned long dirty, thresh, bg_thresh; |
1695 | unsigned long m_dirty = 0; /* stop bogus uninit warnings */ |
1696 | unsigned long m_thresh = 0; |
1697 | unsigned long m_bg_thresh = 0; |
1698 | |
1699 | nr_reclaimable = global_node_page_state(item: NR_FILE_DIRTY); |
1700 | gdtc->avail = global_dirtyable_memory(); |
1701 | gdtc->dirty = nr_reclaimable + global_node_page_state(item: NR_WRITEBACK); |
1702 | |
1703 | domain_dirty_limits(dtc: gdtc); |
1704 | |
1705 | if (unlikely(strictlimit)) { |
1706 | wb_dirty_limits(dtc: gdtc); |
1707 | |
1708 | dirty = gdtc->wb_dirty; |
1709 | thresh = gdtc->wb_thresh; |
1710 | bg_thresh = gdtc->wb_bg_thresh; |
1711 | } else { |
1712 | dirty = gdtc->dirty; |
1713 | thresh = gdtc->thresh; |
1714 | bg_thresh = gdtc->bg_thresh; |
1715 | } |
1716 | |
1717 | if (mdtc) { |
1718 | unsigned long filepages, headroom, writeback; |
1719 | |
1720 | /* |
1721 | * If @wb belongs to !root memcg, repeat the same |
1722 | * basic calculations for the memcg domain. |
1723 | */ |
1724 | mem_cgroup_wb_stats(wb, pfilepages: &filepages, pheadroom: &headroom, |
1725 | pdirty: &mdtc->dirty, pwriteback: &writeback); |
1726 | mdtc->dirty += writeback; |
1727 | mdtc_calc_avail(mdtc, filepages, headroom); |
1728 | |
1729 | domain_dirty_limits(dtc: mdtc); |
1730 | |
1731 | if (unlikely(strictlimit)) { |
1732 | wb_dirty_limits(dtc: mdtc); |
1733 | m_dirty = mdtc->wb_dirty; |
1734 | m_thresh = mdtc->wb_thresh; |
1735 | m_bg_thresh = mdtc->wb_bg_thresh; |
1736 | } else { |
1737 | m_dirty = mdtc->dirty; |
1738 | m_thresh = mdtc->thresh; |
1739 | m_bg_thresh = mdtc->bg_thresh; |
1740 | } |
1741 | } |
1742 | |
1743 | /* |
1744 | * In laptop mode, we wait until hitting the higher threshold |
1745 | * before starting background writeout, and then write out all |
1746 | * the way down to the lower threshold. So slow writers cause |
1747 | * minimal disk activity. |
1748 | * |
1749 | * In normal mode, we start background writeout at the lower |
1750 | * background_thresh, to keep the amount of dirty memory low. |
1751 | */ |
1752 | if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh && |
1753 | !writeback_in_progress(wb)) |
1754 | wb_start_background_writeback(wb); |
1755 | |
1756 | /* |
1757 | * Throttle it only when the background writeback cannot |
1758 | * catch-up. This avoids (excessively) small writeouts |
1759 | * when the wb limits are ramping up in case of !strictlimit. |
1760 | * |
1761 | * In strictlimit case make decision based on the wb counters |
1762 | * and limits. Small writeouts when the wb limits are ramping |
1763 | * up are the price we consciously pay for strictlimit-ing. |
1764 | * |
1765 | * If memcg domain is in effect, @dirty should be under |
1766 | * both global and memcg freerun ceilings. |
1767 | */ |
1768 | if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && |
1769 | (!mdtc || |
1770 | m_dirty <= dirty_freerun_ceiling(thresh: m_thresh, bg_thresh: m_bg_thresh))) { |
1771 | unsigned long intv; |
1772 | unsigned long m_intv; |
1773 | |
1774 | free_running: |
1775 | intv = dirty_poll_interval(dirty, thresh); |
1776 | m_intv = ULONG_MAX; |
1777 | |
1778 | current->dirty_paused_when = now; |
1779 | current->nr_dirtied = 0; |
1780 | if (mdtc) |
1781 | m_intv = dirty_poll_interval(dirty: m_dirty, thresh: m_thresh); |
1782 | current->nr_dirtied_pause = min(intv, m_intv); |
1783 | break; |
1784 | } |
1785 | |
1786 | /* Start writeback even when in laptop mode */ |
1787 | if (unlikely(!writeback_in_progress(wb))) |
1788 | wb_start_background_writeback(wb); |
1789 | |
1790 | mem_cgroup_flush_foreign(wb); |
1791 | |
1792 | /* |
1793 | * Calculate global domain's pos_ratio and select the |
1794 | * global dtc by default. |
1795 | */ |
1796 | if (!strictlimit) { |
1797 | wb_dirty_limits(dtc: gdtc); |
1798 | |
1799 | if ((current->flags & PF_LOCAL_THROTTLE) && |
1800 | gdtc->wb_dirty < |
1801 | dirty_freerun_ceiling(thresh: gdtc->wb_thresh, |
1802 | bg_thresh: gdtc->wb_bg_thresh)) |
1803 | /* |
1804 | * LOCAL_THROTTLE tasks must not be throttled |
1805 | * when below the per-wb freerun ceiling. |
1806 | */ |
1807 | goto free_running; |
1808 | } |
1809 | |
1810 | dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && |
1811 | ((gdtc->dirty > gdtc->thresh) || strictlimit); |
1812 | |
1813 | wb_position_ratio(dtc: gdtc); |
1814 | sdtc = gdtc; |
1815 | |
1816 | if (mdtc) { |
1817 | /* |
1818 | * If memcg domain is in effect, calculate its |
1819 | * pos_ratio. @wb should satisfy constraints from |
1820 | * both global and memcg domains. Choose the one |
1821 | * w/ lower pos_ratio. |
1822 | */ |
1823 | if (!strictlimit) { |
1824 | wb_dirty_limits(dtc: mdtc); |
1825 | |
1826 | if ((current->flags & PF_LOCAL_THROTTLE) && |
1827 | mdtc->wb_dirty < |
1828 | dirty_freerun_ceiling(thresh: mdtc->wb_thresh, |
1829 | bg_thresh: mdtc->wb_bg_thresh)) |
1830 | /* |
1831 | * LOCAL_THROTTLE tasks must not be |
1832 | * throttled when below the per-wb |
1833 | * freerun ceiling. |
1834 | */ |
1835 | goto free_running; |
1836 | } |
1837 | dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && |
1838 | ((mdtc->dirty > mdtc->thresh) || strictlimit); |
1839 | |
1840 | wb_position_ratio(dtc: mdtc); |
1841 | if (mdtc->pos_ratio < gdtc->pos_ratio) |
1842 | sdtc = mdtc; |
1843 | } |
1844 | |
1845 | if (dirty_exceeded != wb->dirty_exceeded) |
1846 | wb->dirty_exceeded = dirty_exceeded; |
1847 | |
1848 | if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + |
1849 | BANDWIDTH_INTERVAL)) |
1850 | __wb_update_bandwidth(gdtc, mdtc, update_ratelimit: true); |
1851 | |
1852 | /* throttle according to the chosen dtc */ |
1853 | dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); |
1854 | task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> |
1855 | RATELIMIT_CALC_SHIFT; |
1856 | max_pause = wb_max_pause(wb, wb_dirty: sdtc->wb_dirty); |
1857 | min_pause = wb_min_pause(wb, max_pause, |
1858 | task_ratelimit, dirty_ratelimit, |
1859 | nr_dirtied_pause: &nr_dirtied_pause); |
1860 | |
1861 | if (unlikely(task_ratelimit == 0)) { |
1862 | period = max_pause; |
1863 | pause = max_pause; |
1864 | goto pause; |
1865 | } |
1866 | period = HZ * pages_dirtied / task_ratelimit; |
1867 | pause = period; |
1868 | if (current->dirty_paused_when) |
1869 | pause -= now - current->dirty_paused_when; |
1870 | /* |
1871 | * For less than 1s think time (ext3/4 may block the dirtier |
1872 | * for up to 800ms from time to time on 1-HDD; so does xfs, |
1873 | * however at much less frequency), try to compensate it in |
1874 | * future periods by updating the virtual time; otherwise just |
1875 | * do a reset, as it may be a light dirtier. |
1876 | */ |
1877 | if (pause < min_pause) { |
1878 | trace_balance_dirty_pages(wb, |
1879 | thresh: sdtc->thresh, |
1880 | bg_thresh: sdtc->bg_thresh, |
1881 | dirty: sdtc->dirty, |
1882 | bdi_thresh: sdtc->wb_thresh, |
1883 | bdi_dirty: sdtc->wb_dirty, |
1884 | dirty_ratelimit, |
1885 | task_ratelimit, |
1886 | dirtied: pages_dirtied, |
1887 | period, |
1888 | min(pause, 0L), |
1889 | start_time); |
1890 | if (pause < -HZ) { |
1891 | current->dirty_paused_when = now; |
1892 | current->nr_dirtied = 0; |
1893 | } else if (period) { |
1894 | current->dirty_paused_when += period; |
1895 | current->nr_dirtied = 0; |
1896 | } else if (current->nr_dirtied_pause <= pages_dirtied) |
1897 | current->nr_dirtied_pause += pages_dirtied; |
1898 | break; |
1899 | } |
1900 | if (unlikely(pause > max_pause)) { |
1901 | /* for occasional dropped task_ratelimit */ |
1902 | now += min(pause - max_pause, max_pause); |
1903 | pause = max_pause; |
1904 | } |
1905 | |
1906 | pause: |
1907 | trace_balance_dirty_pages(wb, |
1908 | thresh: sdtc->thresh, |
1909 | bg_thresh: sdtc->bg_thresh, |
1910 | dirty: sdtc->dirty, |
1911 | bdi_thresh: sdtc->wb_thresh, |
1912 | bdi_dirty: sdtc->wb_dirty, |
1913 | dirty_ratelimit, |
1914 | task_ratelimit, |
1915 | dirtied: pages_dirtied, |
1916 | period, |
1917 | pause, |
1918 | start_time); |
1919 | if (flags & BDP_ASYNC) { |
1920 | ret = -EAGAIN; |
1921 | break; |
1922 | } |
1923 | __set_current_state(TASK_KILLABLE); |
1924 | bdi->last_bdp_sleep = jiffies; |
1925 | io_schedule_timeout(timeout: pause); |
1926 | |
1927 | current->dirty_paused_when = now + pause; |
1928 | current->nr_dirtied = 0; |
1929 | current->nr_dirtied_pause = nr_dirtied_pause; |
1930 | |
1931 | /* |
1932 | * This is typically equal to (dirty < thresh) and can also |
1933 | * keep "1000+ dd on a slow USB stick" under control. |
1934 | */ |
1935 | if (task_ratelimit) |
1936 | break; |
1937 | |
1938 | /* |
1939 | * In the case of an unresponsive NFS server and the NFS dirty |
1940 | * pages exceeds dirty_thresh, give the other good wb's a pipe |
1941 | * to go through, so that tasks on them still remain responsive. |
1942 | * |
1943 | * In theory 1 page is enough to keep the consumer-producer |
1944 | * pipe going: the flusher cleans 1 page => the task dirties 1 |
1945 | * more page. However wb_dirty has accounting errors. So use |
1946 | * the larger and more IO friendly wb_stat_error. |
1947 | */ |
1948 | if (sdtc->wb_dirty <= wb_stat_error()) |
1949 | break; |
1950 | |
1951 | if (fatal_signal_pending(current)) |
1952 | break; |
1953 | } |
1954 | return ret; |
1955 | } |
1956 | |
1957 | static DEFINE_PER_CPU(int, bdp_ratelimits); |
1958 | |
1959 | /* |
1960 | * Normal tasks are throttled by |
1961 | * loop { |
1962 | * dirty tsk->nr_dirtied_pause pages; |
1963 | * take a snap in balance_dirty_pages(); |
1964 | * } |
1965 | * However there is a worst case. If every task exit immediately when dirtied |
1966 | * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be |
1967 | * called to throttle the page dirties. The solution is to save the not yet |
1968 | * throttled page dirties in dirty_throttle_leaks on task exit and charge them |
1969 | * randomly into the running tasks. This works well for the above worst case, |
1970 | * as the new task will pick up and accumulate the old task's leaked dirty |
1971 | * count and eventually get throttled. |
1972 | */ |
1973 | DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; |
1974 | |
1975 | /** |
1976 | * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. |
1977 | * @mapping: address_space which was dirtied. |
1978 | * @flags: BDP flags. |
1979 | * |
1980 | * Processes which are dirtying memory should call in here once for each page |
1981 | * which was newly dirtied. The function will periodically check the system's |
1982 | * dirty state and will initiate writeback if needed. |
1983 | * |
1984 | * See balance_dirty_pages_ratelimited() for details. |
1985 | * |
1986 | * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to |
1987 | * indicate that memory is out of balance and the caller must wait |
1988 | * for I/O to complete. Otherwise, it will return 0 to indicate |
1989 | * that either memory was already in balance, or it was able to sleep |
1990 | * until the amount of dirty memory returned to balance. |
1991 | */ |
1992 | int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, |
1993 | unsigned int flags) |
1994 | { |
1995 | struct inode *inode = mapping->host; |
1996 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
1997 | struct bdi_writeback *wb = NULL; |
1998 | int ratelimit; |
1999 | int ret = 0; |
2000 | int *p; |
2001 | |
2002 | if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) |
2003 | return ret; |
2004 | |
2005 | if (inode_cgwb_enabled(inode)) |
2006 | wb = wb_get_create_current(bdi, GFP_KERNEL); |
2007 | if (!wb) |
2008 | wb = &bdi->wb; |
2009 | |
2010 | ratelimit = current->nr_dirtied_pause; |
2011 | if (wb->dirty_exceeded) |
2012 | ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); |
2013 | |
2014 | preempt_disable(); |
2015 | /* |
2016 | * This prevents one CPU to accumulate too many dirtied pages without |
2017 | * calling into balance_dirty_pages(), which can happen when there are |
2018 | * 1000+ tasks, all of them start dirtying pages at exactly the same |
2019 | * time, hence all honoured too large initial task->nr_dirtied_pause. |
2020 | */ |
2021 | p = this_cpu_ptr(&bdp_ratelimits); |
2022 | if (unlikely(current->nr_dirtied >= ratelimit)) |
2023 | *p = 0; |
2024 | else if (unlikely(*p >= ratelimit_pages)) { |
2025 | *p = 0; |
2026 | ratelimit = 0; |
2027 | } |
2028 | /* |
2029 | * Pick up the dirtied pages by the exited tasks. This avoids lots of |
2030 | * short-lived tasks (eg. gcc invocations in a kernel build) escaping |
2031 | * the dirty throttling and livelock other long-run dirtiers. |
2032 | */ |
2033 | p = this_cpu_ptr(&dirty_throttle_leaks); |
2034 | if (*p > 0 && current->nr_dirtied < ratelimit) { |
2035 | unsigned long nr_pages_dirtied; |
2036 | nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); |
2037 | *p -= nr_pages_dirtied; |
2038 | current->nr_dirtied += nr_pages_dirtied; |
2039 | } |
2040 | preempt_enable(); |
2041 | |
2042 | if (unlikely(current->nr_dirtied >= ratelimit)) |
2043 | ret = balance_dirty_pages(wb, current->nr_dirtied, flags); |
2044 | |
2045 | wb_put(wb); |
2046 | return ret; |
2047 | } |
2048 | EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); |
2049 | |
2050 | /** |
2051 | * balance_dirty_pages_ratelimited - balance dirty memory state. |
2052 | * @mapping: address_space which was dirtied. |
2053 | * |
2054 | * Processes which are dirtying memory should call in here once for each page |
2055 | * which was newly dirtied. The function will periodically check the system's |
2056 | * dirty state and will initiate writeback if needed. |
2057 | * |
2058 | * Once we're over the dirty memory limit we decrease the ratelimiting |
2059 | * by a lot, to prevent individual processes from overshooting the limit |
2060 | * by (ratelimit_pages) each. |
2061 | */ |
2062 | void balance_dirty_pages_ratelimited(struct address_space *mapping) |
2063 | { |
2064 | balance_dirty_pages_ratelimited_flags(mapping, 0); |
2065 | } |
2066 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited); |
2067 | |
2068 | /** |
2069 | * wb_over_bg_thresh - does @wb need to be written back? |
2070 | * @wb: bdi_writeback of interest |
2071 | * |
2072 | * Determines whether background writeback should keep writing @wb or it's |
2073 | * clean enough. |
2074 | * |
2075 | * Return: %true if writeback should continue. |
2076 | */ |
2077 | bool wb_over_bg_thresh(struct bdi_writeback *wb) |
2078 | { |
2079 | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; |
2080 | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; |
2081 | struct dirty_throttle_control * const gdtc = &gdtc_stor; |
2082 | struct dirty_throttle_control * const mdtc = mdtc_valid(dtc: &mdtc_stor) ? |
2083 | &mdtc_stor : NULL; |
2084 | unsigned long reclaimable; |
2085 | unsigned long thresh; |
2086 | |
2087 | /* |
2088 | * Similar to balance_dirty_pages() but ignores pages being written |
2089 | * as we're trying to decide whether to put more under writeback. |
2090 | */ |
2091 | gdtc->avail = global_dirtyable_memory(); |
2092 | gdtc->dirty = global_node_page_state(item: NR_FILE_DIRTY); |
2093 | domain_dirty_limits(dtc: gdtc); |
2094 | |
2095 | if (gdtc->dirty > gdtc->bg_thresh) |
2096 | return true; |
2097 | |
2098 | thresh = wb_calc_thresh(wb: gdtc->wb, thresh: gdtc->bg_thresh); |
2099 | if (thresh < 2 * wb_stat_error()) |
2100 | reclaimable = wb_stat_sum(wb, item: WB_RECLAIMABLE); |
2101 | else |
2102 | reclaimable = wb_stat(wb, item: WB_RECLAIMABLE); |
2103 | |
2104 | if (reclaimable > thresh) |
2105 | return true; |
2106 | |
2107 | if (mdtc) { |
2108 | unsigned long filepages, headroom, writeback; |
2109 | |
2110 | mem_cgroup_wb_stats(wb, pfilepages: &filepages, pheadroom: &headroom, pdirty: &mdtc->dirty, |
2111 | pwriteback: &writeback); |
2112 | mdtc_calc_avail(mdtc, filepages, headroom); |
2113 | domain_dirty_limits(dtc: mdtc); /* ditto, ignore writeback */ |
2114 | |
2115 | if (mdtc->dirty > mdtc->bg_thresh) |
2116 | return true; |
2117 | |
2118 | thresh = wb_calc_thresh(wb: mdtc->wb, thresh: mdtc->bg_thresh); |
2119 | if (thresh < 2 * wb_stat_error()) |
2120 | reclaimable = wb_stat_sum(wb, item: WB_RECLAIMABLE); |
2121 | else |
2122 | reclaimable = wb_stat(wb, item: WB_RECLAIMABLE); |
2123 | |
2124 | if (reclaimable > thresh) |
2125 | return true; |
2126 | } |
2127 | |
2128 | return false; |
2129 | } |
2130 | |
2131 | #ifdef CONFIG_SYSCTL |
2132 | /* |
2133 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs |
2134 | */ |
2135 | static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, |
2136 | void *buffer, size_t *length, loff_t *ppos) |
2137 | { |
2138 | unsigned int old_interval = dirty_writeback_interval; |
2139 | int ret; |
2140 | |
2141 | ret = proc_dointvec(table, write, buffer, length, ppos); |
2142 | |
2143 | /* |
2144 | * Writing 0 to dirty_writeback_interval will disable periodic writeback |
2145 | * and a different non-zero value will wakeup the writeback threads. |
2146 | * wb_wakeup_delayed() would be more appropriate, but it's a pain to |
2147 | * iterate over all bdis and wbs. |
2148 | * The reason we do this is to make the change take effect immediately. |
2149 | */ |
2150 | if (!ret && write && dirty_writeback_interval && |
2151 | dirty_writeback_interval != old_interval) |
2152 | wakeup_flusher_threads(reason: WB_REASON_PERIODIC); |
2153 | |
2154 | return ret; |
2155 | } |
2156 | #endif |
2157 | |
2158 | void laptop_mode_timer_fn(struct timer_list *t) |
2159 | { |
2160 | struct backing_dev_info *backing_dev_info = |
2161 | from_timer(backing_dev_info, t, laptop_mode_wb_timer); |
2162 | |
2163 | wakeup_flusher_threads_bdi(bdi: backing_dev_info, reason: WB_REASON_LAPTOP_TIMER); |
2164 | } |
2165 | |
2166 | /* |
2167 | * We've spun up the disk and we're in laptop mode: schedule writeback |
2168 | * of all dirty data a few seconds from now. If the flush is already scheduled |
2169 | * then push it back - the user is still using the disk. |
2170 | */ |
2171 | void laptop_io_completion(struct backing_dev_info *info) |
2172 | { |
2173 | mod_timer(timer: &info->laptop_mode_wb_timer, expires: jiffies + laptop_mode); |
2174 | } |
2175 | |
2176 | /* |
2177 | * We're in laptop mode and we've just synced. The sync's writes will have |
2178 | * caused another writeback to be scheduled by laptop_io_completion. |
2179 | * Nothing needs to be written back anymore, so we unschedule the writeback. |
2180 | */ |
2181 | void laptop_sync_completion(void) |
2182 | { |
2183 | struct backing_dev_info *bdi; |
2184 | |
2185 | rcu_read_lock(); |
2186 | |
2187 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) |
2188 | del_timer(timer: &bdi->laptop_mode_wb_timer); |
2189 | |
2190 | rcu_read_unlock(); |
2191 | } |
2192 | |
2193 | /* |
2194 | * If ratelimit_pages is too high then we can get into dirty-data overload |
2195 | * if a large number of processes all perform writes at the same time. |
2196 | * |
2197 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are |
2198 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory |
2199 | * thresholds. |
2200 | */ |
2201 | |
2202 | void writeback_set_ratelimit(void) |
2203 | { |
2204 | struct wb_domain *dom = &global_wb_domain; |
2205 | unsigned long background_thresh; |
2206 | unsigned long dirty_thresh; |
2207 | |
2208 | global_dirty_limits(pbackground: &background_thresh, pdirty: &dirty_thresh); |
2209 | dom->dirty_limit = dirty_thresh; |
2210 | ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); |
2211 | if (ratelimit_pages < 16) |
2212 | ratelimit_pages = 16; |
2213 | } |
2214 | |
2215 | static int page_writeback_cpu_online(unsigned int cpu) |
2216 | { |
2217 | writeback_set_ratelimit(); |
2218 | return 0; |
2219 | } |
2220 | |
2221 | #ifdef CONFIG_SYSCTL |
2222 | |
2223 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
2224 | static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
2225 | |
2226 | static struct ctl_table vm_page_writeback_sysctls[] = { |
2227 | { |
2228 | .procname = "dirty_background_ratio" , |
2229 | .data = &dirty_background_ratio, |
2230 | .maxlen = sizeof(dirty_background_ratio), |
2231 | .mode = 0644, |
2232 | .proc_handler = dirty_background_ratio_handler, |
2233 | .extra1 = SYSCTL_ZERO, |
2234 | .extra2 = SYSCTL_ONE_HUNDRED, |
2235 | }, |
2236 | { |
2237 | .procname = "dirty_background_bytes" , |
2238 | .data = &dirty_background_bytes, |
2239 | .maxlen = sizeof(dirty_background_bytes), |
2240 | .mode = 0644, |
2241 | .proc_handler = dirty_background_bytes_handler, |
2242 | .extra1 = SYSCTL_LONG_ONE, |
2243 | }, |
2244 | { |
2245 | .procname = "dirty_ratio" , |
2246 | .data = &vm_dirty_ratio, |
2247 | .maxlen = sizeof(vm_dirty_ratio), |
2248 | .mode = 0644, |
2249 | .proc_handler = dirty_ratio_handler, |
2250 | .extra1 = SYSCTL_ZERO, |
2251 | .extra2 = SYSCTL_ONE_HUNDRED, |
2252 | }, |
2253 | { |
2254 | .procname = "dirty_bytes" , |
2255 | .data = &vm_dirty_bytes, |
2256 | .maxlen = sizeof(vm_dirty_bytes), |
2257 | .mode = 0644, |
2258 | .proc_handler = dirty_bytes_handler, |
2259 | .extra1 = (void *)&dirty_bytes_min, |
2260 | }, |
2261 | { |
2262 | .procname = "dirty_writeback_centisecs" , |
2263 | .data = &dirty_writeback_interval, |
2264 | .maxlen = sizeof(dirty_writeback_interval), |
2265 | .mode = 0644, |
2266 | .proc_handler = dirty_writeback_centisecs_handler, |
2267 | }, |
2268 | { |
2269 | .procname = "dirty_expire_centisecs" , |
2270 | .data = &dirty_expire_interval, |
2271 | .maxlen = sizeof(dirty_expire_interval), |
2272 | .mode = 0644, |
2273 | .proc_handler = proc_dointvec_minmax, |
2274 | .extra1 = SYSCTL_ZERO, |
2275 | }, |
2276 | #ifdef CONFIG_HIGHMEM |
2277 | { |
2278 | .procname = "highmem_is_dirtyable" , |
2279 | .data = &vm_highmem_is_dirtyable, |
2280 | .maxlen = sizeof(vm_highmem_is_dirtyable), |
2281 | .mode = 0644, |
2282 | .proc_handler = proc_dointvec_minmax, |
2283 | .extra1 = SYSCTL_ZERO, |
2284 | .extra2 = SYSCTL_ONE, |
2285 | }, |
2286 | #endif |
2287 | { |
2288 | .procname = "laptop_mode" , |
2289 | .data = &laptop_mode, |
2290 | .maxlen = sizeof(laptop_mode), |
2291 | .mode = 0644, |
2292 | .proc_handler = proc_dointvec_jiffies, |
2293 | }, |
2294 | {} |
2295 | }; |
2296 | #endif |
2297 | |
2298 | /* |
2299 | * Called early on to tune the page writeback dirty limits. |
2300 | * |
2301 | * We used to scale dirty pages according to how total memory |
2302 | * related to pages that could be allocated for buffers. |
2303 | * |
2304 | * However, that was when we used "dirty_ratio" to scale with |
2305 | * all memory, and we don't do that any more. "dirty_ratio" |
2306 | * is now applied to total non-HIGHPAGE memory, and as such we can't |
2307 | * get into the old insane situation any more where we had |
2308 | * large amounts of dirty pages compared to a small amount of |
2309 | * non-HIGHMEM memory. |
2310 | * |
2311 | * But we might still want to scale the dirty_ratio by how |
2312 | * much memory the box has.. |
2313 | */ |
2314 | void __init page_writeback_init(void) |
2315 | { |
2316 | BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); |
2317 | |
2318 | cpuhp_setup_state(state: CPUHP_AP_ONLINE_DYN, name: "mm/writeback:online" , |
2319 | startup: page_writeback_cpu_online, NULL); |
2320 | cpuhp_setup_state(state: CPUHP_MM_WRITEBACK_DEAD, name: "mm/writeback:dead" , NULL, |
2321 | teardown: page_writeback_cpu_online); |
2322 | #ifdef CONFIG_SYSCTL |
2323 | register_sysctl_init("vm" , vm_page_writeback_sysctls); |
2324 | #endif |
2325 | } |
2326 | |
2327 | /** |
2328 | * tag_pages_for_writeback - tag pages to be written by writeback |
2329 | * @mapping: address space structure to write |
2330 | * @start: starting page index |
2331 | * @end: ending page index (inclusive) |
2332 | * |
2333 | * This function scans the page range from @start to @end (inclusive) and tags |
2334 | * all pages that have DIRTY tag set with a special TOWRITE tag. The caller |
2335 | * can then use the TOWRITE tag to identify pages eligible for writeback. |
2336 | * This mechanism is used to avoid livelocking of writeback by a process |
2337 | * steadily creating new dirty pages in the file (thus it is important for this |
2338 | * function to be quick so that it can tag pages faster than a dirtying process |
2339 | * can create them). |
2340 | */ |
2341 | void tag_pages_for_writeback(struct address_space *mapping, |
2342 | pgoff_t start, pgoff_t end) |
2343 | { |
2344 | XA_STATE(xas, &mapping->i_pages, start); |
2345 | unsigned int tagged = 0; |
2346 | void *page; |
2347 | |
2348 | xas_lock_irq(&xas); |
2349 | xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { |
2350 | xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); |
2351 | if (++tagged % XA_CHECK_SCHED) |
2352 | continue; |
2353 | |
2354 | xas_pause(&xas); |
2355 | xas_unlock_irq(&xas); |
2356 | cond_resched(); |
2357 | xas_lock_irq(&xas); |
2358 | } |
2359 | xas_unlock_irq(&xas); |
2360 | } |
2361 | EXPORT_SYMBOL(tag_pages_for_writeback); |
2362 | |
2363 | static bool folio_prepare_writeback(struct address_space *mapping, |
2364 | struct writeback_control *wbc, struct folio *folio) |
2365 | { |
2366 | /* |
2367 | * Folio truncated or invalidated. We can freely skip it then, |
2368 | * even for data integrity operations: the folio has disappeared |
2369 | * concurrently, so there could be no real expectation of this |
2370 | * data integrity operation even if there is now a new, dirty |
2371 | * folio at the same pagecache index. |
2372 | */ |
2373 | if (unlikely(folio->mapping != mapping)) |
2374 | return false; |
2375 | |
2376 | /* |
2377 | * Did somebody else write it for us? |
2378 | */ |
2379 | if (!folio_test_dirty(folio)) |
2380 | return false; |
2381 | |
2382 | if (folio_test_writeback(folio)) { |
2383 | if (wbc->sync_mode == WB_SYNC_NONE) |
2384 | return false; |
2385 | folio_wait_writeback(folio); |
2386 | } |
2387 | BUG_ON(folio_test_writeback(folio)); |
2388 | |
2389 | if (!folio_clear_dirty_for_io(folio)) |
2390 | return false; |
2391 | |
2392 | return true; |
2393 | } |
2394 | |
2395 | static xa_mark_t wbc_to_tag(struct writeback_control *wbc) |
2396 | { |
2397 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
2398 | return PAGECACHE_TAG_TOWRITE; |
2399 | return PAGECACHE_TAG_DIRTY; |
2400 | } |
2401 | |
2402 | static pgoff_t wbc_end(struct writeback_control *wbc) |
2403 | { |
2404 | if (wbc->range_cyclic) |
2405 | return -1; |
2406 | return wbc->range_end >> PAGE_SHIFT; |
2407 | } |
2408 | |
2409 | static struct folio *writeback_get_folio(struct address_space *mapping, |
2410 | struct writeback_control *wbc) |
2411 | { |
2412 | struct folio *folio; |
2413 | |
2414 | retry: |
2415 | folio = folio_batch_next(fbatch: &wbc->fbatch); |
2416 | if (!folio) { |
2417 | folio_batch_release(fbatch: &wbc->fbatch); |
2418 | cond_resched(); |
2419 | filemap_get_folios_tag(mapping, start: &wbc->index, end: wbc_end(wbc), |
2420 | tag: wbc_to_tag(wbc), fbatch: &wbc->fbatch); |
2421 | folio = folio_batch_next(fbatch: &wbc->fbatch); |
2422 | if (!folio) |
2423 | return NULL; |
2424 | } |
2425 | |
2426 | folio_lock(folio); |
2427 | if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { |
2428 | folio_unlock(folio); |
2429 | goto retry; |
2430 | } |
2431 | |
2432 | trace_wbc_writepage(wbc, bdi: inode_to_bdi(inode: mapping->host)); |
2433 | return folio; |
2434 | } |
2435 | |
2436 | /** |
2437 | * writeback_iter - iterate folio of a mapping for writeback |
2438 | * @mapping: address space structure to write |
2439 | * @wbc: writeback context |
2440 | * @folio: previously iterated folio (%NULL to start) |
2441 | * @error: in-out pointer for writeback errors (see below) |
2442 | * |
2443 | * This function returns the next folio for the writeback operation described by |
2444 | * @wbc on @mapping and should be called in a while loop in the ->writepages |
2445 | * implementation. |
2446 | * |
2447 | * To start the writeback operation, %NULL is passed in the @folio argument, and |
2448 | * for every subsequent iteration the folio returned previously should be passed |
2449 | * back in. |
2450 | * |
2451 | * If there was an error in the per-folio writeback inside the writeback_iter() |
2452 | * loop, @error should be set to the error value. |
2453 | * |
2454 | * Once the writeback described in @wbc has finished, this function will return |
2455 | * %NULL and if there was an error in any iteration restore it to @error. |
2456 | * |
2457 | * Note: callers should not manually break out of the loop using break or goto |
2458 | * but must keep calling writeback_iter() until it returns %NULL. |
2459 | * |
2460 | * Return: the folio to write or %NULL if the loop is done. |
2461 | */ |
2462 | struct folio *writeback_iter(struct address_space *mapping, |
2463 | struct writeback_control *wbc, struct folio *folio, int *error) |
2464 | { |
2465 | if (!folio) { |
2466 | folio_batch_init(fbatch: &wbc->fbatch); |
2467 | wbc->saved_err = *error = 0; |
2468 | |
2469 | /* |
2470 | * For range cyclic writeback we remember where we stopped so |
2471 | * that we can continue where we stopped. |
2472 | * |
2473 | * For non-cyclic writeback we always start at the beginning of |
2474 | * the passed in range. |
2475 | */ |
2476 | if (wbc->range_cyclic) |
2477 | wbc->index = mapping->writeback_index; |
2478 | else |
2479 | wbc->index = wbc->range_start >> PAGE_SHIFT; |
2480 | |
2481 | /* |
2482 | * To avoid livelocks when other processes dirty new pages, we |
2483 | * first tag pages which should be written back and only then |
2484 | * start writing them. |
2485 | * |
2486 | * For data-integrity writeback we have to be careful so that we |
2487 | * do not miss some pages (e.g., because some other process has |
2488 | * cleared the TOWRITE tag we set). The rule we follow is that |
2489 | * TOWRITE tag can be cleared only by the process clearing the |
2490 | * DIRTY tag (and submitting the page for I/O). |
2491 | */ |
2492 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
2493 | tag_pages_for_writeback(mapping, wbc->index, |
2494 | wbc_end(wbc)); |
2495 | } else { |
2496 | wbc->nr_to_write -= folio_nr_pages(folio); |
2497 | |
2498 | WARN_ON_ONCE(*error > 0); |
2499 | |
2500 | /* |
2501 | * For integrity writeback we have to keep going until we have |
2502 | * written all the folios we tagged for writeback above, even if |
2503 | * we run past wbc->nr_to_write or encounter errors. |
2504 | * We stash away the first error we encounter in wbc->saved_err |
2505 | * so that it can be retrieved when we're done. This is because |
2506 | * the file system may still have state to clear for each folio. |
2507 | * |
2508 | * For background writeback we exit as soon as we run past |
2509 | * wbc->nr_to_write or encounter the first error. |
2510 | */ |
2511 | if (wbc->sync_mode == WB_SYNC_ALL) { |
2512 | if (*error && !wbc->saved_err) |
2513 | wbc->saved_err = *error; |
2514 | } else { |
2515 | if (*error || wbc->nr_to_write <= 0) |
2516 | goto done; |
2517 | } |
2518 | } |
2519 | |
2520 | folio = writeback_get_folio(mapping, wbc); |
2521 | if (!folio) { |
2522 | /* |
2523 | * To avoid deadlocks between range_cyclic writeback and callers |
2524 | * that hold pages in PageWriteback to aggregate I/O until |
2525 | * the writeback iteration finishes, we do not loop back to the |
2526 | * start of the file. Doing so causes a page lock/page |
2527 | * writeback access order inversion - we should only ever lock |
2528 | * multiple pages in ascending page->index order, and looping |
2529 | * back to the start of the file violates that rule and causes |
2530 | * deadlocks. |
2531 | */ |
2532 | if (wbc->range_cyclic) |
2533 | mapping->writeback_index = 0; |
2534 | |
2535 | /* |
2536 | * Return the first error we encountered (if there was any) to |
2537 | * the caller. |
2538 | */ |
2539 | *error = wbc->saved_err; |
2540 | } |
2541 | return folio; |
2542 | |
2543 | done: |
2544 | if (wbc->range_cyclic) |
2545 | mapping->writeback_index = folio->index + folio_nr_pages(folio); |
2546 | folio_batch_release(fbatch: &wbc->fbatch); |
2547 | return NULL; |
2548 | } |
2549 | |
2550 | /** |
2551 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. |
2552 | * @mapping: address space structure to write |
2553 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write |
2554 | * @writepage: function called for each page |
2555 | * @data: data passed to writepage function |
2556 | * |
2557 | * Return: %0 on success, negative error code otherwise |
2558 | * |
2559 | * Note: please use writeback_iter() instead. |
2560 | */ |
2561 | int write_cache_pages(struct address_space *mapping, |
2562 | struct writeback_control *wbc, writepage_t writepage, |
2563 | void *data) |
2564 | { |
2565 | struct folio *folio = NULL; |
2566 | int error; |
2567 | |
2568 | while ((folio = writeback_iter(mapping, wbc, folio, error: &error))) { |
2569 | error = writepage(folio, wbc, data); |
2570 | if (error == AOP_WRITEPAGE_ACTIVATE) { |
2571 | folio_unlock(folio); |
2572 | error = 0; |
2573 | } |
2574 | } |
2575 | |
2576 | return error; |
2577 | } |
2578 | EXPORT_SYMBOL(write_cache_pages); |
2579 | |
2580 | static int writeback_use_writepage(struct address_space *mapping, |
2581 | struct writeback_control *wbc) |
2582 | { |
2583 | struct folio *folio = NULL; |
2584 | struct blk_plug plug; |
2585 | int err; |
2586 | |
2587 | blk_start_plug(&plug); |
2588 | while ((folio = writeback_iter(mapping, wbc, folio, error: &err))) { |
2589 | err = mapping->a_ops->writepage(&folio->page, wbc); |
2590 | if (err == AOP_WRITEPAGE_ACTIVATE) { |
2591 | folio_unlock(folio); |
2592 | err = 0; |
2593 | } |
2594 | mapping_set_error(mapping, error: err); |
2595 | } |
2596 | blk_finish_plug(&plug); |
2597 | |
2598 | return err; |
2599 | } |
2600 | |
2601 | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) |
2602 | { |
2603 | int ret; |
2604 | struct bdi_writeback *wb; |
2605 | |
2606 | if (wbc->nr_to_write <= 0) |
2607 | return 0; |
2608 | wb = inode_to_wb_wbc(inode: mapping->host, wbc); |
2609 | wb_bandwidth_estimate_start(wb); |
2610 | while (1) { |
2611 | if (mapping->a_ops->writepages) { |
2612 | ret = mapping->a_ops->writepages(mapping, wbc); |
2613 | } else if (mapping->a_ops->writepage) { |
2614 | ret = writeback_use_writepage(mapping, wbc); |
2615 | } else { |
2616 | /* deal with chardevs and other special files */ |
2617 | ret = 0; |
2618 | } |
2619 | if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) |
2620 | break; |
2621 | |
2622 | /* |
2623 | * Lacking an allocation context or the locality or writeback |
2624 | * state of any of the inode's pages, throttle based on |
2625 | * writeback activity on the local node. It's as good a |
2626 | * guess as any. |
2627 | */ |
2628 | reclaim_throttle(NODE_DATA(numa_node_id()), |
2629 | reason: VMSCAN_THROTTLE_WRITEBACK); |
2630 | } |
2631 | /* |
2632 | * Usually few pages are written by now from those we've just submitted |
2633 | * but if there's constant writeback being submitted, this makes sure |
2634 | * writeback bandwidth is updated once in a while. |
2635 | */ |
2636 | if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + |
2637 | BANDWIDTH_INTERVAL)) |
2638 | wb_update_bandwidth(wb); |
2639 | return ret; |
2640 | } |
2641 | |
2642 | /* |
2643 | * For address_spaces which do not use buffers nor write back. |
2644 | */ |
2645 | bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) |
2646 | { |
2647 | if (!folio_test_dirty(folio)) |
2648 | return !folio_test_set_dirty(folio); |
2649 | return false; |
2650 | } |
2651 | EXPORT_SYMBOL(noop_dirty_folio); |
2652 | |
2653 | /* |
2654 | * Helper function for set_page_dirty family. |
2655 | * |
2656 | * Caller must hold folio_memcg_lock(). |
2657 | * |
2658 | * NOTE: This relies on being atomic wrt interrupts. |
2659 | */ |
2660 | static void folio_account_dirtied(struct folio *folio, |
2661 | struct address_space *mapping) |
2662 | { |
2663 | struct inode *inode = mapping->host; |
2664 | |
2665 | trace_writeback_dirty_folio(folio, mapping); |
2666 | |
2667 | if (mapping_can_writeback(mapping)) { |
2668 | struct bdi_writeback *wb; |
2669 | long nr = folio_nr_pages(folio); |
2670 | |
2671 | inode_attach_wb(inode, folio); |
2672 | wb = inode_to_wb(inode); |
2673 | |
2674 | __lruvec_stat_mod_folio(folio, idx: NR_FILE_DIRTY, val: nr); |
2675 | __zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr); |
2676 | __node_stat_mod_folio(folio, item: NR_DIRTIED, nr); |
2677 | wb_stat_mod(wb, item: WB_RECLAIMABLE, amount: nr); |
2678 | wb_stat_mod(wb, item: WB_DIRTIED, amount: nr); |
2679 | task_io_account_write(bytes: nr * PAGE_SIZE); |
2680 | current->nr_dirtied += nr; |
2681 | __this_cpu_add(bdp_ratelimits, nr); |
2682 | |
2683 | mem_cgroup_track_foreign_dirty(folio, wb); |
2684 | } |
2685 | } |
2686 | |
2687 | /* |
2688 | * Helper function for deaccounting dirty page without writeback. |
2689 | * |
2690 | * Caller must hold folio_memcg_lock(). |
2691 | */ |
2692 | void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) |
2693 | { |
2694 | long nr = folio_nr_pages(folio); |
2695 | |
2696 | lruvec_stat_mod_folio(folio, idx: NR_FILE_DIRTY, val: -nr); |
2697 | zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr: -nr); |
2698 | wb_stat_mod(wb, item: WB_RECLAIMABLE, amount: -nr); |
2699 | task_io_account_cancelled_write(bytes: nr * PAGE_SIZE); |
2700 | } |
2701 | |
2702 | /* |
2703 | * Mark the folio dirty, and set it dirty in the page cache, and mark |
2704 | * the inode dirty. |
2705 | * |
2706 | * If warn is true, then emit a warning if the folio is not uptodate and has |
2707 | * not been truncated. |
2708 | * |
2709 | * The caller must hold folio_memcg_lock(). Most callers have the folio |
2710 | * locked. A few have the folio blocked from truncation through other |
2711 | * means (eg zap_vma_pages() has it mapped and is holding the page table |
2712 | * lock). This can also be called from mark_buffer_dirty(), which I |
2713 | * cannot prove is always protected against truncate. |
2714 | */ |
2715 | void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, |
2716 | int warn) |
2717 | { |
2718 | unsigned long flags; |
2719 | |
2720 | xa_lock_irqsave(&mapping->i_pages, flags); |
2721 | if (folio->mapping) { /* Race with truncate? */ |
2722 | WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); |
2723 | folio_account_dirtied(folio, mapping); |
2724 | __xa_set_mark(&mapping->i_pages, index: folio_index(folio), |
2725 | PAGECACHE_TAG_DIRTY); |
2726 | } |
2727 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
2728 | } |
2729 | |
2730 | /** |
2731 | * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. |
2732 | * @mapping: Address space this folio belongs to. |
2733 | * @folio: Folio to be marked as dirty. |
2734 | * |
2735 | * Filesystems which do not use buffer heads should call this function |
2736 | * from their dirty_folio address space operation. It ignores the |
2737 | * contents of folio_get_private(), so if the filesystem marks individual |
2738 | * blocks as dirty, the filesystem should handle that itself. |
2739 | * |
2740 | * This is also sometimes used by filesystems which use buffer_heads when |
2741 | * a single buffer is being dirtied: we want to set the folio dirty in |
2742 | * that case, but not all the buffers. This is a "bottom-up" dirtying, |
2743 | * whereas block_dirty_folio() is a "top-down" dirtying. |
2744 | * |
2745 | * The caller must ensure this doesn't race with truncation. Most will |
2746 | * simply hold the folio lock, but e.g. zap_pte_range() calls with the |
2747 | * folio mapped and the pte lock held, which also locks out truncation. |
2748 | */ |
2749 | bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) |
2750 | { |
2751 | folio_memcg_lock(folio); |
2752 | if (folio_test_set_dirty(folio)) { |
2753 | folio_memcg_unlock(folio); |
2754 | return false; |
2755 | } |
2756 | |
2757 | __folio_mark_dirty(folio, mapping, warn: !folio_test_private(folio)); |
2758 | folio_memcg_unlock(folio); |
2759 | |
2760 | if (mapping->host) { |
2761 | /* !PageAnon && !swapper_space */ |
2762 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
2763 | } |
2764 | return true; |
2765 | } |
2766 | EXPORT_SYMBOL(filemap_dirty_folio); |
2767 | |
2768 | /** |
2769 | * folio_redirty_for_writepage - Decline to write a dirty folio. |
2770 | * @wbc: The writeback control. |
2771 | * @folio: The folio. |
2772 | * |
2773 | * When a writepage implementation decides that it doesn't want to write |
2774 | * @folio for some reason, it should call this function, unlock @folio and |
2775 | * return 0. |
2776 | * |
2777 | * Return: True if we redirtied the folio. False if someone else dirtied |
2778 | * it first. |
2779 | */ |
2780 | bool folio_redirty_for_writepage(struct writeback_control *wbc, |
2781 | struct folio *folio) |
2782 | { |
2783 | struct address_space *mapping = folio->mapping; |
2784 | long nr = folio_nr_pages(folio); |
2785 | bool ret; |
2786 | |
2787 | wbc->pages_skipped += nr; |
2788 | ret = filemap_dirty_folio(mapping, folio); |
2789 | if (mapping && mapping_can_writeback(mapping)) { |
2790 | struct inode *inode = mapping->host; |
2791 | struct bdi_writeback *wb; |
2792 | struct wb_lock_cookie cookie = {}; |
2793 | |
2794 | wb = unlocked_inode_to_wb_begin(inode, cookie: &cookie); |
2795 | current->nr_dirtied -= nr; |
2796 | node_stat_mod_folio(folio, item: NR_DIRTIED, nr: -nr); |
2797 | wb_stat_mod(wb, item: WB_DIRTIED, amount: -nr); |
2798 | unlocked_inode_to_wb_end(inode, cookie: &cookie); |
2799 | } |
2800 | return ret; |
2801 | } |
2802 | EXPORT_SYMBOL(folio_redirty_for_writepage); |
2803 | |
2804 | /** |
2805 | * folio_mark_dirty - Mark a folio as being modified. |
2806 | * @folio: The folio. |
2807 | * |
2808 | * The folio may not be truncated while this function is running. |
2809 | * Holding the folio lock is sufficient to prevent truncation, but some |
2810 | * callers cannot acquire a sleeping lock. These callers instead hold |
2811 | * the page table lock for a page table which contains at least one page |
2812 | * in this folio. Truncation will block on the page table lock as it |
2813 | * unmaps pages before removing the folio from its mapping. |
2814 | * |
2815 | * Return: True if the folio was newly dirtied, false if it was already dirty. |
2816 | */ |
2817 | bool folio_mark_dirty(struct folio *folio) |
2818 | { |
2819 | struct address_space *mapping = folio_mapping(folio); |
2820 | |
2821 | if (likely(mapping)) { |
2822 | /* |
2823 | * readahead/folio_deactivate could remain |
2824 | * PG_readahead/PG_reclaim due to race with folio_end_writeback |
2825 | * About readahead, if the folio is written, the flags would be |
2826 | * reset. So no problem. |
2827 | * About folio_deactivate, if the folio is redirtied, |
2828 | * the flag will be reset. So no problem. but if the |
2829 | * folio is used by readahead it will confuse readahead |
2830 | * and make it restart the size rampup process. But it's |
2831 | * a trivial problem. |
2832 | */ |
2833 | if (folio_test_reclaim(folio)) |
2834 | folio_clear_reclaim(folio); |
2835 | return mapping->a_ops->dirty_folio(mapping, folio); |
2836 | } |
2837 | |
2838 | return noop_dirty_folio(mapping, folio); |
2839 | } |
2840 | EXPORT_SYMBOL(folio_mark_dirty); |
2841 | |
2842 | /* |
2843 | * set_page_dirty() is racy if the caller has no reference against |
2844 | * page->mapping->host, and if the page is unlocked. This is because another |
2845 | * CPU could truncate the page off the mapping and then free the mapping. |
2846 | * |
2847 | * Usually, the page _is_ locked, or the caller is a user-space process which |
2848 | * holds a reference on the inode by having an open file. |
2849 | * |
2850 | * In other cases, the page should be locked before running set_page_dirty(). |
2851 | */ |
2852 | int set_page_dirty_lock(struct page *page) |
2853 | { |
2854 | int ret; |
2855 | |
2856 | lock_page(page); |
2857 | ret = set_page_dirty(page); |
2858 | unlock_page(page); |
2859 | return ret; |
2860 | } |
2861 | EXPORT_SYMBOL(set_page_dirty_lock); |
2862 | |
2863 | /* |
2864 | * This cancels just the dirty bit on the kernel page itself, it does NOT |
2865 | * actually remove dirty bits on any mmap's that may be around. It also |
2866 | * leaves the page tagged dirty, so any sync activity will still find it on |
2867 | * the dirty lists, and in particular, clear_page_dirty_for_io() will still |
2868 | * look at the dirty bits in the VM. |
2869 | * |
2870 | * Doing this should *normally* only ever be done when a page is truncated, |
2871 | * and is not actually mapped anywhere at all. However, fs/buffer.c does |
2872 | * this when it notices that somebody has cleaned out all the buffers on a |
2873 | * page without actually doing it through the VM. Can you say "ext3 is |
2874 | * horribly ugly"? Thought you could. |
2875 | */ |
2876 | void __folio_cancel_dirty(struct folio *folio) |
2877 | { |
2878 | struct address_space *mapping = folio_mapping(folio); |
2879 | |
2880 | if (mapping_can_writeback(mapping)) { |
2881 | struct inode *inode = mapping->host; |
2882 | struct bdi_writeback *wb; |
2883 | struct wb_lock_cookie cookie = {}; |
2884 | |
2885 | folio_memcg_lock(folio); |
2886 | wb = unlocked_inode_to_wb_begin(inode, cookie: &cookie); |
2887 | |
2888 | if (folio_test_clear_dirty(folio)) |
2889 | folio_account_cleaned(folio, wb); |
2890 | |
2891 | unlocked_inode_to_wb_end(inode, cookie: &cookie); |
2892 | folio_memcg_unlock(folio); |
2893 | } else { |
2894 | folio_clear_dirty(folio); |
2895 | } |
2896 | } |
2897 | EXPORT_SYMBOL(__folio_cancel_dirty); |
2898 | |
2899 | /* |
2900 | * Clear a folio's dirty flag, while caring for dirty memory accounting. |
2901 | * Returns true if the folio was previously dirty. |
2902 | * |
2903 | * This is for preparing to put the folio under writeout. We leave |
2904 | * the folio tagged as dirty in the xarray so that a concurrent |
2905 | * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. |
2906 | * The ->writepage implementation will run either folio_start_writeback() |
2907 | * or folio_mark_dirty(), at which stage we bring the folio's dirty flag |
2908 | * and xarray dirty tag back into sync. |
2909 | * |
2910 | * This incoherency between the folio's dirty flag and xarray tag is |
2911 | * unfortunate, but it only exists while the folio is locked. |
2912 | */ |
2913 | bool folio_clear_dirty_for_io(struct folio *folio) |
2914 | { |
2915 | struct address_space *mapping = folio_mapping(folio); |
2916 | bool ret = false; |
2917 | |
2918 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
2919 | |
2920 | if (mapping && mapping_can_writeback(mapping)) { |
2921 | struct inode *inode = mapping->host; |
2922 | struct bdi_writeback *wb; |
2923 | struct wb_lock_cookie cookie = {}; |
2924 | |
2925 | /* |
2926 | * Yes, Virginia, this is indeed insane. |
2927 | * |
2928 | * We use this sequence to make sure that |
2929 | * (a) we account for dirty stats properly |
2930 | * (b) we tell the low-level filesystem to |
2931 | * mark the whole folio dirty if it was |
2932 | * dirty in a pagetable. Only to then |
2933 | * (c) clean the folio again and return 1 to |
2934 | * cause the writeback. |
2935 | * |
2936 | * This way we avoid all nasty races with the |
2937 | * dirty bit in multiple places and clearing |
2938 | * them concurrently from different threads. |
2939 | * |
2940 | * Note! Normally the "folio_mark_dirty(folio)" |
2941 | * has no effect on the actual dirty bit - since |
2942 | * that will already usually be set. But we |
2943 | * need the side effects, and it can help us |
2944 | * avoid races. |
2945 | * |
2946 | * We basically use the folio "master dirty bit" |
2947 | * as a serialization point for all the different |
2948 | * threads doing their things. |
2949 | */ |
2950 | if (folio_mkclean(folio)) |
2951 | folio_mark_dirty(folio); |
2952 | /* |
2953 | * We carefully synchronise fault handlers against |
2954 | * installing a dirty pte and marking the folio dirty |
2955 | * at this point. We do this by having them hold the |
2956 | * page lock while dirtying the folio, and folios are |
2957 | * always locked coming in here, so we get the desired |
2958 | * exclusion. |
2959 | */ |
2960 | wb = unlocked_inode_to_wb_begin(inode, cookie: &cookie); |
2961 | if (folio_test_clear_dirty(folio)) { |
2962 | long nr = folio_nr_pages(folio); |
2963 | lruvec_stat_mod_folio(folio, idx: NR_FILE_DIRTY, val: -nr); |
2964 | zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr: -nr); |
2965 | wb_stat_mod(wb, item: WB_RECLAIMABLE, amount: -nr); |
2966 | ret = true; |
2967 | } |
2968 | unlocked_inode_to_wb_end(inode, cookie: &cookie); |
2969 | return ret; |
2970 | } |
2971 | return folio_test_clear_dirty(folio); |
2972 | } |
2973 | EXPORT_SYMBOL(folio_clear_dirty_for_io); |
2974 | |
2975 | static void wb_inode_writeback_start(struct bdi_writeback *wb) |
2976 | { |
2977 | atomic_inc(v: &wb->writeback_inodes); |
2978 | } |
2979 | |
2980 | static void wb_inode_writeback_end(struct bdi_writeback *wb) |
2981 | { |
2982 | unsigned long flags; |
2983 | atomic_dec(v: &wb->writeback_inodes); |
2984 | /* |
2985 | * Make sure estimate of writeback throughput gets updated after |
2986 | * writeback completed. We delay the update by BANDWIDTH_INTERVAL |
2987 | * (which is the interval other bandwidth updates use for batching) so |
2988 | * that if multiple inodes end writeback at a similar time, they get |
2989 | * batched into one bandwidth update. |
2990 | */ |
2991 | spin_lock_irqsave(&wb->work_lock, flags); |
2992 | if (test_bit(WB_registered, &wb->state)) |
2993 | queue_delayed_work(wq: bdi_wq, dwork: &wb->bw_dwork, BANDWIDTH_INTERVAL); |
2994 | spin_unlock_irqrestore(lock: &wb->work_lock, flags); |
2995 | } |
2996 | |
2997 | bool __folio_end_writeback(struct folio *folio) |
2998 | { |
2999 | long nr = folio_nr_pages(folio); |
3000 | struct address_space *mapping = folio_mapping(folio); |
3001 | bool ret; |
3002 | |
3003 | folio_memcg_lock(folio); |
3004 | if (mapping && mapping_use_writeback_tags(mapping)) { |
3005 | struct inode *inode = mapping->host; |
3006 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
3007 | unsigned long flags; |
3008 | |
3009 | xa_lock_irqsave(&mapping->i_pages, flags); |
3010 | ret = folio_xor_flags_has_waiters(folio, mask: 1 << PG_writeback); |
3011 | __xa_clear_mark(&mapping->i_pages, index: folio_index(folio), |
3012 | PAGECACHE_TAG_WRITEBACK); |
3013 | if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { |
3014 | struct bdi_writeback *wb = inode_to_wb(inode); |
3015 | |
3016 | wb_stat_mod(wb, item: WB_WRITEBACK, amount: -nr); |
3017 | __wb_writeout_add(wb, nr); |
3018 | if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) |
3019 | wb_inode_writeback_end(wb); |
3020 | } |
3021 | |
3022 | if (mapping->host && !mapping_tagged(mapping, |
3023 | PAGECACHE_TAG_WRITEBACK)) |
3024 | sb_clear_inode_writeback(inode: mapping->host); |
3025 | |
3026 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
3027 | } else { |
3028 | ret = folio_xor_flags_has_waiters(folio, mask: 1 << PG_writeback); |
3029 | } |
3030 | |
3031 | lruvec_stat_mod_folio(folio, idx: NR_WRITEBACK, val: -nr); |
3032 | zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr: -nr); |
3033 | node_stat_mod_folio(folio, item: NR_WRITTEN, nr); |
3034 | folio_memcg_unlock(folio); |
3035 | |
3036 | return ret; |
3037 | } |
3038 | |
3039 | void __folio_start_writeback(struct folio *folio, bool keep_write) |
3040 | { |
3041 | long nr = folio_nr_pages(folio); |
3042 | struct address_space *mapping = folio_mapping(folio); |
3043 | int access_ret; |
3044 | |
3045 | VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); |
3046 | |
3047 | folio_memcg_lock(folio); |
3048 | if (mapping && mapping_use_writeback_tags(mapping)) { |
3049 | XA_STATE(xas, &mapping->i_pages, folio_index(folio)); |
3050 | struct inode *inode = mapping->host; |
3051 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
3052 | unsigned long flags; |
3053 | bool on_wblist; |
3054 | |
3055 | xas_lock_irqsave(&xas, flags); |
3056 | xas_load(&xas); |
3057 | folio_test_set_writeback(folio); |
3058 | |
3059 | on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); |
3060 | |
3061 | xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); |
3062 | if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { |
3063 | struct bdi_writeback *wb = inode_to_wb(inode); |
3064 | |
3065 | wb_stat_mod(wb, item: WB_WRITEBACK, amount: nr); |
3066 | if (!on_wblist) |
3067 | wb_inode_writeback_start(wb); |
3068 | } |
3069 | |
3070 | /* |
3071 | * We can come through here when swapping anonymous |
3072 | * folios, so we don't necessarily have an inode to |
3073 | * track for sync. |
3074 | */ |
3075 | if (mapping->host && !on_wblist) |
3076 | sb_mark_inode_writeback(inode: mapping->host); |
3077 | if (!folio_test_dirty(folio)) |
3078 | xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); |
3079 | if (!keep_write) |
3080 | xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); |
3081 | xas_unlock_irqrestore(&xas, flags); |
3082 | } else { |
3083 | folio_test_set_writeback(folio); |
3084 | } |
3085 | |
3086 | lruvec_stat_mod_folio(folio, idx: NR_WRITEBACK, val: nr); |
3087 | zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr); |
3088 | folio_memcg_unlock(folio); |
3089 | |
3090 | access_ret = arch_make_folio_accessible(folio); |
3091 | /* |
3092 | * If writeback has been triggered on a page that cannot be made |
3093 | * accessible, it is too late to recover here. |
3094 | */ |
3095 | VM_BUG_ON_FOLIO(access_ret != 0, folio); |
3096 | } |
3097 | EXPORT_SYMBOL(__folio_start_writeback); |
3098 | |
3099 | /** |
3100 | * folio_wait_writeback - Wait for a folio to finish writeback. |
3101 | * @folio: The folio to wait for. |
3102 | * |
3103 | * If the folio is currently being written back to storage, wait for the |
3104 | * I/O to complete. |
3105 | * |
3106 | * Context: Sleeps. Must be called in process context and with |
3107 | * no spinlocks held. Caller should hold a reference on the folio. |
3108 | * If the folio is not locked, writeback may start again after writeback |
3109 | * has finished. |
3110 | */ |
3111 | void folio_wait_writeback(struct folio *folio) |
3112 | { |
3113 | while (folio_test_writeback(folio)) { |
3114 | trace_folio_wait_writeback(folio, mapping: folio_mapping(folio)); |
3115 | folio_wait_bit(folio, bit_nr: PG_writeback); |
3116 | } |
3117 | } |
3118 | EXPORT_SYMBOL_GPL(folio_wait_writeback); |
3119 | |
3120 | /** |
3121 | * folio_wait_writeback_killable - Wait for a folio to finish writeback. |
3122 | * @folio: The folio to wait for. |
3123 | * |
3124 | * If the folio is currently being written back to storage, wait for the |
3125 | * I/O to complete or a fatal signal to arrive. |
3126 | * |
3127 | * Context: Sleeps. Must be called in process context and with |
3128 | * no spinlocks held. Caller should hold a reference on the folio. |
3129 | * If the folio is not locked, writeback may start again after writeback |
3130 | * has finished. |
3131 | * Return: 0 on success, -EINTR if we get a fatal signal while waiting. |
3132 | */ |
3133 | int folio_wait_writeback_killable(struct folio *folio) |
3134 | { |
3135 | while (folio_test_writeback(folio)) { |
3136 | trace_folio_wait_writeback(folio, mapping: folio_mapping(folio)); |
3137 | if (folio_wait_bit_killable(folio, bit_nr: PG_writeback)) |
3138 | return -EINTR; |
3139 | } |
3140 | |
3141 | return 0; |
3142 | } |
3143 | EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); |
3144 | |
3145 | /** |
3146 | * folio_wait_stable() - wait for writeback to finish, if necessary. |
3147 | * @folio: The folio to wait on. |
3148 | * |
3149 | * This function determines if the given folio is related to a backing |
3150 | * device that requires folio contents to be held stable during writeback. |
3151 | * If so, then it will wait for any pending writeback to complete. |
3152 | * |
3153 | * Context: Sleeps. Must be called in process context and with |
3154 | * no spinlocks held. Caller should hold a reference on the folio. |
3155 | * If the folio is not locked, writeback may start again after writeback |
3156 | * has finished. |
3157 | */ |
3158 | void folio_wait_stable(struct folio *folio) |
3159 | { |
3160 | if (mapping_stable_writes(mapping: folio_mapping(folio))) |
3161 | folio_wait_writeback(folio); |
3162 | } |
3163 | EXPORT_SYMBOL_GPL(folio_wait_stable); |
3164 | |