| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | #include <linux/kernel.h> |
| 3 | #include <linux/tcp.h> |
| 4 | #include <linux/rcupdate.h> |
| 5 | #include <net/tcp.h> |
| 6 | |
| 7 | void tcp_fastopen_init_key_once(struct net *net) |
| 8 | { |
| 9 | u8 key[TCP_FASTOPEN_KEY_LENGTH]; |
| 10 | struct tcp_fastopen_context *ctxt; |
| 11 | |
| 12 | rcu_read_lock(); |
| 13 | ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); |
| 14 | if (ctxt) { |
| 15 | rcu_read_unlock(); |
| 16 | return; |
| 17 | } |
| 18 | rcu_read_unlock(); |
| 19 | |
| 20 | /* tcp_fastopen_reset_cipher publishes the new context |
| 21 | * atomically, so we allow this race happening here. |
| 22 | * |
| 23 | * All call sites of tcp_fastopen_cookie_gen also check |
| 24 | * for a valid cookie, so this is an acceptable risk. |
| 25 | */ |
| 26 | get_random_bytes(buf: key, len: sizeof(key)); |
| 27 | tcp_fastopen_reset_cipher(net, NULL, primary_key: key, NULL); |
| 28 | } |
| 29 | |
| 30 | static void tcp_fastopen_ctx_free(struct rcu_head *head) |
| 31 | { |
| 32 | struct tcp_fastopen_context *ctx = |
| 33 | container_of(head, struct tcp_fastopen_context, rcu); |
| 34 | |
| 35 | kfree_sensitive(objp: ctx); |
| 36 | } |
| 37 | |
| 38 | void tcp_fastopen_destroy_cipher(struct sock *sk) |
| 39 | { |
| 40 | struct tcp_fastopen_context *ctx; |
| 41 | |
| 42 | ctx = rcu_dereference_protected( |
| 43 | inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); |
| 44 | if (ctx) |
| 45 | call_rcu(head: &ctx->rcu, func: tcp_fastopen_ctx_free); |
| 46 | } |
| 47 | |
| 48 | void tcp_fastopen_ctx_destroy(struct net *net) |
| 49 | { |
| 50 | struct tcp_fastopen_context *ctxt; |
| 51 | |
| 52 | ctxt = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, NULL)); |
| 53 | |
| 54 | if (ctxt) |
| 55 | call_rcu(head: &ctxt->rcu, func: tcp_fastopen_ctx_free); |
| 56 | } |
| 57 | |
| 58 | int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, |
| 59 | void *primary_key, void *backup_key) |
| 60 | { |
| 61 | struct tcp_fastopen_context *ctx, *octx; |
| 62 | struct fastopen_queue *q; |
| 63 | int err = 0; |
| 64 | |
| 65 | ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); |
| 66 | if (!ctx) { |
| 67 | err = -ENOMEM; |
| 68 | goto out; |
| 69 | } |
| 70 | |
| 71 | ctx->key[0].key[0] = get_unaligned_le64(p: primary_key); |
| 72 | ctx->key[0].key[1] = get_unaligned_le64(p: primary_key + 8); |
| 73 | if (backup_key) { |
| 74 | ctx->key[1].key[0] = get_unaligned_le64(p: backup_key); |
| 75 | ctx->key[1].key[1] = get_unaligned_le64(p: backup_key + 8); |
| 76 | ctx->num = 2; |
| 77 | } else { |
| 78 | ctx->num = 1; |
| 79 | } |
| 80 | |
| 81 | if (sk) { |
| 82 | q = &inet_csk(sk)->icsk_accept_queue.fastopenq; |
| 83 | octx = unrcu_pointer(xchg(&q->ctx, RCU_INITIALIZER(ctx))); |
| 84 | } else { |
| 85 | octx = unrcu_pointer(xchg(&net->ipv4.tcp_fastopen_ctx, |
| 86 | RCU_INITIALIZER(ctx))); |
| 87 | } |
| 88 | |
| 89 | if (octx) |
| 90 | call_rcu(head: &octx->rcu, func: tcp_fastopen_ctx_free); |
| 91 | out: |
| 92 | return err; |
| 93 | } |
| 94 | |
| 95 | int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk, |
| 96 | u64 *key) |
| 97 | { |
| 98 | struct tcp_fastopen_context *ctx; |
| 99 | int n_keys = 0, i; |
| 100 | |
| 101 | rcu_read_lock(); |
| 102 | if (icsk) |
| 103 | ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx); |
| 104 | else |
| 105 | ctx = rcu_dereference(net->ipv4.tcp_fastopen_ctx); |
| 106 | if (ctx) { |
| 107 | n_keys = tcp_fastopen_context_len(ctx); |
| 108 | for (i = 0; i < n_keys; i++) { |
| 109 | put_unaligned_le64(val: ctx->key[i].key[0], p: key + (i * 2)); |
| 110 | put_unaligned_le64(val: ctx->key[i].key[1], p: key + (i * 2) + 1); |
| 111 | } |
| 112 | } |
| 113 | rcu_read_unlock(); |
| 114 | |
| 115 | return n_keys; |
| 116 | } |
| 117 | |
| 118 | static bool __tcp_fastopen_cookie_gen_cipher(struct request_sock *req, |
| 119 | struct sk_buff *syn, |
| 120 | const siphash_key_t *key, |
| 121 | struct tcp_fastopen_cookie *foc) |
| 122 | { |
| 123 | BUILD_BUG_ON(TCP_FASTOPEN_COOKIE_SIZE != sizeof(u64)); |
| 124 | |
| 125 | if (req->rsk_ops->family == AF_INET) { |
| 126 | const struct iphdr *iph = ip_hdr(skb: syn); |
| 127 | |
| 128 | foc->val[0] = cpu_to_le64(siphash(&iph->saddr, |
| 129 | sizeof(iph->saddr) + |
| 130 | sizeof(iph->daddr), |
| 131 | key)); |
| 132 | foc->len = TCP_FASTOPEN_COOKIE_SIZE; |
| 133 | return true; |
| 134 | } |
| 135 | #if IS_ENABLED(CONFIG_IPV6) |
| 136 | if (req->rsk_ops->family == AF_INET6) { |
| 137 | const struct ipv6hdr *ip6h = ipv6_hdr(skb: syn); |
| 138 | |
| 139 | foc->val[0] = cpu_to_le64(siphash(&ip6h->saddr, |
| 140 | sizeof(ip6h->saddr) + |
| 141 | sizeof(ip6h->daddr), |
| 142 | key)); |
| 143 | foc->len = TCP_FASTOPEN_COOKIE_SIZE; |
| 144 | return true; |
| 145 | } |
| 146 | #endif |
| 147 | return false; |
| 148 | } |
| 149 | |
| 150 | /* Generate the fastopen cookie by applying SipHash to both the source and |
| 151 | * destination addresses. |
| 152 | */ |
| 153 | static void tcp_fastopen_cookie_gen(struct sock *sk, |
| 154 | struct request_sock *req, |
| 155 | struct sk_buff *syn, |
| 156 | struct tcp_fastopen_cookie *foc) |
| 157 | { |
| 158 | struct tcp_fastopen_context *ctx; |
| 159 | |
| 160 | rcu_read_lock(); |
| 161 | ctx = tcp_fastopen_get_ctx(sk); |
| 162 | if (ctx) |
| 163 | __tcp_fastopen_cookie_gen_cipher(req, syn, key: &ctx->key[0], foc); |
| 164 | rcu_read_unlock(); |
| 165 | } |
| 166 | |
| 167 | /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, |
| 168 | * queue this additional data / FIN. |
| 169 | */ |
| 170 | void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) |
| 171 | { |
| 172 | struct tcp_sock *tp = tcp_sk(sk); |
| 173 | |
| 174 | if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) |
| 175 | return; |
| 176 | |
| 177 | skb = skb_clone(skb, GFP_ATOMIC); |
| 178 | if (!skb) |
| 179 | return; |
| 180 | |
| 181 | tcp_cleanup_skb(skb); |
| 182 | /* segs_in has been initialized to 1 in tcp_create_openreq_child(). |
| 183 | * Hence, reset segs_in to 0 before calling tcp_segs_in() |
| 184 | * to avoid double counting. Also, tcp_segs_in() expects |
| 185 | * skb->len to include the tcp_hdrlen. Hence, it should |
| 186 | * be called before __skb_pull(). |
| 187 | */ |
| 188 | tp->segs_in = 0; |
| 189 | tcp_segs_in(tp, skb); |
| 190 | __skb_pull(skb, len: tcp_hdrlen(skb)); |
| 191 | sk_forced_mem_schedule(sk, size: skb->truesize); |
| 192 | skb_set_owner_r(skb, sk); |
| 193 | |
| 194 | TCP_SKB_CB(skb)->seq++; |
| 195 | TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; |
| 196 | |
| 197 | tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; |
| 198 | tcp_add_receive_queue(sk, skb); |
| 199 | tp->syn_data_acked = 1; |
| 200 | |
| 201 | /* u64_stats_update_begin(&tp->syncp) not needed here, |
| 202 | * as we certainly are not changing upper 32bit value (0) |
| 203 | */ |
| 204 | tp->bytes_received = skb->len; |
| 205 | |
| 206 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) |
| 207 | tcp_fin(sk); |
| 208 | } |
| 209 | |
| 210 | /* returns 0 - no key match, 1 for primary, 2 for backup */ |
| 211 | static int tcp_fastopen_cookie_gen_check(struct sock *sk, |
| 212 | struct request_sock *req, |
| 213 | struct sk_buff *syn, |
| 214 | struct tcp_fastopen_cookie *orig, |
| 215 | struct tcp_fastopen_cookie *valid_foc) |
| 216 | { |
| 217 | struct tcp_fastopen_cookie search_foc = { .len = -1 }; |
| 218 | struct tcp_fastopen_cookie *foc = valid_foc; |
| 219 | struct tcp_fastopen_context *ctx; |
| 220 | int i, ret = 0; |
| 221 | |
| 222 | rcu_read_lock(); |
| 223 | ctx = tcp_fastopen_get_ctx(sk); |
| 224 | if (!ctx) |
| 225 | goto out; |
| 226 | for (i = 0; i < tcp_fastopen_context_len(ctx); i++) { |
| 227 | __tcp_fastopen_cookie_gen_cipher(req, syn, key: &ctx->key[i], foc); |
| 228 | if (tcp_fastopen_cookie_match(foc, orig)) { |
| 229 | ret = i + 1; |
| 230 | goto out; |
| 231 | } |
| 232 | foc = &search_foc; |
| 233 | } |
| 234 | out: |
| 235 | rcu_read_unlock(); |
| 236 | return ret; |
| 237 | } |
| 238 | |
| 239 | static struct sock *tcp_fastopen_create_child(struct sock *sk, |
| 240 | struct sk_buff *skb, |
| 241 | struct request_sock *req) |
| 242 | { |
| 243 | struct tcp_sock *tp; |
| 244 | struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; |
| 245 | struct sock *child; |
| 246 | bool own_req; |
| 247 | |
| 248 | child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, |
| 249 | NULL, &own_req); |
| 250 | if (!child) |
| 251 | return NULL; |
| 252 | |
| 253 | spin_lock(lock: &queue->fastopenq.lock); |
| 254 | queue->fastopenq.qlen++; |
| 255 | spin_unlock(lock: &queue->fastopenq.lock); |
| 256 | |
| 257 | /* Initialize the child socket. Have to fix some values to take |
| 258 | * into account the child is a Fast Open socket and is created |
| 259 | * only out of the bits carried in the SYN packet. |
| 260 | */ |
| 261 | tp = tcp_sk(child); |
| 262 | |
| 263 | rcu_assign_pointer(tp->fastopen_rsk, req); |
| 264 | tcp_rsk(req)->tfo_listener = true; |
| 265 | |
| 266 | /* RFC1323: The window in SYN & SYN/ACK segments is never |
| 267 | * scaled. So correct it appropriately. |
| 268 | */ |
| 269 | tp->snd_wnd = ntohs(tcp_hdr(skb)->window); |
| 270 | tp->max_window = tp->snd_wnd; |
| 271 | |
| 272 | /* Activate the retrans timer so that SYNACK can be retransmitted. |
| 273 | * The request socket is not added to the ehash |
| 274 | * because it's been added to the accept queue directly. |
| 275 | */ |
| 276 | req->timeout = tcp_timeout_init(sk: child); |
| 277 | tcp_reset_xmit_timer(sk: child, ICSK_TIME_RETRANS, |
| 278 | when: req->timeout, pace_delay: false); |
| 279 | |
| 280 | refcount_set(r: &req->rsk_refcnt, n: 2); |
| 281 | |
| 282 | /* Now finish processing the fastopen child socket. */ |
| 283 | tcp_init_transfer(sk: child, bpf_op: BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB, skb); |
| 284 | |
| 285 | tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; |
| 286 | |
| 287 | tcp_fastopen_add_skb(sk: child, skb); |
| 288 | |
| 289 | tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; |
| 290 | tp->rcv_wup = tp->rcv_nxt; |
| 291 | /* tcp_conn_request() is sending the SYNACK, |
| 292 | * and queues the child into listener accept queue. |
| 293 | */ |
| 294 | return child; |
| 295 | } |
| 296 | |
| 297 | static bool tcp_fastopen_queue_check(struct sock *sk) |
| 298 | { |
| 299 | struct fastopen_queue *fastopenq; |
| 300 | int max_qlen; |
| 301 | |
| 302 | /* Make sure the listener has enabled fastopen, and we don't |
| 303 | * exceed the max # of pending TFO requests allowed before trying |
| 304 | * to validating the cookie in order to avoid burning CPU cycles |
| 305 | * unnecessarily. |
| 306 | * |
| 307 | * XXX (TFO) - The implication of checking the max_qlen before |
| 308 | * processing a cookie request is that clients can't differentiate |
| 309 | * between qlen overflow causing Fast Open to be disabled |
| 310 | * temporarily vs a server not supporting Fast Open at all. |
| 311 | */ |
| 312 | fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; |
| 313 | max_qlen = READ_ONCE(fastopenq->max_qlen); |
| 314 | if (max_qlen == 0) |
| 315 | return false; |
| 316 | |
| 317 | if (fastopenq->qlen >= max_qlen) { |
| 318 | struct request_sock *req1; |
| 319 | spin_lock(lock: &fastopenq->lock); |
| 320 | req1 = fastopenq->rskq_rst_head; |
| 321 | if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { |
| 322 | __NET_INC_STATS(sock_net(sk), |
| 323 | LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); |
| 324 | spin_unlock(lock: &fastopenq->lock); |
| 325 | return false; |
| 326 | } |
| 327 | fastopenq->rskq_rst_head = req1->dl_next; |
| 328 | fastopenq->qlen--; |
| 329 | spin_unlock(lock: &fastopenq->lock); |
| 330 | reqsk_put(req: req1); |
| 331 | } |
| 332 | return true; |
| 333 | } |
| 334 | |
| 335 | static bool tcp_fastopen_no_cookie(const struct sock *sk, |
| 336 | const struct dst_entry *dst, |
| 337 | int flag) |
| 338 | { |
| 339 | return (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) & flag) || |
| 340 | tcp_sk(sk)->fastopen_no_cookie || |
| 341 | (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); |
| 342 | } |
| 343 | |
| 344 | /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) |
| 345 | * may be updated and return the client in the SYN-ACK later. E.g., Fast Open |
| 346 | * cookie request (foc->len == 0). |
| 347 | */ |
| 348 | struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, |
| 349 | struct request_sock *req, |
| 350 | struct tcp_fastopen_cookie *foc, |
| 351 | const struct dst_entry *dst) |
| 352 | { |
| 353 | bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; |
| 354 | int tcp_fastopen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen); |
| 355 | struct tcp_fastopen_cookie valid_foc = { .len = -1 }; |
| 356 | struct sock *child; |
| 357 | int ret = 0; |
| 358 | |
| 359 | if (foc->len == 0) /* Client requests a cookie */ |
| 360 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); |
| 361 | |
| 362 | if (!((tcp_fastopen & TFO_SERVER_ENABLE) && |
| 363 | (syn_data || foc->len >= 0) && |
| 364 | tcp_fastopen_queue_check(sk))) { |
| 365 | foc->len = -1; |
| 366 | return NULL; |
| 367 | } |
| 368 | |
| 369 | if (tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) |
| 370 | goto fastopen; |
| 371 | |
| 372 | if (foc->len == 0) { |
| 373 | /* Client requests a cookie. */ |
| 374 | tcp_fastopen_cookie_gen(sk, req, syn: skb, foc: &valid_foc); |
| 375 | } else if (foc->len > 0) { |
| 376 | ret = tcp_fastopen_cookie_gen_check(sk, req, syn: skb, orig: foc, |
| 377 | valid_foc: &valid_foc); |
| 378 | if (!ret) { |
| 379 | NET_INC_STATS(sock_net(sk), |
| 380 | LINUX_MIB_TCPFASTOPENPASSIVEFAIL); |
| 381 | } else { |
| 382 | /* Cookie is valid. Create a (full) child socket to |
| 383 | * accept the data in SYN before returning a SYN-ACK to |
| 384 | * ack the data. If we fail to create the socket, fall |
| 385 | * back and ack the ISN only but includes the same |
| 386 | * cookie. |
| 387 | * |
| 388 | * Note: Data-less SYN with valid cookie is allowed to |
| 389 | * send data in SYN_RECV state. |
| 390 | */ |
| 391 | fastopen: |
| 392 | child = tcp_fastopen_create_child(sk, skb, req); |
| 393 | if (child) { |
| 394 | if (ret == 2) { |
| 395 | valid_foc.exp = foc->exp; |
| 396 | *foc = valid_foc; |
| 397 | NET_INC_STATS(sock_net(sk), |
| 398 | LINUX_MIB_TCPFASTOPENPASSIVEALTKEY); |
| 399 | } else { |
| 400 | foc->len = -1; |
| 401 | } |
| 402 | NET_INC_STATS(sock_net(sk), |
| 403 | LINUX_MIB_TCPFASTOPENPASSIVE); |
| 404 | tcp_sk(child)->syn_fastopen_child = 1; |
| 405 | return child; |
| 406 | } |
| 407 | NET_INC_STATS(sock_net(sk), |
| 408 | LINUX_MIB_TCPFASTOPENPASSIVEFAIL); |
| 409 | } |
| 410 | } |
| 411 | valid_foc.exp = foc->exp; |
| 412 | *foc = valid_foc; |
| 413 | return NULL; |
| 414 | } |
| 415 | |
| 416 | bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, |
| 417 | struct tcp_fastopen_cookie *cookie) |
| 418 | { |
| 419 | const struct dst_entry *dst; |
| 420 | |
| 421 | tcp_fastopen_cache_get(sk, mss, cookie); |
| 422 | |
| 423 | /* Firewall blackhole issue check */ |
| 424 | if (tcp_fastopen_active_should_disable(sk)) { |
| 425 | cookie->len = -1; |
| 426 | return false; |
| 427 | } |
| 428 | |
| 429 | dst = __sk_dst_get(sk); |
| 430 | |
| 431 | if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { |
| 432 | cookie->len = -1; |
| 433 | return true; |
| 434 | } |
| 435 | if (cookie->len > 0) |
| 436 | return true; |
| 437 | tcp_sk(sk)->fastopen_client_fail = TFO_COOKIE_UNAVAILABLE; |
| 438 | return false; |
| 439 | } |
| 440 | |
| 441 | /* This function checks if we want to defer sending SYN until the first |
| 442 | * write(). We defer under the following conditions: |
| 443 | * 1. fastopen_connect sockopt is set |
| 444 | * 2. we have a valid cookie |
| 445 | * Return value: return true if we want to defer until application writes data |
| 446 | * return false if we want to send out SYN immediately |
| 447 | */ |
| 448 | bool tcp_fastopen_defer_connect(struct sock *sk, int *err) |
| 449 | { |
| 450 | struct tcp_fastopen_cookie cookie = { .len = 0 }; |
| 451 | struct tcp_sock *tp = tcp_sk(sk); |
| 452 | u16 mss; |
| 453 | |
| 454 | if (tp->fastopen_connect && !tp->fastopen_req) { |
| 455 | if (tcp_fastopen_cookie_check(sk, mss: &mss, cookie: &cookie)) { |
| 456 | inet_set_bit(DEFER_CONNECT, sk); |
| 457 | return true; |
| 458 | } |
| 459 | |
| 460 | /* Alloc fastopen_req in order for FO option to be included |
| 461 | * in SYN |
| 462 | */ |
| 463 | tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), |
| 464 | sk->sk_allocation); |
| 465 | if (tp->fastopen_req) |
| 466 | tp->fastopen_req->cookie = cookie; |
| 467 | else |
| 468 | *err = -ENOBUFS; |
| 469 | } |
| 470 | return false; |
| 471 | } |
| 472 | EXPORT_IPV6_MOD(tcp_fastopen_defer_connect); |
| 473 | |
| 474 | /* |
| 475 | * The following code block is to deal with middle box issues with TFO: |
| 476 | * Middlebox firewall issues can potentially cause server's data being |
| 477 | * blackholed after a successful 3WHS using TFO. |
| 478 | * The proposed solution is to disable active TFO globally under the |
| 479 | * following circumstances: |
| 480 | * 1. client side TFO socket receives out of order FIN |
| 481 | * 2. client side TFO socket receives out of order RST |
| 482 | * 3. client side TFO socket has timed out three times consecutively during |
| 483 | * or after handshake |
| 484 | * We disable active side TFO globally for 1hr at first. Then if it |
| 485 | * happens again, we disable it for 2h, then 4h, 8h, ... |
| 486 | * And we reset the timeout back to 1hr when we see a successful active |
| 487 | * TFO connection with data exchanges. |
| 488 | */ |
| 489 | |
| 490 | /* Disable active TFO and record current jiffies and |
| 491 | * tfo_active_disable_times |
| 492 | */ |
| 493 | void tcp_fastopen_active_disable(struct sock *sk) |
| 494 | { |
| 495 | struct net *net = sock_net(sk); |
| 496 | |
| 497 | if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout)) |
| 498 | return; |
| 499 | |
| 500 | /* Paired with READ_ONCE() in tcp_fastopen_active_should_disable() */ |
| 501 | WRITE_ONCE(net->ipv4.tfo_active_disable_stamp, jiffies); |
| 502 | |
| 503 | /* Paired with smp_rmb() in tcp_fastopen_active_should_disable(). |
| 504 | * We want net->ipv4.tfo_active_disable_stamp to be updated first. |
| 505 | */ |
| 506 | smp_mb__before_atomic(); |
| 507 | atomic_inc(v: &net->ipv4.tfo_active_disable_times); |
| 508 | |
| 509 | NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); |
| 510 | } |
| 511 | |
| 512 | /* Calculate timeout for tfo active disable |
| 513 | * Return true if we are still in the active TFO disable period |
| 514 | * Return false if timeout already expired and we should use active TFO |
| 515 | */ |
| 516 | bool tcp_fastopen_active_should_disable(struct sock *sk) |
| 517 | { |
| 518 | unsigned int tfo_bh_timeout = |
| 519 | READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout); |
| 520 | unsigned long timeout; |
| 521 | int tfo_da_times; |
| 522 | int multiplier; |
| 523 | |
| 524 | if (!tfo_bh_timeout) |
| 525 | return false; |
| 526 | |
| 527 | tfo_da_times = atomic_read(v: &sock_net(sk)->ipv4.tfo_active_disable_times); |
| 528 | if (!tfo_da_times) |
| 529 | return false; |
| 530 | |
| 531 | /* Paired with smp_mb__before_atomic() in tcp_fastopen_active_disable() */ |
| 532 | smp_rmb(); |
| 533 | |
| 534 | /* Limit timeout to max: 2^6 * initial timeout */ |
| 535 | multiplier = 1 << min(tfo_da_times - 1, 6); |
| 536 | |
| 537 | /* Paired with the WRITE_ONCE() in tcp_fastopen_active_disable(). */ |
| 538 | timeout = READ_ONCE(sock_net(sk)->ipv4.tfo_active_disable_stamp) + |
| 539 | multiplier * tfo_bh_timeout * HZ; |
| 540 | if (time_before(jiffies, timeout)) |
| 541 | return true; |
| 542 | |
| 543 | /* Mark check bit so we can check for successful active TFO |
| 544 | * condition and reset tfo_active_disable_times |
| 545 | */ |
| 546 | tcp_sk(sk)->syn_fastopen_ch = 1; |
| 547 | return false; |
| 548 | } |
| 549 | |
| 550 | /* Disable active TFO if FIN is the only packet in the ofo queue |
| 551 | * and no data is received. |
| 552 | * Also check if we can reset tfo_active_disable_times if data is |
| 553 | * received successfully on a marked active TFO sockets opened on |
| 554 | * a non-loopback interface |
| 555 | */ |
| 556 | void tcp_fastopen_active_disable_ofo_check(struct sock *sk) |
| 557 | { |
| 558 | struct tcp_sock *tp = tcp_sk(sk); |
| 559 | struct dst_entry *dst; |
| 560 | struct sk_buff *skb; |
| 561 | |
| 562 | if (!tp->syn_fastopen) |
| 563 | return; |
| 564 | |
| 565 | if (!tp->data_segs_in) { |
| 566 | skb = skb_rb_first(&tp->out_of_order_queue); |
| 567 | if (skb && !skb_rb_next(skb)) { |
| 568 | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { |
| 569 | tcp_fastopen_active_disable(sk); |
| 570 | return; |
| 571 | } |
| 572 | } |
| 573 | } else if (tp->syn_fastopen_ch && |
| 574 | atomic_read(v: &sock_net(sk)->ipv4.tfo_active_disable_times)) { |
| 575 | dst = sk_dst_get(sk); |
| 576 | if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) |
| 577 | atomic_set(v: &sock_net(sk)->ipv4.tfo_active_disable_times, i: 0); |
| 578 | dst_release(dst); |
| 579 | } |
| 580 | } |
| 581 | |
| 582 | void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) |
| 583 | { |
| 584 | u32 timeouts = inet_csk(sk)->icsk_retransmits; |
| 585 | struct tcp_sock *tp = tcp_sk(sk); |
| 586 | |
| 587 | /* Broken middle-boxes may black-hole Fast Open connection during or |
| 588 | * even after the handshake. Be extremely conservative and pause |
| 589 | * Fast Open globally after hitting the third consecutive timeout or |
| 590 | * exceeding the configured timeout limit. |
| 591 | */ |
| 592 | if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && |
| 593 | (timeouts == 2 || (timeouts < 2 && expired))) { |
| 594 | tcp_fastopen_active_disable(sk); |
| 595 | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); |
| 596 | } |
| 597 | } |
| 598 | |