1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Expr class and subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/Expr.h"
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/ComputeDependence.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/DependenceFlags.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/IgnoreExpr.h"
25#include "clang/AST/Mangle.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/CharInfo.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/Lexer.h"
33#include "clang/Lex/LiteralSupport.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/Format.h"
37#include "llvm/Support/raw_ostream.h"
38#include <algorithm>
39#include <cstring>
40#include <optional>
41using namespace clang;
42
43const Expr *Expr::getBestDynamicClassTypeExpr() const {
44 const Expr *E = this;
45 while (true) {
46 E = E->IgnoreParenBaseCasts();
47
48 // Follow the RHS of a comma operator.
49 if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
50 if (BO->getOpcode() == BO_Comma) {
51 E = BO->getRHS();
52 continue;
53 }
54 }
55
56 // Step into initializer for materialized temporaries.
57 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
58 E = MTE->getSubExpr();
59 continue;
60 }
61
62 break;
63 }
64
65 return E;
66}
67
68const CXXRecordDecl *Expr::getBestDynamicClassType() const {
69 const Expr *E = getBestDynamicClassTypeExpr();
70 QualType DerivedType = E->getType();
71 if (const PointerType *PTy = DerivedType->getAs<PointerType>())
72 DerivedType = PTy->getPointeeType();
73
74 if (DerivedType->isDependentType())
75 return nullptr;
76
77 const RecordType *Ty = DerivedType->castAs<RecordType>();
78 Decl *D = Ty->getDecl();
79 return cast<CXXRecordDecl>(Val: D);
80}
81
82const Expr *Expr::skipRValueSubobjectAdjustments(
83 SmallVectorImpl<const Expr *> &CommaLHSs,
84 SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
85 const Expr *E = this;
86 while (true) {
87 E = E->IgnoreParens();
88
89 if (const auto *CE = dyn_cast<CastExpr>(Val: E)) {
90 if ((CE->getCastKind() == CK_DerivedToBase ||
91 CE->getCastKind() == CK_UncheckedDerivedToBase) &&
92 E->getType()->isRecordType()) {
93 E = CE->getSubExpr();
94 const auto *Derived =
95 cast<CXXRecordDecl>(Val: E->getType()->castAs<RecordType>()->getDecl());
96 Adjustments.push_back(Elt: SubobjectAdjustment(CE, Derived));
97 continue;
98 }
99
100 if (CE->getCastKind() == CK_NoOp) {
101 E = CE->getSubExpr();
102 continue;
103 }
104 } else if (const auto *ME = dyn_cast<MemberExpr>(Val: E)) {
105 if (!ME->isArrow()) {
106 assert(ME->getBase()->getType()->isRecordType());
107 if (const auto *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) {
108 if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
109 E = ME->getBase();
110 Adjustments.push_back(Elt: SubobjectAdjustment(Field));
111 continue;
112 }
113 }
114 }
115 } else if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
116 if (BO->getOpcode() == BO_PtrMemD) {
117 assert(BO->getRHS()->isPRValue());
118 E = BO->getLHS();
119 const auto *MPT = BO->getRHS()->getType()->getAs<MemberPointerType>();
120 Adjustments.push_back(Elt: SubobjectAdjustment(MPT, BO->getRHS()));
121 continue;
122 }
123 if (BO->getOpcode() == BO_Comma) {
124 CommaLHSs.push_back(Elt: BO->getLHS());
125 E = BO->getRHS();
126 continue;
127 }
128 }
129
130 // Nothing changed.
131 break;
132 }
133 return E;
134}
135
136bool Expr::isKnownToHaveBooleanValue(bool Semantic) const {
137 const Expr *E = IgnoreParens();
138
139 // If this value has _Bool type, it is obvious 0/1.
140 if (E->getType()->isBooleanType()) return true;
141 // If this is a non-scalar-integer type, we don't care enough to try.
142 if (!E->getType()->isIntegralOrEnumerationType()) return false;
143
144 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) {
145 switch (UO->getOpcode()) {
146 case UO_Plus:
147 return UO->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
148 case UO_LNot:
149 return true;
150 default:
151 return false;
152 }
153 }
154
155 // Only look through implicit casts. If the user writes
156 // '(int) (a && b)' treat it as an arbitrary int.
157 // FIXME: Should we look through any cast expression in !Semantic mode?
158 if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(Val: E))
159 return CE->getSubExpr()->isKnownToHaveBooleanValue(Semantic);
160
161 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
162 switch (BO->getOpcode()) {
163 default: return false;
164 case BO_LT: // Relational operators.
165 case BO_GT:
166 case BO_LE:
167 case BO_GE:
168 case BO_EQ: // Equality operators.
169 case BO_NE:
170 case BO_LAnd: // AND operator.
171 case BO_LOr: // Logical OR operator.
172 return true;
173
174 case BO_And: // Bitwise AND operator.
175 case BO_Xor: // Bitwise XOR operator.
176 case BO_Or: // Bitwise OR operator.
177 // Handle things like (x==2)|(y==12).
178 return BO->getLHS()->isKnownToHaveBooleanValue(Semantic) &&
179 BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
180
181 case BO_Comma:
182 case BO_Assign:
183 return BO->getRHS()->isKnownToHaveBooleanValue(Semantic);
184 }
185 }
186
187 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E))
188 return CO->getTrueExpr()->isKnownToHaveBooleanValue(Semantic) &&
189 CO->getFalseExpr()->isKnownToHaveBooleanValue(Semantic);
190
191 if (isa<ObjCBoolLiteralExpr>(Val: E))
192 return true;
193
194 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E))
195 return OVE->getSourceExpr()->isKnownToHaveBooleanValue(Semantic);
196
197 if (const FieldDecl *FD = E->getSourceBitField())
198 if (!Semantic && FD->getType()->isUnsignedIntegerType() &&
199 !FD->getBitWidth()->isValueDependent() &&
200 FD->getBitWidthValue(Ctx: FD->getASTContext()) == 1)
201 return true;
202
203 return false;
204}
205
206bool Expr::isFlexibleArrayMemberLike(
207 ASTContext &Ctx,
208 LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel,
209 bool IgnoreTemplateOrMacroSubstitution) const {
210 const Expr *E = IgnoreParens();
211 const Decl *D = nullptr;
212
213 if (const auto *ME = dyn_cast<MemberExpr>(Val: E))
214 D = ME->getMemberDecl();
215 else if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
216 D = DRE->getDecl();
217 else if (const auto *IRE = dyn_cast<ObjCIvarRefExpr>(Val: E))
218 D = IRE->getDecl();
219
220 return Decl::isFlexibleArrayMemberLike(Context&: Ctx, D, Ty: E->getType(),
221 StrictFlexArraysLevel,
222 IgnoreTemplateOrMacroSubstitution);
223}
224
225const ValueDecl *
226Expr::getAsBuiltinConstantDeclRef(const ASTContext &Context) const {
227 Expr::EvalResult Eval;
228
229 if (EvaluateAsConstantExpr(Result&: Eval, Ctx: Context)) {
230 APValue &Value = Eval.Val;
231
232 if (Value.isMemberPointer())
233 return Value.getMemberPointerDecl();
234
235 if (Value.isLValue() && Value.getLValueOffset().isZero())
236 return Value.getLValueBase().dyn_cast<const ValueDecl *>();
237 }
238
239 return nullptr;
240}
241
242// Amusing macro metaprogramming hack: check whether a class provides
243// a more specific implementation of getExprLoc().
244//
245// See also Stmt.cpp:{getBeginLoc(),getEndLoc()}.
246namespace {
247 /// This implementation is used when a class provides a custom
248 /// implementation of getExprLoc.
249 template <class E, class T>
250 SourceLocation getExprLocImpl(const Expr *expr,
251 SourceLocation (T::*v)() const) {
252 return static_cast<const E*>(expr)->getExprLoc();
253 }
254
255 /// This implementation is used when a class doesn't provide
256 /// a custom implementation of getExprLoc. Overload resolution
257 /// should pick it over the implementation above because it's
258 /// more specialized according to function template partial ordering.
259 template <class E>
260 SourceLocation getExprLocImpl(const Expr *expr,
261 SourceLocation (Expr::*v)() const) {
262 return static_cast<const E *>(expr)->getBeginLoc();
263 }
264}
265
266QualType Expr::getEnumCoercedType(const ASTContext &Ctx) const {
267 if (isa<EnumType>(Val: getType()))
268 return getType();
269 if (const auto *ECD = getEnumConstantDecl()) {
270 const auto *ED = cast<EnumDecl>(ECD->getDeclContext());
271 if (ED->isCompleteDefinition())
272 return Ctx.getTypeDeclType(Decl: ED);
273 }
274 return getType();
275}
276
277SourceLocation Expr::getExprLoc() const {
278 switch (getStmtClass()) {
279 case Stmt::NoStmtClass: llvm_unreachable("statement without class");
280#define ABSTRACT_STMT(type)
281#define STMT(type, base) \
282 case Stmt::type##Class: break;
283#define EXPR(type, base) \
284 case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
285#include "clang/AST/StmtNodes.inc"
286 }
287 llvm_unreachable("unknown expression kind");
288}
289
290//===----------------------------------------------------------------------===//
291// Primary Expressions.
292//===----------------------------------------------------------------------===//
293
294static void AssertResultStorageKind(ConstantResultStorageKind Kind) {
295 assert((Kind == ConstantResultStorageKind::APValue ||
296 Kind == ConstantResultStorageKind::Int64 ||
297 Kind == ConstantResultStorageKind::None) &&
298 "Invalid StorageKind Value");
299 (void)Kind;
300}
301
302ConstantResultStorageKind ConstantExpr::getStorageKind(const APValue &Value) {
303 switch (Value.getKind()) {
304 case APValue::None:
305 case APValue::Indeterminate:
306 return ConstantResultStorageKind::None;
307 case APValue::Int:
308 if (!Value.getInt().needsCleanup())
309 return ConstantResultStorageKind::Int64;
310 [[fallthrough]];
311 default:
312 return ConstantResultStorageKind::APValue;
313 }
314}
315
316ConstantResultStorageKind
317ConstantExpr::getStorageKind(const Type *T, const ASTContext &Context) {
318 if (T->isIntegralOrEnumerationType() && Context.getTypeInfo(T).Width <= 64)
319 return ConstantResultStorageKind::Int64;
320 return ConstantResultStorageKind::APValue;
321}
322
323ConstantExpr::ConstantExpr(Expr *SubExpr, ConstantResultStorageKind StorageKind,
324 bool IsImmediateInvocation)
325 : FullExpr(ConstantExprClass, SubExpr) {
326 ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind);
327 ConstantExprBits.APValueKind = APValue::None;
328 ConstantExprBits.IsUnsigned = false;
329 ConstantExprBits.BitWidth = 0;
330 ConstantExprBits.HasCleanup = false;
331 ConstantExprBits.IsImmediateInvocation = IsImmediateInvocation;
332
333 if (StorageKind == ConstantResultStorageKind::APValue)
334 ::new (getTrailingObjects<APValue>()) APValue();
335}
336
337ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
338 ConstantResultStorageKind StorageKind,
339 bool IsImmediateInvocation) {
340 assert(!isa<ConstantExpr>(E));
341 AssertResultStorageKind(Kind: StorageKind);
342
343 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
344 Counts: StorageKind == ConstantResultStorageKind::APValue,
345 Counts: StorageKind == ConstantResultStorageKind::Int64);
346 void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr));
347 return new (Mem) ConstantExpr(E, StorageKind, IsImmediateInvocation);
348}
349
350ConstantExpr *ConstantExpr::Create(const ASTContext &Context, Expr *E,
351 const APValue &Result) {
352 ConstantResultStorageKind StorageKind = getStorageKind(Value: Result);
353 ConstantExpr *Self = Create(Context, E, StorageKind);
354 Self->SetResult(Value: Result, Context);
355 return Self;
356}
357
358ConstantExpr::ConstantExpr(EmptyShell Empty,
359 ConstantResultStorageKind StorageKind)
360 : FullExpr(ConstantExprClass, Empty) {
361 ConstantExprBits.ResultKind = llvm::to_underlying(E: StorageKind);
362
363 if (StorageKind == ConstantResultStorageKind::APValue)
364 ::new (getTrailingObjects<APValue>()) APValue();
365}
366
367ConstantExpr *ConstantExpr::CreateEmpty(const ASTContext &Context,
368 ConstantResultStorageKind StorageKind) {
369 AssertResultStorageKind(Kind: StorageKind);
370
371 unsigned Size = totalSizeToAlloc<APValue, uint64_t>(
372 Counts: StorageKind == ConstantResultStorageKind::APValue,
373 Counts: StorageKind == ConstantResultStorageKind::Int64);
374 void *Mem = Context.Allocate(Size, Align: alignof(ConstantExpr));
375 return new (Mem) ConstantExpr(EmptyShell(), StorageKind);
376}
377
378void ConstantExpr::MoveIntoResult(APValue &Value, const ASTContext &Context) {
379 assert((unsigned)getStorageKind(Value) <= ConstantExprBits.ResultKind &&
380 "Invalid storage for this value kind");
381 ConstantExprBits.APValueKind = Value.getKind();
382 switch (getResultStorageKind()) {
383 case ConstantResultStorageKind::None:
384 return;
385 case ConstantResultStorageKind::Int64:
386 Int64Result() = *Value.getInt().getRawData();
387 ConstantExprBits.BitWidth = Value.getInt().getBitWidth();
388 ConstantExprBits.IsUnsigned = Value.getInt().isUnsigned();
389 return;
390 case ConstantResultStorageKind::APValue:
391 if (!ConstantExprBits.HasCleanup && Value.needsCleanup()) {
392 ConstantExprBits.HasCleanup = true;
393 Context.addDestruction(Ptr: &APValueResult());
394 }
395 APValueResult() = std::move(Value);
396 return;
397 }
398 llvm_unreachable("Invalid ResultKind Bits");
399}
400
401llvm::APSInt ConstantExpr::getResultAsAPSInt() const {
402 switch (getResultStorageKind()) {
403 case ConstantResultStorageKind::APValue:
404 return APValueResult().getInt();
405 case ConstantResultStorageKind::Int64:
406 return llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
407 ConstantExprBits.IsUnsigned);
408 default:
409 llvm_unreachable("invalid Accessor");
410 }
411}
412
413APValue ConstantExpr::getAPValueResult() const {
414
415 switch (getResultStorageKind()) {
416 case ConstantResultStorageKind::APValue:
417 return APValueResult();
418 case ConstantResultStorageKind::Int64:
419 return APValue(
420 llvm::APSInt(llvm::APInt(ConstantExprBits.BitWidth, Int64Result()),
421 ConstantExprBits.IsUnsigned));
422 case ConstantResultStorageKind::None:
423 if (ConstantExprBits.APValueKind == APValue::Indeterminate)
424 return APValue::IndeterminateValue();
425 return APValue();
426 }
427 llvm_unreachable("invalid ResultKind");
428}
429
430DeclRefExpr::DeclRefExpr(const ASTContext &Ctx, ValueDecl *D,
431 bool RefersToEnclosingVariableOrCapture, QualType T,
432 ExprValueKind VK, SourceLocation L,
433 const DeclarationNameLoc &LocInfo,
434 NonOdrUseReason NOUR)
435 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D), DNLoc(LocInfo) {
436 DeclRefExprBits.HasQualifier = false;
437 DeclRefExprBits.HasTemplateKWAndArgsInfo = false;
438 DeclRefExprBits.HasFoundDecl = false;
439 DeclRefExprBits.HadMultipleCandidates = false;
440 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
441 RefersToEnclosingVariableOrCapture;
442 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
443 DeclRefExprBits.NonOdrUseReason = NOUR;
444 DeclRefExprBits.IsImmediateEscalating = false;
445 DeclRefExprBits.Loc = L;
446 setDependence(computeDependence(E: this, Ctx));
447}
448
449DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
450 NestedNameSpecifierLoc QualifierLoc,
451 SourceLocation TemplateKWLoc, ValueDecl *D,
452 bool RefersToEnclosingVariableOrCapture,
453 const DeclarationNameInfo &NameInfo, NamedDecl *FoundD,
454 const TemplateArgumentListInfo *TemplateArgs,
455 QualType T, ExprValueKind VK, NonOdrUseReason NOUR)
456 : Expr(DeclRefExprClass, T, VK, OK_Ordinary), D(D),
457 DNLoc(NameInfo.getInfo()) {
458 DeclRefExprBits.Loc = NameInfo.getLoc();
459 DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
460 if (QualifierLoc)
461 new (getTrailingObjects<NestedNameSpecifierLoc>())
462 NestedNameSpecifierLoc(QualifierLoc);
463 DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
464 if (FoundD)
465 *getTrailingObjects<NamedDecl *>() = FoundD;
466 DeclRefExprBits.HasTemplateKWAndArgsInfo
467 = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
468 DeclRefExprBits.RefersToEnclosingVariableOrCapture =
469 RefersToEnclosingVariableOrCapture;
470 DeclRefExprBits.CapturedByCopyInLambdaWithExplicitObjectParameter = false;
471 DeclRefExprBits.NonOdrUseReason = NOUR;
472 if (TemplateArgs) {
473 auto Deps = TemplateArgumentDependence::None;
474 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
475 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
476 Deps);
477 assert(!(Deps & TemplateArgumentDependence::Dependent) &&
478 "built a DeclRefExpr with dependent template args");
479 } else if (TemplateKWLoc.isValid()) {
480 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
481 TemplateKWLoc);
482 }
483 DeclRefExprBits.IsImmediateEscalating = false;
484 DeclRefExprBits.HadMultipleCandidates = 0;
485 setDependence(computeDependence(E: this, Ctx));
486}
487
488DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
489 NestedNameSpecifierLoc QualifierLoc,
490 SourceLocation TemplateKWLoc, ValueDecl *D,
491 bool RefersToEnclosingVariableOrCapture,
492 SourceLocation NameLoc, QualType T,
493 ExprValueKind VK, NamedDecl *FoundD,
494 const TemplateArgumentListInfo *TemplateArgs,
495 NonOdrUseReason NOUR) {
496 return Create(Context, QualifierLoc, TemplateKWLoc, D,
497 RefersToEnclosingVariableOrCapture,
498 NameInfo: DeclarationNameInfo(D->getDeclName(), NameLoc),
499 T, VK, FoundD, TemplateArgs, NOUR);
500}
501
502DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
503 NestedNameSpecifierLoc QualifierLoc,
504 SourceLocation TemplateKWLoc, ValueDecl *D,
505 bool RefersToEnclosingVariableOrCapture,
506 const DeclarationNameInfo &NameInfo,
507 QualType T, ExprValueKind VK,
508 NamedDecl *FoundD,
509 const TemplateArgumentListInfo *TemplateArgs,
510 NonOdrUseReason NOUR) {
511 // Filter out cases where the found Decl is the same as the value refenenced.
512 if (D == FoundD)
513 FoundD = nullptr;
514
515 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
516 std::size_t Size =
517 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
518 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
519 Counts: QualifierLoc ? 1 : 0, Counts: FoundD ? 1 : 0,
520 Counts: HasTemplateKWAndArgsInfo ? 1 : 0,
521 Counts: TemplateArgs ? TemplateArgs->size() : 0);
522
523 void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr));
524 return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
525 RefersToEnclosingVariableOrCapture, NameInfo,
526 FoundD, TemplateArgs, T, VK, NOUR);
527}
528
529DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
530 bool HasQualifier,
531 bool HasFoundDecl,
532 bool HasTemplateKWAndArgsInfo,
533 unsigned NumTemplateArgs) {
534 assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
535 std::size_t Size =
536 totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
537 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
538 Counts: HasQualifier ? 1 : 0, Counts: HasFoundDecl ? 1 : 0, Counts: HasTemplateKWAndArgsInfo,
539 Counts: NumTemplateArgs);
540 void *Mem = Context.Allocate(Size, Align: alignof(DeclRefExpr));
541 return new (Mem) DeclRefExpr(EmptyShell());
542}
543
544void DeclRefExpr::setDecl(ValueDecl *NewD) {
545 D = NewD;
546 if (getType()->isUndeducedType())
547 setType(NewD->getType());
548 setDependence(computeDependence(this, NewD->getASTContext()));
549}
550
551SourceLocation DeclRefExpr::getBeginLoc() const {
552 if (hasQualifier())
553 return getQualifierLoc().getBeginLoc();
554 return getNameInfo().getBeginLoc();
555}
556SourceLocation DeclRefExpr::getEndLoc() const {
557 if (hasExplicitTemplateArgs())
558 return getRAngleLoc();
559 return getNameInfo().getEndLoc();
560}
561
562SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(SourceLocation OpLoc,
563 SourceLocation LParen,
564 SourceLocation RParen,
565 QualType ResultTy,
566 TypeSourceInfo *TSI)
567 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary),
568 OpLoc(OpLoc), LParen(LParen), RParen(RParen) {
569 setTypeSourceInfo(TSI);
570 setDependence(computeDependence(E: this));
571}
572
573SYCLUniqueStableNameExpr::SYCLUniqueStableNameExpr(EmptyShell Empty,
574 QualType ResultTy)
575 : Expr(SYCLUniqueStableNameExprClass, ResultTy, VK_PRValue, OK_Ordinary) {}
576
577SYCLUniqueStableNameExpr *
578SYCLUniqueStableNameExpr::Create(const ASTContext &Ctx, SourceLocation OpLoc,
579 SourceLocation LParen, SourceLocation RParen,
580 TypeSourceInfo *TSI) {
581 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
582 return new (Ctx)
583 SYCLUniqueStableNameExpr(OpLoc, LParen, RParen, ResultTy, TSI);
584}
585
586SYCLUniqueStableNameExpr *
587SYCLUniqueStableNameExpr::CreateEmpty(const ASTContext &Ctx) {
588 QualType ResultTy = Ctx.getPointerType(Ctx.CharTy.withConst());
589 return new (Ctx) SYCLUniqueStableNameExpr(EmptyShell(), ResultTy);
590}
591
592std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context) const {
593 return SYCLUniqueStableNameExpr::ComputeName(Context,
594 Ty: getTypeSourceInfo()->getType());
595}
596
597std::string SYCLUniqueStableNameExpr::ComputeName(ASTContext &Context,
598 QualType Ty) {
599 auto MangleCallback = [](ASTContext &Ctx,
600 const NamedDecl *ND) -> std::optional<unsigned> {
601 if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: ND))
602 return RD->getDeviceLambdaManglingNumber();
603 return std::nullopt;
604 };
605
606 std::unique_ptr<MangleContext> Ctx{ItaniumMangleContext::create(
607 Context, Diags&: Context.getDiagnostics(), Discriminator: MangleCallback)};
608
609 std::string Buffer;
610 Buffer.reserve(res: 128);
611 llvm::raw_string_ostream Out(Buffer);
612 Ctx->mangleCanonicalTypeName(T: Ty, Out);
613
614 return Out.str();
615}
616
617PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy,
618 PredefinedIdentKind IK, bool IsTransparent,
619 StringLiteral *SL)
620 : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary) {
621 PredefinedExprBits.Kind = llvm::to_underlying(E: IK);
622 assert((getIdentKind() == IK) &&
623 "IdentKind do not fit in PredefinedExprBitfields!");
624 bool HasFunctionName = SL != nullptr;
625 PredefinedExprBits.HasFunctionName = HasFunctionName;
626 PredefinedExprBits.IsTransparent = IsTransparent;
627 PredefinedExprBits.Loc = L;
628 if (HasFunctionName)
629 setFunctionName(SL);
630 setDependence(computeDependence(E: this));
631}
632
633PredefinedExpr::PredefinedExpr(EmptyShell Empty, bool HasFunctionName)
634 : Expr(PredefinedExprClass, Empty) {
635 PredefinedExprBits.HasFunctionName = HasFunctionName;
636}
637
638PredefinedExpr *PredefinedExpr::Create(const ASTContext &Ctx, SourceLocation L,
639 QualType FNTy, PredefinedIdentKind IK,
640 bool IsTransparent, StringLiteral *SL) {
641 bool HasFunctionName = SL != nullptr;
642 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName),
643 Align: alignof(PredefinedExpr));
644 return new (Mem) PredefinedExpr(L, FNTy, IK, IsTransparent, SL);
645}
646
647PredefinedExpr *PredefinedExpr::CreateEmpty(const ASTContext &Ctx,
648 bool HasFunctionName) {
649 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: HasFunctionName),
650 Align: alignof(PredefinedExpr));
651 return new (Mem) PredefinedExpr(EmptyShell(), HasFunctionName);
652}
653
654StringRef PredefinedExpr::getIdentKindName(PredefinedIdentKind IK) {
655 switch (IK) {
656 case PredefinedIdentKind::Func:
657 return "__func__";
658 case PredefinedIdentKind::Function:
659 return "__FUNCTION__";
660 case PredefinedIdentKind::FuncDName:
661 return "__FUNCDNAME__";
662 case PredefinedIdentKind::LFunction:
663 return "L__FUNCTION__";
664 case PredefinedIdentKind::PrettyFunction:
665 return "__PRETTY_FUNCTION__";
666 case PredefinedIdentKind::FuncSig:
667 return "__FUNCSIG__";
668 case PredefinedIdentKind::LFuncSig:
669 return "L__FUNCSIG__";
670 case PredefinedIdentKind::PrettyFunctionNoVirtual:
671 break;
672 }
673 llvm_unreachable("Unknown ident kind for PredefinedExpr");
674}
675
676// FIXME: Maybe this should use DeclPrinter with a special "print predefined
677// expr" policy instead.
678std::string PredefinedExpr::ComputeName(PredefinedIdentKind IK,
679 const Decl *CurrentDecl,
680 bool ForceElaboratedPrinting) {
681 ASTContext &Context = CurrentDecl->getASTContext();
682
683 if (IK == PredefinedIdentKind::FuncDName) {
684 if (const NamedDecl *ND = dyn_cast<NamedDecl>(Val: CurrentDecl)) {
685 std::unique_ptr<MangleContext> MC;
686 MC.reset(p: Context.createMangleContext());
687
688 if (MC->shouldMangleDeclName(D: ND)) {
689 SmallString<256> Buffer;
690 llvm::raw_svector_ostream Out(Buffer);
691 GlobalDecl GD;
692 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: ND))
693 GD = GlobalDecl(CD, Ctor_Base);
694 else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Val: ND))
695 GD = GlobalDecl(DD, Dtor_Base);
696 else if (ND->hasAttr<CUDAGlobalAttr>())
697 GD = GlobalDecl(cast<FunctionDecl>(Val: ND));
698 else
699 GD = GlobalDecl(ND);
700 MC->mangleName(GD, Out);
701
702 if (!Buffer.empty() && Buffer.front() == '\01')
703 return std::string(Buffer.substr(Start: 1));
704 return std::string(Buffer);
705 }
706 return std::string(ND->getIdentifier()->getName());
707 }
708 return "";
709 }
710 if (isa<BlockDecl>(Val: CurrentDecl)) {
711 // For blocks we only emit something if it is enclosed in a function
712 // For top-level block we'd like to include the name of variable, but we
713 // don't have it at this point.
714 auto DC = CurrentDecl->getDeclContext();
715 if (DC->isFileContext())
716 return "";
717
718 SmallString<256> Buffer;
719 llvm::raw_svector_ostream Out(Buffer);
720 if (auto *DCBlock = dyn_cast<BlockDecl>(Val: DC))
721 // For nested blocks, propagate up to the parent.
722 Out << ComputeName(IK, DCBlock);
723 else if (auto *DCDecl = dyn_cast<Decl>(Val: DC))
724 Out << ComputeName(IK, CurrentDecl: DCDecl) << "_block_invoke";
725 return std::string(Out.str());
726 }
727 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CurrentDecl)) {
728 const auto &LO = Context.getLangOpts();
729 bool IsFuncOrFunctionInNonMSVCCompatEnv =
730 ((IK == PredefinedIdentKind::Func ||
731 IK == PredefinedIdentKind ::Function) &&
732 !LO.MSVCCompat);
733 bool IsLFunctionInMSVCCommpatEnv =
734 IK == PredefinedIdentKind::LFunction && LO.MSVCCompat;
735 bool IsFuncOrFunctionOrLFunctionOrFuncDName =
736 IK != PredefinedIdentKind::PrettyFunction &&
737 IK != PredefinedIdentKind::PrettyFunctionNoVirtual &&
738 IK != PredefinedIdentKind::FuncSig &&
739 IK != PredefinedIdentKind::LFuncSig;
740 if ((ForceElaboratedPrinting &&
741 (IsFuncOrFunctionInNonMSVCCompatEnv || IsLFunctionInMSVCCommpatEnv)) ||
742 (!ForceElaboratedPrinting && IsFuncOrFunctionOrLFunctionOrFuncDName))
743 return FD->getNameAsString();
744
745 SmallString<256> Name;
746 llvm::raw_svector_ostream Out(Name);
747
748 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
749 if (MD->isVirtual() && IK != PredefinedIdentKind::PrettyFunctionNoVirtual)
750 Out << "virtual ";
751 if (MD->isStatic())
752 Out << "static ";
753 }
754
755 class PrettyCallbacks final : public PrintingCallbacks {
756 public:
757 PrettyCallbacks(const LangOptions &LO) : LO(LO) {}
758 std::string remapPath(StringRef Path) const override {
759 SmallString<128> p(Path);
760 LO.remapPathPrefix(Path&: p);
761 return std::string(p);
762 }
763
764 private:
765 const LangOptions &LO;
766 };
767 PrintingPolicy Policy(Context.getLangOpts());
768 PrettyCallbacks PrettyCB(Context.getLangOpts());
769 Policy.Callbacks = &PrettyCB;
770 if (IK == PredefinedIdentKind::Function && ForceElaboratedPrinting)
771 Policy.SuppressTagKeyword = !LO.MSVCCompat;
772 std::string Proto;
773 llvm::raw_string_ostream POut(Proto);
774
775 const FunctionDecl *Decl = FD;
776 if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
777 Decl = Pattern;
778 const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
779 const FunctionProtoType *FT = nullptr;
780 if (FD->hasWrittenPrototype())
781 FT = dyn_cast<FunctionProtoType>(Val: AFT);
782
783 if (IK == PredefinedIdentKind::FuncSig ||
784 IK == PredefinedIdentKind::LFuncSig) {
785 switch (AFT->getCallConv()) {
786 case CC_C: POut << "__cdecl "; break;
787 case CC_X86StdCall: POut << "__stdcall "; break;
788 case CC_X86FastCall: POut << "__fastcall "; break;
789 case CC_X86ThisCall: POut << "__thiscall "; break;
790 case CC_X86VectorCall: POut << "__vectorcall "; break;
791 case CC_X86RegCall: POut << "__regcall "; break;
792 // Only bother printing the conventions that MSVC knows about.
793 default: break;
794 }
795 }
796
797 FD->printQualifiedName(POut, Policy);
798
799 if (IK == PredefinedIdentKind::Function) {
800 POut.flush();
801 Out << Proto;
802 return std::string(Name);
803 }
804
805 POut << "(";
806 if (FT) {
807 for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
808 if (i) POut << ", ";
809 POut << Decl->getParamDecl(i)->getType().stream(Policy);
810 }
811
812 if (FT->isVariadic()) {
813 if (FD->getNumParams()) POut << ", ";
814 POut << "...";
815 } else if ((IK == PredefinedIdentKind::FuncSig ||
816 IK == PredefinedIdentKind::LFuncSig ||
817 !Context.getLangOpts().CPlusPlus) &&
818 !Decl->getNumParams()) {
819 POut << "void";
820 }
821 }
822 POut << ")";
823
824 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
825 assert(FT && "We must have a written prototype in this case.");
826 if (FT->isConst())
827 POut << " const";
828 if (FT->isVolatile())
829 POut << " volatile";
830 RefQualifierKind Ref = MD->getRefQualifier();
831 if (Ref == RQ_LValue)
832 POut << " &";
833 else if (Ref == RQ_RValue)
834 POut << " &&";
835 }
836
837 typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
838 SpecsTy Specs;
839 const DeclContext *Ctx = FD->getDeclContext();
840 while (Ctx && isa<NamedDecl>(Val: Ctx)) {
841 const ClassTemplateSpecializationDecl *Spec
842 = dyn_cast<ClassTemplateSpecializationDecl>(Val: Ctx);
843 if (Spec && !Spec->isExplicitSpecialization())
844 Specs.push_back(Elt: Spec);
845 Ctx = Ctx->getParent();
846 }
847
848 std::string TemplateParams;
849 llvm::raw_string_ostream TOut(TemplateParams);
850 for (const ClassTemplateSpecializationDecl *D : llvm::reverse(C&: Specs)) {
851 const TemplateParameterList *Params =
852 D->getSpecializedTemplate()->getTemplateParameters();
853 const TemplateArgumentList &Args = D->getTemplateArgs();
854 assert(Params->size() == Args.size());
855 for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
856 StringRef Param = Params->getParam(Idx: i)->getName();
857 if (Param.empty()) continue;
858 TOut << Param << " = ";
859 Args.get(Idx: i).print(Policy, Out&: TOut,
860 IncludeType: TemplateParameterList::shouldIncludeTypeForArgument(
861 Policy, TPL: Params, Idx: i));
862 TOut << ", ";
863 }
864 }
865
866 FunctionTemplateSpecializationInfo *FSI
867 = FD->getTemplateSpecializationInfo();
868 if (FSI && !FSI->isExplicitSpecialization()) {
869 const TemplateParameterList* Params
870 = FSI->getTemplate()->getTemplateParameters();
871 const TemplateArgumentList* Args = FSI->TemplateArguments;
872 assert(Params->size() == Args->size());
873 for (unsigned i = 0, e = Params->size(); i != e; ++i) {
874 StringRef Param = Params->getParam(Idx: i)->getName();
875 if (Param.empty()) continue;
876 TOut << Param << " = ";
877 Args->get(Idx: i).print(Policy, Out&: TOut, /*IncludeType*/ true);
878 TOut << ", ";
879 }
880 }
881
882 TOut.flush();
883 if (!TemplateParams.empty()) {
884 // remove the trailing comma and space
885 TemplateParams.resize(n: TemplateParams.size() - 2);
886 POut << " [" << TemplateParams << "]";
887 }
888
889 POut.flush();
890
891 // Print "auto" for all deduced return types. This includes C++1y return
892 // type deduction and lambdas. For trailing return types resolve the
893 // decltype expression. Otherwise print the real type when this is
894 // not a constructor or destructor.
895 if (isa<CXXMethodDecl>(Val: FD) &&
896 cast<CXXMethodDecl>(Val: FD)->getParent()->isLambda())
897 Proto = "auto " + Proto;
898 else if (FT && FT->getReturnType()->getAs<DecltypeType>())
899 FT->getReturnType()
900 ->getAs<DecltypeType>()
901 ->getUnderlyingType()
902 .getAsStringInternal(Proto, Policy);
903 else if (!isa<CXXConstructorDecl>(Val: FD) && !isa<CXXDestructorDecl>(Val: FD))
904 AFT->getReturnType().getAsStringInternal(Str&: Proto, Policy);
905
906 Out << Proto;
907
908 return std::string(Name);
909 }
910 if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(Val: CurrentDecl)) {
911 for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
912 // Skip to its enclosing function or method, but not its enclosing
913 // CapturedDecl.
914 if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
915 const Decl *D = Decl::castFromDeclContext(DC);
916 return ComputeName(IK, CurrentDecl: D);
917 }
918 llvm_unreachable("CapturedDecl not inside a function or method");
919 }
920 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: CurrentDecl)) {
921 SmallString<256> Name;
922 llvm::raw_svector_ostream Out(Name);
923 Out << (MD->isInstanceMethod() ? '-' : '+');
924 Out << '[';
925
926 // For incorrect code, there might not be an ObjCInterfaceDecl. Do
927 // a null check to avoid a crash.
928 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
929 Out << *ID;
930
931 if (const ObjCCategoryImplDecl *CID =
932 dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
933 Out << '(' << *CID << ')';
934
935 Out << ' ';
936 MD->getSelector().print(OS&: Out);
937 Out << ']';
938
939 return std::string(Name);
940 }
941 if (isa<TranslationUnitDecl>(Val: CurrentDecl) &&
942 IK == PredefinedIdentKind::PrettyFunction) {
943 // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
944 return "top level";
945 }
946 return "";
947}
948
949void APNumericStorage::setIntValue(const ASTContext &C,
950 const llvm::APInt &Val) {
951 if (hasAllocation())
952 C.Deallocate(Ptr: pVal);
953
954 BitWidth = Val.getBitWidth();
955 unsigned NumWords = Val.getNumWords();
956 const uint64_t* Words = Val.getRawData();
957 if (NumWords > 1) {
958 pVal = new (C) uint64_t[NumWords];
959 std::copy(first: Words, last: Words + NumWords, result: pVal);
960 } else if (NumWords == 1)
961 VAL = Words[0];
962 else
963 VAL = 0;
964}
965
966IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
967 QualType type, SourceLocation l)
968 : Expr(IntegerLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l) {
969 assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
970 assert(V.getBitWidth() == C.getIntWidth(type) &&
971 "Integer type is not the correct size for constant.");
972 setValue(C, V);
973 setDependence(ExprDependence::None);
974}
975
976IntegerLiteral *
977IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
978 QualType type, SourceLocation l) {
979 return new (C) IntegerLiteral(C, V, type, l);
980}
981
982IntegerLiteral *
983IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
984 return new (C) IntegerLiteral(Empty);
985}
986
987FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
988 QualType type, SourceLocation l,
989 unsigned Scale)
990 : Expr(FixedPointLiteralClass, type, VK_PRValue, OK_Ordinary), Loc(l),
991 Scale(Scale) {
992 assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
993 assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
994 "Fixed point type is not the correct size for constant.");
995 setValue(C, V);
996 setDependence(ExprDependence::None);
997}
998
999FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
1000 const llvm::APInt &V,
1001 QualType type,
1002 SourceLocation l,
1003 unsigned Scale) {
1004 return new (C) FixedPointLiteral(C, V, type, l, Scale);
1005}
1006
1007FixedPointLiteral *FixedPointLiteral::Create(const ASTContext &C,
1008 EmptyShell Empty) {
1009 return new (C) FixedPointLiteral(Empty);
1010}
1011
1012std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
1013 // Currently the longest decimal number that can be printed is the max for an
1014 // unsigned long _Accum: 4294967295.99999999976716935634613037109375
1015 // which is 43 characters.
1016 SmallString<64> S;
1017 FixedPointValueToString(
1018 S, llvm::APSInt::getUnsigned(X: getValue().getZExtValue()), Scale);
1019 return std::string(S);
1020}
1021
1022void CharacterLiteral::print(unsigned Val, CharacterLiteralKind Kind,
1023 raw_ostream &OS) {
1024 switch (Kind) {
1025 case CharacterLiteralKind::Ascii:
1026 break; // no prefix.
1027 case CharacterLiteralKind::Wide:
1028 OS << 'L';
1029 break;
1030 case CharacterLiteralKind::UTF8:
1031 OS << "u8";
1032 break;
1033 case CharacterLiteralKind::UTF16:
1034 OS << 'u';
1035 break;
1036 case CharacterLiteralKind::UTF32:
1037 OS << 'U';
1038 break;
1039 }
1040
1041 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Val);
1042 if (!Escaped.empty()) {
1043 OS << "'" << Escaped << "'";
1044 } else {
1045 // A character literal might be sign-extended, which
1046 // would result in an invalid \U escape sequence.
1047 // FIXME: multicharacter literals such as '\xFF\xFF\xFF\xFF'
1048 // are not correctly handled.
1049 if ((Val & ~0xFFu) == ~0xFFu && Kind == CharacterLiteralKind::Ascii)
1050 Val &= 0xFFu;
1051 if (Val < 256 && isPrintable(c: (unsigned char)Val))
1052 OS << "'" << (char)Val << "'";
1053 else if (Val < 256)
1054 OS << "'\\x" << llvm::format(Fmt: "%02x", Vals: Val) << "'";
1055 else if (Val <= 0xFFFF)
1056 OS << "'\\u" << llvm::format(Fmt: "%04x", Vals: Val) << "'";
1057 else
1058 OS << "'\\U" << llvm::format(Fmt: "%08x", Vals: Val) << "'";
1059 }
1060}
1061
1062FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
1063 bool isexact, QualType Type, SourceLocation L)
1064 : Expr(FloatingLiteralClass, Type, VK_PRValue, OK_Ordinary), Loc(L) {
1065 setSemantics(V.getSemantics());
1066 FloatingLiteralBits.IsExact = isexact;
1067 setValue(C, Val: V);
1068 setDependence(ExprDependence::None);
1069}
1070
1071FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
1072 : Expr(FloatingLiteralClass, Empty) {
1073 setRawSemantics(llvm::APFloatBase::S_IEEEhalf);
1074 FloatingLiteralBits.IsExact = false;
1075}
1076
1077FloatingLiteral *
1078FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
1079 bool isexact, QualType Type, SourceLocation L) {
1080 return new (C) FloatingLiteral(C, V, isexact, Type, L);
1081}
1082
1083FloatingLiteral *
1084FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
1085 return new (C) FloatingLiteral(C, Empty);
1086}
1087
1088/// getValueAsApproximateDouble - This returns the value as an inaccurate
1089/// double. Note that this may cause loss of precision, but is useful for
1090/// debugging dumps, etc.
1091double FloatingLiteral::getValueAsApproximateDouble() const {
1092 llvm::APFloat V = getValue();
1093 bool ignored;
1094 V.convert(ToSemantics: llvm::APFloat::IEEEdouble(), RM: llvm::APFloat::rmNearestTiesToEven,
1095 losesInfo: &ignored);
1096 return V.convertToDouble();
1097}
1098
1099unsigned StringLiteral::mapCharByteWidth(TargetInfo const &Target,
1100 StringLiteralKind SK) {
1101 unsigned CharByteWidth = 0;
1102 switch (SK) {
1103 case StringLiteralKind::Ordinary:
1104 case StringLiteralKind::UTF8:
1105 CharByteWidth = Target.getCharWidth();
1106 break;
1107 case StringLiteralKind::Wide:
1108 CharByteWidth = Target.getWCharWidth();
1109 break;
1110 case StringLiteralKind::UTF16:
1111 CharByteWidth = Target.getChar16Width();
1112 break;
1113 case StringLiteralKind::UTF32:
1114 CharByteWidth = Target.getChar32Width();
1115 break;
1116 case StringLiteralKind::Unevaluated:
1117 return sizeof(char); // Host;
1118 }
1119 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1120 CharByteWidth /= 8;
1121 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
1122 "The only supported character byte widths are 1,2 and 4!");
1123 return CharByteWidth;
1124}
1125
1126StringLiteral::StringLiteral(const ASTContext &Ctx, StringRef Str,
1127 StringLiteralKind Kind, bool Pascal, QualType Ty,
1128 const SourceLocation *Loc,
1129 unsigned NumConcatenated)
1130 : Expr(StringLiteralClass, Ty, VK_LValue, OK_Ordinary) {
1131
1132 unsigned Length = Str.size();
1133
1134 StringLiteralBits.Kind = llvm::to_underlying(E: Kind);
1135 StringLiteralBits.NumConcatenated = NumConcatenated;
1136
1137 if (Kind != StringLiteralKind::Unevaluated) {
1138 assert(Ctx.getAsConstantArrayType(Ty) &&
1139 "StringLiteral must be of constant array type!");
1140 unsigned CharByteWidth = mapCharByteWidth(Target: Ctx.getTargetInfo(), SK: Kind);
1141 unsigned ByteLength = Str.size();
1142 assert((ByteLength % CharByteWidth == 0) &&
1143 "The size of the data must be a multiple of CharByteWidth!");
1144
1145 // Avoid the expensive division. The compiler should be able to figure it
1146 // out by itself. However as of clang 7, even with the appropriate
1147 // llvm_unreachable added just here, it is not able to do so.
1148 switch (CharByteWidth) {
1149 case 1:
1150 Length = ByteLength;
1151 break;
1152 case 2:
1153 Length = ByteLength / 2;
1154 break;
1155 case 4:
1156 Length = ByteLength / 4;
1157 break;
1158 default:
1159 llvm_unreachable("Unsupported character width!");
1160 }
1161
1162 StringLiteralBits.CharByteWidth = CharByteWidth;
1163 StringLiteralBits.IsPascal = Pascal;
1164 } else {
1165 assert(!Pascal && "Can't make an unevaluated Pascal string");
1166 StringLiteralBits.CharByteWidth = 1;
1167 StringLiteralBits.IsPascal = false;
1168 }
1169
1170 *getTrailingObjects<unsigned>() = Length;
1171
1172 // Initialize the trailing array of SourceLocation.
1173 // This is safe since SourceLocation is POD-like.
1174 std::memcpy(dest: getTrailingObjects<SourceLocation>(), src: Loc,
1175 n: NumConcatenated * sizeof(SourceLocation));
1176
1177 // Initialize the trailing array of char holding the string data.
1178 std::memcpy(dest: getTrailingObjects<char>(), src: Str.data(), n: Str.size());
1179
1180 setDependence(ExprDependence::None);
1181}
1182
1183StringLiteral::StringLiteral(EmptyShell Empty, unsigned NumConcatenated,
1184 unsigned Length, unsigned CharByteWidth)
1185 : Expr(StringLiteralClass, Empty) {
1186 StringLiteralBits.CharByteWidth = CharByteWidth;
1187 StringLiteralBits.NumConcatenated = NumConcatenated;
1188 *getTrailingObjects<unsigned>() = Length;
1189}
1190
1191StringLiteral *StringLiteral::Create(const ASTContext &Ctx, StringRef Str,
1192 StringLiteralKind Kind, bool Pascal,
1193 QualType Ty, const SourceLocation *Loc,
1194 unsigned NumConcatenated) {
1195 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>(
1196 Counts: 1, Counts: NumConcatenated, Counts: Str.size()),
1197 Align: alignof(StringLiteral));
1198 return new (Mem)
1199 StringLiteral(Ctx, Str, Kind, Pascal, Ty, Loc, NumConcatenated);
1200}
1201
1202StringLiteral *StringLiteral::CreateEmpty(const ASTContext &Ctx,
1203 unsigned NumConcatenated,
1204 unsigned Length,
1205 unsigned CharByteWidth) {
1206 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<unsigned, SourceLocation, char>(
1207 Counts: 1, Counts: NumConcatenated, Counts: Length * CharByteWidth),
1208 Align: alignof(StringLiteral));
1209 return new (Mem)
1210 StringLiteral(EmptyShell(), NumConcatenated, Length, CharByteWidth);
1211}
1212
1213void StringLiteral::outputString(raw_ostream &OS) const {
1214 switch (getKind()) {
1215 case StringLiteralKind::Unevaluated:
1216 case StringLiteralKind::Ordinary:
1217 break; // no prefix.
1218 case StringLiteralKind::Wide:
1219 OS << 'L';
1220 break;
1221 case StringLiteralKind::UTF8:
1222 OS << "u8";
1223 break;
1224 case StringLiteralKind::UTF16:
1225 OS << 'u';
1226 break;
1227 case StringLiteralKind::UTF32:
1228 OS << 'U';
1229 break;
1230 }
1231 OS << '"';
1232 static const char Hex[] = "0123456789ABCDEF";
1233
1234 unsigned LastSlashX = getLength();
1235 for (unsigned I = 0, N = getLength(); I != N; ++I) {
1236 uint32_t Char = getCodeUnit(i: I);
1237 StringRef Escaped = escapeCStyle<EscapeChar::Double>(Ch: Char);
1238 if (Escaped.empty()) {
1239 // FIXME: Convert UTF-8 back to codepoints before rendering.
1240
1241 // Convert UTF-16 surrogate pairs back to codepoints before rendering.
1242 // Leave invalid surrogates alone; we'll use \x for those.
1243 if (getKind() == StringLiteralKind::UTF16 && I != N - 1 &&
1244 Char >= 0xd800 && Char <= 0xdbff) {
1245 uint32_t Trail = getCodeUnit(i: I + 1);
1246 if (Trail >= 0xdc00 && Trail <= 0xdfff) {
1247 Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
1248 ++I;
1249 }
1250 }
1251
1252 if (Char > 0xff) {
1253 // If this is a wide string, output characters over 0xff using \x
1254 // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
1255 // codepoint: use \x escapes for invalid codepoints.
1256 if (getKind() == StringLiteralKind::Wide ||
1257 (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
1258 // FIXME: Is this the best way to print wchar_t?
1259 OS << "\\x";
1260 int Shift = 28;
1261 while ((Char >> Shift) == 0)
1262 Shift -= 4;
1263 for (/**/; Shift >= 0; Shift -= 4)
1264 OS << Hex[(Char >> Shift) & 15];
1265 LastSlashX = I;
1266 continue;
1267 }
1268
1269 if (Char > 0xffff)
1270 OS << "\\U00"
1271 << Hex[(Char >> 20) & 15]
1272 << Hex[(Char >> 16) & 15];
1273 else
1274 OS << "\\u";
1275 OS << Hex[(Char >> 12) & 15]
1276 << Hex[(Char >> 8) & 15]
1277 << Hex[(Char >> 4) & 15]
1278 << Hex[(Char >> 0) & 15];
1279 continue;
1280 }
1281
1282 // If we used \x... for the previous character, and this character is a
1283 // hexadecimal digit, prevent it being slurped as part of the \x.
1284 if (LastSlashX + 1 == I) {
1285 switch (Char) {
1286 case '0': case '1': case '2': case '3': case '4':
1287 case '5': case '6': case '7': case '8': case '9':
1288 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
1289 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
1290 OS << "\"\"";
1291 }
1292 }
1293
1294 assert(Char <= 0xff &&
1295 "Characters above 0xff should already have been handled.");
1296
1297 if (isPrintable(c: Char))
1298 OS << (char)Char;
1299 else // Output anything hard as an octal escape.
1300 OS << '\\'
1301 << (char)('0' + ((Char >> 6) & 7))
1302 << (char)('0' + ((Char >> 3) & 7))
1303 << (char)('0' + ((Char >> 0) & 7));
1304 } else {
1305 // Handle some common non-printable cases to make dumps prettier.
1306 OS << Escaped;
1307 }
1308 }
1309 OS << '"';
1310}
1311
1312/// getLocationOfByte - Return a source location that points to the specified
1313/// byte of this string literal.
1314///
1315/// Strings are amazingly complex. They can be formed from multiple tokens and
1316/// can have escape sequences in them in addition to the usual trigraph and
1317/// escaped newline business. This routine handles this complexity.
1318///
1319/// The *StartToken sets the first token to be searched in this function and
1320/// the *StartTokenByteOffset is the byte offset of the first token. Before
1321/// returning, it updates the *StartToken to the TokNo of the token being found
1322/// and sets *StartTokenByteOffset to the byte offset of the token in the
1323/// string.
1324/// Using these two parameters can reduce the time complexity from O(n^2) to
1325/// O(n) if one wants to get the location of byte for all the tokens in a
1326/// string.
1327///
1328SourceLocation
1329StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1330 const LangOptions &Features,
1331 const TargetInfo &Target, unsigned *StartToken,
1332 unsigned *StartTokenByteOffset) const {
1333 assert((getKind() == StringLiteralKind::Ordinary ||
1334 getKind() == StringLiteralKind::UTF8 ||
1335 getKind() == StringLiteralKind::Unevaluated) &&
1336 "Only narrow string literals are currently supported");
1337
1338 // Loop over all of the tokens in this string until we find the one that
1339 // contains the byte we're looking for.
1340 unsigned TokNo = 0;
1341 unsigned StringOffset = 0;
1342 if (StartToken)
1343 TokNo = *StartToken;
1344 if (StartTokenByteOffset) {
1345 StringOffset = *StartTokenByteOffset;
1346 ByteNo -= StringOffset;
1347 }
1348 while (true) {
1349 assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1350 SourceLocation StrTokLoc = getStrTokenLoc(TokNum: TokNo);
1351
1352 // Get the spelling of the string so that we can get the data that makes up
1353 // the string literal, not the identifier for the macro it is potentially
1354 // expanded through.
1355 SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(Loc: StrTokLoc);
1356
1357 // Re-lex the token to get its length and original spelling.
1358 std::pair<FileID, unsigned> LocInfo =
1359 SM.getDecomposedLoc(Loc: StrTokSpellingLoc);
1360 bool Invalid = false;
1361 StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid);
1362 if (Invalid) {
1363 if (StartTokenByteOffset != nullptr)
1364 *StartTokenByteOffset = StringOffset;
1365 if (StartToken != nullptr)
1366 *StartToken = TokNo;
1367 return StrTokSpellingLoc;
1368 }
1369
1370 const char *StrData = Buffer.data()+LocInfo.second;
1371
1372 // Create a lexer starting at the beginning of this token.
1373 Lexer TheLexer(SM.getLocForStartOfFile(FID: LocInfo.first), Features,
1374 Buffer.begin(), StrData, Buffer.end());
1375 Token TheTok;
1376 TheLexer.LexFromRawLexer(Result&: TheTok);
1377
1378 // Use the StringLiteralParser to compute the length of the string in bytes.
1379 StringLiteralParser SLP(TheTok, SM, Features, Target);
1380 unsigned TokNumBytes = SLP.GetStringLength();
1381
1382 // If the byte is in this token, return the location of the byte.
1383 if (ByteNo < TokNumBytes ||
1384 (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1385 unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1386
1387 // Now that we know the offset of the token in the spelling, use the
1388 // preprocessor to get the offset in the original source.
1389 if (StartTokenByteOffset != nullptr)
1390 *StartTokenByteOffset = StringOffset;
1391 if (StartToken != nullptr)
1392 *StartToken = TokNo;
1393 return Lexer::AdvanceToTokenCharacter(TokStart: StrTokLoc, Characters: Offset, SM, LangOpts: Features);
1394 }
1395
1396 // Move to the next string token.
1397 StringOffset += TokNumBytes;
1398 ++TokNo;
1399 ByteNo -= TokNumBytes;
1400 }
1401}
1402
1403/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1404/// corresponds to, e.g. "sizeof" or "[pre]++".
1405StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1406 switch (Op) {
1407#define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1408#include "clang/AST/OperationKinds.def"
1409 }
1410 llvm_unreachable("Unknown unary operator");
1411}
1412
1413UnaryOperatorKind
1414UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1415 switch (OO) {
1416 default: llvm_unreachable("No unary operator for overloaded function");
1417 case OO_PlusPlus: return Postfix ? UO_PostInc : UO_PreInc;
1418 case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1419 case OO_Amp: return UO_AddrOf;
1420 case OO_Star: return UO_Deref;
1421 case OO_Plus: return UO_Plus;
1422 case OO_Minus: return UO_Minus;
1423 case OO_Tilde: return UO_Not;
1424 case OO_Exclaim: return UO_LNot;
1425 case OO_Coawait: return UO_Coawait;
1426 }
1427}
1428
1429OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1430 switch (Opc) {
1431 case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1432 case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1433 case UO_AddrOf: return OO_Amp;
1434 case UO_Deref: return OO_Star;
1435 case UO_Plus: return OO_Plus;
1436 case UO_Minus: return OO_Minus;
1437 case UO_Not: return OO_Tilde;
1438 case UO_LNot: return OO_Exclaim;
1439 case UO_Coawait: return OO_Coawait;
1440 default: return OO_None;
1441 }
1442}
1443
1444
1445//===----------------------------------------------------------------------===//
1446// Postfix Operators.
1447//===----------------------------------------------------------------------===//
1448
1449CallExpr::CallExpr(StmtClass SC, Expr *Fn, ArrayRef<Expr *> PreArgs,
1450 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1451 SourceLocation RParenLoc, FPOptionsOverride FPFeatures,
1452 unsigned MinNumArgs, ADLCallKind UsesADL)
1453 : Expr(SC, Ty, VK, OK_Ordinary), RParenLoc(RParenLoc) {
1454 NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs);
1455 unsigned NumPreArgs = PreArgs.size();
1456 CallExprBits.NumPreArgs = NumPreArgs;
1457 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1458
1459 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1460 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1461 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1462 "OffsetToTrailingObjects overflow!");
1463
1464 CallExprBits.UsesADL = static_cast<bool>(UsesADL);
1465
1466 setCallee(Fn);
1467 for (unsigned I = 0; I != NumPreArgs; ++I)
1468 setPreArg(I, PreArgs[I]);
1469 for (unsigned I = 0; I != Args.size(); ++I)
1470 setArg(Arg: I, ArgExpr: Args[I]);
1471 for (unsigned I = Args.size(); I != NumArgs; ++I)
1472 setArg(Arg: I, ArgExpr: nullptr);
1473
1474 this->computeDependence();
1475
1476 CallExprBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
1477 if (hasStoredFPFeatures())
1478 setStoredFPFeatures(FPFeatures);
1479}
1480
1481CallExpr::CallExpr(StmtClass SC, unsigned NumPreArgs, unsigned NumArgs,
1482 bool HasFPFeatures, EmptyShell Empty)
1483 : Expr(SC, Empty), NumArgs(NumArgs) {
1484 CallExprBits.NumPreArgs = NumPreArgs;
1485 assert((NumPreArgs == getNumPreArgs()) && "NumPreArgs overflow!");
1486
1487 unsigned OffsetToTrailingObjects = offsetToTrailingObjects(SC);
1488 CallExprBits.OffsetToTrailingObjects = OffsetToTrailingObjects;
1489 assert((CallExprBits.OffsetToTrailingObjects == OffsetToTrailingObjects) &&
1490 "OffsetToTrailingObjects overflow!");
1491 CallExprBits.HasFPFeatures = HasFPFeatures;
1492}
1493
1494CallExpr *CallExpr::Create(const ASTContext &Ctx, Expr *Fn,
1495 ArrayRef<Expr *> Args, QualType Ty, ExprValueKind VK,
1496 SourceLocation RParenLoc,
1497 FPOptionsOverride FPFeatures, unsigned MinNumArgs,
1498 ADLCallKind UsesADL) {
1499 unsigned NumArgs = std::max<unsigned>(a: Args.size(), b: MinNumArgs);
1500 unsigned SizeOfTrailingObjects = CallExpr::sizeOfTrailingObjects(
1501 /*NumPreArgs=*/0, NumArgs, HasFPFeatures: FPFeatures.requiresTrailingStorage());
1502 void *Mem =
1503 Ctx.Allocate(Size: sizeof(CallExpr) + SizeOfTrailingObjects, Align: alignof(CallExpr));
1504 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, Args, Ty, VK,
1505 RParenLoc, FPFeatures, MinNumArgs, UsesADL);
1506}
1507
1508CallExpr *CallExpr::CreateTemporary(void *Mem, Expr *Fn, QualType Ty,
1509 ExprValueKind VK, SourceLocation RParenLoc,
1510 ADLCallKind UsesADL) {
1511 assert(!(reinterpret_cast<uintptr_t>(Mem) % alignof(CallExpr)) &&
1512 "Misaligned memory in CallExpr::CreateTemporary!");
1513 return new (Mem) CallExpr(CallExprClass, Fn, /*PreArgs=*/{}, /*Args=*/{}, Ty,
1514 VK, RParenLoc, FPOptionsOverride(),
1515 /*MinNumArgs=*/0, UsesADL);
1516}
1517
1518CallExpr *CallExpr::CreateEmpty(const ASTContext &Ctx, unsigned NumArgs,
1519 bool HasFPFeatures, EmptyShell Empty) {
1520 unsigned SizeOfTrailingObjects =
1521 CallExpr::sizeOfTrailingObjects(/*NumPreArgs=*/0, NumArgs, HasFPFeatures);
1522 void *Mem =
1523 Ctx.Allocate(Size: sizeof(CallExpr) + SizeOfTrailingObjects, Align: alignof(CallExpr));
1524 return new (Mem)
1525 CallExpr(CallExprClass, /*NumPreArgs=*/0, NumArgs, HasFPFeatures, Empty);
1526}
1527
1528unsigned CallExpr::offsetToTrailingObjects(StmtClass SC) {
1529 switch (SC) {
1530 case CallExprClass:
1531 return sizeof(CallExpr);
1532 case CXXOperatorCallExprClass:
1533 return sizeof(CXXOperatorCallExpr);
1534 case CXXMemberCallExprClass:
1535 return sizeof(CXXMemberCallExpr);
1536 case UserDefinedLiteralClass:
1537 return sizeof(UserDefinedLiteral);
1538 case CUDAKernelCallExprClass:
1539 return sizeof(CUDAKernelCallExpr);
1540 default:
1541 llvm_unreachable("unexpected class deriving from CallExpr!");
1542 }
1543}
1544
1545Decl *Expr::getReferencedDeclOfCallee() {
1546 Expr *CEE = IgnoreParenImpCasts();
1547
1548 while (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: CEE))
1549 CEE = NTTP->getReplacement()->IgnoreParenImpCasts();
1550
1551 // If we're calling a dereference, look at the pointer instead.
1552 while (true) {
1553 if (auto *BO = dyn_cast<BinaryOperator>(Val: CEE)) {
1554 if (BO->isPtrMemOp()) {
1555 CEE = BO->getRHS()->IgnoreParenImpCasts();
1556 continue;
1557 }
1558 } else if (auto *UO = dyn_cast<UnaryOperator>(Val: CEE)) {
1559 if (UO->getOpcode() == UO_Deref || UO->getOpcode() == UO_AddrOf ||
1560 UO->getOpcode() == UO_Plus) {
1561 CEE = UO->getSubExpr()->IgnoreParenImpCasts();
1562 continue;
1563 }
1564 }
1565 break;
1566 }
1567
1568 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: CEE))
1569 return DRE->getDecl();
1570 if (auto *ME = dyn_cast<MemberExpr>(Val: CEE))
1571 return ME->getMemberDecl();
1572 if (auto *BE = dyn_cast<BlockExpr>(Val: CEE))
1573 return BE->getBlockDecl();
1574
1575 return nullptr;
1576}
1577
1578/// If this is a call to a builtin, return the builtin ID. If not, return 0.
1579unsigned CallExpr::getBuiltinCallee() const {
1580 const auto *FDecl = getDirectCallee();
1581 return FDecl ? FDecl->getBuiltinID() : 0;
1582}
1583
1584bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1585 if (unsigned BI = getBuiltinCallee())
1586 return Ctx.BuiltinInfo.isUnevaluated(ID: BI);
1587 return false;
1588}
1589
1590QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1591 const Expr *Callee = getCallee();
1592 QualType CalleeType = Callee->getType();
1593 if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1594 CalleeType = FnTypePtr->getPointeeType();
1595 } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1596 CalleeType = BPT->getPointeeType();
1597 } else if (CalleeType->isSpecificPlaceholderType(K: BuiltinType::BoundMember)) {
1598 if (isa<CXXPseudoDestructorExpr>(Val: Callee->IgnoreParens()))
1599 return Ctx.VoidTy;
1600
1601 if (isa<UnresolvedMemberExpr>(Val: Callee->IgnoreParens()))
1602 return Ctx.DependentTy;
1603
1604 // This should never be overloaded and so should never return null.
1605 CalleeType = Expr::findBoundMemberType(expr: Callee);
1606 assert(!CalleeType.isNull());
1607 } else if (CalleeType->isRecordType()) {
1608 // If the Callee is a record type, then it is a not-yet-resolved
1609 // dependent call to the call operator of that type.
1610 return Ctx.DependentTy;
1611 } else if (CalleeType->isDependentType() ||
1612 CalleeType->isSpecificPlaceholderType(K: BuiltinType::Overload)) {
1613 return Ctx.DependentTy;
1614 }
1615
1616 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1617 return FnType->getReturnType();
1618}
1619
1620const Attr *CallExpr::getUnusedResultAttr(const ASTContext &Ctx) const {
1621 // If the return type is a struct, union, or enum that is marked nodiscard,
1622 // then return the return type attribute.
1623 if (const TagDecl *TD = getCallReturnType(Ctx)->getAsTagDecl())
1624 if (const auto *A = TD->getAttr<WarnUnusedResultAttr>())
1625 return A;
1626
1627 for (const auto *TD = getCallReturnType(Ctx)->getAs<TypedefType>(); TD;
1628 TD = TD->desugar()->getAs<TypedefType>())
1629 if (const auto *A = TD->getDecl()->getAttr<WarnUnusedResultAttr>())
1630 return A;
1631
1632 // Otherwise, see if the callee is marked nodiscard and return that attribute
1633 // instead.
1634 const Decl *D = getCalleeDecl();
1635 return D ? D->getAttr<WarnUnusedResultAttr>() : nullptr;
1636}
1637
1638SourceLocation CallExpr::getBeginLoc() const {
1639 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: this))
1640 return OCE->getBeginLoc();
1641
1642 SourceLocation begin = getCallee()->getBeginLoc();
1643 if (begin.isInvalid() && getNumArgs() > 0 && getArg(Arg: 0))
1644 begin = getArg(Arg: 0)->getBeginLoc();
1645 return begin;
1646}
1647SourceLocation CallExpr::getEndLoc() const {
1648 if (const auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: this))
1649 return OCE->getEndLoc();
1650
1651 SourceLocation end = getRParenLoc();
1652 if (end.isInvalid() && getNumArgs() > 0 && getArg(Arg: getNumArgs() - 1))
1653 end = getArg(Arg: getNumArgs() - 1)->getEndLoc();
1654 return end;
1655}
1656
1657OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1658 SourceLocation OperatorLoc,
1659 TypeSourceInfo *tsi,
1660 ArrayRef<OffsetOfNode> comps,
1661 ArrayRef<Expr*> exprs,
1662 SourceLocation RParenLoc) {
1663 void *Mem = C.Allocate(
1664 Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: comps.size(), Counts: exprs.size()));
1665
1666 return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1667 RParenLoc);
1668}
1669
1670OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1671 unsigned numComps, unsigned numExprs) {
1672 void *Mem =
1673 C.Allocate(Size: totalSizeToAlloc<OffsetOfNode, Expr *>(Counts: numComps, Counts: numExprs));
1674 return new (Mem) OffsetOfExpr(numComps, numExprs);
1675}
1676
1677OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1678 SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1679 ArrayRef<OffsetOfNode> comps, ArrayRef<Expr *> exprs,
1680 SourceLocation RParenLoc)
1681 : Expr(OffsetOfExprClass, type, VK_PRValue, OK_Ordinary),
1682 OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1683 NumComps(comps.size()), NumExprs(exprs.size()) {
1684 for (unsigned i = 0; i != comps.size(); ++i)
1685 setComponent(Idx: i, ON: comps[i]);
1686 for (unsigned i = 0; i != exprs.size(); ++i)
1687 setIndexExpr(Idx: i, E: exprs[i]);
1688
1689 setDependence(computeDependence(E: this));
1690}
1691
1692IdentifierInfo *OffsetOfNode::getFieldName() const {
1693 assert(getKind() == Field || getKind() == Identifier);
1694 if (getKind() == Field)
1695 return getField()->getIdentifier();
1696
1697 return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1698}
1699
1700UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1701 UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1702 SourceLocation op, SourceLocation rp)
1703 : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_PRValue, OK_Ordinary),
1704 OpLoc(op), RParenLoc(rp) {
1705 assert(ExprKind <= UETT_Last && "invalid enum value!");
1706 UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1707 assert(static_cast<unsigned>(ExprKind) == UnaryExprOrTypeTraitExprBits.Kind &&
1708 "UnaryExprOrTypeTraitExprBits.Kind overflow!");
1709 UnaryExprOrTypeTraitExprBits.IsType = false;
1710 Argument.Ex = E;
1711 setDependence(computeDependence(E: this));
1712}
1713
1714MemberExpr::MemberExpr(Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1715 NestedNameSpecifierLoc QualifierLoc,
1716 SourceLocation TemplateKWLoc, ValueDecl *MemberDecl,
1717 DeclAccessPair FoundDecl,
1718 const DeclarationNameInfo &NameInfo,
1719 const TemplateArgumentListInfo *TemplateArgs, QualType T,
1720 ExprValueKind VK, ExprObjectKind OK,
1721 NonOdrUseReason NOUR)
1722 : Expr(MemberExprClass, T, VK, OK), Base(Base), MemberDecl(MemberDecl),
1723 MemberDNLoc(NameInfo.getInfo()), MemberLoc(NameInfo.getLoc()) {
1724 assert(!NameInfo.getName() ||
1725 MemberDecl->getDeclName() == NameInfo.getName());
1726 MemberExprBits.IsArrow = IsArrow;
1727 MemberExprBits.HasQualifier = QualifierLoc.hasQualifier();
1728 MemberExprBits.HasFoundDecl =
1729 FoundDecl.getDecl() != MemberDecl ||
1730 FoundDecl.getAccess() != MemberDecl->getAccess();
1731 MemberExprBits.HasTemplateKWAndArgsInfo =
1732 TemplateArgs || TemplateKWLoc.isValid();
1733 MemberExprBits.HadMultipleCandidates = false;
1734 MemberExprBits.NonOdrUseReason = NOUR;
1735 MemberExprBits.OperatorLoc = OperatorLoc;
1736
1737 if (hasQualifier())
1738 new (getTrailingObjects<NestedNameSpecifierLoc>())
1739 NestedNameSpecifierLoc(QualifierLoc);
1740 if (hasFoundDecl())
1741 *getTrailingObjects<DeclAccessPair>() = FoundDecl;
1742 if (TemplateArgs) {
1743 auto Deps = TemplateArgumentDependence::None;
1744 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1745 TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
1746 Deps);
1747 } else if (TemplateKWLoc.isValid()) {
1748 getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1749 TemplateKWLoc);
1750 }
1751 setDependence(computeDependence(E: this));
1752}
1753
1754MemberExpr *MemberExpr::Create(
1755 const ASTContext &C, Expr *Base, bool IsArrow, SourceLocation OperatorLoc,
1756 NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1757 ValueDecl *MemberDecl, DeclAccessPair FoundDecl,
1758 DeclarationNameInfo NameInfo, const TemplateArgumentListInfo *TemplateArgs,
1759 QualType T, ExprValueKind VK, ExprObjectKind OK, NonOdrUseReason NOUR) {
1760 bool HasQualifier = QualifierLoc.hasQualifier();
1761 bool HasFoundDecl = FoundDecl.getDecl() != MemberDecl ||
1762 FoundDecl.getAccess() != MemberDecl->getAccess();
1763 bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
1764 std::size_t Size =
1765 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1766 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
1767 Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo,
1768 Counts: TemplateArgs ? TemplateArgs->size() : 0);
1769
1770 void *Mem = C.Allocate(Size, Align: alignof(MemberExpr));
1771 return new (Mem) MemberExpr(Base, IsArrow, OperatorLoc, QualifierLoc,
1772 TemplateKWLoc, MemberDecl, FoundDecl, NameInfo,
1773 TemplateArgs, T, VK, OK, NOUR);
1774}
1775
1776MemberExpr *MemberExpr::CreateEmpty(const ASTContext &Context,
1777 bool HasQualifier, bool HasFoundDecl,
1778 bool HasTemplateKWAndArgsInfo,
1779 unsigned NumTemplateArgs) {
1780 assert((!NumTemplateArgs || HasTemplateKWAndArgsInfo) &&
1781 "template args but no template arg info?");
1782 std::size_t Size =
1783 totalSizeToAlloc<NestedNameSpecifierLoc, DeclAccessPair,
1784 ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
1785 Counts: HasQualifier, Counts: HasFoundDecl, Counts: HasTemplateKWAndArgsInfo,
1786 Counts: NumTemplateArgs);
1787 void *Mem = Context.Allocate(Size, Align: alignof(MemberExpr));
1788 return new (Mem) MemberExpr(EmptyShell());
1789}
1790
1791void MemberExpr::setMemberDecl(ValueDecl *NewD) {
1792 MemberDecl = NewD;
1793 if (getType()->isUndeducedType())
1794 setType(NewD->getType());
1795 setDependence(computeDependence(E: this));
1796}
1797
1798SourceLocation MemberExpr::getBeginLoc() const {
1799 if (isImplicitAccess()) {
1800 if (hasQualifier())
1801 return getQualifierLoc().getBeginLoc();
1802 return MemberLoc;
1803 }
1804
1805 // FIXME: We don't want this to happen. Rather, we should be able to
1806 // detect all kinds of implicit accesses more cleanly.
1807 SourceLocation BaseStartLoc = getBase()->getBeginLoc();
1808 if (BaseStartLoc.isValid())
1809 return BaseStartLoc;
1810 return MemberLoc;
1811}
1812SourceLocation MemberExpr::getEndLoc() const {
1813 SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1814 if (hasExplicitTemplateArgs())
1815 EndLoc = getRAngleLoc();
1816 else if (EndLoc.isInvalid())
1817 EndLoc = getBase()->getEndLoc();
1818 return EndLoc;
1819}
1820
1821bool CastExpr::CastConsistency() const {
1822 switch (getCastKind()) {
1823 case CK_DerivedToBase:
1824 case CK_UncheckedDerivedToBase:
1825 case CK_DerivedToBaseMemberPointer:
1826 case CK_BaseToDerived:
1827 case CK_BaseToDerivedMemberPointer:
1828 assert(!path_empty() && "Cast kind should have a base path!");
1829 break;
1830
1831 case CK_CPointerToObjCPointerCast:
1832 assert(getType()->isObjCObjectPointerType());
1833 assert(getSubExpr()->getType()->isPointerType());
1834 goto CheckNoBasePath;
1835
1836 case CK_BlockPointerToObjCPointerCast:
1837 assert(getType()->isObjCObjectPointerType());
1838 assert(getSubExpr()->getType()->isBlockPointerType());
1839 goto CheckNoBasePath;
1840
1841 case CK_ReinterpretMemberPointer:
1842 assert(getType()->isMemberPointerType());
1843 assert(getSubExpr()->getType()->isMemberPointerType());
1844 goto CheckNoBasePath;
1845
1846 case CK_BitCast:
1847 // Arbitrary casts to C pointer types count as bitcasts.
1848 // Otherwise, we should only have block and ObjC pointer casts
1849 // here if they stay within the type kind.
1850 if (!getType()->isPointerType()) {
1851 assert(getType()->isObjCObjectPointerType() ==
1852 getSubExpr()->getType()->isObjCObjectPointerType());
1853 assert(getType()->isBlockPointerType() ==
1854 getSubExpr()->getType()->isBlockPointerType());
1855 }
1856 goto CheckNoBasePath;
1857
1858 case CK_AnyPointerToBlockPointerCast:
1859 assert(getType()->isBlockPointerType());
1860 assert(getSubExpr()->getType()->isAnyPointerType() &&
1861 !getSubExpr()->getType()->isBlockPointerType());
1862 goto CheckNoBasePath;
1863
1864 case CK_CopyAndAutoreleaseBlockObject:
1865 assert(getType()->isBlockPointerType());
1866 assert(getSubExpr()->getType()->isBlockPointerType());
1867 goto CheckNoBasePath;
1868
1869 case CK_FunctionToPointerDecay:
1870 assert(getType()->isPointerType());
1871 assert(getSubExpr()->getType()->isFunctionType());
1872 goto CheckNoBasePath;
1873
1874 case CK_AddressSpaceConversion: {
1875 auto Ty = getType();
1876 auto SETy = getSubExpr()->getType();
1877 assert(getValueKindForType(Ty) == Expr::getValueKindForType(SETy));
1878 if (isPRValue() && !Ty->isDependentType() && !SETy->isDependentType()) {
1879 Ty = Ty->getPointeeType();
1880 SETy = SETy->getPointeeType();
1881 }
1882 assert((Ty->isDependentType() || SETy->isDependentType()) ||
1883 (!Ty.isNull() && !SETy.isNull() &&
1884 Ty.getAddressSpace() != SETy.getAddressSpace()));
1885 goto CheckNoBasePath;
1886 }
1887 // These should not have an inheritance path.
1888 case CK_Dynamic:
1889 case CK_ToUnion:
1890 case CK_ArrayToPointerDecay:
1891 case CK_NullToMemberPointer:
1892 case CK_NullToPointer:
1893 case CK_ConstructorConversion:
1894 case CK_IntegralToPointer:
1895 case CK_PointerToIntegral:
1896 case CK_ToVoid:
1897 case CK_VectorSplat:
1898 case CK_IntegralCast:
1899 case CK_BooleanToSignedIntegral:
1900 case CK_IntegralToFloating:
1901 case CK_FloatingToIntegral:
1902 case CK_FloatingCast:
1903 case CK_ObjCObjectLValueCast:
1904 case CK_FloatingRealToComplex:
1905 case CK_FloatingComplexToReal:
1906 case CK_FloatingComplexCast:
1907 case CK_FloatingComplexToIntegralComplex:
1908 case CK_IntegralRealToComplex:
1909 case CK_IntegralComplexToReal:
1910 case CK_IntegralComplexCast:
1911 case CK_IntegralComplexToFloatingComplex:
1912 case CK_ARCProduceObject:
1913 case CK_ARCConsumeObject:
1914 case CK_ARCReclaimReturnedObject:
1915 case CK_ARCExtendBlockObject:
1916 case CK_ZeroToOCLOpaqueType:
1917 case CK_IntToOCLSampler:
1918 case CK_FloatingToFixedPoint:
1919 case CK_FixedPointToFloating:
1920 case CK_FixedPointCast:
1921 case CK_FixedPointToIntegral:
1922 case CK_IntegralToFixedPoint:
1923 case CK_MatrixCast:
1924 case CK_HLSLVectorTruncation:
1925 assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1926 goto CheckNoBasePath;
1927
1928 case CK_Dependent:
1929 case CK_LValueToRValue:
1930 case CK_NoOp:
1931 case CK_AtomicToNonAtomic:
1932 case CK_NonAtomicToAtomic:
1933 case CK_PointerToBoolean:
1934 case CK_IntegralToBoolean:
1935 case CK_FloatingToBoolean:
1936 case CK_MemberPointerToBoolean:
1937 case CK_FloatingComplexToBoolean:
1938 case CK_IntegralComplexToBoolean:
1939 case CK_LValueBitCast: // -> bool&
1940 case CK_LValueToRValueBitCast:
1941 case CK_UserDefinedConversion: // operator bool()
1942 case CK_BuiltinFnToFnPtr:
1943 case CK_FixedPointToBoolean:
1944 case CK_HLSLArrayRValue:
1945 CheckNoBasePath:
1946 assert(path_empty() && "Cast kind should not have a base path!");
1947 break;
1948 }
1949 return true;
1950}
1951
1952const char *CastExpr::getCastKindName(CastKind CK) {
1953 switch (CK) {
1954#define CAST_OPERATION(Name) case CK_##Name: return #Name;
1955#include "clang/AST/OperationKinds.def"
1956 }
1957 llvm_unreachable("Unhandled cast kind!");
1958}
1959
1960namespace {
1961// Skip over implicit nodes produced as part of semantic analysis.
1962// Designed for use with IgnoreExprNodes.
1963static Expr *ignoreImplicitSemaNodes(Expr *E) {
1964 if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(Val: E))
1965 return Materialize->getSubExpr();
1966
1967 if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(Val: E))
1968 return Binder->getSubExpr();
1969
1970 if (auto *Full = dyn_cast<FullExpr>(Val: E))
1971 return Full->getSubExpr();
1972
1973 if (auto *CPLIE = dyn_cast<CXXParenListInitExpr>(Val: E);
1974 CPLIE && CPLIE->getInitExprs().size() == 1)
1975 return CPLIE->getInitExprs()[0];
1976
1977 return E;
1978}
1979} // namespace
1980
1981Expr *CastExpr::getSubExprAsWritten() {
1982 const Expr *SubExpr = nullptr;
1983
1984 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) {
1985 SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes);
1986
1987 // Conversions by constructor and conversion functions have a
1988 // subexpression describing the call; strip it off.
1989 if (E->getCastKind() == CK_ConstructorConversion) {
1990 SubExpr = IgnoreExprNodes(E: cast<CXXConstructExpr>(Val: SubExpr)->getArg(Arg: 0),
1991 Fns&: ignoreImplicitSemaNodes);
1992 } else if (E->getCastKind() == CK_UserDefinedConversion) {
1993 assert((isa<CXXMemberCallExpr>(SubExpr) || isa<BlockExpr>(SubExpr)) &&
1994 "Unexpected SubExpr for CK_UserDefinedConversion.");
1995 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr))
1996 SubExpr = MCE->getImplicitObjectArgument();
1997 }
1998 }
1999
2000 return const_cast<Expr *>(SubExpr);
2001}
2002
2003NamedDecl *CastExpr::getConversionFunction() const {
2004 const Expr *SubExpr = nullptr;
2005
2006 for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(Val: SubExpr)) {
2007 SubExpr = IgnoreExprNodes(E: E->getSubExpr(), Fns&: ignoreImplicitSemaNodes);
2008
2009 if (E->getCastKind() == CK_ConstructorConversion)
2010 return cast<CXXConstructExpr>(Val: SubExpr)->getConstructor();
2011
2012 if (E->getCastKind() == CK_UserDefinedConversion) {
2013 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: SubExpr))
2014 return MCE->getMethodDecl();
2015 }
2016 }
2017
2018 return nullptr;
2019}
2020
2021CXXBaseSpecifier **CastExpr::path_buffer() {
2022 switch (getStmtClass()) {
2023#define ABSTRACT_STMT(x)
2024#define CASTEXPR(Type, Base) \
2025 case Stmt::Type##Class: \
2026 return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
2027#define STMT(Type, Base)
2028#include "clang/AST/StmtNodes.inc"
2029 default:
2030 llvm_unreachable("non-cast expressions not possible here");
2031 }
2032}
2033
2034const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
2035 QualType opType) {
2036 auto RD = unionType->castAs<RecordType>()->getDecl();
2037 return getTargetFieldForToUnionCast(RD, opType);
2038}
2039
2040const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
2041 QualType OpType) {
2042 auto &Ctx = RD->getASTContext();
2043 RecordDecl::field_iterator Field, FieldEnd;
2044 for (Field = RD->field_begin(), FieldEnd = RD->field_end();
2045 Field != FieldEnd; ++Field) {
2046 if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
2047 !Field->isUnnamedBitField()) {
2048 return *Field;
2049 }
2050 }
2051 return nullptr;
2052}
2053
2054FPOptionsOverride *CastExpr::getTrailingFPFeatures() {
2055 assert(hasStoredFPFeatures());
2056 switch (getStmtClass()) {
2057 case ImplicitCastExprClass:
2058 return static_cast<ImplicitCastExpr *>(this)
2059 ->getTrailingObjects<FPOptionsOverride>();
2060 case CStyleCastExprClass:
2061 return static_cast<CStyleCastExpr *>(this)
2062 ->getTrailingObjects<FPOptionsOverride>();
2063 case CXXFunctionalCastExprClass:
2064 return static_cast<CXXFunctionalCastExpr *>(this)
2065 ->getTrailingObjects<FPOptionsOverride>();
2066 case CXXStaticCastExprClass:
2067 return static_cast<CXXStaticCastExpr *>(this)
2068 ->getTrailingObjects<FPOptionsOverride>();
2069 default:
2070 llvm_unreachable("Cast does not have FPFeatures");
2071 }
2072}
2073
2074ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
2075 CastKind Kind, Expr *Operand,
2076 const CXXCastPath *BasePath,
2077 ExprValueKind VK,
2078 FPOptionsOverride FPO) {
2079 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2080 void *Buffer =
2081 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2082 Counts: PathSize, Counts: FPO.requiresTrailingStorage()));
2083 // Per C++ [conv.lval]p3, lvalue-to-rvalue conversions on class and
2084 // std::nullptr_t have special semantics not captured by CK_LValueToRValue.
2085 assert((Kind != CK_LValueToRValue ||
2086 !(T->isNullPtrType() || T->getAsCXXRecordDecl())) &&
2087 "invalid type for lvalue-to-rvalue conversion");
2088 ImplicitCastExpr *E =
2089 new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, FPO, VK);
2090 if (PathSize)
2091 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2092 E->getTrailingObjects<CXXBaseSpecifier *>());
2093 return E;
2094}
2095
2096ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
2097 unsigned PathSize,
2098 bool HasFPFeatures) {
2099 void *Buffer =
2100 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2101 Counts: PathSize, Counts: HasFPFeatures));
2102 return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2103}
2104
2105CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
2106 ExprValueKind VK, CastKind K, Expr *Op,
2107 const CXXCastPath *BasePath,
2108 FPOptionsOverride FPO,
2109 TypeSourceInfo *WrittenTy,
2110 SourceLocation L, SourceLocation R) {
2111 unsigned PathSize = (BasePath ? BasePath->size() : 0);
2112 void *Buffer =
2113 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2114 Counts: PathSize, Counts: FPO.requiresTrailingStorage()));
2115 CStyleCastExpr *E =
2116 new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, FPO, WrittenTy, L, R);
2117 if (PathSize)
2118 std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
2119 E->getTrailingObjects<CXXBaseSpecifier *>());
2120 return E;
2121}
2122
2123CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
2124 unsigned PathSize,
2125 bool HasFPFeatures) {
2126 void *Buffer =
2127 C.Allocate(Size: totalSizeToAlloc<CXXBaseSpecifier *, FPOptionsOverride>(
2128 Counts: PathSize, Counts: HasFPFeatures));
2129 return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize, HasFPFeatures);
2130}
2131
2132/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
2133/// corresponds to, e.g. "<<=".
2134StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
2135 switch (Op) {
2136#define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
2137#include "clang/AST/OperationKinds.def"
2138 }
2139 llvm_unreachable("Invalid OpCode!");
2140}
2141
2142BinaryOperatorKind
2143BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
2144 switch (OO) {
2145 default: llvm_unreachable("Not an overloadable binary operator");
2146 case OO_Plus: return BO_Add;
2147 case OO_Minus: return BO_Sub;
2148 case OO_Star: return BO_Mul;
2149 case OO_Slash: return BO_Div;
2150 case OO_Percent: return BO_Rem;
2151 case OO_Caret: return BO_Xor;
2152 case OO_Amp: return BO_And;
2153 case OO_Pipe: return BO_Or;
2154 case OO_Equal: return BO_Assign;
2155 case OO_Spaceship: return BO_Cmp;
2156 case OO_Less: return BO_LT;
2157 case OO_Greater: return BO_GT;
2158 case OO_PlusEqual: return BO_AddAssign;
2159 case OO_MinusEqual: return BO_SubAssign;
2160 case OO_StarEqual: return BO_MulAssign;
2161 case OO_SlashEqual: return BO_DivAssign;
2162 case OO_PercentEqual: return BO_RemAssign;
2163 case OO_CaretEqual: return BO_XorAssign;
2164 case OO_AmpEqual: return BO_AndAssign;
2165 case OO_PipeEqual: return BO_OrAssign;
2166 case OO_LessLess: return BO_Shl;
2167 case OO_GreaterGreater: return BO_Shr;
2168 case OO_LessLessEqual: return BO_ShlAssign;
2169 case OO_GreaterGreaterEqual: return BO_ShrAssign;
2170 case OO_EqualEqual: return BO_EQ;
2171 case OO_ExclaimEqual: return BO_NE;
2172 case OO_LessEqual: return BO_LE;
2173 case OO_GreaterEqual: return BO_GE;
2174 case OO_AmpAmp: return BO_LAnd;
2175 case OO_PipePipe: return BO_LOr;
2176 case OO_Comma: return BO_Comma;
2177 case OO_ArrowStar: return BO_PtrMemI;
2178 }
2179}
2180
2181OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
2182 static const OverloadedOperatorKind OverOps[] = {
2183 /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
2184 OO_Star, OO_Slash, OO_Percent,
2185 OO_Plus, OO_Minus,
2186 OO_LessLess, OO_GreaterGreater,
2187 OO_Spaceship,
2188 OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
2189 OO_EqualEqual, OO_ExclaimEqual,
2190 OO_Amp,
2191 OO_Caret,
2192 OO_Pipe,
2193 OO_AmpAmp,
2194 OO_PipePipe,
2195 OO_Equal, OO_StarEqual,
2196 OO_SlashEqual, OO_PercentEqual,
2197 OO_PlusEqual, OO_MinusEqual,
2198 OO_LessLessEqual, OO_GreaterGreaterEqual,
2199 OO_AmpEqual, OO_CaretEqual,
2200 OO_PipeEqual,
2201 OO_Comma
2202 };
2203 return OverOps[Opc];
2204}
2205
2206bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
2207 Opcode Opc,
2208 const Expr *LHS,
2209 const Expr *RHS) {
2210 if (Opc != BO_Add)
2211 return false;
2212
2213 // Check that we have one pointer and one integer operand.
2214 const Expr *PExp;
2215 if (LHS->getType()->isPointerType()) {
2216 if (!RHS->getType()->isIntegerType())
2217 return false;
2218 PExp = LHS;
2219 } else if (RHS->getType()->isPointerType()) {
2220 if (!LHS->getType()->isIntegerType())
2221 return false;
2222 PExp = RHS;
2223 } else {
2224 return false;
2225 }
2226
2227 // Check that the pointer is a nullptr.
2228 if (!PExp->IgnoreParenCasts()
2229 ->isNullPointerConstant(Ctx, NPC: Expr::NPC_ValueDependentIsNotNull))
2230 return false;
2231
2232 // Check that the pointee type is char-sized.
2233 const PointerType *PTy = PExp->getType()->getAs<PointerType>();
2234 if (!PTy || !PTy->getPointeeType()->isCharType())
2235 return false;
2236
2237 return true;
2238}
2239
2240SourceLocExpr::SourceLocExpr(const ASTContext &Ctx, SourceLocIdentKind Kind,
2241 QualType ResultTy, SourceLocation BLoc,
2242 SourceLocation RParenLoc,
2243 DeclContext *ParentContext)
2244 : Expr(SourceLocExprClass, ResultTy, VK_PRValue, OK_Ordinary),
2245 BuiltinLoc(BLoc), RParenLoc(RParenLoc), ParentContext(ParentContext) {
2246 SourceLocExprBits.Kind = llvm::to_underlying(E: Kind);
2247 // In dependent contexts, function names may change.
2248 setDependence(MayBeDependent(Kind) && ParentContext->isDependentContext()
2249 ? ExprDependence::Value
2250 : ExprDependence::None);
2251}
2252
2253StringRef SourceLocExpr::getBuiltinStr() const {
2254 switch (getIdentKind()) {
2255 case SourceLocIdentKind::File:
2256 return "__builtin_FILE";
2257 case SourceLocIdentKind::FileName:
2258 return "__builtin_FILE_NAME";
2259 case SourceLocIdentKind::Function:
2260 return "__builtin_FUNCTION";
2261 case SourceLocIdentKind::FuncSig:
2262 return "__builtin_FUNCSIG";
2263 case SourceLocIdentKind::Line:
2264 return "__builtin_LINE";
2265 case SourceLocIdentKind::Column:
2266 return "__builtin_COLUMN";
2267 case SourceLocIdentKind::SourceLocStruct:
2268 return "__builtin_source_location";
2269 }
2270 llvm_unreachable("unexpected IdentKind!");
2271}
2272
2273APValue SourceLocExpr::EvaluateInContext(const ASTContext &Ctx,
2274 const Expr *DefaultExpr) const {
2275 SourceLocation Loc;
2276 const DeclContext *Context;
2277
2278 if (const auto *DIE = dyn_cast_if_present<CXXDefaultInitExpr>(Val: DefaultExpr)) {
2279 Loc = DIE->getUsedLocation();
2280 Context = DIE->getUsedContext();
2281 } else if (const auto *DAE =
2282 dyn_cast_if_present<CXXDefaultArgExpr>(Val: DefaultExpr)) {
2283 Loc = DAE->getUsedLocation();
2284 Context = DAE->getUsedContext();
2285 } else {
2286 Loc = getLocation();
2287 Context = getParentContext();
2288 }
2289
2290 PresumedLoc PLoc = Ctx.getSourceManager().getPresumedLoc(
2291 Loc: Ctx.getSourceManager().getExpansionRange(Loc).getEnd());
2292
2293 auto MakeStringLiteral = [&](StringRef Tmp) {
2294 using LValuePathEntry = APValue::LValuePathEntry;
2295 StringLiteral *Res = Ctx.getPredefinedStringLiteralFromCache(Key: Tmp);
2296 // Decay the string to a pointer to the first character.
2297 LValuePathEntry Path[1] = {LValuePathEntry::ArrayIndex(Index: 0)};
2298 return APValue(Res, CharUnits::Zero(), Path, /*OnePastTheEnd=*/false);
2299 };
2300
2301 switch (getIdentKind()) {
2302 case SourceLocIdentKind::FileName: {
2303 // __builtin_FILE_NAME() is a Clang-specific extension that expands to the
2304 // the last part of __builtin_FILE().
2305 SmallString<256> FileName;
2306 clang::Preprocessor::processPathToFileName(
2307 FileName, PLoc, LangOpts: Ctx.getLangOpts(), TI: Ctx.getTargetInfo());
2308 return MakeStringLiteral(FileName);
2309 }
2310 case SourceLocIdentKind::File: {
2311 SmallString<256> Path(PLoc.getFilename());
2312 clang::Preprocessor::processPathForFileMacro(Path, LangOpts: Ctx.getLangOpts(),
2313 TI: Ctx.getTargetInfo());
2314 return MakeStringLiteral(Path);
2315 }
2316 case SourceLocIdentKind::Function:
2317 case SourceLocIdentKind::FuncSig: {
2318 const auto *CurDecl = dyn_cast<Decl>(Val: Context);
2319 const auto Kind = getIdentKind() == SourceLocIdentKind::Function
2320 ? PredefinedIdentKind::Function
2321 : PredefinedIdentKind::FuncSig;
2322 return MakeStringLiteral(
2323 CurDecl ? PredefinedExpr::ComputeName(IK: Kind, CurrentDecl: CurDecl) : std::string(""));
2324 }
2325 case SourceLocIdentKind::Line:
2326 return APValue(Ctx.MakeIntValue(Value: PLoc.getLine(), Type: Ctx.UnsignedIntTy));
2327 case SourceLocIdentKind::Column:
2328 return APValue(Ctx.MakeIntValue(Value: PLoc.getColumn(), Type: Ctx.UnsignedIntTy));
2329 case SourceLocIdentKind::SourceLocStruct: {
2330 // Fill in a std::source_location::__impl structure, by creating an
2331 // artificial file-scoped CompoundLiteralExpr, and returning a pointer to
2332 // that.
2333 const CXXRecordDecl *ImplDecl = getType()->getPointeeCXXRecordDecl();
2334 assert(ImplDecl);
2335
2336 // Construct an APValue for the __impl struct, and get or create a Decl
2337 // corresponding to that. Note that we've already verified that the shape of
2338 // the ImplDecl type is as expected.
2339
2340 APValue Value(APValue::UninitStruct(), 0, 4);
2341 for (const FieldDecl *F : ImplDecl->fields()) {
2342 StringRef Name = F->getName();
2343 if (Name == "_M_file_name") {
2344 SmallString<256> Path(PLoc.getFilename());
2345 clang::Preprocessor::processPathForFileMacro(Path, Ctx.getLangOpts(),
2346 Ctx.getTargetInfo());
2347 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(Path);
2348 } else if (Name == "_M_function_name") {
2349 // Note: this emits the PrettyFunction name -- different than what
2350 // __builtin_FUNCTION() above returns!
2351 const auto *CurDecl = dyn_cast<Decl>(Context);
2352 Value.getStructField(F->getFieldIndex()) = MakeStringLiteral(
2353 CurDecl && !isa<TranslationUnitDecl>(CurDecl)
2354 ? StringRef(PredefinedExpr::ComputeName(
2355 PredefinedIdentKind::PrettyFunction, CurDecl))
2356 : "");
2357 } else if (Name == "_M_line") {
2358 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getLine(), F->getType());
2359 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2360 } else if (Name == "_M_column") {
2361 llvm::APSInt IntVal = Ctx.MakeIntValue(PLoc.getColumn(), F->getType());
2362 Value.getStructField(F->getFieldIndex()) = APValue(IntVal);
2363 }
2364 }
2365
2366 UnnamedGlobalConstantDecl *GV =
2367 Ctx.getUnnamedGlobalConstantDecl(getType()->getPointeeType(), Value);
2368
2369 return APValue(GV, CharUnits::Zero(), ArrayRef<APValue::LValuePathEntry>{},
2370 false);
2371 }
2372 }
2373 llvm_unreachable("unhandled case");
2374}
2375
2376InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
2377 ArrayRef<Expr *> initExprs, SourceLocation rbraceloc)
2378 : Expr(InitListExprClass, QualType(), VK_PRValue, OK_Ordinary),
2379 InitExprs(C, initExprs.size()), LBraceLoc(lbraceloc),
2380 RBraceLoc(rbraceloc), AltForm(nullptr, true) {
2381 sawArrayRangeDesignator(ARD: false);
2382 InitExprs.insert(C, I: InitExprs.end(), From: initExprs.begin(), To: initExprs.end());
2383
2384 setDependence(computeDependence(E: this));
2385}
2386
2387void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
2388 if (NumInits > InitExprs.size())
2389 InitExprs.reserve(C, N: NumInits);
2390}
2391
2392void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
2393 InitExprs.resize(C, N: NumInits, NV: nullptr);
2394}
2395
2396Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
2397 if (Init >= InitExprs.size()) {
2398 InitExprs.insert(C, I: InitExprs.end(), NumToInsert: Init - InitExprs.size() + 1, Elt: nullptr);
2399 setInit(Init, expr);
2400 return nullptr;
2401 }
2402
2403 Expr *Result = cast_or_null<Expr>(Val: InitExprs[Init]);
2404 setInit(Init, expr);
2405 return Result;
2406}
2407
2408void InitListExpr::setArrayFiller(Expr *filler) {
2409 assert(!hasArrayFiller() && "Filler already set!");
2410 ArrayFillerOrUnionFieldInit = filler;
2411 // Fill out any "holes" in the array due to designated initializers.
2412 Expr **inits = getInits();
2413 for (unsigned i = 0, e = getNumInits(); i != e; ++i)
2414 if (inits[i] == nullptr)
2415 inits[i] = filler;
2416}
2417
2418bool InitListExpr::isStringLiteralInit() const {
2419 if (getNumInits() != 1)
2420 return false;
2421 const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
2422 if (!AT || !AT->getElementType()->isIntegerType())
2423 return false;
2424 // It is possible for getInit() to return null.
2425 const Expr *Init = getInit(Init: 0);
2426 if (!Init)
2427 return false;
2428 Init = Init->IgnoreParenImpCasts();
2429 return isa<StringLiteral>(Val: Init) || isa<ObjCEncodeExpr>(Val: Init);
2430}
2431
2432bool InitListExpr::isTransparent() const {
2433 assert(isSemanticForm() && "syntactic form never semantically transparent");
2434
2435 // A glvalue InitListExpr is always just sugar.
2436 if (isGLValue()) {
2437 assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2438 return true;
2439 }
2440
2441 // Otherwise, we're sugar if and only if we have exactly one initializer that
2442 // is of the same type.
2443 if (getNumInits() != 1 || !getInit(Init: 0))
2444 return false;
2445
2446 // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2447 // transparent struct copy.
2448 if (!getInit(Init: 0)->isPRValue() && getType()->isRecordType())
2449 return false;
2450
2451 return getType().getCanonicalType() ==
2452 getInit(Init: 0)->getType().getCanonicalType();
2453}
2454
2455bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2456 assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2457
2458 if (LangOpts.CPlusPlus || getNumInits() != 1 || !getInit(Init: 0)) {
2459 return false;
2460 }
2461
2462 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: getInit(Init: 0)->IgnoreImplicit());
2463 return Lit && Lit->getValue() == 0;
2464}
2465
2466SourceLocation InitListExpr::getBeginLoc() const {
2467 if (InitListExpr *SyntacticForm = getSyntacticForm())
2468 return SyntacticForm->getBeginLoc();
2469 SourceLocation Beg = LBraceLoc;
2470 if (Beg.isInvalid()) {
2471 // Find the first non-null initializer.
2472 for (InitExprsTy::const_iterator I = InitExprs.begin(),
2473 E = InitExprs.end();
2474 I != E; ++I) {
2475 if (Stmt *S = *I) {
2476 Beg = S->getBeginLoc();
2477 break;
2478 }
2479 }
2480 }
2481 return Beg;
2482}
2483
2484SourceLocation InitListExpr::getEndLoc() const {
2485 if (InitListExpr *SyntacticForm = getSyntacticForm())
2486 return SyntacticForm->getEndLoc();
2487 SourceLocation End = RBraceLoc;
2488 if (End.isInvalid()) {
2489 // Find the first non-null initializer from the end.
2490 for (Stmt *S : llvm::reverse(C: InitExprs)) {
2491 if (S) {
2492 End = S->getEndLoc();
2493 break;
2494 }
2495 }
2496 }
2497 return End;
2498}
2499
2500/// getFunctionType - Return the underlying function type for this block.
2501///
2502const FunctionProtoType *BlockExpr::getFunctionType() const {
2503 // The block pointer is never sugared, but the function type might be.
2504 return cast<BlockPointerType>(getType())
2505 ->getPointeeType()->castAs<FunctionProtoType>();
2506}
2507
2508SourceLocation BlockExpr::getCaretLocation() const {
2509 return TheBlock->getCaretLocation();
2510}
2511const Stmt *BlockExpr::getBody() const {
2512 return TheBlock->getBody();
2513}
2514Stmt *BlockExpr::getBody() {
2515 return TheBlock->getBody();
2516}
2517
2518
2519//===----------------------------------------------------------------------===//
2520// Generic Expression Routines
2521//===----------------------------------------------------------------------===//
2522
2523bool Expr::isReadIfDiscardedInCPlusPlus11() const {
2524 // In C++11, discarded-value expressions of a certain form are special,
2525 // according to [expr]p10:
2526 // The lvalue-to-rvalue conversion (4.1) is applied only if the
2527 // expression is a glvalue of volatile-qualified type and it has
2528 // one of the following forms:
2529 if (!isGLValue() || !getType().isVolatileQualified())
2530 return false;
2531
2532 const Expr *E = IgnoreParens();
2533
2534 // - id-expression (5.1.1),
2535 if (isa<DeclRefExpr>(Val: E))
2536 return true;
2537
2538 // - subscripting (5.2.1),
2539 if (isa<ArraySubscriptExpr>(Val: E))
2540 return true;
2541
2542 // - class member access (5.2.5),
2543 if (isa<MemberExpr>(Val: E))
2544 return true;
2545
2546 // - indirection (5.3.1),
2547 if (auto *UO = dyn_cast<UnaryOperator>(Val: E))
2548 if (UO->getOpcode() == UO_Deref)
2549 return true;
2550
2551 if (auto *BO = dyn_cast<BinaryOperator>(Val: E)) {
2552 // - pointer-to-member operation (5.5),
2553 if (BO->isPtrMemOp())
2554 return true;
2555
2556 // - comma expression (5.18) where the right operand is one of the above.
2557 if (BO->getOpcode() == BO_Comma)
2558 return BO->getRHS()->isReadIfDiscardedInCPlusPlus11();
2559 }
2560
2561 // - conditional expression (5.16) where both the second and the third
2562 // operands are one of the above, or
2563 if (auto *CO = dyn_cast<ConditionalOperator>(Val: E))
2564 return CO->getTrueExpr()->isReadIfDiscardedInCPlusPlus11() &&
2565 CO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2566 // The related edge case of "*x ?: *x".
2567 if (auto *BCO =
2568 dyn_cast<BinaryConditionalOperator>(Val: E)) {
2569 if (auto *OVE = dyn_cast<OpaqueValueExpr>(Val: BCO->getTrueExpr()))
2570 return OVE->getSourceExpr()->isReadIfDiscardedInCPlusPlus11() &&
2571 BCO->getFalseExpr()->isReadIfDiscardedInCPlusPlus11();
2572 }
2573
2574 // Objective-C++ extensions to the rule.
2575 if (isa<ObjCIvarRefExpr>(Val: E))
2576 return true;
2577 if (const auto *POE = dyn_cast<PseudoObjectExpr>(Val: E)) {
2578 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(Val: POE->getSyntacticForm()))
2579 return true;
2580 }
2581
2582 return false;
2583}
2584
2585/// isUnusedResultAWarning - Return true if this immediate expression should
2586/// be warned about if the result is unused. If so, fill in Loc and Ranges
2587/// with location to warn on and the source range[s] to report with the
2588/// warning.
2589bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2590 SourceRange &R1, SourceRange &R2,
2591 ASTContext &Ctx) const {
2592 // Don't warn if the expr is type dependent. The type could end up
2593 // instantiating to void.
2594 if (isTypeDependent())
2595 return false;
2596
2597 switch (getStmtClass()) {
2598 default:
2599 if (getType()->isVoidType())
2600 return false;
2601 WarnE = this;
2602 Loc = getExprLoc();
2603 R1 = getSourceRange();
2604 return true;
2605 case ParenExprClass:
2606 return cast<ParenExpr>(Val: this)->getSubExpr()->
2607 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2608 case GenericSelectionExprClass:
2609 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()->
2610 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2611 case CoawaitExprClass:
2612 case CoyieldExprClass:
2613 return cast<CoroutineSuspendExpr>(Val: this)->getResumeExpr()->
2614 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2615 case ChooseExprClass:
2616 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()->
2617 isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2618 case UnaryOperatorClass: {
2619 const UnaryOperator *UO = cast<UnaryOperator>(Val: this);
2620
2621 switch (UO->getOpcode()) {
2622 case UO_Plus:
2623 case UO_Minus:
2624 case UO_AddrOf:
2625 case UO_Not:
2626 case UO_LNot:
2627 case UO_Deref:
2628 break;
2629 case UO_Coawait:
2630 // This is just the 'operator co_await' call inside the guts of a
2631 // dependent co_await call.
2632 case UO_PostInc:
2633 case UO_PostDec:
2634 case UO_PreInc:
2635 case UO_PreDec: // ++/--
2636 return false; // Not a warning.
2637 case UO_Real:
2638 case UO_Imag:
2639 // accessing a piece of a volatile complex is a side-effect.
2640 if (Ctx.getCanonicalType(T: UO->getSubExpr()->getType())
2641 .isVolatileQualified())
2642 return false;
2643 break;
2644 case UO_Extension:
2645 return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2646 }
2647 WarnE = this;
2648 Loc = UO->getOperatorLoc();
2649 R1 = UO->getSubExpr()->getSourceRange();
2650 return true;
2651 }
2652 case BinaryOperatorClass: {
2653 const BinaryOperator *BO = cast<BinaryOperator>(Val: this);
2654 switch (BO->getOpcode()) {
2655 default:
2656 break;
2657 // Consider the RHS of comma for side effects. LHS was checked by
2658 // Sema::CheckCommaOperands.
2659 case BO_Comma:
2660 // ((foo = <blah>), 0) is an idiom for hiding the result (and
2661 // lvalue-ness) of an assignment written in a macro.
2662 if (IntegerLiteral *IE =
2663 dyn_cast<IntegerLiteral>(Val: BO->getRHS()->IgnoreParens()))
2664 if (IE->getValue() == 0)
2665 return false;
2666 return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2667 // Consider '||', '&&' to have side effects if the LHS or RHS does.
2668 case BO_LAnd:
2669 case BO_LOr:
2670 if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2671 !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2672 return false;
2673 break;
2674 }
2675 if (BO->isAssignmentOp())
2676 return false;
2677 WarnE = this;
2678 Loc = BO->getOperatorLoc();
2679 R1 = BO->getLHS()->getSourceRange();
2680 R2 = BO->getRHS()->getSourceRange();
2681 return true;
2682 }
2683 case CompoundAssignOperatorClass:
2684 case VAArgExprClass:
2685 case AtomicExprClass:
2686 return false;
2687
2688 case ConditionalOperatorClass: {
2689 // If only one of the LHS or RHS is a warning, the operator might
2690 // be being used for control flow. Only warn if both the LHS and
2691 // RHS are warnings.
2692 const auto *Exp = cast<ConditionalOperator>(Val: this);
2693 return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) &&
2694 Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2695 }
2696 case BinaryConditionalOperatorClass: {
2697 const auto *Exp = cast<BinaryConditionalOperator>(Val: this);
2698 return Exp->getFalseExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2699 }
2700
2701 case MemberExprClass:
2702 WarnE = this;
2703 Loc = cast<MemberExpr>(Val: this)->getMemberLoc();
2704 R1 = SourceRange(Loc, Loc);
2705 R2 = cast<MemberExpr>(Val: this)->getBase()->getSourceRange();
2706 return true;
2707
2708 case ArraySubscriptExprClass:
2709 WarnE = this;
2710 Loc = cast<ArraySubscriptExpr>(Val: this)->getRBracketLoc();
2711 R1 = cast<ArraySubscriptExpr>(Val: this)->getLHS()->getSourceRange();
2712 R2 = cast<ArraySubscriptExpr>(Val: this)->getRHS()->getSourceRange();
2713 return true;
2714
2715 case CXXOperatorCallExprClass: {
2716 // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2717 // overloads as there is no reasonable way to define these such that they
2718 // have non-trivial, desirable side-effects. See the -Wunused-comparison
2719 // warning: operators == and != are commonly typo'ed, and so warning on them
2720 // provides additional value as well. If this list is updated,
2721 // DiagnoseUnusedComparison should be as well.
2722 const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(Val: this);
2723 switch (Op->getOperator()) {
2724 default:
2725 break;
2726 case OO_EqualEqual:
2727 case OO_ExclaimEqual:
2728 case OO_Less:
2729 case OO_Greater:
2730 case OO_GreaterEqual:
2731 case OO_LessEqual:
2732 if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2733 Op->getCallReturnType(Ctx)->isVoidType())
2734 break;
2735 WarnE = this;
2736 Loc = Op->getOperatorLoc();
2737 R1 = Op->getSourceRange();
2738 return true;
2739 }
2740
2741 // Fallthrough for generic call handling.
2742 [[fallthrough]];
2743 }
2744 case CallExprClass:
2745 case CXXMemberCallExprClass:
2746 case UserDefinedLiteralClass: {
2747 // If this is a direct call, get the callee.
2748 const CallExpr *CE = cast<CallExpr>(Val: this);
2749 if (const Decl *FD = CE->getCalleeDecl()) {
2750 // If the callee has attribute pure, const, or warn_unused_result, warn
2751 // about it. void foo() { strlen("bar"); } should warn.
2752 //
2753 // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2754 // updated to match for QoI.
2755 if (CE->hasUnusedResultAttr(Ctx) ||
2756 FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2757 WarnE = this;
2758 Loc = CE->getCallee()->getBeginLoc();
2759 R1 = CE->getCallee()->getSourceRange();
2760
2761 if (unsigned NumArgs = CE->getNumArgs())
2762 R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(),
2763 CE->getArg(Arg: NumArgs - 1)->getEndLoc());
2764 return true;
2765 }
2766 }
2767 return false;
2768 }
2769
2770 // If we don't know precisely what we're looking at, let's not warn.
2771 case UnresolvedLookupExprClass:
2772 case CXXUnresolvedConstructExprClass:
2773 case RecoveryExprClass:
2774 return false;
2775
2776 case CXXTemporaryObjectExprClass:
2777 case CXXConstructExprClass: {
2778 if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2779 const auto *WarnURAttr = Type->getAttr<WarnUnusedResultAttr>();
2780 if (Type->hasAttr<WarnUnusedAttr>() ||
2781 (WarnURAttr && WarnURAttr->IsCXX11NoDiscard())) {
2782 WarnE = this;
2783 Loc = getBeginLoc();
2784 R1 = getSourceRange();
2785 return true;
2786 }
2787 }
2788
2789 const auto *CE = cast<CXXConstructExpr>(Val: this);
2790 if (const CXXConstructorDecl *Ctor = CE->getConstructor()) {
2791 const auto *WarnURAttr = Ctor->getAttr<WarnUnusedResultAttr>();
2792 if (WarnURAttr && WarnURAttr->IsCXX11NoDiscard()) {
2793 WarnE = this;
2794 Loc = getBeginLoc();
2795 R1 = getSourceRange();
2796
2797 if (unsigned NumArgs = CE->getNumArgs())
2798 R2 = SourceRange(CE->getArg(Arg: 0)->getBeginLoc(),
2799 CE->getArg(Arg: NumArgs - 1)->getEndLoc());
2800 return true;
2801 }
2802 }
2803
2804 return false;
2805 }
2806
2807 case ObjCMessageExprClass: {
2808 const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(Val: this);
2809 if (Ctx.getLangOpts().ObjCAutoRefCount &&
2810 ME->isInstanceMessage() &&
2811 !ME->getType()->isVoidType() &&
2812 ME->getMethodFamily() == OMF_init) {
2813 WarnE = this;
2814 Loc = getExprLoc();
2815 R1 = ME->getSourceRange();
2816 return true;
2817 }
2818
2819 if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2820 if (MD->hasAttr<WarnUnusedResultAttr>()) {
2821 WarnE = this;
2822 Loc = getExprLoc();
2823 return true;
2824 }
2825
2826 return false;
2827 }
2828
2829 case ObjCPropertyRefExprClass:
2830 case ObjCSubscriptRefExprClass:
2831 WarnE = this;
2832 Loc = getExprLoc();
2833 R1 = getSourceRange();
2834 return true;
2835
2836 case PseudoObjectExprClass: {
2837 const auto *POE = cast<PseudoObjectExpr>(Val: this);
2838
2839 // For some syntactic forms, we should always warn.
2840 if (isa<ObjCPropertyRefExpr, ObjCSubscriptRefExpr>(
2841 Val: POE->getSyntacticForm())) {
2842 WarnE = this;
2843 Loc = getExprLoc();
2844 R1 = getSourceRange();
2845 return true;
2846 }
2847
2848 // For others, we should never warn.
2849 if (auto *BO = dyn_cast<BinaryOperator>(Val: POE->getSyntacticForm()))
2850 if (BO->isAssignmentOp())
2851 return false;
2852 if (auto *UO = dyn_cast<UnaryOperator>(Val: POE->getSyntacticForm()))
2853 if (UO->isIncrementDecrementOp())
2854 return false;
2855
2856 // Otherwise, warn if the result expression would warn.
2857 const Expr *Result = POE->getResultExpr();
2858 return Result && Result->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2859 }
2860
2861 case StmtExprClass: {
2862 // Statement exprs don't logically have side effects themselves, but are
2863 // sometimes used in macros in ways that give them a type that is unused.
2864 // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2865 // however, if the result of the stmt expr is dead, we don't want to emit a
2866 // warning.
2867 const CompoundStmt *CS = cast<StmtExpr>(Val: this)->getSubStmt();
2868 if (!CS->body_empty()) {
2869 if (const Expr *E = dyn_cast<Expr>(Val: CS->body_back()))
2870 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2871 if (const LabelStmt *Label = dyn_cast<LabelStmt>(Val: CS->body_back()))
2872 if (const Expr *E = dyn_cast<Expr>(Val: Label->getSubStmt()))
2873 return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2874 }
2875
2876 if (getType()->isVoidType())
2877 return false;
2878 WarnE = this;
2879 Loc = cast<StmtExpr>(Val: this)->getLParenLoc();
2880 R1 = getSourceRange();
2881 return true;
2882 }
2883 case CXXFunctionalCastExprClass:
2884 case CStyleCastExprClass: {
2885 // Ignore an explicit cast to void, except in C++98 if the operand is a
2886 // volatile glvalue for which we would trigger an implicit read in any
2887 // other language mode. (Such an implicit read always happens as part of
2888 // the lvalue conversion in C, and happens in C++ for expressions of all
2889 // forms where it seems likely the user intended to trigger a volatile
2890 // load.)
2891 const CastExpr *CE = cast<CastExpr>(Val: this);
2892 const Expr *SubE = CE->getSubExpr()->IgnoreParens();
2893 if (CE->getCastKind() == CK_ToVoid) {
2894 if (Ctx.getLangOpts().CPlusPlus && !Ctx.getLangOpts().CPlusPlus11 &&
2895 SubE->isReadIfDiscardedInCPlusPlus11()) {
2896 // Suppress the "unused value" warning for idiomatic usage of
2897 // '(void)var;' used to suppress "unused variable" warnings.
2898 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: SubE))
2899 if (auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
2900 if (!VD->isExternallyVisible())
2901 return false;
2902
2903 // The lvalue-to-rvalue conversion would have no effect for an array.
2904 // It's implausible that the programmer expected this to result in a
2905 // volatile array load, so don't warn.
2906 if (SubE->getType()->isArrayType())
2907 return false;
2908
2909 return SubE->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2910 }
2911 return false;
2912 }
2913
2914 // If this is a cast to a constructor conversion, check the operand.
2915 // Otherwise, the result of the cast is unused.
2916 if (CE->getCastKind() == CK_ConstructorConversion)
2917 return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2918 if (CE->getCastKind() == CK_Dependent)
2919 return false;
2920
2921 WarnE = this;
2922 if (const CXXFunctionalCastExpr *CXXCE =
2923 dyn_cast<CXXFunctionalCastExpr>(Val: this)) {
2924 Loc = CXXCE->getBeginLoc();
2925 R1 = CXXCE->getSubExpr()->getSourceRange();
2926 } else {
2927 const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(Val: this);
2928 Loc = CStyleCE->getLParenLoc();
2929 R1 = CStyleCE->getSubExpr()->getSourceRange();
2930 }
2931 return true;
2932 }
2933 case ImplicitCastExprClass: {
2934 const CastExpr *ICE = cast<ImplicitCastExpr>(Val: this);
2935
2936 // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2937 if (ICE->getCastKind() == CK_LValueToRValue &&
2938 ICE->getSubExpr()->getType().isVolatileQualified())
2939 return false;
2940
2941 return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2942 }
2943 case CXXDefaultArgExprClass:
2944 return (cast<CXXDefaultArgExpr>(Val: this)
2945 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2946 case CXXDefaultInitExprClass:
2947 return (cast<CXXDefaultInitExpr>(Val: this)
2948 ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2949
2950 case CXXNewExprClass:
2951 // FIXME: In theory, there might be new expressions that don't have side
2952 // effects (e.g. a placement new with an uninitialized POD).
2953 case CXXDeleteExprClass:
2954 return false;
2955 case MaterializeTemporaryExprClass:
2956 return cast<MaterializeTemporaryExpr>(Val: this)
2957 ->getSubExpr()
2958 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2959 case CXXBindTemporaryExprClass:
2960 return cast<CXXBindTemporaryExpr>(Val: this)->getSubExpr()
2961 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2962 case ExprWithCleanupsClass:
2963 return cast<ExprWithCleanups>(Val: this)->getSubExpr()
2964 ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2965 }
2966}
2967
2968/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2969/// returns true, if it is; false otherwise.
2970bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2971 const Expr *E = IgnoreParens();
2972 switch (E->getStmtClass()) {
2973 default:
2974 return false;
2975 case ObjCIvarRefExprClass:
2976 return true;
2977 case Expr::UnaryOperatorClass:
2978 return cast<UnaryOperator>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2979 case ImplicitCastExprClass:
2980 return cast<ImplicitCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2981 case MaterializeTemporaryExprClass:
2982 return cast<MaterializeTemporaryExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(
2983 Ctx);
2984 case CStyleCastExprClass:
2985 return cast<CStyleCastExpr>(Val: E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2986 case DeclRefExprClass: {
2987 const Decl *D = cast<DeclRefExpr>(Val: E)->getDecl();
2988
2989 if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
2990 if (VD->hasGlobalStorage())
2991 return true;
2992 QualType T = VD->getType();
2993 // dereferencing to a pointer is always a gc'able candidate,
2994 // unless it is __weak.
2995 return T->isPointerType() &&
2996 (Ctx.getObjCGCAttrKind(Ty: T) != Qualifiers::Weak);
2997 }
2998 return false;
2999 }
3000 case MemberExprClass: {
3001 const MemberExpr *M = cast<MemberExpr>(Val: E);
3002 return M->getBase()->isOBJCGCCandidate(Ctx);
3003 }
3004 case ArraySubscriptExprClass:
3005 return cast<ArraySubscriptExpr>(Val: E)->getBase()->isOBJCGCCandidate(Ctx);
3006 }
3007}
3008
3009bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
3010 if (isTypeDependent())
3011 return false;
3012 return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
3013}
3014
3015QualType Expr::findBoundMemberType(const Expr *expr) {
3016 assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
3017
3018 // Bound member expressions are always one of these possibilities:
3019 // x->m x.m x->*y x.*y
3020 // (possibly parenthesized)
3021
3022 expr = expr->IgnoreParens();
3023 if (const MemberExpr *mem = dyn_cast<MemberExpr>(Val: expr)) {
3024 assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
3025 return mem->getMemberDecl()->getType();
3026 }
3027
3028 if (const BinaryOperator *op = dyn_cast<BinaryOperator>(Val: expr)) {
3029 QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
3030 ->getPointeeType();
3031 assert(type->isFunctionType());
3032 return type;
3033 }
3034
3035 assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
3036 return QualType();
3037}
3038
3039Expr *Expr::IgnoreImpCasts() {
3040 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitCastsSingleStep);
3041}
3042
3043Expr *Expr::IgnoreCasts() {
3044 return IgnoreExprNodes(E: this, Fns&: IgnoreCastsSingleStep);
3045}
3046
3047Expr *Expr::IgnoreImplicit() {
3048 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitSingleStep);
3049}
3050
3051Expr *Expr::IgnoreImplicitAsWritten() {
3052 return IgnoreExprNodes(E: this, Fns&: IgnoreImplicitAsWrittenSingleStep);
3053}
3054
3055Expr *Expr::IgnoreParens() {
3056 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep);
3057}
3058
3059Expr *Expr::IgnoreParenImpCasts() {
3060 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3061 Fns&: IgnoreImplicitCastsExtraSingleStep);
3062}
3063
3064Expr *Expr::IgnoreParenCasts() {
3065 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep, Fns&: IgnoreCastsSingleStep);
3066}
3067
3068Expr *Expr::IgnoreConversionOperatorSingleStep() {
3069 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Val: this)) {
3070 if (MCE->getMethodDecl() && isa<CXXConversionDecl>(Val: MCE->getMethodDecl()))
3071 return MCE->getImplicitObjectArgument();
3072 }
3073 return this;
3074}
3075
3076Expr *Expr::IgnoreParenLValueCasts() {
3077 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3078 Fns&: IgnoreLValueCastsSingleStep);
3079}
3080
3081Expr *Expr::IgnoreParenBaseCasts() {
3082 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3083 Fns&: IgnoreBaseCastsSingleStep);
3084}
3085
3086Expr *Expr::IgnoreParenNoopCasts(const ASTContext &Ctx) {
3087 auto IgnoreNoopCastsSingleStep = [&Ctx](Expr *E) {
3088 if (auto *CE = dyn_cast<CastExpr>(Val: E)) {
3089 // We ignore integer <-> casts that are of the same width, ptr<->ptr and
3090 // ptr<->int casts of the same width. We also ignore all identity casts.
3091 Expr *SubExpr = CE->getSubExpr();
3092 bool IsIdentityCast =
3093 Ctx.hasSameUnqualifiedType(T1: E->getType(), T2: SubExpr->getType());
3094 bool IsSameWidthCast = (E->getType()->isPointerType() ||
3095 E->getType()->isIntegralType(Ctx)) &&
3096 (SubExpr->getType()->isPointerType() ||
3097 SubExpr->getType()->isIntegralType(Ctx)) &&
3098 (Ctx.getTypeSize(T: E->getType()) ==
3099 Ctx.getTypeSize(T: SubExpr->getType()));
3100
3101 if (IsIdentityCast || IsSameWidthCast)
3102 return SubExpr;
3103 } else if (auto *NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(Val: E))
3104 return NTTP->getReplacement();
3105
3106 return E;
3107 };
3108 return IgnoreExprNodes(E: this, Fns&: IgnoreParensSingleStep,
3109 Fns&: IgnoreNoopCastsSingleStep);
3110}
3111
3112Expr *Expr::IgnoreUnlessSpelledInSource() {
3113 auto IgnoreImplicitConstructorSingleStep = [](Expr *E) {
3114 if (auto *Cast = dyn_cast<CXXFunctionalCastExpr>(Val: E)) {
3115 auto *SE = Cast->getSubExpr();
3116 if (SE->getSourceRange() == E->getSourceRange())
3117 return SE;
3118 }
3119
3120 if (auto *C = dyn_cast<CXXConstructExpr>(Val: E)) {
3121 auto NumArgs = C->getNumArgs();
3122 if (NumArgs == 1 ||
3123 (NumArgs > 1 && isa<CXXDefaultArgExpr>(Val: C->getArg(Arg: 1)))) {
3124 Expr *A = C->getArg(Arg: 0);
3125 if (A->getSourceRange() == E->getSourceRange() || C->isElidable())
3126 return A;
3127 }
3128 }
3129 return E;
3130 };
3131 auto IgnoreImplicitMemberCallSingleStep = [](Expr *E) {
3132 if (auto *C = dyn_cast<CXXMemberCallExpr>(Val: E)) {
3133 Expr *ExprNode = C->getImplicitObjectArgument();
3134 if (ExprNode->getSourceRange() == E->getSourceRange()) {
3135 return ExprNode;
3136 }
3137 if (auto *PE = dyn_cast<ParenExpr>(Val: ExprNode)) {
3138 if (PE->getSourceRange() == C->getSourceRange()) {
3139 return cast<Expr>(Val: PE);
3140 }
3141 }
3142 ExprNode = ExprNode->IgnoreParenImpCasts();
3143 if (ExprNode->getSourceRange() == E->getSourceRange())
3144 return ExprNode;
3145 }
3146 return E;
3147 };
3148 return IgnoreExprNodes(
3149 E: this, Fns&: IgnoreImplicitSingleStep, Fns&: IgnoreImplicitCastsExtraSingleStep,
3150 Fns&: IgnoreParensOnlySingleStep, Fns&: IgnoreImplicitConstructorSingleStep,
3151 Fns&: IgnoreImplicitMemberCallSingleStep);
3152}
3153
3154bool Expr::isDefaultArgument() const {
3155 const Expr *E = this;
3156 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E))
3157 E = M->getSubExpr();
3158
3159 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E))
3160 E = ICE->getSubExprAsWritten();
3161
3162 return isa<CXXDefaultArgExpr>(Val: E);
3163}
3164
3165/// Skip over any no-op casts and any temporary-binding
3166/// expressions.
3167static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
3168 if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(Val: E))
3169 E = M->getSubExpr();
3170
3171 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3172 if (ICE->getCastKind() == CK_NoOp)
3173 E = ICE->getSubExpr();
3174 else
3175 break;
3176 }
3177
3178 while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(Val: E))
3179 E = BE->getSubExpr();
3180
3181 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3182 if (ICE->getCastKind() == CK_NoOp)
3183 E = ICE->getSubExpr();
3184 else
3185 break;
3186 }
3187
3188 return E->IgnoreParens();
3189}
3190
3191/// isTemporaryObject - Determines if this expression produces a
3192/// temporary of the given class type.
3193bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
3194 if (!C.hasSameUnqualifiedType(T1: getType(), T2: C.getTypeDeclType(TempTy)))
3195 return false;
3196
3197 const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(E: this);
3198
3199 // Temporaries are by definition pr-values of class type.
3200 if (!E->Classify(Ctx&: C).isPRValue()) {
3201 // In this context, property reference is a message call and is pr-value.
3202 if (!isa<ObjCPropertyRefExpr>(Val: E))
3203 return false;
3204 }
3205
3206 // Black-list a few cases which yield pr-values of class type that don't
3207 // refer to temporaries of that type:
3208
3209 // - implicit derived-to-base conversions
3210 if (isa<ImplicitCastExpr>(Val: E)) {
3211 switch (cast<ImplicitCastExpr>(Val: E)->getCastKind()) {
3212 case CK_DerivedToBase:
3213 case CK_UncheckedDerivedToBase:
3214 return false;
3215 default:
3216 break;
3217 }
3218 }
3219
3220 // - member expressions (all)
3221 if (isa<MemberExpr>(Val: E))
3222 return false;
3223
3224 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E))
3225 if (BO->isPtrMemOp())
3226 return false;
3227
3228 // - opaque values (all)
3229 if (isa<OpaqueValueExpr>(Val: E))
3230 return false;
3231
3232 return true;
3233}
3234
3235bool Expr::isImplicitCXXThis() const {
3236 const Expr *E = this;
3237
3238 // Strip away parentheses and casts we don't care about.
3239 while (true) {
3240 if (const ParenExpr *Paren = dyn_cast<ParenExpr>(Val: E)) {
3241 E = Paren->getSubExpr();
3242 continue;
3243 }
3244
3245 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
3246 if (ICE->getCastKind() == CK_NoOp ||
3247 ICE->getCastKind() == CK_LValueToRValue ||
3248 ICE->getCastKind() == CK_DerivedToBase ||
3249 ICE->getCastKind() == CK_UncheckedDerivedToBase) {
3250 E = ICE->getSubExpr();
3251 continue;
3252 }
3253 }
3254
3255 if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(Val: E)) {
3256 if (UnOp->getOpcode() == UO_Extension) {
3257 E = UnOp->getSubExpr();
3258 continue;
3259 }
3260 }
3261
3262 if (const MaterializeTemporaryExpr *M
3263 = dyn_cast<MaterializeTemporaryExpr>(Val: E)) {
3264 E = M->getSubExpr();
3265 continue;
3266 }
3267
3268 break;
3269 }
3270
3271 if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(Val: E))
3272 return This->isImplicit();
3273
3274 return false;
3275}
3276
3277/// hasAnyTypeDependentArguments - Determines if any of the expressions
3278/// in Exprs is type-dependent.
3279bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
3280 for (unsigned I = 0; I < Exprs.size(); ++I)
3281 if (Exprs[I]->isTypeDependent())
3282 return true;
3283
3284 return false;
3285}
3286
3287bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
3288 const Expr **Culprit) const {
3289 assert(!isValueDependent() &&
3290 "Expression evaluator can't be called on a dependent expression.");
3291
3292 // This function is attempting whether an expression is an initializer
3293 // which can be evaluated at compile-time. It very closely parallels
3294 // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
3295 // will lead to unexpected results. Like ConstExprEmitter, it falls back
3296 // to isEvaluatable most of the time.
3297 //
3298 // If we ever capture reference-binding directly in the AST, we can
3299 // kill the second parameter.
3300
3301 if (IsForRef) {
3302 if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: this))
3303 return EWC->getSubExpr()->isConstantInitializer(Ctx, true, Culprit);
3304 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: this))
3305 return MTE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3306 EvalResult Result;
3307 if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
3308 return true;
3309 if (Culprit)
3310 *Culprit = this;
3311 return false;
3312 }
3313
3314 switch (getStmtClass()) {
3315 default: break;
3316 case Stmt::ExprWithCleanupsClass:
3317 return cast<ExprWithCleanups>(Val: this)->getSubExpr()->isConstantInitializer(
3318 Ctx, IsForRef, Culprit);
3319 case StringLiteralClass:
3320 case ObjCEncodeExprClass:
3321 return true;
3322 case CXXTemporaryObjectExprClass:
3323 case CXXConstructExprClass: {
3324 const CXXConstructExpr *CE = cast<CXXConstructExpr>(Val: this);
3325
3326 if (CE->getConstructor()->isTrivial() &&
3327 CE->getConstructor()->getParent()->hasTrivialDestructor()) {
3328 // Trivial default constructor
3329 if (!CE->getNumArgs()) return true;
3330
3331 // Trivial copy constructor
3332 assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
3333 return CE->getArg(Arg: 0)->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3334 }
3335
3336 break;
3337 }
3338 case ConstantExprClass: {
3339 // FIXME: We should be able to return "true" here, but it can lead to extra
3340 // error messages. E.g. in Sema/array-init.c.
3341 const Expr *Exp = cast<ConstantExpr>(Val: this)->getSubExpr();
3342 return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3343 }
3344 case CompoundLiteralExprClass: {
3345 // This handles gcc's extension that allows global initializers like
3346 // "struct x {int x;} x = (struct x) {};".
3347 // FIXME: This accepts other cases it shouldn't!
3348 const Expr *Exp = cast<CompoundLiteralExpr>(Val: this)->getInitializer();
3349 return Exp->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3350 }
3351 case DesignatedInitUpdateExprClass: {
3352 const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(Val: this);
3353 return DIUE->getBase()->isConstantInitializer(Ctx, IsForRef: false, Culprit) &&
3354 DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
3355 }
3356 case InitListExprClass: {
3357 // C++ [dcl.init.aggr]p2:
3358 // The elements of an aggregate are:
3359 // - for an array, the array elements in increasing subscript order, or
3360 // - for a class, the direct base classes in declaration order, followed
3361 // by the direct non-static data members (11.4) that are not members of
3362 // an anonymous union, in declaration order.
3363 const InitListExpr *ILE = cast<InitListExpr>(Val: this);
3364 assert(ILE->isSemanticForm() && "InitListExpr must be in semantic form");
3365 if (ILE->getType()->isArrayType()) {
3366 unsigned numInits = ILE->getNumInits();
3367 for (unsigned i = 0; i < numInits; i++) {
3368 if (!ILE->getInit(Init: i)->isConstantInitializer(Ctx, IsForRef: false, Culprit))
3369 return false;
3370 }
3371 return true;
3372 }
3373
3374 if (ILE->getType()->isRecordType()) {
3375 unsigned ElementNo = 0;
3376 RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
3377
3378 // In C++17, bases were added to the list of members used by aggregate
3379 // initialization.
3380 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3381 for (unsigned i = 0, e = CXXRD->getNumBases(); i < e; i++) {
3382 if (ElementNo < ILE->getNumInits()) {
3383 const Expr *Elt = ILE->getInit(Init: ElementNo++);
3384 if (!Elt->isConstantInitializer(Ctx, IsForRef: false, Culprit))
3385 return false;
3386 }
3387 }
3388 }
3389
3390 for (const auto *Field : RD->fields()) {
3391 // If this is a union, skip all the fields that aren't being initialized.
3392 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
3393 continue;
3394
3395 // Don't emit anonymous bitfields, they just affect layout.
3396 if (Field->isUnnamedBitField())
3397 continue;
3398
3399 if (ElementNo < ILE->getNumInits()) {
3400 const Expr *Elt = ILE->getInit(ElementNo++);
3401 if (Field->isBitField()) {
3402 // Bitfields have to evaluate to an integer.
3403 EvalResult Result;
3404 if (!Elt->EvaluateAsInt(Result, Ctx)) {
3405 if (Culprit)
3406 *Culprit = Elt;
3407 return false;
3408 }
3409 } else {
3410 bool RefType = Field->getType()->isReferenceType();
3411 if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
3412 return false;
3413 }
3414 }
3415 }
3416 return true;
3417 }
3418
3419 break;
3420 }
3421 case ImplicitValueInitExprClass:
3422 case NoInitExprClass:
3423 return true;
3424 case ParenExprClass:
3425 return cast<ParenExpr>(Val: this)->getSubExpr()
3426 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3427 case GenericSelectionExprClass:
3428 return cast<GenericSelectionExpr>(Val: this)->getResultExpr()
3429 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3430 case ChooseExprClass:
3431 if (cast<ChooseExpr>(Val: this)->isConditionDependent()) {
3432 if (Culprit)
3433 *Culprit = this;
3434 return false;
3435 }
3436 return cast<ChooseExpr>(Val: this)->getChosenSubExpr()
3437 ->isConstantInitializer(Ctx, IsForRef, Culprit);
3438 case UnaryOperatorClass: {
3439 const UnaryOperator* Exp = cast<UnaryOperator>(Val: this);
3440 if (Exp->getOpcode() == UO_Extension)
3441 return Exp->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3442 break;
3443 }
3444 case PackIndexingExprClass: {
3445 return cast<PackIndexingExpr>(Val: this)
3446 ->getSelectedExpr()
3447 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3448 }
3449 case CXXFunctionalCastExprClass:
3450 case CXXStaticCastExprClass:
3451 case ImplicitCastExprClass:
3452 case CStyleCastExprClass:
3453 case ObjCBridgedCastExprClass:
3454 case CXXDynamicCastExprClass:
3455 case CXXReinterpretCastExprClass:
3456 case CXXAddrspaceCastExprClass:
3457 case CXXConstCastExprClass: {
3458 const CastExpr *CE = cast<CastExpr>(Val: this);
3459
3460 // Handle misc casts we want to ignore.
3461 if (CE->getCastKind() == CK_NoOp ||
3462 CE->getCastKind() == CK_LValueToRValue ||
3463 CE->getCastKind() == CK_ToUnion ||
3464 CE->getCastKind() == CK_ConstructorConversion ||
3465 CE->getCastKind() == CK_NonAtomicToAtomic ||
3466 CE->getCastKind() == CK_AtomicToNonAtomic ||
3467 CE->getCastKind() == CK_NullToPointer ||
3468 CE->getCastKind() == CK_IntToOCLSampler)
3469 return CE->getSubExpr()->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3470
3471 break;
3472 }
3473 case MaterializeTemporaryExprClass:
3474 return cast<MaterializeTemporaryExpr>(Val: this)
3475 ->getSubExpr()
3476 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3477
3478 case SubstNonTypeTemplateParmExprClass:
3479 return cast<SubstNonTypeTemplateParmExpr>(Val: this)->getReplacement()
3480 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3481 case CXXDefaultArgExprClass:
3482 return cast<CXXDefaultArgExpr>(Val: this)->getExpr()
3483 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3484 case CXXDefaultInitExprClass:
3485 return cast<CXXDefaultInitExpr>(Val: this)->getExpr()
3486 ->isConstantInitializer(Ctx, IsForRef: false, Culprit);
3487 }
3488 // Allow certain forms of UB in constant initializers: signed integer
3489 // overflow and floating-point division by zero. We'll give a warning on
3490 // these, but they're common enough that we have to accept them.
3491 if (isEvaluatable(Ctx, AllowSideEffects: SE_AllowUndefinedBehavior))
3492 return true;
3493 if (Culprit)
3494 *Culprit = this;
3495 return false;
3496}
3497
3498bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3499 unsigned BuiltinID = getBuiltinCallee();
3500 if (BuiltinID != Builtin::BI__assume &&
3501 BuiltinID != Builtin::BI__builtin_assume)
3502 return false;
3503
3504 const Expr* Arg = getArg(Arg: 0);
3505 bool ArgVal;
3506 return !Arg->isValueDependent() &&
3507 Arg->EvaluateAsBooleanCondition(Result&: ArgVal, Ctx) && !ArgVal;
3508}
3509
3510bool CallExpr::isCallToStdMove() const {
3511 return getBuiltinCallee() == Builtin::BImove;
3512}
3513
3514namespace {
3515 /// Look for any side effects within a Stmt.
3516 class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3517 typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3518 const bool IncludePossibleEffects;
3519 bool HasSideEffects;
3520
3521 public:
3522 explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3523 : Inherited(Context),
3524 IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3525
3526 bool hasSideEffects() const { return HasSideEffects; }
3527
3528 void VisitDecl(const Decl *D) {
3529 if (!D)
3530 return;
3531
3532 // We assume the caller checks subexpressions (eg, the initializer, VLA
3533 // bounds) for side-effects on our behalf.
3534 if (auto *VD = dyn_cast<VarDecl>(Val: D)) {
3535 // Registering a destructor is a side-effect.
3536 if (IncludePossibleEffects && VD->isThisDeclarationADefinition() &&
3537 VD->needsDestruction(Ctx: Context))
3538 HasSideEffects = true;
3539 }
3540 }
3541
3542 void VisitDeclStmt(const DeclStmt *DS) {
3543 for (auto *D : DS->decls())
3544 VisitDecl(D);
3545 Inherited::VisitDeclStmt(DS);
3546 }
3547
3548 void VisitExpr(const Expr *E) {
3549 if (!HasSideEffects &&
3550 E->HasSideEffects(Ctx: Context, IncludePossibleEffects))
3551 HasSideEffects = true;
3552 }
3553 };
3554}
3555
3556bool Expr::HasSideEffects(const ASTContext &Ctx,
3557 bool IncludePossibleEffects) const {
3558 // In circumstances where we care about definite side effects instead of
3559 // potential side effects, we want to ignore expressions that are part of a
3560 // macro expansion as a potential side effect.
3561 if (!IncludePossibleEffects && getExprLoc().isMacroID())
3562 return false;
3563
3564 switch (getStmtClass()) {
3565 case NoStmtClass:
3566 #define ABSTRACT_STMT(Type)
3567 #define STMT(Type, Base) case Type##Class:
3568 #define EXPR(Type, Base)
3569 #include "clang/AST/StmtNodes.inc"
3570 llvm_unreachable("unexpected Expr kind");
3571
3572 case DependentScopeDeclRefExprClass:
3573 case CXXUnresolvedConstructExprClass:
3574 case CXXDependentScopeMemberExprClass:
3575 case UnresolvedLookupExprClass:
3576 case UnresolvedMemberExprClass:
3577 case PackExpansionExprClass:
3578 case SubstNonTypeTemplateParmPackExprClass:
3579 case FunctionParmPackExprClass:
3580 case TypoExprClass:
3581 case RecoveryExprClass:
3582 case CXXFoldExprClass:
3583 // Make a conservative assumption for dependent nodes.
3584 return IncludePossibleEffects;
3585
3586 case DeclRefExprClass:
3587 case ObjCIvarRefExprClass:
3588 case PredefinedExprClass:
3589 case IntegerLiteralClass:
3590 case FixedPointLiteralClass:
3591 case FloatingLiteralClass:
3592 case ImaginaryLiteralClass:
3593 case StringLiteralClass:
3594 case CharacterLiteralClass:
3595 case OffsetOfExprClass:
3596 case ImplicitValueInitExprClass:
3597 case UnaryExprOrTypeTraitExprClass:
3598 case AddrLabelExprClass:
3599 case GNUNullExprClass:
3600 case ArrayInitIndexExprClass:
3601 case NoInitExprClass:
3602 case CXXBoolLiteralExprClass:
3603 case CXXNullPtrLiteralExprClass:
3604 case CXXThisExprClass:
3605 case CXXScalarValueInitExprClass:
3606 case TypeTraitExprClass:
3607 case ArrayTypeTraitExprClass:
3608 case ExpressionTraitExprClass:
3609 case CXXNoexceptExprClass:
3610 case SizeOfPackExprClass:
3611 case ObjCStringLiteralClass:
3612 case ObjCEncodeExprClass:
3613 case ObjCBoolLiteralExprClass:
3614 case ObjCAvailabilityCheckExprClass:
3615 case CXXUuidofExprClass:
3616 case OpaqueValueExprClass:
3617 case SourceLocExprClass:
3618 case ConceptSpecializationExprClass:
3619 case RequiresExprClass:
3620 case SYCLUniqueStableNameExprClass:
3621 // These never have a side-effect.
3622 return false;
3623
3624 case PackIndexingExprClass:
3625 return cast<PackIndexingExpr>(this)->getSelectedExpr()->HasSideEffects(
3626 Ctx, IncludePossibleEffects);
3627 case ConstantExprClass:
3628 // FIXME: Move this into the "return false;" block above.
3629 return cast<ConstantExpr>(this)->getSubExpr()->HasSideEffects(
3630 Ctx, IncludePossibleEffects);
3631
3632 case CallExprClass:
3633 case CXXOperatorCallExprClass:
3634 case CXXMemberCallExprClass:
3635 case CUDAKernelCallExprClass:
3636 case UserDefinedLiteralClass: {
3637 // We don't know a call definitely has side effects, except for calls
3638 // to pure/const functions that definitely don't.
3639 // If the call itself is considered side-effect free, check the operands.
3640 const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3641 bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3642 if (IsPure || !IncludePossibleEffects)
3643 break;
3644 return true;
3645 }
3646
3647 case BlockExprClass:
3648 case CXXBindTemporaryExprClass:
3649 if (!IncludePossibleEffects)
3650 break;
3651 return true;
3652
3653 case MSPropertyRefExprClass:
3654 case MSPropertySubscriptExprClass:
3655 case CompoundAssignOperatorClass:
3656 case VAArgExprClass:
3657 case AtomicExprClass:
3658 case CXXThrowExprClass:
3659 case CXXNewExprClass:
3660 case CXXDeleteExprClass:
3661 case CoawaitExprClass:
3662 case DependentCoawaitExprClass:
3663 case CoyieldExprClass:
3664 // These always have a side-effect.
3665 return true;
3666
3667 case StmtExprClass: {
3668 // StmtExprs have a side-effect if any substatement does.
3669 SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3670 Finder.Visit(S: cast<StmtExpr>(this)->getSubStmt());
3671 return Finder.hasSideEffects();
3672 }
3673
3674 case ExprWithCleanupsClass:
3675 if (IncludePossibleEffects)
3676 if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3677 return true;
3678 break;
3679
3680 case ParenExprClass:
3681 case ArraySubscriptExprClass:
3682 case MatrixSubscriptExprClass:
3683 case OMPArraySectionExprClass:
3684 case OMPArrayShapingExprClass:
3685 case OMPIteratorExprClass:
3686 case MemberExprClass:
3687 case ConditionalOperatorClass:
3688 case BinaryConditionalOperatorClass:
3689 case CompoundLiteralExprClass:
3690 case ExtVectorElementExprClass:
3691 case DesignatedInitExprClass:
3692 case DesignatedInitUpdateExprClass:
3693 case ArrayInitLoopExprClass:
3694 case ParenListExprClass:
3695 case CXXPseudoDestructorExprClass:
3696 case CXXRewrittenBinaryOperatorClass:
3697 case CXXStdInitializerListExprClass:
3698 case SubstNonTypeTemplateParmExprClass:
3699 case MaterializeTemporaryExprClass:
3700 case ShuffleVectorExprClass:
3701 case ConvertVectorExprClass:
3702 case AsTypeExprClass:
3703 case CXXParenListInitExprClass:
3704 // These have a side-effect if any subexpression does.
3705 break;
3706
3707 case UnaryOperatorClass:
3708 if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3709 return true;
3710 break;
3711
3712 case BinaryOperatorClass:
3713 if (cast<BinaryOperator>(this)->isAssignmentOp())
3714 return true;
3715 break;
3716
3717 case InitListExprClass:
3718 // FIXME: The children for an InitListExpr doesn't include the array filler.
3719 if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3720 if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3721 return true;
3722 break;
3723
3724 case GenericSelectionExprClass:
3725 return cast<GenericSelectionExpr>(this)->getResultExpr()->
3726 HasSideEffects(Ctx, IncludePossibleEffects);
3727
3728 case ChooseExprClass:
3729 return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3730 Ctx, IncludePossibleEffects);
3731
3732 case CXXDefaultArgExprClass:
3733 return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3734 Ctx, IncludePossibleEffects);
3735
3736 case CXXDefaultInitExprClass: {
3737 const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3738 if (const Expr *E = FD->getInClassInitializer())
3739 return E->HasSideEffects(Ctx, IncludePossibleEffects);
3740 // If we've not yet parsed the initializer, assume it has side-effects.
3741 return true;
3742 }
3743
3744 case CXXDynamicCastExprClass: {
3745 // A dynamic_cast expression has side-effects if it can throw.
3746 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3747 if (DCE->getTypeAsWritten()->isReferenceType() &&
3748 DCE->getCastKind() == CK_Dynamic)
3749 return true;
3750 }
3751 [[fallthrough]];
3752 case ImplicitCastExprClass:
3753 case CStyleCastExprClass:
3754 case CXXStaticCastExprClass:
3755 case CXXReinterpretCastExprClass:
3756 case CXXConstCastExprClass:
3757 case CXXAddrspaceCastExprClass:
3758 case CXXFunctionalCastExprClass:
3759 case BuiltinBitCastExprClass: {
3760 // While volatile reads are side-effecting in both C and C++, we treat them
3761 // as having possible (not definite) side-effects. This allows idiomatic
3762 // code to behave without warning, such as sizeof(*v) for a volatile-
3763 // qualified pointer.
3764 if (!IncludePossibleEffects)
3765 break;
3766
3767 const CastExpr *CE = cast<CastExpr>(this);
3768 if (CE->getCastKind() == CK_LValueToRValue &&
3769 CE->getSubExpr()->getType().isVolatileQualified())
3770 return true;
3771 break;
3772 }
3773
3774 case CXXTypeidExprClass:
3775 // typeid might throw if its subexpression is potentially-evaluated, so has
3776 // side-effects in that case whether or not its subexpression does.
3777 return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3778
3779 case CXXConstructExprClass:
3780 case CXXTemporaryObjectExprClass: {
3781 const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3782 if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3783 return true;
3784 // A trivial constructor does not add any side-effects of its own. Just look
3785 // at its arguments.
3786 break;
3787 }
3788
3789 case CXXInheritedCtorInitExprClass: {
3790 const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3791 if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3792 return true;
3793 break;
3794 }
3795
3796 case LambdaExprClass: {
3797 const LambdaExpr *LE = cast<LambdaExpr>(this);
3798 for (Expr *E : LE->capture_inits())
3799 if (E && E->HasSideEffects(Ctx, IncludePossibleEffects))
3800 return true;
3801 return false;
3802 }
3803
3804 case PseudoObjectExprClass: {
3805 // Only look for side-effects in the semantic form, and look past
3806 // OpaqueValueExpr bindings in that form.
3807 const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3808 for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3809 E = PO->semantics_end();
3810 I != E; ++I) {
3811 const Expr *Subexpr = *I;
3812 if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3813 Subexpr = OVE->getSourceExpr();
3814 if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3815 return true;
3816 }
3817 return false;
3818 }
3819
3820 case ObjCBoxedExprClass:
3821 case ObjCArrayLiteralClass:
3822 case ObjCDictionaryLiteralClass:
3823 case ObjCSelectorExprClass:
3824 case ObjCProtocolExprClass:
3825 case ObjCIsaExprClass:
3826 case ObjCIndirectCopyRestoreExprClass:
3827 case ObjCSubscriptRefExprClass:
3828 case ObjCBridgedCastExprClass:
3829 case ObjCMessageExprClass:
3830 case ObjCPropertyRefExprClass:
3831 // FIXME: Classify these cases better.
3832 if (IncludePossibleEffects)
3833 return true;
3834 break;
3835 }
3836
3837 // Recurse to children.
3838 for (const Stmt *SubStmt : children())
3839 if (SubStmt &&
3840 cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3841 return true;
3842
3843 return false;
3844}
3845
3846FPOptions Expr::getFPFeaturesInEffect(const LangOptions &LO) const {
3847 if (auto Call = dyn_cast<CallExpr>(Val: this))
3848 return Call->getFPFeaturesInEffect(LO);
3849 if (auto UO = dyn_cast<UnaryOperator>(Val: this))
3850 return UO->getFPFeaturesInEffect(LO);
3851 if (auto BO = dyn_cast<BinaryOperator>(Val: this))
3852 return BO->getFPFeaturesInEffect(LO);
3853 if (auto Cast = dyn_cast<CastExpr>(Val: this))
3854 return Cast->getFPFeaturesInEffect(LO);
3855 return FPOptions::defaultWithoutTrailingStorage(LO);
3856}
3857
3858namespace {
3859 /// Look for a call to a non-trivial function within an expression.
3860 class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3861 {
3862 typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3863
3864 bool NonTrivial;
3865
3866 public:
3867 explicit NonTrivialCallFinder(const ASTContext &Context)
3868 : Inherited(Context), NonTrivial(false) { }
3869
3870 bool hasNonTrivialCall() const { return NonTrivial; }
3871
3872 void VisitCallExpr(const CallExpr *E) {
3873 if (const CXXMethodDecl *Method
3874 = dyn_cast_or_null<const CXXMethodDecl>(Val: E->getCalleeDecl())) {
3875 if (Method->isTrivial()) {
3876 // Recurse to children of the call.
3877 Inherited::VisitStmt(E);
3878 return;
3879 }
3880 }
3881
3882 NonTrivial = true;
3883 }
3884
3885 void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3886 if (E->getConstructor()->isTrivial()) {
3887 // Recurse to children of the call.
3888 Inherited::VisitStmt(E);
3889 return;
3890 }
3891
3892 NonTrivial = true;
3893 }
3894
3895 void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3896 if (E->getTemporary()->getDestructor()->isTrivial()) {
3897 Inherited::VisitStmt(E);
3898 return;
3899 }
3900
3901 NonTrivial = true;
3902 }
3903 };
3904}
3905
3906bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3907 NonTrivialCallFinder Finder(Ctx);
3908 Finder.Visit(this);
3909 return Finder.hasNonTrivialCall();
3910}
3911
3912/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3913/// pointer constant or not, as well as the specific kind of constant detected.
3914/// Null pointer constants can be integer constant expressions with the
3915/// value zero, casts of zero to void*, nullptr (C++0X), or __null
3916/// (a GNU extension).
3917Expr::NullPointerConstantKind
3918Expr::isNullPointerConstant(ASTContext &Ctx,
3919 NullPointerConstantValueDependence NPC) const {
3920 if (isValueDependent() &&
3921 (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3922 // Error-dependent expr should never be a null pointer.
3923 if (containsErrors())
3924 return NPCK_NotNull;
3925 switch (NPC) {
3926 case NPC_NeverValueDependent:
3927 llvm_unreachable("Unexpected value dependent expression!");
3928 case NPC_ValueDependentIsNull:
3929 if (isTypeDependent() || getType()->isIntegralType(Ctx))
3930 return NPCK_ZeroExpression;
3931 else
3932 return NPCK_NotNull;
3933
3934 case NPC_ValueDependentIsNotNull:
3935 return NPCK_NotNull;
3936 }
3937 }
3938
3939 // Strip off a cast to void*, if it exists. Except in C++.
3940 if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(Val: this)) {
3941 if (!Ctx.getLangOpts().CPlusPlus) {
3942 // Check that it is a cast to void*.
3943 if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3944 QualType Pointee = PT->getPointeeType();
3945 Qualifiers Qs = Pointee.getQualifiers();
3946 // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3947 // has non-default address space it is not treated as nullptr.
3948 // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3949 // since it cannot be assigned to a pointer to constant address space.
3950 if (Ctx.getLangOpts().OpenCL &&
3951 Pointee.getAddressSpace() == Ctx.getDefaultOpenCLPointeeAddrSpace())
3952 Qs.removeAddressSpace();
3953
3954 if (Pointee->isVoidType() && Qs.empty() && // to void*
3955 CE->getSubExpr()->getType()->isIntegerType()) // from int
3956 return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3957 }
3958 }
3959 } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: this)) {
3960 // Ignore the ImplicitCastExpr type entirely.
3961 return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3962 } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(Val: this)) {
3963 // Accept ((void*)0) as a null pointer constant, as many other
3964 // implementations do.
3965 return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3966 } else if (const GenericSelectionExpr *GE =
3967 dyn_cast<GenericSelectionExpr>(Val: this)) {
3968 if (GE->isResultDependent())
3969 return NPCK_NotNull;
3970 return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3971 } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(Val: this)) {
3972 if (CE->isConditionDependent())
3973 return NPCK_NotNull;
3974 return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3975 } else if (const CXXDefaultArgExpr *DefaultArg
3976 = dyn_cast<CXXDefaultArgExpr>(Val: this)) {
3977 // See through default argument expressions.
3978 return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3979 } else if (const CXXDefaultInitExpr *DefaultInit
3980 = dyn_cast<CXXDefaultInitExpr>(Val: this)) {
3981 // See through default initializer expressions.
3982 return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3983 } else if (isa<GNUNullExpr>(Val: this)) {
3984 // The GNU __null extension is always a null pointer constant.
3985 return NPCK_GNUNull;
3986 } else if (const MaterializeTemporaryExpr *M
3987 = dyn_cast<MaterializeTemporaryExpr>(Val: this)) {
3988 return M->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3989 } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: this)) {
3990 if (const Expr *Source = OVE->getSourceExpr())
3991 return Source->isNullPointerConstant(Ctx, NPC);
3992 }
3993
3994 // If the expression has no type information, it cannot be a null pointer
3995 // constant.
3996 if (getType().isNull())
3997 return NPCK_NotNull;
3998
3999 // C++11/C23 nullptr_t is always a null pointer constant.
4000 if (getType()->isNullPtrType())
4001 return NPCK_CXX11_nullptr;
4002
4003 if (const RecordType *UT = getType()->getAsUnionType())
4004 if (!Ctx.getLangOpts().CPlusPlus11 &&
4005 UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
4006 if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Val: this)){
4007 const Expr *InitExpr = CLE->getInitializer();
4008 if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: InitExpr))
4009 return ILE->getInit(Init: 0)->isNullPointerConstant(Ctx, NPC);
4010 }
4011 // This expression must be an integer type.
4012 if (!getType()->isIntegerType() ||
4013 (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
4014 return NPCK_NotNull;
4015
4016 if (Ctx.getLangOpts().CPlusPlus11) {
4017 // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
4018 // value zero or a prvalue of type std::nullptr_t.
4019 // Microsoft mode permits C++98 rules reflecting MSVC behavior.
4020 const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(Val: this);
4021 if (Lit && !Lit->getValue())
4022 return NPCK_ZeroLiteral;
4023 if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
4024 return NPCK_NotNull;
4025 } else {
4026 // If we have an integer constant expression, we need to *evaluate* it and
4027 // test for the value 0.
4028 if (!isIntegerConstantExpr(Ctx))
4029 return NPCK_NotNull;
4030 }
4031
4032 if (EvaluateKnownConstInt(Ctx) != 0)
4033 return NPCK_NotNull;
4034
4035 if (isa<IntegerLiteral>(Val: this))
4036 return NPCK_ZeroLiteral;
4037 return NPCK_ZeroExpression;
4038}
4039
4040/// If this expression is an l-value for an Objective C
4041/// property, find the underlying property reference expression.
4042const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
4043 const Expr *E = this;
4044 while (true) {
4045 assert((E->isLValue() && E->getObjectKind() == OK_ObjCProperty) &&
4046 "expression is not a property reference");
4047 E = E->IgnoreParenCasts();
4048 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
4049 if (BO->getOpcode() == BO_Comma) {
4050 E = BO->getRHS();
4051 continue;
4052 }
4053 }
4054
4055 break;
4056 }
4057
4058 return cast<ObjCPropertyRefExpr>(Val: E);
4059}
4060
4061bool Expr::isObjCSelfExpr() const {
4062 const Expr *E = IgnoreParenImpCasts();
4063
4064 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E);
4065 if (!DRE)
4066 return false;
4067
4068 const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(Val: DRE->getDecl());
4069 if (!Param)
4070 return false;
4071
4072 const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
4073 if (!M)
4074 return false;
4075
4076 return M->getSelfDecl() == Param;
4077}
4078
4079FieldDecl *Expr::getSourceBitField() {
4080 Expr *E = this->IgnoreParens();
4081
4082 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
4083 if (ICE->getCastKind() == CK_LValueToRValue ||
4084 (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp))
4085 E = ICE->getSubExpr()->IgnoreParens();
4086 else
4087 break;
4088 }
4089
4090 if (MemberExpr *MemRef = dyn_cast<MemberExpr>(Val: E))
4091 if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: MemRef->getMemberDecl()))
4092 if (Field->isBitField())
4093 return Field;
4094
4095 if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(Val: E)) {
4096 FieldDecl *Ivar = IvarRef->getDecl();
4097 if (Ivar->isBitField())
4098 return Ivar;
4099 }
4100
4101 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(Val: E)) {
4102 if (FieldDecl *Field = dyn_cast<FieldDecl>(Val: DeclRef->getDecl()))
4103 if (Field->isBitField())
4104 return Field;
4105
4106 if (BindingDecl *BD = dyn_cast<BindingDecl>(Val: DeclRef->getDecl()))
4107 if (Expr *E = BD->getBinding())
4108 return E->getSourceBitField();
4109 }
4110
4111 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: E)) {
4112 if (BinOp->isAssignmentOp() && BinOp->getLHS())
4113 return BinOp->getLHS()->getSourceBitField();
4114
4115 if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
4116 return BinOp->getRHS()->getSourceBitField();
4117 }
4118
4119 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Val: E))
4120 if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
4121 return UnOp->getSubExpr()->getSourceBitField();
4122
4123 return nullptr;
4124}
4125
4126EnumConstantDecl *Expr::getEnumConstantDecl() {
4127 Expr *E = this->IgnoreParenImpCasts();
4128 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4129 return dyn_cast<EnumConstantDecl>(Val: DRE->getDecl());
4130 return nullptr;
4131}
4132
4133bool Expr::refersToVectorElement() const {
4134 // FIXME: Why do we not just look at the ObjectKind here?
4135 const Expr *E = this->IgnoreParens();
4136
4137 while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) {
4138 if (ICE->isGLValue() && ICE->getCastKind() == CK_NoOp)
4139 E = ICE->getSubExpr()->IgnoreParens();
4140 else
4141 break;
4142 }
4143
4144 if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(Val: E))
4145 return ASE->getBase()->getType()->isVectorType();
4146
4147 if (isa<ExtVectorElementExpr>(Val: E))
4148 return true;
4149
4150 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4151 if (auto *BD = dyn_cast<BindingDecl>(Val: DRE->getDecl()))
4152 if (auto *E = BD->getBinding())
4153 return E->refersToVectorElement();
4154
4155 return false;
4156}
4157
4158bool Expr::refersToGlobalRegisterVar() const {
4159 const Expr *E = this->IgnoreParenImpCasts();
4160
4161 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E))
4162 if (const auto *VD = dyn_cast<VarDecl>(Val: DRE->getDecl()))
4163 if (VD->getStorageClass() == SC_Register &&
4164 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
4165 return true;
4166
4167 return false;
4168}
4169
4170bool Expr::isSameComparisonOperand(const Expr* E1, const Expr* E2) {
4171 E1 = E1->IgnoreParens();
4172 E2 = E2->IgnoreParens();
4173
4174 if (E1->getStmtClass() != E2->getStmtClass())
4175 return false;
4176
4177 switch (E1->getStmtClass()) {
4178 default:
4179 return false;
4180 case CXXThisExprClass:
4181 return true;
4182 case DeclRefExprClass: {
4183 // DeclRefExpr without an ImplicitCastExpr can happen for integral
4184 // template parameters.
4185 const auto *DRE1 = cast<DeclRefExpr>(Val: E1);
4186 const auto *DRE2 = cast<DeclRefExpr>(Val: E2);
4187 return DRE1->isPRValue() && DRE2->isPRValue() &&
4188 DRE1->getDecl() == DRE2->getDecl();
4189 }
4190 case ImplicitCastExprClass: {
4191 // Peel off implicit casts.
4192 while (true) {
4193 const auto *ICE1 = dyn_cast<ImplicitCastExpr>(Val: E1);
4194 const auto *ICE2 = dyn_cast<ImplicitCastExpr>(Val: E2);
4195 if (!ICE1 || !ICE2)
4196 return false;
4197 if (ICE1->getCastKind() != ICE2->getCastKind())
4198 return false;
4199 E1 = ICE1->getSubExpr()->IgnoreParens();
4200 E2 = ICE2->getSubExpr()->IgnoreParens();
4201 // The final cast must be one of these types.
4202 if (ICE1->getCastKind() == CK_LValueToRValue ||
4203 ICE1->getCastKind() == CK_ArrayToPointerDecay ||
4204 ICE1->getCastKind() == CK_FunctionToPointerDecay) {
4205 break;
4206 }
4207 }
4208
4209 const auto *DRE1 = dyn_cast<DeclRefExpr>(Val: E1);
4210 const auto *DRE2 = dyn_cast<DeclRefExpr>(Val: E2);
4211 if (DRE1 && DRE2)
4212 return declaresSameEntity(DRE1->getDecl(), DRE2->getDecl());
4213
4214 const auto *Ivar1 = dyn_cast<ObjCIvarRefExpr>(Val: E1);
4215 const auto *Ivar2 = dyn_cast<ObjCIvarRefExpr>(Val: E2);
4216 if (Ivar1 && Ivar2) {
4217 return Ivar1->isFreeIvar() && Ivar2->isFreeIvar() &&
4218 declaresSameEntity(Ivar1->getDecl(), Ivar2->getDecl());
4219 }
4220
4221 const auto *Array1 = dyn_cast<ArraySubscriptExpr>(Val: E1);
4222 const auto *Array2 = dyn_cast<ArraySubscriptExpr>(Val: E2);
4223 if (Array1 && Array2) {
4224 if (!isSameComparisonOperand(E1: Array1->getBase(), E2: Array2->getBase()))
4225 return false;
4226
4227 auto Idx1 = Array1->getIdx();
4228 auto Idx2 = Array2->getIdx();
4229 const auto Integer1 = dyn_cast<IntegerLiteral>(Val: Idx1);
4230 const auto Integer2 = dyn_cast<IntegerLiteral>(Val: Idx2);
4231 if (Integer1 && Integer2) {
4232 if (!llvm::APInt::isSameValue(I1: Integer1->getValue(),
4233 I2: Integer2->getValue()))
4234 return false;
4235 } else {
4236 if (!isSameComparisonOperand(E1: Idx1, E2: Idx2))
4237 return false;
4238 }
4239
4240 return true;
4241 }
4242
4243 // Walk the MemberExpr chain.
4244 while (isa<MemberExpr>(Val: E1) && isa<MemberExpr>(Val: E2)) {
4245 const auto *ME1 = cast<MemberExpr>(Val: E1);
4246 const auto *ME2 = cast<MemberExpr>(Val: E2);
4247 if (!declaresSameEntity(ME1->getMemberDecl(), ME2->getMemberDecl()))
4248 return false;
4249 if (const auto *D = dyn_cast<VarDecl>(Val: ME1->getMemberDecl()))
4250 if (D->isStaticDataMember())
4251 return true;
4252 E1 = ME1->getBase()->IgnoreParenImpCasts();
4253 E2 = ME2->getBase()->IgnoreParenImpCasts();
4254 }
4255
4256 if (isa<CXXThisExpr>(Val: E1) && isa<CXXThisExpr>(Val: E2))
4257 return true;
4258
4259 // A static member variable can end the MemberExpr chain with either
4260 // a MemberExpr or a DeclRefExpr.
4261 auto getAnyDecl = [](const Expr *E) -> const ValueDecl * {
4262 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
4263 return DRE->getDecl();
4264 if (const auto *ME = dyn_cast<MemberExpr>(Val: E))
4265 return ME->getMemberDecl();
4266 return nullptr;
4267 };
4268
4269 const ValueDecl *VD1 = getAnyDecl(E1);
4270 const ValueDecl *VD2 = getAnyDecl(E2);
4271 return declaresSameEntity(VD1, VD2);
4272 }
4273 }
4274}
4275
4276/// isArrow - Return true if the base expression is a pointer to vector,
4277/// return false if the base expression is a vector.
4278bool ExtVectorElementExpr::isArrow() const {
4279 return getBase()->getType()->isPointerType();
4280}
4281
4282unsigned ExtVectorElementExpr::getNumElements() const {
4283 if (const VectorType *VT = getType()->getAs<VectorType>())
4284 return VT->getNumElements();
4285 return 1;
4286}
4287
4288/// containsDuplicateElements - Return true if any element access is repeated.
4289bool ExtVectorElementExpr::containsDuplicateElements() const {
4290 // FIXME: Refactor this code to an accessor on the AST node which returns the
4291 // "type" of component access, and share with code below and in Sema.
4292 StringRef Comp = Accessor->getName();
4293
4294 // Halving swizzles do not contain duplicate elements.
4295 if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
4296 return false;
4297
4298 // Advance past s-char prefix on hex swizzles.
4299 if (Comp[0] == 's' || Comp[0] == 'S')
4300 Comp = Comp.substr(Start: 1);
4301
4302 for (unsigned i = 0, e = Comp.size(); i != e; ++i)
4303 if (Comp.substr(Start: i + 1).contains(C: Comp[i]))
4304 return true;
4305
4306 return false;
4307}
4308
4309/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
4310void ExtVectorElementExpr::getEncodedElementAccess(
4311 SmallVectorImpl<uint32_t> &Elts) const {
4312 StringRef Comp = Accessor->getName();
4313 bool isNumericAccessor = false;
4314 if (Comp[0] == 's' || Comp[0] == 'S') {
4315 Comp = Comp.substr(Start: 1);
4316 isNumericAccessor = true;
4317 }
4318
4319 bool isHi = Comp == "hi";
4320 bool isLo = Comp == "lo";
4321 bool isEven = Comp == "even";
4322 bool isOdd = Comp == "odd";
4323
4324 for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
4325 uint64_t Index;
4326
4327 if (isHi)
4328 Index = e + i;
4329 else if (isLo)
4330 Index = i;
4331 else if (isEven)
4332 Index = 2 * i;
4333 else if (isOdd)
4334 Index = 2 * i + 1;
4335 else
4336 Index = ExtVectorType::getAccessorIdx(c: Comp[i], isNumericAccessor);
4337
4338 Elts.push_back(Elt: Index);
4339 }
4340}
4341
4342ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr *> args,
4343 QualType Type, SourceLocation BLoc,
4344 SourceLocation RP)
4345 : Expr(ShuffleVectorExprClass, Type, VK_PRValue, OK_Ordinary),
4346 BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size()) {
4347 SubExprs = new (C) Stmt*[args.size()];
4348 for (unsigned i = 0; i != args.size(); i++)
4349 SubExprs[i] = args[i];
4350
4351 setDependence(computeDependence(E: this));
4352}
4353
4354void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
4355 if (SubExprs) C.Deallocate(Ptr: SubExprs);
4356
4357 this->NumExprs = Exprs.size();
4358 SubExprs = new (C) Stmt*[NumExprs];
4359 memcpy(dest: SubExprs, src: Exprs.data(), n: sizeof(Expr *) * Exprs.size());
4360}
4361
4362GenericSelectionExpr::GenericSelectionExpr(
4363 const ASTContext &, SourceLocation GenericLoc, Expr *ControllingExpr,
4364 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4365 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4366 bool ContainsUnexpandedParameterPack, unsigned ResultIndex)
4367 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4368 AssocExprs[ResultIndex]->getValueKind(),
4369 AssocExprs[ResultIndex]->getObjectKind()),
4370 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4371 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4372 assert(AssocTypes.size() == AssocExprs.size() &&
4373 "Must have the same number of association expressions"
4374 " and TypeSourceInfo!");
4375 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4376
4377 GenericSelectionExprBits.GenericLoc = GenericLoc;
4378 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4379 ControllingExpr;
4380 std::copy(AssocExprs.begin(), AssocExprs.end(),
4381 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4382 std::copy(AssocTypes.begin(), AssocTypes.end(),
4383 getTrailingObjects<TypeSourceInfo *>() +
4384 getIndexOfStartOfAssociatedTypes());
4385
4386 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4387}
4388
4389GenericSelectionExpr::GenericSelectionExpr(
4390 const ASTContext &, SourceLocation GenericLoc,
4391 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4392 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4393 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4394 unsigned ResultIndex)
4395 : Expr(GenericSelectionExprClass, AssocExprs[ResultIndex]->getType(),
4396 AssocExprs[ResultIndex]->getValueKind(),
4397 AssocExprs[ResultIndex]->getObjectKind()),
4398 NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
4399 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4400 assert(AssocTypes.size() == AssocExprs.size() &&
4401 "Must have the same number of association expressions"
4402 " and TypeSourceInfo!");
4403 assert(ResultIndex < NumAssocs && "ResultIndex is out-of-bounds!");
4404
4405 GenericSelectionExprBits.GenericLoc = GenericLoc;
4406 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4407 ControllingType;
4408 std::copy(AssocExprs.begin(), AssocExprs.end(),
4409 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4410 std::copy(AssocTypes.begin(), AssocTypes.end(),
4411 getTrailingObjects<TypeSourceInfo *>() +
4412 getIndexOfStartOfAssociatedTypes());
4413
4414 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4415}
4416
4417GenericSelectionExpr::GenericSelectionExpr(
4418 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4419 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4420 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4421 bool ContainsUnexpandedParameterPack)
4422 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4423 OK_Ordinary),
4424 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4425 IsExprPredicate(true), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4426 assert(AssocTypes.size() == AssocExprs.size() &&
4427 "Must have the same number of association expressions"
4428 " and TypeSourceInfo!");
4429
4430 GenericSelectionExprBits.GenericLoc = GenericLoc;
4431 getTrailingObjects<Stmt *>()[getIndexOfControllingExpression()] =
4432 ControllingExpr;
4433 std::copy(AssocExprs.begin(), AssocExprs.end(),
4434 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4435 std::copy(AssocTypes.begin(), AssocTypes.end(),
4436 getTrailingObjects<TypeSourceInfo *>() +
4437 getIndexOfStartOfAssociatedTypes());
4438
4439 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4440}
4441
4442GenericSelectionExpr::GenericSelectionExpr(
4443 const ASTContext &Context, SourceLocation GenericLoc,
4444 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4445 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4446 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack)
4447 : Expr(GenericSelectionExprClass, Context.DependentTy, VK_PRValue,
4448 OK_Ordinary),
4449 NumAssocs(AssocExprs.size()), ResultIndex(ResultDependentIndex),
4450 IsExprPredicate(false), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
4451 assert(AssocTypes.size() == AssocExprs.size() &&
4452 "Must have the same number of association expressions"
4453 " and TypeSourceInfo!");
4454
4455 GenericSelectionExprBits.GenericLoc = GenericLoc;
4456 getTrailingObjects<TypeSourceInfo *>()[getIndexOfControllingType()] =
4457 ControllingType;
4458 std::copy(AssocExprs.begin(), AssocExprs.end(),
4459 getTrailingObjects<Stmt *>() + getIndexOfStartOfAssociatedExprs());
4460 std::copy(AssocTypes.begin(), AssocTypes.end(),
4461 getTrailingObjects<TypeSourceInfo *>() +
4462 getIndexOfStartOfAssociatedTypes());
4463
4464 setDependence(computeDependence(E: this, ContainsUnexpandedPack: ContainsUnexpandedParameterPack));
4465}
4466
4467GenericSelectionExpr::GenericSelectionExpr(EmptyShell Empty, unsigned NumAssocs)
4468 : Expr(GenericSelectionExprClass, Empty), NumAssocs(NumAssocs) {}
4469
4470GenericSelectionExpr *GenericSelectionExpr::Create(
4471 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4472 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4473 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4474 bool ContainsUnexpandedParameterPack, unsigned ResultIndex) {
4475 unsigned NumAssocs = AssocExprs.size();
4476 void *Mem = Context.Allocate(
4477 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4478 Align: alignof(GenericSelectionExpr));
4479 return new (Mem) GenericSelectionExpr(
4480 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4481 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4482}
4483
4484GenericSelectionExpr *GenericSelectionExpr::Create(
4485 const ASTContext &Context, SourceLocation GenericLoc, Expr *ControllingExpr,
4486 ArrayRef<TypeSourceInfo *> AssocTypes, ArrayRef<Expr *> AssocExprs,
4487 SourceLocation DefaultLoc, SourceLocation RParenLoc,
4488 bool ContainsUnexpandedParameterPack) {
4489 unsigned NumAssocs = AssocExprs.size();
4490 void *Mem = Context.Allocate(
4491 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4492 Align: alignof(GenericSelectionExpr));
4493 return new (Mem) GenericSelectionExpr(
4494 Context, GenericLoc, ControllingExpr, AssocTypes, AssocExprs, DefaultLoc,
4495 RParenLoc, ContainsUnexpandedParameterPack);
4496}
4497
4498GenericSelectionExpr *GenericSelectionExpr::Create(
4499 const ASTContext &Context, SourceLocation GenericLoc,
4500 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4501 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4502 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack,
4503 unsigned ResultIndex) {
4504 unsigned NumAssocs = AssocExprs.size();
4505 void *Mem = Context.Allocate(
4506 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4507 Align: alignof(GenericSelectionExpr));
4508 return new (Mem) GenericSelectionExpr(
4509 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4510 RParenLoc, ContainsUnexpandedParameterPack, ResultIndex);
4511}
4512
4513GenericSelectionExpr *GenericSelectionExpr::Create(
4514 const ASTContext &Context, SourceLocation GenericLoc,
4515 TypeSourceInfo *ControllingType, ArrayRef<TypeSourceInfo *> AssocTypes,
4516 ArrayRef<Expr *> AssocExprs, SourceLocation DefaultLoc,
4517 SourceLocation RParenLoc, bool ContainsUnexpandedParameterPack) {
4518 unsigned NumAssocs = AssocExprs.size();
4519 void *Mem = Context.Allocate(
4520 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4521 Align: alignof(GenericSelectionExpr));
4522 return new (Mem) GenericSelectionExpr(
4523 Context, GenericLoc, ControllingType, AssocTypes, AssocExprs, DefaultLoc,
4524 RParenLoc, ContainsUnexpandedParameterPack);
4525}
4526
4527GenericSelectionExpr *
4528GenericSelectionExpr::CreateEmpty(const ASTContext &Context,
4529 unsigned NumAssocs) {
4530 void *Mem = Context.Allocate(
4531 Size: totalSizeToAlloc<Stmt *, TypeSourceInfo *>(Counts: 1 + NumAssocs, Counts: NumAssocs),
4532 Align: alignof(GenericSelectionExpr));
4533 return new (Mem) GenericSelectionExpr(EmptyShell(), NumAssocs);
4534}
4535
4536//===----------------------------------------------------------------------===//
4537// DesignatedInitExpr
4538//===----------------------------------------------------------------------===//
4539
4540const IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
4541 assert(isFieldDesignator() && "Only valid on a field designator");
4542 if (FieldInfo.NameOrField & 0x01)
4543 return reinterpret_cast<IdentifierInfo *>(FieldInfo.NameOrField & ~0x01);
4544 return getFieldDecl()->getIdentifier();
4545}
4546
4547DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
4548 llvm::ArrayRef<Designator> Designators,
4549 SourceLocation EqualOrColonLoc,
4550 bool GNUSyntax,
4551 ArrayRef<Expr *> IndexExprs, Expr *Init)
4552 : Expr(DesignatedInitExprClass, Ty, Init->getValueKind(),
4553 Init->getObjectKind()),
4554 EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
4555 NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
4556 this->Designators = new (C) Designator[NumDesignators];
4557
4558 // Record the initializer itself.
4559 child_iterator Child = child_begin();
4560 *Child++ = Init;
4561
4562 // Copy the designators and their subexpressions, computing
4563 // value-dependence along the way.
4564 unsigned IndexIdx = 0;
4565 for (unsigned I = 0; I != NumDesignators; ++I) {
4566 this->Designators[I] = Designators[I];
4567 if (this->Designators[I].isArrayDesignator()) {
4568 // Copy the index expressions into permanent storage.
4569 *Child++ = IndexExprs[IndexIdx++];
4570 } else if (this->Designators[I].isArrayRangeDesignator()) {
4571 // Copy the start/end expressions into permanent storage.
4572 *Child++ = IndexExprs[IndexIdx++];
4573 *Child++ = IndexExprs[IndexIdx++];
4574 }
4575 }
4576
4577 assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
4578 setDependence(computeDependence(E: this));
4579}
4580
4581DesignatedInitExpr *
4582DesignatedInitExpr::Create(const ASTContext &C,
4583 llvm::ArrayRef<Designator> Designators,
4584 ArrayRef<Expr*> IndexExprs,
4585 SourceLocation ColonOrEqualLoc,
4586 bool UsesColonSyntax, Expr *Init) {
4587 void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: IndexExprs.size() + 1),
4588 Align: alignof(DesignatedInitExpr));
4589 return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
4590 ColonOrEqualLoc, UsesColonSyntax,
4591 IndexExprs, Init);
4592}
4593
4594DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
4595 unsigned NumIndexExprs) {
4596 void *Mem = C.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumIndexExprs + 1),
4597 Align: alignof(DesignatedInitExpr));
4598 return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
4599}
4600
4601void DesignatedInitExpr::setDesignators(const ASTContext &C,
4602 const Designator *Desigs,
4603 unsigned NumDesigs) {
4604 Designators = new (C) Designator[NumDesigs];
4605 NumDesignators = NumDesigs;
4606 for (unsigned I = 0; I != NumDesigs; ++I)
4607 Designators[I] = Desigs[I];
4608}
4609
4610SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
4611 DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
4612 if (size() == 1)
4613 return DIE->getDesignator(Idx: 0)->getSourceRange();
4614 return SourceRange(DIE->getDesignator(Idx: 0)->getBeginLoc(),
4615 DIE->getDesignator(Idx: size() - 1)->getEndLoc());
4616}
4617
4618SourceLocation DesignatedInitExpr::getBeginLoc() const {
4619 auto *DIE = const_cast<DesignatedInitExpr *>(this);
4620 Designator &First = *DIE->getDesignator(Idx: 0);
4621 if (First.isFieldDesignator()) {
4622 // Skip past implicit designators for anonymous structs/unions, since
4623 // these do not have valid source locations.
4624 for (unsigned int i = 0; i < DIE->size(); i++) {
4625 Designator &Des = *DIE->getDesignator(Idx: i);
4626 SourceLocation retval = GNUSyntax ? Des.getFieldLoc() : Des.getDotLoc();
4627 if (!retval.isValid())
4628 continue;
4629 return retval;
4630 }
4631 }
4632 return First.getLBracketLoc();
4633}
4634
4635SourceLocation DesignatedInitExpr::getEndLoc() const {
4636 return getInit()->getEndLoc();
4637}
4638
4639Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
4640 assert(D.isArrayDesignator() && "Requires array designator");
4641 return getSubExpr(Idx: D.getArrayIndex() + 1);
4642}
4643
4644Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
4645 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4646 return getSubExpr(Idx: D.getArrayIndex() + 1);
4647}
4648
4649Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4650 assert(D.isArrayRangeDesignator() && "Requires array range designator");
4651 return getSubExpr(Idx: D.getArrayIndex() + 2);
4652}
4653
4654/// Replaces the designator at index @p Idx with the series
4655/// of designators in [First, Last).
4656void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4657 const Designator *First,
4658 const Designator *Last) {
4659 unsigned NumNewDesignators = Last - First;
4660 if (NumNewDesignators == 0) {
4661 std::copy_backward(first: Designators + Idx + 1,
4662 last: Designators + NumDesignators,
4663 result: Designators + Idx);
4664 --NumNewDesignators;
4665 return;
4666 }
4667 if (NumNewDesignators == 1) {
4668 Designators[Idx] = *First;
4669 return;
4670 }
4671
4672 Designator *NewDesignators
4673 = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4674 std::copy(first: Designators, last: Designators + Idx, result: NewDesignators);
4675 std::copy(first: First, last: Last, result: NewDesignators + Idx);
4676 std::copy(first: Designators + Idx + 1, last: Designators + NumDesignators,
4677 result: NewDesignators + Idx + NumNewDesignators);
4678 Designators = NewDesignators;
4679 NumDesignators = NumDesignators - 1 + NumNewDesignators;
4680}
4681
4682DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4683 SourceLocation lBraceLoc,
4684 Expr *baseExpr,
4685 SourceLocation rBraceLoc)
4686 : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_PRValue,
4687 OK_Ordinary) {
4688 BaseAndUpdaterExprs[0] = baseExpr;
4689
4690 InitListExpr *ILE =
4691 new (C) InitListExpr(C, lBraceLoc, std::nullopt, rBraceLoc);
4692 ILE->setType(baseExpr->getType());
4693 BaseAndUpdaterExprs[1] = ILE;
4694
4695 // FIXME: this is wrong, set it correctly.
4696 setDependence(ExprDependence::None);
4697}
4698
4699SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
4700 return getBase()->getBeginLoc();
4701}
4702
4703SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
4704 return getBase()->getEndLoc();
4705}
4706
4707ParenListExpr::ParenListExpr(SourceLocation LParenLoc, ArrayRef<Expr *> Exprs,
4708 SourceLocation RParenLoc)
4709 : Expr(ParenListExprClass, QualType(), VK_PRValue, OK_Ordinary),
4710 LParenLoc(LParenLoc), RParenLoc(RParenLoc) {
4711 ParenListExprBits.NumExprs = Exprs.size();
4712
4713 for (unsigned I = 0, N = Exprs.size(); I != N; ++I)
4714 getTrailingObjects<Stmt *>()[I] = Exprs[I];
4715 setDependence(computeDependence(E: this));
4716}
4717
4718ParenListExpr::ParenListExpr(EmptyShell Empty, unsigned NumExprs)
4719 : Expr(ParenListExprClass, Empty) {
4720 ParenListExprBits.NumExprs = NumExprs;
4721}
4722
4723ParenListExpr *ParenListExpr::Create(const ASTContext &Ctx,
4724 SourceLocation LParenLoc,
4725 ArrayRef<Expr *> Exprs,
4726 SourceLocation RParenLoc) {
4727 void *Mem = Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: Exprs.size()),
4728 Align: alignof(ParenListExpr));
4729 return new (Mem) ParenListExpr(LParenLoc, Exprs, RParenLoc);
4730}
4731
4732ParenListExpr *ParenListExpr::CreateEmpty(const ASTContext &Ctx,
4733 unsigned NumExprs) {
4734 void *Mem =
4735 Ctx.Allocate(Size: totalSizeToAlloc<Stmt *>(Counts: NumExprs), Align: alignof(ParenListExpr));
4736 return new (Mem) ParenListExpr(EmptyShell(), NumExprs);
4737}
4738
4739BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4740 Opcode opc, QualType ResTy, ExprValueKind VK,
4741 ExprObjectKind OK, SourceLocation opLoc,
4742 FPOptionsOverride FPFeatures)
4743 : Expr(BinaryOperatorClass, ResTy, VK, OK) {
4744 BinaryOperatorBits.Opc = opc;
4745 assert(!isCompoundAssignmentOp() &&
4746 "Use CompoundAssignOperator for compound assignments");
4747 BinaryOperatorBits.OpLoc = opLoc;
4748 SubExprs[LHS] = lhs;
4749 SubExprs[RHS] = rhs;
4750 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4751 if (hasStoredFPFeatures())
4752 setStoredFPFeatures(FPFeatures);
4753 setDependence(computeDependence(E: this));
4754}
4755
4756BinaryOperator::BinaryOperator(const ASTContext &Ctx, Expr *lhs, Expr *rhs,
4757 Opcode opc, QualType ResTy, ExprValueKind VK,
4758 ExprObjectKind OK, SourceLocation opLoc,
4759 FPOptionsOverride FPFeatures, bool dead2)
4760 : Expr(CompoundAssignOperatorClass, ResTy, VK, OK) {
4761 BinaryOperatorBits.Opc = opc;
4762 assert(isCompoundAssignmentOp() &&
4763 "Use CompoundAssignOperator for compound assignments");
4764 BinaryOperatorBits.OpLoc = opLoc;
4765 SubExprs[LHS] = lhs;
4766 SubExprs[RHS] = rhs;
4767 BinaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4768 if (hasStoredFPFeatures())
4769 setStoredFPFeatures(FPFeatures);
4770 setDependence(computeDependence(E: this));
4771}
4772
4773BinaryOperator *BinaryOperator::CreateEmpty(const ASTContext &C,
4774 bool HasFPFeatures) {
4775 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4776 void *Mem =
4777 C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator));
4778 return new (Mem) BinaryOperator(EmptyShell());
4779}
4780
4781BinaryOperator *BinaryOperator::Create(const ASTContext &C, Expr *lhs,
4782 Expr *rhs, Opcode opc, QualType ResTy,
4783 ExprValueKind VK, ExprObjectKind OK,
4784 SourceLocation opLoc,
4785 FPOptionsOverride FPFeatures) {
4786 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4787 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4788 void *Mem =
4789 C.Allocate(Size: sizeof(BinaryOperator) + Extra, Align: alignof(BinaryOperator));
4790 return new (Mem)
4791 BinaryOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures);
4792}
4793
4794CompoundAssignOperator *
4795CompoundAssignOperator::CreateEmpty(const ASTContext &C, bool HasFPFeatures) {
4796 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4797 void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra,
4798 Align: alignof(CompoundAssignOperator));
4799 return new (Mem) CompoundAssignOperator(C, EmptyShell(), HasFPFeatures);
4800}
4801
4802CompoundAssignOperator *
4803CompoundAssignOperator::Create(const ASTContext &C, Expr *lhs, Expr *rhs,
4804 Opcode opc, QualType ResTy, ExprValueKind VK,
4805 ExprObjectKind OK, SourceLocation opLoc,
4806 FPOptionsOverride FPFeatures,
4807 QualType CompLHSType, QualType CompResultType) {
4808 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4809 unsigned Extra = sizeOfTrailingObjects(HasFPFeatures);
4810 void *Mem = C.Allocate(Size: sizeof(CompoundAssignOperator) + Extra,
4811 Align: alignof(CompoundAssignOperator));
4812 return new (Mem)
4813 CompoundAssignOperator(C, lhs, rhs, opc, ResTy, VK, OK, opLoc, FPFeatures,
4814 CompLHSType, CompResultType);
4815}
4816
4817UnaryOperator *UnaryOperator::CreateEmpty(const ASTContext &C,
4818 bool hasFPFeatures) {
4819 void *Mem = C.Allocate(Size: totalSizeToAlloc<FPOptionsOverride>(Counts: hasFPFeatures),
4820 Align: alignof(UnaryOperator));
4821 return new (Mem) UnaryOperator(hasFPFeatures, EmptyShell());
4822}
4823
4824UnaryOperator::UnaryOperator(const ASTContext &Ctx, Expr *input, Opcode opc,
4825 QualType type, ExprValueKind VK, ExprObjectKind OK,
4826 SourceLocation l, bool CanOverflow,
4827 FPOptionsOverride FPFeatures)
4828 : Expr(UnaryOperatorClass, type, VK, OK), Val(input) {
4829 UnaryOperatorBits.Opc = opc;
4830 UnaryOperatorBits.CanOverflow = CanOverflow;
4831 UnaryOperatorBits.Loc = l;
4832 UnaryOperatorBits.HasFPFeatures = FPFeatures.requiresTrailingStorage();
4833 if (hasStoredFPFeatures())
4834 setStoredFPFeatures(FPFeatures);
4835 setDependence(computeDependence(E: this, Ctx));
4836}
4837
4838UnaryOperator *UnaryOperator::Create(const ASTContext &C, Expr *input,
4839 Opcode opc, QualType type,
4840 ExprValueKind VK, ExprObjectKind OK,
4841 SourceLocation l, bool CanOverflow,
4842 FPOptionsOverride FPFeatures) {
4843 bool HasFPFeatures = FPFeatures.requiresTrailingStorage();
4844 unsigned Size = totalSizeToAlloc<FPOptionsOverride>(Counts: HasFPFeatures);
4845 void *Mem = C.Allocate(Size, Align: alignof(UnaryOperator));
4846 return new (Mem)
4847 UnaryOperator(C, input, opc, type, VK, OK, l, CanOverflow, FPFeatures);
4848}
4849
4850const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4851 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(Val: e))
4852 e = ewc->getSubExpr();
4853 if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(Val: e))
4854 e = m->getSubExpr();
4855 e = cast<CXXConstructExpr>(Val: e)->getArg(Arg: 0);
4856 while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(Val: e))
4857 e = ice->getSubExpr();
4858 return cast<OpaqueValueExpr>(Val: e);
4859}
4860
4861PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4862 EmptyShell sh,
4863 unsigned numSemanticExprs) {
4864 void *buffer =
4865 Context.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: 1 + numSemanticExprs),
4866 Align: alignof(PseudoObjectExpr));
4867 return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4868}
4869
4870PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4871 : Expr(PseudoObjectExprClass, shell) {
4872 PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4873}
4874
4875PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4876 ArrayRef<Expr*> semantics,
4877 unsigned resultIndex) {
4878 assert(syntax && "no syntactic expression!");
4879 assert(semantics.size() && "no semantic expressions!");
4880
4881 QualType type;
4882 ExprValueKind VK;
4883 if (resultIndex == NoResult) {
4884 type = C.VoidTy;
4885 VK = VK_PRValue;
4886 } else {
4887 assert(resultIndex < semantics.size());
4888 type = semantics[resultIndex]->getType();
4889 VK = semantics[resultIndex]->getValueKind();
4890 assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4891 }
4892
4893 void *buffer = C.Allocate(Size: totalSizeToAlloc<Expr *>(Counts: semantics.size() + 1),
4894 Align: alignof(PseudoObjectExpr));
4895 return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4896 resultIndex);
4897}
4898
4899PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4900 Expr *syntax, ArrayRef<Expr *> semantics,
4901 unsigned resultIndex)
4902 : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary) {
4903 PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4904 PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4905
4906 for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4907 Expr *E = (i == 0 ? syntax : semantics[i-1]);
4908 getSubExprsBuffer()[i] = E;
4909
4910 if (isa<OpaqueValueExpr>(Val: E))
4911 assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4912 "opaque-value semantic expressions for pseudo-object "
4913 "operations must have sources");
4914 }
4915
4916 setDependence(computeDependence(E: this));
4917}
4918
4919//===----------------------------------------------------------------------===//
4920// Child Iterators for iterating over subexpressions/substatements
4921//===----------------------------------------------------------------------===//
4922
4923// UnaryExprOrTypeTraitExpr
4924Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4925 const_child_range CCR =
4926 const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4927 return child_range(cast_away_const(RHS: CCR.begin()), cast_away_const(RHS: CCR.end()));
4928}
4929
4930Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4931 // If this is of a type and the type is a VLA type (and not a typedef), the
4932 // size expression of the VLA needs to be treated as an executable expression.
4933 // Why isn't this weirdness documented better in StmtIterator?
4934 if (isArgumentType()) {
4935 if (const VariableArrayType *T =
4936 dyn_cast<VariableArrayType>(Val: getArgumentType().getTypePtr()))
4937 return const_child_range(const_child_iterator(T), const_child_iterator());
4938 return const_child_range(const_child_iterator(), const_child_iterator());
4939 }
4940 return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4941}
4942
4943AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr *> args, QualType t,
4944 AtomicOp op, SourceLocation RP)
4945 : Expr(AtomicExprClass, t, VK_PRValue, OK_Ordinary),
4946 NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op) {
4947 assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4948 for (unsigned i = 0; i != args.size(); i++)
4949 SubExprs[i] = args[i];
4950 setDependence(computeDependence(E: this));
4951}
4952
4953unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4954 switch (Op) {
4955 case AO__c11_atomic_init:
4956 case AO__opencl_atomic_init:
4957 case AO__c11_atomic_load:
4958 case AO__atomic_load_n:
4959 return 2;
4960
4961 case AO__scoped_atomic_load_n:
4962 case AO__opencl_atomic_load:
4963 case AO__hip_atomic_load:
4964 case AO__c11_atomic_store:
4965 case AO__c11_atomic_exchange:
4966 case AO__atomic_load:
4967 case AO__atomic_store:
4968 case AO__atomic_store_n:
4969 case AO__atomic_exchange_n:
4970 case AO__c11_atomic_fetch_add:
4971 case AO__c11_atomic_fetch_sub:
4972 case AO__c11_atomic_fetch_and:
4973 case AO__c11_atomic_fetch_or:
4974 case AO__c11_atomic_fetch_xor:
4975 case AO__c11_atomic_fetch_nand:
4976 case AO__c11_atomic_fetch_max:
4977 case AO__c11_atomic_fetch_min:
4978 case AO__atomic_fetch_add:
4979 case AO__atomic_fetch_sub:
4980 case AO__atomic_fetch_and:
4981 case AO__atomic_fetch_or:
4982 case AO__atomic_fetch_xor:
4983 case AO__atomic_fetch_nand:
4984 case AO__atomic_add_fetch:
4985 case AO__atomic_sub_fetch:
4986 case AO__atomic_and_fetch:
4987 case AO__atomic_or_fetch:
4988 case AO__atomic_xor_fetch:
4989 case AO__atomic_nand_fetch:
4990 case AO__atomic_min_fetch:
4991 case AO__atomic_max_fetch:
4992 case AO__atomic_fetch_min:
4993 case AO__atomic_fetch_max:
4994 return 3;
4995
4996 case AO__scoped_atomic_load:
4997 case AO__scoped_atomic_store:
4998 case AO__scoped_atomic_store_n:
4999 case AO__scoped_atomic_fetch_add:
5000 case AO__scoped_atomic_fetch_sub:
5001 case AO__scoped_atomic_fetch_and:
5002 case AO__scoped_atomic_fetch_or:
5003 case AO__scoped_atomic_fetch_xor:
5004 case AO__scoped_atomic_fetch_nand:
5005 case AO__scoped_atomic_add_fetch:
5006 case AO__scoped_atomic_sub_fetch:
5007 case AO__scoped_atomic_and_fetch:
5008 case AO__scoped_atomic_or_fetch:
5009 case AO__scoped_atomic_xor_fetch:
5010 case AO__scoped_atomic_nand_fetch:
5011 case AO__scoped_atomic_min_fetch:
5012 case AO__scoped_atomic_max_fetch:
5013 case AO__scoped_atomic_fetch_min:
5014 case AO__scoped_atomic_fetch_max:
5015 case AO__scoped_atomic_exchange_n:
5016 case AO__hip_atomic_exchange:
5017 case AO__hip_atomic_fetch_add:
5018 case AO__hip_atomic_fetch_sub:
5019 case AO__hip_atomic_fetch_and:
5020 case AO__hip_atomic_fetch_or:
5021 case AO__hip_atomic_fetch_xor:
5022 case AO__hip_atomic_fetch_min:
5023 case AO__hip_atomic_fetch_max:
5024 case AO__opencl_atomic_store:
5025 case AO__hip_atomic_store:
5026 case AO__opencl_atomic_exchange:
5027 case AO__opencl_atomic_fetch_add:
5028 case AO__opencl_atomic_fetch_sub:
5029 case AO__opencl_atomic_fetch_and:
5030 case AO__opencl_atomic_fetch_or:
5031 case AO__opencl_atomic_fetch_xor:
5032 case AO__opencl_atomic_fetch_min:
5033 case AO__opencl_atomic_fetch_max:
5034 case AO__atomic_exchange:
5035 return 4;
5036
5037 case AO__scoped_atomic_exchange:
5038 case AO__c11_atomic_compare_exchange_strong:
5039 case AO__c11_atomic_compare_exchange_weak:
5040 return 5;
5041 case AO__hip_atomic_compare_exchange_strong:
5042 case AO__opencl_atomic_compare_exchange_strong:
5043 case AO__opencl_atomic_compare_exchange_weak:
5044 case AO__hip_atomic_compare_exchange_weak:
5045 case AO__atomic_compare_exchange:
5046 case AO__atomic_compare_exchange_n:
5047 return 6;
5048
5049 case AO__scoped_atomic_compare_exchange:
5050 case AO__scoped_atomic_compare_exchange_n:
5051 return 7;
5052 }
5053 llvm_unreachable("unknown atomic op");
5054}
5055
5056QualType AtomicExpr::getValueType() const {
5057 auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
5058 if (auto AT = T->getAs<AtomicType>())
5059 return AT->getValueType();
5060 return T;
5061}
5062
5063QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
5064 unsigned ArraySectionCount = 0;
5065 while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Val: Base->IgnoreParens())) {
5066 Base = OASE->getBase();
5067 ++ArraySectionCount;
5068 }
5069 while (auto *ASE =
5070 dyn_cast<ArraySubscriptExpr>(Val: Base->IgnoreParenImpCasts())) {
5071 Base = ASE->getBase();
5072 ++ArraySectionCount;
5073 }
5074 Base = Base->IgnoreParenImpCasts();
5075 auto OriginalTy = Base->getType();
5076 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: Base))
5077 if (auto *PVD = dyn_cast<ParmVarDecl>(Val: DRE->getDecl()))
5078 OriginalTy = PVD->getOriginalType().getNonReferenceType();
5079
5080 for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
5081 if (OriginalTy->isAnyPointerType())
5082 OriginalTy = OriginalTy->getPointeeType();
5083 else if (OriginalTy->isArrayType())
5084 OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
5085 else
5086 return {};
5087 }
5088 return OriginalTy;
5089}
5090
5091RecoveryExpr::RecoveryExpr(ASTContext &Ctx, QualType T, SourceLocation BeginLoc,
5092 SourceLocation EndLoc, ArrayRef<Expr *> SubExprs)
5093 : Expr(RecoveryExprClass, T.getNonReferenceType(),
5094 T->isDependentType() ? VK_LValue : getValueKindForType(T),
5095 OK_Ordinary),
5096 BeginLoc(BeginLoc), EndLoc(EndLoc), NumExprs(SubExprs.size()) {
5097 assert(!T.isNull());
5098 assert(!llvm::is_contained(SubExprs, nullptr));
5099
5100 llvm::copy(SubExprs, getTrailingObjects<Expr *>());
5101 setDependence(computeDependence(E: this));
5102}
5103
5104RecoveryExpr *RecoveryExpr::Create(ASTContext &Ctx, QualType T,
5105 SourceLocation BeginLoc,
5106 SourceLocation EndLoc,
5107 ArrayRef<Expr *> SubExprs) {
5108 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(SubExprs.size()),
5109 alignof(RecoveryExpr));
5110 return new (Mem) RecoveryExpr(Ctx, T, BeginLoc, EndLoc, SubExprs);
5111}
5112
5113RecoveryExpr *RecoveryExpr::CreateEmpty(ASTContext &Ctx, unsigned NumSubExprs) {
5114 void *Mem = Ctx.Allocate(totalSizeToAlloc<Expr *>(NumSubExprs),
5115 alignof(RecoveryExpr));
5116 return new (Mem) RecoveryExpr(EmptyShell(), NumSubExprs);
5117}
5118
5119void OMPArrayShapingExpr::setDimensions(ArrayRef<Expr *> Dims) {
5120 assert(
5121 NumDims == Dims.size() &&
5122 "Preallocated number of dimensions is different from the provided one.");
5123 llvm::copy(Dims, getTrailingObjects<Expr *>());
5124}
5125
5126void OMPArrayShapingExpr::setBracketsRanges(ArrayRef<SourceRange> BR) {
5127 assert(
5128 NumDims == BR.size() &&
5129 "Preallocated number of dimensions is different from the provided one.");
5130 llvm::copy(BR, getTrailingObjects<SourceRange>());
5131}
5132
5133OMPArrayShapingExpr::OMPArrayShapingExpr(QualType ExprTy, Expr *Op,
5134 SourceLocation L, SourceLocation R,
5135 ArrayRef<Expr *> Dims)
5136 : Expr(OMPArrayShapingExprClass, ExprTy, VK_LValue, OK_Ordinary), LPLoc(L),
5137 RPLoc(R), NumDims(Dims.size()) {
5138 setBase(Op);
5139 setDimensions(Dims);
5140 setDependence(computeDependence(E: this));
5141}
5142
5143OMPArrayShapingExpr *
5144OMPArrayShapingExpr::Create(const ASTContext &Context, QualType T, Expr *Op,
5145 SourceLocation L, SourceLocation R,
5146 ArrayRef<Expr *> Dims,
5147 ArrayRef<SourceRange> BracketRanges) {
5148 assert(Dims.size() == BracketRanges.size() &&
5149 "Different number of dimensions and brackets ranges.");
5150 void *Mem = Context.Allocate(
5151 Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: Dims.size() + 1, Counts: Dims.size()),
5152 Align: alignof(OMPArrayShapingExpr));
5153 auto *E = new (Mem) OMPArrayShapingExpr(T, Op, L, R, Dims);
5154 E->setBracketsRanges(BracketRanges);
5155 return E;
5156}
5157
5158OMPArrayShapingExpr *OMPArrayShapingExpr::CreateEmpty(const ASTContext &Context,
5159 unsigned NumDims) {
5160 void *Mem = Context.Allocate(
5161 Size: totalSizeToAlloc<Expr *, SourceRange>(Counts: NumDims + 1, Counts: NumDims),
5162 Align: alignof(OMPArrayShapingExpr));
5163 return new (Mem) OMPArrayShapingExpr(EmptyShell(), NumDims);
5164}
5165
5166void OMPIteratorExpr::setIteratorDeclaration(unsigned I, Decl *D) {
5167 assert(I < NumIterators &&
5168 "Idx is greater or equal the number of iterators definitions.");
5169 getTrailingObjects<Decl *>()[I] = D;
5170}
5171
5172void OMPIteratorExpr::setAssignmentLoc(unsigned I, SourceLocation Loc) {
5173 assert(I < NumIterators &&
5174 "Idx is greater or equal the number of iterators definitions.");
5175 getTrailingObjects<
5176 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5177 static_cast<int>(RangeLocOffset::AssignLoc)] = Loc;
5178}
5179
5180void OMPIteratorExpr::setIteratorRange(unsigned I, Expr *Begin,
5181 SourceLocation ColonLoc, Expr *End,
5182 SourceLocation SecondColonLoc,
5183 Expr *Step) {
5184 assert(I < NumIterators &&
5185 "Idx is greater or equal the number of iterators definitions.");
5186 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5187 static_cast<int>(RangeExprOffset::Begin)] =
5188 Begin;
5189 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5190 static_cast<int>(RangeExprOffset::End)] = End;
5191 getTrailingObjects<Expr *>()[I * static_cast<int>(RangeExprOffset::Total) +
5192 static_cast<int>(RangeExprOffset::Step)] = Step;
5193 getTrailingObjects<
5194 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5195 static_cast<int>(RangeLocOffset::FirstColonLoc)] =
5196 ColonLoc;
5197 getTrailingObjects<
5198 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5199 static_cast<int>(RangeLocOffset::SecondColonLoc)] =
5200 SecondColonLoc;
5201}
5202
5203Decl *OMPIteratorExpr::getIteratorDecl(unsigned I) {
5204 return getTrailingObjects<Decl *>()[I];
5205}
5206
5207OMPIteratorExpr::IteratorRange OMPIteratorExpr::getIteratorRange(unsigned I) {
5208 IteratorRange Res;
5209 Res.Begin =
5210 getTrailingObjects<Expr *>()[I * static_cast<int>(
5211 RangeExprOffset::Total) +
5212 static_cast<int>(RangeExprOffset::Begin)];
5213 Res.End =
5214 getTrailingObjects<Expr *>()[I * static_cast<int>(
5215 RangeExprOffset::Total) +
5216 static_cast<int>(RangeExprOffset::End)];
5217 Res.Step =
5218 getTrailingObjects<Expr *>()[I * static_cast<int>(
5219 RangeExprOffset::Total) +
5220 static_cast<int>(RangeExprOffset::Step)];
5221 return Res;
5222}
5223
5224SourceLocation OMPIteratorExpr::getAssignLoc(unsigned I) const {
5225 return getTrailingObjects<
5226 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5227 static_cast<int>(RangeLocOffset::AssignLoc)];
5228}
5229
5230SourceLocation OMPIteratorExpr::getColonLoc(unsigned I) const {
5231 return getTrailingObjects<
5232 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5233 static_cast<int>(RangeLocOffset::FirstColonLoc)];
5234}
5235
5236SourceLocation OMPIteratorExpr::getSecondColonLoc(unsigned I) const {
5237 return getTrailingObjects<
5238 SourceLocation>()[I * static_cast<int>(RangeLocOffset::Total) +
5239 static_cast<int>(RangeLocOffset::SecondColonLoc)];
5240}
5241
5242void OMPIteratorExpr::setHelper(unsigned I, const OMPIteratorHelperData &D) {
5243 getTrailingObjects<OMPIteratorHelperData>()[I] = D;
5244}
5245
5246OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) {
5247 return getTrailingObjects<OMPIteratorHelperData>()[I];
5248}
5249
5250const OMPIteratorHelperData &OMPIteratorExpr::getHelper(unsigned I) const {
5251 return getTrailingObjects<OMPIteratorHelperData>()[I];
5252}
5253
5254OMPIteratorExpr::OMPIteratorExpr(
5255 QualType ExprTy, SourceLocation IteratorKwLoc, SourceLocation L,
5256 SourceLocation R, ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5257 ArrayRef<OMPIteratorHelperData> Helpers)
5258 : Expr(OMPIteratorExprClass, ExprTy, VK_LValue, OK_Ordinary),
5259 IteratorKwLoc(IteratorKwLoc), LPLoc(L), RPLoc(R),
5260 NumIterators(Data.size()) {
5261 for (unsigned I = 0, E = Data.size(); I < E; ++I) {
5262 const IteratorDefinition &D = Data[I];
5263 setIteratorDeclaration(I, D: D.IteratorDecl);
5264 setAssignmentLoc(I, Loc: D.AssignmentLoc);
5265 setIteratorRange(I, Begin: D.Range.Begin, ColonLoc: D.ColonLoc, End: D.Range.End,
5266 SecondColonLoc: D.SecondColonLoc, Step: D.Range.Step);
5267 setHelper(I, D: Helpers[I]);
5268 }
5269 setDependence(computeDependence(E: this));
5270}
5271
5272OMPIteratorExpr *
5273OMPIteratorExpr::Create(const ASTContext &Context, QualType T,
5274 SourceLocation IteratorKwLoc, SourceLocation L,
5275 SourceLocation R,
5276 ArrayRef<OMPIteratorExpr::IteratorDefinition> Data,
5277 ArrayRef<OMPIteratorHelperData> Helpers) {
5278 assert(Data.size() == Helpers.size() &&
5279 "Data and helpers must have the same size.");
5280 void *Mem = Context.Allocate(
5281 Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5282 Counts: Data.size(), Counts: Data.size() * static_cast<int>(RangeExprOffset::Total),
5283 Counts: Data.size() * static_cast<int>(RangeLocOffset::Total),
5284 Counts: Helpers.size()),
5285 Align: alignof(OMPIteratorExpr));
5286 return new (Mem) OMPIteratorExpr(T, IteratorKwLoc, L, R, Data, Helpers);
5287}
5288
5289OMPIteratorExpr *OMPIteratorExpr::CreateEmpty(const ASTContext &Context,
5290 unsigned NumIterators) {
5291 void *Mem = Context.Allocate(
5292 Size: totalSizeToAlloc<Decl *, Expr *, SourceLocation, OMPIteratorHelperData>(
5293 Counts: NumIterators, Counts: NumIterators * static_cast<int>(RangeExprOffset::Total),
5294 Counts: NumIterators * static_cast<int>(RangeLocOffset::Total), Counts: NumIterators),
5295 Align: alignof(OMPIteratorExpr));
5296 return new (Mem) OMPIteratorExpr(EmptyShell(), NumIterators);
5297}
5298

source code of clang/lib/AST/Expr.cpp