1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/ComputeDependence.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/DependenceFlags.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/IgnoreExpr.h"
26#include "clang/AST/Mangle.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CharInfo.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Lexer.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
43const Expr *Expr::getBestDynamicClassTypeExpr() const {
44 const Expr *E = this;
45 while (true) {
46 E = E->IgnoreParenBaseCasts();
47
48 // Follow the RHS of a comma operator.
49 if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
50 if (BO->getOpcode() == BO_Comma) {
51 E = BO->getRHS();
52 continue;
53 }
54 }
55
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
58 E = MTE->getSubExpr();
59 continue;
60 }
61
62 break;
63 }
64
65 return E;
66}
67
68const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69 const Expr *E = getBestDynamicClassTypeExpr();
70 QualType DerivedType = E->getType();
71 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72 DerivedType = PTy->getPointeeType();
73
74 if (DerivedType->isDependentType())
75 return nullptr;
76
77 const RecordType *Ty = DerivedType->castAs<RecordType>();
78 Decl *D = Ty->getDecl();
79 return cast<CXXRecordDecl>(Val: D);
80}
81
82const Expr *Expr::skipRValueSubobjectAdjustments(
83 SmallVectorImpl<const Expr *> &CommaLHSs,
84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85 const Expr *E = this;
86 while (true) {
87 E = E->IgnoreParens();
88
89 if (const auto *CE = dyn_cast<CastExpr>(Val: E)) {
90 if ((CE->getCastKind() == CK_DerivedToBase ||
91 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92 E->getType()->isRecordType()) {
93 E = CE->getSubExpr();
94 const auto *Derived =
95 cast<CXXRecordDecl>(Val: E->getType()->castAs<RecordType>()->getDecl());
96 Adjustments.push_back(Elt: SubobjectAdjustment(CE, Derived));
97 continue;
98 }
99
100 if (CE->getCastKind() == CK_NoOp) {
101 E = CE->getSubExpr();
102 continue;
103 }
104 } else if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) {
105 if (!ME->isArrow()) {
106 assert(ME->getBase()->getType()->getAsRecordDecl());
107 if (const auto *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) {
108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109 E = ME->getBase();
110 Adjustments.push_back(Elt: SubobjectAdjustment(Field));
111 continue;
112 }
113 }
114 }
115 } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
116 if (BO->getOpcode() == BO_PtrMemD) {
117 assert(BO->getRHS()->isPRValue());
118 E = BO->getLHS();
119 const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>();
120 Adjustments.push_back(Elt: SubobjectAdjustment(MPT, BO->getRHS()));
121 continue;
122 }
123 if (BO->getOpcode() == BO_Comma) {
124 CommaLHSs.push_back(Elt: BO->getLHS());
125 E = BO->getRHS();
126 continue;
127 }
128 }
129
130 // Nothing changed.
131 break;
132 }
133 return E;
134}
135
136bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
137 const Expr *E = IgnoreParens();
138
139 // If this value has _Bool type, it is obvious 0/1.
140 if (E->getType()->isBooleanType()) return true;
141 // If this is a non-scalar-integer type, we don't care enough to try.
142 if (!E->getType()->isIntegralOrEnumerationType()) return false;
143
144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) {
145 switch (UO->getOpcode()) {
146 case UO_Plus:
147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
148 case UO_LNot:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 // Only look through implicit casts. If the user writes
156 // '(int) (a && b)' treat it as an arbitrary int.
157 // FIXME: Should we look through any cast expression in !Semantic mode?
158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Val: E))
159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
160
161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
162 switch (BO->getOpcode()) {
163 default: return false;
164 case BO_LT: // Relational operators.
165 case BO_GT:
166 case BO_LE:
167 case BO_GE:
168 case BO_EQ: // Equality operators.
169 case BO_NE:
170 case BO_LAnd: // AND operator.
171 case BO_LOr: // Logical OR operator.
172 return true;
173
174 case BO_And: // Bitwise AND operator.
175 case BO_Xor: // Bitwise XOR operator.
176 case BO_Or: // Bitwise OR operator.
177 // Handle things like (x==2)|(y==12).
178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
180
181 case BO_Comma:
182 case BO_Assign:
183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
184 }
185 }
186
187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E))
188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
190
191 if (isa<ObjCBoolLiteralExpr>(Val: E))
192 return true;
193
194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E))
195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
196
197 if (const FieldDecl *FD = E->getSourceBitField())
198 if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
199 !FD->getBitWidth()->isValueDependent() && FD->getBitWidthValue() == 1)
200 return true;
201
202 return false;
203}
204
205bool Expr::isFlexibleArrayMemberLike(
206 const ASTContext &Ctx,
207 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
208 bool IgnoreTemplateOrMacroSubstitution) const {
209 const Expr *E = IgnoreParens();
210 const Decl *D = nullptr;
211
212 if (const auto *ME = dyn_cast<MemberExpr>(Val: E))
213 D = ME->getMemberDecl();
214 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
215 D = DRE->getDecl();
216 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(Val: E))
217 D = IRE->getDecl();
218
219 return Decl::isFlexibleArrayMemberLike(Context: Ctx, D, Ty: E->getType(),
220 StrictFlexArraysLevel,
221 IgnoreTemplateOrMacroSubstitution);
222}
223
224const ValueDecl *
225Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
226 Expr::EvalResult Eval;
227
228 if (EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) {
229 APValue &Value = Eval.Val;
230
231 if (Value.isMemberPointer())
232 return Value.getMemberPointerDecl();
233
234 if (Value.isLValue() && Value.getLValueOffset().isZero())
235 return Value.getLValueBase().dyn_cast<const ValueDecl *>();
236 }
237
238 return nullptr;
239}
240
241// Amusing macro metaprogramming hack: check whether a class provides
242// a more specific implementation of getExprLoc().
243//
244// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
245namespace {
246 /// This implementation is used when a class provides a custom
247 /// implementation of getExprLoc.
248 template <class E, class T>
249 SourceLocation getExprLocImpl(const Expr *expr,
250 SourceLocation (T::*v)() const) {
251 return static_cast<const E*>(expr)->getExprLoc();
252 }
253
254 /// This implementation is used when a class doesn't provide
255 /// a custom implementation of getExprLoc. Overload resolution
256 /// should pick it over the implementation above because it's
257 /// more specialized according to function template partial ordering.
258 template <class E>
259 SourceLocation getExprLocImpl(const Expr *expr,
260 SourceLocation (Expr::*v)() const) {
261 return static_cast<const E *>(expr)->getBeginLoc();
262 }
263}
264
265QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const {
266 if (isa<EnumType>(Val: getType()))
267 return getType();
268 if (const auto *ECD = getEnumConstantDecl()) {
269 const auto *ED = cast<EnumDecl>(ECD->getDeclContext());
270 if (ED->isCompleteDefinition())
271 return Ctx.getTypeDeclType(Decl: ED);
272 }
273 return getType();
274}
275
276SourceLocation Expr::getExprLoc() const {
277 switch (getStmtClass()) {
278 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
279#define ABSTRACT_STMT(type)
280#define STMT(type, base) \
281 case Stmt::type##Class: break;
282#define EXPR(type, base) \
283 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
284#include "clang/AST/StmtNodes.inc"
285 }
286 llvm_unreachable("unknown expression kind");
287}
288
289//===----------------------------------------------------------------------===//
290// Primary Expressions.
291//===----------------------------------------------------------------------===//
292
293static void AssertResultStorageKind(ConstantResultStorageKind Kind) {
294 assert((Kind == ConstantResultStorageKind::APValue ||
295 Kind == ConstantResultStorageKind::Int64 ||
296 Kind == ConstantResultStorageKind::None) &&
297 "Invalid StorageKind Value");
298 (void)Kind;
299}
300
301ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) {
302 switch (Value.getKind()) {
303 case APValue::None:
304 case APValue::Indeterminate:
305 return ConstantResultStorageKind::None;
306 case APValue::Int:
307 if (!Value.getInt().needsCleanup())
308 return ConstantResultStorageKind::Int64;
309 [[fallthrough]];
310 default:
311 return ConstantResultStorageKind::APValue;
312 }
313}
314
315ConstantResultStorageKind
316ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
317 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
318 return ConstantResultStorageKind::Int64;
319 return ConstantResultStorageKind::APValue;
320}
321
322ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
323 bool IsImmediateInvocation)
324 : FullExpr(ConstantExprClass, SubExpr) {
325 ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind);
326 ConstantExprBits.APValueKind = APValue::None;
327 ConstantExprBits.IsUnsigned = false;
328 ConstantExprBits.BitWidth = 0;
329 ConstantExprBits.HasCleanup = false;
330 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
331
332 if (StorageKind == ConstantResultStorageKind::APValue)
333 ::new (getTrailingObjects<APValue>()) APValue();
334}
335
336ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
337 ConstantResultStorageKind StorageKind,
338 bool IsImmediateInvocation) {
339 assert(!isa<ConstantExpr>(E));
340 AssertResultStorageKind(Kind: StorageKind);
341
342 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
343 Counts: StorageKind == ConstantResultStorageKind::APValue,
344 Counts: StorageKind == ConstantResultStorageKind::Int64);
345 void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr));
346 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
347}
348
349ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
350 const APValue &Result) {
351 ConstantResultStorageKind StorageKind = getStorageKind(Value: Result);
352 ConstantExpr *Self = Create(Context, E, StorageKind);
353 Self->SetResult(Value: Result, Context);
354 return Self;
355}
356
357ConstantExpr::ConstantExpr(EmptyShell Empty,
358 ConstantResultStorageKind StorageKind)
359 : FullExpr(ConstantExprClass, Empty) {
360 ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind);
361
362 if (StorageKind == ConstantResultStorageKind::APValue)
363 ::new (getTrailingObjects<APValue>()) APValue();
364}
365
366ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
367 ConstantResultStorageKind StorageKind) {
368 AssertResultStorageKind(Kind: StorageKind);
369
370 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
371 Counts: StorageKind == ConstantResultStorageKind::APValue,
372 Counts: StorageKind == ConstantResultStorageKind::Int64);
373 void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr));
374 return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
375}
376
377void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
378 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
379 "Invalid storage for this value kind");
380 ConstantExprBits.APValueKind = Value.getKind();
381 switch (getResultStorageKind()) {
382 case ConstantResultStorageKind::None:
383 return;
384 case ConstantResultStorageKind::Int64:
385 Int64Result() = *Value.getInt().getRawData();
386 ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
387 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
388 return;
389 case ConstantResultStorageKind::APValue:
390 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
391 ConstantExprBits.HasCleanup = true;
392 Context.addDestruction(Ptr: &APValueResult());
393 }
394 APValueResult() = std::move(Value);
395 return;
396 }
397 llvm_unreachable("Invalid ResultKind Bits");
398}
399
400llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
401 switch (getResultStorageKind()) {
402 case ConstantResultStorageKind::APValue:
403 return APValueResult().getInt();
404 case ConstantResultStorageKind::Int64:
405 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
406 ConstantExprBits.IsUnsigned);
407 default:
408 llvm_unreachable("invalid Accessor");
409 }
410}
411
412APValue ConstantExpr::getAPValueResult() const {
413
414 switch (getResultStorageKind()) {
415 case ConstantResultStorageKind::APValue:
416 return APValueResult();
417 case ConstantResultStorageKind::Int64:
418 return APValue(
419 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
420 ConstantExprBits.IsUnsigned));
421 case ConstantResultStorageKind::None:
422 if (ConstantExprBits.APValueKind == APValue::Indeterminate)
423 return APValue::IndeterminateValue();
424 return APValue();
425 }
426 llvm_unreachable("invalid ResultKind");
427}
428
429DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
430 bool RefersToEnclosingVariableOrCapture, QualType T,
431 ExprValueKind VK, SourceLocation L,
432 const DeclarationNameLoc &LocInfo,
433 NonOdrUseReason NOUR)
434 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
435 DeclRefExprBits.HasQualifier = false;
436 DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
437 DeclRefExprBits.HasFoundDecl = false;
438 DeclRefExprBits.HadMultipleCandidates = false;
439 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
440 RefersToEnclosingVariableOrCapture;
441 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
442 DeclRefExprBits.NonOdrUseReason = NOUR;
443 DeclRefExprBits.IsImmediateEscalating = false;
444 DeclRefExprBits.Loc = L;
445 setDependence(computeDependence(E: this, Ctx));
446}
447
448DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
449 NestedNameSpecifierLoc QualifierLoc,
450 SourceLocation TemplateKWLoc, ValueDecl *D,
451 bool RefersToEnclosingVariableOrCapture,
452 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
453 const TemplateArgumentListInfo *TemplateArgs,
454 QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
455 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
456 DNLoc(NameInfo.getInfo()) {
457 DeclRefExprBits.Loc = NameInfo.getLoc();
458 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
459 if (QualifierLoc)
460 new (getTrailingObjects<NestedNameSpecifierLoc>())
461 NestedNameSpecifierLoc(QualifierLoc);
462 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
463 if (FoundD)
464 *getTrailingObjects<NamedDecl *>() = FoundD;
465 DeclRefExprBits.HasTemplateKWAndArgsInfo
466 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
467 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
468 RefersToEnclosingVariableOrCapture;
469 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
470 DeclRefExprBits.NonOdrUseReason = NOUR;
471 if (TemplateArgs) {
472 auto Deps = TemplateArgumentDependence::None;
473 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
474 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
475 Deps);
476 assert(!(Deps & TemplateArgumentDependence::Dependent) &&
477 "built a DeclRefExpr with dependent template args");
478 } else if (TemplateKWLoc.isValid()) {
479 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
480 TemplateKWLoc);
481 }
482 DeclRefExprBits.IsImmediateEscalating = false;
483 DeclRefExprBits.HadMultipleCandidates = 0;
484 setDependence(computeDependence(E: this, Ctx));
485}
486
487DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
488 NestedNameSpecifierLoc QualifierLoc,
489 SourceLocation TemplateKWLoc, ValueDecl *D,
490 bool RefersToEnclosingVariableOrCapture,
491 SourceLocation NameLoc, QualType T,
492 ExprValueKind VK, NamedDecl *FoundD,
493 const TemplateArgumentListInfo *TemplateArgs,
494 NonOdrUseReason NOUR) {
495 return Create(Context, QualifierLoc, TemplateKWLoc, D,
496 RefersToEnclosingVariableOrCapture,
497 NameInfo: DeclarationNameInfo(D->getDeclName(), NameLoc),
498 T, VK, FoundD, TemplateArgs, NOUR);
499}
500
501DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
502 NestedNameSpecifierLoc QualifierLoc,
503 SourceLocation TemplateKWLoc, ValueDecl *D,
504 bool RefersToEnclosingVariableOrCapture,
505 const DeclarationNameInfo &NameInfo,
506 QualType T, ExprValueKind VK,
507 NamedDecl *FoundD,
508 const TemplateArgumentListInfo *TemplateArgs,
509 NonOdrUseReason NOUR) {
510 // Filter out cases where the found Decl is the same as the value refenenced.
511 if (D == FoundD)
512 FoundD = nullptr;
513
514 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
515 std::size_t Size =
516 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
517 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
518 Counts: QualifierLoc ? 1 : 0, Counts: FoundD ? 1 : 0,
519 Counts: HasTemplateKWAndArgsInfo ? 1 : 0,
520 Counts: TemplateArgs ? TemplateArgs->size() : 0);
521
522 void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr));
523 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
524 RefersToEnclosingVariableOrCapture, NameInfo,
525 FoundD, TemplateArgs, T, VK, NOUR);
526}
527
528DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
529 bool HasQualifier,
530 bool HasFoundDecl,
531 bool HasTemplateKWAndArgsInfo,
532 unsigned NumTemplateArgs) {
533 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
534 std::size_t Size =
535 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
536 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
537 Counts: HasQualifier ? 1 : 0, Counts: HasFoundDecl ? 1 : 0, Counts: HasTemplateKWAndArgsInfo,
538 Counts: NumTemplateArgs);
539 void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr));
540 return new (Mem) DeclRefExpr(EmptyShell());
541}
542
543void DeclRefExpr::setDecl(ValueDecl *NewD) {
544 D = NewD;
545 if (getType()->isUndeducedType())
546 setType(NewD->getType());
547 setDependence(computeDependence(this, NewD->getASTContext()));
548}
549
550SourceLocation DeclRefExpr::getEndLoc() const {
551 if (hasExplicitTemplateArgs())
552 return getRAngleLoc();
553 return getNameInfo().getEndLoc();
554}
555
556SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
557 SourceLocation LParen,
558 SourceLocation RParen,
559 QualType ResultTy,
560 TypeSourceInfo *TSI)
561 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
562 OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
563 setTypeSourceInfo(TSI);
564 setDependence(computeDependence(E: this));
565}
566
567SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
568 QualType ResultTy)
569 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
570
571SYCLUniqueStableNameExpr *
572SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
573 SourceLocation LParen, SourceLocation RParen,
574 TypeSourceInfo *TSI) {
575 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
576 return new (Ctx)
577 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
578}
579
580SYCLUniqueStableNameExpr *
581SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
582 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
583 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
584}
585
586std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
587 return SYCLUniqueStableNameExpr::ComputeName(Context,
588 Ty: getTypeSourceInfo()->getType());
589}
590
591std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
592 QualType Ty) {
593 auto MangleCallback = [](ASTContext &Ctx,
594 const NamedDecl *ND) -> UnsignedOrNone {
595 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND))
596 return RD->getDeviceLambdaManglingNumber();
597 return std::nullopt;
598 };
599
600 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
601 Context, Diags&: Context.getDiagnostics(), Discriminator: MangleCallback)};
602
603 std::string Buffer;
604 Buffer.reserve(res: 128);
605 llvm::raw_string_ostream Out(Buffer);
606 Ctx->mangleCanonicalTypeName(T: Ty, Out);
607
608 return Buffer;
609}
610
611PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy,
612 PredefinedIdentKind IK, bool IsTransparent,
613 StringLiteral *SL)
614 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
615 PredefinedExprBits.Kind = llvm::to_underlying(E: IK);
616 assert((getIdentKind() == IK) &&
617 "IdentKind do not fit in PredefinedExprBitfields!");
618 bool HasFunctionName = SL != nullptr;
619 PredefinedExprBits.HasFunctionName = HasFunctionName;
620 PredefinedExprBits.IsTransparent = IsTransparent;
621 PredefinedExprBits.Loc = L;
622 if (HasFunctionName)
623 setFunctionName(SL);
624 setDependence(computeDependence(E: this));
625}
626
627PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
628 : Expr(PredefinedExprClass, Empty) {
629 PredefinedExprBits.HasFunctionName = HasFunctionName;
630}
631
632PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
633 QualType FNTy, PredefinedIdentKind IK,
634 bool IsTransparent, StringLiteral *SL) {
635 bool HasFunctionName = SL != nullptr;
636 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName),
637 Align: alignof(PredefinedExpr));
638 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
639}
640
641PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
642 bool HasFunctionName) {
643 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName),
644 Align: alignof(PredefinedExpr));
645 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
646}
647
648StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) {
649 switch (IK) {
650 case PredefinedIdentKind::Func:
651 return "__func__";
652 case PredefinedIdentKind::Function:
653 return "__FUNCTION__";
654 case PredefinedIdentKind::FuncDName:
655 return "__FUNCDNAME__";
656 case PredefinedIdentKind::LFunction:
657 return "L__FUNCTION__";
658 case PredefinedIdentKind::PrettyFunction:
659 return "__PRETTY_FUNCTION__";
660 case PredefinedIdentKind::FuncSig:
661 return "__FUNCSIG__";
662 case PredefinedIdentKind::LFuncSig:
663 return "L__FUNCSIG__";
664 case PredefinedIdentKind::PrettyFunctionNoVirtual:
665 break;
666 }
667 llvm_unreachable("Unknown ident kind for PredefinedExpr");
668}
669
670// FIXME: Maybe this should use DeclPrinter with a special "print predefined
671// expr" policy instead.
672std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK,
673 const Decl *CurrentDecl,
674 bool ForceElaboratedPrinting) {
675 ASTContext &Context = CurrentDecl->getASTContext();
676
677 if (IK == PredefinedIdentKind::FuncDName) {
678 if (const NamedDecl *ND = dyn_cast<NamedDecl>(Val: CurrentDecl)) {
679 std::unique_ptr<MangleContext> MC;
680 MC.reset(p: Context.createMangleContext());
681
682 if (MC->shouldMangleDeclName(D: ND)) {
683 SmallString<256> Buffer;
684 llvm::raw_svector_ostream Out(Buffer);
685 GlobalDecl GD;
686 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: ND))
687 GD = GlobalDecl(CD, Ctor_Base);
688 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: ND))
689 GD = GlobalDecl(DD, Dtor_Base);
690 else if (auto FD = dyn_cast<FunctionDecl>(Val: ND)) {
691 GD = FD->isReferenceableKernel() ? GlobalDecl(FD) : GlobalDecl(ND);
692 } else
693 GD = GlobalDecl(ND);
694 MC->mangleName(GD, Out);
695
696 if (!Buffer.empty() && Buffer.front() == '\01')
697 return std::string(Buffer.substr(Start: 1));
698 return std::string(Buffer);
699 }
700 return std::string(ND->getIdentifier()->getName());
701 }
702 return "";
703 }
704 if (isa<BlockDecl>(Val: CurrentDecl)) {
705 // For blocks we only emit something if it is enclosed in a function
706 // For top-level block we'd like to include the name of variable, but we
707 // don't have it at this point.
708 auto DC = CurrentDecl->getDeclContext();
709 if (DC->isFileContext())
710 return "";
711
712 SmallString<256> Buffer;
713 llvm::raw_svector_ostream Out(Buffer);
714 if (auto *DCBlock = dyn_cast<BlockDecl>(Val: DC))
715 // For nested blocks, propagate up to the parent.
716 Out << ComputeName(IK, DCBlock);
717 else if (auto *DCDecl = dyn_cast<Decl>(Val: DC))
718 Out << ComputeName(IK, CurrentDecl: DCDecl) << "_block_invoke";
719 return std::string(Out.str());
720 }
721 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CurrentDecl)) {
722 const auto &LO = Context.getLangOpts();
723 bool IsFuncOrFunctionInNonMSVCCompatEnv =
724 ((IK == PredefinedIdentKind::Func ||
725 IK == PredefinedIdentKind ::Function) &&
726 !LO.MSVCCompat);
727 bool IsLFunctionInMSVCCommpatEnv =
728 IK == PredefinedIdentKind::LFunction && LO.MSVCCompat;
729 bool IsFuncOrFunctionOrLFunctionOrFuncDName =
730 IK != PredefinedIdentKind::PrettyFunction &&
731 IK != PredefinedIdentKind::PrettyFunctionNoVirtual &&
732 IK != PredefinedIdentKind::FuncSig &&
733 IK != PredefinedIdentKind::LFuncSig;
734 if ((ForceElaboratedPrinting &&
735 (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) ||
736 (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName))
737 return FD->getNameAsString();
738
739 SmallString<256> Name;
740 llvm::raw_svector_ostream Out(Name);
741
742 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
743 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual)
744 Out << "virtual ";
745 if (MD->isStatic() && !ForceElaboratedPrinting)
746 Out << "static ";
747 }
748
749 class PrettyCallbacks final : public PrintingCallbacks {
750 public:
751 PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
752 std::string remapPath(StringRef Path) const override {
753 SmallString<128> p(Path);
754 LO.remapPathPrefix(Path&: p);
755 return std::string(p);
756 }
757
758 private:
759 const LangOptions &LO;
760 };
761 PrintingPolicy Policy(Context.getLangOpts());
762 PrettyCallbacks PrettyCB(Context.getLangOpts());
763 Policy.Callbacks = &PrettyCB;
764 if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting)
765 Policy.SuppressTagKeyword = !LO.MSVCCompat;
766 std::string Proto;
767 llvm::raw_string_ostream POut(Proto);
768
769 const FunctionDecl *Decl = FD;
770 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
771 Decl = Pattern;
772
773 // Bail out if the type of the function has not been set yet.
774 // This can notably happen in the trailing return type of a lambda
775 // expression.
776 const Type *Ty = Decl->getType().getTypePtrOrNull();
777 if (!Ty)
778 return "";
779
780 const FunctionType *AFT = Ty->getAs<FunctionType>();
781 const FunctionProtoType *FT = nullptr;
782 if (FD->hasWrittenPrototype())
783 FT = dyn_cast<FunctionProtoType>(Val: AFT);
784
785 if (IK == PredefinedIdentKind::FuncSig ||
786 IK == PredefinedIdentKind::LFuncSig) {
787 switch (AFT->getCallConv()) {
788 case CC_C: POut << "__cdecl "; break;
789 case CC_X86StdCall: POut << "__stdcall "; break;
790 case CC_X86FastCall: POut << "__fastcall "; break;
791 case CC_X86ThisCall: POut << "__thiscall "; break;
792 case CC_X86VectorCall: POut << "__vectorcall "; break;
793 case CC_X86RegCall: POut << "__regcall "; break;
794 // Only bother printing the conventions that MSVC knows about.
795 default: break;
796 }
797 }
798
799 FD->printQualifiedName(POut, Policy);
800
801 if (IK == PredefinedIdentKind::Function) {
802 Out << Proto;
803 return std::string(Name);
804 }
805
806 POut << "(";
807 if (FT) {
808 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
809 if (i) POut << ", ";
810 POut << Decl->getParamDecl(i)->getType().stream(Policy);
811 }
812
813 if (FT->isVariadic()) {
814 if (FD->getNumParams()) POut << ", ";
815 POut << "...";
816 } else if ((IK == PredefinedIdentKind::FuncSig ||
817 IK == PredefinedIdentKind::LFuncSig ||
818 !Context.getLangOpts().CPlusPlus) &&
819 !Decl->getNumParams()) {
820 POut << "void";
821 }
822 }
823 POut << ")";
824
825 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
826 assert(FT && "We must have a written prototype in this case.");
827 if (FT->isConst())
828 POut << " const";
829 if (FT->isVolatile())
830 POut << " volatile";
831 RefQualifierKind Ref = MD->getRefQualifier();
832 if (Ref == RQ_LValue)
833 POut << " &";
834 else if (Ref == RQ_RValue)
835 POut << " &&";
836 }
837
838 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
839 SpecsTy Specs;
840 const DeclContext *Ctx = FD->getDeclContext();
841 while (isa_and_nonnull<NamedDecl>(Val: Ctx)) {
842 const ClassTemplateSpecializationDecl *Spec
843 = dyn_cast<ClassTemplateSpecializationDecl>(Val: Ctx);
844 if (Spec && !Spec->isExplicitSpecialization())
845 Specs.push_back(Elt: Spec);
846 Ctx = Ctx->getParent();
847 }
848
849 std::string TemplateParams;
850 llvm::raw_string_ostream TOut(TemplateParams);
851 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(C&: Specs)) {
852 const TemplateParameterList *Params =
853 D->getSpecializedTemplate()->getTemplateParameters();
854 const TemplateArgumentList &Args = D->getTemplateArgs();
855 assert(Params->size() == Args.size());
856 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
857 StringRef Param = Params->getParam(Idx: i)->getName();
858 if (Param.empty()) continue;
859 TOut << Param << " = ";
860 Args.get(Idx: i).print(Policy, Out&: TOut,
861 IncludeType: TemplateParameterList::shouldIncludeTypeForArgument(
862 Policy, TPL: Params, Idx: i));
863 TOut << ", ";
864 }
865 }
866
867 FunctionTemplateSpecializationInfo *FSI
868 = FD->getTemplateSpecializationInfo();
869 if (FSI && !FSI->isExplicitSpecialization()) {
870 const TemplateParameterList* Params
871 = FSI->getTemplate()->getTemplateParameters();
872 const TemplateArgumentList* Args = FSI->TemplateArguments;
873 assert(Params->size() == Args->size());
874 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
875 StringRef Param = Params->getParam(Idx: i)->getName();
876 if (Param.empty()) continue;
877 TOut << Param << " = ";
878 Args->get(Idx: i).print(Policy, Out&: TOut, /*IncludeType*/ true);
879 TOut << ", ";
880 }
881 }
882
883 if (!TemplateParams.empty()) {
884 // remove the trailing comma and space
885 TemplateParams.resize(n: TemplateParams.size() - 2);
886 POut << " [" << TemplateParams << "]";
887 }
888
889 // Print "auto" for all deduced return types. This includes C++1y return
890 // type deduction and lambdas. For trailing return types resolve the
891 // decltype expression. Otherwise print the real type when this is
892 // not a constructor or destructor.
893 if (isLambdaMethod(FD))
894 Proto = "auto " + Proto;
895 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
896 FT->getReturnType()
897 ->getAs<DecltypeType>()
898 ->getUnderlyingType()
899 .getAsStringInternal(Proto, Policy);
900 else if (!isa<CXXConstructorDecl>(Val: FD) && !isa<CXXDestructorDecl>(Val: FD))
901 AFT->getReturnType().getAsStringInternal(Str&: Proto, Policy);
902
903 Out << Proto;
904
905 return std::string(Name);
906 }
907 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(Val: CurrentDecl)) {
908 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
909 // Skip to its enclosing function or method, but not its enclosing
910 // CapturedDecl.
911 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
912 const Decl *D = Decl::castFromDeclContext(DC);
913 return ComputeName(IK, CurrentDecl: D);
914 }
915 llvm_unreachable("CapturedDecl not inside a function or method");
916 }
917 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: CurrentDecl)) {
918 SmallString<256> Name;
919 llvm::raw_svector_ostream Out(Name);
920 Out << (MD->isInstanceMethod() ? '-' : '+');
921 Out << '[';
922
923 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
924 // a null check to avoid a crash.
925 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
926 Out << *ID;
927
928 if (const ObjCCategoryImplDecl *CID =
929 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
930 Out << '(' << *CID << ')';
931
932 Out << ' ';
933 MD->getSelector().print(OS&: Out);
934 Out << ']';
935
936 return std::string(Name);
937 }
938 if (isa<TranslationUnitDecl>(Val: CurrentDecl) &&
939 IK == PredefinedIdentKind::PrettyFunction) {
940 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
941 return "top level";
942 }
943 return "";
944}
945
946void APNumericStorage::setIntValue(const ASTContext &C,
947 const llvm::APInt &Val) {
948 if (hasAllocation())
949 C.Deallocate(Ptr: pVal);
950
951 BitWidth = Val.getBitWidth();
952 unsigned NumWords = Val.getNumWords();
953 const uint64_t* Words = Val.getRawData();
954 if (NumWords > 1) {
955 pVal = new (C) uint64_t[NumWords];
956 std::copy(first: Words, last: Words + NumWords, result: pVal);
957 } else if (NumWords == 1)
958 VAL = Words[0];
959 else
960 VAL = 0;
961}
962
963IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
964 QualType type, SourceLocation l)
965 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
966 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
967 assert(V.getBitWidth() == C.getIntWidth(type) &&
968 "Integer type is not the correct size for constant.");
969 setValue(C, V);
970 setDependence(ExprDependence::None);
971}
972
973IntegerLiteral *
974IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
975 QualType type, SourceLocation l) {
976 return new (C) IntegerLiteral(C, V, type, l);
977}
978
979IntegerLiteral *
980IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
981 return new (C) IntegerLiteral(Empty);
982}
983
984FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
985 QualType type, SourceLocation l,
986 unsigned Scale)
987 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
988 Scale(Scale) {
989 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
990 assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
991 "Fixed point type is not the correct size for constant.");
992 setValue(C, V);
993 setDependence(ExprDependence::None);
994}
995
996FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
997 const llvm::APInt &V,
998 QualType type,
999 SourceLocation l,
1000 unsigned Scale) {
1001 return new (C) FixedPointLiteral(C, V, type, l, Scale);
1002}
1003
1004FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1005 EmptyShell Empty) {
1006 return new (C) FixedPointLiteral(Empty);
1007}
1008
1009std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1010 // Currently the longest decimal number that can be printed is the max for an
1011 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1012 // which is 43 characters.
1013 SmallString<64> S;
1014 FixedPointValueToString(
1015 Str&: S, Val: llvm::APSInt::getUnsigned(X: getValue().getZExtValue()), Scale);
1016 return std::string(S);
1017}
1018
1019void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind,
1020 raw_ostream &OS) {
1021 switch (Kind) {
1022 case CharacterLiteralKind::Ascii:
1023 break; // no prefix.
1024 case CharacterLiteralKind::Wide:
1025 OS << 'L';
1026 break;
1027 case CharacterLiteralKind::UTF8:
1028 OS << "u8";
1029 break;
1030 case CharacterLiteralKind::UTF16:
1031 OS << 'u';
1032 break;
1033 case CharacterLiteralKind::UTF32:
1034 OS << 'U';
1035 break;
1036 }
1037
1038 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Val);
1039 if (!Escaped.empty()) {
1040 OS << "'" << Escaped << "'";
1041 } else {
1042 // A character literal might be sign-extended, which
1043 // would result in an invalid \U escape sequence.
1044 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1045 // are not correctly handled.
1046 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii)
1047 Val &= 0xFFu;
1048 if (Val < 256 && isPrintable(c: (unsigned char)Val))
1049 OS << "'" << (char)Val << "'";
1050 else if (Val < 256)
1051 OS << "'\\x" << llvm::format(Fmt: "%02x", Vals: Val) << "'";
1052 else if (Val <= 0xFFFF)
1053 OS << "'\\u" << llvm::format(Fmt: "%04x", Vals: Val) << "'";
1054 else
1055 OS << "'\\U" << llvm::format(Fmt: "%08x", Vals: Val) << "'";
1056 }
1057}
1058
1059FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1060 bool isexact, QualType Type, SourceLocation L)
1061 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1062 setSemantics(V.getSemantics());
1063 FloatingLiteralBits.IsExact = isexact;
1064 setValue(C, Val: V);
1065 setDependence(ExprDependence::None);
1066}
1067
1068FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1069 : Expr(FloatingLiteralClass, Empty) {
1070 setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1071 FloatingLiteralBits.IsExact = false;
1072}
1073
1074FloatingLiteral *
1075FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1076 bool isexact, QualType Type, SourceLocation L) {
1077 return new (C) FloatingLiteral(C, V, isexact, Type, L);
1078}
1079
1080FloatingLiteral *
1081FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1082 return new (C) FloatingLiteral(C, Empty);
1083}
1084
1085/// getValueAsApproximateDouble - This returns the value as an inaccurate
1086/// double. Note that this may cause loss of precision, but is useful for
1087/// debugging dumps, etc.
1088double FloatingLiteral::getValueAsApproximateDouble() const {
1089 llvm::APFloat V = getValue();
1090 bool ignored;
1091 V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven,
1092 losesInfo: &ignored);
1093 return V.convertToDouble();
1094}
1095
1096unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1097 StringLiteralKind SK) {
1098 unsigned CharByteWidth = 0;
1099 switch (SK) {
1100 case StringLiteralKind::Ordinary:
1101 case StringLiteralKind::UTF8:
1102 case StringLiteralKind::Binary:
1103 CharByteWidth = Target.getCharWidth();
1104 break;
1105 case StringLiteralKind::Wide:
1106 CharByteWidth = Target.getWCharWidth();
1107 break;
1108 case StringLiteralKind::UTF16:
1109 CharByteWidth = Target.getChar16Width();
1110 break;
1111 case StringLiteralKind::UTF32:
1112 CharByteWidth = Target.getChar32Width();
1113 break;
1114 case StringLiteralKind::Unevaluated:
1115 return sizeof(char); // Host;
1116 }
1117 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1118 CharByteWidth /= 8;
1119 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1120 "The only supported character byte widths are 1,2 and 4!");
1121 return CharByteWidth;
1122}
1123
1124StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1125 StringLiteralKind Kind, bool Pascal, QualType Ty,
1126 const SourceLocation *Loc,
1127 unsigned NumConcatenated)
1128 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1129
1130 unsigned Length = Str.size();
1131
1132 StringLiteralBits.Kind = llvm::to_underlying(E: Kind);
1133 StringLiteralBits.NumConcatenated = NumConcatenated;
1134
1135 if (Kind != StringLiteralKind::Unevaluated) {
1136 assert(Ctx.getAsConstantArrayType(Ty) &&
1137 "StringLiteral must be of constant array type!");
1138 unsigned CharByteWidth = mapCharByteWidth(Target: Ctx.getTargetInfo(), SK: Kind);
1139 unsigned ByteLength = Str.size();
1140 assert((ByteLength % CharByteWidth == 0) &&
1141 "The size of the data must be a multiple of CharByteWidth!");
1142
1143 // Avoid the expensive division. The compiler should be able to figure it
1144 // out by itself. However as of clang 7, even with the appropriate
1145 // llvm_unreachable added just here, it is not able to do so.
1146 switch (CharByteWidth) {
1147 case 1:
1148 Length = ByteLength;
1149 break;
1150 case 2:
1151 Length = ByteLength / 2;
1152 break;
1153 case 4:
1154 Length = ByteLength / 4;
1155 break;
1156 default:
1157 llvm_unreachable("Unsupported character width!");
1158 }
1159
1160 StringLiteralBits.CharByteWidth = CharByteWidth;
1161 StringLiteralBits.IsPascal = Pascal;
1162 } else {
1163 assert(!Pascal && "Can't make an unevaluated Pascal string");
1164 StringLiteralBits.CharByteWidth = 1;
1165 StringLiteralBits.IsPascal = false;
1166 }
1167
1168 *getTrailingObjects<unsigned>() = Length;
1169
1170 // Initialize the trailing array of SourceLocation.
1171 // This is safe since SourceLocation is POD-like.
1172 std::memcpy(dest: getTrailingObjects<SourceLocation>(), src: Loc,
1173 n: NumConcatenated * sizeof(SourceLocation));
1174
1175 // Initialize the trailing array of char holding the string data.
1176 std::memcpy(dest: getTrailingObjects<char>(), src: Str.data(), n: Str.size());
1177
1178 setDependence(ExprDependence::None);
1179}
1180
1181StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1182 unsigned Length, unsigned CharByteWidth)
1183 : Expr(StringLiteralClass, Empty) {
1184 StringLiteralBits.CharByteWidth = CharByteWidth;
1185 StringLiteralBits.NumConcatenated = NumConcatenated;
1186 *getTrailingObjects<unsigned>() = Length;
1187}
1188
1189StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1190 StringLiteralKind Kind, bool Pascal,
1191 QualType Ty, const SourceLocation *Loc,
1192 unsigned NumConcatenated) {
1193 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>(
1194 Counts: 1, Counts: NumConcatenated, Counts: Str.size()),
1195 Align: alignof(StringLiteral));
1196 return new (Mem)
1197 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1198}
1199
1200StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1201 unsigned NumConcatenated,
1202 unsigned Length,
1203 unsigned CharByteWidth) {
1204 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>(
1205 Counts: 1, Counts: NumConcatenated, Counts: Length * CharByteWidth),
1206 Align: alignof(StringLiteral));
1207 return new (Mem)
1208 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1209}
1210
1211void StringLiteral::outputString(raw_ostream &OS) const {
1212 switch (getKind()) {
1213 case StringLiteralKind::Unevaluated:
1214 case StringLiteralKind::Ordinary:
1215 case StringLiteralKind::Binary:
1216 break; // no prefix.
1217 case StringLiteralKind::Wide:
1218 OS << 'L';
1219 break;
1220 case StringLiteralKind::UTF8:
1221 OS << "u8";
1222 break;
1223 case StringLiteralKind::UTF16:
1224 OS << 'u';
1225 break;
1226 case StringLiteralKind::UTF32:
1227 OS << 'U';
1228 break;
1229 }
1230 OS << '"';
1231 static const char Hex[] = "0123456789ABCDEF";
1232
1233 unsigned LastSlashX = getLength();
1234 for (unsigned I = 0, N = getLength(); I != N; ++I) {
1235 uint32_t Char = getCodeUnit(i: I);
1236 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Ch: Char);
1237 if (Escaped.empty()) {
1238 // FIXME: Convert UTF-8 back to codepoints before rendering.
1239
1240 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1241 // Leave invalid surrogates alone; we'll use \x for those.
1242 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 &&
1243 Char >= 0xd800 && Char <= 0xdbff) {
1244 uint32_t Trail = getCodeUnit(i: I + 1);
1245 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1246 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1247 ++I;
1248 }
1249 }
1250
1251 if (Char > 0xff) {
1252 // If this is a wide string, output characters over 0xff using \x
1253 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1254 // codepoint: use \x escapes for invalid codepoints.
1255 if (getKind() == StringLiteralKind::Wide ||
1256 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1257 // FIXME: Is this the best way to print wchar_t?
1258 OS << "\\x";
1259 int Shift = 28;
1260 while ((Char >> Shift) == 0)
1261 Shift -= 4;
1262 for (/**/; Shift >= 0; Shift -= 4)
1263 OS << Hex[(Char >> Shift) & 15];
1264 LastSlashX = I;
1265 continue;
1266 }
1267
1268 if (Char > 0xffff)
1269 OS << "\\U00"
1270 << Hex[(Char >> 20) & 15]
1271 << Hex[(Char >> 16) & 15];
1272 else
1273 OS << "\\u";
1274 OS << Hex[(Char >> 12) & 15]
1275 << Hex[(Char >> 8) & 15]
1276 << Hex[(Char >> 4) & 15]
1277 << Hex[(Char >> 0) & 15];
1278 continue;
1279 }
1280
1281 // If we used \x... for the previous character, and this character is a
1282 // hexadecimal digit, prevent it being slurped as part of the \x.
1283 if (LastSlashX + 1 == I) {
1284 switch (Char) {
1285 case '0': case '1': case '2': case '3': case '4':
1286 case '5': case '6': case '7': case '8': case '9':
1287 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1288 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1289 OS << "\"\"";
1290 }
1291 }
1292
1293 assert(Char <= 0xff &&
1294 "Characters above 0xff should already have been handled.");
1295
1296 if (isPrintable(c: Char))
1297 OS << (char)Char;
1298 else // Output anything hard as an octal escape.
1299 OS << '\\'
1300 << (char)('0' + ((Char >> 6) & 7))
1301 << (char)('0' + ((Char >> 3) & 7))
1302 << (char)('0' + ((Char >> 0) & 7));
1303 } else {
1304 // Handle some common non-printable cases to make dumps prettier.
1305 OS << Escaped;
1306 }
1307 }
1308 OS << '"';
1309}
1310
1311/// getLocationOfByte - Return a source location that points to the specified
1312/// byte of this string literal.
1313///
1314/// Strings are amazingly complex. They can be formed from multiple tokens and
1315/// can have escape sequences in them in addition to the usual trigraph and
1316/// escaped newline business. This routine handles this complexity.
1317///
1318/// The *StartToken sets the first token to be searched in this function and
1319/// the *StartTokenByteOffset is the byte offset of the first token. Before
1320/// returning, it updates the *StartToken to the TokNo of the token being found
1321/// and sets *StartTokenByteOffset to the byte offset of the token in the
1322/// string.
1323/// Using these two parameters can reduce the time complexity from O(n^2) to
1324/// O(n) if one wants to get the location of byte for all the tokens in a
1325/// string.
1326///
1327SourceLocation
1328StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1329 const LangOptions &Features,
1330 const TargetInfo &Target, unsigned *StartToken,
1331 unsigned *StartTokenByteOffset) const {
1332 // No source location of bytes for binary literals since they don't come from
1333 // source.
1334 if (getKind() == StringLiteralKind::Binary)
1335 return getStrTokenLoc(TokNum: 0);
1336
1337 assert((getKind() == StringLiteralKind::Ordinary ||
1338 getKind() == StringLiteralKind::UTF8 ||
1339 getKind() == StringLiteralKind::Unevaluated) &&
1340 "Only narrow string literals are currently supported");
1341
1342 // Loop over all of the tokens in this string until we find the one that
1343 // contains the byte we're looking for.
1344 unsigned TokNo = 0;
1345 unsigned StringOffset = 0;
1346 if (StartToken)
1347 TokNo = *StartToken;
1348 if (StartTokenByteOffset) {
1349 StringOffset = *StartTokenByteOffset;
1350 ByteNo -= StringOffset;
1351 }
1352 while (true) {
1353 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1354 SourceLocation StrTokLoc = getStrTokenLoc(TokNum: TokNo);
1355
1356 // Get the spelling of the string so that we can get the data that makes up
1357 // the string literal, not the identifier for the macro it is potentially
1358 // expanded through.
1359 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(Loc: StrTokLoc);
1360
1361 // Re-lex the token to get its length and original spelling.
1362 std::pair<FileID, unsigned> LocInfo =
1363 SM.getDecomposedLoc(Loc: StrTokSpellingLoc);
1364 bool Invalid = false;
1365 StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid);
1366 if (Invalid) {
1367 if (StartTokenByteOffset != nullptr)
1368 *StartTokenByteOffset = StringOffset;
1369 if (StartToken != nullptr)
1370 *StartToken = TokNo;
1371 return StrTokSpellingLoc;
1372 }
1373
1374 const char *StrData = Buffer.data()+LocInfo.second;
1375
1376 // Create a lexer starting at the beginning of this token.
1377 Lexer TheLexer(SM.getLocForStartOfFile(FID: LocInfo.first), Features,
1378 Buffer.begin(), StrData, Buffer.end());
1379 Token TheTok;
1380 TheLexer.LexFromRawLexer(Result&: TheTok);
1381
1382 // Use the StringLiteralParser to compute the length of the string in bytes.
1383 StringLiteralParser SLP(TheTok, SM, Features, Target);
1384 unsigned TokNumBytes = SLP.GetStringLength();
1385
1386 // If the byte is in this token, return the location of the byte.
1387 if (ByteNo < TokNumBytes ||
1388 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1389 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1390
1391 // Now that we know the offset of the token in the spelling, use the
1392 // preprocessor to get the offset in the original source.
1393 if (StartTokenByteOffset != nullptr)
1394 *StartTokenByteOffset = StringOffset;
1395 if (StartToken != nullptr)
1396 *StartToken = TokNo;
1397 return Lexer::AdvanceToTokenCharacter(TokStart: StrTokLoc, Characters: Offset, SM, LangOpts: Features);
1398 }
1399
1400 // Move to the next string token.
1401 StringOffset += TokNumBytes;
1402 ++TokNo;
1403 ByteNo -= TokNumBytes;
1404 }
1405}
1406
1407/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1408/// corresponds to, e.g. "sizeof" or "[pre]++".
1409StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1410 switch (Op) {
1411#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1412#include "clang/AST/OperationKinds.def"
1413 }
1414 llvm_unreachable("Unknown unary operator");
1415}
1416
1417UnaryOperatorKind
1418UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1419 switch (OO) {
1420 default: llvm_unreachable("No unary operator for overloaded function");
1421 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1422 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1423 case OO_Amp: return UO_AddrOf;
1424 case OO_Star: return UO_Deref;
1425 case OO_Plus: return UO_Plus;
1426 case OO_Minus: return UO_Minus;
1427 case OO_Tilde: return UO_Not;
1428 case OO_Exclaim: return UO_LNot;
1429 case OO_Coawait: return UO_Coawait;
1430 }
1431}
1432
1433OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1434 switch (Opc) {
1435 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1436 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1437 case UO_AddrOf: return OO_Amp;
1438 case UO_Deref: return OO_Star;
1439 case UO_Plus: return OO_Plus;
1440 case UO_Minus: return OO_Minus;
1441 case UO_Not: return OO_Tilde;
1442 case UO_LNot: return OO_Exclaim;
1443 case UO_Coawait: return OO_Coawait;
1444 default: return OO_None;
1445 }
1446}
1447
1448
1449//===----------------------------------------------------------------------===//
1450// Postfix Operators.
1451//===----------------------------------------------------------------------===//
1452#ifndef NDEBUG
1453static unsigned SizeOfCallExprInstance(Expr::StmtClass SC) {
1454 switch (SC) {
1455 case Expr::CallExprClass:
1456 return sizeof(CallExpr);
1457 case Expr::CXXOperatorCallExprClass:
1458 return sizeof(CXXOperatorCallExpr);
1459 case Expr::CXXMemberCallExprClass:
1460 return sizeof(CXXMemberCallExpr);
1461 case Expr::UserDefinedLiteralClass:
1462 return sizeof(UserDefinedLiteral);
1463 case Expr::CUDAKernelCallExprClass:
1464 return sizeof(CUDAKernelCallExpr);
1465 default:
1466 llvm_unreachable("unexpected class deriving from CallExpr!");
1467 }
1468}
1469#endif
1470
1471// changing the size of SourceLocation, CallExpr, and
1472// subclasses requires careful considerations
1473static_assert(sizeof(SourceLocation) == 4 && sizeof(CXXOperatorCallExpr) <= 32,
1474 "we assume CXXOperatorCallExpr is at most 32 bytes");
1475
1476CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1477 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1478 SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1479 unsigned MinNumArgs, ADLCallKind UsesADL)
1480 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1481 NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs);
1482 unsigned NumPreArgs = PreArgs.size();
1483 CallExprBits.NumPreArgs = NumPreArgs;
1484 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1485 assert(SizeOfCallExprInstance(SC) <= OffsetToTrailingObjects &&
1486 "This CallExpr subclass is too big or unsupported");
1487
1488 CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1489
1490 setCallee(Fn);
1491 for (unsigned I = 0; I != NumPreArgs; ++I)
1492 setPreArg(I, PreArgs[I]);
1493 for (unsigned I = 0; I != Args.size(); ++I)
1494 setArg(Arg: I, ArgExpr: Args[I]);
1495 for (unsigned I = Args.size(); I != NumArgs; ++I)
1496 setArg(Arg: I, ArgExpr: nullptr);
1497
1498 this->computeDependence();
1499
1500 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1501 CallExprBits.IsCoroElideSafe = false;
1502 CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false;
1503 CallExprBits.HasTrailingSourceLoc = false;
1504
1505 if (hasStoredFPFeatures())
1506 setStoredFPFeatures(FPFeatures);
1507}
1508
1509CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1510 bool HasFPFeatures, EmptyShell Empty)
1511 : Expr(SC, Empty), NumArgs(NumArgs) {
1512 CallExprBits.NumPreArgs = NumPreArgs;
1513 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1514 CallExprBits.HasFPFeatures = HasFPFeatures;
1515 CallExprBits.IsCoroElideSafe = false;
1516 CallExprBits.ExplicitObjectMemFunUsingMemberSyntax = false;
1517 CallExprBits.HasTrailingSourceLoc = false;
1518}
1519
1520CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1521 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1522 SourceLocation RParenLoc,
1523 FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1524 ADLCallKind UsesADL) {
1525 unsigned NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs);
1526 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1527 /*NumPreArgs=*/0, NumArgs, HasFPFeatures: FPFeatures.requiresTrailingStorage());
1528 void *Mem = Ctx.Allocate(
1529 Size: sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects),
1530 Align: alignof(CallExpr));
1531 CallExpr *E =
1532 new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1533 RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1534 E->updateTrailingSourceLoc();
1535 return E;
1536}
1537
1538CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1539 bool HasFPFeatures, EmptyShell Empty) {
1540 unsigned SizeOfTrailingObjects =
1541 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1542 void *Mem = Ctx.Allocate(
1543 Size: sizeToAllocateForCallExprSubclass<CallExpr>(SizeOfTrailingObjects),
1544 Align: alignof(CallExpr));
1545 return new (Mem)
1546 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1547}
1548
1549Decl *Expr::getReferencedDeclOfCallee() {
1550
1551 // Optimize for the common case first
1552 // (simple function or member function call)
1553 // then try more exotic possibilities.
1554 Expr *CEE = IgnoreImpCasts();
1555
1556 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE))
1557 return DRE->getDecl();
1558
1559 if (auto *ME = dyn_cast<MemberExpr>(Val: CEE))
1560 return ME->getMemberDecl();
1561
1562 CEE = CEE->IgnoreParens();
1563
1564 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: CEE))
1565 CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1566
1567 // If we're calling a dereference, look at the pointer instead.
1568 while (true) {
1569 if (auto *BO = dyn_cast<BinaryOperator>(Val: CEE)) {
1570 if (BO->isPtrMemOp()) {
1571 CEE = BO->getRHS()->IgnoreParenImpCasts();
1572 continue;
1573 }
1574 } else if (auto *UO = dyn_cast<UnaryOperator>(Val: CEE)) {
1575 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1576 UO->getOpcode() == UO_Plus) {
1577 CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1578 continue;
1579 }
1580 }
1581 break;
1582 }
1583
1584 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE))
1585 return DRE->getDecl();
1586 if (auto *ME = dyn_cast<MemberExpr>(Val: CEE))
1587 return ME->getMemberDecl();
1588 if (auto *BE = dyn_cast<BlockExpr>(Val: CEE))
1589 return BE->getBlockDecl();
1590
1591 return nullptr;
1592}
1593
1594/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1595unsigned CallExpr::getBuiltinCallee() const {
1596 const auto *FDecl = getDirectCallee();
1597 return FDecl ? FDecl->getBuiltinID() : 0;
1598}
1599
1600bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1601 if (unsigned BI = getBuiltinCallee())
1602 return Ctx.BuiltinInfo.isUnevaluated(ID: BI);
1603 return false;
1604}
1605
1606QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1607 const Expr *Callee = getCallee();
1608 QualType CalleeType = Callee->getType();
1609 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1610 CalleeType = FnTypePtr->getPointeeType();
1611 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1612 CalleeType = BPT->getPointeeType();
1613 } else if (CalleeType->isSpecificPlaceholderType(K: BuiltinType::BoundMember)) {
1614 if (isa<CXXPseudoDestructorExpr>(Val: Callee->IgnoreParens()))
1615 return Ctx.VoidTy;
1616
1617 if (isa<UnresolvedMemberExpr>(Val: Callee->IgnoreParens()))
1618 return Ctx.DependentTy;
1619
1620 // This should never be overloaded and so should never return null.
1621 CalleeType = Expr::findBoundMemberType(expr: Callee);
1622 assert(!CalleeType.isNull());
1623 } else if (CalleeType->isRecordType()) {
1624 // If the Callee is a record type, then it is a not-yet-resolved
1625 // dependent call to the call operator of that type.
1626 return Ctx.DependentTy;
1627 } else if (CalleeType->isDependentType() ||
1628 CalleeType->isSpecificPlaceholderType(K: BuiltinType::Overload)) {
1629 return Ctx.DependentTy;
1630 }
1631
1632 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1633 return FnType->getReturnType();
1634}
1635
1636std::pair<const NamedDecl *, const Attr *>
1637CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1638 // If the callee is marked nodiscard, return that attribute
1639 if (const Decl *D = getCalleeDecl())
1640 if (const auto *A = D->getAttr<WarnUnusedResultAttr>())
1641 return {nullptr, A};
1642
1643 // If the return type is a struct, union, or enum that is marked nodiscard,
1644 // then return the return type attribute.
1645 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1646 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1647 return {TD, A};
1648
1649 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1650 TD = TD->desugar()->getAs<TypedefType>())
1651 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1652 return {TD->getDecl(), A};
1653 return {nullptr, nullptr};
1654}
1655
1656OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1657 SourceLocation OperatorLoc,
1658 TypeSourceInfo *tsi,
1659 ArrayRef<OffsetOfNode> comps,
1660 ArrayRef<Expr*> exprs,
1661 SourceLocation RParenLoc) {
1662 void *Mem = C.Allocate(
1663 Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: comps.size(), Counts: exprs.size()));
1664
1665 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1666 RParenLoc);
1667}
1668
1669OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1670 unsigned numComps, unsigned numExprs) {
1671 void *Mem =
1672 C.Allocate(Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: numComps, Counts: numExprs));
1673 return new (Mem) OffsetOfExpr(numComps, numExprs);
1674}
1675
1676OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1677 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1678 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1679 SourceLocation RParenLoc)
1680 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1681 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1682 NumComps(comps.size()), NumExprs(exprs.size()) {
1683 for (unsigned i = 0; i != comps.size(); ++i)
1684 setComponent(Idx: i, ON: comps[i]);
1685 for (unsigned i = 0; i != exprs.size(); ++i)
1686 setIndexExpr(Idx: i, E: exprs[i]);
1687
1688 setDependence(computeDependence(E: this));
1689}
1690
1691IdentifierInfo *OffsetOfNode::getFieldName() const {
1692 assert(getKind() == Field || getKind() == Identifier);
1693 if (getKind() == Field)
1694 return getField()->getIdentifier();
1695
1696 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1697}
1698
1699UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1700 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1701 SourceLocation op, SourceLocation rp)
1702 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1703 OpLoc(op), RParenLoc(rp) {
1704 assert(ExprKind <= UETT_Last && "invalid enum value!");
1705 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1706 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1707 "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1708 UnaryExprOrTypeTraitExprBits.IsType = false;
1709 Argument.Ex = E;
1710 setDependence(computeDependence(E: this));
1711}
1712
1713MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1714 NestedNameSpecifierLoc QualifierLoc,
1715 SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
1716 DeclAccessPair FoundDecl,
1717 const DeclarationNameInfo &NameInfo,
1718 const TemplateArgumentListInfo *TemplateArgs, QualType T,
1719 ExprValueKind VK, ExprObjectKind OK,
1720 NonOdrUseReason NOUR)
1721 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1722 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1723 assert(!NameInfo.getName() ||
1724 MemberDecl->getDeclName() == NameInfo.getName());
1725 MemberExprBits.IsArrow = IsArrow;
1726 MemberExprBits.HasQualifier = QualifierLoc.hasQualifier();
1727 MemberExprBits.HasFoundDecl =
1728 FoundDecl.getDecl() != MemberDecl ||
1729 FoundDecl.getAccess() != MemberDecl->getAccess();
1730 MemberExprBits.HasTemplateKWAndArgsInfo =
1731 TemplateArgs || TemplateKWLoc.isValid();
1732 MemberExprBits.HadMultipleCandidates = false;
1733 MemberExprBits.NonOdrUseReason = NOUR;
1734 MemberExprBits.OperatorLoc = OperatorLoc;
1735
1736 if (hasQualifier())
1737 new (getTrailingObjects<NestedNameSpecifierLoc>())
1738 NestedNameSpecifierLoc(QualifierLoc);
1739 if (hasFoundDecl())
1740 *getTrailingObjects<DeclAccessPair>() = FoundDecl;
1741 if (TemplateArgs) {
1742 auto Deps = TemplateArgumentDependence::None;
1743 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1744 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
1745 Deps);
1746 } else if (TemplateKWLoc.isValid()) {
1747 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1748 TemplateKWLoc);
1749 }
1750 setDependence(computeDependence(E: this));
1751}
1752
1753MemberExpr *MemberExpr::Create(
1754 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1755 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1756 ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1757 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1758 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1759 bool HasQualifier = QualifierLoc.hasQualifier();
1760 bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl ||
1761 FoundDecl.getAccess() != MemberDecl->getAccess();
1762 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1763 std::size_t Size =
1764 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1765 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
1766 Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo,
1767 Counts: TemplateArgs ? TemplateArgs->size() : 0);
1768
1769 void *Mem = C.Allocate(Size, Align: alignof(MemberExpr));
1770 return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc,
1771 TemplateKWLoc, MemberDecl, FoundDecl, NameInfo,
1772 TemplateArgs, T, VK, OK, NOUR);
1773}
1774
1775MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1776 bool HasQualifier, bool HasFoundDecl,
1777 bool HasTemplateKWAndArgsInfo,
1778 unsigned NumTemplateArgs) {
1779 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1780 "template args but no template arg info?");
1781 std::size_t Size =
1782 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1783 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
1784 Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo,
1785 Counts: NumTemplateArgs);
1786 void *Mem = Context.Allocate(Size, Align: alignof(MemberExpr));
1787 return new (Mem) MemberExpr(EmptyShell());
1788}
1789
1790void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1791 MemberDecl = NewD;
1792 if (getType()->isUndeducedType())
1793 setType(NewD->getType());
1794 setDependence(computeDependence(E: this));
1795}
1796
1797SourceLocation MemberExpr::getBeginLoc() const {
1798 if (isImplicitAccess()) {
1799 if (hasQualifier())
1800 return getQualifierLoc().getBeginLoc();
1801 return MemberLoc;
1802 }
1803
1804 // FIXME: We don't want this to happen. Rather, we should be able to
1805 // detect all kinds of implicit accesses more cleanly.
1806 SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1807 if (BaseStartLoc.isValid())
1808 return BaseStartLoc;
1809 return MemberLoc;
1810}
1811SourceLocation MemberExpr::getEndLoc() const {
1812 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1813 if (hasExplicitTemplateArgs())
1814 EndLoc = getRAngleLoc();
1815 else if (EndLoc.isInvalid())
1816 EndLoc = getBase()->getEndLoc();
1817 return EndLoc;
1818}
1819
1820bool CastExpr::CastConsistency() const {
1821 switch (getCastKind()) {
1822 case CK_DerivedToBase:
1823 case CK_UncheckedDerivedToBase:
1824 case CK_DerivedToBaseMemberPointer:
1825 case CK_BaseToDerived:
1826 case CK_BaseToDerivedMemberPointer:
1827 assert(!path_empty() && "Cast kind should have a base path!");
1828 break;
1829
1830 case CK_CPointerToObjCPointerCast:
1831 assert(getType()->isObjCObjectPointerType());
1832 assert(getSubExpr()->getType()->isPointerType());
1833 goto CheckNoBasePath;
1834
1835 case CK_BlockPointerToObjCPointerCast:
1836 assert(getType()->isObjCObjectPointerType());
1837 assert(getSubExpr()->getType()->isBlockPointerType());
1838 goto CheckNoBasePath;
1839
1840 case CK_ReinterpretMemberPointer:
1841 assert(getType()->isMemberPointerType());
1842 assert(getSubExpr()->getType()->isMemberPointerType());
1843 goto CheckNoBasePath;
1844
1845 case CK_BitCast:
1846 // Arbitrary casts to C pointer types count as bitcasts.
1847 // Otherwise, we should only have block and ObjC pointer casts
1848 // here if they stay within the type kind.
1849 if (!getType()->isPointerType()) {
1850 assert(getType()->isObjCObjectPointerType() ==
1851 getSubExpr()->getType()->isObjCObjectPointerType());
1852 assert(getType()->isBlockPointerType() ==
1853 getSubExpr()->getType()->isBlockPointerType());
1854 }
1855 goto CheckNoBasePath;
1856
1857 case CK_AnyPointerToBlockPointerCast:
1858 assert(getType()->isBlockPointerType());
1859 assert(getSubExpr()->getType()->isAnyPointerType() &&
1860 !getSubExpr()->getType()->isBlockPointerType());
1861 goto CheckNoBasePath;
1862
1863 case CK_CopyAndAutoreleaseBlockObject:
1864 assert(getType()->isBlockPointerType());
1865 assert(getSubExpr()->getType()->isBlockPointerType());
1866 goto CheckNoBasePath;
1867
1868 case CK_FunctionToPointerDecay:
1869 assert(getType()->isPointerType());
1870 assert(getSubExpr()->getType()->isFunctionType());
1871 goto CheckNoBasePath;
1872
1873 case CK_AddressSpaceConversion: {
1874 auto Ty = getType();
1875 auto SETy = getSubExpr()->getType();
1876 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1877 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1878 Ty = Ty->getPointeeType();
1879 SETy = SETy->getPointeeType();
1880 }
1881 assert((Ty->isDependentType() || SETy->isDependentType()) ||
1882 (!Ty.isNull() && !SETy.isNull() &&
1883 Ty.getAddressSpace() != SETy.getAddressSpace()));
1884 goto CheckNoBasePath;
1885 }
1886 // These should not have an inheritance path.
1887 case CK_Dynamic:
1888 case CK_ToUnion:
1889 case CK_ArrayToPointerDecay:
1890 case CK_NullToMemberPointer:
1891 case CK_NullToPointer:
1892 case CK_ConstructorConversion:
1893 case CK_IntegralToPointer:
1894 case CK_PointerToIntegral:
1895 case CK_ToVoid:
1896 case CK_VectorSplat:
1897 case CK_IntegralCast:
1898 case CK_BooleanToSignedIntegral:
1899 case CK_IntegralToFloating:
1900 case CK_FloatingToIntegral:
1901 case CK_FloatingCast:
1902 case CK_ObjCObjectLValueCast:
1903 case CK_FloatingRealToComplex:
1904 case CK_FloatingComplexToReal:
1905 case CK_FloatingComplexCast:
1906 case CK_FloatingComplexToIntegralComplex:
1907 case CK_IntegralRealToComplex:
1908 case CK_IntegralComplexToReal:
1909 case CK_IntegralComplexCast:
1910 case CK_IntegralComplexToFloatingComplex:
1911 case CK_ARCProduceObject:
1912 case CK_ARCConsumeObject:
1913 case CK_ARCReclaimReturnedObject:
1914 case CK_ARCExtendBlockObject:
1915 case CK_ZeroToOCLOpaqueType:
1916 case CK_IntToOCLSampler:
1917 case CK_FloatingToFixedPoint:
1918 case CK_FixedPointToFloating:
1919 case CK_FixedPointCast:
1920 case CK_FixedPointToIntegral:
1921 case CK_IntegralToFixedPoint:
1922 case CK_MatrixCast:
1923 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1924 goto CheckNoBasePath;
1925
1926 case CK_Dependent:
1927 case CK_LValueToRValue:
1928 case CK_NoOp:
1929 case CK_AtomicToNonAtomic:
1930 case CK_NonAtomicToAtomic:
1931 case CK_PointerToBoolean:
1932 case CK_IntegralToBoolean:
1933 case CK_FloatingToBoolean:
1934 case CK_MemberPointerToBoolean:
1935 case CK_FloatingComplexToBoolean:
1936 case CK_IntegralComplexToBoolean:
1937 case CK_LValueBitCast: // -> bool&
1938 case CK_LValueToRValueBitCast:
1939 case CK_UserDefinedConversion: // operator bool()
1940 case CK_BuiltinFnToFnPtr:
1941 case CK_FixedPointToBoolean:
1942 case CK_HLSLArrayRValue:
1943 case CK_HLSLVectorTruncation:
1944 case CK_HLSLElementwiseCast:
1945 case CK_HLSLAggregateSplatCast:
1946 CheckNoBasePath:
1947 assert(path_empty() && "Cast kind should not have a base path!");
1948 break;
1949 }
1950 return true;
1951}
1952
1953const char *CastExpr::getCastKindName(CastKind CK) {
1954 switch (CK) {
1955#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1956#include "clang/AST/OperationKinds.def"
1957 }
1958 llvm_unreachable("Unhandled cast kind!");
1959}
1960
1961namespace {
1962// Skip over implicit nodes produced as part of semantic analysis.
1963// Designed for use with IgnoreExprNodes.
1964static Expr *ignoreImplicitSemaNodes(Expr *E) {
1965 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(Val: E))
1966 return Materialize->getSubExpr();
1967
1968 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(Val: E))
1969 return Binder->getSubExpr();
1970
1971 if (auto *Full = dyn_cast<FullExpr>(Val: E))
1972 return Full->getSubExpr();
1973
1974 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(Val: E);
1975 CPLIE && CPLIE->getInitExprs().size() == 1)
1976 return CPLIE->getInitExprs()[0];
1977
1978 return E;
1979}
1980} // namespace
1981
1982Expr *CastExpr::getSubExprAsWritten() {
1983 const Expr *SubExpr = nullptr;
1984
1985 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) {
1986 SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes);
1987
1988 // Conversions by constructor and conversion functions have a
1989 // subexpression describing the call; strip it off.
1990 if (E->getCastKind() == CK_ConstructorConversion) {
1991 SubExpr = IgnoreExprNodes(E: cast<CXXConstructExpr>(Val: SubExpr)->getArg(Arg: 0),
1992 Fns&: ignoreImplicitSemaNodes);
1993 } else if (E->getCastKind() == CK_UserDefinedConversion) {
1994 assert((isa<CallExpr, BlockExpr>(SubExpr)) &&
1995 "Unexpected SubExpr for CK_UserDefinedConversion.");
1996 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr))
1997 SubExpr = MCE->getImplicitObjectArgument();
1998 }
1999 }
2000
2001 return const_cast<Expr *>(SubExpr);
2002}
2003
2004NamedDecl *CastExpr::getConversionFunction() const {
2005 const Expr *SubExpr = nullptr;
2006
2007 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) {
2008 SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes);
2009
2010 if (E->getCastKind() == CK_ConstructorConversion)
2011 return cast<CXXConstructExpr>(Val: SubExpr)->getConstructor();
2012
2013 if (E->getCastKind() == CK_UserDefinedConversion) {
2014 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr))
2015 return MCE->getMethodDecl();
2016 }
2017 }
2018
2019 return nullptr;
2020}
2021
2022CXXBaseSpecifier **CastExpr::path_buffer() {
2023 switch (getStmtClass()) {
2024#define ABSTRACT_STMT(x)
2025#define CASTEXPR(Type, Base) \
2026 case Stmt::Type##Class: \
2027 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2028#define STMT(Type, Base)
2029#include "clang/AST/StmtNodes.inc"
2030 default:
2031 llvm_unreachable("non-cast expressions not possible here");
2032 }
2033}
2034
2035const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2036 QualType opType) {
2037 auto RD = unionType->castAs<RecordType>()->getDecl();
2038 return getTargetFieldForToUnionCast(RD, opType);
2039}
2040
2041const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2042 QualType OpType) {
2043 auto &Ctx = RD->getASTContext();
2044 RecordDecl::field_iterator Field, FieldEnd;
2045 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2046 Field != FieldEnd; ++Field) {
2047 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2048 !Field->isUnnamedBitField()) {
2049 return *Field;
2050 }
2051 }
2052 return nullptr;
2053}
2054
2055FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2056 assert(hasStoredFPFeatures());
2057 switch (getStmtClass()) {
2058 case ImplicitCastExprClass:
2059 return static_cast<ImplicitCastExpr *>(this)
2060 ->getTrailingObjects<FPOptionsOverride>();
2061 case CStyleCastExprClass:
2062 return static_cast<CStyleCastExpr *>(this)
2063 ->getTrailingObjects<FPOptionsOverride>();
2064 case CXXFunctionalCastExprClass:
2065 return static_cast<CXXFunctionalCastExpr *>(this)
2066 ->getTrailingObjects<FPOptionsOverride>();
2067 case CXXStaticCastExprClass:
2068 return static_cast<CXXStaticCastExpr *>(this)
2069 ->getTrailingObjects<FPOptionsOverride>();
2070 default:
2071 llvm_unreachable("Cast does not have FPFeatures");
2072 }
2073}
2074
2075ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2076 CastKind Kind, Expr *Operand,
2077 const CXXCastPath *BasePath,
2078 ExprValueKind VK,
2079 FPOptionsOverride FPO) {
2080 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2081 void *Buffer =
2082 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2083 Counts: PathSize, Counts: FPO.requiresTrailingStorage()));
2084 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2085 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2086 assert((Kind != CK_LValueToRValue ||
2087 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2088 "invalid type for lvalue-to-rvalue conversion");
2089 ImplicitCastExpr *E =
2090 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2091 if (PathSize)
2092 llvm::uninitialized_copy(*BasePath,
2093 E->getTrailingObjects<CXXBaseSpecifier *>());
2094 return E;
2095}
2096
2097ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2098 unsigned PathSize,
2099 bool HasFPFeatures) {
2100 void *Buffer =
2101 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2102 Counts: PathSize, Counts: HasFPFeatures));
2103 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2104}
2105
2106CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2107 ExprValueKind VK, CastKind K, Expr *Op,
2108 const CXXCastPath *BasePath,
2109 FPOptionsOverride FPO,
2110 TypeSourceInfo *WrittenTy,
2111 SourceLocation L, SourceLocation R) {
2112 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2113 void *Buffer =
2114 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2115 Counts: PathSize, Counts: FPO.requiresTrailingStorage()));
2116 CStyleCastExpr *E =
2117 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2118 if (PathSize)
2119 llvm::uninitialized_copy(*BasePath,
2120 E->getTrailingObjects<CXXBaseSpecifier *>());
2121 return E;
2122}
2123
2124CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2125 unsigned PathSize,
2126 bool HasFPFeatures) {
2127 void *Buffer =
2128 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2129 Counts: PathSize, Counts: HasFPFeatures));
2130 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2131}
2132
2133/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2134/// corresponds to, e.g. "<<=".
2135StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2136 switch (Op) {
2137#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2138#include "clang/AST/OperationKinds.def"
2139 }
2140 llvm_unreachable("Invalid OpCode!");
2141}
2142
2143BinaryOperatorKind
2144BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2145 switch (OO) {
2146 default: llvm_unreachable("Not an overloadable binary operator");
2147 case OO_Plus: return BO_Add;
2148 case OO_Minus: return BO_Sub;
2149 case OO_Star: return BO_Mul;
2150 case OO_Slash: return BO_Div;
2151 case OO_Percent: return BO_Rem;
2152 case OO_Caret: return BO_Xor;
2153 case OO_Amp: return BO_And;
2154 case OO_Pipe: return BO_Or;
2155 case OO_Equal: return BO_Assign;
2156 case OO_Spaceship: return BO_Cmp;
2157 case OO_Less: return BO_LT;
2158 case OO_Greater: return BO_GT;
2159 case OO_PlusEqual: return BO_AddAssign;
2160 case OO_MinusEqual: return BO_SubAssign;
2161 case OO_StarEqual: return BO_MulAssign;
2162 case OO_SlashEqual: return BO_DivAssign;
2163 case OO_PercentEqual: return BO_RemAssign;
2164 case OO_CaretEqual: return BO_XorAssign;
2165 case OO_AmpEqual: return BO_AndAssign;
2166 case OO_PipeEqual: return BO_OrAssign;
2167 case OO_LessLess: return BO_Shl;
2168 case OO_GreaterGreater: return BO_Shr;
2169 case OO_LessLessEqual: return BO_ShlAssign;
2170 case OO_GreaterGreaterEqual: return BO_ShrAssign;
2171 case OO_EqualEqual: return BO_EQ;
2172 case OO_ExclaimEqual: return BO_NE;
2173 case OO_LessEqual: return BO_LE;
2174 case OO_GreaterEqual: return BO_GE;
2175 case OO_AmpAmp: return BO_LAnd;
2176 case OO_PipePipe: return BO_LOr;
2177 case OO_Comma: return BO_Comma;
2178 case OO_ArrowStar: return BO_PtrMemI;
2179 }
2180}
2181
2182OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2183 static const OverloadedOperatorKind OverOps[] = {
2184 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2185 OO_Star, OO_Slash, OO_Percent,
2186 OO_Plus, OO_Minus,
2187 OO_LessLess, OO_GreaterGreater,
2188 OO_Spaceship,
2189 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2190 OO_EqualEqual, OO_ExclaimEqual,
2191 OO_Amp,
2192 OO_Caret,
2193 OO_Pipe,
2194 OO_AmpAmp,
2195 OO_PipePipe,
2196 OO_Equal, OO_StarEqual,
2197 OO_SlashEqual, OO_PercentEqual,
2198 OO_PlusEqual, OO_MinusEqual,
2199 OO_LessLessEqual, OO_GreaterGreaterEqual,
2200 OO_AmpEqual, OO_CaretEqual,
2201 OO_PipeEqual,
2202 OO_Comma
2203 };
2204 return OverOps[Opc];
2205}
2206
2207bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2208 Opcode Opc,
2209 const Expr *LHS,
2210 const Expr *RHS) {
2211 if (Opc != BO_Add)
2212 return false;
2213
2214 // Check that we have one pointer and one integer operand.
2215 const Expr *PExp;
2216 if (LHS->getType()->isPointerType()) {
2217 if (!RHS->getType()->isIntegerType())
2218 return false;
2219 PExp = LHS;
2220 } else if (RHS->getType()->isPointerType()) {
2221 if (!LHS->getType()->isIntegerType())
2222 return false;
2223 PExp = RHS;
2224 } else {
2225 return false;
2226 }
2227
2228 // Workaround for old glibc's __PTR_ALIGN macro
2229 if (auto *Select =
2230 dyn_cast<ConditionalOperator>(Val: PExp->IgnoreParenNoopCasts(Ctx))) {
2231 // If the condition can be constant evaluated, we check the selected arm.
2232 bool EvalResult;
2233 if (!Select->getCond()->EvaluateAsBooleanCondition(Result&: EvalResult, Ctx))
2234 return false;
2235 PExp = EvalResult ? Select->getTrueExpr() : Select->getFalseExpr();
2236 }
2237
2238 // Check that the pointer is a nullptr.
2239 if (!PExp->IgnoreParenCasts()
2240 ->isNullPointerConstant(Ctx, NPC: Expr::NPC_ValueDependentIsNotNull))
2241 return false;
2242
2243 // Check that the pointee type is char-sized.
2244 const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2245 if (!PTy || !PTy->getPointeeType()->isCharType())
2246 return false;
2247
2248 return true;
2249}
2250
2251SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind,
2252 QualType ResultTy, SourceLocation BLoc,
2253 SourceLocation RParenLoc,
2254 DeclContext *ParentContext)
2255 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2256 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2257 SourceLocExprBits.Kind = llvm::to_underlying(E: Kind);
2258 // In dependent contexts, function names may change.
2259 setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext()
2260 ? ExprDependence::Value
2261 : ExprDependence::None);
2262}
2263
2264StringRef SourceLocExpr::getBuiltinStr() const {
2265 switch (getIdentKind()) {
2266 case SourceLocIdentKind::File:
2267 return "__builtin_FILE";
2268 case SourceLocIdentKind::FileName:
2269 return "__builtin_FILE_NAME";
2270 case SourceLocIdentKind::Function:
2271 return "__builtin_FUNCTION";
2272 case SourceLocIdentKind::FuncSig:
2273 return "__builtin_FUNCSIG";
2274 case SourceLocIdentKind::Line:
2275 return "__builtin_LINE";
2276 case SourceLocIdentKind::Column:
2277 return "__builtin_COLUMN";
2278 case SourceLocIdentKind::SourceLocStruct:
2279 return "__builtin_source_location";
2280 }
2281 llvm_unreachable("unexpected IdentKind!");
2282}
2283
2284APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2285 const Expr *DefaultExpr) const {
2286 SourceLocation Loc;
2287 const DeclContext *Context;
2288
2289 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(Val: DefaultExpr)) {
2290 Loc = DIE->getUsedLocation();
2291 Context = DIE->getUsedContext();
2292 } else if (const auto *DAE =
2293 dyn_cast_if_present<CXXDefaultArgExpr>(Val: DefaultExpr)) {
2294 Loc = DAE->getUsedLocation();
2295 Context = DAE->getUsedContext();
2296 } else {
2297 Loc = getLocation();
2298 Context = getParentContext();
2299 }
2300
2301 // If we are currently parsing a lambda declarator, we might not have a fully
2302 // formed call operator declaration yet, and we could not form a function name
2303 // for it. Because we do not have access to Sema/function scopes here, we
2304 // detect this case by relying on the fact such method doesn't yet have a
2305 // type.
2306 if (const auto *D = dyn_cast<CXXMethodDecl>(Val: Context);
2307 D && D->getFunctionTypeLoc().isNull() && isLambdaCallOperator(MD: D))
2308 Context = D->getParent()->getParent();
2309
2310 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2311 Loc: Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2312
2313 auto MakeStringLiteral = [&](StringRef Tmp) {
2314 using LValuePathEntry = APValue::LValuePathEntry;
2315 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Key: Tmp);
2316 // Decay the string to a pointer to the first character.
2317 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(Index: 0)};
2318 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2319 };
2320
2321 switch (getIdentKind()) {
2322 case SourceLocIdentKind::FileName: {
2323 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2324 // the last part of __builtin_FILE().
2325 SmallString<256> FileName;
2326 clang::Preprocessor::processPathToFileName(
2327 FileName, PLoc, LangOpts: Ctx.getLangOpts(), TI: Ctx.getTargetInfo());
2328 return MakeStringLiteral(FileName);
2329 }
2330 case SourceLocIdentKind::File: {
2331 SmallString<256> Path(PLoc.getFilename());
2332 clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(),
2333 TI: Ctx.getTargetInfo());
2334 return MakeStringLiteral(Path);
2335 }
2336 case SourceLocIdentKind::Function:
2337 case SourceLocIdentKind::FuncSig: {
2338 const auto *CurDecl = dyn_cast<Decl>(Val: Context);
2339 const auto Kind = getIdentKind() == SourceLocIdentKind::Function
2340 ? PredefinedIdentKind::Function
2341 : PredefinedIdentKind::FuncSig;
2342 return MakeStringLiteral(
2343 CurDecl ? PredefinedExpr::ComputeName(IK: Kind, CurrentDecl: CurDecl) : std::string(""));
2344 }
2345 case SourceLocIdentKind::Line:
2346 return APValue(Ctx.MakeIntValue(Value: PLoc.getLine(), Type: Ctx.UnsignedIntTy));
2347 case SourceLocIdentKind::Column:
2348 return APValue(Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: Ctx.UnsignedIntTy));
2349 case SourceLocIdentKind::SourceLocStruct: {
2350 // Fill in a std::source_location::__impl structure, by creating an
2351 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2352 // that.
2353 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2354 assert(ImplDecl);
2355
2356 // Construct an APValue for the __impl struct, and get or create a Decl
2357 // corresponding to that. Note that we've already verified that the shape of
2358 // the ImplDecl type is as expected.
2359
2360 APValue Value(APValue::UninitStruct(), 0, 4);
2361 for (const FieldDecl *F : ImplDecl->fields()) {
2362 StringRef Name = F->getName();
2363 if (Name == "_M_file_name") {
2364 SmallString<256> Path(PLoc.getFilename());
2365 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2366 Ctx.getTargetInfo());
2367 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2368 } else if (Name == "_M_function_name") {
2369 // Note: this emits the PrettyFunction name -- different than what
2370 // __builtin_FUNCTION() above returns!
2371 const auto *CurDecl = dyn_cast<Decl>(Context);
2372 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2373 CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2374 ? StringRef(PredefinedExpr::ComputeName(
2375 PredefinedIdentKind::PrettyFunction, CurDecl))
2376 : "");
2377 } else if (Name == "_M_line") {
2378 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType());
2379 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2380 } else if (Name == "_M_column") {
2381 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType());
2382 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2383 }
2384 }
2385
2386 UnnamedGlobalConstantDecl *GV =
2387 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2388
2389 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2390 false);
2391 }
2392 }
2393 llvm_unreachable("unhandled case");
2394}
2395
2396EmbedExpr::EmbedExpr(const ASTContext &Ctx, SourceLocation Loc,
2397 EmbedDataStorage *Data, unsigned Begin,
2398 unsigned NumOfElements)
2399 : Expr(EmbedExprClass, Ctx.IntTy, VK_PRValue, OK_Ordinary),
2400 EmbedKeywordLoc(Loc), Ctx(&Ctx), Data(Data), Begin(Begin),
2401 NumOfElements(NumOfElements) {
2402 setDependence(ExprDependence::None);
2403 FakeChildNode = IntegerLiteral::Create(
2404 Ctx, llvm::APInt::getZero(numBits: Ctx.getTypeSize(getType())), getType(), Loc);
2405}
2406
2407InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2408 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2409 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2410 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2411 RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2412 sawArrayRangeDesignator(ARD: false);
2413 InitExprs.insert(C, I: InitExprs.end(), From: initExprs.begin(), To: initExprs.end());
2414
2415 setDependence(computeDependence(E: this));
2416}
2417
2418void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2419 if (NumInits > InitExprs.size())
2420 InitExprs.reserve(C, N: NumInits);
2421}
2422
2423void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2424 InitExprs.resize(C, N: NumInits, NV: nullptr);
2425}
2426
2427Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2428 if (Init >= InitExprs.size()) {
2429 InitExprs.insert(C, I: InitExprs.end(), NumToInsert: Init - InitExprs.size() + 1, Elt: nullptr);
2430 setInit(Init, expr);
2431 return nullptr;
2432 }
2433
2434 Expr *Result = cast_or_null<Expr>(Val: InitExprs[Init]);
2435 setInit(Init, expr);
2436 return Result;
2437}
2438
2439void InitListExpr::setArrayFiller(Expr *filler) {
2440 assert(!hasArrayFiller() && "Filler already set!");
2441 ArrayFillerOrUnionFieldInit = filler;
2442 // Fill out any "holes" in the array due to designated initializers.
2443 Expr **inits = getInits();
2444 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2445 if (inits[i] == nullptr)
2446 inits[i] = filler;
2447}
2448
2449bool InitListExpr::isStringLiteralInit() const {
2450 if (getNumInits() != 1)
2451 return false;
2452 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2453 if (!AT || !AT->getElementType()->isIntegerType())
2454 return false;
2455 // It is possible for getInit() to return null.
2456 const Expr *Init = getInit(Init: 0);
2457 if (!Init)
2458 return false;
2459 Init = Init->IgnoreParenImpCasts();
2460 return isa<StringLiteral>(Val: Init) || isa<ObjCEncodeExpr>(Val: Init);
2461}
2462
2463bool InitListExpr::isTransparent() const {
2464 assert(isSemanticForm() && "syntactic form never semantically transparent");
2465
2466 // A glvalue InitListExpr is always just sugar.
2467 if (isGLValue()) {
2468 assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2469 return true;
2470 }
2471
2472 // Otherwise, we're sugar if and only if we have exactly one initializer that
2473 // is of the same type.
2474 if (getNumInits() != 1 || !getInit(Init: 0))
2475 return false;
2476
2477 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2478 // transparent struct copy.
2479 if (!getInit(Init: 0)->isPRValue() && getType()->isRecordType())
2480 return false;
2481
2482 return getType().getCanonicalType() ==
2483 getInit(Init: 0)->getType().getCanonicalType();
2484}
2485
2486bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2487 assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2488
2489 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(Init: 0)) {
2490 return false;
2491 }
2492
2493 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: getInit(Init: 0)->IgnoreImplicit());
2494 return Lit && Lit->getValue() == 0;
2495}
2496
2497SourceLocation InitListExpr::getBeginLoc() const {
2498 if (InitListExpr *SyntacticForm = getSyntacticForm())
2499 return SyntacticForm->getBeginLoc();
2500 SourceLocation Beg = LBraceLoc;
2501 if (Beg.isInvalid()) {
2502 // Find the first non-null initializer.
2503 for (InitExprsTy::const_iterator I = InitExprs.begin(),
2504 E = InitExprs.end();
2505 I != E; ++I) {
2506 if (Stmt *S = *I) {
2507 Beg = S->getBeginLoc();
2508 break;
2509 }
2510 }
2511 }
2512 return Beg;
2513}
2514
2515SourceLocation InitListExpr::getEndLoc() const {
2516 if (InitListExpr *SyntacticForm = getSyntacticForm())
2517 return SyntacticForm->getEndLoc();
2518 SourceLocation End = RBraceLoc;
2519 if (End.isInvalid()) {
2520 // Find the first non-null initializer from the end.
2521 for (Stmt *S : llvm::reverse(C: InitExprs)) {
2522 if (S) {
2523 End = S->getEndLoc();
2524 break;
2525 }
2526 }
2527 }
2528 return End;
2529}
2530
2531/// getFunctionType - Return the underlying function type for this block.
2532///
2533const FunctionProtoType *BlockExpr::getFunctionType() const {
2534 // The block pointer is never sugared, but the function type might be.
2535 return cast<BlockPointerType>(getType())
2536 ->getPointeeType()->castAs<FunctionProtoType>();
2537}
2538
2539SourceLocation BlockExpr::getCaretLocation() const {
2540 return TheBlock->getCaretLocation();
2541}
2542const Stmt *BlockExpr::getBody() const {
2543 return TheBlock->getBody();
2544}
2545Stmt *BlockExpr::getBody() {
2546 return TheBlock->getBody();
2547}
2548
2549
2550//===----------------------------------------------------------------------===//
2551// Generic Expression Routines
2552//===----------------------------------------------------------------------===//
2553
2554bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2555 // In C++11, discarded-value expressions of a certain form are special,
2556 // according to [expr]p10:
2557 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2558 // expression is a glvalue of volatile-qualified type and it has
2559 // one of the following forms:
2560 if (!isGLValue() || !getType().isVolatileQualified())
2561 return false;
2562
2563 const Expr *E = IgnoreParens();
2564
2565 // - id-expression (5.1.1),
2566 if (isa<DeclRefExpr>(Val: E))
2567 return true;
2568
2569 // - subscripting (5.2.1),
2570 if (isa<ArraySubscriptExpr>(Val: E))
2571 return true;
2572
2573 // - class member access (5.2.5),
2574 if (isa<MemberExpr>(Val: E))
2575 return true;
2576
2577 // - indirection (5.3.1),
2578 if (auto *UO = dyn_cast<UnaryOperator>(Val: E))
2579 if (UO->getOpcode() == UO_Deref)
2580 return true;
2581
2582 if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
2583 // - pointer-to-member operation (5.5),
2584 if (BO->isPtrMemOp())
2585 return true;
2586
2587 // - comma expression (5.18) where the right operand is one of the above.
2588 if (BO->getOpcode() == BO_Comma)
2589 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2590 }
2591
2592 // - conditional expression (5.16) where both the second and the third
2593 // operands are one of the above, or
2594 if (auto *CO = dyn_cast<ConditionalOperator>(Val: E))
2595 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2596 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2597 // The related edge case of "*x ?: *x".
2598 if (auto *BCO =
2599 dyn_cast<BinaryConditionalOperator>(Val: E)) {
2600 if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: BCO->getTrueExpr()))
2601 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2602 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2603 }
2604
2605 // Objective-C++ extensions to the rule.
2606 if (isa<ObjCIvarRefExpr>(Val: E))
2607 return true;
2608 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Val: E)) {
2609 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(Val: POE->getSyntacticForm()))
2610 return true;
2611 }
2612
2613 return false;
2614}
2615
2616/// isUnusedResultAWarning - Return true if this immediate expression should
2617/// be warned about if the result is unused. If so, fill in Loc and Ranges
2618/// with location to warn on and the source range[s] to report with the
2619/// warning.
2620bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2621 SourceRange &R1, SourceRange &R2,
2622 ASTContext &Ctx) const {
2623 // Don't warn if the expr is type dependent. The type could end up
2624 // instantiating to void.
2625 if (isTypeDependent())
2626 return false;
2627
2628 switch (getStmtClass()) {
2629 default:
2630 if (getType()->isVoidType())
2631 return false;
2632 WarnE = this;
2633 Loc = getExprLoc();
2634 R1 = getSourceRange();
2635 return true;
2636 case ParenExprClass:
2637 return cast<ParenExpr>(Val: this)->getSubExpr()->
2638 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2639 case GenericSelectionExprClass:
2640 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()->
2641 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2642 case CoawaitExprClass:
2643 case CoyieldExprClass:
2644 return cast<CoroutineSuspendExpr>(Val: this)->getResumeExpr()->
2645 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2646 case ChooseExprClass:
2647 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()->
2648 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2649 case UnaryOperatorClass: {
2650 const UnaryOperator *UO = cast<UnaryOperator>(Val: this);
2651
2652 switch (UO->getOpcode()) {
2653 case UO_Plus:
2654 case UO_Minus:
2655 case UO_AddrOf:
2656 case UO_Not:
2657 case UO_LNot:
2658 case UO_Deref:
2659 break;
2660 case UO_Coawait:
2661 // This is just the 'operator co_await' call inside the guts of a
2662 // dependent co_await call.
2663 case UO_PostInc:
2664 case UO_PostDec:
2665 case UO_PreInc:
2666 case UO_PreDec: // ++/--
2667 return false; // Not a warning.
2668 case UO_Real:
2669 case UO_Imag:
2670 // accessing a piece of a volatile complex is a side-effect.
2671 if (Ctx.getCanonicalType(T: UO->getSubExpr()->getType())
2672 .isVolatileQualified())
2673 return false;
2674 break;
2675 case UO_Extension:
2676 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2677 }
2678 WarnE = this;
2679 Loc = UO->getOperatorLoc();
2680 R1 = UO->getSubExpr()->getSourceRange();
2681 return true;
2682 }
2683 case BinaryOperatorClass: {
2684 const BinaryOperator *BO = cast<BinaryOperator>(Val: this);
2685 switch (BO->getOpcode()) {
2686 default:
2687 break;
2688 // Consider the RHS of comma for side effects. LHS was checked by
2689 // Sema::CheckCommaOperands.
2690 case BO_Comma:
2691 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2692 // lvalue-ness) of an assignment written in a macro.
2693 if (IntegerLiteral *IE =
2694 dyn_cast<IntegerLiteral>(Val: BO->getRHS()->IgnoreParens()))
2695 if (IE->getValue() == 0)
2696 return false;
2697 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2698 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2699 case BO_LAnd:
2700 case BO_LOr:
2701 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2702 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2703 return false;
2704 break;
2705 }
2706 if (BO->isAssignmentOp())
2707 return false;
2708 WarnE = this;
2709 Loc = BO->getOperatorLoc();
2710 R1 = BO->getLHS()->getSourceRange();
2711 R2 = BO->getRHS()->getSourceRange();
2712 return true;
2713 }
2714 case CompoundAssignOperatorClass:
2715 case VAArgExprClass:
2716 case AtomicExprClass:
2717 return false;
2718
2719 case ConditionalOperatorClass: {
2720 // If only one of the LHS or RHS is a warning, the operator might
2721 // be being used for control flow. Only warn if both the LHS and
2722 // RHS are warnings.
2723 const auto *Exp = cast<ConditionalOperator>(Val: this);
2724 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2725 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2726 }
2727 case BinaryConditionalOperatorClass: {
2728 const auto *Exp = cast<BinaryConditionalOperator>(Val: this);
2729 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2730 }
2731
2732 case MemberExprClass:
2733 WarnE = this;
2734 Loc = cast<MemberExpr>(Val: this)->getMemberLoc();
2735 R1 = SourceRange(Loc, Loc);
2736 R2 = cast<MemberExpr>(Val: this)->getBase()->getSourceRange();
2737 return true;
2738
2739 case ArraySubscriptExprClass:
2740 WarnE = this;
2741 Loc = cast<ArraySubscriptExpr>(Val: this)->getRBracketLoc();
2742 R1 = cast<ArraySubscriptExpr>(Val: this)->getLHS()->getSourceRange();
2743 R2 = cast<ArraySubscriptExpr>(Val: this)->getRHS()->getSourceRange();
2744 return true;
2745
2746 case CXXOperatorCallExprClass: {
2747 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2748 // overloads as there is no reasonable way to define these such that they
2749 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2750 // warning: operators == and != are commonly typo'ed, and so warning on them
2751 // provides additional value as well. If this list is updated,
2752 // DiagnoseUnusedComparison should be as well.
2753 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(Val: this);
2754 switch (Op->getOperator()) {
2755 default:
2756 break;
2757 case OO_EqualEqual:
2758 case OO_ExclaimEqual:
2759 case OO_Less:
2760 case OO_Greater:
2761 case OO_GreaterEqual:
2762 case OO_LessEqual:
2763 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2764 Op->getCallReturnType(Ctx)->isVoidType())
2765 break;
2766 WarnE = this;
2767 Loc = Op->getOperatorLoc();
2768 R1 = Op->getSourceRange();
2769 return true;
2770 }
2771
2772 // Fallthrough for generic call handling.
2773 [[fallthrough]];
2774 }
2775 case CallExprClass:
2776 case CXXMemberCallExprClass:
2777 case UserDefinedLiteralClass: {
2778 // If this is a direct call, get the callee.
2779 const CallExpr *CE = cast<CallExpr>(Val: this);
2780 if (const Decl *FD = CE->getCalleeDecl()) {
2781 // If the callee has attribute pure, const, or warn_unused_result, warn
2782 // about it. void foo() { strlen("bar"); } should warn.
2783 //
2784 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2785 // updated to match for QoI.
2786 if (CE->hasUnusedResultAttr(Ctx) ||
2787 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2788 WarnE = this;
2789 Loc = CE->getCallee()->getBeginLoc();
2790 R1 = CE->getCallee()->getSourceRange();
2791
2792 if (unsigned NumArgs = CE->getNumArgs())
2793 R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(),
2794 CE->getArg(Arg: NumArgs - 1)->getEndLoc());
2795 return true;
2796 }
2797 }
2798 return false;
2799 }
2800
2801 // If we don't know precisely what we're looking at, let's not warn.
2802 case UnresolvedLookupExprClass:
2803 case CXXUnresolvedConstructExprClass:
2804 case RecoveryExprClass:
2805 return false;
2806
2807 case CXXTemporaryObjectExprClass:
2808 case CXXConstructExprClass: {
2809 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2810 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2811 if (Type->hasAttr<WarnUnusedAttr>() ||
2812 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2813 WarnE = this;
2814 Loc = getBeginLoc();
2815 R1 = getSourceRange();
2816 return true;
2817 }
2818 }
2819
2820 const auto *CE = cast<CXXConstructExpr>(Val: this);
2821 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2822 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2823 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2824 WarnE = this;
2825 Loc = getBeginLoc();
2826 R1 = getSourceRange();
2827
2828 if (unsigned NumArgs = CE->getNumArgs())
2829 R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(),
2830 CE->getArg(Arg: NumArgs - 1)->getEndLoc());
2831 return true;
2832 }
2833 }
2834
2835 return false;
2836 }
2837
2838 case ObjCMessageExprClass: {
2839 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(Val: this);
2840 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2841 ME->isInstanceMessage() &&
2842 !ME->getType()->isVoidType() &&
2843 ME->getMethodFamily() == OMF_init) {
2844 WarnE = this;
2845 Loc = getExprLoc();
2846 R1 = ME->getSourceRange();
2847 return true;
2848 }
2849
2850 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2851 if (MD->hasAttr<WarnUnusedResultAttr>()) {
2852 WarnE = this;
2853 Loc = getExprLoc();
2854 return true;
2855 }
2856
2857 return false;
2858 }
2859
2860 case ObjCPropertyRefExprClass:
2861 case ObjCSubscriptRefExprClass:
2862 WarnE = this;
2863 Loc = getExprLoc();
2864 R1 = getSourceRange();
2865 return true;
2866
2867 case PseudoObjectExprClass: {
2868 const auto *POE = cast<PseudoObjectExpr>(Val: this);
2869
2870 // For some syntactic forms, we should always warn.
2871 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2872 Val: POE->getSyntacticForm())) {
2873 WarnE = this;
2874 Loc = getExprLoc();
2875 R1 = getSourceRange();
2876 return true;
2877 }
2878
2879 // For others, we should never warn.
2880 if (auto *BO = dyn_cast<BinaryOperator>(Val: POE->getSyntacticForm()))
2881 if (BO->isAssignmentOp())
2882 return false;
2883 if (auto *UO = dyn_cast<UnaryOperator>(Val: POE->getSyntacticForm()))
2884 if (UO->isIncrementDecrementOp())
2885 return false;
2886
2887 // Otherwise, warn if the result expression would warn.
2888 const Expr *Result = POE->getResultExpr();
2889 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2890 }
2891
2892 case StmtExprClass: {
2893 // Statement exprs don't logically have side effects themselves, but are
2894 // sometimes used in macros in ways that give them a type that is unused.
2895 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2896 // however, if the result of the stmt expr is dead, we don't want to emit a
2897 // warning.
2898 const CompoundStmt *CS = cast<StmtExpr>(Val: this)->getSubStmt();
2899 if (!CS->body_empty()) {
2900 if (const Expr *E = dyn_cast<Expr>(Val: CS->body_back()))
2901 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2902 if (const LabelStmt *Label = dyn_cast<LabelStmt>(Val: CS->body_back()))
2903 if (const Expr *E = dyn_cast<Expr>(Val: Label->getSubStmt()))
2904 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2905 }
2906
2907 if (getType()->isVoidType())
2908 return false;
2909 WarnE = this;
2910 Loc = cast<StmtExpr>(Val: this)->getLParenLoc();
2911 R1 = getSourceRange();
2912 return true;
2913 }
2914 case CXXFunctionalCastExprClass:
2915 case CStyleCastExprClass: {
2916 // Ignore an explicit cast to void, except in C++98 if the operand is a
2917 // volatile glvalue for which we would trigger an implicit read in any
2918 // other language mode. (Such an implicit read always happens as part of
2919 // the lvalue conversion in C, and happens in C++ for expressions of all
2920 // forms where it seems likely the user intended to trigger a volatile
2921 // load.)
2922 const CastExpr *CE = cast<CastExpr>(Val: this);
2923 const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2924 if (CE->getCastKind() == CK_ToVoid) {
2925 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2926 SubE->isReadIfDiscardedInCPlusPlus11()) {
2927 // Suppress the "unused value" warning for idiomatic usage of
2928 // '(void)var;' used to suppress "unused variable" warnings.
2929 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: SubE))
2930 if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
2931 if (!VD->isExternallyVisible())
2932 return false;
2933
2934 // The lvalue-to-rvalue conversion would have no effect for an array.
2935 // It's implausible that the programmer expected this to result in a
2936 // volatile array load, so don't warn.
2937 if (SubE->getType()->isArrayType())
2938 return false;
2939
2940 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2941 }
2942 return false;
2943 }
2944
2945 // If this is a cast to a constructor conversion, check the operand.
2946 // Otherwise, the result of the cast is unused.
2947 if (CE->getCastKind() == CK_ConstructorConversion)
2948 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2949 if (CE->getCastKind() == CK_Dependent)
2950 return false;
2951
2952 WarnE = this;
2953 if (const CXXFunctionalCastExpr *CXXCE =
2954 dyn_cast<CXXFunctionalCastExpr>(Val: this)) {
2955 Loc = CXXCE->getBeginLoc();
2956 R1 = CXXCE->getSubExpr()->getSourceRange();
2957 } else {
2958 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(Val: this);
2959 Loc = CStyleCE->getLParenLoc();
2960 R1 = CStyleCE->getSubExpr()->getSourceRange();
2961 }
2962 return true;
2963 }
2964 case ImplicitCastExprClass: {
2965 const CastExpr *ICE = cast<ImplicitCastExpr>(Val: this);
2966
2967 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2968 if (ICE->getCastKind() == CK_LValueToRValue &&
2969 ICE->getSubExpr()->getType().isVolatileQualified())
2970 return false;
2971
2972 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2973 }
2974 case CXXDefaultArgExprClass:
2975 return (cast<CXXDefaultArgExpr>(Val: this)
2976 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2977 case CXXDefaultInitExprClass:
2978 return (cast<CXXDefaultInitExpr>(Val: this)
2979 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2980
2981 case CXXNewExprClass:
2982 // FIXME: In theory, there might be new expressions that don't have side
2983 // effects (e.g. a placement new with an uninitialized POD).
2984 case CXXDeleteExprClass:
2985 return false;
2986 case MaterializeTemporaryExprClass:
2987 return cast<MaterializeTemporaryExpr>(Val: this)
2988 ->getSubExpr()
2989 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2990 case CXXBindTemporaryExprClass:
2991 return cast<CXXBindTemporaryExpr>(Val: this)->getSubExpr()
2992 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2993 case ExprWithCleanupsClass:
2994 return cast<ExprWithCleanups>(Val: this)->getSubExpr()
2995 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2996 case OpaqueValueExprClass:
2997 return cast<OpaqueValueExpr>(Val: this)->getSourceExpr()->isUnusedResultAWarning(
2998 WarnE, Loc, R1, R2, Ctx);
2999 }
3000}
3001
3002/// isOBJCGCCandidate - Check if an expression is objc gc'able.
3003/// returns true, if it is; false otherwise.
3004bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
3005 const Expr *E = IgnoreParens();
3006 switch (E->getStmtClass()) {
3007 default:
3008 return false;
3009 case ObjCIvarRefExprClass:
3010 return true;
3011 case Expr::UnaryOperatorClass:
3012 return cast<UnaryOperator>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3013 case ImplicitCastExprClass:
3014 return cast<ImplicitCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3015 case MaterializeTemporaryExprClass:
3016 return cast<MaterializeTemporaryExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(
3017 Ctx);
3018 case CStyleCastExprClass:
3019 return cast<CStyleCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
3020 case DeclRefExprClass: {
3021 const Decl *D = cast<DeclRefExpr>(Val: E)->getDecl();
3022
3023 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
3024 if (VD->hasGlobalStorage())
3025 return true;
3026 QualType T = VD->getType();
3027 // dereferencing to a pointer is always a gc'able candidate,
3028 // unless it is __weak.
3029 return T->isPointerType() &&
3030 (Ctx.getObjCGCAttrKind(Ty: T) != Qualifiers::Weak);
3031 }
3032 return false;
3033 }
3034 case MemberExprClass: {
3035 const MemberExpr *M = cast<MemberExpr>(Val: E);
3036 return M->getBase()->isOBJCGCCandidate(Ctx);
3037 }
3038 case ArraySubscriptExprClass:
3039 return cast<ArraySubscriptExpr>(Val: E)->getBase()->isOBJCGCCandidate(Ctx);
3040 }
3041}
3042
3043bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
3044 if (isTypeDependent())
3045 return false;
3046 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
3047}
3048
3049QualType Expr::findBoundMemberType(const Expr *expr) {
3050 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
3051
3052 // Bound member expressions are always one of these possibilities:
3053 // x->m x.m x->*y x.*y
3054 // (possibly parenthesized)
3055
3056 expr = expr->IgnoreParens();
3057 if (const MemberExpr *mem = dyn_cast<MemberExpr>(Val: expr)) {
3058 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3059 return mem->getMemberDecl()->getType();
3060 }
3061
3062 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(Val: expr)) {
3063 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3064 ->getPointeeType();
3065 assert(type->isFunctionType());
3066 return type;
3067 }
3068
3069 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3070 return QualType();
3071}
3072
3073Expr *Expr::IgnoreImpCasts() {
3074 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitCastsSingleStep);
3075}
3076
3077Expr *Expr::IgnoreCasts() {
3078 return IgnoreExprNodes(E: this, Fns&: IgnoreCastsSingleStep);
3079}
3080
3081Expr *Expr::IgnoreImplicit() {
3082 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitSingleStep);
3083}
3084
3085Expr *Expr::IgnoreImplicitAsWritten() {
3086 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitAsWrittenSingleStep);
3087}
3088
3089Expr *Expr::IgnoreParens() {
3090 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep);
3091}
3092
3093Expr *Expr::IgnoreParenImpCasts() {
3094 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3095 Fns&: IgnoreImplicitCastsExtraSingleStep);
3096}
3097
3098Expr *Expr::IgnoreParenCasts() {
3099 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, Fns&: IgnoreCastsSingleStep);
3100}
3101
3102Expr *Expr::IgnoreConversionOperatorSingleStep() {
3103 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: this)) {
3104 if (isa_and_nonnull<CXXConversionDecl>(Val: MCE->getMethodDecl()))
3105 return MCE->getImplicitObjectArgument();
3106 }
3107 return this;
3108}
3109
3110Expr *Expr::IgnoreParenLValueCasts() {
3111 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3112 Fns&: IgnoreLValueCastsSingleStep);
3113}
3114
3115Expr *Expr::IgnoreParenBaseCasts() {
3116 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3117 Fns&: IgnoreBaseCastsSingleStep);
3118}
3119
3120Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3121 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3122 if (auto *CE = dyn_cast<CastExpr>(Val: E)) {
3123 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3124 // ptr<->int casts of the same width. We also ignore all identity casts.
3125 Expr *SubExpr = CE->getSubExpr();
3126 bool IsIdentityCast =
3127 Ctx.hasSameUnqualifiedType(T1: E->getType(), T2: SubExpr->getType());
3128 bool IsSameWidthCast = (E->getType()->isPointerType() ||
3129 E->getType()->isIntegralType(Ctx)) &&
3130 (SubExpr->getType()->isPointerType() ||
3131 SubExpr->getType()->isIntegralType(Ctx)) &&
3132 (Ctx.getTypeSize(T: E->getType()) ==
3133 Ctx.getTypeSize(T: SubExpr->getType()));
3134
3135 if (IsIdentityCast || IsSameWidthCast)
3136 return SubExpr;
3137 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: E))
3138 return NTTP->getReplacement();
3139
3140 return E;
3141 };
3142 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3143 Fns&: IgnoreNoopCastsSingleStep);
3144}
3145
3146Expr *Expr::IgnoreUnlessSpelledInSource() {
3147 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3148 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(Val: E)) {
3149 auto *SE = Cast->getSubExpr();
3150 if (SE->getSourceRange() == E->getSourceRange())
3151 return SE;
3152 }
3153
3154 if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) {
3155 auto NumArgs = C->getNumArgs();
3156 if (NumArgs == 1 ||
3157 (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) {
3158 Expr *A = C->getArg(Arg: 0);
3159 if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3160 return A;
3161 }
3162 }
3163 return E;
3164 };
3165 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3166 if (auto *C = dyn_cast<CXXMemberCallExpr>(Val: E)) {
3167 Expr *ExprNode = C->getImplicitObjectArgument();
3168 if (ExprNode->getSourceRange() == E->getSourceRange()) {
3169 return ExprNode;
3170 }
3171 if (auto *PE = dyn_cast<ParenExpr>(Val: ExprNode)) {
3172 if (PE->getSourceRange() == C->getSourceRange()) {
3173 return cast<Expr>(Val: PE);
3174 }
3175 }
3176 ExprNode = ExprNode->IgnoreParenImpCasts();
3177 if (ExprNode->getSourceRange() == E->getSourceRange())
3178 return ExprNode;
3179 }
3180 return E;
3181 };
3182 return IgnoreExprNodes(
3183 E: this, Fns&: IgnoreImplicitSingleStep, Fns&: IgnoreImplicitCastsExtraSingleStep,
3184 Fns&: IgnoreParensOnlySingleStep, Fns&: IgnoreImplicitConstructorSingleStep,
3185 Fns&: IgnoreImplicitMemberCallSingleStep);
3186}
3187
3188bool Expr::isDefaultArgument() const {
3189 const Expr *E = this;
3190 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E))
3191 E = M->getSubExpr();
3192
3193 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
3194 E = ICE->getSubExprAsWritten();
3195
3196 return isa<CXXDefaultArgExpr>(Val: E);
3197}
3198
3199/// Skip over any no-op casts and any temporary-binding
3200/// expressions.
3201static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3202 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E))
3203 E = M->getSubExpr();
3204
3205 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3206 if (ICE->getCastKind() == CK_NoOp)
3207 E = ICE->getSubExpr();
3208 else
3209 break;
3210 }
3211
3212 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(Val: E))
3213 E = BE->getSubExpr();
3214
3215 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3216 if (ICE->getCastKind() == CK_NoOp)
3217 E = ICE->getSubExpr();
3218 else
3219 break;
3220 }
3221
3222 return E->IgnoreParens();
3223}
3224
3225/// isTemporaryObject - Determines if this expression produces a
3226/// temporary of the given class type.
3227bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3228 if (!C.hasSameUnqualifiedType(T1: getType(), T2: C.getTypeDeclType(TempTy)))
3229 return false;
3230
3231 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(E: this);
3232
3233 // Temporaries are by definition pr-values of class type.
3234 if (!E->Classify(Ctx&: C).isPRValue()) {
3235 // In this context, property reference is a message call and is pr-value.
3236 if (!isa<ObjCPropertyRefExpr>(Val: E))
3237 return false;
3238 }
3239
3240 // Black-list a few cases which yield pr-values of class type that don't
3241 // refer to temporaries of that type:
3242
3243 // - implicit derived-to-base conversions
3244 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3245 switch (ICE->getCastKind()) {
3246 case CK_DerivedToBase:
3247 case CK_UncheckedDerivedToBase:
3248 return false;
3249 default:
3250 break;
3251 }
3252 }
3253
3254 // - member expressions (all)
3255 if (isa<MemberExpr>(Val: E))
3256 return false;
3257
3258 if (const auto *BO = dyn_cast<BinaryOperator>(Val: E))
3259 if (BO->isPtrMemOp())
3260 return false;
3261
3262 // - opaque values (all)
3263 if (isa<OpaqueValueExpr>(Val: E))
3264 return false;
3265
3266 return true;
3267}
3268
3269bool Expr::isImplicitCXXThis() const {
3270 const Expr *E = this;
3271
3272 // Strip away parentheses and casts we don't care about.
3273 while (true) {
3274 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(Val: E)) {
3275 E = Paren->getSubExpr();
3276 continue;
3277 }
3278
3279 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3280 if (ICE->getCastKind() == CK_NoOp ||
3281 ICE->getCastKind() == CK_LValueToRValue ||
3282 ICE->getCastKind() == CK_DerivedToBase ||
3283 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3284 E = ICE->getSubExpr();
3285 continue;
3286 }
3287 }
3288
3289 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(Val: E)) {
3290 if (UnOp->getOpcode() == UO_Extension) {
3291 E = UnOp->getSubExpr();
3292 continue;
3293 }
3294 }
3295
3296 if (const MaterializeTemporaryExpr *M
3297 = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
3298 E = M->getSubExpr();
3299 continue;
3300 }
3301
3302 break;
3303 }
3304
3305 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(Val: E))
3306 return This->isImplicit();
3307
3308 return false;
3309}
3310
3311/// hasAnyTypeDependentArguments - Determines if any of the expressions
3312/// in Exprs is type-dependent.
3313bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3314 for (unsigned I = 0; I < Exprs.size(); ++I)
3315 if (Exprs[I]->isTypeDependent())
3316 return true;
3317
3318 return false;
3319}
3320
3321bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3322 const Expr **Culprit) const {
3323 assert(!isValueDependent() &&
3324 "Expression evaluator can't be called on a dependent expression.");
3325
3326 // This function is attempting whether an expression is an initializer
3327 // which can be evaluated at compile-time. It very closely parallels
3328 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3329 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3330 // to isEvaluatable most of the time.
3331 //
3332 // If we ever capture reference-binding directly in the AST, we can
3333 // kill the second parameter.
3334
3335 if (IsForRef) {
3336 if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: this))
3337 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit);
3338 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: this))
3339 return MTE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3340 EvalResult Result;
3341 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3342 return true;
3343 if (Culprit)
3344 *Culprit = this;
3345 return false;
3346 }
3347
3348 switch (getStmtClass()) {
3349 default: break;
3350 case Stmt::ExprWithCleanupsClass:
3351 return cast<ExprWithCleanups>(Val: this)->getSubExpr()->isConstantInitializer(
3352 Ctx, IsForRef, Culprit);
3353 case StringLiteralClass:
3354 case ObjCEncodeExprClass:
3355 return true;
3356 case CXXTemporaryObjectExprClass:
3357 case CXXConstructExprClass: {
3358 const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this);
3359
3360 if (CE->getConstructor()->isTrivial() &&
3361 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3362 // Trivial default constructor
3363 if (!CE->getNumArgs()) return true;
3364
3365 // Trivial copy constructor
3366 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3367 return CE->getArg(Arg: 0)->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3368 }
3369
3370 break;
3371 }
3372 case ConstantExprClass: {
3373 // FIXME: We should be able to return "true" here, but it can lead to extra
3374 // error messages. E.g. in Sema/array-init.c.
3375 const Expr *Exp = cast<ConstantExpr>(Val: this)->getSubExpr();
3376 return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3377 }
3378 case CompoundLiteralExprClass: {
3379 // This handles gcc's extension that allows global initializers like
3380 // "struct x {int x;} x = (struct x) {};".
3381 // FIXME: This accepts other cases it shouldn't!
3382 const Expr *Exp = cast<CompoundLiteralExpr>(Val: this)->getInitializer();
3383 return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3384 }
3385 case DesignatedInitUpdateExprClass: {
3386 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(Val: this);
3387 return DIUE->getBase()->isConstantInitializer(Ctx, IsForRef: false, Culprit) &&
3388 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3389 }
3390 case InitListExprClass: {
3391 // C++ [dcl.init.aggr]p2:
3392 // The elements of an aggregate are:
3393 // - for an array, the array elements in increasing subscript order, or
3394 // - for a class, the direct base classes in declaration order, followed
3395 // by the direct non-static data members (11.4) that are not members of
3396 // an anonymous union, in declaration order.
3397 const InitListExpr *ILE = cast<InitListExpr>(Val: this);
3398 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3399 if (ILE->getType()->isArrayType()) {
3400 unsigned numInits = ILE->getNumInits();
3401 for (unsigned i = 0; i < numInits; i++) {
3402 if (!ILE->getInit(Init: i)->isConstantInitializer(Ctx, IsForRef: false, Culprit))
3403 return false;
3404 }
3405 return true;
3406 }
3407
3408 if (ILE->getType()->isRecordType()) {
3409 unsigned ElementNo = 0;
3410 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3411
3412 // In C++17, bases were added to the list of members used by aggregate
3413 // initialization.
3414 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3415 for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) {
3416 if (ElementNo < ILE->getNumInits()) {
3417 const Expr *Elt = ILE->getInit(Init: ElementNo++);
3418 if (!Elt->isConstantInitializer(Ctx, IsForRef: false, Culprit))
3419 return false;
3420 }
3421 }
3422 }
3423
3424 for (const auto *Field : RD->fields()) {
3425 // If this is a union, skip all the fields that aren't being initialized.
3426 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3427 continue;
3428
3429 // Don't emit anonymous bitfields, they just affect layout.
3430 if (Field->isUnnamedBitField())
3431 continue;
3432
3433 if (ElementNo < ILE->getNumInits()) {
3434 const Expr *Elt = ILE->getInit(ElementNo++);
3435 if (Field->isBitField()) {
3436 // Bitfields have to evaluate to an integer.
3437 EvalResult Result;
3438 if (!Elt->EvaluateAsInt(Result, Ctx)) {
3439 if (Culprit)
3440 *Culprit = Elt;
3441 return false;
3442 }
3443 } else {
3444 bool RefType = Field->getType()->isReferenceType();
3445 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3446 return false;
3447 }
3448 }
3449 }
3450 return true;
3451 }
3452
3453 break;
3454 }
3455 case ImplicitValueInitExprClass:
3456 case NoInitExprClass:
3457 return true;
3458 case ParenExprClass:
3459 return cast<ParenExpr>(Val: this)->getSubExpr()
3460 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3461 case GenericSelectionExprClass:
3462 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()
3463 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3464 case ChooseExprClass:
3465 if (cast<ChooseExpr>(Val: this)->isConditionDependent()) {
3466 if (Culprit)
3467 *Culprit = this;
3468 return false;
3469 }
3470 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()
3471 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3472 case UnaryOperatorClass: {
3473 const UnaryOperator* Exp = cast<UnaryOperator>(Val: this);
3474 if (Exp->getOpcode() == UO_Extension)
3475 return Exp->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3476 break;
3477 }
3478 case PackIndexingExprClass: {
3479 return cast<PackIndexingExpr>(Val: this)
3480 ->getSelectedExpr()
3481 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3482 }
3483 case CXXFunctionalCastExprClass:
3484 case CXXStaticCastExprClass:
3485 case ImplicitCastExprClass:
3486 case CStyleCastExprClass:
3487 case ObjCBridgedCastExprClass:
3488 case CXXDynamicCastExprClass:
3489 case CXXReinterpretCastExprClass:
3490 case CXXAddrspaceCastExprClass:
3491 case CXXConstCastExprClass: {
3492 const CastExpr *CE = cast<CastExpr>(Val: this);
3493
3494 // Handle misc casts we want to ignore.
3495 if (CE->getCastKind() == CK_NoOp ||
3496 CE->getCastKind() == CK_LValueToRValue ||
3497 CE->getCastKind() == CK_ToUnion ||
3498 CE->getCastKind() == CK_ConstructorConversion ||
3499 CE->getCastKind() == CK_NonAtomicToAtomic ||
3500 CE->getCastKind() == CK_AtomicToNonAtomic ||
3501 CE->getCastKind() == CK_NullToPointer ||
3502 CE->getCastKind() == CK_IntToOCLSampler)
3503 return CE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3504
3505 break;
3506 }
3507 case MaterializeTemporaryExprClass:
3508 return cast<MaterializeTemporaryExpr>(Val: this)
3509 ->getSubExpr()
3510 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3511
3512 case SubstNonTypeTemplateParmExprClass:
3513 return cast<SubstNonTypeTemplateParmExpr>(Val: this)->getReplacement()
3514 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3515 case CXXDefaultArgExprClass:
3516 return cast<CXXDefaultArgExpr>(Val: this)->getExpr()
3517 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3518 case CXXDefaultInitExprClass:
3519 return cast<CXXDefaultInitExpr>(Val: this)->getExpr()
3520 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3521 }
3522 // Allow certain forms of UB in constant initializers: signed integer
3523 // overflow and floating-point division by zero. We'll give a warning on
3524 // these, but they're common enough that we have to accept them.
3525 if (isEvaluatable(Ctx, AllowSideEffects: SE_AllowUndefinedBehavior))
3526 return true;
3527 if (Culprit)
3528 *Culprit = this;
3529 return false;
3530}
3531
3532bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3533 unsigned BuiltinID = getBuiltinCallee();
3534 if (BuiltinID != Builtin::BI__assume &&
3535 BuiltinID != Builtin::BI__builtin_assume)
3536 return false;
3537
3538 const Expr* Arg = getArg(Arg: 0);
3539 bool ArgVal;
3540 return !Arg->isValueDependent() &&
3541 Arg->EvaluateAsBooleanCondition(Result&: ArgVal, Ctx) && !ArgVal;
3542}
3543
3544bool CallExpr::isCallToStdMove() const {
3545 return getBuiltinCallee() == Builtin::BImove;
3546}
3547
3548namespace {
3549 /// Look for any side effects within a Stmt.
3550 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3551 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3552 const bool IncludePossibleEffects;
3553 bool HasSideEffects;
3554
3555 public:
3556 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3557 : Inherited(Context),
3558 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3559
3560 bool hasSideEffects() const { return HasSideEffects; }
3561
3562 void VisitDecl(const Decl *D) {
3563 if (!D)
3564 return;
3565
3566 // We assume the caller checks subexpressions (eg, the initializer, VLA
3567 // bounds) for side-effects on our behalf.
3568 if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
3569 // Registering a destructor is a side-effect.
3570 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3571 VD->needsDestruction(Ctx: Context))
3572 HasSideEffects = true;
3573 }
3574 }
3575
3576 void VisitDeclStmt(const DeclStmt *DS) {
3577 for (auto *D : DS->decls())
3578 VisitDecl(D);
3579 Inherited::VisitDeclStmt(DS);
3580 }
3581
3582 void VisitExpr(const Expr *E) {
3583 if (!HasSideEffects &&
3584 E->HasSideEffects(Ctx: Context, IncludePossibleEffects))
3585 HasSideEffects = true;
3586 }
3587 };
3588}
3589
3590bool Expr::HasSideEffects(const ASTContext &Ctx,
3591 bool IncludePossibleEffects) const {
3592 // In circumstances where we care about definite side effects instead of
3593 // potential side effects, we want to ignore expressions that are part of a
3594 // macro expansion as a potential side effect.
3595 if (!IncludePossibleEffects && getExprLoc().isMacroID())
3596 return false;
3597
3598 switch (getStmtClass()) {
3599 case NoStmtClass:
3600 #define ABSTRACT_STMT(Type)
3601 #define STMT(Type, Base) case Type##Class:
3602 #define EXPR(Type, Base)
3603 #include "clang/AST/StmtNodes.inc"
3604 llvm_unreachable("unexpected Expr kind");
3605
3606 case DependentScopeDeclRefExprClass:
3607 case CXXUnresolvedConstructExprClass:
3608 case CXXDependentScopeMemberExprClass:
3609 case UnresolvedLookupExprClass:
3610 case UnresolvedMemberExprClass:
3611 case PackExpansionExprClass:
3612 case SubstNonTypeTemplateParmPackExprClass:
3613 case FunctionParmPackExprClass:
3614 case TypoExprClass:
3615 case RecoveryExprClass:
3616 case CXXFoldExprClass:
3617 // Make a conservative assumption for dependent nodes.
3618 return IncludePossibleEffects;
3619
3620 case DeclRefExprClass:
3621 case ObjCIvarRefExprClass:
3622 case PredefinedExprClass:
3623 case IntegerLiteralClass:
3624 case FixedPointLiteralClass:
3625 case FloatingLiteralClass:
3626 case ImaginaryLiteralClass:
3627 case StringLiteralClass:
3628 case CharacterLiteralClass:
3629 case OffsetOfExprClass:
3630 case ImplicitValueInitExprClass:
3631 case UnaryExprOrTypeTraitExprClass:
3632 case AddrLabelExprClass:
3633 case GNUNullExprClass:
3634 case ArrayInitIndexExprClass:
3635 case NoInitExprClass:
3636 case CXXBoolLiteralExprClass:
3637 case CXXNullPtrLiteralExprClass:
3638 case CXXThisExprClass:
3639 case CXXScalarValueInitExprClass:
3640 case TypeTraitExprClass:
3641 case ArrayTypeTraitExprClass:
3642 case ExpressionTraitExprClass:
3643 case CXXNoexceptExprClass:
3644 case SizeOfPackExprClass:
3645 case ObjCStringLiteralClass:
3646 case ObjCEncodeExprClass:
3647 case ObjCBoolLiteralExprClass:
3648 case ObjCAvailabilityCheckExprClass:
3649 case CXXUuidofExprClass:
3650 case OpaqueValueExprClass:
3651 case SourceLocExprClass:
3652 case EmbedExprClass:
3653 case ConceptSpecializationExprClass:
3654 case RequiresExprClass:
3655 case SYCLUniqueStableNameExprClass:
3656 case PackIndexingExprClass:
3657 case HLSLOutArgExprClass:
3658 case OpenACCAsteriskSizeExprClass:
3659 // These never have a side-effect.
3660 return false;
3661
3662 case ConstantExprClass:
3663 // FIXME: Move this into the "return false;" block above.
3664 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3665 Ctx, IncludePossibleEffects);
3666
3667 case CallExprClass:
3668 case CXXOperatorCallExprClass:
3669 case CXXMemberCallExprClass:
3670 case CUDAKernelCallExprClass:
3671 case UserDefinedLiteralClass: {
3672 // We don't know a call definitely has side effects, except for calls
3673 // to pure/const functions that definitely don't.
3674 // If the call itself is considered side-effect free, check the operands.
3675 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3676 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3677 if (IsPure || !IncludePossibleEffects)
3678 break;
3679 return true;
3680 }
3681
3682 case BlockExprClass:
3683 case CXXBindTemporaryExprClass:
3684 if (!IncludePossibleEffects)
3685 break;
3686 return true;
3687
3688 case MSPropertyRefExprClass:
3689 case MSPropertySubscriptExprClass:
3690 case CompoundAssignOperatorClass:
3691 case VAArgExprClass:
3692 case AtomicExprClass:
3693 case CXXThrowExprClass:
3694 case CXXNewExprClass:
3695 case CXXDeleteExprClass:
3696 case CoawaitExprClass:
3697 case DependentCoawaitExprClass:
3698 case CoyieldExprClass:
3699 // These always have a side-effect.
3700 return true;
3701
3702 case StmtExprClass: {
3703 // StmtExprs have a side-effect if any substatement does.
3704 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3705 Finder.Visit(S: cast<StmtExpr>(this)->getSubStmt());
3706 return Finder.hasSideEffects();
3707 }
3708
3709 case ExprWithCleanupsClass:
3710 if (IncludePossibleEffects)
3711 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3712 return true;
3713 break;
3714
3715 case ParenExprClass:
3716 case ArraySubscriptExprClass:
3717 case MatrixSubscriptExprClass:
3718 case ArraySectionExprClass:
3719 case OMPArrayShapingExprClass:
3720 case OMPIteratorExprClass:
3721 case MemberExprClass:
3722 case ConditionalOperatorClass:
3723 case BinaryConditionalOperatorClass:
3724 case CompoundLiteralExprClass:
3725 case ExtVectorElementExprClass:
3726 case DesignatedInitExprClass:
3727 case DesignatedInitUpdateExprClass:
3728 case ArrayInitLoopExprClass:
3729 case ParenListExprClass:
3730 case CXXPseudoDestructorExprClass:
3731 case CXXRewrittenBinaryOperatorClass:
3732 case CXXStdInitializerListExprClass:
3733 case SubstNonTypeTemplateParmExprClass:
3734 case MaterializeTemporaryExprClass:
3735 case ShuffleVectorExprClass:
3736 case ConvertVectorExprClass:
3737 case AsTypeExprClass:
3738 case CXXParenListInitExprClass:
3739 // These have a side-effect if any subexpression does.
3740 break;
3741
3742 case UnaryOperatorClass:
3743 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3744 return true;
3745 break;
3746
3747 case BinaryOperatorClass:
3748 if (cast<BinaryOperator>(this)->isAssignmentOp())
3749 return true;
3750 break;
3751
3752 case InitListExprClass:
3753 // FIXME: The children for an InitListExpr doesn't include the array filler.
3754 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3755 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3756 return true;
3757 break;
3758
3759 case GenericSelectionExprClass:
3760 return cast<GenericSelectionExpr>(this)->getResultExpr()->
3761 HasSideEffects(Ctx, IncludePossibleEffects);
3762
3763 case ChooseExprClass:
3764 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3765 Ctx, IncludePossibleEffects);
3766
3767 case CXXDefaultArgExprClass:
3768 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3769 Ctx, IncludePossibleEffects);
3770
3771 case CXXDefaultInitExprClass: {
3772 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3773 if (const Expr *E = FD->getInClassInitializer())
3774 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3775 // If we've not yet parsed the initializer, assume it has side-effects.
3776 return true;
3777 }
3778
3779 case CXXDynamicCastExprClass: {
3780 // A dynamic_cast expression has side-effects if it can throw.
3781 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3782 if (DCE->getTypeAsWritten()->isReferenceType() &&
3783 DCE->getCastKind() == CK_Dynamic)
3784 return true;
3785 }
3786 [[fallthrough]];
3787 case ImplicitCastExprClass:
3788 case CStyleCastExprClass:
3789 case CXXStaticCastExprClass:
3790 case CXXReinterpretCastExprClass:
3791 case CXXConstCastExprClass:
3792 case CXXAddrspaceCastExprClass:
3793 case CXXFunctionalCastExprClass:
3794 case BuiltinBitCastExprClass: {
3795 // While volatile reads are side-effecting in both C and C++, we treat them
3796 // as having possible (not definite) side-effects. This allows idiomatic
3797 // code to behave without warning, such as sizeof(*v) for a volatile-
3798 // qualified pointer.
3799 if (!IncludePossibleEffects)
3800 break;
3801
3802 const CastExpr *CE = cast<CastExpr>(this);
3803 if (CE->getCastKind() == CK_LValueToRValue &&
3804 CE->getSubExpr()->getType().isVolatileQualified())
3805 return true;
3806 break;
3807 }
3808
3809 case CXXTypeidExprClass: {
3810 const auto *TE = cast<CXXTypeidExpr>(this);
3811 if (!TE->isPotentiallyEvaluated())
3812 return false;
3813
3814 // If this type id expression can throw because of a null pointer, that is a
3815 // side-effect independent of if the operand has a side-effect
3816 if (IncludePossibleEffects && TE->hasNullCheck())
3817 return true;
3818
3819 break;
3820 }
3821
3822 case CXXConstructExprClass:
3823 case CXXTemporaryObjectExprClass: {
3824 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3825 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3826 return true;
3827 // A trivial constructor does not add any side-effects of its own. Just look
3828 // at its arguments.
3829 break;
3830 }
3831
3832 case CXXInheritedCtorInitExprClass: {
3833 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3834 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3835 return true;
3836 break;
3837 }
3838
3839 case LambdaExprClass: {
3840 const LambdaExpr *LE = cast<LambdaExpr>(this);
3841 for (Expr *E : LE->capture_inits())
3842 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3843 return true;
3844 return false;
3845 }
3846
3847 case PseudoObjectExprClass: {
3848 // Only look for side-effects in the semantic form, and look past
3849 // OpaqueValueExpr bindings in that form.
3850 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3851 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3852 E = PO->semantics_end();
3853 I != E; ++I) {
3854 const Expr *Subexpr = *I;
3855 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3856 Subexpr = OVE->getSourceExpr();
3857 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3858 return true;
3859 }
3860 return false;
3861 }
3862
3863 case ObjCBoxedExprClass:
3864 case ObjCArrayLiteralClass:
3865 case ObjCDictionaryLiteralClass:
3866 case ObjCSelectorExprClass:
3867 case ObjCProtocolExprClass:
3868 case ObjCIsaExprClass:
3869 case ObjCIndirectCopyRestoreExprClass:
3870 case ObjCSubscriptRefExprClass:
3871 case ObjCBridgedCastExprClass:
3872 case ObjCMessageExprClass:
3873 case ObjCPropertyRefExprClass:
3874 // FIXME: Classify these cases better.
3875 if (IncludePossibleEffects)
3876 return true;
3877 break;
3878 }
3879
3880 // Recurse to children.
3881 for (const Stmt *SubStmt : children())
3882 if (SubStmt &&
3883 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3884 return true;
3885
3886 return false;
3887}
3888
3889FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3890 if (auto Call = dyn_cast<CallExpr>(Val: this))
3891 return Call->getFPFeaturesInEffect(LO);
3892 if (auto UO = dyn_cast<UnaryOperator>(Val: this))
3893 return UO->getFPFeaturesInEffect(LO);
3894 if (auto BO = dyn_cast<BinaryOperator>(Val: this))
3895 return BO->getFPFeaturesInEffect(LO);
3896 if (auto Cast = dyn_cast<CastExpr>(Val: this))
3897 return Cast->getFPFeaturesInEffect(LO);
3898 if (auto ConvertVector = dyn_cast<ConvertVectorExpr>(Val: this))
3899 return ConvertVector->getFPFeaturesInEffect(LO);
3900 return FPOptions::defaultWithoutTrailingStorage(LO);
3901}
3902
3903namespace {
3904 /// Look for a call to a non-trivial function within an expression.
3905 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3906 {
3907 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3908
3909 bool NonTrivial;
3910
3911 public:
3912 explicit NonTrivialCallFinder(const ASTContext &Context)
3913 : Inherited(Context), NonTrivial(false) { }
3914
3915 bool hasNonTrivialCall() const { return NonTrivial; }
3916
3917 void VisitCallExpr(const CallExpr *E) {
3918 if (const CXXMethodDecl *Method
3919 = dyn_cast_or_null<const CXXMethodDecl>(Val: E->getCalleeDecl())) {
3920 if (Method->isTrivial()) {
3921 // Recurse to children of the call.
3922 Inherited::VisitStmt(E);
3923 return;
3924 }
3925 }
3926
3927 NonTrivial = true;
3928 }
3929
3930 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3931 if (E->getConstructor()->isTrivial()) {
3932 // Recurse to children of the call.
3933 Inherited::VisitStmt(E);
3934 return;
3935 }
3936
3937 NonTrivial = true;
3938 }
3939
3940 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3941 // Destructor of the temporary might be null if destructor declaration
3942 // is not valid.
3943 if (const CXXDestructorDecl *DtorDecl =
3944 E->getTemporary()->getDestructor()) {
3945 if (DtorDecl->isTrivial()) {
3946 Inherited::VisitStmt(E);
3947 return;
3948 }
3949 }
3950
3951 NonTrivial = true;
3952 }
3953 };
3954}
3955
3956bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3957 NonTrivialCallFinder Finder(Ctx);
3958 Finder.Visit(this);
3959 return Finder.hasNonTrivialCall();
3960}
3961
3962/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3963/// pointer constant or not, as well as the specific kind of constant detected.
3964/// Null pointer constants can be integer constant expressions with the
3965/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3966/// (a GNU extension).
3967Expr::NullPointerConstantKind
3968Expr::isNullPointerConstant(ASTContext &Ctx,
3969 NullPointerConstantValueDependence NPC) const {
3970 if (isValueDependent() &&
3971 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3972 // Error-dependent expr should never be a null pointer.
3973 if (containsErrors())
3974 return NPCK_NotNull;
3975 switch (NPC) {
3976 case NPC_NeverValueDependent:
3977 llvm_unreachable("Unexpected value dependent expression!");
3978 case NPC_ValueDependentIsNull:
3979 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3980 return NPCK_ZeroExpression;
3981 else
3982 return NPCK_NotNull;
3983
3984 case NPC_ValueDependentIsNotNull:
3985 return NPCK_NotNull;
3986 }
3987 }
3988
3989 // Strip off a cast to void*, if it exists. Except in C++.
3990 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(Val: this)) {
3991 if (!Ctx.getLangOpts().CPlusPlus) {
3992 // Check that it is a cast to void*.
3993 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3994 QualType Pointee = PT->getPointeeType();
3995 Qualifiers Qs = Pointee.getQualifiers();
3996 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3997 // has non-default address space it is not treated as nullptr.
3998 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3999 // since it cannot be assigned to a pointer to constant address space.
4000 if (Ctx.getLangOpts().OpenCL &&
4001 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
4002 Qs.removeAddressSpace();
4003
4004 if (Pointee->isVoidType() && Qs.empty() && // to void*
4005 CE->getSubExpr()->getType()->isIntegerType()) // from int
4006 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4007 }
4008 }
4009 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: this)) {
4010 // Ignore the ImplicitCastExpr type entirely.
4011 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4012 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: this)) {
4013 // Accept ((void*)0) as a null pointer constant, as many other
4014 // implementations do.
4015 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4016 } else if (const GenericSelectionExpr *GE =
4017 dyn_cast<GenericSelectionExpr>(Val: this)) {
4018 if (GE->isResultDependent())
4019 return NPCK_NotNull;
4020 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
4021 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Val: this)) {
4022 if (CE->isConditionDependent())
4023 return NPCK_NotNull;
4024 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
4025 } else if (const CXXDefaultArgExpr *DefaultArg
4026 = dyn_cast<CXXDefaultArgExpr>(Val: this)) {
4027 // See through default argument expressions.
4028 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
4029 } else if (const CXXDefaultInitExpr *DefaultInit
4030 = dyn_cast<CXXDefaultInitExpr>(Val: this)) {
4031 // See through default initializer expressions.
4032 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
4033 } else if (isa<GNUNullExpr>(Val: this)) {
4034 // The GNU __null extension is always a null pointer constant.
4035 return NPCK_GNUNull;
4036 } else if (const MaterializeTemporaryExpr *M
4037 = dyn_cast<MaterializeTemporaryExpr>(Val: this)) {
4038 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
4039 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: this)) {
4040 if (const Expr *Source = OVE->getSourceExpr())
4041 return Source->isNullPointerConstant(Ctx, NPC);
4042 }
4043
4044 // If the expression has no type information, it cannot be a null pointer
4045 // constant.
4046 if (getType().isNull())
4047 return NPCK_NotNull;
4048
4049 // C++11/C23 nullptr_t is always a null pointer constant.
4050 if (getType()->isNullPtrType())
4051 return NPCK_CXX11_nullptr;
4052
4053 if (const RecordType *UT = getType()->getAsUnionType())
4054 if (!Ctx.getLangOpts().CPlusPlus11 &&
4055 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
4056 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: this)){
4057 const Expr *InitExpr = CLE->getInitializer();
4058 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: InitExpr))
4059 return ILE->getInit(Init: 0)->isNullPointerConstant(Ctx, NPC);
4060 }
4061 // This expression must be an integer type.
4062 if (!getType()->isIntegerType() ||
4063 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
4064 return NPCK_NotNull;
4065
4066 if (Ctx.getLangOpts().CPlusPlus11) {
4067 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
4068 // value zero or a prvalue of type std::nullptr_t.
4069 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
4070 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: this);
4071 if (Lit && !Lit->getValue())
4072 return NPCK_ZeroLiteral;
4073 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
4074 return NPCK_NotNull;
4075 } else {
4076 // If we have an integer constant expression, we need to *evaluate* it and
4077 // test for the value 0.
4078 if (!isIntegerConstantExpr(Ctx))
4079 return NPCK_NotNull;
4080 }
4081
4082 if (EvaluateKnownConstInt(Ctx) != 0)
4083 return NPCK_NotNull;
4084
4085 if (isa<IntegerLiteral>(Val: this))
4086 return NPCK_ZeroLiteral;
4087 return NPCK_ZeroExpression;
4088}
4089
4090/// If this expression is an l-value for an Objective C
4091/// property, find the underlying property reference expression.
4092const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
4093 const Expr *E = this;
4094 while (true) {
4095 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
4096 "expression is not a property reference");
4097 E = E->IgnoreParenCasts();
4098 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
4099 if (BO->getOpcode() == BO_Comma) {
4100 E = BO->getRHS();
4101 continue;
4102 }
4103 }
4104
4105 break;
4106 }
4107
4108 return cast<ObjCPropertyRefExpr>(Val: E);
4109}
4110
4111bool Expr::isObjCSelfExpr() const {
4112 const Expr *E = IgnoreParenImpCasts();
4113
4114 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
4115 if (!DRE)
4116 return false;
4117
4118 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(Val: DRE->getDecl());
4119 if (!Param)
4120 return false;
4121
4122 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4123 if (!M)
4124 return false;
4125
4126 return M->getSelfDecl() == Param;
4127}
4128
4129FieldDecl *Expr::getSourceBitField() {
4130 Expr *E = this->IgnoreParens();
4131
4132 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
4133 if (ICE->getCastKind() == CK_LValueToRValue ||
4134 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4135 E = ICE->getSubExpr()->IgnoreParens();
4136 else
4137 break;
4138 }
4139
4140 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(Val: E))
4141 if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: MemRef->getMemberDecl()))
4142 if (Field->isBitField())
4143 return Field;
4144
4145 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(Val: E)) {
4146 FieldDecl *Ivar = IvarRef->getDecl();
4147 if (Ivar->isBitField())
4148 return Ivar;
4149 }
4150
4151 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Val: E)) {
4152 if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: DeclRef->getDecl()))
4153 if (Field->isBitField())
4154 return Field;
4155
4156 if (BindingDecl *BD = dyn_cast<BindingDecl>(Val: DeclRef->getDecl()))
4157 if (Expr *E = BD->getBinding())
4158 return E->getSourceBitField();
4159 }
4160
4161 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: E)) {
4162 if (BinOp->isAssignmentOp() && BinOp->getLHS())
4163 return BinOp->getLHS()->getSourceBitField();
4164
4165 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4166 return BinOp->getRHS()->getSourceBitField();
4167 }
4168
4169 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: E))
4170 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4171 return UnOp->getSubExpr()->getSourceBitField();
4172
4173 return nullptr;
4174}
4175
4176EnumConstantDecl *Expr::getEnumConstantDecl() {
4177 Expr *E = this->IgnoreParenImpCasts();
4178 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4179 return dyn_cast<EnumConstantDecl>(Val: DRE->getDecl());
4180 return nullptr;
4181}
4182
4183bool Expr::refersToVectorElement() const {
4184 // FIXME: Why do we not just look at the ObjectKind here?
4185 const Expr *E = this->IgnoreParens();
4186
4187 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
4188 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4189 E = ICE->getSubExpr()->IgnoreParens();
4190 else
4191 break;
4192 }
4193
4194 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Val: E))
4195 return ASE->getBase()->getType()->isVectorType();
4196
4197 if (isa<ExtVectorElementExpr>(Val: E))
4198 return true;
4199
4200 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4201 if (auto *BD = dyn_cast<BindingDecl>(Val: DRE->getDecl()))
4202 if (auto *E = BD->getBinding())
4203 return E->refersToVectorElement();
4204
4205 return false;
4206}
4207
4208bool Expr::refersToGlobalRegisterVar() const {
4209 const Expr *E = this->IgnoreParenImpCasts();
4210
4211 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
4212 if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
4213 if (VD->getStorageClass() == SC_Register &&
4214 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4215 return true;
4216
4217 return false;
4218}
4219
4220bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4221 E1 = E1->IgnoreParens();
4222 E2 = E2->IgnoreParens();
4223
4224 if (E1->getStmtClass() != E2->getStmtClass())
4225 return false;
4226
4227 switch (E1->getStmtClass()) {
4228 default:
4229 return false;
4230 case CXXThisExprClass:
4231 return true;
4232 case DeclRefExprClass: {
4233 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4234 // template parameters.
4235 const auto *DRE1 = cast<DeclRefExpr>(Val: E1);
4236 const auto *DRE2 = cast<DeclRefExpr>(Val: E2);
4237 return DRE1->isPRValue() && DRE2->isPRValue() &&
4238 DRE1->getDecl() == DRE2->getDecl();
4239 }
4240 case ImplicitCastExprClass: {
4241 // Peel off implicit casts.
4242 while (true) {
4243 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(Val: E1);
4244 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(Val: E2);
4245 if (!ICE1 || !ICE2)
4246 return false;
4247 if (ICE1->getCastKind() != ICE2->getCastKind())
4248 return false;
4249 E1 = ICE1->getSubExpr()->IgnoreParens();
4250 E2 = ICE2->getSubExpr()->IgnoreParens();
4251 // The final cast must be one of these types.
4252 if (ICE1->getCastKind() == CK_LValueToRValue ||
4253 ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4254 ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4255 break;
4256 }
4257 }
4258
4259 const auto *DRE1 = dyn_cast<DeclRefExpr>(Val: E1);
4260 const auto *DRE2 = dyn_cast<DeclRefExpr>(Val: E2);
4261 if (DRE1 && DRE2)
4262 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4263
4264 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(Val: E1);
4265 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(Val: E2);
4266 if (Ivar1 && Ivar2) {
4267 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4268 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4269 }
4270
4271 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(Val: E1);
4272 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(Val: E2);
4273 if (Array1 && Array2) {
4274 if (!isSameComparisonOperand(E1: Array1->getBase(), E2: Array2->getBase()))
4275 return false;
4276
4277 auto Idx1 = Array1->getIdx();
4278 auto Idx2 = Array2->getIdx();
4279 const auto Integer1 = dyn_cast<IntegerLiteral>(Val: Idx1);
4280 const auto Integer2 = dyn_cast<IntegerLiteral>(Val: Idx2);
4281 if (Integer1 && Integer2) {
4282 if (!llvm::APInt::isSameValue(I1: Integer1->getValue(),
4283 I2: Integer2->getValue()))
4284 return false;
4285 } else {
4286 if (!isSameComparisonOperand(E1: Idx1, E2: Idx2))
4287 return false;
4288 }
4289
4290 return true;
4291 }
4292
4293 // Walk the MemberExpr chain.
4294 while (isa<MemberExpr>(Val: E1) && isa<MemberExpr>(Val: E2)) {
4295 const auto *ME1 = cast<MemberExpr>(Val: E1);
4296 const auto *ME2 = cast<MemberExpr>(Val: E2);
4297 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4298 return false;
4299 if (const auto *D = dyn_cast<VarDecl>(Val: ME1->getMemberDecl()))
4300 if (D->isStaticDataMember())
4301 return true;
4302 E1 = ME1->getBase()->IgnoreParenImpCasts();
4303 E2 = ME2->getBase()->IgnoreParenImpCasts();
4304 }
4305
4306 if (isa<CXXThisExpr>(Val: E1) && isa<CXXThisExpr>(Val: E2))
4307 return true;
4308
4309 // A static member variable can end the MemberExpr chain with either
4310 // a MemberExpr or a DeclRefExpr.
4311 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4312 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4313 return DRE->getDecl();
4314 if (const auto *ME = dyn_cast<MemberExpr>(Val: E))
4315 return ME->getMemberDecl();
4316 return nullptr;
4317 };
4318
4319 const ValueDecl *VD1 = getAnyDecl(E1);
4320 const ValueDecl *VD2 = getAnyDecl(E2);
4321 return declaresSameEntity(VD1, VD2);
4322 }
4323 }
4324}
4325
4326/// isArrow - Return true if the base expression is a pointer to vector,
4327/// return false if the base expression is a vector.
4328bool ExtVectorElementExpr::isArrow() const {
4329 return getBase()->getType()->isPointerType();
4330}
4331
4332unsigned ExtVectorElementExpr::getNumElements() const {
4333 if (const VectorType *VT = getType()->getAs<VectorType>())
4334 return VT->getNumElements();
4335 return 1;
4336}
4337
4338/// containsDuplicateElements - Return true if any element access is repeated.
4339bool ExtVectorElementExpr::containsDuplicateElements() const {
4340 // FIXME: Refactor this code to an accessor on the AST node which returns the
4341 // "type" of component access, and share with code below and in Sema.
4342 StringRef Comp = Accessor->getName();
4343
4344 // Halving swizzles do not contain duplicate elements.
4345 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4346 return false;
4347
4348 // Advance past s-char prefix on hex swizzles.
4349 if (Comp[0] == 's' || Comp[0] == 'S')
4350 Comp = Comp.substr(Start: 1);
4351
4352 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4353 if (Comp.substr(Start: i + 1).contains(C: Comp[i]))
4354 return true;
4355
4356 return false;
4357}
4358
4359/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4360void ExtVectorElementExpr::getEncodedElementAccess(
4361 SmallVectorImpl<uint32_t> &Elts) const {
4362 StringRef Comp = Accessor->getName();
4363 bool isNumericAccessor = false;
4364 if (Comp[0] == 's' || Comp[0] == 'S') {
4365 Comp = Comp.substr(Start: 1);
4366 isNumericAccessor = true;
4367 }
4368
4369 bool isHi = Comp == "hi";
4370 bool isLo = Comp == "lo";
4371 bool isEven = Comp == "even";
4372 bool isOdd = Comp == "odd";
4373
4374 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4375 uint64_t Index;
4376
4377 if (isHi)
4378 Index = e + i;
4379 else if (isLo)
4380 Index = i;
4381 else if (isEven)
4382 Index = 2 * i;
4383 else if (isOdd)
4384 Index = 2 * i + 1;
4385 else
4386 Index = ExtVectorType::getAccessorIdx(c: Comp[i], isNumericAccessor);
4387
4388 Elts.push_back(Elt: Index);
4389 }
4390}
4391
4392ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4393 QualType Type, SourceLocation BLoc,
4394 SourceLocation RP)
4395 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4396 BuiltinLoc(BLoc), RParenLoc(RP) {
4397 ShuffleVectorExprBits.NumExprs = args.size();
4398 SubExprs = new (C) Stmt*[args.size()];
4399 for (unsigned i = 0; i != args.size(); i++)
4400 SubExprs[i] = args[i];
4401
4402 setDependence(computeDependence(E: this));
4403}
4404
4405void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4406 if (SubExprs) C.Deallocate(Ptr: SubExprs);
4407
4408 this->ShuffleVectorExprBits.NumExprs = Exprs.size();
4409 SubExprs = new (C) Stmt *[ShuffleVectorExprBits.NumExprs];
4410 memcpy(dest: SubExprs, src: Exprs.data(), n: sizeof(Expr *) * Exprs.size());
4411}
4412
4413GenericSelectionExpr::GenericSelectionExpr(
4414 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4415 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4416 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4417 bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4418 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4419 AssocExprs[ResultIndex]->getValueKind(),
4420 AssocExprs[ResultIndex]->getObjectKind()),
4421 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4422 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4423 assert(AssocTypes.size() == AssocExprs.size() &&
4424 "Must have the same number of association expressions"
4425 " and TypeSourceInfo!");
4426 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4427
4428 GenericSelectionExprBits.GenericLoc = GenericLoc;
4429 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4430 ControllingExpr;
4431 llvm::copy(AssocExprs,
4432 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4433 llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() +
4434 getIndexOfStartOfAssociatedTypes());
4435
4436 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4437}
4438
4439GenericSelectionExpr::GenericSelectionExpr(
4440 const ASTContext &, SourceLocation GenericLoc,
4441 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4442 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4443 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4444 unsigned ResultIndex)
4445 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4446 AssocExprs[ResultIndex]->getValueKind(),
4447 AssocExprs[ResultIndex]->getObjectKind()),
4448 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4449 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4450 assert(AssocTypes.size() == AssocExprs.size() &&
4451 "Must have the same number of association expressions"
4452 " and TypeSourceInfo!");
4453 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4454
4455 GenericSelectionExprBits.GenericLoc = GenericLoc;
4456 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4457 ControllingType;
4458 llvm::copy(AssocExprs,
4459 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4460 llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() +
4461 getIndexOfStartOfAssociatedTypes());
4462
4463 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4464}
4465
4466GenericSelectionExpr::GenericSelectionExpr(
4467 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4468 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4469 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4470 bool ContainsUnexpandedParameterPack)
4471 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4472 OK_Ordinary),
4473 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4474 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4475 assert(AssocTypes.size() == AssocExprs.size() &&
4476 "Must have the same number of association expressions"
4477 " and TypeSourceInfo!");
4478
4479 GenericSelectionExprBits.GenericLoc = GenericLoc;
4480 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4481 ControllingExpr;
4482 llvm::copy(AssocExprs,
4483 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4484 llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() +
4485 getIndexOfStartOfAssociatedTypes());
4486
4487 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4488}
4489
4490GenericSelectionExpr::GenericSelectionExpr(
4491 const ASTContext &Context, SourceLocation GenericLoc,
4492 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4493 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4494 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4495 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4496 OK_Ordinary),
4497 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4498 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4499 assert(AssocTypes.size() == AssocExprs.size() &&
4500 "Must have the same number of association expressions"
4501 " and TypeSourceInfo!");
4502
4503 GenericSelectionExprBits.GenericLoc = GenericLoc;
4504 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4505 ControllingType;
4506 llvm::copy(AssocExprs,
4507 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4508 llvm::copy(AssocTypes, getTrailingObjects<TypeSourceInfo *>() +
4509 getIndexOfStartOfAssociatedTypes());
4510
4511 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4512}
4513
4514GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4515 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4516
4517GenericSelectionExpr *GenericSelectionExpr::Create(
4518 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4519 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4520 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4521 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4522 unsigned NumAssocs = AssocExprs.size();
4523 void *Mem = Context.Allocate(
4524 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4525 Align: alignof(GenericSelectionExpr));
4526 return new (Mem) GenericSelectionExpr(
4527 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4528 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4529}
4530
4531GenericSelectionExpr *GenericSelectionExpr::Create(
4532 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4533 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4534 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4535 bool ContainsUnexpandedParameterPack) {
4536 unsigned NumAssocs = AssocExprs.size();
4537 void *Mem = Context.Allocate(
4538 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4539 Align: alignof(GenericSelectionExpr));
4540 return new (Mem) GenericSelectionExpr(
4541 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4542 RParenLoc, ContainsUnexpandedParameterPack);
4543}
4544
4545GenericSelectionExpr *GenericSelectionExpr::Create(
4546 const ASTContext &Context, SourceLocation GenericLoc,
4547 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4548 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4549 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4550 unsigned ResultIndex) {
4551 unsigned NumAssocs = AssocExprs.size();
4552 void *Mem = Context.Allocate(
4553 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4554 Align: alignof(GenericSelectionExpr));
4555 return new (Mem) GenericSelectionExpr(
4556 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4557 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4558}
4559
4560GenericSelectionExpr *GenericSelectionExpr::Create(
4561 const ASTContext &Context, SourceLocation GenericLoc,
4562 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4563 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4564 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4565 unsigned NumAssocs = AssocExprs.size();
4566 void *Mem = Context.Allocate(
4567 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4568 Align: alignof(GenericSelectionExpr));
4569 return new (Mem) GenericSelectionExpr(
4570 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4571 RParenLoc, ContainsUnexpandedParameterPack);
4572}
4573
4574GenericSelectionExpr *
4575GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4576 unsigned NumAssocs) {
4577 void *Mem = Context.Allocate(
4578 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4579 Align: alignof(GenericSelectionExpr));
4580 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4581}
4582
4583//===----------------------------------------------------------------------===//
4584// DesignatedInitExpr
4585//===----------------------------------------------------------------------===//
4586
4587const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4588 assert(isFieldDesignator() && "Only valid on a field designator");
4589 if (FieldInfo.NameOrField & 0x01)
4590 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4591 return getFieldDecl()->getIdentifier();
4592}
4593
4594DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4595 llvm::ArrayRef<Designator> Designators,
4596 SourceLocation EqualOrColonLoc,
4597 bool GNUSyntax,
4598 ArrayRef<Expr *> IndexExprs, Expr *Init)
4599 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4600 Init->getObjectKind()),
4601 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4602 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4603 this->Designators = new (C) Designator[NumDesignators];
4604
4605 // Record the initializer itself.
4606 child_iterator Child = child_begin();
4607 *Child++ = Init;
4608
4609 // Copy the designators and their subexpressions, computing
4610 // value-dependence along the way.
4611 unsigned IndexIdx = 0;
4612 for (unsigned I = 0; I != NumDesignators; ++I) {
4613 this->Designators[I] = Designators[I];
4614 if (this->Designators[I].isArrayDesignator()) {
4615 // Copy the index expressions into permanent storage.
4616 *Child++ = IndexExprs[IndexIdx++];
4617 } else if (this->Designators[I].isArrayRangeDesignator()) {
4618 // Copy the start/end expressions into permanent storage.
4619 *Child++ = IndexExprs[IndexIdx++];
4620 *Child++ = IndexExprs[IndexIdx++];
4621 }
4622 }
4623
4624 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4625 setDependence(computeDependence(E: this));
4626}
4627
4628DesignatedInitExpr *
4629DesignatedInitExpr::Create(const ASTContext &C,
4630 llvm::ArrayRef<Designator> Designators,
4631 ArrayRef<Expr*> IndexExprs,
4632 SourceLocation ColonOrEqualLoc,
4633 bool UsesColonSyntax, Expr *Init) {
4634 void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: IndexExprs.size() + 1),
4635 Align: alignof(DesignatedInitExpr));
4636 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4637 ColonOrEqualLoc, UsesColonSyntax,
4638 IndexExprs, Init);
4639}
4640
4641DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4642 unsigned NumIndexExprs) {
4643 void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumIndexExprs + 1),
4644 Align: alignof(DesignatedInitExpr));
4645 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4646}
4647
4648void DesignatedInitExpr::setDesignators(const ASTContext &C,
4649 const Designator *Desigs,
4650 unsigned NumDesigs) {
4651 Designators = new (C) Designator[NumDesigs];
4652 NumDesignators = NumDesigs;
4653 for (unsigned I = 0; I != NumDesigs; ++I)
4654 Designators[I] = Desigs[I];
4655}
4656
4657SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4658 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4659 if (size() == 1)
4660 return DIE->getDesignator(Idx: 0)->getSourceRange();
4661 return SourceRange(DIE->getDesignator(Idx: 0)->getBeginLoc(),
4662 DIE->getDesignator(Idx: size() - 1)->getEndLoc());
4663}
4664
4665SourceLocation DesignatedInitExpr::getBeginLoc() const {
4666 auto *DIE = const_cast<DesignatedInitExpr *>(this);
4667 Designator &First = *DIE->getDesignator(Idx: 0);
4668 if (First.isFieldDesignator()) {
4669 // Skip past implicit designators for anonymous structs/unions, since
4670 // these do not have valid source locations.
4671 for (unsigned int i = 0; i < DIE->size(); i++) {
4672 Designator &Des = *DIE->getDesignator(Idx: i);
4673 SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc();
4674 if (!retval.isValid())
4675 continue;
4676 return retval;
4677 }
4678 }
4679 return First.getLBracketLoc();
4680}
4681
4682SourceLocation DesignatedInitExpr::getEndLoc() const {
4683 return getInit()->getEndLoc();
4684}
4685
4686Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4687 assert(D.isArrayDesignator() && "Requires array designator");
4688 return getSubExpr(Idx: D.getArrayIndex() + 1);
4689}
4690
4691Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4692 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4693 return getSubExpr(Idx: D.getArrayIndex() + 1);
4694}
4695
4696Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4697 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4698 return getSubExpr(Idx: D.getArrayIndex() + 2);
4699}
4700
4701/// Replaces the designator at index @p Idx with the series
4702/// of designators in [First, Last).
4703void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4704 const Designator *First,
4705 const Designator *Last) {
4706 unsigned NumNewDesignators = Last - First;
4707 if (NumNewDesignators == 0) {
4708 std::copy_backward(first: Designators + Idx + 1,
4709 last: Designators + NumDesignators,
4710 result: Designators + Idx);
4711 --NumNewDesignators;
4712 return;
4713 }
4714 if (NumNewDesignators == 1) {
4715 Designators[Idx] = *First;
4716 return;
4717 }
4718
4719 Designator *NewDesignators
4720 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4721 std::copy(first: Designators, last: Designators + Idx, result: NewDesignators);
4722 std::copy(first: First, last: Last, result: NewDesignators + Idx);
4723 std::copy(first: Designators + Idx + 1, last: Designators + NumDesignators,
4724 result: NewDesignators + Idx + NumNewDesignators);
4725 Designators = NewDesignators;
4726 NumDesignators = NumDesignators - 1 + NumNewDesignators;
4727}
4728
4729DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4730 SourceLocation lBraceLoc,
4731 Expr *baseExpr,
4732 SourceLocation rBraceLoc)
4733 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4734 OK_Ordinary) {
4735 BaseAndUpdaterExprs[0] = baseExpr;
4736
4737 InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, {}, rBraceLoc);
4738 ILE->setType(baseExpr->getType());
4739 BaseAndUpdaterExprs[1] = ILE;
4740
4741 // FIXME: this is wrong, set it correctly.
4742 setDependence(ExprDependence::None);
4743}
4744
4745SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4746 return getBase()->getBeginLoc();
4747}
4748
4749SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4750 return getBase()->getEndLoc();
4751}
4752
4753ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4754 SourceLocation RParenLoc)
4755 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4756 LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4757 ParenListExprBits.NumExprs = Exprs.size();
4758 llvm::copy(Exprs, getTrailingObjects());
4759 setDependence(computeDependence(E: this));
4760}
4761
4762ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4763 : Expr(ParenListExprClass, Empty) {
4764 ParenListExprBits.NumExprs = NumExprs;
4765}
4766
4767ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4768 SourceLocation LParenLoc,
4769 ArrayRef<Expr *> Exprs,
4770 SourceLocation RParenLoc) {
4771 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: Exprs.size()),
4772 Align: alignof(ParenListExpr));
4773 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4774}
4775
4776ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4777 unsigned NumExprs) {
4778 void *Mem =
4779 Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumExprs), Align: alignof(ParenListExpr));
4780 return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4781}
4782
4783/// Certain overflow-dependent code patterns can have their integer overflow
4784/// sanitization disabled. Check for the common pattern `if (a + b < a)` and
4785/// return the resulting BinaryOperator responsible for the addition so we can
4786/// elide overflow checks during codegen.
4787static std::optional<BinaryOperator *>
4788getOverflowPatternBinOp(const BinaryOperator *E) {
4789 Expr *Addition, *ComparedTo;
4790 if (E->getOpcode() == BO_LT) {
4791 Addition = E->getLHS();
4792 ComparedTo = E->getRHS();
4793 } else if (E->getOpcode() == BO_GT) {
4794 Addition = E->getRHS();
4795 ComparedTo = E->getLHS();
4796 } else {
4797 return {};
4798 }
4799
4800 const Expr *AddLHS = nullptr, *AddRHS = nullptr;
4801 BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: Addition);
4802
4803 if (BO && BO->getOpcode() == clang::BO_Add) {
4804 // now store addends for lookup on other side of '>'
4805 AddLHS = BO->getLHS();
4806 AddRHS = BO->getRHS();
4807 }
4808
4809 if (!AddLHS || !AddRHS)
4810 return {};
4811
4812 const Decl *LHSDecl, *RHSDecl, *OtherDecl;
4813
4814 LHSDecl = AddLHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4815 RHSDecl = AddRHS->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4816 OtherDecl = ComparedTo->IgnoreParenImpCasts()->getReferencedDeclOfCallee();
4817
4818 if (!OtherDecl)
4819 return {};
4820
4821 if (!LHSDecl && !RHSDecl)
4822 return {};
4823
4824 if ((LHSDecl && LHSDecl == OtherDecl && LHSDecl != RHSDecl) ||
4825 (RHSDecl && RHSDecl == OtherDecl && RHSDecl != LHSDecl))
4826 return BO;
4827 return {};
4828}
4829
4830/// Compute and set the OverflowPatternExclusion bit based on whether the
4831/// BinaryOperator expression matches an overflow pattern being ignored by
4832/// -fsanitize-undefined-ignore-overflow-pattern=add-signed-overflow-test or
4833/// -fsanitize-undefined-ignore-overflow-pattern=add-unsigned-overflow-test
4834static void computeOverflowPatternExclusion(const ASTContext &Ctx,
4835 const BinaryOperator *E) {
4836 std::optional<BinaryOperator *> Result = getOverflowPatternBinOp(E);
4837 if (!Result.has_value())
4838 return;
4839 QualType AdditionResultType = Result.value()->getType();
4840
4841 if ((AdditionResultType->isSignedIntegerType() &&
4842 Ctx.getLangOpts().isOverflowPatternExcluded(
4843 Kind: LangOptions::OverflowPatternExclusionKind::AddSignedOverflowTest)) ||
4844 (AdditionResultType->isUnsignedIntegerType() &&
4845 Ctx.getLangOpts().isOverflowPatternExcluded(
4846 Kind: LangOptions::OverflowPatternExclusionKind::AddUnsignedOverflowTest)))
4847 Result.value()->setExcludedOverflowPattern(true);
4848}
4849
4850BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4851 Opcode opc, QualType ResTy, ExprValueKind VK,
4852 ExprObjectKind OK, SourceLocation opLoc,
4853 FPOptionsOverride FPFeatures)
4854 : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4855 BinaryOperatorBits.Opc = opc;
4856 assert(!isCompoundAssignmentOp() &&
4857 "Use CompoundAssignOperator for compound assignments");
4858 BinaryOperatorBits.OpLoc = opLoc;
4859 BinaryOperatorBits.ExcludedOverflowPattern = false;
4860 SubExprs[LHS] = lhs;
4861 SubExprs[RHS] = rhs;
4862 computeOverflowPatternExclusion(Ctx, E: this);
4863 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4864 if (hasStoredFPFeatures())
4865 setStoredFPFeatures(FPFeatures);
4866 setDependence(computeDependence(E: this));
4867}
4868
4869BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4870 Opcode opc, QualType ResTy, ExprValueKind VK,
4871 ExprObjectKind OK, SourceLocation opLoc,
4872 FPOptionsOverride FPFeatures, bool dead2)
4873 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4874 BinaryOperatorBits.Opc = opc;
4875 BinaryOperatorBits.ExcludedOverflowPattern = false;
4876 assert(isCompoundAssignmentOp() &&
4877 "Use CompoundAssignOperator for compound assignments");
4878 BinaryOperatorBits.OpLoc = opLoc;
4879 SubExprs[LHS] = lhs;
4880 SubExprs[RHS] = rhs;
4881 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4882 if (hasStoredFPFeatures())
4883 setStoredFPFeatures(FPFeatures);
4884 setDependence(computeDependence(E: this));
4885}
4886
4887BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4888 bool HasFPFeatures) {
4889 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4890 void *Mem =
4891 C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator));
4892 return new (Mem) BinaryOperator(EmptyShell());
4893}
4894
4895BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4896 Expr *rhs, Opcode opc, QualType ResTy,
4897 ExprValueKind VK, ExprObjectKind OK,
4898 SourceLocation opLoc,
4899 FPOptionsOverride FPFeatures) {
4900 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4901 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4902 void *Mem =
4903 C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator));
4904 return new (Mem)
4905 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4906}
4907
4908CompoundAssignOperator *
4909CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4910 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4911 void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra,
4912 Align: alignof(CompoundAssignOperator));
4913 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4914}
4915
4916CompoundAssignOperator *
4917CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4918 Opcode opc, QualType ResTy, ExprValueKind VK,
4919 ExprObjectKind OK, SourceLocation opLoc,
4920 FPOptionsOverride FPFeatures,
4921 QualType CompLHSType, QualType CompResultType) {
4922 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4923 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4924 void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra,
4925 Align: alignof(CompoundAssignOperator));
4926 return new (Mem)
4927 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4928 CompLHSType, CompResultType);
4929}
4930
4931UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4932 bool hasFPFeatures) {
4933 void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures),
4934 Align: alignof(UnaryOperator));
4935 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4936}
4937
4938UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4939 QualType type, ExprValueKind VK, ExprObjectKind OK,
4940 SourceLocation l, bool CanOverflow,
4941 FPOptionsOverride FPFeatures)
4942 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4943 UnaryOperatorBits.Opc = opc;
4944 UnaryOperatorBits.CanOverflow = CanOverflow;
4945 UnaryOperatorBits.Loc = l;
4946 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4947 if (hasStoredFPFeatures())
4948 setStoredFPFeatures(FPFeatures);
4949 setDependence(computeDependence(E: this, Ctx));
4950}
4951
4952UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4953 Opcode opc, QualType type,
4954 ExprValueKind VK, ExprObjectKind OK,
4955 SourceLocation l, bool CanOverflow,
4956 FPOptionsOverride FPFeatures) {
4957 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4958 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures);
4959 void *Mem = C.Allocate(Size, Align: alignof(UnaryOperator));
4960 return new (Mem)
4961 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4962}
4963
4964const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4965 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(Val: e))
4966 e = ewc->getSubExpr();
4967 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(Val: e))
4968 e = m->getSubExpr();
4969 e = cast<CXXConstructExpr>(Val: e)->getArg(Arg: 0);
4970 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(Val: e))
4971 e = ice->getSubExpr();
4972 return cast<OpaqueValueExpr>(Val: e);
4973}
4974
4975PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4976 EmptyShell sh,
4977 unsigned numSemanticExprs) {
4978 void *buffer =
4979 Context.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: 1 + numSemanticExprs),
4980 Align: alignof(PseudoObjectExpr));
4981 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4982}
4983
4984PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4985 : Expr(PseudoObjectExprClass, shell) {
4986 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4987}
4988
4989PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4990 ArrayRef<Expr*> semantics,
4991 unsigned resultIndex) {
4992 assert(syntax && "no syntactic expression!");
4993 assert(semantics.size() && "no semantic expressions!");
4994
4995 QualType type;
4996 ExprValueKind VK;
4997 if (resultIndex == NoResult) {
4998 type = C.VoidTy;
4999 VK = VK_PRValue;
5000 } else {
5001 assert(resultIndex < semantics.size());
5002 type = semantics[resultIndex]->getType();
5003 VK = semantics[resultIndex]->getValueKind();
5004 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
5005 }
5006
5007 void *buffer = C.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: semantics.size() + 1),
5008 Align: alignof(PseudoObjectExpr));
5009 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
5010 resultIndex);
5011}
5012
5013PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
5014 Expr *syntax, ArrayRef<Expr *> semantics,
5015 unsigned resultIndex)
5016 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
5017 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
5018 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
5019 MutableArrayRef<Expr *> Trail = getTrailingObjects(semantics.size() + 1);
5020 Trail[0] = syntax;
5021
5022 assert(llvm::all_of(semantics,
5023 [](const Expr *E) {
5024 return !isa<OpaqueValueExpr>(E) ||
5025 cast<OpaqueValueExpr>(E)->getSourceExpr() !=
5026 nullptr;
5027 }) &&
5028 "opaque-value semantic expressions for pseudo-object "
5029 "operations must have sources");
5030
5031 llvm::copy(Range&: semantics, Out: Trail.drop_front().begin());
5032 setDependence(computeDependence(E: this));
5033}
5034
5035//===----------------------------------------------------------------------===//
5036// Child Iterators for iterating over subexpressions/substatements
5037//===----------------------------------------------------------------------===//
5038
5039// UnaryExprOrTypeTraitExpr
5040Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
5041 const_child_range CCR =
5042 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
5043 return child_range(cast_away_const(RHS: CCR.begin()), cast_away_const(RHS: CCR.end()));
5044}
5045
5046Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
5047 // If this is of a type and the type is a VLA type (and not a typedef), the
5048 // size expression of the VLA needs to be treated as an executable expression.
5049 // Why isn't this weirdness documented better in StmtIterator?
5050 if (isArgumentType()) {
5051 if (const VariableArrayType *T =
5052 dyn_cast<VariableArrayType>(Val: getArgumentType().getTypePtr()))
5053 return const_child_range(const_child_iterator(T), const_child_iterator());
5054 return const_child_range(const_child_iterator(), const_child_iterator());
5055 }
5056 return const_child_range(&Argument.Ex, &Argument.Ex + 1);
5057}
5058
5059AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
5060 AtomicOp op, SourceLocation RP)
5061 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
5062 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
5063 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
5064 for (unsigned i = 0; i != args.size(); i++)
5065 SubExprs[i] = args[i];
5066 setDependence(computeDependence(E: this));
5067}
5068
5069unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
5070 switch (Op) {
5071 case AO__c11_atomic_init:
5072 case AO__opencl_atomic_init:
5073 case AO__c11_atomic_load:
5074 case AO__atomic_load_n:
5075 case AO__atomic_test_and_set:
5076 case AO__atomic_clear:
5077 return 2;
5078
5079 case AO__scoped_atomic_load_n:
5080 case AO__opencl_atomic_load:
5081 case AO__hip_atomic_load:
5082 case AO__c11_atomic_store:
5083 case AO__c11_atomic_exchange:
5084 case AO__atomic_load:
5085 case AO__atomic_store:
5086 case AO__atomic_store_n:
5087 case AO__atomic_exchange_n:
5088 case AO__c11_atomic_fetch_add:
5089 case AO__c11_atomic_fetch_sub:
5090 case AO__c11_atomic_fetch_and:
5091 case AO__c11_atomic_fetch_or:
5092 case AO__c11_atomic_fetch_xor:
5093 case AO__c11_atomic_fetch_nand:
5094 case AO__c11_atomic_fetch_max:
5095 case AO__c11_atomic_fetch_min:
5096 case AO__atomic_fetch_add:
5097 case AO__atomic_fetch_sub:
5098 case AO__atomic_fetch_and:
5099 case AO__atomic_fetch_or:
5100 case AO__atomic_fetch_xor:
5101 case AO__atomic_fetch_nand:
5102 case AO__atomic_add_fetch:
5103 case AO__atomic_sub_fetch:
5104 case AO__atomic_and_fetch:
5105 case AO__atomic_or_fetch:
5106 case AO__atomic_xor_fetch:
5107 case AO__atomic_nand_fetch:
5108 case AO__atomic_min_fetch:
5109 case AO__atomic_max_fetch:
5110 case AO__atomic_fetch_min:
5111 case AO__atomic_fetch_max:
5112 return 3;
5113
5114 case AO__scoped_atomic_load:
5115 case AO__scoped_atomic_store:
5116 case AO__scoped_atomic_store_n:
5117 case AO__scoped_atomic_fetch_add:
5118 case AO__scoped_atomic_fetch_sub:
5119 case AO__scoped_atomic_fetch_and:
5120 case AO__scoped_atomic_fetch_or:
5121 case AO__scoped_atomic_fetch_xor:
5122 case AO__scoped_atomic_fetch_nand:
5123 case AO__scoped_atomic_add_fetch:
5124 case AO__scoped_atomic_sub_fetch:
5125 case AO__scoped_atomic_and_fetch:
5126 case AO__scoped_atomic_or_fetch:
5127 case AO__scoped_atomic_xor_fetch:
5128 case AO__scoped_atomic_nand_fetch:
5129 case AO__scoped_atomic_min_fetch:
5130 case AO__scoped_atomic_max_fetch:
5131 case AO__scoped_atomic_fetch_min:
5132 case AO__scoped_atomic_fetch_max:
5133 case AO__scoped_atomic_exchange_n:
5134 case AO__hip_atomic_exchange:
5135 case AO__hip_atomic_fetch_add:
5136 case AO__hip_atomic_fetch_sub:
5137 case AO__hip_atomic_fetch_and:
5138 case AO__hip_atomic_fetch_or:
5139 case AO__hip_atomic_fetch_xor:
5140 case AO__hip_atomic_fetch_min:
5141 case AO__hip_atomic_fetch_max:
5142 case AO__opencl_atomic_store:
5143 case AO__hip_atomic_store:
5144 case AO__opencl_atomic_exchange:
5145 case AO__opencl_atomic_fetch_add:
5146 case AO__opencl_atomic_fetch_sub:
5147 case AO__opencl_atomic_fetch_and:
5148 case AO__opencl_atomic_fetch_or:
5149 case AO__opencl_atomic_fetch_xor:
5150 case AO__opencl_atomic_fetch_min:
5151 case AO__opencl_atomic_fetch_max:
5152 case AO__atomic_exchange:
5153 return 4;
5154
5155 case AO__scoped_atomic_exchange:
5156 case AO__c11_atomic_compare_exchange_strong:
5157 case AO__c11_atomic_compare_exchange_weak:
5158 return 5;
5159 case AO__hip_atomic_compare_exchange_strong:
5160 case AO__opencl_atomic_compare_exchange_strong:
5161 case AO__opencl_atomic_compare_exchange_weak:
5162 case AO__hip_atomic_compare_exchange_weak:
5163 case AO__atomic_compare_exchange:
5164 case AO__atomic_compare_exchange_n:
5165 return 6;
5166
5167 case AO__scoped_atomic_compare_exchange:
5168 case AO__scoped_atomic_compare_exchange_n:
5169 return 7;
5170 }
5171 llvm_unreachable("unknown atomic op");
5172}
5173
5174QualType AtomicExpr::getValueType() const {
5175 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
5176 if (auto AT = T->getAs<AtomicType>())
5177 return AT->getValueType();
5178 return T;
5179}
5180
5181QualType ArraySectionExpr::getBaseOriginalType(const Expr *Base) {
5182 unsigned ArraySectionCount = 0;
5183 while (auto *OASE = dyn_cast<ArraySectionExpr>(Val: Base->IgnoreParens())) {
5184 Base = OASE->getBase();
5185 ++ArraySectionCount;
5186 }
5187 while (auto *ASE =
5188 dyn_cast<ArraySubscriptExpr>(Val: Base->IgnoreParenImpCasts())) {
5189 Base = ASE->getBase();
5190 ++ArraySectionCount;
5191 }
5192 Base = Base->IgnoreParenImpCasts();
5193 auto OriginalTy = Base->getType();
5194 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Base))
5195 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl()))
5196 OriginalTy = PVD->getOriginalType().getNonReferenceType();
5197
5198 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5199 if (OriginalTy->isAnyPointerType())
5200 OriginalTy = OriginalTy->getPointeeType();
5201 else if (OriginalTy->isArrayType())
5202 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5203 else
5204 return {};
5205 }
5206 return OriginalTy;
5207}
5208
5209RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5210 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5211 : Expr(RecoveryExprClass, T.getNonReferenceType(),
5212 T->isDependentType() ? VK_LValue : getValueKindForType(T),
5213 OK_Ordinary),
5214 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5215 assert(!T.isNull());
5216 assert(!llvm::is_contained(SubExprs, nullptr));
5217
5218 llvm::copy(SubExprs, getTrailingObjects());
5219 setDependence(computeDependence(E: this));
5220}
5221
5222RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
5223 SourceLocation BeginLoc,
5224 SourceLocation EndLoc,
5225 ArrayRef<Expr *> SubExprs) {
5226 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
5227 alignof(RecoveryExpr));
5228 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5229}
5230
5231RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
5232 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
5233 alignof(RecoveryExpr));
5234 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5235}
5236
5237void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5238 assert(
5239 NumDims == Dims.size() &&
5240 "Preallocated number of dimensions is different from the provided one.");
5241 llvm::copy(Dims, getTrailingObjects<Expr *>());
5242}
5243
5244void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5245 assert(
5246 NumDims == BR.size() &&
5247 "Preallocated number of dimensions is different from the provided one.");
5248 llvm::copy(BR, getTrailingObjects<SourceRange>());
5249}
5250
5251OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5252 SourceLocation L, SourceLocation R,
5253 ArrayRef<Expr *> Dims)
5254 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5255 RPLoc(R), NumDims(Dims.size()) {
5256 setBase(Op);
5257 setDimensions(Dims);
5258 setDependence(computeDependence(E: this));
5259}
5260
5261OMPArrayShapingExpr *
5262OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
5263 SourceLocation L, SourceLocation R,
5264 ArrayRef<Expr *> Dims,
5265 ArrayRef<SourceRange> BracketRanges) {
5266 assert(Dims.size() == BracketRanges.size() &&
5267 "Different number of dimensions and brackets ranges.");
5268 void *Mem = Context.Allocate(
5269 Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: Dims.size() + 1, Counts: Dims.size()),
5270 Align: alignof(OMPArrayShapingExpr));
5271 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5272 E->setBracketsRanges(BracketRanges);
5273 return E;
5274}
5275
5276OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
5277 unsigned NumDims) {
5278 void *Mem = Context.Allocate(
5279 Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: NumDims + 1, Counts: NumDims),
5280 Align: alignof(OMPArrayShapingExpr));
5281 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5282}
5283
5284void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5285 getTrailingObjects<Decl *>(NumIterators)[I] = D;
5286}
5287
5288void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5289 assert(I < NumIterators &&
5290 "Idx is greater or equal the number of iterators definitions.");
5291 getTrailingObjects<
5292 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5293 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5294}
5295
5296void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5297 SourceLocation ColonLoc, Expr *End,
5298 SourceLocation SecondColonLoc,
5299 Expr *Step) {
5300 assert(I < NumIterators &&
5301 "Idx is greater or equal the number of iterators definitions.");
5302 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5303 static_cast<int>(RangeExprOffset::Begin)] =
5304 Begin;
5305 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5306 static_cast<int>(RangeExprOffset::End)] = End;
5307 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5308 static_cast<int>(RangeExprOffset::Step)] = Step;
5309 getTrailingObjects<
5310 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5311 static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5312 ColonLoc;
5313 getTrailingObjects<
5314 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5315 static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5316 SecondColonLoc;
5317}
5318
5319Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5320 return getTrailingObjects<Decl *>()[I];
5321}
5322
5323OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5324 IteratorRange Res;
5325 Res.Begin =
5326 getTrailingObjects<Expr *>()[I * static_cast<int>(
5327 RangeExprOffset::Total) +
5328 static_cast<int>(RangeExprOffset::Begin)];
5329 Res.End =
5330 getTrailingObjects<Expr *>()[I * static_cast<int>(
5331 RangeExprOffset::Total) +
5332 static_cast<int>(RangeExprOffset::End)];
5333 Res.Step =
5334 getTrailingObjects<Expr *>()[I * static_cast<int>(
5335 RangeExprOffset::Total) +
5336 static_cast<int>(RangeExprOffset::Step)];
5337 return Res;
5338}
5339
5340SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5341 return getTrailingObjects<
5342 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5343 static_cast<int>(RangeLocOffset::AssignLoc)];
5344}
5345
5346SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5347 return getTrailingObjects<
5348 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5349 static_cast<int>(RangeLocOffset::FirstColonLoc)];
5350}
5351
5352SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5353 return getTrailingObjects<
5354 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5355 static_cast<int>(RangeLocOffset::SecondColonLoc)];
5356}
5357
5358void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5359 getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5360}
5361
5362OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5363 return getTrailingObjects<OMPIteratorHelperData>()[I];
5364}
5365
5366const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5367 return getTrailingObjects<OMPIteratorHelperData>()[I];
5368}
5369
5370OMPIteratorExpr::OMPIteratorExpr(
5371 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5372 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5373 ArrayRef<OMPIteratorHelperData> Helpers)
5374 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5375 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5376 NumIterators(Data.size()) {
5377 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5378 const IteratorDefinition &D = Data[I];
5379 setIteratorDeclaration(I, D: D.IteratorDecl);
5380 setAssignmentLoc(I, Loc: D.AssignmentLoc);
5381 setIteratorRange(I, Begin: D.Range.Begin, ColonLoc: D.ColonLoc, End: D.Range.End,
5382 SecondColonLoc: D.SecondColonLoc, Step: D.Range.Step);
5383 setHelper(I, D: Helpers[I]);
5384 }
5385 setDependence(computeDependence(E: this));
5386}
5387
5388OMPIteratorExpr *
5389OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5390 SourceLocation IteratorKwLoc, SourceLocation L,
5391 SourceLocation R,
5392 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5393 ArrayRef<OMPIteratorHelperData> Helpers) {
5394 assert(Data.size() == Helpers.size() &&
5395 "Data and helpers must have the same size.");
5396 void *Mem = Context.Allocate(
5397 Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5398 Counts: Data.size(), Counts: Data.size() * static_cast<int>(RangeExprOffset::Total),
5399 Counts: Data.size() * static_cast<int>(RangeLocOffset::Total),
5400 Counts: Helpers.size()),
5401 Align: alignof(OMPIteratorExpr));
5402 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5403}
5404
5405OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5406 unsigned NumIterators) {
5407 void *Mem = Context.Allocate(
5408 Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5409 Counts: NumIterators, Counts: NumIterators * static_cast<int>(RangeExprOffset::Total),
5410 Counts: NumIterators * static_cast<int>(RangeLocOffset::Total), Counts: NumIterators),
5411 Align: alignof(OMPIteratorExpr));
5412 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5413}
5414
5415HLSLOutArgExpr *HLSLOutArgExpr::Create(const ASTContext &C, QualType Ty,
5416 OpaqueValueExpr *Base,
5417 OpaqueValueExpr *OpV, Expr *WB,
5418 bool IsInOut) {
5419 return new (C) HLSLOutArgExpr(Ty, Base, OpV, WB, IsInOut);
5420}
5421
5422HLSLOutArgExpr *HLSLOutArgExpr::CreateEmpty(const ASTContext &C) {
5423 return new (C) HLSLOutArgExpr(EmptyShell());
5424}
5425
5426OpenACCAsteriskSizeExpr *OpenACCAsteriskSizeExpr::Create(const ASTContext &C,
5427 SourceLocation Loc) {
5428 return new (C) OpenACCAsteriskSizeExpr(Loc, C.IntTy);
5429}
5430
5431OpenACCAsteriskSizeExpr *
5432OpenACCAsteriskSizeExpr::CreateEmpty(const ASTContext &C) {
5433 return new (C) OpenACCAsteriskSizeExpr({}, C.IntTy);
5434}
5435
5436ConvertVectorExpr *ConvertVectorExpr::CreateEmpty(const ASTContext &C,
5437 bool hasFPFeatures) {
5438 void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures),
5439 Align: alignof(ConvertVectorExpr));
5440 return new (Mem) ConvertVectorExpr(hasFPFeatures, EmptyShell());
5441}
5442
5443ConvertVectorExpr *ConvertVectorExpr::Create(
5444 const ASTContext &C, Expr *SrcExpr, TypeSourceInfo *TI, QualType DstType,
5445 ExprValueKind VK, ExprObjectKind OK, SourceLocation BuiltinLoc,
5446 SourceLocation RParenLoc, FPOptionsOverride FPFeatures) {
5447 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
5448 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures);
5449 void *Mem = C.Allocate(Size, Align: alignof(ConvertVectorExpr));
5450 return new (Mem) ConvertVectorExpr(SrcExpr, TI, DstType, VK, OK, BuiltinLoc,
5451 RParenLoc, FPFeatures);
5452}
5453

source code of clang/lib/AST/Expr.cpp