1 | //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This coordinates the per-function state used while generating code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CodeGenFunction.h" |
14 | #include "CGBlocks.h" |
15 | #include "CGCUDARuntime.h" |
16 | #include "CGCXXABI.h" |
17 | #include "CGCleanup.h" |
18 | #include "CGDebugInfo.h" |
19 | #include "CGHLSLRuntime.h" |
20 | #include "CGOpenMPRuntime.h" |
21 | #include "CodeGenModule.h" |
22 | #include "CodeGenPGO.h" |
23 | #include "TargetInfo.h" |
24 | #include "clang/AST/ASTContext.h" |
25 | #include "clang/AST/ASTLambda.h" |
26 | #include "clang/AST/Attr.h" |
27 | #include "clang/AST/Decl.h" |
28 | #include "clang/AST/DeclCXX.h" |
29 | #include "clang/AST/Expr.h" |
30 | #include "clang/AST/StmtCXX.h" |
31 | #include "clang/AST/StmtObjC.h" |
32 | #include "clang/Basic/Builtins.h" |
33 | #include "clang/Basic/CodeGenOptions.h" |
34 | #include "clang/Basic/TargetBuiltins.h" |
35 | #include "clang/Basic/TargetInfo.h" |
36 | #include "clang/CodeGen/CGFunctionInfo.h" |
37 | #include "clang/Frontend/FrontendDiagnostic.h" |
38 | #include "llvm/ADT/ArrayRef.h" |
39 | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
40 | #include "llvm/IR/DataLayout.h" |
41 | #include "llvm/IR/Dominators.h" |
42 | #include "llvm/IR/FPEnv.h" |
43 | #include "llvm/IR/IntrinsicInst.h" |
44 | #include "llvm/IR/Intrinsics.h" |
45 | #include "llvm/IR/MDBuilder.h" |
46 | #include "llvm/IR/Operator.h" |
47 | #include "llvm/Support/CRC.h" |
48 | #include "llvm/Support/xxhash.h" |
49 | #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" |
50 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
51 | #include <optional> |
52 | |
53 | using namespace clang; |
54 | using namespace CodeGen; |
55 | |
56 | namespace llvm { |
57 | extern cl::opt<bool> EnableSingleByteCoverage; |
58 | } // namespace llvm |
59 | |
60 | /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time |
61 | /// markers. |
62 | static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, |
63 | const LangOptions &LangOpts) { |
64 | if (CGOpts.DisableLifetimeMarkers) |
65 | return false; |
66 | |
67 | // Sanitizers may use markers. |
68 | if (CGOpts.SanitizeAddressUseAfterScope || |
69 | LangOpts.Sanitize.has(K: SanitizerKind::HWAddress) || |
70 | LangOpts.Sanitize.has(K: SanitizerKind::Memory)) |
71 | return true; |
72 | |
73 | // For now, only in optimized builds. |
74 | return CGOpts.OptimizationLevel != 0; |
75 | } |
76 | |
77 | CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) |
78 | : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), |
79 | Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), |
80 | CGBuilderInserterTy(this)), |
81 | SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), |
82 | DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), |
83 | ShouldEmitLifetimeMarkers( |
84 | shouldEmitLifetimeMarkers(CGOpts: CGM.getCodeGenOpts(), LangOpts: CGM.getLangOpts())) { |
85 | if (!suppressNewContext) |
86 | CGM.getCXXABI().getMangleContext().startNewFunction(); |
87 | EHStack.setCGF(this); |
88 | |
89 | SetFastMathFlags(CurFPFeatures); |
90 | } |
91 | |
92 | CodeGenFunction::~CodeGenFunction() { |
93 | assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup" ); |
94 | |
95 | if (getLangOpts().OpenMP && CurFn) |
96 | CGM.getOpenMPRuntime().functionFinished(CGF&: *this); |
97 | |
98 | // If we have an OpenMPIRBuilder we want to finalize functions (incl. |
99 | // outlining etc) at some point. Doing it once the function codegen is done |
100 | // seems to be a reasonable spot. We do it here, as opposed to the deletion |
101 | // time of the CodeGenModule, because we have to ensure the IR has not yet |
102 | // been "emitted" to the outside, thus, modifications are still sensible. |
103 | if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) |
104 | CGM.getOpenMPRuntime().getOMPBuilder().finalize(Fn: CurFn); |
105 | } |
106 | |
107 | // Map the LangOption for exception behavior into |
108 | // the corresponding enum in the IR. |
109 | llvm::fp::ExceptionBehavior |
110 | clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { |
111 | |
112 | switch (Kind) { |
113 | case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; |
114 | case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; |
115 | case LangOptions::FPE_Strict: return llvm::fp::ebStrict; |
116 | default: |
117 | llvm_unreachable("Unsupported FP Exception Behavior" ); |
118 | } |
119 | } |
120 | |
121 | void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { |
122 | llvm::FastMathFlags FMF; |
123 | FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); |
124 | FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); |
125 | FMF.setNoInfs(FPFeatures.getNoHonorInfs()); |
126 | FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); |
127 | FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); |
128 | FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); |
129 | FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); |
130 | Builder.setFastMathFlags(FMF); |
131 | } |
132 | |
133 | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
134 | const Expr *E) |
135 | : CGF(CGF) { |
136 | ConstructorHelper(FPFeatures: E->getFPFeaturesInEffect(LO: CGF.getLangOpts())); |
137 | } |
138 | |
139 | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
140 | FPOptions FPFeatures) |
141 | : CGF(CGF) { |
142 | ConstructorHelper(FPFeatures); |
143 | } |
144 | |
145 | void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { |
146 | OldFPFeatures = CGF.CurFPFeatures; |
147 | CGF.CurFPFeatures = FPFeatures; |
148 | |
149 | OldExcept = CGF.Builder.getDefaultConstrainedExcept(); |
150 | OldRounding = CGF.Builder.getDefaultConstrainedRounding(); |
151 | |
152 | if (OldFPFeatures == FPFeatures) |
153 | return; |
154 | |
155 | FMFGuard.emplace(args&: CGF.Builder); |
156 | |
157 | llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); |
158 | CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); |
159 | auto NewExceptionBehavior = |
160 | ToConstrainedExceptMD(Kind: static_cast<LangOptions::FPExceptionModeKind>( |
161 | FPFeatures.getExceptionMode())); |
162 | CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); |
163 | |
164 | CGF.SetFastMathFlags(FPFeatures); |
165 | |
166 | assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || |
167 | isa<CXXConstructorDecl>(CGF.CurFuncDecl) || |
168 | isa<CXXDestructorDecl>(CGF.CurFuncDecl) || |
169 | (NewExceptionBehavior == llvm::fp::ebIgnore && |
170 | NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && |
171 | "FPConstrained should be enabled on entire function" ); |
172 | |
173 | auto mergeFnAttrValue = [&](StringRef Name, bool Value) { |
174 | auto OldValue = |
175 | CGF.CurFn->getFnAttribute(Kind: Name).getValueAsBool(); |
176 | auto NewValue = OldValue & Value; |
177 | if (OldValue != NewValue) |
178 | CGF.CurFn->addFnAttr(Kind: Name, Val: llvm::toStringRef(B: NewValue)); |
179 | }; |
180 | mergeFnAttrValue("no-infs-fp-math" , FPFeatures.getNoHonorInfs()); |
181 | mergeFnAttrValue("no-nans-fp-math" , FPFeatures.getNoHonorNaNs()); |
182 | mergeFnAttrValue("no-signed-zeros-fp-math" , FPFeatures.getNoSignedZero()); |
183 | mergeFnAttrValue( |
184 | "unsafe-fp-math" , |
185 | FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && |
186 | FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && |
187 | FPFeatures.allowFPContractAcrossStatement()); |
188 | } |
189 | |
190 | CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { |
191 | CGF.CurFPFeatures = OldFPFeatures; |
192 | CGF.Builder.setDefaultConstrainedExcept(OldExcept); |
193 | CGF.Builder.setDefaultConstrainedRounding(OldRounding); |
194 | } |
195 | |
196 | static LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T, |
197 | bool ForPointeeType, |
198 | CodeGenFunction &CGF) { |
199 | LValueBaseInfo BaseInfo; |
200 | TBAAAccessInfo TBAAInfo; |
201 | CharUnits Alignment = |
202 | CGF.CGM.getNaturalTypeAlignment(T, BaseInfo: &BaseInfo, TBAAInfo: &TBAAInfo, forPointeeType: ForPointeeType); |
203 | Address Addr = Address(V, CGF.ConvertTypeForMem(T), Alignment); |
204 | return CGF.MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); |
205 | } |
206 | |
207 | LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { |
208 | return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, CGF&: *this); |
209 | } |
210 | |
211 | LValue |
212 | CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { |
213 | return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, CGF&: *this); |
214 | } |
215 | |
216 | LValue CodeGenFunction::MakeNaturalAlignRawAddrLValue(llvm::Value *V, |
217 | QualType T) { |
218 | return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ false, CGF&: *this); |
219 | } |
220 | |
221 | LValue CodeGenFunction::MakeNaturalAlignPointeeRawAddrLValue(llvm::Value *V, |
222 | QualType T) { |
223 | return ::MakeNaturalAlignAddrLValue(V, T, /*ForPointeeType*/ true, CGF&: *this); |
224 | } |
225 | |
226 | llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { |
227 | return CGM.getTypes().ConvertTypeForMem(T); |
228 | } |
229 | |
230 | llvm::Type *CodeGenFunction::ConvertType(QualType T) { |
231 | return CGM.getTypes().ConvertType(T); |
232 | } |
233 | |
234 | TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { |
235 | type = type.getCanonicalType(); |
236 | while (true) { |
237 | switch (type->getTypeClass()) { |
238 | #define TYPE(name, parent) |
239 | #define ABSTRACT_TYPE(name, parent) |
240 | #define NON_CANONICAL_TYPE(name, parent) case Type::name: |
241 | #define DEPENDENT_TYPE(name, parent) case Type::name: |
242 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: |
243 | #include "clang/AST/TypeNodes.inc" |
244 | llvm_unreachable("non-canonical or dependent type in IR-generation" ); |
245 | |
246 | case Type::Auto: |
247 | case Type::DeducedTemplateSpecialization: |
248 | llvm_unreachable("undeduced type in IR-generation" ); |
249 | |
250 | // Various scalar types. |
251 | case Type::Builtin: |
252 | case Type::Pointer: |
253 | case Type::BlockPointer: |
254 | case Type::LValueReference: |
255 | case Type::RValueReference: |
256 | case Type::MemberPointer: |
257 | case Type::Vector: |
258 | case Type::ExtVector: |
259 | case Type::ConstantMatrix: |
260 | case Type::FunctionProto: |
261 | case Type::FunctionNoProto: |
262 | case Type::Enum: |
263 | case Type::ObjCObjectPointer: |
264 | case Type::Pipe: |
265 | case Type::BitInt: |
266 | return TEK_Scalar; |
267 | |
268 | // Complexes. |
269 | case Type::Complex: |
270 | return TEK_Complex; |
271 | |
272 | // Arrays, records, and Objective-C objects. |
273 | case Type::ConstantArray: |
274 | case Type::IncompleteArray: |
275 | case Type::VariableArray: |
276 | case Type::Record: |
277 | case Type::ObjCObject: |
278 | case Type::ObjCInterface: |
279 | case Type::ArrayParameter: |
280 | return TEK_Aggregate; |
281 | |
282 | // We operate on atomic values according to their underlying type. |
283 | case Type::Atomic: |
284 | type = cast<AtomicType>(type)->getValueType(); |
285 | continue; |
286 | } |
287 | llvm_unreachable("unknown type kind!" ); |
288 | } |
289 | } |
290 | |
291 | llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { |
292 | // For cleanliness, we try to avoid emitting the return block for |
293 | // simple cases. |
294 | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); |
295 | |
296 | if (CurBB) { |
297 | assert(!CurBB->getTerminator() && "Unexpected terminated block." ); |
298 | |
299 | // We have a valid insert point, reuse it if it is empty or there are no |
300 | // explicit jumps to the return block. |
301 | if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { |
302 | ReturnBlock.getBlock()->replaceAllUsesWith(V: CurBB); |
303 | delete ReturnBlock.getBlock(); |
304 | ReturnBlock = JumpDest(); |
305 | } else |
306 | EmitBlock(BB: ReturnBlock.getBlock()); |
307 | return llvm::DebugLoc(); |
308 | } |
309 | |
310 | // Otherwise, if the return block is the target of a single direct |
311 | // branch then we can just put the code in that block instead. This |
312 | // cleans up functions which started with a unified return block. |
313 | if (ReturnBlock.getBlock()->hasOneUse()) { |
314 | llvm::BranchInst *BI = |
315 | dyn_cast<llvm::BranchInst>(Val: *ReturnBlock.getBlock()->user_begin()); |
316 | if (BI && BI->isUnconditional() && |
317 | BI->getSuccessor(i: 0) == ReturnBlock.getBlock()) { |
318 | // Record/return the DebugLoc of the simple 'return' expression to be used |
319 | // later by the actual 'ret' instruction. |
320 | llvm::DebugLoc Loc = BI->getDebugLoc(); |
321 | Builder.SetInsertPoint(BI->getParent()); |
322 | BI->eraseFromParent(); |
323 | delete ReturnBlock.getBlock(); |
324 | ReturnBlock = JumpDest(); |
325 | return Loc; |
326 | } |
327 | } |
328 | |
329 | // FIXME: We are at an unreachable point, there is no reason to emit the block |
330 | // unless it has uses. However, we still need a place to put the debug |
331 | // region.end for now. |
332 | |
333 | EmitBlock(BB: ReturnBlock.getBlock()); |
334 | return llvm::DebugLoc(); |
335 | } |
336 | |
337 | static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { |
338 | if (!BB) return; |
339 | if (!BB->use_empty()) { |
340 | CGF.CurFn->insert(Position: CGF.CurFn->end(), BB); |
341 | return; |
342 | } |
343 | delete BB; |
344 | } |
345 | |
346 | void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { |
347 | assert(BreakContinueStack.empty() && |
348 | "mismatched push/pop in break/continue stack!" ); |
349 | |
350 | bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 |
351 | && NumSimpleReturnExprs == NumReturnExprs |
352 | && ReturnBlock.getBlock()->use_empty(); |
353 | // Usually the return expression is evaluated before the cleanup |
354 | // code. If the function contains only a simple return statement, |
355 | // such as a constant, the location before the cleanup code becomes |
356 | // the last useful breakpoint in the function, because the simple |
357 | // return expression will be evaluated after the cleanup code. To be |
358 | // safe, set the debug location for cleanup code to the location of |
359 | // the return statement. Otherwise the cleanup code should be at the |
360 | // end of the function's lexical scope. |
361 | // |
362 | // If there are multiple branches to the return block, the branch |
363 | // instructions will get the location of the return statements and |
364 | // all will be fine. |
365 | if (CGDebugInfo *DI = getDebugInfo()) { |
366 | if (OnlySimpleReturnStmts) |
367 | DI->EmitLocation(Builder, Loc: LastStopPoint); |
368 | else |
369 | DI->EmitLocation(Builder, Loc: EndLoc); |
370 | } |
371 | |
372 | // Pop any cleanups that might have been associated with the |
373 | // parameters. Do this in whatever block we're currently in; it's |
374 | // important to do this before we enter the return block or return |
375 | // edges will be *really* confused. |
376 | bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; |
377 | bool HasOnlyLifetimeMarkers = |
378 | HasCleanups && EHStack.containsOnlyLifetimeMarkers(Old: PrologueCleanupDepth); |
379 | bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; |
380 | |
381 | std::optional<ApplyDebugLocation> OAL; |
382 | if (HasCleanups) { |
383 | // Make sure the line table doesn't jump back into the body for |
384 | // the ret after it's been at EndLoc. |
385 | if (CGDebugInfo *DI = getDebugInfo()) { |
386 | if (OnlySimpleReturnStmts) |
387 | DI->EmitLocation(Builder, Loc: EndLoc); |
388 | else |
389 | // We may not have a valid end location. Try to apply it anyway, and |
390 | // fall back to an artificial location if needed. |
391 | OAL = ApplyDebugLocation::CreateDefaultArtificial(CGF&: *this, TemporaryLocation: EndLoc); |
392 | } |
393 | |
394 | PopCleanupBlocks(OldCleanupStackSize: PrologueCleanupDepth); |
395 | } |
396 | |
397 | // Emit function epilog (to return). |
398 | llvm::DebugLoc Loc = EmitReturnBlock(); |
399 | |
400 | if (ShouldInstrumentFunction()) { |
401 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
402 | CurFn->addFnAttr(Kind: "instrument-function-exit" , Val: "__cyg_profile_func_exit" ); |
403 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
404 | CurFn->addFnAttr(Kind: "instrument-function-exit-inlined" , |
405 | Val: "__cyg_profile_func_exit" ); |
406 | } |
407 | |
408 | // Emit debug descriptor for function end. |
409 | if (CGDebugInfo *DI = getDebugInfo()) |
410 | DI->EmitFunctionEnd(Builder, Fn: CurFn); |
411 | |
412 | // Reset the debug location to that of the simple 'return' expression, if any |
413 | // rather than that of the end of the function's scope '}'. |
414 | ApplyDebugLocation AL(*this, Loc); |
415 | EmitFunctionEpilog(FI: *CurFnInfo, EmitRetDbgLoc, EndLoc); |
416 | EmitEndEHSpec(D: CurCodeDecl); |
417 | |
418 | assert(EHStack.empty() && |
419 | "did not remove all scopes from cleanup stack!" ); |
420 | |
421 | // If someone did an indirect goto, emit the indirect goto block at the end of |
422 | // the function. |
423 | if (IndirectBranch) { |
424 | EmitBlock(BB: IndirectBranch->getParent()); |
425 | Builder.ClearInsertionPoint(); |
426 | } |
427 | |
428 | // If some of our locals escaped, insert a call to llvm.localescape in the |
429 | // entry block. |
430 | if (!EscapedLocals.empty()) { |
431 | // Invert the map from local to index into a simple vector. There should be |
432 | // no holes. |
433 | SmallVector<llvm::Value *, 4> EscapeArgs; |
434 | EscapeArgs.resize(N: EscapedLocals.size()); |
435 | for (auto &Pair : EscapedLocals) |
436 | EscapeArgs[Pair.second] = Pair.first; |
437 | llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( |
438 | &CGM.getModule(), llvm::Intrinsic::localescape); |
439 | CGBuilderTy(*this, AllocaInsertPt).CreateCall(Callee: FrameEscapeFn, Args: EscapeArgs); |
440 | } |
441 | |
442 | // Remove the AllocaInsertPt instruction, which is just a convenience for us. |
443 | llvm::Instruction *Ptr = AllocaInsertPt; |
444 | AllocaInsertPt = nullptr; |
445 | Ptr->eraseFromParent(); |
446 | |
447 | // PostAllocaInsertPt, if created, was lazily created when it was required, |
448 | // remove it now since it was just created for our own convenience. |
449 | if (PostAllocaInsertPt) { |
450 | llvm::Instruction *PostPtr = PostAllocaInsertPt; |
451 | PostAllocaInsertPt = nullptr; |
452 | PostPtr->eraseFromParent(); |
453 | } |
454 | |
455 | // If someone took the address of a label but never did an indirect goto, we |
456 | // made a zero entry PHI node, which is illegal, zap it now. |
457 | if (IndirectBranch) { |
458 | llvm::PHINode *PN = cast<llvm::PHINode>(Val: IndirectBranch->getAddress()); |
459 | if (PN->getNumIncomingValues() == 0) { |
460 | PN->replaceAllUsesWith(V: llvm::UndefValue::get(T: PN->getType())); |
461 | PN->eraseFromParent(); |
462 | } |
463 | } |
464 | |
465 | EmitIfUsed(CGF&: *this, BB: EHResumeBlock); |
466 | EmitIfUsed(CGF&: *this, BB: TerminateLandingPad); |
467 | EmitIfUsed(CGF&: *this, BB: TerminateHandler); |
468 | EmitIfUsed(CGF&: *this, BB: UnreachableBlock); |
469 | |
470 | for (const auto &FuncletAndParent : TerminateFunclets) |
471 | EmitIfUsed(CGF&: *this, BB: FuncletAndParent.second); |
472 | |
473 | if (CGM.getCodeGenOpts().EmitDeclMetadata) |
474 | EmitDeclMetadata(); |
475 | |
476 | for (const auto &R : DeferredReplacements) { |
477 | if (llvm::Value *Old = R.first) { |
478 | Old->replaceAllUsesWith(V: R.second); |
479 | cast<llvm::Instruction>(Val: Old)->eraseFromParent(); |
480 | } |
481 | } |
482 | DeferredReplacements.clear(); |
483 | |
484 | // Eliminate CleanupDestSlot alloca by replacing it with SSA values and |
485 | // PHIs if the current function is a coroutine. We don't do it for all |
486 | // functions as it may result in slight increase in numbers of instructions |
487 | // if compiled with no optimizations. We do it for coroutine as the lifetime |
488 | // of CleanupDestSlot alloca make correct coroutine frame building very |
489 | // difficult. |
490 | if (NormalCleanupDest.isValid() && isCoroutine()) { |
491 | llvm::DominatorTree DT(*CurFn); |
492 | llvm::PromoteMemToReg( |
493 | Allocas: cast<llvm::AllocaInst>(Val: NormalCleanupDest.getPointer()), DT); |
494 | NormalCleanupDest = Address::invalid(); |
495 | } |
496 | |
497 | // Scan function arguments for vector width. |
498 | for (llvm::Argument &A : CurFn->args()) |
499 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: A.getType())) |
500 | LargestVectorWidth = |
501 | std::max(a: (uint64_t)LargestVectorWidth, |
502 | b: VT->getPrimitiveSizeInBits().getKnownMinValue()); |
503 | |
504 | // Update vector width based on return type. |
505 | if (auto *VT = dyn_cast<llvm::VectorType>(Val: CurFn->getReturnType())) |
506 | LargestVectorWidth = |
507 | std::max(a: (uint64_t)LargestVectorWidth, |
508 | b: VT->getPrimitiveSizeInBits().getKnownMinValue()); |
509 | |
510 | if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) |
511 | LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); |
512 | |
513 | // Add the min-legal-vector-width attribute. This contains the max width from: |
514 | // 1. min-vector-width attribute used in the source program. |
515 | // 2. Any builtins used that have a vector width specified. |
516 | // 3. Values passed in and out of inline assembly. |
517 | // 4. Width of vector arguments and return types for this function. |
518 | // 5. Width of vector arguments and return types for functions called by this |
519 | // function. |
520 | if (getContext().getTargetInfo().getTriple().isX86()) |
521 | CurFn->addFnAttr(Kind: "min-legal-vector-width" , |
522 | Val: llvm::utostr(X: LargestVectorWidth)); |
523 | |
524 | // Add vscale_range attribute if appropriate. |
525 | std::optional<std::pair<unsigned, unsigned>> VScaleRange = |
526 | getContext().getTargetInfo().getVScaleRange(LangOpts: getLangOpts()); |
527 | if (VScaleRange) { |
528 | CurFn->addFnAttr(Attr: llvm::Attribute::getWithVScaleRangeArgs( |
529 | Context&: getLLVMContext(), MinValue: VScaleRange->first, MaxValue: VScaleRange->second)); |
530 | } |
531 | |
532 | // If we generated an unreachable return block, delete it now. |
533 | if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { |
534 | Builder.ClearInsertionPoint(); |
535 | ReturnBlock.getBlock()->eraseFromParent(); |
536 | } |
537 | if (ReturnValue.isValid()) { |
538 | auto *RetAlloca = |
539 | dyn_cast<llvm::AllocaInst>(Val: ReturnValue.emitRawPointer(CGF&: *this)); |
540 | if (RetAlloca && RetAlloca->use_empty()) { |
541 | RetAlloca->eraseFromParent(); |
542 | ReturnValue = Address::invalid(); |
543 | } |
544 | } |
545 | } |
546 | |
547 | /// ShouldInstrumentFunction - Return true if the current function should be |
548 | /// instrumented with __cyg_profile_func_* calls |
549 | bool CodeGenFunction::ShouldInstrumentFunction() { |
550 | if (!CGM.getCodeGenOpts().InstrumentFunctions && |
551 | !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && |
552 | !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
553 | return false; |
554 | if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) |
555 | return false; |
556 | return true; |
557 | } |
558 | |
559 | bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { |
560 | if (!CurFuncDecl) |
561 | return false; |
562 | return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); |
563 | } |
564 | |
565 | /// ShouldXRayInstrument - Return true if the current function should be |
566 | /// instrumented with XRay nop sleds. |
567 | bool CodeGenFunction::ShouldXRayInstrumentFunction() const { |
568 | return CGM.getCodeGenOpts().XRayInstrumentFunctions; |
569 | } |
570 | |
571 | /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to |
572 | /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. |
573 | bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { |
574 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
575 | (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || |
576 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
577 | XRayInstrKind::Custom); |
578 | } |
579 | |
580 | bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { |
581 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
582 | (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || |
583 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
584 | XRayInstrKind::Typed); |
585 | } |
586 | |
587 | llvm::ConstantInt * |
588 | CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { |
589 | // Remove any (C++17) exception specifications, to allow calling e.g. a |
590 | // noexcept function through a non-noexcept pointer. |
591 | if (!Ty->isFunctionNoProtoType()) |
592 | Ty = getContext().getFunctionTypeWithExceptionSpec(Orig: Ty, ESI: EST_None); |
593 | std::string Mangled; |
594 | llvm::raw_string_ostream Out(Mangled); |
595 | CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(T: Ty, Out, NormalizeIntegers: false); |
596 | return llvm::ConstantInt::get( |
597 | Ty: CGM.Int32Ty, V: static_cast<uint32_t>(llvm::xxh3_64bits(data: Mangled))); |
598 | } |
599 | |
600 | void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, |
601 | llvm::Function *Fn) { |
602 | if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) |
603 | return; |
604 | |
605 | llvm::LLVMContext &Context = getLLVMContext(); |
606 | |
607 | CGM.GenKernelArgMetadata(FN: Fn, FD, CGF: this); |
608 | |
609 | if (!getLangOpts().OpenCL) |
610 | return; |
611 | |
612 | if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { |
613 | QualType HintQTy = A->getTypeHint(); |
614 | const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); |
615 | bool IsSignedInteger = |
616 | HintQTy->isSignedIntegerType() || |
617 | (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); |
618 | llvm::Metadata *AttrMDArgs[] = { |
619 | llvm::ConstantAsMetadata::get(C: llvm::UndefValue::get( |
620 | T: CGM.getTypes().ConvertType(T: A->getTypeHint()))), |
621 | llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get( |
622 | Ty: llvm::IntegerType::get(C&: Context, NumBits: 32), |
623 | V: llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; |
624 | Fn->setMetadata("vec_type_hint" , llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
625 | } |
626 | |
627 | if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { |
628 | llvm::Metadata *AttrMDArgs[] = { |
629 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getXDim())), |
630 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getYDim())), |
631 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getZDim()))}; |
632 | Fn->setMetadata("work_group_size_hint" , llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
633 | } |
634 | |
635 | if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { |
636 | llvm::Metadata *AttrMDArgs[] = { |
637 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getXDim())), |
638 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getYDim())), |
639 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getZDim()))}; |
640 | Fn->setMetadata("reqd_work_group_size" , llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
641 | } |
642 | |
643 | if (const OpenCLIntelReqdSubGroupSizeAttr *A = |
644 | FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
645 | llvm::Metadata *AttrMDArgs[] = { |
646 | llvm::ConstantAsMetadata::get(C: Builder.getInt32(C: A->getSubGroupSize()))}; |
647 | Fn->setMetadata("intel_reqd_sub_group_size" , |
648 | llvm::MDNode::get(Context, MDs: AttrMDArgs)); |
649 | } |
650 | } |
651 | |
652 | /// Determine whether the function F ends with a return stmt. |
653 | static bool endsWithReturn(const Decl* F) { |
654 | const Stmt *Body = nullptr; |
655 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(Val: F)) |
656 | Body = FD->getBody(); |
657 | else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(Val: F)) |
658 | Body = OMD->getBody(); |
659 | |
660 | if (auto *CS = dyn_cast_or_null<CompoundStmt>(Val: Body)) { |
661 | auto LastStmt = CS->body_rbegin(); |
662 | if (LastStmt != CS->body_rend()) |
663 | return isa<ReturnStmt>(Val: *LastStmt); |
664 | } |
665 | return false; |
666 | } |
667 | |
668 | void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { |
669 | if (SanOpts.has(K: SanitizerKind::Thread)) { |
670 | Fn->addFnAttr(Kind: "sanitize_thread_no_checking_at_run_time" ); |
671 | Fn->removeFnAttr(llvm::Attribute::SanitizeThread); |
672 | } |
673 | } |
674 | |
675 | /// Check if the return value of this function requires sanitization. |
676 | bool CodeGenFunction::requiresReturnValueCheck() const { |
677 | return requiresReturnValueNullabilityCheck() || |
678 | (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && |
679 | CurCodeDecl->getAttr<ReturnsNonNullAttr>()); |
680 | } |
681 | |
682 | static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { |
683 | auto *MD = dyn_cast_or_null<CXXMethodDecl>(Val: D); |
684 | if (!MD || !MD->getDeclName().getAsIdentifierInfo() || |
685 | !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate" ) || |
686 | (MD->getNumParams() != 1 && MD->getNumParams() != 2)) |
687 | return false; |
688 | |
689 | if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) |
690 | return false; |
691 | |
692 | if (MD->getNumParams() == 2) { |
693 | auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); |
694 | if (!PT || !PT->isVoidPointerType() || |
695 | !PT->getPointeeType().isConstQualified()) |
696 | return false; |
697 | } |
698 | |
699 | return true; |
700 | } |
701 | |
702 | bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { |
703 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
704 | return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; |
705 | } |
706 | |
707 | bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { |
708 | return getTarget().getTriple().getArch() == llvm::Triple::x86 && |
709 | getTarget().getCXXABI().isMicrosoft() && |
710 | llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { |
711 | return isInAllocaArgument(CGM.getCXXABI(), P->getType()); |
712 | }); |
713 | } |
714 | |
715 | /// Return the UBSan prologue signature for \p FD if one is available. |
716 | static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, |
717 | const FunctionDecl *FD) { |
718 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
719 | if (!MD->isStatic()) |
720 | return nullptr; |
721 | return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); |
722 | } |
723 | |
724 | void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, |
725 | llvm::Function *Fn, |
726 | const CGFunctionInfo &FnInfo, |
727 | const FunctionArgList &Args, |
728 | SourceLocation Loc, |
729 | SourceLocation StartLoc) { |
730 | assert(!CurFn && |
731 | "Do not use a CodeGenFunction object for more than one function" ); |
732 | |
733 | const Decl *D = GD.getDecl(); |
734 | |
735 | DidCallStackSave = false; |
736 | CurCodeDecl = D; |
737 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: D); |
738 | if (FD && FD->usesSEHTry()) |
739 | CurSEHParent = GD; |
740 | CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); |
741 | FnRetTy = RetTy; |
742 | CurFn = Fn; |
743 | CurFnInfo = &FnInfo; |
744 | assert(CurFn->isDeclaration() && "Function already has body?" ); |
745 | |
746 | // If this function is ignored for any of the enabled sanitizers, |
747 | // disable the sanitizer for the function. |
748 | do { |
749 | #define SANITIZER(NAME, ID) \ |
750 | if (SanOpts.empty()) \ |
751 | break; \ |
752 | if (SanOpts.has(SanitizerKind::ID)) \ |
753 | if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ |
754 | SanOpts.set(SanitizerKind::ID, false); |
755 | |
756 | #include "clang/Basic/Sanitizers.def" |
757 | #undef SANITIZER |
758 | } while (false); |
759 | |
760 | if (D) { |
761 | const bool SanitizeBounds = SanOpts.hasOneOf(K: SanitizerKind::Bounds); |
762 | SanitizerMask no_sanitize_mask; |
763 | bool NoSanitizeCoverage = false; |
764 | |
765 | for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { |
766 | no_sanitize_mask |= Attr->getMask(); |
767 | // SanitizeCoverage is not handled by SanOpts. |
768 | if (Attr->hasCoverage()) |
769 | NoSanitizeCoverage = true; |
770 | } |
771 | |
772 | // Apply the no_sanitize* attributes to SanOpts. |
773 | SanOpts.Mask &= ~no_sanitize_mask; |
774 | if (no_sanitize_mask & SanitizerKind::Address) |
775 | SanOpts.set(K: SanitizerKind::KernelAddress, Value: false); |
776 | if (no_sanitize_mask & SanitizerKind::KernelAddress) |
777 | SanOpts.set(K: SanitizerKind::Address, Value: false); |
778 | if (no_sanitize_mask & SanitizerKind::HWAddress) |
779 | SanOpts.set(K: SanitizerKind::KernelHWAddress, Value: false); |
780 | if (no_sanitize_mask & SanitizerKind::KernelHWAddress) |
781 | SanOpts.set(K: SanitizerKind::HWAddress, Value: false); |
782 | |
783 | if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) |
784 | Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); |
785 | |
786 | if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) |
787 | Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); |
788 | |
789 | // Some passes need the non-negated no_sanitize attribute. Pass them on. |
790 | if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { |
791 | if (no_sanitize_mask & SanitizerKind::Thread) |
792 | Fn->addFnAttr(Kind: "no_sanitize_thread" ); |
793 | } |
794 | } |
795 | |
796 | if (ShouldSkipSanitizerInstrumentation()) { |
797 | CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); |
798 | } else { |
799 | // Apply sanitizer attributes to the function. |
800 | if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) |
801 | Fn->addFnAttr(llvm::Attribute::SanitizeAddress); |
802 | if (SanOpts.hasOneOf(SanitizerKind::HWAddress | |
803 | SanitizerKind::KernelHWAddress)) |
804 | Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); |
805 | if (SanOpts.has(SanitizerKind::MemtagStack)) |
806 | Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); |
807 | if (SanOpts.has(SanitizerKind::Thread)) |
808 | Fn->addFnAttr(llvm::Attribute::SanitizeThread); |
809 | if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) |
810 | Fn->addFnAttr(llvm::Attribute::SanitizeMemory); |
811 | } |
812 | if (SanOpts.has(SanitizerKind::SafeStack)) |
813 | Fn->addFnAttr(llvm::Attribute::SafeStack); |
814 | if (SanOpts.has(SanitizerKind::ShadowCallStack)) |
815 | Fn->addFnAttr(llvm::Attribute::ShadowCallStack); |
816 | |
817 | // Apply fuzzing attribute to the function. |
818 | if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) |
819 | Fn->addFnAttr(llvm::Attribute::OptForFuzzing); |
820 | |
821 | // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, |
822 | // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. |
823 | if (SanOpts.has(K: SanitizerKind::Thread)) { |
824 | if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(Val: D)) { |
825 | const IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(argIndex: 0); |
826 | if (OMD->getMethodFamily() == OMF_dealloc || |
827 | OMD->getMethodFamily() == OMF_initialize || |
828 | (OMD->getSelector().isUnarySelector() && II->isStr(Str: ".cxx_destruct" ))) { |
829 | markAsIgnoreThreadCheckingAtRuntime(Fn); |
830 | } |
831 | } |
832 | } |
833 | |
834 | // Ignore unrelated casts in STL allocate() since the allocator must cast |
835 | // from void* to T* before object initialization completes. Don't match on the |
836 | // namespace because not all allocators are in std:: |
837 | if (D && SanOpts.has(K: SanitizerKind::CFIUnrelatedCast)) { |
838 | if (matchesStlAllocatorFn(D, Ctx: getContext())) |
839 | SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; |
840 | } |
841 | |
842 | // Ignore null checks in coroutine functions since the coroutines passes |
843 | // are not aware of how to move the extra UBSan instructions across the split |
844 | // coroutine boundaries. |
845 | if (D && SanOpts.has(K: SanitizerKind::Null)) |
846 | if (FD && FD->getBody() && |
847 | FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) |
848 | SanOpts.Mask &= ~SanitizerKind::Null; |
849 | |
850 | // Apply xray attributes to the function (as a string, for now) |
851 | bool AlwaysXRayAttr = false; |
852 | if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { |
853 | if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
854 | K: XRayInstrKind::FunctionEntry) || |
855 | CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
856 | K: XRayInstrKind::FunctionExit)) { |
857 | if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { |
858 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-always" ); |
859 | AlwaysXRayAttr = true; |
860 | } |
861 | if (XRayAttr->neverXRayInstrument()) |
862 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-never" ); |
863 | if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) |
864 | if (ShouldXRayInstrumentFunction()) |
865 | Fn->addFnAttr("xray-log-args" , |
866 | llvm::utostr(X: LogArgs->getArgumentCount())); |
867 | } |
868 | } else { |
869 | if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) |
870 | Fn->addFnAttr( |
871 | Kind: "xray-instruction-threshold" , |
872 | Val: llvm::itostr(X: CGM.getCodeGenOpts().XRayInstructionThreshold)); |
873 | } |
874 | |
875 | if (ShouldXRayInstrumentFunction()) { |
876 | if (CGM.getCodeGenOpts().XRayIgnoreLoops) |
877 | Fn->addFnAttr(Kind: "xray-ignore-loops" ); |
878 | |
879 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
880 | K: XRayInstrKind::FunctionExit)) |
881 | Fn->addFnAttr(Kind: "xray-skip-exit" ); |
882 | |
883 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
884 | K: XRayInstrKind::FunctionEntry)) |
885 | Fn->addFnAttr(Kind: "xray-skip-entry" ); |
886 | |
887 | auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; |
888 | if (FuncGroups > 1) { |
889 | auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), |
890 | CurFn->getName().bytes_end()); |
891 | auto Group = crc32(Data: FuncName) % FuncGroups; |
892 | if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && |
893 | !AlwaysXRayAttr) |
894 | Fn->addFnAttr(Kind: "function-instrument" , Val: "xray-never" ); |
895 | } |
896 | } |
897 | |
898 | if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { |
899 | switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { |
900 | case ProfileList::Skip: |
901 | Fn->addFnAttr(llvm::Attribute::SkipProfile); |
902 | break; |
903 | case ProfileList::Forbid: |
904 | Fn->addFnAttr(llvm::Attribute::NoProfile); |
905 | break; |
906 | case ProfileList::Allow: |
907 | break; |
908 | } |
909 | } |
910 | |
911 | unsigned Count, Offset; |
912 | if (const auto *Attr = |
913 | D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { |
914 | Count = Attr->getCount(); |
915 | Offset = Attr->getOffset(); |
916 | } else { |
917 | Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; |
918 | Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; |
919 | } |
920 | if (Count && Offset <= Count) { |
921 | Fn->addFnAttr(Kind: "patchable-function-entry" , Val: std::to_string(val: Count - Offset)); |
922 | if (Offset) |
923 | Fn->addFnAttr(Kind: "patchable-function-prefix" , Val: std::to_string(val: Offset)); |
924 | } |
925 | // Instruct that functions for COFF/CodeView targets should start with a |
926 | // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 |
927 | // backends as they don't need it -- instructions on these architectures are |
928 | // always atomically patchable at runtime. |
929 | if (CGM.getCodeGenOpts().HotPatch && |
930 | getContext().getTargetInfo().getTriple().isX86() && |
931 | getContext().getTargetInfo().getTriple().getEnvironment() != |
932 | llvm::Triple::CODE16) |
933 | Fn->addFnAttr(Kind: "patchable-function" , Val: "prologue-short-redirect" ); |
934 | |
935 | // Add no-jump-tables value. |
936 | if (CGM.getCodeGenOpts().NoUseJumpTables) |
937 | Fn->addFnAttr(Kind: "no-jump-tables" , Val: "true" ); |
938 | |
939 | // Add no-inline-line-tables value. |
940 | if (CGM.getCodeGenOpts().NoInlineLineTables) |
941 | Fn->addFnAttr(Kind: "no-inline-line-tables" ); |
942 | |
943 | // Add profile-sample-accurate value. |
944 | if (CGM.getCodeGenOpts().ProfileSampleAccurate) |
945 | Fn->addFnAttr(Kind: "profile-sample-accurate" ); |
946 | |
947 | if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) |
948 | Fn->addFnAttr(Kind: "use-sample-profile" ); |
949 | |
950 | if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) |
951 | Fn->addFnAttr(Kind: "cfi-canonical-jump-table" ); |
952 | |
953 | if (D && D->hasAttr<NoProfileFunctionAttr>()) |
954 | Fn->addFnAttr(llvm::Attribute::NoProfile); |
955 | |
956 | if (D) { |
957 | // Function attributes take precedence over command line flags. |
958 | if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { |
959 | switch (A->getThunkType()) { |
960 | case FunctionReturnThunksAttr::Kind::Keep: |
961 | break; |
962 | case FunctionReturnThunksAttr::Kind::Extern: |
963 | Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); |
964 | break; |
965 | } |
966 | } else if (CGM.getCodeGenOpts().FunctionReturnThunks) |
967 | Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); |
968 | } |
969 | |
970 | if (FD && (getLangOpts().OpenCL || |
971 | (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { |
972 | // Add metadata for a kernel function. |
973 | EmitKernelMetadata(FD, Fn); |
974 | } |
975 | |
976 | // If we are checking function types, emit a function type signature as |
977 | // prologue data. |
978 | if (FD && SanOpts.has(K: SanitizerKind::Function)) { |
979 | if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { |
980 | llvm::LLVMContext &Ctx = Fn->getContext(); |
981 | llvm::MDBuilder MDB(Ctx); |
982 | Fn->setMetadata( |
983 | llvm::LLVMContext::MD_func_sanitize, |
984 | MDB.createRTTIPointerPrologue( |
985 | PrologueSig, RTTI: getUBSanFunctionTypeHash(Ty: FD->getType()))); |
986 | } |
987 | } |
988 | |
989 | // If we're checking nullability, we need to know whether we can check the |
990 | // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. |
991 | if (SanOpts.has(K: SanitizerKind::NullabilityReturn)) { |
992 | auto Nullability = FnRetTy->getNullability(); |
993 | if (Nullability && *Nullability == NullabilityKind::NonNull && |
994 | !FnRetTy->isRecordType()) { |
995 | if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && |
996 | CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) |
997 | RetValNullabilityPrecondition = |
998 | llvm::ConstantInt::getTrue(Context&: getLLVMContext()); |
999 | } |
1000 | } |
1001 | |
1002 | // If we're in C++ mode and the function name is "main", it is guaranteed |
1003 | // to be norecurse by the standard (3.6.1.3 "The function main shall not be |
1004 | // used within a program"). |
1005 | // |
1006 | // OpenCL C 2.0 v2.2-11 s6.9.i: |
1007 | // Recursion is not supported. |
1008 | // |
1009 | // SYCL v1.2.1 s3.10: |
1010 | // kernels cannot include RTTI information, exception classes, |
1011 | // recursive code, virtual functions or make use of C++ libraries that |
1012 | // are not compiled for the device. |
1013 | if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || |
1014 | getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || |
1015 | (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) |
1016 | Fn->addFnAttr(llvm::Attribute::NoRecurse); |
1017 | |
1018 | llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); |
1019 | llvm::fp::ExceptionBehavior FPExceptionBehavior = |
1020 | ToConstrainedExceptMD(Kind: getLangOpts().getDefaultExceptionMode()); |
1021 | Builder.setDefaultConstrainedRounding(RM); |
1022 | Builder.setDefaultConstrainedExcept(FPExceptionBehavior); |
1023 | if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || |
1024 | (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || |
1025 | RM != llvm::RoundingMode::NearestTiesToEven))) { |
1026 | Builder.setIsFPConstrained(true); |
1027 | Fn->addFnAttr(llvm::Attribute::StrictFP); |
1028 | } |
1029 | |
1030 | // If a custom alignment is used, force realigning to this alignment on |
1031 | // any main function which certainly will need it. |
1032 | if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && |
1033 | CGM.getCodeGenOpts().StackAlignment)) |
1034 | Fn->addFnAttr(Kind: "stackrealign" ); |
1035 | |
1036 | // "main" doesn't need to zero out call-used registers. |
1037 | if (FD && FD->isMain()) |
1038 | Fn->removeFnAttr(Kind: "zero-call-used-regs" ); |
1039 | |
1040 | llvm::BasicBlock *EntryBB = createBasicBlock(name: "entry" , parent: CurFn); |
1041 | |
1042 | // Create a marker to make it easy to insert allocas into the entryblock |
1043 | // later. Don't create this with the builder, because we don't want it |
1044 | // folded. |
1045 | llvm::Value *Undef = llvm::UndefValue::get(T: Int32Ty); |
1046 | AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt" , EntryBB); |
1047 | |
1048 | ReturnBlock = getJumpDestInCurrentScope(Name: "return" ); |
1049 | |
1050 | Builder.SetInsertPoint(EntryBB); |
1051 | |
1052 | // If we're checking the return value, allocate space for a pointer to a |
1053 | // precise source location of the checked return statement. |
1054 | if (requiresReturnValueCheck()) { |
1055 | ReturnLocation = CreateDefaultAlignTempAlloca(Ty: Int8PtrTy, Name: "return.sloc.ptr" ); |
1056 | Builder.CreateStore(Val: llvm::ConstantPointerNull::get(T: Int8PtrTy), |
1057 | Addr: ReturnLocation); |
1058 | } |
1059 | |
1060 | // Emit subprogram debug descriptor. |
1061 | if (CGDebugInfo *DI = getDebugInfo()) { |
1062 | // Reconstruct the type from the argument list so that implicit parameters, |
1063 | // such as 'this' and 'vtt', show up in the debug info. Preserve the calling |
1064 | // convention. |
1065 | DI->emitFunctionStart(GD, Loc, ScopeLoc: StartLoc, |
1066 | FnType: DI->getFunctionType(FD, RetTy, Args), Fn: CurFn, |
1067 | CurFnIsThunk: CurFuncIsThunk); |
1068 | } |
1069 | |
1070 | if (ShouldInstrumentFunction()) { |
1071 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
1072 | CurFn->addFnAttr(Kind: "instrument-function-entry" , Val: "__cyg_profile_func_enter" ); |
1073 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
1074 | CurFn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1075 | Val: "__cyg_profile_func_enter" ); |
1076 | if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
1077 | CurFn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1078 | Val: "__cyg_profile_func_enter_bare" ); |
1079 | } |
1080 | |
1081 | // Since emitting the mcount call here impacts optimizations such as function |
1082 | // inlining, we just add an attribute to insert a mcount call in backend. |
1083 | // The attribute "counting-function" is set to mcount function name which is |
1084 | // architecture dependent. |
1085 | if (CGM.getCodeGenOpts().InstrumentForProfiling) { |
1086 | // Calls to fentry/mcount should not be generated if function has |
1087 | // the no_instrument_function attribute. |
1088 | if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { |
1089 | if (CGM.getCodeGenOpts().CallFEntry) |
1090 | Fn->addFnAttr(Kind: "fentry-call" , Val: "true" ); |
1091 | else { |
1092 | Fn->addFnAttr(Kind: "instrument-function-entry-inlined" , |
1093 | Val: getTarget().getMCountName()); |
1094 | } |
1095 | if (CGM.getCodeGenOpts().MNopMCount) { |
1096 | if (!CGM.getCodeGenOpts().CallFEntry) |
1097 | CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) |
1098 | << "-mnop-mcount" << "-mfentry" ; |
1099 | Fn->addFnAttr(Kind: "mnop-mcount" ); |
1100 | } |
1101 | |
1102 | if (CGM.getCodeGenOpts().RecordMCount) { |
1103 | if (!CGM.getCodeGenOpts().CallFEntry) |
1104 | CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) |
1105 | << "-mrecord-mcount" << "-mfentry" ; |
1106 | Fn->addFnAttr(Kind: "mrecord-mcount" ); |
1107 | } |
1108 | } |
1109 | } |
1110 | |
1111 | if (CGM.getCodeGenOpts().PackedStack) { |
1112 | if (getContext().getTargetInfo().getTriple().getArch() != |
1113 | llvm::Triple::systemz) |
1114 | CGM.getDiags().Report(diag::err_opt_not_valid_on_target) |
1115 | << "-mpacked-stack" ; |
1116 | Fn->addFnAttr(Kind: "packed-stack" ); |
1117 | } |
1118 | |
1119 | if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && |
1120 | !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) |
1121 | Fn->addFnAttr(Kind: "warn-stack-size" , |
1122 | Val: std::to_string(val: CGM.getCodeGenOpts().WarnStackSize)); |
1123 | |
1124 | if (RetTy->isVoidType()) { |
1125 | // Void type; nothing to return. |
1126 | ReturnValue = Address::invalid(); |
1127 | |
1128 | // Count the implicit return. |
1129 | if (!endsWithReturn(F: D)) |
1130 | ++NumReturnExprs; |
1131 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { |
1132 | // Indirect return; emit returned value directly into sret slot. |
1133 | // This reduces code size, and affects correctness in C++. |
1134 | auto AI = CurFn->arg_begin(); |
1135 | if (CurFnInfo->getReturnInfo().isSRetAfterThis()) |
1136 | ++AI; |
1137 | ReturnValue = makeNaturalAddressForPointer( |
1138 | Ptr: &*AI, T: RetTy, Alignment: CurFnInfo->getReturnInfo().getIndirectAlign(), ForPointeeType: false, |
1139 | BaseInfo: nullptr, TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull); |
1140 | if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { |
1141 | ReturnValuePointer = |
1142 | CreateDefaultAlignTempAlloca(Ty: ReturnValue.getType(), Name: "result.ptr" ); |
1143 | Builder.CreateStore(Val: ReturnValue.emitRawPointer(CGF&: *this), |
1144 | Addr: ReturnValuePointer); |
1145 | } |
1146 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && |
1147 | !hasScalarEvaluationKind(T: CurFnInfo->getReturnType())) { |
1148 | // Load the sret pointer from the argument struct and return into that. |
1149 | unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); |
1150 | llvm::Function::arg_iterator EI = CurFn->arg_end(); |
1151 | --EI; |
1152 | llvm::Value *Addr = Builder.CreateStructGEP( |
1153 | Ty: CurFnInfo->getArgStruct(), Ptr: &*EI, Idx); |
1154 | llvm::Type *Ty = |
1155 | cast<llvm::GetElementPtrInst>(Val: Addr)->getResultElementType(); |
1156 | ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); |
1157 | Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result" ); |
1158 | ReturnValue = Address(Addr, ConvertType(T: RetTy), |
1159 | CGM.getNaturalTypeAlignment(T: RetTy), KnownNonNull); |
1160 | } else { |
1161 | ReturnValue = CreateIRTemp(T: RetTy, Name: "retval" ); |
1162 | |
1163 | // Tell the epilog emitter to autorelease the result. We do this |
1164 | // now so that various specialized functions can suppress it |
1165 | // during their IR-generation. |
1166 | if (getLangOpts().ObjCAutoRefCount && |
1167 | !CurFnInfo->isReturnsRetained() && |
1168 | RetTy->isObjCRetainableType()) |
1169 | AutoreleaseResult = true; |
1170 | } |
1171 | |
1172 | EmitStartEHSpec(D: CurCodeDecl); |
1173 | |
1174 | PrologueCleanupDepth = EHStack.stable_begin(); |
1175 | |
1176 | // Emit OpenMP specific initialization of the device functions. |
1177 | if (getLangOpts().OpenMP && CurCodeDecl) |
1178 | CGM.getOpenMPRuntime().emitFunctionProlog(CGF&: *this, D: CurCodeDecl); |
1179 | |
1180 | // Handle emitting HLSL entry functions. |
1181 | if (D && D->hasAttr<HLSLShaderAttr>()) |
1182 | CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); |
1183 | |
1184 | EmitFunctionProlog(FI: *CurFnInfo, Fn: CurFn, Args); |
1185 | |
1186 | if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(Val: D); |
1187 | MD && !MD->isStatic()) { |
1188 | bool IsInLambda = |
1189 | MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; |
1190 | if (MD->isImplicitObjectMemberFunction()) |
1191 | CGM.getCXXABI().EmitInstanceFunctionProlog(CGF&: *this); |
1192 | if (IsInLambda) { |
1193 | // We're in a lambda; figure out the captures. |
1194 | MD->getParent()->getCaptureFields(Captures&: LambdaCaptureFields, |
1195 | ThisCapture&: LambdaThisCaptureField); |
1196 | if (LambdaThisCaptureField) { |
1197 | // If the lambda captures the object referred to by '*this' - either by |
1198 | // value or by reference, make sure CXXThisValue points to the correct |
1199 | // object. |
1200 | |
1201 | // Get the lvalue for the field (which is a copy of the enclosing object |
1202 | // or contains the address of the enclosing object). |
1203 | LValue ThisFieldLValue = EmitLValueForLambdaField(Field: LambdaThisCaptureField); |
1204 | if (!LambdaThisCaptureField->getType()->isPointerType()) { |
1205 | // If the enclosing object was captured by value, just use its |
1206 | // address. Sign this pointer. |
1207 | CXXThisValue = ThisFieldLValue.getPointer(CGF&: *this); |
1208 | } else { |
1209 | // Load the lvalue pointed to by the field, since '*this' was captured |
1210 | // by reference. |
1211 | CXXThisValue = |
1212 | EmitLoadOfLValue(V: ThisFieldLValue, Loc: SourceLocation()).getScalarVal(); |
1213 | } |
1214 | } |
1215 | for (auto *FD : MD->getParent()->fields()) { |
1216 | if (FD->hasCapturedVLAType()) { |
1217 | auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), |
1218 | SourceLocation()).getScalarVal(); |
1219 | auto VAT = FD->getCapturedVLAType(); |
1220 | VLASizeMap[VAT->getSizeExpr()] = ExprArg; |
1221 | } |
1222 | } |
1223 | } else if (MD->isImplicitObjectMemberFunction()) { |
1224 | // Not in a lambda; just use 'this' from the method. |
1225 | // FIXME: Should we generate a new load for each use of 'this'? The |
1226 | // fast register allocator would be happier... |
1227 | CXXThisValue = CXXABIThisValue; |
1228 | } |
1229 | |
1230 | // Check the 'this' pointer once per function, if it's available. |
1231 | if (CXXABIThisValue) { |
1232 | SanitizerSet SkippedChecks; |
1233 | SkippedChecks.set(K: SanitizerKind::ObjectSize, Value: true); |
1234 | QualType ThisTy = MD->getThisType(); |
1235 | |
1236 | // If this is the call operator of a lambda with no captures, it |
1237 | // may have a static invoker function, which may call this operator with |
1238 | // a null 'this' pointer. |
1239 | if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) |
1240 | SkippedChecks.set(K: SanitizerKind::Null, Value: true); |
1241 | |
1242 | EmitTypeCheck( |
1243 | TCK: isa<CXXConstructorDecl>(Val: MD) ? TCK_ConstructorCall : TCK_MemberCall, |
1244 | Loc, V: CXXABIThisValue, Type: ThisTy, Alignment: CXXABIThisAlignment, SkippedChecks); |
1245 | } |
1246 | } |
1247 | |
1248 | // If any of the arguments have a variably modified type, make sure to |
1249 | // emit the type size, but only if the function is not naked. Naked functions |
1250 | // have no prolog to run this evaluation. |
1251 | if (!FD || !FD->hasAttr<NakedAttr>()) { |
1252 | for (const VarDecl *VD : Args) { |
1253 | // Dig out the type as written from ParmVarDecls; it's unclear whether |
1254 | // the standard (C99 6.9.1p10) requires this, but we're following the |
1255 | // precedent set by gcc. |
1256 | QualType Ty; |
1257 | if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Val: VD)) |
1258 | Ty = PVD->getOriginalType(); |
1259 | else |
1260 | Ty = VD->getType(); |
1261 | |
1262 | if (Ty->isVariablyModifiedType()) |
1263 | EmitVariablyModifiedType(Ty); |
1264 | } |
1265 | } |
1266 | // Emit a location at the end of the prologue. |
1267 | if (CGDebugInfo *DI = getDebugInfo()) |
1268 | DI->EmitLocation(Builder, Loc: StartLoc); |
1269 | // TODO: Do we need to handle this in two places like we do with |
1270 | // target-features/target-cpu? |
1271 | if (CurFuncDecl) |
1272 | if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) |
1273 | LargestVectorWidth = VecWidth->getVectorWidth(); |
1274 | } |
1275 | |
1276 | void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { |
1277 | incrementProfileCounter(S: Body); |
1278 | maybeCreateMCDCCondBitmap(); |
1279 | if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Val: Body)) |
1280 | EmitCompoundStmtWithoutScope(S: *S); |
1281 | else |
1282 | EmitStmt(S: Body); |
1283 | } |
1284 | |
1285 | /// When instrumenting to collect profile data, the counts for some blocks |
1286 | /// such as switch cases need to not include the fall-through counts, so |
1287 | /// emit a branch around the instrumentation code. When not instrumenting, |
1288 | /// this just calls EmitBlock(). |
1289 | void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, |
1290 | const Stmt *S) { |
1291 | llvm::BasicBlock *SkipCountBB = nullptr; |
1292 | // Do not skip over the instrumentation when single byte coverage mode is |
1293 | // enabled. |
1294 | if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr() && |
1295 | !llvm::EnableSingleByteCoverage) { |
1296 | // When instrumenting for profiling, the fallthrough to certain |
1297 | // statements needs to skip over the instrumentation code so that we |
1298 | // get an accurate count. |
1299 | SkipCountBB = createBasicBlock(name: "skipcount" ); |
1300 | EmitBranch(Block: SkipCountBB); |
1301 | } |
1302 | EmitBlock(BB); |
1303 | uint64_t CurrentCount = getCurrentProfileCount(); |
1304 | incrementProfileCounter(S); |
1305 | setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); |
1306 | if (SkipCountBB) |
1307 | EmitBlock(BB: SkipCountBB); |
1308 | } |
1309 | |
1310 | /// Tries to mark the given function nounwind based on the |
1311 | /// non-existence of any throwing calls within it. We believe this is |
1312 | /// lightweight enough to do at -O0. |
1313 | static void TryMarkNoThrow(llvm::Function *F) { |
1314 | // LLVM treats 'nounwind' on a function as part of the type, so we |
1315 | // can't do this on functions that can be overwritten. |
1316 | if (F->isInterposable()) return; |
1317 | |
1318 | for (llvm::BasicBlock &BB : *F) |
1319 | for (llvm::Instruction &I : BB) |
1320 | if (I.mayThrow()) |
1321 | return; |
1322 | |
1323 | F->setDoesNotThrow(); |
1324 | } |
1325 | |
1326 | QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, |
1327 | FunctionArgList &Args) { |
1328 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
1329 | QualType ResTy = FD->getReturnType(); |
1330 | |
1331 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
1332 | if (MD && MD->isImplicitObjectMemberFunction()) { |
1333 | if (CGM.getCXXABI().HasThisReturn(GD)) |
1334 | ResTy = MD->getThisType(); |
1335 | else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) |
1336 | ResTy = CGM.getContext().VoidPtrTy; |
1337 | CGM.getCXXABI().buildThisParam(CGF&: *this, Params&: Args); |
1338 | } |
1339 | |
1340 | // The base version of an inheriting constructor whose constructed base is a |
1341 | // virtual base is not passed any arguments (because it doesn't actually call |
1342 | // the inherited constructor). |
1343 | bool PassedParams = true; |
1344 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: FD)) |
1345 | if (auto Inherited = CD->getInheritedConstructor()) |
1346 | PassedParams = |
1347 | getTypes().inheritingCtorHasParams(Inherited, Type: GD.getCtorType()); |
1348 | |
1349 | if (PassedParams) { |
1350 | for (auto *Param : FD->parameters()) { |
1351 | Args.push_back(Param); |
1352 | if (!Param->hasAttr<PassObjectSizeAttr>()) |
1353 | continue; |
1354 | |
1355 | auto *Implicit = ImplicitParamDecl::Create( |
1356 | getContext(), Param->getDeclContext(), Param->getLocation(), |
1357 | /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); |
1358 | SizeArguments[Param] = Implicit; |
1359 | Args.push_back(Elt: Implicit); |
1360 | } |
1361 | } |
1362 | |
1363 | if (MD && (isa<CXXConstructorDecl>(Val: MD) || isa<CXXDestructorDecl>(Val: MD))) |
1364 | CGM.getCXXABI().addImplicitStructorParams(CGF&: *this, ResTy, Params&: Args); |
1365 | |
1366 | return ResTy; |
1367 | } |
1368 | |
1369 | void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
1370 | const CGFunctionInfo &FnInfo) { |
1371 | assert(Fn && "generating code for null Function" ); |
1372 | const FunctionDecl *FD = cast<FunctionDecl>(Val: GD.getDecl()); |
1373 | CurGD = GD; |
1374 | |
1375 | FunctionArgList Args; |
1376 | QualType ResTy = BuildFunctionArgList(GD, Args); |
1377 | |
1378 | CGM.getTargetCodeGenInfo().checkFunctionABI(CGM, Decl: FD); |
1379 | |
1380 | if (FD->isInlineBuiltinDeclaration()) { |
1381 | // When generating code for a builtin with an inline declaration, use a |
1382 | // mangled name to hold the actual body, while keeping an external |
1383 | // definition in case the function pointer is referenced somewhere. |
1384 | std::string FDInlineName = (Fn->getName() + ".inline" ).str(); |
1385 | llvm::Module *M = Fn->getParent(); |
1386 | llvm::Function *Clone = M->getFunction(Name: FDInlineName); |
1387 | if (!Clone) { |
1388 | Clone = llvm::Function::Create(Ty: Fn->getFunctionType(), |
1389 | Linkage: llvm::GlobalValue::InternalLinkage, |
1390 | AddrSpace: Fn->getAddressSpace(), N: FDInlineName, M); |
1391 | Clone->addFnAttr(llvm::Attribute::AlwaysInline); |
1392 | } |
1393 | Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); |
1394 | Fn = Clone; |
1395 | } else { |
1396 | // Detect the unusual situation where an inline version is shadowed by a |
1397 | // non-inline version. In that case we should pick the external one |
1398 | // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way |
1399 | // to detect that situation before we reach codegen, so do some late |
1400 | // replacement. |
1401 | for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; |
1402 | PD = PD->getPreviousDecl()) { |
1403 | if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { |
1404 | std::string FDInlineName = (Fn->getName() + ".inline" ).str(); |
1405 | llvm::Module *M = Fn->getParent(); |
1406 | if (llvm::Function *Clone = M->getFunction(Name: FDInlineName)) { |
1407 | Clone->replaceAllUsesWith(V: Fn); |
1408 | Clone->eraseFromParent(); |
1409 | } |
1410 | break; |
1411 | } |
1412 | } |
1413 | } |
1414 | |
1415 | // Check if we should generate debug info for this function. |
1416 | if (FD->hasAttr<NoDebugAttr>()) { |
1417 | // Clear non-distinct debug info that was possibly attached to the function |
1418 | // due to an earlier declaration without the nodebug attribute |
1419 | Fn->setSubprogram(nullptr); |
1420 | // Disable debug info indefinitely for this function |
1421 | DebugInfo = nullptr; |
1422 | } |
1423 | |
1424 | // The function might not have a body if we're generating thunks for a |
1425 | // function declaration. |
1426 | SourceRange BodyRange; |
1427 | if (Stmt *Body = FD->getBody()) |
1428 | BodyRange = Body->getSourceRange(); |
1429 | else |
1430 | BodyRange = FD->getLocation(); |
1431 | CurEHLocation = BodyRange.getEnd(); |
1432 | |
1433 | // Use the location of the start of the function to determine where |
1434 | // the function definition is located. By default use the location |
1435 | // of the declaration as the location for the subprogram. A function |
1436 | // may lack a declaration in the source code if it is created by code |
1437 | // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). |
1438 | SourceLocation Loc = FD->getLocation(); |
1439 | |
1440 | // If this is a function specialization then use the pattern body |
1441 | // as the location for the function. |
1442 | if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) |
1443 | if (SpecDecl->hasBody(Definition&: SpecDecl)) |
1444 | Loc = SpecDecl->getLocation(); |
1445 | |
1446 | Stmt *Body = FD->getBody(); |
1447 | |
1448 | if (Body) { |
1449 | // Coroutines always emit lifetime markers. |
1450 | if (isa<CoroutineBodyStmt>(Val: Body)) |
1451 | ShouldEmitLifetimeMarkers = true; |
1452 | |
1453 | // Initialize helper which will detect jumps which can cause invalid |
1454 | // lifetime markers. |
1455 | if (ShouldEmitLifetimeMarkers) |
1456 | Bypasses.Init(Body); |
1457 | } |
1458 | |
1459 | // Emit the standard function prologue. |
1460 | StartFunction(GD, RetTy: ResTy, Fn, FnInfo, Args, Loc, StartLoc: BodyRange.getBegin()); |
1461 | |
1462 | // Save parameters for coroutine function. |
1463 | if (Body && isa_and_nonnull<CoroutineBodyStmt>(Val: Body)) |
1464 | llvm::append_range(C&: FnArgs, R: FD->parameters()); |
1465 | |
1466 | // Ensure that the function adheres to the forward progress guarantee, which |
1467 | // is required by certain optimizations. |
1468 | if (checkIfFunctionMustProgress()) |
1469 | CurFn->addFnAttr(llvm::Attribute::MustProgress); |
1470 | |
1471 | // Generate the body of the function. |
1472 | PGO.assignRegionCounters(GD, Fn: CurFn); |
1473 | if (isa<CXXDestructorDecl>(Val: FD)) |
1474 | EmitDestructorBody(Args); |
1475 | else if (isa<CXXConstructorDecl>(Val: FD)) |
1476 | EmitConstructorBody(Args); |
1477 | else if (getLangOpts().CUDA && |
1478 | !getLangOpts().CUDAIsDevice && |
1479 | FD->hasAttr<CUDAGlobalAttr>()) |
1480 | CGM.getCUDARuntime().emitDeviceStub(CGF&: *this, Args); |
1481 | else if (isa<CXXMethodDecl>(Val: FD) && |
1482 | cast<CXXMethodDecl>(Val: FD)->isLambdaStaticInvoker()) { |
1483 | // The lambda static invoker function is special, because it forwards or |
1484 | // clones the body of the function call operator (but is actually static). |
1485 | EmitLambdaStaticInvokeBody(MD: cast<CXXMethodDecl>(Val: FD)); |
1486 | } else if (isa<CXXMethodDecl>(Val: FD) && |
1487 | isLambdaCallOperator(MD: cast<CXXMethodDecl>(Val: FD)) && |
1488 | !FnInfo.isDelegateCall() && |
1489 | cast<CXXMethodDecl>(Val: FD)->getParent()->getLambdaStaticInvoker() && |
1490 | hasInAllocaArg(MD: cast<CXXMethodDecl>(Val: FD))) { |
1491 | // If emitting a lambda with static invoker on X86 Windows, change |
1492 | // the call operator body. |
1493 | // Make sure that this is a call operator with an inalloca arg and check |
1494 | // for delegate call to make sure this is the original call op and not the |
1495 | // new forwarding function for the static invoker. |
1496 | EmitLambdaInAllocaCallOpBody(MD: cast<CXXMethodDecl>(Val: FD)); |
1497 | } else if (FD->isDefaulted() && isa<CXXMethodDecl>(Val: FD) && |
1498 | (cast<CXXMethodDecl>(Val: FD)->isCopyAssignmentOperator() || |
1499 | cast<CXXMethodDecl>(Val: FD)->isMoveAssignmentOperator())) { |
1500 | // Implicit copy-assignment gets the same special treatment as implicit |
1501 | // copy-constructors. |
1502 | emitImplicitAssignmentOperatorBody(Args); |
1503 | } else if (Body) { |
1504 | EmitFunctionBody(Body); |
1505 | } else |
1506 | llvm_unreachable("no definition for emitted function" ); |
1507 | |
1508 | // C++11 [stmt.return]p2: |
1509 | // Flowing off the end of a function [...] results in undefined behavior in |
1510 | // a value-returning function. |
1511 | // C11 6.9.1p12: |
1512 | // If the '}' that terminates a function is reached, and the value of the |
1513 | // function call is used by the caller, the behavior is undefined. |
1514 | if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && |
1515 | !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { |
1516 | bool ShouldEmitUnreachable = |
1517 | CGM.getCodeGenOpts().StrictReturn || |
1518 | !CGM.MayDropFunctionReturn(Context: FD->getASTContext(), ReturnType: FD->getReturnType()); |
1519 | if (SanOpts.has(K: SanitizerKind::Return)) { |
1520 | SanitizerScope SanScope(this); |
1521 | llvm::Value *IsFalse = Builder.getFalse(); |
1522 | EmitCheck(Checked: std::make_pair(x&: IsFalse, y: SanitizerKind::Return), |
1523 | Check: SanitizerHandler::MissingReturn, |
1524 | StaticArgs: EmitCheckSourceLocation(Loc: FD->getLocation()), DynamicArgs: std::nullopt); |
1525 | } else if (ShouldEmitUnreachable) { |
1526 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
1527 | EmitTrapCall(llvm::Intrinsic::trap); |
1528 | } |
1529 | if (SanOpts.has(K: SanitizerKind::Return) || ShouldEmitUnreachable) { |
1530 | Builder.CreateUnreachable(); |
1531 | Builder.ClearInsertionPoint(); |
1532 | } |
1533 | } |
1534 | |
1535 | // Emit the standard function epilogue. |
1536 | FinishFunction(EndLoc: BodyRange.getEnd()); |
1537 | |
1538 | // If we haven't marked the function nothrow through other means, do |
1539 | // a quick pass now to see if we can. |
1540 | if (!CurFn->doesNotThrow()) |
1541 | TryMarkNoThrow(F: CurFn); |
1542 | } |
1543 | |
1544 | /// ContainsLabel - Return true if the statement contains a label in it. If |
1545 | /// this statement is not executed normally, it not containing a label means |
1546 | /// that we can just remove the code. |
1547 | bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { |
1548 | // Null statement, not a label! |
1549 | if (!S) return false; |
1550 | |
1551 | // If this is a label, we have to emit the code, consider something like: |
1552 | // if (0) { ... foo: bar(); } goto foo; |
1553 | // |
1554 | // TODO: If anyone cared, we could track __label__'s, since we know that you |
1555 | // can't jump to one from outside their declared region. |
1556 | if (isa<LabelStmt>(Val: S)) |
1557 | return true; |
1558 | |
1559 | // If this is a case/default statement, and we haven't seen a switch, we have |
1560 | // to emit the code. |
1561 | if (isa<SwitchCase>(Val: S) && !IgnoreCaseStmts) |
1562 | return true; |
1563 | |
1564 | // If this is a switch statement, we want to ignore cases below it. |
1565 | if (isa<SwitchStmt>(Val: S)) |
1566 | IgnoreCaseStmts = true; |
1567 | |
1568 | // Scan subexpressions for verboten labels. |
1569 | for (const Stmt *SubStmt : S->children()) |
1570 | if (ContainsLabel(S: SubStmt, IgnoreCaseStmts)) |
1571 | return true; |
1572 | |
1573 | return false; |
1574 | } |
1575 | |
1576 | /// containsBreak - Return true if the statement contains a break out of it. |
1577 | /// If the statement (recursively) contains a switch or loop with a break |
1578 | /// inside of it, this is fine. |
1579 | bool CodeGenFunction::containsBreak(const Stmt *S) { |
1580 | // Null statement, not a label! |
1581 | if (!S) return false; |
1582 | |
1583 | // If this is a switch or loop that defines its own break scope, then we can |
1584 | // include it and anything inside of it. |
1585 | if (isa<SwitchStmt>(Val: S) || isa<WhileStmt>(Val: S) || isa<DoStmt>(Val: S) || |
1586 | isa<ForStmt>(Val: S)) |
1587 | return false; |
1588 | |
1589 | if (isa<BreakStmt>(Val: S)) |
1590 | return true; |
1591 | |
1592 | // Scan subexpressions for verboten breaks. |
1593 | for (const Stmt *SubStmt : S->children()) |
1594 | if (containsBreak(S: SubStmt)) |
1595 | return true; |
1596 | |
1597 | return false; |
1598 | } |
1599 | |
1600 | bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { |
1601 | if (!S) return false; |
1602 | |
1603 | // Some statement kinds add a scope and thus never add a decl to the current |
1604 | // scope. Note, this list is longer than the list of statements that might |
1605 | // have an unscoped decl nested within them, but this way is conservatively |
1606 | // correct even if more statement kinds are added. |
1607 | if (isa<IfStmt>(Val: S) || isa<SwitchStmt>(Val: S) || isa<WhileStmt>(Val: S) || |
1608 | isa<DoStmt>(Val: S) || isa<ForStmt>(Val: S) || isa<CompoundStmt>(Val: S) || |
1609 | isa<CXXForRangeStmt>(Val: S) || isa<CXXTryStmt>(Val: S) || |
1610 | isa<ObjCForCollectionStmt>(Val: S) || isa<ObjCAtTryStmt>(Val: S)) |
1611 | return false; |
1612 | |
1613 | if (isa<DeclStmt>(Val: S)) |
1614 | return true; |
1615 | |
1616 | for (const Stmt *SubStmt : S->children()) |
1617 | if (mightAddDeclToScope(S: SubStmt)) |
1618 | return true; |
1619 | |
1620 | return false; |
1621 | } |
1622 | |
1623 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1624 | /// to a constant, or if it does but contains a label, return false. If it |
1625 | /// constant folds return true and set the boolean result in Result. |
1626 | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1627 | bool &ResultBool, |
1628 | bool AllowLabels) { |
1629 | // If MC/DC is enabled, disable folding so that we can instrument all |
1630 | // conditions to yield complete test vectors. We still keep track of |
1631 | // folded conditions during region mapping and visualization. |
1632 | if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && |
1633 | CGM.getCodeGenOpts().MCDCCoverage) |
1634 | return false; |
1635 | |
1636 | llvm::APSInt ResultInt; |
1637 | if (!ConstantFoldsToSimpleInteger(Cond, Result&: ResultInt, AllowLabels)) |
1638 | return false; |
1639 | |
1640 | ResultBool = ResultInt.getBoolValue(); |
1641 | return true; |
1642 | } |
1643 | |
1644 | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1645 | /// to a constant, or if it does but contains a label, return false. If it |
1646 | /// constant folds return true and set the folded value. |
1647 | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1648 | llvm::APSInt &ResultInt, |
1649 | bool AllowLabels) { |
1650 | // FIXME: Rename and handle conversion of other evaluatable things |
1651 | // to bool. |
1652 | Expr::EvalResult Result; |
1653 | if (!Cond->EvaluateAsInt(Result, Ctx: getContext())) |
1654 | return false; // Not foldable, not integer or not fully evaluatable. |
1655 | |
1656 | llvm::APSInt Int = Result.Val.getInt(); |
1657 | if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) |
1658 | return false; // Contains a label. |
1659 | |
1660 | ResultInt = Int; |
1661 | return true; |
1662 | } |
1663 | |
1664 | /// Strip parentheses and simplistic logical-NOT operators. |
1665 | const Expr *CodeGenFunction::stripCond(const Expr *C) { |
1666 | while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(Val: C->IgnoreParens())) { |
1667 | if (Op->getOpcode() != UO_LNot) |
1668 | break; |
1669 | C = Op->getSubExpr(); |
1670 | } |
1671 | return C->IgnoreParens(); |
1672 | } |
1673 | |
1674 | /// Determine whether the given condition is an instrumentable condition |
1675 | /// (i.e. no "&&" or "||"). |
1676 | bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { |
1677 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val: stripCond(C)); |
1678 | return (!BOp || !BOp->isLogicalOp()); |
1679 | } |
1680 | |
1681 | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
1682 | /// increments a profile counter based on the semantics of the given logical |
1683 | /// operator opcode. This is used to instrument branch condition coverage for |
1684 | /// logical operators. |
1685 | void CodeGenFunction::EmitBranchToCounterBlock( |
1686 | const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, |
1687 | llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, |
1688 | Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { |
1689 | // If not instrumenting, just emit a branch. |
1690 | bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); |
1691 | if (!InstrumentRegions || !isInstrumentedCondition(C: Cond)) |
1692 | return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); |
1693 | |
1694 | llvm::BasicBlock *ThenBlock = nullptr; |
1695 | llvm::BasicBlock *ElseBlock = nullptr; |
1696 | llvm::BasicBlock *NextBlock = nullptr; |
1697 | |
1698 | // Create the block we'll use to increment the appropriate counter. |
1699 | llvm::BasicBlock *CounterIncrBlock = createBasicBlock(name: "lop.rhscnt" ); |
1700 | |
1701 | // Set block pointers according to Logical-AND (BO_LAnd) semantics. This |
1702 | // means we need to evaluate the condition and increment the counter on TRUE: |
1703 | // |
1704 | // if (Cond) |
1705 | // goto CounterIncrBlock; |
1706 | // else |
1707 | // goto FalseBlock; |
1708 | // |
1709 | // CounterIncrBlock: |
1710 | // Counter++; |
1711 | // goto TrueBlock; |
1712 | |
1713 | if (LOp == BO_LAnd) { |
1714 | ThenBlock = CounterIncrBlock; |
1715 | ElseBlock = FalseBlock; |
1716 | NextBlock = TrueBlock; |
1717 | } |
1718 | |
1719 | // Set block pointers according to Logical-OR (BO_LOr) semantics. This means |
1720 | // we need to evaluate the condition and increment the counter on FALSE: |
1721 | // |
1722 | // if (Cond) |
1723 | // goto TrueBlock; |
1724 | // else |
1725 | // goto CounterIncrBlock; |
1726 | // |
1727 | // CounterIncrBlock: |
1728 | // Counter++; |
1729 | // goto FalseBlock; |
1730 | |
1731 | else if (LOp == BO_LOr) { |
1732 | ThenBlock = TrueBlock; |
1733 | ElseBlock = CounterIncrBlock; |
1734 | NextBlock = FalseBlock; |
1735 | } else { |
1736 | llvm_unreachable("Expected Opcode must be that of a Logical Operator" ); |
1737 | } |
1738 | |
1739 | // Emit Branch based on condition. |
1740 | EmitBranchOnBoolExpr(Cond, TrueBlock: ThenBlock, FalseBlock: ElseBlock, TrueCount, LH); |
1741 | |
1742 | // Emit the block containing the counter increment(s). |
1743 | EmitBlock(BB: CounterIncrBlock); |
1744 | |
1745 | // Increment corresponding counter; if index not provided, use Cond as index. |
1746 | incrementProfileCounter(CntrIdx ? CntrIdx : Cond); |
1747 | |
1748 | // Go to the next block. |
1749 | EmitBranch(Block: NextBlock); |
1750 | } |
1751 | |
1752 | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if |
1753 | /// statement) to the specified blocks. Based on the condition, this might try |
1754 | /// to simplify the codegen of the conditional based on the branch. |
1755 | /// \param LH The value of the likelihood attribute on the True branch. |
1756 | /// \param ConditionalOp Used by MC/DC code coverage to track the result of the |
1757 | /// ConditionalOperator (ternary) through a recursive call for the operator's |
1758 | /// LHS and RHS nodes. |
1759 | void CodeGenFunction::EmitBranchOnBoolExpr( |
1760 | const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, |
1761 | uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { |
1762 | Cond = Cond->IgnoreParens(); |
1763 | |
1764 | if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Val: Cond)) { |
1765 | // Handle X && Y in a condition. |
1766 | if (CondBOp->getOpcode() == BO_LAnd) { |
1767 | MCDCLogOpStack.push_back(Elt: CondBOp); |
1768 | |
1769 | // If we have "1 && X", simplify the code. "0 && X" would have constant |
1770 | // folded if the case was simple enough. |
1771 | bool ConstantBool = false; |
1772 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getLHS(), ResultBool&: ConstantBool) && |
1773 | ConstantBool) { |
1774 | // br(1 && X) -> br(X). |
1775 | incrementProfileCounter(CondBOp); |
1776 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LAnd, TrueBlock, |
1777 | FalseBlock, TrueCount, LH); |
1778 | MCDCLogOpStack.pop_back(); |
1779 | return; |
1780 | } |
1781 | |
1782 | // If we have "X && 1", simplify the code to use an uncond branch. |
1783 | // "X && 0" would have been constant folded to 0. |
1784 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getRHS(), ResultBool&: ConstantBool) && |
1785 | ConstantBool) { |
1786 | // br(X && 1) -> br(X). |
1787 | EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, |
1788 | FalseBlock, TrueCount, LH, CondBOp); |
1789 | MCDCLogOpStack.pop_back(); |
1790 | return; |
1791 | } |
1792 | |
1793 | // Emit the LHS as a conditional. If the LHS conditional is false, we |
1794 | // want to jump to the FalseBlock. |
1795 | llvm::BasicBlock *LHSTrue = createBasicBlock(name: "land.lhs.true" ); |
1796 | // The counter tells us how often we evaluate RHS, and all of TrueCount |
1797 | // can be propagated to that branch. |
1798 | uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); |
1799 | |
1800 | ConditionalEvaluation eval(*this); |
1801 | { |
1802 | ApplyDebugLocation DL(*this, Cond); |
1803 | // Propagate the likelihood attribute like __builtin_expect |
1804 | // __builtin_expect(X && Y, 1) -> X and Y are likely |
1805 | // __builtin_expect(X && Y, 0) -> only Y is unlikely |
1806 | EmitBranchOnBoolExpr(Cond: CondBOp->getLHS(), TrueBlock: LHSTrue, FalseBlock, TrueCount: RHSCount, |
1807 | LH: LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); |
1808 | EmitBlock(BB: LHSTrue); |
1809 | } |
1810 | |
1811 | incrementProfileCounter(CondBOp); |
1812 | setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); |
1813 | |
1814 | // Any temporaries created here are conditional. |
1815 | eval.begin(CGF&: *this); |
1816 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LAnd, TrueBlock, |
1817 | FalseBlock, TrueCount, LH); |
1818 | eval.end(CGF&: *this); |
1819 | MCDCLogOpStack.pop_back(); |
1820 | return; |
1821 | } |
1822 | |
1823 | if (CondBOp->getOpcode() == BO_LOr) { |
1824 | MCDCLogOpStack.push_back(Elt: CondBOp); |
1825 | |
1826 | // If we have "0 || X", simplify the code. "1 || X" would have constant |
1827 | // folded if the case was simple enough. |
1828 | bool ConstantBool = false; |
1829 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getLHS(), ResultBool&: ConstantBool) && |
1830 | !ConstantBool) { |
1831 | // br(0 || X) -> br(X). |
1832 | incrementProfileCounter(CondBOp); |
1833 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LOr, TrueBlock, |
1834 | FalseBlock, TrueCount, LH); |
1835 | MCDCLogOpStack.pop_back(); |
1836 | return; |
1837 | } |
1838 | |
1839 | // If we have "X || 0", simplify the code to use an uncond branch. |
1840 | // "X || 1" would have been constant folded to 1. |
1841 | if (ConstantFoldsToSimpleInteger(Cond: CondBOp->getRHS(), ResultBool&: ConstantBool) && |
1842 | !ConstantBool) { |
1843 | // br(X || 0) -> br(X). |
1844 | EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, |
1845 | FalseBlock, TrueCount, LH, CondBOp); |
1846 | MCDCLogOpStack.pop_back(); |
1847 | return; |
1848 | } |
1849 | // Emit the LHS as a conditional. If the LHS conditional is true, we |
1850 | // want to jump to the TrueBlock. |
1851 | llvm::BasicBlock *LHSFalse = createBasicBlock(name: "lor.lhs.false" ); |
1852 | // We have the count for entry to the RHS and for the whole expression |
1853 | // being true, so we can divy up True count between the short circuit and |
1854 | // the RHS. |
1855 | uint64_t LHSCount = |
1856 | getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); |
1857 | uint64_t RHSCount = TrueCount - LHSCount; |
1858 | |
1859 | ConditionalEvaluation eval(*this); |
1860 | { |
1861 | // Propagate the likelihood attribute like __builtin_expect |
1862 | // __builtin_expect(X || Y, 1) -> only Y is likely |
1863 | // __builtin_expect(X || Y, 0) -> both X and Y are unlikely |
1864 | ApplyDebugLocation DL(*this, Cond); |
1865 | EmitBranchOnBoolExpr(Cond: CondBOp->getLHS(), TrueBlock, FalseBlock: LHSFalse, TrueCount: LHSCount, |
1866 | LH: LH == Stmt::LH_Likely ? Stmt::LH_None : LH); |
1867 | EmitBlock(BB: LHSFalse); |
1868 | } |
1869 | |
1870 | incrementProfileCounter(CondBOp); |
1871 | setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); |
1872 | |
1873 | // Any temporaries created here are conditional. |
1874 | eval.begin(CGF&: *this); |
1875 | EmitBranchToCounterBlock(Cond: CondBOp->getRHS(), LOp: BO_LOr, TrueBlock, FalseBlock, |
1876 | TrueCount: RHSCount, LH); |
1877 | |
1878 | eval.end(CGF&: *this); |
1879 | MCDCLogOpStack.pop_back(); |
1880 | return; |
1881 | } |
1882 | } |
1883 | |
1884 | if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Val: Cond)) { |
1885 | // br(!x, t, f) -> br(x, f, t) |
1886 | // Avoid doing this optimization when instrumenting a condition for MC/DC. |
1887 | // LNot is taken as part of the condition for simplicity, and changing its |
1888 | // sense negatively impacts test vector tracking. |
1889 | bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && |
1890 | CGM.getCodeGenOpts().MCDCCoverage && |
1891 | isInstrumentedCondition(C: Cond); |
1892 | if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { |
1893 | // Negate the count. |
1894 | uint64_t FalseCount = getCurrentProfileCount() - TrueCount; |
1895 | // The values of the enum are chosen to make this negation possible. |
1896 | LH = static_cast<Stmt::Likelihood>(-LH); |
1897 | // Negate the condition and swap the destination blocks. |
1898 | return EmitBranchOnBoolExpr(Cond: CondUOp->getSubExpr(), TrueBlock: FalseBlock, FalseBlock: TrueBlock, |
1899 | TrueCount: FalseCount, LH); |
1900 | } |
1901 | } |
1902 | |
1903 | if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Val: Cond)) { |
1904 | // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) |
1905 | llvm::BasicBlock *LHSBlock = createBasicBlock(name: "cond.true" ); |
1906 | llvm::BasicBlock *RHSBlock = createBasicBlock(name: "cond.false" ); |
1907 | |
1908 | // The ConditionalOperator itself has no likelihood information for its |
1909 | // true and false branches. This matches the behavior of __builtin_expect. |
1910 | ConditionalEvaluation cond(*this); |
1911 | EmitBranchOnBoolExpr(Cond: CondOp->getCond(), TrueBlock: LHSBlock, FalseBlock: RHSBlock, |
1912 | TrueCount: getProfileCount(CondOp), LH: Stmt::LH_None); |
1913 | |
1914 | // When computing PGO branch weights, we only know the overall count for |
1915 | // the true block. This code is essentially doing tail duplication of the |
1916 | // naive code-gen, introducing new edges for which counts are not |
1917 | // available. Divide the counts proportionally between the LHS and RHS of |
1918 | // the conditional operator. |
1919 | uint64_t LHSScaledTrueCount = 0; |
1920 | if (TrueCount) { |
1921 | double LHSRatio = |
1922 | getProfileCount(CondOp) / (double)getCurrentProfileCount(); |
1923 | LHSScaledTrueCount = TrueCount * LHSRatio; |
1924 | } |
1925 | |
1926 | cond.begin(CGF&: *this); |
1927 | EmitBlock(BB: LHSBlock); |
1928 | incrementProfileCounter(CondOp); |
1929 | { |
1930 | ApplyDebugLocation DL(*this, Cond); |
1931 | EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, |
1932 | LHSScaledTrueCount, LH, CondOp); |
1933 | } |
1934 | cond.end(CGF&: *this); |
1935 | |
1936 | cond.begin(CGF&: *this); |
1937 | EmitBlock(BB: RHSBlock); |
1938 | EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, |
1939 | TrueCount - LHSScaledTrueCount, LH, CondOp); |
1940 | cond.end(CGF&: *this); |
1941 | |
1942 | return; |
1943 | } |
1944 | |
1945 | if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Val: Cond)) { |
1946 | // Conditional operator handling can give us a throw expression as a |
1947 | // condition for a case like: |
1948 | // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) |
1949 | // Fold this to: |
1950 | // br(c, throw x, br(y, t, f)) |
1951 | EmitCXXThrowExpr(E: Throw, /*KeepInsertionPoint*/false); |
1952 | return; |
1953 | } |
1954 | |
1955 | // Emit the code with the fully general case. |
1956 | llvm::Value *CondV; |
1957 | { |
1958 | ApplyDebugLocation DL(*this, Cond); |
1959 | CondV = EvaluateExprAsBool(E: Cond); |
1960 | } |
1961 | |
1962 | // If not at the top of the logical operator nest, update MCDC temp with the |
1963 | // boolean result of the evaluated condition. |
1964 | if (!MCDCLogOpStack.empty()) { |
1965 | const Expr *MCDCBaseExpr = Cond; |
1966 | // When a nested ConditionalOperator (ternary) is encountered in a boolean |
1967 | // expression, MC/DC tracks the result of the ternary, and this is tied to |
1968 | // the ConditionalOperator expression and not the ternary's LHS or RHS. If |
1969 | // this is the case, the ConditionalOperator expression is passed through |
1970 | // the ConditionalOp parameter and then used as the MCDC base expression. |
1971 | if (ConditionalOp) |
1972 | MCDCBaseExpr = ConditionalOp; |
1973 | |
1974 | maybeUpdateMCDCCondBitmap(E: MCDCBaseExpr, Val: CondV); |
1975 | } |
1976 | |
1977 | llvm::MDNode *Weights = nullptr; |
1978 | llvm::MDNode *Unpredictable = nullptr; |
1979 | |
1980 | // If the branch has a condition wrapped by __builtin_unpredictable, |
1981 | // create metadata that specifies that the branch is unpredictable. |
1982 | // Don't bother if not optimizing because that metadata would not be used. |
1983 | auto *Call = dyn_cast<CallExpr>(Val: Cond->IgnoreImpCasts()); |
1984 | if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { |
1985 | auto *FD = dyn_cast_or_null<FunctionDecl>(Val: Call->getCalleeDecl()); |
1986 | if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { |
1987 | llvm::MDBuilder MDHelper(getLLVMContext()); |
1988 | Unpredictable = MDHelper.createUnpredictable(); |
1989 | } |
1990 | } |
1991 | |
1992 | // If there is a Likelihood knowledge for the cond, lower it. |
1993 | // Note that if not optimizing this won't emit anything. |
1994 | llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(Cond: CondV, LH); |
1995 | if (CondV != NewCondV) |
1996 | CondV = NewCondV; |
1997 | else { |
1998 | // Otherwise, lower profile counts. Note that we do this even at -O0. |
1999 | uint64_t CurrentCount = std::max(a: getCurrentProfileCount(), b: TrueCount); |
2000 | Weights = createProfileWeights(TrueCount, FalseCount: CurrentCount - TrueCount); |
2001 | } |
2002 | |
2003 | Builder.CreateCondBr(Cond: CondV, True: TrueBlock, False: FalseBlock, BranchWeights: Weights, Unpredictable); |
2004 | } |
2005 | |
2006 | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
2007 | /// specified stmt yet. |
2008 | void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { |
2009 | CGM.ErrorUnsupported(S, Type); |
2010 | } |
2011 | |
2012 | /// emitNonZeroVLAInit - Emit the "zero" initialization of a |
2013 | /// variable-length array whose elements have a non-zero bit-pattern. |
2014 | /// |
2015 | /// \param baseType the inner-most element type of the array |
2016 | /// \param src - a char* pointing to the bit-pattern for a single |
2017 | /// base element of the array |
2018 | /// \param sizeInChars - the total size of the VLA, in chars |
2019 | static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, |
2020 | Address dest, Address src, |
2021 | llvm::Value *sizeInChars) { |
2022 | CGBuilderTy &Builder = CGF.Builder; |
2023 | |
2024 | CharUnits baseSize = CGF.getContext().getTypeSizeInChars(T: baseType); |
2025 | llvm::Value *baseSizeInChars |
2026 | = llvm::ConstantInt::get(Ty: CGF.IntPtrTy, V: baseSize.getQuantity()); |
2027 | |
2028 | Address begin = dest.withElementType(ElemTy: CGF.Int8Ty); |
2029 | llvm::Value *end = Builder.CreateInBoundsGEP(Ty: begin.getElementType(), |
2030 | Ptr: begin.emitRawPointer(CGF), |
2031 | IdxList: sizeInChars, Name: "vla.end" ); |
2032 | |
2033 | llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); |
2034 | llvm::BasicBlock *loopBB = CGF.createBasicBlock(name: "vla-init.loop" ); |
2035 | llvm::BasicBlock *contBB = CGF.createBasicBlock(name: "vla-init.cont" ); |
2036 | |
2037 | // Make a loop over the VLA. C99 guarantees that the VLA element |
2038 | // count must be nonzero. |
2039 | CGF.EmitBlock(BB: loopBB); |
2040 | |
2041 | llvm::PHINode *cur = Builder.CreatePHI(Ty: begin.getType(), NumReservedValues: 2, Name: "vla.cur" ); |
2042 | cur->addIncoming(V: begin.emitRawPointer(CGF), BB: originBB); |
2043 | |
2044 | CharUnits curAlign = |
2045 | dest.getAlignment().alignmentOfArrayElement(elementSize: baseSize); |
2046 | |
2047 | // memcpy the individual element bit-pattern. |
2048 | Builder.CreateMemCpy(Dest: Address(cur, CGF.Int8Ty, curAlign), Src: src, Size: baseSizeInChars, |
2049 | /*volatile*/ IsVolatile: false); |
2050 | |
2051 | // Go to the next element. |
2052 | llvm::Value *next = |
2053 | Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: cur, IdxList: baseSizeInChars, Name: "vla.next" ); |
2054 | |
2055 | // Leave if that's the end of the VLA. |
2056 | llvm::Value *done = Builder.CreateICmpEQ(LHS: next, RHS: end, Name: "vla-init.isdone" ); |
2057 | Builder.CreateCondBr(Cond: done, True: contBB, False: loopBB); |
2058 | cur->addIncoming(V: next, BB: loopBB); |
2059 | |
2060 | CGF.EmitBlock(BB: contBB); |
2061 | } |
2062 | |
2063 | void |
2064 | CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { |
2065 | // Ignore empty classes in C++. |
2066 | if (getLangOpts().CPlusPlus) { |
2067 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
2068 | if (cast<CXXRecordDecl>(Val: RT->getDecl())->isEmpty()) |
2069 | return; |
2070 | } |
2071 | } |
2072 | |
2073 | if (DestPtr.getElementType() != Int8Ty) |
2074 | DestPtr = DestPtr.withElementType(ElemTy: Int8Ty); |
2075 | |
2076 | // Get size and alignment info for this aggregate. |
2077 | CharUnits size = getContext().getTypeSizeInChars(T: Ty); |
2078 | |
2079 | llvm::Value *SizeVal; |
2080 | const VariableArrayType *vla; |
2081 | |
2082 | // Don't bother emitting a zero-byte memset. |
2083 | if (size.isZero()) { |
2084 | // But note that getTypeInfo returns 0 for a VLA. |
2085 | if (const VariableArrayType *vlaType = |
2086 | dyn_cast_or_null<VariableArrayType>( |
2087 | Val: getContext().getAsArrayType(T: Ty))) { |
2088 | auto VlaSize = getVLASize(vla: vlaType); |
2089 | SizeVal = VlaSize.NumElts; |
2090 | CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); |
2091 | if (!eltSize.isOne()) |
2092 | SizeVal = Builder.CreateNUWMul(LHS: SizeVal, RHS: CGM.getSize(numChars: eltSize)); |
2093 | vla = vlaType; |
2094 | } else { |
2095 | return; |
2096 | } |
2097 | } else { |
2098 | SizeVal = CGM.getSize(numChars: size); |
2099 | vla = nullptr; |
2100 | } |
2101 | |
2102 | // If the type contains a pointer to data member we can't memset it to zero. |
2103 | // Instead, create a null constant and copy it to the destination. |
2104 | // TODO: there are other patterns besides zero that we can usefully memset, |
2105 | // like -1, which happens to be the pattern used by member-pointers. |
2106 | if (!CGM.getTypes().isZeroInitializable(T: Ty)) { |
2107 | // For a VLA, emit a single element, then splat that over the VLA. |
2108 | if (vla) Ty = getContext().getBaseElementType(vla); |
2109 | |
2110 | llvm::Constant *NullConstant = CGM.EmitNullConstant(T: Ty); |
2111 | |
2112 | llvm::GlobalVariable *NullVariable = |
2113 | new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), |
2114 | /*isConstant=*/true, |
2115 | llvm::GlobalVariable::PrivateLinkage, |
2116 | NullConstant, Twine()); |
2117 | CharUnits NullAlign = DestPtr.getAlignment(); |
2118 | NullVariable->setAlignment(NullAlign.getAsAlign()); |
2119 | Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); |
2120 | |
2121 | if (vla) return emitNonZeroVLAInit(CGF&: *this, baseType: Ty, dest: DestPtr, src: SrcPtr, sizeInChars: SizeVal); |
2122 | |
2123 | // Get and call the appropriate llvm.memcpy overload. |
2124 | Builder.CreateMemCpy(Dest: DestPtr, Src: SrcPtr, Size: SizeVal, IsVolatile: false); |
2125 | return; |
2126 | } |
2127 | |
2128 | // Otherwise, just memset the whole thing to zero. This is legal |
2129 | // because in LLVM, all default initializers (other than the ones we just |
2130 | // handled above) are guaranteed to have a bit pattern of all zeros. |
2131 | Builder.CreateMemSet(Dest: DestPtr, Value: Builder.getInt8(C: 0), Size: SizeVal, IsVolatile: false); |
2132 | } |
2133 | |
2134 | llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { |
2135 | // Make sure that there is a block for the indirect goto. |
2136 | if (!IndirectBranch) |
2137 | GetIndirectGotoBlock(); |
2138 | |
2139 | llvm::BasicBlock *BB = getJumpDestForLabel(S: L).getBlock(); |
2140 | |
2141 | // Make sure the indirect branch includes all of the address-taken blocks. |
2142 | IndirectBranch->addDestination(Dest: BB); |
2143 | return llvm::BlockAddress::get(F: CurFn, BB); |
2144 | } |
2145 | |
2146 | llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { |
2147 | // If we already made the indirect branch for indirect goto, return its block. |
2148 | if (IndirectBranch) return IndirectBranch->getParent(); |
2149 | |
2150 | CGBuilderTy TmpBuilder(*this, createBasicBlock(name: "indirectgoto" )); |
2151 | |
2152 | // Create the PHI node that indirect gotos will add entries to. |
2153 | llvm::Value *DestVal = TmpBuilder.CreatePHI(Ty: Int8PtrTy, NumReservedValues: 0, |
2154 | Name: "indirect.goto.dest" ); |
2155 | |
2156 | // Create the indirect branch instruction. |
2157 | IndirectBranch = TmpBuilder.CreateIndirectBr(Addr: DestVal); |
2158 | return IndirectBranch->getParent(); |
2159 | } |
2160 | |
2161 | /// Computes the length of an array in elements, as well as the base |
2162 | /// element type and a properly-typed first element pointer. |
2163 | llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, |
2164 | QualType &baseType, |
2165 | Address &addr) { |
2166 | const ArrayType *arrayType = origArrayType; |
2167 | |
2168 | // If it's a VLA, we have to load the stored size. Note that |
2169 | // this is the size of the VLA in bytes, not its size in elements. |
2170 | llvm::Value *numVLAElements = nullptr; |
2171 | if (isa<VariableArrayType>(Val: arrayType)) { |
2172 | numVLAElements = getVLASize(vla: cast<VariableArrayType>(Val: arrayType)).NumElts; |
2173 | |
2174 | // Walk into all VLAs. This doesn't require changes to addr, |
2175 | // which has type T* where T is the first non-VLA element type. |
2176 | do { |
2177 | QualType elementType = arrayType->getElementType(); |
2178 | arrayType = getContext().getAsArrayType(T: elementType); |
2179 | |
2180 | // If we only have VLA components, 'addr' requires no adjustment. |
2181 | if (!arrayType) { |
2182 | baseType = elementType; |
2183 | return numVLAElements; |
2184 | } |
2185 | } while (isa<VariableArrayType>(Val: arrayType)); |
2186 | |
2187 | // We get out here only if we find a constant array type |
2188 | // inside the VLA. |
2189 | } |
2190 | |
2191 | // We have some number of constant-length arrays, so addr should |
2192 | // have LLVM type [M x [N x [...]]]*. Build a GEP that walks |
2193 | // down to the first element of addr. |
2194 | SmallVector<llvm::Value*, 8> gepIndices; |
2195 | |
2196 | // GEP down to the array type. |
2197 | llvm::ConstantInt *zero = Builder.getInt32(C: 0); |
2198 | gepIndices.push_back(Elt: zero); |
2199 | |
2200 | uint64_t countFromCLAs = 1; |
2201 | QualType eltType; |
2202 | |
2203 | llvm::ArrayType *llvmArrayType = |
2204 | dyn_cast<llvm::ArrayType>(Val: addr.getElementType()); |
2205 | while (llvmArrayType) { |
2206 | assert(isa<ConstantArrayType>(arrayType)); |
2207 | assert(cast<ConstantArrayType>(arrayType)->getZExtSize() == |
2208 | llvmArrayType->getNumElements()); |
2209 | |
2210 | gepIndices.push_back(Elt: zero); |
2211 | countFromCLAs *= llvmArrayType->getNumElements(); |
2212 | eltType = arrayType->getElementType(); |
2213 | |
2214 | llvmArrayType = |
2215 | dyn_cast<llvm::ArrayType>(Val: llvmArrayType->getElementType()); |
2216 | arrayType = getContext().getAsArrayType(T: arrayType->getElementType()); |
2217 | assert((!llvmArrayType || arrayType) && |
2218 | "LLVM and Clang types are out-of-synch" ); |
2219 | } |
2220 | |
2221 | if (arrayType) { |
2222 | // From this point onwards, the Clang array type has been emitted |
2223 | // as some other type (probably a packed struct). Compute the array |
2224 | // size, and just emit the 'begin' expression as a bitcast. |
2225 | while (arrayType) { |
2226 | countFromCLAs *= cast<ConstantArrayType>(Val: arrayType)->getZExtSize(); |
2227 | eltType = arrayType->getElementType(); |
2228 | arrayType = getContext().getAsArrayType(T: eltType); |
2229 | } |
2230 | |
2231 | llvm::Type *baseType = ConvertType(T: eltType); |
2232 | addr = addr.withElementType(ElemTy: baseType); |
2233 | } else { |
2234 | // Create the actual GEP. |
2235 | addr = Address(Builder.CreateInBoundsGEP(Ty: addr.getElementType(), |
2236 | Ptr: addr.emitRawPointer(CGF&: *this), |
2237 | IdxList: gepIndices, Name: "array.begin" ), |
2238 | ConvertTypeForMem(T: eltType), addr.getAlignment()); |
2239 | } |
2240 | |
2241 | baseType = eltType; |
2242 | |
2243 | llvm::Value *numElements |
2244 | = llvm::ConstantInt::get(Ty: SizeTy, V: countFromCLAs); |
2245 | |
2246 | // If we had any VLA dimensions, factor them in. |
2247 | if (numVLAElements) |
2248 | numElements = Builder.CreateNUWMul(LHS: numVLAElements, RHS: numElements); |
2249 | |
2250 | return numElements; |
2251 | } |
2252 | |
2253 | CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { |
2254 | const VariableArrayType *vla = getContext().getAsVariableArrayType(T: type); |
2255 | assert(vla && "type was not a variable array type!" ); |
2256 | return getVLASize(vla); |
2257 | } |
2258 | |
2259 | CodeGenFunction::VlaSizePair |
2260 | CodeGenFunction::getVLASize(const VariableArrayType *type) { |
2261 | // The number of elements so far; always size_t. |
2262 | llvm::Value *numElements = nullptr; |
2263 | |
2264 | QualType elementType; |
2265 | do { |
2266 | elementType = type->getElementType(); |
2267 | llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; |
2268 | assert(vlaSize && "no size for VLA!" ); |
2269 | assert(vlaSize->getType() == SizeTy); |
2270 | |
2271 | if (!numElements) { |
2272 | numElements = vlaSize; |
2273 | } else { |
2274 | // It's undefined behavior if this wraps around, so mark it that way. |
2275 | // FIXME: Teach -fsanitize=undefined to trap this. |
2276 | numElements = Builder.CreateNUWMul(LHS: numElements, RHS: vlaSize); |
2277 | } |
2278 | } while ((type = getContext().getAsVariableArrayType(T: elementType))); |
2279 | |
2280 | return { numElements, elementType }; |
2281 | } |
2282 | |
2283 | CodeGenFunction::VlaSizePair |
2284 | CodeGenFunction::getVLAElements1D(QualType type) { |
2285 | const VariableArrayType *vla = getContext().getAsVariableArrayType(T: type); |
2286 | assert(vla && "type was not a variable array type!" ); |
2287 | return getVLAElements1D(vla); |
2288 | } |
2289 | |
2290 | CodeGenFunction::VlaSizePair |
2291 | CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { |
2292 | llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; |
2293 | assert(VlaSize && "no size for VLA!" ); |
2294 | assert(VlaSize->getType() == SizeTy); |
2295 | return { VlaSize, Vla->getElementType() }; |
2296 | } |
2297 | |
2298 | void CodeGenFunction::EmitVariablyModifiedType(QualType type) { |
2299 | assert(type->isVariablyModifiedType() && |
2300 | "Must pass variably modified type to EmitVLASizes!" ); |
2301 | |
2302 | EnsureInsertPoint(); |
2303 | |
2304 | // We're going to walk down into the type and look for VLA |
2305 | // expressions. |
2306 | do { |
2307 | assert(type->isVariablyModifiedType()); |
2308 | |
2309 | const Type *ty = type.getTypePtr(); |
2310 | switch (ty->getTypeClass()) { |
2311 | |
2312 | #define TYPE(Class, Base) |
2313 | #define ABSTRACT_TYPE(Class, Base) |
2314 | #define NON_CANONICAL_TYPE(Class, Base) |
2315 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
2316 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) |
2317 | #include "clang/AST/TypeNodes.inc" |
2318 | llvm_unreachable("unexpected dependent type!" ); |
2319 | |
2320 | // These types are never variably-modified. |
2321 | case Type::Builtin: |
2322 | case Type::Complex: |
2323 | case Type::Vector: |
2324 | case Type::ExtVector: |
2325 | case Type::ConstantMatrix: |
2326 | case Type::Record: |
2327 | case Type::Enum: |
2328 | case Type::Using: |
2329 | case Type::TemplateSpecialization: |
2330 | case Type::ObjCTypeParam: |
2331 | case Type::ObjCObject: |
2332 | case Type::ObjCInterface: |
2333 | case Type::ObjCObjectPointer: |
2334 | case Type::BitInt: |
2335 | llvm_unreachable("type class is never variably-modified!" ); |
2336 | |
2337 | case Type::Elaborated: |
2338 | type = cast<ElaboratedType>(ty)->getNamedType(); |
2339 | break; |
2340 | |
2341 | case Type::Adjusted: |
2342 | type = cast<AdjustedType>(ty)->getAdjustedType(); |
2343 | break; |
2344 | |
2345 | case Type::Decayed: |
2346 | type = cast<DecayedType>(ty)->getPointeeType(); |
2347 | break; |
2348 | |
2349 | case Type::Pointer: |
2350 | type = cast<PointerType>(ty)->getPointeeType(); |
2351 | break; |
2352 | |
2353 | case Type::BlockPointer: |
2354 | type = cast<BlockPointerType>(ty)->getPointeeType(); |
2355 | break; |
2356 | |
2357 | case Type::LValueReference: |
2358 | case Type::RValueReference: |
2359 | type = cast<ReferenceType>(ty)->getPointeeType(); |
2360 | break; |
2361 | |
2362 | case Type::MemberPointer: |
2363 | type = cast<MemberPointerType>(ty)->getPointeeType(); |
2364 | break; |
2365 | |
2366 | case Type::ArrayParameter: |
2367 | case Type::ConstantArray: |
2368 | case Type::IncompleteArray: |
2369 | // Losing element qualification here is fine. |
2370 | type = cast<ArrayType>(ty)->getElementType(); |
2371 | break; |
2372 | |
2373 | case Type::VariableArray: { |
2374 | // Losing element qualification here is fine. |
2375 | const VariableArrayType *vat = cast<VariableArrayType>(ty); |
2376 | |
2377 | // Unknown size indication requires no size computation. |
2378 | // Otherwise, evaluate and record it. |
2379 | if (const Expr *sizeExpr = vat->getSizeExpr()) { |
2380 | // It's possible that we might have emitted this already, |
2381 | // e.g. with a typedef and a pointer to it. |
2382 | llvm::Value *&entry = VLASizeMap[sizeExpr]; |
2383 | if (!entry) { |
2384 | llvm::Value *size = EmitScalarExpr(E: sizeExpr); |
2385 | |
2386 | // C11 6.7.6.2p5: |
2387 | // If the size is an expression that is not an integer constant |
2388 | // expression [...] each time it is evaluated it shall have a value |
2389 | // greater than zero. |
2390 | if (SanOpts.has(K: SanitizerKind::VLABound)) { |
2391 | SanitizerScope SanScope(this); |
2392 | llvm::Value *Zero = llvm::Constant::getNullValue(Ty: size->getType()); |
2393 | clang::QualType SEType = sizeExpr->getType(); |
2394 | llvm::Value *CheckCondition = |
2395 | SEType->isSignedIntegerType() |
2396 | ? Builder.CreateICmpSGT(LHS: size, RHS: Zero) |
2397 | : Builder.CreateICmpUGT(LHS: size, RHS: Zero); |
2398 | llvm::Constant *StaticArgs[] = { |
2399 | EmitCheckSourceLocation(Loc: sizeExpr->getBeginLoc()), |
2400 | EmitCheckTypeDescriptor(T: SEType)}; |
2401 | EmitCheck(Checked: std::make_pair(CheckCondition, SanitizerKind::VLABound), |
2402 | Check: SanitizerHandler::VLABoundNotPositive, StaticArgs, DynamicArgs: size); |
2403 | } |
2404 | |
2405 | // Always zexting here would be wrong if it weren't |
2406 | // undefined behavior to have a negative bound. |
2407 | // FIXME: What about when size's type is larger than size_t? |
2408 | entry = Builder.CreateIntCast(V: size, DestTy: SizeTy, /*signed*/ isSigned: false); |
2409 | } |
2410 | } |
2411 | type = vat->getElementType(); |
2412 | break; |
2413 | } |
2414 | |
2415 | case Type::FunctionProto: |
2416 | case Type::FunctionNoProto: |
2417 | type = cast<FunctionType>(ty)->getReturnType(); |
2418 | break; |
2419 | |
2420 | case Type::Paren: |
2421 | case Type::TypeOf: |
2422 | case Type::UnaryTransform: |
2423 | case Type::Attributed: |
2424 | case Type::BTFTagAttributed: |
2425 | case Type::SubstTemplateTypeParm: |
2426 | case Type::MacroQualified: |
2427 | case Type::CountAttributed: |
2428 | // Keep walking after single level desugaring. |
2429 | type = type.getSingleStepDesugaredType(Context: getContext()); |
2430 | break; |
2431 | |
2432 | case Type::Typedef: |
2433 | case Type::Decltype: |
2434 | case Type::Auto: |
2435 | case Type::DeducedTemplateSpecialization: |
2436 | case Type::PackIndexing: |
2437 | // Stop walking: nothing to do. |
2438 | return; |
2439 | |
2440 | case Type::TypeOfExpr: |
2441 | // Stop walking: emit typeof expression. |
2442 | EmitIgnoredExpr(E: cast<TypeOfExprType>(ty)->getUnderlyingExpr()); |
2443 | return; |
2444 | |
2445 | case Type::Atomic: |
2446 | type = cast<AtomicType>(ty)->getValueType(); |
2447 | break; |
2448 | |
2449 | case Type::Pipe: |
2450 | type = cast<PipeType>(ty)->getElementType(); |
2451 | break; |
2452 | } |
2453 | } while (type->isVariablyModifiedType()); |
2454 | } |
2455 | |
2456 | Address CodeGenFunction::EmitVAListRef(const Expr* E) { |
2457 | if (getContext().getBuiltinVaListType()->isArrayType()) |
2458 | return EmitPointerWithAlignment(Addr: E); |
2459 | return EmitLValue(E).getAddress(CGF&: *this); |
2460 | } |
2461 | |
2462 | Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { |
2463 | return EmitLValue(E).getAddress(CGF&: *this); |
2464 | } |
2465 | |
2466 | void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, |
2467 | const APValue &Init) { |
2468 | assert(Init.hasValue() && "Invalid DeclRefExpr initializer!" ); |
2469 | if (CGDebugInfo *Dbg = getDebugInfo()) |
2470 | if (CGM.getCodeGenOpts().hasReducedDebugInfo()) |
2471 | Dbg->EmitGlobalVariable(VD: E->getDecl(), Init); |
2472 | } |
2473 | |
2474 | CodeGenFunction::PeepholeProtection |
2475 | CodeGenFunction::protectFromPeepholes(RValue rvalue) { |
2476 | // At the moment, the only aggressive peephole we do in IR gen |
2477 | // is trunc(zext) folding, but if we add more, we can easily |
2478 | // extend this protection. |
2479 | |
2480 | if (!rvalue.isScalar()) return PeepholeProtection(); |
2481 | llvm::Value *value = rvalue.getScalarVal(); |
2482 | if (!isa<llvm::ZExtInst>(Val: value)) return PeepholeProtection(); |
2483 | |
2484 | // Just make an extra bitcast. |
2485 | assert(HaveInsertPoint()); |
2486 | llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "" , |
2487 | Builder.GetInsertBlock()); |
2488 | |
2489 | PeepholeProtection protection; |
2490 | protection.Inst = inst; |
2491 | return protection; |
2492 | } |
2493 | |
2494 | void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { |
2495 | if (!protection.Inst) return; |
2496 | |
2497 | // In theory, we could try to duplicate the peepholes now, but whatever. |
2498 | protection.Inst->eraseFromParent(); |
2499 | } |
2500 | |
2501 | void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, |
2502 | QualType Ty, SourceLocation Loc, |
2503 | SourceLocation AssumptionLoc, |
2504 | llvm::Value *Alignment, |
2505 | llvm::Value *OffsetValue) { |
2506 | if (Alignment->getType() != IntPtrTy) |
2507 | Alignment = |
2508 | Builder.CreateIntCast(V: Alignment, DestTy: IntPtrTy, isSigned: false, Name: "casted.align" ); |
2509 | if (OffsetValue && OffsetValue->getType() != IntPtrTy) |
2510 | OffsetValue = |
2511 | Builder.CreateIntCast(V: OffsetValue, DestTy: IntPtrTy, isSigned: true, Name: "casted.offset" ); |
2512 | llvm::Value *TheCheck = nullptr; |
2513 | if (SanOpts.has(K: SanitizerKind::Alignment)) { |
2514 | llvm::Value *PtrIntValue = |
2515 | Builder.CreatePtrToInt(V: PtrValue, DestTy: IntPtrTy, Name: "ptrint" ); |
2516 | |
2517 | if (OffsetValue) { |
2518 | bool IsOffsetZero = false; |
2519 | if (const auto *CI = dyn_cast<llvm::ConstantInt>(Val: OffsetValue)) |
2520 | IsOffsetZero = CI->isZero(); |
2521 | |
2522 | if (!IsOffsetZero) |
2523 | PtrIntValue = Builder.CreateSub(LHS: PtrIntValue, RHS: OffsetValue, Name: "offsetptr" ); |
2524 | } |
2525 | |
2526 | llvm::Value *Zero = llvm::ConstantInt::get(Ty: IntPtrTy, V: 0); |
2527 | llvm::Value *Mask = |
2528 | Builder.CreateSub(LHS: Alignment, RHS: llvm::ConstantInt::get(Ty: IntPtrTy, V: 1)); |
2529 | llvm::Value *MaskedPtr = Builder.CreateAnd(LHS: PtrIntValue, RHS: Mask, Name: "maskedptr" ); |
2530 | TheCheck = Builder.CreateICmpEQ(LHS: MaskedPtr, RHS: Zero, Name: "maskcond" ); |
2531 | } |
2532 | llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( |
2533 | DL: CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); |
2534 | |
2535 | if (!SanOpts.has(K: SanitizerKind::Alignment)) |
2536 | return; |
2537 | emitAlignmentAssumptionCheck(Ptr: PtrValue, Ty, Loc, AssumptionLoc, Alignment, |
2538 | OffsetValue, TheCheck, Assumption); |
2539 | } |
2540 | |
2541 | void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, |
2542 | const Expr *E, |
2543 | SourceLocation AssumptionLoc, |
2544 | llvm::Value *Alignment, |
2545 | llvm::Value *OffsetValue) { |
2546 | QualType Ty = E->getType(); |
2547 | SourceLocation Loc = E->getExprLoc(); |
2548 | |
2549 | emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, |
2550 | OffsetValue); |
2551 | } |
2552 | |
2553 | llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, |
2554 | llvm::Value *AnnotatedVal, |
2555 | StringRef AnnotationStr, |
2556 | SourceLocation Location, |
2557 | const AnnotateAttr *Attr) { |
2558 | SmallVector<llvm::Value *, 5> Args = { |
2559 | AnnotatedVal, |
2560 | CGM.EmitAnnotationString(Str: AnnotationStr), |
2561 | CGM.EmitAnnotationUnit(Loc: Location), |
2562 | CGM.EmitAnnotationLineNo(L: Location), |
2563 | }; |
2564 | if (Attr) |
2565 | Args.push_back(Elt: CGM.EmitAnnotationArgs(Attr)); |
2566 | return Builder.CreateCall(Callee: AnnotationFn, Args); |
2567 | } |
2568 | |
2569 | void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { |
2570 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute" ); |
2571 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) |
2572 | EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, |
2573 | {V->getType(), CGM.ConstGlobalsPtrTy}), |
2574 | V, I->getAnnotation(), D->getLocation(), I); |
2575 | } |
2576 | |
2577 | Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, |
2578 | Address Addr) { |
2579 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute" ); |
2580 | llvm::Value *V = Addr.emitRawPointer(CGF&: *this); |
2581 | llvm::Type *VTy = V->getType(); |
2582 | auto *PTy = dyn_cast<llvm::PointerType>(Val: VTy); |
2583 | unsigned AS = PTy ? PTy->getAddressSpace() : 0; |
2584 | llvm::PointerType *IntrinTy = |
2585 | llvm::PointerType::get(C&: CGM.getLLVMContext(), AddressSpace: AS); |
2586 | llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, |
2587 | {IntrinTy, CGM.ConstGlobalsPtrTy}); |
2588 | |
2589 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) { |
2590 | // FIXME Always emit the cast inst so we can differentiate between |
2591 | // annotation on the first field of a struct and annotation on the struct |
2592 | // itself. |
2593 | if (VTy != IntrinTy) |
2594 | V = Builder.CreateBitCast(V, IntrinTy); |
2595 | V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); |
2596 | V = Builder.CreateBitCast(V, VTy); |
2597 | } |
2598 | |
2599 | return Address(V, Addr.getElementType(), Addr.getAlignment()); |
2600 | } |
2601 | |
2602 | CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } |
2603 | |
2604 | CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) |
2605 | : CGF(CGF) { |
2606 | assert(!CGF->IsSanitizerScope); |
2607 | CGF->IsSanitizerScope = true; |
2608 | } |
2609 | |
2610 | CodeGenFunction::SanitizerScope::~SanitizerScope() { |
2611 | CGF->IsSanitizerScope = false; |
2612 | } |
2613 | |
2614 | void CodeGenFunction::InsertHelper(llvm::Instruction *I, |
2615 | const llvm::Twine &Name, |
2616 | llvm::BasicBlock *BB, |
2617 | llvm::BasicBlock::iterator InsertPt) const { |
2618 | LoopStack.InsertHelper(I); |
2619 | if (IsSanitizerScope) |
2620 | I->setNoSanitizeMetadata(); |
2621 | } |
2622 | |
2623 | void CGBuilderInserter::InsertHelper( |
2624 | llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, |
2625 | llvm::BasicBlock::iterator InsertPt) const { |
2626 | llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); |
2627 | if (CGF) |
2628 | CGF->InsertHelper(I, Name, BB, InsertPt); |
2629 | } |
2630 | |
2631 | // Emits an error if we don't have a valid set of target features for the |
2632 | // called function. |
2633 | void CodeGenFunction::checkTargetFeatures(const CallExpr *E, |
2634 | const FunctionDecl *TargetDecl) { |
2635 | // SemaChecking cannot handle below x86 builtins because they have different |
2636 | // parameter ranges with different TargetAttribute of caller. |
2637 | if (CGM.getContext().getTargetInfo().getTriple().isX86()) { |
2638 | unsigned BuiltinID = TargetDecl->getBuiltinID(); |
2639 | if (BuiltinID == X86::BI__builtin_ia32_cmpps || |
2640 | BuiltinID == X86::BI__builtin_ia32_cmpss || |
2641 | BuiltinID == X86::BI__builtin_ia32_cmppd || |
2642 | BuiltinID == X86::BI__builtin_ia32_cmpsd) { |
2643 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl); |
2644 | llvm::StringMap<bool> TargetFetureMap; |
2645 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: TargetFetureMap, FD); |
2646 | llvm::APSInt Result = |
2647 | *(E->getArg(Arg: 2)->getIntegerConstantExpr(Ctx: CGM.getContext())); |
2648 | if (Result.getSExtValue() > 7 && !TargetFetureMap.lookup("avx" )) |
2649 | CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) |
2650 | << TargetDecl->getDeclName() << "avx" ; |
2651 | } |
2652 | } |
2653 | return checkTargetFeatures(Loc: E->getBeginLoc(), TargetDecl); |
2654 | } |
2655 | |
2656 | // Emits an error if we don't have a valid set of target features for the |
2657 | // called function. |
2658 | void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, |
2659 | const FunctionDecl *TargetDecl) { |
2660 | // Early exit if this is an indirect call. |
2661 | if (!TargetDecl) |
2662 | return; |
2663 | |
2664 | // Get the current enclosing function if it exists. If it doesn't |
2665 | // we can't check the target features anyhow. |
2666 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: CurCodeDecl); |
2667 | if (!FD) |
2668 | return; |
2669 | |
2670 | // Grab the required features for the call. For a builtin this is listed in |
2671 | // the td file with the default cpu, for an always_inline function this is any |
2672 | // listed cpu and any listed features. |
2673 | unsigned BuiltinID = TargetDecl->getBuiltinID(); |
2674 | std::string MissingFeature; |
2675 | llvm::StringMap<bool> CallerFeatureMap; |
2676 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CallerFeatureMap, FD); |
2677 | // When compiling in HipStdPar mode we have to be conservative in rejecting |
2678 | // target specific features in the FE, and defer the possible error to the |
2679 | // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is |
2680 | // referenced by an accelerator executable function, we emit an error. |
2681 | bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; |
2682 | if (BuiltinID) { |
2683 | StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(ID: BuiltinID)); |
2684 | if (!Builtin::evaluateRequiredTargetFeatures( |
2685 | FeatureList, CallerFeatureMap) && !IsHipStdPar) { |
2686 | CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) |
2687 | << TargetDecl->getDeclName() |
2688 | << FeatureList; |
2689 | } |
2690 | } else if (!TargetDecl->isMultiVersion() && |
2691 | TargetDecl->hasAttr<TargetAttr>()) { |
2692 | // Get the required features for the callee. |
2693 | |
2694 | const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); |
2695 | ParsedTargetAttr ParsedAttr = |
2696 | CGM.getContext().filterFunctionTargetAttrs(TD); |
2697 | |
2698 | SmallVector<StringRef, 1> ReqFeatures; |
2699 | llvm::StringMap<bool> CalleeFeatureMap; |
2700 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CalleeFeatureMap, TargetDecl); |
2701 | |
2702 | for (const auto &F : ParsedAttr.Features) { |
2703 | if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) |
2704 | ReqFeatures.push_back(StringRef(F).substr(1)); |
2705 | } |
2706 | |
2707 | for (const auto &F : CalleeFeatureMap) { |
2708 | // Only positive features are "required". |
2709 | if (F.getValue()) |
2710 | ReqFeatures.push_back(Elt: F.getKey()); |
2711 | } |
2712 | if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { |
2713 | if (!CallerFeatureMap.lookup(Feature)) { |
2714 | MissingFeature = Feature.str(); |
2715 | return false; |
2716 | } |
2717 | return true; |
2718 | }) && !IsHipStdPar) |
2719 | CGM.getDiags().Report(Loc, diag::err_function_needs_feature) |
2720 | << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; |
2721 | } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { |
2722 | llvm::StringMap<bool> CalleeFeatureMap; |
2723 | CGM.getContext().getFunctionFeatureMap(FeatureMap&: CalleeFeatureMap, TargetDecl); |
2724 | |
2725 | for (const auto &F : CalleeFeatureMap) { |
2726 | if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || |
2727 | !CallerFeatureMap.find(F.getKey())->getValue()) && |
2728 | !IsHipStdPar) |
2729 | CGM.getDiags().Report(Loc, diag::err_function_needs_feature) |
2730 | << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); |
2731 | } |
2732 | } |
2733 | } |
2734 | |
2735 | void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { |
2736 | if (!CGM.getCodeGenOpts().SanitizeStats) |
2737 | return; |
2738 | |
2739 | llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); |
2740 | IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); |
2741 | CGM.getSanStats().create(B&: IRB, SK: SSK); |
2742 | } |
2743 | |
2744 | void CodeGenFunction::EmitKCFIOperandBundle( |
2745 | const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { |
2746 | const FunctionProtoType *FP = |
2747 | Callee.getAbstractInfo().getCalleeFunctionProtoType(); |
2748 | if (FP) |
2749 | Bundles.emplace_back(Args: "kcfi" , Args: CGM.CreateKCFITypeId(T: FP->desugar())); |
2750 | } |
2751 | |
2752 | llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( |
2753 | const MultiVersionResolverOption &RO) { |
2754 | llvm::SmallVector<StringRef, 8> CondFeatures; |
2755 | for (const StringRef &Feature : RO.Conditions.Features) { |
2756 | // Form condition for features which are not yet enabled in target |
2757 | if (!getContext().getTargetInfo().hasFeature(Feature)) |
2758 | CondFeatures.push_back(Elt: Feature); |
2759 | } |
2760 | if (!CondFeatures.empty()) { |
2761 | return EmitAArch64CpuSupports(FeatureStrs: CondFeatures); |
2762 | } |
2763 | return nullptr; |
2764 | } |
2765 | |
2766 | llvm::Value *CodeGenFunction::FormX86ResolverCondition( |
2767 | const MultiVersionResolverOption &RO) { |
2768 | llvm::Value *Condition = nullptr; |
2769 | |
2770 | if (!RO.Conditions.Architecture.empty()) { |
2771 | StringRef Arch = RO.Conditions.Architecture; |
2772 | // If arch= specifies an x86-64 micro-architecture level, test the feature |
2773 | // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. |
2774 | if (Arch.starts_with(Prefix: "x86-64" )) |
2775 | Condition = EmitX86CpuSupports(FeatureStrs: {Arch}); |
2776 | else |
2777 | Condition = EmitX86CpuIs(CPUStr: Arch); |
2778 | } |
2779 | |
2780 | if (!RO.Conditions.Features.empty()) { |
2781 | llvm::Value *FeatureCond = EmitX86CpuSupports(FeatureStrs: RO.Conditions.Features); |
2782 | Condition = |
2783 | Condition ? Builder.CreateAnd(LHS: Condition, RHS: FeatureCond) : FeatureCond; |
2784 | } |
2785 | return Condition; |
2786 | } |
2787 | |
2788 | static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, |
2789 | llvm::Function *Resolver, |
2790 | CGBuilderTy &Builder, |
2791 | llvm::Function *FuncToReturn, |
2792 | bool SupportsIFunc) { |
2793 | if (SupportsIFunc) { |
2794 | Builder.CreateRet(V: FuncToReturn); |
2795 | return; |
2796 | } |
2797 | |
2798 | llvm::SmallVector<llvm::Value *, 10> Args( |
2799 | llvm::make_pointer_range(Range: Resolver->args())); |
2800 | |
2801 | llvm::CallInst *Result = Builder.CreateCall(Callee: FuncToReturn, Args); |
2802 | Result->setTailCallKind(llvm::CallInst::TCK_MustTail); |
2803 | |
2804 | if (Resolver->getReturnType()->isVoidTy()) |
2805 | Builder.CreateRetVoid(); |
2806 | else |
2807 | Builder.CreateRet(V: Result); |
2808 | } |
2809 | |
2810 | void CodeGenFunction::EmitMultiVersionResolver( |
2811 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2812 | |
2813 | llvm::Triple::ArchType ArchType = |
2814 | getContext().getTargetInfo().getTriple().getArch(); |
2815 | |
2816 | switch (ArchType) { |
2817 | case llvm::Triple::x86: |
2818 | case llvm::Triple::x86_64: |
2819 | EmitX86MultiVersionResolver(Resolver, Options); |
2820 | return; |
2821 | case llvm::Triple::aarch64: |
2822 | EmitAArch64MultiVersionResolver(Resolver, Options); |
2823 | return; |
2824 | |
2825 | default: |
2826 | assert(false && "Only implemented for x86 and AArch64 targets" ); |
2827 | } |
2828 | } |
2829 | |
2830 | void CodeGenFunction::EmitAArch64MultiVersionResolver( |
2831 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2832 | assert(!Options.empty() && "No multiversion resolver options found" ); |
2833 | assert(Options.back().Conditions.Features.size() == 0 && |
2834 | "Default case must be last" ); |
2835 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
2836 | assert(SupportsIFunc && |
2837 | "Multiversion resolver requires target IFUNC support" ); |
2838 | bool AArch64CpuInitialized = false; |
2839 | llvm::BasicBlock *CurBlock = createBasicBlock(name: "resolver_entry" , parent: Resolver); |
2840 | |
2841 | for (const MultiVersionResolverOption &RO : Options) { |
2842 | Builder.SetInsertPoint(CurBlock); |
2843 | llvm::Value *Condition = FormAArch64ResolverCondition(RO); |
2844 | |
2845 | // The 'default' or 'all features enabled' case. |
2846 | if (!Condition) { |
2847 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder, FuncToReturn: RO.Function, |
2848 | SupportsIFunc); |
2849 | return; |
2850 | } |
2851 | |
2852 | if (!AArch64CpuInitialized) { |
2853 | Builder.SetInsertPoint(TheBB: CurBlock, IP: CurBlock->begin()); |
2854 | EmitAArch64CpuInit(); |
2855 | AArch64CpuInitialized = true; |
2856 | Builder.SetInsertPoint(CurBlock); |
2857 | } |
2858 | |
2859 | llvm::BasicBlock *RetBlock = createBasicBlock(name: "resolver_return" , parent: Resolver); |
2860 | CGBuilderTy RetBuilder(*this, RetBlock); |
2861 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder&: RetBuilder, FuncToReturn: RO.Function, |
2862 | SupportsIFunc); |
2863 | CurBlock = createBasicBlock(name: "resolver_else" , parent: Resolver); |
2864 | Builder.CreateCondBr(Cond: Condition, True: RetBlock, False: CurBlock); |
2865 | } |
2866 | |
2867 | // If no default, emit an unreachable. |
2868 | Builder.SetInsertPoint(CurBlock); |
2869 | llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); |
2870 | TrapCall->setDoesNotReturn(); |
2871 | TrapCall->setDoesNotThrow(); |
2872 | Builder.CreateUnreachable(); |
2873 | Builder.ClearInsertionPoint(); |
2874 | } |
2875 | |
2876 | void CodeGenFunction::EmitX86MultiVersionResolver( |
2877 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2878 | |
2879 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
2880 | |
2881 | // Main function's basic block. |
2882 | llvm::BasicBlock *CurBlock = createBasicBlock(name: "resolver_entry" , parent: Resolver); |
2883 | Builder.SetInsertPoint(CurBlock); |
2884 | EmitX86CpuInit(); |
2885 | |
2886 | for (const MultiVersionResolverOption &RO : Options) { |
2887 | Builder.SetInsertPoint(CurBlock); |
2888 | llvm::Value *Condition = FormX86ResolverCondition(RO); |
2889 | |
2890 | // The 'default' or 'generic' case. |
2891 | if (!Condition) { |
2892 | assert(&RO == Options.end() - 1 && |
2893 | "Default or Generic case must be last" ); |
2894 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder, FuncToReturn: RO.Function, |
2895 | SupportsIFunc); |
2896 | return; |
2897 | } |
2898 | |
2899 | llvm::BasicBlock *RetBlock = createBasicBlock(name: "resolver_return" , parent: Resolver); |
2900 | CGBuilderTy RetBuilder(*this, RetBlock); |
2901 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder&: RetBuilder, FuncToReturn: RO.Function, |
2902 | SupportsIFunc); |
2903 | CurBlock = createBasicBlock(name: "resolver_else" , parent: Resolver); |
2904 | Builder.CreateCondBr(Cond: Condition, True: RetBlock, False: CurBlock); |
2905 | } |
2906 | |
2907 | // If no generic/default, emit an unreachable. |
2908 | Builder.SetInsertPoint(CurBlock); |
2909 | llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); |
2910 | TrapCall->setDoesNotReturn(); |
2911 | TrapCall->setDoesNotThrow(); |
2912 | Builder.CreateUnreachable(); |
2913 | Builder.ClearInsertionPoint(); |
2914 | } |
2915 | |
2916 | // Loc - where the diagnostic will point, where in the source code this |
2917 | // alignment has failed. |
2918 | // SecondaryLoc - if present (will be present if sufficiently different from |
2919 | // Loc), the diagnostic will additionally point a "Note:" to this location. |
2920 | // It should be the location where the __attribute__((assume_aligned)) |
2921 | // was written e.g. |
2922 | void CodeGenFunction::emitAlignmentAssumptionCheck( |
2923 | llvm::Value *Ptr, QualType Ty, SourceLocation Loc, |
2924 | SourceLocation SecondaryLoc, llvm::Value *Alignment, |
2925 | llvm::Value *OffsetValue, llvm::Value *TheCheck, |
2926 | llvm::Instruction *Assumption) { |
2927 | assert(Assumption && isa<llvm::CallInst>(Assumption) && |
2928 | cast<llvm::CallInst>(Assumption)->getCalledOperand() == |
2929 | llvm::Intrinsic::getDeclaration( |
2930 | Builder.GetInsertBlock()->getParent()->getParent(), |
2931 | llvm::Intrinsic::assume) && |
2932 | "Assumption should be a call to llvm.assume()." ); |
2933 | assert(&(Builder.GetInsertBlock()->back()) == Assumption && |
2934 | "Assumption should be the last instruction of the basic block, " |
2935 | "since the basic block is still being generated." ); |
2936 | |
2937 | if (!SanOpts.has(K: SanitizerKind::Alignment)) |
2938 | return; |
2939 | |
2940 | // Don't check pointers to volatile data. The behavior here is implementation- |
2941 | // defined. |
2942 | if (Ty->getPointeeType().isVolatileQualified()) |
2943 | return; |
2944 | |
2945 | // We need to temorairly remove the assumption so we can insert the |
2946 | // sanitizer check before it, else the check will be dropped by optimizations. |
2947 | Assumption->removeFromParent(); |
2948 | |
2949 | { |
2950 | SanitizerScope SanScope(this); |
2951 | |
2952 | if (!OffsetValue) |
2953 | OffsetValue = Builder.getInt1(V: false); // no offset. |
2954 | |
2955 | llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), |
2956 | EmitCheckSourceLocation(Loc: SecondaryLoc), |
2957 | EmitCheckTypeDescriptor(T: Ty)}; |
2958 | llvm::Value *DynamicData[] = {EmitCheckValue(V: Ptr), |
2959 | EmitCheckValue(V: Alignment), |
2960 | EmitCheckValue(V: OffsetValue)}; |
2961 | EmitCheck(Checked: {std::make_pair(x&: TheCheck, y: SanitizerKind::Alignment)}, |
2962 | Check: SanitizerHandler::AlignmentAssumption, StaticArgs: StaticData, DynamicArgs: DynamicData); |
2963 | } |
2964 | |
2965 | // We are now in the (new, empty) "cont" basic block. |
2966 | // Reintroduce the assumption. |
2967 | Builder.Insert(I: Assumption); |
2968 | // FIXME: Assumption still has it's original basic block as it's Parent. |
2969 | } |
2970 | |
2971 | llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { |
2972 | if (CGDebugInfo *DI = getDebugInfo()) |
2973 | return DI->SourceLocToDebugLoc(Loc: Location); |
2974 | |
2975 | return llvm::DebugLoc(); |
2976 | } |
2977 | |
2978 | llvm::Value * |
2979 | CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, |
2980 | Stmt::Likelihood LH) { |
2981 | switch (LH) { |
2982 | case Stmt::LH_None: |
2983 | return Cond; |
2984 | case Stmt::LH_Likely: |
2985 | case Stmt::LH_Unlikely: |
2986 | // Don't generate llvm.expect on -O0 as the backend won't use it for |
2987 | // anything. |
2988 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
2989 | return Cond; |
2990 | llvm::Type *CondTy = Cond->getType(); |
2991 | assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean" ); |
2992 | llvm::Function *FnExpect = |
2993 | CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); |
2994 | llvm::Value *ExpectedValueOfCond = |
2995 | llvm::ConstantInt::getBool(Ty: CondTy, V: LH == Stmt::LH_Likely); |
2996 | return Builder.CreateCall(Callee: FnExpect, Args: {Cond, ExpectedValueOfCond}, |
2997 | Name: Cond->getName() + ".expval" ); |
2998 | } |
2999 | llvm_unreachable("Unknown Likelihood" ); |
3000 | } |
3001 | |
3002 | llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, |
3003 | unsigned NumElementsDst, |
3004 | const llvm::Twine &Name) { |
3005 | auto *SrcTy = cast<llvm::FixedVectorType>(Val: SrcVec->getType()); |
3006 | unsigned NumElementsSrc = SrcTy->getNumElements(); |
3007 | if (NumElementsSrc == NumElementsDst) |
3008 | return SrcVec; |
3009 | |
3010 | std::vector<int> ShuffleMask(NumElementsDst, -1); |
3011 | for (unsigned MaskIdx = 0; |
3012 | MaskIdx < std::min<>(a: NumElementsDst, b: NumElementsSrc); ++MaskIdx) |
3013 | ShuffleMask[MaskIdx] = MaskIdx; |
3014 | |
3015 | return Builder.CreateShuffleVector(V: SrcVec, Mask: ShuffleMask, Name); |
3016 | } |
3017 | |