1 | // SPDX-License-Identifier: GPL-2.0-only |
2 | /* |
3 | * mm/page-writeback.c |
4 | * |
5 | * Copyright (C) 2002, Linus Torvalds. |
6 | * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra |
7 | * |
8 | * Contains functions related to writing back dirty pages at the |
9 | * address_space level. |
10 | * |
11 | * 10Apr2002 Andrew Morton |
12 | * Initial version |
13 | */ |
14 | |
15 | #include <linux/kernel.h> |
16 | #include <linux/math64.h> |
17 | #include <linux/export.h> |
18 | #include <linux/spinlock.h> |
19 | #include <linux/fs.h> |
20 | #include <linux/mm.h> |
21 | #include <linux/swap.h> |
22 | #include <linux/slab.h> |
23 | #include <linux/pagemap.h> |
24 | #include <linux/writeback.h> |
25 | #include <linux/init.h> |
26 | #include <linux/backing-dev.h> |
27 | #include <linux/task_io_accounting_ops.h> |
28 | #include <linux/blkdev.h> |
29 | #include <linux/mpage.h> |
30 | #include <linux/rmap.h> |
31 | #include <linux/percpu.h> |
32 | #include <linux/smp.h> |
33 | #include <linux/sysctl.h> |
34 | #include <linux/cpu.h> |
35 | #include <linux/syscalls.h> |
36 | #include <linux/pagevec.h> |
37 | #include <linux/timer.h> |
38 | #include <linux/sched/rt.h> |
39 | #include <linux/sched/signal.h> |
40 | #include <linux/mm_inline.h> |
41 | #include <trace/events/writeback.h> |
42 | |
43 | #include "internal.h" |
44 | #include "swap.h" |
45 | |
46 | /* |
47 | * Sleep at most 200ms at a time in balance_dirty_pages(). |
48 | */ |
49 | #define MAX_PAUSE max(HZ/5, 1) |
50 | |
51 | /* |
52 | * Try to keep balance_dirty_pages() call intervals higher than this many pages |
53 | * by raising pause time to max_pause when falls below it. |
54 | */ |
55 | #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) |
56 | |
57 | /* |
58 | * Estimate write bandwidth or update dirty limit at 200ms intervals. |
59 | */ |
60 | #define BANDWIDTH_INTERVAL max(HZ/5, 1) |
61 | |
62 | #define RATELIMIT_CALC_SHIFT 10 |
63 | |
64 | /* |
65 | * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited |
66 | * will look to see if it needs to force writeback or throttling. |
67 | */ |
68 | static long ratelimit_pages = 32; |
69 | |
70 | /* The following parameters are exported via /proc/sys/vm */ |
71 | |
72 | /* |
73 | * Start background writeback (via writeback threads) at this percentage |
74 | */ |
75 | static int dirty_background_ratio = 10; |
76 | |
77 | /* |
78 | * dirty_background_bytes starts at 0 (disabled) so that it is a function of |
79 | * dirty_background_ratio * the amount of dirtyable memory |
80 | */ |
81 | static unsigned long dirty_background_bytes; |
82 | |
83 | /* |
84 | * free highmem will not be subtracted from the total free memory |
85 | * for calculating free ratios if vm_highmem_is_dirtyable is true |
86 | */ |
87 | static int vm_highmem_is_dirtyable; |
88 | |
89 | /* |
90 | * The generator of dirty data starts writeback at this percentage |
91 | */ |
92 | static int vm_dirty_ratio = 20; |
93 | |
94 | /* |
95 | * vm_dirty_bytes starts at 0 (disabled) so that it is a function of |
96 | * vm_dirty_ratio * the amount of dirtyable memory |
97 | */ |
98 | static unsigned long vm_dirty_bytes; |
99 | |
100 | /* |
101 | * The interval between `kupdate'-style writebacks |
102 | */ |
103 | unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ |
104 | |
105 | EXPORT_SYMBOL_GPL(dirty_writeback_interval); |
106 | |
107 | /* |
108 | * The longest time for which data is allowed to remain dirty |
109 | */ |
110 | unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ |
111 | |
112 | /* |
113 | * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: |
114 | * a full sync is triggered after this time elapses without any disk activity. |
115 | */ |
116 | int laptop_mode; |
117 | |
118 | EXPORT_SYMBOL(laptop_mode); |
119 | |
120 | /* End of sysctl-exported parameters */ |
121 | |
122 | struct wb_domain global_wb_domain; |
123 | |
124 | /* |
125 | * Length of period for aging writeout fractions of bdis. This is an |
126 | * arbitrarily chosen number. The longer the period, the slower fractions will |
127 | * reflect changes in current writeout rate. |
128 | */ |
129 | #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) |
130 | |
131 | #ifdef CONFIG_CGROUP_WRITEBACK |
132 | |
133 | #define GDTC_INIT(__wb) .wb = (__wb), \ |
134 | .dom = &global_wb_domain, \ |
135 | .wb_completions = &(__wb)->completions |
136 | |
137 | #define GDTC_INIT_NO_WB .dom = &global_wb_domain |
138 | |
139 | #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ |
140 | .dom = mem_cgroup_wb_domain(__wb), \ |
141 | .wb_completions = &(__wb)->memcg_completions, \ |
142 | .gdtc = __gdtc |
143 | |
144 | static bool mdtc_valid(struct dirty_throttle_control *dtc) |
145 | { |
146 | return dtc->dom; |
147 | } |
148 | |
149 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) |
150 | { |
151 | return dtc->dom; |
152 | } |
153 | |
154 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) |
155 | { |
156 | return mdtc->gdtc; |
157 | } |
158 | |
159 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) |
160 | { |
161 | return &wb->memcg_completions; |
162 | } |
163 | |
164 | static void wb_min_max_ratio(struct bdi_writeback *wb, |
165 | unsigned long *minp, unsigned long *maxp) |
166 | { |
167 | unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); |
168 | unsigned long tot_bw = atomic_long_read(v: &wb->bdi->tot_write_bandwidth); |
169 | unsigned long long min = wb->bdi->min_ratio; |
170 | unsigned long long max = wb->bdi->max_ratio; |
171 | |
172 | /* |
173 | * @wb may already be clean by the time control reaches here and |
174 | * the total may not include its bw. |
175 | */ |
176 | if (this_bw < tot_bw) { |
177 | if (min) { |
178 | min *= this_bw; |
179 | min = div64_ul(min, tot_bw); |
180 | } |
181 | if (max < 100 * BDI_RATIO_SCALE) { |
182 | max *= this_bw; |
183 | max = div64_ul(max, tot_bw); |
184 | } |
185 | } |
186 | |
187 | *minp = min; |
188 | *maxp = max; |
189 | } |
190 | |
191 | #else /* CONFIG_CGROUP_WRITEBACK */ |
192 | |
193 | #define GDTC_INIT(__wb) .wb = (__wb), \ |
194 | .wb_completions = &(__wb)->completions |
195 | #define GDTC_INIT_NO_WB |
196 | #define MDTC_INIT(__wb, __gdtc) |
197 | |
198 | static bool mdtc_valid(struct dirty_throttle_control *dtc) |
199 | { |
200 | return false; |
201 | } |
202 | |
203 | static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) |
204 | { |
205 | return &global_wb_domain; |
206 | } |
207 | |
208 | static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) |
209 | { |
210 | return NULL; |
211 | } |
212 | |
213 | static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) |
214 | { |
215 | return NULL; |
216 | } |
217 | |
218 | static void wb_min_max_ratio(struct bdi_writeback *wb, |
219 | unsigned long *minp, unsigned long *maxp) |
220 | { |
221 | *minp = wb->bdi->min_ratio; |
222 | *maxp = wb->bdi->max_ratio; |
223 | } |
224 | |
225 | #endif /* CONFIG_CGROUP_WRITEBACK */ |
226 | |
227 | /* |
228 | * In a memory zone, there is a certain amount of pages we consider |
229 | * available for the page cache, which is essentially the number of |
230 | * free and reclaimable pages, minus some zone reserves to protect |
231 | * lowmem and the ability to uphold the zone's watermarks without |
232 | * requiring writeback. |
233 | * |
234 | * This number of dirtyable pages is the base value of which the |
235 | * user-configurable dirty ratio is the effective number of pages that |
236 | * are allowed to be actually dirtied. Per individual zone, or |
237 | * globally by using the sum of dirtyable pages over all zones. |
238 | * |
239 | * Because the user is allowed to specify the dirty limit globally as |
240 | * absolute number of bytes, calculating the per-zone dirty limit can |
241 | * require translating the configured limit into a percentage of |
242 | * global dirtyable memory first. |
243 | */ |
244 | |
245 | /** |
246 | * node_dirtyable_memory - number of dirtyable pages in a node |
247 | * @pgdat: the node |
248 | * |
249 | * Return: the node's number of pages potentially available for dirty |
250 | * page cache. This is the base value for the per-node dirty limits. |
251 | */ |
252 | static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) |
253 | { |
254 | unsigned long nr_pages = 0; |
255 | int z; |
256 | |
257 | for (z = 0; z < MAX_NR_ZONES; z++) { |
258 | struct zone *zone = pgdat->node_zones + z; |
259 | |
260 | if (!populated_zone(zone)) |
261 | continue; |
262 | |
263 | nr_pages += zone_page_state(zone, item: NR_FREE_PAGES); |
264 | } |
265 | |
266 | /* |
267 | * Pages reserved for the kernel should not be considered |
268 | * dirtyable, to prevent a situation where reclaim has to |
269 | * clean pages in order to balance the zones. |
270 | */ |
271 | nr_pages -= min(nr_pages, pgdat->totalreserve_pages); |
272 | |
273 | nr_pages += node_page_state(pgdat, item: NR_INACTIVE_FILE); |
274 | nr_pages += node_page_state(pgdat, item: NR_ACTIVE_FILE); |
275 | |
276 | return nr_pages; |
277 | } |
278 | |
279 | static unsigned long highmem_dirtyable_memory(unsigned long total) |
280 | { |
281 | #ifdef CONFIG_HIGHMEM |
282 | int node; |
283 | unsigned long x = 0; |
284 | int i; |
285 | |
286 | for_each_node_state(node, N_HIGH_MEMORY) { |
287 | for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { |
288 | struct zone *z; |
289 | unsigned long nr_pages; |
290 | |
291 | if (!is_highmem_idx(i)) |
292 | continue; |
293 | |
294 | z = &NODE_DATA(node)->node_zones[i]; |
295 | if (!populated_zone(z)) |
296 | continue; |
297 | |
298 | nr_pages = zone_page_state(z, NR_FREE_PAGES); |
299 | /* watch for underflows */ |
300 | nr_pages -= min(nr_pages, high_wmark_pages(z)); |
301 | nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); |
302 | nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); |
303 | x += nr_pages; |
304 | } |
305 | } |
306 | |
307 | /* |
308 | * Make sure that the number of highmem pages is never larger |
309 | * than the number of the total dirtyable memory. This can only |
310 | * occur in very strange VM situations but we want to make sure |
311 | * that this does not occur. |
312 | */ |
313 | return min(x, total); |
314 | #else |
315 | return 0; |
316 | #endif |
317 | } |
318 | |
319 | /** |
320 | * global_dirtyable_memory - number of globally dirtyable pages |
321 | * |
322 | * Return: the global number of pages potentially available for dirty |
323 | * page cache. This is the base value for the global dirty limits. |
324 | */ |
325 | static unsigned long global_dirtyable_memory(void) |
326 | { |
327 | unsigned long x; |
328 | |
329 | x = global_zone_page_state(item: NR_FREE_PAGES); |
330 | /* |
331 | * Pages reserved for the kernel should not be considered |
332 | * dirtyable, to prevent a situation where reclaim has to |
333 | * clean pages in order to balance the zones. |
334 | */ |
335 | x -= min(x, totalreserve_pages); |
336 | |
337 | x += global_node_page_state(item: NR_INACTIVE_FILE); |
338 | x += global_node_page_state(item: NR_ACTIVE_FILE); |
339 | |
340 | if (!vm_highmem_is_dirtyable) |
341 | x -= highmem_dirtyable_memory(total: x); |
342 | |
343 | return x + 1; /* Ensure that we never return 0 */ |
344 | } |
345 | |
346 | /** |
347 | * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain |
348 | * @dtc: dirty_throttle_control of interest |
349 | * |
350 | * Calculate @dtc->thresh and ->bg_thresh considering |
351 | * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller |
352 | * must ensure that @dtc->avail is set before calling this function. The |
353 | * dirty limits will be lifted by 1/4 for real-time tasks. |
354 | */ |
355 | static void domain_dirty_limits(struct dirty_throttle_control *dtc) |
356 | { |
357 | const unsigned long available_memory = dtc->avail; |
358 | struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc: dtc); |
359 | unsigned long bytes = vm_dirty_bytes; |
360 | unsigned long bg_bytes = dirty_background_bytes; |
361 | /* convert ratios to per-PAGE_SIZE for higher precision */ |
362 | unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; |
363 | unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; |
364 | unsigned long thresh; |
365 | unsigned long bg_thresh; |
366 | struct task_struct *tsk; |
367 | |
368 | /* gdtc is !NULL iff @dtc is for memcg domain */ |
369 | if (gdtc) { |
370 | unsigned long global_avail = gdtc->avail; |
371 | |
372 | /* |
373 | * The byte settings can't be applied directly to memcg |
374 | * domains. Convert them to ratios by scaling against |
375 | * globally available memory. As the ratios are in |
376 | * per-PAGE_SIZE, they can be obtained by dividing bytes by |
377 | * number of pages. |
378 | */ |
379 | if (bytes) |
380 | ratio = min(DIV_ROUND_UP(bytes, global_avail), |
381 | PAGE_SIZE); |
382 | if (bg_bytes) |
383 | bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), |
384 | PAGE_SIZE); |
385 | bytes = bg_bytes = 0; |
386 | } |
387 | |
388 | if (bytes) |
389 | thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); |
390 | else |
391 | thresh = (ratio * available_memory) / PAGE_SIZE; |
392 | |
393 | if (bg_bytes) |
394 | bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); |
395 | else |
396 | bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; |
397 | |
398 | tsk = current; |
399 | if (rt_or_dl_task(p: tsk)) { |
400 | bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; |
401 | thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; |
402 | } |
403 | /* |
404 | * Dirty throttling logic assumes the limits in page units fit into |
405 | * 32-bits. This gives 16TB dirty limits max which is hopefully enough. |
406 | */ |
407 | if (thresh > UINT_MAX) |
408 | thresh = UINT_MAX; |
409 | /* This makes sure bg_thresh is within 32-bits as well */ |
410 | if (bg_thresh >= thresh) |
411 | bg_thresh = thresh / 2; |
412 | dtc->thresh = thresh; |
413 | dtc->bg_thresh = bg_thresh; |
414 | |
415 | /* we should eventually report the domain in the TP */ |
416 | if (!gdtc) |
417 | trace_global_dirty_state(background_thresh: bg_thresh, dirty_thresh: thresh); |
418 | } |
419 | |
420 | /** |
421 | * global_dirty_limits - background-writeback and dirty-throttling thresholds |
422 | * @pbackground: out parameter for bg_thresh |
423 | * @pdirty: out parameter for thresh |
424 | * |
425 | * Calculate bg_thresh and thresh for global_wb_domain. See |
426 | * domain_dirty_limits() for details. |
427 | */ |
428 | void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) |
429 | { |
430 | struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; |
431 | |
432 | gdtc.avail = global_dirtyable_memory(); |
433 | domain_dirty_limits(dtc: &gdtc); |
434 | |
435 | *pbackground = gdtc.bg_thresh; |
436 | *pdirty = gdtc.thresh; |
437 | } |
438 | |
439 | /** |
440 | * node_dirty_limit - maximum number of dirty pages allowed in a node |
441 | * @pgdat: the node |
442 | * |
443 | * Return: the maximum number of dirty pages allowed in a node, based |
444 | * on the node's dirtyable memory. |
445 | */ |
446 | static unsigned long node_dirty_limit(struct pglist_data *pgdat) |
447 | { |
448 | unsigned long node_memory = node_dirtyable_memory(pgdat); |
449 | struct task_struct *tsk = current; |
450 | unsigned long dirty; |
451 | |
452 | if (vm_dirty_bytes) |
453 | dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * |
454 | node_memory / global_dirtyable_memory(); |
455 | else |
456 | dirty = vm_dirty_ratio * node_memory / 100; |
457 | |
458 | if (rt_or_dl_task(p: tsk)) |
459 | dirty += dirty / 4; |
460 | |
461 | /* |
462 | * Dirty throttling logic assumes the limits in page units fit into |
463 | * 32-bits. This gives 16TB dirty limits max which is hopefully enough. |
464 | */ |
465 | return min_t(unsigned long, dirty, UINT_MAX); |
466 | } |
467 | |
468 | /** |
469 | * node_dirty_ok - tells whether a node is within its dirty limits |
470 | * @pgdat: the node to check |
471 | * |
472 | * Return: %true when the dirty pages in @pgdat are within the node's |
473 | * dirty limit, %false if the limit is exceeded. |
474 | */ |
475 | bool node_dirty_ok(struct pglist_data *pgdat) |
476 | { |
477 | unsigned long limit = node_dirty_limit(pgdat); |
478 | unsigned long nr_pages = 0; |
479 | |
480 | nr_pages += node_page_state(pgdat, item: NR_FILE_DIRTY); |
481 | nr_pages += node_page_state(pgdat, item: NR_WRITEBACK); |
482 | |
483 | return nr_pages <= limit; |
484 | } |
485 | |
486 | #ifdef CONFIG_SYSCTL |
487 | static int dirty_background_ratio_handler(const struct ctl_table *table, int write, |
488 | void *buffer, size_t *lenp, loff_t *ppos) |
489 | { |
490 | int ret; |
491 | |
492 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
493 | if (ret == 0 && write) |
494 | dirty_background_bytes = 0; |
495 | return ret; |
496 | } |
497 | |
498 | static int dirty_background_bytes_handler(const struct ctl_table *table, int write, |
499 | void *buffer, size_t *lenp, loff_t *ppos) |
500 | { |
501 | int ret; |
502 | unsigned long old_bytes = dirty_background_bytes; |
503 | |
504 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
505 | if (ret == 0 && write) { |
506 | if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > |
507 | UINT_MAX) { |
508 | dirty_background_bytes = old_bytes; |
509 | return -ERANGE; |
510 | } |
511 | dirty_background_ratio = 0; |
512 | } |
513 | return ret; |
514 | } |
515 | |
516 | static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer, |
517 | size_t *lenp, loff_t *ppos) |
518 | { |
519 | int old_ratio = vm_dirty_ratio; |
520 | int ret; |
521 | |
522 | ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); |
523 | if (ret == 0 && write && vm_dirty_ratio != old_ratio) { |
524 | vm_dirty_bytes = 0; |
525 | writeback_set_ratelimit(); |
526 | } |
527 | return ret; |
528 | } |
529 | |
530 | static int dirty_bytes_handler(const struct ctl_table *table, int write, |
531 | void *buffer, size_t *lenp, loff_t *ppos) |
532 | { |
533 | unsigned long old_bytes = vm_dirty_bytes; |
534 | int ret; |
535 | |
536 | ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); |
537 | if (ret == 0 && write && vm_dirty_bytes != old_bytes) { |
538 | if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { |
539 | vm_dirty_bytes = old_bytes; |
540 | return -ERANGE; |
541 | } |
542 | writeback_set_ratelimit(); |
543 | vm_dirty_ratio = 0; |
544 | } |
545 | return ret; |
546 | } |
547 | #endif |
548 | |
549 | static unsigned long wp_next_time(unsigned long cur_time) |
550 | { |
551 | cur_time += VM_COMPLETIONS_PERIOD_LEN; |
552 | /* 0 has a special meaning... */ |
553 | if (!cur_time) |
554 | return 1; |
555 | return cur_time; |
556 | } |
557 | |
558 | static void wb_domain_writeout_add(struct wb_domain *dom, |
559 | struct fprop_local_percpu *completions, |
560 | unsigned int max_prop_frac, long nr) |
561 | { |
562 | __fprop_add_percpu_max(p: &dom->completions, pl: completions, |
563 | max_frac: max_prop_frac, nr); |
564 | /* First event after period switching was turned off? */ |
565 | if (unlikely(!dom->period_time)) { |
566 | /* |
567 | * We can race with other wb_domain_writeout_add calls here but |
568 | * it does not cause any harm since the resulting time when |
569 | * timer will fire and what is in writeout_period_time will be |
570 | * roughly the same. |
571 | */ |
572 | dom->period_time = wp_next_time(cur_time: jiffies); |
573 | mod_timer(timer: &dom->period_timer, expires: dom->period_time); |
574 | } |
575 | } |
576 | |
577 | /* |
578 | * Increment @wb's writeout completion count and the global writeout |
579 | * completion count. Called from __folio_end_writeback(). |
580 | */ |
581 | static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) |
582 | { |
583 | struct wb_domain *cgdom; |
584 | |
585 | wb_stat_mod(wb, item: WB_WRITTEN, amount: nr); |
586 | wb_domain_writeout_add(dom: &global_wb_domain, completions: &wb->completions, |
587 | max_prop_frac: wb->bdi->max_prop_frac, nr); |
588 | |
589 | cgdom = mem_cgroup_wb_domain(wb); |
590 | if (cgdom) |
591 | wb_domain_writeout_add(dom: cgdom, completions: wb_memcg_completions(wb), |
592 | max_prop_frac: wb->bdi->max_prop_frac, nr); |
593 | } |
594 | |
595 | void wb_writeout_inc(struct bdi_writeback *wb) |
596 | { |
597 | unsigned long flags; |
598 | |
599 | local_irq_save(flags); |
600 | __wb_writeout_add(wb, nr: 1); |
601 | local_irq_restore(flags); |
602 | } |
603 | EXPORT_SYMBOL_GPL(wb_writeout_inc); |
604 | |
605 | /* |
606 | * On idle system, we can be called long after we scheduled because we use |
607 | * deferred timers so count with missed periods. |
608 | */ |
609 | static void writeout_period(struct timer_list *t) |
610 | { |
611 | struct wb_domain *dom = timer_container_of(dom, t, period_timer); |
612 | int miss_periods = (jiffies - dom->period_time) / |
613 | VM_COMPLETIONS_PERIOD_LEN; |
614 | |
615 | if (fprop_new_period(p: &dom->completions, periods: miss_periods + 1)) { |
616 | dom->period_time = wp_next_time(cur_time: dom->period_time + |
617 | miss_periods * VM_COMPLETIONS_PERIOD_LEN); |
618 | mod_timer(timer: &dom->period_timer, expires: dom->period_time); |
619 | } else { |
620 | /* |
621 | * Aging has zeroed all fractions. Stop wasting CPU on period |
622 | * updates. |
623 | */ |
624 | dom->period_time = 0; |
625 | } |
626 | } |
627 | |
628 | int wb_domain_init(struct wb_domain *dom, gfp_t gfp) |
629 | { |
630 | memset(dom, 0, sizeof(*dom)); |
631 | |
632 | spin_lock_init(&dom->lock); |
633 | |
634 | timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); |
635 | |
636 | dom->dirty_limit_tstamp = jiffies; |
637 | |
638 | return fprop_global_init(p: &dom->completions, gfp); |
639 | } |
640 | |
641 | #ifdef CONFIG_CGROUP_WRITEBACK |
642 | void wb_domain_exit(struct wb_domain *dom) |
643 | { |
644 | timer_delete_sync(timer: &dom->period_timer); |
645 | fprop_global_destroy(p: &dom->completions); |
646 | } |
647 | #endif |
648 | |
649 | /* |
650 | * bdi_min_ratio keeps the sum of the minimum dirty shares of all |
651 | * registered backing devices, which, for obvious reasons, can not |
652 | * exceed 100%. |
653 | */ |
654 | static unsigned int bdi_min_ratio; |
655 | |
656 | static int bdi_check_pages_limit(unsigned long pages) |
657 | { |
658 | unsigned long max_dirty_pages = global_dirtyable_memory(); |
659 | |
660 | if (pages > max_dirty_pages) |
661 | return -EINVAL; |
662 | |
663 | return 0; |
664 | } |
665 | |
666 | static unsigned long bdi_ratio_from_pages(unsigned long pages) |
667 | { |
668 | unsigned long background_thresh; |
669 | unsigned long dirty_thresh; |
670 | unsigned long ratio; |
671 | |
672 | global_dirty_limits(pbackground: &background_thresh, pdirty: &dirty_thresh); |
673 | if (!dirty_thresh) |
674 | return -EINVAL; |
675 | ratio = div64_u64(dividend: pages * 100ULL * BDI_RATIO_SCALE, divisor: dirty_thresh); |
676 | |
677 | return ratio; |
678 | } |
679 | |
680 | static u64 bdi_get_bytes(unsigned int ratio) |
681 | { |
682 | unsigned long background_thresh; |
683 | unsigned long dirty_thresh; |
684 | u64 bytes; |
685 | |
686 | global_dirty_limits(pbackground: &background_thresh, pdirty: &dirty_thresh); |
687 | bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; |
688 | |
689 | return bytes; |
690 | } |
691 | |
692 | static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) |
693 | { |
694 | unsigned int delta; |
695 | int ret = 0; |
696 | |
697 | if (min_ratio > 100 * BDI_RATIO_SCALE) |
698 | return -EINVAL; |
699 | |
700 | spin_lock_bh(lock: &bdi_lock); |
701 | if (min_ratio > bdi->max_ratio) { |
702 | ret = -EINVAL; |
703 | } else { |
704 | if (min_ratio < bdi->min_ratio) { |
705 | delta = bdi->min_ratio - min_ratio; |
706 | bdi_min_ratio -= delta; |
707 | bdi->min_ratio = min_ratio; |
708 | } else { |
709 | delta = min_ratio - bdi->min_ratio; |
710 | if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { |
711 | bdi_min_ratio += delta; |
712 | bdi->min_ratio = min_ratio; |
713 | } else { |
714 | ret = -EINVAL; |
715 | } |
716 | } |
717 | } |
718 | spin_unlock_bh(lock: &bdi_lock); |
719 | |
720 | return ret; |
721 | } |
722 | |
723 | static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) |
724 | { |
725 | int ret = 0; |
726 | |
727 | if (max_ratio > 100 * BDI_RATIO_SCALE) |
728 | return -EINVAL; |
729 | |
730 | spin_lock_bh(lock: &bdi_lock); |
731 | if (bdi->min_ratio > max_ratio) { |
732 | ret = -EINVAL; |
733 | } else { |
734 | bdi->max_ratio = max_ratio; |
735 | bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / |
736 | (100 * BDI_RATIO_SCALE); |
737 | } |
738 | spin_unlock_bh(lock: &bdi_lock); |
739 | |
740 | return ret; |
741 | } |
742 | |
743 | int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) |
744 | { |
745 | return __bdi_set_min_ratio(bdi, min_ratio); |
746 | } |
747 | |
748 | int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) |
749 | { |
750 | return __bdi_set_max_ratio(bdi, max_ratio); |
751 | } |
752 | |
753 | int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) |
754 | { |
755 | return __bdi_set_min_ratio(bdi, min_ratio: min_ratio * BDI_RATIO_SCALE); |
756 | } |
757 | |
758 | int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) |
759 | { |
760 | return __bdi_set_max_ratio(bdi, max_ratio: max_ratio * BDI_RATIO_SCALE); |
761 | } |
762 | EXPORT_SYMBOL(bdi_set_max_ratio); |
763 | |
764 | u64 bdi_get_min_bytes(struct backing_dev_info *bdi) |
765 | { |
766 | return bdi_get_bytes(ratio: bdi->min_ratio); |
767 | } |
768 | |
769 | int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) |
770 | { |
771 | int ret; |
772 | unsigned long pages = min_bytes >> PAGE_SHIFT; |
773 | long min_ratio; |
774 | |
775 | ret = bdi_check_pages_limit(pages); |
776 | if (ret) |
777 | return ret; |
778 | |
779 | min_ratio = bdi_ratio_from_pages(pages); |
780 | if (min_ratio < 0) |
781 | return min_ratio; |
782 | return __bdi_set_min_ratio(bdi, min_ratio); |
783 | } |
784 | |
785 | u64 bdi_get_max_bytes(struct backing_dev_info *bdi) |
786 | { |
787 | return bdi_get_bytes(ratio: bdi->max_ratio); |
788 | } |
789 | |
790 | int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) |
791 | { |
792 | int ret; |
793 | unsigned long pages = max_bytes >> PAGE_SHIFT; |
794 | long max_ratio; |
795 | |
796 | ret = bdi_check_pages_limit(pages); |
797 | if (ret) |
798 | return ret; |
799 | |
800 | max_ratio = bdi_ratio_from_pages(pages); |
801 | if (max_ratio < 0) |
802 | return max_ratio; |
803 | return __bdi_set_max_ratio(bdi, max_ratio); |
804 | } |
805 | |
806 | int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) |
807 | { |
808 | if (strict_limit > 1) |
809 | return -EINVAL; |
810 | |
811 | spin_lock_bh(lock: &bdi_lock); |
812 | if (strict_limit) |
813 | bdi->capabilities |= BDI_CAP_STRICTLIMIT; |
814 | else |
815 | bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; |
816 | spin_unlock_bh(lock: &bdi_lock); |
817 | |
818 | return 0; |
819 | } |
820 | |
821 | static unsigned long dirty_freerun_ceiling(unsigned long thresh, |
822 | unsigned long bg_thresh) |
823 | { |
824 | return (thresh + bg_thresh) / 2; |
825 | } |
826 | |
827 | static unsigned long hard_dirty_limit(struct wb_domain *dom, |
828 | unsigned long thresh) |
829 | { |
830 | return max(thresh, dom->dirty_limit); |
831 | } |
832 | |
833 | /* |
834 | * Memory which can be further allocated to a memcg domain is capped by |
835 | * system-wide clean memory excluding the amount being used in the domain. |
836 | */ |
837 | static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, |
838 | unsigned long filepages, unsigned long headroom) |
839 | { |
840 | struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); |
841 | unsigned long clean = filepages - min(filepages, mdtc->dirty); |
842 | unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); |
843 | unsigned long other_clean = global_clean - min(global_clean, clean); |
844 | |
845 | mdtc->avail = filepages + min(headroom, other_clean); |
846 | } |
847 | |
848 | static inline bool dtc_is_global(struct dirty_throttle_control *dtc) |
849 | { |
850 | return mdtc_gdtc(mdtc: dtc) == NULL; |
851 | } |
852 | |
853 | /* |
854 | * Dirty background will ignore pages being written as we're trying to |
855 | * decide whether to put more under writeback. |
856 | */ |
857 | static void domain_dirty_avail(struct dirty_throttle_control *dtc, |
858 | bool include_writeback) |
859 | { |
860 | if (dtc_is_global(dtc)) { |
861 | dtc->avail = global_dirtyable_memory(); |
862 | dtc->dirty = global_node_page_state(item: NR_FILE_DIRTY); |
863 | if (include_writeback) |
864 | dtc->dirty += global_node_page_state(item: NR_WRITEBACK); |
865 | } else { |
866 | unsigned long filepages = 0, headroom = 0, writeback = 0; |
867 | |
868 | mem_cgroup_wb_stats(wb: dtc->wb, pfilepages: &filepages, pheadroom: &headroom, pdirty: &dtc->dirty, |
869 | pwriteback: &writeback); |
870 | if (include_writeback) |
871 | dtc->dirty += writeback; |
872 | mdtc_calc_avail(mdtc: dtc, filepages, headroom); |
873 | } |
874 | } |
875 | |
876 | /** |
877 | * __wb_calc_thresh - @wb's share of dirty threshold |
878 | * @dtc: dirty_throttle_context of interest |
879 | * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc |
880 | * |
881 | * Note that balance_dirty_pages() will only seriously take dirty throttling |
882 | * threshold as a hard limit when sleeping max_pause per page is not enough |
883 | * to keep the dirty pages under control. For example, when the device is |
884 | * completely stalled due to some error conditions, or when there are 1000 |
885 | * dd tasks writing to a slow 10MB/s USB key. |
886 | * In the other normal situations, it acts more gently by throttling the tasks |
887 | * more (rather than completely block them) when the wb dirty pages go high. |
888 | * |
889 | * It allocates high/low dirty limits to fast/slow devices, in order to prevent |
890 | * - starving fast devices |
891 | * - piling up dirty pages (that will take long time to sync) on slow devices |
892 | * |
893 | * The wb's share of dirty limit will be adapting to its throughput and |
894 | * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. |
895 | * |
896 | * Return: @wb's dirty limit in pages. For dirty throttling limit, the term |
897 | * "dirty" in the context of dirty balancing includes all PG_dirty and |
898 | * PG_writeback pages. |
899 | */ |
900 | static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, |
901 | unsigned long thresh) |
902 | { |
903 | struct wb_domain *dom = dtc_dom(dtc); |
904 | struct bdi_writeback *wb = dtc->wb; |
905 | u64 wb_thresh; |
906 | u64 wb_max_thresh; |
907 | unsigned long numerator, denominator; |
908 | unsigned long wb_min_ratio, wb_max_ratio; |
909 | |
910 | /* |
911 | * Calculate this wb's share of the thresh ratio. |
912 | */ |
913 | fprop_fraction_percpu(p: &dom->completions, pl: dtc->wb_completions, |
914 | numerator: &numerator, denominator: &denominator); |
915 | |
916 | wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); |
917 | wb_thresh *= numerator; |
918 | wb_thresh = div64_ul(wb_thresh, denominator); |
919 | |
920 | wb_min_max_ratio(wb, minp: &wb_min_ratio, maxp: &wb_max_ratio); |
921 | |
922 | wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); |
923 | |
924 | /* |
925 | * It's very possible that wb_thresh is close to 0 not because the |
926 | * device is slow, but that it has remained inactive for long time. |
927 | * Honour such devices a reasonable good (hopefully IO efficient) |
928 | * threshold, so that the occasional writes won't be blocked and active |
929 | * writes can rampup the threshold quickly. |
930 | */ |
931 | if (thresh > dtc->dirty) { |
932 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) |
933 | wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100); |
934 | else |
935 | wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8); |
936 | } |
937 | |
938 | wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); |
939 | if (wb_thresh > wb_max_thresh) |
940 | wb_thresh = wb_max_thresh; |
941 | |
942 | return wb_thresh; |
943 | } |
944 | |
945 | unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) |
946 | { |
947 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; |
948 | |
949 | domain_dirty_avail(dtc: &gdtc, include_writeback: true); |
950 | return __wb_calc_thresh(dtc: &gdtc, thresh); |
951 | } |
952 | |
953 | unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) |
954 | { |
955 | struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; |
956 | struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; |
957 | |
958 | domain_dirty_avail(dtc: &gdtc, include_writeback: true); |
959 | domain_dirty_avail(dtc: &mdtc, include_writeback: true); |
960 | domain_dirty_limits(dtc: &mdtc); |
961 | |
962 | return __wb_calc_thresh(dtc: &mdtc, thresh: mdtc.thresh); |
963 | } |
964 | |
965 | /* |
966 | * setpoint - dirty 3 |
967 | * f(dirty) := 1.0 + (----------------) |
968 | * limit - setpoint |
969 | * |
970 | * it's a 3rd order polynomial that subjects to |
971 | * |
972 | * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast |
973 | * (2) f(setpoint) = 1.0 => the balance point |
974 | * (3) f(limit) = 0 => the hard limit |
975 | * (4) df/dx <= 0 => negative feedback control |
976 | * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) |
977 | * => fast response on large errors; small oscillation near setpoint |
978 | */ |
979 | static long long pos_ratio_polynom(unsigned long setpoint, |
980 | unsigned long dirty, |
981 | unsigned long limit) |
982 | { |
983 | long long pos_ratio; |
984 | long x; |
985 | |
986 | x = div64_s64(dividend: ((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, |
987 | divisor: (limit - setpoint) | 1); |
988 | pos_ratio = x; |
989 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; |
990 | pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; |
991 | pos_ratio += 1 << RATELIMIT_CALC_SHIFT; |
992 | |
993 | return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); |
994 | } |
995 | |
996 | /* |
997 | * Dirty position control. |
998 | * |
999 | * (o) global/bdi setpoints |
1000 | * |
1001 | * We want the dirty pages be balanced around the global/wb setpoints. |
1002 | * When the number of dirty pages is higher/lower than the setpoint, the |
1003 | * dirty position control ratio (and hence task dirty ratelimit) will be |
1004 | * decreased/increased to bring the dirty pages back to the setpoint. |
1005 | * |
1006 | * pos_ratio = 1 << RATELIMIT_CALC_SHIFT |
1007 | * |
1008 | * if (dirty < setpoint) scale up pos_ratio |
1009 | * if (dirty > setpoint) scale down pos_ratio |
1010 | * |
1011 | * if (wb_dirty < wb_setpoint) scale up pos_ratio |
1012 | * if (wb_dirty > wb_setpoint) scale down pos_ratio |
1013 | * |
1014 | * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT |
1015 | * |
1016 | * (o) global control line |
1017 | * |
1018 | * ^ pos_ratio |
1019 | * | |
1020 | * | |<===== global dirty control scope ======>| |
1021 | * 2.0 * * * * * * * |
1022 | * | .* |
1023 | * | . * |
1024 | * | . * |
1025 | * | . * |
1026 | * | . * |
1027 | * | . * |
1028 | * 1.0 ................................* |
1029 | * | . . * |
1030 | * | . . * |
1031 | * | . . * |
1032 | * | . . * |
1033 | * | . . * |
1034 | * 0 +------------.------------------.----------------------*-------------> |
1035 | * freerun^ setpoint^ limit^ dirty pages |
1036 | * |
1037 | * (o) wb control line |
1038 | * |
1039 | * ^ pos_ratio |
1040 | * | |
1041 | * | * |
1042 | * | * |
1043 | * | * |
1044 | * | * |
1045 | * | * |<=========== span ============>| |
1046 | * 1.0 .......................* |
1047 | * | . * |
1048 | * | . * |
1049 | * | . * |
1050 | * | . * |
1051 | * | . * |
1052 | * | . * |
1053 | * | . * |
1054 | * | . * |
1055 | * | . * |
1056 | * | . * |
1057 | * | . * |
1058 | * 1/4 ...............................................* * * * * * * * * * * * |
1059 | * | . . |
1060 | * | . . |
1061 | * | . . |
1062 | * 0 +----------------------.-------------------------------.-------------> |
1063 | * wb_setpoint^ x_intercept^ |
1064 | * |
1065 | * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can |
1066 | * be smoothly throttled down to normal if it starts high in situations like |
1067 | * - start writing to a slow SD card and a fast disk at the same time. The SD |
1068 | * card's wb_dirty may rush to many times higher than wb_setpoint. |
1069 | * - the wb dirty thresh drops quickly due to change of JBOD workload |
1070 | */ |
1071 | static void wb_position_ratio(struct dirty_throttle_control *dtc) |
1072 | { |
1073 | struct bdi_writeback *wb = dtc->wb; |
1074 | unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); |
1075 | unsigned long freerun = dirty_freerun_ceiling(thresh: dtc->thresh, bg_thresh: dtc->bg_thresh); |
1076 | unsigned long limit = dtc->limit = hard_dirty_limit(dom: dtc_dom(dtc), thresh: dtc->thresh); |
1077 | unsigned long wb_thresh = dtc->wb_thresh; |
1078 | unsigned long x_intercept; |
1079 | unsigned long setpoint; /* dirty pages' target balance point */ |
1080 | unsigned long wb_setpoint; |
1081 | unsigned long span; |
1082 | long long pos_ratio; /* for scaling up/down the rate limit */ |
1083 | long x; |
1084 | |
1085 | dtc->pos_ratio = 0; |
1086 | |
1087 | if (unlikely(dtc->dirty >= limit)) |
1088 | return; |
1089 | |
1090 | /* |
1091 | * global setpoint |
1092 | * |
1093 | * See comment for pos_ratio_polynom(). |
1094 | */ |
1095 | setpoint = (freerun + limit) / 2; |
1096 | pos_ratio = pos_ratio_polynom(setpoint, dirty: dtc->dirty, limit); |
1097 | |
1098 | /* |
1099 | * The strictlimit feature is a tool preventing mistrusted filesystems |
1100 | * from growing a large number of dirty pages before throttling. For |
1101 | * such filesystems balance_dirty_pages always checks wb counters |
1102 | * against wb limits. Even if global "nr_dirty" is under "freerun". |
1103 | * This is especially important for fuse which sets bdi->max_ratio to |
1104 | * 1% by default. Without strictlimit feature, fuse writeback may |
1105 | * consume arbitrary amount of RAM because it is accounted in |
1106 | * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". |
1107 | * |
1108 | * Here, in wb_position_ratio(), we calculate pos_ratio based on |
1109 | * two values: wb_dirty and wb_thresh. Let's consider an example: |
1110 | * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global |
1111 | * limits are set by default to 10% and 20% (background and throttle). |
1112 | * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. |
1113 | * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is |
1114 | * about ~6K pages (as the average of background and throttle wb |
1115 | * limits). The 3rd order polynomial will provide positive feedback if |
1116 | * wb_dirty is under wb_setpoint and vice versa. |
1117 | * |
1118 | * Note, that we cannot use global counters in these calculations |
1119 | * because we want to throttle process writing to a strictlimit wb |
1120 | * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB |
1121 | * in the example above). |
1122 | */ |
1123 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { |
1124 | long long wb_pos_ratio; |
1125 | |
1126 | if (dtc->wb_dirty >= wb_thresh) |
1127 | return; |
1128 | |
1129 | wb_setpoint = dirty_freerun_ceiling(thresh: wb_thresh, |
1130 | bg_thresh: dtc->wb_bg_thresh); |
1131 | |
1132 | if (wb_setpoint == 0 || wb_setpoint == wb_thresh) |
1133 | return; |
1134 | |
1135 | wb_pos_ratio = pos_ratio_polynom(setpoint: wb_setpoint, dirty: dtc->wb_dirty, |
1136 | limit: wb_thresh); |
1137 | |
1138 | /* |
1139 | * Typically, for strictlimit case, wb_setpoint << setpoint |
1140 | * and pos_ratio >> wb_pos_ratio. In the other words global |
1141 | * state ("dirty") is not limiting factor and we have to |
1142 | * make decision based on wb counters. But there is an |
1143 | * important case when global pos_ratio should get precedence: |
1144 | * global limits are exceeded (e.g. due to activities on other |
1145 | * wb's) while given strictlimit wb is below limit. |
1146 | * |
1147 | * "pos_ratio * wb_pos_ratio" would work for the case above, |
1148 | * but it would look too non-natural for the case of all |
1149 | * activity in the system coming from a single strictlimit wb |
1150 | * with bdi->max_ratio == 100%. |
1151 | * |
1152 | * Note that min() below somewhat changes the dynamics of the |
1153 | * control system. Normally, pos_ratio value can be well over 3 |
1154 | * (when globally we are at freerun and wb is well below wb |
1155 | * setpoint). Now the maximum pos_ratio in the same situation |
1156 | * is 2. We might want to tweak this if we observe the control |
1157 | * system is too slow to adapt. |
1158 | */ |
1159 | dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); |
1160 | return; |
1161 | } |
1162 | |
1163 | /* |
1164 | * We have computed basic pos_ratio above based on global situation. If |
1165 | * the wb is over/under its share of dirty pages, we want to scale |
1166 | * pos_ratio further down/up. That is done by the following mechanism. |
1167 | */ |
1168 | |
1169 | /* |
1170 | * wb setpoint |
1171 | * |
1172 | * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) |
1173 | * |
1174 | * x_intercept - wb_dirty |
1175 | * := -------------------------- |
1176 | * x_intercept - wb_setpoint |
1177 | * |
1178 | * The main wb control line is a linear function that subjects to |
1179 | * |
1180 | * (1) f(wb_setpoint) = 1.0 |
1181 | * (2) k = - 1 / (8 * write_bw) (in single wb case) |
1182 | * or equally: x_intercept = wb_setpoint + 8 * write_bw |
1183 | * |
1184 | * For single wb case, the dirty pages are observed to fluctuate |
1185 | * regularly within range |
1186 | * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] |
1187 | * for various filesystems, where (2) can yield in a reasonable 12.5% |
1188 | * fluctuation range for pos_ratio. |
1189 | * |
1190 | * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its |
1191 | * own size, so move the slope over accordingly and choose a slope that |
1192 | * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. |
1193 | */ |
1194 | if (unlikely(wb_thresh > dtc->thresh)) |
1195 | wb_thresh = dtc->thresh; |
1196 | /* |
1197 | * scale global setpoint to wb's: |
1198 | * wb_setpoint = setpoint * wb_thresh / thresh |
1199 | */ |
1200 | x = div_u64(dividend: (u64)wb_thresh << 16, divisor: dtc->thresh | 1); |
1201 | wb_setpoint = setpoint * (u64)x >> 16; |
1202 | /* |
1203 | * Use span=(8*write_bw) in single wb case as indicated by |
1204 | * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. |
1205 | * |
1206 | * wb_thresh thresh - wb_thresh |
1207 | * span = --------- * (8 * write_bw) + ------------------ * wb_thresh |
1208 | * thresh thresh |
1209 | */ |
1210 | span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; |
1211 | x_intercept = wb_setpoint + span; |
1212 | |
1213 | if (dtc->wb_dirty < x_intercept - span / 4) { |
1214 | pos_ratio = div64_u64(dividend: pos_ratio * (x_intercept - dtc->wb_dirty), |
1215 | divisor: (x_intercept - wb_setpoint) | 1); |
1216 | } else |
1217 | pos_ratio /= 4; |
1218 | |
1219 | /* |
1220 | * wb reserve area, safeguard against dirty pool underrun and disk idle |
1221 | * It may push the desired control point of global dirty pages higher |
1222 | * than setpoint. |
1223 | */ |
1224 | x_intercept = wb_thresh / 2; |
1225 | if (dtc->wb_dirty < x_intercept) { |
1226 | if (dtc->wb_dirty > x_intercept / 8) |
1227 | pos_ratio = div_u64(dividend: pos_ratio * x_intercept, |
1228 | divisor: dtc->wb_dirty); |
1229 | else |
1230 | pos_ratio *= 8; |
1231 | } |
1232 | |
1233 | dtc->pos_ratio = pos_ratio; |
1234 | } |
1235 | |
1236 | static void wb_update_write_bandwidth(struct bdi_writeback *wb, |
1237 | unsigned long elapsed, |
1238 | unsigned long written) |
1239 | { |
1240 | const unsigned long period = roundup_pow_of_two(3 * HZ); |
1241 | unsigned long avg = wb->avg_write_bandwidth; |
1242 | unsigned long old = wb->write_bandwidth; |
1243 | u64 bw; |
1244 | |
1245 | /* |
1246 | * bw = written * HZ / elapsed |
1247 | * |
1248 | * bw * elapsed + write_bandwidth * (period - elapsed) |
1249 | * write_bandwidth = --------------------------------------------------- |
1250 | * period |
1251 | * |
1252 | * @written may have decreased due to folio_redirty_for_writepage(). |
1253 | * Avoid underflowing @bw calculation. |
1254 | */ |
1255 | bw = written - min(written, wb->written_stamp); |
1256 | bw *= HZ; |
1257 | if (unlikely(elapsed > period)) { |
1258 | bw = div64_ul(bw, elapsed); |
1259 | avg = bw; |
1260 | goto out; |
1261 | } |
1262 | bw += (u64)wb->write_bandwidth * (period - elapsed); |
1263 | bw >>= ilog2(period); |
1264 | |
1265 | /* |
1266 | * one more level of smoothing, for filtering out sudden spikes |
1267 | */ |
1268 | if (avg > old && old >= (unsigned long)bw) |
1269 | avg -= (avg - old) >> 3; |
1270 | |
1271 | if (avg < old && old <= (unsigned long)bw) |
1272 | avg += (old - avg) >> 3; |
1273 | |
1274 | out: |
1275 | /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ |
1276 | avg = max(avg, 1LU); |
1277 | if (wb_has_dirty_io(wb)) { |
1278 | long delta = avg - wb->avg_write_bandwidth; |
1279 | WARN_ON_ONCE(atomic_long_add_return(delta, |
1280 | &wb->bdi->tot_write_bandwidth) <= 0); |
1281 | } |
1282 | wb->write_bandwidth = bw; |
1283 | WRITE_ONCE(wb->avg_write_bandwidth, avg); |
1284 | } |
1285 | |
1286 | static void update_dirty_limit(struct dirty_throttle_control *dtc) |
1287 | { |
1288 | struct wb_domain *dom = dtc_dom(dtc); |
1289 | unsigned long thresh = dtc->thresh; |
1290 | unsigned long limit = dom->dirty_limit; |
1291 | |
1292 | /* |
1293 | * Follow up in one step. |
1294 | */ |
1295 | if (limit < thresh) { |
1296 | limit = thresh; |
1297 | goto update; |
1298 | } |
1299 | |
1300 | /* |
1301 | * Follow down slowly. Use the higher one as the target, because thresh |
1302 | * may drop below dirty. This is exactly the reason to introduce |
1303 | * dom->dirty_limit which is guaranteed to lie above the dirty pages. |
1304 | */ |
1305 | thresh = max(thresh, dtc->dirty); |
1306 | if (limit > thresh) { |
1307 | limit -= (limit - thresh) >> 5; |
1308 | goto update; |
1309 | } |
1310 | return; |
1311 | update: |
1312 | dom->dirty_limit = limit; |
1313 | } |
1314 | |
1315 | static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, |
1316 | unsigned long now) |
1317 | { |
1318 | struct wb_domain *dom = dtc_dom(dtc); |
1319 | |
1320 | /* |
1321 | * check locklessly first to optimize away locking for the most time |
1322 | */ |
1323 | if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) |
1324 | return; |
1325 | |
1326 | spin_lock(lock: &dom->lock); |
1327 | if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { |
1328 | update_dirty_limit(dtc); |
1329 | dom->dirty_limit_tstamp = now; |
1330 | } |
1331 | spin_unlock(lock: &dom->lock); |
1332 | } |
1333 | |
1334 | /* |
1335 | * Maintain wb->dirty_ratelimit, the base dirty throttle rate. |
1336 | * |
1337 | * Normal wb tasks will be curbed at or below it in long term. |
1338 | * Obviously it should be around (write_bw / N) when there are N dd tasks. |
1339 | */ |
1340 | static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, |
1341 | unsigned long dirtied, |
1342 | unsigned long elapsed) |
1343 | { |
1344 | struct bdi_writeback *wb = dtc->wb; |
1345 | unsigned long dirty = dtc->dirty; |
1346 | unsigned long freerun = dirty_freerun_ceiling(thresh: dtc->thresh, bg_thresh: dtc->bg_thresh); |
1347 | unsigned long limit = hard_dirty_limit(dom: dtc_dom(dtc), thresh: dtc->thresh); |
1348 | unsigned long setpoint = (freerun + limit) / 2; |
1349 | unsigned long write_bw = wb->avg_write_bandwidth; |
1350 | unsigned long dirty_ratelimit = wb->dirty_ratelimit; |
1351 | unsigned long dirty_rate; |
1352 | unsigned long task_ratelimit; |
1353 | unsigned long balanced_dirty_ratelimit; |
1354 | unsigned long step; |
1355 | unsigned long x; |
1356 | unsigned long shift; |
1357 | |
1358 | /* |
1359 | * The dirty rate will match the writeout rate in long term, except |
1360 | * when dirty pages are truncated by userspace or re-dirtied by FS. |
1361 | */ |
1362 | dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; |
1363 | |
1364 | /* |
1365 | * task_ratelimit reflects each dd's dirty rate for the past 200ms. |
1366 | */ |
1367 | task_ratelimit = (u64)dirty_ratelimit * |
1368 | dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; |
1369 | task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ |
1370 | |
1371 | /* |
1372 | * A linear estimation of the "balanced" throttle rate. The theory is, |
1373 | * if there are N dd tasks, each throttled at task_ratelimit, the wb's |
1374 | * dirty_rate will be measured to be (N * task_ratelimit). So the below |
1375 | * formula will yield the balanced rate limit (write_bw / N). |
1376 | * |
1377 | * Note that the expanded form is not a pure rate feedback: |
1378 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) |
1379 | * but also takes pos_ratio into account: |
1380 | * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) |
1381 | * |
1382 | * (1) is not realistic because pos_ratio also takes part in balancing |
1383 | * the dirty rate. Consider the state |
1384 | * pos_ratio = 0.5 (3) |
1385 | * rate = 2 * (write_bw / N) (4) |
1386 | * If (1) is used, it will stuck in that state! Because each dd will |
1387 | * be throttled at |
1388 | * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) |
1389 | * yielding |
1390 | * dirty_rate = N * task_ratelimit = write_bw (6) |
1391 | * put (6) into (1) we get |
1392 | * rate_(i+1) = rate_(i) (7) |
1393 | * |
1394 | * So we end up using (2) to always keep |
1395 | * rate_(i+1) ~= (write_bw / N) (8) |
1396 | * regardless of the value of pos_ratio. As long as (8) is satisfied, |
1397 | * pos_ratio is able to drive itself to 1.0, which is not only where |
1398 | * the dirty count meet the setpoint, but also where the slope of |
1399 | * pos_ratio is most flat and hence task_ratelimit is least fluctuated. |
1400 | */ |
1401 | balanced_dirty_ratelimit = div_u64(dividend: (u64)task_ratelimit * write_bw, |
1402 | divisor: dirty_rate | 1); |
1403 | /* |
1404 | * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw |
1405 | */ |
1406 | if (unlikely(balanced_dirty_ratelimit > write_bw)) |
1407 | balanced_dirty_ratelimit = write_bw; |
1408 | |
1409 | /* |
1410 | * We could safely do this and return immediately: |
1411 | * |
1412 | * wb->dirty_ratelimit = balanced_dirty_ratelimit; |
1413 | * |
1414 | * However to get a more stable dirty_ratelimit, the below elaborated |
1415 | * code makes use of task_ratelimit to filter out singular points and |
1416 | * limit the step size. |
1417 | * |
1418 | * The below code essentially only uses the relative value of |
1419 | * |
1420 | * task_ratelimit - dirty_ratelimit |
1421 | * = (pos_ratio - 1) * dirty_ratelimit |
1422 | * |
1423 | * which reflects the direction and size of dirty position error. |
1424 | */ |
1425 | |
1426 | /* |
1427 | * dirty_ratelimit will follow balanced_dirty_ratelimit iff |
1428 | * task_ratelimit is on the same side of dirty_ratelimit, too. |
1429 | * For example, when |
1430 | * - dirty_ratelimit > balanced_dirty_ratelimit |
1431 | * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) |
1432 | * lowering dirty_ratelimit will help meet both the position and rate |
1433 | * control targets. Otherwise, don't update dirty_ratelimit if it will |
1434 | * only help meet the rate target. After all, what the users ultimately |
1435 | * feel and care are stable dirty rate and small position error. |
1436 | * |
1437 | * |task_ratelimit - dirty_ratelimit| is used to limit the step size |
1438 | * and filter out the singular points of balanced_dirty_ratelimit. Which |
1439 | * keeps jumping around randomly and can even leap far away at times |
1440 | * due to the small 200ms estimation period of dirty_rate (we want to |
1441 | * keep that period small to reduce time lags). |
1442 | */ |
1443 | step = 0; |
1444 | |
1445 | /* |
1446 | * For strictlimit case, calculations above were based on wb counters |
1447 | * and limits (starting from pos_ratio = wb_position_ratio() and up to |
1448 | * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). |
1449 | * Hence, to calculate "step" properly, we have to use wb_dirty as |
1450 | * "dirty" and wb_setpoint as "setpoint". |
1451 | */ |
1452 | if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { |
1453 | dirty = dtc->wb_dirty; |
1454 | setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; |
1455 | } |
1456 | |
1457 | if (dirty < setpoint) { |
1458 | x = min3(wb->balanced_dirty_ratelimit, |
1459 | balanced_dirty_ratelimit, task_ratelimit); |
1460 | if (dirty_ratelimit < x) |
1461 | step = x - dirty_ratelimit; |
1462 | } else { |
1463 | x = max3(wb->balanced_dirty_ratelimit, |
1464 | balanced_dirty_ratelimit, task_ratelimit); |
1465 | if (dirty_ratelimit > x) |
1466 | step = dirty_ratelimit - x; |
1467 | } |
1468 | |
1469 | /* |
1470 | * Don't pursue 100% rate matching. It's impossible since the balanced |
1471 | * rate itself is constantly fluctuating. So decrease the track speed |
1472 | * when it gets close to the target. Helps eliminate pointless tremors. |
1473 | */ |
1474 | shift = dirty_ratelimit / (2 * step + 1); |
1475 | if (shift < BITS_PER_LONG) |
1476 | step = DIV_ROUND_UP(step >> shift, 8); |
1477 | else |
1478 | step = 0; |
1479 | |
1480 | if (dirty_ratelimit < balanced_dirty_ratelimit) |
1481 | dirty_ratelimit += step; |
1482 | else |
1483 | dirty_ratelimit -= step; |
1484 | |
1485 | WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); |
1486 | wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; |
1487 | |
1488 | trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); |
1489 | } |
1490 | |
1491 | static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, |
1492 | struct dirty_throttle_control *mdtc, |
1493 | bool update_ratelimit) |
1494 | { |
1495 | struct bdi_writeback *wb = gdtc->wb; |
1496 | unsigned long now = jiffies; |
1497 | unsigned long elapsed; |
1498 | unsigned long dirtied; |
1499 | unsigned long written; |
1500 | |
1501 | spin_lock(lock: &wb->list_lock); |
1502 | |
1503 | /* |
1504 | * Lockless checks for elapsed time are racy and delayed update after |
1505 | * IO completion doesn't do it at all (to make sure written pages are |
1506 | * accounted reasonably quickly). Make sure elapsed >= 1 to avoid |
1507 | * division errors. |
1508 | */ |
1509 | elapsed = max(now - wb->bw_time_stamp, 1UL); |
1510 | dirtied = percpu_counter_read(fbc: &wb->stat[WB_DIRTIED]); |
1511 | written = percpu_counter_read(fbc: &wb->stat[WB_WRITTEN]); |
1512 | |
1513 | if (update_ratelimit) { |
1514 | domain_update_dirty_limit(dtc: gdtc, now); |
1515 | wb_update_dirty_ratelimit(dtc: gdtc, dirtied, elapsed); |
1516 | |
1517 | /* |
1518 | * @mdtc is always NULL if !CGROUP_WRITEBACK but the |
1519 | * compiler has no way to figure that out. Help it. |
1520 | */ |
1521 | if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { |
1522 | domain_update_dirty_limit(dtc: mdtc, now); |
1523 | wb_update_dirty_ratelimit(dtc: mdtc, dirtied, elapsed); |
1524 | } |
1525 | } |
1526 | wb_update_write_bandwidth(wb, elapsed, written); |
1527 | |
1528 | wb->dirtied_stamp = dirtied; |
1529 | wb->written_stamp = written; |
1530 | WRITE_ONCE(wb->bw_time_stamp, now); |
1531 | spin_unlock(lock: &wb->list_lock); |
1532 | } |
1533 | |
1534 | void wb_update_bandwidth(struct bdi_writeback *wb) |
1535 | { |
1536 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; |
1537 | |
1538 | __wb_update_bandwidth(gdtc: &gdtc, NULL, update_ratelimit: false); |
1539 | } |
1540 | |
1541 | /* Interval after which we consider wb idle and don't estimate bandwidth */ |
1542 | #define WB_BANDWIDTH_IDLE_JIF (HZ) |
1543 | |
1544 | static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) |
1545 | { |
1546 | unsigned long now = jiffies; |
1547 | unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); |
1548 | |
1549 | if (elapsed > WB_BANDWIDTH_IDLE_JIF && |
1550 | !atomic_read(v: &wb->writeback_inodes)) { |
1551 | spin_lock(lock: &wb->list_lock); |
1552 | wb->dirtied_stamp = wb_stat(wb, item: WB_DIRTIED); |
1553 | wb->written_stamp = wb_stat(wb, item: WB_WRITTEN); |
1554 | WRITE_ONCE(wb->bw_time_stamp, now); |
1555 | spin_unlock(lock: &wb->list_lock); |
1556 | } |
1557 | } |
1558 | |
1559 | /* |
1560 | * After a task dirtied this many pages, balance_dirty_pages_ratelimited() |
1561 | * will look to see if it needs to start dirty throttling. |
1562 | * |
1563 | * If dirty_poll_interval is too low, big NUMA machines will call the expensive |
1564 | * global_zone_page_state() too often. So scale it near-sqrt to the safety margin |
1565 | * (the number of pages we may dirty without exceeding the dirty limits). |
1566 | */ |
1567 | static unsigned long dirty_poll_interval(unsigned long dirty, |
1568 | unsigned long thresh) |
1569 | { |
1570 | if (thresh > dirty) |
1571 | return 1UL << (ilog2(thresh - dirty) >> 1); |
1572 | |
1573 | return 1; |
1574 | } |
1575 | |
1576 | static unsigned long wb_max_pause(struct bdi_writeback *wb, |
1577 | unsigned long wb_dirty) |
1578 | { |
1579 | unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); |
1580 | unsigned long t; |
1581 | |
1582 | /* |
1583 | * Limit pause time for small memory systems. If sleeping for too long |
1584 | * time, a small pool of dirty/writeback pages may go empty and disk go |
1585 | * idle. |
1586 | * |
1587 | * 8 serves as the safety ratio. |
1588 | */ |
1589 | t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); |
1590 | t++; |
1591 | |
1592 | return min_t(unsigned long, t, MAX_PAUSE); |
1593 | } |
1594 | |
1595 | static long wb_min_pause(struct bdi_writeback *wb, |
1596 | long max_pause, |
1597 | unsigned long task_ratelimit, |
1598 | unsigned long dirty_ratelimit, |
1599 | int *nr_dirtied_pause) |
1600 | { |
1601 | long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); |
1602 | long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); |
1603 | long t; /* target pause */ |
1604 | long pause; /* estimated next pause */ |
1605 | int pages; /* target nr_dirtied_pause */ |
1606 | |
1607 | /* target for 10ms pause on 1-dd case */ |
1608 | t = max(1, HZ / 100); |
1609 | |
1610 | /* |
1611 | * Scale up pause time for concurrent dirtiers in order to reduce CPU |
1612 | * overheads. |
1613 | * |
1614 | * (N * 10ms) on 2^N concurrent tasks. |
1615 | */ |
1616 | if (hi > lo) |
1617 | t += (hi - lo) * (10 * HZ) / 1024; |
1618 | |
1619 | /* |
1620 | * This is a bit convoluted. We try to base the next nr_dirtied_pause |
1621 | * on the much more stable dirty_ratelimit. However the next pause time |
1622 | * will be computed based on task_ratelimit and the two rate limits may |
1623 | * depart considerably at some time. Especially if task_ratelimit goes |
1624 | * below dirty_ratelimit/2 and the target pause is max_pause, the next |
1625 | * pause time will be max_pause*2 _trimmed down_ to max_pause. As a |
1626 | * result task_ratelimit won't be executed faithfully, which could |
1627 | * eventually bring down dirty_ratelimit. |
1628 | * |
1629 | * We apply two rules to fix it up: |
1630 | * 1) try to estimate the next pause time and if necessary, use a lower |
1631 | * nr_dirtied_pause so as not to exceed max_pause. When this happens, |
1632 | * nr_dirtied_pause will be "dancing" with task_ratelimit. |
1633 | * 2) limit the target pause time to max_pause/2, so that the normal |
1634 | * small fluctuations of task_ratelimit won't trigger rule (1) and |
1635 | * nr_dirtied_pause will remain as stable as dirty_ratelimit. |
1636 | */ |
1637 | t = min(t, 1 + max_pause / 2); |
1638 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); |
1639 | |
1640 | /* |
1641 | * Tiny nr_dirtied_pause is found to hurt I/O performance in the test |
1642 | * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. |
1643 | * When the 16 consecutive reads are often interrupted by some dirty |
1644 | * throttling pause during the async writes, cfq will go into idles |
1645 | * (deadline is fine). So push nr_dirtied_pause as high as possible |
1646 | * until reaches DIRTY_POLL_THRESH=32 pages. |
1647 | */ |
1648 | if (pages < DIRTY_POLL_THRESH) { |
1649 | t = max_pause; |
1650 | pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); |
1651 | if (pages > DIRTY_POLL_THRESH) { |
1652 | pages = DIRTY_POLL_THRESH; |
1653 | t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; |
1654 | } |
1655 | } |
1656 | |
1657 | pause = HZ * pages / (task_ratelimit + 1); |
1658 | if (pause > max_pause) { |
1659 | t = max_pause; |
1660 | pages = task_ratelimit * t / roundup_pow_of_two(HZ); |
1661 | } |
1662 | |
1663 | *nr_dirtied_pause = pages; |
1664 | /* |
1665 | * The minimal pause time will normally be half the target pause time. |
1666 | */ |
1667 | return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; |
1668 | } |
1669 | |
1670 | static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) |
1671 | { |
1672 | struct bdi_writeback *wb = dtc->wb; |
1673 | unsigned long wb_reclaimable; |
1674 | |
1675 | /* |
1676 | * wb_thresh is not treated as some limiting factor as |
1677 | * dirty_thresh, due to reasons |
1678 | * - in JBOD setup, wb_thresh can fluctuate a lot |
1679 | * - in a system with HDD and USB key, the USB key may somehow |
1680 | * go into state (wb_dirty >> wb_thresh) either because |
1681 | * wb_dirty starts high, or because wb_thresh drops low. |
1682 | * In this case we don't want to hard throttle the USB key |
1683 | * dirtiers for 100 seconds until wb_dirty drops under |
1684 | * wb_thresh. Instead the auxiliary wb control line in |
1685 | * wb_position_ratio() will let the dirtier task progress |
1686 | * at some rate <= (write_bw / 2) for bringing down wb_dirty. |
1687 | */ |
1688 | dtc->wb_thresh = __wb_calc_thresh(dtc, thresh: dtc->thresh); |
1689 | dtc->wb_bg_thresh = dtc->thresh ? |
1690 | div_u64(dividend: (u64)dtc->wb_thresh * dtc->bg_thresh, divisor: dtc->thresh) : 0; |
1691 | |
1692 | /* |
1693 | * In order to avoid the stacked BDI deadlock we need |
1694 | * to ensure we accurately count the 'dirty' pages when |
1695 | * the threshold is low. |
1696 | * |
1697 | * Otherwise it would be possible to get thresh+n pages |
1698 | * reported dirty, even though there are thresh-m pages |
1699 | * actually dirty; with m+n sitting in the percpu |
1700 | * deltas. |
1701 | */ |
1702 | if (dtc->wb_thresh < 2 * wb_stat_error()) { |
1703 | wb_reclaimable = wb_stat_sum(wb, item: WB_RECLAIMABLE); |
1704 | dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, item: WB_WRITEBACK); |
1705 | } else { |
1706 | wb_reclaimable = wb_stat(wb, item: WB_RECLAIMABLE); |
1707 | dtc->wb_dirty = wb_reclaimable + wb_stat(wb, item: WB_WRITEBACK); |
1708 | } |
1709 | } |
1710 | |
1711 | static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc, |
1712 | bool strictlimit) |
1713 | { |
1714 | unsigned long dirty, thresh; |
1715 | |
1716 | if (strictlimit) { |
1717 | dirty = dtc->wb_dirty; |
1718 | thresh = dtc->wb_thresh; |
1719 | } else { |
1720 | dirty = dtc->dirty; |
1721 | thresh = dtc->thresh; |
1722 | } |
1723 | |
1724 | return dirty_poll_interval(dirty, thresh); |
1725 | } |
1726 | |
1727 | /* |
1728 | * Throttle it only when the background writeback cannot catch-up. This avoids |
1729 | * (excessively) small writeouts when the wb limits are ramping up in case of |
1730 | * !strictlimit. |
1731 | * |
1732 | * In strictlimit case make decision based on the wb counters and limits. Small |
1733 | * writeouts when the wb limits are ramping up are the price we consciously pay |
1734 | * for strictlimit-ing. |
1735 | */ |
1736 | static void domain_dirty_freerun(struct dirty_throttle_control *dtc, |
1737 | bool strictlimit) |
1738 | { |
1739 | unsigned long dirty, thresh, bg_thresh; |
1740 | |
1741 | if (unlikely(strictlimit)) { |
1742 | wb_dirty_limits(dtc); |
1743 | dirty = dtc->wb_dirty; |
1744 | thresh = dtc->wb_thresh; |
1745 | bg_thresh = dtc->wb_bg_thresh; |
1746 | } else { |
1747 | dirty = dtc->dirty; |
1748 | thresh = dtc->thresh; |
1749 | bg_thresh = dtc->bg_thresh; |
1750 | } |
1751 | dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh); |
1752 | } |
1753 | |
1754 | static void balance_domain_limits(struct dirty_throttle_control *dtc, |
1755 | bool strictlimit) |
1756 | { |
1757 | domain_dirty_avail(dtc, include_writeback: true); |
1758 | domain_dirty_limits(dtc); |
1759 | domain_dirty_freerun(dtc, strictlimit); |
1760 | } |
1761 | |
1762 | static void wb_dirty_freerun(struct dirty_throttle_control *dtc, |
1763 | bool strictlimit) |
1764 | { |
1765 | dtc->freerun = false; |
1766 | |
1767 | /* was already handled in domain_dirty_freerun */ |
1768 | if (strictlimit) |
1769 | return; |
1770 | |
1771 | wb_dirty_limits(dtc); |
1772 | /* |
1773 | * LOCAL_THROTTLE tasks must not be throttled when below the per-wb |
1774 | * freerun ceiling. |
1775 | */ |
1776 | if (!(current->flags & PF_LOCAL_THROTTLE)) |
1777 | return; |
1778 | |
1779 | dtc->freerun = dtc->wb_dirty < |
1780 | dirty_freerun_ceiling(thresh: dtc->wb_thresh, bg_thresh: dtc->wb_bg_thresh); |
1781 | } |
1782 | |
1783 | static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc, |
1784 | bool strictlimit) |
1785 | { |
1786 | dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) && |
1787 | ((dtc->dirty > dtc->thresh) || strictlimit); |
1788 | } |
1789 | |
1790 | /* |
1791 | * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is |
1792 | * in freerun state. Please don't use these invalid fields in freerun case. |
1793 | */ |
1794 | static void balance_wb_limits(struct dirty_throttle_control *dtc, |
1795 | bool strictlimit) |
1796 | { |
1797 | wb_dirty_freerun(dtc, strictlimit); |
1798 | if (dtc->freerun) |
1799 | return; |
1800 | |
1801 | wb_dirty_exceeded(dtc, strictlimit); |
1802 | wb_position_ratio(dtc); |
1803 | } |
1804 | |
1805 | /* |
1806 | * balance_dirty_pages() must be called by processes which are generating dirty |
1807 | * data. It looks at the number of dirty pages in the machine and will force |
1808 | * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. |
1809 | * If we're over `background_thresh' then the writeback threads are woken to |
1810 | * perform some writeout. |
1811 | */ |
1812 | static int balance_dirty_pages(struct bdi_writeback *wb, |
1813 | unsigned long pages_dirtied, unsigned int flags) |
1814 | { |
1815 | struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; |
1816 | struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; |
1817 | struct dirty_throttle_control * const gdtc = &gdtc_stor; |
1818 | struct dirty_throttle_control * const mdtc = mdtc_valid(dtc: &mdtc_stor) ? |
1819 | &mdtc_stor : NULL; |
1820 | struct dirty_throttle_control *sdtc; |
1821 | unsigned long nr_dirty; |
1822 | long period; |
1823 | long pause; |
1824 | long max_pause; |
1825 | long min_pause; |
1826 | int nr_dirtied_pause; |
1827 | unsigned long task_ratelimit; |
1828 | unsigned long dirty_ratelimit; |
1829 | struct backing_dev_info *bdi = wb->bdi; |
1830 | bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; |
1831 | unsigned long start_time = jiffies; |
1832 | int ret = 0; |
1833 | |
1834 | for (;;) { |
1835 | unsigned long now = jiffies; |
1836 | |
1837 | nr_dirty = global_node_page_state(item: NR_FILE_DIRTY); |
1838 | |
1839 | balance_domain_limits(dtc: gdtc, strictlimit); |
1840 | if (mdtc) { |
1841 | /* |
1842 | * If @wb belongs to !root memcg, repeat the same |
1843 | * basic calculations for the memcg domain. |
1844 | */ |
1845 | balance_domain_limits(dtc: mdtc, strictlimit); |
1846 | } |
1847 | |
1848 | /* |
1849 | * In laptop mode, we wait until hitting the higher threshold |
1850 | * before starting background writeout, and then write out all |
1851 | * the way down to the lower threshold. So slow writers cause |
1852 | * minimal disk activity. |
1853 | * |
1854 | * In normal mode, we start background writeout at the lower |
1855 | * background_thresh, to keep the amount of dirty memory low. |
1856 | */ |
1857 | if (!laptop_mode && nr_dirty > gdtc->bg_thresh && |
1858 | !writeback_in_progress(wb)) |
1859 | wb_start_background_writeback(wb); |
1860 | |
1861 | /* |
1862 | * If memcg domain is in effect, @dirty should be under |
1863 | * both global and memcg freerun ceilings. |
1864 | */ |
1865 | if (gdtc->freerun && (!mdtc || mdtc->freerun)) { |
1866 | unsigned long intv; |
1867 | unsigned long m_intv; |
1868 | |
1869 | free_running: |
1870 | intv = domain_poll_intv(dtc: gdtc, strictlimit); |
1871 | m_intv = ULONG_MAX; |
1872 | |
1873 | current->dirty_paused_when = now; |
1874 | current->nr_dirtied = 0; |
1875 | if (mdtc) |
1876 | m_intv = domain_poll_intv(dtc: mdtc, strictlimit); |
1877 | current->nr_dirtied_pause = min(intv, m_intv); |
1878 | break; |
1879 | } |
1880 | |
1881 | /* Start writeback even when in laptop mode */ |
1882 | if (unlikely(!writeback_in_progress(wb))) |
1883 | wb_start_background_writeback(wb); |
1884 | |
1885 | mem_cgroup_flush_foreign(wb); |
1886 | |
1887 | /* |
1888 | * Calculate global domain's pos_ratio and select the |
1889 | * global dtc by default. |
1890 | */ |
1891 | balance_wb_limits(dtc: gdtc, strictlimit); |
1892 | if (gdtc->freerun) |
1893 | goto free_running; |
1894 | sdtc = gdtc; |
1895 | |
1896 | if (mdtc) { |
1897 | /* |
1898 | * If memcg domain is in effect, calculate its |
1899 | * pos_ratio. @wb should satisfy constraints from |
1900 | * both global and memcg domains. Choose the one |
1901 | * w/ lower pos_ratio. |
1902 | */ |
1903 | balance_wb_limits(dtc: mdtc, strictlimit); |
1904 | if (mdtc->freerun) |
1905 | goto free_running; |
1906 | if (mdtc->pos_ratio < gdtc->pos_ratio) |
1907 | sdtc = mdtc; |
1908 | } |
1909 | |
1910 | wb->dirty_exceeded = gdtc->dirty_exceeded || |
1911 | (mdtc && mdtc->dirty_exceeded); |
1912 | if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + |
1913 | BANDWIDTH_INTERVAL)) |
1914 | __wb_update_bandwidth(gdtc, mdtc, update_ratelimit: true); |
1915 | |
1916 | /* throttle according to the chosen dtc */ |
1917 | dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); |
1918 | task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> |
1919 | RATELIMIT_CALC_SHIFT; |
1920 | max_pause = wb_max_pause(wb, wb_dirty: sdtc->wb_dirty); |
1921 | min_pause = wb_min_pause(wb, max_pause, |
1922 | task_ratelimit, dirty_ratelimit, |
1923 | nr_dirtied_pause: &nr_dirtied_pause); |
1924 | |
1925 | if (unlikely(task_ratelimit == 0)) { |
1926 | period = max_pause; |
1927 | pause = max_pause; |
1928 | goto pause; |
1929 | } |
1930 | period = HZ * pages_dirtied / task_ratelimit; |
1931 | pause = period; |
1932 | if (current->dirty_paused_when) |
1933 | pause -= now - current->dirty_paused_when; |
1934 | /* |
1935 | * For less than 1s think time (ext3/4 may block the dirtier |
1936 | * for up to 800ms from time to time on 1-HDD; so does xfs, |
1937 | * however at much less frequency), try to compensate it in |
1938 | * future periods by updating the virtual time; otherwise just |
1939 | * do a reset, as it may be a light dirtier. |
1940 | */ |
1941 | if (pause < min_pause) { |
1942 | trace_balance_dirty_pages(wb, |
1943 | dtc: sdtc, |
1944 | dirty_ratelimit, |
1945 | task_ratelimit, |
1946 | dirtied: pages_dirtied, |
1947 | period, |
1948 | min(pause, 0L), |
1949 | start_time); |
1950 | if (pause < -HZ) { |
1951 | current->dirty_paused_when = now; |
1952 | current->nr_dirtied = 0; |
1953 | } else if (period) { |
1954 | current->dirty_paused_when += period; |
1955 | current->nr_dirtied = 0; |
1956 | } else if (current->nr_dirtied_pause <= pages_dirtied) |
1957 | current->nr_dirtied_pause += pages_dirtied; |
1958 | break; |
1959 | } |
1960 | if (unlikely(pause > max_pause)) { |
1961 | /* for occasional dropped task_ratelimit */ |
1962 | now += min(pause - max_pause, max_pause); |
1963 | pause = max_pause; |
1964 | } |
1965 | |
1966 | pause: |
1967 | trace_balance_dirty_pages(wb, |
1968 | dtc: sdtc, |
1969 | dirty_ratelimit, |
1970 | task_ratelimit, |
1971 | dirtied: pages_dirtied, |
1972 | period, |
1973 | pause, |
1974 | start_time); |
1975 | if (flags & BDP_ASYNC) { |
1976 | ret = -EAGAIN; |
1977 | break; |
1978 | } |
1979 | __set_current_state(TASK_KILLABLE); |
1980 | bdi->last_bdp_sleep = jiffies; |
1981 | io_schedule_timeout(timeout: pause); |
1982 | |
1983 | current->dirty_paused_when = now + pause; |
1984 | current->nr_dirtied = 0; |
1985 | current->nr_dirtied_pause = nr_dirtied_pause; |
1986 | |
1987 | /* |
1988 | * This is typically equal to (dirty < thresh) and can also |
1989 | * keep "1000+ dd on a slow USB stick" under control. |
1990 | */ |
1991 | if (task_ratelimit) |
1992 | break; |
1993 | |
1994 | /* |
1995 | * In the case of an unresponsive NFS server and the NFS dirty |
1996 | * pages exceeds dirty_thresh, give the other good wb's a pipe |
1997 | * to go through, so that tasks on them still remain responsive. |
1998 | * |
1999 | * In theory 1 page is enough to keep the consumer-producer |
2000 | * pipe going: the flusher cleans 1 page => the task dirties 1 |
2001 | * more page. However wb_dirty has accounting errors. So use |
2002 | * the larger and more IO friendly wb_stat_error. |
2003 | */ |
2004 | if (sdtc->wb_dirty <= wb_stat_error()) |
2005 | break; |
2006 | |
2007 | if (fatal_signal_pending(current)) |
2008 | break; |
2009 | } |
2010 | return ret; |
2011 | } |
2012 | |
2013 | static DEFINE_PER_CPU(int, bdp_ratelimits); |
2014 | |
2015 | /* |
2016 | * Normal tasks are throttled by |
2017 | * loop { |
2018 | * dirty tsk->nr_dirtied_pause pages; |
2019 | * take a snap in balance_dirty_pages(); |
2020 | * } |
2021 | * However there is a worst case. If every task exit immediately when dirtied |
2022 | * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be |
2023 | * called to throttle the page dirties. The solution is to save the not yet |
2024 | * throttled page dirties in dirty_throttle_leaks on task exit and charge them |
2025 | * randomly into the running tasks. This works well for the above worst case, |
2026 | * as the new task will pick up and accumulate the old task's leaked dirty |
2027 | * count and eventually get throttled. |
2028 | */ |
2029 | DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; |
2030 | |
2031 | /** |
2032 | * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. |
2033 | * @mapping: address_space which was dirtied. |
2034 | * @flags: BDP flags. |
2035 | * |
2036 | * Processes which are dirtying memory should call in here once for each page |
2037 | * which was newly dirtied. The function will periodically check the system's |
2038 | * dirty state and will initiate writeback if needed. |
2039 | * |
2040 | * See balance_dirty_pages_ratelimited() for details. |
2041 | * |
2042 | * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to |
2043 | * indicate that memory is out of balance and the caller must wait |
2044 | * for I/O to complete. Otherwise, it will return 0 to indicate |
2045 | * that either memory was already in balance, or it was able to sleep |
2046 | * until the amount of dirty memory returned to balance. |
2047 | */ |
2048 | int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, |
2049 | unsigned int flags) |
2050 | { |
2051 | struct inode *inode = mapping->host; |
2052 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
2053 | struct bdi_writeback *wb = NULL; |
2054 | int ratelimit; |
2055 | int ret = 0; |
2056 | int *p; |
2057 | |
2058 | if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) |
2059 | return ret; |
2060 | |
2061 | if (inode_cgwb_enabled(inode)) |
2062 | wb = wb_get_create_current(bdi, GFP_KERNEL); |
2063 | if (!wb) |
2064 | wb = &bdi->wb; |
2065 | |
2066 | ratelimit = current->nr_dirtied_pause; |
2067 | if (wb->dirty_exceeded) |
2068 | ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); |
2069 | |
2070 | preempt_disable(); |
2071 | /* |
2072 | * This prevents one CPU to accumulate too many dirtied pages without |
2073 | * calling into balance_dirty_pages(), which can happen when there are |
2074 | * 1000+ tasks, all of them start dirtying pages at exactly the same |
2075 | * time, hence all honoured too large initial task->nr_dirtied_pause. |
2076 | */ |
2077 | p = this_cpu_ptr(&bdp_ratelimits); |
2078 | if (unlikely(current->nr_dirtied >= ratelimit)) |
2079 | *p = 0; |
2080 | else if (unlikely(*p >= ratelimit_pages)) { |
2081 | *p = 0; |
2082 | ratelimit = 0; |
2083 | } |
2084 | /* |
2085 | * Pick up the dirtied pages by the exited tasks. This avoids lots of |
2086 | * short-lived tasks (eg. gcc invocations in a kernel build) escaping |
2087 | * the dirty throttling and livelock other long-run dirtiers. |
2088 | */ |
2089 | p = this_cpu_ptr(&dirty_throttle_leaks); |
2090 | if (*p > 0 && current->nr_dirtied < ratelimit) { |
2091 | unsigned long nr_pages_dirtied; |
2092 | nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); |
2093 | *p -= nr_pages_dirtied; |
2094 | current->nr_dirtied += nr_pages_dirtied; |
2095 | } |
2096 | preempt_enable(); |
2097 | |
2098 | if (unlikely(current->nr_dirtied >= ratelimit)) |
2099 | ret = balance_dirty_pages(wb, current->nr_dirtied, flags); |
2100 | |
2101 | wb_put(wb); |
2102 | return ret; |
2103 | } |
2104 | EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); |
2105 | |
2106 | /** |
2107 | * balance_dirty_pages_ratelimited - balance dirty memory state. |
2108 | * @mapping: address_space which was dirtied. |
2109 | * |
2110 | * Processes which are dirtying memory should call in here once for each page |
2111 | * which was newly dirtied. The function will periodically check the system's |
2112 | * dirty state and will initiate writeback if needed. |
2113 | * |
2114 | * Once we're over the dirty memory limit we decrease the ratelimiting |
2115 | * by a lot, to prevent individual processes from overshooting the limit |
2116 | * by (ratelimit_pages) each. |
2117 | */ |
2118 | void balance_dirty_pages_ratelimited(struct address_space *mapping) |
2119 | { |
2120 | balance_dirty_pages_ratelimited_flags(mapping, 0); |
2121 | } |
2122 | EXPORT_SYMBOL(balance_dirty_pages_ratelimited); |
2123 | |
2124 | /* |
2125 | * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty |
2126 | * and thresh, but it's for background writeback. |
2127 | */ |
2128 | static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc) |
2129 | { |
2130 | struct bdi_writeback *wb = dtc->wb; |
2131 | |
2132 | dtc->wb_bg_thresh = __wb_calc_thresh(dtc, thresh: dtc->bg_thresh); |
2133 | if (dtc->wb_bg_thresh < 2 * wb_stat_error()) |
2134 | dtc->wb_dirty = wb_stat_sum(wb, item: WB_RECLAIMABLE); |
2135 | else |
2136 | dtc->wb_dirty = wb_stat(wb, item: WB_RECLAIMABLE); |
2137 | } |
2138 | |
2139 | static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc) |
2140 | { |
2141 | domain_dirty_avail(dtc, include_writeback: false); |
2142 | domain_dirty_limits(dtc); |
2143 | if (dtc->dirty > dtc->bg_thresh) |
2144 | return true; |
2145 | |
2146 | wb_bg_dirty_limits(dtc); |
2147 | if (dtc->wb_dirty > dtc->wb_bg_thresh) |
2148 | return true; |
2149 | |
2150 | return false; |
2151 | } |
2152 | |
2153 | /** |
2154 | * wb_over_bg_thresh - does @wb need to be written back? |
2155 | * @wb: bdi_writeback of interest |
2156 | * |
2157 | * Determines whether background writeback should keep writing @wb or it's |
2158 | * clean enough. |
2159 | * |
2160 | * Return: %true if writeback should continue. |
2161 | */ |
2162 | bool wb_over_bg_thresh(struct bdi_writeback *wb) |
2163 | { |
2164 | struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; |
2165 | struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; |
2166 | |
2167 | if (domain_over_bg_thresh(dtc: &gdtc)) |
2168 | return true; |
2169 | |
2170 | if (mdtc_valid(dtc: &mdtc)) |
2171 | return domain_over_bg_thresh(dtc: &mdtc); |
2172 | |
2173 | return false; |
2174 | } |
2175 | |
2176 | #ifdef CONFIG_SYSCTL |
2177 | /* |
2178 | * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs |
2179 | */ |
2180 | static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write, |
2181 | void *buffer, size_t *length, loff_t *ppos) |
2182 | { |
2183 | unsigned int old_interval = dirty_writeback_interval; |
2184 | int ret; |
2185 | |
2186 | ret = proc_dointvec(table, write, buffer, length, ppos); |
2187 | |
2188 | /* |
2189 | * Writing 0 to dirty_writeback_interval will disable periodic writeback |
2190 | * and a different non-zero value will wakeup the writeback threads. |
2191 | * wb_wakeup_delayed() would be more appropriate, but it's a pain to |
2192 | * iterate over all bdis and wbs. |
2193 | * The reason we do this is to make the change take effect immediately. |
2194 | */ |
2195 | if (!ret && write && dirty_writeback_interval && |
2196 | dirty_writeback_interval != old_interval) |
2197 | wakeup_flusher_threads(reason: WB_REASON_PERIODIC); |
2198 | |
2199 | return ret; |
2200 | } |
2201 | #endif |
2202 | |
2203 | void laptop_mode_timer_fn(struct timer_list *t) |
2204 | { |
2205 | struct backing_dev_info *backing_dev_info = |
2206 | timer_container_of(backing_dev_info, t, laptop_mode_wb_timer); |
2207 | |
2208 | wakeup_flusher_threads_bdi(bdi: backing_dev_info, reason: WB_REASON_LAPTOP_TIMER); |
2209 | } |
2210 | |
2211 | /* |
2212 | * We've spun up the disk and we're in laptop mode: schedule writeback |
2213 | * of all dirty data a few seconds from now. If the flush is already scheduled |
2214 | * then push it back - the user is still using the disk. |
2215 | */ |
2216 | void laptop_io_completion(struct backing_dev_info *info) |
2217 | { |
2218 | mod_timer(timer: &info->laptop_mode_wb_timer, expires: jiffies + laptop_mode); |
2219 | } |
2220 | |
2221 | /* |
2222 | * We're in laptop mode and we've just synced. The sync's writes will have |
2223 | * caused another writeback to be scheduled by laptop_io_completion. |
2224 | * Nothing needs to be written back anymore, so we unschedule the writeback. |
2225 | */ |
2226 | void laptop_sync_completion(void) |
2227 | { |
2228 | struct backing_dev_info *bdi; |
2229 | |
2230 | rcu_read_lock(); |
2231 | |
2232 | list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) |
2233 | timer_delete(timer: &bdi->laptop_mode_wb_timer); |
2234 | |
2235 | rcu_read_unlock(); |
2236 | } |
2237 | |
2238 | /* |
2239 | * If ratelimit_pages is too high then we can get into dirty-data overload |
2240 | * if a large number of processes all perform writes at the same time. |
2241 | * |
2242 | * Here we set ratelimit_pages to a level which ensures that when all CPUs are |
2243 | * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory |
2244 | * thresholds. |
2245 | */ |
2246 | |
2247 | void writeback_set_ratelimit(void) |
2248 | { |
2249 | struct wb_domain *dom = &global_wb_domain; |
2250 | unsigned long background_thresh; |
2251 | unsigned long dirty_thresh; |
2252 | |
2253 | global_dirty_limits(pbackground: &background_thresh, pdirty: &dirty_thresh); |
2254 | dom->dirty_limit = dirty_thresh; |
2255 | ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); |
2256 | if (ratelimit_pages < 16) |
2257 | ratelimit_pages = 16; |
2258 | } |
2259 | |
2260 | static int page_writeback_cpu_online(unsigned int cpu) |
2261 | { |
2262 | writeback_set_ratelimit(); |
2263 | return 0; |
2264 | } |
2265 | |
2266 | #ifdef CONFIG_SYSCTL |
2267 | |
2268 | /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ |
2269 | static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; |
2270 | |
2271 | static const struct ctl_table vm_page_writeback_sysctls[] = { |
2272 | { |
2273 | .procname = "dirty_background_ratio" , |
2274 | .data = &dirty_background_ratio, |
2275 | .maxlen = sizeof(dirty_background_ratio), |
2276 | .mode = 0644, |
2277 | .proc_handler = dirty_background_ratio_handler, |
2278 | .extra1 = SYSCTL_ZERO, |
2279 | .extra2 = SYSCTL_ONE_HUNDRED, |
2280 | }, |
2281 | { |
2282 | .procname = "dirty_background_bytes" , |
2283 | .data = &dirty_background_bytes, |
2284 | .maxlen = sizeof(dirty_background_bytes), |
2285 | .mode = 0644, |
2286 | .proc_handler = dirty_background_bytes_handler, |
2287 | .extra1 = SYSCTL_LONG_ONE, |
2288 | }, |
2289 | { |
2290 | .procname = "dirty_ratio" , |
2291 | .data = &vm_dirty_ratio, |
2292 | .maxlen = sizeof(vm_dirty_ratio), |
2293 | .mode = 0644, |
2294 | .proc_handler = dirty_ratio_handler, |
2295 | .extra1 = SYSCTL_ZERO, |
2296 | .extra2 = SYSCTL_ONE_HUNDRED, |
2297 | }, |
2298 | { |
2299 | .procname = "dirty_bytes" , |
2300 | .data = &vm_dirty_bytes, |
2301 | .maxlen = sizeof(vm_dirty_bytes), |
2302 | .mode = 0644, |
2303 | .proc_handler = dirty_bytes_handler, |
2304 | .extra1 = (void *)&dirty_bytes_min, |
2305 | }, |
2306 | { |
2307 | .procname = "dirty_writeback_centisecs" , |
2308 | .data = &dirty_writeback_interval, |
2309 | .maxlen = sizeof(dirty_writeback_interval), |
2310 | .mode = 0644, |
2311 | .proc_handler = dirty_writeback_centisecs_handler, |
2312 | }, |
2313 | { |
2314 | .procname = "dirty_expire_centisecs" , |
2315 | .data = &dirty_expire_interval, |
2316 | .maxlen = sizeof(dirty_expire_interval), |
2317 | .mode = 0644, |
2318 | .proc_handler = proc_dointvec_minmax, |
2319 | .extra1 = SYSCTL_ZERO, |
2320 | }, |
2321 | #ifdef CONFIG_HIGHMEM |
2322 | { |
2323 | .procname = "highmem_is_dirtyable" , |
2324 | .data = &vm_highmem_is_dirtyable, |
2325 | .maxlen = sizeof(vm_highmem_is_dirtyable), |
2326 | .mode = 0644, |
2327 | .proc_handler = proc_dointvec_minmax, |
2328 | .extra1 = SYSCTL_ZERO, |
2329 | .extra2 = SYSCTL_ONE, |
2330 | }, |
2331 | #endif |
2332 | { |
2333 | .procname = "laptop_mode" , |
2334 | .data = &laptop_mode, |
2335 | .maxlen = sizeof(laptop_mode), |
2336 | .mode = 0644, |
2337 | .proc_handler = proc_dointvec_jiffies, |
2338 | }, |
2339 | }; |
2340 | #endif |
2341 | |
2342 | /* |
2343 | * Called early on to tune the page writeback dirty limits. |
2344 | * |
2345 | * We used to scale dirty pages according to how total memory |
2346 | * related to pages that could be allocated for buffers. |
2347 | * |
2348 | * However, that was when we used "dirty_ratio" to scale with |
2349 | * all memory, and we don't do that any more. "dirty_ratio" |
2350 | * is now applied to total non-HIGHPAGE memory, and as such we can't |
2351 | * get into the old insane situation any more where we had |
2352 | * large amounts of dirty pages compared to a small amount of |
2353 | * non-HIGHMEM memory. |
2354 | * |
2355 | * But we might still want to scale the dirty_ratio by how |
2356 | * much memory the box has.. |
2357 | */ |
2358 | void __init page_writeback_init(void) |
2359 | { |
2360 | BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); |
2361 | |
2362 | cpuhp_setup_state(state: CPUHP_AP_ONLINE_DYN, name: "mm/writeback:online" , |
2363 | startup: page_writeback_cpu_online, NULL); |
2364 | cpuhp_setup_state(state: CPUHP_MM_WRITEBACK_DEAD, name: "mm/writeback:dead" , NULL, |
2365 | teardown: page_writeback_cpu_online); |
2366 | #ifdef CONFIG_SYSCTL |
2367 | register_sysctl_init("vm" , vm_page_writeback_sysctls); |
2368 | #endif |
2369 | } |
2370 | |
2371 | /** |
2372 | * tag_pages_for_writeback - tag pages to be written by writeback |
2373 | * @mapping: address space structure to write |
2374 | * @start: starting page index |
2375 | * @end: ending page index (inclusive) |
2376 | * |
2377 | * This function scans the page range from @start to @end (inclusive) and tags |
2378 | * all pages that have DIRTY tag set with a special TOWRITE tag. The caller |
2379 | * can then use the TOWRITE tag to identify pages eligible for writeback. |
2380 | * This mechanism is used to avoid livelocking of writeback by a process |
2381 | * steadily creating new dirty pages in the file (thus it is important for this |
2382 | * function to be quick so that it can tag pages faster than a dirtying process |
2383 | * can create them). |
2384 | */ |
2385 | void tag_pages_for_writeback(struct address_space *mapping, |
2386 | pgoff_t start, pgoff_t end) |
2387 | { |
2388 | XA_STATE(xas, &mapping->i_pages, start); |
2389 | unsigned int tagged = 0; |
2390 | void *page; |
2391 | |
2392 | xas_lock_irq(&xas); |
2393 | xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { |
2394 | xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); |
2395 | if (++tagged % XA_CHECK_SCHED) |
2396 | continue; |
2397 | |
2398 | xas_pause(&xas); |
2399 | xas_unlock_irq(&xas); |
2400 | cond_resched(); |
2401 | xas_lock_irq(&xas); |
2402 | } |
2403 | xas_unlock_irq(&xas); |
2404 | } |
2405 | EXPORT_SYMBOL(tag_pages_for_writeback); |
2406 | |
2407 | static bool folio_prepare_writeback(struct address_space *mapping, |
2408 | struct writeback_control *wbc, struct folio *folio) |
2409 | { |
2410 | /* |
2411 | * Folio truncated or invalidated. We can freely skip it then, |
2412 | * even for data integrity operations: the folio has disappeared |
2413 | * concurrently, so there could be no real expectation of this |
2414 | * data integrity operation even if there is now a new, dirty |
2415 | * folio at the same pagecache index. |
2416 | */ |
2417 | if (unlikely(folio->mapping != mapping)) |
2418 | return false; |
2419 | |
2420 | /* |
2421 | * Did somebody else write it for us? |
2422 | */ |
2423 | if (!folio_test_dirty(folio)) |
2424 | return false; |
2425 | |
2426 | if (folio_test_writeback(folio)) { |
2427 | if (wbc->sync_mode == WB_SYNC_NONE) |
2428 | return false; |
2429 | folio_wait_writeback(folio); |
2430 | } |
2431 | BUG_ON(folio_test_writeback(folio)); |
2432 | |
2433 | if (!folio_clear_dirty_for_io(folio)) |
2434 | return false; |
2435 | |
2436 | return true; |
2437 | } |
2438 | |
2439 | static xa_mark_t wbc_to_tag(struct writeback_control *wbc) |
2440 | { |
2441 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
2442 | return PAGECACHE_TAG_TOWRITE; |
2443 | return PAGECACHE_TAG_DIRTY; |
2444 | } |
2445 | |
2446 | static pgoff_t wbc_end(struct writeback_control *wbc) |
2447 | { |
2448 | if (wbc->range_cyclic) |
2449 | return -1; |
2450 | return wbc->range_end >> PAGE_SHIFT; |
2451 | } |
2452 | |
2453 | static struct folio *writeback_get_folio(struct address_space *mapping, |
2454 | struct writeback_control *wbc) |
2455 | { |
2456 | struct folio *folio; |
2457 | |
2458 | retry: |
2459 | folio = folio_batch_next(fbatch: &wbc->fbatch); |
2460 | if (!folio) { |
2461 | folio_batch_release(fbatch: &wbc->fbatch); |
2462 | cond_resched(); |
2463 | filemap_get_folios_tag(mapping, start: &wbc->index, end: wbc_end(wbc), |
2464 | tag: wbc_to_tag(wbc), fbatch: &wbc->fbatch); |
2465 | folio = folio_batch_next(fbatch: &wbc->fbatch); |
2466 | if (!folio) |
2467 | return NULL; |
2468 | } |
2469 | |
2470 | folio_lock(folio); |
2471 | if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) { |
2472 | folio_unlock(folio); |
2473 | goto retry; |
2474 | } |
2475 | |
2476 | trace_wbc_writepage(wbc, bdi: inode_to_bdi(inode: mapping->host)); |
2477 | return folio; |
2478 | } |
2479 | |
2480 | /** |
2481 | * writeback_iter - iterate folio of a mapping for writeback |
2482 | * @mapping: address space structure to write |
2483 | * @wbc: writeback context |
2484 | * @folio: previously iterated folio (%NULL to start) |
2485 | * @error: in-out pointer for writeback errors (see below) |
2486 | * |
2487 | * This function returns the next folio for the writeback operation described by |
2488 | * @wbc on @mapping and should be called in a while loop in the ->writepages |
2489 | * implementation. |
2490 | * |
2491 | * To start the writeback operation, %NULL is passed in the @folio argument, and |
2492 | * for every subsequent iteration the folio returned previously should be passed |
2493 | * back in. |
2494 | * |
2495 | * If there was an error in the per-folio writeback inside the writeback_iter() |
2496 | * loop, @error should be set to the error value. |
2497 | * |
2498 | * Once the writeback described in @wbc has finished, this function will return |
2499 | * %NULL and if there was an error in any iteration restore it to @error. |
2500 | * |
2501 | * Note: callers should not manually break out of the loop using break or goto |
2502 | * but must keep calling writeback_iter() until it returns %NULL. |
2503 | * |
2504 | * Return: the folio to write or %NULL if the loop is done. |
2505 | */ |
2506 | struct folio *writeback_iter(struct address_space *mapping, |
2507 | struct writeback_control *wbc, struct folio *folio, int *error) |
2508 | { |
2509 | if (!folio) { |
2510 | folio_batch_init(fbatch: &wbc->fbatch); |
2511 | wbc->saved_err = *error = 0; |
2512 | |
2513 | /* |
2514 | * For range cyclic writeback we remember where we stopped so |
2515 | * that we can continue where we stopped. |
2516 | * |
2517 | * For non-cyclic writeback we always start at the beginning of |
2518 | * the passed in range. |
2519 | */ |
2520 | if (wbc->range_cyclic) |
2521 | wbc->index = mapping->writeback_index; |
2522 | else |
2523 | wbc->index = wbc->range_start >> PAGE_SHIFT; |
2524 | |
2525 | /* |
2526 | * To avoid livelocks when other processes dirty new pages, we |
2527 | * first tag pages which should be written back and only then |
2528 | * start writing them. |
2529 | * |
2530 | * For data-integrity writeback we have to be careful so that we |
2531 | * do not miss some pages (e.g., because some other process has |
2532 | * cleared the TOWRITE tag we set). The rule we follow is that |
2533 | * TOWRITE tag can be cleared only by the process clearing the |
2534 | * DIRTY tag (and submitting the page for I/O). |
2535 | */ |
2536 | if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) |
2537 | tag_pages_for_writeback(mapping, wbc->index, |
2538 | wbc_end(wbc)); |
2539 | } else { |
2540 | wbc->nr_to_write -= folio_nr_pages(folio); |
2541 | |
2542 | WARN_ON_ONCE(*error > 0); |
2543 | |
2544 | /* |
2545 | * For integrity writeback we have to keep going until we have |
2546 | * written all the folios we tagged for writeback above, even if |
2547 | * we run past wbc->nr_to_write or encounter errors. |
2548 | * We stash away the first error we encounter in wbc->saved_err |
2549 | * so that it can be retrieved when we're done. This is because |
2550 | * the file system may still have state to clear for each folio. |
2551 | * |
2552 | * For background writeback we exit as soon as we run past |
2553 | * wbc->nr_to_write or encounter the first error. |
2554 | */ |
2555 | if (wbc->sync_mode == WB_SYNC_ALL) { |
2556 | if (*error && !wbc->saved_err) |
2557 | wbc->saved_err = *error; |
2558 | } else { |
2559 | if (*error || wbc->nr_to_write <= 0) |
2560 | goto done; |
2561 | } |
2562 | } |
2563 | |
2564 | folio = writeback_get_folio(mapping, wbc); |
2565 | if (!folio) { |
2566 | /* |
2567 | * To avoid deadlocks between range_cyclic writeback and callers |
2568 | * that hold folios in writeback to aggregate I/O until |
2569 | * the writeback iteration finishes, we do not loop back to the |
2570 | * start of the file. Doing so causes a folio lock/folio |
2571 | * writeback access order inversion - we should only ever lock |
2572 | * multiple folios in ascending folio->index order, and looping |
2573 | * back to the start of the file violates that rule and causes |
2574 | * deadlocks. |
2575 | */ |
2576 | if (wbc->range_cyclic) |
2577 | mapping->writeback_index = 0; |
2578 | |
2579 | /* |
2580 | * Return the first error we encountered (if there was any) to |
2581 | * the caller. |
2582 | */ |
2583 | *error = wbc->saved_err; |
2584 | } |
2585 | return folio; |
2586 | |
2587 | done: |
2588 | if (wbc->range_cyclic) |
2589 | mapping->writeback_index = folio_next_index(folio); |
2590 | folio_batch_release(fbatch: &wbc->fbatch); |
2591 | return NULL; |
2592 | } |
2593 | EXPORT_SYMBOL_GPL(writeback_iter); |
2594 | |
2595 | /** |
2596 | * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. |
2597 | * @mapping: address space structure to write |
2598 | * @wbc: subtract the number of written pages from *@wbc->nr_to_write |
2599 | * @writepage: function called for each page |
2600 | * @data: data passed to writepage function |
2601 | * |
2602 | * Return: %0 on success, negative error code otherwise |
2603 | * |
2604 | * Note: please use writeback_iter() instead. |
2605 | */ |
2606 | int write_cache_pages(struct address_space *mapping, |
2607 | struct writeback_control *wbc, writepage_t writepage, |
2608 | void *data) |
2609 | { |
2610 | struct folio *folio = NULL; |
2611 | int error; |
2612 | |
2613 | while ((folio = writeback_iter(mapping, wbc, folio, &error))) { |
2614 | error = writepage(folio, wbc, data); |
2615 | if (error == AOP_WRITEPAGE_ACTIVATE) { |
2616 | folio_unlock(folio); |
2617 | error = 0; |
2618 | } |
2619 | } |
2620 | |
2621 | return error; |
2622 | } |
2623 | EXPORT_SYMBOL(write_cache_pages); |
2624 | |
2625 | int do_writepages(struct address_space *mapping, struct writeback_control *wbc) |
2626 | { |
2627 | int ret; |
2628 | struct bdi_writeback *wb; |
2629 | |
2630 | if (wbc->nr_to_write <= 0) |
2631 | return 0; |
2632 | wb = inode_to_wb_wbc(inode: mapping->host, wbc); |
2633 | wb_bandwidth_estimate_start(wb); |
2634 | while (1) { |
2635 | if (mapping->a_ops->writepages) |
2636 | ret = mapping->a_ops->writepages(mapping, wbc); |
2637 | else |
2638 | /* deal with chardevs and other special files */ |
2639 | ret = 0; |
2640 | if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) |
2641 | break; |
2642 | |
2643 | /* |
2644 | * Lacking an allocation context or the locality or writeback |
2645 | * state of any of the inode's pages, throttle based on |
2646 | * writeback activity on the local node. It's as good a |
2647 | * guess as any. |
2648 | */ |
2649 | reclaim_throttle(NODE_DATA(numa_node_id()), |
2650 | reason: VMSCAN_THROTTLE_WRITEBACK); |
2651 | } |
2652 | /* |
2653 | * Usually few pages are written by now from those we've just submitted |
2654 | * but if there's constant writeback being submitted, this makes sure |
2655 | * writeback bandwidth is updated once in a while. |
2656 | */ |
2657 | if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + |
2658 | BANDWIDTH_INTERVAL)) |
2659 | wb_update_bandwidth(wb); |
2660 | return ret; |
2661 | } |
2662 | |
2663 | /* |
2664 | * For address_spaces which do not use buffers nor write back. |
2665 | */ |
2666 | bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) |
2667 | { |
2668 | if (!folio_test_dirty(folio)) |
2669 | return !folio_test_set_dirty(folio); |
2670 | return false; |
2671 | } |
2672 | EXPORT_SYMBOL(noop_dirty_folio); |
2673 | |
2674 | /* |
2675 | * Helper function for set_page_dirty family. |
2676 | * |
2677 | * NOTE: This relies on being atomic wrt interrupts. |
2678 | */ |
2679 | static void folio_account_dirtied(struct folio *folio, |
2680 | struct address_space *mapping) |
2681 | { |
2682 | struct inode *inode = mapping->host; |
2683 | |
2684 | trace_writeback_dirty_folio(folio, mapping); |
2685 | |
2686 | if (mapping_can_writeback(mapping)) { |
2687 | struct bdi_writeback *wb; |
2688 | long nr = folio_nr_pages(folio); |
2689 | |
2690 | inode_attach_wb(inode, folio); |
2691 | wb = inode_to_wb(inode); |
2692 | |
2693 | __lruvec_stat_mod_folio(folio, idx: NR_FILE_DIRTY, val: nr); |
2694 | __zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr); |
2695 | __node_stat_mod_folio(folio, item: NR_DIRTIED, nr); |
2696 | wb_stat_mod(wb, item: WB_RECLAIMABLE, amount: nr); |
2697 | wb_stat_mod(wb, item: WB_DIRTIED, amount: nr); |
2698 | task_io_account_write(bytes: nr * PAGE_SIZE); |
2699 | current->nr_dirtied += nr; |
2700 | __this_cpu_add(bdp_ratelimits, nr); |
2701 | |
2702 | mem_cgroup_track_foreign_dirty(folio, wb); |
2703 | } |
2704 | } |
2705 | |
2706 | /* |
2707 | * Helper function for deaccounting dirty page without writeback. |
2708 | * |
2709 | */ |
2710 | void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) |
2711 | { |
2712 | long nr = folio_nr_pages(folio); |
2713 | |
2714 | lruvec_stat_mod_folio(folio, idx: NR_FILE_DIRTY, val: -nr); |
2715 | zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr: -nr); |
2716 | wb_stat_mod(wb, item: WB_RECLAIMABLE, amount: -nr); |
2717 | task_io_account_cancelled_write(bytes: nr * PAGE_SIZE); |
2718 | } |
2719 | |
2720 | /* |
2721 | * Mark the folio dirty, and set it dirty in the page cache. |
2722 | * |
2723 | * If warn is true, then emit a warning if the folio is not uptodate and has |
2724 | * not been truncated. |
2725 | * |
2726 | * It is the caller's responsibility to prevent the folio from being truncated |
2727 | * while this function is in progress, although it may have been truncated |
2728 | * before this function is called. Most callers have the folio locked. |
2729 | * A few have the folio blocked from truncation through other means (e.g. |
2730 | * zap_vma_pages() has it mapped and is holding the page table lock). |
2731 | * When called from mark_buffer_dirty(), the filesystem should hold a |
2732 | * reference to the buffer_head that is being marked dirty, which causes |
2733 | * try_to_free_buffers() to fail. |
2734 | */ |
2735 | void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, |
2736 | int warn) |
2737 | { |
2738 | unsigned long flags; |
2739 | |
2740 | xa_lock_irqsave(&mapping->i_pages, flags); |
2741 | if (folio->mapping) { /* Race with truncate? */ |
2742 | WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); |
2743 | folio_account_dirtied(folio, mapping); |
2744 | __xa_set_mark(&mapping->i_pages, index: folio_index(folio), |
2745 | PAGECACHE_TAG_DIRTY); |
2746 | } |
2747 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
2748 | } |
2749 | |
2750 | /** |
2751 | * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. |
2752 | * @mapping: Address space this folio belongs to. |
2753 | * @folio: Folio to be marked as dirty. |
2754 | * |
2755 | * Filesystems which do not use buffer heads should call this function |
2756 | * from their dirty_folio address space operation. It ignores the |
2757 | * contents of folio_get_private(), so if the filesystem marks individual |
2758 | * blocks as dirty, the filesystem should handle that itself. |
2759 | * |
2760 | * This is also sometimes used by filesystems which use buffer_heads when |
2761 | * a single buffer is being dirtied: we want to set the folio dirty in |
2762 | * that case, but not all the buffers. This is a "bottom-up" dirtying, |
2763 | * whereas block_dirty_folio() is a "top-down" dirtying. |
2764 | * |
2765 | * The caller must ensure this doesn't race with truncation. Most will |
2766 | * simply hold the folio lock, but e.g. zap_pte_range() calls with the |
2767 | * folio mapped and the pte lock held, which also locks out truncation. |
2768 | */ |
2769 | bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) |
2770 | { |
2771 | if (folio_test_set_dirty(folio)) |
2772 | return false; |
2773 | |
2774 | __folio_mark_dirty(folio, mapping, warn: !folio_test_private(folio)); |
2775 | |
2776 | if (mapping->host) { |
2777 | /* !PageAnon && !swapper_space */ |
2778 | __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); |
2779 | } |
2780 | return true; |
2781 | } |
2782 | EXPORT_SYMBOL(filemap_dirty_folio); |
2783 | |
2784 | /** |
2785 | * folio_redirty_for_writepage - Decline to write a dirty folio. |
2786 | * @wbc: The writeback control. |
2787 | * @folio: The folio. |
2788 | * |
2789 | * When a writepage implementation decides that it doesn't want to write |
2790 | * @folio for some reason, it should call this function, unlock @folio and |
2791 | * return 0. |
2792 | * |
2793 | * Return: True if we redirtied the folio. False if someone else dirtied |
2794 | * it first. |
2795 | */ |
2796 | bool folio_redirty_for_writepage(struct writeback_control *wbc, |
2797 | struct folio *folio) |
2798 | { |
2799 | struct address_space *mapping = folio->mapping; |
2800 | long nr = folio_nr_pages(folio); |
2801 | bool ret; |
2802 | |
2803 | wbc->pages_skipped += nr; |
2804 | ret = filemap_dirty_folio(mapping, folio); |
2805 | if (mapping && mapping_can_writeback(mapping)) { |
2806 | struct inode *inode = mapping->host; |
2807 | struct bdi_writeback *wb; |
2808 | struct wb_lock_cookie cookie = {}; |
2809 | |
2810 | wb = unlocked_inode_to_wb_begin(inode, cookie: &cookie); |
2811 | current->nr_dirtied -= nr; |
2812 | node_stat_mod_folio(folio, item: NR_DIRTIED, nr: -nr); |
2813 | wb_stat_mod(wb, item: WB_DIRTIED, amount: -nr); |
2814 | unlocked_inode_to_wb_end(inode, cookie: &cookie); |
2815 | } |
2816 | return ret; |
2817 | } |
2818 | EXPORT_SYMBOL(folio_redirty_for_writepage); |
2819 | |
2820 | /** |
2821 | * folio_mark_dirty - Mark a folio as being modified. |
2822 | * @folio: The folio. |
2823 | * |
2824 | * The folio may not be truncated while this function is running. |
2825 | * Holding the folio lock is sufficient to prevent truncation, but some |
2826 | * callers cannot acquire a sleeping lock. These callers instead hold |
2827 | * the page table lock for a page table which contains at least one page |
2828 | * in this folio. Truncation will block on the page table lock as it |
2829 | * unmaps pages before removing the folio from its mapping. |
2830 | * |
2831 | * Return: True if the folio was newly dirtied, false if it was already dirty. |
2832 | */ |
2833 | bool folio_mark_dirty(struct folio *folio) |
2834 | { |
2835 | struct address_space *mapping = folio_mapping(folio); |
2836 | |
2837 | if (likely(mapping)) { |
2838 | /* |
2839 | * readahead/folio_deactivate could remain |
2840 | * PG_readahead/PG_reclaim due to race with folio_end_writeback |
2841 | * About readahead, if the folio is written, the flags would be |
2842 | * reset. So no problem. |
2843 | * About folio_deactivate, if the folio is redirtied, |
2844 | * the flag will be reset. So no problem. but if the |
2845 | * folio is used by readahead it will confuse readahead |
2846 | * and make it restart the size rampup process. But it's |
2847 | * a trivial problem. |
2848 | */ |
2849 | if (folio_test_reclaim(folio)) |
2850 | folio_clear_reclaim(folio); |
2851 | return mapping->a_ops->dirty_folio(mapping, folio); |
2852 | } |
2853 | |
2854 | return noop_dirty_folio(mapping, folio); |
2855 | } |
2856 | EXPORT_SYMBOL(folio_mark_dirty); |
2857 | |
2858 | /* |
2859 | * folio_mark_dirty() is racy if the caller has no reference against |
2860 | * folio->mapping->host, and if the folio is unlocked. This is because another |
2861 | * CPU could truncate the folio off the mapping and then free the mapping. |
2862 | * |
2863 | * Usually, the folio _is_ locked, or the caller is a user-space process which |
2864 | * holds a reference on the inode by having an open file. |
2865 | * |
2866 | * In other cases, the folio should be locked before running folio_mark_dirty(). |
2867 | */ |
2868 | bool folio_mark_dirty_lock(struct folio *folio) |
2869 | { |
2870 | bool ret; |
2871 | |
2872 | folio_lock(folio); |
2873 | ret = folio_mark_dirty(folio); |
2874 | folio_unlock(folio); |
2875 | return ret; |
2876 | } |
2877 | EXPORT_SYMBOL(folio_mark_dirty_lock); |
2878 | |
2879 | /* |
2880 | * This cancels just the dirty bit on the kernel page itself, it does NOT |
2881 | * actually remove dirty bits on any mmap's that may be around. It also |
2882 | * leaves the page tagged dirty, so any sync activity will still find it on |
2883 | * the dirty lists, and in particular, clear_page_dirty_for_io() will still |
2884 | * look at the dirty bits in the VM. |
2885 | * |
2886 | * Doing this should *normally* only ever be done when a page is truncated, |
2887 | * and is not actually mapped anywhere at all. However, fs/buffer.c does |
2888 | * this when it notices that somebody has cleaned out all the buffers on a |
2889 | * page without actually doing it through the VM. Can you say "ext3 is |
2890 | * horribly ugly"? Thought you could. |
2891 | */ |
2892 | void __folio_cancel_dirty(struct folio *folio) |
2893 | { |
2894 | struct address_space *mapping = folio_mapping(folio); |
2895 | |
2896 | if (mapping_can_writeback(mapping)) { |
2897 | struct inode *inode = mapping->host; |
2898 | struct bdi_writeback *wb; |
2899 | struct wb_lock_cookie cookie = {}; |
2900 | |
2901 | wb = unlocked_inode_to_wb_begin(inode, cookie: &cookie); |
2902 | |
2903 | if (folio_test_clear_dirty(folio)) |
2904 | folio_account_cleaned(folio, wb); |
2905 | |
2906 | unlocked_inode_to_wb_end(inode, cookie: &cookie); |
2907 | } else { |
2908 | folio_clear_dirty(folio); |
2909 | } |
2910 | } |
2911 | EXPORT_SYMBOL(__folio_cancel_dirty); |
2912 | |
2913 | /* |
2914 | * Clear a folio's dirty flag, while caring for dirty memory accounting. |
2915 | * Returns true if the folio was previously dirty. |
2916 | * |
2917 | * This is for preparing to put the folio under writeout. We leave |
2918 | * the folio tagged as dirty in the xarray so that a concurrent |
2919 | * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. |
2920 | * The ->writepage implementation will run either folio_start_writeback() |
2921 | * or folio_mark_dirty(), at which stage we bring the folio's dirty flag |
2922 | * and xarray dirty tag back into sync. |
2923 | * |
2924 | * This incoherency between the folio's dirty flag and xarray tag is |
2925 | * unfortunate, but it only exists while the folio is locked. |
2926 | */ |
2927 | bool folio_clear_dirty_for_io(struct folio *folio) |
2928 | { |
2929 | struct address_space *mapping = folio_mapping(folio); |
2930 | bool ret = false; |
2931 | |
2932 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
2933 | |
2934 | if (mapping && mapping_can_writeback(mapping)) { |
2935 | struct inode *inode = mapping->host; |
2936 | struct bdi_writeback *wb; |
2937 | struct wb_lock_cookie cookie = {}; |
2938 | |
2939 | /* |
2940 | * Yes, Virginia, this is indeed insane. |
2941 | * |
2942 | * We use this sequence to make sure that |
2943 | * (a) we account for dirty stats properly |
2944 | * (b) we tell the low-level filesystem to |
2945 | * mark the whole folio dirty if it was |
2946 | * dirty in a pagetable. Only to then |
2947 | * (c) clean the folio again and return 1 to |
2948 | * cause the writeback. |
2949 | * |
2950 | * This way we avoid all nasty races with the |
2951 | * dirty bit in multiple places and clearing |
2952 | * them concurrently from different threads. |
2953 | * |
2954 | * Note! Normally the "folio_mark_dirty(folio)" |
2955 | * has no effect on the actual dirty bit - since |
2956 | * that will already usually be set. But we |
2957 | * need the side effects, and it can help us |
2958 | * avoid races. |
2959 | * |
2960 | * We basically use the folio "master dirty bit" |
2961 | * as a serialization point for all the different |
2962 | * threads doing their things. |
2963 | */ |
2964 | if (folio_mkclean(folio)) |
2965 | folio_mark_dirty(folio); |
2966 | /* |
2967 | * We carefully synchronise fault handlers against |
2968 | * installing a dirty pte and marking the folio dirty |
2969 | * at this point. We do this by having them hold the |
2970 | * page lock while dirtying the folio, and folios are |
2971 | * always locked coming in here, so we get the desired |
2972 | * exclusion. |
2973 | */ |
2974 | wb = unlocked_inode_to_wb_begin(inode, cookie: &cookie); |
2975 | if (folio_test_clear_dirty(folio)) { |
2976 | long nr = folio_nr_pages(folio); |
2977 | lruvec_stat_mod_folio(folio, idx: NR_FILE_DIRTY, val: -nr); |
2978 | zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr: -nr); |
2979 | wb_stat_mod(wb, item: WB_RECLAIMABLE, amount: -nr); |
2980 | ret = true; |
2981 | } |
2982 | unlocked_inode_to_wb_end(inode, cookie: &cookie); |
2983 | return ret; |
2984 | } |
2985 | return folio_test_clear_dirty(folio); |
2986 | } |
2987 | EXPORT_SYMBOL(folio_clear_dirty_for_io); |
2988 | |
2989 | static void wb_inode_writeback_start(struct bdi_writeback *wb) |
2990 | { |
2991 | atomic_inc(v: &wb->writeback_inodes); |
2992 | } |
2993 | |
2994 | static void wb_inode_writeback_end(struct bdi_writeback *wb) |
2995 | { |
2996 | unsigned long flags; |
2997 | atomic_dec(v: &wb->writeback_inodes); |
2998 | /* |
2999 | * Make sure estimate of writeback throughput gets updated after |
3000 | * writeback completed. We delay the update by BANDWIDTH_INTERVAL |
3001 | * (which is the interval other bandwidth updates use for batching) so |
3002 | * that if multiple inodes end writeback at a similar time, they get |
3003 | * batched into one bandwidth update. |
3004 | */ |
3005 | spin_lock_irqsave(&wb->work_lock, flags); |
3006 | if (test_bit(WB_registered, &wb->state)) |
3007 | queue_delayed_work(wq: bdi_wq, dwork: &wb->bw_dwork, BANDWIDTH_INTERVAL); |
3008 | spin_unlock_irqrestore(lock: &wb->work_lock, flags); |
3009 | } |
3010 | |
3011 | bool __folio_end_writeback(struct folio *folio) |
3012 | { |
3013 | long nr = folio_nr_pages(folio); |
3014 | struct address_space *mapping = folio_mapping(folio); |
3015 | bool ret; |
3016 | |
3017 | if (mapping && mapping_use_writeback_tags(mapping)) { |
3018 | struct inode *inode = mapping->host; |
3019 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
3020 | unsigned long flags; |
3021 | |
3022 | xa_lock_irqsave(&mapping->i_pages, flags); |
3023 | ret = folio_xor_flags_has_waiters(folio, mask: 1 << PG_writeback); |
3024 | __xa_clear_mark(&mapping->i_pages, index: folio_index(folio), |
3025 | PAGECACHE_TAG_WRITEBACK); |
3026 | if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { |
3027 | struct bdi_writeback *wb = inode_to_wb(inode); |
3028 | |
3029 | wb_stat_mod(wb, item: WB_WRITEBACK, amount: -nr); |
3030 | __wb_writeout_add(wb, nr); |
3031 | if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) |
3032 | wb_inode_writeback_end(wb); |
3033 | } |
3034 | |
3035 | if (mapping->host && !mapping_tagged(mapping, |
3036 | PAGECACHE_TAG_WRITEBACK)) |
3037 | sb_clear_inode_writeback(inode: mapping->host); |
3038 | |
3039 | xa_unlock_irqrestore(&mapping->i_pages, flags); |
3040 | } else { |
3041 | ret = folio_xor_flags_has_waiters(folio, mask: 1 << PG_writeback); |
3042 | } |
3043 | |
3044 | lruvec_stat_mod_folio(folio, idx: NR_WRITEBACK, val: -nr); |
3045 | zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr: -nr); |
3046 | node_stat_mod_folio(folio, item: NR_WRITTEN, nr); |
3047 | |
3048 | return ret; |
3049 | } |
3050 | |
3051 | void __folio_start_writeback(struct folio *folio, bool keep_write) |
3052 | { |
3053 | long nr = folio_nr_pages(folio); |
3054 | struct address_space *mapping = folio_mapping(folio); |
3055 | int access_ret; |
3056 | |
3057 | VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio); |
3058 | VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); |
3059 | |
3060 | if (mapping && mapping_use_writeback_tags(mapping)) { |
3061 | XA_STATE(xas, &mapping->i_pages, folio_index(folio)); |
3062 | struct inode *inode = mapping->host; |
3063 | struct backing_dev_info *bdi = inode_to_bdi(inode); |
3064 | unsigned long flags; |
3065 | bool on_wblist; |
3066 | |
3067 | xas_lock_irqsave(&xas, flags); |
3068 | xas_load(&xas); |
3069 | folio_test_set_writeback(folio); |
3070 | |
3071 | on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK); |
3072 | |
3073 | xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); |
3074 | if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { |
3075 | struct bdi_writeback *wb = inode_to_wb(inode); |
3076 | |
3077 | wb_stat_mod(wb, item: WB_WRITEBACK, amount: nr); |
3078 | if (!on_wblist) |
3079 | wb_inode_writeback_start(wb); |
3080 | } |
3081 | |
3082 | /* |
3083 | * We can come through here when swapping anonymous |
3084 | * folios, so we don't necessarily have an inode to |
3085 | * track for sync. |
3086 | */ |
3087 | if (mapping->host && !on_wblist) |
3088 | sb_mark_inode_writeback(inode: mapping->host); |
3089 | if (!folio_test_dirty(folio)) |
3090 | xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); |
3091 | if (!keep_write) |
3092 | xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); |
3093 | xas_unlock_irqrestore(&xas, flags); |
3094 | } else { |
3095 | folio_test_set_writeback(folio); |
3096 | } |
3097 | |
3098 | lruvec_stat_mod_folio(folio, idx: NR_WRITEBACK, val: nr); |
3099 | zone_stat_mod_folio(folio, item: NR_ZONE_WRITE_PENDING, nr); |
3100 | |
3101 | access_ret = arch_make_folio_accessible(folio); |
3102 | /* |
3103 | * If writeback has been triggered on a page that cannot be made |
3104 | * accessible, it is too late to recover here. |
3105 | */ |
3106 | VM_BUG_ON_FOLIO(access_ret != 0, folio); |
3107 | } |
3108 | EXPORT_SYMBOL(__folio_start_writeback); |
3109 | |
3110 | /** |
3111 | * folio_wait_writeback - Wait for a folio to finish writeback. |
3112 | * @folio: The folio to wait for. |
3113 | * |
3114 | * If the folio is currently being written back to storage, wait for the |
3115 | * I/O to complete. |
3116 | * |
3117 | * Context: Sleeps. Must be called in process context and with |
3118 | * no spinlocks held. Caller should hold a reference on the folio. |
3119 | * If the folio is not locked, writeback may start again after writeback |
3120 | * has finished. |
3121 | */ |
3122 | void folio_wait_writeback(struct folio *folio) |
3123 | { |
3124 | while (folio_test_writeback(folio)) { |
3125 | trace_folio_wait_writeback(folio, mapping: folio_mapping(folio)); |
3126 | folio_wait_bit(folio, bit_nr: PG_writeback); |
3127 | } |
3128 | } |
3129 | EXPORT_SYMBOL_GPL(folio_wait_writeback); |
3130 | |
3131 | /** |
3132 | * folio_wait_writeback_killable - Wait for a folio to finish writeback. |
3133 | * @folio: The folio to wait for. |
3134 | * |
3135 | * If the folio is currently being written back to storage, wait for the |
3136 | * I/O to complete or a fatal signal to arrive. |
3137 | * |
3138 | * Context: Sleeps. Must be called in process context and with |
3139 | * no spinlocks held. Caller should hold a reference on the folio. |
3140 | * If the folio is not locked, writeback may start again after writeback |
3141 | * has finished. |
3142 | * Return: 0 on success, -EINTR if we get a fatal signal while waiting. |
3143 | */ |
3144 | int folio_wait_writeback_killable(struct folio *folio) |
3145 | { |
3146 | while (folio_test_writeback(folio)) { |
3147 | trace_folio_wait_writeback(folio, mapping: folio_mapping(folio)); |
3148 | if (folio_wait_bit_killable(folio, bit_nr: PG_writeback)) |
3149 | return -EINTR; |
3150 | } |
3151 | |
3152 | return 0; |
3153 | } |
3154 | EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); |
3155 | |
3156 | /** |
3157 | * folio_wait_stable() - wait for writeback to finish, if necessary. |
3158 | * @folio: The folio to wait on. |
3159 | * |
3160 | * This function determines if the given folio is related to a backing |
3161 | * device that requires folio contents to be held stable during writeback. |
3162 | * If so, then it will wait for any pending writeback to complete. |
3163 | * |
3164 | * Context: Sleeps. Must be called in process context and with |
3165 | * no spinlocks held. Caller should hold a reference on the folio. |
3166 | * If the folio is not locked, writeback may start again after writeback |
3167 | * has finished. |
3168 | */ |
3169 | void folio_wait_stable(struct folio *folio) |
3170 | { |
3171 | if (mapping_stable_writes(mapping: folio_mapping(folio))) |
3172 | folio_wait_writeback(folio); |
3173 | } |
3174 | EXPORT_SYMBOL_GPL(folio_wait_stable); |
3175 | |