1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2002-2005, Instant802 Networks, Inc.
4 * Copyright 2005-2006, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2010 Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Copyright(c) 2015 - 2017 Intel Deutschland GmbH
9 * Copyright (C) 2018-2024 Intel Corporation
10 */
11
12#include <linux/jiffies.h>
13#include <linux/slab.h>
14#include <linux/kernel.h>
15#include <linux/skbuff.h>
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/rcupdate.h>
19#include <linux/export.h>
20#include <linux/kcov.h>
21#include <linux/bitops.h>
22#include <kunit/visibility.h>
23#include <net/mac80211.h>
24#include <net/ieee80211_radiotap.h>
25#include <asm/unaligned.h>
26
27#include "ieee80211_i.h"
28#include "driver-ops.h"
29#include "led.h"
30#include "mesh.h"
31#include "wep.h"
32#include "wpa.h"
33#include "tkip.h"
34#include "wme.h"
35#include "rate.h"
36
37/*
38 * monitor mode reception
39 *
40 * This function cleans up the SKB, i.e. it removes all the stuff
41 * only useful for monitoring.
42 */
43static struct sk_buff *ieee80211_clean_skb(struct sk_buff *skb,
44 unsigned int present_fcs_len,
45 unsigned int rtap_space)
46{
47 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
48 struct ieee80211_hdr *hdr;
49 unsigned int hdrlen;
50 __le16 fc;
51
52 if (present_fcs_len)
53 __pskb_trim(skb, len: skb->len - present_fcs_len);
54 pskb_pull(skb, len: rtap_space);
55
56 /* After pulling radiotap header, clear all flags that indicate
57 * info in skb->data.
58 */
59 status->flag &= ~(RX_FLAG_RADIOTAP_TLV_AT_END |
60 RX_FLAG_RADIOTAP_LSIG |
61 RX_FLAG_RADIOTAP_HE_MU |
62 RX_FLAG_RADIOTAP_HE);
63
64 hdr = (void *)skb->data;
65 fc = hdr->frame_control;
66
67 /*
68 * Remove the HT-Control field (if present) on management
69 * frames after we've sent the frame to monitoring. We
70 * (currently) don't need it, and don't properly parse
71 * frames with it present, due to the assumption of a
72 * fixed management header length.
73 */
74 if (likely(!ieee80211_is_mgmt(fc) || !ieee80211_has_order(fc)))
75 return skb;
76
77 hdrlen = ieee80211_hdrlen(fc);
78 hdr->frame_control &= ~cpu_to_le16(IEEE80211_FCTL_ORDER);
79
80 if (!pskb_may_pull(skb, len: hdrlen)) {
81 dev_kfree_skb(skb);
82 return NULL;
83 }
84
85 memmove(skb->data + IEEE80211_HT_CTL_LEN, skb->data,
86 hdrlen - IEEE80211_HT_CTL_LEN);
87 pskb_pull(skb, IEEE80211_HT_CTL_LEN);
88
89 return skb;
90}
91
92static inline bool should_drop_frame(struct sk_buff *skb, int present_fcs_len,
93 unsigned int rtap_space)
94{
95 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
96 struct ieee80211_hdr *hdr;
97
98 hdr = (void *)(skb->data + rtap_space);
99
100 if (status->flag & (RX_FLAG_FAILED_FCS_CRC |
101 RX_FLAG_FAILED_PLCP_CRC |
102 RX_FLAG_ONLY_MONITOR |
103 RX_FLAG_NO_PSDU))
104 return true;
105
106 if (unlikely(skb->len < 16 + present_fcs_len + rtap_space))
107 return true;
108
109 if (ieee80211_is_ctl(fc: hdr->frame_control) &&
110 !ieee80211_is_pspoll(fc: hdr->frame_control) &&
111 !ieee80211_is_back_req(fc: hdr->frame_control))
112 return true;
113
114 return false;
115}
116
117static int
118ieee80211_rx_radiotap_hdrlen(struct ieee80211_local *local,
119 struct ieee80211_rx_status *status,
120 struct sk_buff *skb)
121{
122 int len;
123
124 /* always present fields */
125 len = sizeof(struct ieee80211_radiotap_header) + 8;
126
127 /* allocate extra bitmaps */
128 if (status->chains)
129 len += 4 * hweight8(status->chains);
130
131 if (ieee80211_have_rx_timestamp(status)) {
132 len = ALIGN(len, 8);
133 len += 8;
134 }
135 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM))
136 len += 1;
137
138 /* antenna field, if we don't have per-chain info */
139 if (!status->chains)
140 len += 1;
141
142 /* padding for RX_FLAGS if necessary */
143 len = ALIGN(len, 2);
144
145 if (status->encoding == RX_ENC_HT) /* HT info */
146 len += 3;
147
148 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
149 len = ALIGN(len, 4);
150 len += 8;
151 }
152
153 if (status->encoding == RX_ENC_VHT) {
154 len = ALIGN(len, 2);
155 len += 12;
156 }
157
158 if (local->hw.radiotap_timestamp.units_pos >= 0) {
159 len = ALIGN(len, 8);
160 len += 12;
161 }
162
163 if (status->encoding == RX_ENC_HE &&
164 status->flag & RX_FLAG_RADIOTAP_HE) {
165 len = ALIGN(len, 2);
166 len += 12;
167 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) != 12);
168 }
169
170 if (status->encoding == RX_ENC_HE &&
171 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
172 len = ALIGN(len, 2);
173 len += 12;
174 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) != 12);
175 }
176
177 if (status->flag & RX_FLAG_NO_PSDU)
178 len += 1;
179
180 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
181 len = ALIGN(len, 2);
182 len += 4;
183 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) != 4);
184 }
185
186 if (status->chains) {
187 /* antenna and antenna signal fields */
188 len += 2 * hweight8(status->chains);
189 }
190
191 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) {
192 int tlv_offset = 0;
193
194 /*
195 * The position to look at depends on the existence (or non-
196 * existence) of other elements, so take that into account...
197 */
198 if (status->flag & RX_FLAG_RADIOTAP_HE)
199 tlv_offset +=
200 sizeof(struct ieee80211_radiotap_he);
201 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
202 tlv_offset +=
203 sizeof(struct ieee80211_radiotap_he_mu);
204 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
205 tlv_offset +=
206 sizeof(struct ieee80211_radiotap_lsig);
207
208 /* ensure 4 byte alignment for TLV */
209 len = ALIGN(len, 4);
210
211 /* TLVs until the mac header */
212 len += skb_mac_header(skb) - &skb->data[tlv_offset];
213 }
214
215 return len;
216}
217
218static void __ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
219 int link_id,
220 struct sta_info *sta,
221 struct sk_buff *skb)
222{
223 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
224
225 if (link_id >= 0) {
226 status->link_valid = 1;
227 status->link_id = link_id;
228 } else {
229 status->link_valid = 0;
230 }
231
232 skb_queue_tail(list: &sdata->skb_queue, newsk: skb);
233 wiphy_work_queue(wiphy: sdata->local->hw.wiphy, work: &sdata->work);
234 if (sta)
235 sta->deflink.rx_stats.packets++;
236}
237
238static void ieee80211_queue_skb_to_iface(struct ieee80211_sub_if_data *sdata,
239 int link_id,
240 struct sta_info *sta,
241 struct sk_buff *skb)
242{
243 skb->protocol = 0;
244 __ieee80211_queue_skb_to_iface(sdata, link_id, sta, skb);
245}
246
247static void ieee80211_handle_mu_mimo_mon(struct ieee80211_sub_if_data *sdata,
248 struct sk_buff *skb,
249 int rtap_space)
250{
251 struct {
252 struct ieee80211_hdr_3addr hdr;
253 u8 category;
254 u8 action_code;
255 } __packed __aligned(2) action;
256
257 if (!sdata)
258 return;
259
260 BUILD_BUG_ON(sizeof(action) != IEEE80211_MIN_ACTION_SIZE + 1);
261
262 if (skb->len < rtap_space + sizeof(action) +
263 VHT_MUMIMO_GROUPS_DATA_LEN)
264 return;
265
266 if (!is_valid_ether_addr(addr: sdata->u.mntr.mu_follow_addr))
267 return;
268
269 skb_copy_bits(skb, offset: rtap_space, to: &action, len: sizeof(action));
270
271 if (!ieee80211_is_action(fc: action.hdr.frame_control))
272 return;
273
274 if (action.category != WLAN_CATEGORY_VHT)
275 return;
276
277 if (action.action_code != WLAN_VHT_ACTION_GROUPID_MGMT)
278 return;
279
280 if (!ether_addr_equal(addr1: action.hdr.addr1, addr2: sdata->u.mntr.mu_follow_addr))
281 return;
282
283 skb = skb_copy(skb, GFP_ATOMIC);
284 if (!skb)
285 return;
286
287 ieee80211_queue_skb_to_iface(sdata, link_id: -1, NULL, skb);
288}
289
290/*
291 * ieee80211_add_rx_radiotap_header - add radiotap header
292 *
293 * add a radiotap header containing all the fields which the hardware provided.
294 */
295static void
296ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
297 struct sk_buff *skb,
298 struct ieee80211_rate *rate,
299 int rtap_len, bool has_fcs)
300{
301 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
302 struct ieee80211_radiotap_header *rthdr;
303 unsigned char *pos;
304 __le32 *it_present;
305 u32 it_present_val;
306 u16 rx_flags = 0;
307 u16 channel_flags = 0;
308 u32 tlvs_len = 0;
309 int mpdulen, chain;
310 unsigned long chains = status->chains;
311 struct ieee80211_radiotap_he he = {};
312 struct ieee80211_radiotap_he_mu he_mu = {};
313 struct ieee80211_radiotap_lsig lsig = {};
314
315 if (status->flag & RX_FLAG_RADIOTAP_HE) {
316 he = *(struct ieee80211_radiotap_he *)skb->data;
317 skb_pull(skb, len: sizeof(he));
318 WARN_ON_ONCE(status->encoding != RX_ENC_HE);
319 }
320
321 if (status->flag & RX_FLAG_RADIOTAP_HE_MU) {
322 he_mu = *(struct ieee80211_radiotap_he_mu *)skb->data;
323 skb_pull(skb, len: sizeof(he_mu));
324 }
325
326 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
327 lsig = *(struct ieee80211_radiotap_lsig *)skb->data;
328 skb_pull(skb, len: sizeof(lsig));
329 }
330
331 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END) {
332 /* data is pointer at tlv all other info was pulled off */
333 tlvs_len = skb_mac_header(skb) - skb->data;
334 }
335
336 mpdulen = skb->len;
337 if (!(has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)))
338 mpdulen += FCS_LEN;
339
340 rthdr = skb_push(skb, len: rtap_len - tlvs_len);
341 memset(rthdr, 0, rtap_len - tlvs_len);
342 it_present = &rthdr->it_present;
343
344 /* radiotap header, set always present flags */
345 rthdr->it_len = cpu_to_le16(rtap_len);
346 it_present_val = BIT(IEEE80211_RADIOTAP_FLAGS) |
347 BIT(IEEE80211_RADIOTAP_CHANNEL) |
348 BIT(IEEE80211_RADIOTAP_RX_FLAGS);
349
350 if (!status->chains)
351 it_present_val |= BIT(IEEE80211_RADIOTAP_ANTENNA);
352
353 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
354 it_present_val |=
355 BIT(IEEE80211_RADIOTAP_EXT) |
356 BIT(IEEE80211_RADIOTAP_RADIOTAP_NAMESPACE);
357 put_unaligned_le32(val: it_present_val, p: it_present);
358 it_present++;
359 it_present_val = BIT(IEEE80211_RADIOTAP_ANTENNA) |
360 BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
361 }
362
363 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END)
364 it_present_val |= BIT(IEEE80211_RADIOTAP_TLV);
365
366 put_unaligned_le32(val: it_present_val, p: it_present);
367
368 /* This references through an offset into it_optional[] rather
369 * than via it_present otherwise later uses of pos will cause
370 * the compiler to think we have walked past the end of the
371 * struct member.
372 */
373 pos = (void *)&rthdr->it_optional[it_present + 1 - rthdr->it_optional];
374
375 /* the order of the following fields is important */
376
377 /* IEEE80211_RADIOTAP_TSFT */
378 if (ieee80211_have_rx_timestamp(status)) {
379 /* padding */
380 while ((pos - (u8 *)rthdr) & 7)
381 *pos++ = 0;
382 put_unaligned_le64(
383 val: ieee80211_calculate_rx_timestamp(local, status,
384 mpdu_len: mpdulen, mpdu_offset: 0),
385 p: pos);
386 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_TSFT));
387 pos += 8;
388 }
389
390 /* IEEE80211_RADIOTAP_FLAGS */
391 if (has_fcs && ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS))
392 *pos |= IEEE80211_RADIOTAP_F_FCS;
393 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
394 *pos |= IEEE80211_RADIOTAP_F_BADFCS;
395 if (status->enc_flags & RX_ENC_FLAG_SHORTPRE)
396 *pos |= IEEE80211_RADIOTAP_F_SHORTPRE;
397 pos++;
398
399 /* IEEE80211_RADIOTAP_RATE */
400 if (!rate || status->encoding != RX_ENC_LEGACY) {
401 /*
402 * Without rate information don't add it. If we have,
403 * MCS information is a separate field in radiotap,
404 * added below. The byte here is needed as padding
405 * for the channel though, so initialise it to 0.
406 */
407 *pos = 0;
408 } else {
409 int shift = 0;
410 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_RATE));
411 if (status->bw == RATE_INFO_BW_10)
412 shift = 1;
413 else if (status->bw == RATE_INFO_BW_5)
414 shift = 2;
415 *pos = DIV_ROUND_UP(rate->bitrate, 5 * (1 << shift));
416 }
417 pos++;
418
419 /* IEEE80211_RADIOTAP_CHANNEL */
420 /* TODO: frequency offset in KHz */
421 put_unaligned_le16(val: status->freq, p: pos);
422 pos += 2;
423 if (status->bw == RATE_INFO_BW_10)
424 channel_flags |= IEEE80211_CHAN_HALF;
425 else if (status->bw == RATE_INFO_BW_5)
426 channel_flags |= IEEE80211_CHAN_QUARTER;
427
428 if (status->band == NL80211_BAND_5GHZ ||
429 status->band == NL80211_BAND_6GHZ)
430 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ;
431 else if (status->encoding != RX_ENC_LEGACY)
432 channel_flags |= IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
433 else if (rate && rate->flags & IEEE80211_RATE_ERP_G)
434 channel_flags |= IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ;
435 else if (rate)
436 channel_flags |= IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ;
437 else
438 channel_flags |= IEEE80211_CHAN_2GHZ;
439 put_unaligned_le16(val: channel_flags, p: pos);
440 pos += 2;
441
442 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
443 if (ieee80211_hw_check(&local->hw, SIGNAL_DBM) &&
444 !(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
445 *pos = status->signal;
446 rthdr->it_present |=
447 cpu_to_le32(BIT(IEEE80211_RADIOTAP_DBM_ANTSIGNAL));
448 pos++;
449 }
450
451 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
452
453 if (!status->chains) {
454 /* IEEE80211_RADIOTAP_ANTENNA */
455 *pos = status->antenna;
456 pos++;
457 }
458
459 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
460
461 /* IEEE80211_RADIOTAP_RX_FLAGS */
462 /* ensure 2 byte alignment for the 2 byte field as required */
463 if ((pos - (u8 *)rthdr) & 1)
464 *pos++ = 0;
465 if (status->flag & RX_FLAG_FAILED_PLCP_CRC)
466 rx_flags |= IEEE80211_RADIOTAP_F_RX_BADPLCP;
467 put_unaligned_le16(val: rx_flags, p: pos);
468 pos += 2;
469
470 if (status->encoding == RX_ENC_HT) {
471 unsigned int stbc;
472
473 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_MCS));
474 *pos = local->hw.radiotap_mcs_details;
475 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
476 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FMT;
477 if (status->enc_flags & RX_ENC_FLAG_LDPC)
478 *pos |= IEEE80211_RADIOTAP_MCS_HAVE_FEC;
479 pos++;
480 *pos = 0;
481 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
482 *pos |= IEEE80211_RADIOTAP_MCS_SGI;
483 if (status->bw == RATE_INFO_BW_40)
484 *pos |= IEEE80211_RADIOTAP_MCS_BW_40;
485 if (status->enc_flags & RX_ENC_FLAG_HT_GF)
486 *pos |= IEEE80211_RADIOTAP_MCS_FMT_GF;
487 if (status->enc_flags & RX_ENC_FLAG_LDPC)
488 *pos |= IEEE80211_RADIOTAP_MCS_FEC_LDPC;
489 stbc = (status->enc_flags & RX_ENC_FLAG_STBC_MASK) >> RX_ENC_FLAG_STBC_SHIFT;
490 *pos |= stbc << IEEE80211_RADIOTAP_MCS_STBC_SHIFT;
491 pos++;
492 *pos++ = status->rate_idx;
493 }
494
495 if (status->flag & RX_FLAG_AMPDU_DETAILS) {
496 u16 flags = 0;
497
498 /* ensure 4 byte alignment */
499 while ((pos - (u8 *)rthdr) & 3)
500 pos++;
501 rthdr->it_present |=
502 cpu_to_le32(BIT(IEEE80211_RADIOTAP_AMPDU_STATUS));
503 put_unaligned_le32(val: status->ampdu_reference, p: pos);
504 pos += 4;
505 if (status->flag & RX_FLAG_AMPDU_LAST_KNOWN)
506 flags |= IEEE80211_RADIOTAP_AMPDU_LAST_KNOWN;
507 if (status->flag & RX_FLAG_AMPDU_IS_LAST)
508 flags |= IEEE80211_RADIOTAP_AMPDU_IS_LAST;
509 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_ERROR)
510 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_ERR;
511 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
512 flags |= IEEE80211_RADIOTAP_AMPDU_DELIM_CRC_KNOWN;
513 if (status->flag & RX_FLAG_AMPDU_EOF_BIT_KNOWN)
514 flags |= IEEE80211_RADIOTAP_AMPDU_EOF_KNOWN;
515 if (status->flag & RX_FLAG_AMPDU_EOF_BIT)
516 flags |= IEEE80211_RADIOTAP_AMPDU_EOF;
517 put_unaligned_le16(val: flags, p: pos);
518 pos += 2;
519 if (status->flag & RX_FLAG_AMPDU_DELIM_CRC_KNOWN)
520 *pos++ = status->ampdu_delimiter_crc;
521 else
522 *pos++ = 0;
523 *pos++ = 0;
524 }
525
526 if (status->encoding == RX_ENC_VHT) {
527 u16 known = local->hw.radiotap_vht_details;
528
529 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_VHT));
530 put_unaligned_le16(val: known, p: pos);
531 pos += 2;
532 /* flags */
533 if (status->enc_flags & RX_ENC_FLAG_SHORT_GI)
534 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_SGI;
535 /* in VHT, STBC is binary */
536 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK)
537 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_STBC;
538 if (status->enc_flags & RX_ENC_FLAG_BF)
539 *pos |= IEEE80211_RADIOTAP_VHT_FLAG_BEAMFORMED;
540 pos++;
541 /* bandwidth */
542 switch (status->bw) {
543 case RATE_INFO_BW_80:
544 *pos++ = 4;
545 break;
546 case RATE_INFO_BW_160:
547 *pos++ = 11;
548 break;
549 case RATE_INFO_BW_40:
550 *pos++ = 1;
551 break;
552 default:
553 *pos++ = 0;
554 }
555 /* MCS/NSS */
556 *pos = (status->rate_idx << 4) | status->nss;
557 pos += 4;
558 /* coding field */
559 if (status->enc_flags & RX_ENC_FLAG_LDPC)
560 *pos |= IEEE80211_RADIOTAP_CODING_LDPC_USER0;
561 pos++;
562 /* group ID */
563 pos++;
564 /* partial_aid */
565 pos += 2;
566 }
567
568 if (local->hw.radiotap_timestamp.units_pos >= 0) {
569 u16 accuracy = 0;
570 u8 flags;
571 u64 ts;
572
573 rthdr->it_present |=
574 cpu_to_le32(BIT(IEEE80211_RADIOTAP_TIMESTAMP));
575
576 /* ensure 8 byte alignment */
577 while ((pos - (u8 *)rthdr) & 7)
578 pos++;
579
580 if (status->flag & RX_FLAG_MACTIME_IS_RTAP_TS64) {
581 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_64BIT;
582 ts = status->mactime;
583 } else {
584 flags = IEEE80211_RADIOTAP_TIMESTAMP_FLAG_32BIT;
585 ts = status->device_timestamp;
586 }
587
588 put_unaligned_le64(val: ts, p: pos);
589 pos += sizeof(u64);
590
591 if (local->hw.radiotap_timestamp.accuracy >= 0) {
592 accuracy = local->hw.radiotap_timestamp.accuracy;
593 flags |= IEEE80211_RADIOTAP_TIMESTAMP_FLAG_ACCURACY;
594 }
595 put_unaligned_le16(val: accuracy, p: pos);
596 pos += sizeof(u16);
597
598 *pos++ = local->hw.radiotap_timestamp.units_pos;
599 *pos++ = flags;
600 }
601
602 if (status->encoding == RX_ENC_HE &&
603 status->flag & RX_FLAG_RADIOTAP_HE) {
604#define HE_PREP(f, val) le16_encode_bits(val, IEEE80211_RADIOTAP_HE_##f)
605
606 if (status->enc_flags & RX_ENC_FLAG_STBC_MASK) {
607 he.data6 |= HE_PREP(DATA6_NSTS,
608 FIELD_GET(RX_ENC_FLAG_STBC_MASK,
609 status->enc_flags));
610 he.data3 |= HE_PREP(DATA3_STBC, 1);
611 } else {
612 he.data6 |= HE_PREP(DATA6_NSTS, status->nss);
613 }
614
615#define CHECK_GI(s) \
616 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_GI_##s != \
617 (int)NL80211_RATE_INFO_HE_GI_##s)
618
619 CHECK_GI(0_8);
620 CHECK_GI(1_6);
621 CHECK_GI(3_2);
622
623 he.data3 |= HE_PREP(DATA3_DATA_MCS, status->rate_idx);
624 he.data3 |= HE_PREP(DATA3_DATA_DCM, status->he_dcm);
625 he.data3 |= HE_PREP(DATA3_CODING,
626 !!(status->enc_flags & RX_ENC_FLAG_LDPC));
627
628 he.data5 |= HE_PREP(DATA5_GI, status->he_gi);
629
630 switch (status->bw) {
631 case RATE_INFO_BW_20:
632 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
633 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_20MHZ);
634 break;
635 case RATE_INFO_BW_40:
636 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
637 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_40MHZ);
638 break;
639 case RATE_INFO_BW_80:
640 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
641 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_80MHZ);
642 break;
643 case RATE_INFO_BW_160:
644 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
645 IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_160MHZ);
646 break;
647 case RATE_INFO_BW_HE_RU:
648#define CHECK_RU_ALLOC(s) \
649 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA5_DATA_BW_RU_ALLOC_##s##T != \
650 NL80211_RATE_INFO_HE_RU_ALLOC_##s + 4)
651
652 CHECK_RU_ALLOC(26);
653 CHECK_RU_ALLOC(52);
654 CHECK_RU_ALLOC(106);
655 CHECK_RU_ALLOC(242);
656 CHECK_RU_ALLOC(484);
657 CHECK_RU_ALLOC(996);
658 CHECK_RU_ALLOC(2x996);
659
660 he.data5 |= HE_PREP(DATA5_DATA_BW_RU_ALLOC,
661 status->he_ru + 4);
662 break;
663 default:
664 WARN_ONCE(1, "Invalid SU BW %d\n", status->bw);
665 }
666
667 /* ensure 2 byte alignment */
668 while ((pos - (u8 *)rthdr) & 1)
669 pos++;
670 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE));
671 memcpy(pos, &he, sizeof(he));
672 pos += sizeof(he);
673 }
674
675 if (status->encoding == RX_ENC_HE &&
676 status->flag & RX_FLAG_RADIOTAP_HE_MU) {
677 /* ensure 2 byte alignment */
678 while ((pos - (u8 *)rthdr) & 1)
679 pos++;
680 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_HE_MU));
681 memcpy(pos, &he_mu, sizeof(he_mu));
682 pos += sizeof(he_mu);
683 }
684
685 if (status->flag & RX_FLAG_NO_PSDU) {
686 rthdr->it_present |=
687 cpu_to_le32(BIT(IEEE80211_RADIOTAP_ZERO_LEN_PSDU));
688 *pos++ = status->zero_length_psdu_type;
689 }
690
691 if (status->flag & RX_FLAG_RADIOTAP_LSIG) {
692 /* ensure 2 byte alignment */
693 while ((pos - (u8 *)rthdr) & 1)
694 pos++;
695 rthdr->it_present |= cpu_to_le32(BIT(IEEE80211_RADIOTAP_LSIG));
696 memcpy(pos, &lsig, sizeof(lsig));
697 pos += sizeof(lsig);
698 }
699
700 for_each_set_bit(chain, &chains, IEEE80211_MAX_CHAINS) {
701 *pos++ = status->chain_signal[chain];
702 *pos++ = chain;
703 }
704}
705
706static struct sk_buff *
707ieee80211_make_monitor_skb(struct ieee80211_local *local,
708 struct sk_buff **origskb,
709 struct ieee80211_rate *rate,
710 int rtap_space, bool use_origskb)
711{
712 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: *origskb);
713 int rt_hdrlen, needed_headroom;
714 struct sk_buff *skb;
715
716 /* room for the radiotap header based on driver features */
717 rt_hdrlen = ieee80211_rx_radiotap_hdrlen(local, status, skb: *origskb);
718 needed_headroom = rt_hdrlen - rtap_space;
719
720 if (use_origskb) {
721 /* only need to expand headroom if necessary */
722 skb = *origskb;
723 *origskb = NULL;
724
725 /*
726 * This shouldn't trigger often because most devices have an
727 * RX header they pull before we get here, and that should
728 * be big enough for our radiotap information. We should
729 * probably export the length to drivers so that we can have
730 * them allocate enough headroom to start with.
731 */
732 if (skb_headroom(skb) < needed_headroom &&
733 pskb_expand_head(skb, nhead: needed_headroom, ntail: 0, GFP_ATOMIC)) {
734 dev_kfree_skb(skb);
735 return NULL;
736 }
737 } else {
738 /*
739 * Need to make a copy and possibly remove radiotap header
740 * and FCS from the original.
741 */
742 skb = skb_copy_expand(skb: *origskb, newheadroom: needed_headroom + NET_SKB_PAD,
743 newtailroom: 0, GFP_ATOMIC);
744
745 if (!skb)
746 return NULL;
747 }
748
749 /* prepend radiotap information */
750 ieee80211_add_rx_radiotap_header(local, skb, rate, rtap_len: rt_hdrlen, has_fcs: true);
751
752 skb_reset_mac_header(skb);
753 skb->ip_summed = CHECKSUM_UNNECESSARY;
754 skb->pkt_type = PACKET_OTHERHOST;
755 skb->protocol = htons(ETH_P_802_2);
756
757 return skb;
758}
759
760/*
761 * This function copies a received frame to all monitor interfaces and
762 * returns a cleaned-up SKB that no longer includes the FCS nor the
763 * radiotap header the driver might have added.
764 */
765static struct sk_buff *
766ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
767 struct ieee80211_rate *rate)
768{
769 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: origskb);
770 struct ieee80211_sub_if_data *sdata;
771 struct sk_buff *monskb = NULL;
772 int present_fcs_len = 0;
773 unsigned int rtap_space = 0;
774 struct ieee80211_sub_if_data *monitor_sdata =
775 rcu_dereference(local->monitor_sdata);
776 bool only_monitor = false;
777 unsigned int min_head_len;
778
779 if (WARN_ON_ONCE(status->flag & RX_FLAG_RADIOTAP_TLV_AT_END &&
780 !skb_mac_header_was_set(origskb))) {
781 /* with this skb no way to know where frame payload starts */
782 dev_kfree_skb(origskb);
783 return NULL;
784 }
785
786 if (status->flag & RX_FLAG_RADIOTAP_HE)
787 rtap_space += sizeof(struct ieee80211_radiotap_he);
788
789 if (status->flag & RX_FLAG_RADIOTAP_HE_MU)
790 rtap_space += sizeof(struct ieee80211_radiotap_he_mu);
791
792 if (status->flag & RX_FLAG_RADIOTAP_LSIG)
793 rtap_space += sizeof(struct ieee80211_radiotap_lsig);
794
795 if (status->flag & RX_FLAG_RADIOTAP_TLV_AT_END)
796 rtap_space += skb_mac_header(skb: origskb) - &origskb->data[rtap_space];
797
798 min_head_len = rtap_space;
799
800 /*
801 * First, we may need to make a copy of the skb because
802 * (1) we need to modify it for radiotap (if not present), and
803 * (2) the other RX handlers will modify the skb we got.
804 *
805 * We don't need to, of course, if we aren't going to return
806 * the SKB because it has a bad FCS/PLCP checksum.
807 */
808
809 if (!(status->flag & RX_FLAG_NO_PSDU)) {
810 if (ieee80211_hw_check(&local->hw, RX_INCLUDES_FCS)) {
811 if (unlikely(origskb->len <= FCS_LEN + rtap_space)) {
812 /* driver bug */
813 WARN_ON(1);
814 dev_kfree_skb(origskb);
815 return NULL;
816 }
817 present_fcs_len = FCS_LEN;
818 }
819
820 /* also consider the hdr->frame_control */
821 min_head_len += 2;
822 }
823
824 /* ensure that the expected data elements are in skb head */
825 if (!pskb_may_pull(skb: origskb, len: min_head_len)) {
826 dev_kfree_skb(origskb);
827 return NULL;
828 }
829
830 only_monitor = should_drop_frame(skb: origskb, present_fcs_len, rtap_space);
831
832 if (!local->monitors || (status->flag & RX_FLAG_SKIP_MONITOR)) {
833 if (only_monitor) {
834 dev_kfree_skb(origskb);
835 return NULL;
836 }
837
838 return ieee80211_clean_skb(skb: origskb, present_fcs_len,
839 rtap_space);
840 }
841
842 ieee80211_handle_mu_mimo_mon(sdata: monitor_sdata, skb: origskb, rtap_space);
843
844 list_for_each_entry_rcu(sdata, &local->mon_list, u.mntr.list) {
845 bool last_monitor = list_is_last(list: &sdata->u.mntr.list,
846 head: &local->mon_list);
847
848 if (!monskb)
849 monskb = ieee80211_make_monitor_skb(local, origskb: &origskb,
850 rate, rtap_space,
851 use_origskb: only_monitor &&
852 last_monitor);
853
854 if (monskb) {
855 struct sk_buff *skb;
856
857 if (last_monitor) {
858 skb = monskb;
859 monskb = NULL;
860 } else {
861 skb = skb_clone(skb: monskb, GFP_ATOMIC);
862 }
863
864 if (skb) {
865 skb->dev = sdata->dev;
866 dev_sw_netstats_rx_add(dev: skb->dev, len: skb->len);
867 netif_receive_skb(skb);
868 }
869 }
870
871 if (last_monitor)
872 break;
873 }
874
875 /* this happens if last_monitor was erroneously false */
876 dev_kfree_skb(monskb);
877
878 /* ditto */
879 if (!origskb)
880 return NULL;
881
882 return ieee80211_clean_skb(skb: origskb, present_fcs_len, rtap_space);
883}
884
885static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
886{
887 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
888 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
889 int tid, seqno_idx, security_idx;
890
891 /* does the frame have a qos control field? */
892 if (ieee80211_is_data_qos(fc: hdr->frame_control)) {
893 u8 *qc = ieee80211_get_qos_ctl(hdr);
894 /* frame has qos control */
895 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
896 if (*qc & IEEE80211_QOS_CTL_A_MSDU_PRESENT)
897 status->rx_flags |= IEEE80211_RX_AMSDU;
898
899 seqno_idx = tid;
900 security_idx = tid;
901 } else {
902 /*
903 * IEEE 802.11-2007, 7.1.3.4.1 ("Sequence Number field"):
904 *
905 * Sequence numbers for management frames, QoS data
906 * frames with a broadcast/multicast address in the
907 * Address 1 field, and all non-QoS data frames sent
908 * by QoS STAs are assigned using an additional single
909 * modulo-4096 counter, [...]
910 *
911 * We also use that counter for non-QoS STAs.
912 */
913 seqno_idx = IEEE80211_NUM_TIDS;
914 security_idx = 0;
915 if (ieee80211_is_mgmt(fc: hdr->frame_control))
916 security_idx = IEEE80211_NUM_TIDS;
917 tid = 0;
918 }
919
920 rx->seqno_idx = seqno_idx;
921 rx->security_idx = security_idx;
922 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
923 * For now, set skb->priority to 0 for other cases. */
924 rx->skb->priority = (tid > 7) ? 0 : tid;
925}
926
927/**
928 * DOC: Packet alignment
929 *
930 * Drivers always need to pass packets that are aligned to two-byte boundaries
931 * to the stack.
932 *
933 * Additionally, they should, if possible, align the payload data in a way that
934 * guarantees that the contained IP header is aligned to a four-byte
935 * boundary. In the case of regular frames, this simply means aligning the
936 * payload to a four-byte boundary (because either the IP header is directly
937 * contained, or IV/RFC1042 headers that have a length divisible by four are
938 * in front of it). If the payload data is not properly aligned and the
939 * architecture doesn't support efficient unaligned operations, mac80211
940 * will align the data.
941 *
942 * With A-MSDU frames, however, the payload data address must yield two modulo
943 * four because there are 14-byte 802.3 headers within the A-MSDU frames that
944 * push the IP header further back to a multiple of four again. Thankfully, the
945 * specs were sane enough this time around to require padding each A-MSDU
946 * subframe to a length that is a multiple of four.
947 *
948 * Padding like Atheros hardware adds which is between the 802.11 header and
949 * the payload is not supported; the driver is required to move the 802.11
950 * header to be directly in front of the payload in that case.
951 */
952static void ieee80211_verify_alignment(struct ieee80211_rx_data *rx)
953{
954#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
955 WARN_ON_ONCE((unsigned long)rx->skb->data & 1);
956#endif
957}
958
959
960/* rx handlers */
961
962static int ieee80211_is_unicast_robust_mgmt_frame(struct sk_buff *skb)
963{
964 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
965
966 if (is_multicast_ether_addr(addr: hdr->addr1))
967 return 0;
968
969 return ieee80211_is_robust_mgmt_frame(skb);
970}
971
972
973static int ieee80211_is_multicast_robust_mgmt_frame(struct sk_buff *skb)
974{
975 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
976
977 if (!is_multicast_ether_addr(addr: hdr->addr1))
978 return 0;
979
980 return ieee80211_is_robust_mgmt_frame(skb);
981}
982
983
984/* Get the BIP key index from MMIE; return -1 if this is not a BIP frame */
985static int ieee80211_get_mmie_keyidx(struct sk_buff *skb)
986{
987 struct ieee80211_mgmt *hdr = (struct ieee80211_mgmt *) skb->data;
988 struct ieee80211_mmie *mmie;
989 struct ieee80211_mmie_16 *mmie16;
990
991 if (skb->len < 24 + sizeof(*mmie) || !is_multicast_ether_addr(addr: hdr->da))
992 return -1;
993
994 if (!ieee80211_is_robust_mgmt_frame(skb) &&
995 !ieee80211_is_beacon(fc: hdr->frame_control))
996 return -1; /* not a robust management frame */
997
998 mmie = (struct ieee80211_mmie *)
999 (skb->data + skb->len - sizeof(*mmie));
1000 if (mmie->element_id == WLAN_EID_MMIE &&
1001 mmie->length == sizeof(*mmie) - 2)
1002 return le16_to_cpu(mmie->key_id);
1003
1004 mmie16 = (struct ieee80211_mmie_16 *)
1005 (skb->data + skb->len - sizeof(*mmie16));
1006 if (skb->len >= 24 + sizeof(*mmie16) &&
1007 mmie16->element_id == WLAN_EID_MMIE &&
1008 mmie16->length == sizeof(*mmie16) - 2)
1009 return le16_to_cpu(mmie16->key_id);
1010
1011 return -1;
1012}
1013
1014static int ieee80211_get_keyid(struct sk_buff *skb)
1015{
1016 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1017 __le16 fc = hdr->frame_control;
1018 int hdrlen = ieee80211_hdrlen(fc);
1019 u8 keyid;
1020
1021 /* WEP, TKIP, CCMP and GCMP */
1022 if (unlikely(skb->len < hdrlen + IEEE80211_WEP_IV_LEN))
1023 return -EINVAL;
1024
1025 skb_copy_bits(skb, offset: hdrlen + 3, to: &keyid, len: 1);
1026
1027 keyid >>= 6;
1028
1029 return keyid;
1030}
1031
1032static ieee80211_rx_result ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
1033{
1034 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1035 char *dev_addr = rx->sdata->vif.addr;
1036
1037 if (ieee80211_is_data(fc: hdr->frame_control)) {
1038 if (is_multicast_ether_addr(addr: hdr->addr1)) {
1039 if (ieee80211_has_tods(fc: hdr->frame_control) ||
1040 !ieee80211_has_fromds(fc: hdr->frame_control))
1041 return RX_DROP_MONITOR;
1042 if (ether_addr_equal(addr1: hdr->addr3, addr2: dev_addr))
1043 return RX_DROP_MONITOR;
1044 } else {
1045 if (!ieee80211_has_a4(fc: hdr->frame_control))
1046 return RX_DROP_MONITOR;
1047 if (ether_addr_equal(addr1: hdr->addr4, addr2: dev_addr))
1048 return RX_DROP_MONITOR;
1049 }
1050 }
1051
1052 /* If there is not an established peer link and this is not a peer link
1053 * establisment frame, beacon or probe, drop the frame.
1054 */
1055
1056 if (!rx->sta || sta_plink_state(sta: rx->sta) != NL80211_PLINK_ESTAB) {
1057 struct ieee80211_mgmt *mgmt;
1058
1059 if (!ieee80211_is_mgmt(fc: hdr->frame_control))
1060 return RX_DROP_MONITOR;
1061
1062 if (ieee80211_is_action(fc: hdr->frame_control)) {
1063 u8 category;
1064
1065 /* make sure category field is present */
1066 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
1067 return RX_DROP_MONITOR;
1068
1069 mgmt = (struct ieee80211_mgmt *)hdr;
1070 category = mgmt->u.action.category;
1071 if (category != WLAN_CATEGORY_MESH_ACTION &&
1072 category != WLAN_CATEGORY_SELF_PROTECTED)
1073 return RX_DROP_MONITOR;
1074 return RX_CONTINUE;
1075 }
1076
1077 if (ieee80211_is_probe_req(fc: hdr->frame_control) ||
1078 ieee80211_is_probe_resp(fc: hdr->frame_control) ||
1079 ieee80211_is_beacon(fc: hdr->frame_control) ||
1080 ieee80211_is_auth(fc: hdr->frame_control))
1081 return RX_CONTINUE;
1082
1083 return RX_DROP_MONITOR;
1084 }
1085
1086 return RX_CONTINUE;
1087}
1088
1089static inline bool ieee80211_rx_reorder_ready(struct tid_ampdu_rx *tid_agg_rx,
1090 int index)
1091{
1092 struct sk_buff_head *frames = &tid_agg_rx->reorder_buf[index];
1093 struct sk_buff *tail = skb_peek_tail(list_: frames);
1094 struct ieee80211_rx_status *status;
1095
1096 if (tid_agg_rx->reorder_buf_filtered &&
1097 tid_agg_rx->reorder_buf_filtered & BIT_ULL(index))
1098 return true;
1099
1100 if (!tail)
1101 return false;
1102
1103 status = IEEE80211_SKB_RXCB(skb: tail);
1104 if (status->flag & RX_FLAG_AMSDU_MORE)
1105 return false;
1106
1107 return true;
1108}
1109
1110static void ieee80211_release_reorder_frame(struct ieee80211_sub_if_data *sdata,
1111 struct tid_ampdu_rx *tid_agg_rx,
1112 int index,
1113 struct sk_buff_head *frames)
1114{
1115 struct sk_buff_head *skb_list = &tid_agg_rx->reorder_buf[index];
1116 struct sk_buff *skb;
1117 struct ieee80211_rx_status *status;
1118
1119 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1120
1121 if (skb_queue_empty(list: skb_list))
1122 goto no_frame;
1123
1124 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1125 __skb_queue_purge(list: skb_list);
1126 goto no_frame;
1127 }
1128
1129 /* release frames from the reorder ring buffer */
1130 tid_agg_rx->stored_mpdu_num--;
1131 while ((skb = __skb_dequeue(list: skb_list))) {
1132 status = IEEE80211_SKB_RXCB(skb);
1133 status->rx_flags |= IEEE80211_RX_DEFERRED_RELEASE;
1134 __skb_queue_tail(list: frames, newsk: skb);
1135 }
1136
1137no_frame:
1138 if (tid_agg_rx->reorder_buf_filtered)
1139 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
1140 tid_agg_rx->head_seq_num = ieee80211_sn_inc(sn: tid_agg_rx->head_seq_num);
1141}
1142
1143static void ieee80211_release_reorder_frames(struct ieee80211_sub_if_data *sdata,
1144 struct tid_ampdu_rx *tid_agg_rx,
1145 u16 head_seq_num,
1146 struct sk_buff_head *frames)
1147{
1148 int index;
1149
1150 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1151
1152 while (ieee80211_sn_less(sn1: tid_agg_rx->head_seq_num, sn2: head_seq_num)) {
1153 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1154 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1155 frames);
1156 }
1157}
1158
1159/*
1160 * Timeout (in jiffies) for skb's that are waiting in the RX reorder buffer. If
1161 * the skb was added to the buffer longer than this time ago, the earlier
1162 * frames that have not yet been received are assumed to be lost and the skb
1163 * can be released for processing. This may also release other skb's from the
1164 * reorder buffer if there are no additional gaps between the frames.
1165 *
1166 * Callers must hold tid_agg_rx->reorder_lock.
1167 */
1168#define HT_RX_REORDER_BUF_TIMEOUT (HZ / 10)
1169
1170static void ieee80211_sta_reorder_release(struct ieee80211_sub_if_data *sdata,
1171 struct tid_ampdu_rx *tid_agg_rx,
1172 struct sk_buff_head *frames)
1173{
1174 int index, i, j;
1175
1176 lockdep_assert_held(&tid_agg_rx->reorder_lock);
1177
1178 /* release the buffer until next missing frame */
1179 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1180 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index) &&
1181 tid_agg_rx->stored_mpdu_num) {
1182 /*
1183 * No buffers ready to be released, but check whether any
1184 * frames in the reorder buffer have timed out.
1185 */
1186 int skipped = 1;
1187 for (j = (index + 1) % tid_agg_rx->buf_size; j != index;
1188 j = (j + 1) % tid_agg_rx->buf_size) {
1189 if (!ieee80211_rx_reorder_ready(tid_agg_rx, index: j)) {
1190 skipped++;
1191 continue;
1192 }
1193 if (skipped &&
1194 !time_after(jiffies, tid_agg_rx->reorder_time[j] +
1195 HT_RX_REORDER_BUF_TIMEOUT))
1196 goto set_release_timer;
1197
1198 /* don't leave incomplete A-MSDUs around */
1199 for (i = (index + 1) % tid_agg_rx->buf_size; i != j;
1200 i = (i + 1) % tid_agg_rx->buf_size)
1201 __skb_queue_purge(list: &tid_agg_rx->reorder_buf[i]);
1202
1203 ht_dbg_ratelimited(sdata,
1204 "release an RX reorder frame due to timeout on earlier frames\n");
1205 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index: j,
1206 frames);
1207
1208 /*
1209 * Increment the head seq# also for the skipped slots.
1210 */
1211 tid_agg_rx->head_seq_num =
1212 (tid_agg_rx->head_seq_num +
1213 skipped) & IEEE80211_SN_MASK;
1214 skipped = 0;
1215 }
1216 } else while (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1217 ieee80211_release_reorder_frame(sdata, tid_agg_rx, index,
1218 frames);
1219 index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1220 }
1221
1222 if (tid_agg_rx->stored_mpdu_num) {
1223 j = index = tid_agg_rx->head_seq_num % tid_agg_rx->buf_size;
1224
1225 for (; j != (index - 1) % tid_agg_rx->buf_size;
1226 j = (j + 1) % tid_agg_rx->buf_size) {
1227 if (ieee80211_rx_reorder_ready(tid_agg_rx, index: j))
1228 break;
1229 }
1230
1231 set_release_timer:
1232
1233 if (!tid_agg_rx->removed)
1234 mod_timer(timer: &tid_agg_rx->reorder_timer,
1235 expires: tid_agg_rx->reorder_time[j] + 1 +
1236 HT_RX_REORDER_BUF_TIMEOUT);
1237 } else {
1238 del_timer(timer: &tid_agg_rx->reorder_timer);
1239 }
1240}
1241
1242/*
1243 * As this function belongs to the RX path it must be under
1244 * rcu_read_lock protection. It returns false if the frame
1245 * can be processed immediately, true if it was consumed.
1246 */
1247static bool ieee80211_sta_manage_reorder_buf(struct ieee80211_sub_if_data *sdata,
1248 struct tid_ampdu_rx *tid_agg_rx,
1249 struct sk_buff *skb,
1250 struct sk_buff_head *frames)
1251{
1252 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1253 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1254 u16 mpdu_seq_num = ieee80211_get_sn(hdr);
1255 u16 head_seq_num, buf_size;
1256 int index;
1257 bool ret = true;
1258
1259 spin_lock(lock: &tid_agg_rx->reorder_lock);
1260
1261 /*
1262 * Offloaded BA sessions have no known starting sequence number so pick
1263 * one from first Rxed frame for this tid after BA was started.
1264 */
1265 if (unlikely(tid_agg_rx->auto_seq)) {
1266 tid_agg_rx->auto_seq = false;
1267 tid_agg_rx->ssn = mpdu_seq_num;
1268 tid_agg_rx->head_seq_num = mpdu_seq_num;
1269 }
1270
1271 buf_size = tid_agg_rx->buf_size;
1272 head_seq_num = tid_agg_rx->head_seq_num;
1273
1274 /*
1275 * If the current MPDU's SN is smaller than the SSN, it shouldn't
1276 * be reordered.
1277 */
1278 if (unlikely(!tid_agg_rx->started)) {
1279 if (ieee80211_sn_less(sn1: mpdu_seq_num, sn2: head_seq_num)) {
1280 ret = false;
1281 goto out;
1282 }
1283 tid_agg_rx->started = true;
1284 }
1285
1286 /* frame with out of date sequence number */
1287 if (ieee80211_sn_less(sn1: mpdu_seq_num, sn2: head_seq_num)) {
1288 dev_kfree_skb(skb);
1289 goto out;
1290 }
1291
1292 /*
1293 * If frame the sequence number exceeds our buffering window
1294 * size release some previous frames to make room for this one.
1295 */
1296 if (!ieee80211_sn_less(sn1: mpdu_seq_num, sn2: head_seq_num + buf_size)) {
1297 head_seq_num = ieee80211_sn_inc(
1298 sn: ieee80211_sn_sub(sn1: mpdu_seq_num, sn2: buf_size));
1299 /* release stored frames up to new head to stack */
1300 ieee80211_release_reorder_frames(sdata, tid_agg_rx,
1301 head_seq_num, frames);
1302 }
1303
1304 /* Now the new frame is always in the range of the reordering buffer */
1305
1306 index = mpdu_seq_num % tid_agg_rx->buf_size;
1307
1308 /* check if we already stored this frame */
1309 if (ieee80211_rx_reorder_ready(tid_agg_rx, index)) {
1310 dev_kfree_skb(skb);
1311 goto out;
1312 }
1313
1314 /*
1315 * If the current MPDU is in the right order and nothing else
1316 * is stored we can process it directly, no need to buffer it.
1317 * If it is first but there's something stored, we may be able
1318 * to release frames after this one.
1319 */
1320 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1321 tid_agg_rx->stored_mpdu_num == 0) {
1322 if (!(status->flag & RX_FLAG_AMSDU_MORE))
1323 tid_agg_rx->head_seq_num =
1324 ieee80211_sn_inc(sn: tid_agg_rx->head_seq_num);
1325 ret = false;
1326 goto out;
1327 }
1328
1329 /* put the frame in the reordering buffer */
1330 __skb_queue_tail(list: &tid_agg_rx->reorder_buf[index], newsk: skb);
1331 if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1332 tid_agg_rx->reorder_time[index] = jiffies;
1333 tid_agg_rx->stored_mpdu_num++;
1334 ieee80211_sta_reorder_release(sdata, tid_agg_rx, frames);
1335 }
1336
1337 out:
1338 spin_unlock(lock: &tid_agg_rx->reorder_lock);
1339 return ret;
1340}
1341
1342/*
1343 * Reorder MPDUs from A-MPDUs, keeping them on a buffer. Returns
1344 * true if the MPDU was buffered, false if it should be processed.
1345 */
1346static void ieee80211_rx_reorder_ampdu(struct ieee80211_rx_data *rx,
1347 struct sk_buff_head *frames)
1348{
1349 struct sk_buff *skb = rx->skb;
1350 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1351 struct sta_info *sta = rx->sta;
1352 struct tid_ampdu_rx *tid_agg_rx;
1353 u16 sc;
1354 u8 tid, ack_policy;
1355
1356 if (!ieee80211_is_data_qos(fc: hdr->frame_control) ||
1357 is_multicast_ether_addr(addr: hdr->addr1))
1358 goto dont_reorder;
1359
1360 /*
1361 * filter the QoS data rx stream according to
1362 * STA/TID and check if this STA/TID is on aggregation
1363 */
1364
1365 if (!sta)
1366 goto dont_reorder;
1367
1368 ack_policy = *ieee80211_get_qos_ctl(hdr) &
1369 IEEE80211_QOS_CTL_ACK_POLICY_MASK;
1370 tid = ieee80211_get_tid(hdr);
1371
1372 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
1373 if (!tid_agg_rx) {
1374 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK &&
1375 !test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
1376 !test_and_set_bit(nr: tid, addr: rx->sta->ampdu_mlme.unexpected_agg))
1377 ieee80211_send_delba(sdata: rx->sdata, da: rx->sta->sta.addr, tid,
1378 initiator: WLAN_BACK_RECIPIENT,
1379 reason_code: WLAN_REASON_QSTA_REQUIRE_SETUP);
1380 goto dont_reorder;
1381 }
1382
1383 /* qos null data frames are excluded */
1384 if (unlikely(hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_NULLFUNC)))
1385 goto dont_reorder;
1386
1387 /* not part of a BA session */
1388 if (ack_policy == IEEE80211_QOS_CTL_ACK_POLICY_NOACK)
1389 goto dont_reorder;
1390
1391 /* new, potentially un-ordered, ampdu frame - process it */
1392
1393 /* reset session timer */
1394 if (tid_agg_rx->timeout)
1395 tid_agg_rx->last_rx = jiffies;
1396
1397 /* if this mpdu is fragmented - terminate rx aggregation session */
1398 sc = le16_to_cpu(hdr->seq_ctrl);
1399 if (sc & IEEE80211_SCTL_FRAG) {
1400 ieee80211_queue_skb_to_iface(sdata: rx->sdata, link_id: rx->link_id, NULL, skb);
1401 return;
1402 }
1403
1404 /*
1405 * No locking needed -- we will only ever process one
1406 * RX packet at a time, and thus own tid_agg_rx. All
1407 * other code manipulating it needs to (and does) make
1408 * sure that we cannot get to it any more before doing
1409 * anything with it.
1410 */
1411 if (ieee80211_sta_manage_reorder_buf(sdata: rx->sdata, tid_agg_rx, skb,
1412 frames))
1413 return;
1414
1415 dont_reorder:
1416 __skb_queue_tail(list: frames, newsk: skb);
1417}
1418
1419static ieee80211_rx_result debug_noinline
1420ieee80211_rx_h_check_dup(struct ieee80211_rx_data *rx)
1421{
1422 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1423 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
1424
1425 if (status->flag & RX_FLAG_DUP_VALIDATED)
1426 return RX_CONTINUE;
1427
1428 /*
1429 * Drop duplicate 802.11 retransmissions
1430 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
1431 */
1432
1433 if (rx->skb->len < 24)
1434 return RX_CONTINUE;
1435
1436 if (ieee80211_is_ctl(fc: hdr->frame_control) ||
1437 ieee80211_is_any_nullfunc(fc: hdr->frame_control))
1438 return RX_CONTINUE;
1439
1440 if (!rx->sta)
1441 return RX_CONTINUE;
1442
1443 if (unlikely(is_multicast_ether_addr(hdr->addr1))) {
1444 struct ieee80211_sub_if_data *sdata = rx->sdata;
1445 u16 sn = ieee80211_get_sn(hdr);
1446
1447 if (!ieee80211_is_data_present(fc: hdr->frame_control))
1448 return RX_CONTINUE;
1449
1450 if (!ieee80211_vif_is_mld(vif: &sdata->vif) ||
1451 sdata->vif.type != NL80211_IFTYPE_STATION)
1452 return RX_CONTINUE;
1453
1454 if (sdata->u.mgd.mcast_seq_last != IEEE80211_SN_MODULO &&
1455 ieee80211_sn_less_eq(sn1: sn, sn2: sdata->u.mgd.mcast_seq_last))
1456 return RX_DROP_U_DUP;
1457
1458 sdata->u.mgd.mcast_seq_last = sn;
1459 return RX_CONTINUE;
1460 }
1461
1462 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1463 rx->sta->last_seq_ctrl[rx->seqno_idx] == hdr->seq_ctrl)) {
1464 I802_DEBUG_INC(rx->local->dot11FrameDuplicateCount);
1465 rx->link_sta->rx_stats.num_duplicates++;
1466 return RX_DROP_U_DUP;
1467 } else if (!(status->flag & RX_FLAG_AMSDU_MORE)) {
1468 rx->sta->last_seq_ctrl[rx->seqno_idx] = hdr->seq_ctrl;
1469 }
1470
1471 return RX_CONTINUE;
1472}
1473
1474static ieee80211_rx_result debug_noinline
1475ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
1476{
1477 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
1478
1479 /* Drop disallowed frame classes based on STA auth/assoc state;
1480 * IEEE 802.11, Chap 5.5.
1481 *
1482 * mac80211 filters only based on association state, i.e. it drops
1483 * Class 3 frames from not associated stations. hostapd sends
1484 * deauth/disassoc frames when needed. In addition, hostapd is
1485 * responsible for filtering on both auth and assoc states.
1486 */
1487
1488 if (ieee80211_vif_is_mesh(vif: &rx->sdata->vif))
1489 return ieee80211_rx_mesh_check(rx);
1490
1491 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
1492 ieee80211_is_pspoll(hdr->frame_control)) &&
1493 rx->sdata->vif.type != NL80211_IFTYPE_ADHOC &&
1494 rx->sdata->vif.type != NL80211_IFTYPE_OCB &&
1495 (!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_ASSOC)))) {
1496 /*
1497 * accept port control frames from the AP even when it's not
1498 * yet marked ASSOC to prevent a race where we don't set the
1499 * assoc bit quickly enough before it sends the first frame
1500 */
1501 if (rx->sta && rx->sdata->vif.type == NL80211_IFTYPE_STATION &&
1502 ieee80211_is_data_present(fc: hdr->frame_control)) {
1503 unsigned int hdrlen;
1504 __be16 ethertype;
1505
1506 hdrlen = ieee80211_hdrlen(fc: hdr->frame_control);
1507
1508 if (rx->skb->len < hdrlen + 8)
1509 return RX_DROP_MONITOR;
1510
1511 skb_copy_bits(skb: rx->skb, offset: hdrlen + 6, to: &ethertype, len: 2);
1512 if (ethertype == rx->sdata->control_port_protocol)
1513 return RX_CONTINUE;
1514 }
1515
1516 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
1517 cfg80211_rx_spurious_frame(dev: rx->sdata->dev,
1518 addr: hdr->addr2,
1519 GFP_ATOMIC))
1520 return RX_DROP_U_SPURIOUS;
1521
1522 return RX_DROP_MONITOR;
1523 }
1524
1525 return RX_CONTINUE;
1526}
1527
1528
1529static ieee80211_rx_result debug_noinline
1530ieee80211_rx_h_check_more_data(struct ieee80211_rx_data *rx)
1531{
1532 struct ieee80211_local *local;
1533 struct ieee80211_hdr *hdr;
1534 struct sk_buff *skb;
1535
1536 local = rx->local;
1537 skb = rx->skb;
1538 hdr = (struct ieee80211_hdr *) skb->data;
1539
1540 if (!local->pspolling)
1541 return RX_CONTINUE;
1542
1543 if (!ieee80211_has_fromds(fc: hdr->frame_control))
1544 /* this is not from AP */
1545 return RX_CONTINUE;
1546
1547 if (!ieee80211_is_data(fc: hdr->frame_control))
1548 return RX_CONTINUE;
1549
1550 if (!ieee80211_has_moredata(fc: hdr->frame_control)) {
1551 /* AP has no more frames buffered for us */
1552 local->pspolling = false;
1553 return RX_CONTINUE;
1554 }
1555
1556 /* more data bit is set, let's request a new frame from the AP */
1557 ieee80211_send_pspoll(local, sdata: rx->sdata);
1558
1559 return RX_CONTINUE;
1560}
1561
1562static void sta_ps_start(struct sta_info *sta)
1563{
1564 struct ieee80211_sub_if_data *sdata = sta->sdata;
1565 struct ieee80211_local *local = sdata->local;
1566 struct ps_data *ps;
1567 int tid;
1568
1569 if (sta->sdata->vif.type == NL80211_IFTYPE_AP ||
1570 sta->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
1571 ps = &sdata->bss->ps;
1572 else
1573 return;
1574
1575 atomic_inc(v: &ps->num_sta_ps);
1576 set_sta_flag(sta, flag: WLAN_STA_PS_STA);
1577 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
1578 drv_sta_notify(local, sdata, cmd: STA_NOTIFY_SLEEP, sta: &sta->sta);
1579 ps_dbg(sdata, "STA %pM aid %d enters power save mode\n",
1580 sta->sta.addr, sta->sta.aid);
1581
1582 ieee80211_clear_fast_xmit(sta);
1583
1584 for (tid = 0; tid < IEEE80211_NUM_TIDS; tid++) {
1585 struct ieee80211_txq *txq = sta->sta.txq[tid];
1586 struct txq_info *txqi = to_txq_info(txq);
1587
1588 spin_lock(lock: &local->active_txq_lock[txq->ac]);
1589 if (!list_empty(head: &txqi->schedule_order))
1590 list_del_init(entry: &txqi->schedule_order);
1591 spin_unlock(lock: &local->active_txq_lock[txq->ac]);
1592
1593 if (txq_has_queue(txq))
1594 set_bit(nr: tid, addr: &sta->txq_buffered_tids);
1595 else
1596 clear_bit(nr: tid, addr: &sta->txq_buffered_tids);
1597 }
1598}
1599
1600static void sta_ps_end(struct sta_info *sta)
1601{
1602 ps_dbg(sta->sdata, "STA %pM aid %d exits power save mode\n",
1603 sta->sta.addr, sta->sta.aid);
1604
1605 if (test_sta_flag(sta, flag: WLAN_STA_PS_DRIVER)) {
1606 /*
1607 * Clear the flag only if the other one is still set
1608 * so that the TX path won't start TX'ing new frames
1609 * directly ... In the case that the driver flag isn't
1610 * set ieee80211_sta_ps_deliver_wakeup() will clear it.
1611 */
1612 clear_sta_flag(sta, flag: WLAN_STA_PS_STA);
1613 ps_dbg(sta->sdata, "STA %pM aid %d driver-ps-blocked\n",
1614 sta->sta.addr, sta->sta.aid);
1615 return;
1616 }
1617
1618 set_sta_flag(sta, flag: WLAN_STA_PS_DELIVER);
1619 clear_sta_flag(sta, flag: WLAN_STA_PS_STA);
1620 ieee80211_sta_ps_deliver_wakeup(sta);
1621}
1622
1623int ieee80211_sta_ps_transition(struct ieee80211_sta *pubsta, bool start)
1624{
1625 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1626 bool in_ps;
1627
1628 WARN_ON(!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS));
1629
1630 /* Don't let the same PS state be set twice */
1631 in_ps = test_sta_flag(sta, flag: WLAN_STA_PS_STA);
1632 if ((start && in_ps) || (!start && !in_ps))
1633 return -EINVAL;
1634
1635 if (start)
1636 sta_ps_start(sta);
1637 else
1638 sta_ps_end(sta);
1639
1640 return 0;
1641}
1642EXPORT_SYMBOL(ieee80211_sta_ps_transition);
1643
1644void ieee80211_sta_pspoll(struct ieee80211_sta *pubsta)
1645{
1646 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1647
1648 if (test_sta_flag(sta, flag: WLAN_STA_SP))
1649 return;
1650
1651 if (!test_sta_flag(sta, flag: WLAN_STA_PS_DRIVER))
1652 ieee80211_sta_ps_deliver_poll_response(sta);
1653 else
1654 set_sta_flag(sta, flag: WLAN_STA_PSPOLL);
1655}
1656EXPORT_SYMBOL(ieee80211_sta_pspoll);
1657
1658void ieee80211_sta_uapsd_trigger(struct ieee80211_sta *pubsta, u8 tid)
1659{
1660 struct sta_info *sta = container_of(pubsta, struct sta_info, sta);
1661 int ac = ieee80211_ac_from_tid(tid);
1662
1663 /*
1664 * If this AC is not trigger-enabled do nothing unless the
1665 * driver is calling us after it already checked.
1666 *
1667 * NB: This could/should check a separate bitmap of trigger-
1668 * enabled queues, but for now we only implement uAPSD w/o
1669 * TSPEC changes to the ACs, so they're always the same.
1670 */
1671 if (!(sta->sta.uapsd_queues & ieee80211_ac_to_qos_mask[ac]) &&
1672 tid != IEEE80211_NUM_TIDS)
1673 return;
1674
1675 /* if we are in a service period, do nothing */
1676 if (test_sta_flag(sta, flag: WLAN_STA_SP))
1677 return;
1678
1679 if (!test_sta_flag(sta, flag: WLAN_STA_PS_DRIVER))
1680 ieee80211_sta_ps_deliver_uapsd(sta);
1681 else
1682 set_sta_flag(sta, flag: WLAN_STA_UAPSD);
1683}
1684EXPORT_SYMBOL(ieee80211_sta_uapsd_trigger);
1685
1686static ieee80211_rx_result debug_noinline
1687ieee80211_rx_h_uapsd_and_pspoll(struct ieee80211_rx_data *rx)
1688{
1689 struct ieee80211_sub_if_data *sdata = rx->sdata;
1690 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
1691 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
1692
1693 if (!rx->sta)
1694 return RX_CONTINUE;
1695
1696 if (sdata->vif.type != NL80211_IFTYPE_AP &&
1697 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
1698 return RX_CONTINUE;
1699
1700 /*
1701 * The device handles station powersave, so don't do anything about
1702 * uAPSD and PS-Poll frames (the latter shouldn't even come up from
1703 * it to mac80211 since they're handled.)
1704 */
1705 if (ieee80211_hw_check(&sdata->local->hw, AP_LINK_PS))
1706 return RX_CONTINUE;
1707
1708 /*
1709 * Don't do anything if the station isn't already asleep. In
1710 * the uAPSD case, the station will probably be marked asleep,
1711 * in the PS-Poll case the station must be confused ...
1712 */
1713 if (!test_sta_flag(sta: rx->sta, flag: WLAN_STA_PS_STA))
1714 return RX_CONTINUE;
1715
1716 if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) {
1717 ieee80211_sta_pspoll(&rx->sta->sta);
1718
1719 /* Free PS Poll skb here instead of returning RX_DROP that would
1720 * count as an dropped frame. */
1721 dev_kfree_skb(rx->skb);
1722
1723 return RX_QUEUED;
1724 } else if (!ieee80211_has_morefrags(fc: hdr->frame_control) &&
1725 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1726 ieee80211_has_pm(fc: hdr->frame_control) &&
1727 (ieee80211_is_data_qos(fc: hdr->frame_control) ||
1728 ieee80211_is_qos_nullfunc(fc: hdr->frame_control))) {
1729 u8 tid = ieee80211_get_tid(hdr);
1730
1731 ieee80211_sta_uapsd_trigger(&rx->sta->sta, tid);
1732 }
1733
1734 return RX_CONTINUE;
1735}
1736
1737static ieee80211_rx_result debug_noinline
1738ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
1739{
1740 struct sta_info *sta = rx->sta;
1741 struct link_sta_info *link_sta = rx->link_sta;
1742 struct sk_buff *skb = rx->skb;
1743 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1744 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1745 int i;
1746
1747 if (!sta || !link_sta)
1748 return RX_CONTINUE;
1749
1750 /*
1751 * Update last_rx only for IBSS packets which are for the current
1752 * BSSID and for station already AUTHORIZED to avoid keeping the
1753 * current IBSS network alive in cases where other STAs start
1754 * using different BSSID. This will also give the station another
1755 * chance to restart the authentication/authorization in case
1756 * something went wrong the first time.
1757 */
1758 if (rx->sdata->vif.type == NL80211_IFTYPE_ADHOC) {
1759 u8 *bssid = ieee80211_get_bssid(hdr, len: rx->skb->len,
1760 type: NL80211_IFTYPE_ADHOC);
1761 if (ether_addr_equal(addr1: bssid, addr2: rx->sdata->u.ibss.bssid) &&
1762 test_sta_flag(sta, flag: WLAN_STA_AUTHORIZED)) {
1763 link_sta->rx_stats.last_rx = jiffies;
1764 if (ieee80211_is_data_present(fc: hdr->frame_control) &&
1765 !is_multicast_ether_addr(addr: hdr->addr1))
1766 link_sta->rx_stats.last_rate =
1767 sta_stats_encode_rate(s: status);
1768 }
1769 } else if (rx->sdata->vif.type == NL80211_IFTYPE_OCB) {
1770 link_sta->rx_stats.last_rx = jiffies;
1771 } else if (!ieee80211_is_s1g_beacon(fc: hdr->frame_control) &&
1772 !is_multicast_ether_addr(addr: hdr->addr1)) {
1773 /*
1774 * Mesh beacons will update last_rx when if they are found to
1775 * match the current local configuration when processed.
1776 */
1777 link_sta->rx_stats.last_rx = jiffies;
1778 if (ieee80211_is_data_present(fc: hdr->frame_control))
1779 link_sta->rx_stats.last_rate = sta_stats_encode_rate(s: status);
1780 }
1781
1782 link_sta->rx_stats.fragments++;
1783
1784 u64_stats_update_begin(syncp: &link_sta->rx_stats.syncp);
1785 link_sta->rx_stats.bytes += rx->skb->len;
1786 u64_stats_update_end(syncp: &link_sta->rx_stats.syncp);
1787
1788 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
1789 link_sta->rx_stats.last_signal = status->signal;
1790 ewma_signal_add(e: &link_sta->rx_stats_avg.signal,
1791 val: -status->signal);
1792 }
1793
1794 if (status->chains) {
1795 link_sta->rx_stats.chains = status->chains;
1796 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
1797 int signal = status->chain_signal[i];
1798
1799 if (!(status->chains & BIT(i)))
1800 continue;
1801
1802 link_sta->rx_stats.chain_signal_last[i] = signal;
1803 ewma_signal_add(e: &link_sta->rx_stats_avg.chain_signal[i],
1804 val: -signal);
1805 }
1806 }
1807
1808 if (ieee80211_is_s1g_beacon(fc: hdr->frame_control))
1809 return RX_CONTINUE;
1810
1811 /*
1812 * Change STA power saving mode only at the end of a frame
1813 * exchange sequence, and only for a data or management
1814 * frame as specified in IEEE 802.11-2016 11.2.3.2
1815 */
1816 if (!ieee80211_hw_check(&sta->local->hw, AP_LINK_PS) &&
1817 !ieee80211_has_morefrags(fc: hdr->frame_control) &&
1818 !is_multicast_ether_addr(addr: hdr->addr1) &&
1819 (ieee80211_is_mgmt(fc: hdr->frame_control) ||
1820 ieee80211_is_data(fc: hdr->frame_control)) &&
1821 !(status->rx_flags & IEEE80211_RX_DEFERRED_RELEASE) &&
1822 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1823 rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN)) {
1824 if (test_sta_flag(sta, flag: WLAN_STA_PS_STA)) {
1825 if (!ieee80211_has_pm(fc: hdr->frame_control))
1826 sta_ps_end(sta);
1827 } else {
1828 if (ieee80211_has_pm(fc: hdr->frame_control))
1829 sta_ps_start(sta);
1830 }
1831 }
1832
1833 /* mesh power save support */
1834 if (ieee80211_vif_is_mesh(vif: &rx->sdata->vif))
1835 ieee80211_mps_rx_h_sta_process(sta, hdr);
1836
1837 /*
1838 * Drop (qos-)data::nullfunc frames silently, since they
1839 * are used only to control station power saving mode.
1840 */
1841 if (ieee80211_is_any_nullfunc(fc: hdr->frame_control)) {
1842 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
1843
1844 /*
1845 * If we receive a 4-addr nullfunc frame from a STA
1846 * that was not moved to a 4-addr STA vlan yet send
1847 * the event to userspace and for older hostapd drop
1848 * the frame to the monitor interface.
1849 */
1850 if (ieee80211_has_a4(fc: hdr->frame_control) &&
1851 (rx->sdata->vif.type == NL80211_IFTYPE_AP ||
1852 (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
1853 !rx->sdata->u.vlan.sta))) {
1854 if (!test_and_set_sta_flag(sta, flag: WLAN_STA_4ADDR_EVENT))
1855 cfg80211_rx_unexpected_4addr_frame(
1856 dev: rx->sdata->dev, addr: sta->sta.addr,
1857 GFP_ATOMIC);
1858 return RX_DROP_M_UNEXPECTED_4ADDR_FRAME;
1859 }
1860 /*
1861 * Update counter and free packet here to avoid
1862 * counting this as a dropped packed.
1863 */
1864 link_sta->rx_stats.packets++;
1865 dev_kfree_skb(rx->skb);
1866 return RX_QUEUED;
1867 }
1868
1869 return RX_CONTINUE;
1870} /* ieee80211_rx_h_sta_process */
1871
1872static struct ieee80211_key *
1873ieee80211_rx_get_bigtk(struct ieee80211_rx_data *rx, int idx)
1874{
1875 struct ieee80211_key *key = NULL;
1876 int idx2;
1877
1878 /* Make sure key gets set if either BIGTK key index is set so that
1879 * ieee80211_drop_unencrypted_mgmt() can properly drop both unprotected
1880 * Beacon frames and Beacon frames that claim to use another BIGTK key
1881 * index (i.e., a key that we do not have).
1882 */
1883
1884 if (idx < 0) {
1885 idx = NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS;
1886 idx2 = idx + 1;
1887 } else {
1888 if (idx == NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
1889 idx2 = idx + 1;
1890 else
1891 idx2 = idx - 1;
1892 }
1893
1894 if (rx->link_sta)
1895 key = rcu_dereference(rx->link_sta->gtk[idx]);
1896 if (!key)
1897 key = rcu_dereference(rx->link->gtk[idx]);
1898 if (!key && rx->link_sta)
1899 key = rcu_dereference(rx->link_sta->gtk[idx2]);
1900 if (!key)
1901 key = rcu_dereference(rx->link->gtk[idx2]);
1902
1903 return key;
1904}
1905
1906static ieee80211_rx_result debug_noinline
1907ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
1908{
1909 struct sk_buff *skb = rx->skb;
1910 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
1911 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1912 int keyidx;
1913 ieee80211_rx_result result = RX_DROP_U_DECRYPT_FAIL;
1914 struct ieee80211_key *sta_ptk = NULL;
1915 struct ieee80211_key *ptk_idx = NULL;
1916 int mmie_keyidx = -1;
1917 __le16 fc;
1918
1919 if (ieee80211_is_ext(fc: hdr->frame_control))
1920 return RX_CONTINUE;
1921
1922 /*
1923 * Key selection 101
1924 *
1925 * There are five types of keys:
1926 * - GTK (group keys)
1927 * - IGTK (group keys for management frames)
1928 * - BIGTK (group keys for Beacon frames)
1929 * - PTK (pairwise keys)
1930 * - STK (station-to-station pairwise keys)
1931 *
1932 * When selecting a key, we have to distinguish between multicast
1933 * (including broadcast) and unicast frames, the latter can only
1934 * use PTKs and STKs while the former always use GTKs, IGTKs, and
1935 * BIGTKs. Unless, of course, actual WEP keys ("pre-RSNA") are used,
1936 * then unicast frames can also use key indices like GTKs. Hence, if we
1937 * don't have a PTK/STK we check the key index for a WEP key.
1938 *
1939 * Note that in a regular BSS, multicast frames are sent by the
1940 * AP only, associated stations unicast the frame to the AP first
1941 * which then multicasts it on their behalf.
1942 *
1943 * There is also a slight problem in IBSS mode: GTKs are negotiated
1944 * with each station, that is something we don't currently handle.
1945 * The spec seems to expect that one negotiates the same key with
1946 * every station but there's no such requirement; VLANs could be
1947 * possible.
1948 */
1949
1950 /* start without a key */
1951 rx->key = NULL;
1952 fc = hdr->frame_control;
1953
1954 if (rx->sta) {
1955 int keyid = rx->sta->ptk_idx;
1956 sta_ptk = rcu_dereference(rx->sta->ptk[keyid]);
1957
1958 if (ieee80211_has_protected(fc) &&
1959 !(status->flag & RX_FLAG_IV_STRIPPED)) {
1960 keyid = ieee80211_get_keyid(skb: rx->skb);
1961
1962 if (unlikely(keyid < 0))
1963 return RX_DROP_U_NO_KEY_ID;
1964
1965 ptk_idx = rcu_dereference(rx->sta->ptk[keyid]);
1966 }
1967 }
1968
1969 if (!ieee80211_has_protected(fc))
1970 mmie_keyidx = ieee80211_get_mmie_keyidx(skb: rx->skb);
1971
1972 if (!is_multicast_ether_addr(addr: hdr->addr1) && sta_ptk) {
1973 rx->key = ptk_idx ? ptk_idx : sta_ptk;
1974 if ((status->flag & RX_FLAG_DECRYPTED) &&
1975 (status->flag & RX_FLAG_IV_STRIPPED))
1976 return RX_CONTINUE;
1977 /* Skip decryption if the frame is not protected. */
1978 if (!ieee80211_has_protected(fc))
1979 return RX_CONTINUE;
1980 } else if (mmie_keyidx >= 0 && ieee80211_is_beacon(fc)) {
1981 /* Broadcast/multicast robust management frame / BIP */
1982 if ((status->flag & RX_FLAG_DECRYPTED) &&
1983 (status->flag & RX_FLAG_IV_STRIPPED))
1984 return RX_CONTINUE;
1985
1986 if (mmie_keyidx < NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS ||
1987 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS +
1988 NUM_DEFAULT_BEACON_KEYS) {
1989 if (rx->sdata->dev)
1990 cfg80211_rx_unprot_mlme_mgmt(dev: rx->sdata->dev,
1991 buf: skb->data,
1992 len: skb->len);
1993 return RX_DROP_M_BAD_BCN_KEYIDX;
1994 }
1995
1996 rx->key = ieee80211_rx_get_bigtk(rx, idx: mmie_keyidx);
1997 if (!rx->key)
1998 return RX_CONTINUE; /* Beacon protection not in use */
1999 } else if (mmie_keyidx >= 0) {
2000 /* Broadcast/multicast robust management frame / BIP */
2001 if ((status->flag & RX_FLAG_DECRYPTED) &&
2002 (status->flag & RX_FLAG_IV_STRIPPED))
2003 return RX_CONTINUE;
2004
2005 if (mmie_keyidx < NUM_DEFAULT_KEYS ||
2006 mmie_keyidx >= NUM_DEFAULT_KEYS + NUM_DEFAULT_MGMT_KEYS)
2007 return RX_DROP_M_BAD_MGMT_KEYIDX; /* unexpected BIP keyidx */
2008 if (rx->link_sta) {
2009 if (ieee80211_is_group_privacy_action(skb) &&
2010 test_sta_flag(sta: rx->sta, flag: WLAN_STA_MFP))
2011 return RX_DROP_MONITOR;
2012
2013 rx->key = rcu_dereference(rx->link_sta->gtk[mmie_keyidx]);
2014 }
2015 if (!rx->key)
2016 rx->key = rcu_dereference(rx->link->gtk[mmie_keyidx]);
2017 } else if (!ieee80211_has_protected(fc)) {
2018 /*
2019 * The frame was not protected, so skip decryption. However, we
2020 * need to set rx->key if there is a key that could have been
2021 * used so that the frame may be dropped if encryption would
2022 * have been expected.
2023 */
2024 struct ieee80211_key *key = NULL;
2025 int i;
2026
2027 if (ieee80211_is_beacon(fc)) {
2028 key = ieee80211_rx_get_bigtk(rx, idx: -1);
2029 } else if (ieee80211_is_mgmt(fc) &&
2030 is_multicast_ether_addr(addr: hdr->addr1)) {
2031 key = rcu_dereference(rx->link->default_mgmt_key);
2032 } else {
2033 if (rx->link_sta) {
2034 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2035 key = rcu_dereference(rx->link_sta->gtk[i]);
2036 if (key)
2037 break;
2038 }
2039 }
2040 if (!key) {
2041 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
2042 key = rcu_dereference(rx->link->gtk[i]);
2043 if (key)
2044 break;
2045 }
2046 }
2047 }
2048 if (key)
2049 rx->key = key;
2050 return RX_CONTINUE;
2051 } else {
2052 /*
2053 * The device doesn't give us the IV so we won't be
2054 * able to look up the key. That's ok though, we
2055 * don't need to decrypt the frame, we just won't
2056 * be able to keep statistics accurate.
2057 * Except for key threshold notifications, should
2058 * we somehow allow the driver to tell us which key
2059 * the hardware used if this flag is set?
2060 */
2061 if ((status->flag & RX_FLAG_DECRYPTED) &&
2062 (status->flag & RX_FLAG_IV_STRIPPED))
2063 return RX_CONTINUE;
2064
2065 keyidx = ieee80211_get_keyid(skb: rx->skb);
2066
2067 if (unlikely(keyidx < 0))
2068 return RX_DROP_U_NO_KEY_ID;
2069
2070 /* check per-station GTK first, if multicast packet */
2071 if (is_multicast_ether_addr(addr: hdr->addr1) && rx->link_sta)
2072 rx->key = rcu_dereference(rx->link_sta->gtk[keyidx]);
2073
2074 /* if not found, try default key */
2075 if (!rx->key) {
2076 if (is_multicast_ether_addr(addr: hdr->addr1))
2077 rx->key = rcu_dereference(rx->link->gtk[keyidx]);
2078 if (!rx->key)
2079 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
2080
2081 /*
2082 * RSNA-protected unicast frames should always be
2083 * sent with pairwise or station-to-station keys,
2084 * but for WEP we allow using a key index as well.
2085 */
2086 if (rx->key &&
2087 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP40 &&
2088 rx->key->conf.cipher != WLAN_CIPHER_SUITE_WEP104 &&
2089 !is_multicast_ether_addr(addr: hdr->addr1))
2090 rx->key = NULL;
2091 }
2092 }
2093
2094 if (rx->key) {
2095 if (unlikely(rx->key->flags & KEY_FLAG_TAINTED))
2096 return RX_DROP_MONITOR;
2097
2098 /* TODO: add threshold stuff again */
2099 } else {
2100 return RX_DROP_MONITOR;
2101 }
2102
2103 switch (rx->key->conf.cipher) {
2104 case WLAN_CIPHER_SUITE_WEP40:
2105 case WLAN_CIPHER_SUITE_WEP104:
2106 result = ieee80211_crypto_wep_decrypt(rx);
2107 break;
2108 case WLAN_CIPHER_SUITE_TKIP:
2109 result = ieee80211_crypto_tkip_decrypt(rx);
2110 break;
2111 case WLAN_CIPHER_SUITE_CCMP:
2112 result = ieee80211_crypto_ccmp_decrypt(
2113 rx, IEEE80211_CCMP_MIC_LEN);
2114 break;
2115 case WLAN_CIPHER_SUITE_CCMP_256:
2116 result = ieee80211_crypto_ccmp_decrypt(
2117 rx, IEEE80211_CCMP_256_MIC_LEN);
2118 break;
2119 case WLAN_CIPHER_SUITE_AES_CMAC:
2120 result = ieee80211_crypto_aes_cmac_decrypt(rx);
2121 break;
2122 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
2123 result = ieee80211_crypto_aes_cmac_256_decrypt(rx);
2124 break;
2125 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
2126 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
2127 result = ieee80211_crypto_aes_gmac_decrypt(rx);
2128 break;
2129 case WLAN_CIPHER_SUITE_GCMP:
2130 case WLAN_CIPHER_SUITE_GCMP_256:
2131 result = ieee80211_crypto_gcmp_decrypt(rx);
2132 break;
2133 default:
2134 result = RX_DROP_U_BAD_CIPHER;
2135 }
2136
2137 /* the hdr variable is invalid after the decrypt handlers */
2138
2139 /* either the frame has been decrypted or will be dropped */
2140 status->flag |= RX_FLAG_DECRYPTED;
2141
2142 if (unlikely(ieee80211_is_beacon(fc) && RX_RES_IS_UNUSABLE(result) &&
2143 rx->sdata->dev))
2144 cfg80211_rx_unprot_mlme_mgmt(dev: rx->sdata->dev,
2145 buf: skb->data, len: skb->len);
2146
2147 return result;
2148}
2149
2150void ieee80211_init_frag_cache(struct ieee80211_fragment_cache *cache)
2151{
2152 int i;
2153
2154 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2155 skb_queue_head_init(list: &cache->entries[i].skb_list);
2156}
2157
2158void ieee80211_destroy_frag_cache(struct ieee80211_fragment_cache *cache)
2159{
2160 int i;
2161
2162 for (i = 0; i < ARRAY_SIZE(cache->entries); i++)
2163 __skb_queue_purge(list: &cache->entries[i].skb_list);
2164}
2165
2166static inline struct ieee80211_fragment_entry *
2167ieee80211_reassemble_add(struct ieee80211_fragment_cache *cache,
2168 unsigned int frag, unsigned int seq, int rx_queue,
2169 struct sk_buff **skb)
2170{
2171 struct ieee80211_fragment_entry *entry;
2172
2173 entry = &cache->entries[cache->next++];
2174 if (cache->next >= IEEE80211_FRAGMENT_MAX)
2175 cache->next = 0;
2176
2177 __skb_queue_purge(list: &entry->skb_list);
2178
2179 __skb_queue_tail(list: &entry->skb_list, newsk: *skb); /* no need for locking */
2180 *skb = NULL;
2181 entry->first_frag_time = jiffies;
2182 entry->seq = seq;
2183 entry->rx_queue = rx_queue;
2184 entry->last_frag = frag;
2185 entry->check_sequential_pn = false;
2186 entry->extra_len = 0;
2187
2188 return entry;
2189}
2190
2191static inline struct ieee80211_fragment_entry *
2192ieee80211_reassemble_find(struct ieee80211_fragment_cache *cache,
2193 unsigned int frag, unsigned int seq,
2194 int rx_queue, struct ieee80211_hdr *hdr)
2195{
2196 struct ieee80211_fragment_entry *entry;
2197 int i, idx;
2198
2199 idx = cache->next;
2200 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2201 struct ieee80211_hdr *f_hdr;
2202 struct sk_buff *f_skb;
2203
2204 idx--;
2205 if (idx < 0)
2206 idx = IEEE80211_FRAGMENT_MAX - 1;
2207
2208 entry = &cache->entries[idx];
2209 if (skb_queue_empty(list: &entry->skb_list) || entry->seq != seq ||
2210 entry->rx_queue != rx_queue ||
2211 entry->last_frag + 1 != frag)
2212 continue;
2213
2214 f_skb = __skb_peek(list_: &entry->skb_list);
2215 f_hdr = (struct ieee80211_hdr *) f_skb->data;
2216
2217 /*
2218 * Check ftype and addresses are equal, else check next fragment
2219 */
2220 if (((hdr->frame_control ^ f_hdr->frame_control) &
2221 cpu_to_le16(IEEE80211_FCTL_FTYPE)) ||
2222 !ether_addr_equal(addr1: hdr->addr1, addr2: f_hdr->addr1) ||
2223 !ether_addr_equal(addr1: hdr->addr2, addr2: f_hdr->addr2))
2224 continue;
2225
2226 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
2227 __skb_queue_purge(list: &entry->skb_list);
2228 continue;
2229 }
2230 return entry;
2231 }
2232
2233 return NULL;
2234}
2235
2236static bool requires_sequential_pn(struct ieee80211_rx_data *rx, __le16 fc)
2237{
2238 return rx->key &&
2239 (rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP ||
2240 rx->key->conf.cipher == WLAN_CIPHER_SUITE_CCMP_256 ||
2241 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP ||
2242 rx->key->conf.cipher == WLAN_CIPHER_SUITE_GCMP_256) &&
2243 ieee80211_has_protected(fc);
2244}
2245
2246static ieee80211_rx_result debug_noinline
2247ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
2248{
2249 struct ieee80211_fragment_cache *cache = &rx->sdata->frags;
2250 struct ieee80211_hdr *hdr;
2251 u16 sc;
2252 __le16 fc;
2253 unsigned int frag, seq;
2254 struct ieee80211_fragment_entry *entry;
2255 struct sk_buff *skb;
2256 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
2257
2258 hdr = (struct ieee80211_hdr *)rx->skb->data;
2259 fc = hdr->frame_control;
2260
2261 if (ieee80211_is_ctl(fc) || ieee80211_is_ext(fc))
2262 return RX_CONTINUE;
2263
2264 sc = le16_to_cpu(hdr->seq_ctrl);
2265 frag = sc & IEEE80211_SCTL_FRAG;
2266
2267 if (rx->sta)
2268 cache = &rx->sta->frags;
2269
2270 if (likely(!ieee80211_has_morefrags(fc) && frag == 0))
2271 goto out;
2272
2273 if (is_multicast_ether_addr(addr: hdr->addr1))
2274 return RX_DROP_MONITOR;
2275
2276 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2277
2278 if (skb_linearize(skb: rx->skb))
2279 return RX_DROP_U_OOM;
2280
2281 /*
2282 * skb_linearize() might change the skb->data and
2283 * previously cached variables (in this case, hdr) need to
2284 * be refreshed with the new data.
2285 */
2286 hdr = (struct ieee80211_hdr *)rx->skb->data;
2287 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
2288
2289 if (frag == 0) {
2290 /* This is the first fragment of a new frame. */
2291 entry = ieee80211_reassemble_add(cache, frag, seq,
2292 rx_queue: rx->seqno_idx, skb: &(rx->skb));
2293 if (requires_sequential_pn(rx, fc)) {
2294 int queue = rx->security_idx;
2295
2296 /* Store CCMP/GCMP PN so that we can verify that the
2297 * next fragment has a sequential PN value.
2298 */
2299 entry->check_sequential_pn = true;
2300 entry->is_protected = true;
2301 entry->key_color = rx->key->color;
2302 memcpy(entry->last_pn,
2303 rx->key->u.ccmp.rx_pn[queue],
2304 IEEE80211_CCMP_PN_LEN);
2305 BUILD_BUG_ON(offsetof(struct ieee80211_key,
2306 u.ccmp.rx_pn) !=
2307 offsetof(struct ieee80211_key,
2308 u.gcmp.rx_pn));
2309 BUILD_BUG_ON(sizeof(rx->key->u.ccmp.rx_pn[queue]) !=
2310 sizeof(rx->key->u.gcmp.rx_pn[queue]));
2311 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN !=
2312 IEEE80211_GCMP_PN_LEN);
2313 } else if (rx->key &&
2314 (ieee80211_has_protected(fc) ||
2315 (status->flag & RX_FLAG_DECRYPTED))) {
2316 entry->is_protected = true;
2317 entry->key_color = rx->key->color;
2318 }
2319 return RX_QUEUED;
2320 }
2321
2322 /* This is a fragment for a frame that should already be pending in
2323 * fragment cache. Add this fragment to the end of the pending entry.
2324 */
2325 entry = ieee80211_reassemble_find(cache, frag, seq,
2326 rx_queue: rx->seqno_idx, hdr);
2327 if (!entry) {
2328 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2329 return RX_DROP_MONITOR;
2330 }
2331
2332 /* "The receiver shall discard MSDUs and MMPDUs whose constituent
2333 * MPDU PN values are not incrementing in steps of 1."
2334 * see IEEE P802.11-REVmc/D5.0, 12.5.3.4.4, item d (for CCMP)
2335 * and IEEE P802.11-REVmc/D5.0, 12.5.5.4.4, item d (for GCMP)
2336 */
2337 if (entry->check_sequential_pn) {
2338 int i;
2339 u8 pn[IEEE80211_CCMP_PN_LEN], *rpn;
2340
2341 if (!requires_sequential_pn(rx, fc))
2342 return RX_DROP_U_NONSEQ_PN;
2343
2344 /* Prevent mixed key and fragment cache attacks */
2345 if (entry->key_color != rx->key->color)
2346 return RX_DROP_U_BAD_KEY_COLOR;
2347
2348 memcpy(pn, entry->last_pn, IEEE80211_CCMP_PN_LEN);
2349 for (i = IEEE80211_CCMP_PN_LEN - 1; i >= 0; i--) {
2350 pn[i]++;
2351 if (pn[i])
2352 break;
2353 }
2354
2355 rpn = rx->ccm_gcm.pn;
2356 if (memcmp(p: pn, q: rpn, IEEE80211_CCMP_PN_LEN))
2357 return RX_DROP_U_REPLAY;
2358 memcpy(entry->last_pn, pn, IEEE80211_CCMP_PN_LEN);
2359 } else if (entry->is_protected &&
2360 (!rx->key ||
2361 (!ieee80211_has_protected(fc) &&
2362 !(status->flag & RX_FLAG_DECRYPTED)) ||
2363 rx->key->color != entry->key_color)) {
2364 /* Drop this as a mixed key or fragment cache attack, even
2365 * if for TKIP Michael MIC should protect us, and WEP is a
2366 * lost cause anyway.
2367 */
2368 return RX_DROP_U_EXPECT_DEFRAG_PROT;
2369 } else if (entry->is_protected && rx->key &&
2370 entry->key_color != rx->key->color &&
2371 (status->flag & RX_FLAG_DECRYPTED)) {
2372 return RX_DROP_U_BAD_KEY_COLOR;
2373 }
2374
2375 skb_pull(skb: rx->skb, len: ieee80211_hdrlen(fc));
2376 __skb_queue_tail(list: &entry->skb_list, newsk: rx->skb);
2377 entry->last_frag = frag;
2378 entry->extra_len += rx->skb->len;
2379 if (ieee80211_has_morefrags(fc)) {
2380 rx->skb = NULL;
2381 return RX_QUEUED;
2382 }
2383
2384 rx->skb = __skb_dequeue(list: &entry->skb_list);
2385 if (skb_tailroom(skb: rx->skb) < entry->extra_len) {
2386 I802_DEBUG_INC(rx->local->rx_expand_skb_head_defrag);
2387 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
2388 GFP_ATOMIC))) {
2389 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2390 __skb_queue_purge(list: &entry->skb_list);
2391 return RX_DROP_U_OOM;
2392 }
2393 }
2394 while ((skb = __skb_dequeue(list: &entry->skb_list))) {
2395 skb_put_data(skb: rx->skb, data: skb->data, len: skb->len);
2396 dev_kfree_skb(skb);
2397 }
2398
2399 out:
2400 ieee80211_led_rx(local: rx->local);
2401 if (rx->sta)
2402 rx->link_sta->rx_stats.packets++;
2403 return RX_CONTINUE;
2404}
2405
2406static int ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
2407{
2408 if (unlikely(!rx->sta || !test_sta_flag(rx->sta, WLAN_STA_AUTHORIZED)))
2409 return -EACCES;
2410
2411 return 0;
2412}
2413
2414static int ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx, __le16 fc)
2415{
2416 struct sk_buff *skb = rx->skb;
2417 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2418
2419 /*
2420 * Pass through unencrypted frames if the hardware has
2421 * decrypted them already.
2422 */
2423 if (status->flag & RX_FLAG_DECRYPTED)
2424 return 0;
2425
2426 /* Drop unencrypted frames if key is set. */
2427 if (unlikely(!ieee80211_has_protected(fc) &&
2428 !ieee80211_is_any_nullfunc(fc) &&
2429 ieee80211_is_data(fc) && rx->key))
2430 return -EACCES;
2431
2432 return 0;
2433}
2434
2435VISIBLE_IF_MAC80211_KUNIT ieee80211_rx_result
2436ieee80211_drop_unencrypted_mgmt(struct ieee80211_rx_data *rx)
2437{
2438 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
2439 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
2440 __le16 fc = mgmt->frame_control;
2441
2442 /*
2443 * Pass through unencrypted frames if the hardware has
2444 * decrypted them already.
2445 */
2446 if (status->flag & RX_FLAG_DECRYPTED)
2447 return RX_CONTINUE;
2448
2449 /* drop unicast protected dual (that wasn't protected) */
2450 if (ieee80211_is_action(fc) &&
2451 mgmt->u.action.category == WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
2452 return RX_DROP_U_UNPROT_DUAL;
2453
2454 if (rx->sta && test_sta_flag(sta: rx->sta, flag: WLAN_STA_MFP)) {
2455 if (unlikely(!ieee80211_has_protected(fc) &&
2456 ieee80211_is_unicast_robust_mgmt_frame(rx->skb))) {
2457 if (ieee80211_is_deauth(fc) ||
2458 ieee80211_is_disassoc(fc)) {
2459 /*
2460 * Permit unprotected deauth/disassoc frames
2461 * during 4-way-HS (key is installed after HS).
2462 */
2463 if (!rx->key)
2464 return RX_CONTINUE;
2465
2466 cfg80211_rx_unprot_mlme_mgmt(dev: rx->sdata->dev,
2467 buf: rx->skb->data,
2468 len: rx->skb->len);
2469 }
2470 return RX_DROP_U_UNPROT_UCAST_MGMT;
2471 }
2472 /* BIP does not use Protected field, so need to check MMIE */
2473 if (unlikely(ieee80211_is_multicast_robust_mgmt_frame(rx->skb) &&
2474 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2475 if (ieee80211_is_deauth(fc) ||
2476 ieee80211_is_disassoc(fc))
2477 cfg80211_rx_unprot_mlme_mgmt(dev: rx->sdata->dev,
2478 buf: rx->skb->data,
2479 len: rx->skb->len);
2480 return RX_DROP_U_UNPROT_MCAST_MGMT;
2481 }
2482 if (unlikely(ieee80211_is_beacon(fc) && rx->key &&
2483 ieee80211_get_mmie_keyidx(rx->skb) < 0)) {
2484 cfg80211_rx_unprot_mlme_mgmt(dev: rx->sdata->dev,
2485 buf: rx->skb->data,
2486 len: rx->skb->len);
2487 return RX_DROP_U_UNPROT_BEACON;
2488 }
2489 /*
2490 * When using MFP, Action frames are not allowed prior to
2491 * having configured keys.
2492 */
2493 if (unlikely(ieee80211_is_action(fc) && !rx->key &&
2494 ieee80211_is_robust_mgmt_frame(rx->skb)))
2495 return RX_DROP_U_UNPROT_ACTION;
2496
2497 /* drop unicast public action frames when using MPF */
2498 if (is_unicast_ether_addr(addr: mgmt->da) &&
2499 ieee80211_is_protected_dual_of_public_action(skb: rx->skb))
2500 return RX_DROP_U_UNPROT_UNICAST_PUB_ACTION;
2501 }
2502
2503 /*
2504 * Drop robust action frames before assoc regardless of MFP state,
2505 * after assoc we also have decided on MFP or not.
2506 */
2507 if (ieee80211_is_action(fc) &&
2508 ieee80211_is_robust_mgmt_frame(skb: rx->skb) &&
2509 (!rx->sta || !test_sta_flag(sta: rx->sta, flag: WLAN_STA_ASSOC)))
2510 return RX_DROP_U_UNPROT_ROBUST_ACTION;
2511
2512 return RX_CONTINUE;
2513}
2514EXPORT_SYMBOL_IF_MAC80211_KUNIT(ieee80211_drop_unencrypted_mgmt);
2515
2516static ieee80211_rx_result
2517__ieee80211_data_to_8023(struct ieee80211_rx_data *rx, bool *port_control)
2518{
2519 struct ieee80211_sub_if_data *sdata = rx->sdata;
2520 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
2521 bool check_port_control = false;
2522 struct ethhdr *ehdr;
2523 int ret;
2524
2525 *port_control = false;
2526 if (ieee80211_has_a4(fc: hdr->frame_control) &&
2527 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && !sdata->u.vlan.sta)
2528 return RX_DROP_U_UNEXPECTED_VLAN_4ADDR;
2529
2530 if (sdata->vif.type == NL80211_IFTYPE_STATION &&
2531 !!sdata->u.mgd.use_4addr != !!ieee80211_has_a4(fc: hdr->frame_control)) {
2532 if (!sdata->u.mgd.use_4addr)
2533 return RX_DROP_U_UNEXPECTED_STA_4ADDR;
2534 else if (!ether_addr_equal(addr1: hdr->addr1, addr2: sdata->vif.addr))
2535 check_port_control = true;
2536 }
2537
2538 if (is_multicast_ether_addr(addr: hdr->addr1) &&
2539 sdata->vif.type == NL80211_IFTYPE_AP_VLAN && sdata->u.vlan.sta)
2540 return RX_DROP_U_UNEXPECTED_VLAN_MCAST;
2541
2542 ret = ieee80211_data_to_8023(skb: rx->skb, addr: sdata->vif.addr, iftype: sdata->vif.type);
2543 if (ret < 0)
2544 return RX_DROP_U_INVALID_8023;
2545
2546 ehdr = (struct ethhdr *) rx->skb->data;
2547 if (ehdr->h_proto == rx->sdata->control_port_protocol)
2548 *port_control = true;
2549 else if (check_port_control)
2550 return RX_DROP_U_NOT_PORT_CONTROL;
2551
2552 return RX_CONTINUE;
2553}
2554
2555bool ieee80211_is_our_addr(struct ieee80211_sub_if_data *sdata,
2556 const u8 *addr, int *out_link_id)
2557{
2558 unsigned int link_id;
2559
2560 /* non-MLO, or MLD address replaced by hardware */
2561 if (ether_addr_equal(addr1: sdata->vif.addr, addr2: addr))
2562 return true;
2563
2564 if (!ieee80211_vif_is_mld(vif: &sdata->vif))
2565 return false;
2566
2567 for (link_id = 0; link_id < ARRAY_SIZE(sdata->vif.link_conf); link_id++) {
2568 struct ieee80211_bss_conf *conf;
2569
2570 conf = rcu_dereference(sdata->vif.link_conf[link_id]);
2571
2572 if (!conf)
2573 continue;
2574 if (ether_addr_equal(addr1: conf->addr, addr2: addr)) {
2575 if (out_link_id)
2576 *out_link_id = link_id;
2577 return true;
2578 }
2579 }
2580
2581 return false;
2582}
2583
2584/*
2585 * requires that rx->skb is a frame with ethernet header
2586 */
2587static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx, __le16 fc)
2588{
2589 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
2590 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
2591 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2592
2593 /*
2594 * Allow EAPOL frames to us/the PAE group address regardless of
2595 * whether the frame was encrypted or not, and always disallow
2596 * all other destination addresses for them.
2597 */
2598 if (unlikely(ehdr->h_proto == rx->sdata->control_port_protocol))
2599 return ieee80211_is_our_addr(sdata: rx->sdata, addr: ehdr->h_dest, NULL) ||
2600 ether_addr_equal(addr1: ehdr->h_dest, addr2: pae_group_addr);
2601
2602 if (ieee80211_802_1x_port_control(rx) ||
2603 ieee80211_drop_unencrypted(rx, fc))
2604 return false;
2605
2606 return true;
2607}
2608
2609static void ieee80211_deliver_skb_to_local_stack(struct sk_buff *skb,
2610 struct ieee80211_rx_data *rx)
2611{
2612 struct ieee80211_sub_if_data *sdata = rx->sdata;
2613 struct net_device *dev = sdata->dev;
2614
2615 if (unlikely((skb->protocol == sdata->control_port_protocol ||
2616 (skb->protocol == cpu_to_be16(ETH_P_PREAUTH) &&
2617 !sdata->control_port_no_preauth)) &&
2618 sdata->control_port_over_nl80211)) {
2619 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
2620 bool noencrypt = !(status->flag & RX_FLAG_DECRYPTED);
2621
2622 cfg80211_rx_control_port(dev, skb, unencrypted: noencrypt, link_id: rx->link_id);
2623 dev_kfree_skb(skb);
2624 } else {
2625 struct ethhdr *ehdr = (void *)skb_mac_header(skb);
2626
2627 memset(skb->cb, 0, sizeof(skb->cb));
2628
2629 /*
2630 * 802.1X over 802.11 requires that the authenticator address
2631 * be used for EAPOL frames. However, 802.1X allows the use of
2632 * the PAE group address instead. If the interface is part of
2633 * a bridge and we pass the frame with the PAE group address,
2634 * then the bridge will forward it to the network (even if the
2635 * client was not associated yet), which isn't supposed to
2636 * happen.
2637 * To avoid that, rewrite the destination address to our own
2638 * address, so that the authenticator (e.g. hostapd) will see
2639 * the frame, but bridge won't forward it anywhere else. Note
2640 * that due to earlier filtering, the only other address can
2641 * be the PAE group address, unless the hardware allowed them
2642 * through in 802.3 offloaded mode.
2643 */
2644 if (unlikely(skb->protocol == sdata->control_port_protocol &&
2645 !ether_addr_equal(ehdr->h_dest, sdata->vif.addr)))
2646 ether_addr_copy(dst: ehdr->h_dest, src: sdata->vif.addr);
2647
2648 /* deliver to local stack */
2649 if (rx->list)
2650 list_add_tail(new: &skb->list, head: rx->list);
2651 else
2652 netif_receive_skb(skb);
2653 }
2654}
2655
2656/*
2657 * requires that rx->skb is a frame with ethernet header
2658 */
2659static void
2660ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
2661{
2662 struct ieee80211_sub_if_data *sdata = rx->sdata;
2663 struct net_device *dev = sdata->dev;
2664 struct sk_buff *skb, *xmit_skb;
2665 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
2666 struct sta_info *dsta;
2667
2668 skb = rx->skb;
2669 xmit_skb = NULL;
2670
2671 dev_sw_netstats_rx_add(dev, len: skb->len);
2672
2673 if (rx->sta) {
2674 /* The seqno index has the same property as needed
2675 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
2676 * for non-QoS-data frames. Here we know it's a data
2677 * frame, so count MSDUs.
2678 */
2679 u64_stats_update_begin(syncp: &rx->link_sta->rx_stats.syncp);
2680 rx->link_sta->rx_stats.msdu[rx->seqno_idx]++;
2681 u64_stats_update_end(syncp: &rx->link_sta->rx_stats.syncp);
2682 }
2683
2684 if ((sdata->vif.type == NL80211_IFTYPE_AP ||
2685 sdata->vif.type == NL80211_IFTYPE_AP_VLAN) &&
2686 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
2687 ehdr->h_proto != rx->sdata->control_port_protocol &&
2688 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN || !sdata->u.vlan.sta)) {
2689 if (is_multicast_ether_addr(addr: ehdr->h_dest) &&
2690 ieee80211_vif_get_num_mcast_if(sdata) != 0) {
2691 /*
2692 * send multicast frames both to higher layers in
2693 * local net stack and back to the wireless medium
2694 */
2695 xmit_skb = skb_copy(skb, GFP_ATOMIC);
2696 if (!xmit_skb)
2697 net_info_ratelimited("%s: failed to clone multicast frame\n",
2698 dev->name);
2699 } else if (!is_multicast_ether_addr(addr: ehdr->h_dest) &&
2700 !ether_addr_equal(addr1: ehdr->h_dest, addr2: ehdr->h_source)) {
2701 dsta = sta_info_get(sdata, addr: ehdr->h_dest);
2702 if (dsta) {
2703 /*
2704 * The destination station is associated to
2705 * this AP (in this VLAN), so send the frame
2706 * directly to it and do not pass it to local
2707 * net stack.
2708 */
2709 xmit_skb = skb;
2710 skb = NULL;
2711 }
2712 }
2713 }
2714
2715#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2716 if (skb) {
2717 /* 'align' will only take the values 0 or 2 here since all
2718 * frames are required to be aligned to 2-byte boundaries
2719 * when being passed to mac80211; the code here works just
2720 * as well if that isn't true, but mac80211 assumes it can
2721 * access fields as 2-byte aligned (e.g. for ether_addr_equal)
2722 */
2723 int align;
2724
2725 align = (unsigned long)(skb->data + sizeof(struct ethhdr)) & 3;
2726 if (align) {
2727 if (WARN_ON(skb_headroom(skb) < 3)) {
2728 dev_kfree_skb(skb);
2729 skb = NULL;
2730 } else {
2731 u8 *data = skb->data;
2732 size_t len = skb_headlen(skb);
2733 skb->data -= align;
2734 memmove(skb->data, data, len);
2735 skb_set_tail_pointer(skb, len);
2736 }
2737 }
2738 }
2739#endif
2740
2741 if (skb) {
2742 skb->protocol = eth_type_trans(skb, dev);
2743 ieee80211_deliver_skb_to_local_stack(skb, rx);
2744 }
2745
2746 if (xmit_skb) {
2747 /*
2748 * Send to wireless media and increase priority by 256 to
2749 * keep the received priority instead of reclassifying
2750 * the frame (see cfg80211_classify8021d).
2751 */
2752 xmit_skb->priority += 256;
2753 xmit_skb->protocol = htons(ETH_P_802_3);
2754 skb_reset_network_header(skb: xmit_skb);
2755 skb_reset_mac_header(skb: xmit_skb);
2756 dev_queue_xmit(skb: xmit_skb);
2757 }
2758}
2759
2760#ifdef CONFIG_MAC80211_MESH
2761static bool
2762ieee80211_rx_mesh_fast_forward(struct ieee80211_sub_if_data *sdata,
2763 struct sk_buff *skb, int hdrlen)
2764{
2765 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2766 struct ieee80211_mesh_fast_tx *entry = NULL;
2767 struct ieee80211s_hdr *mesh_hdr;
2768 struct tid_ampdu_tx *tid_tx;
2769 struct sta_info *sta;
2770 struct ethhdr eth;
2771 u8 tid;
2772
2773 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(eth));
2774 if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6)
2775 entry = mesh_fast_tx_get(sdata, addr: mesh_hdr->eaddr1);
2776 else if (!(mesh_hdr->flags & MESH_FLAGS_AE))
2777 entry = mesh_fast_tx_get(sdata, addr: skb->data);
2778 if (!entry)
2779 return false;
2780
2781 sta = rcu_dereference(entry->mpath->next_hop);
2782 if (!sta)
2783 return false;
2784
2785 if (skb_linearize(skb))
2786 return false;
2787
2788 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK;
2789 tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]);
2790 if (tid_tx) {
2791 if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state))
2792 return false;
2793
2794 if (tid_tx->timeout)
2795 tid_tx->last_tx = jiffies;
2796 }
2797
2798 ieee80211_aggr_check(sdata, sta, skb);
2799
2800 if (ieee80211_get_8023_tunnel_proto(hdr: skb->data + hdrlen,
2801 proto: &skb->protocol))
2802 hdrlen += ETH_ALEN;
2803 else
2804 skb->protocol = htons(skb->len - hdrlen);
2805 skb_set_network_header(skb, offset: hdrlen + 2);
2806
2807 skb->dev = sdata->dev;
2808 memcpy(&eth, skb->data, ETH_HLEN - 2);
2809 skb_pull(skb, len: 2);
2810 __ieee80211_xmit_fast(sdata, sta, fast_tx: &entry->fast_tx, skb, ampdu: tid_tx,
2811 da: eth.h_dest, sa: eth.h_source);
2812 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2813 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2814
2815 return true;
2816}
2817#endif
2818
2819static ieee80211_rx_result
2820ieee80211_rx_mesh_data(struct ieee80211_sub_if_data *sdata, struct sta_info *sta,
2821 struct sk_buff *skb)
2822{
2823#ifdef CONFIG_MAC80211_MESH
2824 struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh;
2825 struct ieee80211_local *local = sdata->local;
2826 uint16_t fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA;
2827 struct ieee80211_hdr hdr = {
2828 .frame_control = cpu_to_le16(fc)
2829 };
2830 struct ieee80211_hdr *fwd_hdr;
2831 struct ieee80211s_hdr *mesh_hdr;
2832 struct ieee80211_tx_info *info;
2833 struct sk_buff *fwd_skb;
2834 struct ethhdr *eth;
2835 bool multicast;
2836 int tailroom = 0;
2837 int hdrlen, mesh_hdrlen;
2838 u8 *qos;
2839
2840 if (!ieee80211_vif_is_mesh(vif: &sdata->vif))
2841 return RX_CONTINUE;
2842
2843 if (!pskb_may_pull(skb, len: sizeof(*eth) + 6))
2844 return RX_DROP_MONITOR;
2845
2846 mesh_hdr = (struct ieee80211s_hdr *)(skb->data + sizeof(*eth));
2847 mesh_hdrlen = ieee80211_get_mesh_hdrlen(meshhdr: mesh_hdr);
2848
2849 if (!pskb_may_pull(skb, len: sizeof(*eth) + mesh_hdrlen))
2850 return RX_DROP_MONITOR;
2851
2852 eth = (struct ethhdr *)skb->data;
2853 multicast = is_multicast_ether_addr(addr: eth->h_dest);
2854
2855 mesh_hdr = (struct ieee80211s_hdr *)(eth + 1);
2856 if (!mesh_hdr->ttl)
2857 return RX_DROP_MONITOR;
2858
2859 /* frame is in RMC, don't forward */
2860 if (is_multicast_ether_addr(addr: eth->h_dest) &&
2861 mesh_rmc_check(sdata, addr: eth->h_source, mesh_hdr))
2862 return RX_DROP_MONITOR;
2863
2864 /* forward packet */
2865 if (sdata->crypto_tx_tailroom_needed_cnt)
2866 tailroom = IEEE80211_ENCRYPT_TAILROOM;
2867
2868 if (mesh_hdr->flags & MESH_FLAGS_AE) {
2869 struct mesh_path *mppath;
2870 char *proxied_addr;
2871 bool update = false;
2872
2873 if (multicast)
2874 proxied_addr = mesh_hdr->eaddr1;
2875 else if ((mesh_hdr->flags & MESH_FLAGS_AE) == MESH_FLAGS_AE_A5_A6)
2876 /* has_a4 already checked in ieee80211_rx_mesh_check */
2877 proxied_addr = mesh_hdr->eaddr2;
2878 else
2879 return RX_DROP_MONITOR;
2880
2881 rcu_read_lock();
2882 mppath = mpp_path_lookup(sdata, dst: proxied_addr);
2883 if (!mppath) {
2884 mpp_path_add(sdata, dst: proxied_addr, mpp: eth->h_source);
2885 } else {
2886 spin_lock_bh(lock: &mppath->state_lock);
2887 if (!ether_addr_equal(addr1: mppath->mpp, addr2: eth->h_source)) {
2888 memcpy(mppath->mpp, eth->h_source, ETH_ALEN);
2889 update = true;
2890 }
2891 mppath->exp_time = jiffies;
2892 spin_unlock_bh(lock: &mppath->state_lock);
2893 }
2894
2895 /* flush fast xmit cache if the address path changed */
2896 if (update)
2897 mesh_fast_tx_flush_addr(sdata, addr: proxied_addr);
2898
2899 rcu_read_unlock();
2900 }
2901
2902 /* Frame has reached destination. Don't forward */
2903 if (ether_addr_equal(addr1: sdata->vif.addr, addr2: eth->h_dest))
2904 goto rx_accept;
2905
2906 if (!--mesh_hdr->ttl) {
2907 if (multicast)
2908 goto rx_accept;
2909
2910 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_ttl);
2911 return RX_DROP_MONITOR;
2912 }
2913
2914 if (!ifmsh->mshcfg.dot11MeshForwarding) {
2915 if (is_multicast_ether_addr(addr: eth->h_dest))
2916 goto rx_accept;
2917
2918 return RX_DROP_MONITOR;
2919 }
2920
2921 skb_set_queue_mapping(skb, queue_mapping: ieee802_1d_to_ac[skb->priority]);
2922
2923 if (!multicast &&
2924 ieee80211_rx_mesh_fast_forward(sdata, skb, hdrlen: mesh_hdrlen))
2925 return RX_QUEUED;
2926
2927 ieee80211_fill_mesh_addresses(hdr: &hdr, fc: &hdr.frame_control,
2928 da: eth->h_dest, sa: eth->h_source);
2929 hdrlen = ieee80211_hdrlen(fc: hdr.frame_control);
2930 if (multicast) {
2931 int extra_head = sizeof(struct ieee80211_hdr) - sizeof(*eth);
2932
2933 fwd_skb = skb_copy_expand(skb, newheadroom: local->tx_headroom + extra_head +
2934 IEEE80211_ENCRYPT_HEADROOM,
2935 newtailroom: tailroom, GFP_ATOMIC);
2936 if (!fwd_skb)
2937 goto rx_accept;
2938 } else {
2939 fwd_skb = skb;
2940 skb = NULL;
2941
2942 if (skb_cow_head(skb: fwd_skb, headroom: hdrlen - sizeof(struct ethhdr)))
2943 return RX_DROP_U_OOM;
2944
2945 if (skb_linearize(skb: fwd_skb))
2946 return RX_DROP_U_OOM;
2947 }
2948
2949 fwd_hdr = skb_push(skb: fwd_skb, len: hdrlen - sizeof(struct ethhdr));
2950 memcpy(fwd_hdr, &hdr, hdrlen - 2);
2951 qos = ieee80211_get_qos_ctl(hdr: fwd_hdr);
2952 qos[0] = qos[1] = 0;
2953
2954 skb_reset_mac_header(skb: fwd_skb);
2955 hdrlen += mesh_hdrlen;
2956 if (ieee80211_get_8023_tunnel_proto(hdr: fwd_skb->data + hdrlen,
2957 proto: &fwd_skb->protocol))
2958 hdrlen += ETH_ALEN;
2959 else
2960 fwd_skb->protocol = htons(fwd_skb->len - hdrlen);
2961 skb_set_network_header(skb: fwd_skb, offset: hdrlen + 2);
2962
2963 info = IEEE80211_SKB_CB(skb: fwd_skb);
2964 memset(info, 0, sizeof(*info));
2965 info->control.flags |= IEEE80211_TX_INTCFL_NEED_TXPROCESSING;
2966 info->control.vif = &sdata->vif;
2967 info->control.jiffies = jiffies;
2968 fwd_skb->dev = sdata->dev;
2969 if (multicast) {
2970 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_mcast);
2971 memcpy(fwd_hdr->addr2, sdata->vif.addr, ETH_ALEN);
2972 /* update power mode indication when forwarding */
2973 ieee80211_mps_set_frame_flags(sdata, NULL, hdr: fwd_hdr);
2974 } else if (!mesh_nexthop_lookup(sdata, skb: fwd_skb)) {
2975 /* mesh power mode flags updated in mesh_nexthop_lookup */
2976 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_unicast);
2977 } else {
2978 /* unable to resolve next hop */
2979 if (sta)
2980 mesh_path_error_tx(sdata, ttl: ifmsh->mshcfg.element_ttl,
2981 target: hdr.addr3, target_sn: 0,
2982 target_rcode: WLAN_REASON_MESH_PATH_NOFORWARD,
2983 ra: sta->sta.addr);
2984 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, dropped_frames_no_route);
2985 kfree_skb(skb: fwd_skb);
2986 goto rx_accept;
2987 }
2988
2989 IEEE80211_IFSTA_MESH_CTR_INC(ifmsh, fwded_frames);
2990 ieee80211_add_pending_skb(local, skb: fwd_skb);
2991
2992rx_accept:
2993 if (!skb)
2994 return RX_QUEUED;
2995
2996 ieee80211_strip_8023_mesh_hdr(skb);
2997#endif
2998
2999 return RX_CONTINUE;
3000}
3001
3002static ieee80211_rx_result debug_noinline
3003__ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx, u8 data_offset)
3004{
3005 struct net_device *dev = rx->sdata->dev;
3006 struct sk_buff *skb = rx->skb;
3007 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
3008 __le16 fc = hdr->frame_control;
3009 struct sk_buff_head frame_list;
3010 ieee80211_rx_result res;
3011 struct ethhdr ethhdr;
3012 const u8 *check_da = ethhdr.h_dest, *check_sa = ethhdr.h_source;
3013
3014 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
3015 check_da = NULL;
3016 check_sa = NULL;
3017 } else switch (rx->sdata->vif.type) {
3018 case NL80211_IFTYPE_AP:
3019 case NL80211_IFTYPE_AP_VLAN:
3020 check_da = NULL;
3021 break;
3022 case NL80211_IFTYPE_STATION:
3023 if (!rx->sta ||
3024 !test_sta_flag(sta: rx->sta, flag: WLAN_STA_TDLS_PEER))
3025 check_sa = NULL;
3026 break;
3027 case NL80211_IFTYPE_MESH_POINT:
3028 check_sa = NULL;
3029 check_da = NULL;
3030 break;
3031 default:
3032 break;
3033 }
3034
3035 skb->dev = dev;
3036 __skb_queue_head_init(list: &frame_list);
3037
3038 if (ieee80211_data_to_8023_exthdr(skb, ehdr: &ethhdr,
3039 addr: rx->sdata->vif.addr,
3040 iftype: rx->sdata->vif.type,
3041 data_offset, is_amsdu: true))
3042 return RX_DROP_U_BAD_AMSDU;
3043
3044 if (rx->sta->amsdu_mesh_control < 0) {
3045 s8 valid = -1;
3046 int i;
3047
3048 for (i = 0; i <= 2; i++) {
3049 if (!ieee80211_is_valid_amsdu(skb, mesh_hdr: i))
3050 continue;
3051
3052 if (valid >= 0) {
3053 /* ambiguous */
3054 valid = -1;
3055 break;
3056 }
3057
3058 valid = i;
3059 }
3060
3061 rx->sta->amsdu_mesh_control = valid;
3062 }
3063
3064 ieee80211_amsdu_to_8023s(skb, list: &frame_list, addr: dev->dev_addr,
3065 iftype: rx->sdata->vif.type,
3066 extra_headroom: rx->local->hw.extra_tx_headroom,
3067 check_da, check_sa,
3068 mesh_control: rx->sta->amsdu_mesh_control);
3069
3070 while (!skb_queue_empty(list: &frame_list)) {
3071 rx->skb = __skb_dequeue(list: &frame_list);
3072
3073 res = ieee80211_rx_mesh_data(sdata: rx->sdata, sta: rx->sta, skb: rx->skb);
3074 switch (res) {
3075 case RX_QUEUED:
3076 continue;
3077 case RX_CONTINUE:
3078 break;
3079 default:
3080 goto free;
3081 }
3082
3083 if (!ieee80211_frame_allowed(rx, fc))
3084 goto free;
3085
3086 ieee80211_deliver_skb(rx);
3087 continue;
3088
3089free:
3090 dev_kfree_skb(rx->skb);
3091 }
3092
3093 return RX_QUEUED;
3094}
3095
3096static ieee80211_rx_result debug_noinline
3097ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
3098{
3099 struct sk_buff *skb = rx->skb;
3100 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
3101 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
3102 __le16 fc = hdr->frame_control;
3103
3104 if (!(status->rx_flags & IEEE80211_RX_AMSDU))
3105 return RX_CONTINUE;
3106
3107 if (unlikely(!ieee80211_is_data(fc)))
3108 return RX_CONTINUE;
3109
3110 if (unlikely(!ieee80211_is_data_present(fc)))
3111 return RX_DROP_MONITOR;
3112
3113 if (unlikely(ieee80211_has_a4(hdr->frame_control))) {
3114 switch (rx->sdata->vif.type) {
3115 case NL80211_IFTYPE_AP_VLAN:
3116 if (!rx->sdata->u.vlan.sta)
3117 return RX_DROP_U_BAD_4ADDR;
3118 break;
3119 case NL80211_IFTYPE_STATION:
3120 if (!rx->sdata->u.mgd.use_4addr)
3121 return RX_DROP_U_BAD_4ADDR;
3122 break;
3123 case NL80211_IFTYPE_MESH_POINT:
3124 break;
3125 default:
3126 return RX_DROP_U_BAD_4ADDR;
3127 }
3128 }
3129
3130 if (is_multicast_ether_addr(addr: hdr->addr1) || !rx->sta)
3131 return RX_DROP_U_BAD_AMSDU;
3132
3133 if (rx->key) {
3134 /*
3135 * We should not receive A-MSDUs on pre-HT connections,
3136 * and HT connections cannot use old ciphers. Thus drop
3137 * them, as in those cases we couldn't even have SPP
3138 * A-MSDUs or such.
3139 */
3140 switch (rx->key->conf.cipher) {
3141 case WLAN_CIPHER_SUITE_WEP40:
3142 case WLAN_CIPHER_SUITE_WEP104:
3143 case WLAN_CIPHER_SUITE_TKIP:
3144 return RX_DROP_U_BAD_AMSDU_CIPHER;
3145 default:
3146 break;
3147 }
3148 }
3149
3150 return __ieee80211_rx_h_amsdu(rx, data_offset: 0);
3151}
3152
3153static ieee80211_rx_result debug_noinline
3154ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
3155{
3156 struct ieee80211_sub_if_data *sdata = rx->sdata;
3157 struct ieee80211_local *local = rx->local;
3158 struct net_device *dev = sdata->dev;
3159 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
3160 __le16 fc = hdr->frame_control;
3161 ieee80211_rx_result res;
3162 bool port_control;
3163
3164 if (unlikely(!ieee80211_is_data(hdr->frame_control)))
3165 return RX_CONTINUE;
3166
3167 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
3168 return RX_DROP_MONITOR;
3169
3170 /*
3171 * Send unexpected-4addr-frame event to hostapd. For older versions,
3172 * also drop the frame to cooked monitor interfaces.
3173 */
3174 if (ieee80211_has_a4(fc: hdr->frame_control) &&
3175 sdata->vif.type == NL80211_IFTYPE_AP) {
3176 if (rx->sta &&
3177 !test_and_set_sta_flag(sta: rx->sta, flag: WLAN_STA_4ADDR_EVENT))
3178 cfg80211_rx_unexpected_4addr_frame(
3179 dev: rx->sdata->dev, addr: rx->sta->sta.addr, GFP_ATOMIC);
3180 return RX_DROP_MONITOR;
3181 }
3182
3183 res = __ieee80211_data_to_8023(rx, port_control: &port_control);
3184 if (unlikely(res != RX_CONTINUE))
3185 return res;
3186
3187 res = ieee80211_rx_mesh_data(sdata: rx->sdata, sta: rx->sta, skb: rx->skb);
3188 if (res != RX_CONTINUE)
3189 return res;
3190
3191 if (!ieee80211_frame_allowed(rx, fc))
3192 return RX_DROP_MONITOR;
3193
3194 /* directly handle TDLS channel switch requests/responses */
3195 if (unlikely(((struct ethhdr *)rx->skb->data)->h_proto ==
3196 cpu_to_be16(ETH_P_TDLS))) {
3197 struct ieee80211_tdls_data *tf = (void *)rx->skb->data;
3198
3199 if (pskb_may_pull(skb: rx->skb,
3200 offsetof(struct ieee80211_tdls_data, u)) &&
3201 tf->payload_type == WLAN_TDLS_SNAP_RFTYPE &&
3202 tf->category == WLAN_CATEGORY_TDLS &&
3203 (tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_REQUEST ||
3204 tf->action_code == WLAN_TDLS_CHANNEL_SWITCH_RESPONSE)) {
3205 rx->skb->protocol = cpu_to_be16(ETH_P_TDLS);
3206 __ieee80211_queue_skb_to_iface(sdata, link_id: rx->link_id,
3207 sta: rx->sta, skb: rx->skb);
3208 return RX_QUEUED;
3209 }
3210 }
3211
3212 if (rx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
3213 unlikely(port_control) && sdata->bss) {
3214 sdata = container_of(sdata->bss, struct ieee80211_sub_if_data,
3215 u.ap);
3216 dev = sdata->dev;
3217 rx->sdata = sdata;
3218 }
3219
3220 rx->skb->dev = dev;
3221
3222 if (!ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) &&
3223 local->ps_sdata && local->hw.conf.dynamic_ps_timeout > 0 &&
3224 !is_multicast_ether_addr(
3225 addr: ((struct ethhdr *)rx->skb->data)->h_dest) &&
3226 (!local->scanning &&
3227 !test_bit(SDATA_STATE_OFFCHANNEL, &sdata->state)))
3228 mod_timer(timer: &local->dynamic_ps_timer, expires: jiffies +
3229 msecs_to_jiffies(m: local->hw.conf.dynamic_ps_timeout));
3230
3231 ieee80211_deliver_skb(rx);
3232
3233 return RX_QUEUED;
3234}
3235
3236static ieee80211_rx_result debug_noinline
3237ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx, struct sk_buff_head *frames)
3238{
3239 struct sk_buff *skb = rx->skb;
3240 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
3241 struct tid_ampdu_rx *tid_agg_rx;
3242 u16 start_seq_num;
3243 u16 tid;
3244
3245 if (likely(!ieee80211_is_ctl(bar->frame_control)))
3246 return RX_CONTINUE;
3247
3248 if (ieee80211_is_back_req(fc: bar->frame_control)) {
3249 struct {
3250 __le16 control, start_seq_num;
3251 } __packed bar_data;
3252 struct ieee80211_event event = {
3253 .type = BAR_RX_EVENT,
3254 };
3255
3256 if (!rx->sta)
3257 return RX_DROP_MONITOR;
3258
3259 if (skb_copy_bits(skb, offsetof(struct ieee80211_bar, control),
3260 to: &bar_data, len: sizeof(bar_data)))
3261 return RX_DROP_MONITOR;
3262
3263 tid = le16_to_cpu(bar_data.control) >> 12;
3264
3265 if (!test_bit(tid, rx->sta->ampdu_mlme.agg_session_valid) &&
3266 !test_and_set_bit(nr: tid, addr: rx->sta->ampdu_mlme.unexpected_agg))
3267 ieee80211_send_delba(sdata: rx->sdata, da: rx->sta->sta.addr, tid,
3268 initiator: WLAN_BACK_RECIPIENT,
3269 reason_code: WLAN_REASON_QSTA_REQUIRE_SETUP);
3270
3271 tid_agg_rx = rcu_dereference(rx->sta->ampdu_mlme.tid_rx[tid]);
3272 if (!tid_agg_rx)
3273 return RX_DROP_MONITOR;
3274
3275 start_seq_num = le16_to_cpu(bar_data.start_seq_num) >> 4;
3276 event.u.ba.tid = tid;
3277 event.u.ba.ssn = start_seq_num;
3278 event.u.ba.sta = &rx->sta->sta;
3279
3280 /* reset session timer */
3281 if (tid_agg_rx->timeout)
3282 mod_timer(timer: &tid_agg_rx->session_timer,
3283 TU_TO_EXP_TIME(tid_agg_rx->timeout));
3284
3285 spin_lock(lock: &tid_agg_rx->reorder_lock);
3286 /* release stored frames up to start of BAR */
3287 ieee80211_release_reorder_frames(sdata: rx->sdata, tid_agg_rx,
3288 head_seq_num: start_seq_num, frames);
3289 spin_unlock(lock: &tid_agg_rx->reorder_lock);
3290
3291 drv_event_callback(local: rx->local, sdata: rx->sdata, event: &event);
3292
3293 kfree_skb(skb);
3294 return RX_QUEUED;
3295 }
3296
3297 /*
3298 * After this point, we only want management frames,
3299 * so we can drop all remaining control frames to
3300 * cooked monitor interfaces.
3301 */
3302 return RX_DROP_MONITOR;
3303}
3304
3305static void ieee80211_process_sa_query_req(struct ieee80211_sub_if_data *sdata,
3306 struct ieee80211_mgmt *mgmt,
3307 size_t len)
3308{
3309 struct ieee80211_local *local = sdata->local;
3310 struct sk_buff *skb;
3311 struct ieee80211_mgmt *resp;
3312
3313 if (!ether_addr_equal(addr1: mgmt->da, addr2: sdata->vif.addr)) {
3314 /* Not to own unicast address */
3315 return;
3316 }
3317
3318 if (!ether_addr_equal(addr1: mgmt->sa, addr2: sdata->deflink.u.mgd.bssid) ||
3319 !ether_addr_equal(addr1: mgmt->bssid, addr2: sdata->deflink.u.mgd.bssid)) {
3320 /* Not from the current AP or not associated yet. */
3321 return;
3322 }
3323
3324 if (len < 24 + 1 + sizeof(resp->u.action.u.sa_query)) {
3325 /* Too short SA Query request frame */
3326 return;
3327 }
3328
3329 skb = dev_alloc_skb(length: sizeof(*resp) + local->hw.extra_tx_headroom);
3330 if (skb == NULL)
3331 return;
3332
3333 skb_reserve(skb, len: local->hw.extra_tx_headroom);
3334 resp = skb_put_zero(skb, len: 24);
3335 memcpy(resp->da, mgmt->sa, ETH_ALEN);
3336 memcpy(resp->sa, sdata->vif.addr, ETH_ALEN);
3337 memcpy(resp->bssid, sdata->deflink.u.mgd.bssid, ETH_ALEN);
3338 resp->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT |
3339 IEEE80211_STYPE_ACTION);
3340 skb_put(skb, len: 1 + sizeof(resp->u.action.u.sa_query));
3341 resp->u.action.category = WLAN_CATEGORY_SA_QUERY;
3342 resp->u.action.u.sa_query.action = WLAN_ACTION_SA_QUERY_RESPONSE;
3343 memcpy(resp->u.action.u.sa_query.trans_id,
3344 mgmt->u.action.u.sa_query.trans_id,
3345 WLAN_SA_QUERY_TR_ID_LEN);
3346
3347 ieee80211_tx_skb(sdata, skb);
3348}
3349
3350static void
3351ieee80211_rx_check_bss_color_collision(struct ieee80211_rx_data *rx)
3352{
3353 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3354 const struct element *ie;
3355 size_t baselen;
3356
3357 if (!wiphy_ext_feature_isset(wiphy: rx->local->hw.wiphy,
3358 ftidx: NL80211_EXT_FEATURE_BSS_COLOR))
3359 return;
3360
3361 if (ieee80211_hw_check(&rx->local->hw, DETECTS_COLOR_COLLISION))
3362 return;
3363
3364 if (rx->sdata->vif.bss_conf.csa_active)
3365 return;
3366
3367 baselen = mgmt->u.beacon.variable - rx->skb->data;
3368 if (baselen > rx->skb->len)
3369 return;
3370
3371 ie = cfg80211_find_ext_elem(ext_eid: WLAN_EID_EXT_HE_OPERATION,
3372 ies: mgmt->u.beacon.variable,
3373 len: rx->skb->len - baselen);
3374 if (ie && ie->datalen >= sizeof(struct ieee80211_he_operation) &&
3375 ie->datalen >= ieee80211_he_oper_size(he_oper_ie: ie->data + 1)) {
3376 struct ieee80211_bss_conf *bss_conf = &rx->sdata->vif.bss_conf;
3377 const struct ieee80211_he_operation *he_oper;
3378 u8 color;
3379
3380 he_oper = (void *)(ie->data + 1);
3381 if (le32_get_bits(v: he_oper->he_oper_params,
3382 IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED))
3383 return;
3384
3385 color = le32_get_bits(v: he_oper->he_oper_params,
3386 IEEE80211_HE_OPERATION_BSS_COLOR_MASK);
3387 if (color == bss_conf->he_bss_color.color)
3388 ieee80211_obss_color_collision_notify(vif: &rx->sdata->vif,
3389 BIT_ULL(color));
3390 }
3391}
3392
3393static ieee80211_rx_result debug_noinline
3394ieee80211_rx_h_mgmt_check(struct ieee80211_rx_data *rx)
3395{
3396 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3397 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
3398
3399 if (ieee80211_is_s1g_beacon(fc: mgmt->frame_control))
3400 return RX_CONTINUE;
3401
3402 /*
3403 * From here on, look only at management frames.
3404 * Data and control frames are already handled,
3405 * and unknown (reserved) frames are useless.
3406 */
3407 if (rx->skb->len < 24)
3408 return RX_DROP_MONITOR;
3409
3410 if (!ieee80211_is_mgmt(fc: mgmt->frame_control))
3411 return RX_DROP_MONITOR;
3412
3413 /* drop too small action frames */
3414 if (ieee80211_is_action(fc: mgmt->frame_control) &&
3415 rx->skb->len < IEEE80211_MIN_ACTION_SIZE)
3416 return RX_DROP_U_RUNT_ACTION;
3417
3418 if (rx->sdata->vif.type == NL80211_IFTYPE_AP &&
3419 ieee80211_is_beacon(fc: mgmt->frame_control) &&
3420 !(rx->flags & IEEE80211_RX_BEACON_REPORTED)) {
3421 int sig = 0;
3422
3423 /* sw bss color collision detection */
3424 ieee80211_rx_check_bss_color_collision(rx);
3425
3426 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3427 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3428 sig = status->signal;
3429
3430 cfg80211_report_obss_beacon_khz(wiphy: rx->local->hw.wiphy,
3431 frame: rx->skb->data, len: rx->skb->len,
3432 freq: ieee80211_rx_status_to_khz(rx_status: status),
3433 sig_dbm: sig);
3434 rx->flags |= IEEE80211_RX_BEACON_REPORTED;
3435 }
3436
3437 return ieee80211_drop_unencrypted_mgmt(rx);
3438}
3439
3440static bool
3441ieee80211_process_rx_twt_action(struct ieee80211_rx_data *rx)
3442{
3443 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)rx->skb->data;
3444 struct ieee80211_sub_if_data *sdata = rx->sdata;
3445
3446 /* TWT actions are only supported in AP for the moment */
3447 if (sdata->vif.type != NL80211_IFTYPE_AP)
3448 return false;
3449
3450 if (!rx->local->ops->add_twt_setup)
3451 return false;
3452
3453 if (!sdata->vif.bss_conf.twt_responder)
3454 return false;
3455
3456 if (!rx->sta)
3457 return false;
3458
3459 switch (mgmt->u.action.u.s1g.action_code) {
3460 case WLAN_S1G_TWT_SETUP: {
3461 struct ieee80211_twt_setup *twt;
3462
3463 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3464 1 + /* action code */
3465 sizeof(struct ieee80211_twt_setup) +
3466 2 /* TWT req_type agrt */)
3467 break;
3468
3469 twt = (void *)mgmt->u.action.u.s1g.variable;
3470 if (twt->element_id != WLAN_EID_S1G_TWT)
3471 break;
3472
3473 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE +
3474 4 + /* action code + token + tlv */
3475 twt->length)
3476 break;
3477
3478 return true; /* queue the frame */
3479 }
3480 case WLAN_S1G_TWT_TEARDOWN:
3481 if (rx->skb->len < IEEE80211_MIN_ACTION_SIZE + 2)
3482 break;
3483
3484 return true; /* queue the frame */
3485 default:
3486 break;
3487 }
3488
3489 return false;
3490}
3491
3492static ieee80211_rx_result debug_noinline
3493ieee80211_rx_h_action(struct ieee80211_rx_data *rx)
3494{
3495 struct ieee80211_local *local = rx->local;
3496 struct ieee80211_sub_if_data *sdata = rx->sdata;
3497 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3498 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
3499 int len = rx->skb->len;
3500
3501 if (!ieee80211_is_action(fc: mgmt->frame_control))
3502 return RX_CONTINUE;
3503
3504 if (!rx->sta && mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
3505 mgmt->u.action.category != WLAN_CATEGORY_SELF_PROTECTED &&
3506 mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT)
3507 return RX_DROP_U_ACTION_UNKNOWN_SRC;
3508
3509 switch (mgmt->u.action.category) {
3510 case WLAN_CATEGORY_HT:
3511 /* reject HT action frames from stations not supporting HT */
3512 if (!rx->link_sta->pub->ht_cap.ht_supported)
3513 goto invalid;
3514
3515 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3516 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3517 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3518 sdata->vif.type != NL80211_IFTYPE_AP &&
3519 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3520 break;
3521
3522 /* verify action & smps_control/chanwidth are present */
3523 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3524 goto invalid;
3525
3526 switch (mgmt->u.action.u.ht_smps.action) {
3527 case WLAN_HT_ACTION_SMPS: {
3528 struct ieee80211_supported_band *sband;
3529 enum ieee80211_smps_mode smps_mode;
3530 struct sta_opmode_info sta_opmode = {};
3531
3532 if (sdata->vif.type != NL80211_IFTYPE_AP &&
3533 sdata->vif.type != NL80211_IFTYPE_AP_VLAN)
3534 goto handled;
3535
3536 /* convert to HT capability */
3537 switch (mgmt->u.action.u.ht_smps.smps_control) {
3538 case WLAN_HT_SMPS_CONTROL_DISABLED:
3539 smps_mode = IEEE80211_SMPS_OFF;
3540 break;
3541 case WLAN_HT_SMPS_CONTROL_STATIC:
3542 smps_mode = IEEE80211_SMPS_STATIC;
3543 break;
3544 case WLAN_HT_SMPS_CONTROL_DYNAMIC:
3545 smps_mode = IEEE80211_SMPS_DYNAMIC;
3546 break;
3547 default:
3548 goto invalid;
3549 }
3550
3551 /* if no change do nothing */
3552 if (rx->link_sta->pub->smps_mode == smps_mode)
3553 goto handled;
3554 rx->link_sta->pub->smps_mode = smps_mode;
3555 sta_opmode.smps_mode =
3556 ieee80211_smps_mode_to_smps_mode(smps: smps_mode);
3557 sta_opmode.changed = STA_OPMODE_SMPS_MODE_CHANGED;
3558
3559 sband = rx->local->hw.wiphy->bands[status->band];
3560
3561 rate_control_rate_update(local, sband, sta: rx->sta, link_id: 0,
3562 changed: IEEE80211_RC_SMPS_CHANGED);
3563 cfg80211_sta_opmode_change_notify(dev: sdata->dev,
3564 mac: rx->sta->addr,
3565 sta_opmode: &sta_opmode,
3566 GFP_ATOMIC);
3567 goto handled;
3568 }
3569 case WLAN_HT_ACTION_NOTIFY_CHANWIDTH: {
3570 struct ieee80211_supported_band *sband;
3571 u8 chanwidth = mgmt->u.action.u.ht_notify_cw.chanwidth;
3572 enum ieee80211_sta_rx_bandwidth max_bw, new_bw;
3573 struct sta_opmode_info sta_opmode = {};
3574
3575 /* If it doesn't support 40 MHz it can't change ... */
3576 if (!(rx->link_sta->pub->ht_cap.cap &
3577 IEEE80211_HT_CAP_SUP_WIDTH_20_40))
3578 goto handled;
3579
3580 if (chanwidth == IEEE80211_HT_CHANWIDTH_20MHZ)
3581 max_bw = IEEE80211_STA_RX_BW_20;
3582 else
3583 max_bw = ieee80211_sta_cap_rx_bw(link_sta: rx->link_sta);
3584
3585 /* set cur_max_bandwidth and recalc sta bw */
3586 rx->link_sta->cur_max_bandwidth = max_bw;
3587 new_bw = ieee80211_sta_cur_vht_bw(link_sta: rx->link_sta);
3588
3589 if (rx->link_sta->pub->bandwidth == new_bw)
3590 goto handled;
3591
3592 rx->link_sta->pub->bandwidth = new_bw;
3593 sband = rx->local->hw.wiphy->bands[status->band];
3594 sta_opmode.bw =
3595 ieee80211_sta_rx_bw_to_chan_width(sta: rx->link_sta);
3596 sta_opmode.changed = STA_OPMODE_MAX_BW_CHANGED;
3597
3598 rate_control_rate_update(local, sband, sta: rx->sta, link_id: 0,
3599 changed: IEEE80211_RC_BW_CHANGED);
3600 cfg80211_sta_opmode_change_notify(dev: sdata->dev,
3601 mac: rx->sta->addr,
3602 sta_opmode: &sta_opmode,
3603 GFP_ATOMIC);
3604 goto handled;
3605 }
3606 default:
3607 goto invalid;
3608 }
3609
3610 break;
3611 case WLAN_CATEGORY_PUBLIC:
3612 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3613 goto invalid;
3614 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3615 break;
3616 if (!rx->sta)
3617 break;
3618 if (!ether_addr_equal(addr1: mgmt->bssid, addr2: sdata->deflink.u.mgd.bssid))
3619 break;
3620 if (mgmt->u.action.u.ext_chan_switch.action_code !=
3621 WLAN_PUB_ACTION_EXT_CHANSW_ANN)
3622 break;
3623 if (len < offsetof(struct ieee80211_mgmt,
3624 u.action.u.ext_chan_switch.variable))
3625 goto invalid;
3626 goto queue;
3627 case WLAN_CATEGORY_VHT:
3628 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3629 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3630 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3631 sdata->vif.type != NL80211_IFTYPE_AP &&
3632 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3633 break;
3634
3635 /* verify action code is present */
3636 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3637 goto invalid;
3638
3639 switch (mgmt->u.action.u.vht_opmode_notif.action_code) {
3640 case WLAN_VHT_ACTION_OPMODE_NOTIF: {
3641 /* verify opmode is present */
3642 if (len < IEEE80211_MIN_ACTION_SIZE + 2)
3643 goto invalid;
3644 goto queue;
3645 }
3646 case WLAN_VHT_ACTION_GROUPID_MGMT: {
3647 if (len < IEEE80211_MIN_ACTION_SIZE + 25)
3648 goto invalid;
3649 goto queue;
3650 }
3651 default:
3652 break;
3653 }
3654 break;
3655 case WLAN_CATEGORY_BACK:
3656 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3657 sdata->vif.type != NL80211_IFTYPE_MESH_POINT &&
3658 sdata->vif.type != NL80211_IFTYPE_AP_VLAN &&
3659 sdata->vif.type != NL80211_IFTYPE_AP &&
3660 sdata->vif.type != NL80211_IFTYPE_ADHOC)
3661 break;
3662
3663 /* verify action_code is present */
3664 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3665 break;
3666
3667 switch (mgmt->u.action.u.addba_req.action_code) {
3668 case WLAN_ACTION_ADDBA_REQ:
3669 if (len < (IEEE80211_MIN_ACTION_SIZE +
3670 sizeof(mgmt->u.action.u.addba_req)))
3671 goto invalid;
3672 break;
3673 case WLAN_ACTION_ADDBA_RESP:
3674 if (len < (IEEE80211_MIN_ACTION_SIZE +
3675 sizeof(mgmt->u.action.u.addba_resp)))
3676 goto invalid;
3677 break;
3678 case WLAN_ACTION_DELBA:
3679 if (len < (IEEE80211_MIN_ACTION_SIZE +
3680 sizeof(mgmt->u.action.u.delba)))
3681 goto invalid;
3682 break;
3683 default:
3684 goto invalid;
3685 }
3686
3687 goto queue;
3688 case WLAN_CATEGORY_SPECTRUM_MGMT:
3689 /* verify action_code is present */
3690 if (len < IEEE80211_MIN_ACTION_SIZE + 1)
3691 break;
3692
3693 switch (mgmt->u.action.u.measurement.action_code) {
3694 case WLAN_ACTION_SPCT_MSR_REQ:
3695 if (status->band != NL80211_BAND_5GHZ)
3696 break;
3697
3698 if (len < (IEEE80211_MIN_ACTION_SIZE +
3699 sizeof(mgmt->u.action.u.measurement)))
3700 break;
3701
3702 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3703 break;
3704
3705 ieee80211_process_measurement_req(sdata, mgmt, len);
3706 goto handled;
3707 case WLAN_ACTION_SPCT_CHL_SWITCH: {
3708 u8 *bssid;
3709 if (len < (IEEE80211_MIN_ACTION_SIZE +
3710 sizeof(mgmt->u.action.u.chan_switch)))
3711 break;
3712
3713 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
3714 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3715 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
3716 break;
3717
3718 if (sdata->vif.type == NL80211_IFTYPE_STATION)
3719 bssid = sdata->deflink.u.mgd.bssid;
3720 else if (sdata->vif.type == NL80211_IFTYPE_ADHOC)
3721 bssid = sdata->u.ibss.bssid;
3722 else if (sdata->vif.type == NL80211_IFTYPE_MESH_POINT)
3723 bssid = mgmt->sa;
3724 else
3725 break;
3726
3727 if (!ether_addr_equal(addr1: mgmt->bssid, addr2: bssid))
3728 break;
3729
3730 goto queue;
3731 }
3732 }
3733 break;
3734 case WLAN_CATEGORY_SELF_PROTECTED:
3735 if (len < (IEEE80211_MIN_ACTION_SIZE +
3736 sizeof(mgmt->u.action.u.self_prot.action_code)))
3737 break;
3738
3739 switch (mgmt->u.action.u.self_prot.action_code) {
3740 case WLAN_SP_MESH_PEERING_OPEN:
3741 case WLAN_SP_MESH_PEERING_CLOSE:
3742 case WLAN_SP_MESH_PEERING_CONFIRM:
3743 if (!ieee80211_vif_is_mesh(vif: &sdata->vif))
3744 goto invalid;
3745 if (sdata->u.mesh.user_mpm)
3746 /* userspace handles this frame */
3747 break;
3748 goto queue;
3749 case WLAN_SP_MGK_INFORM:
3750 case WLAN_SP_MGK_ACK:
3751 if (!ieee80211_vif_is_mesh(vif: &sdata->vif))
3752 goto invalid;
3753 break;
3754 }
3755 break;
3756 case WLAN_CATEGORY_MESH_ACTION:
3757 if (len < (IEEE80211_MIN_ACTION_SIZE +
3758 sizeof(mgmt->u.action.u.mesh_action.action_code)))
3759 break;
3760
3761 if (!ieee80211_vif_is_mesh(vif: &sdata->vif))
3762 break;
3763 if (mesh_action_is_path_sel(mgmt) &&
3764 !mesh_path_sel_is_hwmp(sdata))
3765 break;
3766 goto queue;
3767 case WLAN_CATEGORY_S1G:
3768 if (len < offsetofend(typeof(*mgmt),
3769 u.action.u.s1g.action_code))
3770 break;
3771
3772 switch (mgmt->u.action.u.s1g.action_code) {
3773 case WLAN_S1G_TWT_SETUP:
3774 case WLAN_S1G_TWT_TEARDOWN:
3775 if (ieee80211_process_rx_twt_action(rx))
3776 goto queue;
3777 break;
3778 default:
3779 break;
3780 }
3781 break;
3782 case WLAN_CATEGORY_PROTECTED_EHT:
3783 switch (mgmt->u.action.u.ttlm_req.action_code) {
3784 case WLAN_PROTECTED_EHT_ACTION_TTLM_REQ:
3785 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3786 break;
3787
3788 if (len < offsetofend(typeof(*mgmt),
3789 u.action.u.ttlm_req))
3790 goto invalid;
3791 goto queue;
3792 case WLAN_PROTECTED_EHT_ACTION_TTLM_RES:
3793 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3794 break;
3795
3796 if (len < offsetofend(typeof(*mgmt),
3797 u.action.u.ttlm_res))
3798 goto invalid;
3799 goto queue;
3800 default:
3801 break;
3802 }
3803 break;
3804 }
3805
3806 return RX_CONTINUE;
3807
3808 invalid:
3809 status->rx_flags |= IEEE80211_RX_MALFORMED_ACTION_FRM;
3810 /* will return in the next handlers */
3811 return RX_CONTINUE;
3812
3813 handled:
3814 if (rx->sta)
3815 rx->link_sta->rx_stats.packets++;
3816 dev_kfree_skb(rx->skb);
3817 return RX_QUEUED;
3818
3819 queue:
3820 ieee80211_queue_skb_to_iface(sdata, link_id: rx->link_id, sta: rx->sta, skb: rx->skb);
3821 return RX_QUEUED;
3822}
3823
3824static ieee80211_rx_result debug_noinline
3825ieee80211_rx_h_userspace_mgmt(struct ieee80211_rx_data *rx)
3826{
3827 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
3828 struct cfg80211_rx_info info = {
3829 .freq = ieee80211_rx_status_to_khz(rx_status: status),
3830 .buf = rx->skb->data,
3831 .len = rx->skb->len,
3832 .link_id = rx->link_id,
3833 .have_link_id = rx->link_id >= 0,
3834 };
3835
3836 /* skip known-bad action frames and return them in the next handler */
3837 if (status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM)
3838 return RX_CONTINUE;
3839
3840 /*
3841 * Getting here means the kernel doesn't know how to handle
3842 * it, but maybe userspace does ... include returned frames
3843 * so userspace can register for those to know whether ones
3844 * it transmitted were processed or returned.
3845 */
3846
3847 if (ieee80211_hw_check(&rx->local->hw, SIGNAL_DBM) &&
3848 !(status->flag & RX_FLAG_NO_SIGNAL_VAL))
3849 info.sig_dbm = status->signal;
3850
3851 if (ieee80211_is_timing_measurement(skb: rx->skb) ||
3852 ieee80211_is_ftm(skb: rx->skb)) {
3853 info.rx_tstamp = ktime_to_ns(kt: skb_hwtstamps(skb: rx->skb)->hwtstamp);
3854 info.ack_tstamp = ktime_to_ns(kt: status->ack_tx_hwtstamp);
3855 }
3856
3857 if (cfg80211_rx_mgmt_ext(wdev: &rx->sdata->wdev, info: &info)) {
3858 if (rx->sta)
3859 rx->link_sta->rx_stats.packets++;
3860 dev_kfree_skb(rx->skb);
3861 return RX_QUEUED;
3862 }
3863
3864 return RX_CONTINUE;
3865}
3866
3867static ieee80211_rx_result debug_noinline
3868ieee80211_rx_h_action_post_userspace(struct ieee80211_rx_data *rx)
3869{
3870 struct ieee80211_sub_if_data *sdata = rx->sdata;
3871 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3872 int len = rx->skb->len;
3873
3874 if (!ieee80211_is_action(fc: mgmt->frame_control))
3875 return RX_CONTINUE;
3876
3877 switch (mgmt->u.action.category) {
3878 case WLAN_CATEGORY_SA_QUERY:
3879 if (len < (IEEE80211_MIN_ACTION_SIZE +
3880 sizeof(mgmt->u.action.u.sa_query)))
3881 break;
3882
3883 switch (mgmt->u.action.u.sa_query.action) {
3884 case WLAN_ACTION_SA_QUERY_REQUEST:
3885 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3886 break;
3887 ieee80211_process_sa_query_req(sdata, mgmt, len);
3888 goto handled;
3889 }
3890 break;
3891 }
3892
3893 return RX_CONTINUE;
3894
3895 handled:
3896 if (rx->sta)
3897 rx->link_sta->rx_stats.packets++;
3898 dev_kfree_skb(rx->skb);
3899 return RX_QUEUED;
3900}
3901
3902static ieee80211_rx_result debug_noinline
3903ieee80211_rx_h_action_return(struct ieee80211_rx_data *rx)
3904{
3905 struct ieee80211_local *local = rx->local;
3906 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *) rx->skb->data;
3907 struct sk_buff *nskb;
3908 struct ieee80211_sub_if_data *sdata = rx->sdata;
3909 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
3910
3911 if (!ieee80211_is_action(fc: mgmt->frame_control))
3912 return RX_CONTINUE;
3913
3914 /*
3915 * For AP mode, hostapd is responsible for handling any action
3916 * frames that we didn't handle, including returning unknown
3917 * ones. For all other modes we will return them to the sender,
3918 * setting the 0x80 bit in the action category, as required by
3919 * 802.11-2012 9.24.4.
3920 * Newer versions of hostapd shall also use the management frame
3921 * registration mechanisms, but older ones still use cooked
3922 * monitor interfaces so push all frames there.
3923 */
3924 if (!(status->rx_flags & IEEE80211_RX_MALFORMED_ACTION_FRM) &&
3925 (sdata->vif.type == NL80211_IFTYPE_AP ||
3926 sdata->vif.type == NL80211_IFTYPE_AP_VLAN))
3927 return RX_DROP_MONITOR;
3928
3929 if (is_multicast_ether_addr(addr: mgmt->da))
3930 return RX_DROP_MONITOR;
3931
3932 /* do not return rejected action frames */
3933 if (mgmt->u.action.category & 0x80)
3934 return RX_DROP_U_REJECTED_ACTION_RESPONSE;
3935
3936 nskb = skb_copy_expand(skb: rx->skb, newheadroom: local->hw.extra_tx_headroom, newtailroom: 0,
3937 GFP_ATOMIC);
3938 if (nskb) {
3939 struct ieee80211_mgmt *nmgmt = (void *)nskb->data;
3940
3941 nmgmt->u.action.category |= 0x80;
3942 memcpy(nmgmt->da, nmgmt->sa, ETH_ALEN);
3943 memcpy(nmgmt->sa, rx->sdata->vif.addr, ETH_ALEN);
3944
3945 memset(nskb->cb, 0, sizeof(nskb->cb));
3946
3947 if (rx->sdata->vif.type == NL80211_IFTYPE_P2P_DEVICE) {
3948 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb: nskb);
3949
3950 info->flags = IEEE80211_TX_CTL_TX_OFFCHAN |
3951 IEEE80211_TX_INTFL_OFFCHAN_TX_OK |
3952 IEEE80211_TX_CTL_NO_CCK_RATE;
3953 if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL))
3954 info->hw_queue =
3955 local->hw.offchannel_tx_hw_queue;
3956 }
3957
3958 __ieee80211_tx_skb_tid_band(sdata: rx->sdata, skb: nskb, tid: 7, link_id: -1,
3959 band: status->band);
3960 }
3961 dev_kfree_skb(rx->skb);
3962 return RX_QUEUED;
3963}
3964
3965static ieee80211_rx_result debug_noinline
3966ieee80211_rx_h_ext(struct ieee80211_rx_data *rx)
3967{
3968 struct ieee80211_sub_if_data *sdata = rx->sdata;
3969 struct ieee80211_hdr *hdr = (void *)rx->skb->data;
3970
3971 if (!ieee80211_is_ext(fc: hdr->frame_control))
3972 return RX_CONTINUE;
3973
3974 if (sdata->vif.type != NL80211_IFTYPE_STATION)
3975 return RX_DROP_MONITOR;
3976
3977 /* for now only beacons are ext, so queue them */
3978 ieee80211_queue_skb_to_iface(sdata, link_id: rx->link_id, sta: rx->sta, skb: rx->skb);
3979
3980 return RX_QUEUED;
3981}
3982
3983static ieee80211_rx_result debug_noinline
3984ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
3985{
3986 struct ieee80211_sub_if_data *sdata = rx->sdata;
3987 struct ieee80211_mgmt *mgmt = (void *)rx->skb->data;
3988 __le16 stype;
3989
3990 stype = mgmt->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
3991
3992 if (!ieee80211_vif_is_mesh(vif: &sdata->vif) &&
3993 sdata->vif.type != NL80211_IFTYPE_ADHOC &&
3994 sdata->vif.type != NL80211_IFTYPE_OCB &&
3995 sdata->vif.type != NL80211_IFTYPE_STATION)
3996 return RX_DROP_MONITOR;
3997
3998 switch (stype) {
3999 case cpu_to_le16(IEEE80211_STYPE_AUTH):
4000 case cpu_to_le16(IEEE80211_STYPE_BEACON):
4001 case cpu_to_le16(IEEE80211_STYPE_PROBE_RESP):
4002 /* process for all: mesh, mlme, ibss */
4003 break;
4004 case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
4005 if (is_multicast_ether_addr(addr: mgmt->da) &&
4006 !is_broadcast_ether_addr(addr: mgmt->da))
4007 return RX_DROP_MONITOR;
4008
4009 /* process only for station/IBSS */
4010 if (sdata->vif.type != NL80211_IFTYPE_STATION &&
4011 sdata->vif.type != NL80211_IFTYPE_ADHOC)
4012 return RX_DROP_MONITOR;
4013 break;
4014 case cpu_to_le16(IEEE80211_STYPE_ASSOC_RESP):
4015 case cpu_to_le16(IEEE80211_STYPE_REASSOC_RESP):
4016 case cpu_to_le16(IEEE80211_STYPE_DISASSOC):
4017 if (is_multicast_ether_addr(addr: mgmt->da) &&
4018 !is_broadcast_ether_addr(addr: mgmt->da))
4019 return RX_DROP_MONITOR;
4020
4021 /* process only for station */
4022 if (sdata->vif.type != NL80211_IFTYPE_STATION)
4023 return RX_DROP_MONITOR;
4024 break;
4025 case cpu_to_le16(IEEE80211_STYPE_PROBE_REQ):
4026 /* process only for ibss and mesh */
4027 if (sdata->vif.type != NL80211_IFTYPE_ADHOC &&
4028 sdata->vif.type != NL80211_IFTYPE_MESH_POINT)
4029 return RX_DROP_MONITOR;
4030 break;
4031 default:
4032 return RX_DROP_MONITOR;
4033 }
4034
4035 ieee80211_queue_skb_to_iface(sdata, link_id: rx->link_id, sta: rx->sta, skb: rx->skb);
4036
4037 return RX_QUEUED;
4038}
4039
4040static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx,
4041 struct ieee80211_rate *rate,
4042 ieee80211_rx_result reason)
4043{
4044 struct ieee80211_sub_if_data *sdata;
4045 struct ieee80211_local *local = rx->local;
4046 struct sk_buff *skb = rx->skb, *skb2;
4047 struct net_device *prev_dev = NULL;
4048 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4049 int needed_headroom;
4050
4051 /*
4052 * If cooked monitor has been processed already, then
4053 * don't do it again. If not, set the flag.
4054 */
4055 if (rx->flags & IEEE80211_RX_CMNTR)
4056 goto out_free_skb;
4057 rx->flags |= IEEE80211_RX_CMNTR;
4058
4059 /* If there are no cooked monitor interfaces, just free the SKB */
4060 if (!local->cooked_mntrs)
4061 goto out_free_skb;
4062
4063 /* room for the radiotap header based on driver features */
4064 needed_headroom = ieee80211_rx_radiotap_hdrlen(local, status, skb);
4065
4066 if (skb_headroom(skb) < needed_headroom &&
4067 pskb_expand_head(skb, nhead: needed_headroom, ntail: 0, GFP_ATOMIC))
4068 goto out_free_skb;
4069
4070 /* prepend radiotap information */
4071 ieee80211_add_rx_radiotap_header(local, skb, rate, rtap_len: needed_headroom,
4072 has_fcs: false);
4073
4074 skb_reset_mac_header(skb);
4075 skb->ip_summed = CHECKSUM_UNNECESSARY;
4076 skb->pkt_type = PACKET_OTHERHOST;
4077 skb->protocol = htons(ETH_P_802_2);
4078
4079 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
4080 if (!ieee80211_sdata_running(sdata))
4081 continue;
4082
4083 if (sdata->vif.type != NL80211_IFTYPE_MONITOR ||
4084 !(sdata->u.mntr.flags & MONITOR_FLAG_COOK_FRAMES))
4085 continue;
4086
4087 if (prev_dev) {
4088 skb2 = skb_clone(skb, GFP_ATOMIC);
4089 if (skb2) {
4090 skb2->dev = prev_dev;
4091 netif_receive_skb(skb: skb2);
4092 }
4093 }
4094
4095 prev_dev = sdata->dev;
4096 dev_sw_netstats_rx_add(dev: sdata->dev, len: skb->len);
4097 }
4098
4099 if (prev_dev) {
4100 skb->dev = prev_dev;
4101 netif_receive_skb(skb);
4102 return;
4103 }
4104
4105 out_free_skb:
4106 kfree_skb_reason(skb, reason: (__force u32)reason);
4107}
4108
4109static void ieee80211_rx_handlers_result(struct ieee80211_rx_data *rx,
4110 ieee80211_rx_result res)
4111{
4112 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
4113 struct ieee80211_supported_band *sband;
4114 struct ieee80211_rate *rate = NULL;
4115
4116 if (res == RX_QUEUED) {
4117 I802_DEBUG_INC(rx->sdata->local->rx_handlers_queued);
4118 return;
4119 }
4120
4121 if (res != RX_CONTINUE) {
4122 I802_DEBUG_INC(rx->sdata->local->rx_handlers_drop);
4123 if (rx->sta)
4124 rx->link_sta->rx_stats.dropped++;
4125 }
4126
4127 if (u32_get_bits(v: (__force u32)res, field: SKB_DROP_REASON_SUBSYS_MASK) ==
4128 SKB_DROP_REASON_SUBSYS_MAC80211_UNUSABLE) {
4129 kfree_skb_reason(skb: rx->skb, reason: (__force u32)res);
4130 return;
4131 }
4132
4133 sband = rx->local->hw.wiphy->bands[status->band];
4134 if (status->encoding == RX_ENC_LEGACY)
4135 rate = &sband->bitrates[status->rate_idx];
4136
4137 ieee80211_rx_cooked_monitor(rx, rate, reason: res);
4138}
4139
4140static void ieee80211_rx_handlers(struct ieee80211_rx_data *rx,
4141 struct sk_buff_head *frames)
4142{
4143 ieee80211_rx_result res = RX_DROP_MONITOR;
4144 struct sk_buff *skb;
4145
4146#define CALL_RXH(rxh) \
4147 do { \
4148 res = rxh(rx); \
4149 if (res != RX_CONTINUE) \
4150 goto rxh_next; \
4151 } while (0)
4152
4153 /* Lock here to avoid hitting all of the data used in the RX
4154 * path (e.g. key data, station data, ...) concurrently when
4155 * a frame is released from the reorder buffer due to timeout
4156 * from the timer, potentially concurrently with RX from the
4157 * driver.
4158 */
4159 spin_lock_bh(lock: &rx->local->rx_path_lock);
4160
4161 while ((skb = __skb_dequeue(list: frames))) {
4162 /*
4163 * all the other fields are valid across frames
4164 * that belong to an aMPDU since they are on the
4165 * same TID from the same station
4166 */
4167 rx->skb = skb;
4168
4169 if (WARN_ON_ONCE(!rx->link))
4170 goto rxh_next;
4171
4172 CALL_RXH(ieee80211_rx_h_check_more_data);
4173 CALL_RXH(ieee80211_rx_h_uapsd_and_pspoll);
4174 CALL_RXH(ieee80211_rx_h_sta_process);
4175 CALL_RXH(ieee80211_rx_h_decrypt);
4176 CALL_RXH(ieee80211_rx_h_defragment);
4177 CALL_RXH(ieee80211_rx_h_michael_mic_verify);
4178 /* must be after MMIC verify so header is counted in MPDU mic */
4179 CALL_RXH(ieee80211_rx_h_amsdu);
4180 CALL_RXH(ieee80211_rx_h_data);
4181
4182 /* special treatment -- needs the queue */
4183 res = ieee80211_rx_h_ctrl(rx, frames);
4184 if (res != RX_CONTINUE)
4185 goto rxh_next;
4186
4187 CALL_RXH(ieee80211_rx_h_mgmt_check);
4188 CALL_RXH(ieee80211_rx_h_action);
4189 CALL_RXH(ieee80211_rx_h_userspace_mgmt);
4190 CALL_RXH(ieee80211_rx_h_action_post_userspace);
4191 CALL_RXH(ieee80211_rx_h_action_return);
4192 CALL_RXH(ieee80211_rx_h_ext);
4193 CALL_RXH(ieee80211_rx_h_mgmt);
4194
4195 rxh_next:
4196 ieee80211_rx_handlers_result(rx, res);
4197
4198#undef CALL_RXH
4199 }
4200
4201 spin_unlock_bh(lock: &rx->local->rx_path_lock);
4202}
4203
4204static void ieee80211_invoke_rx_handlers(struct ieee80211_rx_data *rx)
4205{
4206 struct sk_buff_head reorder_release;
4207 ieee80211_rx_result res = RX_DROP_MONITOR;
4208
4209 __skb_queue_head_init(list: &reorder_release);
4210
4211#define CALL_RXH(rxh) \
4212 do { \
4213 res = rxh(rx); \
4214 if (res != RX_CONTINUE) \
4215 goto rxh_next; \
4216 } while (0)
4217
4218 CALL_RXH(ieee80211_rx_h_check_dup);
4219 CALL_RXH(ieee80211_rx_h_check);
4220
4221 ieee80211_rx_reorder_ampdu(rx, frames: &reorder_release);
4222
4223 ieee80211_rx_handlers(rx, frames: &reorder_release);
4224 return;
4225
4226 rxh_next:
4227 ieee80211_rx_handlers_result(rx, res);
4228
4229#undef CALL_RXH
4230}
4231
4232static bool
4233ieee80211_rx_is_valid_sta_link_id(struct ieee80211_sta *sta, u8 link_id)
4234{
4235 return !!(sta->valid_links & BIT(link_id));
4236}
4237
4238static bool ieee80211_rx_data_set_link(struct ieee80211_rx_data *rx,
4239 u8 link_id)
4240{
4241 rx->link_id = link_id;
4242 rx->link = rcu_dereference(rx->sdata->link[link_id]);
4243
4244 if (!rx->sta)
4245 return rx->link;
4246
4247 if (!ieee80211_rx_is_valid_sta_link_id(sta: &rx->sta->sta, link_id))
4248 return false;
4249
4250 rx->link_sta = rcu_dereference(rx->sta->link[link_id]);
4251
4252 return rx->link && rx->link_sta;
4253}
4254
4255static bool ieee80211_rx_data_set_sta(struct ieee80211_rx_data *rx,
4256 struct sta_info *sta, int link_id)
4257{
4258 rx->link_id = link_id;
4259 rx->sta = sta;
4260
4261 if (sta) {
4262 rx->local = sta->sdata->local;
4263 if (!rx->sdata)
4264 rx->sdata = sta->sdata;
4265 rx->link_sta = &sta->deflink;
4266 } else {
4267 rx->link_sta = NULL;
4268 }
4269
4270 if (link_id < 0)
4271 rx->link = &rx->sdata->deflink;
4272 else if (!ieee80211_rx_data_set_link(rx, link_id))
4273 return false;
4274
4275 return true;
4276}
4277
4278/*
4279 * This function makes calls into the RX path, therefore
4280 * it has to be invoked under RCU read lock.
4281 */
4282void ieee80211_release_reorder_timeout(struct sta_info *sta, int tid)
4283{
4284 struct sk_buff_head frames;
4285 struct ieee80211_rx_data rx = {
4286 /* This is OK -- must be QoS data frame */
4287 .security_idx = tid,
4288 .seqno_idx = tid,
4289 };
4290 struct tid_ampdu_rx *tid_agg_rx;
4291 int link_id = -1;
4292
4293 /* FIXME: statistics won't be right with this */
4294 if (sta->sta.valid_links)
4295 link_id = ffs(sta->sta.valid_links) - 1;
4296
4297 if (!ieee80211_rx_data_set_sta(rx: &rx, sta, link_id))
4298 return;
4299
4300 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4301 if (!tid_agg_rx)
4302 return;
4303
4304 __skb_queue_head_init(list: &frames);
4305
4306 spin_lock(lock: &tid_agg_rx->reorder_lock);
4307 ieee80211_sta_reorder_release(sdata: sta->sdata, tid_agg_rx, frames: &frames);
4308 spin_unlock(lock: &tid_agg_rx->reorder_lock);
4309
4310 if (!skb_queue_empty(list: &frames)) {
4311 struct ieee80211_event event = {
4312 .type = BA_FRAME_TIMEOUT,
4313 .u.ba.tid = tid,
4314 .u.ba.sta = &sta->sta,
4315 };
4316 drv_event_callback(local: rx.local, sdata: rx.sdata, event: &event);
4317 }
4318
4319 ieee80211_rx_handlers(rx: &rx, frames: &frames);
4320}
4321
4322void ieee80211_mark_rx_ba_filtered_frames(struct ieee80211_sta *pubsta, u8 tid,
4323 u16 ssn, u64 filtered,
4324 u16 received_mpdus)
4325{
4326 struct ieee80211_local *local;
4327 struct sta_info *sta;
4328 struct tid_ampdu_rx *tid_agg_rx;
4329 struct sk_buff_head frames;
4330 struct ieee80211_rx_data rx = {
4331 /* This is OK -- must be QoS data frame */
4332 .security_idx = tid,
4333 .seqno_idx = tid,
4334 };
4335 int i, diff;
4336
4337 if (WARN_ON(!pubsta || tid >= IEEE80211_NUM_TIDS))
4338 return;
4339
4340 __skb_queue_head_init(list: &frames);
4341
4342 sta = container_of(pubsta, struct sta_info, sta);
4343
4344 local = sta->sdata->local;
4345 WARN_ONCE(local->hw.max_rx_aggregation_subframes > 64,
4346 "RX BA marker can't support max_rx_aggregation_subframes %u > 64\n",
4347 local->hw.max_rx_aggregation_subframes);
4348
4349 if (!ieee80211_rx_data_set_sta(rx: &rx, sta, link_id: -1))
4350 return;
4351
4352 rcu_read_lock();
4353 tid_agg_rx = rcu_dereference(sta->ampdu_mlme.tid_rx[tid]);
4354 if (!tid_agg_rx)
4355 goto out;
4356
4357 spin_lock_bh(lock: &tid_agg_rx->reorder_lock);
4358
4359 if (received_mpdus >= IEEE80211_SN_MODULO >> 1) {
4360 int release;
4361
4362 /* release all frames in the reorder buffer */
4363 release = (tid_agg_rx->head_seq_num + tid_agg_rx->buf_size) %
4364 IEEE80211_SN_MODULO;
4365 ieee80211_release_reorder_frames(sdata: sta->sdata, tid_agg_rx,
4366 head_seq_num: release, frames: &frames);
4367 /* update ssn to match received ssn */
4368 tid_agg_rx->head_seq_num = ssn;
4369 } else {
4370 ieee80211_release_reorder_frames(sdata: sta->sdata, tid_agg_rx, head_seq_num: ssn,
4371 frames: &frames);
4372 }
4373
4374 /* handle the case that received ssn is behind the mac ssn.
4375 * it can be tid_agg_rx->buf_size behind and still be valid */
4376 diff = (tid_agg_rx->head_seq_num - ssn) & IEEE80211_SN_MASK;
4377 if (diff >= tid_agg_rx->buf_size) {
4378 tid_agg_rx->reorder_buf_filtered = 0;
4379 goto release;
4380 }
4381 filtered = filtered >> diff;
4382 ssn += diff;
4383
4384 /* update bitmap */
4385 for (i = 0; i < tid_agg_rx->buf_size; i++) {
4386 int index = (ssn + i) % tid_agg_rx->buf_size;
4387
4388 tid_agg_rx->reorder_buf_filtered &= ~BIT_ULL(index);
4389 if (filtered & BIT_ULL(i))
4390 tid_agg_rx->reorder_buf_filtered |= BIT_ULL(index);
4391 }
4392
4393 /* now process also frames that the filter marking released */
4394 ieee80211_sta_reorder_release(sdata: sta->sdata, tid_agg_rx, frames: &frames);
4395
4396release:
4397 spin_unlock_bh(lock: &tid_agg_rx->reorder_lock);
4398
4399 ieee80211_rx_handlers(rx: &rx, frames: &frames);
4400
4401 out:
4402 rcu_read_unlock();
4403}
4404EXPORT_SYMBOL(ieee80211_mark_rx_ba_filtered_frames);
4405
4406/* main receive path */
4407
4408static inline int ieee80211_bssid_match(const u8 *raddr, const u8 *addr)
4409{
4410 return ether_addr_equal(addr1: raddr, addr2: addr) ||
4411 is_broadcast_ether_addr(addr: raddr);
4412}
4413
4414static bool ieee80211_accept_frame(struct ieee80211_rx_data *rx)
4415{
4416 struct ieee80211_sub_if_data *sdata = rx->sdata;
4417 struct sk_buff *skb = rx->skb;
4418 struct ieee80211_hdr *hdr = (void *)skb->data;
4419 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4420 u8 *bssid = ieee80211_get_bssid(hdr, len: skb->len, type: sdata->vif.type);
4421 bool multicast = is_multicast_ether_addr(addr: hdr->addr1) ||
4422 ieee80211_is_s1g_beacon(fc: hdr->frame_control);
4423
4424 switch (sdata->vif.type) {
4425 case NL80211_IFTYPE_STATION:
4426 if (!bssid && !sdata->u.mgd.use_4addr)
4427 return false;
4428 if (ieee80211_is_first_frag(seq_ctrl: hdr->seq_ctrl) &&
4429 ieee80211_is_robust_mgmt_frame(skb) && !rx->sta)
4430 return false;
4431 if (multicast)
4432 return true;
4433 return ieee80211_is_our_addr(sdata, addr: hdr->addr1, out_link_id: &rx->link_id);
4434 case NL80211_IFTYPE_ADHOC:
4435 if (!bssid)
4436 return false;
4437 if (ether_addr_equal(addr1: sdata->vif.addr, addr2: hdr->addr2) ||
4438 ether_addr_equal(addr1: sdata->u.ibss.bssid, addr2: hdr->addr2) ||
4439 !is_valid_ether_addr(addr: hdr->addr2))
4440 return false;
4441 if (ieee80211_is_beacon(fc: hdr->frame_control))
4442 return true;
4443 if (!ieee80211_bssid_match(raddr: bssid, addr: sdata->u.ibss.bssid))
4444 return false;
4445 if (!multicast &&
4446 !ether_addr_equal(addr1: sdata->vif.addr, addr2: hdr->addr1))
4447 return false;
4448 if (!rx->sta) {
4449 int rate_idx;
4450 if (status->encoding != RX_ENC_LEGACY)
4451 rate_idx = 0; /* TODO: HT/VHT rates */
4452 else
4453 rate_idx = status->rate_idx;
4454 ieee80211_ibss_rx_no_sta(sdata, bssid, addr: hdr->addr2,
4455 BIT(rate_idx));
4456 }
4457 return true;
4458 case NL80211_IFTYPE_OCB:
4459 if (!bssid)
4460 return false;
4461 if (!ieee80211_is_data_present(fc: hdr->frame_control))
4462 return false;
4463 if (!is_broadcast_ether_addr(addr: bssid))
4464 return false;
4465 if (!multicast &&
4466 !ether_addr_equal(addr1: sdata->dev->dev_addr, addr2: hdr->addr1))
4467 return false;
4468 if (!rx->sta) {
4469 int rate_idx;
4470 if (status->encoding != RX_ENC_LEGACY)
4471 rate_idx = 0; /* TODO: HT rates */
4472 else
4473 rate_idx = status->rate_idx;
4474 ieee80211_ocb_rx_no_sta(sdata, bssid, addr: hdr->addr2,
4475 BIT(rate_idx));
4476 }
4477 return true;
4478 case NL80211_IFTYPE_MESH_POINT:
4479 if (ether_addr_equal(addr1: sdata->vif.addr, addr2: hdr->addr2))
4480 return false;
4481 if (multicast)
4482 return true;
4483 return ether_addr_equal(addr1: sdata->vif.addr, addr2: hdr->addr1);
4484 case NL80211_IFTYPE_AP_VLAN:
4485 case NL80211_IFTYPE_AP:
4486 if (!bssid)
4487 return ieee80211_is_our_addr(sdata, addr: hdr->addr1,
4488 out_link_id: &rx->link_id);
4489
4490 if (!is_broadcast_ether_addr(addr: bssid) &&
4491 !ieee80211_is_our_addr(sdata, addr: bssid, NULL)) {
4492 /*
4493 * Accept public action frames even when the
4494 * BSSID doesn't match, this is used for P2P
4495 * and location updates. Note that mac80211
4496 * itself never looks at these frames.
4497 */
4498 if (!multicast &&
4499 !ieee80211_is_our_addr(sdata, addr: hdr->addr1,
4500 out_link_id: &rx->link_id))
4501 return false;
4502 if (ieee80211_is_public_action(hdr, len: skb->len))
4503 return true;
4504 return ieee80211_is_beacon(fc: hdr->frame_control);
4505 }
4506
4507 if (!ieee80211_has_tods(fc: hdr->frame_control)) {
4508 /* ignore data frames to TDLS-peers */
4509 if (ieee80211_is_data(fc: hdr->frame_control))
4510 return false;
4511 /* ignore action frames to TDLS-peers */
4512 if (ieee80211_is_action(fc: hdr->frame_control) &&
4513 !is_broadcast_ether_addr(addr: bssid) &&
4514 !ether_addr_equal(addr1: bssid, addr2: hdr->addr1))
4515 return false;
4516 }
4517
4518 /*
4519 * 802.11-2016 Table 9-26 says that for data frames, A1 must be
4520 * the BSSID - we've checked that already but may have accepted
4521 * the wildcard (ff:ff:ff:ff:ff:ff).
4522 *
4523 * It also says:
4524 * The BSSID of the Data frame is determined as follows:
4525 * a) If the STA is contained within an AP or is associated
4526 * with an AP, the BSSID is the address currently in use
4527 * by the STA contained in the AP.
4528 *
4529 * So we should not accept data frames with an address that's
4530 * multicast.
4531 *
4532 * Accepting it also opens a security problem because stations
4533 * could encrypt it with the GTK and inject traffic that way.
4534 */
4535 if (ieee80211_is_data(fc: hdr->frame_control) && multicast)
4536 return false;
4537
4538 return true;
4539 case NL80211_IFTYPE_P2P_DEVICE:
4540 return ieee80211_is_public_action(hdr, len: skb->len) ||
4541 ieee80211_is_probe_req(fc: hdr->frame_control) ||
4542 ieee80211_is_probe_resp(fc: hdr->frame_control) ||
4543 ieee80211_is_beacon(fc: hdr->frame_control);
4544 case NL80211_IFTYPE_NAN:
4545 /* Currently no frames on NAN interface are allowed */
4546 return false;
4547 default:
4548 break;
4549 }
4550
4551 WARN_ON_ONCE(1);
4552 return false;
4553}
4554
4555void ieee80211_check_fast_rx(struct sta_info *sta)
4556{
4557 struct ieee80211_sub_if_data *sdata = sta->sdata;
4558 struct ieee80211_local *local = sdata->local;
4559 struct ieee80211_key *key;
4560 struct ieee80211_fast_rx fastrx = {
4561 .dev = sdata->dev,
4562 .vif_type = sdata->vif.type,
4563 .control_port_protocol = sdata->control_port_protocol,
4564 }, *old, *new = NULL;
4565 u32 offload_flags;
4566 bool set_offload = false;
4567 bool assign = false;
4568 bool offload;
4569
4570 /* use sparse to check that we don't return without updating */
4571 __acquire(check_fast_rx);
4572
4573 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != sizeof(rfc1042_header));
4574 BUILD_BUG_ON(sizeof(fastrx.rfc1042_hdr) != ETH_ALEN);
4575 ether_addr_copy(dst: fastrx.rfc1042_hdr, src: rfc1042_header);
4576 ether_addr_copy(dst: fastrx.vif_addr, src: sdata->vif.addr);
4577
4578 fastrx.uses_rss = ieee80211_hw_check(&local->hw, USES_RSS);
4579
4580 /* fast-rx doesn't do reordering */
4581 if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) &&
4582 !ieee80211_hw_check(&local->hw, SUPPORTS_REORDERING_BUFFER))
4583 goto clear;
4584
4585 switch (sdata->vif.type) {
4586 case NL80211_IFTYPE_STATION:
4587 if (sta->sta.tdls) {
4588 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4589 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4590 fastrx.expected_ds_bits = 0;
4591 } else {
4592 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr1);
4593 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr3);
4594 fastrx.expected_ds_bits =
4595 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4596 }
4597
4598 if (sdata->u.mgd.use_4addr && !sta->sta.tdls) {
4599 fastrx.expected_ds_bits |=
4600 cpu_to_le16(IEEE80211_FCTL_TODS);
4601 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4602 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4603 }
4604
4605 if (!sdata->u.mgd.powersave)
4606 break;
4607
4608 /* software powersave is a huge mess, avoid all of it */
4609 if (ieee80211_hw_check(&local->hw, PS_NULLFUNC_STACK))
4610 goto clear;
4611 if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) &&
4612 !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS))
4613 goto clear;
4614 break;
4615 case NL80211_IFTYPE_AP_VLAN:
4616 case NL80211_IFTYPE_AP:
4617 /* parallel-rx requires this, at least with calls to
4618 * ieee80211_sta_ps_transition()
4619 */
4620 if (!ieee80211_hw_check(&local->hw, AP_LINK_PS))
4621 goto clear;
4622 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4623 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr2);
4624 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_TODS);
4625
4626 fastrx.internal_forward =
4627 !(sdata->flags & IEEE80211_SDATA_DONT_BRIDGE_PACKETS) &&
4628 (sdata->vif.type != NL80211_IFTYPE_AP_VLAN ||
4629 !sdata->u.vlan.sta);
4630
4631 if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN &&
4632 sdata->u.vlan.sta) {
4633 fastrx.expected_ds_bits |=
4634 cpu_to_le16(IEEE80211_FCTL_FROMDS);
4635 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4636 fastrx.internal_forward = 0;
4637 }
4638
4639 break;
4640 case NL80211_IFTYPE_MESH_POINT:
4641 fastrx.expected_ds_bits = cpu_to_le16(IEEE80211_FCTL_FROMDS |
4642 IEEE80211_FCTL_TODS);
4643 fastrx.da_offs = offsetof(struct ieee80211_hdr, addr3);
4644 fastrx.sa_offs = offsetof(struct ieee80211_hdr, addr4);
4645 break;
4646 default:
4647 goto clear;
4648 }
4649
4650 if (!test_sta_flag(sta, flag: WLAN_STA_AUTHORIZED))
4651 goto clear;
4652
4653 rcu_read_lock();
4654 key = rcu_dereference(sta->ptk[sta->ptk_idx]);
4655 if (!key)
4656 key = rcu_dereference(sdata->default_unicast_key);
4657 if (key) {
4658 switch (key->conf.cipher) {
4659 case WLAN_CIPHER_SUITE_TKIP:
4660 /* we don't want to deal with MMIC in fast-rx */
4661 goto clear_rcu;
4662 case WLAN_CIPHER_SUITE_CCMP:
4663 case WLAN_CIPHER_SUITE_CCMP_256:
4664 case WLAN_CIPHER_SUITE_GCMP:
4665 case WLAN_CIPHER_SUITE_GCMP_256:
4666 break;
4667 default:
4668 /* We also don't want to deal with
4669 * WEP or cipher scheme.
4670 */
4671 goto clear_rcu;
4672 }
4673
4674 fastrx.key = true;
4675 fastrx.icv_len = key->conf.icv_len;
4676 }
4677
4678 assign = true;
4679 clear_rcu:
4680 rcu_read_unlock();
4681 clear:
4682 __release(check_fast_rx);
4683
4684 if (assign)
4685 new = kmemdup(p: &fastrx, size: sizeof(fastrx), GFP_KERNEL);
4686
4687 offload_flags = get_bss_sdata(sdata)->vif.offload_flags;
4688 offload = offload_flags & IEEE80211_OFFLOAD_DECAP_ENABLED;
4689
4690 if (assign && offload)
4691 set_offload = !test_and_set_sta_flag(sta, flag: WLAN_STA_DECAP_OFFLOAD);
4692 else
4693 set_offload = test_and_clear_sta_flag(sta, flag: WLAN_STA_DECAP_OFFLOAD);
4694
4695 if (set_offload)
4696 drv_sta_set_decap_offload(local, sdata, sta: &sta->sta, enabled: assign);
4697
4698 spin_lock_bh(lock: &sta->lock);
4699 old = rcu_dereference_protected(sta->fast_rx, true);
4700 rcu_assign_pointer(sta->fast_rx, new);
4701 spin_unlock_bh(lock: &sta->lock);
4702
4703 if (old)
4704 kfree_rcu(old, rcu_head);
4705}
4706
4707void ieee80211_clear_fast_rx(struct sta_info *sta)
4708{
4709 struct ieee80211_fast_rx *old;
4710
4711 spin_lock_bh(lock: &sta->lock);
4712 old = rcu_dereference_protected(sta->fast_rx, true);
4713 RCU_INIT_POINTER(sta->fast_rx, NULL);
4714 spin_unlock_bh(lock: &sta->lock);
4715
4716 if (old)
4717 kfree_rcu(old, rcu_head);
4718}
4719
4720void __ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4721{
4722 struct ieee80211_local *local = sdata->local;
4723 struct sta_info *sta;
4724
4725 lockdep_assert_wiphy(local->hw.wiphy);
4726
4727 list_for_each_entry(sta, &local->sta_list, list) {
4728 if (sdata != sta->sdata &&
4729 (!sta->sdata->bss || sta->sdata->bss != sdata->bss))
4730 continue;
4731 ieee80211_check_fast_rx(sta);
4732 }
4733}
4734
4735void ieee80211_check_fast_rx_iface(struct ieee80211_sub_if_data *sdata)
4736{
4737 struct ieee80211_local *local = sdata->local;
4738
4739 lockdep_assert_wiphy(local->hw.wiphy);
4740
4741 __ieee80211_check_fast_rx_iface(sdata);
4742}
4743
4744static void ieee80211_rx_8023(struct ieee80211_rx_data *rx,
4745 struct ieee80211_fast_rx *fast_rx,
4746 int orig_len)
4747{
4748 struct ieee80211_sta_rx_stats *stats;
4749 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb: rx->skb);
4750 struct sta_info *sta = rx->sta;
4751 struct link_sta_info *link_sta;
4752 struct sk_buff *skb = rx->skb;
4753 void *sa = skb->data + ETH_ALEN;
4754 void *da = skb->data;
4755
4756 if (rx->link_id >= 0) {
4757 link_sta = rcu_dereference(sta->link[rx->link_id]);
4758 if (WARN_ON_ONCE(!link_sta)) {
4759 dev_kfree_skb(rx->skb);
4760 return;
4761 }
4762 } else {
4763 link_sta = &sta->deflink;
4764 }
4765
4766 stats = &link_sta->rx_stats;
4767 if (fast_rx->uses_rss)
4768 stats = this_cpu_ptr(link_sta->pcpu_rx_stats);
4769
4770 /* statistics part of ieee80211_rx_h_sta_process() */
4771 if (!(status->flag & RX_FLAG_NO_SIGNAL_VAL)) {
4772 stats->last_signal = status->signal;
4773 if (!fast_rx->uses_rss)
4774 ewma_signal_add(e: &link_sta->rx_stats_avg.signal,
4775 val: -status->signal);
4776 }
4777
4778 if (status->chains) {
4779 int i;
4780
4781 stats->chains = status->chains;
4782 for (i = 0; i < ARRAY_SIZE(status->chain_signal); i++) {
4783 int signal = status->chain_signal[i];
4784
4785 if (!(status->chains & BIT(i)))
4786 continue;
4787
4788 stats->chain_signal_last[i] = signal;
4789 if (!fast_rx->uses_rss)
4790 ewma_signal_add(e: &link_sta->rx_stats_avg.chain_signal[i],
4791 val: -signal);
4792 }
4793 }
4794 /* end of statistics */
4795
4796 stats->last_rx = jiffies;
4797 stats->last_rate = sta_stats_encode_rate(s: status);
4798
4799 stats->fragments++;
4800 stats->packets++;
4801
4802 skb->dev = fast_rx->dev;
4803
4804 dev_sw_netstats_rx_add(dev: fast_rx->dev, len: skb->len);
4805
4806 /* The seqno index has the same property as needed
4807 * for the rx_msdu field, i.e. it is IEEE80211_NUM_TIDS
4808 * for non-QoS-data frames. Here we know it's a data
4809 * frame, so count MSDUs.
4810 */
4811 u64_stats_update_begin(syncp: &stats->syncp);
4812 stats->msdu[rx->seqno_idx]++;
4813 stats->bytes += orig_len;
4814 u64_stats_update_end(syncp: &stats->syncp);
4815
4816 if (fast_rx->internal_forward) {
4817 struct sk_buff *xmit_skb = NULL;
4818 if (is_multicast_ether_addr(addr: da)) {
4819 xmit_skb = skb_copy(skb, GFP_ATOMIC);
4820 } else if (!ether_addr_equal(addr1: da, addr2: sa) &&
4821 sta_info_get(sdata: rx->sdata, addr: da)) {
4822 xmit_skb = skb;
4823 skb = NULL;
4824 }
4825
4826 if (xmit_skb) {
4827 /*
4828 * Send to wireless media and increase priority by 256
4829 * to keep the received priority instead of
4830 * reclassifying the frame (see cfg80211_classify8021d).
4831 */
4832 xmit_skb->priority += 256;
4833 xmit_skb->protocol = htons(ETH_P_802_3);
4834 skb_reset_network_header(skb: xmit_skb);
4835 skb_reset_mac_header(skb: xmit_skb);
4836 dev_queue_xmit(skb: xmit_skb);
4837 }
4838
4839 if (!skb)
4840 return;
4841 }
4842
4843 /* deliver to local stack */
4844 skb->protocol = eth_type_trans(skb, dev: fast_rx->dev);
4845 ieee80211_deliver_skb_to_local_stack(skb, rx);
4846}
4847
4848static bool ieee80211_invoke_fast_rx(struct ieee80211_rx_data *rx,
4849 struct ieee80211_fast_rx *fast_rx)
4850{
4851 struct sk_buff *skb = rx->skb;
4852 struct ieee80211_hdr *hdr = (void *)skb->data;
4853 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
4854 static ieee80211_rx_result res;
4855 int orig_len = skb->len;
4856 int hdrlen = ieee80211_hdrlen(fc: hdr->frame_control);
4857 int snap_offs = hdrlen;
4858 struct {
4859 u8 snap[sizeof(rfc1042_header)];
4860 __be16 proto;
4861 } *payload __aligned(2);
4862 struct {
4863 u8 da[ETH_ALEN];
4864 u8 sa[ETH_ALEN];
4865 } addrs __aligned(2);
4866 struct ieee80211_sta_rx_stats *stats;
4867
4868 /* for parallel-rx, we need to have DUP_VALIDATED, otherwise we write
4869 * to a common data structure; drivers can implement that per queue
4870 * but we don't have that information in mac80211
4871 */
4872 if (!(status->flag & RX_FLAG_DUP_VALIDATED))
4873 return false;
4874
4875#define FAST_RX_CRYPT_FLAGS (RX_FLAG_PN_VALIDATED | RX_FLAG_DECRYPTED)
4876
4877 /* If using encryption, we also need to have:
4878 * - PN_VALIDATED: similar, but the implementation is tricky
4879 * - DECRYPTED: necessary for PN_VALIDATED
4880 */
4881 if (fast_rx->key &&
4882 (status->flag & FAST_RX_CRYPT_FLAGS) != FAST_RX_CRYPT_FLAGS)
4883 return false;
4884
4885 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
4886 return false;
4887
4888 if (unlikely(ieee80211_is_frag(hdr)))
4889 return false;
4890
4891 /* Since our interface address cannot be multicast, this
4892 * implicitly also rejects multicast frames without the
4893 * explicit check.
4894 *
4895 * We shouldn't get any *data* frames not addressed to us
4896 * (AP mode will accept multicast *management* frames), but
4897 * punting here will make it go through the full checks in
4898 * ieee80211_accept_frame().
4899 */
4900 if (!ether_addr_equal(addr1: fast_rx->vif_addr, addr2: hdr->addr1))
4901 return false;
4902
4903 if ((hdr->frame_control & cpu_to_le16(IEEE80211_FCTL_FROMDS |
4904 IEEE80211_FCTL_TODS)) !=
4905 fast_rx->expected_ds_bits)
4906 return false;
4907
4908 /* assign the key to drop unencrypted frames (later)
4909 * and strip the IV/MIC if necessary
4910 */
4911 if (fast_rx->key && !(status->flag & RX_FLAG_IV_STRIPPED)) {
4912 /* GCMP header length is the same */
4913 snap_offs += IEEE80211_CCMP_HDR_LEN;
4914 }
4915
4916 if (!ieee80211_vif_is_mesh(vif: &rx->sdata->vif) &&
4917 !(status->rx_flags & IEEE80211_RX_AMSDU)) {
4918 if (!pskb_may_pull(skb, len: snap_offs + sizeof(*payload)))
4919 return false;
4920
4921 payload = (void *)(skb->data + snap_offs);
4922
4923 if (!ether_addr_equal(addr1: payload->snap, addr2: fast_rx->rfc1042_hdr))
4924 return false;
4925
4926 /* Don't handle these here since they require special code.
4927 * Accept AARP and IPX even though they should come with a
4928 * bridge-tunnel header - but if we get them this way then
4929 * there's little point in discarding them.
4930 */
4931 if (unlikely(payload->proto == cpu_to_be16(ETH_P_TDLS) ||
4932 payload->proto == fast_rx->control_port_protocol))
4933 return false;
4934 }
4935
4936 /* after this point, don't punt to the slowpath! */
4937
4938 if (rx->key && !(status->flag & RX_FLAG_MIC_STRIPPED) &&
4939 pskb_trim(skb, len: skb->len - fast_rx->icv_len))
4940 goto drop;
4941
4942 if (rx->key && !ieee80211_has_protected(fc: hdr->frame_control))
4943 goto drop;
4944
4945 if (status->rx_flags & IEEE80211_RX_AMSDU) {
4946 if (__ieee80211_rx_h_amsdu(rx, data_offset: snap_offs - hdrlen) !=
4947 RX_QUEUED)
4948 goto drop;
4949
4950 return true;
4951 }
4952
4953 /* do the header conversion - first grab the addresses */
4954 ether_addr_copy(dst: addrs.da, src: skb->data + fast_rx->da_offs);
4955 ether_addr_copy(dst: addrs.sa, src: skb->data + fast_rx->sa_offs);
4956 if (ieee80211_vif_is_mesh(vif: &rx->sdata->vif)) {
4957 skb_pull(skb, len: snap_offs - 2);
4958 put_unaligned_be16(val: skb->len - 2, p: skb->data);
4959 } else {
4960 skb_postpull_rcsum(skb, start: skb->data + snap_offs,
4961 len: sizeof(rfc1042_header) + 2);
4962
4963 /* remove the SNAP but leave the ethertype */
4964 skb_pull(skb, len: snap_offs + sizeof(rfc1042_header));
4965 }
4966 /* push the addresses in front */
4967 memcpy(skb_push(skb, sizeof(addrs)), &addrs, sizeof(addrs));
4968
4969 res = ieee80211_rx_mesh_data(sdata: rx->sdata, sta: rx->sta, skb: rx->skb);
4970 switch (res) {
4971 case RX_QUEUED:
4972 return true;
4973 case RX_CONTINUE:
4974 break;
4975 default:
4976 goto drop;
4977 }
4978
4979 ieee80211_rx_8023(rx, fast_rx, orig_len);
4980
4981 return true;
4982 drop:
4983 dev_kfree_skb(skb);
4984
4985 if (fast_rx->uses_rss)
4986 stats = this_cpu_ptr(rx->link_sta->pcpu_rx_stats);
4987 else
4988 stats = &rx->link_sta->rx_stats;
4989
4990 stats->dropped++;
4991 return true;
4992}
4993
4994/*
4995 * This function returns whether or not the SKB
4996 * was destined for RX processing or not, which,
4997 * if consume is true, is equivalent to whether
4998 * or not the skb was consumed.
4999 */
5000static bool ieee80211_prepare_and_rx_handle(struct ieee80211_rx_data *rx,
5001 struct sk_buff *skb, bool consume)
5002{
5003 struct ieee80211_local *local = rx->local;
5004 struct ieee80211_sub_if_data *sdata = rx->sdata;
5005 struct ieee80211_hdr *hdr = (void *)skb->data;
5006 struct link_sta_info *link_sta = rx->link_sta;
5007 struct ieee80211_link_data *link = rx->link;
5008
5009 rx->skb = skb;
5010
5011 /* See if we can do fast-rx; if we have to copy we already lost,
5012 * so punt in that case. We should never have to deliver a data
5013 * frame to multiple interfaces anyway.
5014 *
5015 * We skip the ieee80211_accept_frame() call and do the necessary
5016 * checking inside ieee80211_invoke_fast_rx().
5017 */
5018 if (consume && rx->sta) {
5019 struct ieee80211_fast_rx *fast_rx;
5020
5021 fast_rx = rcu_dereference(rx->sta->fast_rx);
5022 if (fast_rx && ieee80211_invoke_fast_rx(rx, fast_rx))
5023 return true;
5024 }
5025
5026 if (!ieee80211_accept_frame(rx))
5027 return false;
5028
5029 if (!consume) {
5030 struct skb_shared_hwtstamps *shwt;
5031
5032 rx->skb = skb_copy(skb, GFP_ATOMIC);
5033 if (!rx->skb) {
5034 if (net_ratelimit())
5035 wiphy_debug(local->hw.wiphy,
5036 "failed to copy skb for %s\n",
5037 sdata->name);
5038 return true;
5039 }
5040
5041 /* skb_copy() does not copy the hw timestamps, so copy it
5042 * explicitly
5043 */
5044 shwt = skb_hwtstamps(skb: rx->skb);
5045 shwt->hwtstamp = skb_hwtstamps(skb)->hwtstamp;
5046
5047 /* Update the hdr pointer to the new skb for translation below */
5048 hdr = (struct ieee80211_hdr *)rx->skb->data;
5049 }
5050
5051 if (unlikely(rx->sta && rx->sta->sta.mlo) &&
5052 is_unicast_ether_addr(addr: hdr->addr1) &&
5053 !ieee80211_is_probe_resp(fc: hdr->frame_control) &&
5054 !ieee80211_is_beacon(fc: hdr->frame_control)) {
5055 /* translate to MLD addresses */
5056 if (ether_addr_equal(addr1: link->conf->addr, addr2: hdr->addr1))
5057 ether_addr_copy(dst: hdr->addr1, src: rx->sdata->vif.addr);
5058 if (ether_addr_equal(addr1: link_sta->addr, addr2: hdr->addr2))
5059 ether_addr_copy(dst: hdr->addr2, src: rx->sta->addr);
5060 /* translate A3 only if it's the BSSID */
5061 if (!ieee80211_has_tods(fc: hdr->frame_control) &&
5062 !ieee80211_has_fromds(fc: hdr->frame_control)) {
5063 if (ether_addr_equal(addr1: link_sta->addr, addr2: hdr->addr3))
5064 ether_addr_copy(dst: hdr->addr3, src: rx->sta->addr);
5065 else if (ether_addr_equal(addr1: link->conf->addr, addr2: hdr->addr3))
5066 ether_addr_copy(dst: hdr->addr3, src: rx->sdata->vif.addr);
5067 }
5068 /* not needed for A4 since it can only carry the SA */
5069 }
5070
5071 ieee80211_invoke_rx_handlers(rx);
5072 return true;
5073}
5074
5075static void __ieee80211_rx_handle_8023(struct ieee80211_hw *hw,
5076 struct ieee80211_sta *pubsta,
5077 struct sk_buff *skb,
5078 struct list_head *list)
5079{
5080 struct ieee80211_local *local = hw_to_local(hw);
5081 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5082 struct ieee80211_fast_rx *fast_rx;
5083 struct ieee80211_rx_data rx;
5084 struct sta_info *sta;
5085 int link_id = -1;
5086
5087 memset(&rx, 0, sizeof(rx));
5088 rx.skb = skb;
5089 rx.local = local;
5090 rx.list = list;
5091 rx.link_id = -1;
5092
5093 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
5094
5095 /* drop frame if too short for header */
5096 if (skb->len < sizeof(struct ethhdr))
5097 goto drop;
5098
5099 if (!pubsta)
5100 goto drop;
5101
5102 if (status->link_valid)
5103 link_id = status->link_id;
5104
5105 /*
5106 * TODO: Should the frame be dropped if the right link_id is not
5107 * available? Or may be it is fine in the current form to proceed with
5108 * the frame processing because with frame being in 802.3 format,
5109 * link_id is used only for stats purpose and updating the stats on
5110 * the deflink is fine?
5111 */
5112 sta = container_of(pubsta, struct sta_info, sta);
5113 if (!ieee80211_rx_data_set_sta(rx: &rx, sta, link_id))
5114 goto drop;
5115
5116 fast_rx = rcu_dereference(rx.sta->fast_rx);
5117 if (!fast_rx)
5118 goto drop;
5119
5120 ieee80211_rx_8023(rx: &rx, fast_rx, orig_len: skb->len);
5121 return;
5122
5123drop:
5124 dev_kfree_skb(skb);
5125}
5126
5127static bool ieee80211_rx_for_interface(struct ieee80211_rx_data *rx,
5128 struct sk_buff *skb, bool consume)
5129{
5130 struct link_sta_info *link_sta;
5131 struct ieee80211_hdr *hdr = (void *)skb->data;
5132 struct sta_info *sta;
5133 int link_id = -1;
5134
5135 /*
5136 * Look up link station first, in case there's a
5137 * chance that they might have a link address that
5138 * is identical to the MLD address, that way we'll
5139 * have the link information if needed.
5140 */
5141 link_sta = link_sta_info_get_bss(sdata: rx->sdata, addr: hdr->addr2);
5142 if (link_sta) {
5143 sta = link_sta->sta;
5144 link_id = link_sta->link_id;
5145 } else {
5146 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5147
5148 sta = sta_info_get_bss(sdata: rx->sdata, addr: hdr->addr2);
5149 if (status->link_valid)
5150 link_id = status->link_id;
5151 }
5152
5153 if (!ieee80211_rx_data_set_sta(rx, sta, link_id))
5154 return false;
5155
5156 return ieee80211_prepare_and_rx_handle(rx, skb, consume);
5157}
5158
5159/*
5160 * This is the actual Rx frames handler. as it belongs to Rx path it must
5161 * be called with rcu_read_lock protection.
5162 */
5163static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
5164 struct ieee80211_sta *pubsta,
5165 struct sk_buff *skb,
5166 struct list_head *list)
5167{
5168 struct ieee80211_local *local = hw_to_local(hw);
5169 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5170 struct ieee80211_sub_if_data *sdata;
5171 struct ieee80211_hdr *hdr;
5172 __le16 fc;
5173 struct ieee80211_rx_data rx;
5174 struct ieee80211_sub_if_data *prev;
5175 struct rhlist_head *tmp;
5176 int err = 0;
5177
5178 fc = ((struct ieee80211_hdr *)skb->data)->frame_control;
5179 memset(&rx, 0, sizeof(rx));
5180 rx.skb = skb;
5181 rx.local = local;
5182 rx.list = list;
5183 rx.link_id = -1;
5184
5185 if (ieee80211_is_data(fc) || ieee80211_is_mgmt(fc))
5186 I802_DEBUG_INC(local->dot11ReceivedFragmentCount);
5187
5188 if (ieee80211_is_mgmt(fc)) {
5189 /* drop frame if too short for header */
5190 if (skb->len < ieee80211_hdrlen(fc))
5191 err = -ENOBUFS;
5192 else
5193 err = skb_linearize(skb);
5194 } else {
5195 err = !pskb_may_pull(skb, len: ieee80211_hdrlen(fc));
5196 }
5197
5198 if (err) {
5199 dev_kfree_skb(skb);
5200 return;
5201 }
5202
5203 hdr = (struct ieee80211_hdr *)skb->data;
5204 ieee80211_parse_qos(rx: &rx);
5205 ieee80211_verify_alignment(rx: &rx);
5206
5207 if (unlikely(ieee80211_is_probe_resp(hdr->frame_control) ||
5208 ieee80211_is_beacon(hdr->frame_control) ||
5209 ieee80211_is_s1g_beacon(hdr->frame_control)))
5210 ieee80211_scan_rx(local, skb);
5211
5212 if (ieee80211_is_data(fc)) {
5213 struct sta_info *sta, *prev_sta;
5214 int link_id = -1;
5215
5216 if (status->link_valid)
5217 link_id = status->link_id;
5218
5219 if (pubsta) {
5220 sta = container_of(pubsta, struct sta_info, sta);
5221 if (!ieee80211_rx_data_set_sta(rx: &rx, sta, link_id))
5222 goto out;
5223
5224 /*
5225 * In MLO connection, fetch the link_id using addr2
5226 * when the driver does not pass link_id in status.
5227 * When the address translation is already performed by
5228 * driver/hw, the valid link_id must be passed in
5229 * status.
5230 */
5231
5232 if (!status->link_valid && pubsta->mlo) {
5233 struct link_sta_info *link_sta;
5234
5235 link_sta = link_sta_info_get_bss(sdata: rx.sdata,
5236 addr: hdr->addr2);
5237 if (!link_sta)
5238 goto out;
5239
5240 ieee80211_rx_data_set_link(rx: &rx, link_id: link_sta->link_id);
5241 }
5242
5243 if (ieee80211_prepare_and_rx_handle(rx: &rx, skb, consume: true))
5244 return;
5245 goto out;
5246 }
5247
5248 prev_sta = NULL;
5249
5250 for_each_sta_info(local, hdr->addr2, sta, tmp) {
5251 if (!prev_sta) {
5252 prev_sta = sta;
5253 continue;
5254 }
5255
5256 rx.sdata = prev_sta->sdata;
5257 if (!ieee80211_rx_data_set_sta(rx: &rx, sta: prev_sta, link_id))
5258 goto out;
5259
5260 if (!status->link_valid && prev_sta->sta.mlo)
5261 continue;
5262
5263 ieee80211_prepare_and_rx_handle(rx: &rx, skb, consume: false);
5264
5265 prev_sta = sta;
5266 }
5267
5268 if (prev_sta) {
5269 rx.sdata = prev_sta->sdata;
5270 if (!ieee80211_rx_data_set_sta(rx: &rx, sta: prev_sta, link_id))
5271 goto out;
5272
5273 if (!status->link_valid && prev_sta->sta.mlo)
5274 goto out;
5275
5276 if (ieee80211_prepare_and_rx_handle(rx: &rx, skb, consume: true))
5277 return;
5278 goto out;
5279 }
5280 }
5281
5282 prev = NULL;
5283
5284 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
5285 if (!ieee80211_sdata_running(sdata))
5286 continue;
5287
5288 if (sdata->vif.type == NL80211_IFTYPE_MONITOR ||
5289 sdata->vif.type == NL80211_IFTYPE_AP_VLAN)
5290 continue;
5291
5292 /*
5293 * frame is destined for this interface, but if it's
5294 * not also for the previous one we handle that after
5295 * the loop to avoid copying the SKB once too much
5296 */
5297
5298 if (!prev) {
5299 prev = sdata;
5300 continue;
5301 }
5302
5303 rx.sdata = prev;
5304 ieee80211_rx_for_interface(rx: &rx, skb, consume: false);
5305
5306 prev = sdata;
5307 }
5308
5309 if (prev) {
5310 rx.sdata = prev;
5311
5312 if (ieee80211_rx_for_interface(rx: &rx, skb, consume: true))
5313 return;
5314 }
5315
5316 out:
5317 dev_kfree_skb(skb);
5318}
5319
5320/*
5321 * This is the receive path handler. It is called by a low level driver when an
5322 * 802.11 MPDU is received from the hardware.
5323 */
5324void ieee80211_rx_list(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
5325 struct sk_buff *skb, struct list_head *list)
5326{
5327 struct ieee80211_local *local = hw_to_local(hw);
5328 struct ieee80211_rate *rate = NULL;
5329 struct ieee80211_supported_band *sband;
5330 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
5331 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
5332
5333 WARN_ON_ONCE(softirq_count() == 0);
5334
5335 if (WARN_ON(status->band >= NUM_NL80211_BANDS))
5336 goto drop;
5337
5338 sband = local->hw.wiphy->bands[status->band];
5339 if (WARN_ON(!sband))
5340 goto drop;
5341
5342 /*
5343 * If we're suspending, it is possible although not too likely
5344 * that we'd be receiving frames after having already partially
5345 * quiesced the stack. We can't process such frames then since
5346 * that might, for example, cause stations to be added or other
5347 * driver callbacks be invoked.
5348 */
5349 if (unlikely(local->quiescing || local->suspended))
5350 goto drop;
5351
5352 /* We might be during a HW reconfig, prevent Rx for the same reason */
5353 if (unlikely(local->in_reconfig))
5354 goto drop;
5355
5356 /*
5357 * The same happens when we're not even started,
5358 * but that's worth a warning.
5359 */
5360 if (WARN_ON(!local->started))
5361 goto drop;
5362
5363 if (likely(!(status->flag & RX_FLAG_FAILED_PLCP_CRC))) {
5364 /*
5365 * Validate the rate, unless a PLCP error means that
5366 * we probably can't have a valid rate here anyway.
5367 */
5368
5369 switch (status->encoding) {
5370 case RX_ENC_HT:
5371 /*
5372 * rate_idx is MCS index, which can be [0-76]
5373 * as documented on:
5374 *
5375 * https://wireless.wiki.kernel.org/en/developers/Documentation/ieee80211/802.11n
5376 *
5377 * Anything else would be some sort of driver or
5378 * hardware error. The driver should catch hardware
5379 * errors.
5380 */
5381 if (WARN(status->rate_idx > 76,
5382 "Rate marked as an HT rate but passed "
5383 "status->rate_idx is not "
5384 "an MCS index [0-76]: %d (0x%02x)\n",
5385 status->rate_idx,
5386 status->rate_idx))
5387 goto drop;
5388 break;
5389 case RX_ENC_VHT:
5390 if (WARN_ONCE(status->rate_idx > 11 ||
5391 !status->nss ||
5392 status->nss > 8,
5393 "Rate marked as a VHT rate but data is invalid: MCS: %d, NSS: %d\n",
5394 status->rate_idx, status->nss))
5395 goto drop;
5396 break;
5397 case RX_ENC_HE:
5398 if (WARN_ONCE(status->rate_idx > 11 ||
5399 !status->nss ||
5400 status->nss > 8,
5401 "Rate marked as an HE rate but data is invalid: MCS: %d, NSS: %d\n",
5402 status->rate_idx, status->nss))
5403 goto drop;
5404 break;
5405 case RX_ENC_EHT:
5406 if (WARN_ONCE(status->rate_idx > 15 ||
5407 !status->nss ||
5408 status->nss > 8 ||
5409 status->eht.gi > NL80211_RATE_INFO_EHT_GI_3_2,
5410 "Rate marked as an EHT rate but data is invalid: MCS:%d, NSS:%d, GI:%d\n",
5411 status->rate_idx, status->nss, status->eht.gi))
5412 goto drop;
5413 break;
5414 default:
5415 WARN_ON_ONCE(1);
5416 fallthrough;
5417 case RX_ENC_LEGACY:
5418 if (WARN_ON(status->rate_idx >= sband->n_bitrates))
5419 goto drop;
5420 rate = &sband->bitrates[status->rate_idx];
5421 }
5422 }
5423
5424 if (WARN_ON_ONCE(status->link_id >= IEEE80211_LINK_UNSPECIFIED))
5425 goto drop;
5426
5427 status->rx_flags = 0;
5428
5429 kcov_remote_start_common(id: skb_get_kcov_handle(skb));
5430
5431 /*
5432 * Frames with failed FCS/PLCP checksum are not returned,
5433 * all other frames are returned without radiotap header
5434 * if it was previously present.
5435 * Also, frames with less than 16 bytes are dropped.
5436 */
5437 if (!(status->flag & RX_FLAG_8023))
5438 skb = ieee80211_rx_monitor(local, origskb: skb, rate);
5439 if (skb) {
5440 if ((status->flag & RX_FLAG_8023) ||
5441 ieee80211_is_data_present(fc: hdr->frame_control))
5442 ieee80211_tpt_led_trig_rx(local, bytes: skb->len);
5443
5444 if (status->flag & RX_FLAG_8023)
5445 __ieee80211_rx_handle_8023(hw, pubsta, skb, list);
5446 else
5447 __ieee80211_rx_handle_packet(hw, pubsta, skb, list);
5448 }
5449
5450 kcov_remote_stop();
5451 return;
5452 drop:
5453 kfree_skb(skb);
5454}
5455EXPORT_SYMBOL(ieee80211_rx_list);
5456
5457void ieee80211_rx_napi(struct ieee80211_hw *hw, struct ieee80211_sta *pubsta,
5458 struct sk_buff *skb, struct napi_struct *napi)
5459{
5460 struct sk_buff *tmp;
5461 LIST_HEAD(list);
5462
5463
5464 /*
5465 * key references and virtual interfaces are protected using RCU
5466 * and this requires that we are in a read-side RCU section during
5467 * receive processing
5468 */
5469 rcu_read_lock();
5470 ieee80211_rx_list(hw, pubsta, skb, &list);
5471 rcu_read_unlock();
5472
5473 if (!napi) {
5474 netif_receive_skb_list(head: &list);
5475 return;
5476 }
5477
5478 list_for_each_entry_safe(skb, tmp, &list, list) {
5479 skb_list_del_init(skb);
5480 napi_gro_receive(napi, skb);
5481 }
5482}
5483EXPORT_SYMBOL(ieee80211_rx_napi);
5484
5485/* This is a version of the rx handler that can be called from hard irq
5486 * context. Post the skb on the queue and schedule the tasklet */
5487void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb)
5488{
5489 struct ieee80211_local *local = hw_to_local(hw);
5490
5491 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
5492
5493 skb->pkt_type = IEEE80211_RX_MSG;
5494 skb_queue_tail(list: &local->skb_queue, newsk: skb);
5495 tasklet_schedule(t: &local->tasklet);
5496}
5497EXPORT_SYMBOL(ieee80211_rx_irqsafe);
5498

source code of linux/net/mac80211/rx.c